Field of the Art
The present invention relates to devices and methods for cold plasma application, and, more particularly, to arrays of such devices that are formed in an annular shape and methods for using same.
Background Art
When infections of deep tissues occur in the body it is often necessary to perform a surgical procedure to expose the infection, manually clean or debride the site, pack it with antibiotics, and initiate systemic antibiotics in an attempt to resolve the infection. In the case of orthopedic infections, where there is hardware of metallic or plastic composition present, the standard course of treatment may require multiple surgical procedures. Since the hardware may be covered in bacterial colonies and there is limited vascularization of the tissues immediately contacting the hardware, the colonization of the hardware often can't be controlled with systemic antibiotic use alone. In the case of an infected total joint replacement, the surgeon will often perform a “two-stage revision” procedure. The first stage involves opening the joint, removing the hardware, debriding infected tissue, packing the region with antibiotic impregnated materials, and closing the incision. Along with systemic antibiotics, the antibiotic materials are left in the patient, often with a non-functional joint complex, for on average 6 weeks. After blood and joint fluid tests suggest resolution of the infection, a second procedure is performed to remove the antibiotic laden materials and implant a new functional joint replacement. In some cases the infection is still present locally even though blood indicators are normal, and the new implant may quickly become re-infected, starting the “2-stage revision” procedure over again. In extreme cases, amputation may be the prescribed course of action for severe extremity infections that fail to resolve after these measures.
It is therefore highly desirable to be able to eradicate a deep joint infection without the need for repeated surgeries and a reliance on antibiotics to reach the site either through the circulatory system or by local, internal, long-term application. The same applies to other bone and deep tissue infections, abscesses, and similar conditions familiar to those in the medical field. As cold plasmas also show promise in the treatment of malignant growths, this array would have use in the treatment of deep tissue tumors, or any disorder that requires greater depth of penetration of plasma, including musculoskeletal pain and inflammation.
An embodiment is described of an apparatus having an annular structure with two or more cold plasma devices located on the annular structure and directed internal to the annular structure so as to converge at a treatment area. The two or more cold plasma devices are coupled to one or more high voltage RF ports and to one or more gas supply ports.
A further embodiment is described of a method of producing cold plasma for use in a medical treatment. The method includes receiving, from a cold plasma power supply, electrical energy at two or more cold plasma devices via one or more high voltage RF ports. The two or more cold plasma devices are located on an annular structure. The method also includes receiving, from a gas source, gas at the two or more cold plasma devices via one or more gas supply ports. Finally, the method includes outputting cold plasma from the two or more cold plasma devices, the cold plasma from these cold plasma devices being directed to converge at a treatment area.
Cold temperature plasmas have attracted a great deal of enthusiasm and interest by virtue of their provision of plasmas at relatively low gas temperatures. The provision of plasmas at such a temperature is of interest to a variety of applications, including wound healing, anti-bacterial processes, tumor treatments, anti-inflammatory treatments, non-infective disorders that may be treatable with cold plasmas, and various other medical therapies and sterilization.
Conventional cold plasma treatments were focused on treatment areas at the surface of the skin, as it was not previously known that cold plasmas could penetrate the surface of the skin. Consequently, no contemplation was previously considered as to approaches by which cold plasma penetration for treatment purposes could be improved or optimized. However, recent data that is described in U.S. patent application Ser. No. 14/026,679, entitled “Therapeutic Applications of Cold Plasma,” filed Sep. 13, 2013, indicate that subcutaneous treatment protocols are feasible with cold plasmas. In particular, paragraphs [0084]-[0089] of this referenced application provide data in support of the proposition that cold plasma penetrates beneath the skin so that internal tissue treatments are feasible.
Consideration of the penetration effects of cold plasma indicates that the penetration can be thought of as a cone of attenuation below the skin surface. The cold plasma intensity decreases due to the spreading effect associated with the conical penetration shape below the skin surface. It is therefore desirable to be able to increase the penetration and/or to increase the intensity at various depths below the surface of the skin. By generating multiple “cones” of treatment in the tissues, with some degree of overlap, the desirable effects in deep tissues can be amplified. Therefore, increasing the intensity at various targeted depths below the skin surface, the volumetric problem of certain internal tissues disorders can be addressed.
