Wireless charging has become an increasingly popular charging technology. Wireless charging is sometimes known as inductive charging, which uses an electromagnetic field to transfer power between a power transmitter and a power receiver. The power is sent through inductive coupling to an electrical device, which can then use that power to charge batteries or run the device. Induction chargers use a first induction coil to create an alternating electromagnetic field from the transmitter and a second induction coil to receive the power from the electromagnetic field. The second induction coil converts the power back into electric current, which is then used to charge a battery or directly drive electrical devices. The two induction coils, when proximal to each other, form an electrical transformer.
Aspects of the present disclosure are best understood from the following detailed description when read with the accompanying figures. It is noted that, in accordance with the standard practice in the industry, various features are not drawn to scale. In fact, the dimensions of the various features may be arbitrarily increased or reduced for clarity of discussion.
The following disclosure provides many different embodiments, or examples, for implementing different features of the invention. Specific examples of components and arrangements are described below to simplify the present disclosure. These are, of course, merely examples and are not intended to be limiting. For example, the formation of a first feature over or on a second feature in the description that follows may include embodiments in which the first and second features are formed in direct contact, and may also include embodiments in which additional features may be formed between the first and second features, such that the first and second features may not be in direct contact. In addition, the present disclosure may repeat reference numerals and/or letters in the various examples. This repetition is for the purpose of simplicity and clarity and does not in itself dictate a relationship between the various embodiments and/or configurations discussed.
Further, spatially relative terms, such as “beneath,” “below,” “lower,” “above,” “upper” and the like, may be used herein for ease of description to describe one element or feature's relationship to another element(s) or feature(s) as illustrated in the figures. The spatially relative terms are intended to encompass different orientations of the device in use or operation in addition to the orientation depicted in the figures. The apparatus may be otherwise oriented (rotated 90 degrees or at other orientations) and the spatially relative descriptors used herein may likewise be interpreted accordingly.
Coil structures and the methods of forming the same are provided in accordance with various exemplary embodiments. The intermediate stages of forming the coil structures are illustrated in accordance with some embodiments. Some variations of some embodiments are discussed. Throughout the various views and illustrative embodiments, like reference numbers are used to designate like elements.
In some embodiments, coil structure 100 may be used in connection with wireless charging. For example, coil structure 100 may generate a magnetic field which, when applied to a receiving coil structure, is converted into electrical energy for charging a battery. In some embodiments, the use of a plurality of coils 104 in structure 100, instead of a single coil 104, may enable the magnetic field that is created to be focused in a desired direction, which may enable more efficient wireless charging. In some embodiments, the use of a hexagonal coil shape, and arranging the plurality of coils 104 in a honeycomb pattern, may allow for a larger surface of the wafer 102 to be covered with coils 104 and may enable a larger number of coils to be disposed in wafer 102. In some embodiments, an increased number of coils 104 on the top surface of wafer 102 may enable more efficient wireless charging.
In some embodiments, each coil 104 is a same or similar size to other coils 104. As shown in
As shown in
Wireless charging circuit 200 includes power-transmitting circuit 202 for transmitting power, and power-receiving circuit 204 for receiving power. Power-transmitting circuit 202 includes AC adapter 206, Microcontroller (MCU) and Bluetooth circuit 208, power-transmitting (TX) coil structure 100, and Bluetooth signal antenna 212. Power-receiving circuit 204 includes Bluetooth signal antenna 214, power-receiving coil structure 100, matching circuit 216, charging Integrated Circuit (IC) 218, Bluetooth circuit 220, Power Management Integrated Circuit (PMIC) 222, System Circuits 224, and battery 226. It is appreciated that the illustrated wireless charging circuits are examples, and all other wireless charging circuits having different design are within the scope of the present disclosure.
In accordance with some exemplary embodiments, AC adapter 206 provides power to power-transmitting (TX) coil structure 100. MCU and Bluetooth circuit 208 may negotiate with Bluetooth circuit 220, for example, to determine the power and the timing of the power transmission, Bluetooth signals for the negotiation are sent and received through antennas 212 and 214. For example, through the negotiation, wireless power may be sent when the distance between power-transmitting circuit 202 and power-receiving circuit 204 is lower than a predetermined threshold, and/or when the stored power in battery 226 is lower than a predetermined threshold level.
When it is determined that power should be transmitted, power-transmitting circuit 202 starts transmitting power, which may be in the form of magnetic field at a high frequency, for example, at about 6.78 MHz. The power is transmitted through transmitting coil structure 100. Receiving coil structure 100 receives the power, and feeds the respective currents to charging IC 218, which includes an AC-DC converter. PMIC 222 may have the function of DC to DC conversion, battery charging, linear regulation, power sequencing and other miscellaneous system power functions. System circuits 224 handle logic functions. The converted power is charged to battery 226.
