COMPOSITIONS AND METHODS FOR SILENCING SCN9A EXPRESSION

Abstract
The disclosure relates to double-stranded ribonucleic acid (dsRNA) compositions targeting SCN9A, and methods of using such dsRNA compositions to alter (e.g., inhibit) expression of SCN9A.
Description
SEQUENCE LISTING

The instant application contains a Sequence Listing which has been submitted electronically in ASCII format and is hereby incorporated by reference in its entirety. Said ASCII copy, created on Apr. 2, 2021, is named A2038-7235WO_SL.txt and is 1,514,568 bytes in size.


FIELD OF THE DISCLOSURE

The disclosure relates to the specific inhibition of the expression of the SCN9A gene.


BACKGROUND

Pain, e.g., chronic pain is a prevalent symptom and major cause of disability. Chronic pain can result from inflammatory pain or neuropathic pain, or it can be associated with a disease or disorder, e.g., cancer, arthritis, diabetes, traumatic injury and/or viral infections. Hypersensitivity or hyposensitivity to pain can also result from pain-related disorders, including but not limited to an inability to sense pain, primary erythromelalgia (PE), and paroxysmal extreme pain disorder (PEPD). Current therapies for pain are non-selective for their targets and result in unwanted, off-target effects involving the central nervous system (CNS). New treatments for pain, e.g., chronic pain and pain-related disorders are needed.


SUMMARY

The present disclosure describes methods and iRNA compositions for modulating the expression of SCN9A. In certain embodiments, expression of SCN9A is reduced or inhibited using an SCN9A-specific iRNA. Such inhibition can be useful in treating disorders related to SCN9A expression, such as pain, e.g., acute pain or chronic pain (e.g., inflammatory pain, neuropathic pain, pain hypersensitivity, pain hyposensitivity, inability to sense pain, primary erythromelalgia (PE), paroxysmal extreme pain disorder (PEPD), small fiber neuropathy (SFN), trigeminal neuralgia (TN) and pain associated with e.g., cancer, arthritis, diabetes, traumatic injury and viral infections).


Accordingly, described herein are compositions and methods that effect the RNA-induced silencing complex (RISC)-mediated cleavage of RNA transcripts of SCN9A, such as in a cell or in a subject (e.g., in a mammal, such as a human subject). Also described are compositions and methods for treating a disorder related to expression of SCN9A, such as pain (e.g., acute pain or chronic pain, e.g., inflammatory pain, neuropathic pain, pain hypersensitivity, pain hyposensitivity, inability to sense pain, primary erythromelalgia (PE), paroxysmal extreme pain disorder (PEPD), small fiber neuropathy (SFN), trigeminal neuralgia (TN) and pain associated with, e.g., cancer, arthritis, diabetes, traumatic injury and viral infections).


The iRNAs (e.g., dsRNAs) included in the compositions featured herein include an RNA strand (the antisense strand) having a region, e.g., a region that is 30 nucleotides or less, generally 19-24 nucleotides in length, that is substantially complementary to at least part of an mRNA transcript of SCN9A (e.g., a human SCN9A) (also referred to herein as an “SCN9A-specific iRNA”). In some embodiments, the SCN9A mRNA transcript is a human SCN9A mRNA transcript, e.g., SEQ ID NO: 1 herein.


In some embodiments, the iRNA (e.g., dsRNA) described herein comprises an antisense strand having a region that is substantially complementary to a region of a human SCN9A mRNA. In some embodiments, the human SCN9A mRNA has the sequence NM_002977.3 (SEQ ID NO: 1) or NM_001365536.1 (SEQ ID NO: 4001). In some embodiments, the human SCN9A mRNA has the sequence NM_002977.3 (SEQ ID NO: 1). The sequence of NM_002977.3 is also herein incorporated by reference in its entirety. The reverse complement of SEQ ID NO: 1 is provided as SEQ ID NO: 2 herein. In some embodiments, the human SCN9A mRNA has the sequence NM_001365536.1 (SEQ ID NO: 4001). The sequence of NM_001365536.1 is also herein incorporated by reference in its entirety. The reverse complement of SEQ ID NO: 4001 is provided as SEQ ID NO: 4002 herein.


In some aspects, the present disclosure provides a double stranded ribonucleic acid (dsRNA) agent for inhibiting expression of sodium channel, voltage gated, type IX alpha subunit (SCN9A), wherein the dsRNA agent comprises a sense strand and an antisense strand forming a double stranded region, wherein the sense strand comprises a nucleotide sequence comprising at least 15 contiguous nucleotides, with 0, 1, 2, or 3 mismatches, of a portion of a coding strand of human SCN9A and the antisense strand comprises a nucleotide sequence comprising at least 15 contiguous nucleotides, with 0, 1, 2, or 3 mismatches, of the corresponding portion of a non-coding strand of human SCN9A such that the sense strand is complementary to the at least 15 contiguous nucleotides in the antisense strand.


In some aspects, the present disclosure provides a double stranded ribonucleic acid (dsRNA) agent for inhibiting expression of SCN9A, wherein the dsRNA agent comprises a sense strand and an antisense strand forming a double stranded region, wherein the antisense strand comprises a nucleotide sequence comprising at least 15 contiguous nucleotides, with 0, 1, 2, or 3 mismatches, of a portion of nucleotide sequence of SEQ ID NO: 2 such that the sense strand is complementary to the at least 15 contiguous nucleotides in the antisense strand.


In some aspects, the present disclosure provides a human cell or tissue comprising a reduced level of SCN9A mRNA or a level of SCN9A protein as compared to an otherwise similar untreated cell or tissue, wherein optionally the cell or tissue is not genetically engineered (e.g., wherein the cell or tissue comprises one or more naturally arising mutations, e.g., SCN9A), wherein optionally the level is reduced by at least 10%, 15%, 20%, 25%, 30%, 35%, 40%, 45%, 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, or 95%. In some embodiments, the human cell or tissue is a human peripheral sensory neuron (e.g., a peripheral sensory neuron in a dorsal root ganglion, or a nociceptive neuron, e.g., an A-delta fiber or a C-type fiber).


The present disclosure also provides, in some aspects, a cell containing the dsRNA agent described herein.


In some aspects, the present disclosure also provides a pharmaceutical composition for inhibiting expression of a gene encoding SCN9A, comprising a dsRNA agent described herein.


The present disclosure also provides, in some aspects, a method of inhibiting expression of SCN9A in a cell, the method comprising:


(a) contacting the cell with the dsRNA agent described herein, or a pharmaceutical composition described herein; and


(b) maintaining the cell produced in step (a) for a time sufficient to obtain degradation of the mRNA transcript of SCN9A, thereby inhibiting expression of the SCN9A in the cell.


The present disclosure also provides, in some aspects, a method of inhibiting expression of SCN9A in a cell, the method comprising:


(a) contacting the cell with the dsRNA agent described herein, or a pharmaceutical composition described herein; and


(b) maintaining the cell produced in step (a) for a time sufficient to reduce levels of SCN9A mRNA, SCN9A protein, or both of SCN9A mRNA and protein, thereby inhibiting expression of the SCN9A in the cell.


The present disclosure also provides, in some aspects, a method of inhibiting expression of SCN9A in a cell or a tissue of the central nervous system (CNS), the method comprising:


(a) contacting the cell or tissue with a dsRNA agent that binds SCN9A; and


(b) maintaining the cell or tissue produced in step (a) for a time sufficient to reduce levels of SCN9A mRNA, SCN9A protein, or both of SCN9A mRNA and protein, thereby inhibiting expression of SCN9A in the cell or tissue.


The present disclosure also provides, in some aspects, a method of treating a subject diagnosed with SCN9A-associated disorder comprising administering to the subject a therapeutically effective amount of the dsRNA agent described herein or a pharmaceutical composition described herein, thereby treating the disorder.


In any of the aspects herein, e.g., the compositions and methods above, any of the embodiments herein (e.g., below) may apply.


In some embodiments, the coding strand of human SCN9A has the sequence of SEQ ID NO: 1. In some embodiments, the non-coding strand of human SCN9A has the sequence of SEQ ID NO: 2. In some embodiments, the coding strand of human SCN9A has the sequence of SEQ ID NO: 4001. In some embodiments, the non-coding strand of human SCN9A has the sequence of SEQ ID NO: 4002.


In some embodiments, the sense strand comprises a nucleotide sequence comprising at least 15 contiguous nucleotides, with 0, or 1, 2, or 3 mismatches, of the corresponding portion of the nucleotide sequence of SEQ ID NO: 1. In some embodiments, the sense strand comprises a nucleotide sequence comprising at least 15 contiguous nucleotides, with 0, or 1, 2, or 3 mismatches, of the corresponding portion of the nucleotide sequence of SEQ ID NO: 4001.


In some embodiments, the dsRNA agent comprises a sense strand and an antisense strand, wherein the antisense strand comprises a nucleotide sequence comprising at least 17 contiguous nucleotides, with 0, 1, 2, or 3 mismatches, of a portion of nucleotide sequence of SEQ ID NO: 2 such that the sense strand is complementary to the at least 17 contiguous nucleotides in the antisense strand. In some embodiments, the sense strand comprises a nucleotide sequence comprising at least 17 contiguous nucleotides, with 0, or 1, 2, or 3 mismatches, of the corresponding portion of the nucleotide sequence of SEQ ID NO: 1.


In some embodiments, the dsRNA agent comprises a sense strand and an antisense strand, wherein the antisense strand comprises a nucleotide sequence comprising at least 17 contiguous nucleotides, with 0, 1, 2, or 3 mismatches, of a portion of nucleotide sequence of SEQ ID NO: 4002 such that the sense strand is complementary to the at least 17 contiguous nucleotides in the antisense strand. In some embodiments, the sense strand comprises a nucleotide sequence comprising at least 17 contiguous nucleotides, with 0, or 1, 2, or 3 mismatches, of the corresponding portion of the nucleotide sequence of SEQ ID NO: 4001.


In some embodiments, the dsRNA agent comprises a sense strand and an antisense strand, wherein the antisense strand comprises a nucleotide sequence comprising at least 19 contiguous nucleotides, with 0, 1, 2, or 3 mismatches, of a portion of nucleotide sequence of SEQ ID NO: 2 such that the sense strand is complementary to the at least 19 contiguous nucleotides in the antisense strand. In some embodiments, the sense strand comprises a nucleotide sequence comprising at least 19 contiguous nucleotides, with 0, 1, 2, or 3 mismatches, of the corresponding portion of the nucleotide sequence of SEQ ID NO: 1.


In some embodiments, the dsRNA agent comprises a sense strand and an antisense strand, wherein the antisense strand comprises a nucleotide sequence comprising at least 19 contiguous nucleotides, with 0, 1, 2, or 3 mismatches, of a portion of nucleotide sequence of SEQ ID NO: 4002 such that the sense strand is complementary to the at least 19 contiguous nucleotides in the antisense strand. In some embodiments, the sense strand comprises a nucleotide sequence comprising at least 19 contiguous nucleotides, with 0, 1, 2, or 3 mismatches, of the corresponding portion of the nucleotide sequence of SEQ ID NO: 4001.


In some embodiments, the dsRNA agent comprises a sense strand and an antisense strand, wherein the antisense strand comprises a nucleotide sequence comprising at least 21 contiguous nucleotides, with 0, 1, 2, or 3 mismatches, of a portion of nucleotide sequence of SEQ ID NO: 2 such that the sense strand is complementary to the at least 21 contiguous nucleotides in the antisense strand. In some embodiments, the sense strand comprises a nucleotide sequence comprising at least 21 contiguous nucleotides, with 0, or 1, 2, or 3 mismatches, of the corresponding portion of the nucleotide sequence of SEQ ID NO: 1.


In some embodiments, the dsRNA agent comprises a sense strand and an antisense strand, wherein the antisense strand comprises a nucleotide sequence comprising at least 21 contiguous nucleotides, with 0, 1, 2, or 3 mismatches, of a portion of nucleotide sequence of SEQ ID NO: 4002 such that the sense strand is complementary to the at least 21 contiguous nucleotides in the antisense strand. In some embodiments, the sense strand comprises a nucleotide sequence comprising at least 21 contiguous nucleotides, with 0, or 1, 2, or 3 mismatches, of the corresponding portion of the nucleotide sequence of SEQ ID NO: 4001.


In some embodiments, the portion of the sense strand is a portion within nucleotides 581-601, 760-780, or 8498-8518 of SEQ ID NO: 4001. In some embodiments, the portion of the sense strand is a portion corresponding to SEQ ID NO: 4827, 5026, or 4822.


In some embodiments, the portion of the sense strand is a portion within a sense strand in any one of Tables 2A, 2B, 4A, 4B, 5A, 5B, 6A, 6B, 13A, 13B, 14A, 14B, 15A, 15B, 16, 18, and 20.


In some embodiments, the portion of the antisense strand is a portion within an antisense strand in any one of Tables 2A, 2B, 4A, 4B, 5A, 5B, 6A, 6B, 13A, 13B, 14A, 14B, 15A, 15B, 16, 18, and 20.


In some embodiments, the antisense strand comprises a nucleotide sequence comprising at least 15 contiguous nucleotides, with 0, 1, 2, or 3 mismatches, from one of the antisense sequences listed in any one of Tables 2A, 2B, 4A, 4B, 5A, 5B, 6A, 6B, 13A, 13B, 14A, 14B, 15A, 15B, 16, 18, and 20. In some embodiments, the sense strand comprises a nucleotide sequence comprising at least 15 contiguous nucleotides, with 0, 1, 2, or 3 mismatches, from a sense sequence listed in any one of Tables 2A, 2B, 4A, 4B, 5A, 5B, 6A, 6B, 13A, 13B, 14A, 14B, 15A, 15B, 16, 18, and 20 that corresponds to the antisense sequence.


In some embodiments, the antisense strand comprises a nucleotide sequence comprising at least 17 contiguous nucleotides, with 0, 1, 2, or 3 mismatches, from one of the antisense sequences listed in any one of Tables 2A, 2B, 4A, 4B, 5A, 5B, 6A, 6B, 13A, 13B, 14A, 14B, 15A, 15B, 16, 18, and 20. In some embodiments, the sense strand comprises a nucleotide sequence comprising at least 17 contiguous nucleotides, with 0, 1, 2, or 3 mismatches, from a sense sequence listed in any one of Tables 2A, 2B, 4A, 4B, 5A, 5B, 6A, 6B, 13A, 13B, 14A, 14B, 15A, 15B, 16, 18, and 20 that corresponds to the antisense sequence.


In some embodiments, the antisense strand comprises a nucleotide sequence comprising at least 19 contiguous nucleotides, with 0, 1, 2, or 3 mismatches, from one of the antisense sequences listed in any one of Tables 2A, 2B, 4A, 4B, 5A, 5B, 6A, 6B, 13A, 13B, 14A, 14B, 15A, 15B, 16, 18, and 20. In some embodiments, the sense strand comprises a nucleotide sequence comprising at least 19 contiguous nucleotides, with 0, 1, 2, or 3 mismatches, from a sense sequence listed in any one of Tables 2A, 2B, 4A, 4B, 5A, 5B, 6A, 6B, 13A, 13B, 14A, 14B, 15A, 15B, 16, 18, and 20 that corresponds to the antisense sequence.


In some embodiments, the antisense strand comprises a nucleotide sequence comprising at least 21 contiguous nucleotides, with 0, 1, 2, or 3 mismatches, from one of the antisense sequences listed in any one of Tables 2A, 2B, 4A, 4B, 5A, 5B, 6A, 6B, 13A, 13B, 14A, 14B, 15A, 15B, 16, 18, and 20. In some embodiments, the sense strand comprises a nucleotide sequence comprising at least 21 contiguous nucleotides, with 0, 1, 2, or 3 mismatches, from a sense sequence listed in any one of Tables 2A, 2B, 4A, 4B, 5A, 5B, 6A, 6B, 13A, 13B, 14A, 14B, 15A, 15B, 16, 18, and 20 that corresponds to the antisense sequence.


In some embodiments, the sense strand of the dsRNA agent is at least 23 nucleotides in length, e.g., 23-30 nucleotides in length.


In some embodiments, the portion of the sense strand is a portion within a sense strand from a duplex chosen from AD-1251284 (UGUCGAGUACACUUUUACUGA (SEQ ID NO:4827)), AD-961334 (CAACACAATUTCUUCUUAGCA (SEQ ID NO: 5026)), or AD-1251325 (AAAACAAUCUUCCGUUUCAAA (SEQ ID NO: 4822)). In some embodiments, the portion is a portion of a corresponding chemically modified sequence provided in Tables 5A, 13A, 14A, 15A, and 16.


In some embodiments, the portion of the sense strand is a sense strand chosen from the sense strands of AD-1251284 (UGUCGAGUACACUUUUACUGA (SEQ ID NO:4827)), AD-961334 (CAACACAATUTCUUCUUAGCA (SEQ ID NO: 5026)), or AD-1251325 (AAAACAAUCUUCCGUUUCAAA (SEQ ID NO: 4822)). In some embodiments, the portion is a portion of a corresponding chemically modified sequence provided in Tables 5A, 13A, 14A, 15A, and 16.


In some embodiments, the portion of the antisense strand is a portion within an antisense strand from a duplex chosen from AD-1251284 (UCAGTAAAAGUGUACTCGACAUU (SEQ ID NO: 5093)), AD-961334 (UGCUAAGAAGAAATUGUGUUGUU (SEQ ID NO: 5292)), or AD-1251325 (UUUGAAACGGAAGAUUGUUUUCC (SEQ ID NO: 5088)). In some embodiments, the portion is a portion of a corresponding chemically modified sequence provided in Tables 5A, 13A, 14A, 15A, and 16.


In some embodiments, the portion of the antisense strand is an antisense strand chosen from the antisense strands of AD-1251284 (UCAGTAAAAGUGUACTCGACAUU (SEQ ID NO: 5093)), AD-961334 (UGCUAAGAAGAAATUGUGUUGUU (SEQ ID NO: 5292)), or AD-1251325 (UUUGAAACGGAAGAUUGUUUUCC (SEQ ID NO: 5088)). In some embodiments, the portion is a portion of a corresponding chemically modified sequence provided in Tables 5A, 13A, 14A, 15A, and 16.


In some embodiments, the sense strand and the antisense strand of the dsRNA agent comprise nucleotide sequences of the paired sense strand and antisense strand of a duplex selected from AD-1251284 (SEQ ID NO: 4827 and 5093), AD-961334 (SEQ ID NO: 5026 and 5292), or AD-1251325 (SEQ ID NO: 4822 and 5088). In some embodiments, the sense strand and antisense strand comprises the corresponding chemically modified sense sequence and antisense sequence provided in Tables 5A, 13A, 14A, 15A, and 16.


In some embodiments, at least one of the sense strand and the antisense strand is conjugated to one or more lipophilic moieties. In some embodiments, the lipophilic moiety is conjugated to one or more positions in the double stranded region of the dsRNA agent. In some embodiments, the lipophilic moiety is conjugated via a linker or carrier. In some embodiments, lipophilicity of the lipophilic moiety, measured by logKow, exceeds 0. In some embodiments,


In some embodiments, the hydrophobicity of the double-stranded RNAi agent, measured by the unbound fraction in a plasma protein binding assay of the double-stranded RNAi agent, exceeds 0.2. In some embodiments, the plasma protein binding assay is an electrophoretic mobility shift assay using human serum albumin protein.


In some embodiments, the dsRNA agent comprises at least one modified nucleotide. In some embodiments, no more than five of the sense strand nucleotides and not more than five of the nucleotides of the antisense strand are unmodified nucleotides. In some embodiments, all of the nucleotides of the sense strand and all of the nucleotides of the antisense strand comprise a modification.


In some embodiments, at least one of the modified nucleotides is selected from the group consisting of a deoxy-nucleotide, a 3′-terminal deoxythimidine (dT) nucleotide, a 2′-O-methyl modified nucleotide, a 2′-fluoro modified nucleotide, a 2′-deoxy-modified nucleotide, a locked nucleotide, an unlocked nucleotide, a conformationally restricted nucleotide, a constrained ethyl nucleotide, an abasic nucleotide, a 2′-amino-modified nucleotide, a 2′-O-allyl-modified nucleotide, 2′-C-alkyl-modified nucleotide, a 2′-methoxyethyl modified nucleotide, a 2′-O-alkyl-modified nucleotide, a morpholino nucleotide, a phosphoramidate, a non-natural base comprising nucleotide, a tetrahydropyran modified nucleotide, a 1,5-anhydrohexitol modified nucleotide, a cyclohexenyl modified nucleotide, a nucleotide comprising a phosphorothioate group, a nucleotide comprising a methylphosphonate group, a nucleotide comprising a 5′-phosphate, a nucleotide comprising a 5′-phosphate mimic, a glycol modified nucleotide, and a 2-O—(N-methylacetamide) modified nucleotide; and combinations thereof. In some embodiments, no more than five of the sense strand nucleotides and not more than five of the nucleotides of the antisense strand include modifications other than 2′-O-methyl modified nucleotide, a 2′-fluoro modified nucleotide, a 2′-deoxy-modified nucleotide, unlocked nucleic acids (UNA) or glycerol nucleic acid (GNA).


In some embodiments, the dsRNA comprises a non-nucleotide spacer (wherein optionally the non-nucleotide spacer comprises a C3-C6 alkyl) between two of the contiguous nucleotides of the sense strand or between two of the contiguous nucleotides of the antisense strand.


In some embodiments, each strand is no more than 30 nucleotides in length. In some embodiments, at least one strand comprises a 3′ overhang of at least 1 nucleotide. In some embodiments, at least one strand comprises a 3′ overhang of at least 2 nucleotides. In some embodiments, at least one strand comprises a 3′ overhang of 2 nucleotides.


In some embodiments, the double stranded region is 15-30 nucleotide pairs in length. In some embodiments, the double stranded region is 17-23 nucleotide pairs in length. In some embodiments, the double stranded region is 17-25 nucleotide pairs in length. In some embodiments, the double stranded region is 23-27 nucleotide pairs in length. In some embodiments, the double stranded region is 19-21 nucleotide pairs in length. In some embodiments, the double stranded region is 21-23 nucleotide pairs in length. In some embodiments, each strand has 19-30 nucleotides. In some embodiments, each strand has 19-23 nucleotides. In some embodiments, each strand has 21-23 nucleotides.


In some embodiments, the agent comprises at least one phosphorothioate or methylphosphonate internucleotide linkage. In some embodiments, the phosphorothioate or methylphosphonate internucleotide linkage is at the 3′-terminus of one strand. In some embodiments, the strand is the antisense strand. In some embodiments, the strand is the sense strand.


In some embodiments, the phosphorothioate or methylphosphonate internucleotide linkage is at the 5′-terminus of one strand. In some embodiments, the strand is the antisense strand. In some embodiments, the strand is the sense strand.


In some embodiments, each of the 5′- and 3′-terminus of one strand comprises a phosphorothioate or methylphosphonate internucleotide linkage. In some embodiments, the strand is the antisense strand.


In some embodiments, the base pair at the 1 position of the 5′-end of the antisense strand of the duplex is an AU base pair.


In some embodiments, the sense strand has a total of 21 nucleotides and the antisense strand has a total of 23 nucleotides.


In some embodiments, one or more lipophilic moieties are conjugated to one or more internal positions on at least one strand. In some embodiments, the one or more lipophilic moieties are conjugated to one or more internal positions on at least one strand via a linker or carrier.


In some embodiments, the internal positions include all positions except the terminal two positions from each end of the at least one strand. In some embodiments, the internal positions include all positions except the terminal three positions from each end of the at least one strand. In some embodiments, the internal positions exclude a cleavage site region of the sense strand. In some embodiments, the internal positions include all positions except positions 9-12, counting from the 5′-end of the sense strand. In some embodiments, the internal positions include all positions except positions 11-13, counting from the 3′-end of the sense strand. In some embodiments, the internal positions exclude a cleavage site region of the antisense strand. In some embodiments, the internal positions include all positions except positions 12-14, counting from the 5′-end of the antisense strand. In some embodiments, the internal positions include all positions except positions 11-13 on the sense strand, counting from the 3′-end, and positions 12-14 on the antisense strand, counting from the 5′-end.


In some embodiments, the one or more lipophilic moieties are conjugated to one or more of the internal positions selected from the group consisting of positions 4-8 and 13-18 on the sense strand, and positions 6-10 and 15-18 on the antisense strand, counting from the 5′end of each strand. In some embodiments, the one or more lipophilic moieties are conjugated to one or more of the internal positions selected from the group consisting of positions 5, 6, 7, 15, and 17 on the sense strand, and positions 15 and 17 on the antisense strand, counting from the 5′-end of each strand.


In some embodiments, the positions in the double stranded region exclude a cleavage site region of the sense strand.


In some embodiments, the sense strand is 21 nucleotides in length, the antisense strand is 23 nucleotides in length, and the lipophilic moiety is conjugated to position 21, position 20, position 15, position 1, position 7, position 6, or position 2 of the sense strand or position 16 of the antisense strand. In some embodiments, the lipophilic moiety is conjugated to position 21, position 20, position 15, position 1, or position 7 of the sense strand. In some embodiments, the lipophilic moiety is conjugated to position 21, position 20, or position 15 of the sense strand. In some embodiments, the lipophilic moiety is conjugated to position 20 or position 15 of the sense strand. In some embodiments, the lipophilic moiety is conjugated to position 16 of the antisense strand. In some embodiments, the lipophilic moiety is conjugated to position 6, counting from the 5′-end of the sense strand.


In some embodiments, the lipophilic moiety is an aliphatic, alicyclic, or polyalicyclic compound. In some embodiments, the lipophilic moiety is selected from the group consisting of lipid, cholesterol, retinoic acid, cholic acid, adamantane acetic acid, 1-pyrene butyric acid, dihydrotestosterone, 1,3-bis-O(hexadecyl)glycerol, geranyloxyhexyanol, hexadecylglycerol, borneol, menthol, 1,3-propanediol, heptadecyl group, palmitic acid, myristic acid, O3-(oleoyl)lithocholic acid, O3-(oleoyl)cholenic acid, dimethoxytrityl, or phenoxazine. In some embodiments, the lipophilic moiety contains a saturated or unsaturated C4-C30 hydrocarbon chain, and an optional functional group selected from the group consisting of hydroxyl, amine, carboxylic acid, sulfonate, phosphate, thiol, azide, and alkyne. In some embodiments, the lipophilic moiety contains a saturated or unsaturated C6-C18 hydrocarbon chain. In some embodiments, the lipophilic moiety contains a saturated or unsaturated C16 hydrocarbon chain.


In some embodiments, the lipophilic moiety is conjugated via a carrier that replaces one or more nucleotide(s) in the internal position(s) or the double stranded region. In some embodiments, the carrier is a cyclic group selected from the group consisting of pyrrolidinyl, pyrazolinyl, pyrazolidinyl, imidazolinyl, imidazolidinyl, piperidinyl, piperazinyl, [1,3]dioxolanyl, oxazolidinyl, isoxazolidinyl, morpholinyl, thiazolidinyl, isothiazolidinyl, quinoxalinyl, pyridazinonyl, tetrahydrofuranyl, and decalinyl; or is an acyclic moiety based on a serinol backbone or a diethanolamine backbone.


In some embodiments, the lipophilic moiety is conjugated to the double-stranded iRNA agent via a linker containing an ether, thioether, urea, carbonate, amine, amide, maleimide-thioether, disulfide, phosphodiester, sulfonamide linkage, a product of a click reaction, or carbamate.


In some embodiments, the lipophilic moiety is conjugated to a nucleobase, sugar moiety, or internucleosidic linkage.


In some embodiments, the lipophilic moiety or targeting ligand is conjugated via a bio-cleavable linker selected from the group consisting of DNA, RNA, disulfide, amide, functionalized monosaccharides or oligosaccharides of galactosamine, glucosamine, glucose, galactose, mannose, and combinations thereof.


In some embodiments, the 3′ end of the sense strand is protected via an end cap which is a cyclic group having an amine, said cyclic group being selected from the group consisting of pyrrolidinyl, pyrazolinyl, pyrazolidinyl, imidazolinyl, imidazolidinyl, piperidinyl, piperazinyl, [1,3]dioxolanyl, oxazolidinyl, isoxazolidinyl, morpholinyl, thiazolidinyl, isothiazolidinyl, quinoxalinyl, pyridazinonyl, tetrahydrofuranyl, and decalinyl.


In some embodiments, the dsRNA agent further comprises a targeting ligand, e.g., a ligand that targets a CNS tissue or a liver tissue. In some embodiments, the CNS tissue is a brain tissue or a spinal tissue, e.g., a dorsal root ganglion.


In some embodiments, the ligand is conjugated to the sense strand. In some embodiments, the ligand is conjugated to the 3′ end or the 5′ end of the sense strand. In some embodiments, the ligand is conjugated to the 3′ end of the sense strand.


In some embodiments, the ligand comprises N-acetylgalactosamine (GalNAc). In some embodiments, the targeting ligand comprises one or more GalNAc conjugates or one or more GalNAc derivatives. In some embodiments, the ligand is one or more GalNAc conjugates or one or more GalNAc derivatives are attached through a monovalent linker, or a bivalent, trivalent, or tetravalent branched linker. In some embodiments, the ligand is




embedded image


In some embodiments, the dsRNA agent is conjugated to the ligand as shown in the following schematic




embedded image


wherein X is O or S. In some embodiments, the X is O.


In some embodiments, the dsRNA agent further comprises a terminal, chiral modification occurring at the first internucleotide linkage at the 3′ end of the antisense strand, having the linkage phosphorus atom in Sp configuration, a terminal, chiral modification occurring at the first internucleotide linkage at the 5′ end of the antisense strand, having the linkage phosphorus atom in Rp configuration, and a terminal, chiral modification occurring at the first internucleotide linkage at the 5′ end of the sense strand, having the linkage phosphorus atom in either Rp configuration or Sp configuration.


In some embodiments, the dsRNA agent further comprises a terminal, chiral modification occurring at the first and second internucleotide linkages at the 3′ end of the antisense strand, having the linkage phosphorus atom in Sp configuration, a terminal, chiral modification occurring at the first internucleotide linkage at the 5′ end of the antisense strand, having the linkage phosphorus atom in Rp configuration, and a terminal, chiral modification occurring at the first internucleotide linkage at the 5′ end of the sense strand, having the linkage phosphorus atom in either Rp or Sp configuration.


In some embodiments, the dsRNA agent further comprises a terminal, chiral modification occurring at the first, second and third internucleotide linkages at the 3′ end of the antisense strand, having the linkage phosphorus atom in Sp configuration, a terminal, chiral modification occurring at the first internucleotide linkage at the 5′ end of the antisense strand, having the linkage phosphorus atom in Rp configuration, and a terminal, chiral modification occurring at the first internucleotide linkage at the 5′ end of the sense strand, having the linkage phosphorus atom in either Rp or Sp configuration.


In some embodiments, the dsRNA agent further comprises a terminal, chiral modification occurring at the first, and second internucleotide linkages at the 3′ end of the antisense strand, having the linkage phosphorus atom in Sp configuration, a terminal, chiral modification occurring at the third internucleotide linkages at the 3′ end of the antisense strand, having the linkage phosphorus atom in Rp configuration, a terminal, chiral modification occurring at the first internucleotide linkage at the 5′ end of the antisense strand, having the linkage phosphorus atom in Rp configuration, and a terminal, chiral modification occurring at the first internucleotide linkage at the 5′ end of the sense strand, having the linkage phosphorus atom in either Rp or Sp configuration.


In some embodiments, the dsRNA agent further comprises a terminal, chiral modification occurring at the first, and second internucleotide linkages at the 3′ end of the antisense strand, having the linkage phosphorus atom in Sp configuration, a terminal, chiral modification occurring at the first, and second internucleotide linkages at the 5′ end of the antisense strand, having the linkage phosphorus atom in Rp configuration, and a terminal, chiral modification occurring at the first internucleotide linkage at the 5′ end of the sense strand, having the linkage phosphorus atom in either Rp or Sp configuration.


In some embodiments, the dsRNA agent further comprises a phosphate or phosphate mimic at the 5′-end of the antisense strand. In some embodiments, the phosphate mimic is a 5′-vinyl phosphonate (VP).


In some embodiments, a cell described herein, e.g., a human cell, was produced by a process comprising contacting a human cell with the dsRNA agent described herein.


In some embodiments, a pharmaceutical composition described herein comprises the dsRNA agent and a lipid formulation.


In some embodiments (e.g., embodiments of the methods described herein), the cell is within a subject. In some embodiments, the subject is a human. In some embodiments, the level of SCN9A mRNA is inhibited by at least 50%. In some embodiments, the level of SCN9A protein is inhibited by at least 50%. In some embodiments, the expression of SCN9A is inhibited by at least 50%. In some embodiments, inhibiting expression of SCN9A decreases the SCN9A protein level in a biological sample (e.g., a cerebral spinal fluid (CSF) sample, or a CNS biopsy sample) from the subject by at least 30%, 40%, 50%, 60%, 70%, 80%, 90%, or 95%. In some embodiments, inhibiting expression of SCN9A gene decreases the SCN9A mRNA level in a biological sample (e.g., a cerebral spinal fluid (CSF) sample, or a CNS biopsy sample) from the subject by at least 30%, 40%, 50%, 60%, 70%, 80%, 90%, or 95%.


In some embodiments, the subject has or has been diagnosed with having a SCN9A-associated disorder. In some embodiments, the subject meets at least one diagnostic criterion for a SCN9A-associated disorder. In some embodiments, the SCN9A associated disorder is pain, e.g., chronic pain e.g., inflammatory pain, neuropathic pain, pain hypersensitivity, pain hyposensitivity, inability to sense pain, primary erythromelalgia (PE), paroxysmal extreme pain disorder (PEPD), small fiber neuropathy (SFN), trigeminal neuralgia (TN), and pain associated with, e.g., cancer, arthritis, diabetes, traumatic injury and viral infections.


In some embodiments, the neuronal cell or tissue is a peripheral sensory neuron, e.g., a peripheral sensory neuron in a dorsal root ganglion, or a nociceptive neuron, e.g., an A-delta fiber or a C-type fiber.


In some embodiments, the SCN9A-associated disorder is pain, e.g., chronic pain. In some embodiments, the chronic pain is caused by or associated with pain hypersensitivity, pain hyposensitivity, inability to sense pain, primary erythromelalgia (PE), paroxysmal extreme pain disorder (PEPD), small fiber neuropathy (SFN), trigeminal neuralgia (TN), and pain associated with, e.g., cancer, arthritis, diabetes, traumatic injury or viral infections


In some embodiments, treating comprises amelioration of at least one sign or symptom of the disorder. In some embodiments, the at least one sign or symptom includes a measure of one or more of pain sensitivity, pain threshold, pain level, pain disability level presence, level, or activity of SCN9A (e.g., SCN9A gene, SCN9A mRNA, or SCN9A protein).


In some embodiments, a level of the SCN9A that is higher than a reference level is indicative that the subject has pain, e.g., chronic pain or a pain-related disorder. In some embodiments, treating comprises prevention of progression of the disorder. In some embodiments, the treating comprises one or more of (a) reducing pain; or (b) inhibiting or reducing the expression or activity of SCN9A.


In some embodiments, the treating results in at least a 30% mean reduction from baseline of SCN9A mRNA in the dorsal root ganglion. In some embodiments, the treating results in at least a 60% mean reduction from baseline of SCN9A mRNA in the dorsal root ganglion. In some embodiments, the treating results in at least a 90% mean reduction from baseline of SCN9A mRNA in the dorsal root ganglion.


In some embodiments, after treatment the subject experiences at least an 8-week duration of knockdown following a single dose of dsRNA as assessed by SCN9A protein in the cerebral spinal fluid (CSF) or the CNS tissue, e.g., the dorsal root ganglion. In some embodiments, treating results in at least a 12-week duration of knockdown following a single dose of dsRNA as assessed by SCN9A protein in the cerebral spinal fluid (CSF) or the CNS tissue, e.g., the dorsal root ganglion. In some embodiments, treating results in at least a 16-week duration of knockdown following a single dose of dsRNA as assessed by SCN9A protein in the cerebral spinal fluid (CSF) or the CNS tissue, e.g., the dorsal root ganglion.


In some embodiments, the subject is human.


In some embodiments, the dsRNA agent is administered at a dose of about 0.01 mg/kg to about 50 mg/kg.


In some embodiments, the dsRNA agent is administered to the subject intracranially or intrathecally.


In some embodiments, the dsRNA agent is administered to the subject intrathecally, intraventricularly, or intracerebrally.


In some embodiments, a method described herein further comprises measuring a level of SCN9A (e.g., SCN9A gene, SCN9A mRNA, or SCN9A protein) in the subject. In some embodiments, measuring the level of SCN9A in the subject comprises measuring the level of SCN9A protein in a biological sample from the subject (e.g., a cerebral spinal fluid (CSF) sample or a CNS biopsy sample). In some embodiments, a method described herein further comprises performing a blood test, an imaging test, or, a CNS biopsy, or an aqueous cerebral spinal fluid biopsy.