Embodiments of the present disclosure include an annular device designed with an array of two or more individual cold plasma (CP) jet ports oriented to converge about a patient's body segment (either at the skin surface or below the skin surface) resulting in a plurality of treatment angles (
The device, designed similarly to a modern magnetic resonance imaging (MRI) machine, allows the patient's injured or infected segment to be placed inside of the machine, which is designed in an annular shape to surround the affected area.
On the cold plasma annular treatment device, the devices would be activated remotely by a common trigger mechanism to generate plasma. This common trigger mechanism could be a physical flow control or a computer console that triggers a plurality of valves and RF energy. The devices would be affixed to the annular array, as illustrated for example in
In the context of this application, an annular cold plasma structure includes the scenario where two cold plasma ports are aligned diametrically opposed to one another, with a treatment area located in between the two cold plasma ports to receive cold plasma from those two cold plasma ports.
The process begins at step 510. In step 510, electrical energy is received at two or more cold plasma devices, wherein the cold plasma devices are located on an annular structure.
In step 520, gas is received at the two or more cold plasma devices.
In step 530, cold plasma is output from the two or more cold plasma devices so as to converge at a treatment area.
At step 540, method 500 ends.
Although the above description has used the '369 application family as the baseline cold plasma device, the scope of the present invention is not limited to the '369 application family baseline. The '369 application family baseline is merely exemplary and not limiting, and therefore embodiments of the present invention include the deployment of the above annular features to cold plasma generation devices in general, irrespective of their means of generation.
As noted above, the four-port configuration is exemplary, and not a limiting of various embodiments of the present invention. Other numbers of ports fall within the scope of various embodiments of the present invention. Further, although a symmetric configuration is described above, non-symmetric or asymmetric configurations of ports can also be used to provide a particular treatment protocol, and such non-symmetric/asymmetric configurations also fall within the scope of various embodiments of the present invention.
It is to be appreciated that the Detailed Description section, and not the Summary and Abstract sections, is intended to be used to interpret the claims. The Summary and Abstract sections may set forth one or more but not all exemplary embodiments of the present invention as contemplated by the inventor(s), and thus, are not intended to limit the present invention and the appended claims in any way.
The present invention has been described above with the aid of functional building blocks illustrating the implementation of specified functions and relationships thereof. The boundaries of these functional building blocks have been arbitrarily defined herein for the convenience of the description. Alternate boundaries can be defined so long as the specified functions and relationships thereof are appropriately performed.
The foregoing description of the specific embodiments will so fully reveal the general nature of the invention that others can, by applying knowledge within the skill of the art, readily modify and/or adapt for various applications such specific embodiments, without undue experimentation, without departing from the general concept of the present invention. Therefore, such adaptations and modifications are intended to be within the meaning and range of equivalents of the disclosed embodiments, based on the teaching and guidance presented herein. It is to be understood that the phraseology or terminology herein is for the purpose of description and not of limitation, such that the terminology or phraseology of the present specification is to be interpreted by the skilled artisan in light of the teachings and guidance.
The breadth and scope of the present invention should not be limited by any of the above-described exemplary embodiments, but should be defined only in accordance with the following claims and their equivalents.
This application is a continuation of U.S. Non-Provisional application Ser. No. 14/145,312, filed Dec. 31, 2013, which claims the benefit of U.S. Provisional Application No. 61/747,428, filed Dec. 31, 2012 and entitled “Cold Plasma Toroidal Array Methods and Apparatus,” all of which are incorporated herein by reference in their entirety. This application is related to U.S. Provisional Application No. 60/913,369, filed Apr. 23, 2007; U.S. patent application Ser. No. 12/038,159, filed Feb. 27, 2008 (which issued as U.S. Pat. No. 7,633,231); U.S. patent application Ser. No. 13/620,118, filed Sep. 14, 2012; and U.S. patent application Ser. No. 14/026,679, filed Sep. 13, 2013, each of which are herein incorporated by reference in their entireties.