Referring to
Dielectric layer 302 is disposed over the encapsulating material 300. Dielectric layer 302 may be used as a passivation layer to isolate the underlying metallic features from the adverse effect of moisture and other detrimental substances. Dielectric layer 302 may be formed of a polymer, which may also be a photo-sensitive material such as polybenzoxazole (PBO), polyimide, benzocyclobutene (BCB), or the like. In some embodiments, dielectric layer 302 is formed of an inorganic material(s), which may be a nitride such as silicon nitride, an oxide such as silicon oxide, PhosphoSilicate Glass (PSG), BoroSilicate Glass (BSG), Boron-doped PhosphoSilicate Glass (BPSG), or the like.
Dielectric layer 22 is disposed under the encapsulating material 300. Dielectric layer 22 may be used as a passivation layer to isolate the underlying metallic features from the adverse effect of moisture and other detrimental substances. Dielectric layer 22 may also be formed of a polymer, which may also be a photo-sensitive material such as polybenzoxazole (PBO), polyimide, benzocyclobutene (BCB), or the like. In some embodiments, dielectric layer 22 is formed of an inorganic material(s), which may be a nitride such as silicon nitride, an oxide such as silicon oxide, PhosphoSilicate Glass (PSG), BoroSilicate Glass (BSG), Boron-doped PhosphoSilicate Glass (BPSG), or the like. Dielectric layer 22 may comprise a same material as dielectric layer 302, or dielectric layer 22 may comprise materials that are different from dielectric layer 302.
Electrical connector 112 is formed at the top surface of coil 104. Electrical connector 112 connects coil 104 to an external electrical circuit. Electrical connector 112 may be an Under-Bump Metallurgy (UBM), a metal pad, a metal pillar, or the like, and may or may not include solder regions.
Referring to
In accordance with some embodiments of the present disclosure, dielectric layer 22 is formed over the release layer. As discussed above, dielectric layer 22 may be used as a passivation layer to isolate the overlying metallic features from the adverse effect of moisture and other detrimental substances. Dielectric layer 22 may be formed of a polymer, which may also be a photo-sensitive material such as polybenzoxazole (PBO), polyimide, benzocyclobutene (BCB), or the like. In accordance with alternative embodiments of the present disclosure, dielectric layer 22 is formed of an inorganic material(s), which may be a nitride such as silicon nitride, an oxide such as silicon oxide, PhosphoSilicate Glass (PSG), BoroSilicate Glass (BSG), Boron-doped PhosphoSilicate Glass (BPSG), or the like. Dielectric layer 22 may be formed, for example, by spin coating, lamination, Chemical Vapor Deposition (CVD), or the like. In some embodiments, dielectric layer 22 is a planar layer having a uniform thickness, wherein the thickness T1 may be between about 5 μm and about 10 μm. The top and the bottom surfaces of dielectric layer 22 are also planar.
Seed layer 24 is formed over dielectric layer 22, for example, through Physical Vapor Deposition (PVD). Seed layer 24 may be formed of copper, aluminum, titanium, or multi-layers thereof. In accordance with some embodiments of the present disclosure, seed layer 24 includes a titanium layer (not separately shown) and a copper layer (not separately shown) over the titanium layer. In accordance with alternative embodiments, seed layer 24 includes a single copper layer.
In some embodiments, a plurality of coils 104 is formed on carrier substrate 20.
Referring to
Referring to
Next, referring to
After being encapsulated, the top surface of encapsulating material 300 is higher than the top ends of coil 104. Encapsulating material 300 may include an epoxy-based material and fillers in the epoxy-based material. The fillers may be spherical particles having the same diameter or different diameters. The fillers may be formed of silica (amorphous SiO2), dry-ground micritic limestone, for example.
In a subsequent step, a planarization process such as a Chemical Mechanical Polish (CMP) process or a mechanical grinding process is performed to reduce the top surface of encapsulating material 300, until conductive elements 106 are exposed. Due to the planarization, the top ends of conductive elements 106 are substantially level (coplanar) with the top surfaces of encapsulating material 300. In accordance with some embodiments, after the planarization, height H1 (
Referring to
Next, as depicted in
Electrical connectors 112 and 114 may also respectively comprise connectors over the UBM. The connectors may be solder balls, metal pillars, controlled collapse chip connection (C4) bumps, micro bumps, electroless nickel-electroless palladium-immersion gold technique (ENEPIG) formed bumps, combination thereof (e.g., a metal pillar having a solder ball attached thereof), or the like. The connectors may include a conductive material such as solder, copper, aluminum, gold, nickel, silver, palladium, tin, the like, or a combination thereof. In some embodiments, the connectors comprise a eutectic material and may comprise a solder bump or a solder ball, as examples. The solder material may be, for example, lead-based and lead-free solders, such as Pb—Sn compositions for lead-based solder; lead-free solders including InSb; tin, silver, and copper (SAC) compositions; and other eutectic materials that have a common melting point and form conductive solder connections in electrical applications. For lead-free solder, SAC solders of varying compositions may be used, such as SAC 105 (Sn 98.5%, Ag 1.0%, Cu 0.5%), SAC 305, and SAC 405, as examples. Lead-free connectors such as solder balls may be formed from SnCu compounds as well, without the use of silver (Ag). Alternatively, lead-free solder connectors may include tin and silver, Sn—Ag, without the use of copper. In some embodiments, a reflow process may be performed, giving the connectors a shape of a partial sphere in some embodiments. Alternatively, the connectors may comprise other shapes. The connectors may also comprise non-spherical conductive connectors, for example.