In some embodiments, a method described herein further measuring level of SCN9A (e.g., SCN9A gene, SCN9A mRNA, or SCN9A protein) in the subject is performed prior to treatment with the dsRNA agent or the pharmaceutical composition. In some embodiments, upon determination that a subject has a level of SCN9A that is greater than a reference level, the dsRNA agent or the pharmaceutical composition is administered to the subject. In some embodiments, measuring level of SCN9A in the subject is performed after treatment with the dsRNA agent or the pharmaceutical composition.


In some embodiments, a method described herein further comprises treating the subject with a therapy suitable for treatment or prevention of a SCN9A-associated disorder, e.g., wherein the therapy comprises non-steroidal anti-inflammatory drugs (NSAIDs), acetaminophen, opioids, or corticosteroids, acupuncture, therapeutic massage, dorsal root ganglion stimulation, spinal cord stimulation, or topical pain relievers. In some embodiments, a method described herein further comprises administering to the subject an additional agent suitable for treatment or prevention of a SCN9A-associated disorder. In some embodiments, the additional agent comprises a steroid, or a non-steroidal anti-inflammatory agent.


All publications, patent applications, patents, and other references mentioned herein are incorporated by reference in their entirety.


The details of various embodiments of the disclosure are set forth in the description below. Other features, objects, and advantages of the disclosure will be apparent from the description and the drawings, and from the claims.





BRIEF DESCRIPTION OF THE DRAWINGS

The patent or application file contains at least one drawing executed in color. Copies of this patent or patent application publication with color drawing(s) will be provided by the Office upon request and payment of the necessary fee.



FIG. 1A depicts the sequences and chemistry of exemplary SCN9A siRNAs including AD-795305, AD-1251249, AD-1251251, AD-1010663, AD-1251301, and AD-961179. FIG. 1B depicts the sequences and chemistry of exemplary SCN9A siRNAs including AD-1251317, AD-1251318, AD-1251323, AD-1251325, AD-795634, AD-1251363. FIG. 1C depicts the sequences and chemistry of exemplary SCN9A siRNAs including AD-1251364, AD-1251373, AD-1251385, AD-1251391, and AD-795913. For each siRNA, “F” is the “2′-fluoro” modification, OMe is a methoxy group, GNA refers to a glycol nucleic acid, “(A2p)” refers to adenosine 2′-phosphate, “(C2p)” refers to cytosine 2′-phosphate, “(G2p)” refers to guanosine 2′-phosphate, “DNA” refers to a DNA base, 2-C16 refers to the targeting ligand, and PS refers to the phosphorothioate linkage. FIGS. 1A-1C disclose SEQ ID NOS 5996-6029, respectively, in order of appearance.



FIG. 2 is a graph depicting the percent SCN9A message remaining relative to PBS in mice on day 14 post-treatment with the exemplary duplexes indicated on the X-axis (from left to right: PBS, AD-795305 (parent), AD-1251249, AD-1251251, AD-1010663 (parent), AD-1251301, AD-961179 (parent), AD-1251317, AD-1251318, AD-1251323, AD-1251325, AD-795634 (parent), AD-1251363, AD-1251364, AD-1251373, AD-1251385, and AD-1251391).



FIG. 3A depicts the sequences and chemistry of exemplary SCN9A siRNAs including AD-802471, AD-1251492, AD-961334, AD-1251279, and AD-1251284. FIG. 3B depicts the sequences and chemistry of exemplary SCN9A siRNAs including AD-1251334, AD-1251377, AD-1251398, AD-1251399, AD-961188, and AD-1251274. FIGS. 3A-3B disclose SEQ ID NOS 6030-6051, respectively, in order of appearance. FIG. 3C depicts the sequences and chemistry of exemplary SCN9A siRNAs including AD-796825, AD-1251411, AD-1251419, AD-797564, AD-1251428, and AD-1251434. FIG. 3D depicts the sequences and chemistry of exemplary SCN9A siRNAs including AD-1010661, AD-795366, AD-795634, and AD-795913. For each siRNA, “F” is the “2′-fluoro” modification, OMe is a methoxy group, GNA refers to a glycol nucleic acid, “(A2p)” refers to adenosine 2′-phosphate, “(C2p)” refers to cytosine 2′-phosphate, “(U2p)” refers to uracil 2′-phosphate, “(G2p)” refers to guanosine 2′-phosphate, “DNA” refers to a DNA base, 2-C16 refers to the targeting ligand, and PS refers to the phosphorothioate linkage. FIGS. 3C-3D disclose SEQ ID NOS 6052-6071, respectively, in order of appearance.



FIGS. 4A-4C present a series of graphs depicting the percent SCN9A message remaining versus the starting position in the target mRNA (NM_001365536.1) of the sense strand of the duplex grouped by those tested in screens 1 and 2 (targeting ORF-1, ORF-2, and the 3′ UTR). FIG. 4A depicts the percent SCN9A message remaining with the duplexes tested at a final concentration of 0.1 nM. FIG. 4B depicts the percent SCN9A message remaining with the duplexes tested at a final concentration of 1 nM. FIG. 4C depicts the percent SCN9A message remaining with the duplexes tested at a final concentration of 10 nM. In FIGS. 4A-4C, screen 1 includes the following duplexes: AD-1010663.3, AD-1251301.1, AD-1251249.1, AD-1251251.1, AD-795305.3, AD-1251363.1, AD-1251364.1, AD-1251373.1, AD-795634.4, AD-1251385.1, AD-1251391.1, AD-1251317.1, AD-1251318.1, AD-1251323.1, AD-1251325.1, and AD-961179.3; screen 2 included the following duplexes: AD-1251492.1, AD-1251279.1, AD-961334.3, AD-1251284.1, AD-1251334.1, AD-1251377.1, AD-1251398.1, AD-1251399.1, AD-1251274.2, AD-961188.3, AD-1251411.1, AD-1251419.1, AD-796825.3, AD-1251428.1, AD-797564.4, and AD-1251434.1.



FIG. 5 is a graph depicting the percent SCN9A message remaining relative to PBS in mice on day 14 post-treatment with the exemplary duplexes indicated on the X-axis (from left to right: PBS, AD-1251492.2*, AD-961334.2 (parent), AD-1251279.2, PBS, AD-1251284.2*, AD-1251334.2*, AD-1251377.2*, AD-1251398.2*, AD-1251399.2*, AD-961188.2 (parent), AD-1251274.2, PBS, AD-796825.2 (parent), AD-1251411.2, AD-1251419.2, AD-797564.3 (parent), AD-1251428.2, and AD-1251434.2. The graph is divided into subsections for those duplexes that target the 3′UTR2 (AD-1251492.2*, AD-961334.2 (parent), AD-1251279.2), ORF1 (AD-1251284.2*, AD-1251334.2*, AD-1251377.2*, AD-1251398.2*, AD-1251399.2*, AD-961188.2 (parent), AD-1251274.2), and ORF2 (AD-796825.2 (parent), AD-1251411.2, AD-1251419.2, AD-797564.3 (parent), AD-1251428.2, AD-1251434.2).



FIG. 6A depicts the sequences and chemistry of exemplary SCN9A siRNAs including AD-1251284, AD-961334, and AD-1251325. FIG. 6A discloses SEQ ID NOS 6072-6077, respectively, in order of appearance. FIG. 6B depicts the sequences and CNS chemistry of exemplary SCN9A duplexes AD-1331352, AD-1209344, and AD-1331350. FIG. 6B discloses SEQ ID NOS 6078-6083, respectively, in order of appearance.





DETAILED DESCRIPTION

iRNA directs the sequence-specific degradation of mRNA through a process known as RNA interference (RNAi). Described herein are iRNAs and methods of using them for modulating (e.g., inhibiting) the expression of SCN9A. Also provided are compositions and methods for treatment of disorders related to SCN9A expression, such as pain, e.g., acute pain or chronic pain (e.g., inflammatory (nociceptive), neuropathic pain, pain hypersensitivity, pain hyposensitivity, inability to sense pain, primary erythromelalgia (PE), paroxysmal extreme pain disorder (PEPD), small fiber neuropathy (SFN), trigeminal neuralgia (TN), and pain associated with, e.g., cancer, arthritis, diabetes, traumatic injury and viral infections).


Human SCN9A is approximately a 226 kDa protein and is a voltage gated sodium channel (Nav1.7 channel) that mediates the voltage-dependent sodium ion permeability of excitable membranes and also plays a role in nociception signaling. These channels are preferentially expressed in peripheral sensory neurons of the dorsal root ganglia, which are involved in the perception of pain. Mutations in the SCN9A gene have been associated with predispositions to pain hyper- or hyposensitivity. For example, gain-of-function mutations in the SCN9A gene can be the etiological basis of inherited pain syndromes such as primary erythermalgia (PE) and paroxysmal extreme pain disorder (PEPD). Moreover, loss-of-function mutations of the SCN9A gene result in a complete inability of an otherwise healthy individual to sense any form of pain. Without wishing to be bound by theory, increased levels of the SCN9A expression could enhance pain sensitivity; whereas decreased levels of the SCN9A expression could reduce pain sensitivity, and modulating SCN9A expression and Nav1.7 channel levels in peripheral sensory neurons of the dorsal root ganglia could provide an effective pain treatment.


The following description discloses how to make and use compositions containing iRNAs to modulate (e.g., inhibit) the expression of SCN9A, as well as compositions and methods for treating disorders related to expression of SCN9A.


In some aspects, pharmaceutical compositions containing SCN9A iRNA and a pharmaceutically acceptable carrier, methods of using the compositions to inhibit expression of SCN9A, and methods of using the pharmaceutical compositions to treat disorders related to expression of SCN9A (e.g., pain, e.g., chronic pain and/or pain related disorders) are featured herein.


I. Definitions

For convenience, the meaning of certain terms and phrases used in the specification, examples, and appended claims, are provided below. If there is an apparent discrepancy between the usage of a term in other parts of this specification and its definition provided in this section, the definition in this section shall prevail.


The term “about” when referring to a number or a numerical range means that the number or numerical range referred to is an approximation within experimental variability (or within statistical experimental error), and thus the number or numerical range may vary from, for example, between 1% and 15% of the stated number or numerical range.


The terms “or more” and “at least” prior to a number or series of numbers is understood to include the number adjacent to the term “at least”, and all subsequent numbers or integers that could logically be included, as clear from context. For example, the number of nucleotides in a nucleic acid molecule must be an integer. For example, “at least 17 nucleotides of a 20-nucleotide nucleic acid molecule” means that 17, 18, 19, or 20 nucleotides have the indicated property. When “at least” is present before a series of numbers or a range, it is understood that “at least” can modify each of the numbers in the series or range.


As used herein, “or less” and “no more than” are understood as including the value adjacent to the phrase and logical lower values or integers, as logical from context, to zero. For example, a duplex with mismatches to a target site of “no more than 2 nucleotides” has a 2, 1, or 0 mismatches. When “no more than” is present before a series of numbers or a range, it is understood that “no more than” can modify each of the numbers in the series or range.


As used herein, “less than” is understood as not including the value adjacent to the phrase and including logical lower values or integers, as logical from context, to zero. For example, a duplex with mismatches to a target site of “less than 3 nucleotides” has 2, 1, or 0 mismatches. When “less than” is present before a series of numbers or a range, it is understood that “less than” can modify each of the numbers in the series or range.


As used herein, “more than” is understood as not including the value adjacent to the phrase and including logical higher values or integers, as logical from context, to infinity. For example, a duplex with mismatches to a target site of “more than 3 nucleotides” has 4, 5, 6, or more mismatches. When “more than” is present before a series of numbers or a range, it is understood that “more than” can modify each of the numbers in the series or range.


As used herein, “up to” as in “up to 10” is understood as up to and including 10, i.e., 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, or 10.


Ranges provided herein are understood to include all individual integer values and all subranges within the ranges.


The terms “activate,” “enhance,” “up-regulate the expression of,” “increase the expression of,” and the like, in so far as they refer to a SCN9A gene, herein refer to the at least partial activation of the expression of a SCN9A gene, as manifested by an increase in the amount of SCN9A mRNA, which may be isolated from or detected in a first cell or group of cells in which a SCN9A gene is transcribed and which has or have been treated such that the expression of a SCN9A gene is increased, as compared to a second cell or group of cells substantially identical to the first cell or group of cells but which has or have not been so treated (control cells).


In some embodiments, expression of a SCN9A gene is activated by at least about 10%, 15%, 20%, 25%, 30%, 35%, 40%, 45%, or 50% by administration of an iRNA as described herein. In some embodiments, a SCN9A gene is activated by at least about 60%, 70%, or 80% by administration of an iRNA featured in the disclosure. In some embodiments, expression of a SCN9A gene is activated by at least about 85%, 90%, or 95% or more by administration of an iRNA as described herein. In some embodiments, the SCN9A gene expression is increased by at least 1-fold, at least 2-fold, at least 5-fold, at least 10-fold, at least 50-fold, at least 100-fold, at least 500-fold, at least 1000-fold or more in cells treated with an iRNA as described herein compared to the expression in an untreated cell. Activation of expression by small dsRNAs is described, for example, in Li et al., 2006 Proc. Natl. Acad. Sci. U.S.A. 103:17337-42, and in US2007/0111963 and US2005/226848, each of which is incorporated herein by reference.


The terms “silence,” “inhibit expression of,” “down-regulate expression of,” “suppress expression of,” and the like, in so far as they refer to SCN9A, herein refer to the at least partial suppression of the expression of SCN9A, as assessed, e.g., based on SCN9A mRNA expression, SCN9A protein expression, or another parameter functionally linked to SCN9A expression. For example, inhibition of SCN9A expression may be manifested by a reduction of the amount of SCN9A mRNA which may be isolated from or detected in a first cell or group of cells in which SCN9A is transcribed and which has or have been treated such that the expression of SCN9A is inhibited, as compared to a control. The control may be a second cell or group of cells substantially identical to the first cell or group of cells, except that the second cell or group of cells have not been so treated (control cells). The degree of inhibition is usually expressed as a percentage of a control level, e.g.,










(

mRNA


in


control


cells

)

-

(

mRNA


in


treated


cells

)



(

mRNA


in


control


cells

)


·
100


%




Alternatively, the degree of inhibition may be given in terms of a reduction of a parameter that is functionally linked to SCN9A expression, e.g., the amount of protein encoded by a SCN9A gene. The reduction of a parameter functionally linked to SCN9A expression may similarly be expressed as a percentage of a control level. In principle, SCN9A silencing may be determined in any cell expressing SCN9A, either constitutively or by genomic engineering, and by any appropriate assay.


For example, in certain instances, expression of SCN9A is suppressed by at least about 10%, 15%, 20%, 25%, 30%, 35%, 40%, 45%, or 50% by administration of an iRNA disclosed herein. In some embodiments, SCN9A is suppressed by at least about 60%, 65%, 70%, 75%, or 80% by administration of an iRNA disclosed herein. In some embodiments, SCN9A is suppressed by at least about 85%, 90%, 95%, 98%, 99%, or more by administration of an iRNA as described herein.


The term “antisense strand” or “guide strand” refers to the strand of an iRNA, e.g., a dsRNA, which includes a region that is substantially complementary to a target sequence.


As used herein, the term “region of complementarity” refers to the region on the antisense strand that is substantially complementary to a sequence, for example a target sequence, as defined herein. Where the region of complementarity is not fully complementary to the target sequence, the mismatches may be in the internal or terminal regions of the molecule. In some embodiments, the region of complementarity comprises 0, 1, or 2 mismatches.


The term “sense strand” or “passenger strand” as used herein, refers to the strand of an iRNA that includes a region that is substantially complementary to a region of the antisense strand as that term is defined herein.


The terms “blunt” or “blunt ended” as used herein in reference to a dsRNA mean that there are no unpaired nucleotides or nucleotide analogs at a given terminal end of a dsRNA, i.e., no nucleotide overhang. One or both ends of a dsRNA can be blunt. Where both ends of a dsRNA are blunt, the dsRNA is said to be blunt ended. To be clear, a “blunt ended” dsRNA is a dsRNA that is blunt at both ends, i.e., no nucleotide overhang at either end of the molecule. Most often such a molecule will be double-stranded over its entire length.


As used herein, and unless otherwise indicated, the term “complementary,” when used to describe a first nucleotide sequence in relation to a second nucleotide sequence, refers to the ability of an oligonucleotide or polynucleotide comprising the first nucleotide sequence to hybridize and form a duplex structure under certain conditions with an oligonucleotide or polynucleotide comprising the second nucleotide sequence, as will be understood by the skilled person. Such conditions can be, for example, “stringent conditions”, where stringent conditions may include: 400 mM NaCl, 40 mM PIPES pH 6.4, 1 mM EDTA, 50° C. or 70° C. for 12-16 hours followed by washing. Other conditions, such as physiologically relevant conditions as may be encountered inside an organism, can apply. The skilled person will be able to determine the set of conditions most appropriate for a test of complementarity of two sequences in accordance with the ultimate application of the hybridized nucleotides.


Complementary sequences within an iRNA, e.g., within a dsRNA as described herein, include base-pairing of the oligonucleotide or polynucleotide comprising a first nucleotide sequence to an oligonucleotide or polynucleotide comprising a second nucleotide sequence over the entire length of one or both nucleotide sequences. Such sequences can be referred to as “fully complementary” with respect to each other herein. However, where a first sequence is referred to as “substantially complementary” with respect to a second sequence herein, the two sequences can be fully complementary, or they may form one or more, but generally not more than 5, 4, 3 or 2 mismatched base pairs upon hybridization for a duplex up to 30 base pairs, while retaining the ability to hybridize under the conditions most relevant to their ultimate application, e.g., inhibition of gene expression via a RISC pathway. However, where two oligonucleotides are designed to form, upon hybridization, one or more single stranded overhangs, such overhangs shall not be regarded as mismatches with regard to the determination of complementarity. For example, a dsRNA comprising one oligonucleotide 21 nucleotides in length and another oligonucleotide 23 nucleotides in length, wherein the longer oligonucleotide comprises a sequence of 21 nucleotides that is fully complementary to the shorter oligonucleotide, may yet be referred to as “fully complementary” for the purposes described herein.


Complementary sequences, as used herein, may also include, or be formed entirely from, non-Watson-Crick base pairs and/or base pairs formed from non-natural and modified nucleotides, in as far as the above requirements with respect to their ability to hybridize are fulfilled. Such non-Watson-Crick base pairs includes, but are not limited to, G:U Wobble or Hoogsteen base pairing.


The terms “complementary,” “fully complementary” and “substantially complementary” herein may be used with respect to the base matching between two oligonucleotides or polynucleotides, such as the sense strand and the antisense strand of a dsRNA, or between the antisense strand of an iRNA agent and a target sequence, as will be understood from the context of their use.


As used herein, a polynucleotide that is “substantially complementary to at least part of” a messenger RNA (mRNA) refers to a polynucleotide that is substantially complementary to a contiguous portion of the mRNA of interest (e.g., an mRNA encoding a SCN9A protein). For example, a polynucleotide is complementary to at least a part of a SCN9A mRNA if the sequence is substantially complementary to a non-interrupted portion of an mRNA encoding SCN9A. The term “complementarity” refers to the capacity for pairing between nucleobases of a first nucleic acid and a second nucleic acid.


As used herein, the term “region of complementarity” refers to the region of one nucleotide sequence agent that is substantially complementary to another sequence, e.g., the region of a sense sequence and corresponding antisense sequence of a dsRNA, or the antisense strand of an iRNA and a target sequence, e.g., a SCN9A nucleotide sequence, as defined herein. Where the region of complementarity is not fully complementary to the target sequence, the mismatches can be in the internal or terminal regions of the antisense strand of the iRNA. Generally, the most tolerated mismatches are in the terminal regions, e.g., within 5, 4, 3, or 2 nucleotides of the 5′- or 3′-terminus of the iRNA agent.


“Contacting,” as used herein, includes directly contacting a cell, as well as indirectly contacting a cell. For example, a cell within a subject may be contacted when a composition comprising an iRNA is administered (e.g., intrathecally, intracranially, intracerebrally, or intraventricularly) to the subject.


“Introducing into a cell,” when referring to an iRNA, means facilitating or effecting uptake or absorption into the cell. Absorption or uptake of an iRNA can occur through unaided diffusive or active cellular processes, or by auxiliary agents or devices. The meaning of this term is not limited to cells in vitro; an iRNA may also be “introduced into a cell,” wherein the cell is part of a living organism. In such an instance, introduction into the cell will include the delivery to the organism. For example, for in vivo delivery, iRNA can be injected into a tissue site or administered systemically. In vivo delivery can also be by a β-glucan delivery system, such as those described in U.S. Pat. Nos. 5,032,401 and 5,607,677, and U.S. Publication No. 2005/0281781, which are hereby incorporated by reference in their entirety. In vitro introduction into a cell includes methods known in the art such as electroporation and lipofection. Further approaches are described herein below or known in the art.


As used herein, a “disorder related to SCN9A expression,” a “disease related to SCN9A expression,” a “pathological process related to SCN9A expression,” “a SCN9A-associated disorder,” “a SCN9A-associated disease,” or the like includes any condition, disorder, or disease in which SCN9A expression is altered (e.g., decreased or increased relative to a reference level, e.g., a level characteristic of a non-diseased subject). In some embodiments, SCN9A expression is decreased. In some embodiments, SCN9A expression is increased. In some embodiments, the decrease or increase in SCN9A expression is detectable in a tissue sample from the subject (e.g., in a cerebral spinal fluid (CSF) sample or a CNS biopsy sample). The decrease or increase may be assessed relative the level observed in the same individual prior to the development of the disorder or relative to other individual(s) who do not have the disorder. The decrease or increase may be limited to a particular organ, tissue, or region of the body (e.g., the brain or the spine). SCN9A-A-associated disorders include, but are not limited to, pain, e.g., chronic pain or pain-related disorders.


“Pain” as defined herein includes acute pain and chronic pain. Chronic pain includes inflammatory (nociceptive) and neuropathic pain associated with disorders including, but not limited to, cancer, arthritis, diabetes, traumatic injury and viral infections. Also included is pain due to inherited pain syndromes including, but not limited to primary erythermalgia (PE) and paroxysmal extreme pain disorder (PEPD).


The term “double-stranded RNA,” “dsRNA,” or “siRNA” as used herein, refers to an iRNA that includes an RNA molecule or complex of molecules having a hybridized duplex region that comprises two anti-parallel and substantially complementary nucleic acid strands, which will be referred to as having “sense” and “antisense” orientations with respect to a target RNA. The duplex region can be of any length that permits specific degradation of a desired target RNA, e.g., through a RISC pathway, but will typically range from 9 to 36 base pairs in length, e.g., 15-30 base pairs in length. Considering a duplex between 9 and 36 base pairs, the duplex can be any length in this range, for example, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, or 36 and any sub-range therein between, including, but not limited to 15-30 base pairs, 15-26 base pairs, 15-23 base pairs, 15-22 base pairs, 15-21 base pairs, 15-20 base pairs, 15-19 base pairs, 15-18 base pairs, 15-17 base pairs, 18-30 base pairs, 18-26 base pairs, 18-23 base pairs, 18-22 base pairs, 18-21 base pairs, 18-20 base pairs, 19-30 base pairs, 19-26 base pairs, 19-23 base pairs, 19-22 base pairs, 19-21 base pairs, 19-20 base pairs, 20-30 base pairs, 20-26 base pairs, 20-25 base pairs, 20-24 base pairs, 20-23 base pairs, 20-22 base pairs, 20-21 base pairs, 21-30 base pairs, 21-26 base pairs, 21-25 base pairs, 21-24 base pairs, 21-23 base pairs, or 21-22 base pairs. dsRNAs generated in the cell by processing with Dicer and similar enzymes are generally in the range of 19-22 base pairs in length. One strand of the duplex region of a dsDNA comprises a sequence that is substantially complementary to a region of a target RNA. The two strands forming the duplex structure can be from a single RNA molecule having at least one self-complementary region, or can be formed from two or more separate RNA molecules. Where the duplex region is formed from two strands of a single molecule, the molecule can have a duplex region separated by a single stranded chain of nucleotides (herein referred to as a “hairpin loop”) between the 3′-end of one strand and the 5′-end of the respective other strand forming the duplex structure. The hairpin loop can comprise at least one unpaired nucleotide; in some embodiments the hairpin loop can comprise at least 3, at least 4, at least 5, at least 6, at least 7, at least 8, at least 9, at least 10, at least 20, at least 23 or more unpaired nucleotides. Where the two substantially complementary strands of a dsRNA are comprised by separate RNA molecules, those molecules need not, but can be covalently connected. In some embodiments, the two strands are connected covalently by means other than a hairpin loop, and the connecting structure is a linker.


In some embodiments, the iRNA agent may be a “single-stranded siRNA” that is introduced into a cell or organism to inhibit a target mRNA. In some embodiments, single-stranded RNAi agents can bind to the RISC endonuclease Argonaute 2, which then cleaves the target mRNA. The single-stranded siRNAs are generally 15-30 nucleotides and are optionally chemically modified. The design and testing of single-stranded siRNAs are described in U.S. Pat. No. 8,101,348 and in Lima et al., (2012) Cell 150: 883-894, the entire contents of each of which are hereby incorporated herein by reference. Any of the antisense nucleotide sequences described herein (e.g., sequences provided in Tables 2A, 2B, 4A, 4B, 5A, 5B, 6A, 6B, 13A, 13B, 14A, 14B, 15A, 15B, 16, 18, or 20) may be used as a single-stranded siRNA as described herein and optionally as chemically modified, e.g., as described herein, e.g., by the methods described in Lima et al., (2012) Cell 150:883-894.


In some embodiments, an RNA interference agent includes a single stranded RNA that interacts with a target RNA sequence to direct the cleavage of the target RNA. Without wishing to be bound by theory, long double stranded RNA introduced into cells is broken down into siRNA by a Type III endonuclease known as Dicer (Sharp et al., Genes Dev. 2001, 15:485). Dicer, a ribonuclease-III-like enzyme, processes the dsRNA into 19-23 base pair short interfering RNAs with characteristic two base 3′ overhangs (Bernstein, et al., (2001) Nature 409:363). The siRNAs are then incorporated into an RNA-induced silencing complex (RISC) where one or more helicases unwind the siRNA duplex, enabling the complementary antisense strand to guide target recognition (Nykanen, et al., (2001) Cell 107:309). Upon binding to the appropriate target mRNA, one or more endonucleases within the RISC cleaves the target to induce silencing (Elbashir, et al., (2001) Genes Dev. 15:188). Thus, in some embodiments, the disclosure relates to a single stranded RNA that promotes the formation of a RISC complex to effect silencing of the target gene.


“G,” “C,” “A,” “T” and “U” each generally stand for a nucleotide that contains guanine, cytosine, adenine, thymidine and uracil as a base, respectively. However, it will be understood that the terms “deoxyribonucleotide,” “ribonucleotide,” or “nucleotide” can also refer to a modified nucleotide, as further detailed below, or a surrogate replacement moiety. The skilled person is well aware that guanine, cytosine, adenine, and uracil may be replaced by other moieties without substantially altering the base pairing properties of an oligonucleotide comprising a nucleotide bearing such replacement moiety. For example, without limitation, a nucleotide comprising inosine as its base may base pair with nucleotides containing adenine, cytosine, or uracil. Hence, nucleotides containing uracil, guanine, or adenine may be replaced in the nucleotide sequences of dsRNA featured in the disclosure by a nucleotide containing, for example, inosine. In another example, adenine and cytosine anywhere in the oligonucleotide can be replaced with guanine and uracil, respectively to form G-U Wobble base pairing with the target mRNA. Sequences containing such replacement moieties are suitable for the compositions and methods featured in the disclosure.


As used herein, the term “iRNA,” “RNAi”, “iRNA agent,” or “RNAi agent” or “RNAi molecule” refers to an agent that contains RNA as that term is defined herein, and which mediates the targeted cleavage of an RNA transcript, e.g., via an RNA-induced silencing complex (RISC) pathway. In some embodiments, an iRNA as described herein effects inhibition of SCN9A expression, e.g., in a cell or mammal. Inhibition of SCN9A expression may be assessed based on a reduction in the level of SCN9A mRNA or a reduction in the level of the SCN9A protein.


The term “linker” or “linking group” means an organic moiety that connects two parts of a compound, e.g., covalently attaches two parts of a compound.


The term “lipophile” or “lipophilic moiety” broadly refers to any compound or chemical moiety having an affinity for lipids. One way to characterize the lipophilicity of the lipophilic moiety is by the octanol-water partition coefficient, logKow, where Kow is the ratio of a chemical's concentration in the octanol-phase to its concentration in the aqueous phase of a two-phase system at equilibrium. The octanol-water partition coefficient is a laboratory-measured property of a substance. However, it may also be predicted by using coefficients attributed to the structural components of a chemical which are calculated using first-principle or empirical methods (see, for example, Tetko et al., J. Chem. Inf. Comput. Sci. 41:1407-21 (2001), which is incorporated herein by reference in its entirety). It provides a thermodynamic measure of the tendency of the substance to prefer a non-aqueous or oily milieu rather than water (i.e. its hydrophilic/lipophilic balance). In principle, a chemical substance is lipophilic in character when its logKow exceeds 0. Typically, the lipophilic moiety possesses a logKow exceeding 1, exceeding 1.5, exceeding 2, exceeding 3, exceeding 4, exceeding 5, or exceeding 10. For instance, the logKow of 6-amino hexanol, for instance, is predicted to be approximately 0.7. Using the same method, the logKow of cholesteryl N-(hexan-6-ol) carbamate is predicted to be 10.7.


The lipophilicity of a molecule can change with respect to the functional group it carries. For instance, adding a hydroxyl group or amine group to the end of a lipophilic moiety can increase or decrease the partition coefficient (e.g., logKow) value of the lipophilic moiety.


Alternatively, the hydrophobicity of the double-stranded RNAi agent, conjugated to one or more lipophilic moieties, can be measured by its protein binding characteristics. For instance, in certain embodiments, the unbound fraction in the plasma protein binding assay of the double-stranded RNAi agent could be determined to positively correlate to the relative hydrophobicity of the double-stranded RNAi agent, which could then positively correlate to the silencing activity of the double-stranded RNAi agent.


In some embodiments, the plasma protein binding assay determined is an electrophoretic mobility shift assay (EMSA) using human serum albumin protein. An exemplary protocol of this binding assay is illustrated in detail in, e.g., PCT/US2019/031170. The hydrophobicity of the double-stranded RNAi agent, measured by fraction of unbound siRNA in the binding assay, exceeds 0.15, exceeds 0.2, exceeds 0.25, exceeds 0.3, exceeds 0.35, exceeds 0.4, exceeds 0.45, or exceeds 0.5 for an enhanced in vivo delivery of siRNA.


Accordingly, conjugating the lipophilic moieties to the internal position(s) of the double-stranded RNAi agent provides optimal hydrophobicity for the enhanced in vivo delivery of siRNA.


The term “lipid nanoparticle” or “LNP” is a vesicle comprising a lipid layer encapsulating a pharmaceutically active molecule, such as a nucleic acid molecule, e.g., a RNAi agent or a plasmid from which a RNAi agent is transcribed. LNPs are described in, for example, U.S. Pat. Nos. 6,858,225, 6,815,432, 8,158,601, and 8,058,069, the entire contents of which are hereby incorporated herein by reference.


As used herein, the term “modulate the expression of,” refers to an at least partial “inhibition” or partial “activation” of a gene (e.g., SCN9A gene) expression in a cell treated with an iRNA composition as described herein compared to the expression of the corresponding gene in a control cell. A control cell includes an untreated cell, or a cell treated with a non-targeting control iRNA.


The skilled artisan will recognize that the term “RNA molecule” or “ribonucleic acid molecule” encompasses not only RNA molecules as expressed or found in nature, but also analogs and derivatives of RNA comprising one or more ribonucleotide/ribonucleoside analogs or derivatives as described herein or as known in the art. Strictly speaking, a “ribonucleoside” includes a nucleoside base and a ribose sugar, and a “ribonucleotide” is a ribonucleoside with one, two or three phosphate moieties or analogs thereof (e.g., phosphorothioate). However, the terms “ribonucleoside” and “ribonucleotide” can be considered to be equivalent as used herein. The RNA can be modified in the nucleobase structure, in the ribose structure, or in the ribose-phosphate backbone structure, e.g., as described herein below. However, the molecules comprising ribonucleoside analogs or derivatives must retain the ability to form a duplex. As non-limiting examples, an RNA molecule can also include at least one modified ribonucleoside including but not limited to a 2′-O-methyl modified nucleoside, a nucleoside comprising a 5′ phosphorothioate group, a terminal nucleoside linked to a cholesteryl derivative or dodecanoic acid bisdecylamide group, a locked nucleoside, an abasic nucleoside, an acyclic nucleoside, a glycol nucleotide, a 2′-deoxy-2′-fluoro modified nucleoside, a 2′-amino-modified nucleoside, 2′-alkyl-modified nucleoside, morpholino nucleoside, a phosphoramidate or a non-natural base comprising nucleoside, or any combination thereof. Alternatively, or in combination, an RNA molecule can comprise at least two modified ribonucleosides, at least 3, at least 4, at least 5, at least 6, at least 7, at least 8, at least 9, at least 10, at least 15, at least 20 or more, up to the entire length of the dsRNA molecule. The modifications need not be the same for each of such a plurality of modified ribonucleosides in an RNA molecule. In some embodiments, modified RNAs contemplated for use in methods and compositions described herein are peptide nucleic acids (PNAs) that have the ability to form the required duplex structure and that permit or mediate the specific degradation of a target RNA, e.g., via a RISC pathway. For clarity, it is understood that the term “iRNA” does not encompass a naturally occurring double stranded DNA molecule or a 100% deoxynucleoside-containing DNA molecule.


In some aspects, a modified ribonucleoside includes a deoxyribonucleoside. In such an instance, an iRNA agent can comprise one or more deoxynucleosides, including, for example, a deoxynucleoside overhang(s), or one or more deoxynucleosides within the double stranded portion of a dsRNA. In certain embodiments, the RNA molecule comprises a percentage of deoxyribonucleosides of at least 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95% or higher (but not 100%) deoxyribonucleosides, e.g., in one or both strands.


As used herein, the term “nucleotide overhang” refers to at least one unpaired nucleotide that protrudes from the duplex structure of an iRNA, e.g., a dsRNA. For example, when a 3′-end of one strand of a dsRNA extends beyond the 5′-end of the other strand, or vice versa, there is a nucleotide overhang. A dsRNA can comprise an overhang of at least one nucleotide; alternatively, the overhang can comprise at least two nucleotides, at least three nucleotides, at least four nucleotides, or at least five nucleotides or more. A nucleotide overhang can comprise or consist of a nucleotide/nucleoside analog, including a deoxynucleotide/nucleoside. The overhang(s) may be on the sense strand, the antisense strand or any combination thereof. Furthermore, the nucleotide(s) of an overhang can be present on the 5′ end, 3′ end or both ends of either an antisense or sense strand of a dsRNA.


In some embodiments, the antisense strand of a dsRNA has a 1-10 nucleotide overhang at the 3′ end and/or the 5′ end. In some embodiments, the sense strand of a dsRNA has a 1-10 nucleotide overhang at the 3′ end and/or the 5′ end. In some embodiments, one or more of the nucleotides in the overhang is replaced with a nucleoside thiophosphate.


As used herein, a “pharmaceutical composition” comprises a pharmacologically effective amount of a therapeutic agent (e.g., an iRNA) and a pharmaceutically acceptable carrier. As used herein, “pharmacologically effective amount,” “therapeutically effective amount” or simply “effective amount” refers to that amount of an agent (e.g., iRNA) effective to produce the intended pharmacological, therapeutic or preventive result. For example, in a method of treating a disorder related to SCN9A expression (e.g., pain, e.g., chronic pain or pain-related disorder), an effective amount includes an amount effective to reduce one or more symptoms associated with the disorder (e.g., an amount effective to (a) inhibit pain or (b) inhibit or reduces the expression or activity of SCN9A) or an amount effective to reduce the risk of developing conditions associated with the disorder. For example, if a given clinical treatment is considered effective when there is at least a 10% reduction in a measurable parameter associated with a disease or disorder, a therapeutically effective amount of a drug for the treatment of that disease or disorder is the amount necessary to obtain at least a 10% reduction in that parameter. For example, a therapeutically effective amount of an iRNA targeting SCN9A can reduce a level of SCN9A mRNA or a level of SCN9A protein by any measurable amount, e.g., by at least 10%, 15%, 20%, 25%, 30%, 35%, 40%, 45%, 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, or 95%.


