Compositions and methods for selectively etching titanium nitride

Information

  • Patent Grant
  • 10472567
  • Patent Number
    10,472,567
  • Date Filed
    Tuesday, March 4, 2014
    10 years ago
  • Date Issued
    Tuesday, November 12, 2019
    4 years ago
Abstract
Semi-aqueous compositions useful for the selective removal of titanium nitride and/or photoresist etch residue materials relative to metal conducting, e.g., tungsten and copper, and insulating materials from a microelectronic device having same thereon. The semi-aqueous compositions contain at least one oxidant, at least one etchant, and at least one organic solvent, may contain various corrosion inhibitors to ensure selectivity.
Description
FIELD

The present invention relates to a composition and process for selectively etching titanium nitride and/or photoresist etch residues in the presence of metal conductor and insulator materials (i.e., low-k dielectrics), and more particularly to a composition and process for effectively and efficiently etching titanium nitride and/or photoresist etch residues at an etch rate and selectivity that is higher than that of exposed or underlying layers of copper, tungsten, and low-k dielectric materials.







DESCRIPTION OF THE RELATED ART

Photoresist masks are commonly used in the semiconductor industry to pattern materials such as semiconductors or dielectrics. In one application, photoresist masks are used in a dual damascene process to form interconnects in the back-end metallization of a microelectronic device. The dual damascene process involves forming a photoresist mask on a low-k dielectric layer overlying a metal conductor layer, such as a copper layer. The low-k dielectric layer is then etched according to the photoresist mask to form a via and/or trench that expose the metal conductor layer. The via and trench, commonly known as dual damascene structure, are usually defined using two lithography steps. The photoresist mask is then removed from the low-k dielectric layer before a conductive material is deposited into the via and/or trench to form an interconnect.


With the decreasing size of microelectronic devices, it becomes more difficult to achieve the critical dimensions for vias and trenches. Thus, metal hard masks are used to provide better profile control of vias and trenches. The metal hard masks can be made of titanium or titanium nitride, and are removed by a wet etching process after forming the via and/or trench of the dual damascene structure. It is essential that the wet etching process uses a removal chemistry that effectively removes the metal hard mask and/or photoresist etch residues without affecting the underlying metal conductor layer and low-k dielectric material. In other words, the removal chemistry is required to be highly selective to the metal conductor layer and low-k dielectric layer.


Accordingly, an object of the present invention to provide improved compositions for the selective removal of hard mask materials relative to metal conductor layers and low-k dielectric layers that are present, while not compromising the etch rate of the hard mask.


SUMMARY OF THE INVENTION

The present invention relates to a composition and process for selectively etching hard mask layers and/or photoresist etch residues relative to metal conductor layers and low-k dielectric layers that are present. More specifically, the present invention relates to a composition and process for selectively etching titanium nitride and/or photoresist etch residues relative to copper, tungsten, and low-k dielectric layers.


In one aspect, a composition for selectively removing titanium nitride and/or photoresist etch residue material from the surface of a microelectronic device having same thereon is described, said composition comprising at least one oxidizing agent, at least one etchant, at least one corrosion inhibitor, at least source of silica, water, and at least one organic solvent, wherein the composition is substantially devoid of hydrogen peroxide.


In another aspect, a method of etching titanium nitride material from a surface of a microelectronic device having same thereon is described, said method comprising contacting the surface with a composition comprising at least one oxidizing agent, at least one etchant, at least one corrosion inhibitor, at least source of silica, water, and at least one organic solvent, wherein the composition is substantially devoid of hydrogen peroxide, and wherein the composition selectively removes the titanium nitride material from the surface relative to metals and insulating materials.


Other aspects, features and embodiments of the invention will be more fully apparent from the ensuing disclosure and appended claims.


DETAILED DESCRIPTION, AND PREFERRED EMBODIMENTS THEREOF

In general, the present invention relates to semi-aqueous compositions and processes for selectively etching hard mask layers and/or photoresist etch residues relative to metal conductor layers and low-k dielectric layers that are present. More specifically, the present invention relates to a semi-aqueous composition and process for selectively etching titanium nitride and/or photoresist etch residues relative to copper, tungsten, and low-k dielectric layers. Other materials that may be present on the microelectronic device, should not be substantially removed or corroded by said compositions.


For ease of reference, “microelectronic device” corresponds to semiconductor substrates, flat panel displays, phase change memory devices, solar panels and other products including solar cell devices, photovoltaics, and microelectromechanical systems (MEMS), manufactured for use in microelectronic, integrated circuit, energy collection, or computer chip applications. It is to be understood that the terms “microelectronic device,” “microelectronic substrate” and “microelectronic device structure” are not meant to be limiting in any way and include any substrate or structure that will eventually become a microelectronic device or microelectronic assembly. The microelectronic device can be patterned, blanketed, a control and/or a test device.


“Hardmask capping layer” or “hardmask” as used herein corresponds to materials deposited over dielectric material to protect same during the plasma etch step. Hardmask capping layers are traditionally silicon nitrides, silicon oxynitrides, titanium nitride, titanium oxynitride, titanium and other similar compounds.


As used herein, “titanium nitride” and “TiNx” correspond to pure titanium nitride as well as impure titanium nitride including varying stoichiometries, and oxygen content (TiOxNy)


As used herein, “about” is intended to correspond to ±5% of the stated value.


As defined herein, “low-k dielectric material” corresponds to any material used as a dielectric material in a layered microelectronic device, wherein the material has a dielectric constant less than about 3.5. Preferably, the low-k dielectric materials include low-polarity materials such as silicon-containing organic polymers, silicon-containing hybrid organic/inorganic materials, organosilicate glass (OSG), TEOS, fluorinated silicate glass (FSG), silicon dioxide, and carbon-doped oxide (CDO) glass. It is to be appreciated that the low-k dielectric materials may have varying densities and varying porosities.


As defined herein, “metal conductor layers” comprise copper, tungsten, cobalt, molybdenum, aluminum, ruthenium, alloys comprising same, and combinations thereof.


As defined herein, “amine” species include at least one primary, secondary, and tertiary amines, with the proviso that (i) species including both a carboxylic acid group and an amine group, (ii) surfactants that include amine groups, and (iii) species where the amine group is a substituent (e.g., attached to an aryl or heterocyclic moiety) are not considered “amines” according to this definition. The amine formula can be represented by NR1R2R3, wherein R1, R2 and R3 can be the same as or different from one another and are selected from the group consisting of hydrogen, straight-chained or branched C1-C6 alkyls (e.g., methyl, ethyl, propyl, butyl, pentyl, hexyl), C6-C10 aryls (e.g., benzyl), straight-chained or branched C1-C6 alkanols (e.g., methanol, ethanol, propanol, butanol, pentanol, hexanol), and combinations thereof, with the proviso that R1, R2 and R3 cannot all be hydrogen.


As defined herein, “photoresist etch residues” corresponds to any residue comprising photoresist material, or material that is a by-product of photoresist subsequent to an etching or aching step, as readily understood by the person skilled in the art.


“Substantially devoid” is defined herein as less than 2 wt. %, preferably less than 1 wt. %, more preferably less than 0.5 wt. %, even more preferably less than 0.1 wt. %, and most preferably 0 wt. %.


As used herein, “fluoride” species correspond to species including an ionic fluoride (F) or covalently bonded fluorine. It is to be appreciated that the fluoride species may be included as a fluoride species or generated in situ.


As used herein, “chloride” species correspond to species including an ionic chloride (Cl), with the proviso that surfactants that include chloride anions are not considered “chlorides” according to this definition.


As used herein, the term “semi-aqueous” refers to a mixture of water and organic solvent components. The semi-aqueous removal compositions must not substantially damage the metal conductor layers and low-k dielectric layers that are present while the hard mask layers and/or photoresist etch residues are removed.


As defined herein, a strong base is any base having at least one pKa greater than 11, while a weak base is any base having at least one pKa less than 11.


Compositions of the invention may be embodied in a wide variety of specific formulations, as hereinafter more fully described.


In all such compositions, wherein specific components of the composition are discussed in reference to weight percentage ranges including a zero lower limit, it will be understood that such components may be present or absent in various specific embodiments of the composition, and that in instances where such components are present, they may be present at concentrations as low as 0.001 weight percent, based on the total weight of the composition in which such components are employed.


