Compositions and methods for inhibiting expression of the ALAS1 gene

Information

  • Patent Grant
  • 11028392
  • Patent Number
    11,028,392
  • Date Filed
    Thursday, September 20, 2018
    6 years ago
  • Date Issued
    Tuesday, June 8, 2021
    3 years ago
Abstract
The invention relates to double-stranded ribonucleic acid (dsRNA) compositions targeting the ALAS1 gene, and methods of using such dsRNA compositions to alter (e.g., inhibit) expression of ALAS1.
Description
SEQUENCE LISTING

The instant application contains a Sequence Listing which has been submitted electronically in ASCII format and is hereby incorporated by reference in its entirety. Said ASCII copy, created on Jun. 7, 2018, is named A2038-7202US_SL.txt and is 1,046,163 bytes in size.


FIELD OF THE INVENTION

The invention relates to the specific inhibition of the expression of the ALAS1 gene.


BACKGROUND OF THE INVENTION

The inherited porphyrias are a family of disorders resulting from the deficient activity of specific enzymes in the heme biosynthetic pathway, also referred to herein as the porphyrin pathway. Deficiency in the enzymes of the porphyrin pathway leads to insufficient heme production and to an accumulation of porphyrin precursors and porphyrins, which are toxic to tissue in high concentrations.


Of the inherited porphyrias, acute intermittent porphyria (AIP, e.g., autosomal dominant AIP), variegate porphyria (VP, e.g., autosomal dominant VP), hereditary coproporphyria (copropophyria or HCP, e.g., autosomal dominant HCP), and 5′ aminolevulinic acid (also known as δ-aminolevulinic acid or ALA) dehydratase deficiency porphyria (ADP, e.g., autosomal recessive ADP) are classified as acute hepatic porphyrias and are manifested by acute neurological attacks that can be life threatening. The acute attacks are characterized by autonomic, peripheral, and central nervous symptoms, including severe abdominal pain, hypertension, tachycardias, constipation, motor weakness, paralysis, and seizures. If not treated properly, quadriplegia, respiratory impairment, and death may ensue. Various factors, including cytochrome P450-inducing drugs, dieting, and hormonal changes can precipitate acute attacks by increasing the activity of hepatic 5′-aminolevulinic acid synthase 1 (ALAS1), the first and rate-limiting enzyme of the heme biosynthetic pathway. In the acute porphyrias, e.g., AIP, VP, HCP and ADP, the respective enzyme deficiencies result in hepatic production and accumulation of one or more substances (e.g., porphyrins and/or porphyrin precursors, e.g., ALA and/or PBG) that can be neurotoxic and can result in the occurrence of acute attacks. See, e.g., Balwani, M and Desnick, R. J., Blood, 120:4496-4504, 2012.


The current therapy for the acute neurologic attacks is the intravenous administration of hemin (Panhematin®, Lundbeck or Normosang®, Orphan Europe), which provides exogenous heme for the negative feedback inhibition of ALAS1, and thereby, decreases production of ALA and PBG. Hemin is used for the treatment during an acute attack and for prevention of attacks, particularly in women with the acute porphyrias who experience frequent attacks with the hormonal changes during their menstrual cycles. While patients generally respond well, its effect is slow, typically taking two to four days or longer to normalize urinary ALA and PBG concentrations towards normal levels. As the intravenous hemin is rapidly metabolized, three to four infusions are usually necessary to effectively treat or prevent an acute attack. In addition, repeated infusions may cause iron overload and phlebitis, which may compromise peripheral venous access. Although orthotropic liver transplantation is curative, this procedure has significant morbidity and mortality and the availability of liver donors is limited. Therefore, an alternative therapeutic approach that is more effective, fast-acting, and safe is needed. It would be particularly advantageous if such treatment could be delivered by subcutaneous administration, as this would preclude the need for infusions and prolonged hospitalization.


AIP, also referred to as porphobilinogen deaminase (PBGD) deficiency, or hydroxymethylbilane synthase (HMBS) deficiency, is the most common of the acute hepatic prophyrias. The prevalence of AIP is estimated to be 5-10 in 100,000, with about 5-10% of patients being symptomatic. AIP is an autosomal dominant disorder caused by mutations in the HMBS gene that result in reduced, e.g., half-normal activity of the enzyme. Previously, a mouse model of AIP that has ˜30% of wildtype HMBS activity was generated by homologous recombination. Like human patients, these mice increase hepatic ALAS1 activity and accumulate large quantities of plasma and urinary ALA and PBG when administered porphyrinogenic drugs, such as phenobarbital. Thus, they serve as an excellent model to evaluate the efficacy of novel therapeutics for the acute hepatic porphyrias.


SUMMARY OF THE INVENTION

The present invention describes methods and iRNA compositions for modulating the expression of an ALAS1 gene. In certain embodiments, expression of an ALAS1 gene is reduced or inhibited using an ALAS1-specific iRNA. Such inhibition can be useful in treating disorders related to ALAS1 expression, such as porphyrias.


Accordingly, described herein are compositions and methods that effect the RNA-induced silencing complex (RISC)-mediated cleavage of RNA transcripts of the ALAS1 gene, such as in a cell or in a subject (e.g., in a mammal, such as a human subject). Also described are compositions and methods for treating a disorder related to expression of an ALAS1 gene, such as a porphyria, e.g., X-linked sideroblastic anemia (XLSA), ALA deyhdratase deficiency porphyria (Doss porphyria or ADP), acute intermittent porphyria (AIP), congenital erythropoietic porphyria (CEP), prophyria cutanea tarda (PCT), hereditary coproporphyria (coproporphyria, or HCP), variegate porphyria (VP), erythropoietic protoporphyria (EPP), or transient erythroporphyria of infancy. In some embodiments, the disorder is an acute hepatic porphyria, e.g., ALA deyhdratase deficiency porphyria (ADP), AIP, HCP, or VP. In certain embodiments, the disorder is ALA deyhdratase deficiency porphyria (ADP) or AIP.


In embodiments, the porphyria is a hepatic porphyria, e.g., a porphyria selected from acute intermittent porphyria (AIP) hereditary coproporphyria (HCP), variegate porphyria (VP), ALA deyhdratase deficiency porphyria (ADP), and hepatoerythropoietic porphyria. In embodiments, the porphyria is a homozygous dominant hepatic porphyria (e.g., homozygous dominant AIP, HCP, or VP) or hepatoerythropoietic porphyria. In embodiments, the porphyria is a dual porphyria.


As used herein, the term “iRNA,” “RNAi”, “iRNA agent,” “RNAi agent,” or “iRNA molecule,” refers to an agent that contains RNA as that term is defined herein, and which mediates the targeted cleavage of an RNA transcript, e.g., via an RNA-induced silencing complex (RISC) pathway. In one embodiment, an iRNA as described herein effects inhibition of ALAS1 expression in a cell or mammal.


The iRNAs included in the compositions featured herein encompass a dsRNA having an RNA strand (the antisense strand) having a region, e.g., a region that is 30 nucleotides or less, generally 19-24 nucleotides in length, that is substantially complementary to at least part of an mRNA transcript of an ALAS1 gene (e.g., a mouse or human ALAS1 gene) (also referred to herein as an “ALAS1-specific iRNA”). Alternatively, or in combination, iRNAs encompass a dsRNA having an RNA strand (the antisense strand) having a region that is 30 nucleotides or less, generally 19-24 nucleotides in length, that is substantially complementary to at least part of an mRNA transcript of an ALAS1 gene (e.g., a human variant 1 or 2 of an ALAS1 gene) (also referred to herein as a “ALAS1-specific iRNA”).


In embodiments, the iRNA (e.g, dsRNA) described herein comprises an antisense strand having a region that is substantially complementary to a region of a human ALAS1. In embodiments, the human ALAS1 has the sequence of NM_000688.4 (SEQ ID NO:1) or NM_000688.5 (SEQ ID NO:382). In embodiments, the human ALAS1 has the sequence of NM_199166.1.


In embodiments, the antisense sequence of the iRNA (e.g., dsRNA) targets within the region 871 to 895 (plus or minus 5, 4, 3, 2, or 1 nucleotides in either or both directions on the 5′ and/or 3′ end) on the ALAS1 transcript NM_000688.4. In embodiments, the antisense sequence targets the nucleotides 871 to 893, 871 to 892, or 873 to 895 on the ALAS1 transcript NM_000688.4. In embodiments, the antisense sequence comprises or consists of a sequence that is fully complementary or substantially complementary to nucleotides 871 to 893, 871 to 892, or 873 to 895 on the ALAS1 transcript NM_000688.4.


In one aspect, a double-stranded ribonucleic acid (dsRNA) for inhibiting expression of ALAS1 is provided, wherein said dsRNA comprises a sense strand and an antisense strand, the antisense strand comprising a region of complementarity to an ALAS1 RNA transcript, which antisense strand comprises at least 15 (e.g., at least 16, 17, 18, 19, 20, 21, 22, or 23) contiguous nucleotides differing by no more than 3, 2 or 1 nucleotides from the sequence of UAAGAUGAGACACUCUUUCUGGU (SEQ ID NO: 4153) or UAAGAUGAGACACUCTUUCUGGU (SEQ ID NO: 4154). In embodiments, the antisense strand comprises the sequence of UAAGAUGAGACACUCUUUCUGGU (SEQ ID NO: 4153) or UAAGAUGAGACACUCTUUCUGGU (SEQ ID NO: 4154). In embodiments, the sense strand comprises the sequence of CAGAAAGAGUGUCUCAUCUUA (SEQ ID NO: 4155). In embodiments, one or more nucleotides of the antisense strand and/or sense strand are modified as described herein. In embodiments, the dsRNA comprises (i) an antisense strand that comprises, or consists of, the antisense sequence of AD-60489, AD-60519, or AD-61193 and/or (ii) a sense strand that comprises, or consists of, the sense sequence of AD-60489, AD-60519, or AD-61193 (including one or more (e.g., all) of the modifications of the antisense strand and/or antisense strand of AD-60489, AD-60519, or AD-61193).


In one aspect, a double-stranded ribonucleic acid (dsRNA) for inhibiting expression of ALAS1 is provided, wherein said dsRNA comprises a sense strand and an antisense strand, the antisense strand comprising a region of complementarity to an ALAS1 RNA transcript, which antisense strand comprises at least 15 (e.g., at least 16, 17, 18, 19, 20, 21, 22, or 23) contiguous nucleotides differing by no more than 3 (e.g., by no more than 0, 1 or 2) nucleotides from an antisense sequence listed in any one of Tables 21 to 40, or an unmodified version of an antisense sequence (e.g., a version having the same nucleotide sequence except that some or all of the nucleotides are unmodified) listed in any one of Tables 21 to 40. In one embodiment, the antisense sequence comprises at least 15 (e.g., at least 16, 17, 18, 19, 20, 21, 22, or 23) contiguous nucleotides differing by no more than 3 (e.g., by no more than 0, 1 or 2) nucleotides from (i) the antisense sequence of AD-60489, AD-60519, or AD-61193 or (ii) an unmodified version of any one of these sequences. In embodiments, the antisense strand comprises at least 15 (e.g., at least 16, 17, 18, 19, 20, 21, 22, or 23) contiguous nucleotides differing by no more than 3 (e.g., by no more than 0, 1 or 2) nucleotides from the sequence of UAAGAUGAGACACUCUUUCUGGU (SEQ ID NO: 4153) or UAAGAUGAGACACUCTUUCUGGU (SEQ ID NO: 4154). In an embodiment, the antisense sequence targets positions 871-893 of NM_000688.4 (SEQ ID NO:1). In embodiments, the sense strand comprises the sequence of CAGAAAGAGUGUCUCAUCUUA (SEQ ID NO: 4155). In embodiments, one or more nucleotides of the antisense strand and/or sense strand are modified as described herein.


In some embodiments, the dsRNA is not a sense and/or antisense sequence listed in any one of Tables 2, 3, 6, 7, 8, 9, 14, 15, 18 or 20.


In one embodiment, a double-stranded ribonucleic acid (dsRNA) for inhibiting expression of ALAS1 is provided, wherein said dsRNA comprises a sense strand and an antisense strand, the antisense strand comprising a region of complementarity to an ALAS1 RNA transcript, which antisense strand comprises at least 15 (e.g., at least 16, 17, 18, 19, 20, 21, 22, or 23) contiguous nucleotides differing by no more than 3 nucleotides, no more than 2 nucleotides, or no more than one nucleotide, from the antisense sequence of AD-60519. In embodiments, one or more nucleotides are modified as described herein.


In one embodiment, a double-stranded ribonucleic acid (dsRNA) for inhibiting expression of ALAS1 is provided, wherein said dsRNA comprises a sense strand and an antisense strand, the antisense strand comprising a region of complementarity to an ALAS1 RNA transcript, which antisense strand comprises at least 15 (e.g., at least 16, 17, 18, 19, 20, 21, 22, or 23) contiguous nucleotides differing by no more than 3 (e.g., by no more than 0, 1 or 2) nucleotides from the antisense sequence of AD-60489, or a derivative of AD-60489 as described herein. In embodiments, one or more nucleotides are modified as described herein, e.g., one or more (or all) nucleotides of AD-60489 are modified as described herein. In embodiments, the derivative of AD-60489 is AD-60501, AD-60519, AD-60901, AD-60495, AD-60900, AD-60935, AD-60879, AD-61190, AD-61191, AD-60865, AD-60861, AD-60876, AD-61193, AD-60519, AD-60519, or AD-60901. In embodiments, the derivative of AD-60489 is AD-60519. In embodiments, the derivative of AD-60489 is AD-61193.


In one embodiment, a double-stranded ribonucleic acid (dsRNA) for inhibiting expression of ALAS1 is provided, wherein said dsRNA comprises a sense strand and an antisense strand, the antisense strand comprising a region of complementarity to an ALAS1 RNA transcript, which antisense strand comprises at least 15 (e.g., at least 16, 17, 18, 19, 20, 21, 22, or 23) contiguous nucleotides differing by no more than 3 (e.g., by no more than 0, 1 or 2) nucleotides from a derivative of AD-58632 described herein. In embodiments, one or more nucleotides are modified as described herein, e.g., one or more (or all) nucleotides of AD-58632 are modified as described herein. In embodiments, the derivative of AD-58632 is AD-60405, AD-60887, AD-60923, AD-60434, AD-60892, AD-60419, AD-60924, AD-60445, AD-60925, and AD-60926, AD-60820, AD-60843, AD-60819, AD-61140, AD-61141, AD-61142, AD-60835, AD-60839, AD-61143, AD-61144, AD-61145, AD-61146, AD-60892, or AD-60419. In embodiments, the derivative of AD-58632 is AD-60819.


In some embodiments, the dsRNA has an IC50 of less than 1 nM. In some embodiments, the dsRNA has an IC50 in the range of 0.01-1 nM. In embodiments, the dsRNA has an IC50 of less than 0.05 nM. In embodiments, the dsRNA has an IC50 of less than 0.02 nM. In embodiments, the dsRNA has an IC50 of less than 0.01 nM. In embodiments, the IC5O is determined as described herein in the Examples.


In some embodiments, the dsRNA has a single dose ED50 of less than about 10 mg/kg. In some embodiments, the dsRNA has a single dose ED50 of less than about 5 mg/kg. In embodiments, the EC50 is determined as described herein in the Examples.


In some embodiments, the dsRNA shows improved activity compared with AD-58632. In some embodiments, the dsRNA-shows improved activity compared with AD-60489. In some embodiments, the dsRNA shows improved activity compared with AD-58632 and AD-60489.


In embodiments, the dsRNA is AD-60501, AD-60519, AD-60901, AD-60495, AD-60900, AD-60935, AD-60879, AD-61190, AD-61191, AD-60865, AD-60861, AD-60876, AD-61193, AD-60519, AD-60519, AD-60901, AD-60405, AD-60887, AD-60923, AD-60434, AD-60892, AD-60419, AD-60924, AD-60445, AD-60925, AD-60926, AD-60820, AD-60843, AD-60819, AD-61140, AD-61141, AD-61142, AD-60835, AD-60839, AD-61143, AD-61144, AD-61145, AD-61146, AD-60892, or AD-60419 (e.g., including the nucleotide sequence and/or one or more (e.g., all) of the modifications of the aforesaid dsRNAs). In embodiments, the dsRNA comprises an antisense strand that comprises, or consists of, an antisense sequence (and/or one or more (e.g., all) of the modifications)) selected from AD-60501, AD-60519, AD-60901, AD-60495, AD-60900, AD-60935, AD-60879, AD-61190, AD-61191, AD-60865, AD-60861, AD-60876, AD-61193, AD-60519, AD-60519, AD-60901, AD-60405, AD-60887, AD-60923, AD-60434, AD-60892, AD-60419, AD-60924, AD-60445, AD-60925, AD-60926, AD-60820, AD-60843, AD-60819, AD-61140, AD-61141, AD-61142, AD-60835, AD-60839, AD-61143, AD-61144, AD-61145, AD-61146, AD-60892, or AD-60419. In embodiments, the dsRNA comprises a sense strand that comprises, or consists of, a sense sequence (and/or one or more (e.g., all) of the modifications)) selected from AD-60501, AD-60519, AD-60901, AD-60495, AD-60900, AD-60935, AD-60879, AD-61190, AD-61191, AD-60865, AD-60861, AD-60876, AD-61193, AD-60519, AD-60519, AD-60901, AD-60405, AD-60887, AD-60923, AD-60434, AD-60892, AD-60419, AD-60924, AD-60445, AD-60925, AD-60926, AD-60820, AD-60843, AD-60819, AD-61140, AD-61141, AD-61142, AD-60835, AD-60839, AD-61143, AD-61144, AD-61145, AD-61146, AD-60892, or AD-60419.


In embodiments, a double-stranded ribonucleic acid (dsRNA) for inhibiting expression of ALAS1 is provided, wherein the dsRNA comprises (i) an antisense strand that comprises, or consists of, the sequence of UAAGAUGAGACACUCUUUCUGGU (SEQ ID NO: 4153) or UAAGAUGAGACACUCTUUCUGGU (SEQ ID NO: 4154) and/or (ii) a sense strand that comprises, or consists of, the sequence of CAGAAAGAGUGUCUCAUCUUA (SEQ ID NO: 4155). In embodiments, one or more nucleotides of the antisense strand and/or sense strand are modified as described herein.


In embodiments, a double-stranded ribonucleic acid (dsRNA) for inhibiting expression of ALAS1 is provided, wherein the dsRNA comprises (i) an antisense strand that comprises, or consists of, the antisense sequence of AD-60489 and/or (ii) a sense strand that comprises, or consists of, the sense sequence of AD-60489 (wherein the sense and/or antisense sequence includes one or more (e.g., all) of the modifications of the sense strand and/or antisense strand of AD-60489).


In embodiments, a double-stranded ribonucleic acid (dsRNA) for inhibiting expression of ALAS1 is provided, wherein the dsRNA comprises (i) an antisense strand that comprises, or consists of, the antisense sequence of AD-60519 and/or (ii) a sense strand that comprises, or consists of, the sense sequence of AD-60519 (wherein the sense and/or antisense sequence includes one or more (e.g., all) of the modifications of the sense strand and/or antisense strand of AD-60519).


In embodiments, a double-stranded ribonucleic acid (dsRNA) for inhibiting expression of ALAS1 is provided, wherein the dsRNA comprises (i) an antisense strand that comprises, or consists of, the antisense sequence of AD-61193 and/or (ii) a sense strand that comprises, or consists of, the sense sequence of AD-61193 (wherein the sense and/or antisense sequence includes one or more (e.g., all) of the modifications of the sense strand and/or antisense strand of AD-61193).


In embodiments, a double-stranded ribonucleic acid (dsRNA) for inhibiting expression of ALAS1 is provided, wherein the dsRNA comprises (i) an antisense strand that comprises, or consists of, the antisense sequence of AD-60819 and/or (ii) a sense sequence that comprises, or consists of, the sense sequence of AD-60819 (wherein the sense and/or antisense sequence includes one or more (e.g., all) of the modifications of the sense strand and/or antisense strand of AD-60819).


In embodiments, a dsRNA for inhibiting expression of ALAS1 is provided, wherein the dsRNA comprises (i) an antisense strand that comprises, or consists of, the antisense sequence of AD-60489, AD-60519, AD-61193, or AD-60819 (or a corresponding unmodified antisense sequence) and/or (ii) a sense strand that comprises, or consists of, the sense sequence of AD-60489, AD-60519, AD-61193, or AD-60819 (or a corresponding unmodified antisense sequence). In embodiments, the dsRNA comprises (i) an antisense strand that consists of the antisense sequence of AD-60489, AD-60519, AD-61193, or AD-60819 and/or (ii) a sense strand that consists of the sense sequence of AD-60489, AD-60519, AD-61193, or AD-60819, except that the antisense strand and/or sense strand of the dsRNA differs by 1, 2, or 3 nucleotides from the corresponding antisense and/or sense sequence of AD-60489, AD-60519, AD-61193, or AD-60819.


The sequences and modifications of AD-60489, AD-60519, AD-61193, and AD-60819 are shown in Table 44 below.









TABLE 44







Sequences and Modifications of AD-60489, AD-60519, AD-61193, AD-60819












Target







sites of


antisense


sequence



Corresponding
Corresponding


on
Duplex
Sense Sequence
Antisense Sequence
unmodified sense
unmodified antisense


NM_000688.4
Name
(5′-3′)
(5′-3′)
sequence
sequence





871-893
AD-
CfsasGfaAfaGfaGfUfGfu
usAfsaGfaUfgAfgAfcacUfc
CAGAAAGAGUGUCUC
UAAGAUGAGACACUC



60489
CfuCfaUfcUfuAfL96
UfuUfcUfgsgsu
AUCUUA (SEQ ID NO:
UUUCUGGU (SEQ ID




(SEQ ID NO: 4156)
(SEQ ID NO: 4157)
4158)
NO: 4159)





871-893
AD-
csasgaaaGfaGfuGfuCfu
usAfsAfGfaUfgAfgAfcAfcU
CAGAAAGAGUGUCUC
UAAGAUGAGACACUC



60519
CfaucuuaL96
fcUfuUfcUfgsgsu
AUCUUA (SEQ ID NO:
UUUCUGGU (SEQ ID




(SEQ ID NO: 4160)
(SEQ ID NO: 4161)
4162)
NO: 4163)





871-893
AD-
csasgaaaGfaGfuGfuCfu
usAfsaGfaUfgAfgAfcacUfcd
CAGAAAGAGUGUCUC
UAAGAUGAGACACUC



61193
CfaucuuaL96
TuUfcUfgsgsu
AUCUUA (SEQ ID NO:
TUUCUGGU (SEQ ID




(SEQ ID NO: 4164)
(SEQ ID NO: 4165)
4166)
NO: 4167)





873-895
AD-
GfsasAfaGfaGfuGfuCfu
asAfsgAfaGfaugAfgAfcAfcu
GAAAGAGUGUCUCAU
AAGAAGAUGAGACAC



60819
CfaucuuCfuuL96
cuuucsusg
CUUCUU (SEQ ID NO:
UCUUUCUG (SEQ ID




(SEQ ID NO: 4168)
(SEQ ID NO: 4169)
4170)
NO: 4171)









wherein c, a, g, u=2′-OMe ribonucleosides; Af, Cf, G, Uf=2′F ribonucleosides; S=phosphorothioate; L96 has the structure depicted in Table 1.


In embodiments, a double-stranded ribonucleic acid (dsRNA) for inhibiting expression of ALAS1 is provided, wherein the dsRNA comprises (i) an antisense strand that comprises, or consists of, the antisense sequence of AD-60489, AD-60519, or AD-61193 and/or (ii) a sense strand that comprises, or consists of, the sense sequence of AD-60489, AD-60519, or AD-61193 (including the nucleotide sequence and one or more (e.g., all) of the modifications of the sense strand and/or antisense strand of AD-60489, AD-60519, or AD-61193).


In embodiments, a double-stranded ribonucleic acid (dsRNA) for inhibiting expression of ALAS1 is provided, wherein the dsRNA is AD-60489, AD-60519, AD-61193, or AD-60819. In embodiments, a double-stranded ribonucleic acid (dsRNA) for inhibiting expression of ALAS1 is provided, wherein the dsRNA is AD-60489, AD-60519, or AD-61193 (e.g., including the nucleotide sequence and/or one or more (e.g., all) of the modifications of AD-60489, AD-60519, or AD-61193).


In embodiments, the dsRNA is, comprises, or consists of, AD-60489 (e.g., including the nucleotide sequence and/or one or more (e.g., all) of the modifications of AD-60489).


In embodiments, the dsRNA is, comprises, or consists of, AD-60519 (e.g., including the nucleotide sequence and/or one or more (e.g., all) of the modifications of AD-60519).


In embodiments, the dsRNA is, comprises, or consists of, AD-61193 (e.g., including the nucleotide sequence and/or one or more (e.g., all) of the modifications of AD-61193).


In embodiments, the dsRNA is, comprises, or consists of, AD-60819 (e.g., including the nucleotide sequence and/or one or more (e.g., all) of the modifications of AD-60819).


In embodiments, the dsRNA (e.g., AD-60489, AD-60519, AD-61193, AD-60819, or another dsRNA disclosed herein in any one of Tables 21 to 40) is effective to suppress the liver level of ALAS1 mRNA, e.g., to achieve silencing of at least 10%, 20%, 30%, 40%, 50%, 60%, 70%, or 80% (e.g., such that ALAS1 mRNA levels are decreased to 90% or less, 80% or less, 70% or less, 60% or less, 50% or less, 40% or less, 30% or less, or 20% or less of a control level of liver ALAS1 mRNA, e.g., the level in an untreated individual or group of individuals, e.g., an individual or group of individuals treated with PBS only). In embodiments, the effectiveness of the dsRNA in suppressing the liver level of ALAS1 mRNA is assessed using a non-human primate model, e.g., as described herein in the Examples.


In embodiments, the dsRNA (e.g., AD-60489, AD-60519, AD-61193, AD-60819, or another dsRNA disclosed herein in any one of Tables 21 to 40) is effective to suppress the circulating level of ALAS1 mRNA, e.g., to achieve silencing of at least 10%, 20%, 30%, 40%, 50%, 60%, 70%, or 80% (e.g., such that ALAS1 mRNA levels are decreased to 90% or less, 80% or less, 70% or less, 60% or less, 50% or less, 40% or less, 30% or less, or 20% or less of a control level of circulating ALAS1 mRNA, e.g., the level prior to treatment with the dsRNA, or the level in an untreated individual or group of individuals). In embodiments, the effectiveness of the dsRNA in suppressing the circulating level of ALAS1 mRNA is assessed using a non-human primate model, e.g., as described herein in the Examples. In embodiments, the circulating level of ALAS1 mRNA is assessed using a circulating extracellular RNA detection (cERD) assay, e.g., as described herein or in Sehgal, A. et al. Quantitation of tissue-specific target gene modulation using circulating RNA (Poster presented on Feb. 9, 2012 at the Keystone Gene Silencing by small RNAs symposium (Vancouver, Feb. 7-12, 2012) or Sehgal, A. et al. Tissue-specific gene silencing monitored in circulating RNA, RNA, 20: 1-7, published online Dec. 19, 2013.


The cERD method can be applied to any appropriate biological sample. In embodiments, the circulating level of ALAS1 mRNA is assessed using a blood sample, e.g., a serum sample. In embodiments, the circulating level of ALAS1 mRNA is assessed using a urine sample.


In embodiments, the dsRNA is a derivative of AD-60489 that is disclosed herein, e.g., in any one of the tables herein. In embodiments, the dsRNA shows improved activity compared with AD-60489. In some such embodiments, the dsRNA is AD-60519.


In embodiments, the dsRNA is a derivative of AD-58632 that is disclosed herein, e.g., in any one of the tables herein. In embodiments, the dsRNA shows improved activity compared with AD-58632.


In embodiments, improved activity is indicated by a lower IC50, e.g., as determined based on in vitro assays, e.g., as described herein, e.g., in the Examples.


In embodiments, improved activity is indicated by a lower effective dose. The effective dose may be determined based on the administration of a single dose or multiple repeated doses. In embodiments, the effective dose is determined based on the single dose ED50. In embodiments, the effective dose or the single dose ED50 is determined based on an in vivo assay. In embodiments, the in vivo assay is conducted in a non-human animal, e.g., in a rat, in a non-human primate, or in a mouse.


In embodiments, the effective dose is determined based on the dose required to obtain a reduction of in a level of ALAS1 mRNA (e.g., a liver level of ALAS1 mRNA and/or a circulating level of ALAS1 mRNA), e.g., as described herein in the Examples. In embodiments, circulating mRNA is assessed using the cERD assay.


In embodiments, the effective dose is determined based on the dose required to obtain a reduction of a level (e.g., a urine and/or plasma level) of ALA and/or PBG.


In embodiments, the effective dose is determined based on the dose required to obtain a particular treatment effect described herein, e.g., prevention or reduction of symptoms associated with a porphyria.


In embodiments, improved activity is indicated by the achievement of a higher liver level of the dsRNA. In embodiments, a higher liver level is obtained after a single dose of dsRNA (e.g., a dose of 1, 2.5, 3, 5, or 10 mg/kg). In embodiments, a higher liver level is obtained after multiple doses of dsRNA have been administered (e.g., 2-10 daily or weekly doses of 1, 2.5, 3, 5, or 10 mg/kg).


In one embodiment, the iRNA encompasses a dsRNA having an RNA strand (the antisense strand) having a region that is substantially complementary to a portion of an ALAS1 mRNA, e.g., a human ALAS1 mRNA (e.g., a human ALAS1 mRNA as provided in SEQ ID NO:1 or SEQ ID NO:382).


In one embodiment, an iRNA for inhibiting expression of an ALAS1 gene includes at least two sequences that are complementary to each other. The iRNA includes a sense strand having a first sequence and an antisense strand having a second sequence. The antisense strand includes a nucleotide sequence that is substantially complementary to at least part of an mRNA encoding an ALAS1 transcript, and the region of complementarity is 30 nucleotides or less, and at least 15 nucleotides in length. Generally, the iRNA is 19 to 24 nucleotides in length.


In some embodiments, the iRNA is 19-21 nucleotides in length. In some embodiments, the iRNA is 19-21 nucleotides in length and is in a lipid formulation, e.g. a lipid nanoparticle (LNP) formulation (e.g., an LNP11 formulation).


In some embodiments, the iRNA is 21-23 nucleotides in length. In some embodiments, the iRNA is 21-23 nucleotides in length and is in the form of a conjugate, e.g., conjugated to one or more GalNAc derivatives as described herein.


In some embodiments the iRNA is from about 15 to about 25 nucleotides in length, and in other embodiments the iRNA is from about 25 to about 30 nucleotides in length. An iRNA targeting ALAS1, upon contact with a cell expressing ALAS1, inhibits the expression of an ALAS1 gene by at least 10%, at least 20%, at least 25%, at least 30%, at least 35% or at least 40% or more, such as when assayed by a method as described herein. In one embodiment, the iRNA targeting ALAS1 is formulated in a stable nucleic acid lipid particle (SNALP).


In one embodiment, an iRNA (e.g., a dsRNA) featured herein includes a first sequence of a dsRNA that is selected from the group consisting of the sense sequences of Tables 21 to 40 and a second sequence that is selected from the group consisting of the corresponding antisense sequences of Tables 21 to 40.


The iRNA molecules featured herein can include naturally occurring nucleotides or can include at least one modified nucleotide. In embodiments, the at least one modified nucleotide include one or more of a modification on the nucleotide chosen from the group consisting of a locked nucleic acid (LNA), an acyclic nucleotide, a hexitol or hexose nucleic acid (HNA), a cyclohexene nucleic acid (CeNA), 2′-methoxyethyl, 2′-O-alkyl, 2′-O-allyl, 2′-C-allyl, 2′-fluoro, 2′-deoxy, 2′-hydroxyl, or any combination thereof. In one embodiment, the at least one modified nucleotide includes, but is not limited to a 2′-O-methyl modified nucleotide, 2′-fluoro modified nucleotide, a nucleotide having a 5′-phosphorothioate group, and a terminal nucleotide linked to a ligand, e.g., an N-acetylgalactosamine (GalNAc) or a cholesteryl derivative. Alternatively, the modified nucleotide may be chosen from the group of: a 2′-deoxy-2′-fluoro modified nucleotide, a 2′-deoxy-modified nucleotide, a locked nucleotide, an acyclic nucleotide, an abasic nucleotide, 2′-amino-modified nucleotide, 2′-alkyl-modified nucleotide, morpholino nucleotide, a phosphoramidate, and a non-natural base comprising nucleotide. Such a modified sequence can be based, e.g., on a first sequence of said iRNA selected from the group consisting of the sense sequences of disclosed in Tables 21-40, and a second sequence selected from the group consisting of the corresponding antisense sequences disclosed in Tables 21-40.


In one embodiment, an iRNA as described herein targets a wildtype ALAS1 RNA transcript variant, and in another embodiment, the iRNA targets a mutant transcript (e.g., an ALAS1 RNA carrying an allelic variant). For example, an iRNA featured in the invention can target a polymorphic variant, such as a single nucleotide polymorphism (SNP), of ALAS1. In another embodiment, the iRNA targets both a wildtype and a mutant ALAS1 transcript. In yet another embodiment, the iRNA targets a particular transcript variant of ALAS1 (e.g., human ALAS1 variant 1). In yet another embodiment, the iRNA agent targets multiple transcript variants (e.g., both variant 1 and variant 2 of human ALAS1).


In one embodiment, an iRNA featured in the invention targets a non-coding region of an ALAS1 RNA transcript, such as the 5′ or 3′ untranslated region of a transcript.


In some embodiments, an iRNA as described herein is in the form of a conjugate, e.g., a carbohydrate conjugate, which may serve as a targeting moiety and/or ligand, as described herein. In one embodiment, the conjugate is attached to the 3′ end of the sense strand of the dsRNA. In some embodiments, the conjugate is attached via a linker, e.g., via a bivalent or trivalent branched linker.


In some embodiments, the conjugate comprises one or more N-acetylgalactosamine (GalNAc) derivatives. Such a conjugate is also referred to herein as a GalNAc conjugate. In some embodiments, the conjugate targets the RNAi agent to a particular cell, e.g., a liver cell, e.g., a hepatocyte. The GalNAc derivatives can be attached via a linker, e.g., a bivalent or trivalent branched linker. In particular embodiments, the conjugate is




embedded image


In some embodiments, the RNAi agent is attached to the carbohydrate conjugate via a linker, e.g., a linker as shown in the following schematic, wherein X is O or S




embedded image


In some embodiments, X is O. In some embodiments, X is S.


In some embodiments, the RNAi agent is conjugated to L96 as defined in Table 1 and shown below




embedded image


In one embodiment, the dsRNA has one, two, three, four, five, six, seven, eight, nine, ten, eleven, twelve, thirteen, fourteen, fifteen, sixteen or all of the following:


(i) is chemically synthesized, e.g., is synthesized by solid phase oligonucleotide synthesis;


(ii) all the nucleotides in the dsRNA are modified, e.g., all the nucleotides are 2′-OMe or 2′-F modified, or a combination of 2′-OMe and 2′-F modified;


(iii) all nucleotides are connected through 3′-5′ phosphodiester linkages;


(iv) the sense strand comprises or consists of 21 nucleotides;


(v) the antisense sense strand comprises or consists of 23 nucleotides;


(vi) has a blunt-end at the 3′-end of sense strand;


(vii) has a 3′-overhang, e.g., has a two-nucleotide overhang, at the 3′-end of the antisense strand;


(viii) is covalently attached to a ligand containing three N-acetylgalactosamine (GalNAc) moieties;


(ix) the 3′-end of the sense strand is conjugated to the triantennary GalNAc moiety (e.g., referred to herein as L96 as defined in Table 1). In one embodiment, the 3′-end is linked to the triantennary GalNAc moiety through a phosphodiester linkage;


(x) has an antisense strand that comprises one or more (e.g., four) phosphorothioate linkages. In one embodiment, the phosphorothioate linkages are located at the 3′ end and at the 5′ end of the antisense strand. In one embodiment, two phosphorothioate linkages are located at the 3′ end and two phosphorothioate linkages are located at the 5′ end of the antisense strand;


(xi) has a sense strand that comprises one or more (e.g., two) phosphorothioate linkages. In one embodiment, the one or more (e.g., two) phosphorothioate linkages are located at the 5′ end of the sense strand;


(xii) 21 nucleotides of the sense strand hybridize to the complementary 21 nucleotides of the antisense strand;


(xiii) forms 21 nucleotide base pairs and a two-base overhang at the 3′-end of the antisense strand;


(xiv) comprises, or consists of, a sense and antisense strand having the sequence of AD-60519;


(xv) has a sense strand with 10, 12, 14, 16, 18, 19, 20 or all of the modifications of the sense strand of AD-60519;


(xvi) has an antisense strand with 10, 12, 14, 16, 18, 19, 20 or all of the modifications of the antisense strand of AD-60519; or


(xvii) has the duplex sequence and all the modifications of AD-60519.


In embodiments, the dsRNA is in the form of a conjugate having the following structure (also referred to herein as AD-60519 or ALN-60519) (SEQ ID NOS 5238-5239, respectively, in order of appearance):




embedded image


ALN-60519

Af, Cf, Gf, Uf=2′-F ribonucleosides


Am, Cm, Gm, Um=2′-OMe ribonucleosides


S=phosphorothioate




embedded image


In an aspect provided herein is a composition, e.g., a pharmaceutical composition, that includes one or more of the iRNAs described herein and a pharmaceutically acceptable carrier or delivery vehicle. In one embodiment, the composition is used for inhibiting the expression of an ALAS1 gene in an organism, generally a human subject. In one embodiment, the composition is used for treating a porphyria, e.g., AIP.


In one aspect, an iRNA provided herein is a double-stranded ribonucleic acid (dsRNA) for inhibiting expression of ALAS1, wherein said dsRNA comprises a sense strand and an antisense strand 15-30 base pairs in length and the antisense strand is complementary to at least 15 contiguous nucleotides of SEQ ID NO: 1 or 382.


In a further aspect, an iRNA provided herein is a double stranded RNAi (dsRNA) comprising a sense strand complementary to an antisense strand, wherein said antisense strand comprises a region of complementarity to an ALAS1 RNA transcript, wherein each strand has about 14 to about 30 nucleotides, wherein said double stranded RNAi agent is represented by formula (III):









(III)







sense:


5′ np-Na-(X X X)i-Nb-Y Y Y-Nb-(Z Z Z)j-Na-nq 3′





antisense:


3′ np′-Na′-(X′X′X′)k-Nb′-Y′Y′Y′-Nb′-(Z′Z′Z′)l-Na′-





nq′ 5′








    • wherein:

    • i, j, k, and l are each independently 0 or 1;

    • p, p′, q, and q′ are each independently 0-6;

    • each Na and Na′ independently represents an oligonucleotide sequence comprising 0-25 nucleotides which are either modified or unmodified or combinations thereof, each sequence comprising at least two differently modified nucleotides;

    • each Nb and Nb′ independently represents an oligonucleotide sequence comprising 0-10 nucleotides which are either modified or unmodified or combinations thereof;

    • each np, np′, nq, and nq′ independently represents an overhang nucleotide;

    • XXX, YYY, ZZZ, X′X′X′, Y′Y′Y′, and Z′Z′Z′ each independently represent one motif of three identical modifications on three consecutive nucleotides;

    • modifications on Nb differ from the modification on Y and modifications on Nb′ differ from the modification on Y′.





In embodiments, the sense strand is conjugated to at least one ligand.


In embodiments, i is 1; j is 1; or both i and j are 1.


In embodiments, k is 1; l is 1; or both k and l are 1.


In embodiments, XXX is complementary to X′X′X′, YYY is complementary to Y′Y′Y′, and ZZZ is complementary to Z′Z′Z′.


In embodiments, the Y′Y′Y′ motif occurs at the 11, 12 and 13 positions of the antisense strand from the 5′-end.


In embodiments, the Y′ is 2′-O-methyl.


In embodiments, the duplex region is 15-30 nucleotide pairs in length.


In embodiments, the duplex region is 17-23 nucleotide pairs in length.


In embodiments, the duplex region is 19-21 nucleotide pairs in length.


In embodiments, the duplex region is 21-23 nucleotide pairs in length.


In embodiments, the modification on the nucleotide is selected from the group consisting of a locked nucleic acid (LNA), an acyclic nucleotide, a hexitol or hexose nucleic acid (HNA), a cyclohexene nucleic acid (CeNA), 2′-methoxyethyl, 2′-O-alkyl, 2′-O-allyl, 2′-C-allyl, 2′-fluoro, 2′-deoxy, 2′-hydroxyl, and any combination thereof.


In embodiments, the modifications on the nucleotides are selected from the group consisting of LNA, HNA, CeNA, 2′-methoxyethyl, 2′-O-alkyl, 2′-O-allyl, 2′-C-allyl, 2′-fluoro, 2′-deoxy, 2′-hydroxyl, and combinations thereof.


In embodiments, the modifications on the nucleotides are 2′-O-methyl, 2′-fluoro or both.


In embodiments, the ligand comprises a carbohydrate.


In embodiments, the ligand is attached via a linker.


In embodiments, the linker is a bivalent or trivalent branched linker.


In embodiments, the ligand is




embedded image


In embodiments, the ligand and linker are as shown in Formula XXIV:




embedded image


In embodiments, the ligand is attached to the 3′ end of the sense strand.


In embodiments, the dsRNA consists of or comprises a nucleotide sequence selected from the group of sequences provided in Tables 21-40.


In a further aspect, an iRNA provided herein is a double-stranded ribonucleic acid (dsRNA) for inhibiting expression of ALAS1, wherein said dsRNA comprises a sense strand and an antisense strand, the antisense strand comprising a region of complementarity to an ALAS1 RNA transcript, which antisense strand comprises at least 15 contiguous nucleotides differing by no more than 3 nucleotides from one of the antisense sequences listed in any one of Tables 21-40. In embodiments, the nucleotides of the antisense strand have fewer modifications, more modifications, or different modifications compared with the antisense sequences listed in any one of Tables 21-40.


In embodiments, the sense and antisense sequences are those of a duplex disclosed herein that suppresses ALAS1 mRNA expression by at least 50%, 60%, 70%, 80%, 85% or 90%, e.g., as assessed using an assay disclosed in the Examples provided herein.


In embodiments, ALAS1 mRNA expression is assessed based on an ALAS1 mRNA level in the liver, e.g., as assessed using a liver biopsy sample. In embodiments, ALAS1 mRNA expression is assessed based on an ALAS1 mRNA level in a biological fluid, e.g., blood, serum, plasma, cerebrospinal fluid, or urine. In embodiments, ALAS1 mRNA expression is assessed using a circulating extracellular RNA detection (cERD) assay, e.g., a cERD assay as described herein or in Sehgal, A. et al. Quantitation of tissue-specific target gene modulation using circulating RNA (Poster presented on Feb. 9, 2012 at the Keystone Gene Silencing by small RNAs symposium (Vancouver, Feb. 7-12, 2012) or Sehgal, A. et al. Tissue-specific gene silencing monitored in circulating RNA, RNA, 20: 1-7, published online Dec. 19, 2013.


In some embodiments, the dsRNA comprises at least one modified nucleotide.


In some embodiments, at least one of the modified nucleotides is chosen from the group consisting of: a 2′-O-methyl modified nucleotide, a nucleotide comprising a 5′-phosphorothioate group, and a terminal nucleotide linked to a cholesteryl derivative or dodecanoic acid bisdecylamide group.


In some embodiments, the modified nucleotide is chosen from the group consisting of: a 2′-deoxy-2′-fluoro modified nucleotide, a 2′-deoxy-modified nucleotide, a locked nucleotide, an acyclic nucleotide, an abasic nucleotide, 2′-amino-modified nucleotide, 2′-alkyl-modified nucleotide, morpholino nucleotide, a phosphoramidate, and a non-natural base comprising nucleotide.


In some embodiments, the region of complementarity is at least 17 nucleotides in length.


In some embodiments, the region of complementarity is between 19 and 21 nucleotides in length.


In some embodiments, the region of complementarity is 19 nucleotides in length.


In some embodiments, each strand is no more than 30 nucleotides in length.


In some embodiments, at least one strand comprises a 3′ overhang of at least 1 nucleotide. In embodiments, the antisense strand comprises a 3′ overhang of at least 1 nucleotide.


In some embodiments, at least one strand comprises a 3′ overhang of at least 2 nucleotides. In embodiments, the antisense strand comprises a 3′ overhang of at least 2 nucleotides. In embodiments, the antisense strand comprises a 3′ overhang of 2 nucleotides.


In some embodiments, a dsRNA described herein further comprises a ligand.


In some embodiments, the ligand is a GalNAc ligand.


In some embodiments, the ligand targets the dsRNA to hepatocytes.


In some embodiments, the ligand is conjugated to the 3′ end of the sense strand of the dsRNA.


In some embodiments, the region of complementarity consists of an antisense sequence selected from the antisense sequences listed in Tables 21-40, or a corresponding antisense sequence in which some or all of the nucleotides are unmodified. In embodiments, the region of complementarity consists of the sequence UAAGAUGAGACACUCUUUCUGGU (SEQ ID NO: 4153) or UAAGAUGAGACACUCTUUCUGGU (SEQ ID NO: 4154). In some embodiments, the region of complementarity consists of the antisense sequence of the duplex AD-60489. In some embodiments, the region of complementarity consists of the antisense sequence of the duplex AD-60519.


In embodiments, the region of complementarity consists of an antisense sequence selected from a duplex disclosed herein that suppresses ALAS1 mRNA expression by at least 50%, 60%, 70%, 80%, 85% or 90%, e.g., as assessed using an assay disclosed in the Examples provided herein.


In some embodiments, the dsRNA comprises a sense strand consisting of a sense strand sequence selected from Tables 21-40, and an antisense strand consisting of an antisense sequence selected from Tables 21-40. In embodiments, the dsRNA comprises a pair of corresponding sense and antisense sequences selected from those of the duplexes disclosed in Tables 21-40.


In one aspect, the invention provides a cell containing at least one of the iRNAs (e.g., dsRNAs) featured herein. The cell is generally a mammalian cell, such as a human cell. In some embodiments, the cell is an erythroid cell. In other embodiments, the cell is a liver cell (e.g., a hepatocyte).


In an aspect provided herein is a pharmaceutical composition for inhibiting expression of an ALAS1 gene, the composition comprising an iRNA (e.g., a dsRNA) described herein.


In embodiments of the pharmaceutical compositions described herein, the iRNA (e.g., dsRNA) is administered in an unbuffered solution. In embodiments, the unbuffered solution is saline or water, e.g., water for injection.


In embodiments, the pharmaceutical composition comprises AD-60519 and water for injection. In embodiments, the composition comprises about 100 to 300 mg/mL, e.g., 200 mg/mL, of AD-60519. In embodiments, the composition has a pH of 6.0-7.5, e.g., about 7.0. In embodiments, the composition is for subcutaneous injection. In embodiments, the pharmaceutical composition is packaged in a container (e.g., a glass vial, e.g., a 2 mL glass vial,) at a volume of about 0.3 to 1 mL, e.g., 0.55 mL. In embodiments, the pharmaceutical composition is ALN-AS1 as described herein in the examples.


In embodiments of the pharmaceutical compositions described herein, the iRNA (e.g., dsRNA is administered with a buffer solution. In embodiments, the buffer solution comprises acetate, citrate, prolamine, carbonate, or phosphate or any combination thereof. In embodiments, the buffer solution is phosphate buffered saline (PBS).


In embodiments of the pharmaceutical compositions described herein, the iRNA (e.g., dsRNA) is targeted to hepatocytes.


In embodiments of the pharmaceutical compositions described herein, the composition is administered intravenously.


In embodiments of the pharmaceutical compositions described herein, the composition is administered subcutaneously.


In embodiments, a pharmaceutical composition comprises an iRNA (e.g., a dsRNA) described herein that comprises a ligand (e.g., a GalNAc ligand) that targets the iRNA (e.g., dsRNA) to hepatocytes.


In embodiments, a pharmaceutical composition comprises an iRNA (e.g., a dsRNA) described herein that comprises a ligand (e.g., a GalNAc ligand), and the pharmaceutical composition is administered subcutaneously. In embodiments, the ligand targets the iRNA (e.g., dsRNA) to hepatocytes.


In certain embodiments, a pharmaceutical composition, e.g., a composition described herein, includes a lipid formulation. In some embodiments, the RNAi agent is in a LNP formulation, e.g., a MC3 formulation. In some embodiments, the LNP formulation targets the RNAi agent to a particular cell, e.g., a liver cell, e.g., a hepatocyte. In embodiments, the lipid formulation is a LNP11 formulation. In embodiments, the composition is administered intravenously.


In another embodiment, the pharmaceutical composition is formulated for administration according to a dosage regimen described herein, e.g., not more than once every four weeks, not more than once every three weeks, not more than once every two weeks, or not more than once every week. In another embodiment, the administration of the pharmaceutical composition can be maintained for a month or longer, e.g., one, two, three, or six months, or one year or longer.


In another embodiment, a composition containing an iRNA featured in the invention, e.g., a dsRNA targeting ALAS1, is administered with a non-iRNA therapeutic agent, such as an agent known to treat a porphyria (e.g., AIP), or a symptom of a porphyria (e.g., pain). In another embodiment, a composition containing an iRNA featured in the invention, e.g., a dsRNA targeting AIP, is administered along with a non-iRNA therapeutic regimen, such as hemin or glucose (e.g., glucose infusion (e.g., IV glucose)). For example, an iRNA featured in the invention can be administered before, after, or concurrent with glucose, dextrose, or a similar treatment that serves to restore energy balance (e.g., total parenteral nutrition). An iRNA featured in the invention can also be administered before, after, or concurrent with the administration of a heme product (e.g., hemin, heme arginate, or heme albumin), and optionally also in combination with a glucose (e.g. IV glucose) or the like.


Typically, glucose administered for the treatment of a porphyria is administered intravenously (IV). Administration of glucose intravenously is referred to herein as “IV glucose.” However, alternative embodiments in which glucose is administered by other means are also encompassed.


In one embodiment, an ALAS1 iRNA is administered to a patient, and then the non-iRNA agent or therapeutic regimen (e.g., glucose and/or a heme product) is administered to the patient (or vice versa). In another embodiment, an ALAS1 iRNA and the non-iRNA therapeutic agent or therapeutic regimen are administered at the same time.


In an aspect provided herein is a method of inhibiting ALAS1 expression in a cell, the method comprising: (a) introducing into the cell an iRNA (e.g. a dsRNA) described herein and (b) maintaining the cell of step (a) for a time sufficient to obtain degradation of the mRNA transcript of an ALAS1 gene, thereby inhibiting expression of the ALAS1 gene in the cell.


In an aspect provided herein is a method for reducing or inhibiting the expression of an ALAS1 gene in a cell (e.g., an erythroid cell or a liver cell, such as, e.g., a hepatocyte). The method includes:

    • (a) introducing into the cell a double-stranded ribonucleic acid (dsRNA), wherein the dsRNA includes at least two sequences that are complementary to each other. The dsRNA has a sense strand having a first sequence and an antisense strand having a second sequence; the antisense strand has a region of complementarity that is substantially complementary to at least a part of an mRNA encoding ALAS1, and where the region of complementarity is 30 nucleotides or less, i.e., 15-30 nucleotides in length, and generally 19-24 nucleotides in length, and where the dsRNA upon contact with a cell expressing ALAS1, inhibits expression of an ALAS1 gene by at least 10%, e.g., at least 20%, at least 30%, at least 40% or more; and
    • (b) maintaining the cell of step (a) for a time sufficient to obtain degradation of the mRNA transcript of the ALAS1 gene, thereby reducing or inhibiting expression of an ALAS1 gene in the cell.


In embodiments of the foregoing methods of inhibiting ALAS1 expression in a cell, the cell is treated ex vivo, in vitro, or in vivo. In embodiments, the cell is a hepatocyte.


In embodiments, the cell is present in a subject in need of treatment, prevention and/or management of a disorder related to ALAS1 expression.


In embodiments, the disorder is a porphyria. In embodiments, the porphyria is acute intermittent porphyria or ALA-dehydratase deficiency porphyria.


In embodiments, the porphyria is a hepatic porphyria, e.g., a porphyria selected from acute intermittent porphyria (AIP) hereditary coproporphyria (HCP), variegate porphyria (VP), ALA deyhdratase deficiency porphyria (ADP), and hepatoerythropoietic porphyria. In embodiments, the porphyria is a homozygous dominant hepatic porphyria (e.g., homozygous dominant AIP, HCP, or VP) or hepatoerythropoietic porphyria. In embodiments, the porphyria is a dual porphyria.


In embodiments, the expression of ALAS1 is inhibited by at least 30%.


In embodiments, the iRNA (e.g., dsRNA) has an IC50 in the range of 0.01-1 nM.


In certain embodiments, the cell (e.g., the hepatocyte) is a mammalian cell (e.g., a human, non-human primate, or rodent cell).


In one embodiment, the cell is treated ex vivo, in vitro, or in vivo (e.g., the cell is present in a subject (e.g., a patient in need of treatment, prevention and/or management of a disorder related to ALAS1 expression).


In one embodiment, the subject is a mammal (e.g., a human) at risk, or diagnosed with a porphyria, e.g., X-linked sideroblastic anemia (XLSA), ALA deyhdratase deficiency porphyria (ADP or Doss porphyria), acute intermittent porphyria (AIP), congenital erythropoietic porphyria (CEP), prophyria cutanea tarda (PCT), hereditary coproporphyria (coproporphyria, or HCP), variegate porphyria (VP), erythropoietic protoporphyria (EPP), or transient erythroporphyria of infancy. In some embodiments, the disorder is an acute hepatic porphyria, e.g., ALA deyhdratase deficiency porphyria (ADP), AIP, HCP, or VP. In specific embodiments, the disorder is ALA deyhdratase deficiency porphyria (ADP) or AIP.


In embodiments, the porphyria is a hepatic porphyria, e.g., a porphyria selected from acute intermittent porphyria (AIP) hereditary coproporphyria (HCP), variegate porphyria (VP), ALA deyhdratase deficiency porphyria (ADP), and hepatoerythropoietic porphyria. In embodiments, the porphyria is a homozygous dominant hepatic porphyria (e.g., homozygous dominant AIP, HCP, or VP) or hepatoerythropoietic porphyria, In embodiments, the porphyria is a dual porphyria.


In one embodiment, the dsRNA introduced reduces or inhibits expression of an ALAS1 gene in the cell.


In one embodiment, the dsRNA introduced reduces or inhibits expression of an ALAS1 gene, or the level of one or more porphyrins or porphyrin precursors (e.g., δ-aminolevulinic acid (ALA), porphopilinogen (PBG), hydroxymethylbilane (HMB), uroporphyrinogen I or III, coproporphyrinogen I or III, protoporphrinogen IX, and protoporphyrin IX) or porphyrin products or metabolites, by at least 5%, 10%, 15%, 20%, 25%, 30%, 35%, 40%, 45%, 50% or more compared to a reference, (e.g., an untreated cell or a cell treated with a non-targeting control dsRNA). Without being bound by theory, ALAS1 is the first enzyme of the porphyrin pathway. Thus, reducing expression of the ALAS1 gene is likely to reduce the level of one or more porphyrin precursors, porphyrins or porphyrin products or metabolites.


In other aspects, the invention provides methods for treating, preventing or managing pathological processes related to ALAS1 expression (e.g., pathological processes involving porphyrins, porphyrin precursors, or defects in the porphyrin pathway, such as, for example, porphyrias). In one embodiment, the method includes administering to a subject, e.g., a patient in need of such treatment, prevention or management, an effective (e.g., a therapeutically or prophylactically effective) amount of one or more of the iRNAs featured herein.


In an aspect provided herein is a method of treating and/or preventing a disorder related to ALAS1 expression comprising administering to a subject in need of such treatment a therapeutically effective amount of an iRNA (e.g., a dsRNA) described herein, or a composition comprising an iRNA (e.g., a dsRNA) described herein.


In an aspect provided herein is a method of treating and/or preventing a porphyria comprising administering to a subject in need of such treatment a double-stranded ribonucleic acid (dsRNA), wherein said dsRNA comprises a sense strand and an antisense strand 15-30 base pairs in length and the antisense strand is complementary to at least 15 contiguous nucleotides of SEQ ID NO:1 or SEQ ID NO:382.


In one embodiment, subject (e.g., the patient) has a porphyria. In another embodiment, the subject (e.g., patient) is at risk for developing a porphyria. In some embodiments, administration of the iRNA targeting ALAS1 alleviates or relieves the severity of at least one symptom of a disorder related to ALAS1 in the patient.


In one embodiment, the subject is a mammal (e.g., a human) at risk, or that has been diagnosed with, a disorder related to ALAS1 expression, e.g., a porphyria, e.g., X-linked sideroblastic anemia (XLSA), ALA deyhdratase deficiency porphyria (Doss porphyria), acute intermittent porphyria (AIP), congenital erythropoietic porphyria (CEP), prophyria cutanea tarda (PCT), hereditary coproporphyria (coproporphyria, or HCP), variegate porphyria (VP), erythropoietic protoporphyria (EPP), or transient erythroporphyria of infancy. In a further embodiment, the porphyria is an acute hepatic porphyria, e.g., ALA deyhdratase deficiency porphyria (ADP), AIP, HCP, or VP. In some such embodiments, the disorder is ALA deyhdratase deficiency porphyria (ADP) or AIP.


In embodiments the subject has, or is at risk for developing, a porphyria. In embodiments, the porphyria is a hepatic porphyria, e.g., a porphyria selected from acute intermittent porphyria (AIP) hereditary coproporphyria (HCP), variegate porphyria (VP), ALA deyhdratase deficiency porphyria (ADP), and hepatoerythropoietic porphyria. In embodiments, the porphyria is a homozygous dominant hepatic porphyria (e.g., homozygous dominant AIP, HCP, or VP) or hepatoerythropoietic porphyria, In embodiments, the porphyria is a dual porphyria.


In embodiments, a porphyria, a symptom of porphyria, a prodrome, or an attack of porphyria is induced by exposure to a precipitating factor, as described herein. In some embodiments, the precipitating factor is a chemical exposure. In some embodiments, the precipitating factor is a drug, e.g., a prescription drug or an over the counter drug. In some embodiments, the precipitating factor is the menstrual cycle, e.g., a particular phase of the menstrual cycle, e.g., the luteal phase.


In embodiments, the iRNA (e.g., dsRNA) or composition comprising the iRNA is administered after an acute attack of porphyria.


In embodiments, the iRNA (e.g., dsRNA) or composition comprising the iRNA is administered during an acute attack of porphyria.


In embodiments, the iRNA (e.g., dsRNA) or composition comprising the iRNA is administered prophylactically to prevent an acute attack of porphyria.


In embodiments, the iRNA (e.g., dsRNA) is formulated as an LNP formulation.


In embodiments, the iRNA (e.g., dsRNA) is in the form of a GalNAc conjugate.


In embodiments, iRNA (e.g., dsRNA) is administered at a dose of 0.05-50 mg/kg.


In embodiments, the iRNA (e.g., dsRNA) is administered at a concentration of 0.01 mg/kg-5 mg/kg bodyweight of the subject.


In embodiments, the iRNA (e.g., dsRNA) is formulated as an LNP formulation and is administered at a dose of 0.05-5 mg/kg.


In embodiments, the iRNA (e.g., dsRNA) is in the form of a GalNAc conjugate and is administered at a dose of 0.5-50 mg/kg. In certain embodiments, the iRNA in the GalNAc conjugate is administered at a dose of less than 10 mg/kg (e.g., 5 mg/kg or less) e.g., once per week; e.g., a dose of 1 mg/kg or less, 2.5 mg/kg or less, or 5 mg/kg or less, e.g., once per week. In one embodiment, iRNA in the GalNAc conjugate is administered at a dose of about 2.5 mg/kg or less, e.g., once per week. In one embodiment, the administration of the iRNA in the GalNAc conjugate is subcutaneous.


In embodiments, the iRNA (e.g., dsRNA) is in the form of a GalNAc conjugate and is administered, e.g., subcutaneously, at a dose of 0-5 mg/kg, e.g. 0-2.5 mg/kg or 1-2.5 mg/kg. In embodiments, the iRNA is administered weekly. In embodiments, the iRNA is administered as a composition comprising the iRNA and water for injection. In embodiments, the iRNA is AD-60519. In embodiments, the composition comprises the iRNA, e.g., AD-60519, at a concentration of about 200 mg/mL.


In embodiments, the method decreases a level of a porphyrin or a porphyrin precursor in the subject.


In embodiments, the level is decreased by at least 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, or 90%. In an embodiment, the level is decreased by at least 30%.


In embodiments, the porphyrin precursor is δ-aminolevulinic acid (ALA) or porphopilinogen (PBG).


In embodiments, the iRNA (e.g., dsRNA) has an IC50 in the range of 0.01-1 nM.


In embodiments, a method described herein

    • (i) ameliorates a symptom associated with an ALAS1 related disorder (e.g., a porphyria)
    • (ii) inhibits ALAS1 expression in the subject (e.g., as assessed using the cERD assay),
    • (iii) decreases a level of a porphyrin precursor (e.g., ALA or PBG) or a porphyrin in the subject,
    • (iv) decreases frequency of acute attacks of symptoms associated with a porphyria in the subject, or
    • (v) decreases incidence of acute attacks of symptoms associated with a porphyria in the subject when the subject is exposed to a precipitating factor (e.g., the premenstrual phase or the luteal phase).


In embodiments, the method ameliorates pain and/or progressive neuropathy.


In embodiments, the iRNA (e.g., dsRNA) or composition comprising the iRNA is administered according to a dosing regimen.


In some embodiments, the iRNA (e.g., dsRNA) or composition comprising the iRNA is administered before or during an acute attack of porphyria. In some embodiments, the iRNA is administered before an acute attack of porphyria.


In some embodiments, the iRNA (e.g., dsRNA) or composition comprising the iRNA is administered during a prodrome. In embodiments, the prodrome is characterized by abdominal pain, nausea, psychological symptoms (e.g., anxiety), restlessness and/or insomnia.


In embodiments, the iRNA (e.g., dsRNA) or composition comprising the iRNA is administered during a particular phase of the menstrual cycle, e.g., during the luteal phase.


In embodiments, the method ameliorates or prevents cyclical attacks of porphyria, e.g., by reducing the severity, duration, or frequency of attacks. In embodiments, the cyclical attacks are associated with a precipitating factor. In embodiments, the precipitating factor is the menstrual cycle, e.g., a particular phase of the menstrual cycle, e.g., the luteal phase.


In embodiments, the subject has an elevated level of ALA and/or PBG. In embodiments, the level of ALA and/or PBG is elevated in plasma or urine from the subject. In embodiments, the subject has or is at risk for developing a porphyria, e.g., a hepatic porphyria. In embodiments, the subject is asymptomatic. In embodiments, the subject carries a genetic alteration (e.g., a gene mutation) associated with a porphyria, as described herein. In embodiments, the subject has or is at risk for developing a porphyria and suffers from pain (e.g., chronic pain, e.g., chronic neuropathic pain) and/or neuropathy (e.g., progressive neuropathy). In embodiments, the subject does not suffer from acute attacks but suffers from pain (e.g., chronic pain, e.g., chronic neuropathic pain) and/or neuropathy (e.g., progressive neuropathy). In embodiments, the pain is abdominal pain.


In embodiments, the subject (a) has an elevated level of ALA and/or PBG and (b) suffers from pain (e.g., chronic pain, e.g., chronic neuropathic pain) and/or neuropathy (e.g., progressive neuropathy). In embodiments, the pain is abdominal pain.


In embodiments, the subject has a plasma level and/or a urine level of ALA and/or PBG that is elevated. In embodiments, the elevated level of ALA and/or PBG is accompanied by other symptoms, e.g., pain (e.g., chronic pain, e.g., chronic neuropathic pain) or neuropathy (e.g., progressive neuropathy). In embodiments, the pain is abdominal pain. In embodiments, the subject is asymptomatic. In embodiments, the subject has a genetic mutation associated with a porphyria, e.g., a mutation as described herein.


In embodiments, the subject has a level (e.g., a plasma level or a urine level) of a porphyrin precursor, e.g., ALA and/or PBG, that is elevated, e.g., the level is greater than, or greater than or equal to, a reference value. In embodiments, the level is greater than the reference value. In embodiments, the reference value is two standard deviations above the mean level in a sample of healthy individuals. In embodiments, the reference value is an upper reference limit.


In embodiments, the subject has a plasma level and/or a urine level of ALA and/or PBG that is greater than, or greater than or equal to, 2 times, 3 times, 4 times, or 5 times that of an upper reference limit. As used herein, an “upper reference limit” refers to a level that is the upper limit of the 95% confidence interval for a reference sample, e.g., a sample of normal (e.g., wild type) or healthy individuals, e.g., individuals who do not carry a genetic mutation associated with a porphyria and/or individuals who do not suffer from a porphyria. In embodiments, the subject has a urine level of ALA and/or PBG that is greater than 2 to 4 times that of an upper reference limit. In embodiments, the subject has a urine level of ALA and/or PBG that is greater than 4 times that of an upper reference limit.


In embodiments, the reference value for plasma PBG is 0.12 μmol/L. In embodiments, the subject is a human and has a plasma PBG level that is greater than, or greater than or equal to, 0.12 μmol/L, 0.24 μmol/L, 0.36 μmol/L, 0.48 μmol/L, or 0.60 μmol/L. In embodiments, the subject is a human and has a plasma level of PBG that is greater than, or greater than or equal to, 0.48 μmol/L.


In embodiments, the reference value for urine PBG is 1.2 mmol/mol creatinine. In embodiments, the subject is a human and has a urine PBG level that is greater than, or greater than or equal to, 1.2 mmol/mol creatinine, 2.4 mmol/mol creatinine, 3.6 mmol/mol creatinine, 4.8 mmol/mol creatinine, or 6.0 mmol/mol creatinine. In embodiments, the subject is a human and has a urine level of PBG that is greater than, or greater than or equal to, 4.8 mmol/mol creatinine.


In embodiments, the reference value for plasma ALA is 0.12 μmol/L. In embodiments, the subject is a human and has a plasma ALA level that is greater than, or greater than or equal to, 0.12 μmol/L, 0.24 μmol/L, 0.36 μmol/L, 0.48 μmol/L, or 0.60 μmol/L. In embodiments, the subject is a human and has a plasma ALA level that is greater than, or greater than or equal to 0.48 μmol/L.


In embodiments, the reference value for urine ALA is 3.1 mmol/mol creatinine. In embodiments, the subject is a human and has a urine ALA level that is greater than, or greater than or equal to, 3.1 mmol/mol creatinine, 6.2 mmol/mol creatinine, 9.3 mmol/mol creatinine, 12.4 mmol/mol creatinine, or 15.5 mmol/mol creatinine.


In embodiments, the method decreases one or more signs or symptoms of a porphyria. In embodiments, the method decreases an elevated level of ALA and/or PBG. In embodiments, the method decreases pain (e.g., chronic pain, e.g. chronic neuropathic pain) and/or neuropathy (e.g., progressive neuropathy). In embodiments, the pain is abdominal pain. In embodiments, the pain is neuropathic pain (e.g., pain associated with the progressive neuropathy of acute porphyrias). The decrease in pain can include, e.g., prevention of pain, delay in the onset of pain, reduction in the frequency of pain, and/or reduction in severity of pain. In embodiments, the decrease in pain is assessed based on the subject's use of pain medication.


In embodiments, the method ameliorates or prevents acute attacks of porphyria, e.g., by reducing the severity, duration, or frequency of attacks.


In embodiments, the method decreases or prevents nerve damage.


In embodiments, the method prevents deterioration (e.g., prevents development of abnormalities) of or results in an improvement of clinical measures, e.g., clinical measures of muscle and/or nerve function, e.g., EMG and/or nerve conduction velocities.


In embodiments, the method decreases heme use by the subject.


In embodiments, the method decreases pain medication use by the subject.


In embodiments, the method reduces hospitalization.


In embodiments, the method is effective to reduce a level of ALA and/or PBG (e.g., a plasma or urine level of ALA and/or PBG). In embodiments, the method is effective to produce a predetermined reduction in the elevated level of ALA and/or PBG.


In embodiments, the predetermined reduction is a reduction to a value that is less than or equal to a reference value. In some embodiments, the reference value is an upper reference limit. In some embodiments, the reference value is the value that is two standard deviations above the mean level in a reference sample.


In embodiments, the method is effective to reduce the level of ALA and/or PBG in a subject to a level that is below two times the upper reference limit. In embodiments, the method is effective to reduce the level of ALA to below two times the upper reference limit. In embodiments, the method is effective to reduce the level of PBG to below two times the upper reference limit.


In embodiments, the iRNA (e.g., dsRNA) or composition comprising the iRNA is administered as a single dose or at multiple doses, e.g., according to a dosing regimen.


In embodiments, the iRNA (e.g., dsRNA) or composition comprising the iRNA is administered prophylactically to a subject who is at risk for developing a porphyria. In embodiments, the iRNA (e.g., dsRNA) or composition comprising the iRNA is administered prophylactically beginning at puberty. In embodiments, the subject carries a genetic mutation associated with a porphyria and/or has an elevated level of ALA and/or PBG (e.g., an elevated plasma or urine level of ALA and/or PBG). In embodiments, the mutation makes an individual susceptible to an acute attack (e.g., upon exposure to a precipitating factor, e.g., a drug, dieting or other precipitating factor, e.g., a precipitating factor as disclosed herein). In embodiments, the mutation is associated with elevated levels of a porphyrin or a porphyrin precursor (e.g., ALA and/or PBG). In embodiments, the mutation is associated with chronic pain (e.g., chronic neuropathic pain) and/or neuropathy (e.g., progressive neuropathy).


In embodiments, the mutation is a mutation in the ALAS1 gene. In embodiments, the mutation is a mutation in the ALAS1 gene promoter, or in regions upstream or downstream from the ALAS1 gene. In embodiments, the mutation is a mutation in transcription factors or other genes that interact with ALAS1. In embodiments, the mutation is a mutation in a gene that encodes an enzyme in the heme biosynthetic pathway.


In embodiments, the iRNA (e.g., dsRNA or a conjugate thereof) or composition comprising the iRNA is administered subcutaneously. In embodiments, the iRNA is in the form of a GalNAc conjugate. In embodiments, the iRNA (e.g., the dsRNA) is administered at a dose of 0.5-50 mg/kg. In certain embodiments, the iRNA is administered at a dose of less than 10 mg/kg (e.g., 5 mg/kg or less) once per week; e.g., a dose of 1 mg/kg or less, 2.5 mg/kg or less, or 5 mg/kg or less, e.g., once per week. In one embodiment, iRNA is administered at a dose of about 2.5 mg/kg or less, e.g., once per week.


In embodiments, the subject to be treated is asymptomatic and has an elevated level of ALA and/or PBG. In embodiments, the subject has a porphyria, e.g., AIP. In embodiments, the patient suffers from recurrent porphyric attacks.


In embodiments, the iRNA (e.g., AD-60519) is administered at a dose of less than 5 mg/kg, e.g., at 0.1, 0.35, 1.0, or 2.5 mg/kg. In embodiments, the iRNA (e.g., AD-60519) is administered in repeated doses, e.g., weekly doses.


In one embodiment, the subject is asymptomatic and has an elevated level of ALA and/or PBG, and the iRNA (e.g., AD-60519) is administered at single doses, e.g., at 0.1, 0.35, 1.0, or 2.5 mg/kg; or in repeatedly weekly dosages, e.g., of 1 and 2.5 mg/kg for several weeks (e.g., for 4 weeks).


In one embodiment, the subject has AIP, e.g., is an AIP patient, the iRNA (e.g., AD-60519) is administered at a dose of 1-2.5 mg/kg weekly.


In embodiments, a treatment regimen is employed in which the iRNA is initially administered more frequently, followed by less frequent administration. In embodiments, the iRNA is initially administered once per day for multiple days (e.g., for 2-14 days, e.g., for 2, 3, 4, 5, 6, or 7 days). In embodiments, the iRNA is subsequently administered once per week. In embodiments, the iRNA is subsequently administered once every two weeks. In embodiments, the iRNA is subsequently administered at a frequency that is effective to reduce one or more signs or symptoms of a porphyria.


In one aspect provided herein is a method of treating a subject with an elevated level of ALA and/or PBG, the method comprising administering to the subject a double-stranded ribonucleic acid (dsRNA), wherein said dsRNA comprises a sense strand and an antisense strand 15-30 base pairs in length and the antisense strand is complementary to at least 15 contiguous nucleotides of SEQ ID NO:1 or SEQ ID NO:382.


In one aspect provided herein is a method of treating a subject with an elevated level of ALA and/or PBG, the method comprising administering to the subject a therapeutically effective amount of an dsRNA or a composition comprising a dsRNA, as described herein.


In some embodiments, the methods described herein are effective to decrease the level of ALA and/or PBG. In some embodiments, the level of ALA and/or PBG is decreased such that it is less than, or less than or equal to, a reference value, e.g., an upper reference limit.


In embodiments, the subject to be treated is asymptomatic and has an elevated level of ALA and/or PBG. In embodiments, the subject has a porphyria, e.g., AIP.


In embodiments, the iRNA is administered at a dose of less than 5 mg/kg, e.g., at 0.1, 0.35 1.0, or 2.5 mg/kg. In embodiments, the iRNA is administered in repeated doses, e.g., weekly doses.


In another aspect, the invention provides methods for decreasing a level of a porphyrin or a porphyrin precursor in a cell (e.g., an erythroid cell or a liver cell, such as, e.g., a hepatocyte). In one embodiment, the cell is treated ex vivo, in vitro, or in vivo (e.g., the cell is present in a subject (e.g., a patient in need of treatment, prevention and/or management of a disorder related to ALAS1 expression). The method includes contacting the cell with an effective amount of one or more of the iRNAs targeting ALAS1, e.g., one or more of the iRNAs disclosed herein, thereby decreasing the level of a porphyrin or a porphyrin precursor in the cell; or decreasing the level of a porphyrin or a porphyrin precursor in other cells, tissues, or fluids within a subject in which the cell is located; relative to the level prior to contacting. Such methods can be used to treat (e.g., ameliorate the severity) of disorders related to ALAS1 expression, such as porphyrias, e.g., AIP or ALA dehydratase deficiency porphyria.


In one embodiment, the contacting step is effected ex vivo, in vitro, or in vivo. For example, the cell can be present in a subject, e.g., a mammal (e.g., a human) at risk, or that has been diagnosed with, a porphyria. In an embodiment, the porphyria is an acute hepatic porphyria. In embodiments, the porphyria is a hepatic porphyria, e.g., a porphyria selected from acute intermittent porphyria (AIP), hereditary coproporphyria (HCP), variegate porphyria (VP), ALA deyhdratase deficiency porphyria (ADP), and hepatoerythropoietic porphyria. In embodiments, the porphyria is a homozygous dominant hepatic porphyria (e.g., homozygous dominant AIP, HCP, or VP) or hepatoerythropoietic porphyria, In embodiments, the porphyria is a dual porphyria.


In an aspect provided herein is a method for decreasing a level of a porphyrin or a porphyrin precursor (e.g., ALA or PBG) in a cell, comprising contacting the cell with an iRNA (e.g. a dsRNA), as described herein, in an amount effective to decrease the level of the porphyrin or the porphyrin precursor in the cell.


In embodiments, the cell is a hepatocyte. In embodiments, the porphyrin or porphyrin precursor is δ-aminolevulinic acid (ALA), porphopilinogen (PBG), hydroxymethylbilane (HMB), uroporphyrinogen I or III, coproporphyrinogen I or III, protoporphrinogen IX, or protoporphyrin IX. In embodiments, the porphyrin precursor is ALA or PBG.


In one embodiment, the cell is an erythroid cell. In a further embodiment, the cell is a liver cell (e.g., a hepatocyte).


In an aspect provided herein is a vector encoding at least one strand of an iRNA (e.g., a dsRNA) as described herein.


In an aspect provided herein is a vector encoding at least one strand of a dsRNA, wherein said dsRNA comprises a region of complementarity to at least a part of an mRNA encoding ALAS1, wherein said dsRNA is 30 base pairs or less in length, and wherein said dsRNA targets said mRNA for cleavage.


In embodiments, the region of complementarity is at least 15 nucleotides in length.


In embodiments, the region of complementarity is 19 to 21 nucleotides in length. In one aspect, the invention provides a vector for inhibiting the expression of an ALAS1 gene in a cell. In one embodiment, the vector comprises an iRNA as described herein. In one embodiment, the vector includes at least one regulatory sequence operably linked to a nucleotide sequence that encodes at least one strand of an iRNA as described herein. In one embodiment the vector comprises at least one strand of an ALAS1 iRNA.


In an aspect provided herein is a cell comprising a vector as described herein. In an aspect provided herein is a cell containing a vector for inhibiting the expression of an ALAS1 gene in a cell. The vector includes a regulatory sequence operably linked to a nucleotide sequence that encodes at least one strand of one of the iRNAs as described herein. In one embodiment, the cell is a liver cell (e.g., a hepatocyte). In another embodiment, the cell is an erythroid cell.


In another aspect, a method is provided for assaying the level of circulating extracellular ALAS1 mRNA in a subject, said method comprising detecting (e.g., measuring) the level of ALAS1 mRNA in a biological fluid sample (e.g., a blood sample (e.g., a serum or plasma sample), a cerebrospinal fluid sample, or a urine from the subject, said biological fluid sample comprising the ALAS1 mRNA, thereby assaying the level of circulating extracellular ALAS1 mRNA in the subject.


In another aspect, a method is provided for assaying the level of circulating extracellular ALAS1 mRNA in a subject, said method comprising (i) providing RNA (e.g., extracellular RNA) from a biological fluid sample (e.g., blood or plasma sample) from the subject, said biological fluid sample comprising the ALAS1 mRNA; (ii) obtaining an ALAS1 cDNA from the ALAS1 mRNA; (iii) contacting the ALAS1 cDNA with a nucleic acid complementary (e.g., probe and/or primer) to the ALAS1 cDNA or a portion thereof, thereby producing a reaction mix; and (iv) detecting (e.g., measuring) the level of ALAS1 cDNA in the reaction mix, wherein the ALAS1 cDNA level is indicative of the ALAS1 mRNA level, thereby assaying the level of circulating extracellular ALAS1 mRNA in the subject.


In embodiments, said biological fluid sample is a blood sample. In embodiments, said biological fluid sample is a serum sample. In embodiments, said biological fluid sample is a urine sample.


In embodiments, the method comprises PCR, qPCR or 5′-RACE.


In embodiments, said nucleic acid is a probe or primer.


In embodiments, said nucleic acid comprises a detectable moiety and the level of ALAS1 mRNA is determined by detection of the amount of the detectable moiety.


In embodiments, said method further comprises obtaining the biological fluid sample from the subject. In embodiments, the biological fluid sample is separate from the tissue and contains exosomes. In embodiments of these methods, the efficacy of a porphyria treatment is assessed based on a comparison of the level of circulating extracellular ALAS1 mRNA in the subject relative to a reference value.


In embodiments, a decrease in the level of circulating extracellular ALAS1 mRNA in the subject in response to the porphyria treatment, relative to the reference value, indicates that the porphyria treatment is efficacious. In embodiments, the reference value is the level of circulating extracellular ALAS1 mRNA in the subject prior to the porphyria treatment.


All publications, patent applications, patents, and other references mentioned herein are incorporated by reference in their entirety.


The details of various embodiments of the invention are set forth in the description below. Other features, objects, and advantages of the invention will be apparent from the description and the drawings, and from the claims.





DESCRIPTION OF THE DRAWINGS


FIG. 1 depicts the heme biosynthetic pathway.



FIG. 2A and FIG. 2B show a table summarizing certain porphyrias associated with genetic errors in heme metabolism.



FIG. 3A and FIG. 3B depict a human ALAS1 mRNA sequence transcript (Ref. Seq. NM_000688.4 (GI: 40316942, record dated Nov. 19, 2011), SEQ ID NO: 1).



FIG. 4A and FIG. 4B depict a human ALAS1 mRNA sequence transcript (Ref. Seq. NM_000688.5 (GI: 362999011, record dated Apr. 1, 2012), SEQ ID NO: 382).



FIG. 5 shows the dose-response of the siRNA AD-53558 in suppressing mouse ALAS1 (mALAS1) mRNA relative to a PBS control. Results for a luciferase (LUC) AD-1955 control are also shown.



FIG. 6 shows the dose-response of the siRNA AD-53558 in suppressing ALAS1 mRNA in rats relative to a PBS control. Results for a luciferase (LUC) AD-1955 control are also shown.



FIG. 7 shows the durability of suppression of mouse ALAS1 (mALAS1) mRNA by the siRNA AD-53558 relative to a PBS control.



FIG. 8 shows means±standard deviations of plasma ALA levels (in μM) at baseline, and after phenobarbital treatment in the experimental (ALAS1 siRNA) and control (LUC siRNA) groups.



FIG. 9 shows the plasma ALA levels (in μM) of individual animals at baseline, and after phenobarbital treatment in animals that received ALAS1 siRNA and control (LUC siRNA) treatment.



FIG. 10 shows means±standard deviations of plasma PBG levels (in μM) at baseline, and after phenobarbital treatment in animals that received ALAS1 siRNA and control (LUC siRNA) treatment.



FIG. 11 shows the plasma PBG levels (in μM) of individual animals at baseline, and after phenobarbital treatment in animals that received ALAS1 siRNA and control (LUC siRNA) treatment.



FIG. 12 shows the relative mALAS1 mRNA level in liver at baseline, and after phenobarbital treatment in select representative experimental (ALAS1 siRNA) and control (PBS) animals.



FIG. 13 shows the effects of three GalNAc conjugated mALAS1 siRNAs on mALAS1 expression (relative to a PBS control) in mouse liver tissue.



FIG. 14 shows plasma ALA and PBG levels over time after phenobarbital administration and treatment with ALAS1 siRNA or control LUC siRNA.



FIG. 15 shows the effects of a GalNAc conjugated ALAS1 siRNA on plasma ALA and plasma PBG levels in the mouse AIP phenobarbital induction model.



FIG. 16 shows dose-dependent effects of an ALAS1 siRNA on plasma ALA and PBG levels in the mouse AIP phenobarbital induction model. For the animals that received ALAS1 siRNA, the dose of siRNA administered (0.05 mg/kg, 0.1 mg/kg, 0.5 mg/kg, or 1.0 mg/kg) is shown on the horizontal axis.



FIG. 17, top panel shows the experimental design used to study suppression of ALA and PBG with an ALAS1 siRNA. The bottom panel shows the plasma ALA and PBG levels at baseline, in the control (Luc) condition, and following treatment with an ALAS1 siRNA at week 0, week 2, and week 4.



FIG. 18 shows the experimental design used to compare the effects of treatment with ALAS1 siRNA or hemin in an animal model of AIP (top) and the results for plasma ALA (μmol/L) levels (middle) and plasma PBG (μmol/L) levels (bottom).



FIG. 19 shows relative mRNA levels (ALAS1/GAPDH) in animals treated with 30 mg/kg, 10 mg/kg, or 3 mg/kg of AD-58632 compared with animals treated with PBS control.



FIG. 20 shows the experimental design used to investigate the dose response effect of the AD-58632 ALAS1 GalNAc conjugate in a rat AIP model.



FIG. 21 shows relative levels of liver PBGD mRNA (top graph) and relative levels of liver ALAS1 mRNA (bottom graph) in a rat model of AIP. Groups of animals were subjected to one of four treatments: (1) phenobarbital (PB) treatment only, (2) phenobarbital and porphobilinogen deaminase (PBGD) siRNA treatment, (3) phenobarbital, PBGD siRNA, and 30 mg/kg of ALAS1 siRNA, (4) phenobarbital, PBGD siRNA, and 10 mg/kg of ALAS1 siRNA.



FIG. 22 shows urinary PBG (top panel) and ALA (bottom panel) levels relative to creatinine levels in a rat model of AIP. Groups of animals were subjected to one of four treatments: (1) phenobarbital (PB) treatment only, (2) phenobarbital and porphobilinogen deaminase (PBGD) siRNA treatment, (3) phenobarbital, PBGD siRNA, and 30 mg/kg of ALAS1 siRNA, (4) phenobarbital, PBGD siRNA, and 10 mg/kg of ALAS1 siRNA.



FIG. 23 shows the suppression of ALAS-1 mRNA by AD-58632, compared with PBS control, in groups of rats that received five daily doses of siRNA at 6 mg/kg, 2 mg/kg, or 1 mg/kg versus single bolus doses of siRNA at 30 mg/kg, 10 mg/kg, or 5 mg/kg.



FIG. 24 shows the suppression of ALAS-1 mRNA by AD-58632, compared with PBS control, in groups of rats that received four weekly doses of siRNA at 10 mg/kg, 5 mg/kg, or 2.5 mg/kg.



FIG. 25 shows the suppression of ALAS-1 mRNA by AD-58632 and by five 19/19mer duplexes.



FIG. 26 shows the results of an evaluation of the effect of strand length and overhangs on the best two 19mers.



FIG. 27 is a graph that shows the levels of ALAS1 mRNA in liver (left bars) and in serum (right bars) for each treatment group in the NHP study described in Example 34.



FIG. 28 shows the suppression of ALAS-1 mRNA, compared with PBS control, in groups of rats that received 3 mg/kg or 10 mg/kg of AD-58632 or AD-60489.



FIG. 29 shows the experimental design used to investigate the effectiveness of ALAS1 siRNAs AD-58632 and AD-60489 in suppressing liver mRNA in non-human primates.



FIG. 30 shows the dose-dependent suppression of liver mRNA in non-human primates following treatment with 1.25 mg/kg, 2.5 mg/kg, or 5 mg/kg of AD-58632 or AD-60489.



FIG. 31 shows a comparison of the mRNA suppression results obtained from liver biopsies and from the cERD assay in a non-human primate study.



FIG. 32 shows the time course of suppression of mRNA as assessed using the cERD assay in a non-human primate study. The horizontal axis shows the time according to the study day.



FIG. 33 shows the suppression of ALAS1 mRNA in rats that received PBS or a single dose of 5 mg/kg of one of the indicated siRNA duplexes.



FIG. 34 shows the liver concentrations of the siRNA in rats that received a single dose of 5 mg/kg of the indicated siRNA.



FIG. 35 (top) shows the experimental design used to investigate the therapeutic efficacy of AD-60925 and AD-60926. FIG. 35 (bottom) shows the relative levels of rat ALAS1/GAPDH mRNA in rats treated with (1) AF11-PBGD, (2) AF11-PBGD and PB, (3) AF-11PBGD, PB, and 3 mg/kg AD-60925, or (4) AF11-PBGD, PB, and AD-60926.



FIG. 36 shows the relative levels of urine PBG (top) and urine ALA (bottom) in rats treated with (1) AF11-PBGD, (2) AF11-PBGD and PB, (3) AF-11PBGD, PB, and 3 mg/kg AD-60925, or (4) AF11-PBGD, PB, and AD-60926.



FIG. 37 shows the relative levels of urine PBG (top) and urine ALA (bottom) over time in rats treated with (1) AF11-PBGD, (2) AF11-PBGD and PB, (3) AF-11PBGD, PB, and 3 mg/kg AD-60925, or (4) AF11-PBGD, PB, and AD-60926. The arrows indicate the timepoints when PB was administered.



FIG. 38 shows the relative levels of rat ALAS1 (rALAS1) mRNA in rats that received 4 doses of PBS or 2.5 mg/kg of one of the indicated siRNAs.



FIG. 39 shows the relative levels of rat ALAS1 (rALAS1) mRNA in rats that received a single dose of PBS or 2.5 mg/kg of one of the indicated siRNAs.



FIG. 40 (top) shows the relative levels of rat ALAS1 (rALAS1) mRNA in rats that received a single dose of PBS or 3 mg/kg of one of the indicated siRNAs. FIG. 40 (bottom) shows the concentration of siRNA in liver.



FIG. 41 (top) shows the suppression of rat ALAS1 (rALAS1) mRNA by AD-60489, AD-60519, and AD-60901. FIG. 41 (bottom) shows the concentration of siRNA in liver.



FIG. 42 shows the relative levels of rat ALAS1 (rALAS1) mRNA in rats that were treated with a single dose of PBS or 2.5 mg/kg of one of the indicated siRNAs.



FIG. 43 shows the relative levels of rat ALAS1 (rALAS1) mRNA in rats that were treated with PBS or one of the indicated siRNAs at a dose of 2.5 mg/kg twice per week for 2 weeks.



FIG. 44 (top) shows a schematic of the experimental design used to investigate the therapeutic efficacy of multiple biweekly doses of AD-60519. FIG. 44 (bottom) shows graphs depicting the suppression of urine PBG and urine ALA in rats that were treated with (i) PBGD siRNA and six doses of PBS, (ii) PBGD siRNA, PB, and six doses of PBS, (iii) PBGD siRNA, PB, and six doses of 2.5 mg/kg AD-60519, or (iv) PBGD siRNA, PB, and six doses of 5 mg/kg AD-60519.



FIG. 45 shows graphs depicting the suppression of serum PBG (upper graph) and serum ALA (lower graph) in a mouse AIP model that were treated with (i) PBGD siRNA and six doses of PBS (Baseline), (ii) PBGD siRNA, PB, and six doses of PBS (Saline), (iii) PBGD siRNA, PB, and six doses of 2.5 mg/kg AD-60519, or (iv) PBGD siRNA, PB, and six doses of 5 mg/kg AD-60519.



FIG. 46 (top) shows a schematic of the experimental design used to investigate the therapeutic efficacy of multiple weekly doses of AD-60519. FIG. 46 (bottom) shows a graph depicting the relative levels of rat ALAS1 mRNA (rALAS1/GAPDH) in rats that were treated with (i) PBGD siRNA and four doses of PBS, (ii) PBGD siRNA, PB, and four doses of PBS, (iii) PBGD siRNA, PB, and four doses of 3 mg/kg AD-60519, (iv) PBGD siRNA, PB, and four doses of 1 mg/kg AD-60519, or (v) PBGD siRNA, PB, and four doses of 0.3 mg/kg AD-60519.



FIG. 47 shows graphs depicting the levels of urine PBG (upper graph) and urine ALA (lower graph) in rats that were treated with (i) PBGD siRNA and four doses of PBS, (ii) PBGD siRNA, PB, and four doses of PBS, (iii) PBGD siRNA, PB, and four doses of 3 mg/kg AD-60519, (iv) PBGD siRNA, PB, and four doses of 1 mg/kg AD-60519, or (v) PBGD siRNA, PB, and four doses of 0.3 mg/kg AD-60519.



FIG. 48 is a schematic that shows the design of a non-human primate study in which effects of ALAS1 siRNA GalNAc conjugates in suppressing liver ALAS1 mRNA and circulating ALAS1 mRNA were investigated



FIG. 49 is a graph that shows suppression of liver mRNA in non-human primates (NHPs) following treatment with ALAS1 siRNA GalNAc conjugates.



FIG. 50 is a graph that shows the normalized serum levels of ALAS1 mRNA in non-human primates (NHPs) at various times during the course of a study in which effects of treatment with ALAS1 siRNA GalNAc conjugates was investigated. The days on the horizontal axis correspond to the days in the schematic in FIG. 48.



FIG. 51 shows the normalized ALAS1 mRNA levels (shown as a fraction of the pre-dose level) as assessed in a rat single dose study that used urine cERD to monitor ALAS1 suppression.



FIG. 52 is a schematic that shows the design of a non-human primate study in which multidose and single dose effects of AD-60519 in suppressing liver ALAS1 mRNA and circulating ALAS1 mRNA were investigated.



FIG. 53 is a bar graph that shows the average relative liver ALAS1 mRNA levels (% of PBS control) at study day 24 (multidose groups) or at study day 4 (single dose groups).



FIG. 54 is a graph that shows normalized serum ALAS1 mRNA levels (shown as a fraction of the pre-dose level) as assessed using cERD for the multidose groups (top graph, showing results up to day 24) and single dose groups (bottom graph, showing results up to day 22).



FIG. 55 is a graph that shows the liver mRNA, serum mRNA, and urine mRNA levels at study day 4 (in the single dose groups) or at study day 24 (in the multidose groups). Data for individual animals and the averages for each group are shown.



FIG. 56 is a graph that shows normalized serum ALAS1 mRNA levels (shown as a fraction of the pre-dose level) after 8 weeks as assessed using cERD for the multidose groups. Each graphical data point represents the remaining ALAS1 mRNA for the group average of 3 animal samples±the standard deviation of the group.



FIG. 57 is a schematic of the structure of ALN-60519 (also referred to herein as AD-60519). FIG. 57 discloses SEQ ID NOS 5238-5239, respectively, in order of appearance.



FIG. 58 shows ALAS1 mRNA levels as assessed in matching serum or urine samples obtained from either AIP patients or normal healthy volunteers (NHV). ALAS1 mRNA levels in serum or urine were measured using the cERD method. In AIP patients A and B, a second set of serum and urine samples were collected to access ALAS1 mRNA variability over time.





DETAILED DESCRIPTION OF THE INVENTION

iRNA directs the sequence-specific degradation of mRNA through a process known as RNA interference (RNAi). Described herein are iRNAs and methods of using them for inhibiting the expression of an ALAS1 gene in a cell or a mammal where the iRNA targets an ALAS1 gene. Also provided are compositions and methods for disorders related to ALAS1 expression, such as porphyrias (e.g., ALA deyhdratase deficiency porphyria (ADP or Doss porphyria), acute intermittent porphyria, congenital erythropoietic porphyria, prophyria cutanea tarda, hereditary coproporphyria (coproporphyria), variegate porphyria, erythropoietic protoporphyria (EPP), X-linked sideroblastic anemia (XLSA), and transient erythroporphyria of infancy).


Porphyrias are inherited or acquired disorders that can be caused by decreased or enhanced activity of specific enzymes in the heme biosynthetic pathway, also referred to herein as the porphyrin pathway (See FIG. 1). Porphyrins are the main precursors of heme. Porphyrins and porphyrin precursors include δ-aminolevulinic acid (ALA), porphopilinogen (PBG), hydroxymethylbilane (HMB), uroporphyrinogen I or III, coproporphyrinogen I or III, protoporphrinogen IX, and protoporphyrin IX. Heme is an essential part of hemoglobin, myoglobin, catalases, peroxidases, and cytochromes, the latter including the respiratory and P450 liver cytochromes. Heme is synthesized in most or all human cells. About 85% of heme is made in erythroid cells, primarily for hemoglobin. Most of the remaining heme is made in the liver, 80% of which is used for the synthesis of cytochromes. Deficiency of specific enzymes in the porphyrin pathway leads to insufficient heme production and also to an accumulation of porphyrin precursors and/or porphyrins, which can be toxic to cell or organ function in high concentrations.


