Cleaning solutions and etchants and methods for using same

Abstract
Composition for cleaning or etching a semiconductor substrate and method for using the same. The composition may include a fluorine-containing compound as an active agent such as a quaternary ammonium fluoride, a quaternary phosphonium fluoride, sulfonium fluoride, more generally an -onium fluoride or “multi” quaternary -onium fluoride that includes two or more quaternary- onium groups linked together by one or more carbon-containing groups. The composition may further include a pH adjusting acid such as a mineral acid, carboxylic acid, dicarboxylic acid, sulfonic acid, or combination thereof to give a pH of about 2 to 9. The composition can be anhydrous and may further include an organic solvent such as an alcohol, amide, ether, or combination thereof. The composition are useful for obtaining improved etch rate, etch selectivity, etch uniformity and cleaning criteria on a variety of substrates.
Description
FIELD OF THE INVENTION

The present invention generally relates to compositions useful for etching various types of silicon oxide and oxynitrides. The compositions are also useful for cleaning residues from semiconductor substrates.


BACKGROUND OF THE INVENTION

Selective etching and cleaning solutions for dielectric antireflective coatings (DARC), pre-metal contacts comprised of undoped tetraethylorthosilicate (TEOS) and thermal oxides, and doped phospho- and boro-phospho-silicate glasses (PSG & BPSG) and low-k dielectric/copper interconnect structures are important to device design and manufacturing for the most advanced semiconductor technologies. Such process chemicals enable processing advances such as reduction of critical dimension and lower resistivity and capacitance contacts and interconnect.


DARC films, and more generally antireflective coatings (ARC's), are used to minimize undesirable surface layer reflections during photolithography and in so doing provide better pattern definition. DARC films are also employed in Advanced Patterning Technology with amorphous carbon films to extend and enhance existing photolithography to pattern smaller geometry structures. However, it is generally necessary to selectively remove these films after photolithography or plasma etch by either a wet chemical or plasma method.


Both undoped and doped silicon oxides are used as dielectric materials in pre-metal contacts down to doped silicon, polysilicon, and suicides. After plasma etch to open the contact, a contact clean chemistry is applied to selectively remove residues and provide a clean and conductive contact surface while maintaining the contact profile and critical dimension.


Additionally, compositions for removing photoresist and etch residues following plasma etch and ash processes are crucial for optimum electrical performance, reliability, and yield in integrated circuit manufacturing. Back end of line (BEOL) cleaning chemicals need to be capable of cleaning organic, organometallic, and inorganic post etch and post ash residues from copper and aluminum interconnect while not etching the interconnect metal or altering silicon dioxide or low-k dielectrics and their associated materials.


Presently, aqueous and non-aqueous fluoride formulations are used in selective etching and cleaning applications. These compositions are generally comprised of a fluoride component, additives, and a solvent, in many instances water. In selective etch applications, etch rates of many fluoride containing compositions are generally high, requiring very short process times. In addition, the varying stoichiometry of the films to be etched may result in a non-uniform etch that manifests as small islands of film remaining on the substrate surface as depicted in FIG. 1 for the DARC (SixOyNz) selective etchant application. What is needed is an improved etchant composition having improved etch rate, etch selectivity, and etch uniformity criteria on different types of substrates.


Fluoride chemistries, particularly HF/NH4F buffered oxide etch (BOE) and dilute HF, are also widely used for pre-metal contact cleaning. The high silicon oxide etch rates and narrow selectivity properties limit their use in applications where contact CD is below 0.18 μm, aspect ratio is greater than 10:1, and contact architecture uses complex material stacks as depicted in FIGS. 2A & 2B. A fluoride solution that has lower oxide etch rate than BOE or HF, adjustable oxide etch rate selectivity, and good residue removal activity is needed.


Formulations containing various amounts and types of fluoride additives have been used for BEOL cleans particularly when interconnect features are comprised of copper, low-k dielectric and associated materials as depicted in FIG. 3A, and they are also useful for aluminum interconnect systems such as shown in FIG. 3B. Fluoride chemistries are active in dissolving metal oxide and halide residues that are generated from the plasma etch of the interconnect material stack. However, many existing fluoride chemicals will also etch or chemically modify the silicon oxide and low-k dielectrics. This results in undesirable critical dimension enlargement and an increase in dielectric constant.


SUMMARY OF THE INVENTION

It has been found that formulations containing quaternary ammonium, phosphonium, and/or sulfonium fluoride salt, a relatively low water content, and a pH of 2–9 would be most compatible with silicon dioxide, low-k and porous low-k dielectrics, associated cap, barrier and etch stop materials, and metals such as copper and aluminum, which are used to construct interconnect features in integrated circuit manufacturing. Furthermore, it has been found that such formulations have high cleaning activity on post plasma etch and ash residues.


A cleaning or etching solution can be formulated by combining the following components in the amounts indicated below (by weight of the final composition):


(1) 0.1–20% by weight of a fluoride salt (preferably a quaternary ammonium, phosphonium or sulfonium);


(2) 0–5% by weight of a quaternary ammonium or phosphonium salt;


(3) 0.1–5% by weight of a pH adjusting acid (e.g., mineral acid, carboxylic acid, sulfonic acid);


(4) 0–99.8% by weight of an organic solvent (e.g., alcohols, amides, ethers); and


(5) 0–99.8% by weight of water.