Embodiments of the present invention include a chemistry for removing hard mask and/or photoresist etch residues. In one embodiment, the semi-aqueous composition is a wet-etch solution that removes a metal hard mask and/or photoresist etch residues on a dielectric layer and is highly selective relative to a metal conductor layer underneath the dielectric layer and the dielectric layer itself. In a more specific embodiment, the semi-aqueous composition is a wet-etch solution that removes a titanium nitride layer and/or photoresist etch residues that is highly selective relative to at least one of copper, tungsten, and low-k dielectric materials.


Accordingly, in one aspect, a semi-aqueous composition for selectively removing titanium nitride and/or photoresist etch residue material from the surface of a microelectronic device having same thereon is described, said composition including at least one oxidizing agent and at least one etchant, wherein the composition is substantially devoid of hydrogen peroxide. In one embodiment, the semi-aqueous composition for removing titanium nitride and/or photoresist etch residue material from the surface of a microelectronic device having same thereon comprises, consists of, or consists essentially of at least one oxidizing agent, at least one etchant, water, and at least one organic solvent, wherein the composition is substantially devoid of hydrogen peroxide. In another embodiment, the semi-aqueous composition for removing titanium nitride and/or photoresist etch residue material from the surface of a microelectronic device having same thereon comprises, consists of, or consists essentially of at least one oxidizing agent, at least one etchant, water, and at least one corrosion inhibitor, wherein the composition is substantially devoid of hydrogen peroxide. In still another embodiment, the semi-aqueous composition for removing titanium nitride and/or photoresist etch residue material from the surface of a microelectronic device having same thereon comprises, consists of, or consists essentially of at least one oxidizing agent, at least one etchant, water, at least one source of silica, and at least one corrosion inhibitor, wherein the composition is substantially devoid of hydrogen peroxide. In yet another embodiment, the semi-aqueous composition for removing titanium nitride and/or photoresist etch residue material from the surface of a microelectronic device having same thereon comprises, consists of, or consists essentially of at least one oxidizing agent, at least one etchant, at least one corrosion inhibitor, water, and at least one organic solvent, wherein the composition is substantially devoid of hydrogen peroxide. In still another embodiment, the semi-aqueous composition for removing titanium nitride and/or photoresist etch residue material from the surface of a microelectronic device having same thereon comprises, consists of, or consists essentially of at least one oxidizing agent, at least one etchant, at least one source of silica, water, and at least one organic solvent, wherein the composition is substantially devoid of hydrogen peroxide. In yet another embodiment, the semi-aqueous composition for removing titanium nitride and/or photoresist etch residue material from the surface of a microelectronic device having same thereon comprises, consists of, or consists essentially of at least one oxidizing agent, at least one etchant, at least one corrosion inhibitor, at least source of silica, water, and at least one organic solvent, wherein the composition is substantially devoid of hydrogen peroxide. Other components contemplated for inclusion in the semi-aqueous compositions described herein include, but are not limited to, at least one low-k passivating agent, at least one surfactant, at least one iodine scavenger, and combinations thereof. Advantageously, these compositions have a TiN to tungsten selectivity of greater than 40:1 and a tungsten removal rate less than about 1 Å min−1, even more preferably a TiN to tungsten selectivity of greater than 50:1, and a tungsten removal rate less than about 1 Å min−1 at temperatures in a range from about 45° C. to about 60° C. Furthermore, these compositions have a TiN to copper selectivity of greater than 20:1 and a copper removal rate less than about 2 Å min−1, even more preferably a TiN to copper selectivity of greater than 30:1, and a copper removal rate less than about 2 Å min−1 at temperatures in a range from about 45° C. to about 60° C. These compositions are substantially devoid of amines, as defined herein, chemical mechanical polishing abrasive materials, metal halides, and combinations thereof. The semi-aqueous compositions have pH value in a range from 0 to 4, and surface tension value in a range from 30 to 50 mN/m, preferably in a range from about 30 mN/m to about 40 mN/m.


Etchants are added to increase the etch rate of the titanium nitride. Etchants contemplated include, but are not limited to, HF, ammonium fluoride, tetrafluoroboric acid, hexafluorosilicic acid, other compounds containing B—F or Si—F bonds, tetrabutylammonium tetrafluoroborate (TBA-BF4), tetraalkylammonium fluoride (NR1R2R3R4F), strong bases such as tetraalkylammonium hydroxide (NR1R2R3R4OH), where R1, R2, R3, R4 may be the same as or different from one another and is selected from the group consisting of hydrogen, straight-chained or branched C1-C6 alkyl groups (e.g., methyl, ethyl, propyl, butyl, pentyl, hexyl), C1-C6 alkoxy groups (e.g., hydroxyethyl, hydroxypropyl) substituted or unsubstituted aryl groups (e.g., benzyl), weak bases, and combinations thereof. Preferably, the fluoride source comprises tetrafluoroboric acid, hexafluorosilicic acid, H2ZrF6, H2TiF6, HPF6, ammonium fluoride, ammonium bifluoride, tetramethylammonium fluoride, tetramethylammonium hydroxide, ammonium hexafluorosilicate, ammonium hexafluorotitanate, or a combination of ammonium fluoride and tetramethylammonium fluoride. Alternatively, or in addition to fluoride sources, the etchant can comprise a strong base such as tetramethylammonium hydroxide (TMAH), tetraethylammonium hydroxide (TEAH), tetrapropylammonium hydroxide (TPAH), tetrabutylammonium hydroxide (TBAH), benzyltrimethylammonium hydroxide (BTMAH), potassium hydroxide, ammonium hydroxide, benzyltriethylammonium hydroxide (BTEAH), tetrabutylphosphonium hydroxide (TBPH), (2-hydroxyethyl) trimethylammonium hydroxide, (2-hydroxyethyl) triethylammonium hydroxide, (2-hydroxyethyl) tripropylammonium hydroxide, (1-hydroxypropyl) trimethylammonium hydroxide, ethyltrimethylammonium hydroxide, diethyldimethylammonium hydroxide (DEDMAH), 1,1,3,3-tetramethylguanidine (TMG), guanidine carbonate, arginine, and combinations thereof. Most preferably, the etchant comprises hexafluorosilicic acid, tetrafluoroboric acid, or combinations thereof.


Oxidizing agents are included to oxidize Ti3+ in TiNx. Oxidizing agents contemplated herein include, but are not limited to, hydrogen peroxide (H2O2), FeCl3, FeF3, Fe(NO3)3, Sr(NO3)2, CoF3, MnF3, oxone (2KHSO5.KHSO4.K2SO4), periodic acid, iodic acid, vanadium (V) oxide, vanadium (IV,V) oxide (V6O13), ammonium vanadate, ammonium polyatomic salts (e.g., ammonium peroxomonosulfate, ammonium chlorite (NH4ClO2), ammonium chlorate (NH4ClO3), ammonium iodate (NH4IO3), ammonium nitrate (NH4NO3), ammonium perborate (NH4BO3), ammonium perchlorate (NH4ClO4), ammonium periodate (NH4IO4), ammonium persulfate ((NH4)2S2O8), ammonium hypochlorite (NH4ClO)), ammonium tungstate ((NH4)10H2(W2O7)), sodium polyatomic salts (e.g., sodium persulfate (Na2S2O8), sodium hypochlorite (NaClO), sodium perborate), potassium polyatomic salts (e.g., potassium iodate (KIO3), potassium permanganate (KMnO4), potassium persulfate, nitric acid (HNO3), potassium persulfate (K2S2O8), potassium hypochlorite (KClO)), tetramethylammonium polyatomic salts (e.g., tetramethylammonium chlorite ((N(CH3)4)ClO2), tetramethylammonium chlorate ((N(CH3)4)ClO3), tetramethylammonium iodate ((N(CH3)4)IO3), tetramethylammonium perborate ((N(CH3)4)BO3), tetramethylammonium perchlorate ((N(CH3)4)ClO4), tetramethylammonium periodate ((N(CH3)4)IO4), tetramethylammonium persulfate ((N(CH3)4)S2O8)), tetrabutylammonium polyatomic salts (e.g., tetrabutylammonium peroxomonosulfate), peroxomonosulfuric acid, ferric nitrate (Fe(NO3)3), urea hydrogen peroxide ((CO(NH2)2)H2O2), peracetic acid (CH3(CO)OOH), 1,4-benzoquinone, toluquinone, dimethyl-1,4-benzoquinone, chloranil, alloxan, N-methylmorpholine N-oxide, trimethylamine N-oxide, and combinations thereof. When the oxidizing agent is a salt it can be hydrated or anhydrous. The oxidizing agent may be introduced to the composition at the manufacturer, prior to introduction of the composition to the device wafer, or alternatively at the device wafer, i.e., in situ. Preferably, the oxidizing agent for the composition of the second aspect comprises hydrogen peroxide. Preferably, the oxidizing agent for the semi-aqueous composition comprises vanadium oxide, ammonium vanadate, ammonium iodate, ammonium periodate, iodic acid, periodic acid, 1,4-benzoquinone, or combinations thereof.