Porphyrias may manifest with neurological complications (“acute”), skin problems (“cutaneous”) or both. Porphyrias may be classified by the primary site of the overproduction and accumulation of porphyrins or their precursors. In hepatic porphyrias, porphyrins and porphyrin precursors are overproduced predominantly in the liver, whereas in erythropoietic porphyrias, porphyrins are overproduced in the erythroid cells in the bone. The acute or hepatic porphyrias lead to dysfunction of the nervous system and neurologic manifestations that can affect both the central and peripheral nervous system, resulting in symptoms such as, for example, pain (e.g., abdominal pain and/or chronic neuropathic pain), vomiting, neuropathy (e.g., acute neuropathy, progressive neuropathy), muscle weakness, seizures, mental disturbances (e.g., hallucinations, depression anxiety, paranoia), cardiac arrhythmias, tachycardia, constipation, and diarrhea. The cutaneous or erythropoietic porphyrias primarily affect the skin, causing symptoms such as photosensitivity that can be painful, blisters, necrosis, itching, swelling, and increased hair growth on areas such as the forehead. Subsequent infection of skin lesions can lead to bone and tissue loss, as well as scarring, disfigurement, and loss of digits (e.g., fingers, toes). Most porphyrias are caused by mutations that encode enzymes in the heme biosynthetic pathway. A summary of porphyrias associated with genetic errors in heme metabolism is provided in FIG. 2.


Not all porphyrias are genetic. For example, patients with liver disease may develop porphyria as a result of liver dysfunction, and a transient form of erythroporphria (transient erythroporphyria of infancy) has been described in infancy (see Crawford, R. I. et al, J Am Acad Dermatol. 1995 August; 33(2 Pt 2):333-6.) Patients with PCT can acquire the deficient activity of uroporphyrinogen decarboxylase (URO-D), due to the formation of a ORO-D enzyme with lower than normal enzymatic activity (see Phillips et al. Blood, 98:3179-3185, 2001.)


Acute intermittent porphyria (AIP) (also be referred to as porphobilinogen (PBG) deaminase deficiency, or hydroxymethylbilane synthase (HMBS) deficiency), is the most common type of acute hepatic porphyria. Other types of acute hepatic porphyrias include hereditary coproporphyria (HCP), variegate porphyria (VP), and ALA deyhdratase deficiency porphyria (ADP). Acute hepatic porphyrias are described, e.g., in Balwani, M and Desnick, R. J., Blood, 120:4496-4504, 2012.


AIP is typically an autosomal dominant disease that is characterized by a deficiency of the enzyme porphobilinogen deaminase (PBG deaminase); this enzyme is also known as hydroxymethylbilane synthase (HMB synthase or HMBS). PBG deaminase is the third enzyme of the heme biosynthetic pathway (see FIG. 1) and catalyzes the head to tail condensation of four porphobilinogen molecules into the linear tetrapyrrole, hydroxymethylbilane (HMB). Alternatively spliced transcript variants encoding different isoforms of PBG deaminase have been described. Mutations in the PBG deaminase gene are associated with AIP. Such mutations may lead to decreased amounts of PBG deaminase and/or decreased activity of PBG deaminase (affected individuals typically have a ˜50% reduction in PBG deaminase activity).


There are at least two different models of the pathophysiology of AIP and other acute hepatic porphyrias (see, e.g., Lin C S-Y et al., Clinical Neurophysiology, 2011; 122:2336-44). According to one model, the decreased heme production resulting from PBG deaminase deficiency causes energy failure and axonal degeneration. According to the other, currently more favored model, the buildup of porphyrin precursors (e.g., ALA and PBG) results in neurotoxicity.


AIP has been found to have a prevalence as high as 1 in 10,000 in certain populations (e.g., in Northern Sweden; see Floderus Y, et al. Clin Genet. 2002; 62:288-97). The prevalence in the general population in United States and Europe, excluding the U.K., is estimated to be about 1 in 10,000 to 1 in 20,000. Clinical disease manifests itself in only approximately 10-15% of individuals who carry mutations that are known to be associated with AIP. However, the penetrance is as high as 40% in individuals with certain mutations (e.g., the W198X mutation). AIP is typically latent prior to puberty. Symptoms are more common in females than in males. The prevalence of the disease is probably underestimated due to its incomplete penetrance and long periods of latency. In the United States, it is estimated that there are about 2000 patients who have suffered at least one attack. It is estimated that there are about 150 active recurrent cases in France, Sweden, the U.K., and Poland; these patients are predominantly young women, with a median age of 30. See, e.g., Elder et al, J Inherit Metab Dis., published online Nov. 1, 2012.


AIP affects, for example, the visceral, peripheral, autonomic, and central nervous systems. Symptoms of AIP are variable and include gastrointestinal symptoms (e.g., severe and poorly localized abdominal pain, nausea/vomiting, constipation, diarrhea, ileus), urinary symptoms (dysuria, urinary retention/incontinence, or dark urine, e.g., dark red urine), neurologic symptoms (e.g., sensory neuropathy, motor neuropathy (e.g., affecting the cranial nerves and/or leading to weakness in the arms or legs), seizures, neuropathic pain (e.g., pain associated with progressive neuropathy, e.g., chronic neuropathic pain), neuropsychiatric symptoms (e.g., mental confusion, anxiety, agitation, hallucination, hysteria, delirium, apathy, depression, phobias, psychosis, insomnia, somnolence, coma), autonomic nervous system involvement (resulting e.g., in cardiovascular symptoms such as tachycardia, hypertension, and/or arrhythmias, as well as other symptoms, such as, e.g., increased circulating catecholamine levels, sweating, restlessness, and/or tremor), dehydration, and electrolyte abnormalities. The most common symptoms are abdominal pain and tachycardia. Neurological manifestations include motor and autonomic neuropathy and seizures. Patients frequently have chronic neuropathic pain and develop a progressive neuropathy. Patients with recurring attacks often have a prodrome. Permanent paralysis may occur after a severe attack. Recovery from severe attacks that are not promptly treated may take weeks or months. An acute attack may be fatal, for example, due to paralysis of respiratory muscles or cardiovascular failure from electrolyte imbalance. (See, e.g., Thunell S. Hydroxymethylbilane Synthase Deficiency. 2005 Sep. 27 [Updated 2011 Sep. 1]. In: Pagon R A, Bird T D, Dolan C R, et al., editors. GeneReviews™ [Internet]. Seattle (Wash.): University of Washington, Seattle; 1993—(hereinafter Thunell (1993)), which is hereby incorporated by reference in its entirety.) Prior to the availability of Hemin treatments, up to 20% of patients with AIP died from the disease.


In individuals who carry genes for AIP, the risk of hepatocellular cancer is increased. In those with recurrent attacks, the risk of hepatocellular cancer is particularly grave: after the age of 50, the risk is nearly 100-fold greater than in the general population.


Attacks of acute porphyria may be precipitated by endogenous or exogenous factors. The mechanisms by which such factors induce attacks may include, for example, increased demand for hepatic P450 enzymes and/or induction of ALAS1 activity in the liver. Increased demand for hepatic P450 enzymes results in decreased hepatic free heme, thereby inducing the synthesis of hepatic ALAS1.


Precipitating factors include fasting (or other forms of reduced or inadequate caloric intake, due to crash diets, long-distance athletics, etc.), metabolic stresses (e.g., infections, surgery, international air travel, and psychological stress), endogenous hormones (e.g., progesterone), cigarette smoking, lipid-soluble foreign chemicals (including, e.g., chemicals present in tobacco smoke, certain prescription drugs, organic solvents, biocides, components in alcoholic beverages), endocrine factors (e.g., reproductive hormones (women may experience exacerbations during the premenstrual period), synthetic estrogens, progesterones, ovulation stimulants, and hormone replacement therapy). See, for example, Thunell (1993).


Over 1000 drugs are contraindicated in the acute hepatic porphyrias (e.g., AIP, HCP, ADP, and VP) including, for example, alcohol, barbiturates, Carbamazepine, Carisoprodol, Clonazepam (high doses), Danazol, Diclofenac and possibly other NSAIDS, Ergots, estrogens, Ethyclorvynol, Glutethimide, Griseofulvin, Mephenytoin, Meprobamate (also mebutamate and tybutamate), Methyprylon, Metodopramide, Phenytoin, Primidone, progesterone and synthetic progestins, Pyrazinamide, Pyrazolones (aminopyrine and antipyrine), Rifampin, Succinimides (ethosuximide and methsuximide), sulfonamide antibiotics, and Valproic acid.


Objective signs of AIP include discoloration of the urine during an acute attack (the urine may appear red or red-brown), and increased concentrations of PBG and ALA in urine during an acute attack. Molecular genetic testing identifies mutations in the PBG deaminase (also known as HMBS) gene in more than 98% of affected individuals. Thunell (1993).


Diagnosis of porphyria can involve assessment of family history, assessment of porphyrin precursor levels in urine, blood, or stool, and/or assessment of enzyme activity and DNA mutation analysis. The differential diagnosis of porphyrias may involve determining the type of porphyria by measuring individual levels of porphyrins or porphyrin precursors (e.g., ALA, PBG) in the urine, feces, and/or plasma (e.g., by chromatography and fluorometry) during an attack. The diagnosis of AIP can be confirmed by establishing that erythrocyte PBG deaminase activity is at 50% or less of the normal level. DNA testing for mutations may be carried out in patients and at-risk family members. The diagnosis of AIP is typically confirmed by DNA testing to identify a specific causative gene mutation (e.g., an HMBS mutation).


Current management of acute attacks of AIP involves hospitalization, monitoring of symptoms, and removal of unsafe drugs. Treatment of acute attacks typically requires hospitalization to control and treat acute symptoms, including, e.g., abdominal pain, seizures, dehydration/hyponatremia, nausea/vomiting, tachycardia/hypertension, urinary retention/ileus. For example, abdominal pain may be treated, e.g., with narcotic analgesics, seizures may be treated with seizure precautions and possibly medications (although many anti-seizure medications are contraindicated), nausea/vomiting may be treated, e.g., with phenothiazines, and tachycardia/hypertension may be treated, e.g., with beta blockers. Treatment may include withdrawal of unsafe medications, monitoring of respiratory function, as well as muscle strength and neurological status. Mild attacks (e.g., those with no paresis or hyponatremia) may be treated with at least 300 g intravenous 10% glucose per day, although increasingly hemin is provided immediately. Severe attacks are typically treated as soon as possible with intravenous hemin (3-4 mg/kg daily for 4-14 days) and with IV glucose while waiting for the IV hemin to take effect. Typically, attacks are treated with IV hemin for 4 days and with IV glucose while waiting for administration of the IV hemin. Within 3-4 days following the start of hemin administration, there is usually clinical improvement accompanying by lowering of ALA and PBG levels.


Hemin (Panhematin® or hemin for injection, previously known as hematin) is the only heme product approved for use in the United States and was the first drug approved under the Orphan Drug Act. Panhematin® is hemin derived from processed red blood cells (PRBCs), and is Protoporphyrin IX containing a ferric iron ion (Heme B) with a chloride ligand. Heme acts to limit the hepatic and/or marrow synthesis of porphyrin. The exact mechanism by which hemin produces symptomatic improvement in patients with acute episodes of the hepatic porphyrias has not been elucidated; however, its action is likely due to the (feedback) inhibition of δ-aminolevulinic acid (ALA) synthase, the enzyme which limits the rate of the porphyrin/heme biosynthetic pathway. See Panhematin® product label, Lundbeck, Inc., October 2010. Inhibition of ALA synthase should result in reduced production of ALA and PBG as well as porphyrins and porphyrin intermediates.


Drawbacks of heme products (e.g., hemin) include delayed impact on clinical symptoms and failure to prevent the recurrence of attacks. Adverse reactions associated with heme (e.g., hemin) administration may include phlebitis (e.g., thrombophlebitis), difficulty with venous access, anticoagulation (or coagulopathies), thrombocytopenia, renal shut down, or iron overload, which is particularly likely in patients requiring multiple courses of hemin treatment for recurrent attacks. To prevent phlebitis, an indwelling venous catheter is needed for access in patients with recurrent attacks. Renal damage can occur with high doses. Uncommonly reported side effects include fever, aching, malaise, hemolysis, anaphylaxis, and circulatory collapse. See Anderson, K. E., Approaches to Treatment and Prevention of Human Porphyrias, in The Porphyrin Handbook: Medical Aspects of Porphyrins, Edited by Karl M. Kadish, Kevin M. Smith, Roger Guilard (2003) (hereinafter Anderson).


Heme is difficult to prepare in a stable form for intravenous administration. It is insoluble at neutral pH but can be prepared as heme hydroxide at pH 8 or higher. Anderson. Panhematin is a lyophilized hemin preparation. When lyophilized hemin is solubilized for intravenous administration, degradation products form rapidly; these degradation products are responsible for a transient anticoagulant effect and for phlebitis at the site of infusion. Anderson. Heme albumin and heme arginate (Normosang, the European version of hemin) are more stable and may potentially cause less thrombophlebitis. However, heme arginate is not approved for use in the United States. Panhemin may be stabilized by solubilizing it for infusion in 30% human albumin rather than in sterile water; however, albumin adds intravascular volume-expanding effects and increases the cost of treatment as well as risk of pathogens since it is isolated from human blood. See, e.g., Anderson supra.


The successful treatment of an acute attack does not prevent or delay recurrence. There is a question of whether hemin itself can trigger recurring attacks due to induction of heme oxygenase. Nonetheless, in some areas (especially France), young women with multiply recurrent attacks are being treated with weekly hemin with the goal of achieving prophylaxis. Limited experience with liver transplantation suggests that if successful, it is an effective treatment for AIP. There have been approximately 12 transplants in Europe in human patients, with curative or varying effects. Liver transplantation can restore normal excretion of ALA and PBG and prevent acute attacks. See, e.g., Dar, F. S. et al. Hepatobiliary Pancreat. Dis. Int., 9(1):93-96 (2010). Furthermore, if the liver of a patient with AIP is transplanted into another patient (“domino transplant”), the patient receiving the transplant may develop AIP. Among the long-term clinical effects of acute porphyrias is chronic neuropathic pain that may result from a progressive neuropathy due to neurotoxic effects, e.g., of elevated porphyrin precursors (e.g., ALA and/or PBG). The neurotoxic effects can be associated with toxic heme intermediate production, for example, altered GABA signaling and/or production of iron-mediated oxidation and reactive oxygen species (ROS). Patients may suffer from neuropathic pain prior to or during an acute attack. Older patients may experience increased neuropathic pain with age for which various narcotic drugs are typically prescribed. Electromyogram abnormalities and decreased conduction times have been documented in patients with acute hepatic porphyrias. Of note, untreated, uninduced mice with AIP (PBG deaminase deficiency) develop a progressive motor neuropathy that has been shown to cause progressive quadriceps nerve axon degeneration and loss presumably due to constitutively elevated porphyrin precursor (ALA & PBG) levels, porphyrins and/or heme deficiency (Lindberg et al., J. Clin. Invest., 103(8): 1127-1134, 1999). In patients with acute porphyria (e.g., ADP, AIP, HCP, or VP), levels of porphyrin precursors (ALA & PBG) are often elevated in asymptomatic patients and in symptomatic patients between attacks. Thus, reduction of the porphyrin precursors and resumption of normal heme biosynthesis by reducing the level of ALAS1 expression and/or activity is expected to prevent and/or minimize development of chronic and progressive neuropathy. Treatment, e.g., chronic treatment (e.g., periodic treatment with iRNA as described herein, e.g., treatment according to a dosing regimen as described herein, e.g., weekly or biweekly treatment) can continuously reduce the ALAS1 expression in acute porphyria patients who have elevated levels of porphyrin precursors, porphyrins, porphyrin products or their metabolites. Such treatment may be provided as needed to prevent or reduce the frequency or severity of an individual patient's symptoms (e.g., pain and/or neuropathy) and/or to reduce a level of a porphyrin precursor, porphyrin, porphyrin product or metabolite.


The need exists for identifying novel therapeutics that can be used for the treatment of porphyrias. As discussed above, existing treatments such as heme products (e.g., hemin) have numerous drawbacks. For example, the impact of hemin on clinical symptoms is delayed, it is expensive, and it may have side effects (e.g., thrombophlebitis, anticoagulation, thrombocytopenia, iron overload, renal shutdown). Novel therapeutics such as those described herein can address these drawbacks and the unmet needs of patients acting faster, not inducing phlebitis, providing the convenience of subcutaneous administration, successfully preventing recurrent attacks, preventing or ameliorating pain (e.g., chronic neuropathic pain) and/or progressive neuropathy, and/or not causing certain adverse effects associated with hemin (e.g., iron overload, increased risk of hepatocellular cancer).


Patients with AIA include those who suffer from recurrent attacks and those who suffer from acute, sporadic attacks. In the pateints who suffer from recurrent attacks, about 5-10% have recurrent intermittent attacks (2-3 attacks per year) or recurrent attacks (>4 attacks per year). These patients are most likely to consider liver transplant or to receive prophylactic heme (e.g., hemin) infusions. The recurrent attack patients are likely to have poor quality of life due to long hospital stays, opiate addiction, and/or venous network toxicity. Chronic heme administration can induce heme oxygenase (HO-1). Thus, it can be difficult to wean patients off heme and some require more frequent treatment. Some clinicals are therefore restricting heme use to the most serious attacks. Accordingly, there is an unmet need for convenient, effective prophylaxis and treatments with better tolerability.


For patients who suffer from acute attacks, clinical guidelines suggest administration of heme as early as possible. However, given the challenges of diagnosis and lack of immediate drug availability, administration may be delayed. The slow onset of the effects of heme (e.g., hemin) and its poor tolerability slow the time to improvement. Persistence of severe abdominal pain, even after administration of heme, can require that patients receive opiates for multiple days.


Delayed administration of heme or continued exposure to precipitating factors can lead to more serious complications, including motor neuropathy and accompanying symptoms (e.g., weakness, paresis). Respiratory failure and paralysis can occur in severe cases. Recovery from neurological symptoms can take much longer to resolve. Accordingly, in the context of acute attacks, treatments that have a faster onset of action and better tolerability are needed. Pharmacological validation of ALAS1 as a target for mRNA silencing is supported by at least the following findings: ALAS1 mRNA is strongly upregulated during an attack; panhematin down modulates ALAS-1; and addition of heme to liver cells in culture leads to reduced ALAS-1 mRNA. Several findings also indicate that suppression of ALAS1 mRNA can be achieved by targeting the liver. For example, liver transplant has been shown to be curative; and liver derived metabolites drive attacks (see e.g., Dar et al. Hepatobiliary Pancreat Dis Int. 9:93-6 (2010); Dowman et al. Ann Intern Med 154:571-2 (2011); and Wu et al. Genes Dev 23:2201-2209 (2009). Thus, reducing expression of ALAS1, e.g., in the liver, using iRNA compositions can be used to treat a porphyria. In certain embodiments, iRNA compositions can be used for prophylaxis and acute treatment of porphyrias. For example, iRNA compositions can be used prophylactically in a recurrent attack setting to induce long-term or chronic suppression of ALAS1 expression (leading to long-term or chronic suppression of ALA/PBG), and thus blunting the recurrent ALAS1 upregulation that drives the attacks. Such prophylactic treatment can reduce the number and the severity of the attacks. During an acute attack setting, administration of an iRNA composition can treat an acute attack, e.g., by reducing the levels of ALA/PBG.


The present disclosure provides methods and iRNA compositions for modulating the expression of an ALAS1 gene. In certain embodiments, expression of ALAS1 is reduced or inhibited using an ALAS1-specific iRNA, thereby leading to a decreased expression of an ALAS1 gene. Reduced expression of an ALAS1 gene may reduce the level of one or more porphyrin precursors, porphyrins, or porphyrin products or metabolites. Decreased expression of an ALAS1 gene, as well as related decreases in the level of one or more porphyrin precursors and/or porphyrins, can be useful in treating disorders related to ALAS1 expression, e.g., porphyrias.


The iRNAs of the compositions featured herein include an RNA strand (the antisense strand) having a region which is 30 nucleotides or less in length, i.e., 15-30 nucleotides in length, generally 19-24 nucleotides in length, which region is substantially complementary to at least part of an mRNA transcript of an ALAS1 gene (also referred to herein as an “ALAS1-specific iRNA”). The use of such an iRNA enables the targeted degradation of mRNAs of genes that are implicated in pathologies associated with ALAS1 expression in mammals, e.g., porphyrias such as ALA dehydratase deficiency porphyria (also known as Doss porphyria or plumboporphyria) or acute intermittent porphyria. Very low dosages of ALAS1-specific iRNAs can specifically and efficiently mediate RNAi, resulting in significant inhibition of expression of an ALAS1 gene. iRNAs targeting ALAS1 can specifically and efficiently mediate RNAi, resulting in significant inhibition of expression of an ALAS1 gene, e.g., in cell based assays. Thus, methods and compositions including these iRNAs are useful for treating pathological processes related to ALAS1 expression, such as porphyrias (e.g., X-linked sideroblastic anemia (XLSA), ALA deyhdratase deficiency porphyria (Doss porphyria), acute intermittent porphyria (AIP), congenital erythropoietic porphyria, prophyria cutanea tarda, hereditary coproporphyria (coproporphyria), variegate porphyria, erythropoietic protoporphyria (EPP), and transient erythroporphyria of infancy).


The following description discloses how to make and use compositions containing iRNAs to inhibit the expression of an ALAS1 gene, as well as compositions and methods for treating diseases and disorders caused by or modulated by the expression of this gene. Embodiments of the pharmaceutical compositions featured in the invention include an iRNA having an antisense strand comprising a region which is 30 nucleotides or less in length, generally 19-24 nucleotides in length, which region is substantially complementary to at least part of an RNA transcript of an ALAS1 gene, together with a pharmaceutically acceptable carrier. Embodiments of compositions featured in the invention also include an iRNA having an antisense strand having a region of complementarity which is 30 nucleotides or less in length, generally 19-24 nucleotides in length, and is substantially complementary to at least part of an RNA transcript of an ALAS1 gene.


Accordingly, in some aspects, pharmaceutical compositions containing an ALAS1 iRNA and a pharmaceutically acceptable carrier, methods of using the compositions to inhibit expression of an ALAS1 gene, and methods of using the pharmaceutical compositions to treat disorders related to ALAS1 expression are featured in the invention.


I. Definitions

For convenience, the meaning of certain terms and phrases used in the specification, examples, and appended claims, are provided below. If there is an apparent discrepancy between the usage of a term in other parts of this specification and its definition provided in this section, the definition in this section shall prevail.


“G,” “C,” “A,” “T” and “U” each generally stand for a nucleotide that contains guanine, cytosine, adenine, thymidine and uracil as a base, respectively. However, it will be understood that the term “ribonucleotide” or “nucleotide” can also refer to a modified nucleotide, as further detailed below, or a surrogate replacement moiety. The skilled person is well aware that guanine, cytosine, adenine, and uracil may be replaced by other moieties without substantially altering the base pairing properties of an oligonucleotide comprising a nucleotide bearing such replacement moiety. For example, without limitation, a nucleotide comprising inosine as its base may base pair with nucleotides containing adenine, cytosine, or uracil. Hence, nucleotides containing uracil, guanine, or adenine may be replaced in the nucleotide sequences of dsRNA featured in the invention by a nucleotide containing, for example, inosine. In another example, adenine and cytosine anywhere in the oligonucleotide can be replaced with guanine and uracil, respectively to form G-U Wobble base pairing with the target mRNA. Sequences containing such replacement moieties are suitable for the compositions and methods featured in the invention.


As used herein, “ALAS1” (also known as ALAS-1; δ-aminolevulinate synthase 1; δ-ALA synthase 1; 5′-aminolevulinic acid synthase 1; ALAS-H; ALASH; ALAS-N; ALAS3; EC2.3.1.37; 5-aminolevulinate synthase, nonspecific, mitochondrial; ALAS; MIG4; OTTHUMP00000212619; OTTHUMP00000212620; OTTHUMP00000212621; OTTHUMP00000212622; migration-inducing protein 4; EC 2.3.1) refers to a nuclear-encoded mitochondrial enzyme that is the first and typically rate-limiting enzyme in the mammalian heme biosynthetic pathway. ALAS1 catalyzes the condensation of glycine with succinyl-CoA to form δ-aminolevulinic acid (ALA). The human ALAS1 gene is expressed ubiquitously, is found on chromosome 3p21.1 and typically encodes a sequence of 640 amino acids. In contrast, the ALAS-2 gene, which encodes an isozyme, is expressed only in erythrocytes, is found on chromoxome Xp11.21, and typically encodes a sequence of 550 amino acids. As used herein an “ALAS1 protein” means any protein variant of ALAS1 from any species (e.g., human, mouse, non-human primate), as well as any mutants and fragments thereof that retain an ALAS1 activity. Similarly, an “ALAS1 transcript” refers to any transcript variant of ALAS1, from any species (e.g., human, mouse, non-human primate). A sequence of a human ALAS1 mRNA transcript can be found at NM_000688.4 (FIG. 3A and FIG. 3B; SEQ ID NO:1). Another human ALAS1 mRNA transcript, can be found at NM_000688.5 (FIG. 4A and FIG. 4B; SEQ ID NO:382). The level of the mature encoded ALAS1 protein is regulated by heme: high levels of heme down-regulate the mature enzyme in mitochondria while low heme levels up-regulate. Multiple alternatively spliced variants, encoding the same protein, have been identified.


As used herein, the term “iRNA,” “RNAi”, “iRNA agent,” or “RNAi agent” refers to an agent that contains RNA as that term is defined herein, and which mediates the targeted cleavage of an RNA transcript, e.g., via an RNA-induced silencing complex (RISC) pathway. In one embodiment, an iRNA as described herein effects inhibition of ALAS1 expression. Inhibition of ALAS1 expression may be assessed based on a reduction in the level of ALAS1 mRNA or a reduction in the level of the ALAS1 protein. As used herein, “target sequence” refers to a contiguous portion of the nucleotide sequence of an mRNA molecule formed during the transcription of an ALAS1 gene, including mRNA that is a product of RNA processing of a primary transcription product. The target portion of the sequence will be at least long enough to serve as a substrate for iRNA-directed cleavage at or near that portion. For example, the target sequence will generally be from 9-36 nucleotides in length, e.g., 15-30 nucleotides in length, including all sub-ranges therebetween. As non-limiting examples, the target sequence can be from 15-30 nucleotides, 15-26 nucleotides, 15-23 nucleotides, 15-22 nucleotides, 15-21 nucleotides, 15-20 nucleotides, 15-19 nucleotides, 15-18 nucleotides, 15-17 nucleotides, 18-30 nucleotides, 18-26 nucleotides, 18-23 nucleotides, 18-22 nucleotides, 18-21 nucleotides, 18-20 nucleotides, 19-30 nucleotides, 19-26 nucleotides, 19-23 nucleotides, 19-22 nucleotides, 19-21 nucleotides, 19-20 nucleotides, 20-30 nucleotides, 20-26 nucleotides, 20-25 nucleotides, 20-24 nucleotides, 20-23 nucleotides, 20-22 nucleotides, 20-21 nucleotides, 21-30 nucleotides, 21-26 nucleotides, 21-25 nucleotides, 21-24 nucleotides, 21-23 nucleotides, or 21-22 nucleotides.


As used herein, the term “strand comprising a sequence” refers to an oligonucleotide comprising a chain of nucleotides that is described by the sequence referred to using the standard nucleotide nomenclature.


As used herein, and unless otherwise indicated, the term “complementary,” when used to describe a first nucleotide sequence in relation to a second nucleotide sequence, refers to the ability of an oligonucleotide or polynucleotide comprising the first nucleotide sequence to hybridize and form a duplex structure under certain conditions with an oligonucleotide or polynucleotide comprising the second nucleotide sequence, as will be understood by the skilled person. Such conditions can, for example, be stringent conditions, where stringent conditions may include: 400 mM NaCl, 40 mM PIPES pH 6.4, 1 mM EDTA, 50° C. or 70° C. for 12-16 hours followed by washing. Other conditions, such as physiologically relevant conditions as may be encountered inside an organism, can apply. The skilled person will be able to determine the set of conditions most appropriate for a test of complementarity of two sequences in accordance with the ultimate application of the hybridized nucleotides.


Complementary sequences within an iRNA, e.g., within a dsRNA as described herein, include base-pairing of the oligonucleotide or polynucleotide comprising a first nucleotide sequence to an oligonucleotide or polynucleotide comprising a second nucleotide sequence over the entire length of one or both nucleotide sequences. Such sequences can be referred to as “fully complementary” with respect to each other herein. However, where a first sequence is referred to as “substantially complementary” with respect to a second sequence herein, the two sequences can be fully complementary, or they may form one or more, but generally not more than 5, 4, 3 or 2 mismatched base pairs upon hybridization for a duplex up to 30 base pairs, while retaining the ability to hybridize under the conditions most relevant to their ultimate application, e.g., inhibition of gene expression via a RISC pathway. However, where two oligonucleotides are designed to form, upon hybridization, one or more single stranded overhangs, such overhangs shall not be regarded as mismatches with regard to the determination of complementarity. For example, a dsRNA comprising one oligonucleotide 21 nucleotides in length and another oligonucleotide 23 nucleotides in length, wherein the longer oligonucleotide comprises a sequence of 21 nucleotides that is fully complementary to the shorter oligonucleotide, may yet be referred to as “fully complementary” for the purposes described herein.


“Complementary” sequences, as used herein, may also include, or be formed entirely from, non-Watson-Crick base pairs and/or base pairs formed from non-natural and modified nucleotides, in as far as the above requirements with respect to their ability to hybridize are fulfilled. Such non-Watson-Crick base pairs includes, but are not limited to, G:U Wobble or Hoogstein base pairing.


The terms “complementary,” “fully complementary” and “substantially complementary” herein may be used with respect to the base matching between the sense strand and the antisense strand of a dsRNA, or between the antisense strand of an iRNA agent and a target sequence, as will be understood from the context of their use.


As used herein, a polynucleotide that is “substantially complementary to at least part of” a messenger RNA (mRNA) refers to a polynucleotide that is substantially complementary to a contiguous portion of the mRNA of interest (e.g., an mRNA encoding an ALAS1 protein). For example, a polynucleotide is complementary to at least a part of an ALAS1 mRNA if the sequence is substantially complementary to a non-interrupted portion of an mRNA encoding ALAS1. As another example, a polynucleotide is complementary to at least a part of an ALAS1 mRNA if the sequence is substantially complementary to a non-interrupted portion of an mRNA encoding ALAS1.


The term “double-stranded RNA” or “dsRNA,” as used herein, refers to an iRNA that includes an RNA molecule or complex of molecules having a hybridized duplex region that comprises two anti-parallel and substantially complementary nucleic acid strands, which will be referred to as having “sense” and “antisense” orientations with respect to a target RNA. The duplex region can be of any length that permits specific degradation of a desired target RNA, e.g., through a RISC pathway, but will typically range from 9 to 36 base pairs in length, e.g., 15-30 base pairs in length. Considering a duplex between 9 and 36 base pairs, the duplex can be any length in this range, for example, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, or 36 and any sub-range therein between, including, but not limited to 15-30 base pairs, 15-26 base pairs, 15-23 base pairs, 15-22 base pairs, 15-21 base pairs, 15-20 base pairs, 15-19 base pairs, 15-18 base pairs, 15-17 base pairs, 18-30 base pairs, 18-26 base pairs, 18-23 base pairs, 18-22 base pairs, 18-21 base pairs, 18-20 base pairs, 19-30 base pairs, 19-26 base pairs, 19-23 base pairs, 19-22 base pairs, 19-21 base pairs, 19-20 base pairs, 20-30 base pairs, 20-26 base pairs, 20-25 base pairs, 20-24 base pairs, 20-23 base pairs, 20-22 base pairs, 20-21 base pairs, 21-30 base pairs, 21-26 base pairs, 21-25 base pairs, 21-24 base pairs, 21-23 base pairs, or 21-22 base pairs. dsRNAs generated in the cell by processing with Dicer and similar enzymes are generally in the range of 19-22 base pairs in length. One strand of the duplex region of a dsDNA comprises a sequence that is substantially complementary to a region of a target RNA. The two strands forming the duplex structure can be from a single RNA molecule having at least one self-complementary region, or can be formed from two or more separate RNA molecules. Where the duplex region is formed from two strands of a single molecule, the molecule can have a duplex region separated by a single stranded chain of nucleotides (herein referred to as a “hairpin loop”) between the 3′-end of one strand and the 5′-end of the respective other strand forming the duplex structure. The hairpin loop can comprise at least one unpaired nucleotide; in some embodiments the hairpin loop can comprise at least 3, at least 4, at least 5, at least 6, at least 7, at least 8, at least 9, at least 10, at least 20, at least 23 or more unpaired nucleotides. Where the two substantially complementary strands of a dsRNA are comprised by separate RNA molecules, those molecules need not, but can be covalently connected. Where the two strands are connected covalently by means other than a hairpin loop, the connecting structure is referred to as a “linker.” The term “siRNA” is also used herein to refer to a dsRNA as described above.


In another embodiment, the iRNA agent may be a “single-stranded siRNA” that is introduced into a cell or organism to inhibit a target mRNA. Single-stranded RNAi agents bind to the RISC endonuclease Argonaute 2, which then cleaves the target mRNA. The single-stranded siRNAs are generally 15-30 nucleotides and are chemically modified. The design and testing of single-stranded siRNAs are described in U.S. Pat. No. 8,101,348 and in Lima et al., (2012) Cell 150: 883-894, the entire contents of each of which are hereby incorporated herein by reference. Any of the antisense nucleotide sequences described herein (e.g., sequences provided in Tables 2, 3, 6, 7, 8, 9, 14, 15, 18 and 20 or in Tables 21-40) may be used as a single-stranded siRNA as described herein or as chemically modified by the methods described in Lima et al., (2012) Cell 150:883-894.


In another aspect, the RNA agent is a “single-stranded antisense RNA molecule”. A single-stranded antisense RNA molecule is complementary to a sequence within the target mRNA. Single-stranded antisense RNA molecules can inhibit translation in a stoichiometric manner by base pairing to the mRNA and physically obstructing the translation machinery, see Dias, N. et al., (2002) Mol Cancer Ther 1:347-355. Alternatively, the single-stranded antisense molecules inhibit a target mRNA by hybridizing to the target and cleaving the target through an RNaseH cleavage event. The single-stranded antisense RNA molecule may be about 10 to about 30 nucleotides in length and have a sequence that is complementary to a target sequence. For example, the single-stranded antisense RNA molecule may comprise a sequence that is at least about 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, or more contiguous nucleotides from any one of the antisense nucleotide sequences described herein, e.g., sequences provided in any one of Tables 2, 3, 6, 7, 8, 9, 14, 15, 18 and 20 or in Tables 21-40.


The skilled artisan will recognize that the term “RNA molecule” or “ribonucleic acid molecule” encompasses not only RNA molecules as expressed or found in nature, but also analogs and derivatives of RNA comprising one or more ribonucleotide/ribonucleoside analogs or derivatives as described herein or as known in the art. Strictly speaking, a “ribonucleoside” includes a nucleoside base and a ribose sugar, and a “ribonucleotide” is a ribonucleoside with one, two or three phosphate moieties. However, the terms “ribonucleoside” and “ribonucleotide” can be considered to be equivalent as used herein. The RNA can be modified in the nucleobase structure, in the ribose structure, or in the ribose-phosphate backbone structure, e.g., as described herein below. However, the molecules comprising ribonucleoside analogs or derivatives must retain the ability to form a duplex. As non-limiting examples, an RNA molecule can also include at least one modified ribonucleoside including but not limited to a 2′-O-methyl modified nucleotide, a nucleoside comprising a 5′ phosphorothioate group, a terminal nucleoside linked to a cholesteryl derivative or dodecanoic acid bisdecylamide group, a locked nucleoside, an abasic nucleoside, an acyclic nucleoside, a 2′-deoxy-2′-fluoro modified nucleoside, a 2′-amino-modified nucleoside, 2′-alkyl-modified nucleoside, morpholino nucleoside, a phosphoramidate or a non-natural base comprising nucleoside, or any combination thereof. Alternatively, an RNA molecule can comprise at least two modified ribonucleosides, at least 3, at least 4, at least 5, at least 6, at least 7, at least 8, at least 9, at least 10, at least 15, at least 20 or more, up to the entire length of the dsRNA molecule. The modifications need not be the same for each of such a plurality of modified ribonucleosides in an RNA molecule. In one embodiment, modified RNAs contemplated for use in methods and compositions described herein are peptide nucleic acids (PNAs) that have the ability to form the required duplex structure and that permit or mediate the specific degradation of a target RNA, e.g., via a RISC pathway.


In one aspect, a modified ribonucleoside includes a deoxyribonucleoside. In such an instance, an iRNA agent can comprise one or more deoxynucleosides, including, for example, a deoxynucleoside overhang(s), or one or more deoxynucleosides within the double stranded portion of a dsRNA. In certain embodiments, the RNA molecule comprises a percentage of deoxyribonucleoses of at least 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95% or higher (but not 100%) deoxyribonucleosides, e.g., in one or both strands. In other embodiments, the term “iRNA” does not encompass a double stranded DNA molecule (e.g., a naturally-occurring double stranded DNA molecule or a 100% deoxynucleoside-containing DNA molecule). In one aspect, an RNA interference agent includes a single stranded RNA that interacts with a target RNA sequence to direct the cleavage of the target RNA. Without wishing to be bound by theory, long double stranded RNA introduced into cells is broken down into siRNA by a Type III endonuclease known as Dicer (Sharp et al., Genes Dev. 2001, 15:485). Dicer, a ribonuclease-III-like enzyme, processes the dsRNA into 19-23 base pair short interfering RNAs with characteristic two base 3′ overhangs (Bernstein, et al., (2001) Nature 409:363). The siRNAs are then incorporated into an RNA-induced silencing complex (RISC) where one or more helicases unwind the siRNA duplex, enabling the complementary antisense strand to guide target recognition (Nykanen, et al., (2001) Cell 107:309). Upon binding to the appropriate target mRNA, one or more endonucleases within the RISC cleaves the target to induce silencing (Elbashir, et al., (2001) Genes Dev. 15:188). Thus, in one aspect the invention relates to a single stranded RNA that promotes the formation of a RISC complex to effect silencing of the target gene.


As used herein, the term “nucleotide overhang” refers to at least one unpaired nucleotide that protrudes from the duplex structure of an iRNA, e.g., a dsRNA. For example, when a 3′-end of one strand of a dsRNA extends beyond the 5′-end of the other strand, or vice versa, there is a nucleotide overhang. A dsRNA can comprise an overhang of at least one nucleotide; alternatively the overhang can comprise at least two nucleotides, at least three nucleotides, at least four nucleotides, at least five nucleotides or more. A nucleotide overhang can comprise or consist of a nucleotide/nucleoside analog, including a deoxynucleotide/nucleoside. The overhang(s) may be on the sense strand, the antisense strand or any combination thereof. Furthermore, the nucleotide(s) of an overhang can be present on the 5′ end, 3′ end or both ends of either an antisense or sense strand of a dsRNA.


In one embodiment, the antisense strand of a dsRNA has a 1-10 nucleotide overhang at the 3′ end and/or the 5′ end. In one embodiment, the sense strand of a dsRNA has a 1-10 nucleotide overhang at the 3′ end and/or the 5′ end. In another embodiment, one or more of the nucleotides in the overhang is replaced with a nucleoside thiophosphate.


The terms “blunt” or “blunt ended” as used herein in reference to a dsRNA mean that there are no unpaired nucleotides or nucleotide analogs at a given terminal end of a dsRNA, i.e., no nucleotide overhang. One or both ends of a dsRNA can be blunt. Where both ends of a dsRNA are blunt, the dsRNA is said to be blunt ended. To be clear, a “blunt ended” dsRNA is a dsRNA that is blunt at both ends, i.e., no nucleotide overhang at either end of the molecule. Most often such a molecule will be double-stranded over its entire length.


The term “antisense strand” or “guide strand” refers to the strand of an iRNA, e.g., a dsRNA, which includes a region that is substantially complementary to a target sequence. As used herein, the term “region of complementarity” refers to the region on the antisense strand that is substantially complementary to a sequence, for example a target sequence, as defined herein. Where the region of complementarity is not fully complementary to the target sequence, the mismatches may be in the internal or terminal regions of the molecule. Generally, the most tolerated mismatches are in the terminal regions, e.g., within 5, 4, 3, or 2 nucleotides of the 5′ and/or 3′ terminus.


The term “sense strand,” or “passenger strand” as used herein, refers to the strand of an iRNA that includes a region that is substantially complementary to a region of the antisense strand as that term is defined herein.


As used herein, the term “SNALP” refers to a stable nucleic acid-lipid particle. A SNALP represents a vesicle of lipids coating a reduced aqueous interior comprising a nucleic acid such as an iRNA or a plasmid from which an iRNA is transcribed. SNALPs are described, e.g., in U.S. Patent Application Publication Nos. 20060240093, 20070135372, and in International Application No. WO 2009082817. These applications are incorporated herein by reference in their entirety.


“Introducing into a cell,” when referring to an iRNA, means facilitating or effecting uptake or absorption into the cell, as is understood by those skilled in the art. Absorption or uptake of an iRNA can occur through unaided diffusive or active cellular processes, or by auxiliary agents or devices. The meaning of this term is not limited to cells in vitro; an iRNA may also be “introduced into a cell,” wherein the cell is part of a living organism. In such an instance, introduction into the cell will include the delivery to the organism. For example, for in vivo delivery, iRNA can be injected into a tissue site or administered systemically. In vivo delivery can also be by a β-glucan delivery system, such as those described in U.S. Pat. Nos. 5,032,401 and 5,607,677, and U.S. Publication No. 2005/0281781, which are hereby incorporated by reference in their entirety. In vitro introduction into a cell includes methods known in the art such as electroporation and lipofection. Further approaches are described herein below or known in the art.


As used herein, the term “modulate the expression of,” refers to at an least partial “inhibition” or partial “activation” of an ALAS1 gene expression in a cell treated with an iRNA composition as described herein compared to the expression of ALAS1 in a control cell. A control cell includes an untreated cell, or a cell treated with a non-targeting control iRNA.


The terms “activate,” “enhance,” “up-regulate the expression of,” “increase the expression of,” and the like, in so far as they refer to an ALAS1 gene, herein refer to the at least partial activation of the expression of an ALAS1 gene, as manifested by an increase in the amount of ALAS1 mRNA, which may be isolated from or detected in a first cell or group of cells in which an ALAS1 gene is transcribed and which has or have been treated such that the expression of an ALAS1 gene is increased, as compared to a second cell or group of cells substantially identical to the first cell or group of cells but which has or have not been so treated (control cells).


In one embodiment, expression of an ALAS1 gene is activated by at least about 10%, 15%, 20%, 25%, 30%, 35%, 40%, 45%, or 50% by administration of an iRNA as described herein. In some embodiments, an ALAS1 gene is activated by at least about 60%, 70%, or 80% by administration of an iRNA featured in the invention. In some embodiments, expression of an ALAS1 gene is activated by at least about 85%, 90%, or 95% or more by administration of an iRNA as described herein. In some embodiments, the ALAS1 gene expression is increased by at least 1-fold, at least 2-fold, at least 5-fold, at least 10-fold, at least 50-fold, at least 100-fold, at least 500-fold, at least 1000 fold or more in cells treated with an iRNA as described herein compared to the expression in an untreated cell. Activation of expression by small dsRNAs is described, for example, in Li et al., 2006 Proc. Natl. Acad. Sci. U.S.A. 103:17337-42, and in US20070111963 and US2005226848, each of which is incorporated herein by reference.


The terms “silence,” “inhibit expression of,” “down-regulate expression of,” “suppress expression of,” and the like, in so far as they refer to an ALAS1 gene, herein refer to the at least partial suppression of the expression of an ALAS1 gene, as assessed, e.g., based on ALAS1 mRNA expression, ALAS1 protein expression, or another parameter functionally linked to ALAS1 gene expression (e.g., ALA or PBG concentrations in plasma or urine). For example, inhibition of ALAS1 expression may be manifested by a reduction of the amount of ALAS1 mRNA which may be isolated from or detected in a first cell or group of cells in which an ALAS1 gene is transcribed and which has or have been treated such that the expression of an ALAS1 gene is inhibited, as compared to a control. The control may be a second cell or group of cells substantially identical to the first cell or group of cells, except that the second cell or group of cells have not been so treated (control cells). The degree of inhibition is usually expressed as a percentage of a control level, e.g.,










(

mRNA





in





control





cells

)

-

(

mRNA





in





treated





cells

)



(

mRNA





in





control





cells

)


·
100


%




Alternatively, the degree of inhibition may be given in terms of a reduction of a parameter that is functionally linked to ALAS1 gene expression, e.g., the amount of protein encoded by an ALAS1 gene, or the level of one or more porphyrins. The reduction of a parameter functionally linked to ALAS1 gene expression may similarly be expressed as a percentage of a control level. In principle, ALAS1 gene silencing may be determined in any cell expressing ALAS1, either constitutively or by genomic engineering, and by any appropriate assay. However, when a reference is needed in order to determine whether a given iRNA inhibits the expression of the ALAS1 gene by a certain degree and therefore is encompassed by the instant invention, the assays provided in the Examples below shall serve as such reference.


For example, in certain instances, expression of an ALAS1 gene is suppressed by at least about 10%, 15%, 20%, 25%, 30%, 35%, 40%, 45%, or 50% by administration of an iRNA featured in the invention. In some embodiments, an ALAS1 gene is suppressed by at least about 60%, 65%, 70%, 75%, or 80% by administration of an iRNA featured in the invention. In some embodiments, an ALAS1 gene is suppressed by at least about 85%, 90%, 95%, 98%, 99%, or more by administration of an iRNA as described herein.


As used herein in the context of ALAS1 expression, the terms “treat,” “treating,” “treatment,” and the like, refer to relief from or alleviation of pathological processes related to ALAS1 expression (e.g., pathological processes involving porphyrins or defects in the porphyrin pathway, such as, for example, porphyrias). In the context of the present invention insofar as it relates to any of the other conditions recited herein below (other than pathological processes related to ALAS1 expression), the terms “treat,” “treatment,” and the like mean to prevent, relieve or alleviate at least one symptom associated with such condition, or to slow or reverse the progression or anticipated progression of such condition. For example, the methods featured herein, when employed to treat porphyria, may serve to reduce or prevent one or more symptoms associated with porphyria (e.g., pain), to reduce the severity or frequency of attacks associated with porphyria, to reduce the likelihood that an attack of one or more symptoms associated with porphyria will occur upon exposure to a precipitating condition, to shorten an attack associated with porphyria, and/or to reduce the risk of developing conditions associated with porphyria (e.g., hepatocellular cancer or neuropathy (e.g., progressive neuropathy),). Thus, unless the context clearly indicates otherwise, the terms “treat,” “treatment,” and the like are intended to encompass prophylaxis, e.g., prevention of disorders and/or symptoms of disorders related to ALAS1 expression.


By “lower” in the context of a disease marker or symptom is meant a statistically or clinically significant decrease in such level. The decrease can be, for example, at least 10%, at least 20%, at least 30%, at least 40% or more, and is typically down to a level accepted as within the range of normal for an individual without such disorder.


As used herein, the phrases “therapeutically effective amount” and “prophylactically effective amount” refer to an amount that provides a therapeutic benefit in the treatment, prevention, or management of pathological processes related to ALAS1 expression. The specific amount that is therapeutically effective can be readily determined by an ordinary medical practitioner, and may vary depending on factors known in the art, such as, for example, the type of pathological process, the patient's history and age, the stage of pathological process, and the administration of other agents.


As used herein, a “pharmaceutical composition” comprises a pharmacologically effective amount of an iRNA and a pharmaceutically acceptable carrier. As used herein, “pharmacologically effective amount,” “therapeutically effective amount” or simply “effective amount” refers to that amount of an iRNA effective to produce the intended pharmacological, therapeutic or preventive result. For example, in a method of treating a disorder related to ALAS1 expression (e.g., in a method of treating a porphyria), an effective amount includes an amount effective to reduce one or more symptoms associated with a porphyria, an amount effective to reduce the frequency of attacks, an amount effective to reduce the likelihood that an attack of one or more symptoms associated with porphyria will occur upon exposure to a precipitating factor, or an amount effective to reduce the risk of developing conditions associated with porphyria (e.g., neuropathy (e.g., progressive neuropathy), hepatocellular cancer). For example, if a given clinical treatment is considered effective when there is at least a 10% reduction in a measurable parameter associated with a disease or disorder, a therapeutically effective amount of a drug for the treatment of that disease or disorder is the amount necessary to effect at least a 10% reduction in that parameter. For example, a therapeutically effective amount of an iRNA targeting ALAS1 can reduce ALAS1 protein levels by any measurable amount, e.g., by at least 10%, 20%, 30%, 40% or 50%.


The term “pharmaceutically acceptable carrier” refers to a carrier for administration of a therapeutic agent. Such carriers include, but are not limited to, saline, buffered saline, dextrose, water, glycerol, ethanol, and combinations thereof. The term specifically excludes cell culture medium. For drugs administered orally, pharmaceutically acceptable carriers include, but are not limited to pharmaceutically acceptable excipients such as inert diluents, disintegrating agents, binding agents, lubricating agents, sweetening agents, flavoring agents, coloring agents and preservatives. Suitable inert diluents include sodium and calcium carbonate, sodium and calcium phosphate, and lactose, while corn starch and alginic acid are suitable disintegrating agents. Binding agents may include starch and gelatin, while the lubricating agent, if present, will generally be magnesium stearate, stearic acid or talc. If desired, the tablets may be coated with a material such as glyceryl monostearate or glyceryl distearate, to delay absorption in the gastrointestinal tract. Agents included in drug formulations are described further herein below.


The term “about” when referring to a number or a numerical range means that the number or numerical range referred to is an approximation within experimental variability (or within statistical experimental error), and thus the number or numerical range may vary from, for example, between 1% and 15% of the stated number or numerical range.


II. iRNA Agents

Described herein are iRNA agents that inhibit the expression of an ALAS1 gene. In one embodiment, the iRNA agent includes double-stranded ribonucleic acid (dsRNA) molecules for inhibiting the expression of an ALAS1 gene in a cell or in a subject (e.g., in a mammal, e.g., in a human having a porphyria), where the dsRNA includes an antisense strand having a region of complementarity which is complementary to at least a part of an mRNA formed in the expression of an ALAS1 gene, and where the region of complementarity is 30 nucleotides or less in length, generally 19-24 nucleotides in length, and where the dsRNA, upon contact with a cell expressing the ALAS1 gene, inhibits the expression of the ALAS1 gene by at least 10% as assayed by, for example, a PCR or branched DNA (bDNA)-based method, or by a protein-based method, such as by Western blot. In one embodiment, the iRNA agent activates the expression of an ALAS1 gene in a cell or mammal. Expression of an ALAS1 gene in cell culture, such as in COS cells, HeLa cells, primary hepatocytes, HepG2 cells, primary cultured cells or in a biological sample from a subject can be assayed by measuring ALAS1 mRNA levels, such as by bDNA or TaqMan assay, or by measuring protein levels, such as by immunofluorescence analysis, using, for example, Western Blotting or flow cytometric techniques.


A dsRNA includes two RNA strands that are sufficiently complementary to hybridize to form a duplex structure under conditions in which the dsRNA will be used. One strand of a dsRNA (the antisense strand) includes a region of complementarity that is substantially complementary, and generally fully complementary, to a target sequence, derived from the sequence of an mRNA formed during the expression of an ALAS1 gene. The other strand (the sense strand) includes a region that is complementary to the antisense strand, such that the two strands hybridize and form a duplex structure when combined under suitable conditions. Generally, the duplex structure is between 15 and 30 inclusive, more generally between 18 and 25 inclusive, yet more generally between 19 and 24 inclusive, and most generally between 19 and 21 base pairs in length, inclusive. Similarly, the region of complementarity to the target sequence is between 15 and 30 inclusive, more generally between 18 and 25 inclusive, yet more generally between 19 and 24 inclusive, and most generally between 19 and 21 nucleotides in length, inclusive. In some embodiments, the dsRNA is between 15 and 20 nucleotides in length, inclusive, and in other embodiments, the dsRNA is between 25 and 30 nucleotides in length, inclusive. As the ordinarily skilled person will recognize, the targeted region of an RNA targeted for cleavage will most often be part of a larger RNA molecule, often an mRNA molecule. Where relevant, a “part” of an mRNA target is a contiguous sequence of an mRNA target of sufficient length to be a substrate for RNAi-directed cleavage (i.e., cleavage through a RISC pathway). dsRNAs having duplexes as short as 9 base pairs can, under some circumstances, mediate RNAi-directed RNA cleavage. Most often a target will be at least 15 nucleotides in length, e.g., 15-30 nucleotides in length.


One of skill in the art will also recognize that the duplex region is a primary functional portion of a dsRNA, e.g., a duplex region of 9 to 36, e.g., 15-30 base pairs. Thus, in one embodiment, to the extent that it becomes processed to a functional duplex of e.g., 15-30 base pairs that targets a desired RNA for cleavage, an RNA molecule or complex of RNA molecules having a duplex region greater than 30 base pairs is a dsRNA. Thus, an ordinarily skilled artisan will recognize that in one embodiment, then, an miRNA is a dsRNA. In another embodiment, a dsRNA is not a naturally occurring miRNA. In another embodiment, an iRNA agent useful to target ALAS1 expression is not generated in the target cell by cleavage of a larger dsRNA.


A dsRNA as described herein may further include one or more single-stranded nucleotide overhangs. The dsRNA can be synthesized by standard methods known in the art as further discussed below, e.g., by use of an automated DNA synthesizer, such as are commercially available from, for example, Biosearch, Applied Biosystems, Inc. In one embodiment, an ALAS1 gene is a human ALAS1 gene. In another embodiment the ALAS1 gene is a mouse or a rat ALAS1 gene.


In specific embodiments, the first sequence is a sense strand of a dsRNA that includes a sense sequence disclosed herein, e.g., in Tables 21-40, and the second sequence is an antisense strand of a dsRNA that includes an antisense sequence disclosed herein, e.g., in Tables 21-40.


In specific embodiments, the first sequence is a sense strand of a dsRNA that includes a sense sequence from Table 2 or Table 3, and the second sequence is an antisense strand of a dsRNA that includes an antisense sequence from Table 2 or Table 3. In embodiments, the first sequence is a sense strand of a dsRNA that includes a sense sequence from Table 2, 3, 6, 7, 8, 9, 14, or 15, and the second sequence is an antisense strand of a dsRNA that includes an antisense sequence from Table 2, 3, 6, 7, 8, 9, 14, or 15. In embodiments, the first sequence is a sense strand of a dsRNA that includes a sense sequence from Table 2, 3, 6, 7, 8, 9, 14, 15, 18 or 20, and the second sequence is an antisense strand of a dsRNA that includes an antisense sequence from Table 2, 3, 6, 7, 8, 9, 14, 15, 18 or 20.


In one aspect, a dsRNA can include at least sense and antisense nucleotide sequences, whereby the sense strand is selected from the sense sequences provided herein, e.g., in Tables 21-40, and the corresponding antisense strand of the sense strand is selected from the antisense sequences provided herein, e.g., in Tables 21-40.


In one aspect, a dsRNA can include at least sense and antisense nucleotide sequences, whereby the sense strand is selected from the groups of sequences provided in Tables 2 and 3, and the corresponding antisense strand of the sense strand is selected from Tables 2 and 3. In a further aspect, a dsRNA can include at least sense and antisense nucleotide sequences, whereby the sense strand is selected from the groups of sequences provided in Tables 2, 3, 6, 7, 8, 9, 14, and 15, and the corresponding antisense strand of the sense strand is selected from Tables 2, 3, 6, 7, 8, 9, 14, and 15. In a further aspect, a dsRNA can include at least sense and antisense nucleotide sequences, whereby the sense strand is selected from the groups of sequences provided in Tables 2, 3, 6, 7, 8, 9, 14, 15, 18 and 20, and the corresponding antisense strand of the sense strand is selected from Tables 2, 3, 6, 7, 8, 9, 14, 15, 18 and 20.


In embodiments, the iRNA is AD-60501, AD-60519, AD-60901, AD-60495, AD-60900, AD-60935, AD-60879, AD-61190, AD-61191, AD-60865, AD-60861, AD-60876, AD-61193, AD-60519, AD-60519, AD-60901, AD-60405, AD-60887, AD-60923, AD-60434, AD-60892, AD-60419, AD-60924, AD-60445, AD-60925, AD-60926, AD-60820, AD-60843, AD-60819, AD-61140, AD-61141, AD-61142, AD-60835, AD-60839, AD-61143, AD-61144, AD-61145, AD-61146, AD-60892, or AD-60419 (e.g., including the nucleotide sequence and/or one or more (e.g., all) of the modifications of the aforesaid dsRNAs). In embodiments, the iRNA comprises an antisense strand that comprises, or consists of, an antisense sequence (including one or more (e.g., all the modifications)) selected from the antisense sequence of AD-60501, AD-60519, AD-60901, AD-60495, AD-60900, AD-60935, AD-60879, AD-61190, AD-61191, AD-60865, AD-60861, AD-60876, AD-61193, AD-60519, AD-60519, AD-60901, AD-60405, AD-60887, AD-60923, AD-60434, AD-60892, AD-60419, AD-60924, AD-60445, AD-60925, AD-60926, AD-60820, AD-60843, AD-60819, AD-61140, AD-61141, AD-61142, AD-60835, AD-60839, AD-61143, AD-61144, AD-61145, AD-61146, AD-60892, or AD-60419. In embodiments, the iRNA comprises a sense strand that comprises, or consists of, a sense sequence (and/or one or more (e.g., all) of the modifications)) selected from AD-60501, AD-60519, AD-60901, AD-60495, AD-60900, AD-60935, AD-60879, AD-61190, AD-61191, AD-60865, AD-60861, AD-60876, AD-61193, AD-60519, AD-60519, AD-60901, AD-60405, AD-60887, AD-60923, AD-60434, AD-60892, AD-60419, AD-60924, AD-60445, AD-60925, AD-60926, AD-60820, AD-60843, AD-60819, AD-61140, AD-61141, AD-61142, AD-60835, AD-60839, AD-61143, AD-61144, AD-61145, AD-61146, AD-60892, or AD-60419.


In embodiments, the iRNA comprises (i) an antisense strand that comprises, or consists of, the sequence of UAAGAUGAGACACUCUUUCUGGU or UAAGAUGAGACACUCTUUCUGGU and/or (ii) a sense strand that comprises, or consists of, the sequence of CAGAAAGAGUGUCUCAUCUUA. In embodiments, one or more nucleotides of the antisense strand and/or sense strand are modified as described herein.


In embodiments, the iRNA comprises (i) an antisense strand that comprises, or consists of, the antisense sequence of AD-60489 and/or (ii) a sense strand that comprises, or consists of, the sense sequence of AD-60489 (and/or one or more (e.g., all) of the modifications of the sense strand and/or antisense strand of AD-60489).


In embodiments, the iRNA comprises (i) an antisense strand that comprises, or consists of, the antisense sequence of AD-60519 and/or (ii) a sense strand that comprises, or consists of, the sense sequence of AD-60519 (and/or one or more (e.g., all) of the modifications of the sense strand and/or antisense strand of AD-60489).


In embodiments, the iRNA comprises (i) an antisense strand that comprises, or consists of, the antisense sequence of AD-61193 and/or (ii) a sense strand that comprises, or consists of, the sense sequence of AD-61193 (and/or one or more (e.g., all) of the modifications of the sense strand and/or antisense strand of AD-60489).


In embodiments, the iRNA comprises (i) an antisense strand that comprises, or consists of, the antisense sequence of AD-60819 and/or (ii) a sense sequence that comprises, or consists of, the sense sequence of AD-60819 (and/or one or more (e.g., all) of the modifications of the sense strand and/or antisense strand of AD-60489).


In embodiments, the iRNA for inhibiting expression of ALAS1 is provided, wherein the dsRNA comprises (i) an antisense strand that comprises, or consists of, the antisense sequence of AD-60489, AD-60519, AD-61193, or AD-60819 (or a corresponding unmodified antisense sequence) and/or (ii) a sense strand that comprises, or consists of, the sense sequence of AD-60489, AD-60519, AD-61193, or AD-60819 (or a corresponding unmodified antisense sequence). In embodiments, the iRNA comprises (i) an antisense strand that consists of the antisense sequence of AD-60489, AD-60519, AD-61193, or AD-60819 and/or (ii) a sense strand that consists of the sense sequence of AD-60489, AD-60519, AD-61193, or AD-60819, except that the antisense strand and/or sense strand of the dsRNA differs by 1, 2, or 3 nucleotides from the corresponding antisense and/or sense sequence of AD-60489, AD-60519, AD-61193, or AD-60819.


The sequences and modifications of AD-60489, AD-60519, AD-61193, and AD-60819 are shown in Table 44 disclosed herein.


In one embodiment, the iRNA is ALN-60519. ALN-60519 is a chemically synthesized double stranded oligonucleotide covalently linked to a ligand containing three N-acetylgalactosamine (GalNAc) residues (depicted in FIG. 57). In one embodiment, all nucleotides of ALN-60519 are 2′-OMe or 2′-F modified and are connected through 3′-5′ phosphodiester linkages, thus forming the sugar-phosphate backbone of the oligonucleotide. The sense strand and the antisense strand of ALN-60519 contain 21 and 23 nucleotides, respectively. The 3′-end of the sense strand of ALN-60519 is conjugated to the triantennary GalNAc moiety (referred to as L96) through a phosphodiester linkage. The antisense strand contains four phosphorothioate linkages—two at the 3′ end and two at the 5′ end. The sense strand of ALN-60519 contains two phosphorothioate linkages at the 5′ end. The 21 nucleotides of the sense strand of ALN-60519 hybridize with the complementary 21 nucleotides of the antisense strand, thus forming 21 nucleotide base pairs and a two-base overhang at the 3′-end of the antisense strand. The two single strands, the sense strand and the antisense strand, of ALN-60519 can be synthesized by conventional solid phase oligonucleotide synthesis, employing standard phosphoramidite chemistry with the 5′-hydroxyl group protected as dimethoxytriphenylmethyl (DMT) ether. Each strand can be assembled from the 3′ to the 5′ terminus by sequential addition of protected nucleoside phosphoramidites.


In these aspects, one of the two sequences is complementary to the other of the two sequences, with one of the sequences being substantially complementary to a sequence of an mRNA generated by the expression of an ALAS1 gene. As such, a dsRNA will include two oligonucleotides, where one oligonucleotide is described herein as the sense strand, and the second oligonucleotide is described as the corresponding antisense strand. As described elsewhere herein and as known in the art, the complementary sequences of a dsRNA can also be contained as self-complementary regions of a single nucleic acid molecule, as opposed to being on separate oligonucleotides.


The skilled person is well aware that dsRNAs having a duplex structure of between 20 and 23, but specifically 21, base pairs have been hailed as particularly effective in inducing RNA interference (Elbashir et al., EMBO 2001, 20:6877-6888). However, others have found that shorter or longer RNA duplex structures can be effective as well. In the embodiments described above, by virtue of the nature of the oligonucleotide sequences provided in the tables herein, dsRNAs described herein can include at least one strand of a length of minimally 21 nucleotides. It can be reasonably expected that shorter duplexes having one of the sequences of disclosed herein minus only a few nucleotides on one or both ends may be similarly effective as compared to the dsRNAs described above. Hence, dsRNAs having a partial sequence of at least 15, 16, 17, 18, 19, 20, or more contiguous nucleotides from one of the sequences disclosed herein, and differing in their ability to inhibit the expression of an ALAS1 gene by not more than 5, 10, 15, 20, 25, or 30% inhibition from a dsRNA comprising the full sequence, are contemplated according to the invention.


In addition, the RNAs provided in the tables herein, identify a site in an ALAS1 transcript that is susceptible to RISC-mediated cleavage. As such, the present invention further features iRNAs that target within one of such sequences. As used herein, an iRNA is said to target within a particular site of an RNA transcript if the iRNA promotes cleavage of the transcript anywhere within that particular site. Such an iRNA will generally include at least 15 contiguous nucleotides from one of the sequences provided herein, e.g., in Tables 2, 3, 6, 7, 8, 9, 14, 15, 18, 20, and in Tables 21-40, coupled to additional nucleotide sequences taken from the region contiguous to the selected sequence in an ALAS1 gene.


While a target sequence is generally 15-30 nucleotides in length, there is wide variation in the suitability of particular sequences in this range for directing cleavage of any given target RNA. Various software packages and the guidelines set out herein provide guidance for the identification of optimal target sequences for any given gene target, but an empirical approach can also be taken in which a “window” or “mask” of a given size (as a non-limiting example, 21 nucleotides) is literally or figuratively (including, e.g., in silico) placed on the target RNA sequence to identify sequences in the size range that may serve as target sequences. By moving the sequence “window” progressively one nucleotide upstream or downstream of an initial target sequence location, the next potential target sequence can be identified, until the complete set of possible sequences is identified for any given target size selected. This process, coupled with systematic synthesis and testing of the identified sequences (using assays as described herein or as known in the art) to identify those sequences that perform optimally can identify those RNA sequences that, when targeted with an iRNA agent, mediate the best inhibition of target gene expression. Thus, while the sequences identified, for example, in the tables herein, represent effective target sequences, it is contemplated that further optimization of inhibition efficiency can be achieved by progressively “walking the window” one nucleotide upstream or downstream of the given sequences to identify sequences with equal or better inhibition characteristics.


Further, it is contemplated that for any sequence identified, e.g., in the tables herein, further optimization can be achieved by systematically either adding or removing nucleotides to generate longer or shorter sequences and testing those and sequences generated by walking a window of the longer or shorter size up or down the target RNA from that point. Again, coupling this approach to generating new candidate targets with testing for effectiveness of iRNAs based on those target sequences in an inhibition assay as known in the art or as described herein can lead to further improvements in the efficiency of inhibition. Further still, such optimized sequences can be adjusted by, e.g., the introduction of modified nucleotides as described herein or as known in the art, addition or changes in overhang, or other modifications as known in the art and/or discussed herein to further optimize the molecule (e.g., increasing serum stability or circulating half-life, increasing thermal stability, enhancing transmembrane delivery, targeting to a particular location or cell type, increasing interaction with silencing pathway enzymes, increasing release from endosomes, etc.) as an expression inhibitor.


An iRNA as described herein can contain one or more mismatches to the target sequence. In one embodiment, an iRNA as described herein contains no more than 3 mismatches. If the antisense strand of the iRNA contains mismatches to a target sequence, it is preferable that the area of mismatch not be located in the center of the region of complementarity. If the antisense strand of the iRNA contains mismatches to the target sequence, it is preferable that the mismatch be restricted to be within the last 5 nucleotides from either the 5′ or 3′ end of the region of complementarity. For example, for a 23 nucleotide iRNA agent RNA strand which is complementary to a region of an ALAS1 gene, the RNA strand generally does not contain any mismatch within the central 13 nucleotides. The methods described herein or methods known in the art can be used to determine whether an iRNA containing a mismatch to a target sequence is effective in inhibiting the expression of an ALAS1 gene. Consideration of the efficacy of iRNAs with mismatches in inhibiting expression of an ALAS1 gene is important, especially if the particular region of complementarity in an ALAS1 gene is known to have polymorphic sequence variation within the population.


In one embodiment, at least one end of a dsRNA has a single-stranded nucleotide overhang of 1 to 4, generally 1 or 2 nucleotides. dsRNAs having at least one nucleotide overhang have unexpectedly superior inhibitory properties relative to their blunt-ended counterparts. In yet another embodiment, the RNA of an iRNA, e.g., a dsRNA, is chemically modified to enhance stability or other beneficial characteristics. The nucleic acids featured in the invention may be synthesized and/or modified by methods well established in the art, such as those described in “Current protocols in nucleic acid chemistry,” Beaucage, S. L. et al. (Edrs.), John Wiley & Sons, Inc., New York, N.Y., USA, which is hereby incorporated herein by reference. Modifications include, for example, (a) end modifications, e.g., 5′ end modifications (phosphorylation, conjugation, inverted linkages, etc.) 3′ end modifications (conjugation, DNA nucleotides, inverted linkages, etc.), (b) base modifications, e.g., replacement with stabilizing bases, destabilizing bases, or bases that base pair with an expanded repertoire of partners, removal of bases (abasic nucleotides), or conjugated bases, (c) sugar modifications (e.g., at the 2′ position or 4′ position, or having an acyclic sugar) or replacement of the sugar, as well as (d) backbone modifications, including modification or replacement of the phosphodiester linkages. Specific examples of RNA compounds useful in this invention include, but are not limited to RNAs containing modified backbones or no natural internucleoside linkages. RNAs having modified backbones include, among others, those that do not have a phosphorus atom in the backbone. For the purposes of this specification, and as sometimes referenced in the art, modified RNAs that do not have a phosphorus atom in their internucleoside backbone can also be considered to be oligonucleosides. In particular embodiments, the modified RNA will have a phosphorus atom in its internucleoside backbone.


Modified RNA backbones include, for example, phosphorothioates, chiral phosphorothioates, phosphorodithioates, phosphotriesters, aminoalkylphosphotriesters, methyl and other alkyl phosphonates including 3′-alkylene phosphonates and chiral phosphonates, phosphinates, phosphoramidates including 3′-amino phosphoramidate and aminoalkylphosphoramidates, thionophosphoramidates, thionoalkylphosphonates, thionoalkylphosphotriesters, and boranophosphates having normal 3′-5′ linkages, 2′-5′ linked analogs of these, and those) having inverted polarity wherein the adjacent pairs of nucleoside units are linked 3′-5′ to 5′-3′ or 2′-5′ to 5′-2′. Various salts, mixed salts and free acid forms are also included.


Representative U.S. patents that teach the preparation of the above phosphorus-containing linkages include, but are not limited to, U.S. Pat. Nos. 3,687,808; 4,469,863; 4,476,301; 5,023,243; 5,177,195; 5,188,897; 5,264,423; 5,276,019; 5,278,302; 5,286,717; 5,321,131; 5,399,676; 5,405,939; 5,453,496; 5,455,233; 5,466,677; 5,476,925; 5,519,126; 5,536,821; 5,541,316; 5,550,111; 5,563,253; 5,571,799; 5,587,361; 5,625,050; 6,028,188; 6,124,445; 6,160,109; 6,169,170; 6,172,209; 6,239,265; 6,277,603; 6,326,199; 6,346,614; 6,444,423; 6,531,590; 6,534,639; 6,608,035; 6,683,167; 6,858,715; 6,867,294; 6,878,805; 7,015,315; 7,041,816; 7,273,933; 7,321,029; and U.S. Pat. RE39464, each of which is herein incorporated by reference.


Modified RNA backbones that do not include a phosphorus atom therein have backbones that are formed by short chain alkyl or cycloalkyl internucleoside linkages, mixed heteroatoms and alkyl or cycloalkyl internucleoside linkages, or one or more short chain heteroatomic or heterocyclic internucleoside linkages. These include those having morpholino linkages (formed in part from the sugar portion of a nucleoside); siloxane backbones; sulfide, sulfoxide and sulfone backbones; formacetyl and thioformacetyl backbones; methylene formacetyl and thioformacetyl backbones; alkene containing backbones; sulfamate backbones; methyleneimino and methylenehydrazino backbones; sulfonate and sulfonamide backbones; amide backbones; and others having mixed N, O, S and CH2 component parts.


Representative U.S. patents that teach the preparation of the above oligonucleosides include, but are not limited to, U.S. Pat. Nos. 5,034,506; 5,166,315; 5,185,444; 5,214,134; 5,216,141; 5,235,033; 5,64,562; 5,264,564; 5,405,938; 5,434,257; 5,466,677; 5,470,967; 5,489,677; 5,541,307; 5,561,225; 5,596,086; 5,602,240; 5,608,046; 5,610,289; 5,618,704; 5,623,070; 5,663,312; 5,633,360; 5,677,437; and, 5,677,439, each of which is herein incorporated by reference.


In other RNA mimetics suitable or contemplated for use in iRNAs, both the sugar and the internucleoside linkage, i.e., the backbone, of the nucleotide units are replaced with novel groups. The base units are maintained for hybridization with an appropriate nucleic acid target compound. One such oligomeric compound, an RNA mimetic that has been shown to have excellent hybridization properties, is referred to as a peptide nucleic acid (PNA). In PNA compounds, the sugar backbone of an RNA is replaced with an amide containing backbone, in particular an aminoethylglycine backbone. The nucleobases are retained and are bound directly or indirectly to aza nitrogen atoms of the amide portion of the backbone. Representative U.S. patents that teach the preparation of PNA compounds include, but are not limited to, U.S. Pat. Nos. 5,539,082; 5,714,331; and 5,719,262, each of which is herein incorporated by reference. Further teaching of PNA compounds can be found, for example, in Nielsen et al., Science, 1991, 254, 1497-1500.


Some embodiments featured in the invention include RNAs with phosphorothioate backbones and oligonucleosides with heteroatom backbones, and in particular —CH2—NH—CH2—, —CH2—N(CH3)—O—CH2— [known as a methylene (methylimino) or MMI backbone], —CH2—O—N(CH3)—CH2—, —CH2—N(CH3)—N(CH3)—CH2— and —N(CH3)—CH2—CH2— [wherein the native phosphodiester backbone is represented as —O—P—O—CH2—] of the above-referenced U.S. Pat. No. 5,489,677, and the amide backbones of the above-referenced U.S. Pat. No. 5,602,240. In some embodiments, the RNAs featured herein have morpholino backbone structures of the above-referenced U.S. Pat. No. 5,034,506.


Modified RNAs may also contain one or more substituted sugar moieties. The iRNAs, e.g., dsRNAs, featured herein can include one of the following at the 2′ position: OH; F; O-, S-, or N-alkyl; O-, S-, or N-alkenyl; O-, S- or N-alkynyl; or O-alkyl-O-alkyl, wherein the alkyl, alkenyl and alkynyl may be substituted or unsubstituted C1 to C10 alkyl or C2 to C10 alkenyl and alkynyl. Exemplary suitable modifications include O[(CH2)nO]mCH3, O(CH2).nOCH3, O(CH2)nNH2, O(CH2)nCH3, O(CH2)nONH2, and O(CH2)nON[(CH2)nCH3)]2, where n and m are from 1 to about 10. In other embodiments, dsRNAs include one of the following at the 2′ position: C1 to C10 lower alkyl, substituted lower alkyl, alkaryl, aralkyl, O-alkaryl or O-aralkyl, SH, SCH3, OCN, Cl, Br, CN, CF3, OCF3, SOCH3, SO2CH3, ONO2, NO2, N3, NH2, heterocycloalkyl, heterocycloalkaryl, aminoalkylamino, polyalkylamino, substituted silyl, an RNA cleaving group, a reporter group, an intercalator, a group for improving the pharmacokinetic properties of an iRNA, or a group for improving the pharmacodynamic properties of an iRNA, and other substituents having similar properties. In some embodiments, the modification includes a 2′-methoxyethoxy (2′-O—CH2CH2OCH3, also known as 2′-O-(2-methoxyethyl) or 2′-MOE) (Martin et al., Helv. Chim. Acta, 1995, 78:486-504) i.e., an alkoxy-alkoxy group. Another exemplary modification is 2′-dimethylaminooxyethoxy, i.e., a O(CH2)2ON(CH3)2 group, also known as 2′-DMAOE, as described in examples herein below, and 2′-dimethylaminoethoxyethoxy (also known in the art as 2′-O-dimethylaminoethoxyethyl or 2′-DMAEOE), i.e., 2′-O—CH2—O—CH2—N(CH2)2, also described in examples herein below.


In other embodiments, an iRNA agent comprises one or more (e.g., about 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, or more) acyclic nucleotides (or nucleosides). In certain embodiments, the sense strand or the antisense strand, or both sense strand and antisense strand, include less than five acyclic nucleotides per strand (e.g., four, three, two or one acyclic nucleotides per strand). The one or more acyclic nucleotides can be found, for example, in the double-stranded region, of the sense or antisense strand, or both strands; at the 5′-end, the 3′-end, both of the 5′ and 3′-ends of the sense or antisense strand, or both strands, of the iRNA agent. In one embodiment, one or more acyclic nucleotides are present at positions 1 to 8 of the sense or antisense strand, or both. In one embodiment, one or more acyclic nucleotides are found in the antisense strand at positions 4 to 10 (e.g., positions 6-8) from the 5′-end of the antisense strand. In another embodiment, the one or more acyclic nucleotides are found at one or both 3′-terminal overhangs of the iRNA agent.


The term “acyclic nucleotide” or “acyclic nucleoside” as used herein refers to any nucleotide or nucleoside having an acyclic sugar, e.g., an acyclic ribose. An exemplary acyclic nucleotide or nucleoside can include a nucleobase, e.g., a naturally-occurring or a modified nucleobase (e.g., a nucleobase as described herein). In certain embodiments, a bond between any of the ribose carbons (C1, C2, C3, C4, or C5), is independently or in combination absent from the nucleotide. In one embodiment, the bond between C2-C3 carbons of the ribose ring is absent, e.g., an acyclic 2′-3′-seco-nucleotide monomer. In other embodiments, the bond between C1-C2, C3-C4, or C4-05 is absent (e.g., a 1′-2′, 3′-4′ or 4′-5′-seco nucleotide monomer). Exemplary acyclic nucleotides are disclosed in U.S. Pat. No. 8,314,227, incorporated herein by reference in its entirely. For example, an acyclic nucleotide can include any of monomers D-J in FIGS. 1-2 of U.S. Pat. No. 8,314,227. In one embodiment, the acyclic nucleotide includes the following monomer:




embedded image


wherein Base is a nucleobase, e.g., a naturally-occurring or a modified nucleobase (e.g., a nucleobase as described herein).


In certain embodiments, the acyclic nucleotide can be modified or derivatized, e.g., by coupling the acyclic nucleotide to another moiety, e.g., a ligand (e.g., a GalNAc, a cholesterol ligand), an alkyl, a polyamine, a sugar, a polypeptide, among others.


In other embodiments, the iRNA agent includes one or more acyclic nucleotides and one or more LNAs (e.g., an LNA as described herein). For example, one or more acyclic nucleotides and/or one or more LNAs can be present in the sense strand, the antisense strand, or both. The number of acyclic nucleotides in one strand can be the same or different from the number of LNAs in the opposing strand. In certain embodiments, the sense strand and/or the antisense strand comprises less than five LNAs (e.g., four, three, two or one LNAs) located in the double-stranded region or a 3′-overhang. In other embodiments, one or two LNAs are located in the double stranded region or the 3′-overhang of the sense strand. Alternatively, or in combination, the sense strand and/or antisense strand comprises less than five acyclic nucleotides (e.g., four, three, two or one acyclic nucleotides) in the double-stranded region or a 3′-overhang. In one embodiment, the sense strand of the iRNA agent comprises one or two LNAs in the 3′-overhang of the sense strand, and one or two acyclic nucleotides in the double-stranded region of the antisense strand (e.g., at positions 4 to 10 (e.g., positions 6-8) from the 5′-end of the antisense strand) of the iRNA agent.


In other embodiments, inclusion of one or more acyclic nucleotides (alone or in addition to one or more LNAs) in the iRNA agent results in one or more (or all) of: (i) a reduction in an off-target effect; (ii) a reduction in passenger strand participation in RNAi; (iii) an increase in specificity of the guide strand for its target mRNA; (iv) a reduction in a microRNA off-target effect; (v) an increase in stability; or (vi) an increase in resistance to degradation, of the iRNA molecule.


Other modifications include 2′-methoxy (2′-OCH3), 2′-aminopropoxy (2′-OCH2CH2CH2NH2) and 2′-fluoro (2′-F). Similar modifications may also be made at other positions on the RNA of an iRNA, particularly the 3′ position of the sugar on the 3′ terminal nucleotide or in 2′-5′ linked dsRNAs and the 5′ position of 5′ terminal nucleotide. iRNAs may also have sugar mimetics such as cyclobutyl moieties in place of the pentofuranosyl sugar. Representative U.S. patents that teach the preparation of such modified sugar structures include, but are not limited to, U.S. Pat. Nos. 4,981,957; 5,118,800; 5,319,080; 5,359,044; 5,393,878; 5,446,137; 5,466,786; 5,514,785; 5,519,134; 5,567,811; 5,576,427; 5,591,722; 5,597,909; 5,610,300; 5,627,053; 5,639,873; 5,646,265; 5,658,873; 5,670,633; and 5,700,920, certain of which are commonly owned with the instant application, and each of which is herein incorporated by reference.


An iRNA may also include nucleobase (often referred to in the art simply as “base”) modifications or substitutions. As used herein, “unmodified” or “natural” nucleobases include the purine bases adenine (A) and guanine (G), and the pyrimidine bases thymine (T), cytosine (C) and uracil (U). Modified nucleobases include other synthetic and natural nucleobases such as 5-methylcytosine (5-me-C), 5-hydroxymethyl cytosine, xanthine, hypoxanthine, 2-aminoadenine, 6-methyl and other alkyl derivatives of adenine and guanine, 2-propyl and other alkyl derivatives of adenine and guanine, 2-thiouracil, 2-thiothymine and 2-thiocytosine, 5-halouracil and cytosine, 5-propynyl uracil and cytosine, 6-azo uracil, cytosine and thymine, 5-uracil (pseudouracil), 4-thiouracil, 8-halo, 8-amino, 8-thiol, 8-thioalkyl, 8-hydroxyl anal other 8-substituted adenines and guanines, 5-halo, particularly 5-bromo, 5-trifluoromethyl and other 5-substituted uracils and cytosines, 7-methylguanine and 7-methyladenine, 8-azaguanine and 8-azaadenine, 7-deazaguanine and 7-deazaadenine and 3-deazaguanine and 3-deazaadenine. Further nucleobases include those disclosed in U.S. Pat. No. 3,687,808, those disclosed in Modified Nucleosides in Biochemistry, Biotechnology and Medicine, Herdewijn, P. ed. Wiley-VCH, 2008; those disclosed in The Concise Encyclopedia Of Polymer Science And Engineering, pages 858-859, Kroschwitz, J. L, ed. John Wiley & Sons, 1990, these disclosed by Englisch et al., Angewandte Chemie, International Edition, 1991, 30, 613, and those disclosed by Sanghvi, Y S., Chapter 15, dsRNA Research and Applications, pages 289-302, Crooke, S. T. and Lebleu, B., Ed., CRC Press, 1993. Certain of these nucleobases are particularly useful for increasing the binding affinity of the oligomeric compounds featured in the invention. These include 5-substituted pyrimidines, 6-azapyrimidines and N-2, N-6 and 0-6 substituted purines, including 2-aminopropyladenine, 5-propynyluracil and 5-propynylcytosine. 5-methylcytosine substitutions have been shown to increase nucleic acid duplex stability by 0.6-1.2° C. (Sanghvi, Y. S., Crooke, S. T. and Lebleu, B., Eds., dsRNA Research and Applications, CRC Press, Boca Raton, 1993, pp. 276-278) and are exemplary base substitutions, even more particularly when combined with 2′-O-methoxyethyl sugar modifications.


Representative U.S. patents that teach the preparation of certain of the above noted modified nucleobases as well as other modified nucleobases include, but are not limited to, the above noted U.S. Pat. No. 3,687,808, as well as U.S. Pat. Nos. 4,845,205; 5,130,30; 5,134,066; 5,175,273; 5,367,066; 5,432,272; 5,457,187; 5,459,255; 5,484,908; 5,502,177; 5,525,711; 5,552,540; 5,587,469; 5,594,121, 5,596,091; 5,614,617; 5,681,941; 6,015,886; 6,147,200; 6,166,197; 6,222,025; 6,235,887; 6,380,368; 6,528,640; 6,639,062; 6,617,438; 7,045,610; 7,427,672; and 7,495,088, each of which is herein incorporated by reference, and U.S. Pat. No. 5,750,692, also herein incorporated by reference.


The RNA of an iRNA can also be modified to include one or more (e.g., about 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, or more) locked nucleic acids (LNA), (also referred to herein as “locked nucleotides”). In one embodiment, a locked nucleic acid is a nucleotide having a modified ribose moiety in which the ribose moiety comprises an extra bridge connecting, e.g., the 2′ and 4′ carbons. This structure effectively “locks” the ribose in the 3′-endo structural conformation. The addition of locked nucleic acids to siRNAs has been shown to increase siRNA stability in serum, increase thermal stability, and to reduce off-target effects (Elmen, J. et al., (2005) Nucleic Acids Research 33(1):439-447; Mook, O R. et al., (2007) Mol Canc Ther 6(3):833-843; Grunweller, A. et al., (2003) Nucleic Acids Research 31(12):3185-3193).


Representative U.S. Patents that teach the preparation of locked nucleic acid nucleotides include, but are not limited to, the following: U.S. Pat. Nos. 6,268,490; 6,670,461; 6,794,499; 6,998,484; 7,053,207; 7,084,125; 7,399,845; and 8,314,227, each of which is herein incorporated by reference in its entirety. Exemplary LNAs include but are not limited to, a 2′, 4′-C methylene bicyclo nucleotide (see for example Wengel et al., International PCT Publication No. WO 00/66604 and WO 99/14226).


In other embodiments, the iRNA agents include one or more (e.g., about 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, or more) G-clamp nucleotides. A G-clamp nucleotide is a modified cytosine analog wherein the modifications confer the ability to hydrogen bond both Watson-Crick and Hoogsteen faces of a complementary guanine within a duplex, see for example Lin and Matteucci, 1998, J. Am. Chem. Soc., 120, 8531-8532. A single G-clamp analog substitution within an oligonucleotide can result in substantially enhanced helical thermal stability and mismatch discrimination when hybridized to complementary oligonucleotides. The inclusion of such nucleotides in the iRNA molecules can result in enhanced affinity and specificity to nucleic acid targets, complementary sequences, or template strands.


Potentially stabilizing modifications to the ends of RNA molecules can include N-(acetylaminocaproyl)-4-hydroxyprolinol (Hyp-C6-NHAc), N-(caproyl-4-hydroxyprolinol (Hyp-C6), N-(acetyl-4-hydroxyprolinol (Hyp-NHAc), thymidine-2′-O-deoxythymidine (ether), N-(aminocaproyl)-4-hydroxyprolinol (Hyp-C6-amino), 2-docosanoyl-uridine-3″-phosphate, inverted base dT(idT) and others. Disclosure of this modification can be found in PCT Publication No. WO 2011/005861.


iRNA Motifs


In one embodiment, the sense strand sequence may be represented by formula (I):









(I)







5′ np-Na-(X X X)i-Nb-Y Y Y-Nb-(Z Z Z)j-Na-nq 3′






wherein:


i and j are each independently 0 or 1;


p and q are each independently 0-6;


each Na independently represents an oligonucleotide sequence comprising 0-25 modified nucleotides, each sequence comprising at least two differently modified nucleotides;


each Nb independently represents an oligonucleotide sequence comprising 0-10 modified nucleotides;


each np and nq independently represent an overhang nucleotide;


wherein Nb and Y do not have the same modification; and


XXX, YYY and ZZZ each independently represent one motif of three identical modifications on three consecutive nucleotides. Preferably YYY is all 2′-F modified nucleotides.


In one embodiment, the Na and/or Nb comprise modifications of alternating pattern.


In one embodiment, the YYY motif occurs at or near the cleavage site of the sense strand. For example, when the RNAi agent has a duplex region of 17-23 nucleotides in length, the YYY motif can occur at or the vicinity of the cleavage site (e.g.: can occur at positions 6, 7, 8; 7, 8, 9; 8, 9, 10; 9, 10, 11; 10, 11, 12 or 11, 12, 13) of—the sense strand, the count starting from the Pt nucleotide, from the 5′-end; or optionally, the count starting at the 1st paired nucleotide within the duplex region, from the 5′-end.


In one embodiment, i is 1 and j is 0, or i is 0 and j is 1, or both i and j are 1. The sense strand can therefore be represented by the following formulas:









(Ib)









5′ np-Na-YYY-Nb-ZZZ-Na-nq 3′;











(Ic)









5′ np-Na-XXX-Nb-YYY-Na-nq 3′;



or











(Id)









5′ np-Na-XXX-Nb-YYY-Nb-ZZZ-Na-nq 3′.






When the sense strand is represented by formula (Ib), Nb represents an oligonucleotide sequence comprising 0-10, 0-7, 0-5, 0-4, 0-2 or 0 modified nucleotides. Each Na independently can represent an oligonucleotide sequence comprising 2-20, 2-15, or 2-10 modified nucleotides.


When the sense strand is represented as formula (Ic), Nb represents an oligonucleotide sequence comprising 0-10, 0-7, 0-5, 0-4, 0-2 or 0 modified nucleotides. Each Na can independently represent an oligonucleotide sequence comprising 2-20, 2-15, or 2-10 modified nucleotides.


When the sense strand is represented as formula (Id), each Nb independently represents an oligonucleotide sequence comprising 0-10, 0-7, 0-5, 0-4, 0-2 or 0 modified nucleotides. Preferably, Nb is 0, 1, 2, 3, 4, 5 or 6. Each Na can independently represent an oligonucleotide sequence comprising 2-20, 2-15, or 2-10 modified nucleotides.


Each of X, Y and Z may be the same or different from each other.


In other embodiments, i is 0 and j is 0, and the sense strand may be represented by the formula:









(Ia)









5′ np-Na-YYY-Na-nq 3′.






When the sense strand is represented by formula (Ia), each Na independently can represent an oligonucleotide sequence comprising 2-20, 2-15, or 2-10 modified nucleotides.


In one embodiment, the antisense strand sequence of the RNAi may be represented by formula (II):









(II)







5′ nq′-Na′-(Z′Z′Z′)k-Nb′-Y′Y′Y′-Nb′-(X′X′X′)1-N′a-





np′ 3′






wherein:


k and l are each independently 0 or 1;


p′ and q′ are each independently 0-6;


each Na′ independently represents an oligonucleotide sequence comprising 0-25 modified nucleotides, each sequence comprising at least two differently modified nucleotides;


each Nb′ independently represents an oligonucleotide sequence comprising 0-10 modified nucleotides;


each np′ and nq′ independently represent an overhang nucleotide;


wherein Nb′ and Y′ do not have the same modification;


and


X′X′X′, Y′Y′Y′ and Z′Z′Z′ each independently represent one motif of three identical modifications on three consecutive nucleotides.


In one embodiment, the Na′ and/or Nb′ comprise modifications of alternating pattern.


The Y′Y′Y′ motif occurs at or near the cleavage site of the antisense strand. For example, when the RNAi agent has a duplex region of 17-23 nucleotide in length, the Y′Y′Y′ motif can occur at positions 9, 10, 11; 10, 11, 12; 11, 12, 13; 12, 13, 14; or 13, 14, 15 of the antisense strand, with the count starting from the 1st nucleotide, from the 5′-end; or optionally, the count starting at the 1st paired nucleotide within the duplex region, from the 5′-end. Preferably, the Y′Y′Y′ motif occurs at positions 11, 12, 13.


In one embodiment, Y′Y′Y′ motif is all 2′-OMe modified nucleotides.


In one embodiment, k is 1 and l is 0, or k is 0 and l is 1, or both k and l are 1.


The antisense strand can therefore be represented by the following formulas:









(IIb)









5′ nq′-Na′-Z′Z′Z′-Nb′-Y′Y′Y′-Na′-np′ 3′;











(IIc)









5′ nq′-Na′-Y′Y′Y′-Nb′-X′X′X′-np′ 3′;



or











(IId)









5′ nq′-Na′-Z′Z′Z′-Nb′-Y′Y′Y′-Nb′-X′X′X′-Na′-







np′ 3′.






When the antisense strand is represented by formula (IIb), Nb′ represents an oligonucleotide sequence comprising 0-10, 0-7, 0-5, 0-4, 0-2 or 0 modified nucleotides. Each Na′ independently represents an oligonucleotide sequence comprising 2-20, 2-15, or 2-10 modified nucleotides.


When the antisense strand is represented as formula (IIc), Nb′ represents an oligonucleotide sequence comprising 0-10, 0-7, 0-5, 0-4, 0-2 or 0 modified nucleotides. Each Na′ independently represents an oligonucleotide sequence comprising 2-20, 2-15, or 2-10 modified nucleotides.


When the antisense strand is represented as formula (IId), each Nb′ independently represents an oligonucleotide sequence comprising 0-10, 0-7, 0-5, 0-4, 0-2 or 0 modified nucleotides. Each Na′ independently represents an oligonucleotide sequence comprising 2-20, 2-15, or 2-10 modified nucleotides. Preferably, Nb is 0, 1, 2, 3, 4, 5 or 6.


In other embodiments, k is 0 and 1 is 0 and the antisense strand may be represented by the formula:









(Ia)









5′ np′-Na′-Y′Y′Y′-Na′-nq′ 3′.






When the antisense strand is represented as formula (IIa), each Na′ independently represents an oligonucleotide sequence comprising 2-20, 2-15, or 2-10 modified nucleotides.


Each of X′, Y′ and Z′ may be the same or different from each other.


Each nucleotide of the sense strand and antisense strand may be independently modified with LNA, HNA, CeNA, 2′-methoxyethyl, 2′-O-methyl, 2′-O-allyl, 2′-C-allyl, 2′-hydroxyl, or 2′-fluoro. For example, each nucleotide of the sense strand and antisense strand is independently modified with 2′-O-methyl or 2′-fluoro. Each X, Y, Z, X′, Y′ and Z′, in particular, may represent a 2′-O-methyl modification or a 2′-fluoro modification.


In one embodiment, the sense strand of the RNAi agent may contain YYY motif occurring at 9, 10 and 11 positions of the strand when the duplex region is 21 nt, the count starting from the 1st nucleotide from the 5′-end, or optionally, the count starting at the 1st paired nucleotide within the duplex region, from the 5′-end; and Y represents 2′-F modification. The sense strand may additionally contain XXX motif or ZZZ motifs as wing modifications at the opposite end of the duplex region; and XXX and ZZZ each independently represents a 2′-OMe modification or 2′-F modification.


In one embodiment the antisense strand may contain Y′Y′Y′ motif occurring at positions 11, 12, 13 of the strand, the count starting from the 1st nucleotide from the 5′-end, or optionally, the count starting at the 1st paired nucleotide within the duplex region, from the 5′-end; and Y′ represents 2′-O-methyl modification. The antisense strand may additionally contain X′X′X′ motif or Z′Z′Z′ motifs as wing modifications at the opposite end of the duplex region; and X′X′X′ and Z′Z′Z′ each independently represents a 2′-OMe modification or 2′-F modification.


The sense strand represented by any one of the above formulas (Ia), (Ib), (Ic), and (Id) forms a duplex with a antisense strand being represented by any one of formulas (IIa), (IIb), (IIc), and (IId), respectively.


