The present invention relates to a composite component, including a first and at least one second joining partner. The first joining partner is preferably an electronic element, particularly a power semiconductor or a circuit substrate, that is particularly fitted with components, preferably fitted with a power semiconductor, and the second joining partner is a heat sink. In addition, the present invention relates to a method for producing a composite component.
At the present time, for automotive applications, electric circuits having high power losses, such as power circuits or B bridges, H bridges on DEC or AMB substrates are connected to a heat sink using a heat-conductive adhesive. The amount of heat of the semiconductor of the electric circuit that is dissipated is conveyed by the circuit substrate and the heat-conductive adhesive, that forms the joining location, to a base plate or a housing, in order to eliminate heat from the at least one electronic component, and thus to cool it in a suitable manner. The base plate or the housing, in turn, may be cooled passively or actively, especially by a flowing medium. In the case of the composite component described above, it is a disadvantage that the joining layer formed by the heat-conductive adhesive represents a noticeable bottleneck for the heat dissipation, even at relatively short temporal pulse loading. One alternative to this is connecting the circuit substrate that is fitted with components to the heat sink using a soldering material, which has a higher heat-conductive capacity than heat-conductive adhesives. But this has the disadvantage that, because of the thermomechanical stress of the composite component in operation, a breakup of the solder may occur. This has as a result that making a connection using a solder material does frequently not make sense, based on the service life requirements, or that only small areas may be connected via a soldering material.
Example embodiments of the present invention provide a composite component that stands out by being resistant to temperature change and/or heat dissipation, and example embodiments of the present invention provide a method for producing a composite component that is resistant to temperature change.
In order to avoid repetitions, features disclosed in terms of the device shall also count as disclosed in terms of the method. Likewise, features disclosed in terms of the method shall count as disclosed in terms of the device.
Example embodiments of the present invention are based on not joining two joining partners to each other using a single joining layer, as is conventionally done, but using at least two, preferably exclusively two joining layers between which at least one, preferably exclusively one additional layer, namely an intermediate layer, is situated. In this context, the joining layers have the objective of connecting the respective joining partner to the intermediate layer in a fixed manner, and to take care of the necessary electrical and/or mechanical and/or thermal connection of the joining partners to the intermediate layer. The intermediate layer is preferably selected such that its thermal coefficient of expansion is low, in order thereby to optimize the resistance to temperature change of the composite component. In a manner that is quite especially preferred, the expansion behavior of the intermediate layer corresponds at least approximately to the expansion behavior of at least one of the joining partners, preferably of a semiconductor, particularly on its circuit side, a difference in the coefficients of expansion also being acceptable, but this should be as small as possible. Because of the provision of the intermediate layer having a low thermal coefficient of expansion, which is preferably similar to the thermal coefficient of expansion of one of the joining partners, the resistance to temperature change of the composite component is increased. Furthermore, an additional spreading of heat pulses develops. Quite especially preferred, as will be explained below, in the case of at least one of the joining layers, quite especially preferred in the case of both joining layers, it is a sinter layer, particularly having metallic sinter particles, to assure an electrical, thermal and mechanical joining of the joining partners to the preferably electrically and/or thermally conductive intermediate layer. As the intermediate layer one may use silicon, for example.
Example embodiments of the present invention may be used, for example, in power outputs of electrical power steering, in power outputs of universal rectifier units, particularly in hybrid vehicle applications or electric vehicle applications, in power circuits in DC/DC converters, especially for hybrid applications, in controller electronic systems, particularly on a starter/generator, in press-fit diodes on generator end shields, in high temperature resistant semiconductors, such as silicon carbide or even in sensors that are operated at high temperature and which require an evaluation electronic system close to the sensor, as well as in modules for inverters in photovoltaic systems. Additional applications are possible too.