The semi-aqueous compositions comprise at least one source of silica to reduce the activity of the etchant source. In one embodiment, the at least one source of silica comprises an alkoxysilane. Alkoxysilanes contemplated have the general formula SiR1R2R3R4, wherein the R1, R2, R3 and R4 are the same as or different from one another and are selected from the group consisting of straight-chained C1-C6 alkyl groups (e.g., methyl, ethyl, propyl, butyl, pentyl, hexyl), branched C1-C6 alkyl groups, C1-C6 alkoxy groups (e.g, methoxy, ethoxy, propoxy, butoxy, pentoxy, hexoxy), a phenyl group, and a combination thereof. It should be appreciated by the skilled artisan, that to be characterized as an alkoxysilane, at least one of R1, R2, R3 or R4 must be a C1-C6 alkoxy group. Alkoxysilanes contemplated include methyltrimethoxysilane, dimethyldimethoxysilane, phenyltrimethoxysilane, tetraethoxysilane (TEOS), N-propyltrimethoxysilane, N-propyltriethoxysilane, hexyltrimethoxysilane, hexyltriethoxysilane, and combinations thereof. Other sources of silica that can be used instead or in addition to the alkoxysilanes include ammonium hexafluorosilicate, sodium silicate, tetramethyl ammonium silicate (TMAS), and combinations thereof. Preferably, the silicon-containing compound comprises TEOS, TMAS, sodium silicate, or combinations thereof.


An alternative to the inclusion of both the etchant and the source of silica is the generation of fluorosilicic acid in situ. Hydrofluoric acid (preferably at concentrations of 40% or higher) and TEOS or other hydrolyzable alkoxysilane may be combined in the appropriate ratio in the at least one organic solvent to form a concentrate having the correct amount of fluorosilicic acid saturated or nearly saturated in SiO2.


When the oxidizing agent comprises iodate or periodate, an iodine scavenger may optionally be added to the semi-aqueous composition. Although not wishing to be bound by theory, it is thought that as the iodate or periodate are reduced, iodine accumulates, which increases the rate of copper etch. Iodine scavengers include, but are not limited to, ketones more preferably ketones with hydrogen(s) alpha to the carbonyl such as 4-methyl-2-pentanone, 2,4-dimethyl-3-pentanone, cyclohexanone, 5-methyl-3-heptanone, 3-pentanone, 5-hydroxy-2-pentanone, 2,5-hexanedione, 4-hydroxy-4-methyl-2-pentanone, acetone, butanone, 2-methyl-2-butanone, 3,3-dimethyl-2-butanone, 4-hydroxy-2-butanone, cyclopentanone, 2-pentanone, 3-pentanone, 1-phenylethanone, acetophenone, benzophenone, 2-hexanone, 3-hexanone, 2-heptanone, 3-heptanone, 4-heptanone, 2,6-dimethyl-4-heptanone, 2-octanone, 3-octanone, 4-octanone, dicyclohexyl ketone, 2,6-dimethylcyclohexanone, 2-acetylcyclohexanone, 2,4-pentanedione, menthone, and combinations thereof. Preferably, the iodine scavenger includes 4-methyl-2-pentanone, 2,4-dimethyl-3-pentanone, or cyclohexanone.


Metal corrosion inhibitors are added to block the oxidative activity of the oxidizing agent(s). Metal corrosion inhibitors contemplated herein include, but are not limited to, 5-amino-1,3,4-thiadiazole-2-thiol (ATDT), benzotriazole (BTA), 1,2,4-triazole (TAZ), tolyltriazole, 5-methyl-benzotriazole, 5-phenyl-benzotriazole, 5-nitro-benzotriazole, benzotriazole carboxylic acid, 3-amino-5-mercapto-1,2,4-triazole, 1-amino-1,2,4-triazole, hydroxybenzotriazole, 2-(5-amino-pentyl)-benzotriazole, 1-amino-1,2,3-triazole, 1-amino-5-methyl-1,2,3-triazole, 3-amino-1,2,4-triazole, 3-mercapto-1,2,4-triazole, 3-isopropyl-1,2,4-triazole, 5-phenylthiol-benzotriazole, halo-benzotriazoles (halo=F, Cl, Br or I), naphthotriazole, 2-mercaptobenzimidazole (MBI), 2-mercaptobenzothiazole, 4-methyl-2-phenylimidazole, 2-mercaptothiazoline, 5-aminotetrazole, pentylenetetrazole, 5-phenyl-1H-tetrazole, 5-benzyl-1H-tetrazole, Ablumine O (Taiwan Surfactant), 2-benzylpyridine, succinimide, maleimide, phthalimide, glutarimide, 2,4-diamino-6-methyl-1,3,5-triazine, thiazole, triazine, methyltetrazole, 1,3-dimethyl-2-imidazolidinone, 1,5-pentamethylenetetrazole, 1-phenyl-5-mercaptotetrazole, diaminomethyltriazine, imidazoline thione, 4-methyl-4H-1,2,4-triazole-3-thiol, benzothiazole, imidazole, pyrazole, indiazole, adenosine, carbazole, saccharin, and benzoin oxime. Additional corrosion inhibitors include cationic quaternary surfactant salts such as benzalkonium chloride, benzyldimethyldodecylammonium chloride, myristyltrimethylammonium bromide, dodecyltrimethylammonium bromide, hexadecylpyridinium chloride, Aliquat 336 (Cognis), benzyldimethylphenylammonium chloride, Crodaquat TES (Croda Inc.), Rewoquat CPEM (Witco), hexadecyltrimethylammonium p-toluenesulfonate, hexadecyltrimethylammonium hydroxide, 1-methyl-1′-tetradecyl-4,4′-bipyridium dichloride, alkyltrimethylammonium bromide, amprolium hydrochloride, benzethonium hydroxide, benzethonium chloride, benzyldimethylhexadecylammonium chloride, benzyldimethyltetradecylammonium chloride, benzyldodecyldimethylammonium bromide, benzyldodecyldimethylammonium chloride, cetylpyridinium chloride, choline p-toluenesulfonate salt, dimethyldioctadecylammonium bromide, dodecylethyldimethylammonium bromide, dodecyltrimethylammonium chloride, ethylhexadecyldimethylammonium bromide, Girard's reagent, hexadecyl(2-hydroxyethyl)dimethylammonium dihydrogen phosphate, dexadecylpyridinium bromide, hexadecyltrimethylammonium bromide, hexadecyltrimethylammonium chloride, methylbenzethonium chloride, Hyamine® 1622, Luviquat™, N,N′,N′-polyoxyethylene (10)-N-tallow-1,3-diaminopropane liquid, oxyphenonium bromide, tetraheptylammonium bromide, tetrakis(decyl)ammonium bromide, thonzonium bromide, tridodecylammonium chloride, trimethyloctadecylammonium bromide, 1-methyl-3-n-octylimidazolium tetrafluoroborate, 1-decyl-3-methylimidazolium tetrafluoroborate. 1-decyl-3-methylimidazolium chloride, tridodecylmethylammonium bromide, dimethyldistearylammonium chloride, and hexamethonium chloride. Other corrosion inhibitors include non-ionic surfactants such as PolyFox PF-159 (OMNOVA Solutions), poly(ethylene glycol) (“PEG”), poly(propylene glycol) (“PPG”), PEG-PPG copolymers such as Pluronic F-127 (BASF), anionic surfactants such as dodecylbenzenesulfonic acid, sodium dodecylbenzenesulfonate, and combinations thereof. The quaternary salts can function as both corrosion inhibitors (especially for copper and tungsten) and wetting agents. It will be obvious to those skilled in the art that, while quaternary salts are available commercially most often as chlorides or bromides, it is easy to ion-exchange the halide anion with non-halide anions such as sulfate, methanesulfonate, nitrate, hydroxide, etc. Such converted quaternary salts are also contemplated herein. In a particularly preferred embodiment, 5-methyl-1H-benzotriazole is known to block the oxidative activity of the oxidizing agents against copper. Alternatively, or in addition to the 5-methyl-1H-benzotriazole (mBTA), preferred corrosion inhibitors include pyrazole, benzotriazole, the cationic quaternary surfactant salts, more preferably myristyltrimethylammonium bromide, benzalkonium chloride, hexadecyltrimethylammonium p-toluenesulfonate, and hexadecyltrimethylammonium hydroxide, tetrazoles such as 5-benzyl-1H-tetrazole, and combinations thereof.