In certain embodiments, the fluoride salt is present in an amount of 1–10%, water is present in an amount less than 5%, and the organic solvent makes up more than 80% of the total composition. The pH of the composition is preferably between about 2 and about 9.


The compositions of the present invention have been found to be useful in various semiconductor cleaning and etching processes. For example, the compositions can be used after patterning a semiconductor substrate that includes a dielectric antireflective coating (DARC). The compositions can be used to selectively etch the DARC after it has been applied to the substrate. The etching composition is formulated to remove the DARC at a greater rate than it etches other layers on the substrate (e.g., amorphous carbon, BPSG, etc.).


The compositions of the present invention have also been found to be useful in pre-deposition and contact cleaning applications. For example, the compositions can be used to etch doped and undoped oxide layers with a 1:1 selectivity. Alternately, the compositions can be used to selectively etch these oxide layers such that the undoped oxide is removed at a rate that is between 2 and 10 times as fast as the rate at which the doped oxide is removed. The contact material can be a pre-metal contact material such as doped silicon, polysilicon, or silicide, or it can be a metal contact such as Cu or AlCu.


These compositions can also be used to remove the residue that is typically formed on contacts, vias, and metal lines when a dielectric or stack of dielectrics is etched to expose contact material. In this case, the cleaning formulation removes the post-etch residue while having little or no effect on the surrounding dielectric and/or metal.





BRIEF DESCRIPTION OF THE DRAWINGS

References are made to the following description taken in connection with the accompanying drawings, in which:



FIG. 1 depicts a cross sectional review of a layer of DARC in a selective etching application and nitride or carbide rich islands of DARC on the surface of the layer.



FIG. 2A depicts a layer of undoped oxide and doped oxide in a non-selective etching contact clean application (cross sectional view).



FIG. 2B depicts a layer of doped silicon oxide in a selective etching contact clean application (cross sectional view).



FIG. 3 depicts the cleaning of post etch residues from etched contacts, vias, and metal lines on a substrate (cross sectional view).



FIG. 4 is a graph of etch rate versus time for a selected composition on a DARC substrate and a BPSG substrate.



FIG. 5 is a graph of etch rate versus temperature for a selected composition on a DARC substrate and a BPSG substrate.



FIG. 6 is a graph of etch rate versus percentage water for a selected composition on a DARC substrate and a BPSG substrate.



FIG. 7 is a graph of etch rate versus temperature for a selected composition on a DARC substrate and a BPSG substrate.



FIG. 8 is a graph of etch rate versus time for a selected composition on a DARC substrate and a BPSG substrate.



FIG. 9 is a graph of etch rate versus temperature for a selected composition on a ThOx substrate and a BPSG substrate.



FIG. 10 is a graph of etch rate versus time for a selected composition on a ThOx substrate and a BPSG substrate.





DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

Various etching and cleaning compositions containing quaternary ammonium, phosphonium, or sulfonium fluoride formulations have been formulated to obtain improved etch rate, etch selectivity, etch uniformity and cleaning criteria on a variety of substrates.


The compositions preferably include a fluorine-containing compound such as a fluoride salt (e.g., a salt containing any type of fluoride, hydrogen fluoride, difluoride, etc.) as an active agent. The fluorine-containing compound can be a quaternary ammonium salt, a phosphonium salt, or a sulfonium salt, (i.e., more generally an “onium” salt), or it can be a salt that includes two or more quaternary onium groups linked together by one or more carbon-containing groups (e.g., “di-quats”, “tri-quats”, “tetraquats”, etc.). The fluorine-containing compound preferably makes up between about 0.1% to about 20% by weight of the composition, more preferably between about 1% and about 10% by weight, and more preferably still between about 2% and about 7% by weight.


The composition may further include a pH adjusting acid such as a mineral acid, carboxylic acid, dicarboxylic acid, sulfonic acid, or combination thereof. The acid preferably makes up between about 0.1% to about 5% by weight of the composition, more preferably between about 0.1% and about 1% by weight, and more preferably still between about 0.1% and about 0.5% by weight. The resulting pH of the solution is typically between about 2 and about 9 and is preferably acidic. In some embodiments, the pH is between about 2 and about 7, and more preferably between about 2 and about 4.


The composition may further include an organic solvent such as an alcohol, amide, ether, or combination thereof. The solvent preferably makes up between about 1% to about 99.8% by weight of the composition, more preferably greater than about 80% by weight, and more preferably still greater than about 90% by weight.


The composition can also include water either as the primary solvent or in combination with an organic solvent. The composition may optionally be substantially anhydrous. It has been found that compositions having a very small water content are particularly suitable for certain semiconductor etching and cleaning applications, and the compositions used in these applications preferably have a water content of less than about 5% by weight, more preferably between about 0.5% and about 4%, and more preferably still between 1 and 3%.


The composition can optionally include a quaternary ammonium salt, a sulfonium salt, or a phosphonium salt in addition to the fluorine-containing compound. If present, this salt preferably makes up less than about 5% of the composition by weight, more preferably less than about 4% of the solution, and more preferably still between about 1% and about 3%.