In some embodiments, the connectors comprise metal pillars (such as a copper pillar) formed by a sputtering, printing, electro plating, electroless plating, CVD, or the like, with or without a solder material thereon. The metal pillars may be solder free and have substantially vertical sidewalls or tapered sidewalls.
Referring to
Referring to
In some embodiments, using a larger number of coils 104 in coil structure 100 may lead to increased control of the magnetic field 1400 that is generated by coil structure 100. In some embodiments, more efficient wireless charging may therefore be achieved by using a larger number of coils 104 in coil structure 100. In some embodiments, forming coils 104 to each have a hexagonal shape, as shown in
In the embodiments depicted in
In order to control the coil structures 1500 and 1502 to respectively focus a generated magnetic field in respective directions D, virtual distances a, b, and c, and e, f, and g, are respectively calculated. Virtual distances a, b, and c are virtual straight lines that extend from a center point of each coil 104 to a same point that lies on direction D of coil structure 1500. Virtual distances e, f, and g are virtual straight lines that extend from a center point of each coil 1504 to a same point that lies on direction D of coil structure 1502. Regarding coil structure 1500, due to the hexagonal shapes of coils 104, virtual distances a, b, and c are symmetrical in length. Regarding coil structure 1502, due to the square shape of coils 1504, virtual distances e, f, and g are not symmetrical and may have different lengths. For example, as shown in
As described here, in some embodiments, a coil structure may be used in connection with wireless charging. For example, a coil structure may generate a magnetic field which is applied to another coil structure and then converted into electrical energy for charging a battery. In some embodiments, the use of a plurality of coils in the coil structure, instead of a single coil, may enable the magnetic field that is created to be focused in a desired direction by controlling the electrical current in the coils, which may enable more efficient wireless charging. In some embodiments, the use of a hexagonal coil shape, and arranging the plurality of coils in a honeycomb pattern, may enable a larger number of coils to be used. In some embodiments, an increased number of coils in the coil structure may enable greater flexibility in the ability to focus the magnetic field that is created in a desired direction. Also, in some embodiments a coil structure comprising hexagonal coils arranged in a honeycomb pattern may have increased symmetry, which may also enable greater flexibility in the ability to focus the magnetic field that is created in a desired direction.
According to some embodiments, a method of forming a coil structure is provided. The method includes forming a first conductive element on a wafer, the first conductive element forming a first continuous spiral having a hexagonal shape in a plan view of the first conductive element. The method also includes forming a second conductive element on the wafer, the second conductive element forming a second continuous spiral having a hexagonal shape in a plan view of the second conductive element. The method also includes encapsulating the first conductive element and the second conductive element in an encapsulating material. The method also includes forming a dielectric layer overlying the encapsulating material. The method also includes forming a first plurality of electrical connectors in the dielectric layer, the first plurality of electrical connectors being electrically connected to the first conductive element. The method also includes forming a second plurality of electrical connectors in the dielectric layer, the second plurality of electrical connectors being electrically connected to the second conductive element.
According to some embodiments, a method is provided. The method includes forming a plurality of coils, each coil comprising a conductive element that forms a hexagonal shape in a plan view. The method also includes encapsulating each coil in an encapsulating material and arranging the plurality of coils on a wafer in a symmetric array.
In accordance with some embodiments, a system is provided. The system includes a substrate and a plurality of coils disposed over the substrate, each coil comprising a conductive element that forms a continuous spiral having a hexagonal shape in a plan view of the coil. The plurality of coils is arranged on the substrate in a honeycomb pattern. The system also includes a plurality of electrical connectors. Two or more of the plurality of the electrical connectors are disposed over each of the plurality of coils.
In accordance with some embodiments, a system is provided. The system includes a substrate and a plurality of coils over the substrate. Each coil includes a conductive element that forms a continuous spiral having a hexagonal shape in a plan view of the plurality of coils. The plurality of coils are arranged on the substrate in a honeycomb pattern. The system further includes a plurality of electrical connectors. Two or more of the plurality of the electrical connectors are over each of the plurality of coils.