Accordingly, the RNAi agents for use in the methods of the invention may comprise a sense strand and an antisense strand, each strand having 14 to 30 nucleotides, the RNAi duplex represented by formula (III):









(III)







sense:


5′ np-Na-(X X X)i-Nb-Y Y Y-Nb-(Z Z Z)j-Na-nq 3′





antisense:


3′ np′-Na′-(X′X′X′)k-Nb′-Y′Y′Y′-Nb′-(Z′Z′Z′)1-





Na′-nq′ 5′






wherein:


i, j, k, and l are each independently 0 or 1;


p, p′, q, and q′ are each independently 0-6;


each Na and Na′ independently represents an oligonucleotide sequence comprising 0-25 modified nucleotides, each sequence comprising at least two differently modified nucleotides;


each Nb and Nb′ independently represents an oligonucleotide sequence comprising 0-10 modified nucleotides;


wherein


each np′, np, nq′, and nq, each of which may or may not be present, independently represents an overhang nucleotide; and


XXX, YYY, ZZZ, X′X′X′, Y′Y′Y′, and Z′Z′Z′ each independently represent one motif of three identical modifications on three consecutive nucleotides.


In one embodiment, i is 0 and j is 0; or i is 1 and j is 0; or i is 0 and j is 1; or both i and j are 0; or both i and j are 1. In another embodiment, k is 0 and l is 0; or k is 1 and l is 0; k is 0 and 1 is 1; or both k and l are 0; or both k and l are 1.


Exemplary combinations of the sense strand and antisense strand forming a RNAi duplex include the formulas below:









(IIIa)







5′ np-Na-Y Y Y-Na-nq 3′





3′ np′-Na′-Y′Y′Y′-Na′nq′ 5′










(IIIb)







5′ np-Na-Y Y Y-Nb-Z Z Z-Na-nq 3′





3′ np′-Na′-Y′Y′Y′-Nb′-Z′Z′Z′-Na′nq′ 5′










(IIIc)







5′ np-Na-X X X-Nb-Y Y Y-Na-nq 3′





3′ np′-Na′-X′X′X′-Nb′-Y′Y′Y′-Na′-nq′ 5′










(IIId)







5′ np-Na-X X X-Nb-Y Y Y-Nb-Z Z Z-Na-nq 3′





3′ np′-Na′-X′X′X′-Nb′-Y′Y′Y′-Nb′-Z′Z′Z′-Na-nq′ 5′






When the RNAi agent is represented by formula (IIIa), each Na independently represents an oligonucleotide sequence comprising 2-20, 2-15, or 2-10 modified nucleotides.


When the RNAi agent is represented by formula (IIIb), each Nb independently represents an oligonucleotide sequence comprising 1-10, 1-7, 1-5 or 1-4 modified nucleotides. Each Na independently represents an oligonucleotide sequence comprising 2-20, 2-15, or 2-10 modified nucleotides.


When the RNAi agent is represented as formula (IIIc), each Nb, Nb′ independently represents an oligonucleotide sequence comprising 0-10, 0-7, 0-5, 0-4, 0-2 or 0 modified nucleotides. Each Na independently represents an oligonucleotide sequence comprising 2-20, 2-15, or 2-10 modified nucleotides.


When the RNAi agent is represented as formula (IIId), each Nb, Nb′ independently represents an oligonucleotide sequence comprising 0-10, 0-7, 0-5, 0-4, 0-2 or 0 modified nucleotides. Each Na, Na′ independently represents an oligonucleotide sequence comprising 2-20, 2-15, or 2-10 modified nucleotides. Each of Na, Na′, Nb and Nbindependently comprises modifications of alternating pattern.


Each of X, Y and Z in formulas (III), (IIIc), (IIIb), (IIIc), and (IIId) may be the same or different from each other.


When the RNAi agent is represented by formula (III), (IIIa), (IIIb), (IIIc), and (IIId), at least one of the Y nucleotides may form a base pair with one of the Y′ nucleotides. Alternatively, at least two of the Y nucleotides form base pairs with the corresponding Y′ nucleotides; or all three of the Y nucleotides all form base pairs with the corresponding Y′ nucleotides.


When the RNAi agent is represented by formula (IIIb) or (IIId), at least one of the Z nucleotides may form a base pair with one of the Z′ nucleotides. Alternatively, at least two of the Z nucleotides form base pairs with the corresponding Z′ nucleotides; or all three of the Z nucleotides all form base pairs with the corresponding Z′ nucleotides.


When the RNAi agent is represented as formula (IIIc) or (IIId), at least one of the X nucleotides may form a base pair with one of the X′ nucleotides. Alternatively, at least two of the X nucleotides form base pairs with the corresponding X′ nucleotides; or all three of the X nucleotides all form base pairs with the corresponding X′ nucleotides.


In one embodiment, the modification on the Y nucleotide is different than the modification on the Y′ nucleotide, the modification on the Z nucleotide is different than the modification on the Z′ nucleotide, and/or the modification on the X nucleotide is different than the modification on the X′ nucleotide.


In one embodiment, when the RNAi agent is represented by formula (IIId), the Na modifications are 2′-O-methyl or 2′-fluoro modifications. In another embodiment, when the RNAi agent is represented by formula (IIId), the Na modifications are 2′-O-methyl or 2′-fluoro modifications and np′>0 and at least one np′ is linked to a neighboring nucleotide a via phosphorothioate linkage. In yet another embodiment, when the RNAi agent is represented by formula (IIId), the Na modifications are 2′-O-methyl or 2′-fluoro modifications, np′>0 and at least one np′ is linked to a neighboring nucleotide via phosphorothioate linkage, and the sense strand is conjugated to one or more GalNAc derivatives attached through a bivalent or trivalent branched linker. In another embodiment, when the RNAi agent is represented by formula (IIId), the Na modifications are 2′-O-methyl or 2′-fluoro modifications, np′>0 and at least one np′ is linked to a neighboring nucleotide via phosphorothioate linkage, the sense strand comprises at least one phosphorothioate linkage, and the sense strand is conjugated to one or more GalNAc derivatives attached through a bivalent or trivalent branched linker.


In one embodiment, when the RNAi agent is represented by formula (IIIa), the Na modifications are 2′-O-methyl or 2′-fluoro modifications, np′>0 and at least one np′ is linked to a neighboring nucleotide via phosphorothioate linkage, the sense strand comprises at least one phosphorothioate linkage, and the sense strand is conjugated to one or more GalNAc derivatives attached through a bivalent or trivalent branched linker.


In one embodiment, the RNAi agent is a multimer containing at least two duplexes represented by formula (III), (IIIa), (IIIb), (IIIc), and (IIId), wherein the duplexes are connected by a linker. The linker can be cleavable or non-cleavable. Optionally, the multimer further comprises a ligand. Each of the duplexes can target the same gene or two different genes; or each of the duplexes can target same gene at two different target sites.


In one embodiment, the RNAi agent is a multimer containing three, four, five, six or more duplexes represented by formula (III), (IIIa), (IIIb), (IIIc), and (IIId), wherein the duplexes are connected by a linker. The linker can be cleavable or non-cleavable. Optionally, the multimer further comprises a ligand. Each of the duplexes can target the same gene or two different genes; or each of the duplexes can target same gene at two different target sites.


In one embodiment, two RNAi agents represented by formula (III), (IIIa), (IIIb), (IIIc), and (IIId) are linked to each other at the 5′ end, and one or both of the 3′ ends and are optionally conjugated to a ligand. Each of the agents can target the same gene or two different genes; or each of the agents can target same gene at two different target sites.


iRNA Conjugates


The iRNA agents disclosed herein can be in the form of conjugates. The conjugate may be attached at any suitable location in the iRNA molecule, e.g., at the 3′ end or the 5′ end of the sense or the antisense strand. The conjugates are optionally attached via a linker.


In some embodiments, an iRNA agent described herein is chemically linked to one or more ligands, moieties or conjugates, which may confer functionality, e.g., by affecting (e.g., enhancing) the activity, cellular distribution or cellular uptake of the iRNA. Such moieties include but are not limited to lipid moieties such as a cholesterol moiety (Letsinger et al., Proc. Natl. Acid. Sci. USA, 1989, 86: 6553-6556), cholic acid (Manoharan et al., Biorg. Med. Chem. Let., 1994, 4:1053-1060), a thioether, e.g., beryl-S-tritylthiol (Manoharan et al., Ann. N.Y. Acad. Sci., 1992, 660:306-309; Manoharan et al., Biorg. Med. Chem. Let., 1993, 3:2765-2770), a thiocholesterol (Oberhauser et al., Nucl. Acids Res., 1992, 20:533-538), an aliphatic chain, e.g., dodecandiol or undecyl residues (Saison-Behmoaras et al., EMBO J, 1991, 10:1111-1118; Kabanov et al., FEBS Lett., 1990, 259:327-330; Svinarchuk et al., Biochimie, 1993, 75:49-54), a phospholipid, e.g., di-hexadecyl-rac-glycerol or triethyl-ammonium 1,2-di-O-hexadecyl-rac-glycero-3-phosphonate (Manoharan et al., Tetrahedron Lett., 1995, 36:3651-3654; Shea et al., Nucl. Acids Res., 1990, 18:3777-3783), a polyamine or a polyethylene glycol chain (Manoharan et al., Nucleosides & Nucleotides, 1995, 14:969-973), or adamantane acetic acid (Manoharan et al., Tetrahedron Lett., 1995, 36:3651-3654), a palmityl moiety (Mishra et al., Biochim. Biophys. Acta, 1995, 1264:229-237), or an octadecylamine or hexylamino-carbonyloxycholesterol moiety (Crooke et al., J. Pharmacol. Exp. Ther., 1996, 277:923-937).


In one embodiment, a ligand alters the distribution, targeting or lifetime of an iRNA agent into which it is incorporated. In some embodiments, a ligand provides an enhanced affinity for a selected target, e.g, molecule, cell or cell type, compartment, e.g., a cellular or organ compartment, tissue, organ or region of the body, as, e.g., compared to a species absent such a ligand. Typical ligands will not take part in duplex pairing in a duplexed nucleic acid.


Ligands can include a naturally occurring substance, such as a protein (e.g., human serum albumin (HSA), low-density lipoprotein (LDL), or globulin); carbohydrate (e.g., a dextran, pullulan, chitin, chitosan, inulin, cyclodextrin or hyaluronic acid); or a lipid. The ligand may also be a recombinant or synthetic molecule, such as a synthetic polymer, e.g., a synthetic polyamino acid. Examples of polyamino acids include polyamino acid is a polylysine (PLL), poly L-aspartic acid, poly L-glutamic acid, styrene-maleic acid anhydride copolymer, poly(L-lactide-co-glycolide) copolymer, divinyl ether-maleic anhydride copolymer, N-(2-hydroxypropyl)methacrylamide copolymer (HMPA), polyethylene glycol (PEG), polyvinyl alcohol (PVA), polyurethane, poly(2-ethylacrylic acid), N-isopropylacrylamide polymers, or polyphosphazine. Example of polyamines include: polyethylenimine, polylysine (PLL), spermine, spermidine, polyamine, pseudopeptide-polyamine, peptidomimetic polyamine, dendrimer polyamine, arginine, amidine, protamine, cationic lipid, cationic porphyrin, quaternary salt of a polyamine, or an a helical peptide.


Ligands can also include targeting groups, e.g., a cell or tissue targeting agent, e.g., a lectin, glycoprotein, lipid or protein, e.g., an antibody, that binds to a specified cell type such as a kidney cell. A targeting group can be a thyrotropin, melanotropin, lectin, glycoprotein, surfactant protein A, Mucin carbohydrate, multivalent lactose, multivalent galactose, N-acetyl-galactosamine, N-acetyl-glucosamine multivalent mannose, multivalent fucose, glycosylated polyaminoacids, multivalent galactose, transferrin, bisphosphonate, polyglutamate, polyaspartate, a lipid, cholesterol, a steroid, bile acid, folate, vitamin B12, biotin, or an RGD peptide or RGD peptide mimetic.


In some embodiments, the ligand is a GalNAc ligand that comprises one or more N-acetylgalactosamine (GalNAc) derivatives. Additional description of GalNAc ligands is provided in the section titled Carbohydrate Conjugates.


Other examples of ligands include dyes, intercalating agents (e.g. acridines), cross-linkers (e.g. psoralene, mitomycin C), porphyrins (TPPC4, texaphyrin, Sapphyrin), polycyclic aromatic hydrocarbons (e.g., phenazine, dihydrophenazine), artificial endonucleases (e.g. EDTA), lipophilic molecules, e.g, cholesterol, cholic acid, adamantane acetic acid, 1-pyrene butyric acid, dihydrotestosterone, 1,3-Bis-O(hexadecyl)glycerol, geranyloxyhexyl group, hexadecylglycerol, borneol, menthol, 1,3-propanediol, heptadecyl group, palmitic acid, myristic acid, O3-(oleoyl)lithocholic acid, O3-(oleoyl)cholenic acid, dimethoxytrityl, or phenoxazine) and peptide conjugates (e.g., antennapedia peptide, Tat peptide), alkylating agents, phosphate, amino, mercapto, PEG (e.g., PEG-40K), MPEG, [MPEG]2, polyamino, alkyl, substituted alkyl, radiolabeled markers, enzymes, haptens (e.g. biotin), transport/absorption facilitators (e.g., aspirin, vitamin E, folic acid), synthetic ribonucleases (e.g., imidazole, bisimidazole, histamine, imidazole clusters, acridine-imidazole conjugates, Eu3+ complexes of tetraazamacrocycles), dinitrophenyl, HRP, or AP.


Ligands can be proteins, e.g., glycoproteins, or peptides, e.g., molecules having a specific affinity for a co-ligand, or antibodies e.g., an antibody, that binds to a specified cell type such as a cancer cell, endothelial cell, or bone cell. Ligands may also include hormones and hormone receptors. They can also include non-peptidic species, such as lipids, lectins, carbohydrates, vitamins, cofactors, multivalent lactose, multivalent galactose, N-acetyl-galactosamine, N-acetyl-glucosamine multivalent mannose, or multivalent fucose. The ligand can be, for example, a lipopolysaccharide, an activator of p38 MAP kinase, or an activator of NF-κB.


The ligand can be a substance, e.g, a drug, which can increase the uptake of the iRNA agent into the cell, for example, by disrupting the cell's cytoskeleton, e.g., by disrupting the cell's microtubules, microfilaments, and/or intermediate filaments. The drug can be, for example, taxon, vincristine, vinblastine, cytochalasin, nocodazole, japlakinolide, latrunculin A, phalloidin, swinholide A, indanocine, or myoservin.


In some embodiments, a ligand attached to an iRNA as described herein acts as a pharmacokinetic modulator (PK modulator). PK modulators include lipophiles, bile acids, steroids, phospholipid analogues, peptides, protein binding agents, PEG, vitamins etc. Exemplary PK modulators include, but are not limited to, cholesterol, fatty acids, cholic acid, lithocholic acid, dialkylglycerides, diacylglyceride, phospholipids, sphingolipids, naproxen, ibuprofen, vitamin E, biotin etc. Oligonucleotides that comprise a number of phosphorothioate linkages are also known to bind to serum protein, thus short oligonucleotides, e.g., oligonucleotides of about 5 bases, 10 bases, 15 bases or 20 bases, comprising multiple of phosphorothioate linkages in the backbone are also amenable to the present invention as ligands (e.g. as PK modulating ligands). In addition, aptamers that bind serum components (e.g. serum proteins) are also suitable for use as PK modulating ligands in the embodiments described herein.


Ligand-conjugated oligonucleotides of the invention may be synthesized by the use of an oligonucleotide that bears a pendant reactive functionality, such as that derived from the attachment of a linking molecule onto the oligonucleotide (described below). This reactive oligonucleotide may be reacted directly with commercially-available ligands, ligands that are synthesized bearing any of a variety of protecting groups, or ligands that have a linking moiety attached thereto.


The oligonucleotides used in the conjugates of the present invention may be conveniently and routinely made through the well-known technique of solid-phase synthesis. Equipment for such synthesis is sold by several vendors including, for example, Applied Biosystems (Foster City, Calif.). Any other means for such synthesis known in the art may additionally or alternatively be employed. It is also known to use similar techniques to prepare other oligonucleotides, such as the phosphorothioates and alkylated derivatives.


In the ligand-conjugated oligonucleotides and ligand-molecule bearing sequence-specific linked nucleosides of the present invention, the oligonucleotides and oligonucleosides may be assembled on a suitable DNA synthesizer utilizing standard nucleotide or nucleoside precursors, or nucleotide or nucleoside conjugate precursors that already bear the linking moiety, ligand-nucleotide or nucleoside-conjugate precursors that already bear the ligand molecule, or non-nucleoside ligand-bearing building blocks.


When using nucleotide-conjugate precursors that already bear a linking moiety, the synthesis of the sequence-specific linked nucleosides is typically completed, and the ligand molecule is then reacted with the linking moiety to form the ligand-conjugated oligonucleotide. In some embodiments, the oligonucleotides or linked nucleosides of the present invention are synthesized by an automated synthesizer using phosphoramidites derived from ligand-nucleoside conjugates in addition to the standard phosphoramidites and non-standard phosphoramidites that are commercially available and routinely used in oligonucleotide synthesis.


Lipid Conjugates


In one embodiment, the ligand is a lipid or lipid-based molecule. Such a lipid or lipid-based molecule can typically bind a serum protein, such as human serum albumin (HSA). An HSA binding ligand allows for distribution of the conjugate to a target tissue, e.g., a non-kidney target tissue of the body. For example, the target tissue can be the liver, including parenchymal cells of the liver. Other molecules that can bind HSA can also be used as ligands. For example, neproxin or aspirin can be used. A lipid or lipid-based ligand can (a) increase resistance to degradation of the conjugate, (b) increase targeting or transport into a target cell or cell membrane, and/or (c) can be used to adjust binding to a serum protein, e.g., HSA.


A lipid based ligand can be used to modulate, e.g., control (e.g., inhibit) the binding of the conjugate to a target tissue. For example, a lipid or lipid-based ligand that binds to HSA more strongly will be less likely to be targeted to the kidney and therefore less likely to be cleared from the body. A lipid or lipid-based ligand that binds to HSA less strongly can be used to target the conjugate to the kidney.


In one embodiment, the lipid based ligand binds HSA. For example, the ligand can bind HSA with a sufficient affinity such that distribution of the conjugate to a non-kidney tissue is enhanced. However, the affinity is typically not so strong that the HSA-ligand binding cannot be reversed.


In another embodiment, the lipid based ligand binds HSA weakly or not at all, such that distribution of the conjugate to the kidney is enhanced. Other moieties that target to kidney cells can also be used in place of or in addition to the lipid based ligand.


In another aspect, the ligand is a moiety, e.g., a vitamin, which is taken up by a target cell, e.g., a proliferating cell. These are particularly useful for treating disorders characterized by unwanted cell proliferation, e.g., of the malignant or non-malignant type, e.g., cancer cells. Exemplary vitamins include vitamin A, E, and K. Other exemplary vitamins include are B vitamin, e.g., folic acid, B12, riboflavin, biotin, pyridoxal or other vitamins or nutrients taken up by cancer cells. Also included are HSA and low density lipoprotein (LDL).


Cell Permeation Agents


In another aspect, the ligand is a cell-permeation agent, such as a helical cell-permeation agent. In one embodiment, the agent is amphipathic. An exemplary agent is a peptide such as tat or antennopedia. If the agent is a peptide, it can be modified, including a peptidylmimetic, invertomers, non-peptide or pseudo-peptide linkages, and use of D-amino acids. The helical agent is typically an α-helical agent, and can have a lipophilic and a lipophobic phase.


The ligand can be a peptide or peptidomimetic. A peptidomimetic (also referred to herein as an oligopeptidomimetic) is a molecule capable of folding into a defined three-dimensional structure similar to a natural peptide. The attachment of peptide and peptidomimetics to iRNA agents can affect pharmacokinetic distribution of the iRNA, such as by enhancing cellular recognition and absorption. The peptide or peptidomimetic moiety can be about 5-50 amino acids long, e.g., about 5, 10, 15, 20, 25, 30, 35, 40, 45, or 50 amino acids long.


A peptide or peptidomimetic can be, for example, a cell permeation peptide, cationic peptide, amphipathic peptide, or hydrophobic peptide (e.g., consisting primarily of Tyr, Trp or Phe). The peptide moiety can be a dendrimer peptide, constrained peptide or crosslinked peptide. In another alternative, the peptide moiety can include a hydrophobic membrane translocation sequence (MTS). An exemplary hydrophobic MTS-containing peptide is RFGF having the amino acid sequence AAVALLPAVLLALLAP (SEQ ID NO:3367). An RFGF analogue (e.g., amino acid sequence AALLPVLLAAP (SEQ ID NO:3368)) containing a hydrophobic MTS can also be a targeting moiety. The peptide moiety can be a “delivery” peptide, which can carry large polar molecules including peptides, oligonucleotides, and protein across cell membranes. For example, sequences from the HIV Tat protein (GRKKRRQRRRPPQ (SEQ ID NO:3369)) and the Drosophila Antennapedia protein (RQIKIWFQNRRMKWKK (SEQ ID NO: 3370)) have been found to be capable of functioning as delivery peptides. A peptide or peptidomimetic can be encoded by a random sequence of DNA, such as a peptide identified from a phage-display library, or one-bead-one-compound (OBOC) combinatorial library (Lam et al., Nature, 354:82-84, 1991). Typically, the peptide or peptidomimetic tethered to a dsRNA agent via an incorporated monomer unit is a cell targeting peptide such as an arginine-glycine-aspartic acid (RGD)-peptide, or RGD mimic. A peptide moiety can range in length from about 5 amino acids to about 40 amino acids. The peptide moieties can have a structural modification, such as to increase stability or direct conformational properties. Any of the structural modifications described below can be utilized.


An RGD peptide for use in the compositions and methods of the invention may be linear or cyclic, and may be modified, e.g., glycosylated or methylated, to facilitate targeting to a specific tissue(s). RGD-containing peptides and peptidomimetics may include D-amino acids, as well as synthetic RGD mimics. In addition to RGD, one can use other moieties that target the integrin ligand. Preferred conjugates of this ligand target PECAM-1 or VEGF.


An RGD peptide moiety can be used to target a particular cell type, e.g., a tumor cell, such as an endothelial tumor cell or a breast cancer tumor cell (Zitzmann et al., Cancer Res., 62:5139-43, 2002). An RGD peptide can facilitate targeting of an dsRNA agent to tumors of a variety of other tissues, including the lung, kidney, spleen, or liver (Aoki et al., Cancer Gene Therapy 8:783-787, 2001). Typically, the RGD peptide will facilitate targeting of an iRNA agent to the kidney. The RGD peptide can be linear or cyclic, and can be modified, e.g., glycosylated or methylated to facilitate targeting to specific tissues. For example, a glycosylated RGD peptide can deliver a iRNA agent to a tumor cell expressing αvβ3 (Haubner et al., Jour. Nucl. Med., 42:326-336, 2001).


A “cell permeation peptide” is capable of permeating a cell, e.g., a microbial cell, such as a bacterial or fungal cell, or a mammalian cell, such as a human cell. A microbial cell-permeating peptide can be, for example, an α-helical linear peptide (e.g., LL-37 or Ceropin P1), a disulfide bond-containing peptide (e.g., α-defensin, β-defensin or bactenecin), or a peptide containing only one or two dominating amino acids (e.g., PR-39 or indolicidin). A cell permeation peptide can also include a nuclear localization signal (NLS). For example, a cell permeation peptide can be a bipartite amphipathic peptide, such as MPG, which is derived from the fusion peptide domain of HIV-1 gp41 and the NLS of SV40 large T antigen (Simeoni et al., Nucl. Acids Res. 31:2717-2724, 2003).


Carbohydrate Conjugates


In some embodiments of the compositions and methods of the invention, an iRNA oligonucleotide further comprises a carbohydrate. The carbohydrate conjugated iRNA are advantageous for the in vivo delivery of nucleic acids, as well as compositions suitable for in vivo therapeutic use, as described herein. As used herein, “carbohydrate” refers to a compound which is either a carbohydrate per se made up of one or more monosaccharide units having at least 6 carbon atoms (which can be linear, branched or cyclic) with an oxygen, nitrogen or sulfur atom bonded to each carbon atom; or a compound having as a part thereof a carbohydrate moiety made up of one or more monosaccharide units each having at least six carbon atoms (which can be linear, branched or cyclic), with an oxygen, nitrogen or sulfur atom bonded to each carbon atom. Representative carbohydrates include the sugars (mono-, di-, tri- and oligosaccharides containing from about 4, 5, 6, 7, 8, or 9 monosaccharide units), and polysaccharides such as starches, glycogen, cellulose and polysaccharide gums. Specific monosaccharides include C5 and above (e.g., C5, C6, C7, or C8) sugars; di- and trisaccharides include sugars having two or three monosaccharide units (e.g., C5, C6, C7, or C8).


In one embodiment, a carbohydrate conjugate comprises a monosaccharide. In one embodiment, the monosaccharide is an N-acetylgalactosamine (GalNAc). GalNAc conjugates are described, for example, in U.S. Pat. No. 8,106,022, the entire content of which is hereby incorporated herein by reference. In some embodiments, the GalNAc conjugate serves as a ligand that targets the iRNA to particular cells. In some embodiments, the GalNAc conjugate targets the iRNA to liver cells, e.g., by serving as a ligand for the asialoglycoprotein receptor of liver cells (e.g., hepatocytes).


In some embodiments, the carbohydrate conjugate comprises one or more GalNAc derivatives. The GalNAc derivatives may be attached via a linker, e.g., a bivalent or trivalent branched linker. In some embodiments the GalNAc conjugate is conjugated to the 3′ end of the sense strand. In some embodiments, the GalNAc conjugate is conjugated to the iRNA agent (e.g., to the 3′ end of the sense strand) via a linker, e.g., a linker as described herein.


In some embodiments, the GalNAc conjugate is




embedded image


In some embodiments, the RNAi agent is attached to the carbohydrate conjugate via a linker as shown in the following schematic, wherein X is O or S




embedded image


In some embodiments, the RNAi agent is conjugated to L96 as defined in Table 1 and shown below




embedded image


In some embodiments, a carbohydrate conjugate for use in the compositions and methods of the invention is selected from the group consisting of:




embedded image


embedded image


embedded image


embedded image


Another representative carbohydrate conjugate for use in the embodiments described herein includes, but is not limited to,




embedded image


(Formula XXIII), when one of X or Y is an oligonucleotide, the other is a hydrogen.


In some embodiments, the carbohydrate conjugate further comprises one or more additional ligands as described above, such as, but not limited to, a PK modulator and/or a cell permeation peptide.


In one embodiment, an iRNA of the invention is conjugated to a carbohydrate through a linker. Non-limiting examples of iRNA carbohydrate conjugates with linkers of the compositions and methods of the invention include, but are not limited to,




embedded image


embedded image



(Formula XXX), when one of X or Y is an oligonucleotide, the other is a hydrogen.


Linkers


In some embodiments, the conjugate or ligand described herein can be attached to an iRNA oligonucleotide with various linkers that can be cleavable or non-cleavable.


The term “linker” or “linking group” means an organic moiety that connects two parts of a compound, e.g., covalently attaches two parts of a compound. Linkers typically comprise a direct bond or an atom such as oxygen or sulfur, a unit such as NRB, C(O), C(O)NH, SO, SO2, SO2NH or a chain of atoms, such as, but not limited to, substituted or unsubstituted alkyl, substituted or unsubstituted alkenyl, substituted or unsubstituted alkynyl, arylalkyl, arylalkenyl, arylalkynyl, heteroarylalkyl, heteroarylalkenyl, heteroarylalkynyl, heterocyclylalkyl, heterocyclylalkenyl, heterocyclylalkynyl, aryl, heteroaryl, heterocyclyl, cycloalkyl, cycloalkenyl, alkylarylalkyl, alkylarylalkenyl, alkylarylalkynyl, alkenylarylalkyl, alkenylarylalkenyl, alkenylarylalkynyl, alkynylarylalkyl, alkynylarylalkenyl, alkynylarylalkynyl, alkylheteroarylalkyl, alkylheteroarylalkenyl, alkylheteroarylalkynyl, alkenylheteroarylalkyl, alkenylheteroarylalkenyl, alkenylheteroarylalkynyl, alkynylheteroarylalkyl, alkynylheteroarylalkenyl, alkynylheteroarylalkynyl, alkylheterocyclylalkyl, alkylheterocyclylalkenyl, alkylhererocyclylalkynyl, alkenylheterocyclylalkyl, alkenylheterocyclylalkenyl, alkenylheterocyclylalkynyl, alkynylheterocyclylalkyl, alkynylheterocyclylalkenyl, alkynylheterocyclylalkynyl, alkylaryl, alkenylaryl, alkynylaryl, alkylheteroaryl, alkenylheteroaryl, alkynylhereroaryl, which one or more methylenes can be interrupted or terminated by O, S, S(O), SO2, N(R8), C(O), substituted or unsubstituted aryl, substituted or unsubstituted heteroaryl, substituted or unsubstituted heterocyclic; where R8 is hydrogen, acyl, aliphatic or substituted aliphatic. In one embodiment, the linker is between about 1-24 atoms, 2-24, 3-24, 4-24, 5-24, 6-24, 6-18, 7-18, 8-18 atoms, 7-17, 8-17, 6-16, 7-16, or 8-16 atoms.


In one embodiment, a dsRNA of the invention is conjugated to a bivalent or trivalent branched linker selected from the group of structures shown in any of formula (XXXI)-(XXXIV):




embedded image



wherein:


q2A, q2B, q3A, q3B, q4A, q4B, q5A, q5B and q5C represent independently for each occurrence 0-20 and wherein the repeating unit can be the same or different;


P2A, P2B, P3A, P3B, P4A, P4B, P5A, P5B, P5C, T2A, T2B, T3A, T3B, T4A, T4B, T4A, T5B, T5C are each independently for each occurrence absent, CO, NH, O, S, OC(O), NHC(O), CH2, CH2NH or CH2O;


Q2A, Q2B, Q3A, Q3B, Q4A, Q4B, Q5A, Q5B, Q5C are independently for each occurrence absent, alkylene, substituted alkylene wherein one or more methylenes can be interrupted or terminated by one or more of O, S, S(O), SO2, N(RN), C(R′)═C(R″), C≡C or C(O);


R2A, R2B, R3A, R3B, R4A, R4B, R5A, R5B, R5C are each independently for each occurrence absent, NH, O, S, CH2, C(O)O, C(O)NH, NHCH(Ra)C(O), —C(O)—CH(Ra)—NH—, CO, CH═N—O,




embedded image



or heterocyclyl;


L2A, L2B, L3A, L3B, L4A, L4B, L5A, L5B and L5C represent the ligand; i.e. each independently for each occurrence a monosaccharide (such as GalNAc), disaccharide, trisaccharide, tetrasaccharide, oligosaccharide, or polysaccharide; and Ra is H or amino acid side chain. Trivalent conjugating GalNAc derivatives are particularly useful for use with RNAi agents for inhibiting the expression of a target gene, such as those of formula (XXXV):




embedded image




    • wherein L5A, L5B and L5C represent a monosaccharide, such as GalNAc derivative.





Examples of suitable bivalent and trivalent branched linker groups conjugating GalNAc derivatives include, but are not limited to, the structures recited above as formulas II, VII, XI, X, and XIII.


A cleavable linking group is one which is sufficiently stable outside the cell, but which upon entry into a target cell is cleaved to release the two parts the linker is holding together. In a preferred embodiment, the cleavable linking group is cleaved at least about 10 times, 20, times, 30 times, 40 times, 50 times, 60 times, 70 times, 80 times, 90 times or more, or at least about 100 times faster in a target cell or under a first reference condition (which can, e.g., be selected to mimic or represent intracellular conditions) than in the blood of a subject, or under a second reference condition (which can, e.g., be selected to mimic or represent conditions found in the blood or serum).


Cleavable linking groups are susceptible to cleavage agents, e.g., pH, redox potential or the presence of degradative molecules. Generally, cleavage agents are more prevalent or found at higher levels or activities inside cells than in serum or blood. Examples of such degradative agents include: redox agents which are selected for particular substrates or which have no substrate specificity, including, e.g., oxidative or reductive enzymes or reductive agents such as mercaptans, present in cells, that can degrade a redox cleavable linking group by reduction; esterases; endosomes or agents that can create an acidic environment, e.g., those that result in a pH of five or lower; enzymes that can hydrolyze or degrade an acid cleavable linking group by acting as a general acid, peptidases (which can be substrate specific), and phosphatases.


A cleavable linkage group, such as a disulfide bond can be susceptible to pH. The pH of human serum is 7.4, while the average intracellular pH is slightly lower, ranging from about 7.1-7.3. Endosomes have a more acidic pH, in the range of 5.5-6.0, and lysosomes have an even more acidic pH at around 5.0. Some linkers will have a cleavable linking group that is cleaved at a preferred pH, thereby releasing a cationic lipid from the ligand inside the cell, or into the desired compartment of the cell.


A linker can include a cleavable linking group that is cleavable by a particular enzyme. The type of cleavable linking group incorporated into a linker can depend on the cell to be targeted. For example, a liver-targeting ligand can be linked to a cationic lipid through a linker that includes an ester group. Liver cells are rich in esterases, and therefore the linker will be cleaved more efficiently in liver cells than in cell types that are not esterase-rich. Other cell-types rich in esterases include cells of the lung, renal cortex, and testis.


Linkers that contain peptide bonds can be used when targeting cell types rich in peptidases, such as liver cells and synoviocytes.


In general, the suitability of a candidate cleavable linking group can be evaluated by testing the ability of a degradative agent (or condition) to cleave the candidate linking group. It will also be desirable to also test the candidate cleavable linking group for the ability to resist cleavage in the blood or when in contact with other non-target tissue. Thus, one can determine the relative susceptibility to cleavage between a first and a second condition, where the first is selected to be indicative of cleavage in a target cell and the second is selected to be indicative of cleavage in other tissues or biological fluids, e.g., blood or serum. The evaluations can be carried out in cell free systems, in cells, in cell culture, in organ or tissue culture, or in whole animals. It can be useful to make initial evaluations in cell-free or culture conditions and to confirm by further evaluations in whole animals. In preferred embodiments, useful candidate compounds are cleaved at least about 2, 4, 10, 20, 30, 40, 50, 60, 70, 80, 90, or about 100 times faster in the cell (or under in vitro conditions selected to mimic intracellular conditions) as compared to blood or serum (or under in vitro conditions selected to mimic extracellular conditions).


Redox Cleavable Linking Groups


In one embodiment, a cleavable linking group is a redox cleavable linking group that is cleaved upon reduction or oxidation. An example of reductively cleavable linking group is a disulphide linking group (—S—S—). To determine if a candidate cleavable linking group is a suitable “reductively cleavable linking group,” or for example is suitable for use with a particular iRNA moiety and particular targeting agent one can look to methods described herein. For example, a candidate can be evaluated by incubation with dithiothreitol (DTT), or other reducing agent using reagents know in the art, which mimic the rate of cleavage which would be observed in a cell, e.g., a target cell. The candidates can also be evaluated under conditions which are selected to mimic blood or serum conditions. In one, candidate compounds are cleaved by at most about 10% in the blood. In other embodiments, useful candidate compounds are degraded at least about 2, 4, 10, 20, 30, 40, 50, 60, 70, 80, 90, or about 100 times faster in the cell (or under in vitro conditions selected to mimic intracellular conditions) as compared to blood (or under in vitro conditions selected to mimic extracellular conditions). The rate of cleavage of candidate compounds can be determined using standard enzyme kinetics assays under conditions chosen to mimic intracellular media and compared to conditions chosen to mimic extracellular media.


Phosphate-Based Cleavable Linking Groups


In another embodiment, a cleavable linker comprises a phosphate-based cleavable linking group. A phosphate-based cleavable linking group is cleaved by agents that degrade or hydrolyze the phosphate group. An example of an agent that cleaves phosphate groups in cells are enzymes such as phosphatases in cells. Examples of phosphate-based linking groups are —O—P(O)(ORk)-O—, —O—P(S)(ORk)-O—, —O—P(S)(SRk)-O—, —S—P(O)(ORk)-O—, —O—P(O)(ORk)-S—, —S—P(O)(ORk)-S—, —O—P(S)(ORk)-S—, —S—P(S)(ORk)-O—, —O—P(O)(Rk)-O—, —O—P(S)(Rk)-O—, —S—P(O)(Rk)-O—, —S—P(S)(Rk)-O—, —S—P(O)(Rk)-S—, —O—P(S)(Rk)-S—. Preferred embodiments are —O—P(O)(OH)—O—, —O—P(S)(OH)—O—, —O—P(S)(SH)—O—, —S—P(O)(OH)—O—, —O—P(O)(OH)—S—, —S—P(O)(OH)—S—, —O—P(S)(OH)—S—, —S—P(S)(OH)—O—, —O—P(O)(H)—O—, —O—P(S)(H)—O—, —S—P(O)(H)—O, —S—P(S)(H)—O—, —S—P(O)(H)—S—, —O—P(S)(H)—S—. A preferred embodiment is —O—P(O)(OH)—O—. These candidates can be evaluated using methods analogous to those described above.


Acid Cleavable Linking Groups


In another embodiment, a cleavable linker comprises an acid cleavable linking group. An acid cleavable linking group is a linking group that is cleaved under acidic conditions. In preferred embodiments acid cleavable linking groups are cleaved in an acidic environment with a pH of about 6.5 or lower (e.g., about 6.0, 5.75, 5.5, 5.25, 5.0, or lower), or by agents such as enzymes that can act as a general acid. In a cell, specific low pH organelles, such as endosomes and lysosomes can provide a cleaving environment for acid cleavable linking groups. Examples of acid cleavable linking groups include but are not limited to hydrazones, esters, and esters of amino acids. Acid cleavable groups can have the general formula —C═NN—, C(O)O, or —OC(O). A preferred embodiment is when the carbon attached to the oxygen of the ester (the alkoxy group) is an aryl group, substituted alkyl group, or tertiary alkyl group such as dimethyl pentyl or t-butyl. These candidates can be evaluated using methods analogous to those described above.


Ester-Based Cleavable Linking Groups


In another embodiment, a cleavable linker comprises an ester-based cleavable linking group. An ester-based cleavable linking group is cleaved by enzymes such as esterases and amidases in cells. Examples of ester-based cleavable linking groups include but are not limited to esters of alkylene, alkenylene and alkynylene groups. Ester cleavable linking groups have the general formula —C(O)O—, or —OC(O)—. These candidates can be evaluated using methods analogous to those described above.


Peptide-Based Cleavable Linking Groups


In yet another embodiment, a cleavable linker comprises a peptide-based cleavable linking group. A peptide-based cleavable linking group is cleaved by enzymes such as peptidases and proteases in cells. Peptide-based cleavable linking groups are peptide bonds formed between amino acids to yield oligopeptides (e.g., dipeptides, tripeptides etc.) and polypeptides. Peptide-based cleavable groups do not include the amide group (—C(O)NH—). The amide group can be formed between any alkylene, alkenylene or alkynylene. A peptide bond is a special type of amide bond formed between amino acids to yield peptides and proteins. The peptide based cleavage group is generally limited to the peptide bond (i.e., the amide bond) formed between amino acids yielding peptides and proteins and does not include the entire amide functional group. Peptide-based cleavable linking groups have the general formula —NHCHRAC(O)NHCHRBC(O)—, where RA and RB are the R groups of the two adjacent amino acids. These candidates can be evaluated using methods analogous to those described above.


Representative U.S. patents that teach the preparation of RNA conjugates include, but are not limited to, U.S. Pat. Nos. 4,828,979; 4,948,882; 5,218,105; 5,525,465; 5,541,313; 5,545,730; 5,552,538; 5,578,717, 5,580,731; 5,591,584; 5,109,124; 5,118,802; 5,138,045; 5,414,077; 5,486,603; 5,512,439; 5,578,718; 5,608,046; 4,587,044; 4,605,735; 4,667,025; 4,762,779; 4,789,737; 4,824,941; 4,835,263; 4,876,335; 4,904,582; 4,958,013; 5,082,830; 5,112,963; 5,214,136; 5,082,830; 5,112,963; 5,214,136; 5,245,022; 5,254,469; 5,258,506; 5,262,536; 5,272,250; 5,292,873; 5,317,098; 5,371,241, 5,391,723; 5,416,203, 5,451,463; 5,510,475; 5,512,667; 5,514,785; 5,565,552; 5,567,810; 5,574,142; 5,585,481; 5,587,371; 5,595,726; 5,597,696; 5,599,923; 5,599,928 and 5,688,941; 6,294,664; 6,320,017; 6,576,752; 6,783,931; 6,900,297; 7,037,646; 8,106,022, the entire contents of each of which is herein incorporated by reference.


It is not necessary for all positions in a given compound to be uniformly modified, and in fact more than one of the aforementioned modifications may be incorporated in a single compound or even at a single nucleoside within an iRNA. The present invention also includes iRNA compounds that are chimeric compounds.


“Chimeric” iRNA compounds, or “chimeras,” in the context of the present invention, are iRNA compounds, e.g., dsRNAs, that contain two or more chemically distinct regions, each made up of at least one monomer unit, i.e., a nucleotide in the case of a dsRNA compound. These iRNAs typically contain at least one region wherein the RNA is modified so as to confer upon the iRNA increased resistance to nuclease degradation, increased cellular uptake, and/or increased binding affinity for the target nucleic acid. An additional region of the iRNA may serve as a substrate for enzymes capable of cleaving RNA:DNA or RNA:RNA hybrids. By way of example, RNase H is a cellular endonuclease which cleaves the RNA strand of an RNA:DNA duplex. Activation of RNase H, therefore, results in cleavage of the RNA target, thereby greatly enhancing the efficiency of iRNA inhibition of gene expression. Consequently, comparable results can often be obtained with shorter iRNAs when chimeric dsRNAs are used, compared to phosphorothioate deoxy dsRNAs hybridizing to the same target region. Cleavage of the RNA target can be routinely detected by gel electrophoresis and, if necessary, associated nucleic acid hybridization techniques known in the art.


In certain instances, the RNA of an iRNA can be modified by a non-ligand group. A number of non-ligand molecules have been conjugated to iRNAs in order to enhance the activity, cellular distribution or cellular uptake of the iRNA, and procedures for performing such conjugations are available in the scientific literature. Such non-ligand moieties have included lipid moieties, such as cholesterol (Kubo, T. et al., Biochem. Biophys. Res. Comm., 2007, 365(1):54-61; Letsinger et al., Proc. Natl. Acad. Sci. USA, 1989, 86:6553), cholic acid (Manoharan et al., Bioorg. Med. Chem. Lett., 1994, 4:1053), a thioether, e.g., hexyl-S-tritylthiol (Manoharan et al., Ann. N.Y. Acad. Sci., 1992, 660:306; Manoharan et al., Bioorg. Med. Chem. Let., 1993, 3:2765), a thiocholesterol (Oberhauser et al., Nucl. Acids Res., 1992, 20:533), an aliphatic chain, e.g., dodecandiol or undecyl residues (Saison-Behmoaras et al., EMBO J., 1991, 10:111; Kabanov et al., FEBS Lett., 1990, 259:327; Svinarchuk et al., Biochimie, 1993, 75:49), a phospholipid, e.g., di-hexadecyl-rac-glycerol or triethylammonium 1,2-di-O-hexadecyl-rac-glycero-3-H-phosphonate (Manoharan et al., Tetrahedron Lett., 1995, 36:3651; Shea et al., Nucl. Acids Res., 1990, 18:3777), a polyamine or a polyethylene glycol chain (Manoharan et al., Nucleosides & Nucleotides, 1995, 14:969), or adamantane acetic acid (Manoharan et al., Tetrahedron Lett., 1995, 36:3651), a palmityl moiety (Mishra et al., Biochim. Biophys. Acta, 1995, 1264:229), or an octadecylamine or hexylamino-carbonyl-oxycholesterol moiety (Crooke et al., J. Pharmacol. Exp. Ther., 1996, 277:923). Representative United States patents that teach the preparation of such RNA conjugates have been listed above. Typical conjugation protocols involve the synthesis of an RNAs bearing an amino linker at one or more positions of the sequence. The amino group is then reacted with the molecule being conjugated using appropriate coupling or activating reagents. The conjugation reaction may be performed either with the RNA still bound to the solid support or following cleavage of the RNA, in solution phase. Purification of the RNA conjugate by HPLC typically affords the pure conjugate.


Delivery of iRNA


The delivery of an iRNA to a subject in need thereof can be achieved in a number of different ways. In vivo delivery can be performed directly by administering a composition comprising an iRNA, e.g. a dsRNA, to a subject. Alternatively, delivery can be performed indirectly by administering one or more vectors that encode and direct the expression of the iRNA. These alternatives are discussed further below.


Direct Delivery


In general, any method of delivering a nucleic acid molecule can be adapted for use with an iRNA (see e.g., Akhtar S. and Julian R L. (1992) Trends Cell. Biol. 2(5):139-144 and WO94/02595, which are incorporated herein by reference in their entireties). However, there are three factors that are important to consider in order to successfully deliver an iRNA molecule in vivo: (a) biological stability of the delivered molecule, (2) preventing non-specific effects, and (3) accumulation of the delivered molecule in the target tissue. The non-specific effects of an iRNA can be minimized by local administration, for example by direct injection or implantation into a tissue (as a non-limiting example, a tumor) or topically administering the preparation. Local administration to a treatment site maximizes local concentration of the agent, limits the exposure of the agent to systemic tissues that may otherwise be harmed by the agent or that may degrade the agent, and permits a lower total dose of the iRNA molecule to be administered. Several studies have shown successful knockdown of gene products when an iRNA is administered locally. For example, intraocular delivery of a VEGF dsRNA by intravitreal injection in cynomolgus monkeys (Tolentino, M J et al (2004) Retina 24:132-138) and subretinal injections in mice (Reich, S J., et al (2003) Mol. Vis. 9:210-216) were both shown to prevent neovascularization in an experimental model of age-related macular degeneration. In addition, direct intratumoral injection of a dsRNA in mice reduces tumor volume (Pille, J., et al (2005) Mol. Ther. 11:267-274) and can prolong survival of tumor-bearing mice (Kim, W J., et al (2006) Mol. Ther. 14:343-350; Li, S., et al (2007) Mol. Ther. 15:515-523). RNA interference has also shown success with local delivery to the CNS by direct injection (Dorn, G., et al. (2004) Nucleic Acids 32:e49; Tan, P H., et al (2005) Gene Ther. 12:59-66; Makimura, H., et al (2002) BMC Neurosci. 3:18; Shishkina, G T., et al (2004) Neuroscience 129:521-528; Thakker, E R., et al (2004) Proc. Natl. Acad. Sci. U.S.A. 101:17270-17275; Akaneya, Y., et al (2005) J. Neurophysiol. 93:594-602) and to the lungs by intranasal administration (Howard, K A., et al (2006) Mol. Ther. 14:476-484; Zhang, X., et al (2004) J. Biol. Chem. 279:10677-10684; Bitko, V., et al (2005) Nat. Med. 11:50-55). For administering an iRNA systemically for the treatment of a disease, the RNA can be modified or alternatively delivered using a drug delivery system; both methods act to prevent the rapid degradation of the dsRNA by endo- and exo-nucleases in vivo.


Modification of the RNA or the pharmaceutical carrier can also permit targeting of the iRNA composition to the target tissue and avoid undesirable off-target effects. iRNA molecules can be modified by chemical conjugation to other groups, e.g., a lipid or carbohydrate group as described herein. Such conjugates can be used to target iRNA to particular cells, e.g., liver cells, e.g., hepatocytes. For example, GalNAc conjugates or lipid (e.g., LNP) formulations can be used to target iRNA to particular cells, e.g., liver cells, e.g., hepatocytes.


Lipophilic groups such as cholesterol to enhance cellular uptake and prevent degradation. For example, an iRNA directed against ApoB conjugated to a lipophilic cholesterol moiety was injected systemically into mice and resulted in knockdown of apoB mRNA in both the liver and jejunum (Soutschek, J., et al (2004) Nature 432:173-178). Conjugation of an iRNA to an aptamer has been shown to inhibit tumor growth and mediate tumor regression in a mouse model of prostate cancer (McNamara, J O., et al (2006) Nat. Biotechnol. 24:1005-1015). In an alternative embodiment, the iRNA can be delivered using drug delivery systems such as a nanoparticle, a dendrimer, a polymer, liposomes, or a cationic delivery system. Positively charged cationic delivery systems facilitate binding of an iRNA molecule (negatively charged) and also enhance interactions at the negatively charged cell membrane to permit efficient uptake of an iRNA by the cell. Cationic lipids, dendrimers, or polymers can either be bound to an iRNA, or induced to form a vesicle or micelle (see e.g., Kim S H., et al (2008) Journal of Controlled Release 129(2):107-116) that encases an iRNA. The formation of vesicles or micelles further prevents degradation of the iRNA when administered systemically. Methods for making and administering cationic-iRNA complexes are well within the abilities of one skilled in the art (see e.g., Sorensen, D R., et al (2003) J. Mol. Biol 327:761-766; Verma, U N., et al (2003) Clin. Cancer Res. 9:1291-1300; Arnold, A S et al (2007) J. Hypertens. 25:197-205, which are incorporated herein by reference in their entirety). Some non-limiting examples of drug delivery systems useful for systemic delivery of iRNAs include DOTAP (Sorensen, D R., et al (2003), supra; Verma, U N., et al (2003), supra), Oligofectamine, “solid nucleic acid lipid particles” (Zimmermann, T S., et al (2006) Nature 441:111-114), cardiolipin (Chien, P Y., et al (2005) Cancer Gene Ther. 12:321-328; Pal, A., et al (2005) Int J. Oncol. 26:1087-1091), polyethyleneimine (Bonnet M E., et al (2008) Pharm. Res. August 16 Epub ahead of print; Aigner, A. (2006) J. Biomed. Biotechnol. 71659), Arg-Gly-Asp (RGD) peptides (Liu, S. (2006) Mol. Pharm. 3:472-487), and polyamidoamines (Tomalia, D A., et al (2007) Biochem. Soc. Trans. 35:61-67; Yoo, H., et al (1999) Pharm. Res. 16:1799-1804). In some embodiments, an iRNA forms a complex with cyclodextrin for systemic administration. Methods for administration and pharmaceutical compositions of iRNAs and cyclodextrins can be found in U.S. Pat. No. 7,427,605, which is herein incorporated by reference in its entirety.


Vector Encoded iRNAs


In another aspect, iRNA targeting the ALAS1 gene can be expressed from transcription units inserted into DNA or RNA vectors (see, e.g., Couture, A, et al., TIG. (1996), 12:5-10; Skillern, A., et al., International PCT Publication No. WO 00/22113, Conrad, International PCT Publication No. WO 00/22114, and Conrad, U.S. Pat. No. 6,054,299). Expression can be transient (on the order of hours to weeks) or sustained (weeks to months or longer), depending upon the specific construct used and the target tissue or cell type. These transgenes can be introduced as a linear construct, a circular plasmid, or a viral vector, which can be an integrating or non-integrating vector. The transgene can also be constructed to permit it to be inherited as an extrachromosomal plasmid (Gassmann, et al., Proc. Natl. Acad. Sci. USA (1995) 92:1292).


The individual strand or strands of an iRNA can be transcribed from a promoter on an expression vector. Where two separate strands are to be expressed to generate, for example, a dsRNA, two separate expression vectors can be co-introduced (e.g., by transfection or infection) into a target cell. Alternatively each individual strand of a dsRNA can be transcribed by promoters both of which are located on the same expression plasmid. In one embodiment, a dsRNA is expressed as an inverted repeat joined by a linker polynucleotide sequence such that the dsRNA has a stem and loop structure.


An iRNA expression vector is typically a DNA plasmid or viral vector. An expression vector compatible with eukaryotic cells, e.g., with vertebrate cells, can be used to produce recombinant constructs for the expression of an iRNA as described herein. Eukaryotic cell expression vectors are well known in the art and are available from a number of commercial sources. Typically, such vectors contain convenient restriction sites for insertion of the desired nucleic acid segment. Delivery of iRNA expressing vectors can be systemic, such as by intravenous or intramuscular administration, by administration to target cells ex-planted from the patient followed by reintroduction into the patient, or by any other means that allows for introduction into a desired target cell.


An iRNA expression plasmid can be transfected into a target cell as a complex with a cationic lipid carrier (e.g., Oligofectamine) or a non-cationic lipid-based carrier (e.g., Transit-TKO™). Multiple lipid transfections for iRNA-mediated knockdowns targeting different regions of a target RNA over a period of a week or more are also contemplated by the invention. Successful introduction of vectors into host cells can be monitored using various known methods. For example, transient transfection can be signaled with a reporter, such as a fluorescent marker, such as Green Fluorescent Protein (GFP). Stable transfection of cells ex vivo can be ensured using markers that provide the transfected cell with resistance to specific environmental factors (e.g., antibiotics and drugs), such as hygromycin B resistance.


Viral vector systems which can be utilized with the methods and compositions described herein include, but are not limited to, (a) adenovirus vectors; (b) retrovirus vectors, including but not limited to lentiviral vectors, moloney murine leukemia virus, etc.; (c) adeno-associated virus vectors; (d) herpes simplex virus vectors; (e) SV40 vectors; (f) polyoma virus vectors; (g) papilloma virus vectors; (h) picornavirus vectors; (i) pox virus vectors such as an orthopox, e.g., vaccinia virus vectors or avipox, e.g. canary pox or fowl pox; and (j) a helper-dependent or gutless adenovirus. Replication-defective viruses can also be advantageous. Different vectors will or will not become incorporated into the cells' genome. The constructs can include viral sequences for transfection, if desired. Alternatively, the construct may be incorporated into vectors capable of episomal replication, e.g EPV and EBV vectors. Constructs for the recombinant expression of an iRNA will generally require regulatory elements, e.g., promoters, enhancers, etc., to ensure the expression of the iRNA in target cells. Other aspects to consider for vectors and constructs are further described below.


Vectors useful for the delivery of an iRNA will include regulatory elements (promoter, enhancer, etc.) sufficient for expression of the iRNA in the desired target cell or tissue. The regulatory elements can be chosen to provide either constitutive or regulated/inducible expression.


Expression of the iRNA can be precisely regulated, for example, by using an inducible regulatory sequence that is sensitive to certain physiological regulators, e.g., circulating glucose levels, or hormones (Docherty et al., 1994, FASEB J. 8:20-24). Such inducible expression systems, suitable for the control of dsRNA expression in cells or in mammals include, for example, regulation by ecdysone, by estrogen, progesterone, tetracycline, chemical inducers of dimerization, and isopropyl-β-D1-thiogalactopyranoside (IPTG). A person skilled in the art would be able to choose the appropriate regulatory/promoter sequence based on the intended use of the iRNA transgene.


In a specific embodiment, viral vectors that contain nucleic acid sequences encoding an iRNA can be used. For example, a retroviral vector can be used (see Miller et al., Meth. Enzymol. 217:581-599 (1993)). These retroviral vectors contain the components necessary for the correct packaging of the viral genome and integration into the host cell DNA. The nucleic acid sequences encoding an iRNA are cloned into one or more vectors, which facilitates delivery of the nucleic acid into a patient. More detail about retroviral vectors can be found, for example, in Boesen et al., Biotherapy 6:291-302 (1994), which describes the use of a retroviral vector to deliver the mdr1 gene to hematopoietic stem cells in order to make the stem cells more resistant to chemotherapy. Other references illustrating the use of retroviral vectors in gene therapy are: Clowes et al., J. Clin. Invest. 93:644-651 (1994); Kiem et al., Blood 83:1467-1473 (1994); Salmons and Gunzberg, Human Gene Therapy 4:129-141 (1993); and Grossman and Wilson, Curr. Opin. in Genetics and Devel. 3:110-114 (1993). Lentiviral vectors contemplated for use include, for example, the HIV based vectors described in U.S. Pat. Nos. 6,143,520; 5,665,557; and 5,981,276, which are herein incorporated by reference.


Adenoviruses are also contemplated for use in delivery of iRNAs. Adenoviruses are especially attractive vehicles, e.g., for delivering genes to respiratory epithelia. Adenoviruses naturally infect respiratory epithelia where they cause a mild disease. Other targets for adenovirus-based delivery systems are liver, the central nervous system, endothelial cells, and muscle. Adenoviruses have the advantage of being capable of infecting non-dividing cells. Kozarsky and Wilson, Current Opinion in Genetics and Development 3:499-503 (1993) present a review of adenovirus-based gene therapy. Bout et al., Human Gene Therapy 5:3-10 (1994) demonstrated the use of adenovirus vectors to transfer genes to the respiratory epithelia of rhesus monkeys. Other instances of the use of adenoviruses in gene therapy can be found in Rosenfeld et al., Science 252:431-434 (1991); Rosenfeld et al., Cell 68:143-155 (1992); Mastrangeli et al., J. Clin. Invest. 91:225-234 (1993); PCT Publication WO94/12649; and Wang, et al., Gene Therapy 2:775-783 (1995). A suitable AV vector for expressing an iRNA featured in the invention, a method for constructing the recombinant AV vector, and a method for delivering the vector into target cells, are described in Xia H et al. (2002), Nat. Biotech. 20: 1006-1010.


Use of Adeno-associated virus (AAV) vectors is also contemplated (Walsh et al., Proc. Soc. Exp. Biol. Med. 204:289-300 (1993); U.S. Pat. No. 5,436,146). In one embodiment, the iRNA can be expressed as two separate, complementary single-stranded RNA molecules from a recombinant AAV vector having, for example, either the U6 or H1 RNA promoters, or the cytomegalovirus (CMV) promoter. Suitable AAV vectors for expressing the dsRNA featured in the invention, methods for constructing the recombinant AV vector, and methods for delivering the vectors into target cells are described in Samulski R et al. (1987), J. Virol. 61: 3096-3101; Fisher K J et al. (1996), J. Virol, 70: 520-532; Samulski R et al. (1989), J. Virol. 63: 3822-3826; U.S. Pat. Nos. 5,252,479; 5,139,941; International Patent Application No. WO 94/13788; and International Patent Application No. WO 93/24641, the entire disclosures of which are herein incorporated by reference.


Another typical viral vector is a pox virus such as a vaccinia virus, for example an attenuated vaccinia such as Modified Virus Ankara (MVA) or NYVAC, an avipox such as fowl pox or canary pox.


The tropism of viral vectors can be modified by pseudotyping the vectors with envelope proteins or other surface antigens from other viruses, or by substituting different viral capsid proteins, as appropriate. For example, lentiviral vectors can be pseudotyped with surface proteins from vesicular stomatitis virus (VSV), rabies, Ebola, Mokola, and the like. AAV vectors can be made to target different cells by engineering the vectors to express different capsid protein serotypes; see, e.g., Rabinowitz J E et al. (2002), J Virol 76:791-801, the entire disclosure of which is herein incorporated by reference.


The pharmaceutical preparation of a vector can include the vector in an acceptable diluent, or can include a slow release matrix in which the gene delivery vehicle is imbedded. Alternatively, where the complete gene delivery vector can be produced intact from recombinant cells, e.g., retroviral vectors, the pharmaceutical preparation can include one or more cells which produce the gene delivery system.


III. Pharmaceutical Compositions Containing iRNA

In one embodiment, the invention provides pharmaceutical compositions containing an iRNA, as described herein, and a pharmaceutically acceptable carrier. The pharmaceutical composition containing the iRNA is useful for treating a disease or disorder related to the expression or activity of an ALAS1 gene (e.g., a disorder involving the porphyrin pathway). Such pharmaceutical compositions are formulated based on the mode of delivery. For example, compositions can be formulated for systemic administration via parenteral delivery, e.g., by intravenous (IV) delivery. In some embodiments, a composition provided herein (e.g., an LNP formulation) is formulated for intravenous delivery. In some embodiments, a composition provided herein (e.g., a composition comprising a GalNAc conjugate) is formulated for subcutaneous delivery.


The pharmaceutical compositions featured herein are administered in a dosage sufficient to inhibit expression of an ALAS1 gene. In general, a suitable dose of iRNA will be in the range of 0.01 to 200.0 milligrams per kilogram body weight of the recipient per day, generally in the range of 1 to 50 mg per kilogram body weight per day. For example, the dsRNA can be administered at 0.05 mg/kg, 0.5 mg/kg, 1 mg/kg, 1.5 mg/kg, 2 mg/kg, 3 mg/kg, 10 mg/kg, 20 mg/kg, 30 mg/kg, 40 mg/kg, or 50 mg/kg per single dose. The pharmaceutical composition may be administered once daily, or the iRNA may be administered as two, three, or more sub-doses at appropriate intervals throughout the day or even using continuous infusion or delivery through a controlled release formulation. In that case, the iRNA contained in each sub-dose must be correspondingly smaller in order to achieve the total daily dosage. The dosage unit can also be compounded for delivery over several days, e.g., using a conventional sustained release formulation which provides sustained release of the iRNA over a several day period. Sustained release formulations are well known in the art and are particularly useful for delivery of agents at a particular site, such as can be used with the agents of the present invention. In this embodiment, the dosage unit contains a corresponding multiple of the daily dose.


The effect of a single dose on ALAS1 levels can be long lasting, such that subsequent doses are administered at not more than 3, 4, or 5 day intervals, or at not more than 1, 2, 3, or 4 week intervals.


The skilled artisan will appreciate that certain factors may influence the dosage and timing required to effectively treat a subject, including but not limited to the severity of the disease or disorder, previous treatments, the general health and/or age of the subject, and other diseases present. Moreover, treatment of a subject with a therapeutically effective amount of a composition can include a single treatment or a series of treatments. Estimates of effective dosages and in vivo half-lives for the individual iRNAs encompassed by the invention can be made using conventional methodologies or on the basis of in vivo testing using an appropriate animal model, as described elsewhere herein.


Advances in mouse genetics have generated a number of mouse models for the study of various human diseases, such as pathological processes related to ALAS1 expression (e.g., pathological processes involving porphyrins or defects in the porphyrin pathway, such as, for example, porphyrias). Such models can be used for in vivo testing of iRNA, as well as for determining a therapeutically effective dose and/or an effective dosing regimen.


A suitable mouse model is, for example, a mouse containing a transgene expressing human ALAS1. Mice that have knock-in mutations (e.g., mutations that are associated with acute hepatic porphyrias in humans) can be used to determine the therapeutically effective dosage and/or duration of administration of ALAS1 siRNA. The present invention also includes pharmaceutical compositions and formulations that include the iRNA compounds featured in the invention. The pharmaceutical compositions of the present invention may be administered in a number of ways depending upon whether local or systemic treatment is desired and upon the area to be treated. Administration may be topical (e.g., by a transdermal patch), pulmonary, e.g., by inhalation or insufflation of powders or aerosols, including by nebulizer; intratracheal, intranasal, epidermal and transdermal, oral or parenteral. Parenteral administration includes intravenous, intraarterial, subcutaneous, intraperitoneal or intramuscular injection or infusion; subdermal, e.g., via an implanted device; or intracranial, e.g., by intraparenchymal, intrathecal or intraventricular, administration.


The iRNA can be delivered in a manner to target a particular tissue, such as a tissue that produces erythrocytes. For example, the iRNA can be delivered to bone marrow, liver (e.g., hepatocytes of liver), lymph glands, spleen, lungs (e.g., pleura of lungs) or spine. In one embodiment, the iRNA is delivered to bone marrow.


Pharmaceutical compositions and formulations for topical administration may include transdermal patches, ointments, lotions, creams, gels, drops, suppositories, sprays, liquids and powders. Conventional pharmaceutical carriers, aqueous, powder or oily bases, thickeners and the like may be necessary or desirable. Coated condoms, gloves and the like may also be useful. Suitable topical formulations include those in which the iRNAs featured in the invention are in admixture with a topical delivery agent such as lipids, liposomes, fatty acids, fatty acid esters, steroids, chelating agents and surfactants. Suitable lipids and liposomes include neutral (e.g., dioleoylphosphatidyl DOPE ethanolamine, dimyristoylphosphatidyl choline DMPC, distearolyphosphatidyl choline) negative (e.g., dimyristoylphosphatidyl glycerol DMPG) and cationic (e.g., dioleoyltetramethylaminopropyl DOTAP and dioleoylphosphatidyl ethanolamine DOTMA). iRNAs featured in the invention may be encapsulated within liposomes or may form complexes thereto, in particular to cationic liposomes. Alternatively, iRNAs may be complexed to lipids, in particular to cationic lipids. Suitable fatty acids and esters include but are not limited to arachidonic acid, oleic acid, eicosanoic acid, lauric acid, caprylic acid, capric acid, myristic acid, palmitic acid, stearic acid, linoleic acid, linolenic acid, dicaprate, tricaprate, monoolein, dilaurin, glyceryl 1-monocaprate, 1-dodecylazacycloheptan-2-one, an acylcarnitine, an acylcholine, or a C1-20 alkyl ester (e.g., isopropylmyristate IPM), monoglyceride, diglyceride or pharmaceutically acceptable salt thereof. Topical formulations are described in detail in U.S. Pat. No. 6,747,014, which is incorporated herein by reference.


Liposomal Formulations


There are many organized surfactant structures besides microemulsions that have been studied and used for the formulation of drugs. These include monolayers, micelles, bilayers and vesicles. Vesicles, such as liposomes, have attracted great interest because of their specificity and the duration of action they offer from the standpoint of drug delivery. As used in the present invention, the term “liposome” means a vesicle composed of amphiphilic lipids arranged in a spherical bilayer or bilayers.


Liposomes are unilamellar or multilamellar vesicles which have a membrane formed from a lipophilic material and an aqueous interior. The aqueous portion contains the composition to be delivered. Cationic liposomes possess the advantage of being able to fuse to the cell wall. Non-cationic liposomes, although not able to fuse as efficiently with the cell wall, are taken up by macrophages in vivo.


In order to traverse intact mammalian skin, lipid vesicles must pass through a series of fine pores, each with a diameter less than 50 nm, under the influence of a suitable transdermal gradient. Therefore, it is desirable to use a liposome which is highly deformable and able to pass through such fine pores.


Further advantages of liposomes include; liposomes obtained from natural phospholipids are biocompatible and biodegradable; liposomes can incorporate a wide range of water and lipid soluble drugs; liposomes can protect encapsulated drugs in their internal compartments from metabolism and degradation (Rosoff, in Pharmaceutical Dosage Forms, Lieberman, Rieger and Banker (Eds.), 1988, Marcel Dekker, Inc., New York, N.Y., volume 1, p. 245). Important considerations in the preparation of liposome formulations are the lipid surface charge, vesicle size and the aqueous volume of the liposomes.


Liposomes are useful for the transfer and delivery of active ingredients to the site of action. Because the liposomal membrane is structurally similar to biological membranes, when liposomes are applied to a tissue, the liposomes start to merge with the cellular membranes and as the merging of the liposome and cell progresses, the liposomal contents are emptied into the cell where the active agent may act.


Liposomal formulations have been the focus of extensive investigation as the mode of delivery for many drugs. There is growing evidence that for topical administration, liposomes present several advantages over other formulations. Such advantages include reduced side-effects related to high systemic absorption of the administered drug, increased accumulation of the administered drug at the desired target, and the ability to administer a wide variety of drugs, both hydrophilic and hydrophobic, into the skin.


Several reports have detailed the ability of liposomes to deliver agents including high-molecular weight DNA into the skin. Compounds including analgesics, antibodies, hormones and high-molecular weight DNAs have been administered to the skin. The majority of applications resulted in the targeting of the upper epidermis


Liposomes fall into two broad classes. Cationic liposomes are positively charged liposomes which interact with the negatively charged DNA molecules to form a stable complex. The positively charged DNA/liposome complex binds to the negatively charged cell surface and is internalized in an endosome. Due to the acidic pH within the endosome, the liposomes are ruptured, releasing their contents into the cell cytoplasm (Wang et al., Biochem. Biophys. Res. Commun., 1987, 147, 980-985).


Liposomes which are pH-sensitive or negatively-charged, entrap DNA rather than complex with it. Since both the DNA and the lipid are similarly charged, repulsion rather than complex formation occurs. Nevertheless, some DNA is entrapped within the aqueous interior of these liposomes. pH-sensitive liposomes have been used to deliver DNA encoding the thymidine kinase gene to cell monolayers in culture. Expression of the exogenous gene was detected in the target cells (Zhou et al., Journal of Controlled Release, 1992, 19, 269-274).


One major type of liposomal composition includes phospholipids other than naturally-derived phosphatidylcholine. Neutral liposome compositions, for example, can be formed from dimyristoyl phosphatidylcholine (DMPC) or dipalmitoyl phosphatidylcholine (DPPC). Anionic liposome compositions generally are formed from dimyristoyl phosphatidylglycerol, while anionic fusogenic liposomes are formed primarily from dioleoyl phosphatidylethanolamine (DOPE). Another type of liposomal composition is formed from phosphatidylcholine (PC) such as, for example, soybean PC, and egg PC. Another type is formed from mixtures of phospholipid and/or phosphatidylcholine and/or cholesterol.


Several studies have assessed the topical delivery of liposomal drug formulations to the skin. Application of liposomes containing interferon to guinea pig skin resulted in a reduction of skin herpes sores while delivery of interferon via other means (e.g., as a solution or as an emulsion) were ineffective (Weiner et al., Journal of Drug Targeting, 1992, 2, 405-410). Further, an additional study tested the efficacy of interferon administered as part of a liposomal formulation to the administration of interferon using an aqueous system, and concluded that the liposomal formulation was superior to aqueous administration (du Plessis et al., Antiviral Research, 1992, 18, 259-265).


Non-ionic liposomal systems have also been examined to determine their utility in the delivery of drugs to the skin, in particular systems comprising non-ionic surfactant and cholesterol. Non-ionic liposomal formulations comprising Novasome™ I (glyceryl dilaurate/cholesterol/polyoxyethylene-10-stearyl ether) and Novasome™ II (glyceryl distearate/cholesterol/polyoxyethylene-10-stearyl ether) were used to deliver cyclosporin-A into the dermis of mouse skin. Results indicated that such non-ionic liposomal systems were effective in facilitating the deposition of cyclosporin-A into different layers of the skin (Hu et al. S.T.P. Pharma. Sci., 1994, 4, 6, 466).


Liposomes also include “sterically stabilized” liposomes, a term which, as used herein, refers to liposomes comprising one or more specialized lipids that, when incorporated into liposomes, result in enhanced circulation lifetimes relative to liposomes lacking such specialized lipids. Examples of sterically stabilized liposomes are those in which part of the vesicle-forming lipid portion of the liposome (A) comprises one or more glycolipids, such as monosialoganglioside GM1, or (B) is derivatized with one or more hydrophilic polymers, such as a polyethylene glycol (PEG) moiety. While not wishing to be bound by any particular theory, it is thought in the art that, at least for sterically stabilized liposomes containing gangliosides, sphingomyelin, or PEG-derivatized lipids, the enhanced circulation half-life of these sterically stabilized liposomes derives from a reduced uptake into cells of the reticuloendothelial system (RES) (Allen et al., FEBS Letters, 1987, 223, 42; Wu et al., Cancer Research, 1993, 53, 3765).


Various liposomes comprising one or more glycolipids are known in the art. Papahadjopoulos et al. (Ann. N.Y. Acad. Sci., 1987, 507, 64) reported the ability of monosialoganglioside GM1, galactocerebroside sulfate and phosphatidylinositol to improve blood half-lives of liposomes. These findings were expounded upon by Gabizon et al. (Proc. Natl. Acad. Sci. U.S.A., 1988, 85, 6949). U.S. Pat. No. 4,837,028 and WO 88/04924, both to Allen et al., disclose liposomes comprising (1) sphingomyelin and (2) the ganglioside GM1 or a galactocerebroside sulfate ester. U.S. Pat. No. 5,543,152 (Webb et al.) discloses liposomes comprising sphingomyelin. Liposomes comprising 1,2-sn-dimyristoylphosphatidylcholine are disclosed in WO 97/13499 (Lim et al).


Many liposomes comprising lipids derivatized with one or more hydrophilic polymers, and methods of preparation thereof, are known in the art. Sunamoto et al. (Bull. Chem. Soc. Jpn., 1980, 53, 2778) described liposomes comprising a nonionic detergent, 2C1215G, that contains a PEG moiety. Ilium et al. (FEBS Lett., 1984, 167, 79) noted that hydrophilic coating of polystyrene particles with polymeric glycols results in significantly enhanced blood half-lives. Synthetic phospholipids modified by the attachment of carboxylic groups of polyalkylene glycols (e.g., PEG) are described by Sears (U.S. Pat. Nos. 4,426,330 and 4,534,899). Klibanov et al. (FEBS Lett., 1990, 268, 235) described experiments demonstrating that liposomes comprising phosphatidylethanolamine (PE) derivatized with PEG or PEG stearate have significant increases in blood circulation half-lives. Blume et al. (Biochimica et Biophysica Acta, 1990, 1029, 91) extended such observations to other PEG-derivatized phospholipids, e.g., DSPE-PEG, formed from the combination of distearoylphosphatidylethanolamine (DSPE) and PEG. Liposomes having covalently bound PEG moieties on their external surface are described in European Patent No. EP 0 445 131 B1 and WO 90/04384 to Fisher. Liposome compositions containing 1-20 mole percent of PE derivatized with PEG, and methods of use thereof, are described by Woodle et al. (U.S. Pat. Nos. 5,013,556 and 5,356,633) and Martin et al. (U.S. Pat. No. 5,213,804 and European Patent No. EP 0 496 813 B1). Liposomes comprising a number of other lipid-polymer conjugates are disclosed in WO 91/05545 and U.S. Pat. No. 5,225,212 (both to Martin et al.) and in WO 94/20073 (Zalipsky et al.) Liposomes comprising PEG-modified ceramide lipids are described in WO 96/10391 (Choi et al). U.S. Pat. No. 5,540,935 (Miyazaki et al.) and U.S. Pat. No. 5,556,948 (Tagawa et al.) describe PEG-containing liposomes that can be further derivatized with functional moieties on their surfaces.


A number of liposomes comprising nucleic acids are known in the art. WO 96/40062 to Thierry et al. discloses methods for encapsulating high molecular weight nucleic acids in liposomes. U.S. Pat. No. 5,264,221 to Tagawa et al. discloses protein-bonded liposomes and asserts that the contents of such liposomes may include a dsRNA. U.S. Pat. No. 5,665,710 to Rahman et al. describes certain methods of encapsulating oligodeoxynucleotides in liposomes. WO 97/04787 to Love et al. discloses liposomes comprising dsRNAs targeted to the raf gene.


Transfersomes are yet another type of liposomes, and are highly deformable lipid aggregates which are attractive candidates for drug delivery vehicles. Transfersomes may be described as lipid droplets which are so highly deformable that they are easily able to penetrate through pores which are smaller than the droplet. Transfersomes are adaptable to the environment in which they are used, e.g., they are self-optimizing (adaptive to the shape of pores in the skin), self-repairing, frequently reach their targets without fragmenting, and often self-loading. To make transfersomes it is possible to add surface edge-activators, usually surfactants, to a standard liposomal composition. Transfersomes have been used to deliver serum albumin to the skin. The transfersome-mediated delivery of serum albumin has been shown to be as effective as subcutaneous injection of a solution containing serum albumin.


Surfactants find wide application in formulations such as emulsions (including microemulsions) and liposomes. The most common way of classifying and ranking the properties of the many different types of surfactants, both natural and synthetic, is by the use of the hydrophile/lipophile balance (HLB). The nature of the hydrophilic group (also known as the “head”) provides the most useful means for categorizing the different surfactants used in formulations (Rieger, in Pharmaceutical Dosage Forms, Marcel Dekker, Inc., New York, N.Y., 1988, p. 285).


If the surfactant molecule is not ionized, it is classified as a nonionic surfactant. Nonionic surfactants find wide application in pharmaceutical and cosmetic products and are usable over a wide range of pH values. In general their HLB values range from 2 to about 18 depending on their structure. Nonionic surfactants include nonionic esters such as ethylene glycol esters, propylene glycol esters, glyceryl esters, polyglyceryl esters, sorbitan esters, sucrose esters, and ethoxylated esters. Nonionic alkanolamides and ethers such as fatty alcohol ethoxylates, propoxylated alcohols, and ethoxylated/propoxylated block polymers are also included in this class. The polyoxyethylene surfactants are the most popular members of the nonionic surfactant class.


If the surfactant molecule carries a negative charge when it is dissolved or dispersed in water, the surfactant is classified as anionic. Anionic surfactants include carboxylates such as soaps, acyl lactylates, acyl amides of amino acids, esters of sulfuric acid such as alkyl sulfates and ethoxylated alkyl sulfates, sulfonates such as alkyl benzene sulfonates, acyl isethionates, acyl taurates and sulfosuccinates, and phosphates. The most important members of the anionic surfactant class are the alkyl sulfates and the soaps.


If the surfactant molecule carries a positive charge when it is dissolved or dispersed in water, the surfactant is classified as cationic. Cationic surfactants include quaternary ammonium salts and ethoxylated amines. The quaternary ammonium salts are the most used members of this class.


If the surfactant molecule has the ability to carry either a positive or negative charge, the surfactant is classified as amphoteric. Amphoteric surfactants include acrylic acid derivatives, substituted alkylamides, N-alkylbetaines and phosphatides.


The use of surfactants in drug products, formulations and in emulsions has been reviewed (Rieger, in Pharmaceutical Dosage Forms, Marcel Dekker, Inc., New York, N.Y., 1988, p. 285).


Nucleic Acid Lipid Particles


In one embodiment, an ALAS1 dsRNA featured in the invention is fully encapsulated in the lipid formulation, e.g., to form a SPLP, pSPLP, SNALP, or other nucleic acid-lipid particle. As used herein, the term “SNALP” refers to a stable nucleic acid-lipid particle, including SPLP. As used herein, the term “SPLP” refers to a nucleic acid-lipid particle comprising plasmid DNA encapsulated within a lipid vesicle. SNALPs and SPLPs typically contain a cationic lipid, a non-cationic lipid, and a lipid that prevents aggregation of the particle (e.g., a PEG-lipid conjugate). SNALPs and SPLPs are extremely useful for systemic applications, as they exhibit extended circulation lifetimes following intravenous (i.v.) injection and accumulate at distal sites (e.g., sites physically separated from the administration site). SPLPs include “pSPLP,” which include an encapsulated condensing agent-nucleic acid complex as set forth in PCT Publication No. WO 00/03683. The particles of the present invention typically have a mean diameter of about 50 nm to about 150 nm, more typically about 60 nm to about 130 nm, more typically about 70 nm to about 110 nm, most typically about 70 nm to about 90 nm, and are substantially nontoxic. In addition, the nucleic acids when present in the nucleic acid-lipid particles of the present invention are resistant in aqueous solution to degradation with a nuclease. Nucleic acid-lipid particles and their method of preparation are disclosed in, e.g., U.S. Pat. Nos. 5,976,567; 5,981,501; 6,534,484; 6,586,410; 6,815,432; and PCT Publication No. WO 96/40964.


In one embodiment, the lipid to drug ratio (mass/mass ratio) (e.g., lipid to dsRNA ratio) will be in the range of from about 1:1 to about 50:1, from about 1:1 to about 25:1, from about 3:1 to about 15:1, from about 4:1 to about 10:1, from about 5:1 to about 9:1, or about 6:1 to about 9:1.


The cationic lipid may be, for example, N,N-dioleyl-N,N-dimethylammonium chloride (DODAC), N,N-distearyl-N,N-dimethylammonium bromide (DDAB), N-(I-(2,3-dioleoyloxy)propyl)-N,N,N-trimethylammonium chloride (DOTAP), N-(I-(2,3-dioleyloxy)propyl)-N,N,N-trimethylammonium chloride (DOTMA), N,N-dimethyl-2,3-dioleyloxy)propylamine (DODMA), 1,2-DiLinoleyloxy-N,N-dimethylaminopropane (DLinDMA), 1,2-Dilinolenyloxy-N,N-dimethylaminopropane (DLenDMA), 1,2-Dilinoleylcarbamoyloxy-3-dimethylaminopropane (DLin-C-DAP), 1,2-Dilinoleyoxy-3-(dimethylamino)acetoxypropane (DLin-DAC), 1,2-Dilinoleyoxy-3-morpholinopropane (DLin-MA), 1,2-Dilinoleoyl-3-dimethylaminopropane (DLinDAP), 1,2-Dilinoleylthio-3-dimethylaminopropane (DLin-S-DMA), 1-Linoleoyl-2-linoleyloxy-3-dimethylaminopropane (DLin-2-DMAP), 1,2-Dilinoleyloxy-3-trimethylaminopropane chloride salt (DLin-TMA.Cl), 1,2-Dilinoleoyl-3-trimethylaminopropane chloride salt (DLin-TAP.Cl), 1,2-Dilinoleyloxy-3-(N-methylpiperazino)propane (DLin-MPZ), or 3-(N,N-Dilinoleylamino)-1,2-propanediol (DLinAP), 3-(N,N-Dioleylamino)-1,2-propanedio (DOAP), 1,2-Dilinoleyloxo-3-(2-N,N-dimethylamino)ethoxypropane (DLin-EG-DMA), 1,2-Dilinolenyloxy-N,N-dimethylaminopropane (DLinDMA), 2,2-Dilinoleyl-4-dimethylaminomethyl-[1,3]-dioxolane (DLin-K-DMA) or analogs thereof, (3aR,5s,6aS)—N,N-dimethyl-2,2-di((9Z,12Z)-octadeca-9,12-dienyl)tetrahydro-3aH-cyclopenta[d][1,3]dioxol-5-amine (ALN100), (6Z,9Z,28Z,31Z)-heptatriaconta-6,9,28,31-tetraen-19-yl 4-(dimethylamino)butanoate (MC3), 1,1′-(2-(4-(2-((2-(bis(2-hydroxydodecyl)amino)ethyl)(2-hydroxydodecyl)amino)ethyl)piperazin-1-yl)ethylazanediyl)didodecan-2-ol (Tech G1), or a mixture thereof. The cationic lipid may comprise from about 20 mol % to about 50 mol % or about 40 mol % of the total lipid present in the particle.


In another embodiment, the compound 2,2-Dilinoleyl-4-dimethylaminoethyl-[1,3]-dioxolane can be used to prepare lipid-siRNA nanoparticles. Synthesis of 2,2-Dilinoleyl-4-dimethylaminoethyl-[1,3]-dioxolane is described in U.S. provisional patent application No. 61/107,998 filed on Oct. 23, 2008, which is herein incorporated by reference.


In one embodiment, the lipid-siRNA particle includes 40% 2, 2-Dilinoleyl-4-dimethylaminoethyl-[1,3]-dioxolane: 10% DSPC: 40% Cholesterol: 10% PEG-C-DOMG (mole percent) with a particle size of 63.0±20 nm and a 0.027 siRNA/Lipid Ratio.


The non-cationic lipid may be an anionic lipid or a neutral lipid including, but not limited to, distearoylphosphatidylcholine (DSPC), dioleoylphosphatidylcholine (DOPC), dipalmitoylphosphatidylcholine (DPPC), dioleoylphosphatidylglycerol (DOPG), dipalmitoylphosphatidylglycerol (DPPG), dioleoyl-phosphatidylethanolamine (DOPE), palmitoyloleoylphosphatidylcholine (POPC), palmitoyloleoylphosphatidylethanolamine (POPE), dioleoyl-phosphatidylethanolamine 4-(N-maleimidomethyl)-cyclohexane-1-carboxylate (DOPE-mal), dipalmitoyl phosphatidyl ethanolamine (DPPE), dimyristoylphosphoethanolamine (DMPE), distearoyl-phosphatidyl-ethanolamine (DSPE), 16-O-monomethyl PE, 16-O-dimethyl PE, 18-1-trans PE, 1-stearoyl-2-oleoyl-phosphatidyethanolamine (SOPE), cholesterol, or a mixture thereof. The non-cationic lipid may be from about 5 mol % to about 90 mol %, about 10 mol %, or about 58 mol % if cholesterol is included, of the total lipid present in the particle.


The conjugated lipid that inhibits aggregation of particles may be, for example, a polyethyleneglycol (PEG)-lipid including, without limitation, a PEG-diacylglycerol (DAG), a PEG-dialkyloxypropyl (DAA), a PEG-phospholipid, a PEG-ceramide (Cer), or a mixture thereof. The PEG-DAA conjugate may be, for example, a PEG-dilauryloxypropyl (Ci2), a PEG-dimyristyloxypropyl (Ci4), a PEG-dipalmityloxypropyl (Ci6), or a PEG-distearyloxypropyl (C]8). The conjugated lipid that prevents aggregation of particles may be from 0 mol % to about 20 mol % or about 2 mol % of the total lipid present in the particle.


In some embodiments, the nucleic acid-lipid particle further includes cholesterol at, e.g., about 10 mol % to about 60 mol % or about 48 mol % of the total lipid present in the particle.


In some embodiments, the iRNA is formulated in a lipid nanoparticle (LNP).


LNP01


In one embodiment, the lipidoid ND98.4HCl (MW 1487) (see U.S. patent application Ser. No. 12/056,230, filed Mar. 26, 2008, which is herein incorporated by reference), Cholesterol (Sigma-Aldrich), and PEG-Ceramide C16 (Avanti Polar Lipids) can be used to prepare lipid-dsRNA nanoparticles (e.g., LNP01 particles). Stock solutions of each in ethanol can be prepared as follows: ND98, 133 mg/ml; Cholesterol, 25 mg/ml, PEG-Ceramide C16, 100 mg/ml. The ND98, Cholesterol, and PEG-Ceramide C16 stock solutions can then be combined in a, e.g., 42:48:10 molar ratio. The combined lipid solution can be mixed with aqueous dsRNA (e.g., in sodium acetate pH 5) such that the final ethanol concentration is about 35-45% and the final sodium acetate concentration is about 100-300 mM. Lipid-dsRNA nanoparticles typically form spontaneously upon mixing. Depending on the desired particle size distribution, the resultant nanoparticle mixture can be extruded through a polycarbonate membrane (e.g., 100 nm cut-off) using, for example, a thermobarrel extruder, such as Lipex Extruder (Northern Lipids, Inc). In some cases, the extrusion step can be omitted. Ethanol removal and simultaneous buffer exchange can be accomplished by, for example, dialysis or tangential flow filtration. Buffer can be exchanged with, for example, phosphate buffered saline (PBS) at about pH 7, e.g., about pH 6.9, about pH 7.0, about pH 7.1, about pH 7.2, about pH 7.3, or about pH 7.4.




embedded image


LNP01 formulations are described, e.g., in International Application Publication No. WO 2008/042973, which is hereby incorporated by reference.


Additional exemplary lipid-dsRNA formulations are provided in the following table.









TABLE 10







Exemplary lipid formulations











cationic lipid/non-cationic




lipid/cholesterol/PEG-lipid conjugate



Cationic Lipid
Lipid:siRNA ratio





SNALP
1,2-Dilinolenyloxy-N,N-
DLinDMA/DPPC/Cholesterol/PEG-



dimethylaminopropane
cDMA



(DLinDMA)
(57.1/7.1/34.4/1.4)




lipid:siRNA~7:1


S-XTC
2,2-Dilinoleyl-4-dimethylaminoethyl-
XTC/DPPC/Cholesterol/PEG-cDMA



[1,3]-dioxolane (XTC)
57.1/7.1/34.4/1.4




lipid:siRNA~7:1


LNP05
2,2-Dilinoleyl-4-dimethylaminoethyl-
XTC/DSPC/Cholesterol/PEG-DMG



[1,3]-dioxolane (XTC)
57.5/7.5/31.5/3.5




lipid:siRNA~6:1


LNP06
2,2-Dilinoleyl-4-dimethylaminoethyl-
XTC/DSPC/Cholesterol/PEG-DMG



[1,3]-dioxolane (XTC)
57.5/7.5/31.5/3.5




lipid:siRNA~11:1


LNP07
2,2-Dilinoleyl-4-dimethylaminoethyl-
XTC/DSPC/Cholesterol/PEG-DMG



[1,3]-dioxolane (XTC)
60/7.5/31/1.5,




lipid:siRNA~6:1


LNP08
2,2-Dilinoleyl-4-dimethylaminoethyl-
XTC/DSPC/Cholesterol/PEG-DMG



[1,3]-dioxolane (XTC)
60/7.5/31/1.5,




lipid:siRNA~11:1


LNP09
2,2-Dilinoleyl-4-dimethylaminoethyl-
XTC/DSPC/Cholesterol/PEG-DMG



[1,3]-dioxolane (XTC)
50/10/38.5/1.5




Lipid:siRNA 10:1


LNP10
(3aR,5s,6aS)-N,N-dimethyl-2,2-
ALN100/DSPC/Cholesterol/PEG-DMG



di((9Z,12Z)-octadeca-9,12-
50/10/38.5/1.5



dienyl)tetrahydro-3aH-
Lipid:siRNA 10:1



cyclopenta[d][1,3]dioxo1-5-amine




(ALN100)



LNP11
(6Z,9Z,28Z,31Z)-heptatriaconta-
MC-3/DSPC/Cholesterol/PEG-DMG



6,9,28,31-tetraen-19-yl 4-
50/10/38.5/1.5



(dimethylamino)butanoate (MC3)
Lipid:siRNA 10:1


LNP12
1,1′-(2-(4-(2-((2-(bis(2-
C12-200/DSPC/Cholesterol/PEG-DMG



hydroxydodecyl)amino)ethyl)(2-
50/10/38.5/1.5



hydroxydodecyl)amino)ethyl)piperazin-
Lipid:siRNA 10:1



1-yl)ethylazanediyl)didodecan-2-ol




(C12-200)



LNP13
XTC
XTC/DSPC/Chol/PEG-DMG




50/10/38.5/1.5




Lipid:siRNA: 33:1


LNP14
MC3
MC3/DSPC/Chol/PEG-DMG




40/15/40/5




Lipid:siRNA: 11:1


LNP15
MC3
MC3/DSPC/Chol/PEG-DSG/GalNAc-




PEG-DSG




50/10/35/4.5/0.5




Lipid:siRNA: 11:1


LNP16
MC3
MC3/DSPC/Chol/PEG-DMG




50/10/38.5/1.5




Lipid:siRNA: 7:1


LNP17
MC3
MC3/DSPC/Chol/PEG-DSG




50/10/38.5/1.5




Lipid:siRNA: 10:1


LNP18
MC3
MC3/DSPC/Chol/PEG-DMG




50/10/38.5/1.5




Lipid:siRNA: 12:1


LNP19
MC3
MC3/DSPC/Chol/PEG-DMG




50/10/35/5




Lipid:siRNA: 8:1


LNP20
MC3
MC3/DSPC/Chol/PEG-DPG




50/10/38.5/1.5




Lipid:siRNA: 10:1


LNP21
C12-200
C12-200/DSPC/Chol/PEG-DSG




50/10/38.5/1.5




Lipid:siRNA: 7:1


LNP22
XTC
XTC/DSPC/Chol/PEG-DSG




50/10/38.5/1.5




Lipid:siRNA: 10:1





DSPC: distearoylphosphatidylcholine


DPPC: dipalmitoylphosphatidylcholine


PEG-DMG: PEG-didimyristoyl glycerol (C14-PEG, or PEG-C14) (PEG with avg mol wt of 2000)


PEG-DSG: PEG-distyryl glycerol (C18-PEG, or PEG-C18) (PEG with avg mol wt of 2000)


PEG-cDMA: PEG-carbamoyl-1,2-dimyristyloxypropylamine (PEG with avg mol wt of 2000)


SNALP (1,2-Dilinolenyloxy-N,N-dimethylaminopropane (DLinDMA)) comprising formulations are described in International Publication No. WO2009/127060, filed Apr. 15, 2009, which is hereby incorporated by reference.


XTC comprising formulations are described, e.g., in U.S. Provisional Serial No. 61/148,366, filed Jan. 29, 2009; U.S. Provisional Serial No. 61/156,851, filed Mar. 2, 2009; U.S. Provisional Serial No. filed Jun. 10, 2009; U.S. Provisional Serial No. 61/228,373, filed Jul. 24, 2009; U.S. Provisional Serial No. 61/239,686, filed Sep. 3, 2009, and International Application No. PCT/US2010/022614, filed Jan. 29, 2010, which are hereby incorporated by reference.


MC3 comprising formulations are described, e.g., in U.S. Provisional Serial No. 61/244,834, filed Sep. 22, 2009, U.S. Provisional Serial No. 61/185,800, filed Jun. 10, 2009, and International Application No. PCT/US10/28224, filed Jun. 10, 2010, which are hereby incorporated by reference.


ALNY-100 comprising formulations are described, e.g., International patent application number PCT/US09/63933, filed on Nov. 10, 2009, which is hereby incorporated by reference.


C12-200 comprising formulations are described in U.S. Provisional Serial No 61/175,770, filed May 5, 2009 and International Application No. PCT/US10/33777, filed May 5, 2010, which are hereby incorporated by reference.






MC3 comprising formulations are described, e.g., in U.S. Provisional Ser. No. 61/244,834, filed Sep. 22, 2009, U.S. Provisional Ser. No. 61/185,800, filed Jun. 10, 2009, and International Application No. PCT/US10/28224, filed Jun. 10, 2010, which are hereby incorporated by reference.


ALNY-100 comprising formulations are described, e.g., International patent application number PCT/US09/63933, filed on Nov. 10, 2009, which is hereby incorporated by reference.


C12-200 comprising formulations are described in U.S. Provisional Ser. No. 61/175,770, filed May 5, 2009 and International Application No. PCT/US10/33777, filed May 5, 2010, which are hereby incorporated by reference.


Synthesis of Cationic Lipids


Any of the compounds, e.g., cationic lipids and the like, used in the nucleic acid-lipid particles featured in the invention may be prepared by known organic synthesis techniques, including the methods described in more detail in the Examples. All substituents are as defined below unless indicated otherwise.


“Alkyl” means a straight chain or branched, noncyclic or cyclic, saturated aliphatic hydrocarbon containing from 1 to 24 carbon atoms. Representative saturated straight chain alkyls include methyl, ethyl, n-propyl, n-butyl, n-pentyl, n-hexyl, and the like; while saturated branched alkyls include isopropyl, sec-butyl, isobutyl, text-butyl, isopentyl, and the like. Representative saturated cyclic alkyls include cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, and the like; while unsaturated cyclic alkyls include cyclopentenyl and cyclohexenyl, and the like.


“Alkenyl” means an alkyl, as defined above, containing at least one double bond between adjacent carbon atoms. Alkenyls include both cis and trans isomers. Representative straight chain and branched alkenyls include ethylenyl, propylenyl, 1-butenyl, 2-butenyl, isobutylenyl, 1-pentenyl, 2-pentenyl, 3-methyl-1-butenyl, 2-methyl-2-butenyl, 2,3-dimethyl-2-butenyl, and the like.