Exemplary fluorine-containing compounds and salts suitable for use in the compositions of the present invention include Tetramethylammonium Fluoride, Tetrabutylammonium Fluoride, Methyltriphenylammonium Fluoride, Phenyltrimethylammonium Fluoride, Benzyltrimethylammonium Fluoride, Methtyltriethanolammonium Fluoride, Tetrabutylphosphonium Fluoride, Methyltriphenylphosphonium Fluoride, Trihexyltetradecylphosphonium Fluoride, Tributyltetradecylphosphonium Fluoride, Methyltriethanolammonium Hexafluorophosphate, Methyltriethanolammonium Tetrafluoroborate, Methyltriethanolammonium Dihydrogen Fluoride, Tetrabutylphosphonium Hexafluorophosphate, Tetrabutylphosphonium Tetrafluoroborate, Tetrabutylphosphonium Hydrogen Difluoride, Tetrabutylphosphonium Dihydrogen Trifluoride, [(CH3)3NCH2CH(OH)CH2N(CH3)3]2+ [F-]2, Betaine Hydrofluoride, 1-Butyl-3-methylimidazolium Fluoride, Trimethylsulfonium Fluoride, Trimethylsulfoxonium Fluoride, trimethyl (2,3-dihydroxypropyl) ammonium fluoride, [(C6H5)CH2N(CH3)2CH2CH(OH)CH2N(CH3)2CH2CH(OH)CH2N(CH3)2CH2NCH2(C6H5)]4+[F-]4, and [(CH3)3NCH2CH(OH)CH20H]+[F-], Hexamethonium difluoride. These compounds are merely examples, and the skilled artisan will understand (with the benefit of this Specification) that additional fluoride-containing compounds can be used in the present invention.


In one embodiment, the fluorine-containing compound is an alkanol quaterary ammonium fluoride. As used herein, an “alkanol group” is an akyl chain containing one or more hydroxy groups. Each alkanol group may be a hydroxylethyl, hydroxylbutyl, hydroxypropyl, 2,3 dihydroxypropyl etc. The alkanol quaternary ammonium fluoride can contains 1, 2, or 3 alkyl groups along with 3, 2, or 1 alkanol groups, respectively. The alkanol group may contain the hydroxy substituent(s) on the alpha, beta, gamma, etc., carbon position. In addition, alkanol or alkyl groups may bridge between adjacent quaternary ammonium cations to give diquats, triquats and multiquats. It is also envisioned that alkoxy groups could be acceptable in place of the hydroxy groups to give analogous alkoxy substituted quaternary ammonium or phosphonium fluorides.


Exemplary quaternary ammonium, sulfonium, and phosphonium salts that may optionally be included in the compositions in addition to the fluorine-containing compound include Tetramethylammonium Acetate, Tetrabutylammonium Chloride, Benzyltrimethylammonium Methanesulfonate, Methtyltriethanolammonium Benzoate, Tetrabutylphosphonium Salicylate, Trihexyltetradecylphosphonium Chloride, Tributyltetradecylphosphonium Fluoride, Methyltriethanolammonium Dihydrogen Phosphate, Methyltriethanolammonium Nitrate, Methyltriethanolammonium Sulfate, Tetrabutylphosphonium Phthalate, Tetrabutylphosphonium Acetate, Tetrabutylphosphonium Oxalate, Tetrabutylphosphonium Malonate, [(CH3)3NCH2CH(OH)CH2N(CH3)3]2+Diacetate, Betaine, and 1-Butyl-3-methylimidazolium Acetate.


Exemplary pH adjusting acids that may be included in the compositions include Hydrofluoric acid, Hydrochloric Acid, Nitric Acid, Sulfuric Acid, Phosphoric Acid, Hydrobromic Acid, Perchloric Acid, Methanesulfonic Acid, Acetic Acid, Benzoic Acid, Octanoic Acid, Oxalic Acid, Salicylic Acid, Malonic Acid, Fluoroboric Acid, Hexafluorophosphoric Acid, Phenylphosphonic Acid, and Phytic Acid.


Exemplary solvents that may be included in the compositions include water, Tetrahydrofurfuryl Alcohol, Benzyl Alcohol, Hexanol, 2-(2-methoxyethoxy)-ethanol, Dimethylacetamide, Bis-(2-methoxyethyl) Ether, Octanoic Acid, Diethyleneglycol mono butyl ether, Glyme (including diglymes and monoglymes), Dipropyleneglycol mono methyl ether, 2-butoxyethanol, 1-Cyclohexyl-2-pyrrolidinone, and 1-Hydroxyethyl-2-pyrrolidinone. The organic solvent is preferably partially water-soluble.


The composition preferably is substantially free of metal ions, including sodium ions, potassium ions, and free metal ions to prevent wafer contamination. The solution components (e.g., salts, organic solvent) are preferably purified using ion exchange to remove metal ions. The organic solvents may also be purified via distillation or ion exchange. High purity acids can be purchased commercially. After purification, the composition preferably has a free metal ion content of less than about 200 parts per billion (PPB), more preferably less than about 20 PPB, more preferably less than about 10 PPB, and more preferably still less than about 5 PPB.


These compositions can be used for a variety of selective and non-selective etching and cleaning applications including those depicted in FIG. 1 to FIG. 3 and further discussed below.