The semi-aqueous compositions described herein can optionally include at least one low-k passivating agent to reduce the chemical attack of the low-k dielectric layers and to protect the wafer from additional oxidation. Preferred low-k passivating agent include, but are not limited to, boric acid, borate salts, such as ammonium pentaborate, sodium tetraborate, 3-hydroxy-2-naphthoic acid, malonic acid, and iminodiacetic acid. When present, the semi-aqueous composition includes about 0.01 wt % to about 2 wt % low-k passivating agent, based on the total weight of the composition. Preferably, less than 2 wt. % of the underlying low-k material is etched/removed using the semi-aqueous compositions described herein, more preferably less than 1 wt. %, most preferably less than 0.5 wt. %, based on the total weight of the underlying low-k material.


To ensure wetting, especially when the pH is low, a surfactant can be added to the semi-aqueous composition, preferably an oxidation resistant, fluorinated anionic surfactant. Anionic surfactants contemplated in the compositions of the present invention include, but are not limited to, fluorosurfactants such as ZONYL® UR and ZONYL® FS-62 (DuPont Canada Inc., Mississauga, Ontario, Canada), and ammonium fluoroalkylsulfonates such as Novec™ 4300 (3M). When the etchant used comprises a fluoride, it is contemplated to use a long-chain tetraalkylammonium fluoride that can be used as a surfactant and the etchant.


The at least one organic solvent comprises at least one water-miscible organic solvent, wherein the at least one water-miscible organic solvent is selected from the group consisting of a compound of formula R1R2R3C(OH), where R1, R2 and R3 are independent from each other and are selected from to the group consisting of hydrogen, C2-C30alkyls, C2-C30alkenes, cycloalkyls, C2-C30alkoxys, and combinations thereof. For example, the at least one solvent can comprise at least one species selected from the group consisting of methanol, ethanol, isopropanol, butanol, pentanol, hexanol, 2-ethyl-1-hexanol, heptanol, octanol, ethylene glycol, 1,2- and 1,3-propylene glycol, 1,2-, 1,3-, and 1,4-butanediol, tetrahydrofurfuryl alcohol (THFA), butylene carbonate, ethylene carbonate, propylene carbonate, dipropylene glycol, diethylene glycol monomethyl ether, triethylene glycol monomethyl ether, diethylene glycol monoethyl ether, triethylene glycol monoethyl ether, ethylene glycol monopropyl ether, ethylene glycol monobutyl ether, diethylene glycol monobutyl ether, triethylene glycol monobutyl ether, ethylene glycol monohexyl ether, diethylene glycol monohexyl ether, ethylene glycol phenyl ether, propylene glycol methyl ether, dipropylene glycol methyl ether (DPGME), tripropylene glycol methyl ether (TPGME), dipropylene glycol dimethyl ether, dipropylene glycol ethyl ether, propylene glycol n-propyl ether, dipropylene glycol n-propyl ether (DPGPE), tripropylene glycol n-propyl ether, propylene glycol n-butyl ether, dipropylene glycol n-butyl ether, tripropylene glycol n-butyl ether, propylene glycol phenyl ether, 2,3-dihydrodecafluoropentane, ethyl perfluorobutylether, methyl perfluorobutylether, alkyl carbonates, alkylene carbonates, 4-methyl-2-pentanol, tetramethylene glycol dimethyl ether, dimethyl sulfoxide, and combinations thereof. Preferably, the at least one organic solvent comprises diethylene glycol monoethyl ether, diethylene glycol methyl ether, propylene glycol, ethylene glycol, tetraethylene glycol dimethyl ether, triethylene glycol methyl ether, triethylene glycol ethyl ether, tripropylene glycol monomethyl ether, dipropylene glycol monomethyl ether, or combinations thereof.


In another embodiment, any of the semi-aqueous compositions described herein may further comprise titanium nitride and/or photoresist etch material residue, wherein the residue is suspended and/or dissolved in the semi-aqueous composition.


In one embodiment, the composition of the first aspect comprises, consists of, or consists essentially of at least one oxidizing agent, at least one etchant, at least one corrosion inhibitor, at least source of silica, water, and at least one organic solvent, wherein the composition is substantially devoid of hydrogen peroxide, present in the following ranges, based on the total weight of the composition:

















more preferred %
most preferred %


component
% by weight
by weight
by weight







oxidizing agent(s)
about 0.0001 wt %
about 0.001 wt %
about 0.001 wt %



to about 2 wt %
to about 1 wt %
to about 0.2 wt %


etchant(s)
about 0.01 wt % to
about 0.01 wt % to
about 0.1 wt % to



about 10 wt %
about 5 wt %
about 2.5 wt %


corrosion inhibitor(s)
about 0.0001 wt %
about 0.0001 wt %
about 0.001 wt %



to about 10 wt %
to about 5 wt %
to about 2 wt %


source(s) of silica
about 0.001 wt %
about 0.01 wt % to
about 0.01 wt % to



to about 5 wt %
about 3 wt %
about 2 wt %


organic solvent(s/
about 1 wt % to
about 1 wt % to
about 1 wt % to



about 80 wt %
about 20 wt %
about 15 wt %


water
about 40 wt % to
about 70 wt % to
about 85 wt % to



about 99.99 wt %
about 99 wt %
about 99 wt %










In a particularly preferred embodiment of the semi-aqueous composition, the at least one oxidizing agent comprises vanadium oxide, ammonium vanadate, ammonium iodate, ammonium periodate, iodic acid, periodic acid, 1,4-benzoquinone, or combinations thereof the at least one etchant comprises hexafluorosilicic acid, tetrafluoroboric acid, or combinations thereof the at least one corrosion inhibitor comprises 5-methyl-1H-benzotriazole, pyrazole, benzotriazole, myristyltrimethylammonium bromide, benzalkonium chloride, hexadecyltrimethylammonium p-toluenesulfonate, hexadecyltrimethylammonium hydroxide, 5-benzyl-1H-tetrazole, or combinations thereof the at least one source of silica comprises TEOS, TMAS, sodium silicate, or combinations thereof, and the at least one organic solvent comprises diethylene glycol monoethyl ether, diethylene glycol methyl ether, propylene glycol, ethylene glycol, tetraethylene glycol dimethyl ether, triethylene glycol methyl ether, triethylene glycol ethyl ether, tripropylene glycol monomethyl ether, dipropylene glycol monomethyl ether, or combinations thereof.


It will be appreciated that it is common practice to make concentrated forms of the semi-aqueous composition to be diluted prior to use. For example, the composition may be manufactured in a more concentrated form and thereafter diluted with at least one solvent at the manufacturer, before use, and/or during use at the fab. Dilution ratios may be in a range from about 0.1 part diluent:1 part composition concentrate to about 100 parts diluent:1 part composition concentrate. It should further be appreciated that the compositions described herein include oxidizing agents, which can be unstable over time. Accordingly, the concentrated form can be substantially devoid of oxidizing agent(s) and the oxidizing agent can be introduced to the concentrate or the diluted semi-aqueous composition by the manufacturer before use and/or during use at the fab.


The semi-aqueous compositions described herein are easily formulated by simple addition of the respective ingredients and mixing to homogeneous condition. Furthermore, the semi-aqueous compositions may be readily formulated as single-package formulations or multi-part formulations that are mixed at or before the point of use, preferably multi-part formulations. The individual parts of the multi-part formulation may be mixed at the tool or in a mixing region/area such as an inline mixer or in a storage tank upstream of the tool. It is contemplated that the various parts of the multi-part formulation may contain any combination of ingredients/constituents that when mixed together form the desired composition. The concentrations of the respective ingredients may be widely varied in specific multiples of the semi-aqueous composition, i.e., more dilute or more concentrated, and it will be appreciated that the semi-aqueous compositions can variously and alternatively comprise, consist or consist essentially of any combination of ingredients consistent with the disclosure herein.


Accordingly, a second aspect relates to a kit including, in one or more containers, one or more components adapted to form the semi-aqueous compositions described herein. The containers of the kit must be suitable for storing and shipping said semi-aqueous composition components, for example, NOWPak® containers (Advanced Technology Materials, Inc., Danbury, Conn., USA). The one or more containers which contain the components of the composition preferably include means for bringing the components in said one or more containers in fluid communication for blending and dispense. For example, referring to the NOWPak® containers, gas pressure may be applied to the outside of a liner in said one or more containers to cause at least a portion of the contents of the liner to be discharged and hence enable fluid communication for blending and dispense. Alternatively, gas pressure may be applied to the head space of a conventional pressurizable container or a pump may be used to enable fluid communication. In addition, the system preferably includes a dispensing port for dispensing the blended composition to a process tool.