“Alkynyl” means any alkyl or alkenyl, as defined above, which additionally contains at least one triple bond between adjacent carbons. Representative straight chain and branched alkynyls include acetylenyl, propynyl, 1-butynyl, 2-butynyl, 1-pentynyl, 2-pentynyl, 3-methyl-1 butynyl, and the like.


“Acyl” means any alkyl, alkenyl, or alkynyl wherein the carbon at the point of attachment is substituted with an oxo group, as defined below. For example, —C(═O)alkyl, —C(═O)alkenyl, and —C(═O)alkynyl are acyl groups.


“Heterocycle” means a 5- to 7-membered monocyclic, or 7- to 10-membered bicyclic, heterocyclic ring which is either saturated, unsaturated, or aromatic, and which contains from 1 or 2 heteroatoms independently selected from nitrogen, oxygen and sulfur, and wherein the nitrogen and sulfur heteroatoms may be optionally oxidized, and the nitrogen heteroatom may be optionally quaternized, including bicyclic rings in which any of the above heterocycles are fused to a benzene ring. The heterocycle may be attached via any heteroatom or carbon atom. Heterocycles include heteroaryls as defined below. Heterocycles include morpholinyl, pyrrolidinonyl, pyrrolidinyl, piperidinyl, piperizinyl, hydantoinyl, valerolactamyl, oxiranyl, oxetanyl, tetrahydrofuranyl, tetrahydropyranyl, tetrahydropyridinyl, tetrahydropyrimidinyl, tetrahydrothiophenyl, tetrahydrothiopyranyl, tetrahydropyrimidinyl, tetrahydrothiophenyl, tetrahydrothiopyranyl, and the like.


The terms “optionally substituted alkyl”, “optionally substituted alkenyl”, “optionally substituted alkynyl”, “optionally substituted acyl”, and “optionally substituted heterocycle” means that, when substituted, at least one hydrogen atom is replaced with a substituent. In the case of an oxo substituent (═O) two hydrogen atoms are replaced. In this regard, substituents include oxo, halogen, heterocycle, —CN, —ORx, —NRxRy, —NRxC(═O)Ry, —NRxSO2Ry, —C(═O)Rx, —C(═O)ORx, —C(═O)NRxRy, —SOnRx and —SOnNRxRy, wherein n is 0, 1 or 2, Rx and Ry are the same or different and independently hydrogen, alkyl or heterocycle, and each of said alkyl and heterocycle substituents may be further substituted with one or more of oxo, halogen, —OH, —CN, alkyl, —ORx, heterocycle, —NRxRy, —NRxC(═O)Ry, —NRxSO2Ry, —C(═O)Rx, —C(═O)ORx, —C(═O)NRxRy, —SOnRx and —SOnNRxRy.


“Halogen” means fluoro, chloro, bromo and iodo.


In some embodiments, the methods featured in the invention may require the use of protecting groups. Protecting group methodology is well known to those skilled in the art (see, for example, PROTECTIVE GROUPS IN ORGANIC SYNTHESIS, Green, T. W. et al., Wiley-Interscience, New York City, 1999). Briefly, protecting groups within the context of this invention are any group that reduces or eliminates unwanted reactivity of a functional group. A protecting group can be added to a functional group to mask its reactivity during certain reactions and then removed to reveal the original functional group. In some embodiments an “alcohol protecting group” is used. An “alcohol protecting group” is any group which decreases or eliminates unwanted reactivity of an alcohol functional group. Protecting groups can be added and removed using techniques well known in the art.


Synthesis of Formula A


In one embodiments, nucleic acid-lipid particles featured in the invention are formulated using a cationic lipid of formula A:




embedded image



where R1 and R2 are independently alkyl, alkenyl or alkynyl, each can be optionally substituted, and R3 and R4 are independently lower alkyl or R3 and R4 can be taken together to form an optionally substituted heterocyclic ring. In some embodiments, the cationic lipid is XTC (2,2-Dilinoleyl-4-dimethylaminoethyl-[1,3]-dioxolane). In general, the lipid of formula A above may be made by the following Reaction Schemes 1 or 2, wherein all substituents are as defined above unless indicated otherwise.




embedded image


Lipid A, where R1 and R2 are independently alkyl, alkenyl or alkynyl, each can be optionally substituted, and R3 and R4 are independently lower alkyl or R3 and R4 can be taken together to form an optionally substituted heterocyclic ring, can be prepared according to Scheme 1. Ketone 1 and bromide 2 can be purchased or prepared according to methods known to those of ordinary skill in the art. Reaction of 1 and 2 yields ketal 3. Treatment of ketal 3 with amine 4 yields lipids of formula A. The lipids of formula A can be converted to the corresponding ammonium salt with an organic salt of formula 5, where X is anion counter ion selected from halogen, hydroxide, phosphate, sulfate, or the like.




embedded image


Alternatively, the ketone 1 starting material can be prepared according to Scheme 2. Grignard reagent 6 and cyanide 7 can be purchased or prepared according to methods known to those of ordinary skill in the art. Reaction of 6 and 7 yields ketone 1. Conversion of ketone 1 to the corresponding lipids of formula A is as described in Scheme 1.


Synthesis of MC3


Preparation of DLin-M-C3-DMA (i.e., (6Z,9Z,28Z,31Z)-heptatriaconta-6,9,28,31-tetraen-19-yl 4-(dimethylamino)butanoate) was as follows. A solution of (6Z,9Z,28Z,31Z)-heptatriaconta-6,9,28,31-tetraen-19-ol (0.53 g), 4-N,N-dimethylaminobutyric acid hydrochloride (0.51 g), 4-N,N-dimethylaminopyridine (0.61 g) and 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide hydrochloride (0.53 g) in dichloromethane (5 mL) was stirred at room temperature overnight. The solution was washed with dilute hydrochloric acid followed by dilute aqueous sodium bicarbonate. The organic fractions were dried over anhydrous magnesium sulphate, filtered and the solvent removed on a rotovap. The residue was passed down a silica gel column (20 g) using a 1-5% methanol/dichloromethane elution gradient. Fractions containing the purified product were combined and the solvent removed, yielding a colorless oil (0.54 g).


Synthesis of ALNY-100


Synthesis of ketal 519 [ALNY-100] was performed using the following scheme 3:




embedded image


Synthesis of 515:


To a stirred suspension of LiAlH4 (3.74 g, 0.09852 mol) in 200 ml anhydrous THF in a two neck RBF (1 L), was added a solution of 514 (10 g, 0.04926 mol) in 70 mL of THF slowly at 0° C. under nitrogen atmosphere. After complete addition, reaction mixture was warmed to room temperature and then heated to reflux for 4 h. Progress of the reaction was monitored by TLC. After completion of reaction (by TLC) the mixture was cooled to 0° C. and quenched with careful addition of saturated Na2SO4 solution. Reaction mixture was stirred for 4 h at room temperature and filtered off Residue was washed well with THF. The filtrate and washings were mixed and diluted with 400 mL dioxane and 26 mL conc. HCl and stirred for 20 minutes at room temperature. The volatilities were stripped off under vacuum to furnish the hydrochloride salt of 515 as a white solid. Yield: 7.12 g 1H-NMR (DMSO, 400 MHz): δ=9.34 (broad, 2H), 5.68 (s, 2H), 3.74 (m, 1H), 2.66-2.60 (m, 2H), 2.50-2.45 (m, 5H).


Synthesis of 516:


To a stirred solution of compound 515 in 100 mL dry DCM in a 250 mL two neck RBF, was added NEt3 (37.2 mL, 0.2669 mol) and cooled to 0° C. under nitrogen atmosphere. After a slow addition of N-(benzyloxy-carbonyloxy)-succinimide (20 g, 0.08007 mol) in 50 mL dry DCM, reaction mixture was allowed to warm to room temperature. After completion of the reaction (2-3 h by TLC) mixture was washed successively with 1N HCl solution (1×100 mL) and saturated NaHCO3 solution (1×50 mL). The organic layer was then dried over anhyd. Na2SO4 and the solvent was evaporated to give crude material which was purified by silica gel column chromatography to get 516 as sticky mass. Yield: 11 g (89%). 1H-NMR (CDCl3, 400 MHz): δ=7.36-7.27 (m, 5H), 5.69 (s, 2H), 5.12 (s, 2H), 4.96 (br., 1H) 2.74 (s, 3H), 2.60 (m, 2H), 2.30-2.25 (m, 2H). LC-MS [M+H] −232.3 (96.94%).


Synthesis of 517A and 517B:


The cyclopentene 516 (5 g, 0.02164 mol) was dissolved in a solution of 220 mL acetone and water (10:1) in a single neck 500 mL RBF and to it was added N-methyl morpholine-N-oxide (7.6 g, 0.06492 mol) followed by 4.2 mL of 7.6% solution of OsO4 (0.275 g, 0.00108 mol) in tert-butanol at room temperature. After completion of the reaction (˜3 h), the mixture was quenched with addition of solid Na2SO3 and resulting mixture was stirred for 1.5 h at room temperature. Reaction mixture was diluted with DCM (300 mL) and washed with water (2×100 mL) followed by saturated NaHCO3 (1×50 mL) solution, water (1×30 mL) and finally with brine (1×50 mL). Organic phase was dried over an. Na2SO4 and solvent was removed in vacuum. Silica gel column chromatographic purification of the crude material was afforded a mixture of diastereomers, which were separated by prep HPLC. Yield:−6 g crude


517A—Peak-1 (white solid), 5.13 g (96%). 1H-NMR (DMSO, 400 MHz): δ=7.39-7.31 (m, 5H), 5.04 (s, 2H), 4.78-4.73 (m, 1H), 4.48-4.47 (d, 2H), 3.94-3.93 (m, 2H), 2.71 (s, 3H), 1.72-1.67 (m, 4H). LC-MS—[M+H]−266.3, [M+NH4+]−283.5 present, HPLC-97.86%. Stereochemistry confirmed by X-ray.


Synthesis of 518:


Using a procedure analogous to that described for the synthesis of compound 505, compound 518 (1.2 g, 41%) was obtained as a colorless oil. 1H-NMR (CDCl3, 400 MHz): δ=7.35-7.33 (m, 4H), 7.30-7.27 (m, 1H), 5.37-5.27 (m, 8H), 5.12 (s, 2H), 4.75 (m, 1H), 4.58-4.57 (m, 2H), 2.78-2.74 (m, 7H), 2.06-2.00 (m, 8H), 1.96-1.91 (m, 2H), 1.62 (m, 4H), 1.48 (m, 2H), 1.37-1.25 (br m, 36H), 0.87 (m, 6H). HPLC-98.65%.


General Procedure for the Synthesis of Compound 519:


A solution of compound 518 (1 eq) in hexane (15 mL) was added in a drop-wise fashion to an ice-cold solution of LAH in THF (1 M, 2 eq). After complete addition, the mixture was heated at 40° C. over 0.5 h then cooled again on an ice bath. The mixture was carefully hydrolyzed with saturated aqueous Na2SO4 then filtered through celite and reduced to an oil. Column chromatography provided the pure 519 (1.3 g, 68%) which was obtained as a colorless oil. 13C NMR=130.2, 130.1 (×2), 127.9 (×3), 112.3, 79.3, 64.4, 44.7, 38.3, 35.4, 31.5, 29.9 (×2), 29.7, 29.6 (×2), 29.5 (×3), 29.3 (×2), 27.2 (×3), 25.6, 24.5, 23.3, 226, 14.1; Electrospray MS (+ve): Molecular weight for C44H80NO2 (M+H)+ Calc. 654.6. Found 654.6.


Formulations prepared by either the standard or extrusion-free method can be characterized in similar manners. For example, formulations are typically characterized by visual inspection. They should be whitish translucent solutions free from aggregates or sediment. Particle size and particle size distribution of lipid-nanoparticles can be measured by light scattering using, for example, a Malvern Zetasizer Nano ZS (Malvern, USA). Particles should be about 20-300 nm, such as 40-100 nm in size. The particle size distribution should be unimodal. The total dsRNA concentration in the formulation, as well as the entrapped fraction, is estimated using a dye exclusion assay. A sample of the formulated dsRNA can be incubated with an RNA-binding dye, such as Ribogreen (Molecular Probes) in the presence or absence of a formulation disrupting surfactant, e.g., 0.5% Triton-X100. The total dsRNA in the formulation can be determined by the signal from the sample containing the surfactant, relative to a standard curve. The entrapped fraction is determined by subtracting the “free” dsRNA content (as measured by the signal in the absence of surfactant) from the total dsRNA content. Percent entrapped dsRNA is typically >85%. For SNALP formulation, the particle size is at least 30 nm, at least 40 nm, at least 50 nm, at least 60 nm, at least 70 nm, at least 80 nm, at least 90 nm, at least 100 nm, at least 110 nm, and at least 120 nm. The suitable range is typically about at least 50 nm to about at least 110 nm, about at least 60 nm to about at least 100 nm, or about at least 80 nm to about at least 90 nm.


Compositions and formulations for oral administration include powders or granules, microparticulates, nanoparticulates, suspensions or solutions in water or non-aqueous media, capsules, gel capsules, sachets, tablets or minitablets. Thickeners, flavoring agents, diluents, emulsifiers, dispersing aids or binders may be desirable. In some embodiments, oral formulations are those in which dsRNAs featured in the invention are administered in conjunction with one or more penetration enhancers surfactants and chelators. Suitable surfactants include fatty acids and/or esters or salts thereof, bile acids and/or salts thereof. Suitable bile acids/salts include chenodeoxycholic acid (CDCA) and ursodeoxychenodeoxycholic acid (UDCA), cholic acid, dehydrocholic acid, deoxycholic acid, glucholic acid, glycholic acid, glycodeoxycholic acid, taurocholic acid, taurodeoxycholic acid, sodium tauro-24,25-dihydro-fusidate and sodium glycodihydrofusidate. Suitable fatty acids include arachidonic acid, undecanoic acid, oleic acid, lauric acid, caprylic acid, capric acid, myristic acid, palmitic acid, stearic acid, linoleic acid, linolenic acid, dicaprate, tricaprate, monoolein, dilaurin, glyceryl 1-monocaprate, 1-dodecylazacycloheptan-2-one, an acylcarnitine, an acylcholine, or a monoglyceride, a diglyceride or a pharmaceutically acceptable salt thereof (e.g., sodium). In some embodiments, combinations of penetration enhancers are used, for example, fatty acids/salts in combination with bile acids/salts. One exemplary combination is the sodium salt of lauric acid, capric acid and UDCA. Further penetration enhancers include polyoxyethylene-9-lauryl ether, polyoxyethylene-20-cetyl ether. DsRNAs featured in the invention may be delivered orally, in granular form including sprayed dried particles, or complexed to form micro or nanoparticles. DsRNA complexing agents include poly-amino acids; polyimines; polyacrylates; polyalkylacrylates, polyoxethanes, polyalkylcyanoacrylates; cationized gelatins, albumins, starches, acrylates, polyethyleneglycols (PEG) and starches; polyalkylcyanoacrylates; DEAE-derivatized polyimines, pollulans, celluloses and starches. Suitable complexing agents include chitosan, N-trimethylchitosan, poly-L-lysine, polyhistidine, polyornithine, polyspermines, protamine, polyvinylpyridine, polythiodiethylaminomethylethylene P(TDAE), polyaminostyrene (e.g., p-amino), poly(methylcyanoacrylate), poly(ethylcyanoacrylate), poly(butylcyanoacrylate), poly(isobutylcyanoacrylate), poly(isohexylcynaoacrylate), DEAE-methacrylate, DEAE-hexylacrylate, DEAE-acrylamide, DEAE-albumin and DEAE-dextran, polymethylacrylate, polyhexylacrylate, poly(D,L-lactic acid), poly(DL-lactic-co-glycolic acid (PLGA), alginate, and polyethyleneglycol (PEG). Oral formulations for dsRNAs and their preparation are described in detail in U.S. Pat. No. 6,887,906, US Publn. No. 20030027780, and U.S. Pat. No. 6,747,014, each of which is incorporated herein by reference.


Compositions and formulations for parenteral, intraparenchymal (into the brain), intrathecal, intraventricular or intrahepatic administration may include sterile aqueous solutions which may also contain buffers, diluents and other suitable additives such as, but not limited to, penetration enhancers, carrier compounds and other pharmaceutically acceptable carriers or excipients.


Pharmaceutical compositions of the present invention include, but are not limited to, solutions, emulsions, and liposome-containing formulations. These compositions may be generated from a variety of components that include, but are not limited to, preformed liquids, self-emulsifying solids and self-emulsifying semisolids.


The pharmaceutical formulations featured in the present invention, which may conveniently be presented in unit dosage form, may be prepared according to conventional techniques well known in the pharmaceutical industry. Such techniques include the step of bringing into association the active ingredients with the pharmaceutical carrier(s) or excipient(s). In general, the formulations are prepared by uniformly and intimately bringing into association the active ingredients with liquid carriers or finely divided solid carriers or both, and then, if necessary, shaping the product.


The compositions featured in the present invention may be formulated into any of many possible dosage forms such as, but not limited to, tablets, capsules, gel capsules, liquid syrups, soft gels, suppositories, and enemas. The compositions may also be formulated as suspensions in aqueous, non-aqueous or mixed media. Aqueous suspensions may further contain substances which increase the viscosity of the suspension including, for example, sodium carboxymethylcellulose, sorbitol and/or dextran. The suspension may also contain stabilizers.


Additional Formulations


Emulsions


The compositions of the present invention may be prepared and formulated as emulsions. Emulsions are typically heterogeneous systems of one liquid dispersed in another in the form of droplets usually exceeding 0.1 μm in diameter (see e.g., Ansel's Pharmaceutical Dosage Forms and Drug Delivery Systems, Allen, L V., Popovich N G., and Ansel H C., 2004, Lippincott Williams & Wilkins (8th ed.), New York, N.Y.; Idson, in Pharmaceutical Dosage Forms, Lieberman, Rieger and Banker (Eds.), 1988, Marcel Dekker, Inc., New York, N.Y., volume 1, p. 199; Rosoff, in Pharmaceutical Dosage Forms, Lieberman, Rieger and Banker (Eds.), 1988, Marcel Dekker, Inc., New York, N.Y., Volume 1, p. 245; Block in Pharmaceutical Dosage Forms, Lieberman, Rieger and Banker (Eds.), 1988, Marcel Dekker, Inc., New York, N.Y., volume 2, p. 335; Higuchi et al., in Remington's Pharmaceutical Sciences, Mack Publishing Co., Easton, Pa., 1985, p. 301). Emulsions are often biphasic systems comprising two immiscible liquid phases intimately mixed and dispersed with each other. In general, emulsions may be of either the water-in-oil (w/o) or the oil-in-water (o/w) variety. When an aqueous phase is finely divided into and dispersed as minute droplets into a bulk oily phase, the resulting composition is called a water-in-oil (w/o) emulsion. Alternatively, when an oily phase is finely divided into and dispersed as minute droplets into a bulk aqueous phase, the resulting composition is called an oil-in-water (o/w) emulsion. Emulsions may contain additional components in addition to the dispersed phases, and the active drug which may be present as a solution in either the aqueous phase, oily phase or itself as a separate phase. Pharmaceutical excipients such as emulsifiers, stabilizers, dyes, and anti-oxidants may also be present in emulsions as needed. Pharmaceutical emulsions may also be multiple emulsions that are comprised of more than two phases such as, for example, in the case of oil-in-water-in-oil (o/w/o) and water-in-oil-in-water (w/o/w) emulsions. Such complex formulations often provide certain advantages that simple binary emulsions do not. Multiple emulsions in which individual oil droplets of an o/w emulsion enclose small water droplets constitute a w/o/w emulsion. Likewise a system of oil droplets enclosed in globules of water stabilized in an oily continuous phase provides an o/w/o emulsion.


Emulsions are characterized by little or no thermodynamic stability. Often, the dispersed or discontinuous phase of the emulsion is well dispersed into the external or continuous phase and maintained in this form through the means of emulsifiers or the viscosity of the formulation. Either of the phases of the emulsion may be a semisolid or a solid, as is the case of emulsion-style ointment bases and creams. Other means of stabilizing emulsions entail the use of emulsifiers that may be incorporated into either phase of the emulsion. Emulsifiers may broadly be classified into four categories: synthetic surfactants, naturally occurring emulsifiers, absorption bases, and finely dispersed solids (see e.g., Ansel's Pharmaceutical Dosage Forms and Drug Delivery Systems, Allen, L V., Popovich N G., and Ansel H C., 2004, Lippincott Williams & Wilkins (8th ed.), New York, N.Y.; Idson, in Pharmaceutical Dosage Forms, Lieberman, Rieger and Banker (Eds.), 1988, Marcel Dekker, Inc., New York, N.Y., volume 1, p. 199).


Synthetic surfactants, also known as surface active agents, have found wide applicability in the formulation of emulsions and have been reviewed in the literature (see e.g., Ansel's Pharmaceutical Dosage Forms and Drug Delivery Systems, Allen, L V., Popovich N G., and Ansel H C., 2004, Lippincott Williams & Wilkins (8th ed.), New York, N.Y.; Rieger, in Pharmaceutical Dosage Forms, Lieberman, Rieger and Banker (Eds.), 1988, Marcel Dekker, Inc., New York, N.Y., volume 1, p. 285; Idson, in Pharmaceutical Dosage Forms, Lieberman, Rieger and Banker (Eds.), Marcel Dekker, Inc., New York, N.Y., 1988, volume 1, p. 199). Surfactants are typically amphiphilic and comprise a hydrophilic and a hydrophobic portion. The ratio of the hydrophilic to the hydrophobic nature of the surfactant has been termed the hydrophile/lipophile balance (HLB) and is a valuable tool in categorizing and selecting surfactants in the preparation of formulations. Surfactants may be classified into different classes based on the nature of the hydrophilic group: nonionic, anionic, cationic and amphoteric (see e.g., Ansel's Pharmaceutical Dosage Forms and Drug Delivery Systems, Allen, L V., Popovich N G., and Ansel H C., 2004, Lippincott Williams & Wilkins (8th ed.), New York, N.Y. Rieger, in Pharmaceutical Dosage Forms, Lieberman, Rieger and Banker (Eds.), 1988, Marcel Dekker, Inc., New York, N.Y., volume 1, p. 285).


Naturally occurring emulsifiers used in emulsion formulations include lanolin, beeswax, phosphatides, lecithin and acacia. Absorption bases possess hydrophilic properties such that they can soak up water to form w/o emulsions yet retain their semisolid consistencies, such as anhydrous lanolin and hydrophilic petrolatum. Finely divided solids have also been used as good emulsifiers especially in combination with surfactants and in viscous preparations. These include polar inorganic solids, such as heavy metal hydroxides, nonswelling clays such as bentonite, attapulgite, hectorite, kaolin, montmorillonite, colloidal aluminum silicate and colloidal magnesium aluminum silicate, pigments and nonpolar solids such as carbon or glyceryl tristearate.


A large variety of non-emulsifying materials are also included in emulsion formulations and contribute to the properties of emulsions. These include fats, oils, waxes, fatty acids, fatty alcohols, fatty esters, humectants, hydrophilic colloids, preservatives and antioxidants (Block, in Pharmaceutical Dosage Forms, Lieberman, Rieger and Banker (Eds.), 1988, Marcel Dekker, Inc., New York, N.Y., volume 1, p. 335; Idson, in Pharmaceutical Dosage Forms, Lieberman, Rieger and Banker (Eds.), 1988, Marcel Dekker, Inc., New York, N.Y., volume 1, p. 199).


Hydrophilic colloids or hydrocolloids include naturally occurring gums and synthetic polymers such as polysaccharides (for example, acacia, agar, alginic acid, carrageenan, guar gum, karaya gum, and tragacanth), cellulose derivatives (for example, carboxymethylcellulose and carboxypropylcellulose), and synthetic polymers (for example, carbomers, cellulose ethers, and carboxyvinyl polymers). These disperse or swell in water to form colloidal solutions that stabilize emulsions by forming strong interfacial films around the dispersed-phase droplets and by increasing the viscosity of the external phase.


Since emulsions often contain a number of ingredients such as carbohydrates, proteins, sterols and phosphatides that may readily support the growth of microbes, these formulations often incorporate preservatives. Commonly used preservatives included in emulsion formulations include methyl paraben, propyl paraben, quaternary ammonium salts, benzalkonium chloride, esters of p-hydroxybenzoic acid, and boric acid. Antioxidants are also commonly added to emulsion formulations to prevent deterioration of the formulation. Antioxidants used may be free radical scavengers such as tocopherols, alkyl gallates, butylated hydroxyanisole, butylated hydroxytoluene, or reducing agents such as ascorbic acid and sodium metabisulfite, and antioxidant synergists such as citric acid, tartaric acid, and lecithin.


The application of emulsion formulations via dermatological, oral and parenteral routes and methods for their manufacture have been reviewed in the literature (see e.g., Ansel's Pharmaceutical Dosage Forms and Drug Delivery Systems, Allen, L V., Popovich N G., and Ansel H C., 2004, Lippincott Williams & Wilkins (8th ed.), New York, N.Y.; Idson, in Pharmaceutical Dosage Forms, Lieberman, Rieger and Banker (Eds.), 1988, Marcel Dekker, Inc., New York, N.Y., volume 1, p. 199). Emulsion formulations for oral delivery have been very widely used because of ease of formulation, as well as efficacy from an absorption and bioavailability standpoint (see e.g., Ansel's Pharmaceutical Dosage Forms and Drug Delivery Systems, Allen, L V., Popovich N G., and Ansel H C., 2004, Lippincott Williams & Wilkins (8th ed.), New York, N.Y.; Rosoff, in Pharmaceutical Dosage Forms, Lieberman, Rieger and Banker (Eds.), 1988, Marcel Dekker, Inc., New York, N.Y., volume 1, p. 245; Idson, in Pharmaceutical Dosage Forms, Lieberman, Rieger and Banker (Eds.), 1988, Marcel Dekker, Inc., New York, N.Y., volume 1, p. 199). Mineral-oil base laxatives, oil-soluble vitamins and high fat nutritive preparations are among the materials that have commonly been administered orally as o/w emulsions.


In one embodiment of the present invention, the compositions of iRNAs and nucleic acids are formulated as microemulsions. A microemulsion may be defined as a system of water, oil and amphiphile which is a single optically isotropic and thermodynamically stable liquid solution (see e.g., Ansel's Pharmaceutical Dosage Forms and Drug Delivery Systems, Allen, L V., Popovich N G., and Ansel H C., 2004, Lippincott Williams & Wilkins (8th ed.), New York, N.Y.; Rosoff, in Pharmaceutical Dosage Forms, Lieberman, Rieger and Banker (Eds.), 1988, Marcel Dekker, Inc., New York, N.Y., volume 1, p. 245). Typically microemulsions are systems that are prepared by first dispersing an oil in an aqueous surfactant solution and then adding a sufficient amount of a fourth component, generally an intermediate chain-length alcohol to form a transparent system. Therefore, microemulsions have also been described as thermodynamically stable, isotropically clear dispersions of two immiscible liquids that are stabilized by interfacial films of surface-active molecules (Leung and Shah, in: Controlled Release of Drugs: Polymers and Aggregate Systems, Rosoff, M., Ed., 1989, VCH Publishers, New York, pages 185-215). Microemulsions commonly are prepared via a combination of three to five components that include oil, water, surfactant, cosurfactant and electrolyte. Whether the microemulsion is of the water-in-oil (w/o) or an oil-in-water (o/w) type is dependent on the properties of the oil and surfactant used and on the structure and geometric packing of the polar heads and hydrocarbon tails of the surfactant molecules (Schott, in Remington's Pharmaceutical Sciences, Mack Publishing Co., Easton, Pa., 1985, p. 271).


The phenomenological approach utilizing phase diagrams has been extensively studied and has yielded a comprehensive knowledge, to one skilled in the art, of how to formulate microemulsions (see e.g., Ansel's Pharmaceutical Dosage Forms and Drug Delivery Systems, Allen, L V., Popovich N G., and Ansel H C., 2004, Lippincott Williams & Wilkins (8th ed.), New York, N.Y.; Rosoff, in Pharmaceutical Dosage Forms, Lieberman, Rieger and Banker (Eds.), 1988, Marcel Dekker, Inc., New York, N.Y., volume 1, p. 245; Block, in Pharmaceutical Dosage Forms, Lieberman, Rieger and Banker (Eds.), 1988, Marcel Dekker, Inc., New York, N.Y., volume 1, p. 335). Compared to conventional emulsions, microemulsions offer the advantage of solubilizing water-insoluble drugs in a formulation of thermodynamically stable droplets that are formed spontaneously.


Surfactants used in the preparation of microemulsions include, but are not limited to, ionic surfactants, non-ionic surfactants, Brij 96, polyoxyethylene oleyl ethers, polyglycerol fatty acid esters, tetraglycerol monolaurate (ML310), tetraglycerol monooleate (MO310), hexaglycerol monooleate (PO310), hexaglycerol pentaoleate (PO500), decaglycerol monocaprate (MCA750), decaglycerol monooleate (MO750), decaglycerol sesquioleate (SO750), decaglycerol decaoleate (DAO750), alone or in combination with cosurfactants. The cosurfactant, usually a short-chain alcohol such as ethanol, 1-propanol, and 1-butanol, serves to increase the interfacial fluidity by penetrating into the surfactant film and consequently creating a disordered film because of the void space generated among surfactant molecules. Microemulsions may, however, be prepared without the use of cosurfactants and alcohol-free self-emulsifying microemulsion systems are known in the art. The aqueous phase may typically be, but is not limited to, water, an aqueous solution of the drug, glycerol, PEG300, PEG400, polyglycerols, propylene glycols, and derivatives of ethylene glycol. The oil phase may include, but is not limited to, materials such as Captex 300, Captex 355, Capmul MCM, fatty acid esters, medium chain (C8-C12) mono, di, and tri-glycerides, polyoxyethylated glyceryl fatty acid esters, fatty alcohols, polyglycolized glycerides, saturated polyglycolized C8-C10 glycerides, vegetable oils and silicone oil.


Microemulsions are particularly of interest from the standpoint of drug solubilization and the enhanced absorption of drugs. Lipid based microemulsions (both o/w and w/o) have been proposed to enhance the oral bioavailability of drugs, including peptides (see e.g., U.S. Pat. Nos. 6,191,105; 7,063,860; 7,070,802; 7,157,099; Constantinides et al., Pharmaceutical Research, 1994, 11, 1385-1390; Ritschel, Meth. Find. Exp. Clin. Pharmacol., 1993, 13, 205). Microemulsions afford advantages of improved drug solubilization, protection of drug from enzymatic hydrolysis, possible enhancement of drug absorption due to surfactant-induced alterations in membrane fluidity and permeability, ease of preparation, ease of oral administration over solid dosage forms, improved clinical potency, and decreased toxicity (see e.g., U.S. Pat. Nos. 6,191,105; 7,063,860; 7,070,802; 7,157,099; Constantinides et al., Pharmaceutical Research, 1994, 11, 1385; Ho et al., J. Pharm. Sci., 1996, 85, 138-143). Often microemulsions may form spontaneously when their components are brought together at ambient temperature. This may be particularly advantageous when formulating thermolabile drugs, peptides or iRNAs. Microemulsions have also been effective in the transdermal delivery of active components in both cosmetic and pharmaceutical applications. It is expected that the microemulsion compositions and formulations of the present invention will facilitate the increased systemic absorption of iRNAs and nucleic acids from the gastrointestinal tract, as well as improve the local cellular uptake of iRNAs and nucleic acids.


Microemulsions of the present invention may also contain additional components and additives such as sorbitan monostearate (Grill 3), Labrasol, and penetration enhancers to improve the properties of the formulation and to enhance the absorption of the iRNAs and nucleic acids of the present invention. Penetration enhancers used in the microemulsions of the present invention may be classified as belonging to one of five broad categories—surfactants, fatty acids, bile salts, chelating agents, and non-chelating non-surfactants (Lee et al., Critical Reviews in Therapeutic Drug Carrier Systems, 1991, p. 92). Each of these classes has been discussed above.


Penetration Enhancers


In one embodiment, the present invention employs various penetration enhancers to effect the efficient delivery of nucleic acids, particularly iRNAs, to the skin of animals. Most drugs are present in solution in both ionized and nonionized forms. However, usually only lipid soluble or lipophilic drugs readily cross cell membranes. It has been discovered that even non-lipophilic drugs may cross cell membranes if the membrane to be crossed is treated with a penetration enhancer. In addition to aiding the diffusion of non-lipophilic drugs across cell membranes, penetration enhancers also enhance the permeability of lipophilic drugs.


Penetration enhancers may be classified as belonging to one of five broad categories, i.e., surfactants, fatty acids, bile salts, chelating agents, and non-chelating non-surfactants (see e.g., Malmsten, M. Surfactants and polymers in drug delivery, Informa Health Care, New York, N.Y., 2002; Lee et al., Critical Reviews in Therapeutic Drug Carrier Systems, 1991, p. 92). Each of the above mentioned classes of penetration enhancers are described below in greater detail.


Surfactants: In connection with the present invention, surfactants (or “surface-active agents”) are chemical entities which, when dissolved in an aqueous solution, reduce the surface tension of the solution or the interfacial tension between the aqueous solution and another liquid, with the result that absorption of iRNAs through the mucosa is enhanced. In addition to bile salts and fatty acids, these penetration enhancers include, for example, sodium lauryl sulfate, polyoxyethylene-9-lauryl ether and polyoxyethylene-20-cetyl ether) (see e.g., Malmsten, M. Surfactants and polymers in drug delivery, Informa Health Care, New York, N.Y., 2002; Lee et al., Critical Reviews in Therapeutic Drug Carrier Systems, 1991, p. 92); and perfluorochemical emulsions, such as FC-43. Takahashi et al., J. Pharm. Pharmacol., 1988, 40, 252).


Fatty acids: Various fatty acids and their derivatives which act as penetration enhancers include, for example, oleic acid, lauric acid, capric acid (n-decanoic acid), myristic acid, palmitic acid, stearic acid, linoleic acid, linolenic acid, dicaprate, tricaprate, monoolein (1-monooleoyl-rac-glycerol), dilaurin, caprylic acid, arachidonic acid, glycerol 1-monocaprate, 1-dodecylazacycloheptan-2-one, acylcarnitines, acylcholines, C1-20 alkyl esters thereof (e.g., methyl, isopropyl and t-butyl), and mono- and di-glycerides thereof (i.e., oleate, laurate, caprate, myristate, palmitate, stearate, linoleate, etc.) (see e.g., Touitou, E., et al. Enhancement in Drug Delivery, CRC Press, Danvers, Mass., 2006; Lee et al., Critical Reviews in Therapeutic Drug Carrier Systems, 1991, p. 92; Muranishi, Critical Reviews in Therapeutic Drug Carrier Systems, 1990, 7, 1-33; El Hariri et al., J. Pharm. Pharmacol., 1992, 44, 651-654).


Bile salts: The physiological role of bile includes the facilitation of dispersion and absorption of lipids and fat-soluble vitamins (see e.g., Malmsten, M. Surfactants and polymers in drug delivery, Informa Health Care, New York, N.Y., 2002; Brunton, Chapter 38 in: Goodman & Gilman's The Pharmacological Basis of Therapeutics, 9th Ed., Hardman et al. Eds., McGraw-Hill, New York, 1996, pp. 934-935). Various natural bile salts, and their synthetic derivatives, act as penetration enhancers. Thus the term “bile salts” includes any of the naturally occurring components of bile as well as any of their synthetic derivatives. Suitable bile salts include, for example, cholic acid (or its pharmaceutically acceptable sodium salt, sodium cholate), dehydrocholic acid (sodium dehydrocholate), deoxycholic acid (sodium deoxycholate), glucholic acid (sodium glucholate), glycholic acid (sodium glycocholate), glycodeoxycholic acid (sodium glycodeoxycholate), taurocholic acid (sodium taurocholate), taurodeoxycholic acid (sodium taurodeoxycholate), chenodeoxycholic acid (sodium chenodeoxycholate), ursodeoxycholic acid (UDCA), sodium tauro-24,25-dihydro-fusidate (STDHF), sodium glycodihydrofusidate and polyoxyethylene-9-lauryl ether (POE) (see e.g., Malmsten, M. Surfactants and polymers in drug delivery, Informa Health Care, New York, N.Y., 2002; Lee et al., Critical Reviews in Therapeutic Drug Carrier Systems, 1991, page 92; Swinyard, Chapter 39 In: Remington's Pharmaceutical Sciences, 18th Ed., Gennaro, ed., Mack Publishing Co., Easton, Pa., 1990, pages 782-783; Muranishi, Critical Reviews in Therapeutic Drug Carrier Systems, 1990, 7, 1-33; Yamamoto et al., J. Pharm. Exp. Ther., 1992, 263, 25; Yamashita et al., J. Pharm. Sci., 1990, 79, 579-583).


Chelating Agents: Chelating agents, as used in connection with the present invention, can be defined as compounds that remove metallic ions from solution by forming complexes therewith, with the result that absorption of iRNAs through the mucosa is enhanced. With regards to their use as penetration enhancers in the present invention, chelating agents have the added advantage of also serving as DNase inhibitors, as most characterized DNA nucleases require a divalent metal ion for catalysis and are thus inhibited by chelating agents (Jarrett, J. Chromatogr., 1993, 618, 315-339). Suitable chelating agents include but are not limited to disodium ethylenediaminetetraacetate (EDTA), citric acid, salicylates (e.g., sodium salicylate, 5-methoxysalicylate and homovanilate), N-acyl derivatives of collagen, laureth-9 and N-amino acyl derivatives of β-diketones (enamines)(see e.g., Katdare, A. et al., Excipient development for pharmaceutical, biotechnology, and drug delivery, CRC Press, Danvers, Mass., 2006; Lee et al., Critical Reviews in Therapeutic Drug Carrier Systems, 1991, page 92; Muranishi, Critical Reviews in Therapeutic Drug Carrier Systems, 1990, 7, 1-33; Buur et al., J. Control Rel., 1990, 14, 43-51).


Non-chelating non-surfactants: As used herein, non-chelating non-surfactant penetration enhancing compounds can be defined as compounds that demonstrate insignificant activity as chelating agents or as surfactants but that nonetheless enhance absorption of iRNAs through the alimentary mucosa (see e.g., Muranishi, Critical Reviews in Therapeutic Drug Carrier Systems, 1990, 7, 1-33). This class of penetration enhancers include, for example, unsaturated cyclic ureas, 1-alkyl- and 1-alkenylazacyclo-alkanone derivatives (Lee et al., Critical Reviews in Therapeutic Drug Carrier Systems, 1991, page 92); and non-steroidal anti-inflammatory agents such as diclofenac sodium, indomethacin and phenylbutazone (Yamashita et al., J. Pharm. Pharmacol., 1987, 39, 621-626).


Agents that enhance uptake of iRNAs at the cellular level may also be added to the pharmaceutical and other compositions of the present invention. For example, cationic lipids, such as lipofectin (Junichi et al, U.S. Pat. No. 5,705,188), cationic glycerol derivatives, and polycationic molecules, such as polylysine (Lollo et al., PCT Application WO 97/30731), are also known to enhance the cellular uptake of dsRNAs. Examples of commercially available transfection reagents include, for example Lipofectamine™ (Invitrogen; Carlsbad, Calif.), Lipofectamine 2000™ (Invitrogen; Carlsbad, Calif.), 293Fectin™ (Invitrogen; Carlsbad, Calif.), Cellfectin™ (Invitrogen; Carlsbad, Calif.), DMRIE-C™ (Invitrogen; Carlsbad, Calif.), FreeStyle™ MAX (Invitrogen; Carlsbad, Calif.), Lipofectamine™ 2000 CD (Invitrogen; Carlsbad, Calif.), Lipofectamine™ (Invitrogen; Carlsbad, Calif.), RNAiMAX (Invitrogen; Carlsbad, Calif.), Oligofectamine™ (Invitrogen; Carlsbad, Calif.), Optifect™ (Invitrogen; Carlsbad, Calif.), X-tremeGENE Q2 Transfection Reagent (Roche; Grenzacherstrasse, Switzerland), DOTAP Liposomal Transfection Reagent (Grenzacherstrasse, Switzerland), DOSPER Liposomal Transfection Reagent (Grenzacherstrasse, Switzerland), or Fugene (Grenzacherstrasse, Switzerland), Transfectam® Reagent (Promega; Madison, Wis.), TransFast™ Transfection Reagent (Promega; Madison, Wis.), Tfx™-20 Reagent (Promega; Madison, Wis.), Tfx™-50 Reagent (Promega; Madison, Wis.), DreamFect™ (OZ Biosciences; Marseille, France), EcoTransfect (OZ Biosciences; Marseille, France), TransPassa D1 Transfection Reagent (New England Biolabs; Ipswich, Mass., USA), LyoVec™/LipoGen™ (Invivogen; San Diego, Calif., USA), PerFectin Transfection Reagent (Genlantis; San Diego, Calif., USA), NeuroPORTER Transfection Reagent (Genlantis; San Diego, Calif., USA), GenePORTER Transfection reagent (Genlantis; San Diego, Calif., USA), GenePORTER 2 Transfection reagent (Genlantis; San Diego, Calif., USA), Cytofectin Transfection Reagent (Genlantis; San Diego, Calif., USA), BaculoPORTER Transfection Reagent (Genlantis; San Diego, Calif., USA), TroganPORTER™ transfection Reagent (Genlantis; San Diego, Calif., USA), RiboFect (Bioline; Taunton, Mass., USA), PlasFect (Bioline; Taunton, Mass., USA), UniFECTOR (B-Bridge International; Mountain View, Calif., USA), SureFECTOR (B-Bridge International; Mountain View, Calif., USA), or HiFect™ (B-Bridge International, Mountain View, Calif., USA), among others.


Other agents may be utilized to enhance the penetration of the administered nucleic acids, including glycols such as ethylene glycol and propylene glycol, pyrrols such as 2-pyrrol, azones, and terpenes such as limonene and menthone.


Carriers


Certain compositions of the present invention also incorporate carrier compounds in the formulation. As used herein, “carrier compound” or “carrier” can refer to a nucleic acid, or analog thereof, which is inert (i.e., does not possess biological activity per se) but is recognized as a nucleic acid by in vivo processes that reduce the bioavailability of a nucleic acid having biological activity by, for example, degrading the biologically active nucleic acid or promoting its removal from circulation. The coadministration of a nucleic acid and a carrier compound, typically with an excess of the latter substance, can result in a substantial reduction of the amount of nucleic acid recovered in the liver, kidney or other extracirculatory reservoirs, presumably due to competition between the carrier compound and the nucleic acid for a common receptor. For example, the recovery of a partially phosphorothioate dsRNA in hepatic tissue can be reduced when it is coadministered with polyinosinic acid, dextran sulfate, polycytidic acid or 4-acetamido-4′isothiocyano-stilbene-2,2′-disulfonic acid (Miyao et al., DsRNA Res. Dev., 1995, 5, 115-121; Takakura et al., DsRNA & Nucl. Acid Drug Dev., 1996, 6, 177-183.


Excipients


In contrast to a carrier compound, a “pharmaceutical carrier” or “excipient” is a pharmaceutically acceptable solvent, suspending agent or any other pharmacologically inert vehicle for delivering one or more nucleic acids to an animal. The excipient may be liquid or solid and is selected, with the planned manner of administration in mind, so as to provide for the desired bulk, consistency, etc., when combined with a nucleic acid and the other components of a given pharmaceutical composition. Typical pharmaceutical carriers include, but are not limited to, binding agents (e.g., pregelatinized maize starch, polyvinylpyrrolidone or hydroxypropyl methylcellulose, etc.); fillers (e.g., lactose and other sugars, microcrystalline cellulose, pectin, gelatin, calcium sulfate, ethyl cellulose, polyacrylates or calcium hydrogen phosphate, etc.); lubricants (e.g., magnesium stearate, talc, silica, colloidal silicon dioxide, stearic acid, metallic stearates, hydrogenated vegetable oils, corn starch, polyethylene glycols, sodium benzoate, sodium acetate, etc.); disintegrants (e.g., starch, sodium starch glycolate, etc.); and wetting agents (e.g., sodium lauryl sulphate, etc).


Pharmaceutically acceptable organic or inorganic excipients suitable for non-parenteral administration which do not deleteriously react with nucleic acids can also be used to formulate the compositions of the present invention. Suitable pharmaceutically acceptable carriers include, but are not limited to, water, salt solutions, alcohols, polyethylene glycols, gelatin, lactose, amylose, magnesium stearate, talc, silicic acid, viscous paraffin, hydroxymethylcellulose, polyvinylpyrrolidone and the like.


Formulations for topical administration of nucleic acids may include sterile and non-sterile aqueous solutions, non-aqueous solutions in common solvents such as alcohols, or solutions of the nucleic acids in liquid or solid oil bases. The solutions may also contain buffers, diluents and other suitable additives. Pharmaceutically acceptable organic or inorganic excipients suitable for non-parenteral administration which do not deleteriously react with nucleic acids can be used.


Suitable pharmaceutically acceptable excipients include, but are not limited to, water, salt solutions, alcohol, polyethylene glycols, gelatin, lactose, amylose, magnesium stearate, talc, silicic acid, viscous paraffin, hydroxymethylcellulose, polyvinylpyrrolidone and the like.


Other Components


The compositions of the present invention may additionally contain other adjunct components conventionally found in pharmaceutical compositions, at their art-established usage levels. Thus, for example, the compositions may contain additional, compatible, pharmaceutically-active materials such as, for example, antipruritics, astringents, local anesthetics or anti-inflammatory agents, or may contain additional materials useful in physically formulating various dosage forms of the compositions of the present invention, such as dyes, flavoring agents, preservatives, antioxidants, opacifiers, thickening agents and stabilizers. However, such materials, when added, should not unduly interfere with the biological activities of the components of the compositions of the present invention. The formulations can be sterilized and, if desired, mixed with auxiliary agents, e.g., lubricants, preservatives, stabilizers, wetting agents, emulsifiers, salts for influencing osmotic pressure, buffers, colorings, flavorings and/or aromatic substances and the like which do not deleteriously interact with the nucleic acid(s) of the formulation.


Aqueous suspensions may contain substances that increase the viscosity of the suspension including, for example, sodium carboxymethylcellulose, sorbitol and/or dextran. The suspension may also contain stabilizers.


In some embodiments, pharmaceutical compositions featured in the invention include (a) one or more iRNA compounds and (b) one or more biologic agents which function by a non-RNAi mechanism. Examples of such biologic agents include agents that interfere with an interaction of ALAS1 and at least one ALAS1 binding partner.


Toxicity and therapeutic efficacy of such compounds can be determined by standard pharmaceutical procedures in cell cultures or experimental animals, e.g., for determining the LD50 (the dose lethal to 50% of the population) and the ED50 (the dose therapeutically effective in 50% of the population). The dose ratio between toxic and therapeutic effects is the therapeutic index and it can be expressed as the ratio LD50/ED50. Compounds that exhibit high therapeutic indices are typical.


The data obtained from cell culture assays and animal studies can be used in formulating a range of dosage for use in humans. The dosage of compositions featured in the invention lies generally within a range of circulating concentrations that include the ED50 with little or no toxicity. The dosage may vary within this range depending upon the dosage form employed and the route of administration utilized. For any compound used in the methods featured in the invention, the therapeutically effective dose can be estimated initially from cell culture assays. A dose may be formulated in animal models to achieve a circulating plasma concentration range of the compound or, when appropriate, of the polypeptide product of a target sequence (e.g., achieving a decreased concentration of the polypeptide) that includes the IC50 (i.e., the concentration of the test compound which achieves a half-maximal inhibition of symptoms) as determined in cell culture. Such information can be used to more accurately determine useful doses in humans. Levels in plasma may be measured, for example, by high performance liquid chromatography.


In addition to their administration, as discussed above, the iRNAs featured in the invention can be administered in combination with other known agents effective in treatment of diseases or disorders related to ALAS1 expression. In any event, the administering physician can adjust the amount and timing of iRNA administration on the basis of results observed using standard measures of efficacy known in the art or described herein.


Methods for Treating Diseases Related to Expression of an ALAS1 Gene


The invention relates in particular to the use of an iRNA targeting ALAS1 to inhibit ALAS1 expression and/or to treat a disease, disorder, or pathological process that is related to ALAS1 expression.


As used herein, “a disorder related to ALAS1 expression,” a “disease related to ALAS1 expression, a “pathological process related to ALAS1 expression,” or the like includes any condition, disorder, or disease in which ALAS1 expression is altered (e.g., elevated), the level of one or more porphyrins is altered (e.g., elevated), the level or activity of one or more enzymes in the heme biosynthetic pathway (porphyrin pathway) is altered, or other mechanisms that lead to pathological changes in the heme biosynthetic pathway. For example, an iRNA targeting an ALAS1 gene, or a combination thereof, may be used for treatment of conditions in which levels of a porphyrin or a porphyrin precursor (e.g., ALA or PBG) are elevated (e.g., certain porphyrias), or conditions in which there are defects in the enzymes of the heme biosynthetic pathway (e.g., certain porphyrias). Disorders related to ALAS1 expression include, for example, X-linked sideroblastic anemia (XLSA), ALA deyhdratase deficiency porphyria (Doss porphyria), acute intermittent porphyria (AIP), congenital erythropoietic porphyria, prophyria cutanea tarda, hereditary coproporphyria (coproporphyria), variegate porphyria, erythropoietic protoporphyria (EPP), and transient erythroporphyria of infancy.


As used herein, a “subject” to be treated according to the methods described herein, includes a human or non-human animal, e.g., a mammal. The mammal may be, for example, a rodent (e.g., a rat or mouse) or a primate (e.g., a monkey). In some embodiments, the subject is a human.


In some embodiments, the subject is suffering from a disorder related to ALAS1 expression (e.g., has been diagnosed with a porphyria or has suffered from one or more symptoms of porphyria and is a carrier of a mutation associated with porphyria) or is at risk of developing a disorder related to ALAS1 expression (e.g., a subject with a family history of porphyria, or a subject who is a carrier of a genetic mutation associated with porphyria).


Classifications of porphyrias, including acute hepatic porphyrias, are described, e.g., in Balwani, M. & Desnick, R. J., Blood, 120(23), published online as Blood First Edition paper, July 12, 102; DOI 10.1182/blood-2012-05-423186. As described in Balwain & Desnick, acute intermittent porphyria (AIP) hereditary coproporphyria (HCP), variegate porphyria (VP) are autosomal dominant porphyrias and ALA deyhdratase deficiency porphyria (ADP) is autosomal recessive. In rare cases, AIP, HCP, and VP occur as homozygous dominant forms. In addition, there is a rare homozygous recessive form of porphyria cutanea tarda (PCT), which is the single hepatic cutaneous porphyria, and is also known as hepatoerythropoietic porphyria. The clinical and laboratory features of these porphyrias are described in Table 11 below.









TABLE 11







Human hepatic porphyrias: clinical and laboratory features
















Enzyme






Principal
activity,



Deficient

symptoms,
% of
Increased porphyrin precursors and/or porphyrins*














Porphyria
enzyme
Inheritance
NV or CP
normal
Erythrocytes
Urine
Stool










Acute hepatic porphyrias














ADP
ALA-
AR
NV
~5
Zn-protoporphyrin
ALA,




dehydratase




coproporphyrin








III


AIP
HMB-
AD
NV
~50

ALA, PBG,




synthase




uroporphyrin


HCP
COPRO-
AD
NV and CP
~50

ALA, PBG,
coproporphyrin



oxidase




coproporphyrin
III








III


VP
PROTO-
AD
NV and CP
~50

ALA, PBG
coproporphyrin



oxidase




coproporphyrin
III,








III
protoporphyrin







Hepatic cutaneous porphyrias














PCT
URO-
Sporadic or
CP
<20

uroporphyrin,
uroporphyrin,



decarboxylase
AD



7-carboxylate
7-








porphyrin
carboxylate









porphyrin





AR indicates autosomal recessive;


AD, autosomal dominant;


NV, neurovisceral;


CP, cutaneous photosensitivity; and


—, not applicable.


*Increases that may be important for diagnosis.






In some embodiments, the subject has or is at risk for developing a porphyria, e.g., a hepatic porphyria, e.g., AIP, HCP, VP, ADP, or hepatoerythropoietic porphyria.


In some embodiments, the porphyria is an acute hepatic porphyria, e.g., an acute hepatic porphyria is selected from acute intermittent porphyria (AIP), hereditary coproporphyria (HCP), variegate porphyria (VP), and ALA deyhdratase deficiency porphyria (ADP).


In some embodiments, the porphyria is a dual porphyria, e.g., at least two porphyrias. In some embodiments, the dual porphyria comprises two or more porphyrias selected from acute intermittent porphyria (AIP) hereditary coproporphyria (HCP), variegate porphyria (VP), and ALA deyhdratase deficiency porphyria (ADP).


In some embodiments, the porphyria is a homozygous dominant hepatic porphyria (e.g., homozygous dominant AIP, HCP, or VP) or hepatoerythropoietic porphyria. In some embodiments, the porphyria is AIP, HCP, VP, or hepatoerythropoietic porphyria, or a combination thereof (e.g., a dual porphyria). In embodiments, the AIP, HCP, or VP is either heterozygous dominant or homozygous dominant.


In embodiments, the subject has or is at risk for developing a porphyria, e.g., ADP, and shows an elevated level (e.g., an elevated urine level) of ALA and/or coproporphyrin III. In embodiments, the subject has or is at risk for developing a porphyria, e.g., ADP, and shows an elevated level of erythrocyte Zn-protoporphyrin.


In embodiments, the subject has or is at risk for developing a porphyria, e.g., AIP, and shows an elevated level (e.g., an elevated urine level) of ALA, PBG, and/or uroporphyrin.


In embodiments, the subject has or is at risk for developing a porphyria, e.g., HCP, and shows an elevated level (e.g., an elevated urine level) of ALA, PBG, and/or coproporphyrin III. In embodiments, the subject has or is at risk for developing a porphyria, e.g., HCP, and shows an elevated level (e.g., an elevated stool level) of coproporphyrin III.


In embodiments, the subject has or is at risk for developing a porphyria, e.g., VP, and shows an elevated level (e.g., an elevated urine level) of ALA, PBG, and/or coproporphyrin III.


In embodiments, the subject has or is at risk for developing a porphyria, e.g., HCP, and shows an elevated level (e.g., an elevated stool level) of coproporphyrin III and/or protoporphyrin.


In embodiments, the subject has or is at risk for developing a porphyria, e.g., PCT, (e.g., hepatoerythropoietic porphyria) and shows an elevated level (e.g., an elevated urine level) of uroporphyrin and/or 7-carboxylate porphyrin. In embodiments, the subject has or is at risk for developing a porphyria, e.g., PCT, (e.g., hepatoerythropoietic porphyria) and shows an elevated level (e.g., an elevated stool level) of uroporphyrin and/or 7-carboxylate porphyrin.


A mutation associated with porphyria includes any mutation in a gene encoding an enzyme in the heme biosynthetic pathway (porphyrin pathway) or a gene which alters the expression of a gene in the heme biosynthetic pathway. In many embodiments, the subject carries one or more mutations in an enzyme of the porphyrin pathway (e.g., a mutation in ALA dehydratase or PBG deaminase). In some embodiments, the subject is suffering from an acute porphyria (e.g., AIP, ALA dehydratase deficiency porphyria).


In some cases, patients with an acute hepatic porphyria (e.g., AIP), or patients who carry mutations associated with an acute hepatic porphyria (e.g., AIP) but who are asymptomatic, have elevated ALA and/or PBG levels compared with healthy individuals. See, e.g., Floderus, Y. et al, Clinical Chemistry, 52(4): 701-707, 2006; Sardh et al., Clinical Pharmacokinetics, 46(4): 335-349, 2007. In such cases, the level of ALA and/or PBG can be elevated even when the patient is not having, or has never had, an attack. In some such cases, the patient is otherwise completely asymptomatic. In some such cases, the patient suffers from pain, e.g., neuropathic pain, which can be chronic pain (e.g., chronic neuropathic pain). In some cases, the patient has a neuropathy. In some cases, the patient has a progressive neuropathy.


In some embodiments, the subject to be treated according to the methods described herein has an elevated level of a porphyrin or a porphyrin precursor, e.g., ALA and/or PBG. Levels of a porphyrin or a porphyrin precursor can be assessed using methods known in the art or methods described herein. For example, methods of assessing during and plasma ALA and PBG levels, as well as urine and plasma porphyrin levels, are disclosed in Floderus, Y. et al, Clinical Chemistry, 52(4): 701-707, 2006; and Sardh et al., Clinical Pharmacokinetics, 46(4): 335-349, 2007, the entire contents of which are hereby incorporated in their entirety.


In some embodiments, the subject is an animal model of a porphyria, e.g., a mouse model of a porphyria (e.g., a mutant mouse as described in Lindberg et al. Nature Genetics, 12: 195-199, 1996). In some embodiments, the subject is a human, e.g., a human who has or is at risk for developing a porphyria, as described herein. In some embodiments, the subject is not having an acute attack of porphyria. In some embodiments, the subject has never had an attack. In some embodiments, the patient suffers from chronic pain. In some embodiments, the patient has nerve damage. In embodiments, the subject has EMG changes and/or changes in nerve conduction velocity. In some embodiments, the subject is asymptomatic. In some embodiments, the subject is at risk for developing a porphyria (e.g., carries a gene mutation associated with a porphyria) and is asymptomatic. In some embodiments, the subject has previously had an acute attack but is asymptomatic at the time of treatment.


In some embodiments, the subject is at risk for developing a porphyria and is treated prophylactically to prevent the development of a porphyria. In some embodiments the subject has an elevated level of a porphyrin or a porphyrin precursor, e.g., ALA and/or PBG. In some embodiments, the prophylactic treatment begins at puberty. In some embodiments the treatment lowers the level (e.g., the plasma level or the urine level) of a porphyrin or a porphyrin precursor, e.g., ALA and/or PBG. In some embodiments, the treatment prevents the development of an elevated level of a porphyrin or a porphyrin precursor, e.g., ALA and/or PBG. In some embodiments, the treatment prevents the development of, or decreases the frequency or severity of, a symptom associated with a porphyria, e.g., pain or nerve damage.


In some embodiments, the level of a porphyrin or a porphyrin precursor, e.g., ALA or PBG, is elevated, e.g., in a sample of plasma or urine from the subject. In some embodiments, the level of a porphyrin or a porphyrin precursor, e.g., ALA or PBG, in the subject is assessed based on the absolute level of the porphyrin or the porphyrin precursor, e.g., ALA or PBG in a sample from the subject. In some embodiments, the level of a porphyrin or a porphyrin precursor, e.g., ALA or PBG, in the subject is assessed based on the relative level of the porphyrin or porphyrin precursor, e.g., ALA or PBG, in a sample from the subject. In some embodiments, the relative level is relative to the level of another protein or compound, e.g., the level of creatinine, in a sample from the subject. In some embodiments, the sample is a urine sample. In some embodiments, the sample is a plasma sample. In some embodiments, the sample is a stool sample.


An elevated level of a porphyrin or a porphyrin precursor, e.g., ALA and/or PBG, can be established, e.g., by showing that the subject has a level of a porphyrin or a porphyrin precursor, e.g., ALA and/or PBG (e.g., a plasma or urine level of ALA and/or PBG) that is greater than, or greater than or equal to, a reference value. A physician with expertise in the treatment of porphyrias would be able to determine whether the level of a porphyrin or a porphyrin precursor, (e.g., ALA and/or PBG) is elevated, e.g., for the purpose of diagnosing a porphyria or for determining whether a subject is at risk for developing a porphyria, e.g., a subject may be predisposed to an acute attack or to pathology associated with a porphyria, such as, e.g., chronic pain (e.g., neuropathic pain) and neuropathy (e.g., progressive neuropathy).


As used herein, a “reference value” refers to a value from the subject when the subject is not in a disease state, or a value from a normal or healthy subject, or a value from a reference sample or population, e.g., a group of normal or healthy subjects (e.g., a group of subjects that does not carry a mutation associated with a porphyria and/or a group of subjects that does not suffer from symptoms associated with a porphyria).


In some embodiments, the reference value is a pre-disease level in the same individual.


In some embodiments, the reference value is a level in a reference sample or population. In some embodiments, the reference value is the mean or median value in a reference sample or population. In some embodiments, the reference value the value that is two standard deviations above the mean in a reference sample or population. In some embodiments, the reference value is the value that is 2.5, 3, 3.5, 4, 4.5, or 5 standard deviations above the mean in a reference sample or population.


In some embodiments, wherein the subject has an elevated level of a porphyrin or a porphyrin precursor, e.g., ALA and/or PBG, the subject has a level of ALA and/or PBG that is at least 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, or 90% higher than a reference value. In some embodiments, the subject has a level of a porphyrin or a porphyrin precursor, e.g., ALA and/or PBG, that is at least 2, 3, 4, 5, 6, 7, 8, 9, or 10 fold higher than a reference value.


In some embodiments, the reference value is an upper reference limit. As used herein, an “upper reference limit” refers to a level that is the upper limit of the 95% confidence interval for a reference sample or population, e.g., a group of normal (e.g., wild type) or healthy individuals, e.g., individuals who do not carry a genetic mutation associated with a porphyria and/or individuals who do not suffer from a porphyria. Accordingly, a lower reference limit refers to a level that is the lower limit of the same 95% confidence interval.


In some embodiments wherein the subject has an elevated level, e.g., a plasma level or a urine level, of a porphyrin or a porphyrin precursor, e.g., ALA or PBG, the level is greater than or equal to 2 times, 3 times, 4 times, or 5 times that of a reference value, e.g., an upper reference limit. In some embodiments, the subject has a urine level of a porphyrin or a porphyrin precursor, e.g., ALA or PBG, that is greater than 4 times that of an upper reference limit.


In some embodiments, the reference value is a value provided in Floderus, Y. et al, Clinical Chemistry, 52(4): 701-707, 2006 or Sardh et al., Clinical Pharmacokinetics, 46(4): 335-349, 2007. In some embodiments, the reference value is a value provided in Table 1 of Sardh et al.


In some embodiments, the subject is a human and has a urine level of PBG that is greater than or equal to 4.8 mmol/mol creatinine. In certain embodiments, the subject is a human and has a urine level of PBG that is greater than, or greater than or equal to, about 3, 4, 5, 6, 7, or 8 mmol/mol creatinine.


In embodiments, the reference value for plasma PBG is 0.12 μmol/L. In embodiments, the subject is a human and has a plasma PBG level that is greater than, or greater than or equal to, 0.10 μmol/L, 0.12 μmol/L, 0.24 μmol/L, 0.36 μmol/L, 0.48 μmol/L, or 0.60 μmol/L. In embodiments, the subject is a human and has a plasma level of PBG that is greater than, or greater than or equal to, 0.48 μmol/L.


In embodiments, the reference value for urine PBG is 1.2 mmol/mol creatinine. In embodiments, the subject is a human and has a urine PBG level that is greater than, or greater than or equal to, 1.0 mmol/mol creatinine, 1.2 mmol/mol creatinine, 2.4 mmol/mol creatinine, 3.6 mmol/mol creatinine, 4.8 mmol/mol creatinine, or 6.0 mmol/mol creatinine. In embodiments, the subject is a human and has a urine level of PBG that is greater than, or greater than or equal to, 4.8 mmol/mol creatinine.


In embodiments, the reference value for plasma ALA is 0.12 μmol/L. In embodiments, the subject is a human and has a plasma ALA level that is greater than, or greater than or equal to, 0.10 μmol/L, 0.12 μmol/L, 0.24 μmol/L, 0.36 μmol/L, 0.48 μmol/L, or 0.60 μmol/L. In embodiments, the subject is a human and has a plasma ALA level that is greater than, or greater than or equal to 0.48 μmol/L.


In embodiments, the reference value for urine ALA is 3.1 mmol/mol creatinine. In embodiments, the subject is a human and has a urine ALA level that is greater than, or greater than or equal to, 2.5 mmol/mol creatinine, 3.1 mmol/mol creatinine, 6.2 mmol/mol creatinine, 9.3 mmol/mol creatinine, 12.4 mmol/mol creatinine, or 15.5 mmol/mol creatinine.


In embodiments, the reference value for plasma porphyrin is 10 nmol/L. In embodiments, the subject is a human and has a plasma porphyrin level that is greater than, or greater than or equal to, 10 nmol/L. In embodiments, the subject is a human and has a plasma porphyrin level that is greater than, or greater than or equal to, 8, 10, 15, 20, 25, 30, 35, 40, 45, or 50 nmol/L. the subject is a human and has a plasma porphyrin level that is greater than, or greater than or equal to 40 nmol/L. In embodiments, the reference value for urine porphyrin is 25 μmol/mol creatinine. In embodiments, the subject is a human and has a urine porphyrin level that is greater than, or greater than or equal to, 25 creatinine. In embodiments, the subject is a human and has a urine porphyrin level that is greater than, or equal to, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, or 80 μmol/mol creatinine.


In some embodiments, the subject has a level, e.g., a plasma level or a urine level, of a porphyrin or a porphyrin precursor, e.g., ALA or PBG, that is greater than that of 99% of individuals in a sample of healthy individuals.


In some embodiments, the subject has a level, e.g., a plasma level or a urine level, of ALA or PBG that is greater than two standard deviations above the mean level in a sample of healthy individuals.


In some embodiments, the subject has a urine level of ALA that is 1.6 or more times that of the mean level in a normal subject (e.g., a subject that does not carry a mutation associated with a porphyria). In some embodiments, the subject has a plasma level of ALA that is 2 or 3 times that of the mean level in a normal subject. In some embodiments, the subject has a urine level of PBG that is four or more times that of the mean level in a normal subject. In some embodiments, the subject has a plasma level of PBG that is four or more times that of the mean level in a normal subject.


In some embodiments, the method is effective to decrease the level of a porphyrin or a porphyrin precursor, e.g., ALA and/or PBG. In embodiments, the method is effective to produce a predetermined reduction in the elevated level of the porphyrin or porphyrin precursor, e.g., ALA or PBG. In some embodiments, the predetermined reduction is a decrease of at least 10%, 20%, 30%, 40%, or 50%. In some embodiments, the predetermined reduction is a reduction that is effective to prevent or ameliorate symptoms, e.g., pain or recurring attacks.


In some embodiments, the predetermined reduction is a reduction that is at least 1, 2, 3, or more standard deviations, wherein the standard deviation is determined based on the values from a reference sample, e.g., a reference sample as described herein.


In some embodiments, the predetermined reduction is a reduction that brings the level of the porphyrin or porphyrin precursor to a level that is less than, or to a level that is less than or equal to, a reference value (e.g., a reference value as described herein).


In some embodiments, the subject to be treated according to the methods described suffers from pain, e.g., chronic pain. In some embodiments, the subject has or is at risk for developing a porphyria, e.g. an acute hepatic porphyria, e.g., AIP. In embodiments, the method is effective to treat the pain, e.g., by reducing the severity of the pain or curing the pain. In embodiments, the method is effective to decrease or prevent nerve damage.


In some embodiments, the subject to be treated according to the methods described herein (a) has an elevated level of ALA and/or PBG and (b) suffers from pain, e.g., chronic pain. In embodiments, the method is effective to decrease an elevated level of ALA and/or PBG and/or to treat the pain, e.g., by reducing the severity of the pain or curing the pain.


In some embodiments, the subject is an animal that serves as a model for a disorder related to ALAS1 expression.


In some embodiments the subject is an animal that serves as a model for porphyria (e.g., a genetically modified animal with one or more mutations. In some embodiments, the porphyria is AIP and the subject is an animal model of AIP. In one such embodiment, the subject is a genetically modified mouse that is deficient in porphobilinogen deaminase, such as, for example, the mouse described in Lindberg et al., Nature Genetics, 12:195-199, 1996, or the homozygous R167Q mouse described in Yasuda, M., Yu, C. Zhang, J., Clavero, S., Edelmann, W., Gan, L., Phillips, J. D., & Desnick, R. J. Acute intermittent porphyria: A severely affected knock-in mouse that mimics the human homozygous dominant phenotype. (Abstract of Presentation on Oct. 14, 2011 at the American Society of Human Genetics; Program No. 1308F; accessed online on Apr. 4, 2012 at ichg2011.org/cgi-bin/showdetail.pl?absno=21167); both of these references are hereby incorporated herein in their entirety. Several knock-in models for mutations causing homozygous dominant AIP in humans have been generated. The mutations employed include, e.g., R167Q, R173Q, and R173W in PBG deaminase. Viable homozygotes included the R167Q/R176Q and R167Q/R173Q, both of which exhibit constitutively elevated ALA and PBG levels analogous to the phenotype in human homozygous dominant AIP; in some embodiments, such a viable homozygous AIP mouse model is the subject.


In one embodiment, a subject to be treated according to the methods described herein, (e.g., a human subject or patient), is at risk of developing, or has been diagnosed, with a disorder related to ALAS1 expression, e.g. a porphyria. In some embodiments, the subject is a subject who has suffered one or more acute attacks of one or more porphyric symptoms. In other embodiments, the subject is a subject who has suffered chronically from one or more symptoms of porphyria (e.g., pain, e.g., neuropathic pain and or neuropathy, e.g., progressive neuropathy). In some embodiments, the subject carries a genetic alteration (e.g., a mutation) as described herein but is otherwise asymptomatic. In some embodiments, the subject has previously been treated with a heme product (e.g., hemin, heme arginate, or heme albumin), as described herein.


In some embodiments, a subject (e.g., a subject with a porphyria, such as, e.g., AIP) to be treated according to the methods described herein has recently experienced or is currently experiencing a prodrome. In some such embodiments, the subject is administered a combination treatment, e.g., an iRNA as described herein, and one or more additional treatments known to be effective against porphyria (e.g., glucose and/or a heme product such as hemin, as described herein) or its associated symptoms.


In one embodiment, an iRNA as described herein is administered in combination with glucose or dextrose. For example, 10-20% dextrose in normal saline may be provided intravenously. Typically, when glucose is administered, at least 300 g of 10% glucose is administered intravenously daily. The iRNA (e.g., an iRNA in an LNP formulation) may also be administered intravenously, as part of the same infusion that is used to administer the glucose or dextrose, or as a separate infusion that is administered before, concurrently, or after the administration of the glucose or dextrose. In some embodiments, the iRNA is administered via a different route of administration (e.g., subcutaneously). In yet another embodiment, the iRNA is administered in combination with total parenteral nutrition. The iRNA may be administered before, concurrent with, or after the administration of total parenteral nutrition.


In one embodiment, the iRNA is administered in combination with a heme product (e.g., hemin, heme arginate, or heme albumin). In a further embodiment, the iRNA is administered in combination with a heme product and glucose, a heme product and dextrose, or a heme product and total parenteral nutrition.


A “prodrome,” as used herein, includes any symptom that the individual subject has previously experienced immediately prior to developing an acute attack. Typical symptoms of a prodrome include, e.g., abdominal pain, nausea, headaches, psychological symptoms (e.g., anxiety), restlessness and/or insomnia. In some embodiments, the subject experiences pain (e.g., abdominal pain and/or a headache) during the prodrome. In some embodiments, the subject experiences nausea during the prodrome. In some embodiments, the subject experiences psychological symptoms (e.g., anxiety) during the prodrome. In some embodiments, the subject becomes restless and/or suffers from insomnia during the prodrome.


An acute “attack” of porphyria involves the onset of one or more symptoms of porphyria, typically in a patient who carries a mutation associated with porphyria (e.g., a mutation in a gene that encodes an enzyme in the porphyrin pathway).


In certain embodiments, administration of an ALAS1 iRNA results in a decrease in the level of one or more porphyrins or porphyrin precursors, as described herein (e.g., ALA and/or PBG). The decrease may be measured relative to any appropriate control or reference value. For example, the decrease in the level of one or more porphyrins or porphyrin precursors may be established in an individual subject, e.g., as a decrease of at least 5%, 10%, 15%, 20%, 25%, 30%, 35%, 40%, 45%, 50% or more compared with the level prior to treatment (e.g., immediately prior to treatment). A decrease in the level of a porphyrin precursor, a porphyrin, or or a porphyrin metabolite may be measured using any method known in the art. For example, the level of PBG and/or ALA in urine or plasma may be assessed, using the Watson-Schwartz test, ion exchange chromatography, or high-performance liquid chromatography-mass spectrometry. See, e.g., Thunell (1993).


In some embodiments, administration of an ALAS1 siRNA is effective to reduce the level of ALA and/or PBG in the subject. The level of ALA or PBG in the subject can be assessed, e.g., based on the absolute level of ALA or PBG, or based on the relative level of ALA or PBG (e.g., relative to the level of another protein or compound, e.g., the level of creatinine) in a sample from the subject. In some embodiments, the sample is a urine sample. In some embodiments, the sample is a plasma sample.


In certain embodiments, an iRNA that targets ALAS1 is administered in combination one or more additional treatments, e.g., another treatment known to be effective in treating porphyria or symptoms of porphyria. For example, the other treatment may be glucose (e.g., IV glucose) or a heme product (e.g., hemin, heme arginate, or heme albumin). The additional treatment(s) may be administered before, after, or concurrent with the administration of iRNA.


The iRNA and an additional therapeutic agent can be administered in combination in the same composition, e.g., intravenously, or the additional therapeutic agent can be administered as part of a separate composition or by another method described herein.


In some embodiments, administration of iRNA, or administration of iRNA in combination one or more additional treatments (e.g., glucose, dextrose or the like), decreases the frequency of acute attacks (e.g., by preventing acute attacks so that they no longer occur, or by reducing the number of attacks that occur in a certain time period, e.g., fewer attacks occur per year). In some such embodiments, the iRNA is administered according to a regular dosing regimen, e.g., daily, weekly, biweekly, or monthly.


In some embodiments, the iRNA is administered after an acute attack of porphyria. In some such embodiments, the iRNA is in a composition, e.g. a composition comprising a lipid formulation, e.g. an LNP formulation.


In some embodiments, the iRNA is administered during an acute attack of porphyria. In some such embodiments, the iRNA is in a composition, e.g. a composition comprising a lipid formulation (e.g., an LNP formulation) or a composition comprising a GalNAc conjugate.


In some embodiments, administration of an ALAS1 siRNA is effective to lessen the severity of the attack (e.g., by ameliorating one or more signs or symptoms associated with the attack). In some embodiments, administration of an ALAS1 siRNA is effective to shorten the duration of an attack. In some embodiments, administration of an ALAS1 siRNA is effective to stop an attack. In some embodiments, the iRNA is administered prophylactically to prevent an acute attack of porphyria. In some such embodiments, the iRNA is in the form of a GalNAc conjugate, e.g., in a composition comprising a GalNAc conjugate. In some embodiments, the prophylactic administration is before, during, or after exposure to or occurrence of a precipitating factor. In some embodiments, the subject is at risk of developing porphyria.


In some embodiments, the siRNA is administered during a prodrome. In some embodiments, the prodrome is characterized by pain (e.g., headache and/or abdominal pain), nausea, psychological symptoms (e.g., anxiety), restlessness and/or insomnia.


In some embodiments, the siRNA is administered during a particular phase of the menstrual cycle, e.g., during the luteal phase.


In some embodiments, administration of an ALAS1 siRNA is effective to prevent attacks (e.g., recurrent attacks that are associated with a prodrome and/or with a precipitating factor, e.g., with a particular phase of the menstrual cycle, e.g., the luteal phase). In some embodiments, administration of an ALAS1 siRNA is effective to reduce the frequency of attacks. In embodiments, administration of an ALAS1 siRNA is effective to lessen the severity of the attack (e.g., by ameliorating one or more signs or symptoms associated with the attack). In some embodiments, administration of an ALAS1 siRNA is effective to shorten the duration of an attack. In some embodiments, administration of an ALAS1 siRNA is effective to stop an attack.


In some embodiments administration of an ALAS1 siRNA is effective to prevent or decrease the frequency or severity of pain, e.g., neuropathic pain.


In some embodiments administration of an ALAS1 siRNA is effective to prevent or decrease the frequency or severity of neuropathy


Effects of administration of an ALAS1 siRNA can be established, for example, by comparison with an appropriate control. For example, a decrease in the frequency of acute attacks, as well as a decrease in the level of one or more porphyrins or porphyrin precursors, may be established, for example, in a group of patients with AIP, as a decreased frequency compared with an appropriate control group. A control group (e.g., a group of similar individuals or the same group of individuals in a crossover design) may include, for example, an untreated population, a population that has been treated with a conventional treatment for porphyria (e.g., a conventional treatment for AIP may include glucose, hemin, or both); a population that has been treated with placebo, or a non-targeting iRNA, optionally in combination with one or more conventional treatments for porphyria (e.g., glucose, e.g., IV glucose), and the like.


A subject “at risk” of developing porphyria, as used herein, includes a subject with a family history of porphyria and/or a history of one or more recurring or chronic porphyric symptoms, and/or a subject who carries a genetic alteration (e.g., a mutation) in a gene encoding an enzyme of the heme biosynthetic pathway, and a subject who carries a genetic alteration, e.g., a mutation. known to be associated with porphyria.


In embodiments, the alteration, e.g., the mutation, makes an individual susceptible to an acute attack (e.g., upon exposure to a precipitating factor, e.g., a drug, dieting or other precipitating factor, e.g., a precipitating factor as disclosed herein). In embodiments, the alteration, e.g., the mutation, is associated with elevated levels of a porphyrin or a porphyrin precursor (e.g., ALA and/or PBG). In embodiments, the alteration, e.g., the mutation, is associated with chronic pain (e.g., chronic neuropathic pain) and/or neuropathy (e.g., progressive neuropathy). In embodiments, the, the alteration, e.g., the mutation, is associated with changes in EMG and/or nerve conduction velocities.


In embodiments, the alteration is a mutation in the ALAS1 gene. In embodiments, the alteration is a mutation in the ALAS1 gene promoter, or in regions upstream or downstream from the ALAS1 gene. In embodiments, the alteration is a mutation in transcription factors or other genes that interact with ALAS1. In embodiments, the alteration is an alteration, e.g., a mutation, in a gene that encodes an enzyme in the heme biosynthetic pathway.


In some embodiments, the subject has an genetic alteration as described herein (e.g., a genetic mutation known to be associated with a porphyria). In some such embodiments, the subject has an elevated level (e.g., urine or plasma level) of ALA and/or PBG. In some such embodiments, the subject does not have an elevated level of ALA and/or PBG. In embodiments, the subject has a genetic alteration as described herein and has other symptoms, e.g., chronic pain, EMG changes, changes in nerve conduction velocity, and/or other symptoms associated with a porphyria. In embodiments, the subject has a genetic alteration but does not suffer from acute attacks.


In embodiments, the subject has a mutation associated with AIP, HCP, VP, or ADP.


In some embodiments, the porphyria is AIP. In some such embodiments, the subject has an alteration, e.g., at least one mutation, in the PBG deaminase gene. Many PBG deaminase mutations are known in the art, for example, as reported in Hrdinka, M. et al. Physiological Research, 55 (Suppl 2):S119-136 (2006). In some embodiments, the subject is heterozygous for a PBG deaminase mutation. In other embodiments, the subject is homozygous for a PBG deaminase mutation. A homozygous subject may carry two identical mutations or two different mutations in the PBG deaminase gene.


In some embodiments, the porphyria is HCP. In some such embodiments, the subject has an alteration, e.g., at least one mutation, in the gene that encodes the enzyme coproporphyrinogen III oxidase.


In some embodiments, the porphyria is VP. In some such embodiments, the subject has an alteration, e.g., at least one mutation, in the gene that encodes protoporphrinogen oxidase.


In embodiments, the porphyria is ADP, e.g., autosomal recessive ADP. In some such embodiments, the subject has an alteration, e.g., at least one mutation, in the gene that encodes ALA dehydratase.


Methods of treatment provided herein may serve to ameliorate one or more symptoms associated with porphyria, to reduce the frequency of attacks associated with porphyria, to reduce the likelihood that an attack of one or more symptoms associated with porphyria will occur upon exposure to a precipitating factor, or to reduce the risk of developing conditions associated with porphyria (e.g., neuropathy (e.g., progressive neuropathy), hepatocellular cancer). Additionally, the methods provided herein may serve to decrease the level of one or more porphyrin precursors, porphyrins and/or related porphyrin products or metabolites. The level of a porphyrin precursor or a porphyrin may be measured in any biological sample, such as, e.g., urine, blood, feces, cerebrospinal fluid, or a tissue sample. The sample may be present within a subject or may be obtained or extracted from the subject. In some embodiments, the porphyria is AIP, and the level of PBG and/or ALA is decreased. In some embodiments, the porphyrin product or metabolite is porphobilin, porphobilinogen, or uroporphyrin. A decrease in the level of a porphyrin product or metabolite may be measured using any method known in the art. For example, the level of PBG and/or ALA in urine or plasma may be assessed, using the Watson-Schwartz test, ion exchange chromatography, or high-performance liquid chromatography-mass spectrometry. See, e.g., Thunell (1993).


Methods described herein may also serve to reduce chronically elevated levels of porphyrin precursors (e.g., ALA and/or PBG) in subjects suffering from a porphyria (e.g., an acute hepatic porphyria, e.g., AIP) or at risk for developing a porphyria. Methods for assessing plasma and urine levels (e.g., chronically elevated levels) of porphyrin precursors include, e.g., HPLC-mass spectrometry and ion-exchange chromatography. The levels of porphyrin precursors may be expressed as the level relative to another protein or compound, e.g., creatinine. See, e.g., Floderus, Y. et al, Clinical Chemistry, 52(4): 701-707, 2006; Sardh et al., Clinical Pharmacokinetics, 46(4): 335-349, 2007


A “precipitating factor” as used herein, refers to an endogenous or exogenous factor that may induce an acute attack of one or more symptoms associated with porphyria. Precipitating factors include fasting (or other forms of reduced or inadequate caloric intake, due to crash diets, long-distance athletics, etc.), metabolic stresses (e.g., infections, surgery, international air travel, and psychological stress), endogenous hormones (e.g., progesterone), cigarette smoking, lipid-soluble foreign chemicals (including, e.g., chemicals present in tobacco smoke, certain prescription drugs, organic solvents, biocides, components in alcoholic beverages), endocrine factors (e.g., reproductive hormones (women may experience exacerbations during the premenstrual period), synthetic estrogens, progesterones, ovulation stimulants, and hormone replacement therapy). See, for example, Thunell (1993). Common precipitating factors include cytochrome P450 inducing drugs and phenobarbital.


Symptoms associated with porphyria may include abdominal pain or cramping, headaches, effects caused by nervous system abnormalities, and light sensitivity, causing rashes, blistering, and scarring of the skin (photodermatitis). In certain embodiments, the porphyria is AIP. Symptoms of AIP include gastrointestinal symptoms (e.g., severe and poorly localized abdominal pain, nausea/vomiting, constipation, diarrhea, ileus), urinary symptoms (dysuria, urinary retention/incontinence, or dark urine), neurologic symptoms (e.g., sensory neuropathy, motor neuropathy (e.g., affecting the cranial nerves and/or leading to weakness in the arms or legs), seizures, neuropathic pain, progressive neuropathy, headaches, neuropsychiatric symptoms (e.g., mental confusion, anxiety, agitation, hallucination, hysteria, delirium, apathy, depression, phobias, psychosis, insomnia, somnolence, coma), autonomic nervous system involvement (resulting e.g., in cardiovascular symptoms such as tachycardia, hypertension, and/or arrhythmias, as well as other symptoms, such as, e.g., increased circulating catecholamine levels, sweating, restlessness, and/or tremor), dehydration, and electrolyte abnormalities.


In some embodiments, an iRNA targeting ALAS1 is administered together with (e.g., before, after, or concurrent with) another treatment that may serve to alleviate one or more of the above symptoms. For example, abdominal pain may be treated, e.g., with narcotic analgesics, seizures may be treated, e.g., with anti-seizure medications, nausea/vomiting may be treated, e.g., with phenothiazines, and tachycardia/hypertension may be treated, e.g., with beta blockers.


The term “decrease” (or “increase”) is intended to refer to a measurable change, e.g., a statistically significant change. The change may be, for example, at least 5%, 10%, 20%, 30%, 40%, 50% or more change (e.g., decrease (or increase) relative to a reference value, e.g., a reference where no iRNA is provided).


The invention further relates to the use of an iRNA or a pharmaceutical composition thereof, e.g., for treating a disorder related to ALAS1 expression, in combination with other pharmaceuticals and/or other therapeutic methods, e.g., with known pharmaceuticals and/or known therapeutic methods, such as, for example, those which are currently employed for treating the disorder. In one embodiment, the iRNA or pharmaceutical composition thereof can be administered in conjunction with a heme product (e.g., hemin, heme arginate, or heme albumin, as described herein) and/or in conjunction with intravenous glucose infusions. In some embodiments, the iRNA or pharmaceutical composition thereof is used prophylactically, e.g., to prevent or ameliorate symptoms of an anticipated attack of acute porphyria. The prophylactic use may be timed according to the exposure or anticipated exposure of the subject to a precipitating factor. As described herein, a precipitating factor may be any endogenous or exogenous factor known to precipitate an acute attack. For example, the premenstrual phase is an endogenous precipitating factor, and a cytochrome P450 inducing drug is an exogenous precipitating factor.


The effective amount for the treatment of a disorder related to ALAS1 expression (e.g., a porphyria such as AIP) depends on the type of disorder to be treated, the severity of the symptoms, the subject being treated, the sex, age and general condition of the subject, the mode of administration and so forth. For any given case, an appropriate “effective amount” can be determined by one of ordinary skill in the art using routine experimentation. It is well within the ability of one skilled in the art to monitor efficacy of treatment or prevention by measuring any one of such parameters, or any combination of parameters. In connection with the administration of an iRNA targeting ALAS1 or pharmaceutical composition thereof, “effective against” a disorder related to ALAS1 expression indicates that administration in a clinically appropriate manner results in a beneficial effect, e.g., for an individual patient or for at least a fraction of patients, e.g., a statistically significant fraction of patients. Beneficial effects include, e.g., prevention of or reduction of symptoms or other effects. For example, beneficial effects include, e.g., an improvement (e.g., decrease in the severity or frequency) of symptoms, a reduction in the severity or frequency of attacks, a reduced risk of developing associated disease (e.g., neuropathy (e.g., progressive neuropathy), hepatocellular cancer), an improved ability to tolerate a precipitating factor, an improvement in quality of life, a reduction in the expression of ALAS1, a reduction in a level (e.g., a plasma or urine level) of a porphyrin or a porphyrin precursor (e.g., ALA and/or PBG) or other effect generally recognized as positive by medical doctors familiar with treating the particular type of disorder.


A treatment or preventive effect is evident when there is an improvement, e.g., a statistically significant improvement in one or more parameters of disease status, or by a failure to worsen or to develop symptoms where they would otherwise be anticipated. As an example, a favorable change of at least 10% in a measurable parameter of disease, e.g., at least 20%, 30%, 40%, 50% or more can be indicative of effective treatment. Efficacy for a given iRNA drug or formulation of that drug can also be judged using an experimental animal model for the given disease as known in the art. When using an experimental animal model, efficacy of treatment is evidenced when a statistically significant reduction in a marker (e.g., plasma or urinary ALA or PBG) or symptom is observed.


Patients can be administered a therapeutic amount of iRNA. The therapeutic amount can be, e.g., 0.05-50 mg/kg. For example, the therapeutic amount can be 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.5, 2.0, or 2.5, 3.0, 3.5, 4.0, 4.5, 5, 10, 15, 20, 25, 30, 35, 40, 45, or 50 mg/kg dsRNA.


In some embodiments, the iRNA is formulated as a lipid formulation, e.g., an LNP formulation as described herein. In some such embodiments, the therapeutic amount is 0.05-5 mg/kg, e.g., 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5, or 5.0 mg/kg dsRNA. In some embodiments, the lipid formulation, e.g., LNP formulation, is administered intravenously.


In some embodiments, the iRNA is administered by intravenous infusion over a period of time, such as over a 5 minute, 10 minute, 15 minute, 20 minute, or 25 minute period. In some embodiments, the iRNA is in the form of a GalNAc conjugate as described herein. In some such embodiments, the therapeutic amount is 0.5-50 mg, e.g., 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5, 5.0, 6, 7, 8, 9, 10, 15, 20, 25, 30, 35, 40, 45, or 50 mg/kg dsRNA. In some embodiments, the GalNAc conjugate is administered subcutaneously.


In some embodiments, the administration is repeated, for example, on a regular basis, such as, daily, biweekly (i.e., every two weeks) for one month, two months, three months, four months or longer. After an initial treatment regimen, the treatments can be administered on a less frequent basis. For example, after administration biweekly for three months, administration can be repeated once per month, for six months or a year or longer.


In some embodiments, the iRNA agent is administered in two or more doses. In some embodiments, the number or amount of subsequent doses is dependent on the achievement of a desired effect, e.g., suppression of a ALAS gene, reduction of a level of a porphyrin or porphyrin precursor (e.g., ALA and/or PBG), or the achievement of a therapeutic or prophylactic effect, e.g., reduction or prevention of one or more symptoms associated with porphyria (e.g., pain, e.g., neuropathic pain), and/or prevention of attacks or reduction in the frequency and/or severity of attacks associated with porphyria.


In some embodiments, the iRNA agent is administered according to a schedule. For example, the iRNA agent may be administered once per week, twice per week, three times per week, four times per week, or five times per week. In some embodiments, the schedule involves regularly spaced administrations, e.g., hourly, every four hours, every six hours, every eight hours, every twelve hours, daily, every 2 days, every 3 days, every 4 days, every 5 days, weekly, biweekly, or monthly. In embodiments, the iRNA agent is administered weekly or biweekly to achieve a desired effect, e.g., to decrease the level of ALA and/or PBG, to decrease pain, and/or to prevent acute attacks.


In embodiments, the schedule involves closely spaced administrations followed by a longer period of time during which the agent is not administered. For example, the schedule may involve an initial set of doses that are administered in a relatively short period of time (e.g., about every 6 hours, about every 12 hours, about every 24 hours, about every 48 hours, or about every 72 hours) followed by a longer time period (e.g., about 1 week, about 2 weeks, about 3 weeks, about 4 weeks, about 5 weeks, about 6 weeks, about 7 weeks, or about 8 weeks) during which the iRNA agent is not administered. In one embodiment, the iRNA agent is initially administered hourly and is later administered at a longer interval (e.g., daily, weekly, biweekly, or monthly). In another embodiment, the iRNA agent is initially administered daily and is later administered at a longer interval (e.g., weekly, biweekly, or monthly). In certain embodiments, the longer interval increases over time or is determined based on the achievement of a desired effect. In a specific embodiment, the iRNA agent is administered once daily during an acute attack, followed by weekly dosing starting on the eighth day of administration. In another specific embodiment, the iRNA agent is administered every other day during a first week followed by weekly dosing starting on the eighth day of administration.


In one embodiment, the iRNA agent is administered to prevent or reduce the severity or frequency of recurring attacks, e.g., cyclical attacks associated with a precipitating factor. In some embodiments, the precipitating factor is the menstrual cycle. In some embodiments, the iRNA is administered repeatedly, e.g., at regular intervals to prevent or reduce the severity or frequency of recurring attacks, e.g., cyclical attacks associated with a precipitating factor, e.g., the menstrual cycle, e.g., a particular phase of the menstrual cycle, e.g., the luteal phase. In some embodiments, the iRNA is administered during a particular phase of the menstrual cycle or based on hormone levels of the patient being treated (e.g., based on hormone levels that are associated with a particular phase of the menstrual cycle). In some embodiments, the iRNA is administered on one or more particular days of the menstrual cycle, e.g., on day 1, 2, 3, 4, 5, 6, 7, 8. 9. 10. 11. 12. 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, or on day 28 (or later day for subjects who have a longer menstrual cycle). In some embodiments, the iRNA is administered during the luteal phase, e.g., on one or more days between days 14-28 of the menstrual cycle (or later, in subjects who have a menstrual cycle longer than 28 days). In some embodiments, ovulation of the subject is assessed (e.g., using a blood or urine test that detects a hormone associated with ovulation, e.g., LH) and the iRNA is administered at a predetermined interval after ovulation. In some embodiments, the iRNA is administered immediately after ovulation. In some embodiments, the iRNA is administered 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, or 18 days after ovulation. Any of these schedules may optionally be repeated for one or more iterations. The number of iterations may depend on the achievement of a desired effect, e.g., the suppression of a ALAS1 gene and/or the achievement of a therapeutic or prophylactic effect, e.g., reduce or prevent one or more symptoms associated with porphyria, to reduce the frequency of attacks associated with porphyria.


In some embodiments, an initial dose of the iRNA agent is administered and the level of ALA or PBG is tested, e.g., 1-48 hours, e.g., 2, 4, 8, 12, or 24 hours following administration of the initial dose. In some embodiments, if the level of ALA and/or PBG has decreased (e.g., to achieve a predetermined reduction, e.g., a normalization), and/or if the symptoms associated with porphyria (e.g., pain) have improved (e.g., such that the patient is asymptomatic), no further dose is administered, whereas if the level of ALA and/or PBG has not decreased (e.g., has not achieved a predetermined reduction, e.g., has not normalized), a further dose of ALA or PBG is administered. In some embodiments, the further dose is administered 12, 24, 36, 48, 60, or 72 hours after the initial dose. In some embodiments, if the initial dose is not effective to decrease the level of ALA and/or PBG, the further dose is modified, e.g., increased to achieve a desired decrease (e.g., a predetermined reduction, e.g., a normalization) in ALA or PBG levels.


In some embodiments, the predetermined reduction is a decrease of at least 10%, 20%, 30%, 40%, or 50%. In some embodiments, the predetermined reduction is a reduction that is effective to prevent or ameliorate symptoms, e.g., pain, prodromal symptoms, or recurring attacks.


In some embodiments, the predetermined reduction is a reduction of at least 1, 2, 3, or more standard deviations, wherein the standard deviation is determined based on the values from a reference sample, e.g., a reference sample as described herein.


In some embodiments, the predetermined reduction is a reduction that brings the level of the porphyrin or porphyrin precursor to a level that is less than, or to a level that is less than or equal to, a reference value (e.g., a reference value as described herein).