The term “pharmaceutically acceptable carrier” refers to a carrier for administration of a therapeutic agent. Such carriers include, but are not limited to, saline, buffered saline, dextrose, water, glycerol, ethanol, and combinations thereof. The term specifically excludes cell culture medium. For drugs administered orally, pharmaceutically acceptable carriers include, but are not limited to pharmaceutically acceptable excipients such as inert diluents, disintegrating agents, binding agents, lubricating agents, sweetening agents, flavoring agents, coloring agents and preservatives. Suitable inert diluents include sodium and calcium carbonate, sodium and calcium phosphate, and lactose, while corn starch and alginic acid are suitable disintegrating agents. Binding agents may include starch and gelatin, while the lubricating agent, if present, will generally be magnesium stearate, stearic acid or talc. If desired, the tablets may be coated with a material such as glyceryl monostearate or glyceryl distearate, to delay absorption in the gastrointestinal tract. Agents included in drug formulations are described further herein below.


As used herein, the term “SNALP” refers to a stable nucleic acid-lipid particle. A SNALP represents a vesicle of lipids coating a reduced aqueous interior comprising a nucleic acid such as an iRNA or a plasmid from which an iRNA is transcribed. SNALPs are described, e.g., in U.S. Patent Application Publication Nos. 2006/0240093, 2007/0135372, and in International Application No. WO 2009/082817. These applications are incorporated herein by reference in their entirety. In some embodiments, the SNALP is a SPLP. As used herein, the term “SPLP” refers to a nucleic acid-lipid particle comprising plasmid DNA encapsulated within a lipid vesicle.


As used herein, the term “strand comprising a sequence” refers to an oligonucleotide comprising a chain of nucleotides that is described by the sequence referred to using the standard nucleotide nomenclature.


As used herein, a “subject” to be treated according to the methods described herein, includes a human or non-human animal, e.g., a mammal. The mammal may be, for example, a rodent (e.g., a rat or mouse) or a primate (e.g., a monkey). In some embodiments, the subject is a human.


A “subject in need thereof” includes a subject having, suspected of having, or at risk of developing a disorder related to SCN9A expression, e.g., overexpression (e.g., pain, e.g., chronic pain or a pain-related disorder). In some embodiments, the subject has, or is suspected of having, a disorder related to SCN9A expression or overexpression. In some embodiments, the subject is at risk of developing a disorder related to SCN9A expression or overexpression.


As used herein, “target sequence” refers to a contiguous portion of the nucleotide sequence of an mRNA molecule formed during the transcription of a gene, e.g., SCN9A, including mRNA that is a product of RNA processing of a primary transcription product. The target portion of the sequence will be at least long enough to serve as a substrate for iRNA-directed cleavage at or near that portion. For example, the target sequence will generally be from 9-36 nucleotides in length, e.g., 15-30 nucleotides in length, including all sub-ranges therebetween. As non-limiting examples, the target sequence can be from 15-30 nucleotides, 15-26 nucleotides, 15-23 nucleotides, 15-22 nucleotides, 15-21 nucleotides, 15-20 nucleotides, 15-19 nucleotides, 15-18 nucleotides, 15-17 nucleotides, 18-30 nucleotides, 18-26 nucleotides, 18-23 nucleotides, 18-22 nucleotides, 18-21 nucleotides, 18-20 nucleotides, 19-30 nucleotides, 19-26 nucleotides, 19-23 nucleotides, 19-22 nucleotides, 19-21 nucleotides, 19-20 nucleotides, 20-30 nucleotides, 20-26 nucleotides, 20-25 nucleotides, 20-24 nucleotides, 20-23 nucleotides, 20-22 nucleotides, 20-21 nucleotides, 21-30 nucleotides, 21-26 nucleotides, 21-25 nucleotides, 21-24 nucleotides, 21-23 nucleotides, or 21-22 nucleotides.


As used herein, the phrases “therapeutically effective amount” and “prophylactically effective amount” and the like refer to an amount that provides a therapeutic benefit in the treatment, prevention, or management of any disorder or pathological process related to SCN9A expression (e.g., pain, e.g., chronic pain or a pain-related disorder). The specific amount that is therapeutically effective may vary depending on factors known in the art, such as, for example, the type of disorder or pathological process, the patient's history and age, the stage of the disorder or pathological process, and the administration of other therapies.


In the context of the present disclosure, the terms “treat,” “treatment,” and the like mean to prevent, delay, relieve or alleviate at least one symptom associated with a disorder related to SCN9A expression, or to slow or reverse the progression or anticipated progression of such a disorder. For example, the methods featured herein, when employed to treat pain, e.g., chronic pain or a pain-related disorder, may serve to reduce or prevent one or more symptoms of the pain, e.g., chronic pain, as described herein, or to reduce the risk or severity of associated conditions. Thus, unless the context clearly indicates otherwise, the terms “treat,” “treatment,” and the like are intended to encompass prophylaxis, e.g., prevention of disorders and/or symptoms of disorders related to SCN9A expression. Treatment can also mean prolonging survival as compared to expected survival in the absence of treatment.


By “lower” in the context of a disease marker or symptom is meant any decrease, e.g., a statistically or clinically significant decrease in such level. The decrease can be, for example, at least 10%, at least 20%, at least 30%, at least 40%, at least 40%, at least 50%, at least 60%, at least 70%, at least 80%, or at least 90%. The decrease can be down to a level accepted as within the range of normal for an individual without such disorder.


As used herein, “SCN9A” refers to “sodium channel, voltage gated, type IX alpha subunit” gene (“SCN9A gene”), the corresponding mRNA (“SCN9A mRNA”), or the corresponding protein (“SCN9A protein”). The sequence of a human SCN9A mRNA transcript can be found at SEQ ID NO: 1 or SEQ ID NO: 4001.


In the event of a discrepancy between the recited positions of the duplexes presented herein and the alignment of the duplexes to the recited sequences, the alignment of the duplexes to the recited sequence will govern.


II. iRNA Agents

Described herein are iRNA agents that modulate (e.g., inhibit) the expression of SCN9A.


In some embodiments, the iRNA agent activates the expression of SCN9A in a cell or mammal.


In some embodiments, the iRNA agent includes double-stranded ribonucleic acid (dsRNA) molecules for inhibiting the expression of SCN9A in a cell or in a subject (e.g., in a mammal, e.g., in a human), where the dsRNA includes an antisense strand having a region of complementarity which is complementary to at least a part of an mRNA formed in the expression of SCN9A, and where the region of complementarity is 30 nucleotides or less in length, generally 19-24 nucleotides in length, and where the dsRNA, upon contact with a cell expressing SCN9A, inhibits the expression of SCN9A, e.g., by at least 10%, 20%, 30%, 40%, or 50%.


The modulation (e.g., inhibition) of expression of SCN9A can be assayed by, for example, a PCR or branched DNA (bDNA)-based method, or by a protein-based method, such as by Western blot. Expression of SCN9A in cell culture, such as in COS cells, ARPE-19 cells, hTERT RPE-1 cells, HeLa cells, primary hepatocytes, HepG2 cells, primary cultured cells or in a biological sample from a subject can be assayed by measuring SCN9A mRNA levels, such as by bDNA or TaqMan assay, or by measuring protein levels, such as by immunofluorescence analysis, using, for example, Western Blotting or flow cytometric techniques.


A dsRNA typically includes two RNA strands that are sufficiently complementary to hybridize to form a duplex structure under conditions in which the dsRNA will be used. One strand of a dsRNA (the antisense strand) typically includes a region of complementarity that is substantially complementary, and generally fully complementary, to a target sequence, derived from the sequence of an mRNA formed during the expression of SCN9A. The other strand (the sense strand) typically includes a region that is complementary to the antisense strand, such that the two strands hybridize and form a duplex structure when combined under suitable conditions. Generally, the duplex structure is between 15 and 30 inclusive, more generally between 18 and 25 inclusive, yet more generally between 19 and 24 inclusive, and most generally between 19 and 21 base pairs in length, inclusive. Similarly, the region of complementarity to the target sequence is between 15 and 30 inclusive, more generally between 18 and 25 inclusive, yet more generally between 19 and 24 inclusive, and most generally between 19 and 21 nucleotides in length, inclusive.


In some embodiments, the dsRNA is between 15 and 20 nucleotides in length, inclusive, and in other embodiments, the dsRNA is between 25 and 30 nucleotides in length, inclusive. As the ordinarily skilled person will recognize, the targeted region of an RNA targeted for cleavage will most often be part of a larger RNA molecule, often an mRNA molecule. Where relevant, a “part” of an mRNA target is a contiguous sequence of an mRNA target of sufficient length to be a substrate for RNAi-directed cleavage (i.e., cleavage through a RISC pathway). dsRNAs having duplexes as short as 9 base pairs can, under some circumstances, mediate RNAi-directed RNA cleavage. Most often a target will be at least 15 nucleotides in length, e.g., 15-30 nucleotides in length.


One of skill in the art will also recognize that the duplex region is a primary functional portion of a dsRNA, e.g., a duplex region of 9 to 36, e.g., 15-30 base pairs. Thus, in some embodiments, to the extent that it becomes processed to a functional duplex of e.g., 15-30 base pairs that targets a desired RNA for cleavage, an RNA molecule or complex of RNA molecules having a duplex region greater than 30 base pairs is a dsRNA. Thus, an ordinarily skilled artisan will recognize that in some embodiments, then, an miRNA is a dsRNA. In some embodiments, a dsRNA is not a naturally occurring miRNA. In some embodiments, an iRNA agent useful to target SCN9A expression is not generated in the target cell by cleavage of a larger dsRNA.


A dsRNA as described herein may further include one or more single-stranded nucleotide overhangs. The dsRNA can be synthesized by standard methods known in the art as further discussed below, e.g., by use of an automated DNA synthesizer, such as are commercially available from, for example, Biosearch, Applied Biosystems, Inc.


In some embodiments, SCN9A is a human SCN9A.


In specific embodiments, the dsRNA comprises a sense strand that comprises or consists of a sense sequence selected from the sense sequences provided in Tables 2A, 2B, 4A, 4B, 5A, 5B, 6A, 6B, 13A, 13B, 14A, 14B, 15A, 15B, 16, 18, or 20 and an antisense strand that comprises or consists of an antisense sequence selected from the antisense sequences provided in Tables 2A, 2B, 4A, 4B, 5A, 5B, 6A, 6B, 13A, 13B, 14A, 14B, 15A, 15B, 16, 18, or 20.


In some aspects, a dsRNA will include at least sense and antisense nucleotide sequences, whereby the sense strand is selected from the sequences provided in Tables 2A, 2B, 4A, 4B, 5A, 5B, 6A, 6B, 13A, 13B, 14A, 14B, 15A, 15B, 16, 18, or 20 and the corresponding antisense strand is selected from the sequences provided in Tables 2A, 2B, 4A, 4B, 5A, 5B, 6A, 6B, 13A, 13B, 14A, 14B, 15A, 15B, 16, 18, or 20.


In these aspects, one of the two sequences is complementary to the other of the two sequences, with one of the sequences being substantially complementary to a sequence of an mRNA generated by the expression of SCN9A. As such, a dsRNA will include two oligonucleotides, where one oligonucleotide is described as the sense strand, and the second oligonucleotide is described as the corresponding antisense strand. As described elsewhere herein and as known in the art, the complementary sequences of a dsRNA can also be contained as self-complementary regions of a single nucleic acid molecule, as opposed to being on separate oligonucleotides.


The skilled person is well aware that dsRNAs having a duplex structure of between 20 and 23, but specifically 21, base pairs have been hailed as particularly effective in inducing RNA interference (Elbashir et al., EMBO 2001, 20:6877-6888). However, others have found that shorter or longer RNA duplex structures can be effective as well.


In the embodiments described above, by virtue of the nature of the oligonucleotide sequences provided in Tables 2A, 2B, 4A, 4B, 5A, 5B, 6A, 6B, 13A, 13B, 14A, 14B, 15A, 15B, 16, 18, and 20, dsRNAs described herein can include at least one strand of a length of minimally 19 nucleotides. It can be reasonably expected that shorter duplexes having one of the sequences of Tables 2A, 2B, 4A, 4B, 5A, 5B, 6A, 6B, 13A, 13B, 14A, 14B, 15A, 15B, 16, 18, and 20 minus only a few nucleotides on one or both ends will be similarly effective as compared to the dsRNAs described above.


In some embodiments, the dsRNA has a partial sequence of at least 15, 16, 17, 18, 19, 20, or more contiguous nucleotides from one of the sequences of Tables 2A, 2B, 4A, 4B, 5A, 5B, 6A, 6B, 13A, 13B, 14A, 14B, 15A, 15B, 16, 18, or 20.


In some embodiments, the dsRNA has an antisense sequence that comprises at least 15, 16, 17, 18, or 19 contiguous nucleotides of an antisense sequence provided in Tables 2A, 2B, 4A, 4B, 5A, 5B, 6A, 6B, 13A, 13B, 14A, 14B, 15A, 15B, 16, 18, or 20 and a sense sequence that comprises at least 15, 16, 17, 18, or 19 contiguous nucleotides of a corresponding sense sequence provided in Tables 2A, 2B, 4A, 4B, 5A, 5B, 6A, 6B, 13A, 13B, 14A, 14B, 15A, 15B, 16, 18, or 20.


In some embodiments, the dsRNA comprises an antisense sequence that comprises at least 15, 16, 17, 18, 19, 20, 21, 22, or 23 contiguous nucleotides of an antisense sequence provided in Tables 2A, 2B, 4A, 4B, 5A, 5B, 6A, 6B, 13A, 13B, 14A, 14B, 15A, 15B, 16, 18, or 20 and a sense sequence that comprises at least 15, 16, 17, 18, 19, 20, or 21 contiguous nucleotides of a corresponding sense sequence provided in Tables 2A, 2B, 4A, 4B, 5A, 5B, 6A, 6B, 13A, 13B, 14A, 14B, 15A, 15B, 16, 18, or 20.


In some such embodiments, the dsRNA, although it comprises only a portion of the sequences provided in Tables 2A, 2B, 4A, 4B, 5A, 5B, 6A, 6B, 13A, 13B, 14A, 14B, 15A, 15B, 16, 18, or 20 is equally effective in inhibiting a level of SCN9A expression as is a dsRNA that comprises the full-length sequences provided in Tables 2A, 2B, 4A, 4B, 5A, 5B, 6A, 6B, 13A, 13B, 14A, 14B, 15A, 15B, 16, 18, or 20. In some embodiments, the dsRNA differs in its inhibition of a level of expression of SCN9A by not more than 5, 10, 15, 20, 25, 30, 35, 40, 45, or 50% inhibition compared with a dsRNA comprising the full sequence disclosed herein.


In some embodiments, an iRNA of Table 2A, 2B, 4A, 4B, 5A, 5B, 6A, 6B, 13A, 13B, 14A, 14B, 15A, 15B, 16, 18, or 20 decreases SCN9A protein or SCN9A mRNA levels in a cell. In some embodiments, the cell is a rodent cell (e.g., a rat cell), or a primate cell (e.g., a cynomolgus monkey cell or a human cell). In some embodiments, SCN9A protein or SCN9A mRNA levels are reduced by at least 30%, 40%, 50%, 60%, 70%, 80%, 90%, or 95%. In some embodiments, the iRNA of Table 2A, 2B, 4A, 4B, 5A, 5B, 6A, 6B, 13A, 13B, 14A, 14B, 15A, 15B, 16, 18, or 20 that inhibits SCN9A in a human cell has less than 5, 4, 3, 2, or 1 mismatches to the corresponding portion of human SCN9A. In some embodiments, the iRNA of Table 2A, 2B, 4A, 4B, 5A, 5B, 6A, 6B, 13A, 13B, 14A, 14B, 15A, 15B, 16, 18, and 20 that inhibits SCN9A in a human cell has no mismatches to the corresponding portion of human SCN9A.


iRNAs designed based on human sequences can have utility, e.g., for inhibiting SCN9A in human cells, e.g., for therapeutic purposes, or for inhibiting SCN9A in rodent cells, e.g., for research characterizing SCN9A in a rodent model.


In some embodiments, an iRNA described herein comprises an antisense strand comprising at least 15 contiguous nucleotides, with 0, 1, 2, or 3 mismatches, of a portion of nucleotide sequence of SEQ ID NO: 2. In some embodiments, an iRNA described herein comprises a sense strand comprising at least 15 contiguous nucleotides, with 0, or 1, 2, or 3 mismatches, of the corresponding portion of the nucleotide sequence of SEQ ID NO: 1.


A human SCN9A mRNA may have the sequence of SEQ ID NO: 1 provided herein.



Homo sapiens Sodium Channel, Voltage Gated, Type IX Alpha Subunit (SCN9A), Transcript Variant 1, mRNA










(SEQ ID NO: 1)



CGGGGCUGCUACCUCCACGGGCGCGCCCUGGCAGGAGGGGCGCAGUCUGCUUGCAGGCGGUCGCCAGCGC






UCCAGCGGCGGCUGUCGGCUUUCCAAUUCCGCCAGCUCGGCUGAGGCUGGGCUAGCCUGGGUGCCAGUGG





CUGCUAGCGGCAGGCGUCCCCUGAGCAACAGGAGCCCAGAGAAAAAGAAGCAGCCCUGAGAGAGCGCCGG





GGAAGGAGAGGCCCGCGCCCUCUCCUGGAGCCAGAUUCUGCAGGUGCACUGGGUGGGGAUGAUCGGCGGG





CUAGGUUGCAAGCCUCUUAUGUGAGGAGCUGAAGAGGAAUUAAAAUAUACAGGAUGAAAAGAUGGCAAUG





UUGCCUCCCCCAGGACCUCAGAGCUUUGUCCAUUUCACAAAACAGUCUCUUGCCCUCAUUGAACAACGCA





UUGCUGAAAGAAAAUCAAAGGAACCCAAAGAAGAAAAGAAAGAUGAUGAUGAAGAAGCCCCAAAGCCAAG





CAGUGACUUGGAAGCUGGCAAACAGCUGCCCUUCAUCUAUGGGGACAUUCCUCCCGGCAUGGUGUCAGAG





CCCCUGGAGGACUUGGACCCCUACUAUGCAGACAAAAAGACUUUCAUAGUAUUGAACAAAGGGAAAACAA





UCUUCCGUUUCAAUGCCACACCUGCUUUAUAUAUGCUUUCUCCUUUCAGUCCUCUAAGAAGAAUAUCUAU





UAAGAUUUUAGUACACUCCUUAUUCAGCAUGCUCAUCAUGUGCACUAUUCUGACAAACUGCAUAUUUAUG





ACCAUGAAUAACCCACCGGACUGGACCAAAAAUGUCGAGUACACUUUUACUGGAAUAUAUACUUUUGAAU





CACUUGUAAAAAUCCUUGCAAGAGGCUUCUGUGUAGGAGAAUUCACUUUUCUUCGUGACCCGUGGAACUG





GCUGGAUUUUGUCGUCAUUGUUUUUGCGUAUUUAACAGAAUUUGUAAACCUAGGCAAUGUUUCAGCUCUU





CGAACUUUCAGAGUAUUGAGAGCUUUGAAAACUAUUUCUGUAAUCCCAGGCCUGAAGACAAUUGUAGGGG





CUUUGAUCCAGUCAGUGAAGAAGCUUUCUGAUGUCAUGAUCCUGACUGUGUUCUGUCUGAGUGUGUUUGC





ACUAAUUGGACUACAGCUGUUCAUGGGAAACCUGAAGCAUAAAUGUUUUCGAAAUUCACUUGAAAAUAAU





GAAACAUUAGAAAGCAUAAUGAAUACCCUAGAGAGUGAAGAAGACUUUAGAAAAUAUUUUUAUUACUUGG





AAGGAUCCAAAGAUGCUCUCCUUUGUGGUUUCAGCACAGAUUCAGGUCAGUGUCCAGAGGGGUACACCUG





UGUGAAAAUUGGCAGAAACCCUGAUUAUGGCUACACGAGCUUUGACACUUUCAGCUGGGCCUUCUUAGCC





UUGUUUAGGCUAAUGACCCAAGAUUACUGGGAAAACCUUUACCAACAGACGCUGCGUGCUGCUGGCAAAA





CCUACAUGAUCUUCUUUGUCGUAGUGAUUUUCCUGGGCUCCUUUUAUCUAAUAAACUUGAUCCUGGCUGU





GGUUGCCAUGGCAUAUGAAGAACAGAACCAGGCAAACAUUGAAGAAGCUAAACAGAAAGAAUUAGAAUUU





CAACAGAUGUUAGACCGUCUUAAAAAAGAGCAAGAAGAAGCUGAGGCAAUUGCAGCGGCAGCGGCUGAAU





AUACAAGUAUUAGGAGAAGCAGAAUUAUGGGCCUCUCAGAGAGUUCUUCUGAAACAUCCAAACUGAGCUC





UAAAAGUGCUAAAGAAAGAAGAAACAGAAGAAAGAAAAAGAAUCAAAAGAAGCUCUCCAGUGGAGAGGAA





AAGGGAGAUGCUGAGAAAUUGUCGAAAUCAGAAUCAGAGGACAGCAUCAGAAGAAAAAGUUUCCACCUUG





GUGUCGAAGGGCAUAGGCGAGCACAUGAAAAGAGGUUGUCUACCCCCAAUCAGUCACCACUCAGCAUUCG





UGGCUCCUUGUUUUCUGCAAGGCGAAGCAGCAGAACAAGUCUUUUUAGUUUCAAAGGCAGAGGAAGAGAU





AUAGGAUCUGAGACUGAAUUUGCCGAUGAUGAGCACAGCAUUUUUGGAGACAAUGAGAGCAGAAGGGGCU





CACUGUUUGUGCCCCACAGACCCCAGGAGCGACGCAGCAGUAACAUCAGCCAAGCCAGUAGGUCCCCACC





AAUGCUGCCGGUGAACGGGAAAAUGCACAGUGCUGUGGACUGCAACGGUGUGGUCUCCCUGGUUGAUGGA





CGCUCAGCCCUCAUGCUCCCCAAUGGACAGCUUCUGCCAGAGGGCACGACCAAUCAAAUACACAAGAAAA





GGCGUUGUAGUUCCUAUCUCCUUUCAGAGGAUAUGCUGAAUGAUCCCAACCUCAGACAGAGAGCAAUGAG





UAGAGCAAGCAUAUUAACAAACACUGUGGAAGAACUUGAAGAGUCCAGACAAAAAUGUCCACCUUGGUGG





UACAGAUUUGCACACAAAUUCUUGAUCUGGAAUUGCUCUCCAUAUUGGAUAAAAUUCAAAAAGUGUAUCU





AUUUUAUUGUAAUGGAUCCUUUUGUAGAUCUUGCAAUUACCAUUUGCAUAGUUUUAAACACAUUAUUUAU





GGCUAUGGAACACCACCCAAUGACUGAGGAAUUCAAAAAUGUACUUGCUAUAGGAAAUUUGGUCUUUACU





GGAAUCUUUGCAGCUGAAAUGGUAUUAAAACUGAUUGCCAUGGAUCCAUAUGAGUAUUUCCAAGUAGGCU





GGAAUAUUUUUGACAGCCUUAUUGUGACUUUAAGUUUAGUGGAGCUCUUUCUAGCAGAUGUGGAAGGAUU





GUCAGUUCUGCGAUCAUUCAGACUGCUCCGAGUCUUCAAGUUGGCAAAAUCCUGGCCAACAUUGAACAUG





CUGAUUAAGAUCAUUGGUAACUCAGUAGGGGCUCUAGGUAACCUCACCUUAGUGUUGGCCAUCAUCGUCU





UCAUUUUUGCUGUGGUCGGCAUGCAGCUCUUUGGUAAGAGCUACAAAGAAUGUGUCUGCAAGAUCAAUGA





UGACUGUACGCUCCCACGGUGGCACAUGAACGACUUCUUCCACUCCUUCCUGAUUGUGUUCCGCGUGCUG





UGUGGAGAGUGGAUAGAGACCAUGUGGGACUGUAUGGAGGUCGCUGGUCAAGCUAUGUGCCUUAUUGUUU





ACAUGAUGGUCAUGGUCAUUGGAAACCUGGUGGUCCUAAACCUAUUUCUGGCCUUAUUAUUGAGCUCAUU





UAGUUCAGACAAUCUUACAGCAAUUGAAGAAGACCCUGAUGCAAACAACCUCCAGAUUGCAGUGACUAGA





AUUAAAAAGGGAAUAAAUUAUGUGAAACAAACCUUACGUGAAUUUAUUCUAAAAGCAUUUUCCAAAAAGC





CAAAGAUUUCCAGGGAGAUAAGACAAGCAGAAGAUCUGAAUACUAAGAAGGAAAACUAUAUUUCUAACCA





UACACUUGCUGAAAUGAGCAAAGGUCACAAUUUCCUCAAGGAAAAAGAUAAAAUCAGUGGUUUUGGAAGC





AGCGUGGACAAACACUUGAUGGAAGACAGUGAUGGUCAAUCAUUUAUUCACAAUCCCAGCCUCACAGUGA





CAGUGCCAAUUGCACCUGGGGAAUCCGAUUUGGAAAAUAUGAAUGCUGAGGAACUUAGCAGUGAUUCGGA





UAGUGAAUACAGCAAAGUGAGAUUAAACCGGUCAAGCUCCUCAGAGUGCAGCACAGUUGAUAACCCUUUG





CCUGGAGAAGGAGAAGAAGCAGAGGCUGAACCUAUGAAUUCCGAUGAGCCAGAGGCCUGUUUCACAGAUG





GUUGUGUACGGAGGUUCUCAUGCUGCCAAGUUAACAUAGAGUCAGGGAAAGGAAAAAUCUGGUGGAACAU





CAGGAAAACCUGCUACAAGAUUGUUGAACACAGUUGGUUUGAAAGCUUCAUUGUCCUCAUGAUCCUGCUC





AGCAGUGGUGCCCUGGCUUUUGAAGAUAUUUAUAUUGAAAGGAAAAAGACCAUUAAGAUUAUCCUGGAGU





AUGCAGACAAGAUCUUCACUUACAUCUUCAUUCUGGAAAUGCUUCUAAAAUGGAUAGCAUAUGGUUAUAA





AACAUAUUUCACCAAUGCCUGGUGUUGGCUGGAUUUCCUAAUUGUUGAUGUUUCUUUGGUUACUUUAGUG





GCAAACACUCUUGGCUACUCAGAUCUUGGCCCCAUUAAAUCCCUUCGGACACUGAGAGCUUUAAGACCUC





UAAGAGCCUUAUCUAGAUUUGAAGGAAUGAGGGUCGUUGUGAAUGCACUCAUAGGAGCAAUUCCUUCCAU





CAUGAAUGUGCUACUUGUGUGUCUUAUAUUCUGGCUGAUAUUCAGCAUCAUGGGAGUAAAUUUGUUUGCU





GGCAAGUUCUAUGAGUGUAUUAACACCACAGAUGGGUCACGGUUUCCUGCAAGUCAAGUUCCAAAUCGUU





CCGAAUGUUUUGCCCUUAUGAAUGUUAGUCAAAAUGUGCGAUGGAAAAACCUGAAAGUGAACUUUGAUAA





UGUCGGACUUGGUUACCUAUCUCUGCUUCAAGUUGCAACUUUUAAGGGAUGGACGAUUAUUAUGUAUGCA





GCAGUGGAUUCUGUUAAUGUAGACAAGCAGCCCAAAUAUGAAUAUAGCCUCUACAUGUAUAUUUAUUUUG





UCGUCUUUAUCAUCUUUGGGUCAUUCUUCACUUUGAACUUGUUCAUUGGUGUCAUCAUAGAUAAUUUCAA





CCAACAGAAAAAGAAGCUUGGAGGUCAAGACAUCUUUAUGACAGAAGAACAGAAGAAAUACUAUAAUGCA





AUGAAAAAGCUGGGGUCCAAGAAGCCACAAAAGCCAAUUCCUCGACCAGGGAACAAAAUCCAAGGAUGUA





UAUUUGACCUAGUGACAAAUCAAGCCUUUGAUAUUAGUAUCAUGGUUCUUAUCUGUCUCAACAUGGUAAC





CAUGAUGGUAGAAAAGGAGGGUCAAAGUCAACAUAUGACUGAAGUUUUAUAUUGGAUAAAUGUGGUUUUU





AUAAUCCUUUUCACUGGAGAAUGUGUGCUAAAACUGAUCUCCCUCAGACACUACUACUUCACUGUAGGAU





GGAAUAUUUUUGAUUUUGUGGUUGUGAUUAUCUCCAUUGUAGGUAUGUUUCUAGCUGAUUUGAUUGAAAC





GUAUUUUGUGUCCCCUACCCUGUUCCGAGUGAUCCGUCUUGCCAGGAUUGGCCGAAUCCUACGUCUAGUC





AAAGGAGCAAAGGGGAUCCGCACGCUGCUCUUUGCUUUGAUGAUGUCCCUUCCUGCGUUGUUUAACAUCG





GCCUCCUGCUCUUCCUGGUCAUGUUCAUCUACGCCAUCUUUGGAAUGUCCAACUUUGCCUAUGUUAAAAA





GGAAGAUGGAAUUAAUGACAUGUUCAAUUUUGAGACCUUUGGCAACAGUAUGAUUUGCCUGUUCCAAAUU





ACAACCUCUGCUGGCUGGGAUGGAUUGCUAGCACCUAUUCUUAACAGUAAGCCACCCGACUGUGACCCAA





AAAAAGUUCAUCCUGGAAGUUCAGUUGAAGGAGACUGUGGUAACCCAUCUGUUGGAAUAUUCUACUUUGU





UAGUUAUAUCAUCAUAUCCUUCCUGGUUGUGGUGAACAUGUACAUUGCAGUCAUACUGGAGAAUUUUAGU





GUUGCCACUGAAGAAAGUACUGAACCUCUGAGUGAGGAUGACUUUGAGAUGUUCUAUGAGGUUUGGGAGA





AGUUUGAUCCCGAUGCGACCCAGUUUAUAGAGUUCUCUAAACUCUCUGAUUUUGCAGCUGCCCUGGAUCC





UCCUCUUCUCAUAGCAAAACCCAACAAAGUCCAGCUCAUUGCCAUGGAUCUGCCCAUGGUUAGUGGUGAC





CGGAUCCAUUGUCUUGACAUCUUAUUUGCUUUUACAAAGCGUGUUUUGGGUGAGAGUGGGGAGAUGGAUU





CUCUUCGUUCACAGAUGGAAGAAAGGUUCAUGUCUGCAAAUCCUUCCAAAGUGUCCUAUGAACCCAUCAC





AACCACACUAAAACGGAAACAAGAGGAUGUGUCUGCUACUGUCAUUCAGCGUGCUUAUAGACGUUACCGC





UUAAGGCAAAAUGUCAAAAAUAUAUCAAGUAUAUACAUAAAAGAUGGAGACAGAGAUGAUGAUUUACUCA





AUAAAAAAGAUAUGGCUUUUGAUAAUGUUAAUGAGAACUCAAGUCCAGAAAAAACAGAUGCCACUUCAUC





CACCACCUCUCCACCUUCAUAUGAUAACAAAGCCAGACAAAGAGAAAUAUGAACAAGACAGAACAGAAAA





GGAAGACAAAGGGAAAGACAGCAAGGAAAGCAAAAAAUAGAGCUUCAUUUUUGAUAUAUUGUUUACAGCC





UGUGAAAGUGAUUUAUUUGUGUUAAUAAAACUCUUUUGAGGAAGUCUAUGCCAAAAUCCUUUUUAUCAAA





AUAUUCUCGAAGGCAGUGCAGUCACUAACUCUGAUUUCCUAAGAAAGGUGGGCAGCAUUAGCAGAUGGUU





AUUUUUGCACUGAUGAUUCUUUAAGAAUCGUAAGAGAACUCUGUAGGAAUUAUUGAUUAUAGCAUACAAA





AGUGAUUCAGUUUUUUGGUUUUUAAUAAAUCAGAAGACCAUGUAGAAAACUUUUACAUCUGCCUUGUCAU





CUUUUCACAGGAUUGUAAUUAGUCUUGUUUCCCAUGUAAAUAAACAACACACGCAUACAGAAAAAUCUAU





UAUUUAUCUAUUAUUUGGAAAUCAACAAAAGUAUUUGCCUUGGCUUUGCAAUGAAAUGCUUGAUAGAAGU





AAUGGACAUUAGUUAUGAAUGUUUAGUUAAAAUGCAUUAUUAGGGAGCUUGACUUUUUAUCAAUGUACAG





AGGUUAUUCUAUAUUUUGAGGUGCUUAAAUUUAUUCUACAUUGCAUCAGAACCAAUUUAUAUGUGCCUAU





AAAAUGCCAUGGGAUUAAAAAUAUAUGUAGGCUAUUCAUUUCUACAAAUGUUUUUCAUUCAUCUUGACUC





ACAUGCCAACAAGGAUAAGACUUACCUUUAGAGUAUUGUGUUUCAUAGCCUUUCUUCUUUCAUAUCCCUU





UUUGUUCAUAGAAUAACCACAGAACUUGAAAAAUUAUUCUAAGUACAUAUUACACUCCUCAAAAAAAACA





AAGAUAACUGAGAAAAAAGUUAUUGACAGAAGUUCUAUUUGCUAUUAUUUACAUAGCCUAACAUUUGACU





GUGCUGCCCAAAAUACUGAUAAUAGUCUCUUAAACUCUUUUGUCAAAUUUUCCUGCUUUCUUAUGCAGUA





UUGUUUAGUCAUCCUUUCGCUGUAAGCAAAGUUGAUGAAAUCCUUCCUGAUAUGCAGUUAGUUGUUUGAC





CACGGUACAUACUUGAGCAGAUAAUAACUUGGGCACAGUAUUUAUUGCAUCACUUGUAUACAAUCCCGUG





UUUGGCAAGCUUUCAAAUCAUGUAAUAUGACAGACUUUACACAGAUAUGUGUUUAGUAUGAAUAAAAAAG





CAUUGAAAUAGGGAUUCUUGCCAACUUGCUCUCUUGCCACCAACUUACUUUCCUAAAUUAUGGAAGUAAU





CUUUUUUGGAUAUACUUCAAUGUAUACAAUGAGGAAGAUGUCACCUUCUCCUUAAAAUUCUAUGAUGUGA





AAUAUAUUUUGCCUCAAUCAACACAGUACCAUGGGCUUCUAAUUUAUCAAGCACAUAUUCAUUUUGCAUU





AGCUGUAGACAUCUAGUUUUUUGAAAACACCUAUUAAUAGUAAUUUGAAAAGAAAUAACCAUAAUGCUUU





UUUUCGUGAGUUUAUUUCAGGAAUAUGAGAUCUUUCUUCUAUAAAGUUAUUCAUGCACAGGCAAAAAUUG





AGCUACACAGGUAGAAUGUAGUUUUACUUAGAAGAUUUUUGUGGGAGGUUUUGAAGCAAAUAUAUAAAAC





AACUUUCACUAAUUUGCUUUCCAUAUUUAAAAAAUAAUAAAUUACAUUUAUAUAAUAAAUGUUUAAAGCA





CAUAUUUUUUGUUGUUCUGGCAAUUUAAAAAGAAAGAGGAUUUAAACGUACCUAUAGAAACAAAGAUUUA





UGGUUAAAGAAUGAGAUCAGAAGUCUAGAAUGUUUUUAAAUUGUGAUAUAUUUUACAACAUCCGUUAUUA





CUUUGAGACAUUUGUCCUAAUCUACGUAUAAAACUCAAUCUAGGGCUAAAGAUUCUUUAUACCAUCUUAG





GUUCAUUCAUCUUAGGCUAUUUGAACCACUUUUUAAUUUAAUAUGAAAGACACCAUGCAGUGUUUUCCGA





GACUACAUAGAUCAUUUUAUCACAUACCUACCAAGCCUGUUGGAAAUAGGUUUUGAUAAUUUAAGUAGGG





ACCUAUACAAAAUAUAUUACAUUUAUCAGAUUUUUAAAUACAUUCAAUUAAGAAUUUAACAUCACCUUAA





AUUUGAAUUCAAUCUACCGUUAUUUCAAACUCACAAAUAUAACUGCAUUAUGAAUACUUACAUAAUGUAG





UAAGACAAGAUGUUUGACAGGUUCGUGUGUAAUUUUCUAUUAAUGUUUUUACAUUGCCUUGUUUUUAUGU





AAAAUAAAAAAUAUGGGCAACUGGUUUGUUAACAACACAAUUUCUUCUUAGCAUUUCAAAAAUAUAUAUA





AAGUUGUUCUUUUUCCUAUUUCAUGAACUAUGUUUUUUUUUAAAAUAACAUGGUUAAGUUUUAUAUAUAU





UUACGUUUGUUUCAGGAAUGUCUACUUGUGACUUUUUAUCAAUUAAAAAUAAUAUUUGGAAGAAAGAGCU





UAUUAAGUAUAAGCUUGAAGUAAAAUUAGACCUCUCUUUCCAUGUAGAUUACUGUUUGUACUGAUGGUUU





CACCCUUCAGAAGGCACUGUCAUAUUAAUAUUUAAAUUUUAUAAUCGCUGAACUUAUUACACCCAACAAU





ACAGAAAGGCAGUUACACUGAAGAACUUAACUUAGAAUAAAAUGGAAGCAAACAGGUUUUCUAAAAACUU





UUUUAAGUGACCAGGUCUCGCUCUGUCACCCAGGCUAGAGUGCAAUGGCAUGAUCAUAGCUCUCUGCAGC





CUCAACUCUGGGCUCAAGCAACCCUCCUGCCUCAGCCUCCCAAGUAGCUAAGACUACAGGUACAUGCCAC





CAUGCCUGGCUAAUAUUUAAAUUUUUGUAGAUAAGGGGUCUUGCUAUGUUGCCCAGGCUAGUCUCAAACU





CCUGGCUUCAAGUGUUCCUACUGUCAUGACCUGCCAACAUGCUGGGGUUACAGGCAUGAGCCACCAUGCC





CCAAACAGGUUUGAACACAAAUCUUUCGGAUGAAAAUUAGAGAACCUAAUUUUAGCUUUUUGAUAGUUAC





CUAGUUUGCAAAAGAUUUGGGUGACUUGUGAGCUGUUUUUAAAUGCUGAUUGUUGAACAUCACAACCCAA





AAUACUUAGCAUGAUUUUAUAGAGUUUUGAUAGCUUUAUUAAAAAGAGUGAAAAUAAAAUGCAUAUGUAA





AUAAAGCAGUUCUAAAUAGCUAUUUCAGAGAAAUGUUAAUAGAAGUGCUGAAAGAAGGGCCAACUAAAUU





AGGAUGGCCAGGGAAUUGGCCUGGGUUUAGGACCUAUGUAUGAAGGCCACCAAUUUUUUAAAAAUAUCUG





UGGUUUAUUAUGUUAUUAUCUUCUUGAGGAAAACAAUCAAGAAUUGCUUCAUGAAAAUAAAUAAAUAGCC





AUGAAUAUCAUAAAGCUGUUUACAUAGGAUUCUUUACAAAUUUCAUAGAUCUAUGAAUGCUCAAAAUGUU





UGAGUUUGCCAUAAAUUAUAUUGUAGUUAUAUUGUAGUUAUACUUGAGACUGACACAUUGUAAUAUAAUC





UAAGAAUAAAAGUUAUACAAAAUAAAAAAAAAAAAA






The reverse complement of SEQ ID NO: 1 is provided as SEQ ID NO: 2 herein:










(SEQ ID NO: 2)



UUUUUUUUUUUUUAUUUUGUAUAACUUUUAUUCUUAGAUUAUAUUACAAUGUGUCAGUCUCAAGUAUAAC






UACAAUAUAACUACAAUAUAAUUUAUGGCAAACUCAAACAUUUUGAGCAUUCAUAGAUCUAUGAAAUUUG





UAAAGAAUCCUAUGUAAACAGCUUUAUGAUAUUCAUGGCUAUUUAUUUAUUUUCAUGAAGCAAUUCUUGA





UUGUUUUCCUCAAGAAGAUAAUAACAUAAUAAACCACAGAUAUUUUUAAAAAAUUGGUGGCCUUCAUACA





UAGGUCCUAAACCCAGGCCAAUUCCCUGGCCAUCCUAAUUUAGUUGGCCCUUCUUUCAGCACUUCUAUUA





ACAUUUCUCUGAAAUAGCUAUUUAGAACUGCUUUAUUUACAUAUGCAUUUUAUUUUCACUCUUUUUAAUA





AAGCUAUCAAAACUCUAUAAAAUCAUGCUAAGUAUUUUGGGUUGUGAUGUUCAACAAUCAGCAUUUAAAA





ACAGCUCACAAGUCACCCAAAUCUUUUGCAAACUAGGUAACUAUCAAAAAGCUAAAAUUAGGUUCUCUAA





UUUUCAUCCGAAAGAUUUGUGUUCAAACCUGUUUGGGGCAUGGUGGCUCAUGCCUGUAACCCCAGCAUGU





UGGCAGGUCAUGACAGUAGGAACACUUGAAGCCAGGAGUUUGAGACUAGCCUGGGCAACAUAGCAAGACC





CCUUAUCUACAAAAAUUUAAAUAUUAGCCAGGCAUGGUGGCAUGUACCUGUAGUCUUAGCUACUUGGGAG





GCUGAGGCAGGAGGGUUGCUUGAGCCCAGAGUUGAGGCUGCAGAGAGCUAUGAUCAUGCCAUUGCACUCU





AGCCUGGGUGACAGAGCGAGACCUGGUCACUUAAAAAAGUUUUUAGAAAACCUGUUUGCUUCCAUUUUAU





UCUAAGUUAAGUUCUUCAGUGUAACUGCCUUUCUGUAUUGUUGGGUGUAAUAAGUUCAGCGAUUAUAAAA





UUUAAAUAUUAAUAUGACAGUGCCUUCUGAAGGGUGAAACCAUCAGUACAAACAGUAAUCUACAUGGAAA





GAGAGGUCUAAUUUUACUUCAAGCUUAUACUUAAUAAGCUCUUUCUUCCAAAUAUUAUUUUUAAUUGAUA





AAAAGUCACAAGUAGACAUUCCUGAAACAAACGUAAAUAUAUAUAAAACUUAACCAUGUUAUUUUAAAAA





AAAACAUAGUUCAUGAAAUAGGAAAAAGAACAACUUUAUAUAUAUUUUUGAAAUGCUAAGAAGAAAUUGU





GUUGUUAACAAACCAGUUGCCCAUAUUUUUUAUUUUACAUAAAAACAAGGCAAUGUAAAAACAUUAAUAG





AAAAUUACACACGAACCUGUCAAACAUCUUGUCUUACUACAUUAUGUAAGUAUUCAUAAUGCAGUUAUAU





UUGUGAGUUUGAAAUAACGGUAGAUUGAAUUCAAAUUUAAGGUGAUGUUAAAUUCUUAAUUGAAUGUAUU





UAAAAAUCUGAUAAAUGUAAUAUAUUUUGUAUAGGUCCCUACUUAAAUUAUCAAAACCUAUUUCCAACAG





GCUUGGUAGGUAUGUGAUAAAAUGAUCUAUGUAGUCUCGGAAAACACUGCAUGGUGUCUUUCAUAUUAAA





UUAAAAAGUGGUUCAAAUAGCCUAAGAUGAAUGAACCUAAGAUGGUAUAAAGAAUCUUUAGCCCUAGAUU





GAGUUUUAUACGUAGAUUAGGACAAAUGUCUCAAAGUAAUAACGGAUGUUGUAAAAUAUAUCACAAUUUA





AAAACAUUCUAGACUUCUGAUCUCAUUCUUUAACCAUAAAUCUUUGUUUCUAUAGGUACGUUUAAAUCCU





CUUUCUUUUUAAAUUGCCAGAACAACAAAAAAUAUGUGCUUUAAACAUUUAUUAUAUAAAUGUAAUUUAU





UAUUUUUUAAAUAUGGAAAGCAAAUUAGUGAAAGUUGUUUUAUAUAUUUGCUUCAAAACCUCCCACAAAA





AUCUUCUAAGUAAAACUACAUUCUACCUGUGUAGCUCAAUUUUUGCCUGUGCAUGAAUAACUUUAUAGAA





GAAAGAUCUCAUAUUCCUGAAAUAAACUCACGAAAAAAAGCAUUAUGGUUAUUUCUUUUCAAAUUACUAU





UAAUAGGUGUUUUCAAAAAACUAGAUGUCUACAGCUAAUGCAAAAUGAAUAUGUGCUUGAUAAAUUAGAA





GCCCAUGGUACUGUGUUGAUUGAGGCAAAAUAUAUUUCACAUCAUAGAAUUUUAAGGAGAAGGUGACAUC





UUCCUCAUUGUAUACAUUGAAGUAUAUCCAAAAAAGAUUACUUCCAUAAUUUAGGAAAGUAAGUUGGUGG





CAAGAGAGCAAGUUGGCAAGAAUCCCUAUUUCAAUGCUUUUUUAUUCAUACUAAACACAUAUCUGUGUAA





AGUCUGUCAUAUUACAUGAUUUGAAAGCUUGCCAAACACGGGAUUGUAUACAAGUGAUGCAAUAAAUACU





GUGCCCAAGUUAUUAUCUGCUCAAGUAUGUACCGUGGUCAAACAACUAACUGCAUAUCAGGAAGGAUUUC





AUCAACUUUGCUUACAGCGAAAGGAUGACUAAACAAUACUGCAUAAGAAAGCAGGAAAAUUUGACAAAAG





AGUUUAAGAGACUAUUAUCAGUAUUUUGGGCAGCACAGUCAAAUGUUAGGCUAUGUAAAUAAUAGCAAAU





AGAACUUCUGUCAAUAACUUUUUUCUCAGUUAUCUUUGUUUUUUUUGAGGAGUGUAAUAUGUACUUAGAA





UAAUUUUUCAAGUUCUGUGGUUAUUCUAUGAACAAAAAGGGAUAUGAAAGAAGAAAGGCUAUGAAACACA





AUACUCUAAAGGUAAGUCUUAUCCUUGUUGGCAUGUGAGUCAAGAUGAAUGAAAAACAUUUGUAGAAAUG





AAUAGCCUACAUAUAUUUUUAAUCCCAUGGCAUUUUAUAGGCACAUAUAAAUUGGUUCUGAUGCAAUGUA





GAAUAAAUUUAAGCACCUCAAAAUAUAGAAUAACCUCUGUACAUUGAUAAAAAGUCAAGCUCCCUAAUAA





UGCAUUUUAACUAAACAUUCAUAACUAAUGUCCAUUACUUCUAUCAAGCAUUUCAUUGCAAAGCCAAGGC





AAAUACUUUUGUUGAUUUCCAAAUAAUAGAUAAAUAAUAGAUUUUUCUGUAUGCGUGUGUUGUUUAUUUA





CAUGGGAAACAAGACUAAUUACAAUCCUGUGAAAAGAUGACAAGGCAGAUGUAAAAGUUUUCUACAUGGU





CUUCUGAUUUAUUAAAAACCAAAAAACUGAAUCACUUUUGUAUGCUAUAAUCAAUAAUUCCUACAGAGUU





CUCUUACGAUUCUUAAAGAAUCAUCAGUGCAAAAAUAACCAUCUGCUAAUGCUGCCCACCUUUCUUAGGA





AAUCAGAGUUAGUGACUGCACUGCCUUCGAGAAUAUUUUGAUAAAAAGGAUUUUGGCAUAGACUUCCUCA





AAAGAGUUUUAUUAACACAAAUAAAUCACUUUCACAGGCUGUAAACAAUAUAUCAAAAAUGAAGCUCUAU





UUUUUGCUUUCCUUGCUGUCUUUCCCUUUGUCUUCCUUUUCUGUUCUGUCUUGUUCAUAUUUCUCUUUGU





CUGGCUUUGUUACACUAUCAUAUGAAGGUGGAGAGGUGGUGGAUGAAGUGGCAUCUGUUUUUUCUGGACU





UGAGUUCUCAUUAACAUUAUCAAAAGCCAUAUCUUUUUUAUUGAGUAAAUCAUCAUCUCUGUCUCCAUCU





UUUAUGUAUAUACUUGAUAUAUUUUUGACAUUUUGCCUUAAGCGGUAACGUCUAUAAGCACGCUGAAUGA





CAGUAGCAGACACAUCCUCUUGUUUCCGUUUUAGUGUGGUUGUGAUGGGUUCAUAGGACACUUUGGAAGG





AUUUGCAGACAUGAACCUUUCUUCCAUCUGUGAACGAAGAGAAUCCAUCUCCCCACUCUCACCCAAAACA





CGCUUUGUAAAAGCAAAUAAGAUGUCAAGACAAUGGAUCCGGUCACCACUAACCAUGGGCAGAUCCAUGG





CAAUGAGCUGGACUUUGUUGGGUUUUGCUAUGAGAAGAGGAGGAUCCAGGGCAGCUGCAAAAUCAGAGAG





UUUAGAGAACUCUAUAAACUGGGUCGCAUCGGGAUCAAACUUCUCCCAAACCUCAUAGAACAUCUCAAAG





UCAUCCUCACUCAGAGGUUCAGUACUUUCUUCAGUGGCAACACUAAAAUUCUCCAGUAUGACUGCAAUGU





ACAUGUUCACCACAACCAGGAAGGAUAUGAUGAUAUAACUAACAAAGUAGAAUAUUCCAACAGAUGGGUU





ACCACAGUCUCCUUCAACUGAACUUCCAGGAUGAACUUUUUUUGGGUCACAGUCGGGUGGCUUACUGUUA





AGAAUAGGUGCUAGCAAUCCAUCCCAGCCAGCAGAGGUUGUAAUUUGGAACAGGCAAAUCAUACUGUUGC





CAAAGGUCUCAAAAUUGAACAUGUCAUUAAUUCCAUCUUCCUUUUUAACAUAGGCAAAGUUGGACAUUCC





AAAGAUGGCGUAGAUGAACAUGACCAGGAAGAGCAGGAGGCCGAUGUUAAACAACGCAGGAAGGGACAUC





AUCAAAGCAAAGAGCAGCGUGCGGAUCCCCUUUGCUCCUUUGACUAGACGUAGGAUUCGGCCAAUCCUGG





CAAGACGGAUCACUCGGAACAGGGUAGGGGACACAAAAUACGUUUCAAUCAAAUCAGCUAGAAACAUACC





UACAAUGGAGAUAAUCACAACCACAAAAUCAAAAAUAUUCCAUCCUACAGUGAAGUAGUAGUGUCUGAGG





GAGAUCAGUUUUAGCACACAUUCUCCAGUGAAAAGGAUUAUAAAAACCACAUUUAUCCAAUAUAAAACUU





CAGUCAUAUGUUGACUUUGACCCUCCUUUUCUACCAUCAUGGUUACCAUGUUGAGACAGAUAAGAACCAU





GAUACUAAUAUCAAAGGCUUGAUUUGUCACUAGGUCAAAUAUACAUCCUUGGAUUUUGUUCCCUGGUCGA





GGAAUUGGCUUUUGUGGCUUCUUGGACCCCAGCUUUUUCAUUGCAUUAUAGUAUUUCUUCUGUUCUUCUG





UCAUAAAGAUGUCUUGACCUCCAAGCUUCUUUUUCUGUUGGUUGAAAUUAUCUAUGAUGACACCAAUGAA





CAAGUUCAAAGUGAAGAAUGACCCAAAGAUGAUAAAGACGACAAAAUAAAUAUACAUGUAGAGGCUAUAU





UCAUAUUUGGGCUGCUUGUCUACAUUAACAGAAUCCACUGCUGCAUACAUAAUAAUCGUCCAUCCCUUAA





AAGUUGCAACUUGAAGCAGAGAUAGGUAACCAAGUCCGACAUUAUCAAAGUUCACUUUCAGGUUUUUCCA





UCGCACAUUUUGACUAACAUUCAUAAGGGCAAAACAUUCGGAACGAUUUGGAACUUGACUUGCAGGAAAC





CGUGACCCAUCUGUGGUGUUAAUACACUCAUAGAACUUGCCAGCAAACAAAUUUACUCCCAUGAUGCUGA





AUAUCAGCCAGAAUAUAAGACACACAAGUAGCACAUUCAUGAUGGAAGGAAUUGCUCCUAUGAGUGCAUU





CACAACGACCCUCAUUCCUUCAAAUCUAGAUAAGGCUCUUAGAGGUCUUAAAGCUCUCAGUGUCCGAAGG





GAUUUAAUGGGGCCAAGAUCUGAGUAGCCAAGAGUGUUUGCCACUAAAGUAACCAAAGAAACAUCAACAA





UUAGGAAAUCCAGCCAACACCAGGCAUUGGUGAAAUAUGUUUUAUAACCAUAUGCUAUCCAUUUUAGAAG





CAUUUCCAGAAUGAAGAUGUAAGUGAAGAUCUUGUCUGCAUACUCCAGGAUAAUCUUAAUGGUCUUUUUC





CUUUCAAUAUAAAUAUCUUCAAAAGCCAGGGCACCACUGCUGAGCAGGAUCAUGAGGACAAUGAAGCUUU





CAAACCAACUGUGUUCAACAAUCUUGUAGCAGGUUUUCCUGAUGUUCCACCAGAUUUUUCCUUUCCCUGA





CUCUAUGUUAACUUGGCAGCAUGAGAACCUCCGUACACAACCAUCUGUGAAACAGGCCUCUGGCUCAUCG





GAAUUCAUAGGUUCAGCCUCUGCUUCUUCUCCUUCUCCAGGCAAAGGGUUAUCAACUGUGCUGCACUCUG





AGGAGCUUGACCGGUUUAAUCUCACUUUGCUGUAUUCACUAUCCGAAUCACUGCUAAGUUCCUCAGCAUU





CAUAUUUUCCAAAUCGGAUUCCCCAGGUGCAAUUGGCACUGUCACUGUGAGGCUGGGAUUGUGAAUAAAU





GAUUGACCAUCACUGUCUUCCAUCAAGUGUUUGUCCACGCUGCUUCCAAAACCACUGAUUUUAUCUUUUU





CCUUGAGGAAAUUGUGACCUUUGCUCAUUUCAGCAAGUGUAUGGUUAGAAAUAUAGUUUUCCUUCUUAGU





AUUCAGAUCUUCUGCUUGUCUUAUCUCCCUGGAAAUCUUUGGCUUUUUGGAAAAUGCUUUUAGAAUAAAU





UCACGUAAGGUUUGUUUCACAUAAUUUAUUCCCUUUUUAAUUCUAGUCACUGCAAUCUGGAGGUUGUUUG





CAUCAGGGUCUUCUUCAAUUGCUGUAAGAUUGUCUGAACUAAAUGAGCUCAAUAAUAAGGCCAGAAAUAG





GUUUAGGACCACCAGGUUUCCAAUGACCAUGACCAUCAUGUAAACAAUAAGGCACAUAGCUUGACCAGCG





ACCUCCAUACAGUCCCACAUGGUCUCUAUCCACUCUCCACACAGCACGCGGAACACAAUCAGGAAGGAGU





GGAAGAAGUCGUUCAUGUGCCACCGUGGGAGCGUACAGUCAUCAUUGAUCUUGCAGACACAUUCUUUGUA





GCUCUUACCAAAGAGCUGCAUGCCGACCACAGCAAAAAUGAAGACGAUGAUGGCCAACACUAAGGUGAGG





UUACCUAGAGCCCCUACUGAGUUACCAAUGAUCUUAAUCAGCAUGUUCAAUGUUGGCCAGGAUUUUGCCA





ACUUGAAGACUCGGAGCAGUCUGAAUGAUCGCAGAACUGACAAUCCUUCCACAUCUGCUAGAAAGAGCUC





CACUAAACUUAAAGUCACAAUAAGGCUGUCAAAAAUAUUCCAGCCUACUUGGAAAUACUCAUAUGGAUCC





AUGGCAAUCAGUUUUAAUACCAUUUCAGCUGCAAAGAUUCCAGUAAAGACCAAAUUUCCUAUAGCAAGUA





CAUUUUUGAAUUCCUCAGUCAUUGGGUGGUGUUCCAUAGCCAUAAAUAAUGUGUUUAAAACUAUGCAAAU





GGUAAUUGCAAGAUCUACAAAAGGAUCCAUUACAAUAAAAUAGAUACACUUUUUGAAUUUUAUCCAAUAU





GGAGAGCAAUUCCAGAUCAAGAAUUUGUGUGCAAAUCUGUACCACCAAGGUGGACAUUUUUGUCUGGACU





CUUCAAGUUCUUCCACAGUGUUUGUUAAUAUGCUUGCUCUACUCAUUGCUCUCUGUCUGAGGUUGGGAUC





AUUCAGCAUAUCCUCUGAAAGGAGAUAGGAACUACAACGCCUUUUCUUGUGUAUUUGAUUGGUCGUGCCC





UCUGGCAGAAGCUGUCCAUUGGGGAGCAUGAGGGCUGAGCGUCCAUCAACCAGGGAGACCACACCGUUGC





AGUCCACAGCACUGUGCAUUUUCCCGUUCACCGGCAGCAUUGGUGGGGACCUACUGGCUUGGCUGAUGUU





ACUGCUGCGUCGCUCCUGGGGUCUGUGGGGCACAAACAGUGAGCCCCUUCUGCUCUCAUUGUCUCCAAAA





AUGCUGUGCUCAUCAUCGGCAAAUUCAGUCUCAGAUCCUAUAUCUCUUCCUCUGCCUUUGAAACUAAAAA





GACUUGUUCUGCUGCUUCGCCUUGCAGAAAACAAGGAGCCACGAAUGCUGAGUGGUGACUGAUUGGGGGU





AGACAACCUCUUUUCAUGUGCUCGCCUAUGCCCUUCGACACCAAGGUGGAAACUUUUUCUUCUGAUGCUG





UCCUCUGAUUCUGAUUUCGACAAUUUCUCAGCAUCUCCCUUUUCCUCUCCACUGGAGAGCUUCUUUUGAU





UCUUUUUCUUUCUUCUGUUUCUUCUUUCUUUAGCACUUUUAGAGCUCAGUUUGGAUGUUUCAGAAGAACU





CUCUGAGAGGCCCAUAAUUCUGCUUCUCCUAAUACUUGUAUAUUCAGCCGCUGCCGCUGCAAUUGCCUCA





GCUUCUUCUUGCUCUUUUUUAAGACGGUCUAACAUCUGUUGAAAUUCUAAUUCUUUCUGUUUAGCUUCUU





CAAUGUUUGCCUGGUUCUGUUCUUCAUAUGCCAUGGCAACCACAGCCAGGAUCAAGUUUAUUAGAUAAAA





GGAGCCCAGGAAAAUCACUACGACAAAGAAGAUCAUGUAGGUUUUGCCAGCAGCACGCAGCGUCUGUUGG





UAAAGGUUUUCCCAGUAAUCUUGGGUCAUUAGCCUAAACAAGGCUAAGAAGGCCCAGCUGAAAGUGUCAA





AGCUCGUGUAGCCAUAAUCAGGGUUUCUGCCAAUUUUCACACAGGUGUACCCCUCUGGACACUGACCUGA





AUCUGUGCUGAAACCACAAAGGAGAGCAUCUUUGGAUCCUUCCAAGUAAUAAAAAUAUUUUCUAAAGUCU





UCUUCACUCUCUAGGGUAUUCAUUAUGCUUUCUAAUGUUUCAUUAUUUUCAAGUGAAUUUCGAAAACAUU





UAUGCUUCAGGUUUCCCAUGAACAGCUGUAGUCCAAUUAGUGCAAACACACUCAGACAGAACACAGUCAG





GAUCAUGACAUCAGAAAGCUUCUUCACUGACUGGAUCAAAGCCCCUACAAUUGUCUUCAGGCCUGGGAUU





ACAGAAAUAGUUUUCAAAGCUCUCAAUACUCUGAAAGUUCGAAGAGCUGAAACAUUGCCUAGGUUUACAA





AUUCUGUUAAAUACGCAAAAACAAUGACGACAAAAUCCAGCCAGUUCCACGGGUCACGAAGAAAAGUGAA





UUCUCCUACACAGAAGCCUCUUGCAAGGAUUUUUACAAGUGAUUCAAAAGUAUAUAUUCCAGUAAAAGUG





UACUCGACAUUUUUGGUCCAGUCCGGUGGGUUAUUCAUGGUCAUAAAUAUGCAGUUUGUCAGAAUAGUGC





ACAUGAUGAGCAUGCUGAAUAAGGAGUGUACUAAAAUCUUAAUAGAUAUUCUUCUUAGAGGACUGAAAGG





AGAAAGCAUAUAUAAAGCAGGUGUGGCAUUGAAACGGAAGAUUGUUUUCCCUUUGUUCAAUACUAUGAAA





GUCUUUUUGUCUGCAUAGUAGGGGUCCAAGUCCUCCAGGGGCUCUGACACCAUGCCGGGAGGAAUGUCCC





CAUAGAUGAAGGGCAGCUGUUUGCCAGCUUCCAAGUCACUGCUUGGCUUUGGGGCUUCUUCAUCAUCAUC





UUUCUUUUCUUCUUUGGGUUCCUUUGAUUUUCUUUCAGCAAUGCGUUGUUCAAUGAGGGCAAGAGACUGU





UUUGUGAAAUGGACAAAGCUCUGAGGUCCUGGGGGAGGCAACAUUGCCAUCUUUUCAUCCUGUAUAUUUU





AAUUCCUCUUCAGCUCCUCACAUAAGAGGCUUGCAACCUAGCCCGCCGAUCAUCCCCACCCAGUGCACCU





GCAGAAUCUGGCUCCAGGAGAGGGCGCGGGCCUCUCCUUCCCCGGCGCUCUCUCAGGGCUGCUUCUUUUU





CUCUGGGCUCCUGUUGCUCAGGGGACGCCUGCCGCUAGCAGCCACUGGCACCCAGGCUAGCCCAGCCUCA





GCCGAGCUGGCGGAAUUGGAAAGCCGACAGCCGCCGCUGGAGCGCUGGCGACCGCCUGCAAGCAGACUGC





GCCCCUCCUGCCAGGGCGCGCCCGUGGAGGUAGCAGCCCCG






A human SCN9A mRNA may have the sequence of SEQ ID NO: 4001 provided herein.



Homo sapiens Sodium Channel, Voltage Gated, Type IX Alpha Subunit (SCN9A), Transcript Variant 2, mRNA










(SEQ ID NO: 4001)