Substantially chemically inert, impurity-free, flexible and resilient polymeric film materials, such as high density polyethylene, are preferably used to fabricate the liners for said one or more containers. Desirable liner materials are processed without requiring co-extrusion or barrier layers, and without any pigments, UV inhibitors, or processing agents that may adversely affect the purity requirements for components to be disposed in the liner. A listing of desirable liner materials include films comprising virgin (additive-free) polyethylene, virgin polytetrafluoroethylene (PTFE), polypropylene, polyurethane, polyvinylidene chloride, polyvinylchloride, polyacetal, polystyrene, polyacrylonitrile, polybutylene, and so on. Preferred thicknesses of such liner materials are in a range from about 5 mils (0.005 inch) to about 30 mils (0.030 inch), as for example a thickness of 20 mils (0.020 inch).


Regarding the containers for the kits, the disclosures of the following patents and patent applications are hereby incorporated herein by reference in their respective entireties: U.S. Pat. No. 7,188,644 entitled “APPARATUS AND METHOD FOR MINIMIZING THE GENERATION OF PARTICLES IN ULTRAPURE LIQUIDS;” U.S. Pat. No. 6,698,619 entitled “RETURNABLE AND REUSABLE, BAG-IN-DRUM FLUID STORAGE AND DISPENSING CONTAINER SYSTEM;” and PCT/US08/63276 entitled “SYSTEMS AND METHODS FOR MATERIAL BLENDING AND DISTRIBUTION” filed on May 9, 2008.


In a third aspect, the invention relates to methods of etching titanium nitride material from the surface of the microelectronic device having same thereon using the semi-aqueous composition described herein. For example, titanium nitride material may be removed without substantially damaging/removing metal conductor and insulator materials that are present on the microelectronic device. Accordingly, in a preferred embodiment, a method of selectively and substantially removing titanium nitride and/or photoresist etch residue materials relative to metal conductor and insulator materials from the surface of the microelectronic device having same thereon is described using the semi-aqueous composition described herein. In another preferred embodiment, a method of selectively and substantially removing titanium nitride and/or photoresist etch residue materials relative to metal conductor (e.g., copper), tungsten and insulator materials from the surface of the microelectronic device having same thereon is described using the semi-aqueous compositions described herein.


In etching applications, the composition is applied in any suitable manner to the surface of the microelectronic device having the titanium nitride and/or photoresist etch residue material thereon, e.g., by spraying the semi-aqueous composition on the surface of the device, by dipping (in a static or dynamic volume of the semi-aqueous composition) of the device including the titanium nitride and/or photoresist etch residue material, by contacting the device with another material, e.g., a pad, or fibrous sorbent applicator element, that has the semi-aqueous composition absorbed thereon, by contacting the device including the titanium nitride and/or photoresist etch residue material with a circulating semi-aqueous composition, or by any other suitable means, manner or technique, by which the semi-aqueous composition is brought into removal contact with the titanium nitride and/or photoresist etch residue material. The application may be in a batch or single wafer apparatus, for dynamic or static cleaning. Advantageously, the semi-aqueous compositions described herein, by virtue of their selectivity for titanium nitride and/or photoresist etch residue material relative to other materials that may be present on the microelectronic device structure and exposed to the composition, such as metals and insulating materials (i.e., low-k dielectrics), achieve at least partial removal of the titanium nitride and/or photoresist etch residue material in a highly efficient and highly selective manner.


In use of the semi-aqueous compositions described herein for removing titanium nitride and/or photoresist etch residue material from microelectronic device structures having same thereon, the semi-aqueous composition typically is contacted with the device structure in a single wafer tool for a sufficient time of from about 0.3 minute to about 30 minutes, preferably about 0.5 minutes to about 3 minutes, at temperature in a range of from about 20° C. to about 100° C., preferably about 45° C. to about 60° C. Such contacting times and temperatures are illustrative, and any other suitable time and temperature conditions may be employed that are efficacious to at least partially remove the titanium nitride and/or photoresist etch residue material from the device structure.


In one embodiment, the semi-aqueous composition is heated inline during delivery to the device structure. By heating inline, rather than in the bath itself, the semi-aqueous composition life increases.


Following the achievement of the desired etching action, the semi-aqueous composition can be readily removed from the microelectronic device to which it has previously been applied, e.g., by rinse, wash, or other removal step(s), as may be desired and efficacious in a given end use application of the semi-aqueous compositions described herein. For example, the device may be rinsed with a rinse solution including deionized water and/or dried (e.g., spin-dry, N2, vapor-dry etc.).


The semi-aqueous compositions preferably selectively etch titanium nitride material relative to metal conductor and insulating (i.e., low-k dielectric) materials. In one embodiment, the etch rate of titanium nitride is high (upwards of 50 Å min−1, preferably upwards of about 35 Å min−1 at 50° C. and, while the etch rate of metal (e.g., Cu and W) is low (less about 10 Å min−1, preferably less than about 5 Å min−1) and the etch rate of low-k dielectric is low (less than about 10 Å min−1, preferably less than about 5 Å min−1) at the same temperature.


A fourth aspect relates to the improved microelectronic devices made according to the methods described herein and to products containing such microelectronic devices.


A fifth aspect relates to methods of manufacturing an article comprising a microelectronic device, said method comprising contacting the microelectronic device with a semi-aqueous composition for sufficient time to etchingly remove titanium nitride and/or photoresist etch residue material from the surface of the microelectronic device having same thereon, and incorporating said microelectronic device into said article, wherein the semi-aqueous composition comprises, consists of or consists essentially of at least one oxidizing agent, at least one etchant, at least one corrosion inhibitor, at least source of silica, water, and at least one organic solvent, wherein the composition is substantially devoid of hydrogen peroxide. The semi-aqueous composition may further comprise, consist of or consist essentially of titanium nitride material.


A sixth aspect of the invention relates to an article of manufacture comprising, consisting of or consisting essentially of a microelectronic device substrate, a titanium nitride layer on said substrate, and a composition described herein.


The features and advantages of the invention are more fully shown by the illustrative examples discussed below.


Example 1

A base solution 1 comprising 0.003 wt % periodic acid, 1.2 wt % H2SiF6, 0.004 wt % benzalkonium chloride, 0.3 wt % TEOS, and 98.493 wt % DI water was prepared. Starting with the base solution 1, formulations were prepared as shown in Tables 1-3 below. Copper, tungsten, TiN and PETEOS coupons were immersed in each formulation at 50° C. for time indicated and the etch rates determined.









TABLE 1







Formulations prepared by combining the indicated organic solvent with the


balance base solution 1.













Cu
W
TiN




E/R @
E/R @
E/R @



Organic Solvent
20 min
30 min
1 min















Formulation A
N/A
4.78
0.49
57.76


Formulation B
10 wt % TPGME
5.00
1.42
57.05


Formulation C
10 wt % DPGME
4.08
0.80
45.95


Formulation D
10 wt % Tetraethylene
4.51
0.91
48.19



glycol dimethyl ether


Formulation E
10 wt % Diethylene Glycol
6.18
1.16
45.38



Monoethyl Ether


Formulation F
10 wt % Triethylene
4.23
0.49
38.00



Glycol Methyl Ether


Formulation G
10 wt % Triethylene
3.99
0.92
39.00



Glycol Ethyl Ether


Formulation H
10 wt % Diethylene Glycol
3.67
0.73
39.72



Methyl Ether


Formulation I
10 wt % Ethylene glycol
2.95
0.46
21.54


Formulation J
10 wt % Propylene gylcol
3.26
0.91
37.56
















TABLE 2







Formulations prepared by combining the indicated organic solvent and corrosion inhibitor


with the balance base solution 1.