As used herein, a “normalization” in ALA or PBG levels (or a “normal” or “normalized” level) refers to a level (e.g., a urine and/or plasma level) of either ALA, or PBG, or both, that is within the expected range for a healthy individual, an individual who is asymptomatic (e.g., an individual who does not experience pain and/or suffer from neuropathy), or an individual who does not have a mutation associated with a porphyria. For example, in some embodiments, a normalized level is within two standard deviations of the normal mean. In some embodiments, a normalized level is within normal reference limits, e.g., within the 95% confidence interval for an appropriate control sample, e.g., a sample of healthy individuals or individuals who do not carry a gene mutation associated with a porphyria. In some embodiments, the ALA and/or PBG level of the subject (e.g., the urine and/or plasma ALA and/or PBG level) is monitored at intervals, a further dose of the iRNA agent is administered when the level increases above the reference value


Administration of the iRNA may reduce ALAS1 mRNA or protein levels, e.g., in a cell, tissue, blood, urine or other compartment of the patient by at least 10%, at least 15%, at least 20%, at least 25%, at least 30%, at least 40%, at least 50%, at least 60%, at least 70%, at least 80% or at least 90% or more. Administration of the iRNA may reduce levels of products associated with ALAS1 gene expression, e.g., levels of one or more porphyrins or porphyrin precursors (e.g., the level of ALA and/or PBG). Administration of the iRNA agent may also inhibit or prevent the upregulation of ALAS1 mRNA or protein levels during an acute attack of AIP.


Before administration of a full dose of the iRNA, patients can be administered a smaller dose, such as a 5% infusion dose, and monitored for adverse effects, such as an allergic reaction, or for elevated lipid levels or blood pressure. In another example, the patient can be monitored for unwanted effects.


Methods for Modulating Expression of an ALAS1 Gene


In yet another aspect, the invention provides a method for modulating (e.g., inhibiting or activating) the expression of an ALAS1 gene, e.g., in a cell or in a subject. In some embodiments, the cell is ex vivo, in vitro, or in vivo. In some embodiments, the cell is an erythroid cell or a hepatocyte. In some embodiments, the cell is in a subject (e.g., a mammal, such as, for example, a human). In some embodiments, the subject (e.g., the human) is at risk, or is diagnosed with a disease related to ALAS1 expression, as described above.


In one embodiment, the method includes contacting the cell with an iRNA as described herein, in an amount effective to decrease the expression of an ALAS1 gene in the cell. “Contacting,” as used herein, includes directly contacting a cell, as well as indirectly contacting a cell. For example, a cell within a subject (e.g., an erythroid cell or a liver cell, such as a hepatocyte) may be contacted when a composition comprising an iRNA is administered (e.g., intravenously or subcutaneously) to the subject.


The expression of an ALAS1 gene may be assessed based on the level of expression of an ALAS1 mRNA, an ALAS1 protein, or the level of a parameter functionally linked to the level of expression of an ALAS1 gene (e.g., the level of a porphyrin or the incidence or severity of a symptom related to a porphyria). In some embodiments, the expression of ALAS1 is inhibited by at least 5%, at least 10%, at least 15%, at least 20%, at least 25%, at least 30%, at least 35%, at least 40%, at least 45%, at least 50%, at least 55%, at least 60%, at least 65%, at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, or at least 95%. In some embodiments, the iRNA has an IC50 in the range of 0.001-0.01 nM, 0.001-0.10 nM, 0.001-1.0 nM, 0.001-10 nM, 0.01-0.05 nM, 0.01-0.50 nM, 0.02-0.60 nM, 0.01-1.0 nM, 0.01-1.5 nM, 0.01-10 nM. The IC50 value may be normalized relative to an appropriate control value, e.g., the IC50 of a non-targeting iRNA.


In some embodiments, the method includes introducing into the cell an iRNA as described herein and maintaining the cell for a time sufficient to obtain degradation of the mRNA transcript of an ALAS1 gene, thereby inhibiting the expression of the ALAS1 gene in the cell.


In one embodiment, the method includes administering a composition described herein, e.g., a composition comprising an iRNA that targets ALAS1, to the mammal such that expression of the target ALAS1 gene is decreased, such as for an extended duration, e.g., at least two, three, four days or more, e.g., one week, two weeks, three weeks, or four weeks or longer. In some embodiments, the decrease in expression of ALAS1 is detectable within 1 hour, 2 hours, 4 hours, 8 hours, 12 hours, or 24 hours of the first administration.


In another embodiment, the method includes administering a composition as described herein to a mammal such that expression of the target ALAS1 gene is increased by e.g., at least 10% compared to an untreated animal. In some embodiments, the activation of ALAS1 occurs over an extended duration, e.g., at least two, three, four days or more, e.g., one week, two weeks, three weeks, four weeks, or more. Without wishing to be bound by theory, an iRNA can activate ALAS1 expression by stabilizing the ALAS1 mRNA transcript, interacting with a promoter in the genome, and/or inhibiting an inhibitor of ALAS1 expression.


The iRNAs useful for the methods and compositions featured in the invention specifically target RNAs (primary or processed) of an ALAS1 gene. Compositions and methods for inhibiting the expression of an ALAS1 gene using iRNAs can be prepared and performed as described elsewhere herein.


In one embodiment, the method includes administering a composition containing an iRNA, where the iRNA includes a nucleotide sequence that is complementary to at least a part of an RNA transcript of the ALAS1 gene of the mammal to be treated. When the organism to be treated is a mammal such as a human, the composition may be administered by any means known in the art including, but not limited to oral, intraperitoneal, or parenteral routes, including intracranial (e.g., intraventricular, intraparenchymal and intrathecal), intravenous, intramuscular, subcutaneous, transdermal, airway (aerosol), nasal, rectal, and topical (including buccal and sublingual) administration.


In certain embodiments, the compositions are administered by intravenous infusion or injection. In some such embodiments, the compositions comprise a lipid formulated siRNA (e.g., an LNP formulation, such as an LNP11 formulation) for intravenous infusion. In particular embodiments, such compositions may be used to treat acute attacks of porphyria and/or for prophylaxis (e.g., to decrease the severity or frequency of attacks).


In other embodiments, the compositions are administered subcutaneously. In some such embodiments, the compositions comprise an iRNA conjugated to a GalNAc ligand. In particular embodiments, such compositions may be used to treat acute attacks of porphyria or for prophylaxis (e.g., to decrease the severity or frequency of attacks).


Methods for Decreasing a Level of a Porphyrin or Porphyrin Precursor


In another aspect, the invention provides a method for decreasing a level of a porphyrin or a porphyrin precursor, e.g., in a cell or in a subject.


In some embodiments, the cell is ex vivo, in vitro, or in vivo. In some embodiments, the cell is an erythroid cell or a hepatocyte. In some embodiments, the cell is a hepatocyte. In some embodiments, the cell is in a subject (e.g., a mammal, such as, for example, a human).


In some embodiments, the subject (e.g., the human) is at risk, or is diagnosed with a porphyria, as described herein. In some embodiments, the method is effective to treat a porphyria as described herein (e.g., by ameliorating one or more symptoms associated with a porphyria, reducing the frequency of attacks associated with a porphyria, reducing the likelihood that an attack of one or more symptoms associated with porphyria will occur upon exposure to a precipitating factor, or reducing the risk of developing conditions associated with a porphyria (e.g., neuropathy (e.g., progressive neuropathy), hepatocellular cancer). In one embodiment, the method includes contacting the cell with an RNAi, as described herein, in an amount sufficient to decrease the level of the porphyrin or porphyrin precursor (e.g., ALA or PBG) in the cell, or in another related cell or group of cells, or in the subject. “Contacting,” as used herein, includes directly contacting a cell, as well as indirectly contacting a cell. For example, a cell within a subject (e.g., an erythroid cell or a liver cell, such as a hepatocyte) may be contacted when a composition comprising an RNAi is administered (e.g., intravenously or subcutaneously) to the subject. “Another related cell or group of cells,” as used herein, includes any cell or group of cells in which the level of the porphyrin or porphyrin precursor decreases as a result of the contacting. For example, the cell may be part of a tissue present within a subject (e.g., a liver cell present within a subject), and contacting the cell within the subject (e.g., contacting one or more liver cells present within a subject) with the RNAi may result in a decrease in the level of the porphyrin or porphyrin precursor in another related cell or group of cells (e.g., nerve cells of the subject), or in a tissue or fluid of the subject (e.g., in the urine, blood, plasma, or cerebrospinal fluid of the subject).


In some embodiments, the porphyrin or porphyrin precursor is selected from the group consisting of δ-aminolevulinic acid (ALA), porphopilinogen (PBG), hydroxymethylbilane (HMB), uroporphyrinogen III, coproporphyrinogen III, protoporphrinogen IX, and protoporphyrin IX In some embodiments the porphyrin precursor is ALA. In some embodiments, the porphyrin precursor is PBG. In some embodiments, the method decreases the level of ALA and PBG. The level of a porphyrin or a porphyrin precursor may be measured as described herein and as known in the art.


Assays and Methods for Monitoring RNAi Activity


In another aspect, the invention provides assays and methods for monitoring ALAS1 mRNA levels. RNAi activity in the liver can be monitored by detecting mRNA levels or 5′RACE product in tissue, or by detecting the level of circulating secreted protein.


Alternatively, or in combination, circulating extracellular levels of ALAS1 mRNA can be detected, e.g., by cERD assays (Circulating Extracellular RNA Detection). In some embodiments, the ALAS1 mRNA level can be detected in a bodily fluid sample, e.g., a serum or urine sample. In some embodiments, exosomes are shed into bodily fluids from different cells types, which contain mRNA and miRNA derived from a tissue of origin. Such exosomes can be used to monitor the level of RNAi in circulation. In one embodiment, a sample, e.g., a serum or urine sample from a subject treated with an iRNA described herein can be purified with low speed spin, followed by a spin at about 160,000 g for about 2 hours to form a pellet. RNA can be extracted and analyzed to measure the levels of ALAS1 mRNA. Exemplary methods and assays are disclosed in PCT/US2012/043584, published as WO 2012/177906, the contents of which are incorporated by reference.


Accordingly, an assay, or method, is provided for detecting the level of circulating extracellular ALAS1 mRNA in a subject. The assay, or method includes providing RNA (e.g., extracellular RNA) from a biological fluid sample (e.g., urine, blood or plasma sample) from the subject, said biological fluid sample comprising the ALAS1 mRNA; and detecting the level of circulating extracellular ALAS1 mRNA in the sample.


In one embedment, the assay or method includes the step of obtaining an ALAS1 cDNA from the ALAS1 mRNA; and contacting the ALAS1 cDNA with a nucleic acid complementary (e.g., probe and/or primer) to the ALAS1 cDNA or a portion thereof, thereby producing a reaction mix; and detecting (e.g., measuring) the level of ALAS1 cDNA in the reaction mix, wherein the ALAS1 cDNA level is indicative of the ALAS1 mRNA level, thereby assaying the level of circulating extracellular ALAS1 mRNA in the subject.


In one embodiment, the assay or method includes acquiring a biological fluid sample from a subject, where the biological sample is separate from the tissue, and where the biological sample contains exosomes. The assay or method can further include detecting the levels of an RNA in the biological sample, where the RNA is expressed from the gene in the tissue of the subject, where the exosomes are not purified from the biological sample prior to detecting levels of RNA in the biological sample.


In embodiments, said biological fluid sample is a blood sample. In embodiments, said biological fluid sample is a serum sample. In another embodiment, the biological fluid sample is a urine sample.


In embodiments, the method comprises PCR, qPCR or 5′-RACE.


In embodiments, said nucleic acid is a probe or primer.


In embodiments, said nucleic acid comprises a detectable moiety and the level of ALAS1 mRNA is determined by detection of the amount of the detectable moiety.


In embodiments, said method further comprises obtaining the biological fluid sample from the subject.


In embodiments of these methods, the efficacy of a porphyria treatment is assessed based on a comparison of the level of circulating extracellular ALAS1 mRNA in the subject relative to a reference value.


In embodiments, a decrease in the level of circulating extracellular ALAS1 mRNA in the subject in response to the porphyria treatment, relative to the reference value, indicates that the porphyria treatment is efficacious. In embodiments, the reference value is the level of circulating extracellular ALAS1 mRNA in the subject prior to the porphyria treatment.


Unless otherwise defined, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. Although methods and materials similar or equivalent to those described herein can be used in the practice or testing of the iRNAs and methods featured in the invention, suitable methods and materials are described below. All publications, patent applications, patents, and other references mentioned herein are incorporated by reference in their entirety. In case of conflict, the present specification, including definitions, will control. In addition, the materials, methods, and examples are illustrative only and not intended to be limiting.


EXAMPLES
Example 1. siRNA Synthesis

Source of Reagents


Where the source of a reagent is not specifically given herein, such reagent may be obtained from any supplier of reagents for molecular biology at a quality/purity standard for application in molecular biology.


Oligonucleotide Synthesis.


All oligonucleotides are synthesized on an AKTAoligopilot synthesizer. Commercially available controlled pore glass solid support (dT-CPG, 500{circumflex over (Å)}, Prime Synthesis) and RNA phosphoramidites with standard protecting groups, 5′-O-dimethoxytrityl N6-benzoyl-2′-t-butyldimethylsilyl-adenosine-3′-O—N,N′-diisopropyl-2-cyanoethylphosphoramidite, 5′-O-dimethoxytrityl-N4-acetyl-2′-t-butyldimethylsilyl-cytidine-3′-O—N,N′-diisopropyl-2-cyanoethylphosphoramidite, 5′-O-dimethoxytrityl-N2-isobutyryl-2′-t-butyldimethylsilyl-guanosine-3′-O—N,N′-diisopropyl-2-cyanoethylphosphoramidite, and 5′-O-dimethoxytrityl-2′-t-butyldimethylsilyl-uridine-3′-O—N,N′-diisopropyl-2-cyanoethylphosphoramidite (Pierce Nucleic Acids Technologies) were used for the oligonucleotide synthesis. The 2′-F phosphoramidites, 5′-O-dimethoxytrityl-N4-acetyl-2′-fluoro-cytidine-3′-O—N,N′-diisopropyl-2-cyanoethyl-phosphoramidite and 5′-O-dimethoxytrityl-2′-fluoro-uridine-3′-O—N,N′-diisopropyl-2-cyanoethyl-phosphoramidite are purchased from (Promega). All phosphoramidites are used at a concentration of 0.2M in acetonitrile (CH3CN) except for guanosine which is used at 0.2M concentration in 10% THF/ANC (v/v). Coupling/recycling time of 16 minutes is used. The activator is 5-ethyl thiotetrazole (0.75M, American International Chemicals); for the PO-oxidation iodine/water/pyridine is used and for the PS-oxidation PADS (2%) in 2,6-lutidine/ACN (1:1 v/v) is used.


3′-ligand conjugated strands are synthesized using solid support containing the corresponding ligand. For example, the introduction of cholesterol unit in the sequence is performed from a hydroxyprolinol-cholesterol phosphoramidite. Cholesterol is tethered to trans-4-hydroxyprolinol via a δ-aminohexanoate linkage to obtain a hydroxyprolinol-cholesterol moiety. 5′-end Cy-3 and Cy-5.5 (fluorophore) labeled iRNAs are synthesized from the corresponding Quasar-570 (Cy-3) phosphoramidite are purchased from Biosearch Technologies. Conjugation of ligands to 5′-end and or internal position is achieved by using appropriately protected ligand-phosphoramidite building block. An extended 15 min coupling of 0.1 M solution of phosphoramidite in anhydrous CH3CN in the presence of 5-(ethylthio)-1H-tetrazole activator to a solid-support-bound oligonucleotide. Oxidation of the internucleotide phosphite to the phosphate is carried out using standard iodine-water as reported (1) or by treatment with tert-butyl hydroperoxide/acetonitrile/water (10:87:3) with 10 min oxidation wait time conjugated oligonucleotide. Phosphorothioate is introduced by the oxidation of phosphite to phosphorothioate by using a sulfur transfer reagent such as DDTT (purchased from AM Chemicals), PADS and or Beaucage reagent. The cholesterol phosphoramidite is synthesized in house and used at a concentration of 0.1 M in dichloromethane. Coupling time for the cholesterol phosphoramidite is 16 minutes.


Deprotection I (Nucleobase Deprotection)


After completion of synthesis, the support is transferred to a 100 mL glass bottle (VWR). The oligonucleotide is cleaved from the support with simultaneous deprotection of base and phosphate groups with 80 mL of a mixture of ethanolic ammonia [ammonia: ethanol (3:1)] for 6.5 h at 55° C. The bottle is cooled briefly on ice and then the ethanolic ammonia mixture is filtered into a new 250-mL bottle. The CPG is washed with 2×40 mL portions of ethanol/water (1:1 v/v). The volume of the mixture is then reduced to ˜30 mL by roto-vap. The mixture is then frozen on dry ice and dried under vacuum on a speed vac.


Deprotection II (Removal of 2′-TBDMS Group)


The dried residue is resuspended in 26 mL of triethylamine, triethylamine trihydrofluoride (TEA.3HF) or pyridine-HF and DMSO (3:4:6) and heated at 60° C. for 90 minutes to remove the tert-butyldimethylsilyl (TBDMS) groups at the 2′ position. The reaction is then quenched with 50 mL of 20 mM sodium acetate and the pH is adjusted to 6.5. Oligonucleotide is stored in a freezer until purification.


Analysis


The oligonucleotides are analyzed by high-performance liquid chromatography (HPLC) prior to purification and selection of buffer and column depends on nature of the sequence and or conjugated ligand.


HPLC Purification


The ligand-conjugated oligonucleotides are purified by reverse-phase preparative HPLC. The unconjugated oligonucleotides are purified by anion-exchange HPLC on a TSK gel column packed in house. The buffers are 20 mM sodium phosphate (pH 8.5) in 10% CH3CN (buffer A) and 20 mM sodium phosphate (pH 8.5) in 10% CH3CN, 1M NaBr (buffer B). Fractions containing full-length oligonucleotides are pooled, desalted, and lyophilized. Approximately 0.15 OD of desalted oligonucleotides are diluted in water to 150 μL and then pipetted into special vials for CGE and LC/MS analysis. Compounds are then analyzed by LC-ESMS and CGE.


siRNA Preparation


For the general preparation of siRNA, equimolar amounts of sense and antisense strand are heated in 1×PBS at 95° C. for 5 min and slowly cooled to room temperature. Integrity of the duplex is confirmed by HPLC analysis.


Nucleic acid sequences are represented below using standard nomenclature, and specifically the abbreviations of Table 1.









TABLE 1







Abbreviations of nucleotide monomers used in nucleic acid sequence


representation. It will be understood that these monomers, when present in an oligonucleotide,


are mutually linked by 5′-3′-phosphodiester bonds.








Abbreviation
Nucleotide(s)/Nucleosides





A
Adenosine-3′-phosphate, 2′-deoxy-2′-fluorouridine-5′-phosphate or adenosine


Ab
beta-L-adenosine-3′-phosphate, beta-L-adenosine-5′-phosphate or



beta-L-adenosine


Abs
beta-L-adenosine-3′-phosphorothioate


Af
2′-deoxy-2′-fluoroadenosine-3′-phosphate, 2′-deoxy-2′-



fluoroadenosine-5′-phosphate or 2′-deoxy-2′-fluoroadenosine


Afs
2′-deoxy-2′-fluoroadenosine-3′-phosphorothioate


As
adenosine-3′-phosphorothioate


C
cytidine-3′-phosphate, cytidine-5′-phosphate or cytidine


Cb
beta-L-cytidine-3′-phosphate or beta-L-cytidine


Cbs
beta-L-cytidine-3′-phosphorothioate


Cf
2′-deoxy-2′-fluorocytidine-3′-phosphate, 2′-deoxy-2′-



fluorocytidine-5′-phosphate or 2′-deoxy-2′-fluorocytidine


Cfs
2′-deoxy-2′-fluorocytidine-3′-phosphorothioate


(Chd)
2′-O-hexadecyl-cytidine-3′-phosphate or 2′-O-hexadecyl-cytidine


(Chds)
2′-O-hexadecyl-cytidine-3′-phosphorothioate


Cs
cytidine-3′-phosphorothioate


G
guanosine-3′-phosphate, guanosine-5′-phosphate or guanosine


Gb
beta-L-guanosine-3′-phosphate, beta-L-guanosine-5′-phosphate or



beta-L-guanosine


Gbs
beta-L-guanosine-3′-phosphorothioate


Gf
2′-deoxy-2′-fluoroguanosine-3′-phosphate, 2′-deoxy-2′-



fluoroguanosine-5′-phosphate or 2′-deoxy-2′-fluoroguanosine


Gfs
2′-deoxy-2′-fluoroguanosine-3′-phosphorothioate


Gs
guanosine-3′-phosphorothioate


T
5′-methyluridine-3′-phosphate, 5′-methyluridine-5′-phosphate or 5′-methyluridine


Tb
beta-L-thymidine-3′-phosphate, beta-L-thymidine-5′-phosphate or



beta-L-thymidine


Tbs
beta-L-thymidine-3′-phosphorothioate


Tf
2′-deoxy-2′-fluoro-5-methyluridine-3′-phosphate, 2′-deoxy-2′-



fluoro-5-methyluridine-3′-phosphate or 2′-deoxy-2′-fluoro-5-methyluridine


Tfs
2′-deoxy-2′-fluoro-5-methyluridine-3′-phosphorothioate


Ts
5-methyluridine-3′-phosphorothioate


U
Uridine-3′-phosphate, uridine-5′-phosphate or uridine-


Ub
beta-L-uridine-3′-phosphate, beta-L-uridine-5′-phosphate or beta-L-uridine


Ubs
beta-L-uridine-3′-phosphorothioate


Uf
2′-deoxy-2′-fluorouridine-3′-phosphate, 2′-deoxy-2′-fluorouridine



or 2′-deoxy-2′-fluorouridine-3′-phosphate


Ufs
2′-deoxy-2′-fluorouridine -3′-phosphorothioate


(Uhd)
2′-O-hexadecyl-uridine-3′-phosphate, 2′-O-hexadecyl-uridine-6'-



phosphate or 2′-O-hexadecyl-uridine


(Uhds)
2′-O-hexadecyl-uridine-3′-phosphorothioate


Us
uridine -3′-phosphorothioate


N
any nucleotide (G, A, C, T or U)


a
2′-O-methyladenosine-3′-phosphate, 2′-O-methyladenosine-5′-



phosphate or 2′-O-methyladenosine


as
2′-O-methyladenosine-3′-phosphorothioate


c
2′-O-methylcytidine-3′-phosphate, 2′-O-methylcytidine-5′-phosphate



or 2′-O-methylcytidine


cs
2′-O-methylcytidine-3′-phosphorothioate


g
2′-O-methylguanosine-3′-phosphate, 2′-O-methylguanosine-5′-



phosphate or 2′-O-methylguanosine


gs
2′-O-methylguanosine-3′-phosphorothioate


t
2′-O-methyl-5-methyluridine-3′-phosphate, 2′-O-methyl-5-



methyluridine-5′-phosphate or 2′-O-methyl-5-methyluridine


ts
2′-O-methyl-5-methyluridine-3′-phosphorothioate


u
2′-O-methyluridine-3′-phosphate, 2′-O-methyluridine-5′-phosphate



or 2′-O-methyluridine


us
2′-O-methyluridine-3′-phosphorothioate


dA
2′-deoxyadenosine-3′-phosphate, 2′-deoxyadenosine-5′-phosphate



or 2′-deoxyadenosine


dAs
2′-deoxyadenosine-3′-phosphorothioate


dC
2′-deoxycytidine-3′-phosphate, 2′-deoxycytidine-5′-phosphate or 2′-



deoxycytidine


dCs
2′-deoxycytidine-3′-phosphorothioate


dG
2′-deoxyguanosine-3′-phosphate, 2′-deoxyguanosine-5′-phosphate



or 2′-deoxyguanosine


dGs
2′-deoxyguanosine-3′-phosphorothioate or 2′-deoxyguanosine


dT
2′-deoxythymidine-3′-phosphate, 2′-deoxythymidine-5′-phosphate or



2′-deoxythymidine


dTs
2′-deoxythymidine-3′-phosphorothioate


dU
2′-deoxyuridine-3′-phosphate, 2′-deoxyuridine-5′-phosphate or 2′-deoxyuridine


s
phosphorothioate linkage


L961
N-[tris(GalNAc-alkyl)-amododecanoyl)]-4-hydroxyprolinol Hyp-



(GalNAc-alkyl)3


(Aeo)
2′-O-methoxyethyladenosine-3′-phosphate, 2′-O-methoxyethyladenosine-5′-phosphate or 2′-O-



methoxyethyladenosine


(Aeos)
2′-O-methoxyethyladenosine-3′-phosphorothioate


(Ceo)
2′-O-methoxyethylcytidine-3′-phosphate, 2′-O-



methoxyethylcytidine-5′-phosphate or 2′-O-methoxyethylcytidine


(Ceos)
2′-O-methoxyethylcytidine-3′-phosphorothioate


(Geo)
2′-O-methoxyethylguanosine-3′-phosphate, 2′-O-methoxyethylguanosine-5′-phosphate or 2′-O-



methoxyethylguanosine


(Geos)
2′-O-methoxyethylguanosine-3′-phosphorothioate


(Teo)
2′-O-methoxyethyl-5-methyluridine-3′-phosphate, 2′-O-



methoxyethyl-5-methyluridine-5′-phosphate or 2′-O-methoxyethyl-



5-methyluridine


(Teos)
2′-O-methoxyethyl-5-methyluridine-3′-phosphorothioate


(m5Ceo)
2′-O-methoxyethyl-5-methylcytidine-3′-phosphate, 2′-O-



methoxyethyl-5-methylcytidine-5′-phosphate or 2′-O-methoxyethyl-



5-methylcytidine


(m5Ceos)
2′-O-methoxyethyl-5-methylcytidine-3′-phosphorothioate


(Agn)
1-(2,3-Dihydroxypropyl)adenine-2-phosphate, 1-(2,3-



Dihydroxypropyl)adenine-3-phosphate or 1-(2,3-Dihydroxypropyl)



adenine


(Agns)
1-(2,3-Dihydroxypropyl)adenine-2-phosphorothioate


(Cgn)
1-(2,3-Dihydroxypropyl)cytosine-2-phosphate, 1-(2,3-



Dihydroxypropyl)cytosine-3-phosphate or 1-(2,3-Dihydroxypropyl)



cytosine


(Cgns)
1-(2,3-Dihydroxypropyl)cytosine-2-phosphorothioate


(Ggn)
1-(2,3-Dihydroxypropyl)guanine-2-phosphate, 1-(2,3-



Dihydroxypropyl)guanine-3-phosphate or 1-(2,3-Dihydroxypropyl)



guanine


(Ggns)
1-(2,3-Dihydroxypropyl)guanine-2-phosphorothiaote


(Tgn)
1-(2,3-Dihydroxypropyl)thymine-2-phosphate, 1-(2,3-



Dihydroxypropyl)thymine-3-phosphate or 1-(2,3-Dihydroxypropyl)



thymine


(Tgns)
1-(2,3-Dihydroxypropyl)thymine-2-phosphorothioate


(Ugn)
1-(2,3-Dihydroxypropyl)uracil-2-phosphate, 1-(2,3-



Dihydroxypropyl)uracil-3-phosphate or 1-(2,3-Dihydroxypropyl)



thymine


(Ugns)
1-(2,3-Dihydroxypropyl)uracil-2-phosphorothioate






1The chemical structure of L96 is as follows:





embedded image








Example 2. ALAS1 siRNA Design and Synthesis

Experimental Methods


Bioinformatics


Transcripts


siRNA design was carried out to identify siRNAs targeting human, rhesus (Macaca mulatta), mouse, and rat ALAS1 transcripts annotated in the NCBI Gene database (http://www.ncbi.nlm.nih.gov/gene/). Design used the following transcripts from the NCBI RefSeq collection: Human—NM_000688.4 (see FIG. 3), NM_199166.1; Rhesus—XM_001090440.2, XM_001090675.2; Mouse—NM_020559.2; Rat—NM_024484.2. Due to high primate/rodent sequence divergence, siRNA duplexes were designed in several separate batches, including but not limited to batches containing duplexes matching human and rhesus transcripts only; human, rhesus, mouse, and rat transcripts only; and mouse and rat transcripts only. Most siRNA duplexes were designed that shared 100% identity the listed human transcript and other species transcripts considered in each design batch (above). In some instances, (see Table 8) mismatches between duplex and mRNA target were allowed at the first antisense (last sense) position when the antisense strand:target mRNA complementary basepair was a GC or CG pair. In these cases, duplexes were designed with UA or AU pairs at the first antisense:last sense pair. Thus the duplexes maintained complementarity but were mismatched with respect to target (U:C, U:G, A:C, or A:G). Eighteen of these “UA-swap” duplexes were designed as part of the human/rhesus/mouse/rat set (see duplexes in Table 8 with “C19U”, “G19U”, “C19A”, or “G19A” labels in the Position column).


siRNA Design, Specificity, and Efficacy Prediction


The predicted specificity of all possible 19mers was predicted from each sequence. Candidate 19mers were then selected that lacked repeats longer than 7 nucleotides. These 1510 candidate human/rhesus, 114 human/rhesus/mouse/rat, and 717 mouse/rat siRNAs were used in comprehensive searches against the appropriate transcriptomes (defined as the set of NM_ and XM_ records within the human, rhesus, dog, mouse, or rat NCBI Refseq sets) using an exhaustive “brute-force” algorithm implemented in the python script ‘BruteForce.py’. The script next parsed the transcript-oligo alignments to generate a score based on the position and number of mismatches between the siRNA and any potential ‘off-target’ transcript. The off-target score is weighted to emphasize differences in the ‘seed’ region of siRNAs, in positions 2-9 from the 5′ end of the molecule. Each oligo-transcript pair from the brute-force search was given a mismatch score by summing the individual mismatch scores; mismatches in the position 2-9 were counted as 2.8, mismatches in the cleavage site positions 10-11 were counted as 1.2, and mismatches in region 12-19 counted as 1.0. An additional off-target prediction was carried out by comparing the frequency of heptamers and octomers derived from 3 distinct, seed-derived hexamers of each oligo. The hexamers from positions 2-7 relative to the 5′ start is used to create 2 heptamers and one octomer. We create ‘heptamer1’ by adding a 3′ A to the hexamer; we create heptamer2 by adding a 5′ A to the hexamer; we create the octomer by adding an A to both 5′ and 3′ ends of the hexamer. The frequency of octomers and heptamers in the human, rhesus, mouse, or rat 3′UTRome (defined as the subsequence of the transcriptome from NCBI's Refseq database where the end of the coding region, the ‘CDS’, is clearly defined) was pre-calculated. The octomer frequency was normalized to the heptamer frequency using the median value from the range of octomer frequencies. A ‘mirSeedScore’ was then calculated by calculating the sum of ((3×normalized octomer count)+(2×heptamer2 count)+(1×heptamer1 count)).


Both siRNAs strands were assigned to a category of specificity according to the calculated scores: a score above 3 qualifies as highly specific, equal to 3 as specific and between 2.2 and 2.8 as moderately specific. We sorted by the specificity of the antisense strand. We then selected duplexes whose antisense oligos lacked GC at the first position, lacked G at both positions 13 and 14, and had 3 or more Us or As in the seed region (characteristics of duplexes with high predicted efficacy)


Candidate GalNac-conjugated duplexes, 21 and 23 nucleotides long on the sense and antisense strands respectively, were designed by extending antisense 19mers 4 additional nucleotides in the 3′ direction (preserving perfect complementarity with the target transcript). The sense strand was specified as the reverse complement of the first 21 nucleotides of the antisense 23mer. Duplexes were selected that maintained perfect matches to all selected species transcripts across all 23 nucleotides.


siRNA Sequence Selection


A total of 90 sense and 90 antisense derived human/rhesus, 40 sense and 40 antisense derived human/rhesus/mouse/mouse/rat, and 40 sense and 40 antisense derived mouse/rat siRNA 19mer oligos were synthesized and formed into duplexes. A total of 45 sense and 45 antisense derived human/rhesus 21/23mer oligos were synthesized to yield 45 GalNac-conjugated duplexes.


The sequences of the sense and antisense strands of the modified duplexes are shown in Table 2, and the sequences of the sense and antisense strands of the unmodified duplexes are shown in Table 3.


Synthesis of ALAS1 Sequences


ALAS1 sequences were synthesized on MerMade 192 synthesizer at either 1 or 0.2 umol scale. Single strands were made with 2′O-methyl modifications for in vitro screening using transfection reagents. 3′ GalNAc conjugates were made with sequences containing 2′F and 2′-O-methyl modifications on the sense strand in the 21-23 mer designs for free uptake in cells. For all the 21mer sequences in the list, ‘endolight’ chemistry was applied as detailed below.

    • All pyrimidines (cytosine and uridine) in the sense strand contained 2′-O-Methyl bases (2′ O-Methyl C and 2′-O-Methyl U)
    • In the antisense strand, pyrimidines adjacent to (towards 5′ position) ribo A nucleoside were replaced with their corresponding 2-O-Methyl nucleosides
    • A two base dTsdT extension at 3′ end of both sense and anti sense sequences was introduced
    • The sequence file was converted to a text file to make it compatible for loading in the MerMade 192 synthesis software


For GalNAc conjugated sense strands and complementary antisense sequences, 2′F and other modified nucleosides were introduced in combination with ribo with 2′O-Methyl nucleosides. The synthesis was performed on a GalNAc modified CPG support for the sense strand and CPG modified with universal support on the antisense sequence.


Synthesis, Cleavage and Deprotection:


The synthesis of ALAS1 sequences used solid supported oligonucleotide synthesis using phosphoramidite chemistry. For 21 mer endolight sequences, a deoxy thymidine CPG was used as the solid support while for the GalNAc conjugates, GalNAc solid support for sense strand and an universal CPG for the antisense strand were used.


The synthesis of the above sequences was performed at either 1 or 0.2 um scale in 96 well plates. The amidite solutions were prepared at 0.1M concentration and ethyl thio tetrazole (0.6M in Acetonitrile) was used as activator.


The synthesized sequences were cleaved and deprotected in 96 well plates, using methylamine in the first step and fluoride reagent in the second step. For GalNAc and 2′F nucleoside containing sequences, deprotection conditions were modified. Sequences after cleavage and deprotection were precipitated using acetone:ethanol (80:20) mix and the pellet were re-suspended in 0.2M sodium acetate buffer. Samples from each sequence were analyzed by LC-MS to confirm the identity, UV for quantification and a selected set of samples by IEX chromatography to determine purity.


Purification and Desalting:


ALAS1 sequences were precipitated and purified on AKTA Purifier system using Sephadex column. The ALAS1ess was run at ambient temperature. Sample injection and collection was performed in 96 well (1.8 mL-deep well) plates. A single peak corresponding to the full length sequence was collected in the eluent. The desalted ALAS1 sequences were analyzed for concentration (by UV measurement at A260) and purity (by ion exchange HPLC). The complementary single strands were then combined in a 1:1 stoichiometric ratio to form siRNA duplexes.









TABLE 2







Human ALAS1 Modified Single Strands and Duplex Sequences













SEQ ID






SEQ ID
NO:
Position on


NO:
(anti-
transcript


(sense)
sense)
NM_000688.4
Duplex Name
Sense Sequence (5′-3′)
Antisense Sequence (5′-3′)















2
3
522-540
AD-55078.2
cuccGGccAGuGAGAAAGAdTsdT
UCUUUCUcACUGGCCGGAGdTsdT





4
5
669-687
AD-55084.2
uGGcAGcAcAGAuGAAucAdTsdT
UGAUUcAUCUGUGCUGCcAdTsdT





6
7
790-808
AD-55090.2
cAGuGuGGuuAGuGuGAAAdTsdT
UUUcAcACuAACcAcACUGdTsdT





8
9
853-871
AD-55096.2
cAucAuGcAAAAGcAAAGAdTsdT
UCUUUGCUUUUGcAUGAUGdTsdT





10
11
876-894
AD-55102.2
AAAGAGuGucucAucuucudTsdT
AGAAGAUGAGAcACUCUUUdTsdT





12
13
877-895
AD-55106.2
AAGAGuGucucAucuucuudTsdT
AAGAAGAUGAGAcACUCUUdTsdT





14
15
914-932
AD-55111.2
ucuGuuuccAcuuuucAGudTsdT
ACUGAAAAGUGGAAAcAGAdTsdT





16
17
923-941
AD-55073.2
AcuuuucAGuAuGAucGuudTsdT
AACGAUcAuACUGAAAAGUdTsdT





18
19
926-944
AD-55079.2
uuucAGuAuGAucGuuucudTsdT
AGAAACGAUcAuACUGAAAdTsdT





20
21
927-945
AD-55085.2
uucAGuAuGAucGuuucuudTsdT
AAGAAACGAUcAuACUGAAdTsdT





22
23
928-946
AD-55091.2
ucAGuAuGAucGuuucuuudTsdT
AAAGAAACGAUcAuACUGAdTsdT





24
25
932-950
AD-55097.2
uAuGAucGuuucuuuGAGAdTsdT
UCUcAAAGAAACGAUcAuAdTsdT





26
27
973-991
AD-55103.2
uGAccAcAccuAucGAGuudTsdT
AACUCGAuAGGUGUGGUcAdTsdT





28
29
975-993
AD-55107.2
AccAcAccuAucGAGuuuudTsdT
AAAACUCGAuAGGUGUGGUdTsdT





30
31
1029-1047
AD-55112.2
uGGcAGAuGAcuAuucAGAdTsdT
UCUGAAuAGUcAUCUGCcAdTsdT





32
33
1077-1095
AD-55074.2
ucuGGuGcAGuAAuGAcuAdTsdT
uAGUcAUuACUGcACcAGAdTsdT





34
35
1124-1142
AD-55080.2
uGuGGGGcAGuuAuGGAcAdTsdT
UGUCcAuAACUGCCCcAcAdTsdT





36
37
1137-1155
AD-55086.2
uGGAcAcuuuGAAAcAAcAdTsdT
UGUUGUUUcAAAGUGUCcAdTsdT





38
39
1182-1200
AD-55098.2
AuAuuucuGGAAcuAGuAAdTsdT
UuACuAGUUCcAGAAAuAUdTsdT





40
41
1184-1202
AD-55104.2
AuuucuGGAAcuAGuAAAudTsdT
AUUuACuAGUUCcAGAAAUdTsdT





42
43
1185-1203
AD-55108.2
uuucuGGAAcuAGuAAAuudTsdT
AAUUuACuAGUUCcAGAAAdTsdT





44
45
1188-1206
AD-55113.2
cuGGAAcuAGuAAAuuccAdTsdT
UGGAAUUuACuAGUUCcAGdTsdT





46
47
1325-1343
AD-55075.2
uGuGAGAuuuAcucuGAuudTsdT
AAUcAGAGuAAAUCUcAcAdTsdT





48
49
1364-1382
AD-55081.2
AuccAAGGGAuucGAAAcAdTsdT
UGUUUCGAAUCCCUUGGAUdTsdT





50
51
1382-1400
AD-55087.2
AGccGAGuGccAAAGuAcAdTsdT
UGuACUUUGGcACUCGGCUdTsdT





52
53
1478-1496
AD-55093.2
uuuGAAAcuGuccAuucAAdTsdT
UUGAAUGGAcAGUUUcAAAdTsdT





54
55
1531-1549
AD-55099.2
uGAuGuGGcccAuGAGuuudTsdT
AAACUcAUGGGCcAcAUcAdTsdT





56
57
1631-1649
AD-53573.3
GucAuGccAAAAAuGGAcAdTsdT
UGUCcAUUUUUGGcAUGACdTsdT





58
59
1637-1655
AD-55109.2
ccAAAAAuGGAcAucAuuudTsdT
AAAUGAUGUCcAUUUUUGGdTsdT





60
61
1706-1724
AD-55114.2
AcGAGuucucuGAuuGAcAdTsdT
UGUcAAUcAGAGAACUCGUdTsdT





62
63
1962-1980
AD-55076.2
AAGucuGuGAuGAAcuAAudTsdT
AUuAGUUcAUcAcAGACUUdTsdT





64
65
1967-1985
AD-55082.2
uGuGAuGAAcuAAuGAGcAdTsdT
UGCUcAUuAGUUcAUcAcAdTsdT





66
67
1977-1995
AD-55088.2
uAAuGAGcAGAcAuAAcAudTsdT
AUGUuAUGUCUGCUcAUuAdTsdT





68
69
2189-2207
AD-55094.2
uuuGAAGuGAuGAGuGAAAdTsdT
UUUcACUcAUcACUUcAAAdTsdT





70
71
2227-2245
AD-55100.2
AGGcuuGAGcAAGuuGGuAdTsdT
uACcAACUUGCUcAAGCCUdTsdT





72
73
2313-2331
AD-55105.2
ucuucAGAGuuGucuuuAudTsdT
AuAAAGAcAACUCUGAAGAdTsdT





74
75
2317-2335
AD-55110.2
cAGAGuuGucuuuAuAuGudTsdT
AcAuAuAAAGAcAACUCUGdTsdT





76
77
2319-2337
AD-55115.2
GAGuuGucuuuAuAuGuGAdTsdT
UcAcAuAuAAAGAcAACUCdTsdT





78
79
2320-2338
AD-55077.2
AGuuGucuuuAuAuGuGAAdTsdT
UUcAcAuAuAAAGAcAACUdTsdT





80
81
2344-2362
AD-55083.2
uuAuAuuAAAuuuuAAucudTsdT
AGAUuAAAAUUuAAuAuAAdTsdT





82
83
2352-2370
AD-55089.2
AAuuuuAAucuAuAGuAAAdTsdT
UUuACuAuAGAUuAAAAUUdTsdT





84
85
2353-2371
AD-55095.2
AuuuuAAucuAuAGuAAAAdTsdT
UUUuACuAuAGAUuAAAAUdTsdT





86
87
2376-2394
AD-55101.2
AGuccuGGAAAuAAAuucudTsdT
AGAAUUuAUUUCcAGGACUdTsdT





88
89
358-376
AD-53511.1
cuGcccAuucuuAucccGAdTsdT
UCGGGAuAAGAAUGGGcAGdTsdT





90
91
789-807
AD-53512.1
ccAGuGuGGuuAGuGuGAAdTsdT
UUcAcACuAACcAcACUGGdTsdT





92
93
1076-1094
AD-53513.1
GucuGGuGcAGuAAuGAcudTsdT
AGUcAUuACUGcACcAGACdTsdT





94
95
1253-1271
AD-53514.1
GcAcucuuGuuuuccucGudTsdT
ACGAGGAAAAcAAGAGUGCdTsdT





96
97
1544-1562
AD-53515.1
GAGuuuGGAGcAAucAccudTsdT
AGGUGAUUGCUCcAAACUCdTsdT





98
99
2228-2246
AD-53516.1
GGcuuGAGcAAGuuGGuAudTsdT
AuACcAACUUGCUcAAGCCdTsdT





100
101
404-422
AD-53517.1
GGcAAAucucuGuuGuucudTsdT
AGAAcAAcAGAGAUUUGCCdTsdT





102
103
404-422
AD-53517.1
GGcAAAucucuGuuGuucudTsdT
AGAAcAAcAGAGAUUUGCCdTsdT





104
105
866-884
AD-53518.1
cAAAGAccAGAAAGAGuGudTsdT
AcACUCUUUCUGGUCUUUGdTsdT





106
107
1080-1098
AD-53519.1
GGuGcAGuAAuGAcuAccudTsdT
AGGuAGUcAUuACUGcACCdTsdT





108
109
1258-1276
AD-53520.1
cuuGuuuuccucGuGcuuudTsdT
AAAGcACGAGGAAAAcAAGdTsdT





110
111
1616-1634
AD-53521.1
GGGGAucGGGAuGGAGucAdTsdT
UGACUCcAUCCCGAUCCCCdTsdT





112
113
2230-2248
AD-53522.1
cuuGAGcAAGuuGGuAucudTsdT
AGAuACcAACUUGCUcAAGdTsdT





114
115
436-454
AD-53523.1
ccccAAGAuGAuGGAAGuudTsdT
AACUUCcAUcAUCUUGGGGdTsdT





116
117
436-454
AD-53523.1
ccccAAGAuGAuGGAAGuudTsdT
AACUUCcAUcAUCUUGGGGdTsdT





118
119
885-903
AD-53524.1
cucAucuucuucAAGAuAAdTsdT
UuAUCUUGAAGAAGAUGAGdTsdT





120
121
1127-1145
AD-53525.1
GGGGcAGuuAuGGAcAcuudTsdT
AAGUGUCcAuAACUGCCCCdTsdT





122
123
1315-1333
AD-53526.1
GAuGccAGGcuGuGAGAuudTsdT
AAUCUcAcAGCCUGGcAUCdTsdT





124
125
1870-1888
AD-53527.1
GAGAcAGAuGcuAAuGGAudTsdT
AUCcAUuAGcAUCUGUCUCdTsdT





126
127
2286-2304
AD-53528.1
ccccAGGccAuuAucAuAudTsdT
AuAUGAuAAUGGCCUGGGGdTsdT





128
129
489-507
AD-53529.1
cAGcAGuAcAcuAccAAcAdTsdT
UGUUGGuAGUGuACUGCUGdTsdT





130
131
489-507
AD-53529.1
cAGcAGuAcAcuAccAAcAdTsdT
UGUUGGuAGUGuACUGCUGdTsdT





132
133
915-933
AD-53530.1
cuGuuuccAcuuuucAGuAdTsdT
uACUGAAAAGUGGAAAcAGdTsdT





134
135
1138-1156
AD-53531.1
GGAcAcuuuGAAAcAAcAudTsdT
AUGUUGUUUcAAAGUGUCCdTsdT





136
137
1324-1342
AD-53532.1
cuGuGAGAuuuAcucuGAudTsdT
AUcAGAGuAAAUCUcAcAGdTsdT





138
139
1927-1945
AD-53533.1
cccuGuGcGGGuuGcAGAudTsdT
AUCUGcAACCCGcAcAGGGdTsdT





140
141
2312-2330
AD-53534.1
GucuucAGAGuuGucuuuAdTsdT
uAAAGAcAACUCUGAAGACdTsdT





142
143
646-664
AD-53535.1
cAcuGcAAGcAAAuGcccudTsdT
AGGGcAUUUGCUUGcAGUGdTsdT





144
145
922-940
AD-53536.1
cAcuuuucAGuAuGAucGudTsdT
ACGAUcAuACUGAAAAGUGdTsdT





146
147
1163-1181
AD-53537.1
GGGGcAGGuGGuAcuAGAAdTsdT
UUCuAGuACcACCUGCCCCdTsdT





148
149
1347-1365
AD-53538.1
GGAAccAuGccuccAuGAudTsdT
AUcAUGGAGGcAUGGUUCCdTsdT





150
151
1964-1982
AD-53539.1
GucuGuGAuGAAcuAAuGAdTsdT
UcAUuAGUUcAUcAcAGACdTsdT





152
153
2321-2339
AD-53540.1
GuuGucuuuAuAuGuGAAudTsdT
AUUcAcAuAuAAAGAcAACdTsdT





154
155
671-689
AD-53541.1
GcAGcAcAGAuGAAucAGAdTsdT
UCUGAUUcAUCUGUGCUGCdTsdT





156
157
924-942
AD-53542.1
cuuuucAGuAuGAucGuuudTsdT
AAACGAUcAuACUGAAAAGdTsdT





158
159
1164-1182
AD-53543.1
GGGcAGGuGGuAcuAGAAAdTsdT
UUUCuAGuACcACCUGCCCdTsdT





160
161
1460-1478
AD-53544.1
GuccccAAGAuuGuGGcAudTsdT
AUGCcAcAAUCUUGGGGACdTsdT





162
163
1976-1994
AD-53545.1
cuAAuGAGcAGAcAuAAcAdTsdT
UGUuAUGUCUGCUcAUuAGdTsdT





164
165
786-804
AD-53546.1
GccccAGuGuGGuuAGuGudTsdT
AcACuAACcAcACUGGGGCdTsdT





166
167
935-953
AD-53547.1
GAucGuuucuuuGAGAAAAdTsdT
UUUUCUcAAAGAAACGAUCdTsdT





168
169
1165-1183
AD-53548.1
GGcAGGuGGuAcuAGAAAudTsdT
AUUUCuAGuACcACCUGCCdTsdT





170
171
1530-1548
AD-53549.1
GuGAuGuGGcccAuGAGuudTsdT
AACUcAUGGGCcAcAUcACdTsdT





172
173
2003-2021
AD-53550.1
cAAGcAAucAAuuAcccuAdTsdT
uAGGGuAAUUGAUUGCUUGdTsdT





174
175
788-806
AD-53551.1
cccAGuGuGGuuAGuGuGAdTsdT
UcAcACuAACcAcACUGGGdTsdT





176
177
974-992
AD-53552.1
GAccAcAccuAucGAGuuudTsdT
AAACUCGAuAGGUGUGGUCdTsdT





178
179
1191-1209
AD-53553.1
GAAcuAGuAAAuuccAuGudTsdT
AcAUGGAAUUuACuAGUUCdTsdT





180
181
1541-1559
AD-53554.1
cAuGAGuuuGGAGcAAucAdTsdT
UGAUUGCUCcAAACUcAUGdTsdT





182
183
2075-2093
AD-53555.1
ccccAGAuGAuGAAcuAcudTsdT
AGuAGUUcAUcAUCUGGGGdTsdT





184
185
360-378
AD-53561.1
GcccAuucuuAucccGAGudTsdT
ACUCGGGAuAAGAAUGGGCdTsdT





186
187
1356-1374
AD-53567.1
ccuccAuGAuccAAGGGAudTsdT
AUCCCUUGGAUcAUGGAGGdTsdT





188
189
1631-1649
AD-53573.1
GucAuGccAAAAAuGGAcAdTsdT
UGUCcAUUUUUGGcAUGACdTsdT





190
191
1634-1652
AD-53579.1
AuGccAAAAAuGGAcAucAdTsdT
UGAUGUCcAUUUUUGGcAUdTsdT
















TABLE 3







Human ALAS1 Unmodified Single Strands and Duplex Sequences













SEQ ID NO:
Position on





SEQ ID NO:
(anti-
transcript


(sense)
sense)
NM_000688.4
Duplex Name
Sense Sequence (5′-3′)
Antisense Sequence (5′-3′)















192
193
522-540
AD-55078.2
CUCCGGCCAGUGAGAAAGA
UCUUUCUCACUGGCCGGAG





194
195
669-687
AD-55084.2
UGGCAGCACAGAUGAAUCA
UGAUUCAUCUGUGCUGCCA





196
197
790-808
AD-55090.2
CAGUGUGGUUAGUGUGAAA
UUUCACACUAACCACACUG





198
199
853-871
AD-55096.2
CAUCAUGCAAAAGCAAAGA
UCUUUGCUUUUGCAUGAUG





200
201
876-894
AD-55102.2
AAAGAGUGUCUCAUCUUCU
AGAAGAUGAGACACUCUUU





202
203
877-895
AD-55106.2
AAGAGUGUCUCAUCUUCUU
AAGAAGAUGAGACACUCUU





204
205
914-932
AD-55111.2
UCUGUUUCCACUUUUCAGU
ACUGAAAAGUGGAAACAGA





206
207
923-941
AD-55073.2
ACUUUUCAGUAUGAUCGUU
AACGAUCAUACUGAAAAGU





208
209
926-944
AD-55079.2
UUUCAGUAUGAUCGUUUCU
AGAAACGAUCAUACUGAAA





210
211
927-945
AD-55085.2
UUCAGUAUGAUCGUUUCUU
AAGAAACGAUCAUACUGAA





212
213
928-946
AD-55091.2
UCAGUAUGAUCGUUUCUUU
AAAGAAACGAUCAUACUGA





214
215
932-950
AD-55097.2
UAUGAUCGUUUCUUUGAGA
UCUCAAAGAAACGAUCAUA





216
217
973-991
AD-55103.2
UGACCACACCUAUCGAGUU
AACUCGAUAGGUGUGGUCA





218
219
975-993
AD-55107.2
ACCACACCUAUCGAGUUUU
AAAACUCGAUAGGUGUGGU





220
221
1029-1047
AD-55112.2
UGGCAGAUGACUAUUCAGA
UCUGAAUAGUCAUCUGCCA





222
223
1077-1095
AD-55074.2
UCUGGUGCAGUAAUGACUA
UAGUCAUUACUGCACCAGA





224
225
1124-1142
AD-55080.2
UGUGGGGCAGUUAUGGACA
UGUCCAUAACUGCCCCACA





226
227
1137-1155
AD-55086.2
UGGACACUUUGAAACAACA
UGUUGUUUCAAAGUGUCCA





228
229
1182-1200
AD-55098.2
AUAUUUCUGGAACUAGUAA
UUACUAGUUCCAGAAAUAU





230
231
1184-1202
AD-55104.2
AUUUCUGGAACUAGUAAAU
AUUUACUAGUUCCAGAAAU





232
233
1185-1203
AD-55108.2
UUUCUGGAACUAGUAAAUU
AAUUUACUAGUUCCAGAAA





234
235
1188-1206
AD-55113.2
CUGGAACUAGUAAAUUCCA
UGGAAUUUACUAGUUCCAG





236
237
1325-1343
AD-55075.2
UGUGAGAUUUACUCUGAUU
AAUCAGAGUAAAUCUCACA





238
239
1364-1382
AD-55081.2
AUCCAAGGGAUUCGAAACA
UGUUUCGAAUCCCUUGGAU





240
241
1382-1400
AD-55087.2
AGCCGAGUGCCAAAGUACA
UGUACUUUGGCACUCGGCU





242
243
1478-1496
AD-55093.2
UUUGAAACUGUCCAUUCAA
UUGAAUGGACAGUUUCAAA





244
245
1531-1549
AD-55099.2
UGAUGUGGCCCAUGAGUUU
AAACUCAUGGGCCACAUCA





246
247
1631-1649
AD-53573.3
GUCAUGCCAAAAAUGGACA
UGUCCAUUUUUGGCAUGAC





248
249
1637-1655
AD-55109.2
CCAAAAAUGGACAUCAUUU
AAAUGAUGUCCAUUUUUGG





250
251
1706-1724
AD-55114.2
ACGAGUUCUCUGAUUGACA
UGUCAAUCAGAGAACUCGU





252
253
1962-1980
AD-55076.2
AAGUCUGUGAUGAACUAAU
AUUAGUUCAUCACAGACUU





254
255
1967-1985
AD-55082.2
UGUGAUGAACUAAUGAGCA
UGCUCAUUAGUUCAUCACA





256
257
1977-1995
AD-55088.2
UAAUGAGCAGACAUAACAU
AUGUUAUGUCUGCUCAUUA





258
259
2189-2207
AD-55094.2
UUUGAAGUGAUGAGUGAAA
UUUCACUCAUCACUUCAAA





260
261
2227-2245
AD-55100.2
AGGCUUGAGCAAGUUGGUA
UACCAACUUGCUCAAGCCU





262
263
2313-2331
AD-55105.2
UCUUCAGAGUUGUCUUUAU
AUAAAGACAACUCUGAAGA





264
265
2317-2335
AD-55110.2
CAGAGUUGUCUUUAUAUGU
ACAUAUAAAGACAACUCUG





266
267
2319-2337
AD-55115.2
GAGUUGUCUUUAUAUGUGA
UCACAUAUAAAGACAACUC





268
269
2320-2338
AD-55077.2
AGUUGUCUUUAUAUGUGAA
UUCACAUAUAAAGACAACU





270
271
2344-2362
AD-55083.2
UUAUAUUAAAUUUUAAUCU
AGAUUAAAAUUUAAUAUAA





272
273
2352-2370
AD-55089.2
AAUUUUAAUCUAUAGUAAA
UUUACUAUAGAUUAAAAUU





274
275
2353-2371
AD-55095.2
AUUUUAAUCUAUAGUAAAA
UUUUACUAUAGAUUAAAAU





276
277
2376-2394
AD-55101.2
AGUCCUGGAAAUAAAUUCU
AGAAUUUAUUUCCAGGACU





278
279
358-376
AD-53511.1
CUGCCCAUUCUUAUCCCGA
UCGGGAUAAGAAUGGGCAG





280
281
789-807
AD-53512.1
CCAGUGUGGUUAGUGUGAA
UUCACACUAACCACACUGG





282
283
1076-1094
AD-53513.1
GUCUGGUGCAGUAAUGACU
AGUCAUUACUGCACCAGAC





284
285
1253-1271
AD-53514.1
GCACUCUUGUUUUCCUCGU
ACGAGGAAAACAAGAGUGC





286
287
1544-1562
AD-53515.1
GAGUUUGGAGCAAUCACCU
AGGUGAUUGCUCCAAACUC





288
289
2228-2246
AD-53516.1
GGCUUGAGCAAGUUGGUAU
AUACCAACUUGCUCAAGCC





290
291
404-422
AD-53517.1
GGCAAAUCUCUGUUGUUCU
AGAACAACAGAGAUUUGCC





292
293
404-422
AD-53517.1
GGCAAAUCUCUGUUGUUCU
AGAACAACAGAGAUUUGCC





294
295
866-884
AD-53518.1
CAAAGACCAGAAAGAGUGU
ACACUCUUUCUGGUCUUUG





296
297
1080-1098
AD-53519.1
GGUGCAGUAAUGACUACCU
AGGUAGUCAUUACUGCACC





298
299
1258-1276
AD-53520.1
CUUGUUUUCCUCGUGCUUU
AAAGCACGAGGAAAACAAG





300
301
1616-1634
AD-53521.1
GGGGAUCGGGAUGGAGUCA
UGACUCCAUCCCGAUCCCC





302
303
2230-2248
AD-53522.1
CUUGAGCAAGUUGGUAUCU
AGAUACCAACUUGCUCAAG





304
305
436-454
AD-53523.1
CCCCAAGAUGAUGGAAGUU
AACUUCCAUCAUCUUGGGG





306
307
436-454
AD-53523.1
CCCCAAGAUGAUGGAAGUU
AACUUCCAUCAUCUUGGGG





308
309
885-903
AD-53524.1
CUCAUCUUCUUCAAGAUAA
UUAUCUUGAAGAAGAUGAG





310
311
1127-1145
AD-53525.1
GGGGCAGUUAUGGACACUU
AAGUGUCCAUAACUGCCCC





312
313
1315-1333
AD-53526.1
GAUGCCAGGCUGUGAGAUU
AAUCUCACAGCCUGGCAUC





314
315
1870-1888
AD-53527.1
GAGACAGAUGCUAAUGGAU
AUCCAUUAGCAUCUGUCUC





316
317
2286-2304
AD-53528.1
CCCCAGGCCAUUAUCAUAU
AUAUGAUAAUGGCCUGGGG





318
319
489-507
AD-53529.1
CAGCAGUACACUACCAACA
UGUUGGUAGUGUACUGCUG





320
321
489-507
AD-53529.1
CAGCAGUACACUACCAACA
UGUUGGUAGUGUACUGCUG





322
323
915-933
AD-53530.1
CUGUUUCCACUUUUCAGUA
UACUGAAAAGUGGAAACAG





324
325
1138-1156
AD-53531.1
GGACACUUUGAAACAACAU
AUGUUGUUUCAAAGUGUCC





326
327
1324-1342
AD-53532.1
CUGUGAGAUUUACUCUGAU
AUCAGAGUAAAUCUCACAG





328
329
1927-1945
AD-53533.1
CCCUGUGCGGGUUGCAGAU
AUCUGCAACCCGCACAGGG





330
331
2312-2330
AD-53534.1
GUCUUCAGAGUUGUCUUUA
UAAAGACAACUCUGAAGAC





332
333
646-664
AD-53535.1
CACUGCAAGCAAAUGCCCU
AGGGCAUUUGCUUGCAGUG





334
335
922-940
AD-53536.1
CACUUUUCAGUAUGAUCGU
ACGAUCAUACUGAAAAGUG





336
337
1163-1181
AD-53537.1
GGGGCAGGUGGUACUAGAA
UUCUAGUACCACCUGCCCC





338
339
1347-1365
AD-53538.1
GGAACCAUGCCUCCAUGAU
AUCAUGGAGGCAUGGUUCC





340
341
1964-1982
AD-53539.1
GUCUGUGAUGAACUAAUGA
UCAUUAGUUCAUCACAGAC





342
343
2321-2339
AD-53540.1
GUUGUCUUUAUAUGUGAAU
AUUCACAUAUAAAGACAAC





344
345
671-689
AD-53541.1
GCAGCACAGAUGAAUCAGA
UCUGAUUCAUCUGUGCUGC





346
347
924-942
AD-53542.1
CUUUUCAGUAUGAUCGUUU
AAACGAUCAUACUGAAAAG





348
349
1164-1182
AD-53543.1
GGGCAGGUGGUACUAGAAA
UUUCUAGUACCACCUGCCC





350
351
1460-1478
AD-53544.1
GUCCCCAAGAUUGUGGCAU
AUGCCACAAUCUUGGGGAC





352
353
1976-1994
AD-53545.1
CUAAUGAGCAGACAUAACA
UGUUAUGUCUGCUCAUUAG





354
355
786-804
AD-53546.1
GCCCCAGUGUGGUUAGUGU
ACACUAACCACACUGGGGC





356
357
935-953
AD-53547.1
GAUCGUUUCUUUGAGAAAA
UUUUCUCAAAGAAACGAUC





358
359
1165-1183
AD-53548.1
GGCAGGUGGUACUAGAAAU
AUUUCUAGUACCACCUGCC





360
361
1530-1548
AD-53549.1
GUGAUGUGGCCCAUGAGUU
AACUCAUGGGCCACAUCAC





362
363
2003-2021
AD-53550.1
CAAGCAAUCAAUUACCCUA
UAGGGUAAUUGAUUGCUUG





364
365
788-806
AD-53551.1
CCCAGUGUGGUUAGUGUGA
UCACACUAACCACACUGGG





366
367
974-992
AD-53552.1
GACCACACCUAUCGAGUUU
AAACUCGAUAGGUGUGGUC





368
369
1191-1209
AD-53553.1
GAACUAGUAAAUUCCAUGU
ACAUGGAAUUUACUAGUUC





370
371
1541-1559
AD-53554.1
CAUGAGUUUGGAGCAAUCA
UGAUUGCUCCAAACUCAUG





372
373
2075-2093
AD-53555.1
CCCCAGAUGAUGAACUACU
AGUAGUUCAUCAUCUGGGG





374
375
360-378
AD-53561.1
GCCCAUUCUUAUCCCGAGU
ACUCGGGAUAAGAAUGGGC





376
377
1356-1374
AD-53567.1
CCUCCAUGAUCCAAGGGAU
AUCCCUUGGAUCAUGGAGG





378
379
1631-1649
AD-53573.1
GUCAUGCCAAAAAUGGACA
UGUCCAUUUUUGGCAUGAC





380
381
1634-1652
AD-53579.1
AUGCCAAAAAUGGACAUCA
UGAUGUCCAUUUUUGGCAU









Example 3. In Vitro Screening of ALAS1 siRNA Duplexes for ALAS1 Knockdown Activity

ALAS1 siRNA duplexes were screened for the ability to knockdown ALAS1 expression in vitro.


In Vitro Screening


Cell Culture and Transfections


Hep3B cells (ATCC, Manassas, Va.) were grown to near confluence at 37° C. in an atmosphere of 5% CO2 in MEM (ATCC) supplemented with 10% FBS, before being released from the plate by trypsinization. Transfection was carried out by adding 14.4 μl of Opti-MEM plus 0.2 μl of Lipofectamine RNAiMax per well (Invitrogen, Carlsbad Calif. cat #13778-150) to 50 of siRNA duplexes per well into a 96-well plate and incubated at room temperature for 15 minutes. 80 μl of complete growth media containing ˜2×104 Hep3B cells were then added to the siRNA mixture. Cells were incubated for either 24 or 120 hours prior to RNA purification. Single dose experiments were performed at 10 nM and 0.1 nM final duplex concentration and dose response experiments were done at 10, 1.67, 0.27, 0.046, 0.0077, 0.0013, 0.00021, 0.00004 nM final duplex concentration.


Total RNA Isolation Using DYNABEADS mRNA Isolation Kit (Invitrogen, Part #: 610-12)


Cells were harvested and lysed in 150 μl of Lysis/Binding Buffer then mixed for 5 minutes at 850 rpm using an Eppendorf Thermomixer (the mixing speed was the same throughout the process). Ten microliters of magnetic beads and 80 μl Lysis/Binding Buffer mixture were added to a round bottom plate and mixed for 1 minute. Magnetic beads were captured using magnetic stand and the supernatant was removed without disturbing the beads. After removing supernatant, the lysed cells were added to the remaining beads and mixed for 5 minutes. After removing supernatant, magnetic beads were washed 2 times with 150 μl Wash Buffer A and mixed for 1 minute. Beads were captured again and supernatant removed. Beads were then washed with 150 μl Wash Buffer B, captured and supernatant was removed. Beads were next washed with 150 μl Elution Buffer, captured and supernatant removed. Beads were allowed to dry for 2 minutes. After drying, 50 μl of Elution Buffer was added and mixed for 5 minutes at 70° C. Beads were captured on magnet for 5 minutes. 40 μl of supernatant was removed and added to another 96 well plate.


cDNA Synthesis Using ABI High Capacity cDNA Reverse Transcription Kit (Applied Biosystems, Foster City, Calif., Cat #4368813)


A master mix of 2 μl 10× Buffer, 0.8 μl 25× dNTPs, 2 μl Random primers, 1 μl Reverse Transcriptase, 1 μl RNase inhibitor and 3.4 μl of H2O per reaction were added into 10 μl total RNA. cDNA was generated using a Bio-Rad C-1000 or S-1000 thermal cycler (Hercules, Calif.) through the following steps: 25° C. 10 min, 37° C. 120 min, 85° C. 5 sec, 4° C. hold.


Real Time PCR


2 μl of cDNA were added to a master mix containing 0.5 μl GAPDH TaqMan Probe (Applied Biosystems Cat #4326317E), 0.5 μl ALAS1 TaqMan probe (Applied Biosystems cat #Hs00167441_m1) and 5 μl Lightcycler 480 probe master mix (Roche Cat #04887301001) per well in a 384 well plates (Roche cat #04887301001). Real time PCR was done in a Roche LC480 Real Time PCR system (Roche) using the ΔΔCt(RQ) assay. Each duplex was tested in two independent transfections with two biological replicates each, and each transfection was assayed in duplicate, unless otherwise noted in the summary tables.


To calculate relative fold change, real time data were analyzed using the ΔΔCt method and normalized to assays performed with cells transfected with 10 nM AD-1955, or mock transfected cells. IC50s were calculated using a 4 parameter fit model using XLFit and normalized to cells transfected with AD-1955 or naïve cells over the same dose range, or to its own lowest dose.


In Vitro Knockdown of Endogenous ALAS1 Expression by ALAS1 siRNA Duplexes


Table 4 illustrates the knockdown of ALAS1 in Hep3B cells by ALAS1 modified siRNA duplexes (See Table 2). Silencing is expressed as the fraction RNA message remaining relative to the negative (luciferase) control siRNA AD-1955. Data were generated as described above following transfection of 10 nM or 0.1 nM of each siRNA. qPCR was run using the ALAS1 TaqMan probe Hs00167441_m1.









TABLE 4







ALAS1 expression in Hep3B cells following


transfection with ALAS1 siRNA












10 nM
0.1 nM
10 nM
0.1 nM


Duplex ID
Avg
Avg
STDEV
STDEV














AD-55078.2
0.7
0.87
0.001
0.089


AD-55084.2
0.08
0.3
0
0.04


AD-55090.2
0.06
0.08
0.002
0.003


AD-55096.2
0.61
0.92
0.171
0.34


AD-55102.2
0.63
0.62
0.005
0.069


AD-55106.2
0.07
0.08
0.004
0.027


AD-55111.2
0.06
0.23
0.013
0.062


AD-55073.2
0.21
0.4
0.018
0.061


AD-55079.2
0.17
0.43
0.033
0.089


AD-55085.2
0.13
0.21
0.011
0.019


AD-55091.2
0.27
0.55
0.033
0.009


AD-55097.2
0.31
0.38
0.051
0.059


AD-55103.2
0.05
0.11
0.017
0.006


AD-55107.2
0.12
0.24
0.007
0.008


AD-55112.2
0.15
0.2
0.036
0.025


AD-55074.2
0.16
0.45
0.008
0.002


AD-55080.2
0.79
0.99
0.095
0.304


AD-55086.2
0.09
0.22
0.005
0.035


AD-55098.2
0.25
0.51
0.03
0.07


AD-55104.2
0.06
0.1
0.017
0.001


AD-55108.2
0.47
0.65
0.03
0.015


AD-55113.2
0.38
0.62
0.068
0.039


AD-55075.2
0.12
0.28
0.007
0.051


AD-55081.2
0.21
0.51
0.036
0.066


AD-55087.2
0.1
0.19
0.017
0.02


AD-55093.2
0.24
0.56
0.029
0.053


AD-55099.2
0.05
0.18
0.001
0.038


AD-53573.3
0.67
1.07
0.16
0.153


AD-55109.2
0.07
0.23
0.006
0.052


AD-55114.2
0.08
0.16
0.004
0.017


AD-55076.2
0.05
0.14
0.007
0.035


AD-55082.2
0.08
0.3
0.019
0.016


AD-55088.2
0.06
0.12
0.008
0.02


AD-55094.2
0.06
0.18
0.005
0.023


AD-55100.2
0.45
0.83
0.02
0.05


AD-55105.2
0.02
0.05
0.005
0.004


AD-55110.2
0.15
0.19
0.031
0.016


AD-55115.2
0.35
0.58
0.045
0.052


AD-55077.2
0.14
0.14
0.006
0.019


AD-55083.2
0.56
0.98
0.24
0.188


AD-55089.2
0.62
0.79
0.036
0.094


AD-55095.2
0.59
0.92
0.12
0.079


AD-55101.2
0.71
0.97
0.074
0.097


AD-1955
1.00
1.01
0.03
0.04


AD-53511.1
0.84
1.08
0.028
0.0515


AD-53512.1
0.15
0.65
0.062
0.023


AD-53513.1
0.34
0.86
0.055
0.011


AD-53514.1
0.12
0.61
0.003
0.008


AD-53515.1
0.25
0.66
0.005
0.004


AD-53516.1
1.05
1.02
0.032
0.011


AD-53517.1
0.145
0.725
0.025
0.0155


AD-53518.1
0.72
0.85
0.045
0.028


AD-53519.1
0.18
0.66
0.061
0.004


AD-53520.1
0.18
0.9
0.041
0.001


AD-53521.1
0.97
1.07
0.01
0.003


AD-53522.1
0.87
1.1
0.065
0.112


AD-53523.1
0.48
0.96
0.0305
0.0255


AD-53524.1
0.11
0.66
0.02
0.006


AD-53525.1
0.71
1.03
0.016
0.01


AD-53526.1
0.23
0.85
0.075
0.01


AD-53527.1
0.25
0.83
0.015
0.017


AD-53528.1
0.44
0.93
0.037
0.006


AD-53529.1
0.185
0.73
0.015
0.014


AD-53530.1
0.1
0.62
0.02
0.003


AD-53531.1
0.48
0.93
0.019
0.045


AD-53532.1
0.06
0.17
0
0.003


AD-53533.1
0.36
0.93
0.025
0.034


AD-53534.1
0.1
0.36
0.014
0.012


AD-53535.1
0.58
1.05
0.036
0.071


AD-53536.1
0.12
0.45
0.009
0.026


AD-53537.1
0.73
0.96
0.101
0.015


AD-53538.1
0.74
1.07
0
0.046


AD-53539.1
0.52
0.97
0.057
0.032


AD-53540.1
0.1
0.47
0.017
0.012


AD-53541.1
0.11
0.29
0.026
0.015


AD-53542.1
0.08
0.23
0.008
0.006


AD-53543.1
0.62
1.01
0.027
0.014


AD-53544.1
0.8
1.04
0.002
0.001


AD-53545.1
0.17
0.73
0.007
0.007


AD-53546.1
0.27
0.93
0.058
0.019


AD-53547.1
0.12
0.28
0.008
0.01


AD-53548.1
0.1
0.34
0.022
0.002


AD-53549.1
0.8
1.04
0.011
0.026


AD-53550.1
0.05
0.54
0.02
0.003


AD-53551.1
0.96
1.16
0.029
0.044


AD-53552.1
0.13
0.5
0.002
0.009


AD-53553.1
0.92
1.1
0.027
0.02


AD-53554.1
0.76
0.67
0.005
0.004


AD-53555.1
0.11
0.53
0.009
0.007


AD-53561.1
0.72
0.94
0.014
0.001


AD-53567.1
0.16
0.66
0.019
0.003


AD-53573.1
1.06
1.10
0.019
0.037


AD-53579.1
0.19
0.76
0.036
0.019










IC50s of Select ALAS1 siRNA Duplexes in In Vitro Screen


Table 5 illustrates the IC50s of select ALAS1 siRNA duplexes determined from the knockdown of endogenously expressed ALAS1 in the Hep3B cell line, by ALAS1 modified siRNA duplexes (see Table 2). Data were generated as described above, at 24 or 120 hours following transfection of each siRNA duplex. In this example, silencing of ALAS1 is expressed as the fraction mRNA message remaining relative to the siRNA AD-1955, a non-targeting siRNA that was used as a negative control. Data from replicate transfection experiments were used to fit a single line to determine the IC50. Several of the duplexes (e.g., AD-53541.1, AD-53542.1, and AD-53547.1) had an IC50 as low as about 0.03 nM at 24 hours. Numerous duplexes had an IC50 of less than 0.1 nM (e.g., AD-53534.1, AD-53536.1, AD-53540.1, AD-53541.1, AD-53542.1, AD-53547.1, AD-53548.1, AD-53550.1, AD-53552.1) at 24 hours, and some of these also had an IC50 of less than 0.1 nM (e.g., AD-53534.1, AD-53540.1, AD-53541.1, AD-53542.1, AD-53547.1, AD-53552.1) at 120 hours.









TABLE 5







IC50S of select ALAS1 siRNA duplexes normalized to AD-1955









IC50 (nM)









DUPLEX ID
24 hrs
120 hrs












AD-53534.1
0.045
0.076


AD-53536.1
0.049
0.105


AD-53540.1
0.054
0.077


AD-53541.1
0.032
0.062


AD-53542.1
0.028
0.093


AD-53547.1
0.03
0.062


AD-53548.1
0.044
0.101


AD-53550.1
0.085
0.152


AD-53552.1
0.077
0.063


AD-53567.1
0.219
0.357


AD-53579.1
0.217
0.566









Example 4. In Vivo Silencing Using a Mouse/Rat ALAS1 siRNA Formulated as a LNP

The sequences of the modified duplex AD-53558 are shown in Table 6 below.









TABLE 6







Sequences of ALAS1 siRNA Duplex AD-53558.4













SEQ







ID


SEQ ID
NO:
Start Position on


NO:
(anti-
transcript of


(sense)
sense)
NM_020559.2
Duplex Name
Sense Sequence (5′-3′)
Antisense Sequence (5′-3′)





383
384
1184
AD-53558
cuGuGAAAuuuAcucuGAudTsdT
AUcAGAGuAAAUUUcAcAGdTsdT









This duplex was formulated as a LNP11 formulation (see Table 10 above). The LNP-formulated AD-53558 siRNA was tested in in vivo in mice (N=25 animals; 5 animals per group) and rats (N=20 animals; 4 animals per group) and was confirmed to silence ALAS1 mRNA in vivo. The results are shown in FIG. 5 and FIG. 6.



FIG. 5 shows that the siRNA demonstrated a dose-response effect in mice. The expression of mouse ALAS1 (mALAS1) mRNA was reduced by about 78% when the siRNA was administered at 1 mg/kg; mouse ALAS1 mRNA was reduced by about 60% when the siRNA was administered at 0.3 mg/kg; and mouse ALAS1 mRNA was reduced by about 49% when the siRNA was administered at 0.1 mg/kg. These reductions are expressed relative to a PBS control. An AD-1955 LUC control was also employed, as shown in FIG. 5.


Similarly, FIG. 6 shows that the siRNA demonstrated a dose-response effect in rats. The expression of ALAS1 RNA was reduced by about 70% when the when the siRNA was administered at 1 mg/kg; ALAS1 mRNA was reduced by about 62% when the siRNA was administered at 0.3 mg/kg; and ALAS1 mRNA was reduced by about 34% when the siRNA was administered at 0.1 mg/kg.


The durability of silencing was also tested in mice (N=15; 3 animals per timepoint. The results are shown in FIG. 7, which shows that AD-53558 suppressed mALAS1 mRNA by about 80% for at least 9 days. Suppression of at least about 50% persisted for at least 14 days.


Example 5. Efficacy of ALAS1 siRNA in an Animal Model of AIP

The effects of the AD-53558 LNP11 formulation (a mouse/rat ALAS1 siRNA described in the previous example) were investigated in a mouse model of AIP. The PBGD knockout is not viable (−/−, 0% activity). Heterozygous PBGD knockout mice (+/−, ˜50% activity) are available but do not have the full biochemical phenotype and thus do not recapitulate the human disease phenotype. Thus, a mouse model of AIP has been developed that is a compound heterozygote with T1/T2 alleles, including T1 (+/−) promoter disruption and T2 (−/−) splice-site alteration. These mice have been shown to have hepatic residual PBGD activity that is about ˜30% of the wild-type level and normal or slightly elevated baseline plasma ALA and PBG levels. The mice have been found to appear normal early in life and to become slightly slower and ataxic with age. By six months of age, the mice have been documented to develop impaired motor coordination and muscular performance and axonal degeneration on pathological examination. Investigation of the pathology of the mouse model has shown axonal degeneration, impaired motor coordination and muscular performance in older mice. Urinary and plasma ALA and PBG have been found to markedly increase with serial i.p. administration of phenobarbital (see Lindberg et al., (1996), Nature Genetics, 12:195-219 and Lindberg et al., (1999), Journal of Clinical Investigation, 103:1127-34). The mice were rescued by AAV-mediated expression of PBGD in the liver (Yasuda et al. (2010), Molecular Medicine, 1:17-22 and Unzu et al. (2011), Molecular Medicine, 2:243-50).


On day 1, the mice were administered 1 mg/kg ALAS1 siRNA (n=5) or LUC AD-1955 control (n=3) by i.v. injection. Three phenobarbital injections were given (1 injection per day on days 2, 3, and 4) to induce hepatic ALAS1 and the porphyrin precursors, ALA and PBG. Plasma and overnight urine specimens were collected on day 5 and metabolite levels were measured by LC-MS. Metabolite levels were measured in plasma by LC-MS and were also measured in urine. Baseline levels of metabolites were measured prior to the first treatment on day 1. The results are shown in FIGS. 8-12 and in Tables 12 and 13.



FIG. 8 and FIG. 9 show the plasma ALA levels in μM. Baseline ALA levels were low, (n=4), and phenobarbital treatment induced significant increases in plasma ALA levels in the control LUC siRNA treated animals (n=3). Treatment with ALAS1 siRNA inhibited the induction of plasma ALA (n=5), as shown in FIG. 8. The ALAS1 siRNA was consistently effective in blocking the induction of plasma ALA in each of the individual animals studied (see FIG. 9). These results indicate that ALAS1 siRNA treatment was effective in preventing the increases in plasma ALA associated with the phenobarbital-induced acute attacks in this AIP animal model.



FIG. 10 and FIG. 11 show the plasma PBG levels in μM. Baseline PBG levels were low (n=4), and phenobarbital treatment induced significant increases in plasma PBG levels in the control LUC siRNA treated animals (n=3) Treatment with ALAS1 siRNA inhibited the induction of plasma PBG (n=5), as shown in FIG. 10. The ALAS1 siRNA was consistently effective in blocking the induction of plasma PBG in each of the individual animals studied (see FIG. 11). These results indicate that ALAS1 siRNA treatment was effective in preventing the increases in plasma PBG associated with the phenobarbital-induced acute attacks in this AIP animal model.


Tables 12 and 13 shows urine ALA and PBG levels at baseline and after phenobarbital treatment in LUC siRNA (n=2) control (CTR, which refers to a PBS buffer treated animal, n=1) and ALAS1 siRNA (n=5) treated animals.









TABLE 12







Urine data from individual animals showing prevention of induced acute attack















ALA
PBG

ALA
PBG





(micro
(micro
Creatinine
(microM/mg
(microM/mg


Mouse ID
M/I)
M/L)
(mg/dl)
creatinine)
creatinine)
siRNA
PB

















Ha-17-4-6



29.7
7.9
Baseline



Ha-19-5-4/2



15.7
5.1
Baseline



Ha-20-39-



28.6
6.7
Baseline



4/3


Ha-20-38-4



21.4
4.7
Baseline



Ha-21-33-4
934.92
483.71
0.4205
222.33
115.03
Luc
+


Ha-21-36-9
944.08
563.53
0.5055
186.76
111.48
Luc
+


Ha-21-18-8
32.88
8.69
0.133
24.72
6.53
ALAS1;
+








1 mg/kg


Ha-21-33-7
83.07
23.28
0.426
19.50
5.46
ALAS1;
+








1 mg/kg


Ha-21-34-5
59.15
18.41
0.263
22.49
7.00
ALAS1;
+








1 mg/kg





PB stands for phenobarbital.


A “+” indicates that phenobarbital was administered.













TABLE 13







Average Urine Data












Mean ALA
Mean PBG




(microM/mg
(microM/mg



Condition
creatinine)
creatinine)















AIP Baseline
23.8
6.1



Luc-siRNA
204.55
113.26



ALAS1-siRNA
22.24
6.33










Phenobarbital treatment induced strong increases (˜25-30 fold increases) in urine ALA (˜9-fold over baseline levels) and PBG (˜19-fold over baseline levels) in the LUC siRNA treated mice, control, whereas such increases were not observed in the ALAS1 siRNA treated animals. Thus, ALAS1 siRNA blocked phenobarbital-induced increases in urinary ALA and PBG. These results are consistent with the plasma measurements and show that ALAS1 siRNA treatment was effective in preventing increases in urinary metabolites (ALA and PBG) associated with the phenobarbital-induced acute attacks in this AIP animal model.


In further experiments (FIG. 12), it was found that phenobarbital treatment induced large increases (˜25 fold) in ALAS1 mRNA expression in the liver of the mouse model. Administration of ALAS1 siRNA completely blocked this ALAS1 mRNA induction. These results provide further evidence that ALAS1 siRNA is effective in an animal model of AIP.


Collectively, the results provided in this Example show that ALAS1 siRNA was effective in treating acute attacks in an animal model of the acute hepatic porphyria AIP. Multiple outcome measures support this conclusion, including plasma ALA levels, plasma PBG levels, urine ALA levels, urine PBG levels, and liver ALAS1 mRNA expression levels.


Example 6. In Vivo Silencing Using GalNAc-Conjugated Mouse ALAS1 siRNA

The experiments described in this example investigated the in vivo efficacy of three GalNAc-conjugated siRNAs (see Table 7). These siRNAs were designed and produced with methods such as those described in Example 2.









TABLE 7







Sequences AD-57929



















Position








of



SEQ
Position



antisense


SEQ
ID
of sense



seq.


ID
NO:
seq. on



on


NO:
(anti-
transcript
Duplex

Antisense
transcript


(sense)
sense)
NM_020559.2
Name
Sense Sequence (5′-3′)
Sequence (5′-3′)
NM_020559.2





385
386
775-795
AD-
AfaGfuCfuGfuUfUfCfcAfcUfuUfuCfaAf
uUfgAfaAfaGfuGfgaaAfcAf
773-795





56211
L96
gAfcUfusUfsg





387
388
2168-2188
AD-
AfcAfuAfgUfaGfCfCfaGfaAfuUfgUfcUf
aGfaCfaAfuUfcUfggcUfaC
2166-2188





56173
L96
fuAfuGfusGfsg





389
390
775-795
AD-
AfsasGfuCfuGfuUfUfCfcAfcUfuUfuCfa
usUfsgAfaAfaGfuGfgaaA
773-795





57929
AfL96
fcAfgAfcUfususg









The mice (n=40; n=4 per experimental condition) were divided into groups that received PBS or doses of 3 mg/kg, 10 mg/kg, or 30 mg/kg of siRNA administered subcutaneously. The level of mALAS1/mGAPDH mRNA, relative to the PBS control, was determined in liver cells at 72 hours post-administration. The results are shown in FIG. 13. There was not a clear dose-response effect for the siRNAs AD-56211 and AD-56173. In contrast, the ALAS1 siRNA AD-57929 showed a dose-response effect in inhibiting mALAS1 expression. These results demonstrate that an ALAS1 GalNAc conjugate was effective in inhibiting expression of ALAS1 mRNA in vivo and showed a dose-response effect.


Example 7. Human siRNAs

Additional human siRNAs were designed and produced as described in Example 2. The top 45 siRNAs were selected based on their predicted efficacy. The sequences of these 45 siRNAs are provided in Table 8 and the Sequence Listing attached herewith (e.g., a sense sequence corresponding to one of the odd numbered sequences identified as SEQ ID NOs: 391 to 551, and an antisense sequence corresponding to one of the even numbered sequences identified as SEQ ID NOs: 392 to 552, respectively). Table 8 is disclosed in International Publication No. WO2013/155204A2. The contents of WO 2013/155204 and the Sequence Listing, including Table 8, are expressly incorporated by reference.


Example 8. Human siRNAs

Additional 19mer human siRNAs were generated. The sequences of these siRNAs are provided in Table 9 and the Sequence Listing attached herewith (e.g., a sense sequence corresponding to one of the odd numbered sequences identified as SEQ ID NOs: 553 to 3365, and an antisense sequence corresponding to one of the even numbered sequences identified as SEQ ID NOs: 554 to 3366, respectively). Table 9 is disclosed in International Publication No. WO2013/155204A2. The contents of WO 2013/155204 and the Sequence Listing, including Table 9, are expressly incorporated by reference. These siRNAs can be tested for efficacy using methods described herein and/or methods known in the art.


Example 9. Suppression of Porphyrin Precursors Using ALAS1 siRNA in an Acute Treatment Paradigm

The AIP mouse model (see Example 5) was used to investigate whether ALAS1 siRNA would work an acute treatment paradigm to lower already elevated levels of ALA and PBG, as would be present, for example, when a human porphyria patient suffers from an acute attack. Administration of the AD-53558 LNP11 formulation siRNA at a 1 mg/kg dose 12 hours after the last dose of phenobarbital rapidly decreased the levels of both ALA and PBG in mouse plasma, whereas in Luc control treated animals the levels continued to rise (FIG. 14). These results indicate that ALAS siRNA is effective for treating an acute attack. The ALAS1 siRNA was effective to lower and prevent further increases in ALA and PBG levels.


As can be observed in FIG. 14, ALAS siRNA had a rapid onset effect in reducing ALA and PBG levels. The onset of the effect occurred within hours after administration of the siRNA. The effect on plasma ALA could be observed within 4 hours of administration of the siRNA (see FIG. 14; the siRNA was administered at 12 hours after the last dose of phenobarbital, and a reduction in plasma ALA relative to control can be observed at 16 hours after the last dose of phenobarbital). The effect on plasma PBG could be observed within 8 hours of administration of the siRNA (see FIG. 14; the siRNA was administered at 12 hours after the last dose of phenobarbital, and a reduction in plasma ALA relative to control can be observed at 20 hours after the last dose of phenobarbital).


Example 10. siRNAs that Target ALAS1

Further unmodified and modified siRNA sequences that target ALAS1 siRNA were designed and produced as described in Example 2. The in vitro activity of the modified duplexes was tested as described below.


Methods


Lipid Mediated Transfection


For Hep3B, PMH, and primary Cynomolgus hepatocytes, transfection was carried out by adding 14.8 μl of Opti-MEM plus 0.2 μl of Lipofectamine RNAiMax per well (Invitrogen, Carlsbad Calif. catalog number 13778-150) to 5 μl of each siRNA duplex to an individual well in a 96-well plate. The mixture was then incubated at room temperature for 20 minutes. Eighty μl of complete growth media without antibiotic containing the appropriate cell number were then added to the siRNA mixture. Cells were incubated for 24 hours prior to RNA purification.


Single dose experiments were performed at 1 uM, 500 nM, 20 nM, 10 nM and 0.2 nM final duplex concentration for GalNAc modified.


Free Uptake Transfection


Cryopreserved Primary Cynomolgus Hepatocytes (Celsis In Vitro Technologies, M003055-P) were thawed at 37° C. water bath immediately prior to usage and re-suspended at 0.26×106 cells/ml in InVitroGRO CP (plating) medium (Celsis In Vitro Technologies, catalog number Z99029). During transfections, cells were plated onto a BD BioCoat 96 well collagen plate (BD, 356407) at 25,000 cells per well and incubated at 37° C. in an atmosphere of 5% CO2. Free Uptake experiments were performed by adding 10 μl of siRNA duplexes in PBS per well into a 96 well (96w) plate. Ninety μl of complete growth media containing appropriate cell number for the cell type was then added to the siRNA. Cells were incubated for 24 hours prior to RNA purification. Single dose experiments were performed at 1 uM, 500 nM, 20 nM and 10 nM final duplex.


Total RNA Isolation Using DYNABEADS mRNA Isolation Kit (Invitrogen, Part #: 610-12)


Cells were harvested and lysed in 150 μl of Lysis/Binding Buffer then mixed for 5 minutes at 850 rpm using an Eppendorf Thermomixer (the mixing speed was the same throughout the process). Ten microliters of magnetic beads and 80 μl Lysis/Binding Buffer mixture were added to a round bottom plate and mixed for 1 minute. Magnetic beads were captured using a magnetic stand and the supernatant was removed without disturbing the beads. After removing the supernatant, the lysed cells were added to the remaining beads and mixed for 5 minutes. After removing the supernatant, magnetic beads were washed 2 times with 150 μl Wash Buffer A and mixed for 1 minute. The beads were captured again and the supernatant was removed. The beads were then washed with 150 μl Wash Buffer B, captured and the supernatant was removed. The beads were next washed with 150 μl Elution Buffer, captured and the supernatant removed. Finally, the beads were allowed to dry for 2 minutes. After drying, 50 μl of Elution Buffer was added and mixed for 5 minutes at 70° C. The beads were captured on magnet for 5 minutes. Forty-five μl of supernatant was removed and added to another 96 well plate.


cDNA Synthesis Using ABI High Capacity cDNA Reverse Transcription Kit (Applied Biosystems, Foster City, Calif., Cat #4368813)


A master mix of 2 μl 10× Buffer, 0.8 μl 25× dNTPs, 2 μl Random primers, 1 μl Reverse Transcriptase, 1 μl RNase inhibitor and 3.2 μl of H2O per reaction as prepared. Equal volumes master mix and RNA were mixed for a final volume of 12 μl for in vitro screened or 20 μl for in vivo screened samples. cDNA was generated using a Bio-Rad C-1000 or S-1000 thermal cycler (Hercules, Calif.) through the following steps: 25° C. for 10 minutes, 37° C. for 120 minutes, 85° C. for 5 seconds, and 4° C. hold.


Real Time PCR


Two μl of cDNA were added to a master mix containing 2 μl of H2O, 0.5 μl GAPDH TaqMan Probe (Life Technologies catalog number 4326317E for Hep3B cells, catalog number 352339E for primary mouse hepatocytes or custom probe for cynomolgus primary hepatocytes), 0.5 μl C5 TaqMan probe (Life Technologies catalog number Hs00167441_ml for Hep3B cells or Mm00457879_m1 for Primary Mouse Hepatoctyes or custom probe for cynomolgus primary hepatocytes) and 5 μl Lightcycler 480 probe master mix (Roche catalog number 04887301001) per well in a 384 well (384 w) plates (Roche catalog number 04887301001). Real time PCR was performed in an Roche LC480 Real Time PCR system (Roche) using the ΔΔCt(RQ) assay. For in vitro screening, each duplex was tested with two biological replicates unless otherwise noted and each Real Time PCR was performed in duplicate technical replicates. For in vivo screening, each duplex was tested in one or more experiments (3 mice per group) and each Real Time PCR was run in duplicate technical replicates.


To calculate relative fold change in ALAS1 mRNA levels, real time data were analyzed using the ΔΔCt method and normalized to assays performed with cells transfected with 10 nM AD-1955, or mock transfected cells. IC50s were calculated using a 4 parameter fit model using XLFit and normalized to cells transfected with AD-1955 over the same dose range, or to its own lowest dose.


The sense and antisense sequences of AD-1955 are:









(SEQ ID NO: 3682)









SENSE: cuuAcGcuGAGuAcuucGAdTsdT











(SEQ ID NO: 3683)









ANTISENSE: UCGAAGuACUcAGCGuAAGdTsdT.






The single strand and duplex sequences of the modified and unmodified siRNAs are provided in Table 14 and Table 15, respectively.