Application 1 (FIG. 1) depicts the removal of dielectric antireflective coating (DARC; SiXOyNz) without significantly etching exposed boron and phosphorus doped (BPSG) oxide. The formulation used in this application preferably achieves a DARC etch rate of about 20–200 A/min (an etch rate of greater than 300 A/min may cause short dip times), with a 100 Å maximum loss on BPSG oxide with a selectivity of about 5:1 (DARC:BPSG) or greater.


Application 2 (FIG. 2A) depicts a pre-deposition and contact cleaning, non-selective etch of doped(BPSG):undoped tetraethylorthosilicate (TEOS) or like oxide. The formulation for this application preferably achieves a 1:1 selectivity of doped:undoped silicon oxide and an etch rate of about 5–30 Å/min.


Application 3 (FIG. 2B) depicts a pre-deposition and contact cleaning, selective etch of undoped/doped silicon oxide. The formulation for this application preferably achieves an undoped:doped selectivity equal to or greater than about 2:1 and an undoped etch rate of about 5–30 Å/min.


Application 4 (FIGS. 3A & 3B) depicts a cleaning of post etch residues from etched contacts, vias, and metal lines. The formulation for this application preferably achieves a low etch rate on dielectric and contact metal and high chemical compatibility with dielectric and associated barrier, cap, and etch stop materials.


The high selectivity to undoped oxide etch formulations and the non-selective doped to undoped etch formulations can be used to clean plasma etched structures of varying architecture as depicted in FIG. 2A and FIG. 2B. The formulations can also be used for cleaning applications including post etch residue removal on metal exposed structures such as vias stopping on copper or AlCu and AlCu metal lines as shown in FIG. 3A and FIG. 3B.


EXAMPLES

The composition used in Example 17 was formulated by the following steps:


(1) 7.33 g of HF (Air Products 48.9%; Lot 3067035P) was slowly added with stirring to 89.79 g of Tetrabutylphosphonium Hydroxide (Sachem 39.97%; Lot A30761012503). Heat was generated during this neutralization step.


(2) The resulting solution was diluted with diethyleneglycol monobutyl ether (ACROS; 99+%, <0.1% H20) to a final mass of 326.8 g. The resulting solution was approximately 18.3% water, 10.97% tetrabutyl phosphonium fluoride, 0.305% HF, and 70.42% diethyleneglycol monobutyl ether.


(3) The resulting solution was placed in a teflon coated round bottom flask and rotovaped at 85° C. @40 Torr (or better) until the water content dropped to 3.1% (total time 33 minutes).


(4) This solution, having a mass of 277.82 g, was diluted 3.6 fold (to 1000.14 g) with diethyleneglycol monobutyl ether, resulting in the formulation used in Example 1. The other formulations in Table 1 below were made in a similar manner.


The following films were tested using the compositions listed in Table 1 below:


(1) 6000 Å 3.0%×6.0% boron and phosphorus (BPSG) doped oxide;


(2) 1050 Å dielectric antireflective coating (DARC; SiOxNy);


(3) 2300 Å Plasma enhanced chemical vapor deposition (PECVD TEOS) oxide;


(4) 5000 Å 5.0% Phosphorus doped oxide (PSG); and


(5) 5000 Å Thermal oxide (THox);


The DARC, BPSG, PSG, TEOS etc. wafers were cleaved into 1″×1″ square pieces. The pieces were submerged into plastic beakers containing the etchant solutions at 25–70° C. The wafer pieces were processed for 10–30 min after which they were rinsed with isopropyl alcohol then DI water and blown dry with nitrogen. The film thicknesses before and after processing were determined by reflectometry using a NANOSPEC 210. The films were also examined by optical microscopy to assess uniformity of etch.


The results for etch rate, selectivity and film removal uniformity (DARC) are presented in Table 1. The results in Table 1 represent some of the preferred formulations based upon over 800 formulations tested. It is to be understood that formulations in Table 1 are merely examples of the present invention, which is not to be limited to the specific components or percentages in this description. One of ordinary skill will appreciate, with the benefit of this specification, that many other formulations could be made that fall within the scope of the invention described herein that contain only insubstantial variations to the illustrative embodiments found in Table 1. The metes and bounds of the invention are to be ascertained from the appended claims rather than from the specific illustrative embodiments set forth in this description.


The etching and selectivity characteristics of the formulation of Example 16 were studied versus process temperature, process time and water content. This data is presented in FIGS. 4, 5, and 6. The etch rate and selectivity characteristics of the formulations of Example 17 and Example 22 versus process temperature and process time are provided in FIGS. 7–8 and 910, respectively.