Cu E/R @
W E/R @
TiN E/R



Organic Solvent
mBTA
20 min
30 min
@ 1 min
















Formulation Z
N/A
0.5 wt %
5.74
0.83
51.62


Formulation K
10 wt % TPGME
0.5 wt %
7.06
0.59
37.27


Formulation L
10 wt % DPGME
0.5 wt %
2.16
0.97
44.01


Formulation M
10 wt % Tetraethylene
0.5 wt %
4.53
0.57
49.34



glycol dimethyl ether


Formulation N
10 wt % Diethylene Glycol
0.5 wt %
1.98
1.05
43.53



Monoethyl Ether


Formulation O
10 wt % Triethylene
0.5 wt %
3.07
0.74
42.87



Glycol Methyl Ether


Formulation P
10 wt % Triethylene
0.5 wt %
3.07
0.80
42.02



Glycol Ethyl Ether


Formulation Q
10 wt % Diethylene Glycol
0.5 wt %
2.21
0.78
41.96



Methyl Ether


Formulation R
10 wt % Ethylene glycol
0.5 wt %
1.30
0.93
37.01


Formulation S
10 wt % Propylene gylcol
0.5 wt %
1.80
0.66
42.58
















TABLE 3







Formulations prepared by combining the indicated organic solvent


and corrosion inhibitor mBTA with the balance base solution 1.



















PETEOS



mBTA

Cu E/R @
W E/R @
TiN E/R @
E/R @



(wt %)
Organic Solvent
20 min
30 min
1 min
30 min

















Formulation Z
0.500

5.21
0.15
37.51
−0.05


Formulation K
0.500
10 wt % TPGME
7.06
0.59
37.27
−0.56


Formulation T
0.500
50 wt % TPGME
6.07
4.09
28.62
0.25


Formulation U
0.500
10 wt % diethylene glycol
6.98
4.22
38.87
−0.12




monobutyl ether


Formulation V
0.500
50 wt % diethylene glycol
5.02
1.01
14.84
0.23




monobutyl ether


Formulation L
0.500
10 wt % DPGME
1.60
0.47
42.47
−0.13


Formulation W
0.500
50 wt % DPGME
1.99
−0.05
8.62
0.23


Formulation X
0.500
50 wt % Tetraethylene
4.24
0.21
8.08
0.21




glycol dimethyl ether


Formulation Y
0.500
50 wt % Triethylene Glycol
4.68
0.24
9.57
0.26




Methyl Ether









It can be seen that the addition of 10 wt % organic solvent and 0.5% mBTA had no significant effect on the TiN etch rate but did reduce the Cu and W etch rates. When the amount of organic solvent was raised to 50 wt %, the TiN etch rate decreased. The results with 50 wt % organic solvent suggest that the formulation can be tuned to alter the selectivity of the formulation. For example, by tuning the solvent concentration, the TiN etch rate can vary from 40 Å min−1 to less than 10 Å min−1, with reduced Cu and W etch rate, such as in Formulation L and W with solvent DPGME. In another aspect, the semi-aqueous composition is formulation to selectively remove copper relative to TiN and W or to selectively remove Cu and TiN relative to W.


It can be seen that the addition of 10 wt % organic solvent reduced the etch rate of copper, which is assumed to be because the organic solvent assisted with the dissolution of mBTA. Further, the addition of the organic solvents with mBTA had no negative effect on the TiN etch rate while still being compatible with Cu and W.


Example 2

A base solution 2 comprising 0.01 wt % ammonium vanadate, 1.2 wt % H2SiF6, 0.004 wt % myristyl trimethyl ammonium bromide, 0.3 wt % TEOS, and 98.486 wt % DI water was prepared. Starting with the base solution 2, formulations were prepared as shown in Table 4 below. Copper, tungsten, TiN, and PETEOS coupons were immersed in each formulation at 50° C. for time indicated and the etch rates determined









TABLE 4







Formulations prepared by combining the indicated organic solvent


and corrosion inhibitor mBTA with the balance base solution 2.



















PETEOS



mBTA

Cu E/R @
W E/R @
TiN E/R @
E/R @



(wt %)
Solvent
20 min
30 min
1 min
30 min

















Formulation AA
0.500
N/A
2.45
<1
55.11
<0.3


Formulation BB
0.500
10 wt % DPGME
5.06
<1
59.25
<0.3


Formulation CC
0.500
10 wt % Tetraethylene
<2
<1
58.08
<0.3




glycol dimethyl ether


Formulation DD
0.500
10 wt % diethylene
3.24
<1
57.85
<0.3




glycol monoethyl ether


Formulation EE
0.500
10 wt % Triethylene
2.90
<1
61.28
<0.3




Glycol Methyl Ether


Formulation FF
0.500
10 wt % THFA
<2
<1
22.28
<0.3


Formulation GG
0.500
10 wt % Triethylene
2.44
<1
63.66
<0.3




Glycol Ethyl Ether


Formulation HH
0.500
10 wt % diethylene
4.25
<1
59.20
<0.3




glycol monomethyl ether


Formulation II
0.500
10 wt % Ethylene glycol
4.69
<1
48.68
<0.3


Formulation JJ
0.500
10 wt % Propylene gylcol
8.36
<1
51.00
<0.3









It can be seen that only one solvent (THFA) significantly altered the etch rate of TiN at 10 wt %.


Example 3

Compositions comprising tetrafluoroboric acid, pyrazole, vanadium (IV,V) oxide, and water were prepared and the etch rates of coupons of PETEOS, Cu (Cu), TiN, and W were determined following immersion in each formulation at 50° C. The compositions and results are provided in Table 5.









TABLE 5







Formulations and Etch Rates




















PETEOS
Cu ER/
TiN ER/
W ER/


Formulation
HBF4/g
V6O13/g
pyrazole/g
DI H2O/g
ER/Å min−1
Å min−1
Å min−1
Å min−1


















KK

0.1-0.5

0.001-0.2
0.1-0.4
>95
<0.3
29.07
15.79
<2


LL

0.1-0.5

0.001-0.2
0.1-0.4
>95
<0.3
44.26
12.85
2-3


MM

0.1-0.5

0.001-0.2
0.4-0.8
>95
<0.3
45.72
9.87
<2


NN
0.5-1
0.001-0.2
0.1-0.4
>95
1.11
32.96
>20
2-3


OO
0.5-1
0.001-0.2
0.1-0.4
>95
1.62
35.28
>20
2-3


PP
0.5-1
0.001-0.2
0.1-0.4
>95
0.70
43.67
>20
>3


QQ
0.5-1
0.001-0.2
0.1-0.4
>95
1.55
48.39
17.01
<2


RR
0.5-1
0.001-0.2
0.4-0.8
>95
0.47
48.76
17.85
<2


SS

0.1-0.5

0.001-0.2
0.4-0.8
>95
<0.3
31.00
3.43
<2









Example 4

Compositions comprising tetrafluoroboric acid, pyrazole, vanadium (IV,V) oxide, water, diethylene glycol monobutyl ether (DEGBE), and additional components were prepared as indicated in Table 6. The etch rates of coupons of PETEOS, Cu (Cu), TiN, and W were determined following immersion in each formulation at 40° C., as provided in Table 7.









TABLE 6







Formulations













Formulation
HBF4/g
V6O13/g
pyrazole/g
DI H2O/g
DEGBE/g
Additional components





AAA
0.1-0.5
0.002-0.2
0.4-0.8
>80
15



BBB
0.1-0.5
0.002-0.2
0.4-0.8
>80
15
5 g DMSO








1 g BTA


CCC
0.1-0.5
0.002-0.2
0.4-0.8
>80
15
5 g DMSO








1 g BTA








0.05 g oxalic acid


DDD
0.5-1
0.002-0.2
0.4-0.8
>80
15
5 g DMSO








1 g BTA








0.2 g oxalic acid


EEE
0.5-1
0.002-0.2
0.4-0.8
>80
15
5 g DMSO








1 g BTA








2 g acetic acid


FFF
0.5-1
0.002-0.2
0.4-0.8
>80
15
5 g DMSO








1 g BTA








0.2 g oxalic acid
















TABLE 7







Etch Rates of formulations AAA-FFF














PETEOS
Cu ER/
TiN ER/
W ER/



Formulation
ER/Å min−1
Å min−1
Å min−1
Å min−1

















AAA
<0.3
19.534
7.286
>3



BBB
<0.3
7.860
4.447
2-3



CCC
<0.3
3.235
2.790
<2



DDD
<0.3
3.613
1.323
<2



EEE
<0.3
7.017
4.869
2-3



FFF
<0.3
3.262
1.495
<2










While the invention has been described herein in reference to specific aspects, features and illustrative embodiments of the invention, it will be appreciated that the utility of the invention is not thus limited, but rather extends to and encompasses numerous other variations, modifications and alternative embodiments, as will suggest themselves to those of ordinary skill in the field of the present invention, based on the disclosure herein. Correspondingly, the invention as hereinafter claimed is intended to be broadly construed and interpreted, as including all such variations, modifications and alternative embodiments, within its spirit and scope.