TABLE 14







Human ALAS1 Modified Single Strands and Duplex Sequences













SEQ



Target



ID



sites of


SEQ ID
NO:



antisense


NO:
(anti-
Duplex


sequence on


(sense)
sense)
Name
Sense Sequence (5′-3′)
Antisense Sequence (5′-3′)
NM_000688.4





3371
3372
AD-58848
CfsasUfgCfcAfaAfAfAfuGfgAfcAf
asUfsgAfuGfuCfcAfuuuUfuGfgCfaU
1635-1657





uCfaUfL96
fgsAfsc





3373
3374
AD-58849
AfsusUfuUfgAfaGfUfGfaUfgAfgU
usUfsuCfaCfuCfaUfcacUfuCfaAfaAf
2189-2211





fgAfaAfL96
usGfsc





3375
3376
AD-58850
AfsgsUfuAfuAfuUfAfAfaUfuUfuA
asGfsaUfuAfaAfaUfuuaAfuAfuAfaC
2344-2366





faUfcUfL96
fusUfsa





3377
3378
AD-58851
GfscsAfuUfuUfgAfAfGfuGfaUfgA
usCfsaCfuCfaUfcAfcuuCfaAfaAfuGf
2187-2209





fgUfgAfL96
csAfsg





3379
3380
AD-58852
GfsasAfcUfaAfuGfAfGfcAfgAfcAf
gsUfsuAfuGfuCfuGfcucAfuUfaGfuU
1975-1997





uAfaCfL96
fcsAfsu





3381
3382
AD-58853
AfsasUfgAfcCfaCfAfCfcUfaUfcGf
asAfscUfcGfaUfaGfgugUfgGfuCfaU
973-995





aGfuUfL96
fusCfsu





3383
3384
AD-58854
UfsasAfaUfuUfuAfAfUfcUfaUfaG
usUfsuAfcUfaUfaGfauuAfaAfaUfuU
2352-2374





fuAfaAfL96
fasAfsu





3385
3386
AD-58855
UfsusCfaGfuAfuGfAfUfcGfuUfuC
csAfsaAfgAfaAfcGfaucAfuAfcUfgAf
929-951





fuUfuGfL96
asAfsa





3387
3388
AD-58856
CfsasCfuUfuUfcAfGfUfaUfgAfuCf
asAfsaCfgAfuCfaUfacuGfaAfaAfgUf
924-946





gUfuUfL96
gsGfsa





3389
3390
AD-58857
AfsasAfuCfuGfuUfUfCfcAfcUfuUf
csUfsgAfaAfaGfuGfgaaAfcAfgAfuUf
913-935





uCfaGfL96
usUfsg





3391
3392
AD-58858
CfsasUfuUfgAfaAfCfUfgUfcCfaUf
usUfsgAfaUfgGfaCfaguUfuCfaAfaU
1478-1500





uCfaAfL96
fgsCfsc





3393
3394
AD-58859
CfscsUfaUfcGfaGfUfUfuUfuAfaA
csAfsgUfuUfuAfaAfaacUfcGfaUfaG
 983-1005





faCfuGfL96
fgsUfsg





3395
3396
AD-58861
GfsasCfcAfgAfaAfGfAfgUfgUfcUf
gsAfsuGfaGfaCfaCfucuUfuCfuGfgU
872-894





cAfuCfL96
fcsUfsu





3397
3398
AD-58862
AfscsCfaGfaAfaGfAfGfuGfuCfuCf
asGfsaUfgAfgAfcAfcucUfuUfcUfgGf
873-895





aUfcUfL96
usCfsu





3399
3400
AD-58863
AfscsUfaAfuGfaGfCfAfgAfcAfuAf
asUfsgUfuAfuGfuCfugcUfcAfuUfaG
1977-1999





aCfaUfL96
fusUfsc





3401
3402
AD-58864
UfsasGfuAfaAfaAfCfAfuAfgUfcCf
usCfscAfgGfaCfuAfuguUfuUfuAfcU
2366-2388





uGfgAfL96
fasUfsa





3403
3404
AD-58865
UfsasUfuUfcUfgGfAfAfcUfaGfuA
asAfsuUfuAfcUfaGfuucCfaGfaAfaU
1185-1207





faAfuUfL96
fasUfsu





3405
3406
AD-58867
UfsusCfuGfcAfaAfGfCfcAfgUfcUf
csUfscAfaGfaCfuGfgcuUfuGfcAfgAf
706-728





uGfaGfL96
asGfsa





3407
3408
AD-58868
GfsasGfgAfaAfgAfGfGfuUfgCfuG
gsUfsuUfcAfgCfaAfccuCfuUfuCfcUf
759-781





faAfaCfL96
csAfsc





3409
3410
AD-58869
GfsgsUfaCfuAfgAfAfAfuAfuUfuCf
usCfscAfgAfaAfuAfuuuCfuAfgUfaCf
1174-1196





uGfgAfL96
csAfsc





3411
3412
AD-58870
GfsasCfaUfcAfuGfCfAfaAfaGfcAf
usCfsuUfuGfcUfuUfugcAfuGfaUfgU
853-875





aAfgAfL96
fcsCfsu





3413
3414
AD-58871
AfsasAfuUfuUfaAfUfCfuAfuAfgU
usUfsuUfaCfuAfuAfgauUfaAfaAfuU
2353-2375





faAfaAfL96
fusAfsa





3415
3416
AD-58873
CfsasUfgAfuCfcAfAfGfgGfaUfuCf
usUfsuCfgAfaUfcCfcuuGfgAfuCfaUf
1362-1384





gAfaAfL96
gsGfsa





3417
3418
AD-58874
AfsgsAfcCfaGfaAfAfGfaGfuGfuCf
asUfsgAfgAfcAfcUfcuuUfcUfgGfuCf
871-893





uCfaUfL96
usUfsu





3419
3420
AD-58875
AfsusCfcUfgAfaGfAfGfcGfcUfgAf
usCfscCfuCfaGfcGfcucUfuCfaGfgAf
1810-1832





gGfgAfL96
usCfsc





3421
3422
AD-58876
GfsusCfuGfuGfaUfGfAfaCfuAfaU
gsCfsuCfaUfuAfgUfucaUfcAfcAfgAf
1966-1988





fgAfgCfL96
csUfsu





3423
3424
AD-58877
CfsasGfaAfaGfaGfUfGfuCfuCfaUf
gsAfsaGfaUfgAfgAfcacUfcUfuUfcUf
875-897





cUfuCfL96
gsGfsu





3425
3426
AD-58878
AfscsUfuUfuCfaGfUfAfuGfaUfcG
gsAfsaAfcGfaUfcAfuacUfgAfaAfaGf
925-947





fuUfuCfL96
usGfsg





3427
3428
AD-58879
UfscsAfuGfcCfaAfAfAfaUfgGfaCf
usGfsaUfgUfcCfaUfuuuUfgGfcAfuG
1634-1656





aUfcAfL96
fasCfsu





3429
3430
AD-58880
AfsasUfaUfuUfcUfGfGfaAfcUfaG
usUfsuAfcUfaGfuUfccaGfaAfaUfaU
1183-1205





fuAfaAfL96
fusUfsc





3431
3432
AD-58881
CfsusUfcUfuCfaAfGfAfuAfaCfuUf
usGfsgCfaAfgUfuAfucuUfgAfaGfaA
892-914





gCfcAfL96
fgsAfsu





3433
3434
AD-58882
UfsusUfcAfgUfaUfGfAfuCfgUfuU
asAfsaGfaAfaCfgAfucaUfaCfuGfaAf
928-950





fcUfuUfL96
asAfsg





3435
3436
AD-58883
CfscsCfaGfuGfuGfGfUfuAfgUfgU
usUfsuCfaCfaCfuAfaccAfcAfcUfgGf
790-812





fgAfaAfL96
gsGfsc





3437
3438
AD-58884
GfscsUfgUfgAfgAfUfUfuAfcUfcUf
asAfsuCfaGfaGfuAfaauCfuCfaCfaGf
1325-1347





gAfuUfL96
csCfsu





3439
3440
AD-58885
AfsgsGfcUfuGfaGfCfAfaGfuUfgG
gsAfsuAfcCfaAfcUfugcUfcAfaGfcCf
2229-2251





fuAfuCfL96
usGfsa





3441
3442
AD-58886
GfsasAfaGfaGfuGfUfCfuCfaUfcU
asAfsgAfaGfaUfgAfgacAfcUfcUfuUf
877-899





fuCfuUfL96
csUfsg





3443
3444
AD-58887
AfsusUfuCfuGfgAfAfCfuAfgUfaAf
gsAfsaUfuUfaCfuAfguuCfcAfgAfaAf
1186-1208





aUfuCfL96
usAfsu





3445
3446
AD-58888
UfsgsUfgAfuGfuGfGfCfcCfaUfgAf
asAfsaCfuCfaUfgGfgccAfcAfuCfaCf
1531-1553





gUfuUfL96
asCfsa





3447
3448
AD-58889
AfsasGfaGfaGfaAfGfUfcCfuAfuU
gsAfsgAfaAfuAfgGfacuUfcUfcUfcUf
2208-2230





fuCfuCfL96
usUfsc





3449
3450
AD-58890
UfsgsGfcAfgCfaCfAfGfaUfgAfaUf
usCfsuGfaUfuCfaUfcugUfgCfuGfcCf
671-693





cAfgAfL96
asGfsg





3451
3452
AD-58891
AfsusGfaUfcGfuUfUfCfuUfuGfaG
usUfsuUfcUfcAfaAfgaaAfcGfaUfcAf
935-957





faAfaAfL96
usAfsc





3453
3454
AD-58892
UfscsUfgGfaAfcUfAfGfuAfaAfuU
asUfsgGfaAfuUfuAfcuaGfuUfcCfaG
1189-1211





fcCfaUfL96
fasAfsa





3455
3456
AD-59095
GfscsCfcAfuUfcUfUfAfuCfcCfgAf
asCfsuCfgGfgAfuAfagaAfuGfgsgsc
360-382





gUfL96





3457
3458
AD-59096
GfsgsAfaCfcAfuGfCfCfuCfcAfuGf
asUfscAfuGfgAfgGfcauGfgUfuscsc
1347-1369





aUfL96





3459
3460
AD-59097
UfsgsGfaGfuCfuGfUfGfcGfgAfuC
asGfsgAfuCfcGfcAfcagAfcUfcscsa
1794-1816





fcUfL96





3461
3462
AD-59098
CfsasCfcCfaCfgGfGfUfgUfgUfgGf
usCfscCfaCfaCfaCfccgUfgGfgsusg
1112-1134





gAfL96





3463
3464
AD-59099
GfsgsAfgUfcUfgUfGfCfgGfaUfcCf
usAfsgGfaUfcCfgCfacaGfaCfuscsc
1795-1817





uAfL96





3465
3466
AD-59100
CfsasAfaAfcUfgCfCfCfcAfaGfaUf
usCfsaUfcUfuGfgGfgcaGfuUfususg
428-450





gAfL96





3467
3468
AD-59101
GfscsCfuCfcAfuGfAfUfcCfaAfgGf
usCfscCfuUfgGfaUfcauGfgAfgsgsc
1355-1377





gAfL96





3469
3470
AD-59102
CfsasUfcAfuCfcCfUfGfuGfcGfgGf
asAfscCfcGfcAfcAfgggAfuGfasusg
1921-1943





uUfL96





3471
3472
AD-59103
AfscsCfcAfcGfgGfUfGfuGfuGfgGf
usCfscCfcAfcAfcAfcccGfuGfgsgsu
1113-1135





gAfL96





3473
3474
AD-59104
CfsasCfaUfcAfuCfCfCfuGfuGfcGf
usCfscGfcAfcAfgGfgauGfaUfgsusg
1919-1941





gAfL96





3475
3476
AD-59105
CfsasGfaAfaGfaGfUfGfuCfuCfaUf
asGfsaUfgAfgAfcAfcucUfuUfcsusg
873-895





cUfL96





3477
3478
AD-59106
CfscsUfcCfaUfgAfUfCfcAfaGfgGf
asUfscCfcUfuGfgAfucaUfgGfasgsg
1356-1378





aUfL96





3479
3480
AD-59107
UfsgsCfcCfaUfuCfUfUfaUfcCfcGf
usUfscGfgGfaUfaAfgaaUfgGfgscsa
359-381





aAfL96





3481
3482
AD-59108
CfsusUfcAfcCfcUfGfGfcUfaAfgAf
usAfsuCfuUfaGfcCfaggGfuGfasasg
1297-1319





uAfL96





3483
3484
AD-59109
AfsusCfaUfcCfcUfGfUfgCfgGfgUf
usAfsaCfcCfgCfaCfaggGfaUfgsasu
1922-1944





uAfL96





3485
3486
AD-59110
AfsgsAfaAfgAfgUfGfUfcUfcAfuCf
asAfsgAfuGfaGfaCfacuCfuUfuscsu
874-896





uUfL96





3487
3488
AD-59111
CfsusCfcAfuGfaUfCfCfaAfgGfgAf
asAfsuCfcCfuUfgGfaucAfuGfgsasg
1357-1379





uUfL96





3489
3490
AD-59112
CfscsAfuUfcUfuAfUfCfcCfgAfgUf
usGfsaCfuCfgGfgAfuaaGfaAfusgsg
362-384





cAfL96





3491
3492
AD-59113
CfsasCfcCfuGfgCfUfAfaGfaUfgAf
usAfsuCfaUfcUfuAfgccAfgGfgsusg
1300-1322





uAfL96





3493
3494
AD-59114
UfscsAfuCfcCfuGfUfGfcGfgGfuUf
usCfsaAfcCfcGfcAfcagGfgAfusgsa
1923-1945





gAfL96





3495
3496
AD-59115
AfsasGfaGfuGfuCfUfCfaUfcUfuCf
asAfsgAfaGfaUfgAfgacAfcUfcsusu
877-899





uUfL96





3497
3498
AD-59116
GfsusCfaUfgCfcAfAfAfaAfuGfgAf
usGfsuCfcAfuUfuUfuggCfaUfgsasc
1631-1653





cAfL96





3499
3500
AD-59117
CfsasUfuCfuUfaUfCfCfcGfaGfuCf
usGfsgAfcUfcGfgGfauaAfgAfasusg
363-385





cAfL96





3501
3502
AD-59118
AfscsCfcUfgGfcUfAfAfgAfuGfaUf
usCfsaUfcAfuCfuUfagcCfaGfgsgsu
1301-1323





gAfL96





3503
3504
AD-59119
CfsusCfuUfcAfcCfCfUfgGfcUfaAf
usCfsuUfaGfcCfaGfgguGfaAfgsasg
1295-1317





gAfL96





3505
3506
AD-59120
AfsusGfcCfaAfaAfAfUfgGfaCfaUf
usGfsaUfgUfcCfaUfuuuUfgGfcsasu
1634-1656





cAfL96





3507
3508
AD-59121
UfsgsCfcCfcAfaGfAfUfgAfuGfgAf
asUfsuCfcAfuCfaUfcuuGfgGfgscsa
434-456





aUfL96





3509
3510
AD-59122
GfsasAfcCfaUfgCfCfUfcCfaUfgAf
usAfsuCfaUfgGfaGfgcaUfgGfususc
1348-1370





uAfL96





3511
3512
AD-59123
UfscsUfuCfaCfcCfUfGfgCfuAfaGf
asUfscUfuAfgCfcAfgggUfgAfasgsa
1296-1318





aUfL96





3513
3514
AD-59124
UfsgsCfcAfaAfaAfUfGfgAfcAfuCf
asUfsgAfuGfuCfcAfuuuUfuGfgscsa
1635-1657





aUfL96





3515
3516
AD-59125
CfscsAfgAfaAfgAfGfUfgUfcUfcAf
usAfsuGfaGfaCfaCfucuUfuCfusgsg
872-894





uAfL96





3517
3518
AD-59126
GfsasAfaCfuGfuCfCfAfuUfcAfaUf
usCfsaUfuGfaAfuGfgacAfgUfususc
1481-1503





gAfL96





3519
3520
AD-59127
UfscsAfcCfcUfgGfCfUfaAfgAfuGf
asUfscAfuCfuUfaGfccaGfgGfusgsa
1299-1321





aUfL96





3521
3522
AD-59128
CfscsCfuGfgAfgUfCfUfgUfgCfgGf
asUfscCfgCfaCfaGfacuCfcAfgsgsg
1791-1813





aUfL96





3523
3524
AD-59129
GfsasAfaGfaGfuGfUfCfuCfaUfcU
usAfsaGfaUfgAfgAfcacUfcUfususc
875-897





fuAfL96





3525
3526
AD-59130
UfsgsGfaGfcCfcUfGfGfaGfuCfuG
usAfscAfgAfcUfcCfaggGfcUfcscsa
1786-1808





fuAfL96
















TABLE 15







Human ALAS1 Unmodified Single Strands and Duplex Sequences













SEQ







ID



Target sites


SEQ ID
NO:



of antisense


NO:
(anti-
Duplex


sequence on


(sense)
sense)
Name
Sense Sequence (5′-3′)
Antisense Sequence (5′-3′)
NM_000688.4





3684
3527
AD-58848
CAUGCCAAAAAUGGACAUCAU
AUGAUGUCCAUUUUUGGCAUGAC
1635-1657





3528
3529
AD-58849
AUUUUGAAGUGAUGAGUGAAA
UUUCACUCAUCACUUCAAAAUGC
2189-2211





3530
3531
AD-58850
AGUUAUAUUAAAUUUUAAUCU
AGAUUAAAAUUUAAUAUAACUUA
2344-2366





3532
3533
AD-58851
GCAUUUUGAAGUGAUGAGUGA
UCACUCAUCACUUCAAAAUGCAG
2187-2209





3534
3535
AD-58852
GAACUAAUGAGCAGACAUAAC
GUUAUGUCUGCUCAUUAGUUCAU
1975-1997





3536
3537
AD-58853
AAUGACCACACCUAUCGAGUU
AACUCGAUAGGUGUGGUCAUUCU
973-995





3538
3539
AD-58854
UAAAUUUUAAUCUAUAGUAAA
UUUACUAUAGAUUAAAAUUUAAU
2352-2374





3540
3541
AD-58855
UUCAGUAUGAUCGUUUCUUUG
CAAAGAAACGAUCAUACUGAAAA
929-951





3542
3543
AD-58856
CACUUUUCAGUAUGAUCGUUU
AAACGAUCAUACUGAAAAGUGGA
924-946





3544
3545
AD-58857
AAAUCUGUUUCCACUUUUCAG
CUGAAAAGUGGAAACAGAUUUUG
913-935





3546
3547
AD-58858
CAUUUGAAACUGUCCAUUCAA
UUGAAUGGACAGUUUCAAAUGCC
1478-1500





3548
3549
AD-58859
CCUAUCGAGUUUUUAAAACUG
CAGUUUUAAAAACUCGAUAGGUG
 983-1005





3550
3551
AD-58861
GACCAGAAAGAGUGUCUCAUC
GAUGAGACACUCUUUCUGGUCUU
872-894





3552
3553
AD-58862
ACCAGAAAGAGUGUCUCAUCU
AGAUGAGACACUCUUUCUGGUCU
873-895





3554
3555
AD-58863
ACUAAUGAGCAGACAUAACAU
AUGUUAUGUCUGCUCAUUAGUUC
1977-1999





3556
3557
AD-58864
UAGUAAAAACAUAGUCCUGGA
UCCAGGACUAUGUUUUUACUAUA
2366-2388





3558
3559
AD-58865
UAUUUCUGGAACUAGUAAAUU
AAUUUACUAGUUCCAGAAAUAUU
1185-1207





3560
3561
AD-58867
UUCUGCAAAGCCAGUCUUGAG
CUCAAGACUGGCUUUGCAGAAGA
706-728





3562
3563
AD-58868
GAGGAAAGAGGUUGCUGAAAC
GUUUCAGCAACCUCUUUCCUCAC
759-781





3564
3565
AD-58869
GGUACUAGAAAUAUUUCUGGA
UCCAGAAAUAUUUCUAGUACCAC
1174-1196





3566
3567
AD-58870
GACAUCAUGCAAAAGCAAAGA
UCUUUGCUUUUGCAUGAUGUCCU
853-875





3568
3569
AD-58871
AAAUUUUAAUCUAUAGUAAAA
UUUUACUAUAGAUUAAAAUUUAA
2353-2375





3570
3571
AD-58873
CAUGAUCCAAGGGAUUCGAAA
UUUCGAAUCCCUUGGAUCAUGGA
1362-1384





3572
3573
AD-58874
AGACCAGAAAGAGUGUCUCAU
AUGAGACACUCUUUCUGGUCUUU
871-893





3574
3575
AD-58875
AUCCUGAAGAGCGCUGAGGGA
UCCCUCAGCGCUCUUCAGGAUCC
1810-1832





3576
3577
AD-58876
GUCUGUGAUGAACUAAUGAGC
GCUCAUUAGUUCAUCACAGACUU
1966-1988





3578
3579
AD-58877
CAGAAAGAGUGUCUCAUCUUC
GAAGAUGAGACACUCUUUCUGGU
875-897





3580
3581
AD-58878
ACUUUUCAGUAUGAUCGUUUC
GAAACGAUCAUACUGAAAAGUGG
925-947





3582
3583
AD-58879
UCAUGCCAAAAAUGGACAUCA
UGAUGUCCAUUUUUGGCAUGACU
1634-1656





3584
3585
AD-58880
AAUAUUUCUGGAACUAGUAAA
UUUACUAGUUCCAGAAAUAUUUC
1183-1205





3586
3587
AD-58881
CUUCUUCAAGAUAACUUGCCA
UGGCAAGUUAUCUUGAAGAAGAU
892-914





3588
3589
AD-58882
UUUCAGUAUGAUCGUUUCUUU
AAAGAAACGAUCAUACUGAAAAG
928-950





3590
3591
AD-58883
CCCAGUGUGGUUAGUGUGAAA
UUUCACACUAACCACACUGGGGC
790-812





3592
3593
AD-58884
GCUGUGAGAUUUACUCUGAUU
AAUCAGAGUAAAUCUCACAGCCU
1325-1347





3594
3595
AD-58885
AGGCUUGAGCAAGUUGGUAUC
GAUACCAACUUGCUCAAGCCUGA
2229-2251





3596
3597
AD-58886
GAAAGAGUGUCUCAUCUUCUU
AAGAAGAUGAGACACUCUUUCUG
877-899





3598
3599
AD-58887
AUUUCUGGAACUAGUAAAUUC
GAAUUUACUAGUUCCAGAAAUAU
1186-1208





3600
3601
AD-58888
UGUGAUGUGGCCCAUGAGUUU
AAACUCAUGGGCCACAUCACACA
1531-1553





3602
3603
AD-58889
AAGAGAGAAGUCCUAUUUCUC
GAGAAAUAGGACUUCUCUCUUUC
2208-2230





3604
3605
AD-58890
UGGCAGCACAGAUGAAUCAGA
UCUGAUUCAUCUGUGCUGCCAGG
671-693





3606
3607
AD-58891
AUGAUCGUUUCUUUGAGAAAA
UUUUCUCAAAGAAACGAUCAUAC
935-957





3608
3609
AD-58892
UCUGGAACUAGUAAAUUCCAU
AUGGAAUUUACUAGUUCCAGAAA
1189-1211





3610
3611
AD-59095
GCCCAUUCUUAUCCCGAGU
ACUCGGGAUAAGAAUGGGC
360-382





3612
3613
AD-59096
GGAACCAUGCCUCCAUGAU
AUCAUGGAGGCAUGGUUCC
1347-1369





3614
3615
AD-59097
UGGAGUCUGUGCGGAUCCU
AGGAUCCGCACAGACUCCA
1794-1816





3616
3617
AD-59098
CACCCACGGGUGUGUGGGA
UCCCACACACCCGUGGGUG
1112-1134





3618
3619
AD-59099
GGAGUCUGUGCGGAUCCUA
UAGGAUCCGCACAGACUCC
1795-1817





3620
3621
AD-59100
CAAAACUGCCCCAAGAUGA
UCAUCUUGGGGCAGUUUUG
428-450





3622
3623
AD-59101
GCCUCCAUGAUCCAAGGGA
UCCCUUGGAUCAUGGAGGC
1355-1377





3624
3625
AD-59102
CAUCAUCCCUGUGCGGGUU
AACCCGCACAGGGAUGAUG
1921-1943





3626
3627
AD-59103
ACCCACGGGUGUGUGGGGA
UCCCCACACACCCGUGGGU
1113-1135





3628
3629
AD-59104
CACAUCAUCCCUGUGCGGA
UCCGCACAGGGAUGAUGUG
1919-1941





3630
3631
AD-59105
CAGAAAGAGUGUCUCAUCU
AGAUGAGACACUCUUUCUG
873-895





3632
3633
AD-59106
CCUCCAUGAUCCAAGGGAU
AUCCCUUGGAUCAUGGAGG
1356-1378





3634
3635
AD-59107
UGCCCAUUCUUAUCCCGAA
UUCGGGAUAAGAAUGGGCA
359-381





3636
3637
AD-59108
CUUCACCCUGGCUAAGAUA
UAUCUUAGCCAGGGUGAAG
1297-1319





3638
3639
AD-59109
AUCAUCCCUGUGCGGGUUA
UAACCCGCACAGGGAUGAU
1922-1944





3640
3641
AD-59110
AGAAAGAGUGUCUCAUCUU
AAGAUGAGACACUCUUUCU
874-896





3642
3643
AD-59111
CUCCAUGAUCCAAGGGAUU
AAUCCCUUGGAUCAUGGAG
1357-1379





3644
3645
AD-59112
CCAUUCUUAUCCCGAGUCA
UGACUCGGGAUAAGAAUGG
362-384





3646
3647
AD-59113
CACCCUGGCUAAGAUGAUA
UAUCAUCUUAGCCAGGGUG
1300-1322





3648
3649
AD-59114
UCAUCCCUGUGCGGGUUGA
UCAACCCGCACAGGGAUGA
1923-1945





3650
3651
AD-59115
AAGAGUGUCUCAUCUUCUU
AAGAAGAUGAGACACUCUU
877-899





3652
3653
AD-59116
GUCAUGCCAAAAAUGGACA
UGUCCAUUUUUGGCAUGAC
1631-1653





3654
3655
AD-59117
CAUUCUUAUCCCGAGUCCA
UGGACUCGGGAUAAGAAUG
363-385





3656
3657
AD-59118
ACCCUGGCUAAGAUGAUGA
UCAUCAUCUUAGCCAGGGU
1301-1323





3658
3659
AD-59119
CUCUUCACCCUGGCUAAGA
UCUUAGCCAGGGUGAAGAG
1295-1317





3660
3661
AD-59120
AUGCCAAAAAUGGACAUCA
UGAUGUCCAUUUUUGGCAU
1634-1656





3662
3663
AD-59121
UGCCCCAAGAUGAUGGAAU
AUUCCAUCAUCUUGGGGCA
434-456





3664
3665
AD-59122
GAACCAUGCCUCCAUGAUA
UAUCAUGGAGGCAUGGUUC
1348-1370





3666
3667
AD-59123
UCUUCACCCUGGCUAAGAU
AUCUUAGCCAGGGUGAAGA
1296-1318





3668
3669
AD-59124
UGCCAAAAAUGGACAUCAU
AUGAUGUCCAUUUUUGGCA
1635-1657





3670
3671
AD-59125
CCAGAAAGAGUGUCUCAUA
UAUGAGACACUCUUUCUGG
872-894





3672
3673
AD-59126
GAAACUGUCCAUUCAAUGA
UCAUUGAAUGGACAGUUUC
1481-1503





3674
3675
AD-59127
UCACCCUGGCUAAGAUGAU
AUCAUCUUAGCCAGGGUGA
1299-1321





3676
3677
AD-59128
CCCUGGAGUCUGUGCGGAU
AUCCGCACAGACUCCAGGG
1791-1813





3678
3679
AD-59129
GAAAGAGUGUCUCAUCUUA
UAAGAUGAGACACUCUUUC
875-897





3680
3681
AD-59130
UGGAGCCCUGGAGUCUGUA
UACAGACUCCAGGGCUCCA
1786-1808









The results of the in vitro assays are provided in Table 16. Table 16 also notes the target species of each of the siRNAs.









TABLE 16







Results of Functional Assays












Cyno
Hep3b



Cyno Free Uptake
Transfection
Transfection


















Target

1 uM

20 nM

20 nM
0.2 nM
10 nM
0.1 nM


Duplex ID
Species
Type
Avg
500 nM
Avg
10 nM
Avg
Avg
Avg
Avg




















AD-58848
M/R/Rh/H
21/23
131.6
176.0
104.4
128.0
43.5
44.8
25.3
76.8


AD-58849
H/Rh
21/23
91.9
88.1
92.2
105.0
29.4
35.4
11.5
47.1


AD-58850
H/Rh
21/23
79.4
103.4
80.0
111.2
NA
62.2
31.3
72.0


AD-58851
H/Rh
21/23
99.7
74.7
94.8
104.7
NA
40.7
8.6
81.3


AD-58852
H/Rh
21/23
108.1
91.8
103.3
111.9
101.1
128.8
43.4
129.0


AD-58853
H/Rh
21/23
74.8
67.7
84.2
93.5
24.7
52.9
14.1
61.2


AD-58854
H/Rh
21/23
145.9
124.1
106.6
115.3
119.0
83.9
85.0
84.0


AD-58855
H/Rh
21/23
81.5
97.9
92.7
101.8
39.5
40.3
15.3
67.6


AD-58856
H/Rh
21/23
74.1
90.6
84.6
82.6
22.4
30.7
8.7
33.3


AD-58857
H/Rh
21/23
64.7
91.4
62.3
87.1
22.0
31.6
9.8
106.3


AD-58858
H/Rh
21/23
67.4
91.7
68.6
98.3
27.9
40.3
17.4
44.8


AD-58859
H/Rh
21/23
71.2
77.2
92.4
90.1
19.1
34.3
13.1
39.7


AD-58861
H/Rh
21/23
104.6
107.2
102.0
100.6
25.9
35.1
18.0
69.8


AD-58862
H/Rh
21/23
66.8
77.0
68.7
88.5
20.3
31.1
24.2
49.9


AD-58863
H/Rh
21/23
70.8
66.8
76.8
98.5
21.5
29.7
8.7
54.9


AD-58864
H/Rh
21/23
76.2
85.6
83.7
100.8
60.4
61.0
56.4
87.3


AD-58865
H/Rh
21/23
67.9
77.9
95.9
98.4
21.3
38.6
15.5
81.4


AD-58867
H/Rh
21/23
95.9
93.3
107.0
97.5
32.3
42.7
16.6
79.8


AD-58868
H/Rh
21/23
95.2
92.1
116.2
94.7
54.6
69.2
61.5
105.9


AD-58869
H/Rh
21/23
65.0
78.2
75.8
88.2
17.4
25.0
13.0
63.9


AD-58870
H/Rh
21/23
69.4
92.3
81.0
88.1
29.2
43.8
33.7
79.1


AD-58871
H/Rh
21/23
61.2
77.3
88.2
77.0
71.2
73.2
36.7
110.3


AD-58873
H/Rh
21/23
95.2
100.9
83.3
94.6
54.2
52.8
36.6
73.3


AD-58874
H/Rh
21/23
75.8
76.8
63.8
85.3
22.3
31.2
15.0
38.2


AD-58875
H/Rh
21/23
80.7
88.7
78.6
97.9
48.6
73.6
61.2
90.6


AD-58876
H/Rh
21/23
90.8
93.1
82.5
100.2
41.1
56.9
21.2
58.7


AD-58877
H/Rh
21/23
68.3
85.1
51.2
78.7
18.5
46.6
11.9
27.4


AD-58878
H/Rh
21/23
78.3
68.3
81.2
91.2
24.1
23.4
6.2
37.1


AD-58879
H/Rh
21/23
87.9
94.1
79.7
95.4
32.0
47.8
15.7
82.5


AD-58880
H/Rh
21/23
74.9
72.2
88.9
88.1
20.1
27.5
14.0
60.7


AD-58881
H/Rh
21/23
85.9
76.8
78.8
118.0
22.2
36.7
27.6
71.6


AD-58882
H/Rh
21/23
54.1
53.4
60.3
85.8
14.6
27.2
8.2
23.8


AD-58883
H/Rh
21/23
80.4
69.9
75.7
80.3
31.8
25.8
12.3
63.0


AD-58884
H/Rh
21/23
57.7
55.3
64.8
78.2
20.0
30.0
11.8
68.9


AD-58885
H/Rh
21/23
101.8
91.8
104.1
101.5
85.9
71.9
61.8
71.2


AD-58886
M/R/Rh/H
21/23
47.1
58.0
36.3
93.3
16.0
26.6
9.2
32.0


AD-58887
H/Rh
21/23
73.6
98.7
82.6
95.2
28.5
33.5
12.8
65.2


AD-58888
H/Rh
21/23
90.2
69.9
69.4
85.6
46.9
45.0
16.6
72.0


AD-58889
H/Rh
21/23
83.6
98.6
82.4
92.2
36.5
40.3
31.6
99.4


AD-58890
H/Rh
21/23
69.5
95.4
84.2
88.2
50.8
45.6
21.7
92.9


AD-58891
H/Rh
21/23
62.8
75.7
75.4
109.2
23.6
34.3
15.6
55.8


AD-58892
H/Rh
21/23
60.2
92.9
89.8
92.9
22.8
43.3
20.2
75.6


AD-59095
M/R/Rh/H
19mer
88.9
NA
132.8
NA
48.3
97.4
54.3
99.0


AD-59096
M/R/Rh/H
19mer
95.5
NA
90.5
NA
105.7
138.6
131.4
120.7


AD-59097
M/R/Rh/H
19mer
92.5
NA
84.2
NA
75.0
NA
94.7
108.5


AD-59098
M/R/Rh/H
19mer
84.0
NA
87.7
NA
109.3
NA
130.0
87.3


AD-59099
M/R/Rh/H
19mer
89.7
NA
90.0
NA
77.8
85.4
46.8
74.9


AD-59100
M/R/Rh/H
19mer
84.8
NA
144.3
NA
70.6
108.1
91.5
117.6


AD-59101
M/R/Rh/H
19mer
79.0
NA
103.8
NA
89.8
102.9
124.2
107.0


AD-59102
M/R/Rh/H
19mer
85.9
NA
100.6
NA
72.2
68.5
87.9
95.1


AD-59103
M/R/Rh/H
19mer
86.0
NA
91.1
NA
93.0
81.3
130.0
96.0


AD-59104
M/R/Rh/H
19mer
92.6
NA
96.9
NA
94.9
91.4
124.4
83.1


AD-59105
M/R/Rh/H
19mer
48.9
NA
101.7
NA
18.4
48.9
17.0
34.7


AD-59106
M/R/Rh/H
19mer
63.2
NA
76.7
NA
28.5
40.7
28.6
46.4


AD-59107
M/R/Rh/H
19mer
71.4
NA
68.7
NA
37.1
45.3
26.8
63.6


AD-59108
M/R/Rh/H
19mer
70.7
NA
85.1
NA
89.9
84.8
139.2
101.7


AD-59109
M/R/Rh/H
19mer
86.1
NA
83.4
NA
84.9
96.2
131.7
86.7


AD-59110
M/R/Rh/H
19mer
70.8
NA
119.7
NA
38.5
60.4
67.4
80.3


AD-59111
M/R/Rh/H
19mer
66.1
NA
76.5
NA
52.2
61.0
69.7
87.6


AD-59112
M/R/Rh/H
19mer
71.2
NA
80.2
NA
91.2
83.4
127.4
89.0


AD-59113
M/R/Rh/H
19mer
67.0
NA
77.8
NA
49.1
59.0
66.8
91.4


AD-59114
M/R/Rh/H
19mer
81.7
NA
79.3
NA
96.3
88.0
129.6
72.4


AD-59115
M/R/Rh/H
19mer
40.4
NA
69.6
NA
19.6
35.7
9.3
16.9


AD-59116
M/R/Rh/H
19mer
72.2
NA
78.3
NA
53.5
77.8
70.1
107.8


AD-59117
M/R/Rh/H
19mer
70.7
NA
75.6
NA
75.8
74.9
129.0
103.5


AD-59118
M/R/Rh/H
19mer
68.8
NA
75.9
NA
81.4
82.1
114.1
89.7


AD-59119
M/R/Rh/H
19mer
64.9
NA
86.5
NA
85.1
125.1
122.8
124.8


AD-59120
M/R/Rh/H
19mer
63.5
NA
75.1
NA
29.9
52.0
16.1
54.1


AD-59121
M/R/Rh/H
19mer
67.6
NA
72.0
NA
88.8
77.4
108.0
103.1


AD-59122
M/R/Rh/H
19mer
60.2
NA
62.3
NA
25.1
45.3
16.2
54.8


AD-59123
M/R/Rh/H
19mer
68.6
NA
108.2
NA
59.2
84.6
80.0
97.7


AD-59124
M/R/Rh/H
19mer
47.5
NA
56.5
NA
23.9
40.0
9.8
18.9


AD-59125
M/R/Rh/H
19mer
45.4
NA
47.2
NA
15.2
40.7
14.7
15.1


AD-59126
M/R/Rh/H
19mer
64.3
NA
74.6
NA
51.6
57.1
35.5
54.4


AD-59127
M/R/Rh/H
19mer
103.4
NA
105.8
NA
94.0
156.4
135.9
113.7


AD-59128
M/R/Rh/H
19mer
102.4
NA
81.4
NA
66.3
89.3
60.2
74.9


AD-59129
M/R/Rh/H
19mer
41.3
NA
38.8
NA
17.9
41.4
8.6
12.6


AD-59130
M/R/Rh/H
19mer
58.3
NA
80.8
NA
94.9
78.3
106.7
88.0









Table 17 illustrates the IC50s of select ALAS1 siRNA duplexes. The IC50s were determined from the knockdown of endogenously expressed ALAS1 in the Hep3B cell line, at 24 hours following transfection of each ALAS1 modified siRNA duplex (see Table 14). At least seven duplexes, including AD-58882, AD-58878, AD-58886, AD-58877, AD-59115, AD-58856, and AD-59129, consistently demonstrated IC50s of less than 0.1 nm, indicating that these duplexes were particularly effective in suppressing ALAS1 expression.









TABLE 17







IC50S of select ALAS1 siRNA duplexes











Duplex
384 w
96 w



ID
IC50 (nM)
IC50 (nM)















AD-58882
0.008
0.014



AD-58878
0.040
0.031



AD-58886
0.037
0.033



AD-58877
0.031
0.034



AD-59115
0.093
0.052



AD-58856
0.061
0.066



AD-59129
0.085
0.071



AD-59124
0.572
0.078



AD-58874
0.140
0.102



AD-59125
0.118
0.115



AD-59105
0.511
0.144



AD-59120
180.592
0.498



AD-59122
36.646
0.646



AD-59106
7.906
0.847



AD-59126
n/a
1.014



AD-59107
n/a
1.971










Example 11. ALAS1-GalNAc Activity in AIP Phenobarbital Induction Mouse Model

The AIP mouse model was used to investigate the effect of an siRNA that was an ALAS1-GalNAc conjugate. The siRNA had the sequence of duplex AD-58632 (see Table 20)









TABLE 20







Sequences of ALAS1 siRNA Duplex AD-58632













SEQ







ID


SEQ ID
NO:
Target sites


NO:
(anti-
of antisense
Duplex


(sense)
sense)
sequence
Name
Sense Sequence (5′-3′)
Antisense Sequence (5′-3′)





4149
4150
873-895
AD-
GfsasAfaGfaGfuGfUfCfuCf
asAfsgAfaGfaUfgAfgacAfcUfcUfuUfcsusg





58632
aUfcUfuCfuUfL96









AIP mice were untreated (baseline), or injected subcutaneously on day 1 with saline or the ALAS1-GalNAc conjugate at a dose of 20 mg/kg. On Days 2, 3, and 4 they were left untreated (baseline) or they were treated with IP injections of Phenobarbital. On Day 5 plasma was taken and levels of ALA and PBG were measured using an LC-MS assay. As shown in FIG. 15, the ALAS1-GalNAc conjugate blunted the production of plasma ALA and PBG by about 84 and 80% respectively. These results indicate that treatment with an ALAS1-GalNAc conjugate was effective in preventing increases in both plasma ALA and PBG associated with phenobarbital-induced acute attacks in this AIP animal model.


Example 12. Further siRNAs that Target ALAS1 and Inhibit ALAS1 Expression

Modified siRNA sequences that target ALAS1 siRNA were designed and produced as described in Example 2. The sequences are provided in Table 18. The in vitro activity of the modified duplexes was tested as described below.









TABLE 18







Human ALAS1 Modified Single Strands and Duplex Sequences













SEQ ID



Target sites of


SEQ ID
NO:



antisense


NO:
(anti-
Duplex


sequence on


(sense)
sense)
Name
Sense Sequence (5′-3′)
Antisense Sequence (5′-3′)
NM_000688.4





3685
3686
AD-59453
CAGGCAAAUCUCUGUUGUUdTdT
AACAACAGAGAUUUGCCUGdTdT
402-420





3687
3688
AD-59395
GAAAAAAAUUGAUGAGAAAdTdT
UUUCUCAUCAAUUUUUUUCdTdT
949-967





3689
3690
AD-59477
GGAAAGAUGCCGCACUCUUdTdT
AAGAGUGCGGCAUCUUUCCdTdT
1242-1260





3691
3692
AD-59492
UGUCUCAUCUUCUUCAAGAdTdT
UCUUGAAGAAGAUGAGACAdTdT
882-900





3693
3694
AD-59361
ACAUCUACGUGCAAGCAAUdTdT
AUUGCUUGCACGUAGAUGUdTdT
1992-2010





3695
3696
AD-59462
UUCUCUGAUUGACACCGUAdTdT
UACGGUGUCAAUCAGAGAAdTdT
1711-1729





3697
3698
AD-59433
GCUGCUGGCUUCAUCUUCAdTdT
UGAAGAUGAAGCCAGCAGCdTdT
1739-1757





3699
3700
AD-59424
AGCGCAACGUCAAACUCAUdTdT
AUGAGUUUGACGUUGCGCUdTdT
1851-1869





3701
3702
AD-59414
UAUUUCUGGAACUAGUAAAdTdT
UUUACUAGUUCCAGAAAUAdTdT
1183-1201





3703
3704
AD-59539
GGUUGUGUUGGAGGGUACAdTdT
UGUACCCUCCAACACAACCdTdT
1679-1697





3705
3706
AD-59400
GUGUCAGUCUGGUGCAGUAdTdT
UACUGCACCAGACUGACACdTdT
1070-1088





3707
3708
AD-59551
CUUUGUGGCCAAUGACUCAdTdT
UGAGUCAUUGGCCACAAAGdTdT
1273-1291





3709
3710
AD-59482
AGAUGCUGCUAAAAACACAdTdT
UGUGUUUUUAGCAGCAUCUdTdT
1942-1960





3711
3712
AD-59448
GAGUCAUGCCAAAAAUGGAdTdT
UCCAUUUUUGGCAUGACUCdTdT
1629-1647





3713
3714
AD-59392
CUGUGCGGAUCCUGAAGAGdTdT
CUCUUCAGGAUCCGCACAGdTdT
1800-1818





3715
3716
AD-59469
CACUUUGAAACAACAUGGUdTdT
ACCAUGUUGUUUCAAAGUGdTdT
1141-1159





3717
3718
AD-59431
AAGUGAUGAGUGAAAGAGAdTdT
UCUCUUUCACUCAUCACUUdTdT
2193-2211





3719
3720
AD-59423
AUCUGCUAGUCACAUGGAAdTdT
UUCCAUGUGACUAGCAGAUdTdT
2103-2121





3721
3722
AD-59517
UGGGGCAGGUGGUACUAGAdTdT
UCUAGUACCACCUGCCCCAdTdT
1162-1180





3723
3724
AD-59578
GCAGAUGACUAUUCAGACUdTdT
AGUCUGAAUAGUCAUCUGCdTdT
1031-1049





3725
3726
AD-59495
GCCUCAUUCCUCAGCUGAGdTdT
CUCAGCUGAGGAAUGAGGCdTdT
2143-2161





3727
3728
AD-59432
GUAUGAUCGUUUCUUUGAGdTdT
CUCAAAGAAACGAUCAUACdTdT
931-949





3729
3730
AD-59382
UAUCCAGAUGGUCUUCAGAdTdT
UCUGAAGACCAUCUGGAUAdTdT
2302-2320





3731
3732
AD-59472
UAGUGUGAAAACCGAUGGAdTdT
UCCAUCGGUUUUCACACUAdTdT
799-817





3733
3734
AD-59459
UCCCCAUGGCAGAUGACUAdTdT
UAGUCAUCUGCCAUGGGGAdTdT
1023-1041





3735
3736
AD-59413
CCACUGCAGCAGUACACUAdTdT
UAGUGUACUGCUGCAGUGGdTdT
483-501





3737
3738
AD-59478
CUGUGAACCGGCGAGCACAdTdT
UGUGCUCGCCGGUUCACAGdTdT
 999-1017





3739
3740
AD-59376
GGUCCUAUGCUGCUGGCUUdTdT
AAGCCAGCAGCAUAGGACCdTdT
1731-1749





3741
3742
AD-59556
AGCCUUUGGUUGUGUUGGAdTdT
UCCAACACAACCAAAGGCUdTdT
1672-1690





3743
3744
AD-59399
AAUUCCAUGUGGACUUAGAdTdT
UCUAAGUCCACAUGGAAUUdTdT
1200-1218





3745
3746
AD-59474
CCAGGGCACUGCAAGCAAAdTdT
UUUGCUUGCAGUGCCCUGGdTdT
640-658





3747
3748
AD-53542
cuuuucAGuAuGAucGuuudTsdT
AAACGAUcAuACUGAAAAGdTsdT
924-942





3749
3750
AD-59480
GAAUCAGAGAGGCAGCAGUdTdT
ACUGCUGCCUCUCUGAUUCdTdT
682-700





3751
3752
AD-59549
GCAAAGAUCUGACCCCUCAdTdT
UGAGGGGUCAGAUCUUUGCdTdT
1441-1459





3753
3754
AD-59515
GGAGAAGAGCUCCUACGGAdTdT
UCCGUAGGAGCUCUUCUCCdTdT
2033-2051





3755
3756
AD-59427
CCAUGAGUUUGGAGCAAUCdTdT
GAUUGCUCCAAACUCAUGGdTdT
1540-1558





3757
3758
AD-59390
CUUUGAGAAAAAAAUUGAUdTdT
AUCAAUUUUUUUCUCAAAGdTdT
943-961





3759
3760
AD-59511
UGAGCAGACAUAACAUCUAdTdT
UAGAUGUUAUGUCUGCUCAdTdT
1980-1998





3761
3762
AD-59532
CGUGCAAGCAAUCAAUUACdTdT
GUAAUUGAUUGCUUGCACGdTdT
1999-2017





3763
3764
AD-59562
AAAGCAAAGACCAGAAAGAdTdT
UCUUUCUGGUCUUUGCUUUdTdT
862-880





3765
3766
AD-59513
GGAUGUGCAGGAAAUGAAUdTdT
AUUCAUUUCCUGCACAUCCdTdT
733-751





3767
3768
AD-59362
CAGCAUACUUCCUGAACAUdTdT
AUGUUCAGGAAGUAUGCUGdTdT
321-339





3769
3770
AD-53541
GcAGcAcAGAuGAAucAGAdTsdT
UCUGAUUcAUCUGUGCUGCdTsdT
671-689





3771
3772
AD-59490
UCUGUUGUUCUAUGCCCAAdTdT
UUGGGCAUAGAACAACAGAdTdT
412-430





3773
3774
AD-59422
UGAGACAGAUGCUAAUGGAdTdT
UCCAUUAGCAUCUGUCUCAdTdT
1869-1887





3775
3776
AD-59467
GCCAAUGACUCAACCCUCUdTdT
AGAGGGUUGAGUCAUUGGCdTdT
1280-1298





3777
3778
AD-59579
GAGUGCAACUUCUGCAGGAdTdT
UCCUGCAGAAGUUGCACUCdTdT
2159-2177





3779
3780
AD-59426
GUGAAAGAGAGAAGUCCUAdTdT
UAGGACUUCUCUCUUUCACdTdT
2202-2220





3781
3782
AD-59363
UAACUUGCCAAAAUCUGUUdTdT
AACAGAUUUUGGCAAGUUAdTdT
901-919





3783
3784
AD-59436
AAGCCAGUCUUGAGCUUCAdTdT
UGAAGCUCAAGACUGGCUUdTdT
711-729





3785
3786
AD-53536
cAcuuuucAGuAuGAucGudTsdT
ACGAUcAuACUGAAAAGUGdTsdT
922-940





3787
3788
AD-59491
GCAGCAGUGUCUUCUGCAAdTdT
UUGCAGAAGACACUGCUGCdTdT
693-711





3789
3790
AD-59500
UCCUGAACAUGGAGAGUGUdTdT
ACACUCUCCAUGUUCAGGAdTdT
330-348





3791
3792
AD-59394
AUUUCUGGAACACUUGGCAdTdT
UGCCAAGUGUUCCAGAAAUdTdT
1652-1670





3793
3794
AD-59441
CAGUACACUACCAACAGAUdTdT
AUCUGUUGGUAGUGUACUGdTdT
492-510





3795
3796
AD-59365
GCAUGACCUCAAUUAUUUCdTdT
GAAAUAAUUGAGGUCAUGCdTdT
2261-2279





3797
3798
AD-59411
AGAACUGCUGCAAAGAUCUdTdT
AGAUCUUUGCAGCAGUUCUdTdT
1432-1450





3799
3800
AD-59544
CACCCCAGAUGAUGAACUAdTdT
UAGUUCAUCAUCUGGGGUGdTdT
2073-2091





3801
3802
AD-59428
GAUCCAAGGGAUUCGAAACdTdT
GUUUCGAAUCCCUUGGAUCdTdT
1363-1381





3803
3804
AD-59471
CUCAUCACCAAAAAGCAAGdTdT
CUUGCUUUUUGGUGAUGAGdTdT
1052-1070





3805
3806
AD-59518
ACAACAUGGUGCUGGGGCAdTdT
UGCCCCAGCACCAUGUUGUdTdT
1150-1168





3807
3808
AD-53547
GAucGuuucuuuGAGAAAAdTsdT
UUUUCUcAAAGAAACGAUCdTsdT
935-953





3809
3810
AD-59573
CAGCACGAGUUCUCUGAUUdTdT
AAUCAGAGAACUCGUGCUGdTdT
1702-1720





3811
3812
AD-59473
AAUGAUGUCAGCCACCUCAdTdT
UGAGGUGGCUGACAUCAUUdTdT
1412-1430





3813
3814
AD-59412
AGUUAUGGACACUUUGAAAdTdT
UUUCAAAGUGUCCAUAACUdTdT
1132-1150





3815
3816
AD-59522
GAUGAUGAACUACUUCCUUdTdT
AAGGAAGUAGUUCAUCAUCdTdT
2080-2098





3817
3818
AD-59502
GCAGGAAAUGAAUGCCGUGdTdT
CACGGCAUUCAUUUCCUGCdTdT
739-757





3819
3820
AD-59499
UCUUCAAGAUAACUUGCCAdTdT
UGGCAAGUUAUCUUGAAGAdTdT
892-910





3821
3822
AD-59520
CGAUGGAGGGGAUCCCAGUdTdT
ACUGGGAUCCCCUCCAUCGdTdT
811-829





3823
3824
AD-59581
CCAAAAAGCAAGUGUCAGUdTdT
ACUGACACUUGCUUUUUGGdTdT
1059-1077





3825
3826
AD-59461
GAUUGGGGAUCGGGAUGGAdTdT
UCCAUCCCGAUCCCCAAUCdTdT
1612-1630





3827
3828
AD-59370
CCCUGGAGUCUGUGCGGAUdTdT
AUCCGCACAGACUCCAGGGdTdT
1791-1809





3829
3830
AD-53540
GuuGucuuuAuAuGuGAAudTsdT
AUUcAcAuAuAAAGAcAACdTsdT
2321-2339





3831
3832
AD-59574
CGGGCAUUGUCCACUGCAGdTdT
CUGCAGUGGACAAUGCCCGdTdT
473-491





3833
3834
AD-59375
UAUUCAGACUCCCUCAUCAdTdT
UGAUGAGGGAGUCUGAAUAdTdT
1040-1058





3835
3836
AD-59387
CACUGCAUUUUGAAGUGAUdTdT
AUCACUUCAAAAUGCAGUGdTdT
2181-2199





3837
3838
AD-59397
CCAGAAAGAGUGUCUCAUCdTdT
GAUGAGACACUCUUUCUGGdTdT
872-890





3839
3840
AD-59396
AGGCGGAGGGAUUGGGGAUdTdT
AUCCCCAAUCCCUCCGCCUdTdT
1603-1621





3841
3842
AD-59393
AGACCUCCAUGGGAAAGAUdTdT
AUCUUUCCCAUGGAGGUCUdTdT
1231-1249





3843
3844
AD-59483
GCAGGAGGCCACUGCAUUUdTdT
AAAUGCAGUGGCCUCCUGCdTdT
2172-2190





3845
3846
AD-59430
AUCUGUUUCCACUUUUCAGdTdT
CUGAAAAGUGGAAACAGAUdTdT
913-931





3847
3848
AD-59463
AGAGAAGUCCUAUUUCUCAdTdT
UGAGAAAUAGGACUUCUCUdTdT
2209-2227





3849
3850
AD-53534
GucuucAGAGuuGucuuuAdTsdT
uAAAGAcAACUCUGAAGACdTsdT
2312-2330





3851
3852
AD-59514
GGCUGGAACUGAAGCCUCAdTdT
UGAGGCUUCAGUUCCAGCCdTdT
2130-2148





3853
3854
AD-59575
GCCAUUAUCAUAUCCAGAUdTdT
AUCUGGAUAUGAUAAUGGCdTdT
2292-2310





3855
3856
AD-59364
AGCAGGCCCCAGUGUGGUUdTdT
AACCACACUGGGGCCUGCUdTdT
781-799





3857
3858
AD-59402
UCAGCUGAGUGCAACUUCUdTdT
AGAAGUUGCACUCAGCUGAdTdT
2153-2171





3859
3860
AD-59479
GAGCACACAUCUUCCCCAUdTdT
AUGGGGAAGAUGUGUGCUCdTdT
1011-1029





3861
3862
AD-59481
ACUUCCAGGACAUCAUGCAdTdT
UGCAUGAUGUCCUGGAAGUdTdT
843-861





3863
3864
AD-59530
CCUAUCGAGUUUUUAAAACdTdT
GUUUUAAAAACUCGAUAGGdTdT
981-999





3865
3866
AD-59582
CUUCCUUGAGAAUCUGCUAdTdT
UAGCAGAUUCUCAAGGAAGdTdT
2092-2110





3867
3868
AD-59506
ACCAACAGAUCAAAGAAACdTdT
GUUUCUUUGAUCUGUUGGUdTdT
501-519





3869
3870
AD-59567
UAACCCCAGGCCAUUAUCAdTdT
UGAUAAUGGCCUGGGGUUAdTdT
2283-2301





3871
3872
AD-59485
CCAUGCCUCCAUGAUCCAAdTdT
UUGGAUCAUGGAGGCAUGGdTdT
1351-1369





3873
3874
AD-59525
UGAUGAACUAAUGAGCAGAdTdT
UCUGCUCAUUAGUUCAUCAdTdT
1969-1987





3875
3876
AD-59566
CCUGAAGAGCGCUGAGGGAdTdT
UCCCUCAGCGCUCUUCAGGdTdT
1810-1828





3877
3878
AD-59580
AACACUUGGCAAAGCCUUUdTdT
AAAGGCUUUGCCAAGUGUUdTdT
1660-1678





3879
3880
AD-59512
UCUGCAGAAAGCAGGCAAAdTdT
UUUGCCUGCUUUCUGCAGAdTdT
391-409





3881
3882
AD-59475
CCGGCCUCCCUGUUGUCCAdTdT
UGGACAACAGGGAGGCCGGdTdT
1890-1908





3883
3884
AD-59438
CAUCAUCCCUGUGCGGGUUdTdT
AACCCGCACAGGGAUGAUGdTdT
1921-1939





3885
3886
AD-59442
UGUGCGGGUUGCAGAUGCUdTdT
AGCAUCUGCAACCCGCACAdTdT
1930-1948





3887
3888
AD-59516
GGAAAGAGGUUGCUGAAACdTdT
GUUUCAGCAACCUCUUUCCdTdT
759-777





3889
3890
AD-59429
AGGUCCACGCAGUGGGGCUdTdT
AGCCCCACUGCGUGGACCUdTdT
1572-1590





3891
3892
AD-59510
UGCCGUGAGGAAAGAGGUUdTdT
AACCUCUUUCCUCACGGCAdTdT
751-769





3893
3894
AD-59457
GCUAAUGGAUGCCGGCCUCdTdT
GAGGCCGGCAUCCAUUAGCdTdT
1879-1897





3895
3896
AD-59434
GAAGCAAGUGGGGCUGGAAdTdT
UUCCAGCCCCACUUGCUUCdTdT
2119-2137





3897
3898
AD-59454
CAUCUUCCGCCACAAUGAUdTdT
AUCAUUGUGGCGGAAGAUGdTdT
1399-1417





3899
3900
AD-59468
AUUUCUCAGGCUUGAGCAAdTdT
UUGCUCAAGCCUGAGAAAUdTdT
2220-2238





3901
3902
AD-59565
CCCGAGUCCCCCAGGCCUUdTdT
AAGGCCUGGGGGACUCGGGdTdT
372-390





3903
3904
AD-59416
CAAGCAAAUGCCCUUUCCUdTdT
AGGAAAGGGCAUUUGCUUGdTdT
651-669





3905
3906
AD-59420
CCCCUCAGUCCCCAAGAUUdTdT
AAUCUUGGGGACUGAGGGGdTdT
1453-1471





3907
3908
AD-59552
CUACGGUGCCCCGGGGAGAdTdT
UCUCCCCGGGGCACCGUAGdTdT
2019-2037





3909
3910
AD-59558
AAAACUGCCCCAAGAUGAUdTdT
AUCAUCUUGGGGCAGUUUUdTdT
429-447





3911
3912
AD-59404
ACAAAACUGCUAAGGCCAAdTdT
UUGGCCUUAGCAGUUUUGUdTdT
540-558





3913
3914
AD-59455
GAUUCUGGGAACCAUGCCUdTdT
AGGCAUGGUUCCCAGAAUCdTdT
1340-1358





3915
3916
AD-59496
CCAGAUGGCACACAGCUUCdTdT
GAAGCUGUGUGCCAUCUGGdTdT
593-611





3917
3918
AD-59446
AGGGAUUCGAAACAGCCGAdTdT
UCGGCUGUUUCGAAUCCCUdTdT
1369-1387





3919
3920
AD-59435
CUCUGCAGUCCUCAGCGCAdTdT
UGCGCUGAGGACUGCAGAGdTdT
109-127





3921
3922
AD-59419
CCGCCGCCUCUGCAGUCCUdTdT
AGGACUGCAGAGGCGGCGGdTdT
102-120





3923
3924
AD-59533
CUGGCUGGAGCCCUGGAGUdTdT
ACUCCAGGGCUCCAGCCAGdTdT
1781-1799





3925
3926
AD-59366
GACAUCAUGCAAAAGCAAAdTdT
UUUGCUUUUGCAUGAUGUCdTdT
851-869





3927
3928
AD-59521
GCUUGAGCAAGUUGGUAUCdTdT
GAUACCAACUUGCUCAAGCdTdT
2229-2247





3929
3930
AD-59563
CAGGCUGUGAGAUUUACUCdTdT
GAGUAAAUCUCACAGCCUGdTdT
1320-1338





3931
3932
AD-59534
AGAGCUGUGUGAUGUGGCCdTdT
GGCCACAUCACACAGCUCUdTdT
1522-1540





3933
3934
AD-59407
GGAGCUGGCAGACCUCCAUdTdT
AUGGAGGUCUGCCAGCUCCdTdT
1222-1240





3935
3936
AD-59445
AUCCCAGUGGACUGCUGAAdTdT
UUCAGCAGUCCACUGGGAUdTdT
822-840





3937
3938
AD-59546
GUCAAACUCAUGAGACAGAdTdT
UCUGUCUCAUGAGUUUGACdTdT
1859-1877





3939
3940
AD-59456
CUUUCCUGGCAGCACAGAUdTdT
AUCUGUGCUGCCAGGAAAGdTdT
663-681





3941
3942
AD-59503
CCCUCCGGCCAGUGAGAAAdTdT
UUUCUCACUGGCCGGAGGGdTdT
520-538





3943
3944
AD-59536
CUACCUAGGAAUGAGUCGCdTdT
GCGACUCAUUCCUAGGUAGdTdT
1093-1111





3945
3946
AD-59385
CCCAAGAUUGUGGCAUUUGdTdT
CAAAUGCCACAAUCUUGGGdTdT
1463-1481





3947
3948
AD-59367
GAGCAAUCACCUUCGUGGAdTdT
UCCACGAAGGUGAUUGCUCdTdT
1551-1569





3949
3950
AD-59458
UGCCCAUUCUUAUCCCGAGdTdT
CUCGGGAUAAGAAUGGGCAdTdT
359-377





3951
3952
AD-59381
AAGGCCAAGGUCCAACAGAdTdT
UCUGUUGGACCUUGGCCUUdTdT
551-569





3953
3954
AD-59538
CACACAGCUUCCGUCUGGAdTdT
UCCAGACGGAAGCUGUGUGdTdT
601-619





3955
3956
AD-59421
UUAUGGGGCUCGAGGCGGAdTdT
UCCGCCUCGAGCCCCAUAAdTdT
1591-1609





3957
3958
AD-59388
UGUCUUCUGCAAAGCCAGUdTdT
ACUGGCUUUGCAGAAGACAdTdT
700-718





3959
3960
AD-59444
AGGCCUGAGCAUGACCUCAdTdT
UGAGGUCAUGCUCAGGCCUdTdT
2253-2271





3961
3962
AD-59528
AUGUGAAUUAAGUUAUAUUdTdT
AAUAUAACUUAAUUCACAUdTdT
2332-2350





3963
3964
AD-59498
ACUGCUGAAGAACUUCCAGdTdT
CUGGAAGUUCUUCAGCAGUdTdT
832-850





3965
3966
AD-59497
UGAGAAAGACAAAACUGCUdTdT
AGCAGUUUUGUCUUUCUCAdTdT
532-550





3967
3968
AD-59384
UCAGCCACCUCAGAGAACUdTdT
AGUUCUCUGAGGUGGCUGAdTdT
1419-1437





3969
3970
AD-59452
GGCAACGAGCGUUUCGUUUdTdT
AAACGAAACGCUCGUUGCCdTdT
51-69





3971
3972
AD-59379
CCUGAUGGAUCCCAGCAGAdTdT
UCUGCUGGGAUCCAUCAGGdTdT
572-590





3973
3974
AD-59529
UGUGCCCACUGGAAGAGCUdTdT
AGCUCUUCCAGUGGGCACAdTdT
1509-1527





3975
3976
AD-59389
CCACAGGAGCCAGCAUACUdTdT
AGUAUGCUGGCUCCUGUGGdTdT
311-329





3977
3978
AD-59585
GUGGUACUAGAAAUAUUUCdTdT
GAAAUAUUUCUAGUACCACdTdT
1170-1188





3979
3980
AD-59570
UUCGCCGCUGCCCAUUCUUdTdT
AAGAAUGGGCAGCGGCGAAdTdT
351-369





3981
3982
AD-59415
CCGCCAGCACCAGCGCAACdTdT
GUUGCGCUGGUGCUGGCGGdTdT
1840-1858





3983
3984
AD-59505
CGCUGAGGGACGGGUGCUUdTdT
AAGCACCCGUCCCUCAGCGdTdT
1819-1837





3985
3986
AD-59557
UGGACUUCUCGACUUGAGUdTdT
ACUCAAGUCGAGAAGUCCAdTdT
69-87





3987
3988
AD-59548
AAAGAAACCCCUCCGGCCAdTdT
UGGCCGGAGGGGUUUCUUUdTdT
512-530





3989
3990
AD-59487
UUGACACCGUACGGUCCUAdTdT
UAGGACCGUACGGUGUCAAdTdT
1719-1737





3991
3992
AD-59550
CCCUCUUCACCCUGGCUAAdTdT
UUAGCCAGGGUGAAGAGGGdTdT
1293-1311





3993
3994
AD-59572
CCCCCAGGCCUUUCUGCAGdTdT
CUGCAGAAAGGCCUGGGGGdTdT
379-397





3995
3996
AD-59554
AUGCCCAAAACUGCCCCAAdTdT
UUGGGGCAGUUUUGGGCAUdTdT
423-441





3997
3998
AD-59437
CUUGAGUGCCCGCCUCCUUdTdT
AAGGAGGCGGGCACUCAAGdTdT
81-99





3999
4000
AD-59584
GGGUACAUCGCCAGCACGAdTdT
UCGUGCUGGCGAUGUACCCdTdT
1691-1709





4001
4002
AD-59373
GUGUGGGGCAGUUAUGGACdTdT
GUCCAUAACUGCCCCACACdTdT
1123-1141





4003
4004
AD-59545
ACAUAGUCCUGGAAAUAAAdTdT
UUUAUUUCCAGGACUAUGUdTdT
2372-2390





4005
4006
AD-59547
AUCCCAGCAGAGUCCAGAUdTdT
AUCUGGACUCUGCUGGGAUdTdT
580-598





4007
4008
AD-59470
CUAGAUUCUUUCCACAGGAdTdT
UCCUGUGGAAAGAAUCUAGdTdT
300-318





4009
4010
AD-59417
UUGUUUUCCUCGUGCUUUGdTdT
CAAAGCACGAGGAAAACAAdTdT
1259-1277





4011
4012
AD-59535
CCUCCUUCGCCGCCGCCUCdTdT
GAGGCGGCGGCGAAGGAGGdTdT
 93-111





4013
4014
AD-59507
UGAGGCUGCUCCCGGACAAdTdT
UUGUCCGGGAGCAGCCUCAdTdT
31-49





4015
4016
AD-59519
CCAACAGACUCCUGAUGGAdTdT
UCCAUCAGGAGUCUGUUGGdTdT
562-580





4017
4018
AD-59391
UCACAUGGAAGCAAGUGGGdTdT
CCCACUUGCUUCCAUGUGAdTdT
2112-2130





4019
4020
AD-59537
CAUUCAAUGGAUGGGGCGGdTdT
CCGCCCCAUCCAUUGAAUGdTdT
1490-1508





4021
4022
AD-59450
AGGAAUGAGUCGCCACCCAdTdT
UGGGUGGCGACUCAUUCCUdTdT
1099-1117





4023
4024
AD-59449
UGGACUUAGAGCGGGAGCUdTdT
AGCUCCCGCUCUAAGUCCAdTdT
1209-1227





4025
4026
AD-59418
CUAAAAACACAGAAGUCUGdTdT
CAGACUUCUGUGUUUUUAGdTdT
1950-1968





4027
4028
AD-59561
CCCUCACCACACACCCCAGdTdT
CUGGGGUGUGUGGUGAGGGdTdT
2062-2080





4029
4030
AD-59460
AAUCCUUGCUUCAGGGACUdTdT
AGUCCCUGAAGCAAGGAUUdTdT
171-189





4031
4032
AD-59409
UUGUGGCAUUUGAAACUGUdTdT
ACAGUUUCAAAUGCCACAAdTdT
1470-1488





4033
4034
AD-59476
UCAAUUACCCUACGGUGCCdTdT
GGCACCGUAGGGUAAUUGAdTdT
2010-2028





4035
4036
AD-59406
CAAGCCAGCCCCUCGGGCAdTdT
UGCCCGAGGGGCUGGCUUGdTdT
460-478





4037
4038
AD-59569
GAGUCUUCCCUGCCUGGAUdTdT
AUCCAGGCAGGGAAGACUCdTdT
259-277





4039
4040
AD-59451
UGGAGAGUGUUGUUCGCCGdTdT
CGGCGAACAACACUCUCCAdTdT
339-357





4041
4042
AD-59553
ACCCCUUGCCUGCCACAAGdTdT
CUUGUGGCAGGCAAGGGGUdTdT
621-639





4043
4044
AD-59372
CUGGAUGGAUGAGUGGCUUdTdT
AAGCCACUCAUCCAUCCAGdTdT
272-290





4045
4046
AD-59377
CAAGAUGAUGGAAGUUGGGdTdT
CCCAACUUCCAUCAUCUUGdTdT
439-457





4047
4048
AD-59531
UUUCGUUUGGACUUCUCGAdTdT
UCGAGAAGUCCAAACGAAAdTdT
62-80





4049
4050
AD-59560
UCAUCUUCACCACCUCUCUdTdT
AGAGAGGUGGUGAAGAUGAdTdT
1749-1767





4051
4052
AD-59489
UGCCCAGUUCUUCCCGCUGdTdT
CAGCGGGAAGAACUGGGCAdTdT
132-150





4053
4054
AD-59540
AAAAAUGGACAUCAUUUCUdTdT
AGAAAUGAUGUCCAUUUUUdTdT
1639-1657





4055
4056
AD-59378
CUUGAGCUUCAGGAGGAUGdTdT
CAUCCUCCUGAAGCUCAAGdTdT
719-737





4057
4058
AD-59403
CCUCUCUGCCACCCAUGCUdTdT
AGCAUGGGUGGCAGAGAGGdTdT
1761-1779





4059
4060
AD-59493
AAAGUCAGGAUCCCUAAGAdTdT
UCUUAGGGAUCCUGACUUUdTdT
242-260





4061
4062
AD-59374
CGACCACGGAGGAAUCCUUdTdT
AAGGAUUCCUCCGUGGUCGdTdT
159-177





4063
4064
AD-59380
UUCCGUCUGGACACCCCUUdTdT
AAGGGGUGUCCAGACGGAAdTdT
609-627





4065
4066
AD-59576
CCACCCAUGCUGCUGGCUGdTdT
CAGCCAGCAGCAUGGGUGGdTdT
1769-1787





4067
4068
AD-59425
UGAGAAAAAGAAUGACCACdTdT
GUGGUCAUUCUUUUUCUCAdTdT
961-979





4069
4070
AD-59509
UAAGAUGAUGCCAGGCUGUdTdT
ACAGCCUGGCAUCAUCUUAdTdT
1309-1327





4071
4072
AD-59488
AGUUAUAUUAAAUUUUAAUdTdT
AUUAAAAUUUAAUAUAACUdTdT
2342-2360





4073
4074
AD-59486
UCUUCCCGCUGUGGGGACAdTdT
UGUCCCCACAGCGGGAAGAdTdT
140-158





4075
4076
AD-59465
UGCCACAAGCCAGGGCACUdTdT
AGUGCCCUGGCUUGUGGCAdTdT
631-649





4077
4078
AD-59484
AGCGCAGUUAUGCCCAGUUdTdT
AACUGGGCAUAACUGCGCUdTdT
122-140





4079
4080
AD-59368
GGACCAGGAGAAAGUCAGGdTdT
CCUGACUUUCUCCUGGUCCdTdT
232-250





4081
4082
AD-59464
UGUCCACUGCCCCAGCCACdTdT
GUGGCUGGGGCAGUGGACAdTdT
1903-1921





4083
4084
AD-59386
AUCGCGGCCUGAGGCUGCUdTdT
AGCAGCCUCAGGCCGCGAUdTdT
22-40





4085
4086
AD-59439
GGGGAUGUGGGGACCAGGAdTdT
UCCUGGUCCCCACAUCCCCdTdT
222-240





4087
4088
AD-59440
CUGGAAAUAAAUUCUUGCUdTdT
AGCAAGAAUUUAUUUCCAGdTdT
2380-2398





4089
4090
AD-59542
UUGAAACUGUCCAUUCAAUdTdT
AUUGAAUGGACAGUUUCAAdTdT
1479-1497





4091
4092
AD-59559
GUGGGGACACGACCACGGAdTdT
UCCGUGGUCGUGUCCCCACdTdT
150-168





4093
4094
AD-59586
CGCAGUGGGGCUUUAUGGGdTdT
CCCAUAAAGCCCCACUGCGdTdT
1579-1597





4095
4096
AD-59408
UUGUCUUUAUAUGUGAAUUdTdT
AAUUCACAUAUAAAGACAAdTdT
2322-2340





4097
4098
AD-59568
UCACCCUGGCUAAGAUGAUdTdT
AUCAUCUUAGCCAGGGUGAdTdT
1299-1317





4099
4100
AD-59398
GUAUCUGCUCAGGCCUGAGdTdT
CUCAGGCCUGAGCAGAUACdTdT
2243-2261





4101
4102
AD-59508
AUGAGUGGCUUCUUCUCCAdTdT
UGGAGAAGAAGCCACUCAUdTdT
280-298





4103
4104
AD-59523
GAAGUUGGGGCCAAGCCAGdTdT
CUGGCUUGGCCCCAACUUCdTdT
449-467





4105
4106
AD-59410
UCAGGGACUCGGGACCCUGdTdT
CAGGGUCCCGAGUCCCUGAdTdT
181-199





4107
4108
AD-59541
UCCUACGGAUUGCCCCCACdTdT
GUGGGGGCAAUCCGUAGGAdTdT
2043-2061





4109
4110
AD-59524
UUACUCUGAUUCUGGGAACdTdT
GUUCCCAGAAUCAGAGUAAdTdT
1333-1351





4111
4112
AD-59501
AUCCCUAAGAGUCUUCCCUdTdT
AGGGAAGACUCUUAGGGAUdTdT
251-269





4113
4114
AD-59383
UGCCAAAGUACAUCUUCCGdTdT
CGGAAGAUGUACUUUGGCAdTdT
1389-1407





4115
4116
AD-59577
UCCUCGGGUUUAGGGGAUGdTdT
CAUCCCCUAAACCCGAGGAdTdT
210-228





4117
4118
AD-59447
UGCUGAAACCUCAGCAGGCdTdT
GCCUGCUGAGGUUUCAGCAdTdT
769-787





4119
4120
AD-59555
CCACCCACGGGUGUGUGGGdTdT
CCCACACACCCGUGGGUGGdTdT
1111-1129





4121
4122
AD-59405
UGGUGCAGUAAUGACUACCdTdT
GGUAGUCAUUACUGCACCAdTdT
1079-1097





4123
4124
AD-59371
UUCUCCACCUAGAUUCUUUdTdT
AAAGAAUCUAGGUGGAGAAdTdT
292-310





4125
4126
AD-59443
UAAGGCGCCGGCGAUCGCGdTdT
CGCGAUCGCCGGCGCCUUAdTdT
 9-27





4127
4128
AD-59401
UGGAACUAGUAAAUUCCAUdTdT
AUGGAAUUUACUAGUUCCAdTdT
1189-1207





4129
4130
AD-59494
GGACCCUGCUGGACCCCUUdTdT
AAGGGGUCCAGCAGGGUCCdTdT
192-210





4131
4132
AD-59504
UCAAUUAUUUCACUUAACCdTdT
GGUUAAGUGAAAUAAUUGAdTdT
2269-2287





4133
4134
AD-59369
CCCGGACAAGGGCAACGAGdTdT
CUCGUUGCCCUUGUCCGGGdTdT
41-59





4135
4136
AD-59571
UUUUAAAACUGUGAACCGGdTdT
CCGGUUCACAGUUUUAAAAdTdT
 991-1009





4137
4138
AD-59527
GUGCUUCGCCGCCAGCACCdTdT
GGUGCUGGCGGCGAAGCACdTdT
1832-1850





4139
4140
AD-59466
UGGACCCCUUCCUCGGGUUdTdT
AACCCGAGGAAGGGGUCCAdTdT
201-219





4141
4142
AD-59526
CUGUAUAUUAAGGCGCCGGdTdT
CCGGCGCCUUAAUAUACAGdTdT
 1-19





4143
4144
AD-59543
UUGCCCCCACCCCUCACCAdTdT
UGGUGAGGGGUGGGGGCAAdTdT
2052-2070





4145
4146
AD-59564
AUGGGGCGGUGUGCCCACUdTdT
AGUGGGCACACCGCCCCAUdTdT
1500-1518





4147
4148
AD-59583
CUAUAGUAAAAACAUAGUCdTdT
GACUAUGUUUUUACUAUAGdTdT
2361-2379









The in vitro activity of the siRNAs in suppressing ALAS1 mRNA was tested in a single dose screen in Hep3B cells that were transfected using Lipofectamine2000 as a transfection reagent. Single dose experiments were performed at 10 nM duplex concentration and analyzed by branched DNA (bDNA) assay. The results are shown in Table 19 and are expressed as percent remaining mRNA.









TABLE 19







Suppression of ALAS1 mRNA


as assessed by bDNA assay












% remaining




Duplex
mRNA
SD















AD-59453
11.2
1.5



AD-59395
12.7
1.1



AD-59477
14.5
2.0



AD-59492
14.8
2.1



AD-59361
15.1
4.9



AD-59462
15.4
2.6



AD-59433
15.8
2.7



AD-59424
16.0
1.7



AD-59414
16.1
1.3



AD-59539
16.2
2.6



AD-59400
16.2
1.8



AD-59551
16.3
2.3



AD-59482
16.6
2.1



AD-59448
16.6
3.7



AD-59392
16.9
3.5



AD-59469
16.9
2.2



AD-59431
17.0
2.0



AD-59423
17.1
3.8



AD-59517
17.2
1.5



AD-59578
17.3
3.1



AD-59495
17.7
3.7



AD-59432
17.7
2.8



AD-59382
17.9
3.2



AD-59472
18.6
3.5



AD-59459
18.7
3.8



AD-59413
18.8
2.4



AD-59478
18.9
3.0



AD-59376
18.9
3.2



AD-59556
18.9
2.4



AD-59399
19.0
4.1



AD-59474
19.4
1.6



AD-53542
19.4
1.7



AD-59480
19.6
1.6



AD-59549
19.7
2.1



AD-59515
19.8
4.4



AD-59427
19.9
3.2



AD-59390
19.9
3.4



AD-59511
19.9
2.2



AD-59532
20.0
2.4



AD-59562
20.2
2.6



AD-59513
20.3
3.9



AD-59362
20.6
2.5



AD-53541
20.6
2.2



AD-59490
20.7
2.3



AD-59422
20.8
4.5



AD-59467
21.2
2.3



AD-59579
21.2
3.3



AD-59426
21.7
2.3



AD-59363
21.7
2.7



AD-59436
21.7
2.7



AD-53536
21.9
1.5



AD-59491
21.9
2.6



AD-59500
22.2
2.8



AD-59394
22.3
10.1



AD-59441
22.3
2.6



AD-59365
22.4
4.2



AD-59411
22.5
2.9



AD-59544
22.5
2.1



AD-59428
22.7
4.7



AD-59471
22.9
5.0



AD-59518
22.9
2.3



AD-53547
22.9
1.5



AD-59573
23.0
4.2



AD-59473
23.2
1.8



AD-59412
23.4
2.5



AD-59522
23.4
3.3



AD-59502
23.6
2.7



AD-59499
23.6
1.6



AD-59520
23.8
3.8



AD-59581
23.9
6.0



AD-59461
24.3
4.2



AD-59370
24.3
5.6



AD-53540
24.4
2.1



AD-59574
24.5
2.0



AD-59375
24.6
2.3



AD-59387
24.8
7.2



AD-59397
24.9
9.6



AD-59396
25.0
10.2



AD-59393
25.3
11.6



AD-59483
25.4
3.8



AD-59430
25.5
1.8



AD-59463
25.6
4.8



AD-53534
25.9
3.1



AD-59514
26.2
5.7



AD-59575
26.2
3.2



AD-59364
26.2
4.5



AD-59402
26.3
3.1



AD-59479
26.3
2.5



AD-59481
26.4
2.2



AD-59530
26.4
4.4



AD-59582
26.6
3.9



AD-59506
27.0
4.1



AD-59567
27.3
1.1



AD-59485
27.7
4.7



AD-59525
28.3
3.1



AD-59566
28.5
0.6



AD-59580
28.7
7.1



AD-59512
29.5
2.5



AD-59475
29.6
4.2



AD-59438
29.6
3.3



AD-59442
29.9
2.8



AD-59516
30.4
3.8



AD-59429
30.8
4.3



AD-59510
31.3
1.9



AD-59457
31.4
1.2



AD-59434
31.6
3.5



AD-59454
32.0
1.9



AD-59468
32.2
3.2



AD-59565
32.4
1.5



AD-59416
32.7
1.7



AD-59420
33.2
3.1



AD-59552
33.2
2.2



AD-59558
33.8
3.8



AD-59404
34.0
5.4



AD-59455
34.8
1.3



AD-59496
34.9
5.2



AD-59446
35.5
1.7



AD-59435
35.9
1.2



AD-59419
36.0
1.4



AD-59533
36.7
3.7



AD-59366
36.7
6.0



AD-59521
36.9
4.3



AD-59563
36.9
4.1



AD-59534
36.9
3.3



AD-59407
37.1
4.7



AD-59445
37.2
3.2



AD-59546
37.9
4.9



AD-59456
38.3
4.0



AD-59503
38.8
5.0



AD-59536
39.8
4.2



AD-59385
39.9
13.7



AD-59367
40.0
3.6



AD-59458
40.0
3.4



AD-59381
40.3
9.9



AD-59538
40.8
4.9



AD-59421
40.9
6.4



AD-59388
41.0
9.1



AD-59444
41.1
2.7



AD-59528
41.9
3.3



AD-59498
42.2
3.3



AD-59497
42.4
4.9



AD-59384
42.7
17.6



AD-59452
42.7
3.1



AD-59379
43.6
2.6



AD-59529
43.8
4.8



AD-59389
44.1
6.4



AD-59585
44.3
3.2



AD-59570
45.1
4.0



AD-59415
46.6
2.3



AD-59505
47.5
6.2



AD-59557
48.1
4.4



AD-59548
49.9
4.0



AD-59487
50.7
3.2



AD-59550
50.8
5.8



AD-59572
51.1
4.0



AD-59554
51.3
6.0



AD-59437
52.2
4.8



AD-59584
54.9
2.7



AD-59373
55.3
20.1



AD-59545
55.4
3.4



AD-59547
55.9
4.7



AD-59470
56.0
2.7



AD-59417
56.4
7.7



AD-59535
57.6
5.1



AD-59507
58.8
4.7



AD-59519
59.1
5.6



AD-59391
60.1
12.5



AD-59537
60.6
9.1



AD-59450
60.7
7.2



AD-59449
61.6
6.8



AD-59418
61.8
8.4



AD-59561
62.2
7.2



AD-59460
62.8
4.7



AD-59409
64.4
9.0



AD-59476
65.2
5.6



AD-59406
65.6
3.5



AD-59569
66.7
7.6



AD-59451
66.9
2.9



AD-59553
67.2
8.8



AD-59372
67.3
25.6



AD-59377
68.7
5.1



AD-59531
68.7
9.0



AD-59560
68.7
12.7



AD-59489
69.6
8.9



AD-59540
70.1
10.1



AD-59378
70.6
14.1



AD-59403
71.4
3.3



AD-59493
72.3
3.5



AD-59374
75.9
5.1



AD-59380
76.4
11.1



AD-59576
77.5
16.2



AD-59425
77.9
10.6



AD-59509
78.0
3.2



AD-59488
78.6
7.1



AD-59486
79.4
5.0



AD-59465
79.5
5.1



AD-59484
79.8
3.2



AD-59368
80.0
11.9



AD-59464
80.2
9.3



AD-59386
80.6
33.2



AD-59439
80.9
4.0



AD-59440
82.2
1.9



AD-59542
83.3
10.6



AD-59559
83.7
9.1



AD-59586
83.8
11.5



AD-59408
86.3
2.8



AD-59568
86.8
4.2



AD-59398
87.4
24.9



AD-59508
87.5
2.5



AD-59523
87.6
11.8



AD-59410
88.8
8.3



AD-59541
88.9
10.8



AD-59524
89.5
12.1



AD-59501
89.9
5.1



AD-59383
90.8
27.4



AD-59577
91.1
2.3



AD-59447
91.3
12.9



AD-59555
91.7
3.4



AD-59405
92.5
5.7



AD-59371
93.5
31.7



AD-59443
93.8
9.0



AD-59401
94.5
7.1



AD-59494
95.1
9.1



AD-59504
96.8
11.7



AD-59369
96.8
4.8



AD-59571
97.4
7.0



AD-59527
98.6
7.8



AD-59466
99.7
14.0



AD-59526
102.9
4.6



AD-59543
103.7
3.0



AD-59564
103.7
12.1



AD-59583
112.4
13.2










The two hundred thirty-two duplexes that were tested suppressed ALAS1 mRNA to varying extents in this single dose assay. According to this assay, at least four of the duplexes (AD-59453, AD-59395, AD-59477, and AD-59492) suppressed ALAS1 mRNA by 85% or more, 39 of the duplexes suppressed ALAS1 mRNA by 80% or more, 101 of the duplexes suppressed ALAS1 mRNA by 70% or more, and 152 of the duplexes suppressed ALAS1 mRNA by 50% or more. In contrast, some duplexes did not show appreciable suppression in this assay.


Example 13: Dose Responsive Inhibition of Porphyrin Precursors ALA and PBG Using ALAS1 siRNA

The dose response effects of an ALAS1 siRNA were investigated in a mouse model of AIP (see Example 5). This model shows ˜30% residual PBGD activity, ˜2 fold increase in basal ALA and PBG levels, ˜30-100 fold increase in ALA and PBG levels following induction by injections of Phenobarbital once per day for 3-4 days. Older animals have axonal degeneration and impaired motor function.


The ALAS1 siRNA used in this example was the AD-53558 duplex in the AF11 formulation. On day 1, the mice were administered 1 mg/kg, 0.5 mg/kg, 0.1 mg/kg, or 0.05 mg/kg of ALAS1 siRNA or LUC AD-1955 control by i.v. injection. Three phenobarbital injections were given (1 injection per day on days 2, 3, and 4) to induce hepatic ALAS1 and the porphyrin precursors, ALA and PBG. Plasma and overnight urine specimens were collected on day 5 and metabolite levels were measured by LC-MS. Baseline levels of ALA and PBG were measured prior to the first treatment on day 1. The results are shown in FIG. 16. The ALAS1 siRNA inhibited ALA and PBG levels in a dose dependent manner. The inhibitory effect on plasma ALA levels was observed at ALAS1 siRNA doses as low as 0.05 mg/kg, and the inhibitory effect on plasma PBG levels was seen at siRNA doses as low as 0.1 mg/kg.


Example 14: Durable Inhibition of Porphyrin Precursors ALA and PBG Using ALAS1 siRNA

The durability of the effects of an ALAS1 siRNA were investigated in a mouse model of AIP (see Example 5). The ALAS1 siRNA used in this example was the AD-53558 duplex in the AF11 formulation. The experimental design and results of this experiment are shown in FIG. 17. On day 1, mice were administered 1 mg/kg of ALAS1 siRNA or LUC AD-1955 control by i.v. injection. Three phenobarbital injections were given in week 0 (1 injection per day on days 2, 3, and 4), week 2 (1 injection per day on days 15, 16, and 17), and week 4 (1 injection per day on days 29, 30, and 31) to induce hepatic ALAS1 and porphyrin precursors ALA and PBG. Plasma and overnight urine specimens were collected on days 5, 18, and 32 and metabolite levels were measured by LC-MS. Baseline levels of ALA and PBG were measured prior to the first treatment on day 1.


As is shown in FIG. 17, the ALAS1 siRNA had a durable effect in reducing plasma ALA and PBG levels. Administration of the ALAS1 siRNA suppressed plasma ALA and PBG levels for at least 2 weeks. These results indicate that ALAS1 siRNA is an effective treatment for lowering elevated levels of ALA and PBG and thus can be used in prophylaxis, e.g., to lower chronically elevated ALA and PBG levels and to prevent recurrent porphyric attacks.


Example 15: ALAS1 siRNA Provides More Rapid Onset of Action Compared with Hemin Treatment

The effects of treatment with an ALAS1 siRNA were compared with the effects of hemin treatment in a mouse model of AIP (see Example 5). The ALAS1 siRNA used in this example was the AD-53558 duplex in the AF11 formulation. The experimental design and results of this experiment are shown in FIG. 18. Phenobarbital (PB) and diethyldithiocarbamate (DDC) were administered on days 1, 2, and 3. DDC is another p450 inducer that, like Phenobarbital, increases the demand for heme and helps extend the induction of ALA/PBG metabolites.


Hemin at a dose of 4 mg/kg, ALAS1 siRNA at a dose of 2 mg/kg, or control treatment was administered intravenously at 8 hours after the last administration of PB and DDC.


As is shown in FIG. 18, the onset of treatment effects was faster with ALAS1 siRNA treatment compared with hemin treatment. The rapid reduction of ALA and PBG with siRNA treatment indicates that siRNA is an effective treatment for acute attacks, because a rapid improvement in clinical symptoms is expected to accompany the reduction in ALA and PBG levels.


Example 16: Effects of ALAS1 siRNA GalNAc Conjugate AD-58632

AD-58632 is a 21/23mer disclosed in Example 11. AD-58632 targets the human transcript NM_000688.4 and is also cross reactive with mouse, rat, and cynomolgous monkey mRNA transcripts. AD-58632 was the only cross reactive 21/23mer identified from a screen of about 45 compounds. Further experiments with this duplex are described in this example.


Dose Dependent Effects of AD-58632 in Suppressing ALAS1 mRNA


The dose response effect of AD-58632 in suppressing ALAS1 mRNA, relative to GAPDH mRNA, was investigated in rats. Doses of 30 mg/kg, 10 mg/kg, and 3 mg/kg were tested. The levels of ALAS1 mRNA were measured in liver at 72 hours after the last dose. AD-58632, compared with PBS control, suppressed ALAS1 mRNA in a dose dependent manner (see FIG. 19). AD-58632 had a single dose ED50 of about 10 mg/kg.


Effects of AD-58632 in Rat AIP Model


The dose response effect of the AD-58632 ALAS1 GalNAc conjugate siRNA was further investigated in a rat AIP model. In this model, siRNA in an LNP is used to knock down the level of PBGD specifically in liver prior to inducing heme demaind with phenobarbitol. The rat AIP model shows transient PBGD siRNA knockdown in the liver, has ˜15% residual PBGD mRNA, and shows about a 10-50 fold increase in ALA and PBG levels upon induction by daily Phenobarbital injection for three days.


The experimental design is depicted in FIG. 20. Four groups of rats were studied. One group was treated with phenobarbital (PB) only at the indicated timepoints. A second group was treated with phenobarbital and porphobilinogen deaminase (PBGD) siRNA. A third group received phenobarbital, PBGD siRNA, and a dose of 30 mg/kg of the ALAS1 siRNA. A fourth group received phenobarbital, PBGD siRNA, and a dose of 10 mg/kg of the ALAS1 siRNA. As is shown in FIG. 20, the PBGD siRNA was administered intravenously on day 1. The ALAS1 GalNAc siRNA was administered on day 4. Phenobarbital injections were given on days 4, 5, 6, and 7. Urine was collected for a 24 hour period starting on day 7 and ending on day 8. Levels of liver PBGD mRNA, GAPDH mRNA, and ALAS-1 mRNA were assessed on day 8 using a bDNA assay. PBG and ALA levels in urine were determined using LC-MS.


The mRNA results are shown in FIG. 21. PBGD siRNA decreased PBGD mRNA level but did not decrease ALAS1 mRNA level. The ALAS1 siRNA decreased ALAS1 mRNA levels in a dose-dependent manner (see FIG. 21). The ALA and PBG results are shown in FIG. 22. ALAS1 siRNA decreased ALA and PBG levels in a dose-dependent manner (see FIG. 22).


Example 17: Split Dosing with AD-58632

The efficacy of the ALAS1 siRNA GalNAc conjugate AD-58632 was investigated in two separate split dosing paradigms. For each of these studies, female Sprague Dawley rats were used. The rats were housed in SCLR (a light cycle room that is 12 hours light on and 12 hours light off) and were sacrificed at 72 hours following the last injection. ALAS1 and GAPDH mRNA levels in the liver were measured using branched DNA (bDNA) assay.


Five Daily Doses Versus One Bolus Dose Paradigm


In the first paradigm, groups of rats were given either five doses of siRNA (one dose each day) or a single bolus dose that had the same total concentration as the sum of the five individual doses. Specifically, rats were assigned to one of the following treatment conditions: (1) subcutaneous injection of 6 mg/kg siRNA once per day for five days (2) subcutaneous injection of 2 mg/kg siRNA once per day for five days, (3) subcutaneous injection of 1 mg/kg siRNA once per day for five days, (4) subcutaneous injection of a single bolus dose of 30 mg/kg siRNA (5) subcutaneous injection of a single bolus dose of 10 mg/kg siRNA, (6) subcutaneous injection of a single bolus dose of 5 mg/kg siRNA, or (7) PBS control treatment.


The results are shown in FIG. 23. In this paradigm, a single bolus dose of siRNA provided greater suppression of ALAS1 mRNA than did repeated dosing of the same concentration of siRNA over the course of five days. This was true for all doses studied.


Once Per Week Dosing for Four Weeks


In the second paradigm, rats were given subcutaneous injections of siRNA at one of three doses (10 mg/kg, 5 mg/kg, or 2.5 mg/kg) once per week for four weeks. A control group received PBS injections.


The results are shown in FIG. 24. Compared with single dosing, providing four weekly doses at 10 mg/kg improved the maximal knockdown achieved (ED50 is 10 mg/kg at single dose). In contrast, multiple dosing at 5 and 2.5 mg/kg per week did not improve silencing in this paradigm.


Example 18: Identification and Testing of ALAS1 siRNAs with Shorter Sense and Antisense Strands

Further experiments were conducted to explore the effects of shortening the siRNA duplexes to 19-19mers. Five more new cross-reactive 19-19mer duplexes that bind to human (h) (NM_000688.4), rhesus monkey (rh) (XM_001090440.2), mouse (m) (NM_020559.2), and rat (r) (NM_024484.2) ALAS1 mRNA transcripts were identified. None of these duplexes showed results as good as the 21/23 mer AD-58632 (see FIG. 25).


The effects of modifying the length and overhangs on the best two 19-19mers (AD-59115 and AD-59125) were investigated (FIGS. 26 and 27). The modified sequences are shown in Table 21.









TABLE 21







Sequences for length/overhang evaluation of best two 19-19mers
















Target









sites of



SEQ
anti-



ID
sense



NO:
sequence


SEQ ID NO:
(anti-
on
Cross
Over-
Duplex

Antisense (AS)


(sense)
sense)
NM_000688.4
reactivity
hang
Name
Sense Sequence (5′-3′)
Sequence (5′-3′)





4172
4173
877-895
h/rh/m/r
19/19
AD-
AfsasGfaGfuGfuCfUfC
asAfsgAfaGfaUfgAfgacAfc







59115
faUfcUfuCfuUfL96
Ufcsusu





4174
4175
875-895
h/rh/m/r
19/21
AD-
AfsasGfaGfuGfuCfUfC
asAfsgAfaGfaUfgAfgacAfc







60090
faUfcUfuCfuUfL96
UfcUfususc





4176
4177
877-895
NC OH*
19/21
AD-
AfsasGfaGfuGfuCfUfC
asAfsgAfaGfaUfgAfgacAfc







60091
faUfcUfuCfuUfL96
UfcUfusasa





4178
4179
873-895
h/rh/m/r
21/23
AD-
GfsasAfaGfaGfuGfUfC
asAfsgAfaGfaUfgAfgacAfcU







58632
fuCfaUfcUfuCfuUfL96
fcUfuUfcsusg





4180
4181
875-895
NC OH*
21/23
AD-
GfsasAfaGfaGfuGfUfC
asAfsgAfaGfaUfgAfgacAfcU







60092
fuCfaUfcUfuCfuUfL96
fcUfuUfcsasa





4182
4183
875-893
h/rh/m/r
19/19
AD-
GfsasAfaGfaGfuGfUfC
usAfsaGfaUfgAfgAfcacUfcU







59129
fuCfaUfcUfuAfL96
fususc





4184
4185
873-893
h/rh/m/r
19/21
AD-
GfsasAfaGfaGfuGfUfC
usAfsaGfaUfgAfgAfcacUfcU







60093
fuCfaUfcUfuAfL96
fuUfcsusg





4186
4187
875-893
NC OH*
19/21
AD-
GfsasAfaGfaGfuGfUfC
usAfsaGfaUfgAfgAfcacUfcU







60094
fuCfaUfcUfuAfL96
fuUfcsasa





4188
4189
871-893
h/rh
21/23
AD-
CfsasGfaAfaGfaGfuGfUfC
usAfsaGfaUfgAfgAfcacUfcU







60095
fuCfaUfcUfuAfL96
fuUfcUfgsgsu





4190
4191
871-893
m/r
21/23
AD-
CfsasGfaAfaGfaGfuGfUfC
usAfsaGfaUfgAfgAfcacUfcUfu







60096
fuCfaUfcUfuAfL96
UfcUfgsgsc





*Non-complementary overhang






Overhangs improved potency. They also provided a further derivative sequence (AD-60489, which was based on AD-60095) for further structure activity relationship (SAR) studies (1 mismatch at pos23 to rodent).