Number | Name | Date | Kind |
---|---|---|---|
2927322 | Simon et al. | Mar 1960 | A |
3432722 | Naydan et al. | Mar 1969 | A |
3487414 | Booker | Dec 1969 | A |
3735591 | Burkhart | May 1973 | A |
4088926 | Fletcher et al. | May 1978 | A |
4365622 | Harrison | Dec 1982 | A |
4380320 | Hollstein et al. | Apr 1983 | A |
4422013 | Turchi et al. | Dec 1983 | A |
5079482 | Villecco et al. | Jan 1992 | A |
5216330 | Ahonen | Jun 1993 | A |
5225740 | Ohkawa | Jul 1993 | A |
5304888 | Gesley et al. | Apr 1994 | A |
5698164 | Kishioka et al. | Dec 1997 | A |
5876663 | Laroussi | Mar 1999 | A |
5883470 | Hatakeyama et al. | Mar 1999 | A |
5909086 | Kim et al. | Jun 1999 | A |
5961772 | Selwyn | Oct 1999 | A |
5977715 | Li et al. | Nov 1999 | A |
6096564 | Denes et al. | Aug 2000 | A |
6099523 | Kim et al. | Aug 2000 | A |
6113851 | Soloshenko et al. | Sep 2000 | A |
6204605 | Laroussi et al. | Mar 2001 | B1 |
6225593 | Howieson et al. | May 2001 | B1 |
6228330 | Herrmann et al. | May 2001 | B1 |
6262523 | Selwyn et al. | Jul 2001 | B1 |
6278241 | Enguelcht | Aug 2001 | B1 |
6441554 | Nam et al. | Aug 2002 | B1 |
6455014 | Hammerstrom et al. | Sep 2002 | B1 |
6611106 | Monkhorst et al. | Aug 2003 | B2 |
6667007 | Schmidt | Dec 2003 | B1 |
6956329 | Brooks et al. | Oct 2005 | B2 |
6958063 | Soll et al. | Oct 2005 | B1 |
7006874 | Knowlton et al. | Feb 2006 | B2 |
7011790 | Ruan et al. | Mar 2006 | B2 |
7037468 | Hammerstrom et al. | May 2006 | B2 |
7081711 | Glidden et al. | Jul 2006 | B2 |
7094314 | Kurunczi | Aug 2006 | B2 |
7192553 | Crowe et al. | Mar 2007 | B2 |
7215697 | Hill | May 2007 | B2 |
7271363 | Lee et al. | Sep 2007 | B2 |
7300436 | Penny et al. | Nov 2007 | B2 |
7608839 | Coulombe et al. | Oct 2009 | B2 |
7633231 | Watson | Dec 2009 | B2 |
7683342 | Morfill et al. | Mar 2010 | B2 |
7691101 | Davison et al. | Apr 2010 | B2 |
7719200 | Laroussi | May 2010 | B2 |
7777151 | Kuo | Aug 2010 | B2 |
7785322 | Penny et al. | Aug 2010 | B2 |
7799290 | Hammerstrom et al. | Sep 2010 | B2 |
8267884 | Hicks | Sep 2012 | B1 |
8294369 | Laroussi | Oct 2012 | B1 |
8460283 | Laroussi et al. | Jun 2013 | B1 |
9472382 | Jacofsky | Oct 2016 | B2 |
20020129902 | Babayan et al. | Sep 2002 | A1 |
20030222586 | Brooks et al. | Dec 2003 | A1 |
20050088101 | Glidden et al. | Apr 2005 | A1 |
20050179395 | Pai | Aug 2005 | A1 |
20060189976 | Karni et al. | Aug 2006 | A1 |
20080159925 | Shimizu et al. | Jul 2008 | A1 |
20090188626 | Lu et al. | Jul 2009 | A1 |
20100133979 | Lu | Jun 2010 | A1 |
20110022043 | Wandke et al. | Jan 2011 | A1 |
20120100524 | Fridman et al. | Apr 2012 | A1 |
20120187841 | Kindel et al. | Jul 2012 | A1 |
20120259270 | Wandke et al. | Oct 2012 | A1 |
20130022514 | Morfill et al. | Jan 2013 | A1 |
20130053762 | Rontal et al. | Feb 2013 | A1 |
20130134878 | Selwyn | May 2013 | A1 |
20130199540 | Buske | Aug 2013 | A1 |
20140000810 | Franklin et al. | Jan 2014 | A1 |
Number | Date | Country |
---|---|---|
WO 2005084569 | Sep 2005 | WO |
WO 2006116252 | Nov 2006 | WO |
WO 2007124910 | Nov 2007 | WO |
WO 2010107722 | Sep 2010 | WO |
WO 2011055368 | May 2011 | WO |
WO 2011055369 | May 2011 | WO |
WO 2011076193 | Jun 2011 | WO |
WO 2012106735 | Aug 2012 | WO |
WO 2012153332 | Nov 2012 | WO |
WO 2013101673 | Jul 2013 | WO |
Entry |
---|
Misra et al., “Nonthermal Plasma Inactivation of Food-Borne Pathogens,” School of Food Science and Environmental Health at Dublin Institute of Technology, 32 pages (2011). |