Claims
  • 1. A semi-aqueous composition comprising: at least one oxidizing agent, wherein the oxidizing agent is present in amount ranging from 0.001 wt % to 0.2 wt % and comprises a species selected from the group consisting of periodic acid, iodic acid, vanadium (V) oxide, vanadium (IV,V) oxide, ammonium vanadate 1,4-benzoquinone, dimethyl-1,4-benzoquinone, and combinations thereof,from 0.1 wt % to 2.5 wt % of at least one etchant,from 0.001 wt % to about 2 wt % of at least one corrosion inhibitor selected from the group consisting of myristyltrimethylammonium bromide, benzalkonium chloride, hexadecyltrimethylammonium p-toluenesulfonate, hexadecyltrimethylammonium hydroxide, 5-benzyl-1H-tetrazole, and combinations thereof,from 0.01 wt % to 2 wt % of at least one source of silica selected from the group consisting of methyltrimethoxysilane, dimethyldimethoxysilane, phenyltrimethoxysilane, tetraethoxysilane (TEOS), N-propyltrimethoxysilane, N-propyltriethoxysilane, hexyltrimethoxysilane, hexyltriethoxysilane, ammonium hexafluororosilicate, sodium silicate, tetramethyl ammonium silicate (TMAS), and combinations thereof,from 85 wt % to 99 wt % water, andfrom 1 wt % to 15 wt % of at least one organic solvent;
  • 2. The composition of claim 1, wherein the etchant comprises a species selected from the group consisting of H2ZrF6, H2TiF6, HPF6, HF, ammonium fluoride, ammonium bifluoride, tetrafluoroboric acid, hexafluorosilicic acid, tetrabutylammonium tetrafluoroborate (TBA-BF4), ammonium hexafluorosilicate, ammonium hexafluorotitanate, tetraalkylammonium fluoride (NR1R2R3R4F), tetraalkylammonium hydroxide (NR1R2R3R4OH) where R1, R2, R3, R4 may be the same as or different from one another and is selected from the group consisting of straight-chained or branched C1-C6 alkyl groups, weak bases, and combinations thereof.
  • 3. The composition of claim 1, wherein the etchant comprises tetrafluoroboric acid, hexafluorosilicic acid, HF, or combinations thereof.
  • 4. The composition of claim 1, further comprising a source of silica, wherein the source of silica comprises at least one species selected from the group consisting of methyltrimethoxysilane, dimethyldimethoxysilane, phenyltrimethoxysilane, tetraethoxysilane (TEOS), N-propyltrimethoxysilane, N-propyltriethoxysilane, hexyltrimethoxysilane, hexyltriethoxysilane, ammonium hexafluororosilicate, tetramethyl ammonium silicate (TMAS), and combinations thereof.
  • 5. The composition of claim 1, wherein the at least one organic solvent comprises a species selected from the group consisting of methanol, ethanol, isopropanol, butanol, pentanol, hexanol, 2-ethyl-1-hexanol, heptanol, octanol, ethylene glycol, 1,2- and 1,3-propylene glycol, 1,2-, 1,3-, and 1,4-butanediol, tetrahydrofurfuryl alcohol (THFA), butylene carbonate, ethylene carbonate, propylene carbonate, dipropylene glycol, diethylene glycol monomethyl ether, triethylene glycol monomethyl ether, diethylene glycol monoethyl ether, triethylene glycol monoethyl ether, ethylene glycol monopropyl ether, ethylene glycol monobutyl ether, diethylene glycol monobutyl ether, triethylene glycol monobutyl ether, ethylene glycol monohexyl ether, diethylene glycol monohexyl ether, ethylene glycol phenyl ether, propylene glycol methyl ether, dipropylene glycol methyl ether (DPGME), tripropylene glycol methyl ether (TPGME),dipropylene glycol dimethyl ether, dipropylene glycol ethyl ether, propylene glycol n-propyl ether, dipropylene glycol n-propyl ether (DPGPE), tripropylene glycol n-propyl ether, propylene glycol n-butyl ether, dipropylene glycol n-butyl ether, tripropylene glycol n-butyl ether, propylene glycol phenyl ether, 2,3-dihydrodecafluoropentane, ethyl perfluorobutylether, methyl perfluorobutylether, alkyl carbonates, alkylene carbonates, 4-methyl-2-pentanol, tetramethylene glycol dimethyl ether, dimethyl sulfoxide, and combinations thereof.
  • 6. The composition of claim 1, wherein the composition further comprises at least one low-k passivating agent selected from the group consisting of boric acid, ammonium pentaborate, sodium tetraborate, 3-hydroxy-2-napthoic acid, malonic acid, and iminodiacetic acid.
  • 7. The composition of claim 1, wherein the composition is further substantially devoid of metal halides, and combinations thereof.
  • 8. The composition of claim 1, wherein the composition has a TiN to tungsten selectivity of greater than 50:1 and a tungsten removal rate less than about 1 Å min−1 and a TiN to copper selectivity of greater than 20:1 and a copper removal rate less than about 2 Å min−1 at temperatures in a range from about 45° C. to about 60° C.
  • 9. The composition of claim 1, wherein the pH of the composition is in a range from about 0 to about 4.
  • 10. A semi-aqueous composition for selectively removing titanium nitride and/or photoresist etch residue material from the surface of a microelectronic device having same thereon, said composition comprising: at least one oxidizing agent present in amount ranging from 0.001 wt % to 0.2 wt % and selected from the group consisting of periodic acid, iodic acid, vanadium (V) oxide, vanadium (IV,V) oxide, ammonium vanadate, 1,4-benzoquinone, dimethyl-1,4-benzoquinone, and combinations thereof,from 0.1 wt % to 2.5 wt % of at least one etchant,from 0.001 wt % to 2 wt % of at least one corrosion inhibitor selected from the group consisting of myristyltrimethylammonium bromide, benzalkonium chloride, hexadecyltrimethylammonium p-toluenesulfonate, hexadecyltrimethylammonium hydroxide, 5-benzyl-1H-tetrazole, and combinations thereof,from 0.01 wt % to 2 wt % of at least one source of silica selected from the group consisting of methyltrimethoxysilane, dimethyldimethoxysilane, phenyltrimethoxysilane, tetraethoxysilane (TEOS), N-propyltrimethoxysilane, N-propyltriethoxysilane, hexyltrimethoxysilane, hexyltriethoxysilane, ammonium hexafluororosilicate, sodium silicate, tetramethyl ammonium silicate (TMAS), and combinations thereof,from 85 wt % to 95 wt % water, andfrom 1 wt % to 15 wt % of at least one organic solvent;
  • 11. A method comprising contacting a surface of a microelectronic device comprising titanium nitride material, copper, tungsten, and low-k dielectric materials with a semi-aqueous composition, comprising: at least one oxidizing agent present in amount ranging from 0.001 wt % to 0.2 wt % and selected from the group consisting of periodic acid, iodic acid, vanadium (V) oxide, vanadium (IV,V) oxide, ammonium vanadate, 1,4-benzoquinone, dimethyl-1,4-benzoquinone, and combinations thereof;from 0.1 wt % to 2.5 wt % of at least one etchant;from 0.001 wt % to 2 wt % of at least one corrosion inhibitor selected from the group consisting of myristyltrimethylammonium bromide, benzalkonium chloride, hexadecyltrimethylammonium p-toluenesulfonate, hexadecyltrimethylammonium hydroxide, 5-benzyl-1H-tetrazole, and combinations thereof,from 0.01 wt % to 2 wt % of at least one source of silica selected from the group consisting of methyltrimethoxysilane, dimethyldimethoxysilane, phenyltrimethoxysilane, tetraethoxysilane (TEOS), N-propyltrimethoxysilane, N-propyltriethoxysilane, hexyltrimethoxysilane, hexyltriethoxysilane, ammonium hexafluororosilicate, sodium silicate, tetramethyl ammonium silicate (TMAS), and combinations thereof,from 85 wt % to 95 wt % water, andfrom 1 wt % to 15 wt % of at least one organic solvent;
  • 12. The method of claim 11, wherein the contacting comprises time in a range from about 0.3 minute to about 30 minutes at temperature in a range of from about 20° C. to about 100° C.
  • 13. The method of claim 11, wherein the composition is rinsed from the surface following the desired etching action.
  • 14. The method of claim 11, wherein the composition has a TiN to tungsten selectivity of greater than 40:1 and a tungsten removal rate less than about 1 Å min−1 and a TiN to copper selectivity of greater than 20:1 and a copper removal rate less than about 2 Å min−1 at temperatures in a range from about 45° C. to about 60° C.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is filed under the provisions of 35 U.S.C. § 371 and claims the priority of International Patent Application No. PCT/US2014/020312 filed on 4 Mar. 2014 entitled “COMPOSITIONS AND METHODS FOR SELECTIVELY ETCHING TITANIUM NITRIDE” in the name of Li-Min CHEN, et al., which claims priority to U.S. Provisional Patent Application No. 61/772,251 filed on 4 Mar. 2013, both of which are hereby incorporated by reference herein in their entirety.