As was indicated at the outset, it is advantageously provided that the thermal coefficient of expansion of the intermediate layer, at least approximately, corresponds to the thermal coefficient of expansion of the first and/or the second joining partner. Quite especially preferred, the thermal coefficient of expansion of the intermediate layer corresponds to an electrical or an electronic component, that is used as a joining partner, preferably a semiconductor, quite especially preferred a power semiconductor, additionally preferred, on its circuit side. Still further preferred, the intermediate layer material corresponds to the, or a material of the electric and/or electronic component.
It is particularly expedient if the two joining partners are connected to each other via exclusively three layers, namely, the first joining layer directly contacting the first joining partner, the second joining layer directly contacting the second joining partner and the intermediate layer situated between the joining layers.
In particular, when at least one of the joining layers, preferably both joining layers, are arranged as sinter layers, it is preferred if the intermediate layer is patterned laterally, in order thus to connect in each case only limited areas to the at least one metallic sinter layer. By doing this, temperature change-conditioned mechanical stresses may be reduced to a minimum. In addition or alternatively to a lateral patterning of the intermediate layer, it is possible to pattern the first and/or the second joining layer laterally. Quite particularly preferred, the intermediate layer and/or the first and/or the second joining layer are/is applied already patterned, quite particularly preferred in surface sections distanced laterally from one another.
In addition, it is preferred if the first and/or the second joining layer and/or the intermediate layer are patterned such that between pattern sections of the respective layer at least one fluid channel, preferably a fluid channel network is formed, which is suitable for and determined so that through it a cooling fluid, particularly a cooling gas or a cooling liquid, is able to be guided in order thus to be able to carry off additional heat from the composite component. Quite especially preferred in this context is if the fluid channel or the fluid channel network is formed within the intermediate layer between the pattern sections of the intermediate layer. In other words, at least one of the connecting layers is patterned such that cavities are created through which a cooling fluid is able to be guided in order to withdraw heat from the entire construction. In the simplest case this may be a gas. Having a cooling fluid flowing through has the advantage that a greater heat quantity is able to be absorbed.
A device for applying fluid to the fluid channel and/or the fluid channel network are provided. In the simplest case, this may be a fan device, using which, air is able to be blown and/or sucked through the fluid channel or the fluid channel network. If a cooling liquid is provided, it is preferred if the device for acting on the fluid channel and/or the fluid channel network include at least one pump.
There are various possibilities for configuring the joining layers. As was indicated at the outset, it is especially preferred if at least one of the joining layers, preferably both joining layers, are/is arranged as a sinter layer, particularly having metallic sinter particles, so as to achieve thereby an optimal thermal and electrical connection of the joining partners to the intermediate layer. In addition or alternatively, at least one of the joining layers may be arranged as an adhesive layer or solder metal layer, especially using lead-free solder. It is also possible to arrange the intermediate layer as a gradient material layer produced by alloying or as a layer produced by welding. It is especially preferred if at least one of the layers, that is, the first and/or the second joining layer and/or the intermediate layer, is micro-patterned and/or nano-patterned, that, for example, pyramidal patterns, channels or similar patterns, such as are used, for instance, in solar cells as light traps, are implemented, in order to enlarge the area for heat transition into the cooling fluid. It is also possible to pattern a joining partner, preferably a heat sink, macroscopically for improved temperature dissipation.
Particularly expedient is an example embodiment in which at least one sensor is inserted into the first and/or the second joining layer and/or (which is preferred) into the intermediate layer, especially a temperature sensor. The latter then does not measure the temperature directly at the hottest place of a joining partner, particularly of a semiconductor, but somewhere below it. This has the advantage that a space saving is able to be implemented on the circuit substrate and/or that one may do without additional expensive semiconductor surface. It is quite especially preferred if the at least one sensor, preferably the temperature sensor, is able to be electrically conductively connected to a joining partner using through contacting.
Quite especially preferred is an example embodiment of the composite component in which the first joining partner is or includes an electronic component, especially a semiconductor component, preferably a power semiconductor component. Quite especially preferably, a circuit substrate equipped with at least one electronic component, is involved which, further preferred, is connected directly to the intermediate layer via the first joining layer. It is additionally preferred if the second joining partner is an heat sink, particularly a base plate, a cooling body or an housing, it being even further preferred if this second joining partner is connected directly via the second joining layer to the intermediate layer, which quite especially preferred is made of silicon.