Dumé, Belle, “Cold Plasmas Destroy Bacteria,” article, [online], [retrieved on Jan. 5, 2007], Retrieved from the PhysicsWeb website using Internet <URL:http://physicsweb.org/articles/news7/4/19>. |
Gould, Philip and Eyler, Edward, “Ultracold Plasmas Come of Age,” article [online], [retrieved on Jan. 5, 2007], Retrieved from the PhysicsWeb website using the Internet <URL:http://physicsweb.org/articles/world/14/3/3>. |
Schultz, James, “Cold Plasma Ignites Hot Applications,” article, [online], [retrieved on Jan. 5, 2007], Retrieved from the Old Dominion University website using Internet <URL:http://www.odu.edu/ao/instadv/quest/coldplasma.html>. |
Lamba, Bikram, “Advent of Cold Plasma,” article, [online], [retrieved on Jan. 5, 2007], Retrieved from the PhysOrg.com website using Internet <URL:http:/www.physorg.com/printnews.php?newsid=6688>. |
Book of Abstracts, 3rd International Conference on Plasma Medicine (ICPM-3), Sep. 19-24, 2010, International Society for Plasma Medicine. |
International Search Report issued Aug. 6, 2008 for Appl. No. PCT/US2008/061240, 1 page. |
Written Opinion of International Searching Authority issued Aug. 6, 2008 for Appl. No. PCT/US2008/061240, 6 pages. |
Extended European Search Report issued Feb. 8, 2012 for European Patent Appl. No. EP08746627.2, 7 pages. |
Pointu et al., “Nitrogen Atmospheric Pressure Post Discharges for Surface Biological Decontamination inside Small Diameter Tubes,” Plasma Process. Polym. 5:559-568, WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim (2008). |
Chakravarthy et al., “Cold Spark Discharge Plasma Treatment or Inflammatory Bowel Disease in an Animal Model of Ulcerative Colitis,” Plasma Medicine (1)1:3-19, Begell House. Inc. (2011). |
Fridman et al., “Comparison of Direct and Indirect Effects of Non-Thermal Atmospheric-Pressure Plasma on Bacteria,” Plasma Processl Polym., 4, 370-375, 6 pages, WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim (2007). |
Alexander Fridman, “Plasma Chemistry,” pp. 263-271, Cambridge University Press, 2008, 9 pages. |
O'Connell et al., “The role of the relative voltage and phase for frequency coupling in a dual-frequency capacitively coupled plasma,” Applied Physics Letters, 93 081502, 3 pages, American Institute of Physics (Aug. 25, 2008). |
Nie et al., “A two-dimensional cold atmospheric plasma jet array for uniform treatment of large-area surfaces for plasma medicine,” New Journal of Physics, 11 115015, 14 pages, IOP Publishing Ltd and Deutsche Physikalische Gesellschaft (2009). |
Pompl et al., “The effect of low-temperature plasma on bacteria as observed by repeated AFM imaging,” New Journal of Physics, 11 115023, 11 pages, IOP Publishing Ltd and Deutsche Physikalische Gesellschaft (Nov. 26, 2009). |
Walsh et al., “Three distinct modes in a cold atmospheric pressure plasma jet,” J. Phys. D.: Appl. Phys. 43 075201, 14 pages, IOP Publishing Ltd (Feb. 3, 2010). |
Ricci et al., “The effect of stochastic electrical noise on hard-to-heal wounds,” Journal of Wound Care, 8 pages, 19:3 Mark Allen Publishing Ltd ( Mar. 2010). |
U.S. Appl. No. 61/485,747, filed May 13, 2011, inventor Thomas J. Sheperak, 14 pages. |
Liu et al., “Sub-60° C. atmospheric helium-water plasma jets: modes, electron heating and downstream reaction chemistry,” J. Phys. D: Appl. Phys. 44 345203, 13 pages, IOP Publishing Ltd. (Aug. 11, 2011). |
Pei et al., “Inactivation of a 25.5 μm Enterococcus faecalis biofilm by a room-temperature, battery-operated, hanheld air plasma jet,” J. Phys. D. Appl. Phys., 45 165205, 5 pages, IOP Publishing Ltd (Apr. 4, 2012). |