Example 19: Effects of ALAS1 siRNA GalNAc Conjugates AD-60489 and AD-58632

The effects of a further GalNAc conjugate ALAS1 siRNA duplex AD-60489 were investigated and compared with the effects of AD-58632. The sequences of these duplexes are shown in Table 22A. AD-60489 has a single mismatch to rodent ALAS1 mRNA at the 3′ end of the antisense sequence. Thus, whereas AD-58632 is fully complementary with human, cynomolgous monkey, mouse, and rat sequences, AD-60489 is fully complementary only with human and cynomolgous monkey sequences.









TABLE 22A







Sequences of ALAS1 siRNA Duplexes AD-58632 and AD-60489













SEQ
Target






ID
sites of


SEQ
NO:
antisense


ID NO:
(anti-
sequence on
Duplex


(sense)
sense)
NM_000688.4
Name
Sense Sequence (5′-3′)
Antisense Sequence (5′-3′)





4149
4150
873-895
AD-
GfsasAfaGfaGfuGfUfCfuCfaUfcUfuCfuUf
asAfsgAfaGfaUfgAfgacAfcUfcUfuUfcs





58632
L96
usg





4151
4152
871-893
AD-
CfsasGfaAfaGfaGfUfGfuCfuCfaUfcUfuAf
usAfsaGfaUfgAfgAfcacUfcUfuUfcUfgs





60489
L96
gsu









The suppression of ALAS1 mRNA is shown in FIG. 28. Compared with AD-58632, AD-60489 provided more effective suppression at 3 mg/kg and 10 mg/kg and exhibited about a two fold improvement in ED50. The single dose ED50 of AD-60489 was about 5 mg/kg.


Example 20: Effects of ALAS1 siRNA GalNAc Conjugates AD-60489 and AD-58632 in Non-Human Primate Studies

The effectiveness of AD-58632 and AD-60489 in suppressing liver mRNA was investigated in non-human primates. The experimental design is shown in FIG. 29. Doses of siRNA (5 mg/kg, 2.5 mg/kg, or 1.25 mg/kg) or PBS control in a volume of 2 mL/kg were administered subcutaneously every day for 5 days, then every 2 days for 3 weeks. ALAS1 mRNA silencing was evaluated in liver tissue obtained from a liver biopsy taken on day 15. The biopsy was taken after a serum draw and prior to the administration of dose 10 (see FIG. 29). Serum samples for the circulating extracellular RNA detection (cERD) method (see Example 21) were collected on days −10, −3, 7, 15, 23, 31, and 43. Serum was collected for a clinical chemistry panel on days −3, 6, 30, and 43. The clinical chemistry panel included assessment of the levels of alanine aminotransferase (ALT), aspartate aminotransferase (AST), and alkaline phosphatase (ALP).


AD-58632 and AD-60489 suppressed ALAS1 mRNA in liver in a dose-dependent manner (see FIG. 30). AD-60489 showed greater efficacy than did AD-58632. For example, at the lowest dose studied (1.25 mg/kg), AD-60489 suppressed the relative ALAS1 message to about 42% of the control level, whereas AD-58632 showed little suppression at this dose. At 2.5 mg/kg, AD-60489 suppressed the relative ALAS1 message to about 26% of the control level, whereas AD-58632 suppressed the relative ALAS1 message to about 64% of the control level. At 5 mg/kg, AD-60489 suppressed the relative ALAS1 message to about 21% of the control level, and AD-58632 suppressed the relative ALAS1 message to about 55% of the control level.


Clinical chemistry results indicated that the sustained knockdown of ALAS1 using the ALAS1 siRNAs was safe and well tolerated. No elevations in ALT, AST, or ALP were observed.


Example 21: Effects of ALAS1 siRNA GalNAc Conjugates AD-60489 and AD-58632 in Non-Human Primate Studies as Assessed Using the cERD Assay

The effects of ALAS1 siRNA GalNAc conjugates AD-60489 and AD-58632 were assessed in non-human primates using the circulating extracellular RNA detection (cERD) method. This method is described, e.g., in Sehgal, A. et al. Quantitation of tissue-specific target gene modulation using circulating RNA (Poster presented on Feb. 9, 2012 at the Keystone Gene Silencing by small RNAs symposium (Vancouver, Feb. 7-12, 2012) and in Sehgal, A. et al. Tissue-specific gene silencing monitored in circulating RNA, RNA, 20: 1-7, published online Dec. 19, 2013. As is shown in FIG. 29, serum samples for the circulating extracellular RNA detection (cERD) method were collected on days −10, −3, 7, 15, 23, 31, and 43.


For the cERD assay, serum samples were thawed on ice. 375-400 μL of 8M LiCl was added to 3-3.5 mL of serum in ultracentrifuge (UC) tubes, and incubated at a temperature of 4° C. for at least 1 hour. PBS was added to the top of each UC tube, leaving about 1 cm of dry space at the top of the tube to prevent walls of tubes from collapsing during spin. The tubes were dried to remove any condensation from being incubated on ice. Samples were loaded into an MC 55 Rotor under a hood, and the samples were spun at 150,000-200,000 g for 100-120 minutes. The supernatant was discarded from the pellet. 1 mL Trizol was added to the pellet in the UC tube, the tube was vortexed, and the contents were transferred to a 1.5 mL microcentrifuge tube. To each tube, 200 μL of chloroform was added, and the tube was inverted several times to mix. One sample was prepared at a time. The samples were spun at 13,000 RPM for 10-20 minutes at 4° C. The upper aqueous phase was transferred to a fresh 1.5 mL tube (˜500 μL volume). An equal volume of 100% isopropanol, 1 μL of linear acrylamide (4°), and 1/10th volume of 3M NaoAc pH 5.5 or less was added to each sample (typically 500 μL of isopropanol and 50 μL NaoAc). The sample was spun at 13,000 RPM for 10 min at 4° C. Supernatants were reserved. The pellet was washed twice with ice cold 70% EtOH (500 μL each wash) and spun at 13,000 RPM for ˜5 min. at 4° C. after each wash. The pellet was allowed to air dry for ˜5 minutes and then resuspended in 20 μL NF H2O. 10 μL was used in cDNA reaction. The resuspended RNA was stored at −80° C.


Results


The serum mRNA knockdown as assessed using the cERD assay correlated with the results obtained from the liver biopsy. See FIG. 31. This is a surprising result, because ALAS1 is not a serum protein. The cERD assay provided herein allows monitoring of circulating ALAS1 mRNA. This has the advantage, for example, that the levels of ALAS1 mRNA can be measured over time without doing serial liver biopsies, which would be technically difficult and expensive.


The kinetics of mRNA knockdown were determined using the cERD assay results. See FIG. 32. AD-60489 achieved greater than 50% knockdown, even at a dose of only 1.25 mg/kg.


Example 22: Safety Studies of ALAS1 siRNAs

The following safety studies indicate that sustained knockdown of ALAS1 is safe and well tolerated.


Non-Human Primate Studies


As described above (see Example 20), in non-human primate studies, no ALT, AST, or ALP elevations were observed after administration of AD-60489 and AD-58632.


Rat Studies


In rats, a four week study was carried out with AD-58632. The siRNA was administered every day for 5 days at 10 mg/kg in the first week, then every other day at 10 mg/kg for weeks 2-4 of the study. The total exposure was 140 mg. No adverse clinical signs or body weight changes were observed. No test article related changes in hematology or coagulation parameters were observed. Furthermore, no adverse histopathology was observed. There was minimal vacuolation in spleen and minimal subcapsular fibrosis in kidney.


Mouse Studies


In mice, P450 mRNAs were assessed after ALAS1 knockdown. Minor dose dependent increases in Cyp2b10 were observed at 48 hours after administration of an ALAS1 LNP formulation. This resolved by 168 hours.


Example 23: Identification of Further Effective ALAS1 siRNAs Using Structure Activity Relationship Studies

Structure activity relationship (SAR) studies, including studies described in other examples herein, were carried out to identify further effective ALAS1 siRNAs derived from those that have already been identified, e.g., AD-58632 and AD-60489. Effects of chemical modifications were investigated. Chemical modifications include 1) 2′-O-methyl versus 2′-fluoro modifications, 2) Decrease in 2′Uf (2′fluoro modifications), 3) Add PS (phosphorothioate), 4) Use internal dTs, and/or 5) glycol nucleic acids (GNAs). Without wishing to be bound by theory, modifications can enhance potency, e.g., through 1) better unwinding or enhanced RISC loading, or 2) better catalytic target engagement. Modifications can also enhance stability so that compounds can accumulate and perform better when multiple doses are administered.


Improved activity relative to other duplexes (e.g., AD-58632 and/or AD-60489) was observed in some instances (see Table 22B), whereas similar activity (see Table 23) or reduced activity (Table 24) was observed in other instances. These instances are merely presented as examples based on the screening of more than 150 siRNAs. Further exemplification of SAR studies is provided herein.









TABLE 22B







Improved Activity Relative to Parent










Duplex*
IC50
Sense (5′ to 3′)
Antisense (5′ to 3′)





AD-
0.017
GfsasAfaGfaGfuGfUfCfuCfaUfcUfuCfuUfL96 (SEQ ID
asAfsgAfaGfaUfgAfgacAfcUfcUfuUfcsusg (SEQ


58632.10

NO: 4192)
ID NO: 4193)


(parent)





AD-
0.004
GfsasAfaGfAfGfuGfdTcucaucuucuuL96 (SEQ ID NO:
asAfsgAfaGfaugAfgAfcAfcucuuucsusg (SEQ ID


80643.1

4194)
NO: 4195)





AD-
0.010
CfsasGfaAfaGfaGfUfGfuCfuCfaUfcUfuAfL96 (SEQ ID
usAfsaGfaUfgAfgAfcacUfcUfuUfcUfgsgsu


60489.3

NO: 4196)
(SEQ ID NO: 4197)


(parent)





AD-
0.001
CfsasGfaAfaGfaGfdTGfuCfuCf(Agn)UfscUfsuAfsL96
usAfsaGfaUfgAfgAfcacUfcdTuUfcUfgsgsu


60879.1

(SEQ ID NO: 4198)
(SEQ ID NO: 4199)





*The number following the decimal point in a duplex name in this and other tables merely refers to a batch production number.













TABLE 23







Similar Activity Relative to Parent but Increased Stability










Duplex
IC50
Sense (5′ to 3′)
Antisense (5′ to 3′)





AD-
0.017
GfsasAfaGfaGfuGfUfCfuCfaUfcUfuCfuUfL96
asAfsgAfaGfaUfgAfgacAfcUfcUfuUfcsusg (SEQ


58632.10

(SEQ ID NO: 4200)
ID NO: 4201)


(parent)





AD-
0.014
gsasaagaGfuGfuCfucaucuucuuL96 (SEQ ID
asAfsgAfaGfaugAfgacAfcucuuucsusg (SEQ ID


60839.1

NO: 4202)
NO: 4203)
















TABLE 24







Reduced Activity Relative to Parent










Duplex
IC50
Sense (5′ to 3′)
Antisense (5′ to 3′)





AD-
0.017
GfsasAfaGfaGfuGfUfCfuCfaUfcUfuCfuUfL96
asAfsgAfaGfaUfgAfgacAfcUfcUfuUfcsusg (SEQ


58632.10

(SEQ ID NO: 4204)
ID NO: 4205)


(parent)





AD-
0.801
GfsasAfaGfAfGfuGfdTcucaucuucuuL96
asAfsgAf(Agn)GfaUfgAfgacAfcUfcUfuUfcsusg


60886.1

(SEQ ID NO: 4206)
(SEQ ID NO: 4207)









Example 24: In Vitro Structure Activity Relationship Studies of AD-58632

AD-58632 and siRNA derivatives of AD-58632 were generated, and some siRNAs were screened in vitro for activity. Abbreviations for chemical modifications are provided in Table 1.


In Vitro Activity at 10 nM and 0.1 nM siRNA


The in vitro activity of the siRNAs in suppressing ALAS1 mRNA was tested in in Hep3B cells that were transfected using Lipofectamine2000 as a transfection reagent. Experiments were performed at the indicated siRNA concentrations (e.g., 0.1 nM, 10 nM) and analyzed by branched DNA (bDNA) assay at 24 hours post-transfection. The results are expressed as percent remaining mRNA relative to the siRNA AD-1955, a non-targeting siRNA that was used as a negative control.


Sequences of siRNAs and results of in vitro testing are provided in Table 25, Table 26, and Table 27.









TABLE 25







Sequences and in vitro screen results for AD-58632 and AD-58632 derivative siRNAs


















Target











sites of



SEQ
antisense


SEQ ID
ID NO:
seq


NO:
(anti-
on



Avg
SD
Avg
SD


(sense)
sense)
NM_000688.4
Duplex
Sense Sequence (5′-3′)
Antisense (AS) Sequence (5′-3′)
10 nM
10 nM
0.1 nM
0.1 nM



















4208
4209
873-895
AD-58632.8
GfsasAfaGfaGfuGfUfCfuCfaUfcUfuCfuUfL96
asAfsgAfaGfaUfgAfgacAfcUfcUfuUfcsusg
11.79
2.70
46.65
4.21





4210
4211
873-895
AD-60405.1
GfsasAfaGfaGfuGfuCfuCfaucuuCfuuL96
asAfsgAfaGfaUfgAfgacAfcUfcUfuUfcsusg
15.61
4.49
63.49
10.51





4212
4213
873-895
AD-60411.1
GfsasAfaGfaGfuGfuCfuCfaucuucuuL96
asAfsGfAfaGfaUfgAfgAfcAfcUfcUfuUfcsusg
15.04
6.13
62.59
10.05





4214
4215
873-895
AD-60417.1
GfsasaagaGfuGfuCfuCfaucuucuuL96
asAfsGfAfaGfaUfgAfgAfcAfcUfcUfuUfcsusg
13.96
5.47
66.10
8.21





4216
4217
873-895
AD-60423.1
gsasaagaGfuGfuCfuCfaucuucuuL96
asAfsGfAfaGfaUfgAfgAfcAfcUfcUfuUfcsusg
12.59
3.03
41.47
3.77





4218
4219
873-895
AD-60423.2
gsasaagaGfuGfuCfuCfaucuucuuL96
asAfsGfAfaGfaUfgAfgAfcAfcUfcUfuUfcsusg
13.79
3.38
55.93
7.90





4220
4221
873-895
AD-60434.1
gsasaagaGfuGfuCfucaucuucuuL96
asAfsGfAfaGfaUfgAfgAfcAfcUfcUfuUfcsusg
14.74
2.76
48.68
6.64





4222
4223
873-895
AD-60440.1
gsasaagaGfuGfucucaucuucuuL96
asAfsGfAfaGfaUfgAfgAfcAfcUfcUfuUfcsusg
28.31
8.68
77.01
3.99





4224
4225
873-895
AD-60400.1
gsasaagaguGfucucaucuucuuL96
asAfsGfAfaGfaUfgAfgAfcAfcUfcUfuUfcsusg
39.90
5.67
99.64
8.58





4226
4227
873-895
AD-60406.1
gsasaagagugucucaucuucuuL96
asAfsGfAfaGfaUfgAfgAfcAfcUfcUfuUfcsusg
56.06
2.08
95.83
17.01





4228
4229
873-895
AD-60412.1
GfsasaagaGfuGfucucaucuucuuL96
asAfsGfAfaGfaUfgAfgAfcAfcUfcUfuUfcsusg
43.09
2.23
87.52
8.10





4230
4231
873-895
AD-60418.1
gsasaagaGfuGfucucaucuucuuL96
asAfsGfAfaGfaUfgAfgAfcAfcucUfuUfcsusg
65.84
7.75
108.07
21.88





4232
4233
873-895
AD-60424.1
gsasaagaGfuGfucucaucuucuuL96
asAfsGfAfaGfaUfgAfgAfcAfcucuuUfcsusg
45.51
11.82
84.40
10.69





4234
4235
873-895
AD-60429.1
gsasaagaGfuGfucucaucuucuuL96
asAfsGfAfaGfaUfgAfgAfcAfcucuuucsusg
63.96
13.25
81.21
1.96





4236
4237
873-895
AD-60435.1
gsasaagaGfuGfucucaucuucuuL96
asAfsGfAfaGfaugAfgAfcAfcucuuucsusg
80.12
10.02
95.33
23.09





4238
4239
873-895
AD-60441.1
gsasaaGfaGfuGfucucaucuucuuL96
asAfsGfAfaGfaugAfgAfcAfcucuuucsusg
63.29
17.48
97.07
8.04





4240
4241
873-895
AD-60401.1
gsasaaGfAfGfuGfucucaucuucuuL96
asAfsGfAfaGfaugAfgAfcAfcucuuucsusg
55.27
10.26
109.06
4.23





4242
4243
873-895
AD-60407.1
GfsasaaGfAfGfuGfucucaucuucuuL96
asAfsGfAfaGfaugAfgAfcAfcucuuucsusg
47.39
1.88
98.04
22.58





4244
4245
873-895
AD-60413.1
GfsasAfaGfAfGfuGfucucaucuucuuL96
asAfsGfAfaGfaugAfgAfcAfcucuuucsusg
55.60
11.65
92.88
5.65





4246
4247
873-895
AD-60419.1
GfsasAfaGfAfGfuGfdTcucaucuucuuL96
asAfsGfAfaGfaugAfgAfcAfcucuuucsusg
20.82
15.07
57.82
8.31





4248
4249
873-895
AD-60425.1
GfsasAfaGfAfGfuGfudCucaucuucuuL96
asAfsGfAfaGfaugAfgAfcAfcucuuucsusg
35.58
13.30
73.46
10.91





4250
4251
873-895
AD-60430.1
GfsasAfaGfAfGfuGfucdTcaucuucuuL96
asAfsGfAfaGfaugAfgAfcAfcucuuucsusg
40.54
1.41
81.87
11.23





4252
4253
873-895
AD-60436.1
GfsasAfaGfAfGfuGfucudCaucuucuuL96
asAfsGfAfaGfaugAfgAfcAfcucuuucsusg
60.12
11.74
81.51
7.41





4254
4255
873-895
AD-60442.1
GfsasAfaGfAfGfuGfucucdAucuucuuL96
asAfsGfAfaGfaugAfgAfcAfcucuuucsusg
40.82
12.61
83.06
1.05





4256
4257
873-895
AD-60402.1
GfsasAfaGfAfGfuGfucucadTcuucuuL96
asAfsGfAfaGfaugAfgAfcAfcucuuucsusg
62.16
11.24
123.60
6.71





4258
4259
873-895
AD-60408.1
GfsasAfaGfAfGfuGfucucaudCuucuuL96
asAfsGfAfaGfaugAfgAfcAfcucuuucsusg
45.39
15.50
86.69
6.12





4260
4261
873-895
AD-60414.1
GfsasAfaGfAfGfuGfucucaucudTcuuL96
asAfsGfAfaGfaugAfgAfcAfcucuuucsusg
32.56
3.52
84.21
0.24





4262
4263
873-895
AD-60420.1
GfsasAfaGfAfGfuGfucucaucuudCuuL96
asAfsGfAfaGfaugAfgAfcAfcucuuucsusg
52.57
10.77
94.45
3.43





4264
4265
873-895
AD-60426.1
GfsasAfaGfAfGfuGfucucaucuucudTL96
asAfsGfAfaGfaugAfgAfcAfcucuuucsusg
52.49
1.91
91.15
14.49





4266
4267
873-895
AD-60431.1
gsasaaGfaGfuGfudCudCaucuucuuL96
asAfsGfAfaGfaugAfgAfcAfcucuuucsusg
26.66
1.16
73.09
6.83





4268
4269
873-895
AD-60437.1
gsasaaGfaGfuGfudCucadTcuucuuL96
asAfsGfAfaGfaugAfgAfcAfcucuuucsusg
32.80
4.58
69.03
3.02





4270
4271
873-895
AD-60443.1
gsasaaGfaGfuGfudCucaucdTucuuL96
asAfsGfAfaGfaugAfgAfcAfcucuuucsusg
35.10
7.10
69.92
17.93





4272
4273
873-895
AD-60403.1
gsasaaGfaGfuGfudCudCaucdTucuuL96
asAfsGfAfaGfaugAfgAfcAfcucuuucsusg
25.28
1.68
105.23
23.99





4274
4275
873-895
AD-60409.1
gsasaaGfaGfuGfudCudCadTcdTucuuL96
asAfsGfAfaGfaugAfgAfcAfcucuuucsusg
30.48
1.88
72.34
3.34





4276
4277
873-895
AD-60415.1
gsasaaGfaGfuGfudCudCadTcdTudCuuL96
asAfsGfAfaGfaugAfgAfcAfcucuuucsusg
25.28
7.10
69.53
10.72





4278
4279
873-895
AD-60421.1
gsasaaGfaGfuGfucucaucuucuuL96
asAfsGfAfaGfadTgAfgAfcAfcucuuucsusg
59.28
5.83
66.88
0.63





4280
4281
873-895
AD-60427.1
gsasaaGfaGfuGfucucaucuucuuL96
asAfsGfAfaGfaugAfgAfcAfcdTcuuucsusg
34.80
8.13
79.65
11.25





4282
4283
873-895
AD-60432.1
gsasaaGfaGfuGfucucaucuucuuL96
asAfsGfAfaGfaugAfgAfcAfcucdTuucsusg
46.78
6.42
79.19
16.72





4284
4285
873-895
AD-60438.1
gsasaaGfaGfuGfucucaucuucuuL96
asAfsGfAfaGfadTgAfgAfcAfcdTcuuucsusg
32.07
9.46
57.87
10.18





4286
4287
873-895
AD-60444.1
gsasaaGfaGfuGfucucaucuucuuL96
asAfsGfAfaGfadTgAfgAfcAfcucdTuucsusg
55.55
10.17
89.52
3.91





4288
4289
873-895
AD-60404.1
gsasaaGfaGfuGfucucaucuucuuL96
asAfsGfAfaGfa(Tgn)gAfgAfcAfcucuuucsusg
50.06
9.17
93.46
2.56





4290
4291
873-895
AD-60410.1
gsasaaGfaGfuGfucucaucuucuuL96
asAfsGfAfaGfaugAfgAfcAfc(Tgn)cuuucsusg
44.40
13.93
88.96
6.06





4292
4293
873-895
AD-60416.1
gsasaaGfaGfuGfucucaucuucuuL96
asAfsGfAfaGfaugAfgAfcAfcuc(Tgn)uucsusg
28.56
7.82
76.36
19.47





4294
4295
873-895
AD-60422.1
GfsasAfaGfAfGfuGf(Tgn)cucaucuucuuL96
asAfsGfAfaGfaugAfgAfcAfcucuuucsusg
40.37
10.86
84.06
12.08





4296
4297
873-895
AD-60428.1
GfsasAfaGfAfGfuGfuc(Tgn)caucuucuuL96
asAfsGfAfaGfaugAfgAfcAfcucuuucsusg
56.81
22.64
92.15
0.26





4298
4299
873-895
AD-60433.1
GfsasAfaGfAfGfuGfucuc(Agn)ucuucuuL96
asAfsGfAfaGfaugAfgAfcAfcucuuucsusg
36.78
5.31
67.92
12.55





4300
4301
873-895
AD-60439.1
GfsasAfaGfAfGfuGfucuca(Tgn)cuucuuL96
asAfsGfAfaGfaugAfgAfcAfcucuuucsusg
32.81
6.72
77.93
13.33





4302
4303
873-895
AD-60445.1
GfsasAfaGfAfGfuGfucucauc(Tgn)ucuuL96
asAfsGfAfaGfaugAfgAfcAfcucuuucsusg
13.25
3.28
78.08
4.05





4304
4305
873-895
AD-60451.1
GfsasAfaGfAfGfuGfucucaucu(Tgn)cuuL96
asAfsGfAfaGfaugAfgAfcAfcucuuucsusg
34.74
11.06
88.93
5.19





4306
4307
873-895
AD-60457.1
GfsasAfaGfAfGfuGfucucaucuuc(Tgn)uL96
asAfsGfAfaGfaugAfgAfcAfcucuuucsusg
41.26
6.16
92.15
0.64





4308
4309
873-895
AD-60463.1
GfsasAfaGfaGfuGfUfCfuCfaUfcUfuCfuAfL96
usAfsgAfaGfaUfgAfgacAfcUfcUfuUfcsusg
19.58
7.98
69.67
4.64





4310
4311
873-895
AD-60469.1
CfsasAfaGfaGfuGfUfCfuCfaUfcUfuCfuUfL96
asAfsgAfaGfaUfgAfgacAfcUfcUfuUfgsasc
19.35
9.30
72.30
0.50





4312
4313
873-895
AD-60474.1
CfsusAfaGfaGfuGfUfCfuCfaUfcUfuCfuUfL96
asAfsgAfaGfaUfgAfgacAfcUfcUfuAfgsasc
21.60
4.27
76.35
11.71





4314
4315
873-895
AD-60479.1
CfsusUfaGfaGfuGfUfCfuCfaUfcUfuCfuUfL96
asAfsgAfaGfaUfgAfgacAfcUfcUfaAfgsasc
28.01
4.45
76.55
27.32





4316
4317
873-895
AD-60484.1
CfsusUfaGfaGfuGfUfCfuCfaUfcUfuCfuUfL96
asAfsgAfaGfaUfgAfgacAfcUfcUfaAfgsusg
20.31
3.08
71.99
9.53





4318
4319
873-895
AD-60446.1
GfsusUfuGfaGfuGfUfCfuCfaUfcUfuCfuUfL96
asAfsgAfaGfaUfgAfgacAfcUfcAfaAfcsusg
18.65
5.11
73.52
17.87





4320
4321
873-895
AD-60452.1
GfsasUfuCfaGfuGfUfCfuCfaUfcUfuCfuUfL96
asAfsgAfaGfaUfgAfgacAfcUfgAfaUfcsusg
28.72
1.21
83.09
15.75





4322
4323
873-895
AD-60458.1
GfsasAfuCfuGfuGfUfCfuCfaUfcUfuCfuUfL96
asAfsgAfaGfaUfgAfgacAfcAfgAfuUfcsusg
50.15
13.02
114.93
11.58





4324
4325
873-895
AD-60464.1
GfsasAfaGfaGfuGfUfCfuCfaUfcUfuCfuUfL96
(Agn)AfsgAfaGfaUfgAfgacAfcUfcUfuUfcsusg
35.71
5.07
103.88
3.01





4326
4327
873-895
AD-60470.1
GfsasAfaGfaGfuGfUfCfuCfaUfcUfuCfuUfL96
asAfs(Ggn)AfaGfaUfgAfgacAfcUfcUfuUfcsusg
17.59
0.78
73.15
11.75





4328
4329
873-895
AD-60475.1
GfsasAfaGfaGfuGfUfCfuCfaUfcUfuCfuUfL96
asAfsg(Agn)aGfaUfgAfgacAfcUfcUfuUfcsusg
22.07
4.57
68.64
25.12





4330
4331
873-895
AD-60480.1
GfsasAfaGfaGfuGfUfCfuCfaUfcUfuCfuUfL96
asAfsgAf(Agn)GfaUfgAfgacAfcUfcUfuUfcsusg
15.54
1.22
66.39
14.34





4332
4333
873-895
n/a
GfsasAfaGfaGfuGfUfCfuCfaUfcUfuCfuUfL96
asAfsgAfa(Ggn)aUfgAfgacAfcUfcUfuUfcsusg





4334
4335
873-895
AD-60447.1
GfsasAfaGfaGfuGfUfCfuCfaUfcUfuCfuUfL96
asAfsgAfaGf(Agn)UfgAfgacAfcUfcUfuUfcsusg
31.33
4.75
104.36
7.71





4336
4337
873-895
AD-60453.1
GfsasAfaGfaGfuGfUfCfuCfaUfcUfuCfuUfL96
asAfsgAfaGfa(Tgn)gAfgacAfcUfcUfuUfcsusg
15.42
0.90
76.29
0.41





4338
4339
873-895
AD-60459.1
GfsasAfaGfaGfuGfUfCfuCfaUfcUfuCfuUfL96
asAfsgAfaGfaUf(Ggn)AfgacAfcUfcUfuUfcsusg
27.70
10.91
89.20
3.46





4340
4341
873-895
AD-60465.1
GfsasAfaGfaGfuGfUfCfuCfaUfcUfuCfuUfL96
asAfsgAfaGfaUfg(Agn)gacAfcUfcUfuUfcsusg
28.44
6.84
87.28
5.73





4342
4343
873-895
AD-60471.1
GfsasAfaGfaGfuGfUfCfuCfaUfcUfuCfuUfL96
asAfsgAfaGfaUfgAf(Ggn)acAfcUfcUfuUfcsusg
24.03
8.87
85.86
14.62





4344
4345
873-895
AD-60476.1
GfsasAfaGfaGfuGfUfCfuCfaUfcUfuCfuUfL96
asAfsgAfaGfaUfgAfg(Agn)cAfcUfcUfuUfcsusg
21.48
5.53
88.73
25.48





4346
4347
873-895
AD-60481.1
GfsasAfaGfaGfuGfUfCfuCfaUfcUfuCfu(Tgn)L96
asAfsgAfaGfaUfgAfgacAfcUfcUfuUfcsusg
15.18
4.19
68.10
6.86





4348
4349
873-895
AD-60486.1
GfsasAfaGfaGfuGfUfCfuCfaUfcUfuCf(Tgn)UfL96
asAfsgAfaGfaUfgAfgacAfcUfcUfuUfcsusg
15.31
0.31
74.06
8.48





4350
4351
873-895
AD-60448.1
GfsasAfaGfaGfuGfUfCfuCfaUfcUfu(Cgn)uUfL96
asAfsgAfaGfaUfgAfgacAfcUfcUfuUfcsusg
14.89
1.35
59.22
6.64





4352
4353
873-895
AD-60454.1
GfsasAfaGfaGfuGfUfCfuCfaUfcUf(Tgn)CfuUfL96
asAfsgAfaGfaUfgAfgacAfcUfcUfuUfcsusg
19.24
5.72
75.90
1.27





4354
4355
873-895
AD-60460.1
GfsasAfaGfaGfuGfUfCfuCfaUfc(Tgn)uCfuUfL96
asAfsgAfaGfaUfgAfgacAfcUfcUfuUfcsusg
14.91
5.84
60.11
6.01





4356
4357
873-895
AD-60466.1
GfsasAfaGfaGfuGfUfCfuCfaUf(Cgn)UfuCfuUfL96
asAfsgAfaGfaUfgAfgacAfcUfcUfuUfcsusg
13.99
7.53
56.83
11.59





4358
4359
873-895
AD-60472.1
GfsasAfaGfaGfuGfUfCfuCfa(Tgn)cUfuCfuUfL96
asAfsgAfaGfaUfgAfgacAfcUfcUfuUfcsusg
12.35
0.60
64.36
11.74





4360
4361
873-895
AD-60477.1
GfsasAfaGfaGfuGfUfCfuCf(Agn)UfcUfuCfuUfL96
asAfsgAfaGfaUfgAfgacAfcUfcUfuUfcsusg
15.62
1.76
65.96
7.77





4362
4363
873-895
AD-60482.1
GfsasAfaGfaGfuGfUfCfu(Cgn)aUfcUfuCfuUfL96
asAfsgAfaGfaUfgAfgacAfcUfcUfuUfcsusg
18.58
6.43
66.67
2.31





4364
4365
873-895
AD-60487.1
GfsasAfaGfaGfuGfUfCf(Tgn)CfaUfcUfuCfuUfL96
asAfsgAfaGfaUfgAfgacAfcUfcUfuUfcsusg
34.89
15.62
86.39
6.10





4366
4367
873-895
AD-60449.1
GfsasAfaGfaGfuGfUf(Cgn)uCfaUfcUfuCfuUfL96
asAfsgAfaGfaUfgAfgacAfcUfcUfuUfcsusg
22.65

80.09
0.75





4368
4369
873-895
AD-60455.1
GfsasAfaGfaGfuGf(Tgn)CfuCfaUfcUfuCfuUfL96
asAfsgAfaGfaUfgAfgacAfcUfcUfuUfcsusg
31.05
2.82
104.24
23.01





4370
4371
873-895
AD-60461.1
GfsasAfaGfaGfuGfUfCfuCfaUfcUfu(Cgn)uUfL96
asAfs(Ggn)AfaGfaUfgAfgacAfcUfcUfuUfcsusg
16.30
2.08
85.78
22.00





4372
4373
873-895
AD-60467.1
GfsasAfaGfaGfuGfUfCfuCfaUfcUf(Tgn)CfuUfL96
asAfsg(Agn)aGfaUfgAfgacAfcUfcUfuUfcsusg
17.77
8.38
82.16
18.92





4374
4375
873-895
AD-60473.1
GfsasAfaGfaGfuGfUfCfuCfaUfc(Tgn)uCfuUfL96
asAfsgAf(Agn)GfaUfgAfgacAfcUfcUfuUfcsusg
14.64
4.25
61.05
7.88





4376
4377
873-895
n/a
GfsasAfaGfaGfuGfUfCfuCfaUf(Cgn)UfuCfuUfL96
asAfsgAfa(Ggn)aUfgAfgacAfcUfcUfuUfcsusg





4378
4379
873-895
AD-60483.1
GfsasAfaGfaGfuGfUfCfuCfa(Tgn)cUfuCfuUfL96
asAfsgAfaGf(Agn)UfgAfgacAfcUfcUfuUfcsusg
26.18
2.83
91.12
16.03





4380
4381
873-895
AD-60488.1
GfsasAfaGfaGfuGfUfCfuCf(Agn)UfcUfuCfuUfL96
asAfsgAfaGfa(Tgn)gAfgacAfcUfcUfuUfcsusg
24.74
0.56
87.66
7.90





4382
4383
873-895
AD-60450.1
GfsasAfaGfaGfuGfUfCfu(Cgn)aUfcUfuCfuUfL96
asAfsgAfaGfaUf(Ggn)AfgacAfcUfcUfuUfcsusg
37.09
2.89
111.90
1.97





4384
4385
873-895
AD-60456.1
GfsasAfaGfaGfuGfUfCf(Tgn)CfaUfcUfuCfuUfL96
asAfsgAfaGfaUfg(Agn)gacAfcUfcUfuUfcsusg
41.82
0.60
102.56
11.25





4386
4387
873-895
AD-60462.1
GfsasAfaGfaGfuGfUf(Cgn)uCfaUfcUfuCfuUfL96
asAfsgAfaGfaUfgAf(Ggn)acAfcUfcUfuUfcsusg
38.91
3.89
122.47
35.17





4388
4389
873-895
AD-60468.1
GfsasAfaGfaGfuGf(Tgn)CfuCfaUfcUfuCfuUfL96
asAfsgAfaGfaUfgAfg(Agn)cAfcUfcUfuUfcsusg
28.44
3.05
97.09
2.66





4390
4391
873-895
AD-60550.1
GfsasAfaGfaGfuGfUfCfuCfaUfcUfuCfuUfsL96
asAfsgAfaGfaUfgAfgacAfcUfcUfuUfcsusg
20.35
0.63
69.13
22.65





4392
4393
873-895
AD-60555.1
GfsasAfaGfaGfuGfUfCfuCfaUfscUfsuCfuUfsL96
asAfsgAfaGfaUfgAfgacAfcUfcUfuUfcsusg
19.17
8.76
68.86
17.72





4394
4395
873-895
AD-60560.1
GfsasAfaGfaGfuGfUfCfuCfaUfcUfuCfuUfsL96
asAfsgAfaGfaUfgAfgacAfcUfscUfsuUfscsusg
25.71
5.66
67.63
27.72





4396
4397
873-895
AD-60565.1
GfsasAfaGfaGfuGfUfCfuCfaUfscUfsuCfuUfsL96
asAfsgAfaGfaUfgAfgacAfcUfscUfsuUfscsusg
22.78
7.32
74.11
1.85









As is shown in the table above, in this in vitro screen, the siRNAs that provided the greatest ALAS1 mRNA suppression (greater than 80% suppression, such that less than 20% mRNA was remaining) at 10 nM concentration included AD-58632, AD-60472, AD-60423, AD-60445, AD-60423, AD-60417, AD-60466, AD-60473, AD-60434, AD-60448, AD-60460, AD-60411, AD-60481, AD-60486, and AD-60453, AD-60480, AD-60405, AD-60477, AD-60461, AD-60470, AD-60467, AD-60482, AD-60446, AD-60555, AD-60454, AD-60469 and AD-60463. Furthermore, in this in vitro screen, the siRNAs that provided the greatest ALAS1 mRNA suppression (greater than 30% suppression, such that less than 70% mRNA was remaining) at 0.1 nM concentration included AD-60423, AD-58632, AD-60434, AD-60423, AD-60466, AD-60419, AD-60438, AD-60448, AD-60460, AD-60473, AD-60411, AD-60405, AD-60472, AD-60477, AD-60417, AD-60480, AD-60482, AD-60421, AD-60560, AD-60433, AD-60481, AD-60475, AD-60555, AD-60437, AD-60550, AD-60415, AD-60463, and AD-60443.


As is shown in the table below, testing of further siRNAs revealed that the following duplexes provided greater than 80% suppression at 10 nM concentration: AD-58632, AD-60405, AD-60423, AD-60434, AD-60445, AD-60480, AD-60460, and AD-60466, and the following duplexes provided greater than 30% suppression at 0.1 nM concentration: AD-58632, AD-60405, AD-60423, AD-60434, AD-60419, AD-60480, AD-60460, and AD-60466.









TABLE 26







Further sequences and in vitro screen results for AD-58632 and AD-58632 derivative siRNAs


















Target











sites




of



SEQ
anti-



ID
sense


SEQ
NO:
seq


ID NO:
(anti-
on
Duplex


Avg
SD
Avg
SD


(sense)
sense)
NM_000688.4
Name
Sense Sequence (5′-3′)
Antisense (AS) Sequence (5′-3′)
10 nM
10 nM
0.1 nM
0.1 nM



















4398
4399
873-895
AD-
GfsasAfaGfaGfuGfUfCfuCfaUfcUfuCfuUfL96
asAfsgAfaGfaUfgAfgacAfcUfcUfuUfcsusg
11.8
2.7
46.7
4.2





58632.8





4400
4401
873-895
AD-
GfsasAfaGfaGfuGfuCfuCfaucuuCfuuL96
asAfsgAfaGfaUfgAfgacAfcUfcUfuUfcsusg
15.6
4.5
63.5
10.5





60405.1





4402
4403
873-895

GfsasAfaGfaGfuGfuCfuCfaucuuCfuuL96
asAfsGfAfaGfaugAfgAfcAfcucuuucsusg





4404
4405
873-895

GfsasAfaGfaGfuGfuCfuCfaucuuCfuuL96
asAfsgAfaGfaugAfgAfcAfcucuuucsusg





4406
4407
873-895

GfsasAfaGfaGfuGfuCfuCfaucuuCfuuL96
asAfsgAfaGfaugAfgacAfcucuuucsusg





4408
4409
873-895
AD-
gsasaagaGfuGfuCfuCfaucuucuuL96
asAfsGfAfaGfaUfgAfgAfcAfcfcUfuUfcsusg
13.8
3.4
55.9
7.9





60423.2





4410
4411
873-895

gsasaagaGfuGfuCfuCfaucuucuuL96
asAfsgAfaGfaUfgAfgacAfcUfcUfuUfcsusg





4412
4413
873-895

gsasaagaGfuGfuCfuCfaucuucuuL96
asAfsGfAfaGfaugAfgAfcAfcucuuucsusg





4414
4415
873-895

gsasaagaGfuGfuCfuCfaucuucuuL96
asAfsgAfaGfaugAfgAfcAfcucuuucsusg





4416
4417
873-895

gsasaagaGfuGfuCfuCfaucuucuuL96
asAfsgAfaGfaugAfgacAfcucuuucsusg





4418
4419
873-895
AD-
gsasaagaGfuGfuCfucaucuucuuL96
asAfsGfAfaGfaUfgAfgAfcAfcUfcUfuUfcsusg
14.7
2.8
48.7
6.6





60434.1





4420
4421
873-895

gsasaagaGfuGfuCfucaucuucuuL96
asAfsgAfaGfaUfgAfgacAfcUfcUfuUfcsusg





4422
4423
873-895

gsasaagaGfuGfuCfucaucuucuuL96
asAfsGfAfaGfaugAfgAfcAfcucuuucsusg





4424
4425
873-895

gsasaagaGfuGfuCfucaucuucuuL96
asAfsgAfaGfaugAfgAfcAfcucuuucsusg





4426
4427
873-895

gsasaagaGfuGfuCfucaucuucuuL96
asAfsgAfaGfaugAfgacAfcucuuucsusg





4428
4429
873-895
AD-
GfsasAfaGfAfGfuGfdTcucaucuucuuL96
asAfsGfAfaGfaugAfgAfcAfcucuuucsusg
20.8
15.1
57.8
8.3





60419.1





4430
4431
873-895

GfsasAfaGfAfGfuGfdTcucaucuucuuL96
asAfsgAfaGfaUfgAfgacAfcUfcUfuUfcsusg





4432
4433
873-895

GfsasAfaGfAfGfuGfdTcucaucuucuuL96
asAfsGfAfaGfaugAfgAfcAfcucuuucsusg





4434
4435
873-895

GfsasAfaGfAfGfuGfdTcucaucuucuuL96
asAfsgAfaGfaugAfgAfcAfcucuuucsusg





4436
4437
873-895

GfsasAfaGfAfGfuGfdTcucaucuucuuL96
asAfsgAfaGfaugAfgacAfcucuuucsusg





4438
4439
873-895
AD-
GfsasAfaGfAfGfuGfucucauc(Tgn)ucuuL96
asAfsGfAfaGfaugAfgAfcAfcucuuucsusg
13.3
3.3
78.1
4.0





60445.1





4440
4441
873-895

GfsasAfaGfAfGfuGfucucauc(Tgn)ucuuL96
asAfsgAfaGfaUfgAfgacAfcUfcUfuUfcsusg





4442
4443
873-895

GfsasAfaGfAfGfuGfucucauc(Tgn)ucuuL96
asAfsGfAfaGfaugAfgAfcAfcucuuucsusg





4444
4445
873-895

GfsasAfaGfAfGfuGfucucauc(Tgn)ucuuL96
asAfsgAfaGfaugAfgAfcAfcucuuucsusg





4446
4447
873-895

GfsasAfaGfAfGfuGfucucauc(Tgn)ucuuL96
asAfsgAfaGfaugAfgacAfcucuuucsusg





4448
4449
873-895
AD-
GfsasAfaGfaGfuGfUfCfuCfaUfcUfuCfuUfL96
asAfsgAf(Agn)GfaUfgAfgacAfcUfcUfuUfcsu
15.5
1.2
66.4
14.3





60480.1

sg





4450
4451
873-895

gsasaagaGfuGfuCfuCfaucuucuuL96
asAfsgAf(Agn)GfaUfgAfgacAfcUfcUfuUfcsu







sg





4452
4453
873-895

gsasaagaGfuGfuCfucaucuucuuL96
asAfsgAf(Agn)GfaUfgAfgacAfcUfcUfuUfcsu







sg





4454
4455
873-895

GfsasAfaGfAfGfuGfdTcucaucuucuuL96
asAfsgAf(Agn)GfaUfgAfgacAfcUfcUfuUfcsu







sg





4456
4457
873-895

GfsasAfaGfAfGfuGfucucauc(Tgn)ucuuL96
asAfsgAf(Agn)GfaUfgAfgacAfcUfcUfuUfcsu







sg





4458
4459
873-895

GfsasAfaGfAfGfuGfucucaucs(Tgns)ucuuL96
asAfsgAfs(Agns)GfaUfgAfgacAfcUfcUfuUfc







susg





4460
4461
873-895

GfsasAfaGfaGfuGfUfCfuCfaUfcUfuCfuUfL96
asAfsgAf(Agn)GfaugAfgacAfcucuuucsusg





4462
4463
873-895

gsasaagaGfuGfuCfuCfaucuucuuL96
asAfsgAf(Agn)GfaugAfgacAfcucuuucsusg





4464
4465
873-895

gsasaagaGfuGfuCfucaucuucuuL96
asAfsgAf(Agn)GfaugAfgacAfcucuuucsusg





4466
4467
873-895

GfsasAfaGfAfGfuGfdTcucaucuucuuL96
asAfsgAf(Agn)GfaugAfgacAfcucuuucsusg





4468
4469
873-895

GfsasAfaGfAfGfuGfucucauc(Tgn)ucuuL96
asAfsgAf(Agn)GfaugAfgacAfcucuuucsusg





4470
4471
873-895

GfsasAfaGfAfGfuGfucucaucs(Tgns)ucuuL96
asAfsgAfs(Agns)GfaugAfgacAfcucuuucsusg





4472
4473
873-895
AD-
GfsasAfaGfaGfuGfUfCfuCfaUfcUfuCfuUfL96
asAfsgAfaGfaUfgAfgacAfcUfcUfuUfcsusg
11.8
2.7
46.7
4.2





58632.8





4474
4475
873-895

GfsasAfaGfaGfuGfdTCfuCfaUfcUfuCfuUfL96
asAfsgAfaGfaUfgAfgacAfcUfcUfuUfcsusg





4476
4477
873-895

GfsasAfaGfaGfuGfUfCfuCfaUfcUfuCfuUfL96
asAfsgAfaGfaUfgAfgacAfcdTcUfuUfcsusg





4478
4479
873-895

GfsasAfaGfaGfuGfdTCfuCfaUfcUfuCfuUfL96
asAfsgAfaGfaUfgAfgacAfcdTcUfuUfcsusg





4480
4481
873-895

GfsasAfaGfaGfuGfdTCfuCfaUfcUfsuCfsuUfs
asAfsgAfaGfaUfgAfgacAfcdTcUfuUfcsusg






L96





4482
4483
873-895

GfsasAfaGfaGfuGfdTCfuCfaUfcUfsucsuUfsL
asAfsGfAfaGfaUfgAfgacAfcdTcUfuUfcsusg






96





4484
4485
873-895
AD-
GfsasAfaGfaGfuGfUfCfuCfaUfc(Tgn)uCfuUf
asAfsgAfaGfaUfgAfgacAfcUfcUfuUfcsusg
14.9
5.8
60.1
6.0





60460.1
L96





4486
4487
873-895

GfsasAfaGfaGfuGfdTCfuCfaUfc(Tgn)uCfuUf
asAfsgAfaGfaUfgAfgacAfcUfcUfuUfcsusg






L96





4488
4489
873-895

GfsasAfaGfaGfuGfUfCfuCfaUfc(Tgn)uCfuUf
asAfsgAfaGfaUfgAfgacAfcdTcUfuUfcsusg






L96





4490
4491
873-895

GfsasAfaGfaGfuGfdTCfuCfaUfc(Tgn)uCfuUf
asAfsgAfaGfaUfgAfgacAfcdTcUfuUfcsusg






L96





4492
4493
873-895

GfsasAfaGfaGfuGfdTCfuCfaUfc(Tgn)suCfsu
asAfsgAfaGfaUfgAfgacAfcdTcUfuUfcsusg






UfsL96





4494
4495
873-895

GfsasAfaGfaGfuGfdTCfuCfaUfc(Tgn)sucsuU
asAfsGfAfaGfaUfgAfgacAfcdTcUfuUfcsusg






fsL96





4496
4497
873-895
AD-
GfsasAfaGfaGfuGfUfCfuCfaUf(Cgn)UfuCfuU
asAfsgAfaGfaUfgAfgacAfcUfcUfuUfcsusg
14.0
7.5
56.8
11.6





60466.1
fL96





4498
4499
873-895

GfsasAfaGfaGfuGfdTCfuCfaUf(Cgn)UfuCfuU
asAfsgAfaGfaUfgAfgacAfcUfcUfuUfcsusg






fL96





4500
4501
873-895

GfsasAfaGfaGfuGfUfCfuCfaUf(Cgn)UfuCfuU
asAfsgAfaGfaUfgAfgacAfcdTcUfuUfcsusg






fL96





4502
4503
873-895

GfsasAfaGfaGfuGfdTCfuCfaUf(Cgn)UfuCfuU
asAfsgAfaGfaUfgAfgacAfcdTcUfuUfcsusg






fL96





4504
4505
873-895

GfsasAfaGfaGfuGfdTCfuCfaUf(Cgn)UfsuCfs
asAfsgAfaGfaUfgAfgacAfcdTcUfuUfcsusg






uUfsL96





4506
4507
873-895

GfsasAfaGfaGfuGfdTCfuCfaUf(Cgn)Ufsucsu
asAfsGfAfaGfaUfgAfgacAfcdTcUfuUfcsusg






UfsL96
















TABLE 27







Further sequences of AD-58632 derivative siRNAs













SEQ
Target






ID
sites of


SEQ ID
NO:
antisense


NO:
(anti-
sequence
Duplex


(sense)
sense)
on NM
Name
Sense Sequence (5′-3′)
Antisense Sequence (5′-3′)





4508
4509
873-895
AD-
GfsasAfaGfaGfuGfUfCfuCfaUfc
asAfsgAfaGfaUfgAfgacAfcUfcUfuUfcsusg





58632
UfuCfuUfL96





4510
4511
873-895
AD-
GfsasAfaGfaGfuGfuCfuCfaucuu
asAfsgAfaGfaUfgAfgacAfcUfcUfuUfcsusg





60405.1
CfuuL96





4512
4513
873-895
AD-
GfsasAfaGfaGfuGfuCfuCfauc
asAfsGfAfaGfaugAfgAfcAfcucuuucsusg





60887
uuCfuuL96





4514
4515
873-895
AD-
GfsasAfaGfaGfuGfuCfuCfauc
asAfsGfAfaGfaUfgAfgAfcAfcUfcUfuUfcsusg





60923
uuCfuuL96





4516
4517
873-895
AD-
gsasaagaGfuGfuCfucaucuucuuL96
asAfsGfAfaGfaUfgAfgAfcAfcUfcUfuUfcsusg





60434.1





4518
4519
873-895
AD-
gsasaagaGfuGfuCfucaucuucuuL96
asAfsGfAfaGfaugAfgAfcAfcucuuucsusg





60892





4520
4521
873-895
AD-
gsasaagaGfuGfuCfucaucuucuuL96
asAfsgAfaGfaUfgAfgacAfcUfcUfuUfcsusg





60891





4522
4523
873-895
AD-
GfsasAfaGfAfGfuGfdTcucauc
asAfsGfAfaGfaugAfgAfcAfcucuuucsusg





60419.1
uucuuL96





4524
4525
873-895
AD-
GfsasAfaGfAfGfuGfdTcucauc
asAfsGfAfaGfaUfgAfgAfcAfcUfcUfuUfcsusg





60924
uucuuL96





4526
4527
873-895
AD-
GfsasAfaGfAfGfuGfdTcucauc
asAfsgAfaGfaUfgAfgacAfcUfcUfuUfcsusg





60885
uucuuL96





4528
4529
873-895
AD-
GfsasAfaGfAfGfuGfucucauc
asAfsGfAfaGfaugAfgAfcAfcucuuucsusg





60445.1
(Tgn)ucuuL96





4530
4531
873-895
AD-
GfsasAfaGfAfGfuGfucucauc
asAfsGfAfaGfaUfgAfgAfcAfcUfcUfuUfcsusg





60925
(Tgn)ucuuL96





4532
4533
873-895
AD-
GfsasAfaGfAfGfuGfucucauc
asAfsgAfaGfaUfgAfgacAfcUfcUfuUfcsusg





60890
(Tgn)ucuuL96





4534
4535
873-895
AD-
GfsasAfaGfaGfuGfUfCfuCfaU
asAfsGfAfaGfaUfgAfgAfcAfcUfcUfuUfcsusg





60926
fcUfuCfuUfL96










IC50s Based on In Vitro Activity


Similar to the experiments described above, further dose-response experiments were done at 10 nM, 1.66667 nM, 0.277778 nM, 0.046296 nM, 0.007716 nM, 0.001286 nM, 0.000214 nM, and 3.57E-05 nM final duplex concentration, and IC50 values were calculated.









TABLE 28







Further sequences and IC50s of AD-58632 and AD-58632 derivative siRNAs















Target







SEQ ID NO:
sites of anti-


SEQ ID NO:
(anti-
sense seq on


(sense)
sense)
NM_000688.4
Duplex Name
Sense Sequence (5′-3′)
Antisense (AS) Sequence (5′-3′)
IC50





4536
4537
873-895
AD-
GfsasAfaGfaGfuGfUfCfuCfaUfcUfuCfuUfL96
asAfsgAfaGfaUfgAfgacAfcUfcUfuUfcsusg
0.017





58632.10





4538
4539
873-895
AD-
GfsasAfaGfaGfuGfuCfuCfaucuuCfuuL96
asAfsgAfaGfaUfgAfgacAfcUfcUfuUfcsusg
0.070





60405.2





4540
4541
873-895
AD-
GfsasAfaGfaGfuGfuCfuCfaucuuCfuuL96
asAfsGfAfaGfaugAfgAfcAfcucuuucsusg
0.120





60887.1





4542
4543
873-895
AD-
GfsasAfaGfaGfuGfuCfuCfaucuuCfuuL96
asAfsgAfaGfaugAfgAfcAfcucuuucsusg
0.009





60819.1





4544
4545
873-895
AD-
GfsasAfaGfaGfuGfuCfuCfaucuuCfuuL96
asAfsgAfaGfaugAfgacAfcucuuucsusg
0.032





60823.1





4546
4547
873-895
AD-
gsasaagaGfuGfuCfuCfaucuucuuL96
asAfsGfAfaGfaUfgAfgAfcAfcUfcUfuUfcsusg
0.020





60423.3





4548
4549
873-895
AD-
gsasaagaGfuGfuCfuCfaucuucuuL96
asAfsGfAfaGfaugAfgAfcAfcucuuucsusg
0.242





60889.1





4550
4551
873-895
AD-
gsasaagaGfuGfuCfuCfaucuucuuL96
asAfsgAfaGfaugAfgAfcAfcucuuucsusg
0.044





60827.1





4552
4553
873-895
AD-
gsasaagaGfuGfuCfuCfaucuucuuL96
asAfsgAfaGfaugAfgacAfcucuuucsusg
0.077





60831.1





4554
4555
873-895
AD-
gsasaagaGfuGfuCfucaucuucuuL96
asAfsGfAfaGfaUfgAfgAfcAfcUfcUfuUfcsusg
0.028





60434.2





4556
4557
873-895
AD-
gsasaagaGfuGfuCfucaucuucuuL96
asAfsgAfaGfaUfgAfgacAfcUfcUfuUfcsusg
0.078





60891.1





4558
4559
873-895
AD-
gsasaagaGfuGfuCfucaucuucuuL96
asAfsGfAfaGfaugAfgAfcAfcucuuucsusg
0.138





60892.1





4560
4561
873-895
AD-
gsasaagaGfuGfuCfucaucuucuuL96
asAfsgAfaGfaugAfgAfcAfcucuuucsusg
0.015





60835.1





4562
4563
873-895
AD-
gsasaagaGfuGfuCfucaucuucuuL96
asAfsgAfaGfaugAfgacAfcucuuucsusg
0.014





60839.1





4564
4565
873-895
AD-
GfsasAfaGfAfGfuGfdTcucaucuucuuL96
asAfsGfAfaGfaugAfgAfcAfcucuuucsusg
0.014





60419.2





4566
4567
873-895
AD-
GfsasAfaGfAfGfuGfdTcucaucuucuuL96
asAfsgAfaGfaUfgAfgacAfcUfcUfuUfcsusg
0.091





60885.1





4568
4569
873-895
AD-
GfsasAfaGfAfGfuGfdTcucaucuucuuL96
asAfsGfAfaGfaugAfgAfcAfcucuuucsusg
0.026





60419.3





4570
4571
873-895
AD-
GfsasAfaGfAfGfuGfdTcucaucuucuuL96
asAfsgAfaGfaugAfgAfcAfcucuuucsusg
0.004





60843.1





4572
4573
873-895
AD-
GfsasAfaGfAfGfuGfdTcucaucuucuuL96
asAfsgAfaGfaugAfgacAfcucuuucsusg
0.012





60847.1





4574
4575
873-895
AD-
GfsasAfaGfAfGfuGfucucauc(Tgn)ucuu
asAfsGfAfaGfaugAfgAfcAfcucuuucsusg
0.077





60445.2
L96





4576
4577
873-895
AD-
GfsasAfaGfAfGfuGfucucauc(Tgn)ucuu
asAfsgAfaGfaUfgAfgacAfcUfcUfuUfcsusg
1.201





60890.1
L96





4578
4579
873-895
AD-
GfsasAfaGfAfGfuGfucucauc(Tgn)ucuu
asAfsGfAfaGfaugAfgAfcAfcucuuucsusg
0.302





60445.3
L96





4580
4581
873-895
AD-
GfsasAfaGfAfGfuGfucucauc(Tgn)ucuu
asAfsgAfaGfaugAfgAfcAfcucuuucsusg
0.006





60820.1
L96





4582
4583
873-895
AD-
GfsasAfaGfAfGfuGfucucauc(Tgn)ucuu
asAfsgAfaGfaugAfgacAfcucuuucsusg
0.032





60824.1
L96





4584
4585
873-895
AD-
GfsasAfaGfaGfuGfUfCfuCfaUfcUfuCfu
asAfsgAf(Agn)GfaUfgAfgacAfcUfcUfuUfcsu
0.066





60480.2
UfL96
sg





4586
4587
873-895
AD-
gsasaagaGfuGfuCfuCfaucuucuuL96
asAfsgAf(Agn)GfaUfgAfgacAfcUfcUfuUfcsu
0.034





60893.1

sg





4588
4589
873-895
AD-
gsasaagaGfuGfuCfucaucuucuuL96
asAfsgAf(Agn)GfaUfgAfgacAfcUfcUfuUfcsu
0.157





60884.1

sg





4590
4591
873-895
AD-
GfsasAfaGfAfGfuGfdTcucaucuucuuL96
asAfsgAf(Agn)GfaUfgAfgacAfcUfcUfuUfcsu
0.801





60886.1

sg





4592
4593
873-895
AD-
GfsasAfaGfAfGfuGfucucauc(Tgn)ucuu
asAfsgAf(Agn)GfaUfgAfgacAfcUfcUfuUfcsu
0.201





60888.1
L96
sg





4594
4595
873-895
AD-
GfsasAfaGfAfGfuGfucucaucs(Tgns)uc
asAfsgAfs(Agns)GfaUfgAfgacAfcUfcUfuUfc
0.145





60828.1
uuL96
susg





4596
4597
873-895
AD-
GfsasAfaGfaGfuGfUfCfuCfaUfcUfuCfu
asAfsgAf(Agn)GfaugAfgacAfcucuuucsusg
0.036





60832.1
UfL96





4598
4599
873-895
AD-
gsasaagaGfuGfuCfuCfaucuucuuL96
asAfsgAf(Agn)GfaugAfgacAfcucuuucsusg
0.076





60836.1





4600
4601
873-895
AD-
gsasaagaGfuGfuCfucaucuucuuL96
asAfsgAf(Agn)GfaugAfgacAfcucuuucsusg
0.033





60840.1





4602
4603
873-895
AD-
GfsasAfaGfAfGfuGfdTcucaucuucuuL96
asAfsgAf(Agn)GfaugAfgacAfcucuuucsusg
0.017





60844.1





4604
4605
873-895
AD-
GfsasAfaGfAfGfuGfucucauc(Tgn)ucuu
asAfsgAf(Agn)GfaugAfgacAfcucuuucsusg
0.007





60848.1
L96





4606
4607
873-895
AD-
GfsasAfaGfAfGfuGfucucaucs(Tgns)uc
asAfsgAfs(Agns)GfaugAfgacAfcucuuucsusg
0.076





60821.1
uuL96





4608
4609
873-895
AD-
GfsasAfaGfaGfuGfUfCfuCfaUfcUfuCfu
asAfsgAfaGfaUfgAfgacAfcUfcUfuUfcsusg
0.063





58632.11
UfL96





4610
4611
873-895
AD-
GfsasAfaGfaGfuGfdTCfuCfaUfcUfuCfuUfL96
asAfsgAfaGfaUfgAfgacAfcUfcUfuUfcsusg
0.031





60825.1





4612
4613
873-895
AD-
GfsasAfaGfaGfuGfUfCfuCfaUfcUfuCfuUfL96
asAfsgAfaGfaUfgAfgacAfcdTcUfuUfcsusg
0.033





60829.1





4614
4615
873-895
AD-
GfsasAfaGfaGfuGfdTCfuCfaUfcUfuCfuUfL96
asAfsgAfaGfaUfgAfgacAfcdTcUfuUfcsusg
0.100





60833.1





4616
4617
873-895
AD-
GfsasAfaGfaGfuGfdTCfuCfaUfcUfsuCfsuUfsL96
asAfsgAfaGfaUfgAfgacAfcdTcUfuUfcsusg
0.031





60837.1





4618
4619
873-895
AD-
GfsasAfaGfaGfuGfdTCfuCfaUfcUfsucsuUfsL96
asAfsGfAfaGfaUfgAfgacAfcdTcUfuUfcsusg
0.010





60841.1





4620
4621
873-895
AD-
GfsasAfaGfaGfuGfUfCfuCfaUfc(Tgn)uCfuUfL96
asAfsgAfaGfaUfgAfgacAfcUfcUfuUfcsusg
0.009





60460.2





4622
4623
873-895
AD-
GfsasAfaGfaGfuGfdTCfuCfaUfc(Tgn)uCfuUfL96
asAfsgAfaGfaUfgAfgacAfcUfcUfuUfcsusg
0.002





60845.1





4624
4625
873-895
AD-
GfsasAfaGfaGfuGfUfCfuCfaUfc(Tgn)uCfuUfL96
asAfsgAfaGfaUfgAfgacAfcdTcUfuUfcsusg
0.005





60849.1





4626
4627
873-895
AD-
GfsasAfaGfaGfuGfdTCfuCfaUfc(Tgn)uCfuUfL96
asAfsgAfaGfaUfgAfgacAfcdTcUfuUfcsusg
0.007





60822.1





4628
4629
873-895
AD-
GfsasAfaGfaGfuGfdTCfuCfaUfc(Tgn)suCfsuUfsL96
asAfsgAfaGfaUfgAfgacAfcdTcUfuUfcsusg
0.009





60826.1





4630
4631
873-895
AD-
GfsasAfaGfaGfuGfdTCfuCfaUfc(Tgn)sucsuUfsL96
asAfsGfAfaGfaUfgAfgacAfcdTcUfuUfcsusg
0.019





60830.1





4632
4633
873-895
AD-
GfsasAfaGfaGfuGfUfCfuCfaUf(Cgn)UfuCfuUfL96
asAfsgAfaGfaUfgAfgacAfcUfcUfuUfcsusg
0.066





60466.2





4634
4635
873-895
AD-
GfsasAfaGfaGfuGfdTCfuCfaUf(Cgn)UuCfuUfL96f
asAfsgAfaGfaUfgAfgacAfcUfcUfuUfcsusg
0.024





60834.1





4636
4637
873-895
AD-
GfsasAfaGfaGfuGfUfCfuCfaUf(Cgn)UfuCfuUfL96
asAfsgAfaGfaUfgAfgacAfcdTcUfuUfcsusg
0.013





60838.1





4638
4639
873-895
AD-
GfsasAfaGfaGfuGfdTCfuCfaUf(Cgn)UfuCfuUfL96
asAfsgAfaGfaUfgAfgacAfcdTcUfuUfcsusg
0.010





60842.1





4640
4641
873-895
AD-
GfsasAfaGfaGfuGfdTCfuCfaUf(Cgn)UfsuCfsuUfsL96
asAfsgAfaGfaUfgAfgacAfcdTcUfuUfcsusg
0.011





60846.1





4642
4643
873-895
AD-
GfsasAfaGfaGfuGfdTCfuCfaUf(Cgn)UfsucsuUfsL96
asAfsGfAfaGfaUfgAfgacAfcdTcUfuUfcsusg
0.018





60850.1









As is shown in Table 28, the following duplexes had an IC50 of less than 0.01 nM: AD-60845, AD-60843, AD-60849, AD-60820, AD-60848, AD-60822, AD-60826, AD-60819, and AD-60460.


The following duplexes had an IC50 of less than 0.02 nM: AD-60845, AD-60843, AD-60849, AD-60820, AD-60848, AD-60822, AD-60826, AD-60819, and AD-60460, AD-60841, AD-60842, AD-60846, AD-60847, AD-60838, AD-60419, AD-60839, AD-60835, AD-586320, AD-60844, AD-60850, and AD-60830.


The following duplexes had an IC50 of less than 0.05 nM: AD-60845, AD-60843, AD-60849, AD-60820, AD-60848, AD-60822, AD-60826, AD-60819, and AD-60460, AD-60841, AD-60842, AD-60846, AD-60847, AD-60838, AD-60419, AD-60839, AD-60835, AD-586320, AD-60844, AD-60850, AD-60830, AD-60423, AD-60834, AD-60419, AD-60434, AD-60825, AD-60837, AD-60823, AD-60824, AD-60840, AD-60829, AD-60893, AD-60832, and AD-60827.


Example 25: In Vivo Structure Activity Relationship Studies of AD-58632

Derivatives of the AD-58632 parent siRNA were generated and screened in vivo in rats. The sequences of siRNAs that were screened are provided in the table below.









TABLE 29







Sequences of ALAS1 siRNA Duplexes














Target






SEQ
sites of


SEQ
ID
antisense


ID
NO:
sequence


NO:
(anti-
on
Duplex


(sense)
sense)
NM_000688.4
Name
Sense Sequence (5′-3′)
Antisense Sequence (5′-3′)





4644
4645
873-895
AD-
GfsasAfaGfaGfuGfUfCfuCfaUfcUfu
asAfsgAfaGfaUfgAfgacAfcUfcUfuUfcsusg





58632
CfuUfL96





4646
4647
873-895
AD-
GfsasAfaGfaGfuGfuCfuCfaucuu
asAfsgAfaGfaUfgAfgacAfcUfcUfuUfcsusg





60405
CfuuL96





4648
4649
873-895
AD-
GfsasAfaGfaGfuGfuCfuCfaucuu
asAfsGfAfaGfaugAfgAfcAfcucuuucsusg





60887
CfuuL96





4650
4651
873-895
AD-
gsasaagaGfuGfuCfucaucuucuuL96
asAfsGfAfaGfaUfgAfgAfcAfcUfcUfuUfcsusg





60923





4652
4653
873-895
AD-
gsasaagaGfuGfuCfucaucuucuuL96
asAfsGfAfaGfaUfgAfgAfcAfcUfcUfuUfcsusg





60434





4654
4655
873-895
AD-
gsasaagaGfuGfuCfucaucuucuuL96
asAfsGfAfaGfaugAfgAfcAfcucuuucsusg





60892





4656
4657
873-895
AD-
GfsasAfaGfAfGfuGfdTcucauc
asAfsGfAfaGfaugAfgAfcAfcucuuucsusg





60419
uucuuL96





4658
4659
873-895
AD-
GfsasAfaGfAfGfuGfdTcucauc
asAfsGfAfaGfaUfgAfgAfcAfcUfcUfuUfcsusg





60924
uucuuL96





4660
4661
873-895
AD-
GfsasAfaGfAfGfuGfucucauc
asAfsGfAfaGfaugAfgAfcAfcucuuucsusg





60445
(Tgn)ucuuL96





4662
4663
873-895
AD-
GfsasAfaGfAfGfuGfucucauc
asAfsGfAfaGfaUfgAfgAfcAfcUfcUfuUfcsusg





60925
(Tgn)ucuuL96





4664
4665
873-895
AD-
GfsasAfaGfaGfuGfUfCfuCfaUfc
asAfsGfAfaGfaUfgAfgAfcAfcUfcUfuUfcsusg





60926
UfuCfuUfL96









A single dose of 5 mg/kg of siRNA was administered. At 5 days following administration of the siRNA, mRNA measurements of rat ALAS1 (rALAS1) mRNA and rat GAPDH (rGAPDH) mRNA were made using bDNA assay, and tissue levels of drug were determined using qPCR. The results are provided in FIG. 33 and FIG. 34. As is shown in FIG. 33, at least ten duplexes (AD-60405, AD-60887, AD-60923, AD-60434, AD-60892, AD-60419, AD-60924, AD-60445, AD-60925, and AD-60926) that were screened showed improved suppression of ALAS1 mRNA compared with AD-58632. Furthermore, as is shown FIG. 34, these duplexes (with the exception of AD-60926) achieved higher liver concentrations than did AD-58632.


Example 26: Efficacy of AD-60925 and AD-60926 in a Rat AIP Model

The therapeutic efficacy of AD-60925 and AD-60926 (described in the previous example) was investigated in a rat AIP model. The experimental design is shown in the top of FIG. 35. Rats were treated with PBS or 3 mg/kg ALAS1-GalNAc siRNA t.i.w., Phenobarbital (PB), and a PBGD siRNA in an AF11 LNP formulation (AF11-PBGD) at the times indicated in FIG. 35. Control rats received the PBGD siRNA only, without Phenobarbital induction.


The results are shown in FIG. 35, FIG. 36 and FIG. 37. Administering Phenobarbital induced ALAS1 mRNA expression and increased levels of PBG and ALA in urine, compared with the control. Treatment with a total of eight doses of 3 mg/kg of AD-60925 or AD-60926 three times per week suppressed ALAS1 mRNA (FIG. 35), urine PBG (FIG. 36 and FIG. 37, top), and urine ALA (FIG. 36 and FIG. 37, bottom) Phenobarbital induced increases in ALAS1 mRNA, urine PBG, and ALA. The time course of treatment effects is shown in FIG. 37. The arrows indicate the timepoints when PB was administered. The siRNA treatment prevented phenobarbital induced increases in in ALAS1 mRNA, urine PBG, and ALA.


Both AD-60925 and AD-60926 showed therapeutic efficacy treatment of AIP. AD-60925 was even more effective than AD-60926 in suppressing ALAS1 mRNA, urine ALA, and urine PBG.


Example 27: Further In Vivo Structure Activity Relationship Studies of AD-58632

Derivatives of the AD-58632 parent siRNA were generated and screened in vivo in rats.


In Vivo Screen, Part I


The sequences of siRNAs that were screened are provided in the table below.









TABLE 30







Sequences of ALAS1 siRNA Duplexes














Target






SEQ
sites of


SEQ
ID
antisense


ID
NO:
sequence


NO:
(anti-
on
Duplex


(sense)
sense)
NM_000688.4
Name
Sense Sequence (5′-3′)
Antisense Sequence (5′-3′)





4666
4667
873-895
AD-
GfsasAfaGfaGfuGfUfCfuCfaUfcUfu
asAfsgAfaGfaUfgAfgacAfcUfcUfuUfcsusg





58632
CfuUfL96





4668
4669
873-895
AD-
GfsasAfaGfAfGfuGfucucauc(Tgn)
asAfsgAfaGfaugAfgAfcAfcucuuucsusg





60820
ucuuL96





4670
4671
873-895
AD-
GfsasAfaGfAfGfuGfucucauc(Tgn)
asAfsgAfaGfaugAfgacAfcucuuucsusg





60824
ucuuL96





4672
4673
873-895
AD-
GfsasAfaGfAfGfuGfucucauc(Tgn)
asAfsgAfaGfaUfgAfgAfcAfcUfcUfuUfcsusg





61137
ucuuL96





4674
4675
873-895
AD-
GfsasAfaGfAfGfuGfdTcucaucuu
asAfsgAfaGfaugAfgAfcAfcucuuucsusg





60843
cuuL96





4676
4677
873-895
AD-
GfsasAfaGfAfGfuGfdTcucaucuu
asAfsgAfaGfaugAfgacAfcucuuucsusg





60847
cuuL96





4678
4679
873-895
AD-
GfsasAfaGfAfGfuGfdTcucaucuu
asAfsgAfaGfaUfgAfgAfcAfcUfcUfuUfcsusg





61138
cuuL96





4680
4681
873-895
AD-
GfsasAfaGfaGfuGfuCfuCfaucuu
asAfsgAfaGfaugAfgAfcAfcucuuucsusg





60819
CfuuL96





4682
4683
873-895
AD-
GfsasAfaGfaGfuGfuCfuCfaucuu
asAfsgAfaGfaugAfgacAfcucuuucsusg





60823
CfuuL96





4684
4685
873-895
AD-
GfsasAfaGfaGfuGfuCfuCfaucuu
asAfsgAfaGfaUfgAfgAfcAfcUfcUfuUfcsusg





61139
CfuuL96





4686
4687
873-895
AD-
GfsasAfaGfaGfuGfdTCfuCfaUfc
asAfsgAfaGfaugAfgAfcAfcucuuucsusg





61140
(Tgn)uCfuUfL96









Rats were administered four doses of 2.5 mg/kg of siRNA biweekly (two times per week) for two weeks. At 72 hours following administration of the last dose of siRNA, the animals were sacrificed and measurements of rat ALAS1 (rALAS1) mRNA and rat GAPDH (rGAPDH) mRNA levels were made using bDNA assay.


As is shown in FIG. 38, at least four of the siRNAs (AD-60820, AD-60843, AD-60819, and AD-61140) that were tested showed improved suppression of ALAS1 mRNA compared with AD-58632.


In Vivo Screen, Part II


The sequences of the siRNAs that were screened are provided in the table below.









TABLE 31







Sequences of ALAS1 siRNA Duplexes














Target






SEQ
sites of


SEQ
ID
antisense


ID
NO:
sequence


NO:
(anti-
on
Duplex


(sense)
sense)
NM_000688.4
Name
Sense Sequence (5′-3′)
Antisense Sequence (5′-3′)





4688
4689
873-895
AD-
GfsasAfaGfaGfuGfUfCfuCfaUfc
asAfsgAfaGfaUfgAfgacAfcUfcUfuUfcsusg





58632
UfuCfuUfL96





4690
4691
873-895
AD-
GfsasAfaGfaGfuGfdTCfuCfaUfc
asAfsgAfaGfaugAfgacAfcucuuucsusg





61141.2
(Tgn)uCfuUfL96





4692
4693
873-895
AD-
GfsasAfaGfaGfuGfdTCfuCfaUfc
asAfsgAfaGfaUfgAfgAfcAfcUfcUfuUfcsusg





61142.2
(Tgn)uCfuUfL96





4694
4695
873-895
AD-
gsasaagaGfuGfuCfucaucuucuuL96
asAfsgAfaGfaugAfgAfcAfcucuuucsusg





60835





4696
4697
873-895
AD-
gsasaagaGfuGfuCfucaucuucuuL96
asAfsgAfaGfaugAfgacAfcucuuucsusg





60839





4698
4699
873-895
AD-
gsasaagaGfuGfuCfucaucuucuuL96
asAfsgAfaGfaUfgAfgAfcAfcUfcUfuUfcsusg





61143.2





4700
4701
873-895
AD-
gsasaagaGfuGfdTCfucaucuucuuL96
asAfsgAfaGfaugAfgAfcAfcucuuucsusg





61144.1





4702
4703
873-895
AD-
gsasaagaGfuGfdTCfucaucuucuuL96
asAfsgAfaGfaugAfgacAfcucuuucsusg





61145.1





4704
4705
873-895
AD-
gsasaagaGfuGfdTCfucaucuucuuL96
asAfsgAfaGfaUfgAfgAfcAfcUfcUfuUfcsusg





61146.1









Rats were administered a single dose of 2.5 mg/kg of siRNA. At 72 hours following administration of the siRNA, mRNA measurements of rat ALAS1 (rALAS1) mRNA and rat GAPDH (rGAPDH) mRNA were made using bDNA assay.


As is shown in FIG. 39, the siRNAs AD-61141, AD-61142, AD-60835, AD-60839, AD-61143, AD-61144, AD-61145, and AD-61146 showed improved suppression of ALAS1 mRNA compared with AD-58632. The siRNA that provided the greatest suppression in this experiment was AD-60835.


Example 28: In Vitro Structure Activity Relationship Studies of AD-60489

AD-60489 and siRNA derivatives of AD-60489 were generated, and some siRNAs were screened in vitro for activity. The in vitro activity of the siRNAs in suppressing ALAS1 mRNA was tested as described in Example 24. Sequences of siRNAs and results of in vitro testing are provided in the tables below.









TABLE 32







Sequences and in vitro screen results for AD-60489 and AD-60489 derivative siRNAs


















Target











sites of



SEQ
anti-


SEQ
ID NO:
sense


ID NO:
(anti-
seq on
Duplex


Avg
SD
Avg
SD


(sense)
sense)
NM_000688.4
Name*
Sense Sequence (5′-3′)
Antisense (AS) Sequence (5′-3′)
10 nM
10 nM
0.1 nM
0.1 nM



















4706
4707
871-893
AD-
CfsasGfaAfaGfaGfUfGfuCfuCfaUfcUfuAfL96
usAfsaGfaUfgAfgAfcacUfcUfuUfcUfgsgsu
17.02
0.18
50.65
5.11





60489.1





4708
4709
871-893
AD-
CfsasGfaAfaGfaGfuGfuCfuCfaucuuAfL96
usAfsaGfaUfgAfgAfcacUfcUfuUfcUfgsgsu
17.13
5.94
63.58
18.61





60495.1





4710
4711
871-893
AD-
CfsasGfaAfaGfaGfuGfuCfuCfaucuuAfL96
usAfsAfGfaUfgAfgAfcAfcUfcUfuUfcUfgsgsu
11.90
0.66
45.19
8.93





60501.1





4712
4713
871-893
AD-
CfsasgaaaGfaGfuGfuCfuCfaucuuAfL96
usAfsAfGfaUfgAfgAfcAfcUfcUfuUfcUfgsgsu
14.63
7.85
48.50
19.55





60507.1





4714
4715
871-893
AD-
CfsasgaaaGfaGfuGfuCfuCfaucuuaL96
usAfsAfGfaUfgAfgAfcAfcUfcUfuUfcUfgsgsu
14.39
2.44
51.03
7.01





60513.1





4716
4717
871-893
AD-
csasgaaaGfaGfuGfuCfuCfaucuuaL96
usAfsAfGfaUfgAfgAfcAfcUfcUfuUfcUfgsgsu
14.67
4.88
51.70
7.72





60519.1





4718
4719
871-893
AD-
csasgaaaGfaGfuguCfuCfaucuuaL96
usAfsAfGfaUfgAfgAfcAfcUfcUfuUfcUfgsgsu
45.24
18.16
105.09
14.17





60525.1





4720
4721
871-893
AD-
csasgaaaGfaGfugucuCfaucuuaL96
usAfsAfGfaUfgAfgAfcAfcUfcUfuUfcUfgsgsu
62.19
12.47
107.18
1.37





60531.1





4722
4723
871-893
AD-
csasgaaaGfaGfugucucaucuuaL96
usAfsAfGfaUfgAfgAfcAfcUfcUfuUfcUfgsgsu
39.06
10.92
82.70
10.67





60490.1





4724
4725
871-893
AD-
csasgaaaGfaGfugucucaucuuaL96
usAfsAfGfaUfgAfgAfcAfcUfcUfuUfcugsgsu
48.90
1.85
71.55
5.47





60496.1





4726
4727
871-893
AD-
csasgaaaGfaGfugucucaucuuaL96
usAfsAfGfaUfgAfgAfcAfcUfcUfuucugsgsu
51.83
12.62
81.85
4.25





60502.1





4728
4729
871-893
AD-
csasgaaaGfaGfugucucaucuuaL96
usAfsAfGfaUfgAfgAfcAfcUfcuuucugsgsu
65.34
21.75
89.23
11.08





60508.1





4730
4731
871-893
AD-
csasgaaaGfaGfugucucaucuuaL96
usAfsAfGfaUfgAfgAfcAfcucuuucugsgsu
97.13
3.47
102.94
7.36





60514.1





4732
4733
871-893
AD-
csasgaaaGfaGfugucucaucuuaL96
usAfsAfGfaugAfgAfcAfcucuuucugsgsu
104.97
0.93
126.75
20.47





60520.1





4734
4735
871-893
AD-
csasgaaaGfAfGfugucucaucuuaL96
usAfsAfGfaugAfgAfcAfcucuuucugsgsu
61.48
15.44
81.28
7.99





60526.1





4736
4737
871-893
AD-
csasgaaaGfAfGfugucucaucuuaL96
usAfsAfGfaugAfgAfcAfcdTcuuucugsgsu
83.47
13.36
94.13
8.11





60532.1





4738
4739
871-893
AD-
csasgaAfaGfAfGfugucucaucuuaL96
usAfsAfGfaugAfgAfcAfcdTcuuucugsgsu
109.05
0.43
97.85
9.77





60491.1





4740
4741
871-893
AD-
CfsasgaAfaGfAfGfugucucaucuuaL96
usAfsAfGfaugAfgAfcAfcdTcuuucugsgsu
73.81
10.17
95.01
5.40





60497.1





4742
4743
871-893
AD-
csasgaaaGfAfGfudGucucaucuuaL96
usAfsAfGfaugAfgAfcAfcdTcuuucugsgsu
75.30
11.29
96.03
6.30





60503.1





4744
4745
871-893
AD-
csasgaaaGfAfGfugudCucaucuuaL96
usAfsAfGfaugAfgAfcAfcdTcuuucugsgsu
71.37
24.41
104.36
18.62





60509.1





4746
4747
871-893
AD-
csasgaaaGfAfGfugucudCaucuuaL96
usAfsAfGfaugAfgAfcAfcdTcuuucugsgsu
64.16
13.95
98.80
0.92





60515.1





4748
4749
871-893
AD-
csasgaaaGfAfGfugucucadTcuuaL96
usAfsAfGfaugAfgAfcAfcdTcuuucugsgsu
73.99
36.39
99.96
7.29





60521.1





4750
4751
871-893
AD-
csasgaaaGfAfGfugucucaucdTuaL96
usAfsAfGfaugAfgAfcAfcdTcuuucugsgsu
82.69
26.56
114.13
4.81





60527.1





4752
4753
871-893
AD-
csasgaaaGfAfGfudGudCucaucuuaL96
usAfsAfGfaugAfgAfcAfcdTcuuucugsgsu
89.41
4.69
107.40
9.67





60533.1





4754
4755
871-893
AD-
csasgaaaGfAfGfudGucudCaucuuaL96
usAfsAfGfaugAfgAfcAfcdTcuuucugsgsu
83.52
1.56
100.70
0.79





60492.1





4756
4757
871-893
AD-
csasgaaaGfAfGfudGucucadTcuuaL96
usAfsAfGfaugAfgAfcAfcdTcuuucugsgsu
64.64
16.21
98.41
19.60





60498.1





4758
4759
871-893
AD-
csasgaaaGfAfGfudGudCucadTcuuaL96
usAfsAfGfaugAfgAfcAfcdTcuuucugsgsu
57.55
5.13
93.14
0.41





60504.1





4760
4761
871-893
AD-
csasgaaaGfAfGfudGudCudCadTcuuaL96
usAfsAfGfaugAfgAfcAfcdTcuuucugsgsu
58.88
25.48
91.39
2.06





60510.1





4762
4763
871-893
AD-
csasgaaaGfAfGfugucucaucuuaL96
usAfsAfGfadTgAfgAfcAfcdTcuuucugsgsu
53.24
6.56
84.40
2.73





60516.1





4764
4765
871-893
AD-
csasgaAfaGfAfGfugucucaucuuaL96
usAfsAfGfadTgAfgAfcAfcdTcuuucugsgsu
67.17
6.48
91.62
5.43





60522.1





4766
4767
871-893
AD-
CfsasgaAfaGfAfGfugucucaucuuaL96
usAfsAfGfadTgAfgAfcAfcdTcuuucugsgsu
81.44
37.04
89.71
8.60





60528.1





4768
4769
871-893
AD-
csasgaaaGfAfGfugucucaucuuaL96
usAfsAfGfaugAfgAfcAfcdTcdTuucugsgsu
62.63
20.55
99.62
7.37





60534.1





4770
4771
871-893
AD-
csasgaaaGfAfGfugucucaucuuaL96
usAfsAfGfaugAfgAfcAfcdTcuudTcugsgsu
107.18
0.11
87.98
2.41





60493.1





4772
4773
871-893
AD-
csasgaaaGfAfGfugucucaucuuaL96
usAfsAfGfadTgAfgAfcAfcdTcuudTcugsgsu
35.92
13.78
77.52
6.68





60499.1





4774
4775
871-893
AD-
csasgaaaGfAfGfugucucaucuuaL96
usAfsAfGfaugAfgAfcAfc(Tgn)cuuucugsgsu
66.77
16.45
109.82
2.48





60505.1





4776
4777
871-893
AD-
csasgaAfaGfAfGfugucucaucuuaL96
usAfsAfGfaugAfgAfcAfc(Tgn)cuuucugsgsu
82.10
10.11
95.50
14.73





60511.1





4778
4779
871-893
AD-
CfsasgaAfaGfAfGfugucucaucuuaL96
usAfsAfGfaugAfgAfcAfc(Tgn)cuuucugsgsu
80.83
29.69
93.57
18.41





60517.1





4780
4781
871-893
AD-
GfsasGfaAfaGfaGfUfGfuCfuCfaUfcUfuAfL96
usAfsaGfaUfgAfgAfcacUfcUfuUfcUfcscsa
29.60
1.64
67.16
8.40





60523.1





4782
4783
871-893
AD-
GfsusGfaAfaGfaGfUfGfuCfuCfaUfcUfuAfL96
usAfsaGfaUfgAfgAfcacUfcUfuUfcAfcscsa
21.15
1.21
79.02
28.99





60529.1





4784
4785
871-893
AD-
GfsusCfaAfaGfaGfUfGfuCfuCfaUfcUfuAfL96
usAfsaGfaUfgAfgAfcacUfcUfuUfgAfcscsa
31.78
13.54
79.36
26.56





60535.1





4786
4787
871-893
AD-
GfsusCfaAfaGfaGfUfGfuCfuCfaUfcUfuAfL96
usAfsaGfaUfgAfgAfcacUfcUfuUfgAfcsgsu
30.14
3.42
81.46
12.88





60494.1





4788
4789
871-893
AD-
CfsusCfuAfaGfaGfUfGfuCfuCfaUfcUfuAfL96
usAfsaGfaUfgAfgAfcacUfcUfuAfgAfgsgsu
29.85
11.78
72.14
4.56





60500.1





4790
4791
871-893
AD-
CfsusCfuUfaGfaGfUfGfuCfuCfaUfcUfuAfL96
usAfsaGfaUfgAfgAfcacUfcUfaAfgUfgsgsu
19.06
1.98
88.93
11.13





60506.1





4792
4793
871-893
AD-
CfsusGfuUfuGfaGfUfGfuCfuCfaUfcUfuAfL96
usAfsaGfaUfgAfgAfcacUfcAfaAfcUfgsgsu
29.71
1.79
86.32
17.69





60512.1





4794
4795
871-893
AD-
CfsasGfaAfaGfaGfUfGfuCfuCfaUfcUfuAfL96
(Tgns)AfsaGfaUfgAfgAfcacUfcUfuUfcUfgsgsu
27.47
2.59
81.03
10.93





60518.1





4796
4797
871-893
AD-
CfsasGfaAfaGfaGfUfGfuCfuCfaUfcUfuAfL96
usAfs(Agn)GfaUfgAfgAfcacUfcUfuUfcUfgsgsu
17.02
1.39
71.65
17.42





60524.1





4798
4799
871-893
n/a
CfsasGfaAfaGfaGfUfGfuCfuCfaUfcUfuAfL96
usAfsa(Ggn)aUfgAfgAfcacUfcUfuUfcUfgsgsu





4800
4801
871-893
AD-
CfsasGfaAfaGfaGfUfGfuCfuCfaUfcUfuAfL96
usAfsaGf(Agn)aUfgAfgAfcacUfcUfuUfcUfgsgsu
61.77
10.19
91.55
2.20





60536.1





4802
4803
871-893
AD-
CfsasGfaAfaGfaGfUfGfuCfuCfaUfcUfuAfL96
usAfsaGfa(Tgn)gAfgAfcacUfcUfuUfcUfgsgsu
25.47
2.83
54.36
15.02





60541.1





4804
4805
871-893
AD-
CfsasGfaAfaGfaGfUfGfuCfuCfaUfcUfuAfL96
usAfsaGfaUf(Ggn)AfgAfcacUfcUfuUfcUfgsgsu
49.32
1.50
90.79
11.36





60546.1





4806
4807
871-893
AD-
CfsasGfaAfaGfaGfUfGfuCfuCfaUfcUfuAfL96
usAfsaGfaUfg(Agn)gAfcacUfcUfuUfcUfgsgsu
24.37
1.11
76.80
24.99





60551.1





4808
4809
871-893
AD-
CfsasGfaAfaGfaGfUfGfuCfuCfaUfcUfuAfL96
usAfsaGfaUfgAf(Ggn)AfcacUfcUfuUfcUfgsgsu
21.43
4.71
61.90
5.64





60556.1





4810
4811
871-893
AD-
CfsasGfaAfaGfaGfUfGfuCfuCfaUfcUfuAfL96
usAfsaGfaUfgAfg(Agn)cacUfcUfuUfcUfgsgsu
28.25
6.41
71.84
27.01





60561.1





4812
4813
871-893
AD-
CfsasGfaAfaGfaGfUfGfuCfuCfaUfcUfuAfL96
usAfsaGfaUfgAfgAf(Cgn)acUfcUfuUfcUfgsgsu
27.57
4.87
67.91
18.28





60566.1





4814
4815
871-893
AD-
CfsasGfaAfaGfaGfUfGfuCfuCfaUfcUfuAfL96
usAfsaGfaUfgAfgAfc(Agn)cUfcUfuUfcUfgsgsu
24.11
0.04
58.75
21.02





60570.1





4816
4817
871-893
AD-
CfsasGfaAfaGfaGfUfGfuCfuCfaUfcUfu(Agn)L96
asAfsgAfaGfaUfgAfgacAfcUfcUfuUfcsusg
15.32
4.78
42.01
9.51





60583.1





4818
4819
871-893
AD-
CfsasGfaAfaGfaGfUfGfuCfuCfaUfcUf(Tgn)AfL96
asAfsgAfaGfaUfgAfgacAfcUfcUfuUfcsusg
21.15
4.14
49.54
13.34





60585.1





4820
4821
871-893
AD-
CfsasGfaAfaGfaGfUfGfuCfuCfaUfc(Tgn)uAfL96
asAfsgAfaGfaUfgAfgacAfcUfcUfuUfcsusg
14.66
1.73
41.47
13.20





60587.1





4822
4823
871-893
AD-
CfsasGfaAfaGfaGfUfGfuCfuCfaUf(Cgn)UfuAfL96
asAfsgAfaGfaUfgAfgacAfcUfcUfuUfcsusg
20.77
5.12
43.97
15.63





60589.1





4824
4825
871-893
AD-
CfsasGfaAfaGfaGfUfGfuCfuCfa(Tgn)cUfuAfL96
asAfsgAfaGfaUfgAfgacAfcUfcUfuUfcsusg
13.66
0.05
36.42
16.94





60591.1





4826
4827
871-893
AD-
CfsasGfaAfaGfaGfUfGfuCfuCf(Agn)UfcUfuAfL96
asAfsgAfaGfaUfgAfgacAfcUfcUfuUfcsusg
13.35
4.11
35.43
11.36





60592.1





4828
4829
871-893
AD-
CfsasGfaAfaGfaGfUfGfuCfu(Cgn)aUfcUfuAfL96
asAfsgAfaGfaUfgAfgacAfcUfcUfuUfcsusg
15.13
0.28
39.99
19.39





60593.1





4830
4831
871-893
AD-
CfsasGfaAfaGfaGfUfGfuCf(Tgn)CfaUfcUfuAfL96
asAfsgAfaGfaUfgAfgacAfcUfcUfuUfcsusg
19.56
8.17
51.59
1.11





60582.1





4832
4833
871-893
AD-
CfsasGfaAfaGfaGfUfGfu(Cgn)uCfaUfcUfuAfL96
asAfsgAfaGfaUfgAfgacAfcUfcUfuUfcsusg
23.36
6.63
58.79
10.35





60584.1





4834
4835
871-893
AD-
CfsasGfaAfaGfaGfUfGf(Tgn)CfuCfaUfcUfuAfL96
asAfsgAfaGfaUfgAfgacAfcUfcUfuUfcsusg
27.78
2.20
76.86
6.81





60586.1





4836
4837
871-893
AD-
CfsasGfaAfaGfaGfUf(Ggn)uCfuCfaUfcUfuAfL96
asAfsgAfaGfaUfgAfgacAfcUfcUfuUfcsusg
105.27
14.25
99.26
19.62





60588.1





4838
4839
871-893
AD-
CfsasGfaAfaGfaGf(Tgn)GfuCfuCfaUfcUfuAfL96
asAfsgAfaGfaUfgAfgacAfcUfcUfuUfcsusg
28.74
1.66
81.88
22.04





60590.1





4840
4841
871-893
AD-
CfsasGfaAfaGfaGfUfGfuCfuCfaUfc(Tgn)uAfL96
usAfs(Agn)GfaUfgAfgAfcacUfcUfuUfcUfgsgsu
22.74
14.85
60.42
19.38





60558.1





4842
4843
871-893
n/a
CfsasGfaAfaGfaGfUfGfuCfuCfaUf(Cgn)UfuAfL96
usAfsa(Ggn)aUfgAfgAfcacUfcUfuUfcUfgsgsu





4844
4845
871-893
AD-
CfsasGfaAfaGfaGfUfGfuCfuCfa(Tgn)cUfuAfL96
usAfsaGf(Agn)aUfgAfgAfcacUfcUfuUfcUfgsgsu
86.66
21.93
110.05
16.44





60568.1





4846
4847
871-893
AD-
CfsasGfaAfaGfaGfUfGfuCfuCf(Agn)UfcUfuAfL96
usAfsaGfa(Tgn)gAfgAfcacUfcUfuUfcUfgsgsu
22.37
4.86
71.24
22.19





60572.1





4848
4849
871-893
AD-
CfsasGfaAfaGfaGfUfGfuCfu(Cgn)aUfcUfuAfL96
usAfsaGfaUf(Ggn)AfgAfcacUfcUfuUfcUfgsgsu
43.35
14.53
104.44
2.51





60539.1





4850
4851
871-893
AD-
CfsasGfaAfaGfaGfUfGfuCf(Tgn)CfaUfcUfuAfL96
usAfsaGfaUfg(Agn)gAfcacUfcUfuUfcUfgsgsu
25.85
1.18
69.98
5.86





60544.1





4852
4853
871-893
AD-
CfsasGfaAfaGfaGfUfGfu(Cgn)uCfaUfcUfuAfL96
usAfsaGfaUfgAf(Ggn)AfcacUfcUfuUfcUfgsgsu
29.40
4.62
72.98
20.16





60549.1





4854
4855
871-893
AD-
CfsasGfaAfaGfaGfUfGf(Tgn)CfuCfaUfcUfuAfL96
usAfsaGfaUfgAfg(Agn)cacUfcUfuUfcUfgsgsu
33.74
0.45
75.36
19.39





60554.1





4856
4857
871-893
n/a
CfsasGfaAfaGfaGfUf(Ggn)uCfuCfaUfcUfuAfL96
usAfsaGfaUfgAfgAf(Cgn)acUfcUfuUfcUfgsgsu





4858
4859
871-893
AD-
CfsasGfaAfaGfaGf(Tgn)GfuCfuCfaUfcUfuAfL96
usAfsaGfaUfgAfgAfc(Agn)cUfcUfuUfcUfgsgsu
27.77
10.34
77.01
11.51





60564.1





4860
4861
871-893
AD-
CfsasGfaAfaGfaGfUfGfuCfuCfaUfcUfuAfsL96
usAfsaGfaUfgAfgAfcacUfcUfuUfcUfgsgsu
20.34
5.29
59.40
19.74





60569.1





4862
4863
871-893
AD-
CfsasGfaAfaGfaGfUfGfuCfuCfaUfscUfsuAfsL96
usAfsaGfaUfgAfgAfcacUfcUfuUfcUfgsgsu
20.07
3.83
60.80
14.93





60573.1





4864
4865
871-893
AD-
CfsasGfaAfaGfaGfUfGfuCfuCfaUfcUfuAfsL96
usAfsaGfaUfsgAfgAfcacUfcUfsuUfscUfgsgsu
24.36
0.56
75.75
14.97





60540.1





4866
4867
871-893
n/a
CfsasGfaAfaGfaGfUfGfuCfuCfaUfscUfsuAfsL96
usAfsaGfaUfsgAfgAfcacUfcUfsuUfscUfgsgsu









In the in vitro screen for which the results are shown in the table above, the siRNAs that provided the greatest ALAS1 mRNA suppression (greater than 80% suppression, such that less than 20% mRNA was remaining) at 10 nM concentration included AD-60501, AD-60592, AD-60591, AD-60513, AD-60507, AD-60587, AD-60519, AD-60593, AD-60583, AD-60524, AD-60489, AD-60495, AD-60506, and AD-60582.