Example embodiments of the present invention provide a method for producing a composite component, preferably a composite component arranged as described above. The method stands out in that the at least two, preferably exclusively two joining partners are joined via at least three, preferably exclusively three layers, namely a first and a second joining layer as well as an intermediate layer, situated between them, are joined to one another. There are different possibilities with regard to configuring joining layers, as was described above with the aid of the composite component. Thus, at least one of the joining layers may be arranged as a sinter layer, adhesive layer or solder metal layer. There are also different possibilities with respect to applying the layers onto at least one of the joining partners. Thus, an example embodiment is possible in which the at least three, preferably exclusively three layers are applied, one after the other, onto one of the joining partners, whereupon the additional joining partner is applied to the three layers. It is also possible that each joining partner be supplied with one joining layer, whereupon the intermediate layer is applied onto one of the joining layers.
With regard to example embodiments and refinements of the method, we point to the previous description of the composite component, from which example embodiments of the method may be derived.
Additional advantages, features and details of example embodiments of the present invention are described in the following description as well as from the figures.
Identical elements and elements that have the same function have been provided with matching reference numerals in the figures.
A first exemplary embodiment of a composite component 1 is shown in
One may recognize the abovementioned layer system between the two joining partners 2, 3. It is made up of a first joining layer 4, an intermediate layer 5, directly contacting first joining layer 4, which in turn directly contacts a second joining layer 6 which, in turn, connects second joining partner 3 directly to intermediate layer 5. The two joining layers 4, 6 are preferably arranged identically, but may also be arranged differently, depending on the purpose of its application. Both the first and the second joining layer 4, 6 preferably are sinter layers having metallic sinter particles. Intermediate layer 5, which is formed of silicon in the exemplary embodiment shown, stands out in that its thermal coefficient of expansion corresponds to the thermal coefficient of expansion of the semiconductor that is connected to the circuit substrate on the circuit side.
Composite component 1 according to
In the exemplary embodiment according to
In the exemplary embodiment according to
If necessary, second joining partner 3, that is arranged as a heat sink, is able to be macro-patterned (not shown), in order to be able to dissipate the temperature in an improved manner. For this purpose, second joining partner 3 preferably includes cooling fins.
Number | Date | Country | Kind |
---|---|---|---|
10 2009 000 514 | Jan 2009 | DE | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/EP2010/050771 | 1/25/2010 | WO | 00 | 9/21/2011 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2010/086282 | 8/5/2010 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
3451030 | Garfinkel | Jun 1969 | A |