PCT Information
Filing Document Filing Date Country Kind
PCT/US2014/020312 3/4/2014 WO 00
Publishing Document Publishing Date Country Kind
WO2014/138064 9/12/2014 WO A
US Referenced Citations (125)
Number Name Date Kind
5320709 Bowden Jun 1994 A
5702075 Lehrman Dec 1997 A
5976928 Buskirk et al. Nov 1999 A
5993685 Currie et al. Nov 1999 A
6194366 Naghshineh et al. Feb 2001 B1
6211126 Wojtczak et al. Apr 2001 B1
6224785 Wojtczak et al. May 2001 B1
6280651 Wojtczak et al. Aug 2001 B1
6306807 Wojtczak et al. Oct 2001 B1
6322600 Brewer et al. Nov 2001 B1
6323168 Kloffenstein et al. Nov 2001 B1
6344432 Wojtczak et al. Feb 2002 B1
6346741 Van Buskirk et al. Feb 2002 B1
6395194 Russell et al. May 2002 B1
6409781 Wojtczak et al. Jun 2002 B1
6492308 Naghshineh et al. Dec 2002 B1
6527819 Wojtczak et al. Mar 2003 B2
6566315 Wojtczak et al. May 2003 B2
6627587 Naghshineh et al. Sep 2003 B2
6698619 Wertenberger Mar 2004 B2
6723691 Naghshineh et al. Apr 2004 B2
6735978 Tom et al. May 2004 B1
6755989 Wojtczak et al. Jun 2004 B2
6773873 Seijo et al. Aug 2004 B2
6800218 Ma et al. Oct 2004 B2
6802983 Mullee et al. Oct 2004 B2
6849200 Baum et al. Feb 2005 B2
6875733 Wojtczak Apr 2005 B1
6896826 Wojtczak et al. May 2005 B2
6943139 Korzenski et al. Sep 2005 B2
6989358 Korzenski et al. Jan 2006 B2
7011716 Xu et al. Mar 2006 B2
7029373 Ma et al. Apr 2006 B2
7030168 Xu et al. Apr 2006 B2
7119052 Korzenski et al. Oct 2006 B2
7119418 Xu et al. Oct 2006 B2
7160815 Korzenski et al. Jan 2007 B2
7188644 Kelly et al. Mar 2007 B2
7223352 Korzenski et al. May 2007 B2
7300601 Liu et al. Nov 2007 B2
7326673 Xu et al. Feb 2008 B2
7335239 Baum Feb 2008 B2
7361603 Liu Apr 2008 B2
7365045 Walker et al. Apr 2008 B2
7485611 Roeder et al. Feb 2009 B2
7534752 Wojtczak et al. May 2009 B2
7553803 Korzenski et al. Jun 2009 B2
7557073 Korzenski et al. Jul 2009 B2
7736405 Darsillo et al. Jun 2010 B2
7888301 Bernhard et al. Feb 2011 B2
7922824 Minsek et al. Apr 2011 B2
7923423 Walker et al. Apr 2011 B2
7960328 Visintin et al. Jun 2011 B2
7968506 Chou et al. Jun 2011 B2
8026200 Cooper et al. Sep 2011 B2
8058219 Rath et al. Nov 2011 B2
8114220 Visintin et al. Feb 2012 B2
8178585 Petruska et al. May 2012 B2
8236485 Minsek et al. Aug 2012 B2
8304344 Boggs et al. Nov 2012 B2
8338087 Rath et al. Dec 2012 B2
8367555 Afzali-Ardakani et al. Feb 2013 B2
8618036 Afzali-Ardakani et al. Dec 2013 B2
8685909 Angst et al. Apr 2014 B2
8754021 Barnes et al. Jun 2014 B2
8778210 Cooper et al. Jul 2014 B2
8951948 Rath et al. Feb 2015 B2
9045717 Nakanishi et al. Jun 2015 B2
9063431 Barnes et al. Jun 2015 B2
9074169 Chen et al. Jul 2015 B2
9074170 Barnes et al. Jul 2015 B2
9175404 Kojima et al. Nov 2015 B2
9215813 Brosseau et al. Dec 2015 B2
20030102457 Miller Jun 2003 A1
20050118832 Korzenski et al. Jun 2005 A1
20050145311 Walker et al. Jul 2005 A1
20050227482 Korzenski et al. Oct 2005 A1
20050263490 Liu et al. Dec 2005 A1
20060019850 Korzenski et al. Jan 2006 A1
20060063687 Minsek et al. Mar 2006 A1
20060148666 Peters et al. Jul 2006 A1
20060154186 Minsek et al. Jul 2006 A1
20060249482 Wrschka et al. Nov 2006 A1
20070235684 Mistkawi Oct 2007 A1
20070251551 Korzenski et al. Nov 2007 A1
20080076688 Barnes et al. Mar 2008 A1
20080125342 Visintin et al. May 2008 A1
20080271991 Korzenski et al. Nov 2008 A1
20090032766 Rajaratnam et al. Feb 2009 A1
20090082240 Nukui et al. Mar 2009 A1
20090192065 Korzenski et al. Jul 2009 A1
20090212021 Bernhard et al. Aug 2009 A1
20090215269 Boggs et al. Aug 2009 A1
20090253072 Petruska et al. Oct 2009 A1
20090301996 Visintin et al. Dec 2009 A1
20100056410 Visintin et al. Mar 2010 A1
20100065530 Walker Mar 2010 A1
20100087065 Boggs et al. Apr 2010 A1
20100112728 Korzenski et al. May 2010 A1
20100163788 Visintin Jul 2010 A1
20100261632 Korzenski et al. Oct 2010 A1
20100286014 Barnes Nov 2010 A1
20110039747 Zhou et al. Feb 2011 A1
20110070735 Shi Mar 2011 A1
20110117751 Sonthalia et al. May 2011 A1
20130034923 Kim et al. Feb 2013 A1
20130045908 Cui et al. Feb 2013 A1
20130270217 Yoshida et al. Oct 2013 A1
20130276284 Brosseau Oct 2013 A1
20130280123 Chen et al. Oct 2013 A1
20130295712 Chen et al. Nov 2013 A1
20130303420 Cooper et al. Nov 2013 A1
20130336857 Korzenski et al. Dec 2013 A1
20140038420 Chen et al. Feb 2014 A1
20140191019 Chen et al. Jul 2014 A1
20140306162 Poe et al. Oct 2014 A1
20140318584 Cooper et al. Oct 2014 A1
20150027978 Barnes Jan 2015 A1
20150045277 Liu et al. Feb 2015 A1
20150050199 Korzenski et al. Feb 2015 A1
20150075570 Wu et al. Mar 2015 A1
20150114429 Jenq et al. Apr 2015 A1
20150162213 Chen et al. Jun 2015 A1
20150168843 Cooper et al. Jun 2015 A1
20150344825 Cooper et al. Dec 2015 A1
Foreign Referenced Citations (24)
Number Date Country
1505106 Jun 2004 CN
2011159658 Aug 2011 JP
2012036750 Feb 2012 JP
2012062572 Mar 2012 JP
2012186470 Sep 2012 JP
2012251026 Dec 2012 JP
2006110645 Oct 2006 WO
2006127885 Nov 2006 WO
2007027522 Mar 2007 WO
2008036823 Mar 2008 WO
2008141206 Nov 2008 WO
2008157345 Dec 2008 WO
2009073596 Jun 2009 WO
2010017160 Feb 2010 WO
2010039936 Apr 2010 WO
2010086745 Aug 2010 WO
2010091045 Aug 2010 WO
2012048079 Apr 2012 WO
WO2012048079 Apr 2012 WO
2012154498 Nov 2012 WO
2012174518 Dec 2012 WO
2013058770 Apr 2013 WO
2013123317 Aug 2013 WO
2013138278 Sep 2013 WO
Non-Patent Literature Citations (1)
Entry
International Search Report, dated Jun. 26, 2014.
Related Publications (1)
Number Date Country
20160032186 A1 Feb 2016 US
Provisional Applications (1)
Number Date Country
61772251 Mar 2013 US