AGTCTGCTTGCAGGCGGTCGCCAGCGCTCCAGCGGCGGCTGTCGGCTTTCCAATTCCGCCAGCTCGGCTG






AGGCTGGGCTAGCCTGGGTGCCAGTGGCTGCTAGCGGCAGGCGTCCCCTGAGCAACAGGAGCCCAGAGAA





AAAGAAGCAGCCCTGAGAGAGCGCCGGGGAAGGAGAGGCCCGCGCCCTCTCCTGGAGCCAGATTCTGCAG





GTGCACTGGGTGGGGATGATCGGCGGGCTAGGTTGCAAGCCTCTTATGTGAGGAGCTGAAGAGGAATTAA





AATATACAGGATGAAAAGATGGCAATGTTGCCTCCCCCAGGACCTCAGAGCTTTGTCCATTTCACAAAAC





AGTCTCTTGCCCTCATTGAACAACGCATTGCTGAAAGAAAATCAAAGGAACCCAAAGAAGAAAAGAAAGA





TGATGATGAAGAAGCCCCAAAGCCAAGCAGTGACTTGGAAGCTGGCAAACAGCTGCCCTTCATCTATGGG





GACATTCCTCCCGGCATGGTGTCAGAGCCCCTGGAGGACTTGGACCCCTACTATGCAGACAAAAAGACTT





TCATAGTATTGAACAAAGGGAAAACAATCTTCCGTTTCAATGCCACACCTGCTTTATATATGCTTTCTCC





TTTCAGTCCTCTAAGAAGAATATCTATTAAGATTTTAGTACACTCCTTATTCAGCATGCTCATCATGTGC





ACTATTCTGACAAACTGCATATTTATGACCATGAATAACCCACCGGACTGGACCAAAAATGTCGAGTACA





CTTTTACTGGAATATATACTTTTGAATCACTTGTAAAAATCCTTGCAAGAGGCTTCTGTGTAGGAGAATT





CACTTTTCTTCGTGACCCGTGGAACTGGCTGGATTTTGTCGTCATTGTTTTTGCGTATTTAACAGAATTT





GTAAACCTAGGCAATGTTTCAGCTCTTCGAACTTTCAGAGTATTGAGAGCTTTGAAAACTATTTCTGTAA





TCCCAGGCCTGAAGACAATTGTAGGGGCTTTGATCCAGTCAGTGAAGAAGCTTTCTGATGTCATGATCCT





GACTGTGTTCTGTCTGAGTGTGTTTGCACTAATTGGACTACAGCTGTTCATGGGAAACCTGAAGCATAAA





TGTTTTCGAAATTCACTTGAAAATAATGAAACATTAGAAAGCATAATGAATACCCTAGAGAGTGAAGAAG





ACTTTAGAAAATATTTTTATTACTTGGAAGGATCCAAAGATGCTCTCCTTTGTGGTTTCAGCACAGATTC





AGGTCAGTGTCCAGAGGGGTACACCTGTGTGAAAATTGGCAGAAACCCTGATTATGGCTACACGAGCTTT





GACACTTTCAGCTGGGCCTTCTTAGCCTTGTTTAGGCTAATGACCCAAGATTACTGGGAAAACCTTTACC





AACAGACGCTGCGTGCTGCTGGCAAAACCTACATGATCTTCTTTGTCGTAGTGATTTTCCTGGGCTCCTT





TTATCTAATAAACTTGATCCTGGCTGTGGTTGCCATGGCATATGAAGAACAGAACCAGGCAAACATTGAA





GAAGCTAAACAGAAAGAATTAGAATTTCAACAGATGTTAGACCGTCTTAAAAAAGAGCAAGAAGAAGCTG





AGGCAATTGCAGCGGCAGCGGCTGAATATACAAGTATTAGGAGAAGCAGAATTATGGGCCTCTCAGAGAG





TTCTTCTGAAACATCCAAACTGAGCTCTAAAAGTGCTAAAGAAAGAAGAAACAGAAGAAAGAAAAAGAAT





CAAAAGAAGCTCTCCAGTGGAGAGGAAAAGGGAGATGCTGAGAAATTGTCGAAATCAGAATCAGAGGACA





GCATCAGAAGAAAAAGTTTCCACCTTGGTGTCGAAGGGCATAGGCGAGCACATGAAAAGAGGTTGTCTAC





CCCCAATCAGTCACCACTCAGCATTCGTGGCTCCTTGTTTTCTGCAAGGCGAAGCAGCAGAACAAGTCTT





TTTAGTTTCAAAGGCAGAGGAAGAGATATAGGATCTGAGACTGAATTTGCCGATGATGAGCACAGCATTT





TTGGAGACAATGAGAGCAGAAGGGGCTCACTGTTTGTGCCCCACAGACCCCAGGAGCGACGCAGCAGTAA





CATCAGCCAAGCCAGTAGGTCCCCACCAATGCTGCCGGTGAACGGGAAAATGCACAGTGCTGTGGACTGC





AACGGTGTGGTCTCCCTGGTTGATGGACGCTCAGCCCTCATGCTCCCCAATGGACAGCTTCTGCCAGAGG





TGATAATAGATAAGGCAACTTCTGATGACAGCGGCACGACCAATCAAATACACAAGAAAAGGCGTTGTAG





TTCCTATCTCCTTTCAGAGGATATGCTGAATGATCCCAACCTCAGACAGAGAGCAATGAGTAGAGCAAGC





ATATTAACAAACACTGTGGAAGAACTTGAAGAGTCCAGACAAAAATGTCCACCTTGGTGGTACAGATTTG





CACACAAATTCTTGATCTGGAATTGCTCTCCATATTGGATAAAATTCAAAAAGTGTATCTATTTTATTGT





AATGGATCCTTTTGTAGATCTTGCAATTACCATTTGCATAGTTTTAAACACATTATTTATGGCTATGGAA





CACCACCCAATGACTGAGGAATTCAAAAATGTACTTGCTATAGGAAATTTGGTCTTTACTGGAATCTTTG





CAGCTGAAATGGTATTAAAACTGATTGCCATGGATCCATATGAGTATTTCCAAGTAGGCTGGAATATTTT





TGACAGCCTTATTGTGACTTTAAGTTTAGTGGAGCTCTTTCTAGCAGATGTGGAAGGATTGTCAGTTCTG





CGATCATTCAGACTGCTCCGAGTCTTCAAGTTGGCAAAATCCTGGCCAACATTGAACATGCTGATTAAGA





TCATTGGTAACTCAGTAGGGGCTCTAGGTAACCTCACCTTAGTGTTGGCCATCATCGTCTTCATTTTTGC





TGTGGTCGGCATGCAGCTCTTTGGTAAGAGCTACAAAGAATGTGTCTGCAAGATCAATGATGACTGTACG





CTCCCACGGTGGCACATGAACGACTTCTTCCACTCCTTCCTGATTGTGTTCCGCGTGCTGTGTGGAGAGT





GGATAGAGACCATGTGGGACTGTATGGAGGTCGCTGGTCAAGCTATGTGCCTTATTGTTTACATGATGGT





CATGGTCATTGGAAACCTGGTGGTCCTAAACCTATTTCTGGCCTTATTATTGAGCTCATTTAGTTCAGAC





AATCTTACAGCAATTGAAGAAGACCCTGATGCAAACAACCTCCAGATTGCAGTGACTAGAATTAAAAAGG





GAATAAATTATGTGAAACAAACCTTACGTGAATTTATTCTAAAAGCATTTTCCAAAAAGCCAAAGATTTC





CAGGGAGATAAGACAAGCAGAAGATCTGAATACTAAGAAGGAAAACTATATTTCTAACCATACACTTGCT





GAAATGAGCAAAGGTCACAATTTCCTCAAGGAAAAAGATAAAATCAGTGGTTTTGGAAGCAGCGTGGACA





AACACTTGATGGAAGACAGTGATGGTCAATCATTTATTCACAATCCCAGCCTCACAGTGACAGTGCCAAT





TGCACCTGGGGAATCCGATTTGGAAAATATGAATGCTGAGGAACTTAGCAGTGATTCGGATAGTGAATAC





AGCAAAGTGAGATTAAACCGGTCAAGCTCCTCAGAGTGCAGCACAGTTGATAACCCTTTGCCTGGAGAAG





GAGAAGAAGCAGAGGCTGAACCTATGAATTCCGATGAGCCAGAGGCCTGTTTCACAGATGGTTGTGTATG





GAGGTTCTCATGCTGCCAAGTTAACATAGAGTCAGGGAAAGGAAAAATCTGGTGGAACATCAGGAAAACC





TGCTACAAGATTGTTGAACACAGTTGGTTTGAAAGCTTCATTGTCCTCATGATCCTGCTCAGCAGTGGTG





CCCTGGCTTTTGAAGATATTTATATTGAAAGGAAAAAGACCATTAAGATTATCCTGGAGTATGCAGACAA





GATCTTCACTTACATCTTCATTCTGGAAATGCTTCTAAAATGGATAGCATATGGTTATAAAACATATTTC





ACCAATGCCTGGTGTTGGCTGGATTTCCTAATTGTTGATGTTTCTTTGGTTACTTTAGTGGCAAACACTC





TTGGCTACTCAGATCTTGGCCCCATTAAATCCCTTCGGACACTGAGAGCTTTAAGACCTCTAAGAGCCTT





ATCTAGATTTGAAGGAATGAGGGTCGTTGTGAATGCACTCATAGGAGCAATTCCTTCCATCATGAATGTG





CTACTTGTGTGTCTTATATTCTGGCTGATATTCAGCATCATGGGAGTAAATTTGTTTGCTGGCAAGTTCT





ATGAGTGTATTAACACCACAGATGGGTCACGGTTTCCTGCAAGTCAAGTTCCAAATCGTTCCGAATGTTT





TGCCCTTATGAATGTTAGTCAAAATGTGCGATGGAAAAACCTGAAAGTGAACTTTGATAATGTCGGACTT





GGTTACCTATCTCTGCTTCAAGTTGCAACTTTTAAGGGATGGACGATTATTATGTATGCAGCAGTGGATT





CTGTTAATGTAGACAAGCAGCCCAAATATGAATATAGCCTCTACATGTATATTTATTTTGTCGTCTTTAT





CATCTTTGGGTCATTCTTCACTTTGAACTTGTTCATTGGTGTCATCATAGATAATTTCAACCAACAGAAA





AAGAAGCTTGGAGGTCAAGACATCTTTATGACAGAAGAACAGAAGAAATACTATAATGCAATGAAAAAGC





TGGGGTCCAAGAAGCCACAAAAGCCAATTCCTCGACCAGGGAACAAAATCCAAGGATGTATATTTGACCT





AGTGACAAATCAAGCCTTTGATATTAGTATCATGGTTCTTATCTGTCTCAACATGGTAACCATGATGGTA





GAAAAGGAGGGTCAAAGTCAACATATGACTGAAGTTTTATATTGGATAAATGTGGTTTTTATAATCCTTT





TCACTGGAGAATGTGTGCTAAAACTGATCTCCCTCAGACACTACTACTTCACTGTAGGATGGAATATTTT





TGATTTTGTGGTTGTGATTATCTCCATTGTAGGTATGTTTCTAGCTGATTTGATTGAAACGTATTTTGTG





TCCCCTACCCTGTTCCGAGTGATCCGTCTTGCCAGGATTGGCCGAATCCTACGTCTAGTCAAAGGAGCAA





AGGGGATCCGCACGCTGCTCTTTGCTTTGATGATGTCCCTTCCTGCGTTGTTTAACATCGGCCTCCTGCT





CTTCCTGGTCATGTTCATCTACGCCATCTTTGGAATGTCCAACTTTGCCTATGTTAAAAAGGAAGATGGA





ATTAATGACATGTTCAATTTTGAGACCTTTGGCAACAGTATGATTTGCCTGTTCCAAATTACAACCTCTG





CTGGCTGGGATGGATTGCTAGCACCTATTCTTAACAGTAAGCCACCCGACTGTGACCCAAAAAAAGTTCA





TCCTGGAAGTTCAGTTGAAGGAGACTGTGGTAACCCATCTGTTGGAATATTCTACTTTGTTAGTTATATC





ATCATATCCTTCCTGGTTGTGGTGAACATGTACATTGCAGTCATACTGGAGAATTTTAGTGTTGCCACTG





AAGAAAGTACTGAACCTCTGAGTGAGGATGACTTTGAGATGTTCTATGAGGTTTGGGAGAAGTTTGATCC





CGATGCGACCCAGTTTATAGAGTTCTCTAAACTCTCTGATTTTGCAGCTGCCCTGGATCCTCCTCTTCTC





ATAGCAAAACCCAACAAAGTCCAGCTCATTGCCATGGATCTGCCCATGGTTAGTGGTGACCGGATCCATT





GTCTTGACATCTTATTTGCTTTTACAAAGCGTGTTTTGGGTGAGAGTGGGGAGATGGATTCTCTTCGTTC





ACAGATGGAAGAAAGGTTCATGTCTGCAAATCCTTCCAAAGTGTCCTATGAACCCATCACAACCACACTA





AAACGGAAACAAGAGGATGTGTCTGCTACTGTCATTCAGCGTGCTTATAGACGTTACCGCTTAAGGCAAA





ATGTCAAAAATATATCAAGTATATACATAAAAGATGGAGACAGAGATGATGATTTACTCAATAAAAAAGA





TATGGCTTTTGATAATGTTAATGAGAACTCAAGTCCAGAAAAAACAGATGCCACTTCATCCACCACCTCT





CCACCTTCATATGATAGTGTAACAAAGCCAGACAAAGAGAAATATGAACAAGACAGAACAGAAAAGGAAG





ACAAAGGGAAAGACAGCAAGGAAAGCAAAAAATAGAGCTTCATTTTTGATATATTGTTTACAGCCTGTGA





AAGTGATTTATTTGTGTTAATAAAACTCTTTTGAGGAAGTCTATGCCAAAATCCTTTTTATCAAAATATT





CTCGAAGGCAGTGCAGTCACTAACTCTGATTTCCTAAGAAAGGTGGGCAGCATTAGCAGATGGTTATTTT





TGCACTGATGATTCTTTAAGAATCGTAAGAGAACTCTGTAGGAATTATTGATTATAGCATACAAAAGTGA





TTCAGTTTTTTGGTTTTTAATAAATCAGAAGACCATGTAGAAAACTTTTACATCTGCCTTGTCATCTTTT





CACAGGATTGTAATTAGTCTTGTTTCCCATGTAAATAAACAACACACGCATACAGAAAAATCTATTATTT





ATCTATTATTTGGAAATCAACAAAAGTATTTGCCTTGGCTTTGCAATGAAATGCTTGATAGAAGTAATGG





ACATTAGTTATGAATGTTTAGTTAAAATGCATTATTAGGGAGCTTGACTTTTTATCAATGTACAGAGGTT





ATTCTATATTTTGAGGTGCTTAAATTTATTCTACATTGCATCAGAACCAATTTATATGTGCCTATAAAAT





GCCATGGGATTAAAAATATATGTAGGCTATTCATTTCTACAAATGTTTTTCATTCATCTTGACTCACATG





CCAACAAGGATAAGACTTACCTTTAGAGTATTGTGTTTCATAGCCTTTCTTCTTTCATATCCCTTTTTGT





TCATAGAATAACCACAGAACTTGAAAAATTATTCTAAGTACATATTACACTCCTCAAAAAAAACAAAGAT





AACTGAGAAAAAAGTTATTGACAGAAGTTCTATTTGCTATTATTTACATAGCCTAACATTTGACTGTGCT





GCCCAAAATACTGATAATAGTCTCTTAAACTCTTTTGTCAAATTTTCCTGCTTTCTTATGCAGTATTGTT





TAGTCATCCTTTCGCTGTAAGCAAAGTTGATGAAATCCTTCCTGATATGCAGTTAGTTGTTTGACCACGG





TACATACTTGAGCAGATAATAACTTGGGCACAGTATTTATTGCATCACTTGTATACAATCCCGTGTTTGG





CAAGCTTTCAAATCATGTAATATGACAGACTTTACACAGATATGTGTTTAGTATGAATAAAAAAGCATTG





AAATAGGGATTCTTGCCAACTTGCTCTCTTGCCACCAACTTACTTTCCTAAATTATGGAAGTAATCTTTT





TTGGATATACTTCAATGTATACAATGAGGAAGATGTCACCTTCTCCTTAAAATTCTATGATGTGAAATAT





ATTTTGCCTCAATCAACACAGTACCATGGGCTTCTAATTTATCAAGCACATATTCATTTTGCATTAGCTG





TAGACATCTAGTTTTTTGAAAACACCTATTAATAGTAATTTGAAAAGAAATAACCATAATGCTTTTTTTC





GTGAGTTTATTTCAGGAATATGAGATCTTTCTTCTATAAAGTTATTCATGCACAGGCAAAAATTGAGCTA





CACAGGTAGAATGTAGTTTTACTTAGAAGATTTTTGTGGGAGGTTTTGAAGCAAATATATAAAACAACTT





TCACTAATTTGCTTTCCATATTTAAAAAATAATAAATTACATTTATATAATAAATGTTTAAAGCACATAT





TTTTTGTTGTTCTGGCAATTTAAAAAGAAAGAGGATTTAAACGTACCTATAGAAACAAAGATTTATGGTT





AAAGAATGAGATCAGAAGTCTAGAATGTTTTTAAATTGTGATATATTTTACAACATCCGTTATTACTTTG





AGACATTTGTCCTAATCTACGTATAAAACTCAATCTAGGGCTAAAGATTCTTTATACCATCTTAGGTTCA





TTCATCTTAGGCTATTTGAACCACTTTTTAATTTAATATGAAAGACACCATGCAGTGTTTTCCGAGACTA





CATAGATCATTTTATCACATACCTACCAAGCCTGTTGGAAATAGGTTTTGATAATTTAAGTAGGGACCTA





TACAAAATATATTACATTTATCAGATTTTTAAATACATTCAATTAAGAATTTAACATCACCTTAAATTTG





AATTCAATCTACCGTTATTTCAAACTCACAAATATAACTGCATTATGAATACTTACATAATGTAGTAAGA





CAAGATGTTTGACAGGTTCGTGTGTAATTTTCTATTAATGTTTTTACATTGCCTTGTTTTTATGTAAAAT





AAAAAATATGGGCAACTGGTTTGTTAACAACACAATTTCTTCTTAGCATTTCAAAAATATATATAAAGTT





GTTCTTTTTCCTATTTCATGAACTATGTTTTTTTTTAAAATAACATGGTTAAGTTTTATATATATTTACG





TTTGTTTCAGGAATGTCTACTTGTGACTTTTTATCAATTAAAAATAATATTTGGAAGAAAGAGCTTATTA





AGTATAAGCTTGAAGTAAAATTAGACCTCTCTTTCCATGTAGATTACTGTTTGTACTGATGGTTTCACCC





TTCAGAAGGCACTGTCATATTAATATTTAAATTTTATAATCGCTGAACTTATTACACCCAACAATACAGA





AAGGCAGTTACACTGAAGAACTTAACTTAGAATAAAATGGAAGCAAACAGGTTTTCTAAAAACTTTTTTA





AGTGACCAGGTCTCGCTCTGTCACCCAGGCTAGAGTGCAATGGCATGATCATAGCTCTCTGCAGCCTCAA





CTCTGGGCTCAAGCAACCCTCCTGCCTCAGCCTCCCAAGTAGCTAAGACTACAGGTACATGCCACCATGC





CTGGCTAATATTTAAATTTTTGTAGATAAGGGGTCTTGCTATGTTGCCCAGGCTAGTCTCAAACTCCTGG





CTTCAAGTGTTCCTACTGTCATGACCTGCCAACATGCTGGGGTTACAGGCATGAGCCACCATGCCCCAAA





CAGGTTTGAACACAAATCTTTCGGATGAAAATTAGAGAACCTAATTTTAGCTTTTTGATAGTTACCTAGT





TTGCAAAAGATTTGGGTGACTTGTGAGCTGTTTTTAAATGCTGATTGTTGAACATCACAACCCAAAATAC





TTAGCATGATTTTATAGAGTTTTGATAGCTTTATTAAAAAGAGTGAAAATAAAATGCATATGTAAATAAA





GCAGTTCTAAATAGCTATTTCAGAGAAATGTTAATAGAAGTGCTGAAAGAAGGGCCAACTAAATTAGGAT





GGCCAGGGAATTGGCCTGGGTTTAGGACCTATGTATGAAGGCCACCAATTTTTTAAAAATATCTGTGGTT





TATTATGTTATTATCTTCTTGAGGAAAACAATCAAGAATTGCTTCATGAAAATAAATAAATAGCCATGAA





TATCATAAAGCTGTTTACATAGGATTCTTTACAAATTTCATAGATCTATGAATGCTCAAAATGTTTGAGT





TTGCCATAAATTATATTGTAGTTATATTGTAGTTATACTTGAGACTGACACATTGTAATATAATCTAAGA





ATAAAAGTTATACAAAATAAAA






The reverse complement of SEQ ID NO: 4001 is provided as SEQ ID NO: 4002 herein:










(SEQ ID NO: 4002)



TTTTATTTTGTATAACTTTTATTCTTAGATTATATTACAATGTGTCAGTCTCAAGTATAACTACAATATA






ACTACAATATAATTTATGGCAAACTCAAACATTTTGAGCATTCATAGATCTATGAAATTTGTAAAGAATC





CTATGTAAACAGCTTTATGATATTCATGGCTATTTATTTATTTTCATGAAGCAATTCTTGATTGTTTTCC





TCAAGAAGATAATAACATAATAAACCACAGATATTTTTAAAAAATTGGTGGCCTTCATACATAGGTCCTA





AACCCAGGCCAATTCCCTGGCCATCCTAATTTAGTTGGCCCTTCTTTCAGCACTTCTATTAACATTTCTC





TGAAATAGCTATTTAGAACTGCTTTATTTACATATGCATTTTATTTTCACTCTTTTTAATAAAGCTATCA





AAACTCTATAAAATCATGCTAAGTATTTTGGGTTGTGATGTTCAACAATCAGCATTTAAAAACAGCTCAC





AAGTCACCCAAATCTTTTGCAAACTAGGTAACTATCAAAAAGCTAAAATTAGGTTCTCTAATTTTCATCC





GAAAGATTTGTGTTCAAACCTGTTTGGGGCATGGTGGCTCATGCCTGTAACCCCAGCATGTTGGCAGGTC





ATGACAGTAGGAACACTTGAAGCCAGGAGTTTGAGACTAGCCTGGGCAACATAGCAAGACCCCTTATCTA





CAAAAATTTAAATATTAGCCAGGCATGGTGGCATGTACCTGTAGTCTTAGCTACTTGGGAGGCTGAGGCA





GGAGGGTTGCTTGAGCCCAGAGTTGAGGCTGCAGAGAGCTATGATCATGCCATTGCACTCTAGCCTGGGT





GACAGAGCGAGACCTGGTCACTTAAAAAAGTTTTTAGAAAACCTGTTTGCTTCCATTTTATTCTAAGTTA





AGTTCTTCAGTGTAACTGCCTTTCTGTATTGTTGGGTGTAATAAGTTCAGCGATTATAAAATTTAAATAT





TAATATGACAGTGCCTTCTGAAGGGTGAAACCATCAGTACAAACAGTAATCTACATGGAAAGAGAGGTCT





AATTTTACTTCAAGCTTATACTTAATAAGCTCTTTCTTCCAAATATTATTTTTAATTGATAAAAAGTCAC





AAGTAGACATTCCTGAAACAAACGTAAATATATATAAAACTTAACCATGTTATTTTAAAAAAAAACATAG





TTCATGAAATAGGAAAAAGAACAACTTTATATATATTTTTGAAATGCTAAGAAGAAATTGTGTTGTTAAC





AAACCAGTTGCCCATATTTTTTATTTTACATAAAAACAAGGCAATGTAAAAACATTAATAGAAAATTACA





CACGAACCTGTCAAACATCTTGTCTTACTACATTATGTAAGTATTCATAATGCAGTTATATTTGTGAGTT





TGAAATAACGGTAGATTGAATTCAAATTTAAGGTGATGTTAAATTCTTAATTGAATGTATTTAAAAATCT





GATAAATGTAATATATTTTGTATAGGTCCCTACTTAAATTATCAAAACCTATTTCCAACAGGCTTGGTAG





GTATGTGATAAAATGATCTATGTAGTCTCGGAAAACACTGCATGGTGTCTTTCATATTAAATTAAAAAGT





GGTTCAAATAGCCTAAGATGAATGAACCTAAGATGGTATAAAGAATCTTTAGCCCTAGATTGAGTTTTAT





ACGTAGATTAGGACAAATGTCTCAAAGTAATAACGGATGTTGTAAAATATATCACAATTTAAAAACATTC





TAGACTTCTGATCTCATTCTTTAACCATAAATCTTTGTTTCTATAGGTACGTTTAAATCCTCTTTCTTTT





TAAATTGCCAGAACAACAAAAAATATGTGCTTTAAACATTTATTATATAAATGTAATTTATTATTTTTTA





AATATGGAAAGCAAATTAGTGAAAGTTGTTTTATATATTTGCTTCAAAACCTCCCACAAAAATCTTCTAA





GTAAAACTACATTCTACCTGTGTAGCTCAATTTTTGCCTGTGCATGAATAACTTTATAGAAGAAAGATCT





CATATTCCTGAAATAAACTCACGAAAAAAAGCATTATGGTTATTTCTTTTCAAATTACTATTAATAGGTG





TTTTCAAAAAACTAGATGTCTACAGCTAATGCAAAATGAATATGTGCTTGATAAATTAGAAGCCCATGGT





ACTGTGTTGATTGAGGCAAAATATATTTCACATCATAGAATTTTAAGGAGAAGGTGACATCTTCCTCATT





GTATACATTGAAGTATATCCAAAAAAGATTACTTCCATAATTTAGGAAAGTAAGTTGGTGGCAAGAGAGC





AAGTTGGCAAGAATCCCTATTTCAATGCTTTTTTATTCATACTAAACACATATCTGTGTAAAGTCTGTCA





TATTACATGATTTGAAAGCTTGCCAAACACGGGATTGTATACAAGTGATGCAATAAATACTGTGCCCAAG





TTATTATCTGCTCAAGTATGTACCGTGGTCAAACAACTAACTGCATATCAGGAAGGATTTCATCAACTTT





GCTTACAGCGAAAGGATGACTAAACAATACTGCATAAGAAAGCAGGAAAATTTGACAAAAGAGTTTAAGA





GACTATTATCAGTATTTTGGGCAGCACAGTCAAATGTTAGGCTATGTAAATAATAGCAAATAGAACTTCT





GTCAATAACTTTTTTCTCAGTTATCTTTGTTTTTTTTGAGGAGTGTAATATGTACTTAGAATAATTTTTC





AAGTTCTGTGGTTATTCTATGAACAAAAAGGGATATGAAAGAAGAAAGGCTATGAAACACAATACTCTAA





AGGTAAGTCTTATCCTTGTTGGCATGTGAGTCAAGATGAATGAAAAACATTTGTAGAAATGAATAGCCTA





CATATATTTTTAATCCCATGGCATTTTATAGGCACATATAAATTGGTTCTGATGCAATGTAGAATAAATT





TAAGCACCTCAAAATATAGAATAACCTCTGTACATTGATAAAAAGTCAAGCTCCCTAATAATGCATTTTA





ACTAAACATTCATAACTAATGTCCATTACTTCTATCAAGCATTTCATTGCAAAGCCAAGGCAAATACTTT





TGTTGATTTCCAAATAATAGATAAATAATAGATTTTTCTGTATGCGTGTGTTGTTTATTTACATGGGAAA





CAAGACTAATTACAATCCTGTGAAAAGATGACAAGGCAGATGTAAAAGTTTTCTACATGGTCTTCTGATT





TATTAAAAACCAAAAAACTGAATCACTTTTGTATGCTATAATCAATAATTCCTACAGAGTTCTCTTACGA





TTCTTAAAGAATCATCAGTGCAAAAATAACCATCTGCTAATGCTGCCCACCTTTCTTAGGAAATCAGAGT





TAGTGACTGCACTGCCTTCGAGAATATTTTGATAAAAAGGATTTTGGCATAGACTTCCTCAAAAGAGTTT





TATTAACACAAATAAATCACTTTCACAGGCTGTAAACAATATATCAAAAATGAAGCTCTATTTTTTGCTT





TCCTTGCTGTCTTTCCCTTTGTCTTCCTTTTCTGTTCTGTCTTGTTCATATTTCTCTTTGTCTGGCTTTG





TTACACTATCATATGAAGGTGGAGAGGTGGTGGATGAAGTGGCATCTGTTTTTTCTGGACTTGAGTTCTC





ATTAACATTATCAAAAGCCATATCTTTTTTATTGAGTAAATCATCATCTCTGTCTCCATCTTTTATGTAT





ATACTTGATATATTTTTGACATTTTGCCTTAAGCGGTAACGTCTATAAGCACGCTGAATGACAGTAGCAG





ACACATCCTCTTGTTTCCGTTTTAGTGTGGTTGTGATGGGTTCATAGGACACTTTGGAAGGATTTGCAGA





CATGAACCTTTCTTCCATCTGTGAACGAAGAGAATCCATCTCCCCACTCTCACCCAAAACACGCTTTGTA





AAAGCAAATAAGATGTCAAGACAATGGATCCGGTCACCACTAACCATGGGCAGATCCATGGCAATGAGCT





GGACTTTGTTGGGTTTTGCTATGAGAAGAGGAGGATCCAGGGCAGCTGCAAAATCAGAGAGTTTAGAGAA





CTCTATAAACTGGGTCGCATCGGGATCAAACTTCTCCCAAACCTCATAGAACATCTCAAAGTCATCCTCA





CTCAGAGGTTCAGTACTTTCTTCAGTGGCAACACTAAAATTCTCCAGTATGACTGCAATGTACATGTTCA





CCACAACCAGGAAGGATATGATGATATAACTAACAAAGTAGAATATTCCAACAGATGGGTTACCACAGTC





TCCTTCAACTGAACTTCCAGGATGAACTTTTTTTGGGTCACAGTCGGGTGGCTTACTGTTAAGAATAGGT





GCTAGCAATCCATCCCAGCCAGCAGAGGTTGTAATTTGGAACAGGCAAATCATACTGTTGCCAAAGGTCT





CAAAATTGAACATGTCATTAATTCCATCTTCCTTTTTAACATAGGCAAAGTTGGACATTCCAAAGATGGC





GTAGATGAACATGACCAGGAAGAGCAGGAGGCCGATGTTAAACAACGCAGGAAGGGACATCATCAAAGCA





AAGAGCAGCGTGCGGATCCCCTTTGCTCCTTTGACTAGACGTAGGATTCGGCCAATCCTGGCAAGACGGA





TCACTCGGAACAGGGTAGGGGACACAAAATACGTTTCAATCAAATCAGCTAGAAACATACCTACAATGGA





GATAATCACAACCACAAAATCAAAAATATTCCATCCTACAGTGAAGTAGTAGTGTCTGAGGGAGATCAGT





TTTAGCACACATTCTCCAGTGAAAAGGATTATAAAAACCACATTTATCCAATATAAAACTTCAGTCATAT





GTTGACTTTGACCCTCCTTTTCTACCATCATGGTTACCATGTTGAGACAGATAAGAACCATGATACTAAT





ATCAAAGGCTTGATTTGTCACTAGGTCAAATATACATCCTTGGATTTTGTTCCCTGGTCGAGGAATTGGC





TTTTGTGGCTTCTTGGACCCCAGCTTTTTCATTGCATTATAGTATTTCTTCTGTTCTTCTGTCATAAAGA





TGTCTTGACCTCCAAGCTTCTTTTTCTGTTGGTTGAAATTATCTATGATGACACCAATGAACAAGTTCAA





AGTGAAGAATGACCCAAAGATGATAAAGACGACAAAATAAATATACATGTAGAGGCTATATTCATATTTG





GGCTGCTTGTCTACATTAACAGAATCCACTGCTGCATACATAATAATCGTCCATCCCTTAAAAGTTGCAA





CTTGAAGCAGAGATAGGTAACCAAGTCCGACATTATCAAAGTTCACTTTCAGGTTTTTCCATCGCACATT





TTGACTAACATTCATAAGGGCAAAACATTCGGAACGATTTGGAACTTGACTTGCAGGAAACCGTGACCCA





TCTGTGGTGTTAATACACTCATAGAACTTGCCAGCAAACAAATTTACTCCCATGATGCTGAATATCAGCC





AGAATATAAGACACACAAGTAGCACATTCATGATGGAAGGAATTGCTCCTATGAGTGCATTCACAACGAC





CCTCATTCCTTCAAATCTAGATAAGGCTCTTAGAGGTCTTAAAGCTCTCAGTGTCCGAAGGGATTTAATG





GGGCCAAGATCTGAGTAGCCAAGAGTGTTTGCCACTAAAGTAACCAAAGAAACATCAACAATTAGGAAAT





CCAGCCAACACCAGGCATTGGTGAAATATGTTTTATAACCATATGCTATCCATTTTAGAAGCATTTCCAG





AATGAAGATGTAAGTGAAGATCTTGTCTGCATACTCCAGGATAATCTTAATGGTCTTTTTCCTTTCAATA





TAAATATCTTCAAAAGCCAGGGCACCACTGCTGAGCAGGATCATGAGGACAATGAAGCTTTCAAACCAAC





TGTGTTCAACAATCTTGTAGCAGGTTTTCCTGATGTTCCACCAGATTTTTCCTTTCCCTGACTCTATGTT





AACTTGGCAGCATGAGAACCTCCATACACAACCATCTGTGAAACAGGCCTCTGGCTCATCGGAATTCATA





GGTTCAGCCTCTGCTTCTTCTCCTTCTCCAGGCAAAGGGTTATCAACTGTGCTGCACTCTGAGGAGCTTG





ACCGGTTTAATCTCACTTTGCTGTATTCACTATCCGAATCACTGCTAAGTTCCTCAGCATTCATATTTTC





CAAATCGGATTCCCCAGGTGCAATTGGCACTGTCACTGTGAGGCTGGGATTGTGAATAAATGATTGACCA





TCACTGTCTTCCATCAAGTGTTTGTCCACGCTGCTTCCAAAACCACTGATTTTATCTTTTTCCTTGAGGA





AATTGTGACCTTTGCTCATTTCAGCAAGTGTATGGTTAGAAATATAGTTTTCCTTCTTAGTATTCAGATC





TTCTGCTTGTCTTATCTCCCTGGAAATCTTTGGCTTTTTGGAAAATGCTTTTAGAATAAATTCACGTAAG





GTTTGTTTCACATAATTTATTCCCTTTTTAATTCTAGTCACTGCAATCTGGAGGTTGTTTGCATCAGGGT





CTTCTTCAATTGCTGTAAGATTGTCTGAACTAAATGAGCTCAATAATAAGGCCAGAAATAGGTTTAGGAC





CACCAGGTTTCCAATGACCATGACCATCATGTAAACAATAAGGCACATAGCTTGACCAGCGACCTCCATA





CAGTCCCACATGGTCTCTATCCACTCTCCACACAGCACGCGGAACACAATCAGGAAGGAGTGGAAGAAGT





CGTTCATGTGCCACCGTGGGAGCGTACAGTCATCATTGATCTTGCAGACACATTCTTTGTAGCTCTTACC





AAAGAGCTGCATGCCGACCACAGCAAAAATGAAGACGATGATGGCCAACACTAAGGTGAGGTTACCTAGA





GCCCCTACTGAGTTACCAATGATCTTAATCAGCATGTTCAATGTTGGCCAGGATTTTGCCAACTTGAAGA





CTCGGAGCAGTCTGAATGATCGCAGAACTGACAATCCTTCCACATCTGCTAGAAAGAGCTCCACTAAACT





TAAAGTCACAATAAGGCTGTCAAAAATATTCCAGCCTACTTGGAAATACTCATATGGATCCATGGCAATC





AGTTTTAATACCATTTCAGCTGCAAAGATTCCAGTAAAGACCAAATTTCCTATAGCAAGTACATTTTTGA





ATTCCTCAGTCATTGGGTGGTGTTCCATAGCCATAAATAATGTGTTTAAAACTATGCAAATGGTAATTGC





AAGATCTACAAAAGGATCCATTACAATAAAATAGATACACTTTTTGAATTTTATCCAATATGGAGAGCAA





TTCCAGATCAAGAATTTGTGTGCAAATCTGTACCACCAAGGTGGACATTTTTGTCTGGACTCTTCAAGTT





CTTCCACAGTGTTTGTTAATATGCTTGCTCTACTCATTGCTCTCTGTCTGAGGTTGGGATCATTCAGCAT





ATCCTCTGAAAGGAGATAGGAACTACAACGCCTTTTCTTGTGTATTTGATTGGTCGTGCCGCTGTCATCA





GAAGTTGCCTTATCTATTATCACCTCTGGCAGAAGCTGTCCATTGGGGAGCATGAGGGCTGAGCGTCCAT





CAACCAGGGAGACCACACCGTTGCAGTCCACAGCACTGTGCATTTTCCCGTTCACCGGCAGCATTGGTGG





GGACCTACTGGCTTGGCTGATGTTACTGCTGCGTCGCTCCTGGGGTCTGTGGGGCACAAACAGTGAGCCC





CTTCTGCTCTCATTGTCTCCAAAAATGCTGTGCTCATCATCGGCAAATTCAGTCTCAGATCCTATATCTC





TTCCTCTGCCTTTGAAACTAAAAAGACTTGTTCTGCTGCTTCGCCTTGCAGAAAACAAGGAGCCACGAAT





GCTGAGTGGTGACTGATTGGGGGTAGACAACCTCTTTTCATGTGCTCGCCTATGCCCTTCGACACCAAGG





TGGAAACTTTTTCTTCTGATGCTGTCCTCTGATTCTGATTTCGACAATTTCTCAGCATCTCCCTTTTCCT





CTCCACTGGAGAGCTTCTTTTGATTCTTTTTCTTTCTTCTGTTTCTTCTTTCTTTAGCACTTTTAGAGCT





CAGTTTGGATGTTTCAGAAGAACTCTCTGAGAGGCCCATAATTCTGCTTCTCCTAATACTTGTATATTCA





GCCGCTGCCGCTGCAATTGCCTCAGCTTCTTCTTGCTCTTTTTTAAGACGGTCTAACATCTGTTGAAATT





CTAATTCTTTCTGTTTAGCTTCTTCAATGTTTGCCTGGTTCTGTTCTTCATATGCCATGGCAACCACAGC





CAGGATCAAGTTTATTAGATAAAAGGAGCCCAGGAAAATCACTACGACAAAGAAGATCATGTAGGTTTTG





CCAGCAGCACGCAGCGTCTGTTGGTAAAGGTTTTCCCAGTAATCTTGGGTCATTAGCCTAAACAAGGCTA





AGAAGGCCCAGCTGAAAGTGTCAAAGCTCGTGTAGCCATAATCAGGGTTTCTGCCAATTTTCACACAGGT





GTACCCCTCTGGACACTGACCTGAATCTGTGCTGAAACCACAAAGGAGAGCATCTTTGGATCCTTCCAAG





TAATAAAAATATTTTCTAAAGTCTTCTTCACTCTCTAGGGTATTCATTATGCTTTCTAATGTTTCATTAT





TTTCAAGTGAATTTCGAAAACATTTATGCTTCAGGTTTCCCATGAACAGCTGTAGTCCAATTAGTGCAAA





CACACTCAGACAGAACACAGTCAGGATCATGACATCAGAAAGCTTCTTCACTGACTGGATCAAAGCCCCT





ACAATTGTCTTCAGGCCTGGGATTACAGAAATAGTTTTCAAAGCTCTCAATACTCTGAAAGTTCGAAGAG





CTGAAACATTGCCTAGGTTTACAAATTCTGTTAAATACGCAAAAACAATGACGACAAAATCCAGCCAGTT





CCACGGGTCACGAAGAAAAGTGAATTCTCCTACACAGAAGCCTCTTGCAAGGATTTTTACAAGTGATTCA





AAAGTATATATTCCAGTAAAAGTGTACTCGACATTTTTGGTCCAGTCCGGTGGGTTATTCATGGTCATAA





ATATGCAGTTTGTCAGAATAGTGCACATGATGAGCATGCTGAATAAGGAGTGTACTAAAATCTTAATAGA





TATTCTTCTTAGAGGACTGAAAGGAGAAAGCATATATAAAGCAGGTGTGGCATTGAAACGGAAGATTGTT





TTCCCTTTGTTCAATACTATGAAAGTCTTTTTGTCTGCATAGTAGGGGTCCAAGTCCTCCAGGGGCTCTG





ACACCATGCCGGGAGGAATGTCCCCATAGATGAAGGGCAGCTGTTTGCCAGCTTCCAAGTCACTGCTTGG





CTTTGGGGCTTCTTCATCATCATCTTTCTTTTCTTCTTTGGGTTCCTTTGATTTTCTTTCAGCAATGCGT





TGTTCAATGAGGGCAAGAGACTGTTTTGTGAAATGGACAAAGCTCTGAGGTCCTGGGGGAGGCAACATTG





CCATCTTTTCATCCTGTATATTTTAATTCCTCTTCAGCTCCTCACATAAGAGGCTTGCAACCTAGCCCGC





CGATCATCCCCACCCAGTGCACCTGCAGAATCTGGCTCCAGGAGAGGGCGCGGGCCTCTCCTTCCCCGGC





GCTCTCTCAGGGCTGCTTCTTTTTCTCTGGGCTCCTGTTGCTCAGGGGACGCCTGCCGCTAGCAGCCACT





GGCACCCAGGCTAGCCCAGCCTCAGCCGAGCTGGCGGAATTGGAAAGCCGACAGCCGCCGCTGGAGCGCT





GGCGACCGCCTGCAAGCAGACT






In some embodiments, an iRNA described herein includes at least 15 contiguous nucleotides from 50 one of the sequences provided in Tables 2A, 2B, 4A, 4B, 5A, 5B, 6A, 6B, 13A, 13B, 14A, 14B, 15A, 15B, 16, 18, and 20, and may optionally be coupled to additional nucleotide sequences taken from the region contiguous to the selected sequence in SCN9A.


While a target sequence is generally 15-30 nucleotides in length, there is wide variation in the suitability of particular sequences in this range for directing cleavage of any given target RNA. Various software packages and the guidelines set out herein provide guidance for the identification of optimal target sequences for any given gene target, but an empirical approach can also be taken in which a “window” or “mask” of a given size (as a non-limiting example, 21 nucleotides) is literally or figuratively (including, e.g., in silico) placed on the target RNA sequence to identify sequences in the size range that may serve as target sequences. By moving the sequence “window” progressively one nucleotide upstream or downstream of an initial target sequence location, the next potential target sequence can be identified, until the complete set of possible sequences is identified for any given target size selected. This process, coupled with systematic synthesis and testing of the identified sequences (using assays described herein or known in the art) to identify those sequences that perform optimally can identify those RNA sequences that, when targeted with an iRNA agent, mediate the best inhibition of target gene expression. Thus, it is contemplated that further optimization of inhibition efficiency can be achieved by progressively “walking the window” one nucleotide upstream or downstream of the given sequences to identify sequences with equal or better inhibition characteristics.


Further, it is contemplated that for any sequence identified, e.g., in Tables 2A, 4A, 5A, 6A, 13A, 14A, 15A, 16, 18, and 20, further optimization can be achieved by systematically either adding or removing nucleotides to generate longer or shorter sequences and testing those and sequences generated by walking a window of the longer or shorter size up or down the target RNA from that point. Again, coupling this approach to generating new candidate targets with testing for effectiveness of iRNAs based on those target sequences in an inhibition assay as known in the art or as described herein can lead to further improvements in the efficiency of inhibition. Further still, such optimized sequences can be adjusted by, e.g., the introduction of modified nucleotides as described herein or as known in the art, addition or changes in overhang, or other modifications as known in the art and/or discussed herein to further optimize the molecule (e.g., increasing serum stability or circulating half-life, increasing thermal stability, enhancing transmembrane delivery, targeting to a particular location or cell type, increasing interaction with silencing pathway enzymes, increasing release from endosomes, etc.) as an expression inhibitor.


In some embodiments, the disclosure provides an iRNA, e.g., in Tables 2B, 4B, 5B, 6B, 13B, 14B, an 15B, that is un-modified or un-conjugated. In some embodiments, an RNAi agent of the disclosure has a nucleotide sequence as provided in any of Tables 2A, 4A, 5A, 6A, 13A, 14A, 15A, 16, 18, or 20, but lacks one or more ligand or moiety shown in the table. A ligand or moiety (e.g., a lipophilic ligand or moiety) can be included in any of the positions provided in the instant application.


An iRNA as described herein can contain one or more mismatches to the target sequence. In some embodiments, an iRNA as described herein contains no more than 3 mismatches. In some embodiments, when the antisense strand of the iRNA contains mismatches to a target sequence, the area of mismatch is not located in the center of the region of complementarity. In some embodiments, when the antisense strand of the iRNA contains mismatches to the target sequence, the mismatch is restricted to be within the last 5 nucleotides from either the 5′ or 3′ end of the region of complementarity. For example, for a 23 nucleotide iRNA agent RNA strand which is complementary to a region of SCN9A, the RNA strand generally does not contain any mismatch within the central 13 nucleotides. The methods described herein, or methods known in the art can be used to determine whether an iRNA containing a mismatch to a target sequence is effective in inhibiting the expression of SCN9A. Consideration of the efficacy of iRNAs with mismatches in inhibiting expression of SCN9A is important, especially if the particular region of complementarity in a SCN9A gene is known to have polymorphic sequence variation within the population.


In some embodiments, at least one end of a dsRNA has a single-stranded nucleotide overhang of 1 to 4, generally 1 or 2 nucleotides. In some embodiments, dsRNAs having at least one nucleotide overhang have superior inhibitory properties relative to their blunt-ended counterparts. In some embodiments, the RNA of an iRNA (e.g., a dsRNA) is chemically modified to enhance stability or other beneficial characteristics. The nucleic acids featured in the disclosure may be synthesized and/or modified by methods well established in the art, such as those described in “Current protocols in nucleic acid chemistry,” Beaucage, S. L. et al. (Edrs.), John Wiley & Sons, Inc., New York, N.Y., USA, which is hereby incorporated herein by reference. Modifications include, for example, (a) end modifications, e.g., 5′ end modifications (phosphorylation, conjugation, inverted linkages, etc.) 3′ end modifications (conjugation, DNA nucleotides, inverted linkages, etc.), (b) base modifications, e.g., replacement with stabilizing bases, destabilizing bases, or bases that base pair with an expanded repertoire of partners, removal of bases (abasic nucleotides), or conjugated bases, (c) sugar modifications (e.g., at the 2′ position or 4′ position, or having an acyclic sugar) or replacement of the sugar, as well as (d) backbone modifications, including modification or replacement of the phosphodiester linkages. Specific examples of RNA compounds useful in this disclosure include, but are not limited to, RNAs containing modified backbones or no natural internucleoside linkages. RNAs having modified backbones include, among others, those that do not have a phosphorus atom in the backbone. For the purposes of this specification, and as sometimes referenced in the art, modified RNAs that do not have a phosphorus atom in their internucleoside backbone can also be considered to be oligonucleosides. In particular embodiments, the modified RNA will have a phosphorus atom in its internucleoside backbone.