Walsh et al., “Chaos in atmospheric-pressure plasma jets,” Plasma Sources Sci. Technol., 21 034008, 8 pages, IOP Publishing Ltd (May 2, 2012). |
Banu, et al., “Cold Plasma as a Novel Food Processing Technology,” International Journal of Emerging trends in Engineering and Development, Issue 2, vol. 4, ISSN 2249-6149, pp. 803-818, 16 pages (May 2012). |
Dobrynin, et al., “Live Pig Skin Tissue and Wound Toxicity of Cold Plasma Treatment,” Plasma Medicine, 1(1):93-108, 16 pages, Begell House, Inc. (2011). |
Fernández, et al., “The inactivation of Salmonella by cold atmosphere plasma treatment,” Food Research International, 45:2, 678-684, 7 pages, Elsevier Ltd. (Mar. 2012). |
Tien, et al., “The Bilayer Lipid Membrane (BLM) Under Electrical Fields,” IEEE Transactions on Dielectrics and Electrical Institute, 10:5, 717-727, 11 pages (Oct. 2003). |
Jayaram, et al.., “Optimization of Electroporation Waveforms for Cell Sterilization,” IEEE Transactions on Industry Applications, 40:6, 1489-1497, 9 pages (2004). |
Fridman, et al., “Use of Non-Thermal Atmospheric Pressure Plasma Discharge for Coagulation and Sterilization of Surface Wounds,” IEEE International Conference on Plasma Science, Abstract, p. 257, 1 page (Jun. 2005). |
Fridman, et al., “Use of Non-Thermal Atmospheric Pressure Plasma Discharge for Coagulation and Sterilization of Surface Wounds,” 6 pages (Jun. 2005). |
Fridman, et al., “Blood Coagulation and Living Tissue Sterilization by Floating-Electrode Dielectric Barrier Discharge in Air,” Plasma Chem Plasma Process, 26: 425-442, 18 pages, Springer Science Business Media, Inc. (2006). |
Gurol, et al., “Low Temperature Plasma for decontamination of E. coli in milk,” International Journal of Food Microbiology, 157: 1-5, 5 pages, Elsevier B.V. (Jun. 2012). |
Lado, et al., “Alternative food-preservation technologies: efficacy and mechanisms,” Microbes and Infection, 4: 433-440 8 pages, Elsevier SAS (2002). |
Leduc, et al., “Cell permeabilization using a non-thermal plasma,” New Journal of Physics, 11: 115021, 12 pages, IOP Publishing Ltd and Deutsche Physikalische Gesellschaft (2009). |
Machado, et al., “Moderate electric fields can inactivate Escherichia coli at room temperature,” Journal of Food Engineering, 96: 520-527, 8 pages, Elsevier Ltd. (2009). |
Li, et al., “Optimizing the distance for bacterial treatment using surface micro-discharge plasma,” New Journal of Physics, 14: 023058, 11 pages, IOP Publishing Ltd and Deutsche Physikalische Gesellschaft (Feb. 2012). |
Morfill, et al., “Nosocomial infections—a new approach towards preventive medicine using plasmas,” New Journal of Physics, 11: 115019, 10 pages, IOP Publishing Ltd and Deutsche Physikalische Gesellschaft (2009). |
Nian, et al., “Decontamination of Salmonella on Sliced fruits and Vegetables Surfaces using a Direct-Current, Atmospheric-Pressure Cold Plasma,” IEEE International Conference on Plasma Science, p. 1, 1 page (Jun. 2011). |
Toepfl, et al., “High intensity pulsed electric fields applied for food preservation,” Chemical Engineering and Processing, 46: 537-546, 10 pages, Elsevier B.V. (2007). |
Number | Date | Country | |
---|---|---|---|
20170032944 A1 | Feb 2017 | US |
Number | Date | Country | |
---|---|---|---|
61747428 | Dec 2012 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 14145312 | Dec 2013 | US |
Child | 15295849 | US |