TABLE 1







All Processes at 30° C. unless otherwise indicated













Example

Process Time
Etch Rate
Sel.,
Sel., TEOS or
Formulation Chemistry


Formulation
Film
(min)
(Å/min)
DARC:BPSG
Thox:BPSG
(weight percentages)
















 1
DARC
30 min
7.9
8.8

4.5%-








[CH3N(CH2CH2OH)3]+ [F]



TEOS
30 min
4.3

4.8
<0.1% HCl to adjust pH = 5



BPSG
30 min
0.9


95.4% H2O


 2
TEOS
30 min
29.1


4.5%-








[CH3N(CH2CH2OH)3]+ [F]



BPSG
30 min
6.6

4.4
<0.5% Acetic Acid








95% H2O








pH = 4


 3
TEOS
30 min
22.4


4.5%-








[CH3N(CH2CH2OH)3]+ [F]



BPSG
30 min
6.2

3.6
<0.5% Acetic Acid








95% H2O








pH = 3.6


 4
DARC
10.9

5.5

4.2%-








[(CH3)3N(CH2C6H5]+ [F]



TEOS
6.6


3.3
<0.1% HCl to adjust pH = 5



BPSG
2.0



95.7% H2O


 5
TEOS
30 min
54.6


3.55%-








1-Butyl-3-methylimidazoliium








fluoride



BPSG
30 min
13.8

3.96
2.6% 1-Butyl-3-








methylimidazoliium








methansulfonate








<1% Methanesulfonic Acid








92.8% H2O








pH = 3.9


 6
TEOS
30 min
72.2

1.03
0.21%








[(CH3)3NCH2CH(OH)CH2N—








(CH3)3]2+ [F]2



BPSG
30 min
70.0


0.16%-HF








99.63% H2O








pH = 2.54


 7
TEOS
30 min
34.5


1.15%



BPSG
30 min
34.6

1
[CH3N(CH2CH2OH)3]+ [F]



PSG
30 min
32


0.75% H3PO4








98.1% H2O








pH = 2.3


 8
TEOS
30 min
31.3

3.7
4.57%



BPSG
30 min
8.5


[CH3N(CH2CH2OH)3]+ [F]








<0.2% Methane Sulfonic








95.23% H2O








pH = 4.0


 9
TEOS
30 min
45.7

2.7
4.57%-








[CH3N(CH2CH2OH)3]+ [F]



BPSG
30 min
17.2


<0.5% Benzoic Acid








94.93% H2O








pH = 4.0


10
TEOS
30 min
9

7.5
6.95%-








[P(CH2CH2CH2CH3)4]+ [F]



BPSG
30 min
1.2


92.95% H2O








<0.1% HCl








pH = 3.9


11
TEOS
30 min
14.1

12.8
12.6%-








CH3(CH2)13P((CH2)5CH3)3]+ [F]



BPSG
30 min
1.1


87.3% H2O








<0.1% HCl








pH = 4.0


12
DARC
30 min
19.3
32

2.3% [N(CH3)4]+ [F]



TEOS
30 min
7.2

12
95.1% Tetrahydrofurfuryl








alcohol



BPSG
30 min
0.6


2.5% H2O








<0.1% HCl








pH = 4.0 (on 5:1 dilution with








H2O)


13
DARC
30 min
34
8.3

2.3% [N(CH3)4]+ [F]



TEOS
30 min
20.2

4.9
95% Tetrahydrofurfuryl








alcohol



BPSG
30 min
4.1


2.7% H2O








<0.2% HCl








pH = 3.1 (on 5:1 dilution with








H2O)


14
DARC
30 min
3.2
5.3

6.5% [N(CH2CH2CH2CH3)4]+








[F]



TEOS
30 min
7.3

12
91.6% Dimethylacetamide



BPSG
30 min
0.6


1.7% H2O








<0.2% HCl








pH = 3.04 (on 5:1 dilution with








H2O)


15
DARC
30 min
33.9
11

2.3% [N(CH3)4]+ [F]



TEOS
30 min
15

5
94.8% Benzyl Alcohol



BPSG
30 min
3.1


2.7% H2O








<0.2% HCl








pH = 3.5 (on 5:1 dilution with








H2O)


16
DARC
20 min
17.9
15

2.3% [N(CH3)4]+ [F]



TEOS
20 min
4.3

3.6
95% 2-(2-methoxyethoxy)-








ethanol



BPSG
20 min
1.21


2.5% H2O








<0.2% HCl








pH = 3.6 (on 5:1 dilution with








H2O)


17
DARC
10 min
22
10.5

3.34%-


(50° C. Process)





[P(CH2CH2CH2CH3)4]+ [F]








<0.9% H2O



BPSG
10 min
2.1


0.09% HF








95.7% diethylene glycol








monobutyl ether








pH = 3.3 (after 50:1 dilution








deionized water)


18
DARC
10 min
29
15.3

6.95%-


(50° C. Process)





P(CH2CH2CH2CH3)4]+ [F]








10% H2O



BPSG
10 min
1.9


0.16% HF








83% dipropyleneglycol mono








methyl ether


19
Thox
15 min
6.8


6.95%-


(50° C. Process)





P(CH2CH2CH2CH3)4]+ [F]



TEOS
15 min
24.2

7.3
2% Benzoic Acid



BPSG
15 min
3.3


91.05% diethyleneglycol mono








methyl ether








pH = 3.6 (after 50:1 dilution








deionized water)



PSG
15 min
4.3


20
DARC
30 min
17.9
16.2

6.95%-


(40° C. Process)





P(CH2CH2CH2CH3)4]+ [F]



BPSG
30 min
1.1


<0.2% HCl








82.3% diethyleneglycol mono








methyl ether








10.5% H2O








pH = 3.5 (after 50:1 dilution








deionized water)