Modified RNA backbones include, for example, phosphorothioates, chiral phosphorothioates, phosphorodithioates, phosphotriesters, aminoalkylphosphotriesters, methyl and other alkyl phosphonates including 3′-alkylene phosphonates and chiral phosphonates, phosphinates, phosphoramidates including 3′-amino phosphoramidate and aminoalkylphosphoramidates, thionophosphoramidates, thionoalkylphosphonates, thionoalkylphosphotriesters, and boranophosphates having normal 3′-5′ linkages, 2′-5′ linked analogs of these, and those) having inverted polarity wherein the adjacent pairs of nucleoside units are linked 3′-5′ to 5′-3′ or 2′-5′ to 5′-2′. Various salts, mixed salts and free acid forms are also included.


Representative U.S. patents that teach the preparation of the above phosphorus-containing linkages include, but are not limited to, U.S. Pat. Nos. 3,687,808; 4,469,863; 4,476,301; 5,023,243; 5,177,195; 5,188,897; 5,264,423; 5,276,019; 5,278,302; 5,286,717; 5,321,131; 5,399,676; 5,405,939; 5,453,496; 5,455,233; 5,466,677; 5,476,925; 5,519,126; 5,536,821; 5,541,316; 5,550,111; 5,563,253; 5,571,799; 5,587,361; 5,625,050; 6,028,188; 6,124,445; 6,160,109; 6,169,170; 6,172,209; 6,239,265; 6,277,603; 6,326,199; 6,346,614; 6,444,423; 6,531,590; 6,534,639; 6,608,035; 6,683,167; 6,858,715; 6,867,294; 6,878,805; 7,015,315; 7,041,816; 7,273,933; 7,321,029; and U.S. Pat. RE39464, each of which is herein incorporated by reference.


Modified RNA backbones that do not include a phosphorus atom therein have backbones that are formed by short chain alkyl or cycloalkyl internucleoside linkages, mixed heteroatoms and alkyl or cycloalkyl internucleoside linkages, or one or more short chain heteroatomic or heterocyclic internucleoside linkages. These include those having morpholino linkages (formed in part from the sugar portion of a nucleoside); siloxane backbones; sulfide, sulfoxide and sulfone backbones; formacetyl and thioformacetyl backbones; methylene formacetyl and thioformacetyl backbones; alkene containing backbones; sulfamate backbones; methyleneimino and methylenehydrazino backbones; sulfonate and sulfonamide backbones; amide backbones; and others having mixed N, O, S and CH2 component parts.


Representative U.S. patents that teach the preparation of the above oligonucleosides include, but are not limited to, U.S. Pat. Nos. 5,034,506; 5,166,315; 5,185,444; 5,214,134; 5,216,141; 5,235,033; 5,64,562; 5,264,564; 5,405,938; 5,434,257; 5,466,677; 5,470,967; 5,489,677; 5,541,307; 5,561,225; 5,596,086; 5,602,240; 5,608,046; 5,610,289; 5,618,704; 5,623,070; 5,663,312; 5,633,360; 5,677,437; and, 5,677,439, each of which is herein incorporated by reference.


In other RNA mimetics suitable or contemplated for use in iRNAs, both the sugar and the internucleoside linkage, i.e., the backbone, of the nucleotide units are replaced with novel groups. The base units are maintained for hybridization with an appropriate nucleic acid target compound. One such oligomeric compound, an RNA mimetic that has been shown to have excellent hybridization properties, is referred to as a peptide nucleic acid (PNA). In PNA compounds, the sugar backbone of an RNA is replaced with an amide containing backbone, in particular an aminoethylglycine backbone. The nucleobases are retained and are bound directly or indirectly to aza nitrogen atoms of the amide portion of the backbone. Representative U.S. patents that teach the preparation of PNA compounds include, but are not limited to, U.S. Pat. Nos. 5,539,082; 5,714,331; and 5,719,262, each of which is herein incorporated by reference. Further teaching of PNA compounds can be found, for example, in Nielsen et al., Science, 1991, 254, 1497-1500.


Some embodiments featured in the disclosure include RNAs with phosphorothioate backbones and oligonucleosides with heteroatom backbones, and in particular —CH2—NH—CH2—, —CH2—N(CH3)—O—CH2— [known as a methylene (methylimino) or MMI backbone], —CH2—O—N(CH3)—CH2—, —CH2—N(CH3)—N(CH3)—CH2— and —N(CH3)—CH2—CH2— of the above-referenced U.S. Pat. No. 5,489,677, and the amide backbones of the above-referenced U.S. Pat. No. 5,602,240. In some embodiments, the RNAs featured herein have morpholino backbone structures of the above-referenced U.S. Pat. No. 5,034,506. The native phosphodiester backbone can be represented as O—P(O)(OH)—OCH2—.


Modified RNAs may also contain one or more substituted sugar moieties. The iRNAs, e.g., dsRNAs, featured herein can include one of the following at the 2′ position: OH; F; O-, S-, or N-alkyl; O-, S-, or N-alkenyl; O-, S- or N-alkynyl; or O-alkyl-O-alkyl, wherein the alkyl, alkenyl and alkynyl may be substituted or unsubstituted C1 to C10 alkyl or C2 to C10 alkenyl and alkynyl. Exemplary suitable modifications include O[(CH2)nO]mCH3, O(CH2).nOCH3, O(CH2)nNH2, O(CH2)nCH3, O(CH2)nONH2, and O(CH2)nON[(CH2)nCH3)]2, where n and m are from 1 to about 10. In other embodiments, dsRNAs include one of the following at the 2′ position: C1 to C10 lower alkyl, substituted lower alkyl, alkaryl, aralkyl, O-alkaryl or O-aralkyl, SH, SCH3, OCN, Cl, Br, CN, CF3, OCF3, SOCH3, SO2CH3, ONO2, N3, NH2, heterocycloalkyl, heterocycloalkaryl, aminoalkylamino, polyalkylamino, substituted silyl, an RNA cleaving group, a reporter group, an intercalator, a group for improving the pharmacokinetic properties of an iRNA, or a group for improving the pharmacodynamic properties of an iRNA, and other substituents having similar properties. In some embodiments, the modification includes a 2′-methoxyethoxy (2′-O—CH2CH2OCH3, also known as 2′-O-(2-methoxyethyl) or 2′-MOE) (Martin et al., Helv. Chim. Acta, 1995, 78:486-504) i.e., an alkoxy-alkoxy group. Another exemplary modification is 2′-dimethylaminooxyethoxy, i.e., a O(CH2)2ON(CH3)2 group, also known as 2′-DMAOE, and 2′-dimethylaminoethoxyethoxy (also known in the art as 2′-O-dimethylaminoethoxyethyl or 2′-DMAEOE), i.e., 2′-O—CH2—O—CH2—N(CH3)2.


In other embodiments, an iRNA agent comprises one or more (e.g., about 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, or more) acyclic nucleotides (or nucleosides). In certain embodiments, the sense strand or the antisense strand, or both sense strand and antisense strand, include less than five acyclic nucleotides per strand (e.g., four, three, two or one acyclic nucleotides per strand). The one or more acyclic nucleotides can be found, for example, in the double-stranded region, of the sense or antisense strand, or both strands; at the 5′-end, the 3′-end, both of the 5′ and 3′-ends of the sense or antisense strand, or both strands, of the iRNA agent. In some embodiments, one or more acyclic nucleotides are present at positions 1 to 8 of the sense or antisense strand, or both. In some embodiments, one or more acyclic nucleotides are found in the antisense strand at positions 4 to 10 (e.g., positions 6-8) from the 5′-end of the antisense strand. In some embodiments, the one or more acyclic nucleotides are found at one or both 3′-terminal overhangs of the iRNA agent.


The term “acyclic nucleotide” or “acyclic nucleoside” as used herein refers to any nucleotide or nucleoside having an acyclic sugar, e.g., an acyclic ribose. An exemplary acyclic nucleotide or nucleoside can include a nucleobase, e.g., a naturally occurring or a modified nucleobase (e.g., a nucleobase as described herein). In certain embodiments, a bond between any of the ribose carbons (C1, C2, C3, C4, or C5), is independently or in combination absent from the nucleotide. In some embodiments, the bond between C2-C3 carbons of the ribose ring is absent, e.g., an acyclic 2′-3′-seco-nucleotide monomer. In other embodiments, the bond between C1-C2, C3-C4, or C4-C5 is absent (e.g., a l′-2′, 3′-4′ or 4′-5′-seco nucleotide monomer). Exemplary acyclic nucleotides are disclosed in U.S. Pat. No. 8,314,227, incorporated herein by reference in its entirely. For example, an acyclic nucleotide can include any of monomers D-J in FIGS. 1-2 of U.S. Pat. No. 8,314,227. In some embodiments, the acyclic nucleotide includes the following monomer:




embedded image


wherein Base is a nucleobase, e.g., a naturally occurring or a modified nucleobase (e.g., a nucleobase as described herein).


In certain embodiments, the acyclic nucleotide can be modified or derivatized, e.g., by coupling the acyclic nucleotide to another moiety, e.g., a ligand (e.g., a GalNAc, a cholesterol ligand), an alkyl, a polyamine, a sugar, a polypeptide, among others.


In other embodiments, the iRNA agent includes one or more acyclic nucleotides and one or more LNAs (e.g., an LNA as described herein). For example, one or more acyclic nucleotides and/or one or more LNAs can be present in the sense strand, the antisense strand, or both. The number of acyclic nucleotides in one strand can be the same or different from the number of LNAs in the opposing strand. In certain embodiments, the sense strand and/or the antisense strand comprises less than five LNAs (e.g., four, three, two or one LNAs) located in the double stranded region or a 3′-overhang. In other embodiments, one or two LNAs are located in the double stranded region or the 3′-overhang of the sense strand. Alternatively, or in combination, the sense strand and/or antisense strand comprises less than five acyclic nucleotides (e.g., four, three, two or one acyclic nucleotides) in the double-stranded region or a 3′-overhang. In some embodiments, the sense strand of the iRNA agent comprises one or two LNAs in the 3′-overhang of the sense strand, and one or two acyclic nucleotides in the double-stranded region of the antisense strand (e.g., at positions 4 to 10 (e.g., positions 6-8) from the 5′-end of the antisense strand) of the iRNA agent.


In other embodiments, inclusion of one or more acyclic nucleotides (alone or in addition to one or more LNAs) in the iRNA agent results in one or more (or all) of: (i) a reduction in an off-target effect; (ii) a reduction in passenger strand participation in RNAi; (iii) an increase in specificity of the guide strand for its target mRNA; (iv) a reduction in a microRNA off-target effect; (v) an increase in stability; or (vi) an increase in resistance to degradation, of the iRNA molecule.


Other modifications include 2′-methoxy (2′-OCH3), 2′-5 aminopropoxy (2′-OCH2CH2CH2NH2) and 2′-fluoro (2′-F) Similar modifications may also be made at other positions on the RNA of an iRNA, particularly the 3′ position of the sugar on the 3′ terminal nucleotide or in 2′-5′ linked dsRNAs and the 5′ position of 5′ terminal nucleotide. iRNAs may also have sugar mimetics such as cyclobutyl moieties in place of the pentofuranosyl sugar. Representative U.S. patents that teach the preparation of such modified sugar structures include, but are not limited to, U.S. Pat. Nos. 4,981,957; 5,118,800; 5,319,080; 5,359,044; 5,393,878; 5,446,137; 5,466,786; 5,514,785; 5,519,134; 5,567,811; 5,576,427; 5,591,722; 5,597,909; 5,610,300; 5,627,053; 5,639,873; 5,646,265; 5,658,873; 5,670,633; and 5,700,920, certain of which are commonly owned with the instant application, and each of which is herein incorporated by reference.


An iRNA may also include nucleobase (often referred to in the art simply as “base”) modifications or substitutions. As used herein, “unmodified” or “natural” nucleobases include the purine bases adenine (A) and guanine (G), and the pyrimidine bases thymine (T), cytosine (C) and uracil (U). Modified nucleobases include other synthetic and natural nucleobases such as 5-methylcytosine (5-me-C), 5-hydroxymethyl cytosine, xanthine, hypoxanthine, 2-aminoadenine, 6-methyl and other alkyl derivatives of adenine and guanine, 2-propyl and other alkyl derivatives of adenine and guanine, 2-thiouracil, 2-thiothymine and 2-thiocytosine, 5-halouracil and cytosine, 5-propynyl uracil and cytosine, 6-azo uracil, cytosine and thymine, 5-uracil (pseudouracil), 4-thiouracil, 8-halo, 8-amino, 8-thiol, 8-thioalkyl, 8-hydroxyl anal other 8-substituted adenines and guanines, 5-halo, particularly 5-bromo, 5-trifluoromethyl and other 5-substituted uracils and cytosines, 7-methylguanine and 7-methyladenine, 8-azaguanine and 8-azaadenine, 7-deazaguanine and 7-daazaadenine and 3-deazaguanine and 3-deazaadenine.


Further modified nucleobases include those disclosed in U.S. Pat. No. 3,687,808, those disclosed in Modified Nucleosides in Biochemistry, Biotechnology and Medicine, Herdewijn, P. ed. Wiley-VCH, 2008; those disclosed in The Concise Encyclopedia of Polymer Science and Engineering, pages 858-859, Kroschwitz, J. L, ed. John Wiley & Sons, 1990, these disclosed by Englisch et al., Angewandte Chemie, International Edition, 1991, 30, 613, and those disclosed by Sanghvi, Y S., Chapter 15, dsRNA Research and Applications, pages 289-302, Crooke, S. T. and Lebleu, B., Ed., CRC Press, 1993. Certain of these modified nucleobases are particularly useful for increasing the binding affinity of the oligomeric compounds featured in the disclosure. These include 5-substituted pyrimidines, 6-azapyrimidines and N-2, N-6 and O-6 substituted purines, including 2-aminopropyladenine, 5-propynyluracil and 5-propynylcytosine. 5-methylcytosine substitutions have been shown to increase nucleic acid duplex stability by 0.6-1.2° C. (Sanghvi, Y. S., Crooke, S. T. and Lebleu, B., Eds., dsRNA Research and Applications, CRC Press, Boca Raton, 1993, pp. 276-278) and are exemplary base substitutions, even more particularly when combined with 2′-O-methoxyethyl sugar modifications.


Representative U.S. patents that teach the preparation of certain of the above noted modified nucleobases as well as other modified nucleobases include, but are not limited to, the above noted U.S. Pat. No. 3,687,808, as well as U.S. Pat. Nos. 4,845,205; 5,130,302; 5,134,066; 5,175,273; 5,367,066; 5,432,272; 5,457,187; 5,459,255; 5,484,908; 5,502,177; 5,525,711; 5,552,540; 5,587,469; 5,594,121, 5,596,091; 5,614,617; 5,681,941; 6,015,886; 6,147,200; 6,166,197; 6,222,025; 6,235,887; 6,380,368; 6,528,640; 6,639,062; 6,617,438; 7,045,610; 7,427,672; and 7,495,088, each of which is herein incorporated by reference, and U.S. Pat. No. 5,750,692, also herein incorporated by reference.


The RNA of an iRNA can also be modified to include one or more (e.g., about 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, or more) bicyclic sugar moities. A “bicyclic sugar” is a furanosyl ring modified by the bridging of two atoms. A “bicyclic nucleoside” (“BNA”) is a nucleoside having a sugar moiety comprising a bridge connecting two carbon atoms of the sugar ring, thereby forming a bicyclic ring system. In certain embodiments, the bridge connects the 4′-carbon and the 2′-carbon of the sugar ring. Thus, in some embodiments an agent of the disclosure may include one or more locked nucleic acids (LNAs) (also referred to herein as “locked nucleotides”). In some embodiments, a locked nucleic acid is a nucleotide having a modified ribose moiety in which the ribose moiety comprises an extra bridge connecting, e.g., the 2′ and 4′ carbons. This structure effectively “locks” the ribose in the 3′-endo structural conformation. The addition of locked nucleic acids to siRNAs has been shown to increase siRNA stability in serum, increase thermal stability, and to reduce off-target effects (Elmen, J. et al., (2005) Nucleic Acids Research 33(1):439-447; Mook, O R. et al., (2007) Mol Canc Ther 6(3):833-843; Grunweller, A. et al., (2003) Nucleic Acids Research 31(12):3185-3193).


Examples of bicyclic nucleosides for use in the polynucleotides of the disclosure include without limitation nucleosides comprising a bridge between the 4′ and the 2′ ribosyl ring atoms. In certain embodiments, the antisense polynucleotide agents of the disclosure include one or more bicyclic nucleosides comprising a 4′ to 2′ bridge. Examples of such 4′ to 2′ bridged bicyclic nucleosides, include but are not limited to 4′-(CH2)-O-2′ (LNA); 4′-(CH2)-S-2′; 4′-(CH2)2—O-2′ (ENA); 4′-CH(CH3)-O-2′ (also referred to as “constrained ethyl” or “cEt”) and 4′-CH(CH2OCH3)-O-2′ (and analogs thereof; see, e.g., U.S. Pat. No. 7,399,845); 4′-C(CH3)(CH3)-O-2′ (and analogs thereof; see e.g., U.S. Pat. No. 8,278,283); 4′-CH2-N(OCH3)-2′ (and analogs thereof; see e.g., U.S. Pat. No. 8,278,425); 4′-CH2-O—N(CH3)-2′ (see, e.g., U.S. Patent Publication No. 2004/0171570); 4′-CH2-N(R)—O-2′, wherein R is H, C1-C12 alkyl, or a protecting group (see, e.g., U.S. Pat. No. 7,427,672); 4′-CH2-C(H)(CH3)-2′ (see, e.g., Chattopadhyaya et al., J. Org. Chem., 2009, 74, 118-134); and 4′-CH2-C(H2)-2′ (and analogs thereof; see, e.g., U.S. Pat. No. 8,278,426). The contents of each of the foregoing are incorporated herein by reference for the methods provided therein. Representative U.S. patents that teach the preparation of locked nucleic acids include, but are not limited to, the following: U.S. Pat. Nos. 6,268,490; 6,670,461; 6,794,499; 6,998,484; 7,053,207; 7,084,125; 7,399,845, and 8,314,227, each of which is herein incorporated by reference in its entirety. Exemplary LNAs include but are not limited to, a 2′, 4′-C methylene bicyclo nucleotide (see for example Wengel et al., International PCT 5 Publication No. WO 00/66604 and WO 99/14226).


Any of the foregoing bicyclic nucleosides can be prepared having one or more stereochemical sugar configurations including for example α-L-ribofuranose and β-D-ribofuranose (see WO 99/14226).


A RNAi agent of the disclosure can also be modified to include one or more constrained ethyl nucleotides. As used herein, a “constrained ethyl nucleotide” or “cEt” is a locked nucleic acid comprising a bicyclic sugar moiety comprising a 4′-CH(CH3)-0-2′ bridge. In some embodiments, a constrained ethyl nucleotide is in the S conformation referred to herein as “S-cEt.”


A RNAi agent of the disclosure may also include one or more “conformationally restricted nucleotides” (“CRN”). CRN are nucleotide analogs with a linker connecting the C2′ and C4′ carbons of ribose or the C3 and —C5′ carbons of ribose. CRN lock the ribose ring into a stable conformation and increase the hybridization affinity to mRNA. The linker is of sufficient length to place the oxygen in an optimal position for stability and affinity resulting in less ribose ring puckering.


Representative publications that teach the preparation of certain of the above noted CRN include, but are not limited to, US 2013/0190383; and WO 2013/036868, the contents of each of which are hereby incorporated herein by reference for the methods provided therein.


In some embodiments, a RNAi agent of the disclosure comprises one or more monomers that are UNA (unlocked nucleic acid) nucleotides. UNA is unlocked acyclic nucleic acid, wherein any of the bonds of the sugar has been removed, forming an unlocked “sugar” residue. In one example, UNA also encompasses monomer with bonds between C1′-C4′ have been removed (i.e. the covalent carbon-oxygen-carbon bond between the C1′ and C4′ carbons). In another example, the C2′-C3′ bond (i.e. the covalent carbon-carbon bond between the C2′ and C3′ carbons) of the sugar has been removed (see Nuc. Acids Symp. Series, 52, 133-134 (2008) and Fluiter et al., Mol. Biosyst., 2009, 10, 1039).


Representative U.S. publications that teach the preparation of UNA include, but are not limited to, U.S. Pat. No. 8,314,227; and US Patent Publication Nos. 2013/0096289; 2013/0011922; and 2011/0313020, the contents of each of which are hereby incorporated herein by reference for the methods provided therein.


In other embodiments, the iRNA agents include one or more (e.g., about 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, or more) G-clamp nucleotides. A G-clamp nucleotide is a modified cytosine analog wherein the modifications confer the ability to hydrogen bond both Watson-Crick and Hoogsteen faces of a complementary guanine within a duplex, see for example Lin and Matteucci, 1998, J. Am. Chem. Soc., 120, 8531-8532. A single G-clamp analog substitution within an oligonucleotide can result in substantially enhanced helical thermal stability and mismatch discrimination when hybridized to complementary oligonucleotides. The inclusion of such nucleotides in the iRNA molecules can result in enhanced affinity and specificity to nucleic acid targets, complementary sequences, or template strands.


Potentially stabilizing modifications to the ends of RNA molecules can include N-(acetylaminocaproyl)-4-hydroxyprolinol (Hyp-C6-NHAc), N-(caproyl-4-hydroxyprolinol (Hyp-C6), N-(acetyl-4-hydroxyprolinol (Hyp-NHAc), thymidine-2′-O-deoxythymidine (ether), N-(aminocaproyl)-4-hydroxyprolinol (Hyp-C6-amino), 2-docosanoyl-uridine-3″-phosphate, inverted base dT(idT) and others. Disclosure of this modification can be found in PCT Publication No. WO 2011/005861.


Other modifications of a RNAi agent of the disclosure include a 5′ phosphate or 5′ phosphate mimic, e.g., a 5′-terminal phosphate or phosphate mimic on the antisense strand of a RNAi agent. Suitable phosphate mimics are disclosed in, for example US 2012/0157511, the contents of which are incorporated herein by reference for the methods provided therein.


iRNA Motifs


In certain aspects of the disclosure, the double-stranded RNAi agents of the disclosure include agents with chemical modifications as disclosed, for example, in WO 2013/075035, the contents of which are incorporated herein by reference for the methods provided therein. As shown herein and in WO 2013/075035, a superior result may be obtained by introducing one or more motifs of three identical modifications on three consecutive nucleotides into a sense strand or antisense strand of an RNAi agent, particularly at or near the cleavage site. In some embodiments, the sense strand and antisense strand of the RNAi agent may otherwise be completely modified. The introduction of these motifs interrupts the modification pattern, if present, of the sense or antisense strand. The RNAi agent may be optionally conjugated with a lipophilic moiety or ligand, e.g., a C16 moiety or ligand, for instance on the sense strand. The RNAi agent may be optionally modified with a (S)-glycol nucleic acid (GNA) modification, for instance on one or more residues of the antisense strand. The resulting RNAi agents present superior gene silencing activity.


In some embodiments, the sense strand sequence may be represented by formula (I):





5′ np-Na-(X X X)i-Nb-Y Y Y-Nb-(Z Z Z)j-Na-nq 3′  (I)


wherein:


i and j are each independently 0 or 1;


p and q are each independently 0-6;


each Na independently represents an oligonucleotide sequence comprising 0-25 modified nucleotides, each sequence comprising at least two differently modified nucleotides;


each Nb independently represents an oligonucleotide sequence comprising 0-10 modified nucleotides;


each np and nq independently represent an overhang nucleotide;


wherein Nb and Y do not have the same modification; and


XXX, YYY and ZZZ each independently represent one motif of three identical modifications on three consecutive nucleotides. In some embodiments, YYY is all 2′-F modified nucleotides.


In some embodiments, the Na and/or Nb comprise modifications of alternating pattern.


In some embodiments, the YYY motif occurs at or near the cleavage site of the sense strand. For example, when the RNAi agent has a duplex region of 17-23 nucleotides in length, the YYY motif can occur at or the vicinity of the cleavage site (e.g.: can occur at positions 6, 7, 8; 7, 8, 9; 8, 9, 10; 9, 10, 11; 10, 11,12 or 11, 12, 13) of the sense strand, the count starting from the 1st nucleotide, from the 5′-end; or optionally, the count starting at the 1st paired nucleotide within the duplex region, from the 5′-end.


In some embodiments, i is 1 and j is 0, or i is 0 and j is 1, or both i and j are 1. The sense strand can therefore be represented by the following formulas:





5′ np-Na-YYY-Nb-ZZZ-Na-nq 3′  (Ib);





5′ np-Na-XXX-Nb-YYY-Na-nq 3′  (Ic); or





5′ np-Na-XXX-Nb-YYY-Nb-ZZZ-Na-nq 3′  (Id).


When the sense strand is represented by formula (Ib), Nb represents an oligonucleotide sequence comprising 0-10, 0-7, 0-5, 0-4, 0-2 or 0 modified nucleotides. Each Na independently can represent an oligonucleotide sequence comprising 2-20, 2-15, or 2-10 modified nucleotides.


When the sense strand is represented as formula (Ic), Nb represents an oligonucleotide sequence comprising 0-10, 0-7, 0-5, 0-4, 0-2 or 0 modified nucleotides. Each Na can independently represent an oligonucleotide sequence comprising 2-20, 2-15, or 2-10 modified nucleotides.


When the sense strand is represented as formula (Id), each Nb independently represents an oligonucleotide sequence comprising 0-10, 0-7, 0-5, 0-4, 0-2 or 0 modified nucleotides. In some embodiments, Nb is 0, 1, 2, 3, 4, 5 or 6. Each Na can independently represent an oligonucleotide sequence comprising 2-20, 2-15, or 2-10 modified nucleotides.


Each of X, Y and Z may be the same or different from each other.


In other embodiments, i is 0 and j is 0, and the sense strand may be represented by the formula:





5′ np-Na-YYY-Na-nq 3′  (Ia).


When the sense strand is represented by formula (Ia), each Na independently can represent an oligonucleotide sequence comprising 2-20, 2-15, or 2-10 modified nucleotides.


In some embodiments, the antisense strand sequence of the RNAi may be represented by formula (II):





5′ nq′-Na′-(Z′Z′Z′)k-Nb′-Y′Y′Y′-Nb′-(X′X′X′)l-Na′-np′ 3′  (II)


wherein:


k and l are each independently 0 or 1;


p′ and q′ are each independently 0-6;


each Na′ independently represents an oligonucleotide sequence comprising 0-25 modified nucleotides, each sequence comprising at least two differently modified nucleotides;


each Nb′ independently represents an oligonucleotide sequence comprising 0-10 modified nucleotides;


each np′ and nq′ independently represent an overhang nucleotide;


wherein Nb′ and Y′ do not have the same modification;


and


X′X′X′, Y′Y′Y′, and Z′Z′Z′ each independently represent one of three identical modification on three consecutive nucleotides.


In some embodiments, the Na′ and/or Nb′ comprise modification of alternating pattern.


The Y′Y′Y′ motif occurs at or near the cleavage site of the antisense strand. For example, when the RNAi agent has a duplex region of 17-23 nucleotides in length, the Y′Y′Y′ motif can occur at positions 9, 10, 11; 10, 11, 12; 11, 12, 13; 12, 13, 14; or 13, 14, 15 of the antisense strand, with the count starting from the 1st nucleotide, from the 5′-end; or optionally, the count starting at the 1st paired nucleotide within the duplex region, from the 5′-end. In some embodiments, the Y′Y′Y′ motif occurs at positions 11, 12, 13.


In some embodiments, Y′Y′Y′ motif is all 2′-Ome modified nucleotides.


In on embodiment, k is 1 and l is 0, or k is 0 and l is 1, or both 5 k and l are 1.


The antisense strand can therefore be represented by the following formulas:





5′ nq′-Na′-Z′Z′Z′-Nb′-Y′Y′Y′-Na′-np′ 3′  (IIb);





5′ nq′-Na′-Y′Y′Y′-Nb′-X′X′X′-np′ 3′  (IIc); or





5′ nq′-Na′-Z′Z′Z′-Ne′-Y′Y′Y′-Nb′-X′X′X′-Na′-np′ 3′  (IId).


When the antisense strand is represented by formula (IIb), Nb′ represents an oligonucleotide sequence comprising 0-10, 0-7, 0-5, 0-4, 0-2 or 0 modified nucleotides. Each Na′ independently represents an oligonucleotide sequence comprising 2-20, 2-15, or 2-10 modified nucleotides.


When the antisense strand is represented as formula (IId), each Nb′ independently represents an oligonucleotide sequence comprising 0-10, 0-7, 0-5, 0-4, 0-2 or 0 modified nucleotides. Each Na′ independently represents an oligonucleotide sequence comprising 2-20, 2-15, or 2-10 modified nucleotides. In some embodiments, Nb is 0, 1, 2, 3, 4, 5 or 6.


In other embodiments, k is 0 and l is 0 and the antisense strand may be represented by the formula:





5′ np′-Na′-Y′Y′Y′-Na′-nq′ 3′  (Ia).


When the antisense strand is represented as formula (IIa), each Na′ independently represents an oligonucleotide sequence comprising 2-20, 2-15, or 2-10 modified nucleotides.


Each of X′, Y′ and Z′ may be the same or different from each other.


Each nucleotide of the sense strand and antisense strand may be independently modified with LNA, HNA, CeNA, GNA, 2′-methoxyethyl, 2′-O-methyl, 2′-O-allyl, 2′-C-allyl, 2′-hydroxyl, or 2′-fluoro. For example, each nucleotide of the sense strand and antisense strand is independently modified with 2′-O-methyl or 2′-fluoro. Each X, Y, Z, X′, Y′ and Z′, in particular, may represent a 2′-O-methyl modification or a 2′-fluoro modification.


In some embodiments, the sense strand of the RNAi agent may contain YYY motif occurring at 9, 10 and 11 positions of the strand when the duplex region is 21 nt, the count starting from the 1st nucleotide from the 5′-end, or optionally, the count starting at the 1st paired nucleotide within the duplex region, from the 5′-end; and Y represents 2′-F modification. The sense strand may additionally contain XXX motif or ZZZ motifs as wing modifications at the opposite end of the duplex region; and XXX and ZZZ each independently represents a 2′-OMe modification or 2′-F modification.


In some embodiments the antisense strand may Y′Y′Y′ motif occurring at positions 11, 12, 13 of the strand, the count starting from the 1st nucleotide from the 5′-end, or optionally, the count starting at the 1st paired nucleotide within the duplex region, from the 5′-end; and Y′ represents 2′-O-methyl modification. The antisense strand may additionally contain X′X′X′ motif or Z′Z′Z′ motifs as wing modifications at the opposite end of the duplex region; and X′X′X′ and Z′Z′Z′ each independently represents a 2′-OMe modification or 2′-F modification.


The sense strand represented by any one of the above formulas (Ia), (Ib), (Ic), and (Id) forms a duplex with an antisense strand being represented by any one of formulas (IIa), (IIb), (IIc), and (IId), respectively.


Accordingly, certain RNAi agents for use in the methods of the disclosure may comprise a sense strand and an antisense strand, each strand having 14 to 30 nucleotides, the RNAi duplex represented by formula (III):





sense: 5′ np-Na-(XXX)i-Nb-YYY-Nb-(ZZZ)j-Na-nq 3′





antisense: 3′ np′-Na′-(X′X′X′)k-Nb′-Y′Y′Y′-Nb′-(Z′Z′Z′)l-Na′-nq′ 5′   (III)


wherein,


j, k, and l are each independently 0 or 1;


p, p′, q, and q′ are each independently 0-6;


each Na and Na′ independently represents an oligonucleotide sequence comprising 0-25 modified nucleotides, each sequence comprising at least two differently modified nucleotides;


each Nb and Nb′ independently represents an oligonucleotide sequence comprising 0-10 modified nucleotides;


wherein


each np′, np, nq′, and nq, each of which may or may not be present independently represents an overhang nucleotide; and


XXX, YYY, ZZZ, X′X′X′, Y′Y′Y′, and Z′Z′Z′ each independently represent one motif of three identical modification on three consecutive nucleotides.


In some embodiments, i is 0 and j is 0; or i is 1 and j is 0; or i is 0 and j is 1; or both i and j are 0; or both i and j are 1. In some embodiments, k is 0 and l is 0; or k is 1 and l is 0; k is 0 and l is 1; or both k and l are 0; or both k and l are 1.


Exemplary combinations of the sense strand and antisense strand forming a RNAi duplex include the formulas below:





5′ np-Na-Y Y Y-Na-nq 3′





3′ np′-Na′-Y′Y′Y′-Na′nq′ 5′   (IIIa)





5′ np-Na′-Y Y Y-Nb-ZZZ-Na-nq 3′





3′ np-Na′-Y′Y′Y′-Nb′-Z′Z′Z′-Na′-nq′ 5′   (IIIb)





5′ np-Na-X X X-Nb-Y Y Y-Na-nq 3′





3′ np-Na′-X′X′X′-Nb′-Y′Y′Y′-Na′-nq′ 5′   (IIIc)





5′ np-Na-XXX-Nb-Y Y Y-Nb-Z Z Z-Na-nq 3′





3′ np-Na′-X′X′X′-Nb′-Y′Y′Y′-Nb′-Z′Z′Z′-Na′-nq′ 5′   (IIId)


When the RNAi agent is represented by formula (IIIa), each Na independently represents an oligonucleotide sequence comprising 2-20, 2-15, or 2-10 modified nucleotides.


When the RNAi agent is represented by formula (IIIb), each Nb independently represents an oligonucleotide sequence comprising 1-10, 1-7, 1-5 or 1-4 modified nucleotides. Each Na independently represents an oligonucleotide sequence comprising 2-20, 2-15, or 2-10 modified nucleotides.


When the RNAi agent is represented as formula (IIIc), each Nb, Nb′ independently represents an oligonucleotide sequence comprising 0-10, 0-7, 0-5, 0-4, 0-2 or 0 modified nucleotides. Each Na independently represents an oligonucleotide sequence comprising 2-20, 2-15, or 2-10 modified nucleotides.


When the RNAi agent is represented as formula (IIId), each Nb, Nb′ independently represents an oligonucleotide sequence comprising 0-10, 0-7, 0-5, 0-4, 0-2 or 0 modified nucleotides. Each Na, Na′ independently represents an oligonucleotide sequence comprising 2-20, 2-15, or 2-10 modified nucleotides. Each of Na, Na′, Nb and Nb′ independently comprises modifications of alternating pattern.


Each of X, Y and Z in formulas (III), (IIIa), (IIIb), (IIIc), and (IIId) may be the same or different from each other.


When the RNAi agent is represented by formula (III), (IIIa), (IIIb), (IIIc), and (IIId), at least one of the Y nucleotides may form a base pair with one of the Y′ nucleotides. Alternatively, at least two of the Y nucleotides form base pairs with the corresponding Y′ nucleotides; or all three of the Y nucleotides all form base pairs with the corresponding Y′ nucleotides.


When the RNAi agent is represented by formula (IIIb) or (IIId), at least one of the Z nucleotides may form a base pair with one of the Z′ nucleotides. Alternatively, at least two of the Z nucleotides form base pairs with the corresponding Z′ nucleotides; or all three of the Z nucleotides all form base pairs with the corresponding Z′ nucleotides.


When the RNAi agent is represented as formula (IIIc) or (IIId), at least one of the X nucleotides may form a base pair with one of the X′ nucleotides. Alternatively, at least two of the X nucleotides form base pairs with the corresponding X′ nucleotides; or all three of the X nucleotides all form base pairs with the corresponding X′ nucleotides.


In some embodiments, the modification on the Y nucleotide is different than the modification on the Y′ nucleotide, the modification on the Z nucleotide is different than the modification on the Z′ nucleotide, and/or the modification on the X nucleotide is different than the modification on the X′ nucleotide.


In some embodiments, when the RNAi agent is represented by formula (IIId), the Na modifications are 2′-O-methyl or 2′-fluoro modifications. In some embodiments, when the RNAi agent is represented by formula (IIId), the Na modifications are 2′-O-methyl or 2′-fluoro modifications and np′ >0 and at least one np′ is linked to a neighboring nucleotide a via phosphorothioate linkage. In some embodiments, when the RNAi agent is represented by formula (IIId), the Na modifications are 2′-O-methyl or 2′-fluoro modifications, np′>0 and at least one np′ is linked to a neighboring nucleotide via phosphorothioate linkage, and the sense strand is conjugated to one or more moieties or ligands (e.g., one or more lipophilic moieties, optionally one or more C16 moieties, or one or more GalNAc moieties) attached through a bivalent or trivalent branched linker. In some embodiments, when the RNAi agent is represented by formula (IIId), the Na modifications are 2′-O-methyl or 2′-fluoro modifications, np′>0 and at least one np′ is linked to a neighboring nucleotide via phosphorothioate linkage, the sense strand comprises at least one phosphorothioate linkage, and the sense strand is conjugated to one or more moieties or ligands (e.g., one or more lipophilic moieties, optionally one or more C16 moieties, or one or more GalNAc moieties) attached through a bivalent or trivalent branched linker.