In accordance with some embodiments, a device is provided. The device includes a substrate and a first coil, a second coil and a third coil over the substrate. Each of the first coil, the second coil and the third coil includes a conductive element that forms a continuous spiral having a hexagonal shape in a plane parallel to a major surface of the substrate. The first coil, the second coil and the third coil are configured to generate a magnetic field in a first direction. The first direction extends along a first line. The first line is perpendicular to the major surface of the substrate and extends from a point that is equidistant to each of the first coil, the second coil and the third coil.
In accordance with some embodiments, a device is provided. The device includes a substrate, a molding compound over the substrate, and a plurality of coils embedded into the molding compound. Each coil includes a conductive element that forms a continuous spiral having a hexagonal shape in a plane parallel to a major surface of the substrate. The plurality of coils are arranged on the substrate in a honeycomb pattern. A top surface of each coil is level with a top surface of the molding compound. The device further includes an insulating layer over the molding compound and the plurality of coils, and a plurality of electrical connectors extending through the insulating layer and electrically contacting the plurality of coils.
Features of embodiments disclosed herein may relate to a device comprising a battery, and a charging integrated circuit coupled to the battery, wherein the charging integrated circuit is configured to convert received AC power into DC power. The device may also include a power receiving coil structure configured to receive AC power and feed the AC power to the charging integrated circuit. The power receiving coil structure may include a substrate, a plurality of conductive coils disposed over the substrate, a dielectric layer interjacent the substrate and the plurality of conductive coils, an encapsulating material covering respective sidewalls of the plurality of conductive coils, the encapsulating material having a planar topmost surface that is level with respective topmost surfaces of the plurality of conductive coils, and a second dielectric layer on the topmost surface of the encapsulating material and the respective topmost surfaces of the plurality of conductive coils.
Features of embodiments disclosed herein may relate to a device comprising a power transmitting circuit including a power transmitting coil, and a power receiving circuit including a power receiving coil. In some embodiments, at least one of the power transmitting coil and the power receiving coil includes a wafer, a plurality of coils arranged on the wafer such that a center point of each coil is equidistant form a magnetic field focal point located a predetermined distance from a major surface of the wafer, wherein each coil includes a conductive spiral structure sandwiched between a first dielectric layer and a second dielectric layer, and further wherein each coil has sidewalls encapsulated within an encapsulant that is also sandwiched between the first dielectric layer and the second dielectric layer. The device also includes a plurality of first electrical connectors, respective first electrical connectors extending through the second dielectric layer and contacting respective first ends of respective coils, and a plurality of second electrical connectors, respective second electrical connectors extending through the second dielectric layer and contacting respective second ends of respective coils.
Other features of other embodiments disclosed herein my include a method of forming a device, the method comprising depositing a first dielectric layer over a substrate, forming a patterned layer on the first dielectric layer, the patterned layer including a plurality of coil-shaped openings when view in top-down view, and filling the coil-shaped openings with conductive material to form a plurality of coils on the first dielectric layer, and removing the patterned layer. The method may further include encapsulating the plurality of coils in an encapsulating material, wherein a topmost surface of the encapsulating material is level with respective topmost surfaces of respective coils of the plurality of coils, depositing a second dielectric layer over the encapsulating material and the plurality of coils, patterning the second dielectric layer expose portions of respective coils, and forming respective electrical connections to respective coils within the patterned second dielectric layer.
The foregoing outlines features of several embodiments so that those skilled in the art may better understand the aspects of the present disclosure. Those skilled in the art should appreciate that they may readily use the present disclosure as a basis for designing or modifying other processes and structures for carrying out the same purposes and/or achieving the same advantages of the embodiments introduced herein. Those skilled in the art should also realize that such equivalent constructions do not depart from the spirit and scope of the present disclosure, and that they may make various changes, substitutions, and alterations herein without departing from the spirit and scope of the present disclosure.
This application is a continuation of U.S. patent application Ser. No. 18/065,199, filed on Dec. 13, 2022, entitled “Hexagonal Semiconductor Package Structure,” which is a continuation of U.S. patent application Ser. No. 16/734,776, filed on Jan. 6, 2020, now U.S. Pat. No. 11,532,425 issued on Dec. 20, 2022, entitled “Hexagonal Semiconductor Package Structure,” which is a divisional of U.S. patent application Ser. No. 15/232,443, filed on Aug. 9, 2016, now U.S. Pat. No. 10,530,175 issued Jan. 7, 2020, entitled “Hexagonal Semiconductor Package Structure,” each application is hereby incorporated herein by reference.
Number | Date | Country | |
---|---|---|---|
Parent | 15232443 | Aug 2016 | US |
Child | 16734776 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 18065199 | Dec 2022 | US |
Child | 18674351 | US | |
Parent | 16734776 | Jan 2020 | US |
Child | 18065199 | US |