21
DARC
30 min
17.2
34.4

4.17%-


(50° C. Process)





P(CH2CH2CH2CH3)4]+ [F]



BPSG
30 min
0.5


<0.1% HF








≧93.7% Tetrahydrofurfuryl








alcohol








<2% H2O








pH = 3.5 (after 50:1 dilution








deionized water)


22
ThOx
30 min
6.9

2.46
1.38%-


(50° C. Process)





P(CH2CH2CH2CH3)4]+ [F]



BPSG
30 min
2.8


0.56% P(CH2CH2CH2CH3)4]+








[Benzoate]








3% Benzoic acid








95% diethyleneglycol








monomethyl ether








<0.2% H2O








pH = 3.5 (after 50:1 dilution








deionized water)








Claims
  • 1. A composition useful for cleaning or etching a substrate, comprising: tetrabutyl phosphonium fluoride;an acid;an organic solvent or water or a mixture thereof in an amount from 0 to about 99.8% of the composition by weight; anda pH of between about 2 and about 9.
  • 2. The composition of claim 1, wherein the salt makes up between about 1% and about 10% by weight of the composition.
  • 3. The composition of claim 1, wherein the organic solvent is an alcohol.
  • 4. The composition of claim 1, wherein the organic solvent is a glyme.
  • 5. The composition of claim 1, wherein the water makes up less than about 5% of the composition by weight.
  • 6. The composition of claim 1, wherein the pH is between about 2 and about 4.
  • 7. The composition of claim 1, further comprising a second salt comprising one or more of a quaternary ammonium salt, a sulfonium salt, and a phosphonium salt.
  • 8. The composition of claim 1, wherein the composition has a free metal ion content of less than about 10 PPB.
  • 9. The composition of claim 1, wherein the composition is capable of etching a DARO layer at a rate greater than it etches a doped oxide layer.
  • 10. The composition of claim 1, wherein the composition is capable of etching an undoped oxide layer at a rate greater than it etches a doped oxide layer.
  • 11. The composition of claim 1, wherein the composition is capable of non-selectively etching a doped oxide layer and an undoped oxide layer.
  • 12. The composition of claim 1, wherein the solvent is a glyme, the water is present in an amount less than about 3%, and the pH is between about 2.5 and about 4.
  • 13. The composition of claim 1, wherein the composition further comprises tetrabutyl phosphonium benzoate.
  • 14. A composition for cleaning or etching a semiconductor substrate, comprising: a salt containing fluoride and a quaternary ammonium cation comprising at least one alkoxy group or two or more quaternary ammonium groups linked together by one or more carbon-containing groups; an acid;a solvent comprising water in an amount from 0 to about 99.8% of the weight of the formulation or an organic solvent in an amount from 0 to 99.8% of the weight of the formulation or a mixture thereof; anda pH of between about 2 and about 9.
  • 15. A composition for cleaning or etching a substrate, obtained by combining ingredients comprising: a salt containing fluoride and a phosphonium cation;an acid;an organic solvent, wherein the organic solvent is one or more selected from the group consisting of tetrahydrofurfuryl alcohol, benzyl alcohol, hexanol, 2-(2-methoxyethoxy)-ethanol, dimethylacetamide, bis-(2-methoxyethyl) ether, diethyleneglycol mono butyl ether, glymes, dipropyleneglycol mono methyl ether, 2-butoxyethanol, 1-cyclohexyl-2-pyrrolidinone, 1-hydroxyethyl-2-pyrrolidinone; andwater as the primary solvent;wherein the composition has a pH of between about 2 and about 9.
  • 16. A composition for cleaning or etching a substrate, obtained by combining ingredients comprising: a salt containing fluoride and a quaternary ammonium cation comprising at least one alkoxy group or a cation comprising two or more quaternary ammonium groups linked together by one or more carbon-containing groups;an acid;an organic solvent; andwater in an amount less than about 5% of the composition by weight;wherein the composition has a pH of between about 2 and about 9.
  • 17. A method for cleaning and/or etching and/or patterning a semiconductor substrate, comprising: contacting the semiconductor substrate with a composition comprising:tetrabutyl phosphonium fluoride;an acid;an organic solvent or water or a mixture thereof in an amount from 0 to about 99.8% of the composition by weight; anda pH of between about 2 and about 9.
  • 18. The method of claim 17, wherein the substrate comprises an antireflective coating, amorphous carbon and BPSG, wherein the process further comprises etching a portion of the antireflective coating, and wherein the composition etches the antireflective coating at a rate greater than that at which it removes the amorphous carbon or the BPSG.
  • 19. A method of cleaning and/or etching and/or patterning a semiconductor substrate, comprising: contacting the semiconductor substrate with a composition obtained by combining ingredients comprising:tetrabutyl phosphonium fluoride;an acid;an organic solvent or water or a mixture thereof in an amount from 0 to about 99.8% of the composition by weight; anda pH of between about2 and about9.
  • 20. The method of claim 17, wherein the process further comprises: (a) etching a dielectric to expose a contact material on the substrate, thereby forming a residue; and(b) contacting the contact material with a cleaning formulation to remove the residue, wherein the contact material comprises one or more of a metal, doped silicon, polysilicon, and silicide.
  • 21. The method of claim 19, wherein the process further comprises: (a) etching a dielectric to expose a contact material on the substrate, thereby forming a residue; and(b) contacting the contact material with a cleaning formulation to remove the residue, wherein the contact material is comprises one or more of a metal, doped silicon, polysilicon, and silicide.
  • 22. The method of claim 17, wherein the process comprises: (a) etching a metal to form an interconnect metal line, thereby forming a residue;(b) contacting the metal with the composition to remove the residue.
  • 23. The method of claim 19, wherein the process comprises: (a) etching a metal to form an interconnect metal line, thereby forming a residue; and(b) contacting the metal with the composition to remove the residue.
  • 24. The method of claim 19, wherein the substrate comprises an antireflective coating, amorphous carbon and BPSG, wherein the process further comprises etching a portion of the antireflective coating, and wherein the composition etches the antireflective coating at a rate greater than that at which it removes the amorphous carbon or the BPSG.
  • 25. A method of cleaning and/or etching and/or patterning a semiconductor substrate, comprising contacting the semiconductor substrate with the composition of claim 14.
  • 26. A method of cleaning and/or etching and/or patterning a semiconductor substrate, comprising contacting the semiconductor substrate with the composition of claim 16.
  • 27. A method of cleaning and/or etching and/or patterning a semiconductor substrate, comprising contacting the semiconductor substrate with the composition of claim 15.
  • 28. The composition of claim 15 wherein the acid is present in an amount from about 0.1% to about 5% by weight of the composition.
  • 29. The composition of claim 15 wherein the salt is present in an amount from about 0.1% to about 20% by weight of the composition.
  • 30. The composition of claim 15 wherein the acid is a mineral acid or a sulfonic acid.
RELATED APPLICATIONS