In the in vitro screen for which the results are shown in the table above, the siRNAs that provided the greatest ALAS1 mRNA suppression (greater than 30% suppression, such that less than 70% mRNA was remaining) at 0.1 nM concentration included AD-60592, AD-60591, AD-60593, AD-60587, AD-60583, AD-60589, AD-60501, AD-60507, AD-60585, AD-60489, AD-60513, AD-60582, AD-60519, AD-60541, AD-60570, AD-60584, AD-60569, AD-60558, AD-60573, AD-60556, AD-60495, AD-60523, AD-60566, and AD-60544.


As is shown in the table below, testing of further siRNAs revealed that the following duplexes provided greater than 80% suppression at 10 nM concentration: AD-60489, AD-60495, AD-60501, AD-60507, AD-60513, AD-60519, AD-60583, AD-60591, AD-60592, and AD-60593, and the following duplexes provided greater than 30% suppression at 0.1 nM concentration: AD-60489, AD-60495, AD-60501, AD-60507, AD-60513, AD-60519, AD-60583, AD-60591, AD-60592, and AD-60593.









TABLE 33







Sequences and in vitro screen results for AD-60489 and AD-60489 derivative siRNAs

















SEQ











ID
Target sites


SEQ
NO:
of anti-sense


ID NO:
(anti-
seq on
Duplex


Avg
SD
Avg
SD


(sense)
sense)
NM_000688.4
Name
Sense Sequence (5′-3′)
Antisense (AS) Sequence (5′-3′)
10 nM
10 nM
0.1 nM
0.1 nM



















4868
4869
871-893
AD-
CfsasGfaAfaGfaGfUfGfuCfuCfaUfcUfuAfL96
usAfsaGfaUfgAfgAfcacUfcUfuUfcUfgsgsu
17.0
0.2
50.7
5.1





60489.1





4870
4871
871-893
AD-
CfsasGfaAfaGfaGfuGfuCfuCfaucuuAfL96
usAfsaGfaUfgAfgAfcacUfcUfuUfcUfgsgsu
17.1
5.9
63.6
18.6





60495.1





4872
4873
871-893
AD-
CfsasGfaAfaGfaGfuGfuCfuCfaucuuAfL96
usAfsAfGfaUfgAfgAfcAfcUfcUfuUfcUfgsgsu
11.9
0.7
45.2
8.9





60501.1





4874
4875
871-893

CfsasGfaAfaGfaGfuGfuCfuCfaucuuAfL96
usAfsAfGfaugAfgAfcAfcucuuucugsgsu





4876
4877
871-893

CfsasGfaAfaGfaGfuGfuCfuCfaucuuAfL96
usAfsAfGfadTgAfgAfcAfcdTcuudTcugsgsu





4878
4879
871-893

CfsasGfaAfaGfaGfuGfuCfuCfaucuuAfL96
usAfsaGfadTgAfgAfcAfcdTcuudTcugsgsu





4880
4881
871-893

CfsasGfaAfaGfaGfuGfuCfuCfaucuuAfL96
usAfsAfGfadTgAfgAfcacdTcuudTcugsgsu





4882
4883
871-893
AD-
CfsasgaaaGfaGfuGfuCfuCfaucuuAfL96
usAfsAfGfaUfgAfgAfcAfcUfcUfuUfcUfgsgsu
14.6
7.8
48.5
19.6





60507.1





4884
4885
871-893

CfsasgaaaGfaGfuGfuCfuCfaucuuAfL96
usAfsaGfaUfgAfgAfcacUfcUfuUfcUfgsgsu





4886
4887
871-893

CfsasgaaaGfaGfuGfuCfuCfaucuuAfL96
usAfsAfGfaugAfgAfcAfcucuuucugsgsu





4888
4889
871-893

CfsasgaaaGfaGfuGfuCfuCfaucuuAfL96
usAfsAfGfadTgAfgAfcAfcdTcuudTcugsgsu





4890
4891
871-893

CfsasgaaaGfaGfuGfuCfuCfaucuuAfL96
usAfsaGfadTgAfgAfcAfcdTcuudTcugsgsu





4892
4893
871-893

CfsasgaaaGfaGfuGfuCfuCfaucuuAfL96
usAfsAfGfadTgAfgAfcacdTcuudTcugsgsu





4894
4895
871-893
AD-
CfsasgaaaGfaGfuGfuCfuCfaucuuaL96
usAfsAfGfaUfgAfgAfcAfcUfcUfuUfcUfgsgsu
14.4
2.4
51.0
7.0





60513.1





4896
4897
871-893

CfsasgaaaGfaGfuGfuCfuCfaucuuaL96
usAfsaGfaUfgAfgAfcacUfcUfuUfcUfgsgsu





4898
4899
871-893

CfsasgaaaGfaGfuGfuCfuCfaucuuaL96
usAfsAfGfaugAfgAfcAfcucuuucugsgsu





4900
4901
871-893

CfsasgaaaGfaGfuGfuCfuCfaucuuaL96
usAfsAfGfadTgAfgAfcAfcdTcuudTcugsgsu





4902
4903
871-893

CfsasgaaaGfaGfuGfuCfuCfaucuuaL96
usAfsaGfadTgAfgAfcAfcdTcuudTcugsgsu





4904
4905
871-893

CfsasgaaaGfaGfuGfuCfuCfaucuuaL96
usAfsAfGfadTgAfgAfcacdTcuudTcugsgsu





4906
4907
871-893
AD-
csasgaaaGfaGfuGfuCfuCfaucuuaL96
usAfsAfGfaUfgAfgAfcAfcUfcUfuUfcUfgsgsu
14.7
4.9
51.7
7.7





60519.1





4908
4909
871-893

csasgaaaGfaGfuGfuCfuCfaucuuaL96
usAfsaGfaUfgAfgAfcacUfcUfuUfcUfgsgsu





4910
4911
871-893

csasgaaaGfaGfuGfuCfuCfaucuuaL96
usAfsAfGfaugAfgAfcAfcucuuucugsgsu





4912
4913
871-893

csasgaaaGfaGfuGfuCfuCfaucuuaL96
usAfsAfGfadTgAfgAfcAfcdTcuudTcugsgsu





4914
4915
871-893

csasgaaaGfaGfuGfuCfuCfaucuuaL96
usAfsaGfadTgAfgAfcAfcdTcuudTcugsgsu





4916
4917
871-893

csasgaaaGfaGfuGfuCfuCfaucuuaL96
usAfsAfGfadTgAfgAfcacdTcuudTcugsgsu





4918
4919
871-893
AD-
csasgaaaGfAfGfugucucaucuuaL96
usAfsAfGfadTgAfgAfcAfcdTcuudTcugsgsu
35.9
13.8
77.5
6.7





60499.1





4920
4921
871-893

csasgaaaGfAfGfugucucaucuuaL96
usAfsaGfaUfgAfgAfcacUfcUfuUfcUfgsgsu





4922
4923
871-893

csasgaaaGfAfGfugucucaucuuaL96
usAfsAfGfaUfgAfgAfcAfcUfcUfuUfcUfgsgsu





4924
4925
871-893

csasgaaaGfAfGfugucucaucuuaL96
usAfsAfGfaugAfgAfcAfcucuuucugsgsu





4926
4927
871-893

csasgaaaGfAfGfugucucaucuuaL96
usAfsaGfadTgAfgAfcAfcdTcuudTcugsgsu





4928
4929
871-893

csasgaaaGfAfGfugucucaucuuaL96
usAfsAfGfadTgAfgAfcacdTcuudTcugsgsu





4930
4931
871-893

csasgaaaGfAfGfugucuca(Tgn)cuuaL96
usAfsaGfaUfgAfgAfcacUfcUfuUfcUfgsgsu





4932
4933
871-893

csasgaaaGfAfGfugucuca(Tgn)cuuaL96
usAfsAfGfaUfgAfgAfcAfcUfcUfuUfcUfgsgsu





4934
4935
871-893

csasgaaaGfAfGfugucuca(Tgn)cuuaL96
usAfsAfGfaugAfgAfcAfcucuuucugsgsu





4936
4937
871-893

csasgaaaGfAfGfugucuca(Tgn)cuuaL96
usAfsAfGfadTgAfgAfcAfcdTcuudTcugsgsu





4938
4939
871-893

csasgaaaGfAfGfugucuca(Tgn)cuuaL96
usAfsaGfadTgAfgAfcAfcdTcuudTcugsgsu





4940
4941
871-893

csasgaaaGfAfGfugucuca(Tgn)cuuaL96
usAfsAfGfadTgAfgAfcacdTcuudTcugsgsu





4942
4943
871-893
AD-
CfsasGfaAfaGfaGfUfGfuCfuCfaUfcUfu(Agn)L96
asAfsgAfaGfaUfgAfgacAfcUfcUfuUfcsusg
15.3
4.8
42.0
9.5





60583.1





4944
4945
871-893
AD-
CfsasGfaAfaGfaGfUfGfuCfuCfa(Tgn)cUfuAfL96
asAfsgAfaGfaUfgAfgacAfcUfcUfuUfcsusg
13.7
0.0
36.4
16.9





60591.1





4946
4947
871-893
AD-
CfsasGfaAfaGfaGfUfGfuCfuCf(Agn)UfcUfuAfL96
asAfsgAfaGfaUfgAfgacAfcUfcUfuUfcsusg
13.4
4.1
35.4
11.4





60592.1





4948
4949
871-893
AD-
CfsasGfaAfaGfaGfUfGfuCfu(Cgn)aUfcUfuAfL96
asAfsgAfaGfaUfgAfgacAfcUfcUfuUfcsusg
15.1
0.3
40.0
19.4





60593.1





4950
4951
871-893
AD-
CfsasGfaAfaGfaGfUfGfuCfuCfaUfcUfuAfL96
usAfsaGfaUfgAfgAfcacUfcUfuUfcUfgsgsu
17.0
0.2
50.7
5.1





60489.1





4952
4953
871-893

CfsasGfaAfaGfaGfdTGfuCfuCfaUfcUfuAfL96
usAfsaGfaUfgAfgAfcacUfcUfuUfcUfgsgsu





4954
4955
871-893

CfsasGfaAfaGfaGfUfGfuCfuCfaUfcUfuAfL96
usAfsaGfaUfgAfgAfcacUfcdTuUfcUfgsgsu





4956
4957
871-893

CfsasGfaAfaGfaGfdTGfuCfuCfaUfcUfuAfL96
usAfsaGfaUfgAfgAfcacUfcdTuUfcUfgsgsu





4958
4959
871-893

CfsasGfaAfaGfaGfdTGfuCfuCfaUfscUfsuAfsL96
usAfsaGfaUfgAfgAfcacUfcdTuUfcUfgsgsu





4960
4961
871-893

CfsasGfaAfaGfaGfdTGfuCfuCfaUfscusuAfsL96
usAfsAfGfaUfgAfgAfcacUfcdTuUfcUfgsgsu





4962
4963
871-893
AD-
CfsasGfaAfaGfaGfUfGfuCfuCfa(Tgn)cUfuAfL96
asAfsgAfaGfaUfgAfgacAfcUfcUfuUfcsusg
13.7
0.0
36.4
16.9





60591.1





4964
4965
871-893

CfsasGfaAfaGfaGfdTGfuCfuCfa(Tgn)cUfuAfL96
asAfsgAfaGfaUfgAfgacAfcUfcUfuUfcsusg





4966
4967
871-893

CfsasGfaAfaGfaGfUfGfuCfuCfa(Tgn)cUfuAfL96
usAfsaGfaUfgAfgAfcacUfcdTuUfcUfgsgsu





4968
4969
871-893

CfsasGfaAfaGfaGfdTGfuCfuCfa(Tgn)cUfuAfL96
usAfsaGfaUfgAfgAfcacUfcdTuUfcUfgsgsu





4970
4971
871-893

CfsasGfaAfaGfaGfdTGfuCfuCfa(Tgn)scUfsuAfsL96
usAfsaGfaUfgAfgAfcacUfcdTuUfcUfgsgsu





4972
4973
871-893

CfsasGfaAfaGfaGfdTGfuCfuCfa(Tgn)scusuAfsL96
usAfsAfGfaUfgAfgAfcacUfcdTuUfcUfgsgsu





4974
4975
871-893
AD-
CfsasGfaAfaGfaGfUfGfuCfuCf(Agn)UfcUfuAfL96
asAfsgAfaGfaUfgAfgacAfcUfcUfuUfcsusg
13.4
4.1
35.4
11.4





60592.1





4976
4977
871-893

CfsasGfaAfaGfaGfdTGfuCfuCf(Agn)UfcUfuAfL96
asAfsgAfaGfaUfgAfgacAfcUfcUfuUfcsusg





4978
4979
871-893

CfsasGfaAfaGfaGfUfGfuCfuCf(Agn)UfcUfuAfL96
usAfsaGfaUfgAfgAfcacUfcdTuUfcUfgsgsu





4980
4981
871-893

CfsasGfaAfaGfaGfdTGfuCfuCf(Agn)UfcUfuAfL96
usAfsaGfaUfgAfgAfcacUfcdTuUfcUfgsgsu





4982
4983
871-893

CfsasGfaAfaGfaGfdTGfuCfuCf(Agn)UfscUfsuAfsL96
usAfsaGfaUfgAfgAfcacUfcdTuUfcUfgsgsu





4984
4985
871-893

CfsasGfaAfaGfaGfdTGfuCfuCf(Agn)UfscusuAfsL96
usAfsAfGfaUfgAfgAfcacUfcdTuUfcUfgsgsu





4986
4987
871-893

CfsasGfaAfaGfaGfdTGfuCfuCfs(Agns)UfscUfsuAfsL96
usAfsaGfaUfgAfgAfcacUfcdTuUfcUfgsgsu





4988
4989
871-893

CfsasGfaAfaGfaGfdTGfuCfuCfs(Agns)UfscusuAfsL96
usAfsAfGfaUfgAfgAfcacUfcdTuUfcUfgsgsu
















TABLE 34







Further sequences of AD-60489 derivative siRNAs













SEQ







ID
Target sites


SEQ
NO:
of antisense


ID NO:
(anti-
sequence on
Duplex


(sense)
sense)
NM_000688.4
Name
Sense Sequence (5′-3′)
Antisense Sequence (5′-3′)





4990
4991
871-893
AD-
CfsasGfaAfaGfaGfUfGfuCfuCfa
usAfsaGfaUfgAfgAfcacUfcUfuUfcUfgsgsu





60489
UfcUfuAfL96





4992
4993
871-893
AD-
CfsasGfaAfaGfaGfuGfuCfuCf
usAfsAfGfaUfgAfgAfcAfcUfcUfuUfcUfgsgsu





60501.1
aucuuAfL96





4994
4995
871-893
AD-
CfsasGfaAfaGfaGfuGfuCfu
usAfsAfGfadTgAfgAfcAfcdTcuudTcugsgsu





60900.1
CfaucuuAfL96





4996
4997
871-893
AD-
csasgaaaGfaGfuGfuCfuC
usAfsAfGfaUfgAfgAfcAfcUfcUfuUfcUfgsgsu





60519.1
faucuuaL96





4998
4999
871-893
AD-
csasgaaaGfaGfuGfuCfuCf
usAfsAfGfadTgAfgAfcAfcdTcuudTcugsgsu





60905.1
aucuuaL96





5000
5001
871-893
AD-
csasgaaaGfaGfuGfuCfuCfau
usAfsaGfaUfgAfgAfcacUfcUfuUfcUfgsgsu





60901.1
cuuaL96





5002
5003
871-893
AD-
csasgaaaGfaGfuGfuCfuC
usAfsaGfaUfgAfgAfcacUfcUfuUfcUfgsgsu





60495.2
faucuuaL96





5004
5005
871-893
AD-
CfsasGfaAfaGfaGfUfGfuCfuCf
usAfsAfGfaUfgAfgAfcAfcUfcUfuUfcUfgsgsu





60935.1
aUfcUfuAfL96
















TABLE 35







Further sequences and IC50s of AD-60489 and AD-60489 derivative siRNAs















Target sites







SEQ ID NO:
of anti-sense


SEQ ID NO:
(anti-
seq on


(sense)
sense)
NM_000688.4
Duplex Name*
Sense Sequence (5′-3′)
Antisense (AS) Sequence (5′-3′)
IC50





5006
5007
871-893
AD-
CfsasGfaAfaGfaGfUfGfuCfuCfaUfcUfuAfL96
usAfsaGfaUfgAfgAfcacUfcUfuUfcUfgsgsu
0.010





60489.3





5008
5009
871-893
AD-
CfsasGfaAfaGfaGfuGfuCfuCfaucuuAfL96
usAfsaGfaUfgAfgAfcacUfcUfuUfcUfgsgsu
0.254





60495.2





5010
5011
871-893
AD-
CfsasGfaAfaGfaGfuGfuCfuCfaucuuAfL96
usAfsAfGfaUfgAfgAfcAfcUfcUfuUfcUfgsgsu
0.006





60501.2





5012
5013
871-893
AD-
CfsasGfaAfaGfaGfuGfuCfuCfaucuuAfL96
usAfsAfGfaugAfgAfcAfcucuuucugsgsu
na





60898.1





5014
5015
871-893
AD-
CfsasGfaAfaGfaGfuGfuCfuCfaucuuAfL96
usAfsAfGfadTgAfgAfcAfcdTcuudTcugsgsu
0.151





60900.1





5016
5017
871-893
AD-
CfsasGfaAfaGfaGfuGfuCfuCfaucuuAfL96
usAfsaGfadTgAfgAfcAfcdTcuudTcugsgsu
0.033





60851.1





5018
5019
871-893
AD-
CfsasGfaAfaGfaGfuGfuCfuCfaucuuAfL96
usAfsAfGfadTgAfgAfcacdTcuudTcugsgsu
0.065





60855.1





5020
5021
871-893
AD-
CfsasgaaaGfaGfuGfuCfuCfaucuuAfL96
usAfsAfGfaUfgAfgAfcAfcUfcUfuUfcUfgsgsu
0.029





60507.2





5022
5023
871-893
AD-
CfsasgaaaGfaGfuGfuCfuCfaucuuAfL96
usAfsaGfaUfgAfgAfcacUfcUfuUfcUfgsgsu
0.024





60902.1





5024
5025
871-893
AD-
CfsasgaaaGfaGfuGfuCfuCfaucuuAfL96
usAfsAfGfaugAfgAfcAfcucuuucugsgsu
na





60904.1





5026
5027
871-893
AD-
CfsasgaaaGfaGfuGfuCfuCfaucuuAfL96
usAfsAfGfadTgAfgAfcAfcdTcuudTcugsgsu
0.011





60894.1





5028
5029
871-893
AD-
CfsasgaaaGfaGfuGfuCfuCfaucuuAfL96
usAfsaGfadTgAfgAfcAfcdTcuudTcugsgsu
0.249





60860.1





5030
5031
871-893
AD-
CfsasgaaaGfaGfuGfuCfuCfaucuuAfL96
usAfsAfGfadTgAfgAfcacdTcuudTcugsgsu
1.899





60864.1





5032
5033
871-893
AD-
CfsasgaaaGfaGfuGfuCfuCfaucuuaL96
usAfsAfGfaUfgAfgAfcAfcUfcUfuUfcUfgsgsu
0.019





60513.2





5034
5035
871-893
AD-
CfsasgaaaGfaGfuGfuCfuCfaucuuaL96
usAfsaGfaUfgAfgAfcacUfcUfuUfcUfgsgsu
0.034





60896.1





5036
5037
871-893
AD-
CfsasgaaaGfaGfuGfuCfuCfaucuuaL96
usAfsAfGfaugAfgAfcAfcucuuucugsgsu
na





60899.1





5038
5039
871-893
AD-
CfsasgaaaGfaGfuGfuCfuCfaucuuaL96
usAfsaGfadTgAfgAfcAfcdTcuudTcugsgsu
0.249





60868.1





5040
5041
871-893
AD-
CfsasgaaaGfaGfuGfuCfuCfaucuuaL96
usAfsAfGfadTgAfgAfcacdTcuudTcugsgsu
0.014





60872.1





5042
5043
871-893
AD-
csasgaaaGfaGfuGfuCfuCfaucuuaL96
usAfsAfGfaUfgAfgAfcAfcUfcUfuUfcUfgsgsu
0.026





60519.2





5044
5045
871-893
AD-
csasgaaaGfaGfuGfuCfuCfaucuuaL96
usAfsaGfaUfgAfgAfcacUfcUfuUfcUfgsgsu
0.080





60901.1





5046
5047
871-893
AD-
csasgaaaGfaGfuGfuCfuCfaucuuaL96
usAfsAfGfaugAfgAfcAfcucuuucugsgsu
na





60903.1





5048
5049
871-893
AD-
csasgaaaGfaGfuGfuCfuCfaucuuaL96
usAfsAfGfadTgAfgAfcAfcdTcuudTcugsgsu
0.018





60905.1





5050
5051
871-893
AD-
csasgaaaGfaGfuGfuCfuCfaucuuaL96
usAfsaGfadTgAfgAfcAfcdTcuudTcugsgsu
0.091





60876.1





5052
5053
871-893
AD-
csasgaaaGfaGfuGfuCfuCfaucuuaL96
usAfsAfGfadTgAfgAfcacdTcuudTcugsgsu
0.131





60880.1





5054
5055
871-893
AD-
csasgaaaGfAfGfugucucaucuuaL96
usAfsAfGfadTgAfgAfcAfcdTcuudTcugsgsu
na





60499.2





5056
5057
871-893
AD-
csasgaaaGfAfGfugucucaucuuaL96
usAfsaGfaUfgAfgAfcacUfcUfuUfcUfgsgsu
na





60895.1





5058
5059
871-893
AD-
csasgaaaGfAfGfugucucaucuuaL96
usAfsAfGfaUfgAfgAfcAfcUfcUfuUfcUfgsgsu
na





60897.1





5060
5061
871-893
AD-
csasgaaaGfAfGfugucucaucuuaL96
usAfsAfGfaugAfgAfcAfcucuuucugsgsu
na





60526.2





5062
5063
871-893
AD-
csasgaaaGfAfGfugucucaucuuaL96
usAfsaGfadTgAfgAfcAfcdTcuudTcugsgsu
4.970





60852.1





5064
5065
871-893
AD-
csasgaaaGfAfGfugucucaucuuaL96
usAfsAfGfadTgAfgAfcacdTcuudTcugsgsu
na





60856.1





5066
5067
871-893
AD-
csasgaaaGfAfGfugucuca(Tgn)cuuaL96
usAfsaGfaUfgAfgAfcacUfcUfuUfcUfgsgsu
0.019





60861.1





5068
5069
871-893
AD-
csasgaaaGfAfGfugucuca(Tgn)cuuaL96
usAfsAfGfaUfgAfgAfcAfcUfcUfuUfcUfgsgsu
0.061





60865.1





5070
5071
871-893
AD-
csasgaaaGfAfGfugucuca(Tgn)cuuaL96
usAfsAfGfaugAfgAfcAfcucuuucugsgsu
na





60869.1





5072
5073
871-893
AD-
csasgaaaGfAfGfugucuca(Tgn)cuuaL96
usAfsAfGfadTgAfgAfcAfcdTcuudTcugsgsu
0.009





60873.1





5074
5075
871-893
AD-
csasgaaaGfAfGfugucuca(Tgn)cuuaL96
usAfsaGfadTgAfgAfcAfcdTcuudTcugsgsu
0.008





60877.1





5076
5077
871-893
AD-
csasgaaaGfAfGfugucuca(Tgn)cuuaL96
usAfsAfGfadTgAfgAfcacdTcuudTcugsgsu
0.025





60881.1





5078
5079
871-893
AD-
CfsasGfaAfaGfaGfUfGfuCfuCfaUfcUfu(Agn)L96
usAfsaGfaUfgAfgAfcacUfcUfuUfcUfgsgsu
0.022





60583.2





5080
5081
871-893
AD-
CfsasGfaAfaGfaGfUfGfuCfuCfa(Tgn)cUfuAfL96
usAfsaGfaUfgAfgAfcacUfcUfuUfcUfgsgsu
0.031





60591.3





5082
5083
871-893
AD-
CfsasGfaAfaGfaGfUfGfuCfuCf(Agn)UfcUfuAfL96
usAfsaGfaUfgAfgAfcacUfcUfuUfcUfgsgsu
0.010





60592.3





5084
5085
871-893
AD-
CfsasGfaAfaGfaGfUfGfuCfu(Cgn)aUfcUfuAfL96
usAfsaGfaUfgAfgAfcacUfcUfuUfcUfgsgsu
0.006





60593.2





5086
5087
871-893
AD-
CfsasGfaAfaGfaGfUfGfuCfuCfaUfcUfuAfL96
usAfsaGfaUfgAfgAfcacUfcUfuUfcUfgsgsu
0.011





60489.4





5088
5089
871-893
AD-
CfsasGfaAfaGfaGfdTGfuCfuCfaUfcUfuAfL96
usAfsaGfaUfgAfgAfcacUfcUfuUfcUfgsgsu
0.019





60857.1





5090
5091
871-893
AD-
CfsasGfaAfaGfaGfUfGfuCfuCfaUfcUfuAfL96
usAfsaGfaUfgAfgAfcacUfcdTuUfcUfgsgsu
0.012





60862.1





5092
5093
871-893
AD-
CfsasGfaAfaGfaGfdTGfuCfuCfaUfcUfuAfL96
usAfsaGfaUfgAfgAfcacUfcdTuUfcUfgsgsu
0.015





60866.1





5094
5095
871-893
AD-
CfsasGfaAfaGfaGfdTGfuCfuCfaUfscUfsuAfsL96
usAfsaGfaUfgAfgAfcacUfcdTuUfcUfgsgsu
0.012





60870.1





5096
5097
871-893
AD-
CfsasGfaAfaGfaGfdTGfuCfuCfaUfscusuAfsL96
usAfsAfGfaUfgAfgAfcacUfcdTuUfcUfgsgsu
0.003





60874.1





5098
5099
871-893
AD-
CfsasGfaAfaGfaGfUfGfuCfuCfa(Tgn)cUfuAfL96
asAfsgAfaGfaUfgAfgacAfcUfcUfuUfcsusg
0.014





60591.2





5100
5101
871-893
AD-
CfsasGfaAfaGfaGfdTGfuCfuCfa(Tgn)cUfuAfL96
asAfsgAfaGfaUfgAfgacAfcUfcUfuUfcsusg
0.008





60878.1





5102
5103
871-893
AD-
CfsasGfaAfaGfaGfUfGfuCfuCfa(Tgn)cUfuAfL96
usAfsaGfaUfgAfgAfcacUfcdTuUfcUfgsgsu
0.003





60882.1





5104
5105
871-893
AD-
CfsasGfaAfaGfaGfdTGfuCfuCfa(Tgn)cUfuAfL96
usAfsaGfaUfgAfgAfcacUfcdTuUfcUfgsgsu
0.007





60853.1





5106
5107
871-893
AD-
CfsasGfaAfaGfaGfdTGfuCfuCfa(Tgn)scUfsuAfsL96
usAfsaGfaUfgAfgAfcacUfcdTuUfcUfgsgsu
0.013





60858.1





5108
5109
871-893
AD-
CfsasGfaAfaGfaGfdTGfuCfuCfa(Tgn)scusuAfsL96
usAfsAfGfaUfgAfgAfcacUfcdTuUfcUfgsgsu
0.002





60863.1





5110
5111
871-893
AD-
CfsasGfaAfaGfaGfUfGfuCfuCf(Agn)UfcUfuAfL96
asAfsgAfaGfaUfgAfgacAfcUfcUfuUfcsusg
0.013





60592.2





5112
5113
871-893
AD-
CfsasGfaAfaGfaGfdTGfuCfuCf(Agn)UfcUfuAfL96
asAfsgAfaGfaUfgAfgacAfcUfcUfuUfcsusg
0.084





60867.1





5114
5115
871-893
AD-
CfsasGfaAfaGfaGfUfGfuCfuCf(Agn)UfcUfuAfL96
usAfsaGfaUfgAfgAfcacUfcdTuUfcUfgsgsu
0.008





60871.1





5116
5117
871-893
AD-
CfsasGfaAfaGfaGfdTGfuCfuCf(Agn)UfcUfuAfL96
usAfsaGfaUfgAfgAfcacUfcdTuUfcUfgsgsu
0.004





60875.1





5118
5119
871-893
AD-
CfsasGfaAfaGfaGfdTGfuCfuCf(Agn)UfscUfsuAfsL96
usAfsaGfaUfgAfgAfcacUfcdTuUfcUfgsgsu
0.001





60879.1





5120
5121
871-893
AD-
CfsasGfaAfaGfaGfdTGfuCfuCf(Agn)UfscusuAfsL96
usAfsAfGfaUfgAfgAfcacUfcdTuUfcUfgsgsu
0.004





60883.1





5122
5123
871-893
AD-
CfsasGfaAfaGfaGfdTGfuCfuCfs(Agns)UfscUfsuAfsL96
usAfsaGfaUfgAfgAfcacUfcdTuUfcUfgsgsu
0.002





60854.1





5124
5125
871-893
AD-
CfsasGfaAfaGfaGfdTGfuCfuCfs(Agns)UfscusuAfsL96
usAfsAfGfaUfgAfgAfcacUfcdTuUfcUfgsgsu
0.002





60859.1









As is shown in the table above, a number of duplexes showed efficacy in suppressing ALAS1 mRNA. The following duplexes had an IC50 of less than 0.01 nM: AD-60879, AD-60859, AD-60863, AD-60854, AD-60882, AD-60874, AD-60883, AD-60875, AD-60501, AD-60593, AD-60853, AD-60877, AD-60878, AD-60871, and AD-60873. The following duplexes had an IC50 of less than 0.02 nM: AD-60879, AD-60859, AD-60863, AD-60854, AD-60882, AD-60874, AD-60883, AD-60875, AD-60501, AD-60593, AD-60853, AD-60877, AD-60878, AD-60871, AD-60873, AD-60489, AD-60592, AD-60894, AD-60489, AD-60870, AD-60862, AD-60858, AD-60592, AD-60591, AD-60872, AD-60866, AD-60905, AD-60857, AD-60513, and AD-60861. The following duplexes had an IC50 of less than 0.05 nM: AD-60879, AD-60859, AD-60863, AD-60854, AD-60882, AD-60874, AD-60883, AD-60875, AD-60501, AD-60593, AD-60853, AD-60877, AD-60878, AD-60871, AD-60873, AD-60489, AD-60592, AD-60894, AD-60489, AD-60870, AD-60862, AD-60858, AD-60592, AD-60591, AD-60872, AD-60866, AD-60905, AD-60857, AD-60513, AD-60861, AD-60583.2, AD-60902.1, AD-60881.1, AD-60519.2, AD-60507.2, AD-60591.3, AD-60851.1, AD-60896.1, and AD-60537.2.


Example 29: In Vivo Structure Activity Relationship Studies of AD-60489

Derivatives of the AD-60489 parent siRNA were generated and screened in vivo in rats.


In Vivo Screen 1 of AD-60489 Derivatives


The sequences of the siRNAs that were screened are provided in the table below.









TABLE 36







Sequences of ALAS1 siRNA Duplexes














Target






SEQ
sites of


SEQ
ID
antisense


ID
NO:
sequence


NO:
(anti-
on
Duplex


(sense)
sense)
NM_000688.4
Name
Sense Sequence (5′-3′)
Antisense Sequence (5′-3′)





5126
5127
871-893
AD-
CfsasGfaAfaGfaGfUfGfuCfuCfaUf
usAfsaGfaUfgAfgAfcacUfcUfuUfcUfgsgsu





60489
cUfuAfL96





5128
5129
871-893
AD-
CfsasGfaAfaGfaGfuGfuCfuCfauc
usAfsAfGfaUfgAfgAfcAfcUfcUfuUfcUfgsgsu





60501.2
uuAfL96





5130
5131
871-893
AD-
csasgaaaGfaGfuGfuCfuCfaucuua
usAfsAfGfaUfgAfgAfcAfcUfcUfuUfcUfgsgsu





60519.2
L96





5132
5133
871-893
AD-
csasgaaaGfaGfuGfuCfuCfaucuua
usAfsaGfaUfgAfgAfcacUfcUfuUfcUfgsgsu





60901.1
L96





5134
5135
871-893
AD-
CfsasGfaAfaGfaGfuGfuCfuCfau
usAfsaGfaUfgAfgAfcacUfcUfuUfcUfgsgsu





60495.2
cuuAfL96





5136
5137
871-893
AD-
CfsasGfaAfaGfaGfuGfuCfuCf
usAfsAfGfadTgAfgAfcAfcdTcuudTcugsgsu





60900.1
aucuuAfL96





5138
5139
871-893
AD-
CfsasGfaAfaGfaGfUfGfuCfuCfa
usAfsAfGfaUfgAfgAfcAfcUfcUfuUfcUfgsgsu





60935.1
UfcUfuAfL96





5140
5141
871-893
AD-
csasgaaaGfaGfuGfuCfuCfaucuua
usAfsAfGfadTgAfgAfcAfcdTcuudTcugsgsu





60905.1
L96









Rats were administered a single dose of 3 mg/kg of siRNA. At 5 days following administration of the siRNA, mRNA measurements of rat ALAS1 (rALAS1) mRNA and rat GAPDH (rGAPDH) mRNA were made using bDNA assay, and tissue levels of drug (siRNA) were determined using qPCR.


As is shown in FIG. 40 (top), the siRNAs AD-60501, AD-60519, AD-60901, AD-60495, AD-60900, and AD-60935 showed improved suppression of ALAS1 mRNA compared with AD-60489. The siRNAs AD-60519, AD-60901, AD-60495, and AD-60935 achieved higher liver levels than did AD-60489 (see FIG. 40, bottom). Thus, most of the duplexes that provided improved suppression of ALAS1 mRNA also achieved higher liver levels.


At least for the duplexes AD-60489, AD-60519, and AD-60901, efficacy correlated with liver levels of the siRNA (see FIG. 41), such that a higher level of siRNA in liver was associated with greater ALAS1 mRNA suppression.


In Vivo Screen 2 of AD-60489 Derivatives


The sequences of the siRNAs that were screened are provided in the table below.









TABLE 37







Sequences of ALAS1 siRNA Duplexes














Target






SEQ
sites of


SEQ
ID
antisense


ID
NO:
sequence


NO:
(anti-
on
Duplex


(sense)
sense)
NM_000688.4
Name
Sense Sequence (5′-3′)
Antisense Sequence (5′-3′)





5142
5143
871-893
AD-
CfsasGfaAfaGfaGfUfGfuCfuC
usAfsaGfaUfgAfgAfcacUfcUfuUfcUfgsgsu





60489
faUfcUfuAfL96





5144
5145
871-893
AD-
CfsasGfaAfaGfaGfdTGfuCfuCf(Agn)
usAfsaGfaUfgAfgAfcacUfcdTuUfcUfgsgsu





60879
UfscUfsuAfsL96





5146
5147
871-893
AD-
CfsasGfaAfaGfaGfdTGfuCfuCf(Agn)
usAfsAfGfaUfgAfgAfcAfcUfcUfuUfcUfgsgsu





61190
UfscUfsuAfsL96





5148
5149
871-893
AD-
CfsasGfaAfaGfaGfdTGfuCfuCf(Agn)
usAfsAfGfaUfgAfgAfcAfcUfcUfuUfcUfgsgsu





61191
UfscUfsuAfsL96





5150
5151
871-893
AD-
csasgaaaGfAfGfugucuca(Tgn)cu
usAfsaGfadTgAfgAfcAfcdTcuudTcugsgsu





60877
uaL96





5152
5153
871-893
AD-
csasgaaaGfAfGfugucuca(Tgn)c
usAfsaGfadTgAfgAfcAfcdTcuudTcugsgsu





61192
uuaL96





5154
5155
871-893
AD-
csasgaaaGfaGfuGfuCfuCfaucuuaL96
usAfsaGfadTgAfgAfcAfcdTcuudTcugsgsu





60865





5156
5157
871-893
AD-
csasgaaaGfAfGfugucuca(Tgn)c
usAfsaGfaUfgAfgAfcacUfcUfuUfcUfgsgsu





60861
uuaL96





5158
5159
871-893
AD-
csasgaaaGfaGfuGfuCfuCfaucuuaL96
usAfsaGfadTgAfgAfcAfcdTcuudTcugsgsu





60876





5160
5161
871-893
AD-
csasgaaaGfaGfuGfuCfuCfaucuuaL96
usAfsaGfaUfgAfgAfcacUfcdTuUfcUfgsgsu





61193





5162
5163
871-893
AD-
csasgaaaGfaGfuGfuCfuCfaucuuaL96
usAfsAfGfaUfgAfgAfcAfcUfcUfuUfcUfgsgsu





60519









Rats were administered a single dose of 2.5 mg/kg of siRNA. At 5 days following administration of the siRNA, mRNA measurements of rat ALAS1 (rALAS1) mRNA and rat GAPDH (rGAPDH) mRNA were made using bDNA assay.


As is shown in FIG. 42, the siRNAs AD-60879, AD-61190, AD-61191, AD-60865, AD-60861, AD-60876, AD-61193, and AD-60519 showed improved suppression of ALAS1 mRNA compared with AD-60489.


Example 30: Multidosing Improves Potency

To investigate the effects of administering multiple doses of siRNA, rats (n=3 per group) were administered PBS or an siRNA (AD-58632, AD-60925, AD-60419, AD-60445, AD-60892, AD-60489, AD-60519, or AD-60901) at a dose of 2.5 mg/kg twice per week for 2 weeks. The levels of rat ALAS1 (rALAS1) mRNA and rat GAPDH (rGAPDH) mRNA were assessed using bDNA assay.









TABLE 38







Sequences of ALAS1 siRNA Duplexes














Target






SEQ
sites of


SEQ
ID
antisense


ID
NO:
sequence


NO:
(anti-
on
Duplex


(sense)
sense)
NM_000688.4
Name
Sense Sequence (5′-3′)
Antisense Sequence (5′-3′)





5164
5165
873-895
AD-
GfsasAfaGfaGfuGfUfCfuCfaUfcUf
asAfsgAfaGfaUfgAfgacAfcUfcUfuUfcsusg





58632
uCfuUfL96





5166
5167
873-895
AD-
GfsasAfaGfAfGfuGfucucauc(Tgn)
asAfsGfAfaGfaUfgAfgAfcAfcUfcUfuUfcsusg





60925
ucuuL96





5168
5169
873-895
AD-
GfsasAfaGfAfGfuGfdTcucaucuu
asAfsGfAfaGfaugAfgAfcAfcucuuucsusg





60419
cuuL96





5170
5171
873-895
AD-
GfsasAfaGfAfGfuGfucucauc(Tgn)
asAfsGfAfaGfaugAfgAfcAfcucuuucsusg





60445
ucuuL96





5172
5173
873-895
AD-
gsasaagaGfuGfuCfucaucuucuuL96
asAfsGfAfaGfaugAfgAfcAfcucuuucsusg





60892





5174
5175
871-893
AD-
CfsasGfaAfaGfaGfUfGfuCfuCfaUf
usAfsaGfaUfgAfgAfcacUfcUfuUfcUfgsgsu





60489
cUfuAfL96





5176
5177
871-893
AD-
csasgaaaGfaGfuGfuCfuCfauc
usAfsAfGfaUfgAfgAfcAfcUfcUfuUfcUfgsgsu





60519.2
uuaL96





5178
5179
871-893
AD-
csasgaaaGfaGfuGfuCfuCfau
usAfsaGfaUfgAfgAfcacUfcUfuUfcUfgsgsu





60901.1
cuuaL96









As is shown in FIG. 43, the AD-58632 derivative siRNAs AD-60892, AD-60419, AD-60445, and AD-60925 showed improved suppression of ALAS1 mRNA compared with the parent AD-58632. In addition, the AD-60489 derivative siRNAs AD-60519 and AD-60901 showed improved suppression of ALAS1 mRNA compared with the parent AD-60489.


Example 31: Multidosing Studies with AD-60519 and AD-60489

The therapeutic efficacy of AD-60519 was investigated in a rat AIP model. The experimental design is shown in FIG. 44 (top). Rats were treated with PBS or ALAS1-GalNAc siRNA at either 2.5 mg/kg or 5 mg/kg two times per week for three weeks. Phenobarbital (Phenobarb) and a PBGD siRNA in an AF11 LNP formulation was administered at the times indicated in FIG. 44. A control group received PBS and the PBGD siRNA only, without Phenobarbital induction. Urine was collected at days 18-19 of the study.


The results are shown in FIG. 44 (bottom). Administering phenobarbital and PBS induced ALAS1 mRNA expression and increased levels of PBG and ALA in urine (see FIG. 44), compared with PBS only. Treatment with a total of six doses of 2.5 or 5 mg/kg of AD-60519 twice per week suppressed the phenobarbital induced increases in urine PBG and urine ALA (FIG. 44). These results demonstrate that AD-60519 is effective in suppressing ALA and PBG when repeated doses as low as 2.5 mg/kg are administered. In particular, AD-60519 was effective in reducing increases in urine levels of PBG and ALA associated with acute attacks in the rat AIP model.


In further studies using the same experimental design but in a mouse model (see schematic at top of FIG. 44), the therapeutic efficacy of AD-60519 and AD-60489 in suppressing phenobarbital induced increases in serum PBG and ALA was investigated. In the PBS (“Saline”) control group, administration of phenobarbital increased levels of PBG and ALA in serum (see FIG. 45), compared with PBS only. Treatment with a total of six doses of 2.5 or 5 mg/kg of AD-60519 or AD-60489 twice per week suppressed the phenobarbital induced increases in serum PBG and serum ALA (FIG. 44). These results demonstrate that both AD-60519 and AD-60489 are effective in suppressing ALA and PBG when repeated doses as low as 2.5 mg/kg are administered. In particular, AD-60519 and AD-60489 were effective in reducing increases in serum PBG and ALA associated with acute attacks.


Because treatments in this example were administered prior to the phenobarbital induction, these results indicate that AD-60519 and AD-60489 have prophylactic effects.


Example 32: Further siRNA Sequences

The following AD-58632 derivative (Table 39) and AD-60489 derivative (Table 40) siRNA sequences have also been generated.









TABLE 39







AD-58632 derivative sequences














Target






SEQ
sites of


SEQ
ID
antisense


ID
NO:
sequence


NO:
(anti-
on
Duplex


(sense)
sense)
NM_000688.4
Name
Sense Sequence (5′-3′)
Antisense Sequence (5′-3′)





5180
5181
873-895
AD-
GfsasAfaGfAfGfuGfucucauc(Tgn)u
asAfsgAfaGfaugAfgAfcAfcucuuucsusg





60802
cuuL96





5182
5183
873-895
AD-
GfsasAfaGfAfGfuGfucucauc(Tgn)
asAfsgAfaGfaugAfgacAfcucuuucsusg





60824
ucuuL96





5184
5185
873-895

GfsasAfaGfAfGfuGfucucauc(Tgn)
asAfsgAfaGfaUfgAfgAfcAfcUfcUfuUfcsusg






ucuuL96





5186
5187
873-895
AD-
GfsasAfaGfAfGfuGfdTcucaucuu
asAfsgAfaGfaugAfgAfcAfcucuuucsusg





60843
cuuL96





5188
5189
873-895
AD-
GfsasAfaGfAfGfuGfdTcucaucu
asAfsgAfaGfaugAfgacAfcucuuucsusg





60847
ucuuL96





5190
5191
873-895

GfsasAfaGfAfGfuGfdTcucaucu
asAfsgAfaGfaUfgAfgAfcAfcUfcUfuUfcsusg






ucuuL96





5192
5193
873-895
AD-
GfsasAfaGfaGfuGfuCfuCfaucuu
asAfsgAfaGfaugAfgAfcAfcucuuucsusg





60819
CfuuL96





5194
5195
873-895
AD-
GfsasAfaGfaGfuGfuCfuCfaucuu
asAfsgAfaGfaugAfgacAfcucuuucsusg





60823
CfuuL96





5196
5197
873-895

GfsasAfaGfaGfuGfuCfuCfaucu
asAfsgAfaGfaUfgAfgAfcAfcUfcUfuUfcsusg






uCfuuL96





5198
5199
873-895

GfsasAfaGfaGfuGfdTCfuCfaUfc
asAfsgAfaGfaugAfgAfcAfcucuuucsusg






(Tgn)uCfuUfL96





5200
5201
873-895

GfsasAfaGfaGfuGfdTCfuCfaUfc
asAfsgAfaGfaugAfgacAfcucuuucsusg






(Tgn)uCfuUfL96





5202
5203
873-895

GfsasAfaGfaGfuGfdTCfuCfaUfc(Tgn)
asAfsgAfaGfaUfgAfgAfcAfcUfcUfuUfcsusg






uCfuUfL96





5204
5205
873-895
AD-
gsasaagaGfuGfuCfucaucuucuuL96
asAfsgAfaGfaugAfgAfcAfcucuuucsusg





60853





5206
5207
873-895
AD-
gsasaagaGfuGfuCfucaucuucuuL96
asAfsgAfaGfaugAfgacAfcucuuucsusg





60839





5208
5209
873-895

gsasaagaGfuGfuCfucaucuucuuL96
asAfsgAfaGfaUfgAfgAfcAfcUfcUfuUfcsusg





5210
5211
873-895

gsasaagaGfuGfdTCfucaucuucuuL96
asAfsgAfaGfaugAfgAfcAfcucuuucsusg





5212
5213
873-895

gsasaagaGfuGfdTCfucaucuucuuL96
asAfsgAfaGfaugAfgacAfcucuuucsusg





5214
5215
873-895

gsasaagaGfuGfdTCfucaucuucuuL96
asAfsgAfaGfaUfgAfgAfcAfcUfcUfuUfcsusg
















TABLE 40







AD-60489 derivative sequences














Target






SEQ
sites of


SEQ
ID
antisense


ID
NO:
sequence


NO:
(anti-
on
Duplex


(sense)
sense)
NM_000688.4
Name
Sense Sequence (5′-3′)
Antisense Sequence (5′-3′)





5216
5217
871-893

CfsasGfaAfaGfaGfdTGfuCfuCf(Agn)
usAfsaGfadTgAfgAfcAfcdTcuudTcugsgsu






UfscUfsuAfsL96





5218
5219
871-893
AD-
CfsasGfaAfaGfaGfdTGfuCfuCf(Agn)
usAfsaGfaUfgAfgAfcacUfcdTuUfcUfgsgsu





60879
UfscUfsuAfsL96





5220
5221
871-893

CfsasGfaAfaGfaGfdTGfuCfuCf(Agn)
usAfsAfGfaUfgAfgAfcAfcUfcUfuUfcUfgsgsu






UfscUfsuAfsL96





5222
5223
871-893

CfsasGfaAfaGfaGfdTGfuCfuCf(Agn)
usAfsaGfaUfgAfgAfcacUfcUfuUfcUfgsgsu






UfscUfsuAfsL96





5224
5225
871-893
AD-
csasgaaaGfAfGfugucuca(Tgn)
usAfsaGfadTgAfgAfcAfcdTcuudTcugsgsu





60877
cuuaL96





5226
5227
871-893

csasgaaaGfAfGfugucuca(Tgn)
usAfsaGfaUfgAfgAfcacUfcdTuUfcUfgsgsu






cuuaL96





5228
5229
871-893
AD-
csasgaaaGfAfGfugucuca(Tgn)
usAfsAfGfaUfgAfgAfcAfcUfcUfuUfcUfgsgsu





60865
cuuaL96





5230
5231
871-893
AD-
csasgaaaGfAfGfugucuca(Tgn)
usAfsaGfaUfgAfgAfcacUfcUfuUfcUfgsgsu





60861
cuuaL96





5232
5233
871-893
AD-
csasgaaaGfaGfuGfuCfuCfaucuuaL96
usAfsaGfadTgAfgAfcAfcdTcuudTcugsgsu





60876





5234
5235
871-893

csasgaaaGfaGfuGfuCfuCfaucuuaL96
usAfsaGfaUfgAfgAfcacUfcdTuUfcUfgsgsu





5236
5237
871-893
AD-
csasgaaaGfaGfuGfuCfuCfaucuuaL96
usAfsAfGfaUfgAfgAfcAfcUfcUfuUfcUfgsgsu





60519









Example 33: Further Multidose Studies with AD-60519

The therapeutic efficacy of AD-60519 was investigated in a rat AIP model like that used in Example 31. The experimental design is shown in FIG. 46 (top). Rats were treated with PBS or ALAS1-GalNAc siRNA at 3 mg/kg, 1 mg/kg, or 0.3 mg/kg once per week for four weeks (treatment on day 0, day 7, day 14, and day 21). Phenobarbital (Phenobarb) and a PBGD siRNA in an AF11 LNP formulation were administered at the times indicated in FIG. 46. A control group received PBS and the PBGD siRNA only, without phenobarbital induction. Urine was collected at day 25 of the study.


The results are shown in FIG. 46 (bottom) and in FIG. 47. Administering phenobarbital and PBS induced ALAS1 mRNA expression and increased levels of PBG and ALA in urine, compared with PBS only. Treatment with a total of four doses of 3 mg/kg, 1 mg/kg, or 0.3 mg/kg of AD-60519 once per week suppressed phenobarbital induced increases in levels of rat ALAS1 mRNA in liver in a dose-dependent manner (see FIG. 46). (The levels of rat liver ALAS1 (rALAS1) mRNA are expressed relative to the levels of rat GAPDH mRNA.) The levels of urine PBG and urine ALA also showed dose-dependent treatment effects.


Repeated weekly doses of AD-60519 were effective in suppressing ALAS1 mRNA expression and in reducing elevated levels of ALA and PBG associated with induced acute attacks in a rat AIP model. These treatment effects were dose dependent. These results illustrate that AD-60519 can act prophylactically when dosed prior to an attack.


Example 34: Multidose Effects of ALAS1 siRNA GalNAc Conjugates in Non-Human Primates

The effects of ALAS1 siRNA GalNAc conjugates in suppressing liver ALAS1 mRNA and circulating ALAS1 mRNA was investigated in a non-human primate (NHP) study. The GalNAc conjugates AD-58632, AD-60519, AD-61193, and AD-60819 were employed. The study design is shown in Table 41 and in FIG. 48.









TABLE 41







NHP study design



















Dose


Dose






Dose Level
Conc

Dose
Volume
Dose


Test Article
Group #
N
(mg/kg)
(mg/mL)
Dose Frequency
Days
(mL/kg)
Route


















AD-58632
1
3
2.5
1.25
QD × 5 WK1,
1, 2, 3, 4,
2
SC







BIW WK2-4
5, 8, 11,


AD-60519
2
3
1.25
0.625
QD × 5 WK1,
15, 18,







BIW WK2-4
22, 25



3
3
2.5
1.25
QD × 5 WK1,







BIW WK2-4



4
3
2.5
1.25
QD × 5 WK1,
1, 2, 3, 4,







QW WK2-4
5, 11, 18,



5
3
5
2.5
QD × 5 WK1,
25







QW WK2-4


AD-61193
6
3
2.5
1.25
QD × 5 WK1,
1, 2, 3, 4,







BIW WK2-4
5, 8, 11,








15, 18,








22, 25


AD-60819
7
3
2.5
1.25
QD × 5 WK1,
1, 2, 3, 4,







BIW WK2-4
5, 8, 11,








15, 18,








22, 25









Each group received multiple subcutaneous doses of an ALAS1 siRNA GalNAc conjugate at a dose volume of 2 mg/ml. Group 1 (n=3) received 2.5 mg/kg of 1.25 mg/ml AD-58632 on days 1, 2, 3, 4, 5, 8, 11, 15, 18, 22, and 25. Group 2 (n=3) received 1.25 mg/kg of 0.625 mg/ml AD-60519 on 1, 2, 3, 4, 5, 8, 11, 15, 18, 22, and 25. Group 3 (n=3) received 2.5 mg/kg of 1.25 mg/ml AD-60519 on days 1, 2, 3, 4, 5, 8, 11, 15, 18, 22, and 25. Group 4 (n=3) received 2.5 mg/kg of 1.25 mg/ml AD-60519 on days 1, 2, 3, 4, 5, 11, 18, and 25. Group 5 (n=3) received 5 mg/kg of 2.5 mg/ml AD-60519 on days 1, 2, 3, 4, 5, 11, 18, and 25. Group 6 (n=3) received 2.5 mg/kg of 1.25 mg/ml AD-61193 on days 1, 2, 3, 4, 5, 8, 11, 15, 18, 22, and 25. Group 7 (n=3) received 2.5 mg/kg of 1.25 mg/ml of AD-60819 on days 1, 2, 3, 4, 5, 8, 11, 15, 18, 22, and 25.


Serum samples for the circulating extracellular RNA detection (cERD) assay (see Example 21) were collected on days −3, 7, 13, 21, 27, 39, 46, and 60 (in FIG. 48, “PD Draws” indicates the days on which serum was collected). Serum was collected for a clinical chemistry panel on days −3 and 6. The clinical chemistry panel included assessment of the levels of alanine aminotransferase (ALT), aspartate aminotransferase (AST), and alkaline phosphatase (ALP). ALAS1 mRNA silencing was evaluated in liver tissue obtained from a liver biopsy taken on day 21 (see FIG. 48). The biopsy was taken after a serum draw.


Suppression of ALAS1 mRNA Levels in Liver


The liver ALAS1 mRNA levels at study day 21 are shown in FIG. 49. The results are shown as a percentage of the average level observed in a control group treated with PBS. Results are shown as the average values for each treatment group.


These results presented in FIG. 49 demonstrate that compared with control animals that received PBS treatment, all of the treatment conditions were effective in suppressing liver levels of ALAS1 mRNA. The treatments achieved mRNA silencing ranging from about 20% to 80% (corresponding to ALAS1 mRNA levels ranging from about 80% to 20% of control levels). Individual animals that received AD-58632 showed silencing of about 20-50%, with the average level of silencing being about 40% (ALAS1 mRNA levels were on average about 60% of control levels). With all of the dosing schedules employed, AD-60519 was highly effective in suppressing ALAS1 mRNA levels. Individual animals that received AD-60519 showed silencing of between about 60% and 80% (ALAS1 mRNA levels were about 20% to 40% of control levels). On average, AD-60519 treatment regimens achieved silencing of between about 65% and 75%. As is disclosed herein AD-60519 is a derivative of AD-60489. Similar results for AD-60489 are described in Example 20 and shown in FIG. 30. Furthermore, AD-61193 (a derivative of AD-60489) and AD-60819 (a derivative of AD-58632) also achieved silencing of more than 50%. It is noteworthy that the levels of silencing reported in this example and in Example 20 (e.g., about 20% to 80%) were achieved even in a “non-induced” state; it is anticipated that in an induced state, e.g., when levels of ALAS1 are acutely or chronically elevated (e.g., in a patient having or at risk for a porphyria, e.g., an acute hepatic porphyria, e.g., AIP), lower levels of silencing, e.g., reduction of ALAS1 mRNA levels to normal or pre-attack levels, can suffice to achieve therapeutic efficacy.


Suppression of Circulating Extracellular ALAS1 mRNA Levels



FIG. 50 shows circulating extracellular ALAS1 mRNA levels (means and standard deviations) at each timepoint throughout the study when serum samples were obtained. The circulating extracellular ALAS1 mRNA results demonstrate efficacy of mRNA silencing following multidose treatment with each of the siRNAs studied (AD60519, AD-61193, AD-60819, and AD-58632). In all groups, the greatest suppression effect on circulating ALAS1 mRNA was observed on day 27, following the final dose of siRNA on day 25. In all treatment groups, during the weeks after the treatment ceased, ALAS1 mRNA levels gradually increased and returned to baseline by the final measurement on day 60.


The most pronounced suppression of circulating ALAS1 mRNA (maximal silencing of nearly 80%) was observed in Group 3 (2.5 mg/kg AD-60519 QDx5, BIWx3) and Group 5 (5 mg/kg AD-60519, QDx5, QWx3). Group 2 (1.25 mg/kg AD-60519, QDx5, BIWx3), Group 4 (2.5 mg/kg AD-60519, QDx5, QWx3), Group 7 (2.5 mg/kg AD-60819, QDx5, BIWx3), and Group 6 (2.5 mg/kg AD-61193, QDx5, BIWx3) also showed excellent suppression, with maximal silencing (day 27) of greater than 50%. In group 1, notable silencing (more than 30% on day 27) was also achieved.


These results are consistent with the liver ALAS1 mRNA results and confirm the potent activity of AD-60519. At dose levels as low as 1.25 mg/kg, AD-60519 provided 65-75% silencing.


Correlation Between Circulating and Liver ALAS1 mRNA Levels



FIG. 27 shows the levels of the ALAS1 mRNA in liver (left bars) and in serum (right bars). There is a good correlation between the relative ALAS1 mRNA levels measured in liver and in serum, indicating that these measurements provide consistent results.


Example 35: Rat Single Dose Study of AD-60519 and AD-60589 Using a Urine cERD Assay to Monitor the Duration of ALAS1 mRNA Suppression

A single dose study was conducted in rats using the ALAS1 siRNA GalNAc conjugates AD-60489 and AD-60519. The efficacy of these GalNAc conjugates in inhibiting expression of ALAS1 mRNA was monitored using assessments of urine with a circulating extracellular RNA detection assay. The assay was similar to the assay used in Examples 21 and 34, except that urine samples were used. The urine samples were lyophilized to concentrate it. Lyophilized urine was resuspended in 4 ml dH2O and vortexed. Then the sample was centrifuged at 4,000×g for 10-20 minutes to pellet any debris. Remaining steps were similar to those described in Example 21.


Groups of rats were administered a single dose of 10 mg/kg of AD-60489 or AD-60519. The normalized levels of ALAS1 mRNA at various timepoints throughout the study are shown in FIG. 51. The timepoint indicated as “0 hours” is for the baseline pre-dose urine sample drawn just prior to administration of the ALAS1 mRNA. Results for subsequent timepoints are expressed as a fraction of the pre-dose level.


As can be seen from the results shown in FIG. 51, AD-60519 provided improved potency compared with AD-60489. At its maximum, the single dose of AD-60519 provided a suppression of up to about 80%, whereas the suppression provided by AD-60489 was about 60%. The effect of a single 10 mg/kg dose of these ALAS1 siRNAs in suppressing ALAS1 mRNA lasted about 21 days. These results demonstrate the validity of the urine cERD assay for monitoring ALAS1 mRNA levels.


Example 36: Pharmacological Effects of AD-60519 in Non-Human Primates

A further study of the effects of the ALAS1 siRNA GalNAc conjugate AD-60519 was conducted in a non-human primates. The study investigated the effect of weekly versus biweekly dosing, use of a loading dose versus no loading dose, and the kinetics of ALAS1 mRNA silencing following a single dose. The design of the study is shown in Table 42 and in FIG. 52.









TABLE 42







Pharmacology Study Design for Study with AD-60519



















Material


Dose





Dose Level
Dose
Needs
Dose Vol
Dose
Conc
Dose


Group #
N
(mg/kg)
Frequency
(mg)*
(mL/kg)
Days
(mg/mL)
Route


















1
3
2.5
QW × 8 Wks
210
0.125
1, 8, 15,
20
SC


2
3
5
QW × 8 Wks
420
0.25
22, 29,








36, 43,








50


3
3
Load-
Load D1-D3,
525
0.25/25  
1, 2, 3,




QD × 3@5 mg/kg,
QW × 7 Wks


8, 15,




maint-



22, 29,




5 mg/kg



36, 43,








50


4
3
Load-
Load D1-D3,
270
0.25/0.125




QD × 3@5 mg/kg,
QW × 7 Wks




maint-




2.5 mg/kg


5
3
5
BIW×8 Wks
924
0.25
1, 4, 8,








11, 15,








18, 22








25, 29,








32, 36,








39, 43,








46, 50,








53


6
3
1
Single Dose
12
0.05
1


7
3
10
Single Dose
116
0.5
1









Each group received one or more subcutaneous doses of AD-60519 as provided in Table 42. Group 1 (n=3) received 2.5 mg/kg at a dose volume of 0.125 ml/kg once per week for 8 weeks (doses were administered on dose days 1, 8, 15, 22, 29, 36, 43, and 50). Group 2 (n=3) received 5 mg/kg at a dose volume of 0.25 mg/ml once per week for 8 weeks (doses were administered on dose days 1, 8, 15, 22, 29, 36, 43, and 50). Group 3 (n=3) received a loading dose of 5 mg/kg at a dose volume of 0.25 ml/kg once per day for three days followed by a maintenance dose of 5 mg/kg at a dose volume of 0.25 ml/kg once per week for 7 weeks (doses were administered on days 1, 2, 3, 8, 15, 22, 29, 36, 43, and 50). Group 4 (n=3) received a loading dose of 5 mg/kg at a dose volume of 0.25 ml/kg once per day for three days followed by a maintenance dose of 2.5 mg/kg at a dose volume of 0.125 ml/kg once per week for 7 weeks (doses were administered on days 1, 2, 3, 8, 15, 22, 29, 36, 43, and 50). Group 5 (n=3) received 5 mg/kg at a dose volume of 0.25 ml/kg twice per week for 8 weeks (doses were administered on dose days 1, 4, 8, 11, 15, 18, 22, 25, 29, 32, 36, 39, 43, 46, 50, and 53). Group 6 (n=3) received a single dose of 1 mg/kg at a dose volume of 0.05 ml/kg on day 1. Group 7 (n=3) received a single dose of 10 mg/kg at a dose volume of 0.5 ml/kg on day 1.


Serum samples (listed as “PD draws” in FIG. 52), plasma samples (listed as “PK draws” in FIG. 52) and urine samples were collected as indicated in FIG. 52 and in Table 43. The urine and serum samples were subjected to the cERD assay. All blood and urine samples collected on the day of a liver biopsy were collected prior to the liver biopsy.









TABLE 43







Sample Collection Schedule










Serum for mRNA

Urine for exploratory



Detection
Liver Biopsy
mRNA Detection**
Plasma for PK

















Gps 1-4
Day −3,
Groups
Day
Gps 1-5
Day −3, and
Gp7
Day −3,



and Days
1-5
24*

Days 24*,

and Day



5, 10, 17,



52

1 @



24, 31, 38,





0.25, 0.5,



45, 52, 57,





1, 2, 4, 8,



64, 78, 92





12 hours


Gps 5
Day −3,
Groups
Day 4*



and Days



and Days
6-7




2, 3, 4, 5,



3, 10, 17,





6, 8, 9,



24, 31, 38,





15, 22,



45, 52, 60,





29, 36



67, 81, 95


Gps 6-7
Day −3,


Gps 6-7
Day −3, and



and Days



Days 4*, 36



2, 4, 6, 9,



15, 22, 29,



36





*All blood samples and urine were collected prior to the liver biopsy


**First Morning Urine collection






The liver ALAS1 mRNA results are shown in FIG. 53. Significant ALAS1 mRNA suppression was achieved in all study conditions. Up to 75-80% ALAS1 silencing was achieved across multi-dose regimens using AD-60519. At three days after a single dose, silencing of about 15% was achieved with a single dose of 1 mg/kg, and silencing of about 70% was achieved with a single dose of 10 mg/kg (see FIG. 53). Comparison of the data from groups 1 and 7 reveals a slight difference in kinetics after a single dose (in group 7) versus multiple doses (group 1) of the same cumulative amount (30 mg administered), as assessed 3 days post-dose in group 7 and at two days after the fourth dose in group 1. In particular, greater silencing was observed after a single dose (silencing of about 70% on average in group 7 versus silencing of about 45% on average in group 1). See FIG. 54. This type of result was also observed in rat studies.


The serum ALAS1 mRNA results through day 22 are shown in FIG. 54 (top). The correlation between liver ALAS1 mRNA, serum ALAS1 mRNA, and plasma ALAS1 mRNA is shown in FIG. 55. These results demonstrate a good correlation between liver, serum, and urine ALAS1 mRNA levels. The results also provide further evidence demonstrating potent activity of AD-60519. Silencing of 55-75% was observed at all dose levels across all multi-dose dosing regimens. Administering loading doses (once per day for 3 days, as in groups 3 and 4) resulted in slightly more rapid down-regulation of ALAS1 mRNA. The groups that received weekly (groups 1 and 2) or biweekly doses (group 5) doses ultimately showed comparable levels of ALAS1 mRNA suppression, indicating that accumulation over time provides sustained knockdown.


Results showing the kinetics of ALAS1 mRNA silencing after a single dose are shown in FIG. 54 (bottom). In the 1 mg/kg group, an ALAS1 mRNA suppression of about 20% was observed by day 6. In the 10 mg/kg group, there was a rapid, about 70% ALAS1 mRNA reduction by day 4, with recovery to within 20% of baseline at day 22 (21 days post-dose). Levels of serum ALAS1 mRNA returned to baseline after about 2 weeks or 4 weeks following a 1 mg/kg or 10 mg/kg single dose, respectively.


The full time course of the serum ALAS mRNA up to 8 weeks after administration of the AD-60519 is shown in FIG. 56. All groups reached a maximum of 80% ALAS1 mRNA suppression following 5 to 8 weeks of ALN-AS1 dosing. Groups with three daily doses in week 1 (QDx3) had a faster onset of ALAS1 mRNA suppression than those just dosed once in the first week (QWx8). All animals returned to baseline ALAS1 levels, approximately 30-40 days post the last dose


Example 37: Production of an siRNA Drug Product

ALN-60519 (FIG. 57) is a chemically synthesized double stranded oligonucleotide covalently linked to a ligand containing three N-acetylgalactosamine (GalNAc) residues. All nucleotides are 2′-OMe or 2′-F modified and are connected through 3′-5′ phosphodiester linkages, thus forming the sugar-phosphate backbone of the oligonucleotide. The sense strand and the antisense strand contain 21 and 23 nucleotides, respectively. The 3′-end of the sense strand is conjugated to the triantennary GalNAc moiety (referred to as L96) through a phosphodiester linkage. The antisense strand contains four phosphorothioate linkages—two at the 3′ end and two at the 5′ end. The sense strand contains two phosphorothioate linkages at the 5′ end. The 21 nucleotides of the sense strand hybridize with the complementary 21 nucleotides of the antisense strand, thus forming 21 nucleotide base pairs and a two-base overhang at the 3′-end of the antisense strand. The two single strands, the sense strand and the antisense strand, were synthesized by conventional solid phase oligonucleotide synthesis, employing standard phosphoramidite chemistry with the 5′-hydroxyl group protected as dimethoxytriphenylmethyl (DMT) ether. Each strand was assembled from the 3′ to the 5′ terminus by sequential addition of protected nucleoside phosphoramidites.


AD-60519, also referred to herein as ALN-60519, was formulated as a solution for Injection for subcutaneous use, referred to herein as ALN-AS1. ALN-60519 was dissolved in water for injection (WFI) and the pH was adjusted (target 7.0). The concentration of ALN-60519 was determined and adjusted by adding WFI. The solution with a final concentration of approximately 200 mg/mL was then filter sterilized and filled into 2 mL Type I glass vials. A fill volume of approximately 0.55 mL was chosen to permit complete withdrawal of 0.5 mL of drug product.


Example 38: Measurement of Serum or Urine ALAS1 mRNA Levels in AIP Patients or Healthy Volunteers Using cERD Method

Non-human primate pharmacology studies with ALN-AS1 indicated that the circulating extracellular RNA detection (cERD) method for measuring the ALAS1 mRNA in serum or urine was robust and reproducible. The cERD assay was also used to measure ALAS1 mRNA levels in serum and urine from AIP patients and healthy volunteers. Serum ALAS1 mRNA levels were generally increased in AIP patients relative to healthy volunteers, consistent with the role ALAS1 induction plays in disease pathophysiology (FIG. 58). Importantly, levels of ALAS1 in serum and urine within the same patient correlated with each other. In two patients that had repeat collections of urine and serum the ALAS1 mRNA level was consistent over time. Collectively, these data indicate that ALAS1 mRNA can be measured in serum and urine samples from human subjects including AIP patients, and the cERD method is useful for tracking the pharmacodynamic activity of ALN-AS1.


Example 39: Exemplary Clinical Studies

A human study can be conducted to determine the safety and tolerability of ALN-AS1 when administered as a single dose and multiple doses to AIP patients that are asymptomatic high excreters (ASHE) (patients who have elevated levels of ALA and/or PBG, as described herein) or AIP patients who have recurrent attacks.


Secondary objectives include the characterization of plasma and urine PK for ALN-AS1 as well as post-dose assessment of the impact of ALN-AS1 on both plasma and urinary ALA and PBG levels. The cERD assay that measures mRNA in exosomes is used to measure serum (or plasma) and urinary 5-aminolevulinate synthase (ALAS-1 mRNA).


In the asymptomatic high excreters, ALN-AS1 is administered at single doses, e.g., at 0.1, 0.35 1.0, or 2.5 mg/kg, or in repeated weekly doses, e.g., of 1 and 2.5 mg/kg, for several weeks (e.g., for 4 weeks). As a comparison, a control (e.g., placebo) treatment is administered. The safety, pharmacokinetics and effects of the drug on ALA and PBG levels is assessed. A dose of ALN-AS1 that lowers ALA and PBG to within the normal reference range (e.g., a dose that normalizes ALA and/or PBG to levels below 2× the upper reference value) can be selected for subsequent studies, e.g., in AIP patients.


In the AIP patients, the attack rate and baseline symptoms are assessed during a pre-dosing run-in period (e.g., of 12 weeks). Patients are administered ALN-AS1, e.g., at a dose of 1-2.5 mg/kg weekly. The safety, pharmacokinetics and effects of the drug on ALA and PBG levels are assessed. In addition, changes in attack number, heme use, pain medication use, and hospitalization are monitored.


EQUIVALENTS

Those skilled in the art will recognize, or be able to ascertain using no more than routine experimentation, many equivalents to the specific embodiments of the invention described herein. Such equivalents are intended to be encompassed by the following claims.

Claims
  • 1. A double-stranded ribonucleic acid (dsRNA) for inhibiting expression of ALAS1, wherein said dsRNA comprises a sense strand and an antisense strand, the antisense strand comprising a region of complementarity to an ALAS1 RNA transcript, which antisense strand comprises at least 22 contiguous nucleotides from the antisense sequence of UAAGAUGAGACACUCUUUCUGGU (SEQ ID NO: 4153) or UAAGAUGAGACACUCTUUCUGGU (SEQ ID NO: 4154).
  • 2. The dsRNA of claim 1, wherein said dsRNA comprises at least one modified nucleotide.
  • 3. The dsRNA of claim 1, wherein the dsRNA comprises a duplex region which is 21-23 nucleotide pairs in length.
  • 4. The dsRNA of claim 1, wherein at least one strand comprises a 3′ overhang of at least 2 nucleotides.
  • 5. The dsRNA of claim 1, wherein each strand is no more than 26 nucleotides in length.
  • 6. The dsRNA of claim 2, wherein at least one modified nucleotide is chosen from a 2′-O-methyl, a 2′-fluoro modified nucleotide, or both.
  • 7. The dsRNA of claim 6, further comprising a ligand.
  • 8. The dsRNA of claim 7, wherein the ligand comprises a carbohydrate.
  • 9. The dsRNA of claim 8, wherein the ligand is
  • 10. The dsRNA of claim 1, wherein the sense strand comprises or consists of the sequence of CAGAAAGAGUGUCUCAUCUUA (SEQ ID NO: 4155).
  • 11. The dsRNA of claim 1, wherein: (i) the antisense strand comprises the sequence of SEQ ID NO: 4157, and/or the sense strand comprises the sequence of SEQ ID NO: 4156, or(ii) the antisense strand consists of the sequence of SEQ ID NO: 4157, and/or the sense strand consists of the sequence of SEQ ID NO: 4156.
  • 12. The dsRNA of claim 1, wherein: (i) the antisense strand comprises the sequence of SEQ ID NO: 4165, and/or the sense strand comprises the sequence of SEQ ID NO: 4164, or(ii) the antisense strand consists of the sequence of SEQ ID NO: 4165, and/or the sense strand consists of the sequence of SEQ ID NO: 4164.
  • 13. A vector encoding at least one strand of a dsRNA of claim 1.
  • 14. An isolated cell comprising the dsRNA of claim 1.
  • 15. A pharmaceutical composition for inhibiting expression of an ALAS1 gene, the composition comprising the dsRNA of claim 1.
  • 16. A method of inhibiting ALAS1 expression in a liver cell, the method comprising: (a) introducing into the cell the dsRNA of claim 1, and(b) maintaining the cell of step (a) for a time sufficient to obtain degradation of the mRNA transcript of an ALAS1 gene, thereby inhibiting expression of the ALAS1 gene in the cell.
  • 17. A method for decreasing a level of a porphyrin or a porphyrin precursor in a cell, comprising contacting the cell with the dsRNA of claim 1, in an amount effective to decrease the level of the porphyrin or the porphyrin precursor in the cell.
  • 18. A method of treating a porphyria, the method comprising administering to a subject in need of such treatment a therapeutically effective amount of the dsRNA of claim 1, thereby treating the porphyria.
  • 19. The method of claim 18, wherein the porphyria is acute intermittent porphyria or ALA-dehydratase deficiency porphyria.
  • 20. The method of claim 18, wherein (i) the dsRNA is administered after an acute attack of porphyria, (ii) the dsRNA is administered during an acute attack of porphyria, or (iii) the dsRNA is administered prophylactically to prevent an acute attack of porphyria.
  • 21. The method of claim 18, wherein the dsRNA is administered at a dose of 0.05 mg/kg to 50 mg/kg, 0.01 mg/kg to 5 mg/kg, or 1 mg/kg to 2.5 mg/kg bodyweight of the subject, or at a dose of 1 mg/kg, 2.5 mg/kg, or 5 mg/kg bodyweight of the subject.
  • 22. The method of claim 18, wherein the method (i) decreases a level of a porphyrin or a porphyrin precursor in the subject, wherein the porphyrin precursor is δ-aminolevulinic acid (ALA) or porphopilinogen (PBG), wherein the level is decreased by at least 40%; and/or(ii) inhibits ALAS1 expression by at least 40% in the subject.
  • 23. The method of claim 18, wherein said method (i) ameliorates a symptom associated with an ALAS1 related disorder, (ii) decreases frequency of acute attacks of symptoms associated with a porphyria in the subject, and/or (iii) decreases incidence of acute attacks of symptoms associated with a porphyria in the subject when the subject is exposed to a precipitating factor.
  • 24. The method of claim 18, wherein the dsRNA weekly, biweekly, or monthly.
  • 25. The method of claim 18, wherein the subject has an elevated level of ALA and/or PBG.
  • 26. The method of claim 18, wherein the method decreases or prevents pain, neuropathy, and/or nerve damage.
  • 27. The pharmaceutical composition of claim 15, comprising about 200 mg/mL of the dsRNA.
  • 28. The pharmaceutical composition of claim 15, wherein the pharmaceutical composition has a pH of 6.0-7.5.
  • 29. The dsRNA of claim 1, wherein the ALAS1 RNA transcript comprises the sequence of SEQ ID NO: 1.
  • 30. The dsRNA of claim 1, wherein the dsRNA has one, two, three, four, five, six, seven, eight, nine, ten, eleven, twelve, thirteen, fourteen, fifteen, or all of the following: (i) is chemically synthesized;(ii) all the nucleotides in the dsRNA are modified;(iii) all nucleotides are connected through 3′-5′ phosphodiester linkages;(iv) the sense strand comprises or consists of 21 nucleotides;(v) the antisense sense strand comprises or consists of 23 nucleotides;(vi) has a blunt-end at the 3′-end of sense strand;(vii) has a 3′-overhang;(viii) is covalently attached to a ligand containing three N-acetylgalactosamine (GalNAc) moieties;(ix) the 3′-end of the sense strand is conjugated to the triantennary GalNAc moiety;(x) has an antisense strand that comprises one or more phosphorothioate linkages;(xi) has a sense strand that comprises one or more phosphorothioate linkages;(xii) 21 nucleotides of the sense strand hybridize to the complementary 21 nucleotides of the antisense strand;(xiii) forms 21 nucleotide base pairs and a two-base overhang at the 3′-end of the antisense strand;(xiv) comprises, or consists of, a sense strand having the sequence of SEQ ID NO: 4160 or 4162 and an antisense strand having the sequence of SEQ ID NO: 4161 or 4163;(xv) has a sense strand with 10, 12, 14, 16, 18, 19, 20 or all of the modifications of the sequence of SEQ ID NO: 4160; or(xvi) has an antisense strand with 10, 12, 14, 16, 18, 19, 20 or all of the modifications of the sequence of SEQ ID NO: 4161.
  • 31. The dsRNA of claim 6, wherein the dsRNA comprises one or more phosphorothioate linkages.
  • 32. The dsRNA of claim 7, wherein the ligand is conjugated to the 3′ end of the sense strand of the dsRNA.
  • 33. The dsRNA of claim 8, wherein the ligand is a GalNAc ligand.
  • 34. The method of claim 16, wherein the expression of ALAS1 is inhibited by at least 80% at 10 nM of the dsRNA as measured by branched DNA (bDNA) assay at 24 hours post-transfection.
  • 35. The method of claim 18, wherein the subject is at risk for developing, or is diagnosed with, a porphyria.
  • 36. The method of claim 25, wherein the subject suffers from chronic pain.
  • 37. The method of claim 25, wherein the method decreases or prevents pain, neuropathy, and/or nerve damage.
RELATED APPLICATIONS

This application is a Divisional of U.S. application Ser. No. 15/027,176, filed Apr. 4, 2016, now U.S. Pat. No. 10,119,143, which is the U.S. National Phase Application under 35 U.S.C. § 371 of International Application No. PCT/US2014/059160, filed Oct. 3, 2014, which claims priority to U.S. provisional application No. 61/887,288 filed on Oct. 4, 2013 and to U.S. provisional application No. 61/983,720 filed on Apr. 24, 2014. The entire content of each of the foregoing applications is hereby incorporated herein by reference.

US Referenced Citations (21)
Number Name Date Kind
8090542 Khvorova et al. Jan 2012 B2
9133461 Bettencourt et al. Sep 2015 B2
9631193 Bettencourt et al. Apr 2017 B2
10119143 Bettencourt Nov 2018 B2
10125364 Bettencourt et al. Nov 2018 B2
10400239 Bettencourt et al. Sep 2019 B2
20030223979 Gellerfors et al. Dec 2003 A1
20050080032 Gross et al. Apr 2005 A1
20100112687 Quay et al. May 2010 A1
20110054005 Naito et al. Mar 2011 A1
20110207799 Rozema et al. Aug 2011 A1
20120087862 Hood et al. Apr 2012 A1
20130178512 Manoharan et al. Jul 2013 A1
20130281511 Bettencourt et al. Oct 2013 A1
20150111841 Bettencourt et al. Apr 2015 A1
20160115476 Bettencourt et al. Apr 2016 A1
20160244766 Bettencourt et al. Aug 2016 A1
20180010128 Bennett et al. Jan 2018 A1
20180037886 Bettencourt et al. Feb 2018 A1
20190144870 Bettencourt et al. May 2019 A1
20190218549 Bettencourt et al. Jul 2019 A1
Foreign Referenced Citations (15)
Number Date Country
1752536 Feb 2007 EP
2213738 Aug 2010 EP
2011505425 Feb 2011 JP
2004045543 Jun 2004 WO
2005116204 Dec 2005 WO
2007131274 Nov 2007 WO
2009073809 Jun 2009 WO
2009134487 Nov 2009 WO
2009142822 Nov 2009 WO
2010148013 Dec 2010 WO
2012177906 Dec 2012 WO
2013074974 May 2013 WO
2013155204 Oct 2013 WO
2015051318 Apr 2015 WO
2017048843 Mar 2017 WO
Non-Patent Literature Citations (63)
Entry
Fang et al. “A synthetic Toll-like receptor 3 ligand mitigates profibrotic fibroblast responses by inducing autocrine interferon signaling” Journal of Immunology (2013) vol. 191, No. 6, pp. 2956-2966.
Tian et al “Lon Peptidase 1 (LONP1)-dependent Breakdown of Mitochondrial 5-Aminolevulinic Acid Synthase Protein Heme in Human Liver Cells” Journal of Biological Chemistry (2011) vol. 286, No. 30, pp. 26424-26430.
Unzu, C. et al., “Sustained Enzymatic Correction by rAAV-Mediated Liver Gene Therapy Protects Against Induced Motor Neuropathy in Acute Porphyria Mice,” Molecular Therapy 19(2): 243-250 (2011).
Whatley et al, Acute Intermittent Porphyria. In: Pagon RA, Adam MP, Ardinger HH, et al., editors. GeneReviews [Internet], Seattle (WA): University of Washington, Seattle; 1993-2014.
Wu, N. et al., “Negative feedback maintenance of heme homeostasis by its receptor, Rev-erba,” Genes Dev. 23: 2201-2209 (2009).
Yao, X. et al., “Heme controls the regulation of protein tyrosine kinases Jak2 and Src”, Biochemical and Biophysical Research Communications, Academic Press Inc., Orlando, FL, US, vol. 403, No. 1, pp. 30-35, Dec. 3, 2010.
Yasuda et al. “RNAi-mediated silencing of hepatic Alas? effectively prevents and treats the induced acute attacks in acute intermittent porphyria mice” PNAS (2014) vol. 111, No. 21, pp. 777-7782.
Yasuda et al., “RNAi-Mediated Silencing of Hepatic Alas1 Effectively Prevents and Treats the Induced Acute Attacks in Acute Intermittent Porphyria Mice”, Proceedings of the National Academy of Sciences, vol. 111, No. 21, pp. 1777-7782, May 12, 2014.
Yasuda, M., et al., “AAV8-Mediated Gene Therapy Prevents Induced Biochemical Attacks of Acute Intermittent Porpyria and Improves Neuromotor Function,” Molecular Therapy, 18(1):17-22 (2010).
Yasuda, M., et al., “Acute Intermittent Porphyria: A Severly Affected Knock-In Mouse that Mimics the Human Homozygous Dominant Phenotype,” (Abstract of Presentation on Oct. 14, 2011 at the American Society of Human Genetics; Program No. 1308F; accessed online on Apr. 4, 2012 at ichg2011.org/cgi-bin/showdetail.pl?absno=21167).
Yin, L., et al., “Rev-erba, a Heme Sensor That Coordinates Metabolic and Circadian Pathways,” Science, 318 (5857):1786-1789 and supporting online material (25 pages) (2007).
Zheng, J., et al., “Tissue-Specific Expression of ALA Synthase-1 and Heme Oxygenase-1 and Their Expression in Livers of Rats Chronically Exposed to Ethanol, ” FEBS Letters, 582(13):1829-1834 (2008).
“ALAS1 Pre-Design Chimera RNAi” www.abnova.com, XP002701598, Jan. 22, 2010.
Akin Akinc “Strategies for Delivery of RNAi Therapeutics” Mar. 2012; Retrieved from the Internet: http://www.alnylam.com/web/assets/ALNY-2012-AsiaTIDES-Delivery-Update.pdf; Retrieved on Jan. 8, 2018.
Alnylam Press Release dated Feb. 9, 2012 “Novel Method for Monitoring RNAi Activity in Blood Samples”.
Anderson, K.E., “Approaches to Treatment and Prevention of Human Porphyrias,” in The Porphyrin Handbook: Medical Aspects of Porphyrins, edited by Karl M. Kadish, Kevin M. Smith, Roger Guilard (2003).
Balwani et al. “The porphyrias: advances in diagnosis and treatment” Blood (2012) vol. 120, pp. 4496-4504.
Balwani et al. “The Porphyrias: Advances in Diagnosis and Treatment,” Blood (2012) vol. 120, No. 23, pp. 4496-4504.
Bishop, D.F., et al., “Uroporphyrinogen III Synthase Knock-In Mice Have the Human Congenital Erythropoietic Pehnotype, Including the Characteristic Light-Induced Cutaneous Lesions,” The American Journal of Human Genetids, 78:645-658 (2006).
Chan et al. “Preclinical Developement of a Subcutaneous ALAS1 RNAi Therapeutic for Treatment of Hepatic Porphyrias Using Circulating RNA Quantification” Molecular Therapy—Nucleic Acids (2015) vol. 4, e263, pp. 1-9.
Crawford, R.I. et al., “Transient erythroporphyria of infancy,” J. Am. Acad. Dermatol. 35 (5 pt 2) 833-834 (1996).
Dar, F.S., et al. “Liver Transplantation of Acute Intermittent Porphyria: A Viable Treatment?”, Hepatobiliary Pancreat. Dis. Int, 9(1):93-96 (2010).
Deleavey et al. “Designing Chemically Modified Oligonucleotides for Targeted Gene Silencing” Chemistry & Biology (2012) vol. 19, pp. 937-954.
Dowman, J.K. et al., “Liver Transplantation From Donors With Acute Intermittent Porphyria,” Ann. Intern. Med. 154: 571-572 (2011).
Elder, G. et al., “The incidence of inherited porphyrias in Europe,” J. Inherit. Metab. Dis. 36(5): 849-857 (2013).
Estall et al., “PGC-1 Negatively Regulates Hepatic FGF21 Expression by Modulating the Heme/Rev-Erb Axis”, Proceedings of the National Academy of Sciences, vol. 106, No. 52, pp. 22510-22515, Dec. 29, 2009.
Estall, J.L., et al., “PGC-1 Negatively Regulates Hepatic FGF21 Expression by Modulating the Heme/Rev-Erb Axis,” Proceedings of the National Academy of Sciences, 106(52):22510-22515 (2009).
European Search Report and Written Opinion for European Application No. EP17175148.0 dated Jan. 9, 2018.
Floderus, Y. et al., “Acute intermittent porphyria in Sweden. Molecular, functional and clinical consequences of some new mutations found in the porphobilinogen deaminase gene,” Clin. Genet. 62(4): 288-297 (2002).
Floderus, Y., et al., “Variations in Prophobilinogen and 5-Aminolevulinic Acid Concentrations in Plasma and Urine from Asymptomatic Carriers of the Acute Intermittent Porphyria Gene with Increased Prophyrin Precursor Excretion,” Clinical Chemistry, 52(4):701-707 (2006).
GenBank No. AY260745.1, “Homo sapiens migration-inducing protein 4 mRNA, complete cds; nuclear gene for mitochondrial product” (2003) Retrieved from https://www.ncbi.nlm.nih.gov/nuccore/33112015?report=genbank&to=2367.
Handschin et al. “Nutritional Regulation of Hepatic Heme Biosynthesis and Porphyria through PGC-1alpha” Cell (2005) vol. 122, pp. 505-515.
Hift, R.J., et al., “Drugs in Prophyria: From Observation of a Modem Algorithm-Based System for the Prediction of Porphyrogenicity,” Pharmacology and Therapeutics, 132(2):158-169 (2011).
Homedan et al., “Acute Intermittent Porphyria Causes Hepatic Mitochondrial Energetic Failure in a Mouse Model”, International Journal of Biochemistry and Cell Biology, vol. 51, Apr. 13, 2014, pp. 93-101.
Hrdinka, M., et al., “May 2006 Update in Porphobilinogen Deaminase Gene Polymorphisms and Mutations Causing Acute Intermittent Porphyria. Comparison with the Situation in Slavic Population,” Physiol. Res., 55 (Suppl. 2):S119-S136 (2006).
International Search Report and Written Opinion for International Application No. PCT/US2016/051737 dated Dec. 12, 2016.
Interntional Search Report and Written Opinion for PCT/US2013/036006 dated Nov. 18, 2013.
International Search Report and Written Opinion for PCT/US2014/059160 dated Feb. 5, 2015.
Invitation to Pay Additional Fees and Partial International Search Report, International Application No. PCT/US2013/036006, dated Jul. 25, 2013.
Ju et al. “Nuclear Receptor 5A (NR5A) Family Regulates 5-Aminolevulinic Acid Synthase 1 (ALAS1) Gene Expression in Steroidogenic Cells” Endocrinology (2012) vol. 153, No. 11, pp. 5522-5534.
Kumar et al. “Regulation of Adipogenesis by Natural and Synthetic REV-ERB Ligands” Endocrinology (2010) vol. 151, No. 7, pp. 3015-3025.
Kumar, N. et al., “Regulation of Adipogenesis by Natural and Synthetic REV-ERB Ligands”, Endocrinology, vol. 151, No. 7, pp. 3015-3025, Jul. 1, 2010.
Lamon et al “Hematin Therapy for Acute Porphyria” Medicine (1979), vol. 58, No. 3, pp. 252-269.
Lin, CS-Y, et al. “Purple Pigments: The Pathophysiology of Acute Porphyric Neuropathy,” Clinical Neurophysiology, 122:2336-2344 (2011).
Lindberg, R., et al., “Motor Neuropathy in Prophobilinogen Deaminase-Deficient Mice Imitates the Peripheral Neuropathy of Human Acute Porphyria,” J. Clin. Invest, 103:1127-1134 (1999).
Lindberg, R., et al., “Porphobilinogen Deaminase Deficiency in Mice Causes a Neuropathy Resembling that of Human Hepatic Prophyria,” Nature Genetics, 12:195-219 (1996).
NCBI Reference Sequence: NM_000688.4 “Homo sapiens aminolevulinate, delta-, synthase 1 (ALAS1), transcript variant 1, mRNA” (2011) Retrieved from https://www.ncbi.nlm.nih.gov/nuccore/NM_000688.4.
NCBI Reference Sequence: NM_000688.5, “Homo sapiens 5′-aminolevulinate synthase 1 (ALAS1), transcript variant 1, mRNA” (2015) Retrieved from https://www.ncbi.nlm.nih.gov/nuccore/NM_000688.5.
Oliveri et al. “ALAS1 gene expression is down-regulated by Akt-mediated phosphorylation and nuclear exclusion of FOXO1 by vanadate in diabetic mice” Biochem J. (2012) vol. 442, pp. 303-310.
Panhematin Product Label, pp. 1-7, revised (Oct. 2010).
Phillips, J.D., et al., “Functional Consequences of Naturally Occurring Mutations in Human Uroporphyrinogen Decarboxylase,” Blood, 98:3179-3185 (2001).
Pon et al. “Tandem oligonucleotide synthesis using linker phosphoramidites” (2005) Nucleic Acids Research, vol. 33, No. 6, pp. 1940-1948.
Roberts et al. “REBASE-enzymes and genes for DNA restriction and modification” Nucleic Acids Research (2007), vol. 35, Database Issue, pp. D269-D270.
Sardh, E., et al., “Safety, Pharmacokinetics and Pharmocodynamics of Recombinant Human Prophobilinogen Deaminase in Healthy Subjects and Asymptomatic Carriers of the Acute Intermittent Porphyria Gene Who Have Increased Prophyrin Precursor Excretion,” Clin. Pharmacokinet. 46(4):335-349 (2007).
Schultz, N., et al., “Off-Target Effects Dominate a Large-Scale RNAi Screen for Modulators of the TGF-beta Pathway and Reveal MicroRNA Regulation of TGFBR2,” Silence, 2:3, pp. 1-20 and Supplementary Table 1 (2011).
Schuurmans, M.M., et al., “Zinc Mesophorphyrin Represses Induced Hepatic 5-Aminolevulinic Acid Synthase and Reduces Heme Oxygenase Activity in a Mouse Model of Acute Hepatic Porphyria,” Hepatology, 33(5):1217-1222 (2001).
Sehgal, A. et al., “Quantitation of Tissue-specific Target Gene Modulation Using Circulating RNA,” Poster presented at the Keystone Gene Silencing by small RNAs symposium (Vancouver, Feb. 7-12, 2012).
Sehgal, A. et al., “Tissue-specific gene silencing monitored in circulating RNA,” RNA, 20:1-7 (2014; published online Dec. 19, 2013).
Seth, A.K., et al., “Liver Transplantation for Prophyria: Who, When, and How?,” Liver Transplantation, 13:1219-1227 (2007).
Singapore Search Report and Written Opinion for Singapore Application No. 11201602631X dated Feb. 23, 2018.
Thunell, S., et al., “Guide to Drug Porphyrogenicity Prediction and Drug Prescription in the Acute Porphyrias,” British Journal of Clinical Pharmacology, 64(5):668-679 (2007).
Thunell, S., et al., “Prophyria in Sweden,” Physiol. Res., 55 (Suppl 2):S109-S118 (2006).
European Search Report and Written Opinion for European Application No. 20154129.9 dated Jul. 14, 2020.
Related Publications (1)
Number Date Country
20190144870 A1 May 2019 US
Provisional Applications (2)
Number Date Country
61983720 Apr 2014 US
61887288 Oct 2013 US
Divisions (1)
Number Date Country
Parent 15027176 US
Child 16137046 US