In some embodiments, when the RNAi agent is represented by formula (IIIa), the Na modifications are 2′-O-methyl or 2′-fluoro modifications, np′>0 and at least one np′ is linked to a neighboring nucleotide via phosphorothioate linkage, the sense strand comprises at least one phosphorothioate linkage, and the sense strand is conjugated to one or more moieties or ligands (e.g., one or more lipophilic moieties, optionally one or more C16 moieties) attached through a bivalent or trivalent branched linker.


In some embodiments, the RNAi agent is a multimer containing at least two duplexes represented by formula (III), (IIIa), (IIIb), (IIIc), and (IIId), wherein the duplexes are connected by a linker. The linker can be cleavable or non-cleavable. Optionally, the multimer further comprises a ligand. Each of the duplexes can target the same gene or two different genes; or each of the duplexes can target same gene at two different target sites.


In some embodiments, the RNAi agent is a multimer containing three, four, five, six or more duplexes represented by formula (III), (IIIa), (IIIb), (IIIc), and (IIId), wherein the duplexes are connected by a linker. The linker can be cleavable or non-cleavable. Optionally, the multimer further comprises a ligand. Each of the duplexes can target the same gene or two different genes; or each of the duplexes can target same gene at two different target sites.


In some embodiments, two RNAi agents represented by formula (III), (IIIa), (IIIb), (IIIc), and (IIId) are linked to each other at the 5′ end, and one or both of the 3′ ends and are optionally conjugated to a ligand. Each of the agents can target the same gene or two different genes; or each of the agents can target same gene at two different target sites.


Various publications describe multimeric RNAi agents that can be used in the methods of the disclosure. Such publications include WO2007/091269, WO2010/141511, WO2007/117686, WO2009/014887, and WO2011/031520; and U.S. Pat. No. 7,858,769, the contents of each of which are hereby incorporated herein by reference for the methods provided therein. In certain embodiments, the RNAi agents of the disclosure may include GalNAc ligands.


As described in more detail below, the RNAi agent that contains conjugations of one or more carbohydrate moieties to a RNAi agent can optimize one or more properties of the RNAi agent. In many cases, the carbohydrate moiety will be attached to a modified subunit of the RNAi agent. For example, the ribose sugar of one or more ribonucleotide subunits of a dsRNA agent can be replaced with another moiety, e.g., a non-carbohydrate (preferably cyclic) carrier to which is attached a carbohydrate ligand. A ribonucleotide subunit in which the ribose sugar of the subunit has been so replaced is referred to herein as a ribose replacement modification subunit (RRMS). A cyclic carrier may be a carbocyclic ring system, i.e., all ring atoms are carbon atoms, or a heterocyclic ring system, i.e., one or more ring atoms may be a heteroatom, e.g., nitrogen, oxygen, sulfur. The cyclic carrier may be a monocyclic ring system, or may contain two or more rings, e.g. fused rings. The cyclic carrier may be a fully saturated ring system, or it may contain one or more double bonds.


The ligand may be attached to the polynucleotide via a carrier. The carriers include (i) at least one “backbone attachment point,” or two “backbone attachment points” and (ii) at least one “tethering attachment point.” A “backbone attachment point” as used herein refers to a functional group, e.g. a hydroxyl group, or generally, a bond available for, and that is suitable for incorporation of the carrier into the backbone, e.g., the phosphate, or modified phosphate, e.g., sulfur containing, backbone, of a ribonucleic acid. A “tethering attachment point” (TAP) in some embodiments refers to a constituent ring atom of the cyclic carrier, e.g., a carbon atom or a heteroatom (distinct from an atom which provides a backbone attachment point), that connects a selected moiety. The moiety can be, e.g., a carbohydrate, e.g. monosaccharide, disaccharide, trisaccharide, tetrasaccharide, oligosaccharide, and polysaccharide. Optionally, the selected moiety is connected by an intervening tether to the cyclic carrier. Thus, the cyclic carrier will often include a functional group, e.g., an amino group, or generally, provide a bond, that is suitable for incorporation or tethering of another chemical entity, e.g., a ligand to the constituent ring.


The RNAi agents may be conjugated to a ligand via a carrier, wherein the carrier can be cyclic group or acyclic group. In some embodiments, the cyclic group is selected from pyrrolidinyl, pyrazolinyl, pyrazolidinyl, imidazolinyl, imidazolidinyl, piperidinyl, piperazinyl, [1,3]dioxolane, oxazolidinyl, isoxazolidinyl, morpholinyl, thiazolidinyl, isothiazolidinyl, quinoxalinyl, pyridazinonyl, tetrahydrofuryl and and decalin. In some embodiments, the acyclic group is selected from serinol backbone or diethanolamine backbone.


In certain specific embodiments, the RNAi agent for use in the methods of the disclosure is an agent selected from the group of agents listed in any one of Tables 2A, 2B, 4A, 4B, 5A, 5B, 6A, 6B, 13A, 13B, 14A, 14B, 15A, 15B, 16, 18, and 20. These agents may further comprise a ligand. The ligand can be attached to the sense strand, antisense strand or both strands, at the 3′-end, 5′-end, or both ends. For instance, the ligand may be conjugated to the sense strand, in particular, the 3′-end of the sense strand.


iRNA Conjugates


The iRNA agents disclosed herein can be in the form of conjugates. The conjugate may be attached at any suitable location in the iRNA molecule, e.g., at the 3′ end or the 5′ end of the sense or the antisense strand. The conjugates are optionally attached via a linker.


In some embodiments, an iRNA agent described herein is chemically linked to one or more ligands, moieties or conjugates, which may confer functionality, e.g., by affecting (e.g., enhancing) the activity, cellular distribution or cellular uptake of the iRNA. Such moieties include but are not limited to lipid moieties such as a cholesterol moiety (Letsinger et al., Proc. Natl. Acid. Sci. USA, 1989, 86: 6553-6556), cholic acid (Manoharan et al., Biorg. Med. Chem. Let., 1994, 4:1053-1060), a thioether, e.g., beryl-S-tritylthiol (Manoharan et al., Ann. N.Y. Acad. Sci., 1992, 660:306-309; Manoharan et al., Biorg. Med. Chem. Let., 1993, 3:2765-2770), a thiocholesterol (Oberhauser et al., Nucl. Acids Res., 1992, 20:533-538), an aliphatic chain, e.g., dodecandiol or undecyl residues (Saison-Behmoaras et al., EMBO J, 1991, 10:1111-1118; Kabanov et al., FEBS Lett., 1990, 259:327-330; Svinarchuk et al., Biochimie, 1993, 75:49-54), a phospholipid, e.g., di-hexadecyl-rac-glycerol or triethyl-ammonium 1,2-di-O-hexadecyl-rac-glycero-3-phosphonate (Manoharan et al., Tetrahedron Lett., 1995, 36:3651-3654; Shea et al., Nucl. Acids Res., 1990, 18:3777-3783), a polyamine or a polyethylene glycol chain (Manoharan et al., Nucleosides & Nucleotides, 1995, 14:969-973), or adamantane acetic acid (Manoharan et al., Tetrahedron Lett., 1995, 36:3651-3654), a palmityl moiety (Mishra et al., Biochim. Biophys. Acta, 1995, 1264:229-237), or an octadecylamine or hexylamino-carbonyloxycholesterol moiety (Crooke et al., J. Pharmacol. Exp. Ther., 1996, 277:923-937).


In some embodiments, a ligand alters the distribution, targeting or lifetime of an iRNA agent into which it is incorporated. In some embodiments, a ligand provides an enhanced affinity for a selected target, e.g., molecule, cell or cell type, compartment, e.g., a cellular or organ compartment, tissue, organ or region of the body, as, e.g., compared to a species absent such a ligand. Typical ligands will not take part in duplex pairing in a duplexed nucleic acid.


Ligands can include a naturally occurring substance, such as a protein (e.g., human serum albumin (HSA), low-density lipoprotein (LDL), or globulin); carbohydrate (e.g., a dextran, pullulan, chitin, chitosan, inulin, cyclodextrin or hyaluronic acid); or a lipid. The ligand may also be a recombinant or synthetic molecule, such as a synthetic polymer, e.g., a synthetic polyamino acid. Examples of polyamino acids include polyamino acid is a polylysine (PLL), poly L-aspartic acid, poly L-glutamic acid, styrene-maleic acid anhydride copolymer, poly(L-lactide-co-glycolied) copolymer, divinyl ether-maleic anhydride copolymer, N-(2-hydroxypropyl)methacrylamide copolymer (HMPA), polyethylene glycol (PEG), polyvinyl alcohol (PVA), polyurethane, poly(2-ethylacryllic acid), N-isopropylacrylamide polymers, or polyphosphazine. Examples of polyamines include: polyethylenimine, polylysine (PLL), spermine, spermidine, polyamine, pseudopeptide-polyamine, peptidomimetic polyamine, dendrimer polyamine, arginine, amidine, protamine, cationic lipid, cationic porphyrin, quaternary salt of a polyamine, or an a helical peptide.


Ligands can also include targeting groups, e.g., a cell or tissue targeting agent, e.g., a lectin, glycoprotein, lipid or protein, e.g., an antibody, that binds to a specified cell type such as a kidney cell. A targeting group can be a thyrotropin, melanotropin, lectin, glycoprotein, surfactant protein A, Mucin carbohydrate, multivalent lactose, multivalent galactose, N-acetyl-galactosamine, N-acetyl-gulucosamine multivalent mannose, multivalent fucose, glycosylated polyaminoacids, multivalent galactose, transferrin, bisphosphonate, polyglutamate, polyaspartate, a lipid, cholesterol, a steroid, bile acid, folate, vitamin B12, biotin, or an RGD peptide or RGD peptide mimetic.


Other examples of ligands include dyes, intercalating agents (e.g. acridines), cross-linkers (e.g. psoralene, mitomycin C), porphyrins (TPPC4, texaphyrin, Sapphyrin), polycyclic aromatic hydrocarbons (e.g., phenazine, dihydrophenazine), artificial endonucleases (e.g. EDTA), lipophilic molecules, e.g, cholesterol, cholic acid, adamantane acetic acid, 1-pyrene butyric acid, dihydrotestosterone, 1,3-Bis-O(hexadecyl)glycerol, geranyloxyhexyl group, hexadecylglycerol, borneol, menthol, 1,3-propanediol, heptadecyl group, palmitic acid, myristic acid,O3-(oleoyl)lithocholic acid, O3-(oleoyl)cholenic acid, dimethoxytrityl, or phenoxazine) and peptide conjugates (e.g., antennapedia peptide, Tat peptide), alkylating agents, phosphate, amino, mercapto, PEG (e.g., PEG-40K), MPEG, [MPEG]2, polyamino, alkyl, substituted alkyl, radiolabeled markers, enzymes, haptens (e.g. biotin), transport/absorption facilitators (e.g., aspirin, vitamin E, folic acid), synthetic ribonucleases (e.g., imidazole, bisimidazole, histamine, imidazole clusters, acridine-imidazole conjugates, Eu3+ complexes of tetraazamacrocycles), dinitrophenyl, HRP, or AP.


Ligands can be proteins, e.g., glycoproteins, or peptides, e.g., molecules having a specific affinity for a co-ligand, or antibodies e.g., an antibody, that binds to a specified cell type such as a neuron. Ligands may also include hormones and hormone receptors. They can also include non-peptidic species, such as lipids, lectins, carbohydrates, vitamins, cofactors, multivalent lactose, multivalent galactose, N-acetyl-galactosamine, N-acetyl-glucosamine multivalent mannose, or multivalent fucose. The ligand can be, for example, a lipopolysaccharide, an activator of p38 MAP kinase, or an activator of NF-κB.


The ligand can be a substance, e.g., a drug, which can increase the uptake of the iRNA agent into the cell, for example, by disrupting the cell's cytoskeleton, e.g., by disrupting the cell's microtubules, microfilaments, and/or intermediate filaments. The drug can be, for example, taxon, vincristine, vinblastine, cytochalasin, nocodazole, japlakinolide, latrunculin A, phalloidin, swinholide A, indanocine, or myoservin.


In some embodiments, a ligand attached to an iRNA as described herein acts as a pharmacokinetic modulator (PK modulator). PK modulators include lipophiles, bile acids, steroids, phospholipid analogues, peptides, protein binding agents, PEG, vitamins etc. Exemplary PK modulators include, but are not limited to, cholesterol, fatty acids, cholic acid, lithocholic acid, dialkylglycerides, diacylglyceride, phospholipids, sphingolipids, naproxen, ibuprofen, vitamin E, biotin etc. Oligonucleotides that comprise a number of phosphorothioate linkages are also known to bind to serum protein, thus short oligonucleotides, e.g., oligonucleotides of about 5 bases, 10 bases, 15 bases or 20 bases, comprising multiple of phosphorothioate linkages in the backbone are also amenable to the present disclosure as ligands (e.g. as PK modulating ligands). In addition, aptamers that bind serum components (e.g. serum proteins) are also suitable for use as PK modulating ligands in the embodiments described herein.


Ligand-conjugated oligonucleotides of the disclosure may be synthesized by the use of an oligonucleotide that bears a pendant reactive functionality, such as that derived from the attachment of a linking molecule onto the oligonucleotide (described below). This reactive oligonucleotide may be reacted directly with commercially available ligands, ligands that are synthesized bearing any of a variety of protecting groups, or ligands that have a linking moiety attached thereto.


The oligonucleotides used in the conjugates of the present disclosure may be conveniently and routinely made through the well-known technique of solid-phase synthesis. Equipment for such synthesis is sold by several vendors including, for example, Applied Biosystems (Foster City, Calif.). Any other means for such synthesis known in the art may additionally or alternatively be employed. It is also known to use similar techniques to prepare other oligonucleotides, such as the phosphorothioates and alkylated derivatives.


In the ligand-conjugated oligonucleotides and ligand-molecule bearing sequence-specific linked nucleosides of the present disclosure, the oligonucleotides and oligonucleosides may be assembled on a suitable DNA synthesizer utilizing standard nucleotide or nucleoside precursors, or nucleotide or nucleoside conjugate precursors that already bear the linking moiety, ligand-nucleotide or nucleoside-conjugate precursors that already bear the ligand molecule, or non-nucleoside ligand-bearing building blocks.


When using nucleotide-conjugate precursors that already bear a linking moiety, the synthesis of the sequence-specific linked nucleosides is typically completed, and the ligand molecule is then reacted with the linking moiety to form the ligand-conjugated oligonucleotide. In some embodiments, the oligonucleotides or linked nucleosides of the present disclosure are synthesized by an automated synthesizer using phosphoramidites derived from ligand-nucleoside conjugates in addition to the standard phosphoramidites and non-standard phosphoramidites that are commercially available and routinely used in oligonucleotide synthesis.


A. Lipophilic Moieties


In certain embodiments, the lipophilic moiety is an aliphatic, cyclic such as alicyclic, or polycyclic such as polyalicyclic compound, such as a steroid (e.g., sterol) or a linear or branched aliphatic hydrocarbon. The lipophilic moiety may generally comprise a hydrocarbon chain, which may be cyclic or acyclic. The hydrocarbon chain may comprise various substituents or one or more heteroatoms, such as an oxygen or nitrogen atom. Such lipophilic aliphatic moieties include, without limitation, saturated or unsaturated C4-C30 hydrocarbon (e.g., C6-C18 hydrocarbon), saturated or unsaturated fatty acids, waxes (e.g., monohydric alcohol esters of fatty acids and fatty diamides), terpenes (e.g., C10 terpenes, C15 sesquiterpenes, C20 diterpenes, C30 triterpenes, and C40 tetraterpenes), and other polyalicyclic hydrocarbons. For instance, the lipophilic moiety may contain a C4-C30 hydrocarbon chain (e.g., C4-C30 alkyl or alkenyl). In some embodiments the lipophilic moiety contains a saturated or unsaturated C6-C18 hydrocarbon chain (e.g., a linear C6-C18 alkyl or alkenyl). In some embodiments, the lipophilic moiety contains a saturated or unsaturated C16 hydrocarbon chain (e.g., a linear C16 alkyl or alkenyl).


The lipophilic moiety may be attached to the RNAi agent by any method known in the art, including via a functional grouping already present in the lipophilic moiety or introduced into the RNAi agent, such as a hydroxy group (e.g., —CO—CH2-OH). The functional groups already present in the lipophilic moiety or introduced into the RNAi agent include, but are not limited to, hydroxyl, amine, carboxylic acid, sulfonate, phosphate, thiol, azide, and alkyne.


Conjugation of the RNAi agent and the lipophilic moiety may occur, for example, through formation of an ether or a carboxylic or carbamoyl ester linkage between the hydroxy and an alkyl group R—, an alkanoyl group RCO— or a substituted carbamoyl group RNHCO—. The alkyl group R may be cyclic (e.g., cyclohexyl) or acyclic (e.g., straight-chained or branched; and saturated or unsaturated). Alkyl group R may be a butyl, pentyl, hexyl, heptyl, octyl, nonyl, decyl, undecyl, dodecyl, tridecyl, tetradecyl, pentadecyl, hexadecyl, heptadecyl or octadecyl group, or the like.


In some embodiments, the lipophilic moiety is conjugated to the double-stranded RNAi agent via a linker a linker containing an ether, thioether, urea, carbonate, amine, amide, maleimide-thioether, disulfide, phosphodiester, sulfonamide linkage, a product of a click reaction (e.g., a triazole from the azide-alkyne cycloaddition), or carbamate.


In other embodiments, the lipophilic moiety is a steroid, such as sterol. Steroids are polycyclic compounds containing a perhydro-1,2-cyclopentanophenanthrene ring system. Steroids include, without limitation, bile acids (e.g., cholic acid, deoxycholic acid and dehydrocholic acid), cortisone, digoxigenin, testosterone, cholesterol, and cationic steroids, such as cortisone. A “cholesterol derivative” refers to a compound derived from cholesterol, for example by substitution, addition or removal of substituents.


In other embodiments, the lipophilic moiety is an aromatic moiety. In this context, the term “aromatic” refers broadly to mono- and polyaromatic hydrocarbons. Aromatic groups include, without limitation, C6-C14 aryl moieties comprising one to three aromatic rings, which may be optionally substituted; “aralkyl” or “arylalkyl” groups comprising an aryl group covalently linked to an alkyl group, either of which may independently be optionally substituted or unsubstituted; and “heteroaryl” groups. As used herein, the term “heteroaryl” refers to groups having 5 to 14 ring atoms, e.g., 5, 6, 9, or 10 ring atoms; having 6, 10, or 14π electrons shared in a cyclic array, and having, in addition to carbon atoms, one to about three heteroatoms selected from the group consisting of nitrogen (N), oxygen (O), and sulfur (S).


As employed herein, a “substituted” alkyl, cycloalkyl, aryl, heteroaryl, or heterocyclic group is one having one to about four, one to about three, or one or two, non-hydrogen substituents. Suitable substituents include, without limitation, halo, hydroxy, nitro, haloalkyl, alkyl, alkaryl, aryl, aralkyl, alkoxy, aryloxy, amino, acylamino, alkylcarbamoyl, arylcarbamoyl, aminoalkyl, alkoxycarbonyl, carboxy, hydroxyalkyl, alkanesulfonyl, arenesulfonyl, alkanesulfonamido, arenesulfonamido, aralkylsulfonamido, alkylcarbonyl, acyloxy, cyano, and ureido groups.


In some embodiments, the lipophilic moiety is an aralkyl group, e.g., a 2-arylpropanoyl moiety. The structural features of the aralkyl group are selected so that the lipophilic moiety will bind to at least one protein in vivo. In certain embodiments, the structural features of the aralkyl group are selected so that the lipophilic moiety binds to serum, vascular, or cellular proteins. In certain embodiments, the structural features of the aralkyl group promote binding to albumin, an immunoglobulin, a lipoprotein, α-2-macroglubulin, or α-1-glycoprotein.


In certain embodiments, the ligand is naproxen or a structural derivative of naproxen. Procedures for the synthesis of naproxen can be found in U.S. Pat. Nos. 3,904,682 and 4,009,197, which are hereby incorporated by reference in their entirety. Naproxen has the chemical name (S)-6-Methoxy-α-methyl-2-naphthaleneacetic acid and the structure is




embedded image


In certain embodiments, the ligand is ibuprofen or a structural derivative of ibuprofen. Procedures for the synthesis of ibuprofen can be found in U.S. Pat. No. 3,228,831, which is incorporated herein by reference for the methods provided therein. The structure of ibuprofen is




embedded image


Additional exemplary aralkyl groups are illustrated in U.S. Pat. No. 7,626,014, which is incorporated herein by reference for the methods provided therein.


In other embodiments, suitable lipophilic moieties include lipid, cholesterol, retinoic acid, cholic acid, adamantane acetic acid, 1-pyrene butyric acid, dihydrotestosterone, 1,3-bis-O(hexadecyl)glycerol, geranyloxyhexyanol, hexadecylglycerol, borneol, menthol, 1,3-propanediol, heptadecyl group, palmitic acid, myristic acid, O3-(oleoyl)lithocholic acid, O3-(oleoyl)cholenic acid, ibuprofen, naproxen, dimethoxytrityl, or phenoxazine.


In certain embodiments, more than one lipophilic moiety can be incorporated into the double-strand RNAi agent, particularly when the lipophilic moiety has a low lipophilicity or hydrophobicity. In some embodiments, two or more lipophilic moieties are incorporated into the same strand of the double-strand RNAi agent. In some embodiments, each strand of the double-strand RNAi agent has one or more lipophilic moieties incorporated. In some embodiments, two or more lipophilic moieties are incorporated into the same position (i.e., the same nucleobase, same sugar moiety, or same internucleosidic linkage) of the double-strand RNAi agent. This can be achieved by, e.g., conjugating the two or more lipophilic moieties via a carrier, or conjugating the two or more lipophilic moieties via a branched linker, or conjugating the two or more lipophilic moieties via one or more linkers, with one or more linkers linking the lipophilic moieties consecutively.


The lipophilic moiety may be conjugated to the RNAi agent via a direct attachment to the ribosugar of the RNAi agent. Alternatively, the lipophilic moiety may be conjugated to the double-strand RNAi agent via a linker or a carrier.


In certain embodiments, the lipophilic moiety may be conjugated to the RNAi agent via one or more linkers (tethers).


In some embodiments, the lipophilic moiety is conjugated to the double-stranded RNAi agent via a linker containing an ether, thioether, urea, carbonate, amine, amide, maleimide-thioether, disulfide, phosphodiester, sulfonamide linkage, a product of a click reaction (e.g., a triazole from the azide-alkyne cycloaddition), or carbamate.


B. Lipid Conjugates


In some embodiments, the ligand is a lipid or lipid-based molecule. Such a lipid or lipid-based molecule can typically bind a serum protein, such as human serum albumin (HSA). An HSA binding ligand allows for vascular distribution of the conjugate to a target tissue. For example, the target tissue can be the central nervous system (CNS), e.g., brain and/or the spine, e.g., the dorsal root ganglion. Other molecules that can bind HSA can also be used as ligands. For example, neproxin or aspirin can be used.


A lipid or lipid-based ligand can (a) increase resistance to degradation of the conjugate, (b) increase targeting or transport into a target cell or cell membrane, and/or (c) can be used to adjust binding to a serum protein, e.g., HSA.


A lipid-based ligand can be used to modulate, e.g., control (e.g., inhibit) the binding of the conjugate to a target tissue. For example, a lipid or lipid-based ligand that binds to HSA more strongly will be less likely to be targeted to the kidney and therefore less likely to be cleared from the body. A lipid or lipid-based ligand that binds to HSA less strongly can be used to target the conjugate to the kidney.


In some embodiments, the lipid-based ligand binds HSA. For example, the ligand can bind HSA with a sufficient affinity such that distribution of the conjugate to a non-kidney tissue is enhanced. However, the affinity is typically not so strong that the HSA-ligand binding cannot be reversed.


In some embodiments, the lipid-based ligand binds HSA weakly or not at all, such that distribution of the conjugate to the kidney is enhanced. Other moieties that target to kidney cells can also be used in place of or in addition to the lipid-based ligand.


In other embodiments, the ligand is a moiety, e.g., a vitamin, which is taken up by a target cell, e.g., a proliferating cell. These are particularly useful for treating disorders characterized by unwanted cell proliferation, e.g., of the malignant or non-malignant type, e.g., cancer cells. Exemplary vitamins include vitamin A, E, and K. Other exemplary vitamins include are B vitamin, e.g., folic acid, B12, riboflavin, biotin, pyridoxal or other vitamins or nutrients taken up by cancer cells. Also included are HSA and low-density lipoprotein (LDL).


Cell Permeation Agents


In other embodiments, the ligand is a cell-permeation agent, such as a helical cell-permeation agent. In some embodiments, the agent is amphipathic. An exemplary agent is a peptide such as tat or antennopedia. If the agent is a peptide, it can be modified, including a peptidylmimetic, invertomers, non-peptide or pseudo-peptide linkages, and use of D-amino acids. The helical agent is typically an α-helical agent, and can have a lipophilic and a lipophobic phase.


The ligand can be a peptide or peptidomimetic. A peptidomimetic (also referred to herein as an oligopeptidomimetic) is a molecule capable of folding into a defined three-dimensional structure similar to a natural peptide. The attachment of peptide and peptidomimetics to iRNA agents can affect pharmacokinetic distribution of the iRNA, such as by enhancing cellular recognition and absorption. The peptide or peptidomimetic moiety can be about 5-50 amino acids long, e.g., about 5, 10, 15, 20, 25, 30, 35, 40, 45, or 50 amino acids long.


A peptide or peptidomimetic can be, for example, a cell permeation peptide, cationic peptide, amphipathic peptide, or hydrophobic peptide (e.g., consisting primarily of Tyr, Trp or Phe). The peptide moiety can be a dendrimer peptide, constrained peptide or crosslinked peptide. In another alternative, the peptide moiety can include a hydrophobic membrane translocation sequence (MTS). An exemplary hydrophobic MTS-containing peptide is RFGF having the amino acid sequence AAVALLPAVLLALLAP (SEQ ID NO: 3699). An RFGF analogue (e.g., amino acid sequence AALLPVLLAAP (SEQ ID NO: 3700)) containing a hydrophobic MTS can also be a targeting moiety. The peptide moiety can be a “delivery” peptide, which can carry large polar molecules including peptides, oligonucleotides, and protein across cell membranes. For example, sequences from the HIV Tat protein (GRKKRRQRRRPPQ (SEQ ID NO:3701)) and the Drosophila Antennapedia protein (RQIKIWFQNRRMKWKK (SEQ ID NO: 3702)) have been found to be capable of functioning as delivery peptides. A peptide or peptidomimetic can be encoded by a random sequence of DNA, such as a peptide identified from a phage-display library, or one-bead-one-compound (OBOC) combinatorial library (Lam et al., Nature, 354:82-84, 1991). Typically, the peptide or peptidomimetic tethered to a dsRNA agent via an incorporated monomer unit is a cell targeting peptide such as an arginine-glycine-aspartic acid (RGD)-peptide, or RGD mimic A peptide moiety can range in length from about 5 amino acids to about 40 amino acids. The peptide moieties can have a structural modification, such as to increase stability or direct conformational properties. Any of the structural modifications described below can be utilized.


An RGD peptide for use in the compositions and methods of the disclosure may be linear or cyclic, and may be modified, e.g., glycosylated or methylated, to facilitate targeting to a specific tissue(s). RGD-containing peptides and peptidomimetics may include D-amino acids, as well as synthetic RGD mimics. In addition to RGD, one can use other moieties that target the integrin ligand. In some embodiments, conjugates of this ligand target PECAM-1 or VEGF.


An RGD peptide moiety can be used to target a particular cell type, e.g., a tumor cell, such as an endothelial tumor cell or a breast cancer tumor cell (Zitzmann et al., Cancer Res., 62:5139-43, 2002). An RGD peptide can facilitate targeting of an dsRNA agent to tumors of a variety of other tissues, including the lung, kidney, spleen, or liver (Aoki et al., Cancer Gene Therapy 8:783-787, 2001). Typically, the RGD peptide will facilitate targeting of an iRNA agent to the kidney. The RGD peptide can be linear or cyclic, and can be modified, e.g., glycosylated or methylated to facilitate targeting to specific tissues. For example, a glycosylated RGD peptide can deliver an iRNA agent to a tumor cell expressing αVβ3 (Haubner et al., Jour. Nucl. Med., 42:326-336, 2001).


A “cell permeation peptide” is capable of permeating a cell, e.g., a microbial cell, such as a bacterial or fungal cell, or a mammalian cell, such as a human cell. A microbial cell-permeating peptide can be, for example, an α-helical linear peptide (e.g., LL-37 or Ceropin P1), a disulfide bond-containing peptide (e.g., α-defensin, β-defensin or bactenecin), or a peptide containing only one or two dominating amino acids (e.g., PR-39 or indolicidin). A cell permeation peptide can also include a nuclear localization signal (NLS). For example, a cell permeation peptide can be a bipartite amphipathic peptide, such as MPG, which is derived from the fusion peptide domain of HIV-1 gp41 and the NLS of SV40 large T antigen (Simeoni et al., Nucl. Acids Res. 31:2717-2724, 2003).


Carbohydrate Conjugates and Ligands


In some embodiments of the compositions and methods of the disclosure, an iRNA oligonucleotide further comprises a carbohydrate. The carbohydrate conjugated iRNA are advantageous for the in vivo delivery of nucleic acids, as well as compositions suitable for in vivo therapeutic use, as described herein. As used herein, “carbohydrate” refers to a compound which is either a carbohydrate per se made up of one or more monosaccharide units having at least 6 carbon atoms (which can be linear, branched or cyclic) with an oxygen, nitrogen or sulfur atom bonded to each carbon atom; or a compound having as a part thereof a carbohydrate moiety made up of one or more monosaccharide units each having at least six carbon atoms (which can be linear, branched or cyclic), with an oxygen, nitrogen or sulfur atom bonded to each carbon atom. Representative carbohydrates include the sugars (mono-, di-, tri- and oligosaccharides containing from about 4, 5, 6, 7, 8, or 9 monosaccharide units), and polysaccharides such as starches, glycogen, cellulose and polysaccharide gums. Specific monosaccharides include C5 and above (e.g., C5, C6, C7, or C8) sugars; di- and trisaccharides include sugars having two or three monosaccharide units (e.g., C5, C6, C7, or C8).


In certain embodiments, the compositions and methods of the disclosure include a C16 ligand. In exemplary embodiments, the C16 ligand of the disclosure has the following structure (exemplified here below for a uracil base, yet attachment of the C16 ligand is contemplated for a nucleotide presenting any base (C, G, A, etc.) or possessing any other modification as presented herein, provided that 2′ ribo attachment is preserved) and is attached at the 2′ position of the ribo within a residue that is so modified:




embedded image


As shown above, a C16 ligand-modified residue presents a straight chain alkyl at the 2′-ribo position of an exemplary residue (here, a Uracil) that is so modified.


In exemplary embodiments, the C16 ligand of the disclosure can be conjugated to a ribonucleotide residue according to the following structure: possessing any other modification as presented herein, provided that 2′-ribo attachment is preserved) and is attached at the 2′-position of the ribo within a residue that is so modified:




embedded image


where * denotes a bond to an adjacent nucleotide, and B is a nucleobase or a nucleobase analog, for example, where B is adenine, guanine, cytosine, thymine or uracil.


In some embodiments, a carbohydrate conjugate of a RNAi agent of the instant disclosure further comprises one or more additional ligands as described above, such as, but not limited to, a PK modulator or a cell permeation peptide.


Additional carbohydrate conjugates (and linkers) suitable for use in the present disclosure include those described in WO 2014/179620 and WO 2014/179627, the entire contents of each of which are incorporated herein by reference.


In certain embodiments, the compositions and methods of the disclosure include a 5′-vinyl phosponate (VP) modification of an RNAi agent as described herein. In exemplary embodiments, a 5′-vinyl phosphonate modified nucleotide of the disclosure has the structure of formula:




embedded image


wherein X is O or S;


R is hydrogen, hydroxy, methoxy, fluoro, or C1-20alkoxy (e.g., methoxy or n-hexadecyloxy);


R5′ is ═C(H)—P(O)(OH)2 and the double bond between the C5′ carbon and R5′ is in the E or Z orientation (e.g., E orientation); and B is a nucleobase or a modified nucleobase, optionally where B is adenine, guanine, cytosine, thymine, or uracil. A vinyl phosponate of the instant disclosure may be attached to either the antisense or the sense strand of a dsRNA of the disclosure. In certain embodiments, a vinyl phosphonate of the instant disclosure is attached to the antisense strand of a dsRNA, optionally at the 5′ end of the antisense strand of the dsRNA.


Vinyl phosphate modifications are also contemplated for the compositions and methods of the instant disclosure. An exemplary vinyl phosphate structure is:




embedded image


for example, including the preceding structure where R5′ is ═C(H)—OP(O)(OH)2 and the double bond between the C5′ carbon and R5′ is in the E or Z orientation (e.g., E orientation).


In some embodiments, a carbohydrate conjugate comprises a monosaccharide. In some embodiments, the monosaccharide is an N-acetylgalactosamine (GalNAc). GalNAc conjugates, which comprise one or more N-acetylgalactosamine (GalNAc) derivatives, are described, for example, in U.S. Pat. No. 8,106,022, the entire content of which is hereby incorporated herein by reference. In some embodiments, the GalNAc conjugate serves as a ligand that targets the iRNA to particular cells. In some embodiments, the GalNAc conjugate targets the iRNA to liver cells, e.g., by serving as a ligand for the asialoglycoprotein receptor of liver cells (e.g., hepatocytes).


In some embodiments, the carbohydrate conjugate comprises one or more GalNAc derivatives. The GalNAc derivatives may be attached via a linker, e.g., a bivalent or trivalent branched linker. In some embodiments the GalNAc conjugate is conjugated to the 3′ end of the sense strand. In some embodiments, the GalNAc conjugate is conjugated to the iRNA agent (e.g., to the 3′ end of the sense strand) via a linker, e.g., a linker as described herein.


In some embodiments, the GalNAc conjugate is




embedded image


In some embodiments, the RNAi agent is attached to the carbohydrate conjugate via a linker as shown in the following schematic, wherein X is O or S:




embedded image


In some embodiments, the RNAi agent is conjugated to L96 as defined in Table 1 and shown below:




embedded image


In some embodiments, a carbohydrate conjugate for use in the compositions and methods of the disclosure is selected from the group consisting of:




embedded image


embedded image


embedded image


embedded image


Another representative carbohydrate conjugate for use in the embodiments described herein includes, but is not limited to,




embedded image


when one of X or Y is an oligonucleotide, the other is a hydrogen.


In some embodiments, the carbohydrate conjugate further comprises one or more additional ligands as described above, such as, but not limited to, a PK modulator and/or a cell permeation peptide.


In some embodiments, an iRNA of the disclosure is conjugated to a carbohydrate through a linker. Non-limiting examples of iRNA carbohydrate conjugates with linkers of the compositions and methods of the disclosure include, but are not limited to,




embedded image


embedded image


embedded image


when one of X or Y is an oligonucleotide, the other is a hydrogen.


E. Thermally Destabilizing Modifications


In certain embodiments, a dsRNA molecule can be optimized for RNA interference by incorporating thermally destabilizing modifications in the seed region of the antisense strand (i.e., at positions 2-9 of the 5′-end of the antisense strand) to reduce or inhibit off-target gene silencing. It has been discovered that dsRNAs with an antisense strand comprising at least one thermally destabilizing modification of the duplex within the first 9 nucleotide positions, counting from the 5′ end, of the antisense strand have reduced off-target gene silencing activity. Accordingly, in some embodiments, the antisense strand comprises at least one (e.g., one, two, three, four, five, or more) thermally destabilizing modification of the duplex within the first 9 nucleotide positions of the 5′ region of the antisense strand. In some embodiments, one or more thermally destabilizing modification(s) of the duplex is/are located in positions 2-9, or positions 4-8, from the 5′-end of the antisense strand. In some further embodiments, the thermally destabilizing modification(s) of the duplex is/are located at position 6, 7, or 8 from the 5′-end of the antisense strand. In still some further embodiments, the thermally destabilizing modification of the duplex is located at position 7 from the 5′-end of the antisense strand. The term “thermally destabilizing modification(s)” includes modification(s) that would result with a dsRNA with a lower overall melting temperature (Tm) (e.g., a Tm with one, two, three, or four degrees lower than the Tm of the dsRNA without having such modification(s). In some embodiments, the thermally destabilizing modification of the duplex is located at position 2, 3, 4, 5, or 9 from the 5′-end of the antisense strand.


The thermally destabilizing modifications can include, but are not limited to, abasic modification; mismatch with the opposing nucleotide in the opposing strand; and sugar modification such as 2′-deoxy modification or acyclic nucleotide, e.g., unlocked nucleic acids (UNA) or glycol nucleic acid (GNA).