This application claims priority to U.S. Provisional Application No. 60/515,065, filed Oct. 28, 2003.

US Referenced Citations (143)
Number Name Date Kind
3979241 Maeda et al. Sep 1976 A
4582624 Enjo et al. Apr 1986 A
4613560 Dueber et al. Sep 1986 A
4803145 Suzuki et al. Feb 1989 A
5080994 Breton et al. Jan 1992 A
5175078 Aoyama et al. Dec 1992 A
5286606 Rahman et al. Feb 1994 A
5317080 Arimatsu et al. May 1994 A
5320709 Bowden et al. Jun 1994 A
5466389 Hardi et al. Nov 1995 A
5556833 Howe Sep 1996 A
5630904 Aoyama et al. May 1997 A
5750797 Vitcak et al. May 1998 A
5753421 Sato et al. May 1998 A
5792274 Tanabe et al. Aug 1998 A
5855811 Grieger et al. Jan 1999 A
5905063 Tanabe et al. May 1999 A
5939336 Yates Aug 1999 A
5955222 Hibbs Sep 1999 A
5962385 Maruyama et al. Oct 1999 A
5965465 Rath et al. Oct 1999 A
5972570 Bruce et al. Oct 1999 A
5972862 Torii et al. Oct 1999 A
5976768 Brown et al. Nov 1999 A
5981147 Hallock et al. Nov 1999 A
5981148 Brown et al. Nov 1999 A
5981401 Torek et al. Nov 1999 A
5985525 Sato et al. Nov 1999 A
5994031 Hirai et al. Nov 1999 A
6007968 Furukawa et al. Dec 1999 A
6014422 Boyd et al. Jan 2000 A
6017810 Furukawa et al. Jan 2000 A
6030932 Leon et al. Feb 2000 A
6033949 Baker et al. Mar 2000 A
6033996 Rath et al. Mar 2000 A
6044851 Grieger et al. Apr 2000 A
6057080 Brunsvold et al. May 2000 A
6066267 Rath et al. May 2000 A
6087064 Lin et al. Jul 2000 A
6087273 Torek et al. Jul 2000 A
6090721 Yates Jul 2000 A
6100013 Brown et al. Aug 2000 A
6114082 Hakey et al. Sep 2000 A
6136425 Akiyama et al. Oct 2000 A
6147002 Kneer Nov 2000 A
6147394 Bruce et al. Nov 2000 A
6150282 Rath et al. Nov 2000 A
6177282 McIntyre Jan 2001 B1
6180319 McKeever Jan 2001 B1
6184041 Furukawa et al. Feb 2001 B1
6190829 Holmes et al. Feb 2001 B1
6197733 Mikami et al. Mar 2001 B1
6200726 Chen et al. Mar 2001 B1
6210866 Furukawa et al. Apr 2001 B1
6214526 Sundararajan et al. Apr 2001 B1
6218704 Brown et al. Apr 2001 B1
6221704 Furukawa et al. Apr 2001 B1
6224785 Wojtczak et al. May 2001 B1
6232232 Lee et al. May 2001 B1
6232639 Baker et al. May 2001 B1
6245488 Furukawa et al. Jun 2001 B1
6248704 Small et al. Jun 2001 B1
6254796 Rath et al. Jul 2001 B1
6255178 Brown et al. Jul 2001 B1
6261745 Tanabe et al. Jul 2001 B1
6265309 Gotoh et al. Jul 2001 B1
6277543 Furukawa et al. Aug 2001 B1
6280651 Wojtczak et al. Aug 2001 B1
6284439 Holmes et al. Sep 2001 B1
6306775 Li Oct 2001 B1
6310018 Behr et al. Oct 2001 B1
6313492 Hakey et al. Nov 2001 B1
6323169 Abe et al. Nov 2001 B1
6326110 Datta et al. Dec 2001 B1
6340734 Lin et al. Jan 2002 B1
6361712 Honda et al. Mar 2002 B1
6368421 Oberlander et al. Apr 2002 B1
6372410 Ikemoto et al. Apr 2002 B1
6372412 Hakey et al. Apr 2002 B1
6372415 Nomoto et al. Apr 2002 B1
6383410 Wojtczak et al. May 2002 B1
6383651 Weinert May 2002 B1
6391426 Hakey et al. May 2002 B1