3467569 | Weber et al. | Sep 1969 | A |
4146438 | de Nora et al. | Mar 1979 | A |
4525412 | Nakane et al. | Jun 1985 | A |
4574879 | DeGree et al. | Mar 1986 | A |
4739443 | Singhdeo | Apr 1988 | A |
4746055 | Ingram et al. | May 1988 | A |
4888247 | Zweben et al. | Dec 1989 | A |
4963425 | Buchanan et al. | Oct 1990 | A |
5043796 | Lester | Aug 1991 | A |
5142441 | Seibold et al. | Aug 1992 | A |
5224017 | Martin | Jun 1993 | A |
5234152 | Glaeser | Aug 1993 | A |
5242099 | Ueda | Sep 1993 | A |
5409547 | Watanabe et al. | Apr 1995 | A |
5504372 | Braden et al. | Apr 1996 | A |
5554430 | Pollatta et al. | Sep 1996 | A |
5571608 | Swamy | Nov 1996 | A |
5596219 | Hierold | Jan 1997 | A |
5609287 | Izuta et al. | Mar 1997 | A |
5652055 | King et al. | Jul 1997 | A |
5754403 | Ozmat et al. | May 1998 | A |
6001471 | Bries et al. | Dec 1999 | A |
6159762 | Scheiter et al. | Dec 2000 | A |
6219237 | Geusic et al. | Apr 2001 | B1 |
6284985 | Naba et al. | Sep 2001 | B1 |
6317331 | Kamath et al. | Nov 2001 | B1 |
6320136 | Sakamoto | Nov 2001 | B1 |
6327149 | Goenka | Dec 2001 | B1 |
6396712 | Kuijk | May 2002 | B1 |
6432497 | Bunyan | Aug 2002 | B2 |
6548177 | Hieda et al. | Apr 2003 | B2 |
6586352 | Blumberg et al. | Jul 2003 | B1 |
6730391 | Saijo et al. | May 2004 | B1 |
6756285 | Moriceau et al. | Jun 2004 | B1 |
6759660 | Izumi et al. | Jul 2004 | B2 |
6987671 | Houle | Jan 2006 | B2 |
7038213 | Izumi et al. | May 2006 | B2 |
7119432 | Desai et al. | Oct 2006 | B2 |
7131486 | Goodson et al. | Nov 2006 | B2 |
7219826 | Nakamura | May 2007 | B2 |
7323764 | Wallis | Jan 2008 | B2 |
7338640 | Murthy et al. | Mar 2008 | B2 |
7451656 | Yokoyama et al. | Nov 2008 | B2 |
7527873 | Kumar et al. | May 2009 | B2 |
7534701 | Ghyselen et al. | May 2009 | B2 |
7572665 | Datta et al. | Aug 2009 | B2 |
7764494 | Balzano | Jul 2010 | B2 |
7887936 | Le Vaillant | Feb 2011 | B2 |
8012324 | Oya et al. | Sep 2011 | B2 |
8114754 | Letertre | Feb 2012 | B2 |
8299604 | Datta et al. | Oct 2012 | B2 |
20010020700 | Inoue et al. | Sep 2001 | A1 |
20020025441 | Hieda et al. | Feb 2002 | A1 |
20020125563 | Scheuermann | Sep 2002 | A1 |
20020185726 | North et al. | Dec 2002 | A1 |
20030071275 | Torvik | Apr 2003 | A1 |
20040040651 | Tsugaru et al. | Mar 2004 | A1 |
20040194861 | Endou et al. | Oct 2004 | A1 |
20050082554 | Torvik | Apr 2005 | A1 |
20050189342 | Kabbani | Sep 2005 | A1 |
20060023436 | Sugahara | Feb 2006 | A1 |
20060145186 | Wallis | Jul 2006 | A1 |
20070231648 | Han et al. | Oct 2007 | A1 |
20080189948 | Schulz-Harder | Aug 2008 | A1 |
20080217717 | Pfister et al. | Sep 2008 | A1 |
20080248231 | Daigaku et al. | Oct 2008 | A1 |
20090086435 | Suzuki et al. | Apr 2009 | A1 |
Number | Date | Country |
---|---|---|
10 2004 044 | Jul 2005 | DE |
11 2005 001 | Jun 2007 | DE |
1 225 633 | Jul 2002 | EP |
1 811 257 | Jul 2007 | EP |
1 926 142 | May 2008 | EP |
1 930 943 | Jun 2008 | EP |
1 995 773 | Nov 2008 | EP |
1 995 774 | Nov 2008 | EP |
1-289297 | Nov 1989 | JP |
2001-24120 | Jan 2001 | JP |
2001 291 925 | Oct 2001 | JP |
2006-294699 | Oct 2006 | JP |
2007-19203 | Jan 2007 | JP |
2008-151154 | Jul 2008 | JP |
2008-294280 | Dec 2008 | JP |
WO 9803997 | Jan 1998 | WO |
Entry |
---|
International Search Report for PCT/EP2010/050771, dated Apr. 16, 2010. |
Number | Date | Country | |
---|---|---|---|
20120002372 A1 | Jan 2012 | US |