6391794 Chen et al. May 2002 B1
6403289 Tanaka et al. Jun 2002 B1
6420766 Brown et al. Jul 2002 B1
6426175 Furukawa et al. Jul 2002 B2
6432621 Nomoto et al. Aug 2002 B1
6440635 Holmes et al. Aug 2002 B1
6444588 Holscher et al. Sep 2002 B1
6455234 Lassila et al. Sep 2002 B1
6468915 Liu Oct 2002 B1
6468951 Grieger et al. Oct 2002 B1
6475966 Sahbari Nov 2002 B1
6492309 Behr et al. Dec 2002 B1
6514352 Gotoh et al. Feb 2003 B2
6534458 Kakizawa et al. Mar 2003 B1
6548602 Foreman et al. Apr 2003 B2
6554912 Sahbari Apr 2003 B2
6573175 Yin et al. Jun 2003 B1
6589439 Honda et al. Jul 2003 B2
6592777 Chen et al. Jul 2003 B2
6605863 Yin et al. Aug 2003 B2
6666986 Vaartstra Dec 2003 B1
6703319 Yates et al. Mar 2004 B1
6762132 Yates Jul 2004 B1
6777380 Small et al. Aug 2004 B2
6831048 Kezuka et al. Dec 2004 B2
6890391 Aoki et al. May 2005 B2
6890865 Yin et al. May 2005 B2
6916772 Zhou et al. Jul 2005 B2
6967169 Wojtczak et al. Nov 2005 B2
20010003034 Furukawa et al. Jun 2001 A1
20010003289 Mead et al. Jun 2001 A1
20010021577 Brown et al. Sep 2001 A1
20010051689 Foreman et al. Dec 2001 A1
20020037820 Small et al. Mar 2002 A1
20020043644 Wojtczak et al. Apr 2002 A1
20020106589 Rodney et al. Aug 2002 A1
20020134684 Calvert et al. Sep 2002 A1
20020137357 Chen et al. Sep 2002 A1
20020139387 Yates Oct 2002 A1
20020173587 Lamola et al. Nov 2002 A1
20020182241 Borenstein et al. Dec 2002 A1
20020182633 Chen et al. Dec 2002 A1
20030003406 Crunwald et al. Jan 2003 A1
20030003762 Cotte et al. Jan 2003 A1
20030004075 Suto et al. Jan 2003 A1
20030017962 Naghshineh et al. Jan 2003 A1
20030022800 Peters et al. Jan 2003 A1
20030078173 Wojtczak et al. Apr 2003 A1
20030102532 Yin et al. Jun 2003 A1
20030114014 Yokoi et al. Jun 2003 A1
20030117962 Mattson et al. Jun 2003 A1
20030130149 Zhou et al. Jul 2003 A1
20030148910 Peters et al. Aug 2003 A1
20040029753 Ikemoto et al. Feb 2004 A1
20040038840 Lee et al. Feb 2004 A1
20040063042 Egbe Apr 2004 A1
20040245644 Yin et al. Dec 2004 A1
20050143270 Wojtczak et al. Jun 2005 A1
20050176603 Hsu Aug 2005 A1
20050202987 Small et al. Sep 2005 A1
Foreign Referenced Citations (27)
Number Date Country
0 405 464 Jan 1991 EP
0 522 990 Jan 1993 EP
0 564 389 Oct 1993 EP
0 662 705 Jul 1995 EP
0 669 646 Aug 1995 EP
0 678 201 Oct 1995 EP
0 679 265 Mar 1996 EP
0 749 594 Dec 1996 EP
0 677 183 Feb 1997 EP
0 762 208 Mar 1997 EP
0 827 188 Mar 1998 EP
0 901 160 Mar 1999 EP
0 522 457 Nov 1999 EP
1035446 Sep 2000 EP
1 079 411 Feb 2001 EP
1 091 254 Apr 2001 EP
1 115 035 Jul 2001 EP
1 168 424 Jan 2002 EP
0 853 132 Jun 2002 EP
1 321 510 Jun 2003 EP
1447440 Aug 2004 EP
10-319606 Dec 1998 JP
10319606 Dec 1998 JP
WO 9415262 Jul 1994 WO
WO 9512836 May 1995 WO
WO 9512837 May 1995 WO
WO 9524674 Sep 1995 WO
Related Publications (1)
Number Date Country
20050143270 A1 Jun 2005 US
Provisional Applications (1)
Number Date Country
60515065 Oct 2003 US