Exemplified abasic modifications include, but are not limited to, the following:




embedded image


Wherein R=H, Me, Et or OMe; R′=H, Me, Et or OMe; R″=H, Me, Et or OMe



embedded image


wherein B is a modified or unmodified nucleobase.


Exemplified sugar modifications include, but are not limited to the following:




embedded image


wherein B is a modified or unmodified nucleobase.


In some embodiments the thermally destabilizing modification of the duplex is selected from the group consisting of:




embedded image


wherein B is a modified or unmodified nucleobase and the asterisk on each structure represents either R, S or racemic.


The term “acyclic nucleotide” refers to any nucleotide having an acyclic ribose sugar, for example, where any of bonds between the ribose carbons (e.g., C1′-C2′, C2′-C3′, C3′-C4′, C4′-C4′, or C1′-C4′) is absent or at least one of ribose carbons or oxygen (e.g., C1′, C2′, C3′, C4′, or C4′) are independently or in combination absent from the nucleotide. In some embodiments, acyclic nucleotide is




embedded image


wherein B is a modified or unmodified nucleobase, R1 and R2 independently are H, halogen, OR3, or alkyl; and R3 is H, alkyl, cycloalkyl, aryl, aralkyl, heteroaryl or sugar). The term “UNA” refers to unlocked acyclic nucleic acid, wherein any of the bonds of the sugar has been removed, forming an unlocked “sugar” residue. In one example, UNA also encompasses monomers with bonds between C1′-C4′ being removed (i.e. the covalent carbon-oxygen-carbon bond between the C1′ and C4′ carbons). In another example, the C2′-C3′ bond (i.e. the covalent carbon-carbon bond between the C2′ and C3′ carbons) of the sugar is removed (see Mikhailov et. al., Tetrahedron Letters, 26 (17): 2059 (1985); and Fluiter et al., Mol. Biosyst., 10: 1039 (2009), which are hereby incorporated by reference in their entirety). The acyclic derivative provides greater backbone flexibility without affecting the Watson-Crick pairings. The acyclic nucleotide can be linked via 2′-5′ or 3′-5′ linkage.


The term ‘GNA’ refers to glycol nucleic acid which is a polymer similar to DNA or RNA but differing in the composition of its “backbone” in that is composed of repeating glycerol units linked by phosphodiester bonds:




embedded image


The thermally destabilizing modification of the duplex can be mismatches (i.e., noncomplementary base pairs) between the thermally destabilizing nucleotide and the opposing nucleotide in the opposite strand within the dsRNA duplex. Exemplary mismatch base pairs include G:G, G:A, G:U, G:T, A:A, A:C, C:C, C:U, C:T, U:U, T:T, U:T, or a combination thereof. Other mismatch base pairings known in the art are also amenable to the present invention. A mismatch can occur between nucleotides that are either naturally occurring nucleotides or modified nucleotides, i.e., the mismatch base pairing can occur between the nucleobases from respective nucleotides independent of the modifications on the ribose sugars of the nucleotides. In certain embodiments, the dsRNA molecule contains at least one nucleobase in the mismatch pairing that is a 2′-deoxy nucleobase; e.g., the 2′-deoxy nucleobase is in the sense strand.


In some embodiments, the thermally destabilizing modification of the duplex in the seed region of the antisense strand includes nucleotides with impaired W-C H-bonding to complementary base on the target mRNA, such as:




embedded image


embedded image


More examples of abasic nucleotide, acyclic nucleotide modifications (including UNA and GNA), and mismatch modifications have been described in detail in WO 2011/133876, which is herein incorporated by reference in its entirety.


The thermally destabilizing modifications may also include universal base with reduced or abolished capability to form hydrogen bonds with the opposing bases, and phosphate modifications.


In some embodiments, the thermally destabilizing modification of the duplex includes nucleotides with non-canonical bases such as, but not limited to, nucleobase modifications with impaired or completely abolished capability to form hydrogen bonds with bases in the opposite strand. These nucleobase modifications have been evaluated for destabilization of the central region of the dsRNA duplex as described in WO 2010/0011895, which is herein incorporated by reference in its entirety. Exemplary nucleobase modifications are:




embedded image


In some embodiments, the thermally destabilizing modification of the duplex in the seed region of the antisense strand includes one or more α-nucleotide complementary to the base on the target mRNA, such as:




embedded image


wherein R is H, OH, OCH3, F, NH2, NHMe, NMe2 or O-alkyl.


Exemplary phosphate modifications known to decrease the thermal stability of dsRNA duplexes compared to natural phosphodiester linkages are:




embedded image


The alkyl for the R group can be a C1-C6alkyl. Specific alkyls for the R group include, but are not limited to methyl, ethyl, propyl, isopropyl, butyl, pentyl and hexyl.


As the skilled artisan will recognize, in view of the functional role of nucleobases is defining specificity of a RNAi agent of the disclosure, while nucleobase modifications can be performed in the various manners as described herein, e.g., to introduce destabilizing modifications into a RNAi agent of the disclosure, e.g., for purpose of enhancing on-target effect relative to off-target effect, the range of modifications available and, in general, present upon RNAi agents of the disclosure tends to be much greater for non-nucleobase modifications, e.g., modifications to sugar groups or phosphate backbones of polyribonucleotides. Such modifications are described in greater detail in other sections of the instant disclosure and are expressly contemplated for RNAi agents of the disclosure, either possessing native nucleobases or modified nucleobases as described above or elsewhere herein.


In addition to the antisense strand comprising a thermally destabilizing modification, the dsRNA can also comprise one or more stabilizing modifications. For example, the dsRNA can comprise at least two (e.g., two, three, four, five, six, seven, eight, nine, ten, or more) stabilizing modifications. Without limitations, the stabilizing modifications all can be present in one strand. In some embodiments, both the sense and the antisense strands comprise at least two stabilizing modifications. The stabilizing modification can occur on any nucleotide of the sense strand or antisense strand. For instance, the stabilizing modification can occur on every nucleotide on the sense strand or antisense strand; each stabilizing modification can occur in an alternating pattern on the sense strand or antisense strand; or the sense strand or antisense strand comprises both stabilizing modification in an alternating pattern. The alternating pattern of the stabilizing modifications on the sense strand may be the same or different from the antisense strand, and the alternating pattern of the stabilizing modifications on the sense strand can have a shift relative to the alternating pattern of the stabilizing modifications on the antisense strand.


In some embodiments, the antisense strand comprises at least two (e.g., two, three, four, five, six, seven, eight, nine, ten, or more) stabilizing modifications. Without limitations, a stabilizing modification in the antisense strand can be present at any positions.


In some embodiments, the antisense strand comprises stabilizing modifications at positions 2, 6, 8, 9, 14, and 16 from the 5′-end. In some other embodiments, the antisense strand comprises stabilizing modifications at positions 2, 6, 14, and 16 from the 5′-end. In still some other embodiments, the antisense strand comprises stabilizing modifications at positions 2, 14, and 16 from the 5′-end.


In some embodiments, the antisense strand comprises at least one stabilizing modification adjacent to the destabilizing modification. For example, the stabilizing modification can be the nucleotide at the 5′-end or the 3′-end of the destabilizing modification, i.e., at position −1 or +1 from the position of the destabilizing modification. In some embodiments, the antisense strand comprises a stabilizing modification at each of the 5′-end and the 3′-end of the destabilizing modification, i.e., positions −1 and +1 from the position of the destabilizing modification.


In some embodiments, the antisense strand comprises at least two stabilizing modifications at the 3′-end of the destabilizing modification, i.e., at positions +1 and +2 from the position of the destabilizing modification.


In some embodiments, the sense strand comprises at least two (e.g., two, three, four, five, six, seven, eight, nine, ten or more) stabilizing modifications. Without limitations, a stabilizing modification in the sense strand can be present at any positions. In some embodiments, the sense strand comprises stabilizing modifications at positions 7, 10, and 11 from the 5′-end. In some other embodiments, the sense strand comprises stabilizing modifications at positions 7, 9, 10, and 11 from the 5′-end. In some embodiments, the sense strand comprises stabilizing modifications at positions opposite or complimentary to positions 11, 12, and 15 of the antisense strand, counting from the 5′-end of the antisense strand. In some other embodiments, the sense strand comprises stabilizing modifications at positions opposite or complimentary to positions 11, 12, 13, and 15 of the antisense strand, counting from the 5′-end of the antisense strand. In some embodiments, the sense strand comprises a block of two, three, or four stabilizing modifications.


In some embodiments, the sense strand does not comprise a stabilizing modification in position opposite or complimentary to the thermally destabilizing modification of the duplex in the antisense strand.


Exemplary thermally stabilizing modifications include, but are not limited to, 2′-fluoro modifications. Other thermally stabilizing modifications include, but are not limited to, LNA.


In some embodiments, the dsRNA of the disclosure comprises at least four (e.g., four, five, six, seven, eight, nine, ten, or more) 2′-fluoro nucleotides. Without limitations, the 2′-fluoro nucleotides all can be present in one strand. In some embodiments, both the sense and the antisense strands comprise at least two 2′-fluoro nucleotides. The 2′-fluoro modification can occur on any nucleotide of the sense strand or antisense strand. For instance, the 2′-fluoro modification can occur on every nucleotide on the sense strand or antisense strand; each 2′-fluoro modification can occur in an alternating pattern on the sense strand or antisense strand; or the sense strand or antisense strand comprises both 2′-fluoro modifications in an alternating pattern. The alternating pattern of the 2′-fluoro modifications on the sense strand may be the same or different from the antisense strand, and the alternating pattern of the 2′-fluoro modifications on the sense strand can have a shift relative to the alternating pattern of the 2′-fluoro modifications on the antisense strand.


In some embodiments, the antisense strand comprises at least two (e.g., two, three, four, five, six, seven, eight, nine, ten, or more) 2′-fluoro nucleotides. Without limitations, a 2′-fluoro modification in the antisense strand can be present at any positions. In some embodiments, the antisense comprises 2′-fluoro nucleotides at positions 2, 6, 8, 9, 14, and 16 from the 5′-end. In some other embodiments, the antisense comprises 2′-fluoro nucleotides at positions 2, 6, 14, and 16 from the 5′-end. In still some other embodiments, the antisense comprises 2′-fluoro nucleotides at positions 2, 14, and 16 from the 5′-end.


In some embodiments, the antisense strand comprises at least one 2′-fluoro nucleotide adjacent to the destabilizing modification. For example, the 2′-fluoro nucleotide can be the nucleotide at the 5′-end or the 3′-end of the destabilizing modification, i.e., at position −1 or +1 from the position of the destabilizing modification. In some embodiments, the antisense strand comprises a 2′-fluoro nucleotide at each of the 5′-end and the 3′-end of the destabilizing modification, i.e., positions −1 and +1 from the position of the destabilizing modification.


In some embodiments, the antisense strand comprises at least two 2′-fluoro nucleotides at the 3′-end of the destabilizing modification, i.e., at positions +1 and +2 from the position of the destabilizing modification.


In some embodiments, the sense strand comprises at least two (e.g., two, three, four, five, six, seven, eight, nine, ten, or more) 2′-fluoro nucleotides. Without limitations, a 2′-fluoro modification in the sense strand can be present at any positions. In some embodiments, the antisense comprises 2′-fluoro nucleotides at positions 7, 10, and 11 from the 5′-end. In some other embodiments, the sense strand comprises 2′-fluoro nucleotides at positions 7, 9, 10, and 11 from the 5′-end. In some embodiments, the sense strand comprises 2′-fluoro nucleotides at positions opposite or complimentary to positions 11, 12, and 15 of the antisense strand, counting from the 5′-end of the antisense strand. In some other embodiments, the sense strand comprises 2′-fluoro nucleotides at positions opposite or complimentary to positions 11, 12, 13, and 15 of the antisense strand, counting from the 5′-end of the antisense strand. In some embodiments, the sense strand comprises a block of two, three, or four 2′-fluoro nucleotides.


In some embodiments, the sense strand does not comprise a 2′-fluoro nucleotide in position opposite or complimentary to the thermally destabilizing modification of the duplex in the antisense strand.


In some embodiments, the dsRNA molecule of the disclosure comprises a 21 nucleotides (nt) sense strand and a 23 nucleotides (nt) antisense, wherein the antisense strand contains at least one thermally destabilizing nucleotide, where the at least one thermally destabilizing nucleotide occurs in the seed region of the antisense strand (i.e., at position 2-9 of the 5′-end of the antisense strand), wherein one end of the dsRNA is blunt, while the other end is comprises a 2 nt overhang, and wherein the dsRNA optionally further has at least one (e.g., one, two, three, four, five, six, or all seven) of the following characteristics: (i) the antisense comprises 2, 3, 4, 5, or 6 2′-fluoro modifications; (ii) the antisense comprises 1, 2, 3, 4, or 5 phosphorothioate internucleotide linkages; (iii) the sense strand is conjugated with a ligand; (iv) the sense strand comprises 2, 3, 4, or 5 2′-fluoro modifications; (v) the sense strand comprises 1, 2, 3, 4, or 5 phosphorothioate internucleotide linkages; (vi) the dsRNA comprises at least four 2′-fluoro modifications; and (vii) the dsRNA comprises a blunt end at 5′-end of the antisense strand. In some embodiments, the 2 nt overhang is at the 3′-end of the antisense.


In some embodiments, every nucleotide in the sense strand and antisense strand of the dsRNA molecule may be modified. Each nucleotide may be modified with the same or different modification which can include one or more alteration of one or both of the non-linking phosphate oxygens or of one or more of the linking phosphate oxygens; alteration of a constituent of the ribose sugar, e.g., of the 2′ hydroxyl on the ribose sugar; wholesale replacement of the phosphate moiety with “dephospho” linkers; modification or replacement of a naturally occurring base; and replacement or modification of the ribose-phosphate backbone.


As nucleic acids are polymers of subunits, many of the modifications occur at a position which is repeated within a nucleic acid, e.g., a modification of a base, or a phosphate moiety, or a non-linking O of a phosphate moiety. In some cases, the modification will occur at all of the subject positions in the nucleic acid but in many cases it will not. By way of example, a modification may only occur at a 3′ or 5′ terminal position, may only occur in a terminal region, e.g., at a position on a terminal nucleotide or in the last 2, 3, 4, 5, or 10 nucleotides of a strand. A modification may occur in a double strand region, a single strand region, or in both. A modification may occur only in the double strand region of an RNA or may only occur in a single strand region of an RNA. E.g., a phosphorothioate modification at a non-linking O position may only occur at one or both termini, may only occur in a terminal region, e.g., at a position on a terminal nucleotide or in the last 2, 3, 4, 5, or 10 nucleotides of a strand, or may occur in double strand and single strand regions, particularly at termini. The 5′ end or ends can be phosphorylated.


It may be possible, e.g., to enhance stability, to include particular bases in overhangs, or to include modified nucleotides or nucleotide surrogates, in single strand overhangs, e.g., in a 5′ or 3′ overhang, or in both. E.g., it can be desirable to include purine nucleotides in overhangs. In some embodiments all or some of the bases in a 3′ or 5′ overhang may be modified, e.g., with a modification described herein. Modifications can include, e.g., the use of modifications at the 2′ position of the ribose sugar with modifications that are known in the art, e.g., the use of deoxyribonucleotides, 2′-deoxy-2′-fluoro (2′-F) or 2′-O-methyl modified instead of the ribosugar of the nucleobase, and modifications in the phosphate group, e.g., phosphorothioate modifications. Overhangs need not be homologous with the target sequence.


In some embodiments, each residue of the sense strand and antisense strand is independently modified with LNA, HNA, CeNA, 2′-methoxyethyl, 2′-O-methyl, 2′-O-allyl, 2′-C-allyl, 2′-deoxy, or 2′-fluoro. The strands can contain more than one modification. In some embodiments, each residue of the sense strand and antisense strand is independently modified with 2′-O-methyl or 2′-fluoro. It is to be understood that these modifications are in addition to the at least one thermally destabilizing modification of the duplex present in the antisense strand.


At least two different modifications are typically present on the sense strand and antisense strand. Those two modifications may be the 2′-deoxy, 2′-O-methyl, or 2′-fluoro modifications, acyclic nucleotides or others. In some embodiments, the sense strand and antisense strand each comprises two differently modified nucleotides selected from 2′-O-methyl or 2′-deoxy. In some embodiments, each residue of the sense strand and antisense strand is independently modified with 2′-O-methyl nucleotide, 2′-deoxy nucleotide, 2′-deoxy-2′-fluoro nucleotide, 2′-O-N-methylacetamido (2′-O-NMA) nucleotide, a 2′-O-dimethylaminoethoxyethyl (2′-O-DMAEOE) nucleotide, 2′-O-aminopropyl (2′-O-AP) nucleotide, or 2′-ara-F nucleotide. Again, it is to be understood that these modifications are in addition to the at least one thermally destabilizing modification of the duplex present in the antisense strand.


In some embodiments, the dsRNA molecule of the disclosure comprises modifications of an alternating pattern, particular in the B1, B2, B3, B1′, B2′, B3′, B4′ regions. The term “alternating motif” or “alternative pattern” as used herein refers to a motif having one or more modifications, each modification occurring on alternating nucleotides of one strand. The alternating nucleotide may refer to one per every other nucleotide or one per every three nucleotides, or a similar pattern. For example, if A, B and C each represent one type of modification to the nucleotide, the alternating motif can be “ABABABABABAB . . . ,” “AABBAABBAABB . . . ,” “AABAABAABAAB . . . ,” “AAABAAABAAAB . . . ,” “AAABBBAAABBB . . . ,” or “ABCABCABCABC . . . ,” etc.


The type of modifications contained in the alternating motif may be the same or different. For example, if A, B, C, D each represent one type of modification on the nucleotide, the alternating pattern, i.e., modifications on every other nucleotide, may be the same, but each of the sense strand or antisense strand can be selected from several possibilities of modifications within the alternating motif such as “ABABAB . . . ”, “ACACAC . . . ” “BDBDBD . . . ” or “CDCDCD . . . ,” etc.


In some embodiments, the dsRNA molecule of the disclosure comprises the modification pattern for the alternating motif on the sense strand relative to the modification pattern for the alternating motif on the antisense strand is shifted. The shift may be such that the modified group of nucleotides of the sense strand corresponds to a differently modified group of nucleotides of the antisense strand and vice versa. For example, the sense strand when paired with the antisense strand in the dsRNA duplex, the alternating motif in the sense strand may start with “ABABAB” from 5′-3′ of the strand and the alternating motif in the antisense strand may start with “BABABA” from 3′-5′ of the strand within the duplex region. As another example, the alternating motif in the sense strand may start with “AABBAABB” from 5′-3′ of the strand and the alternating motif in the antisense strand may start with “BBAABBAA” from 3′-5′ of the strand within the duplex region, so that there is a complete or partial shift of the modification patterns between the sense strand and the antisense strand.


The dsRNA molecule of the disclosure may further comprise at least one phosphorothioate or methylphosphonate internucleotide linkage. The phosphorothioate or methylphosphonate internucleotide linkage modification may occur on any nucleotide of the sense strand or antisense strand or both in any position of the strand. For instance, the internucleotide linkage modification may occur on every nucleotide on the sense strand or antisense strand; each internucleotide linkage modification may occur in an alternating pattern on the sense strand or antisense strand; or the sense strand or antisense strand comprises both internucleotide linkage modifications in an alternating pattern. The alternating pattern of the internucleotide linkage modification on the sense strand may be the same or different from the antisense strand, and the alternating pattern of the internucleotide linkage modification on the sense strand may have a shift relative to the alternating pattern of the internucleotide linkage modification on the antisense strand.


In some embodiments, the dsRNA molecule comprises the phosphorothioate or methylphosphonate internucleotide linkage modification in the overhang region. For example, the overhang region comprises two nucleotides having a phosphorothioate or methylphosphonate internucleotide linkage between the two nucleotides. Internucleotide linkage modifications also may be made to link the overhang nucleotides with the terminal paired nucleotides within duplex region. For example, at least 2, 3, 4, or all the overhang nucleotides may be linked through phosphorothioate or methylphosphonate internucleotide linkage, and optionally, there may be additional phosphorothioate or methylphosphonate internucleotide linkages linking the overhang nucleotide with a paired nucleotide that is next to the overhang nucleotide. For instance, there may be at least two phosphorothioate internucleotide linkages between the terminal three nucleotides, in which two of the three nucleotides are overhang nucleotides, and the third is a paired nucleotide next to the overhang nucleotide. In some embodiments, these terminal three nucleotides may be at the 3′-end of the antisense strand.


In some embodiments, the sense strand of the dsRNA molecule comprises 1-10 blocks of two to ten phosphorothioate or methylphosphonate internucleotide linkages separated by 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, or 16 phosphate internucleotide linkages, wherein one of the phosphorothioate or methylphosphonate internucleotide linkages is placed at any position in the oligonucleotide sequence and the said sense strand is paired with an antisense strand comprising any combination of phosphorothioate, methylphosphonate, and phosphate internucleotide linkages or an antisense strand comprising either phosphorothioate or methylphosphonate or phosphate linkage.


In some embodiments, the antisense strand of the dsRNA molecule comprises two blocks of two phosphorothioate or methylphosphonate internucleotide linkages separated by 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, or 18 phosphate internucleotide linkages, wherein one of the phosphorothioate or methylphosphonate internucleotide linkages is placed at any position in the oligonucleotide sequence and the said antisense strand is paired with a sense strand comprising any combination of phosphorothioate, methylphosphonate, and phosphate internucleotide linkages or an antisense strand comprising either phosphorothioate or methylphosphonate or phosphate linkage.


In some embodiments, the antisense strand of the dsRNA molecule comprises two blocks of three phosphorothioate or methylphosphonate internucleotide linkages separated by 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, or 16 phosphate internucleotide linkages, wherein one of the phosphorothioate or methylphosphonate internucleotide linkages is placed at any position in the oligonucleotide sequence and the said antisense strand is paired with a sense strand comprising any combination of phosphorothioate, methylphosphonate, and phosphate internucleotide linkages or an antisense strand comprising either phosphorothioate or methylphosphonate or phosphate linkage.


In some embodiments, the antisense strand of the dsRNA molecule comprises two blocks of four phosphorothioate or methylphosphonate internucleotide linkages separated by 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, or 14 phosphate internucleotide linkages, wherein one of the phosphorothioate or methylphosphonate internucleotide linkages is placed at any position in the oligonucleotide sequence and the said antisense strand is paired with a sense strand comprising any combination of phosphorothioate, methylphosphonate, and phosphate internucleotide linkages or an antisense strand comprising either phosphorothioate or methylphosphonate or phosphate linkage.


In some embodiments, the antisense strand of the dsRNA molecule comprises two blocks of five phosphorothioate or methylphosphonate internucleotide linkages separated by 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, or 12 phosphate internucleotide linkages, wherein one of the phosphorothioate or methylphosphonate internucleotide linkages is placed at any position in the oligonucleotide sequence and the said antisense strand is paired with a sense strand comprising any combination of phosphorothioate, methylphosphonate, and phosphate internucleotide linkages or an antisense strand comprising either phosphorothioate or methylphosphonate or phosphate linkage.


In some embodiments, the antisense strand of the dsRNA molecule comprises two blocks of six phosphorothioate or methylphosphonate internucleotide linkages separated by 1, 2, 3, 4, 5, 6, 7, 8, 9, or 10 phosphate internucleotide linkages, wherein one of the phosphorothioate or methylphosphonate internucleotide linkages is placed at any position in the oligonucleotide sequence and the said antisense strand is paired with a sense strand comprising any combination of phosphorothioate, methylphosphonate, and phosphate internucleotide linkages or an antisense strand comprising either phosphorothioate or methylphosphonate or phosphate linkage.


In some embodiments, the antisense strand of the dsRNA molecule comprises two blocks of seven phosphorothioate or methylphosphonate internucleotide linkages separated by 1, 2, 3, 4, 5, 6, 7, or 8 phosphate internucleotide linkages, wherein one of the phosphorothioate or methylphosphonate internucleotide linkages is placed at any position in the oligonucleotide sequence and the said antisense strand is paired with a sense strand comprising any combination of phosphorothioate, methylphosphonate, and phosphate internucleotide linkages or an antisense strand comprising either phosphorothioate or methylphosphonate or phosphate linkage.


In some embodiments, the antisense strand of the dsRNA molecule comprises two blocks of eight phosphorothioate or methylphosphonate internucleotide linkages separated by 1, 2, 3, 4, 5, or 6 phosphate internucleotide linkages, wherein one of the phosphorothioate or methylphosphonate internucleotide linkages is placed at any position in the oligonucleotide sequence and the said antisense strand is paired with a sense strand comprising any combination of phosphorothioate, methylphosphonate, and phosphate internucleotide linkages or an antisense strand comprising either phosphorothioate or methylphosphonate or phosphate linkage.


In some embodiments, the antisense strand of the dsRNA molecule comprises two blocks of nine phosphorothioate or methylphosphonate internucleotide linkages separated by 1, 2, 3, or 4 phosphate internucleotide linkages, wherein one of the phosphorothioate or methylphosphonate internucleotide linkages is placed at any position in the oligonucleotide sequence and the said antisense strand is paired with a sense strand comprising any combination of phosphorothioate, methylphosphonate, and phosphate internucleotide linkages or an antisense strand comprising either phosphorothioate or methylphosphonate or phosphate linkage.


In some embodiments, the dsRNA molecule of the disclosure further comprises one or more phosphorothioate or methylphosphonate internucleotide linkage modification within positions 1-10 of the termini position(s) of the sense or antisense strand. For example, at least 2, 3, 4, 5, 6, 7, 8, 9, or 10 nucleotides may be linked through phosphorothioate or methylphosphonate internucleotide linkage at one end or both ends of the sense or antisense strand.


In some embodiments, the dsRNA molecule of the disclosure further comprises one or more phosphorothioate or methylphosphonate internucleotide linkage modification within positions 1-10 of the internal region of the duplex of each of the sense or antisense strand. For example, at least 2, 3, 4, 5, 6, 7, 8, 9, or 10 nucleotides may be linked through phosphorothioate methylphosphonate internucleotide linkage at position 8-16 of the duplex region counting from the 5′-end of the sense strand; the dsRNA molecule can optionally further comprise one or more phosphorothioate or methylphosphonate internucleotide linkage modification within positions 1-10 of the termini position(s).


In some embodiments, the dsRNA molecule of the disclosure further comprises one to five phosphorothioate or methylphosphonate internucleotide linkage modification(s) within position 1-5 and one to five phosphorothioate or methylphosphonate internucleotide linkage modification(s) within position 18-23 of the sense strand (counting from the 5′-end), and one to five phosphorothioate or methylphosphonate internucleotide linkage modification at positions 1 and 2 and one to five within positions 18-23 of the antisense strand (counting from the 5′-end).


In some embodiments, the dsRNA molecule of the disclosure further comprises one phosphorothioate internucleotide linkage modification within position 1-5 and one phosphorothioate or methylphosphonate internucleotide linkage modification within position 18-23 of the sense strand (counting from the 5′-end), and one phosphorothioate internucleotide linkage modification at positions 1 and 2 and two phosphorothioate or methylphosphonate internucleotide linkage modifications within positions 18-23 of the antisense strand (counting from the 5′-end).


In some embodiments, the dsRNA molecule of the disclosure further comprises two phosphorothioate internucleotide linkage modifications within position 1-5 and one phosphorothioate internucleotide linkage modification within position 18-23 of the sense strand (counting from the 5′-end), and one phosphorothioate internucleotide linkage modification at positions 1 and 2 and two phosphorothioate internucleotide linkage modifications within positions 18-23 of the antisense strand (counting from the 5′-end).


In some embodiments, the dsRNA molecule of the disclosure further comprises two phosphorothioate internucleotide linkage modifications within position 1-5 and two phosphorothioate internucleotide linkage modifications within position 18-23 of the sense strand (counting from the 5′-end), and one phosphorothioate internucleotide linkage modification at positions 1 and 2 and two phosphorothioate internucleotide linkage modifications within positions 18-23 of the antisense strand (counting from the 5′-end).


In some embodiments, the dsRNA molecule of the disclosure further comprises two phosphorothioate internucleotide linkage modifications within position 1-5 and two phosphorothioate internucleotide linkage modifications within position 18-23 of the sense strand (counting from the 5′-end), and one phosphorothioate internucleotide linkage modification at positions 1 and 2 and one phosphorothioate internucleotide linkage modification within positions 18-23 of the antisense strand (counting from the 5′-end).


In some embodiments, the dsRNA molecule of the disclosure further comprises one phosphorothioate internucleotide linkage modification within position 1-5 and one phosphorothioate internucleotide linkage modification within position 18-23 of the sense strand (counting from the 5′-end), and two phosphorothioate internucleotide linkage modifications at positions 1 and 2 and two phosphorothioate internucleotide linkage modifications within positions 18-23 of the antisense strand (counting from the 5′-end).


In some embodiments, the dsRNA molecule of the disclosure further comprises one phosphorothioate internucleotide linkage modification within position 1-5 and one within position 18-23 of the sense strand (counting from the 5′-end), and two phosphorothioate internucleotide linkage modification at positions 1 and 2 and one phosphorothioate internucleotide linkage modification within positions 18-23 of the antisense strand (counting from the 5′-end).


In some embodiments, the dsRNA molecule of the disclosure further comprises one phosphorothioate internucleotide linkage modification within position 1-5 (counting from the 5′-end) of the sense strand, and two phosphorothioate internucleotide linkage modifications at positions 1 and 2 and one phosphorothioate internucleotide linkage modification within positions 18-23 of the antisense strand (counting from the 5′-end).


In some embodiments, the dsRNA molecule of the disclosure further comprises two phosphorothioate internucleotide linkage modifications within position 1-5 (counting from the 5′-end) of the sense strand, and one phosphorothioate internucleotide linkage modification at positions 1 and 2 and two phosphorothioate internucleotide linkage modifications within positions 18-23 of the antisense strand (counting from the 5′-end).


In some embodiments, the dsRNA molecule of the disclosure further comprises two phosphorothioate internucleotide linkage modifications within position 1-5 and one within position 18-23 of the sense strand (counting from the 5′-end), and two phosphorothioate internucleotide linkage modifications at positions 1 and 2 and one phosphorothioate internucleotide linkage modification within positions 18-23 of the antisense strand (counting from the 5′-end).


In some embodiments, the dsRNA molecule of the disclosure further comprises two phosphorothioate internucleotide linkage modifications within position 1-5 and one phosphorothioate internucleotide linkage modification within position 18-23 of the sense strand (counting from the 5′-end), and two phosphorothioate internucleotide linkage modifications at positions 1 and 2 and two phosphorothioate internucleotide linkage modifications within positions 18-23 of the antisense strand (counting from the 5′-end).


In some embodiments, the dsRNA molecule of the disclosure further comprises two phosphorothioate internucleotide linkage modifications within position 1-5 and one phosphorothioate internucleotide linkage modification within position 18-23 of the sense strand (counting from the 5′-end), and one phosphorothioate internucleotide linkage modification at positions 1 and 2 and two phosphorothioate internucleotide linkage modifications within positions 18-23 of the antisense strand (counting from the 5′-end).


In some embodiments, the dsRNA molecule of the disclosure further comprises two phosphorothioate internucleotide linkage modifications at position 1 and 2, and two phosphorothioate internucleotide linkage modifications at position 20 and 21 of the sense strand (counting from the 5′-end), and one phosphorothioate internucleotide linkage modification at positions 1 and one at position 21 of the antisense strand (counting from the 5′-end).


In some embodiments, the dsRNA molecule of the disclosure further comprises one phosphorothioate internucleotide linkage modification at position 1, and one phosphorothioate internucleotide linkage modification at position 21 of the sense strand (counting from the 5′-end), and two phosphorothioate internucleotide linkage modifications at positions 1 and 2 and two phosphorothioate internucleotide linkage modifications at positions 20 and 21 the antisense strand (counting from the 5′-end).


In some embodiments, the dsRNA molecule of the disclosure further comprises two phosphorothioate internucleotide linkage modifications at position 1 and 2, and two phosphorothioate internucleotide linkage modifications at position 21 and 22 of the sense strand (counting from the 5′-end), and one phosphorothioate internucleotide linkage modification at positions 1 and one phosphorothioate internucleotide linkage modification at position 21 of the antisense strand (counting from the 5′-end).


In some embodiments, the dsRNA molecule of the disclosure further comprises one phosphorothioate internucleotide linkage modification at position 1, and one phosphorothioate internucleotide linkage modification at position 21 of the sense strand (counting from the 5′-end), and two phosphorothioate internucleotide linkage modifications at positions 1 and 2 and two phosphorothioate internucleotide linkage modifications at positions 21 and 22 the antisense strand (counting from the 5′-end).


In some embodiments, the dsRNA molecule of the disclosure further comprises two phosphorothioate internucleotide linkage modifications at position 1 and 2, and two phosphorothioate internucleotide linkage modifications at position 22 and 23 of the sense strand (counting from the 5′-end), and one phosphorothioate internucleotide linkage modification at positions 1 and one phosphorothioate internucleotide linkage modification at position 21 of the antisense strand (counting from the 5′-end).


In some embodiments, the dsRNA molecule of the disclosure further comprises one phosphorothioate internucleotide linkage modification at position 1, and one phosphorothioate internucleotide linkage modification at position 21 of the sense strand (counting from the 5′-end), and two phosphorothioate internucleotide linkage modifications at positions 1 and 2 and two phosphorothioate internucleotide linkage modifications at positions 23 and 23 the antisense strand (counting from the 5′-end).


In some embodiments, compound of the disclosure comprises a pattern of backbone chiral centers. In some embodiments, a common pattern of backbone chiral centers comprises at least 5 internucleotidic linkages in the Sp configuration. In some embodiments, a common pattern of backbone chiral centers comprises at least 6 internucleotidic linkages in the Sp configuration. In some embodiments, a common pattern of backbone chiral centers comprises at least 7 internucleotidic linkages in the Sp configuration. In some embodiments, a common pattern of backbone chiral centers comprises at least 8 internucleotidic linkages in the Sp configuration. In some embodiments, a common pattern of backbone chiral centers comprises at least 9 internucleotidic linkages in the Sp configuration. In some embodiments, a common pattern of backbone chiral centers comprises at least 10 internucleotidic linkages in the Sp configuration. In some embodiments, a common pattern of backbone chiral centers comprises at least 11 internucleotidic linkages in the Sp configuration. In some embodiments, a common pattern of backbone chiral centers comprises at least 12 internucleotidic linkages in the Sp configuration. In some embodiments, a common pattern of backbone chiral centers comprises at least 13 internucleotidic linkages in the Sp configuration. In some embodiments, a common pattern of backbone chiral centers comprises at least 14 internucleotidic linkages in the Sp configuration. In some embodiments, a common pattern of backbone chiral centers comprises at least 15 internucleotidic linkages in the Sp configuration. In some embodiments, a common pattern of backbone chiral centers comprises at least 16 internucleotidic linkages in the Sp configuration. In some embodiments, a common pattern of backbone chiral centers comprises at least 17 internucleotidic linkages in the Sp configuration. In some embodiments, a common pattern of backbone chiral centers comprises at least 18 internucleotidic linkages in the Sp configuration. In some embodiments, a common pattern of backbone chiral centers comprises at least 19 internucleotidic linkages in the Sp configuration. In some embodiments, a common pattern of backbone chiral centers comprises no more than 8 internucleotidic linkages in the Rp configuration. In some embodiments, a common pattern of backbone chiral centers comprises no more than 7 internucleotidic linkages in the Rp configuration. In some embodiments, a common pattern of backbone chiral centers comprises no more than 6 internucleotidic linkages in the Rp configuration. In some embodiments, a common pattern of backbone chiral centers comprises no more than 5 internucleotidic linkages in the Rp configuration. In some embodiments, a common pattern of backbone chiral centers comprises no more than 4 internucleotidic linkages in the Rp configuration. In some embodiments, a common pattern of backbone chiral centers comprises no more than 3 internucleotidic linkages in the Rp configuration. In some embodiments, a common pattern of backbone chiral centers comprises no more than 2 internucleotidic linkages in the Rp configuration. In some embodiments, a common pattern of backbone chiral centers comprises no more than 1 internucleotidic linkages in the Rp configuration. In some embodiments, a common pattern of backbone chiral centers comprises no more than 8 internucleotidic linkages which are not chiral (as a non-limiting example, a phosphodiester). In some embodiments, a common pattern of backbone chiral centers comprises no more than 7 internucleotidic linkages which are not chiral. In some embodiments, a common pattern of backbone chiral centers comprises no more than 6 internucleotidic linkages which are not chiral. In some embodiments, a common pattern of backbone chiral centers comprises no more than 5 internucleotidic linkages which are not chiral. In some embodiments, a common pattern of backbone chiral centers comprises no more than 4 internucleotidic linkages which are not chiral. In some embodiments, a common pattern of backbone chiral centers comprises no more than 3 internucleotidic linkages which are not chiral. In some embodiments, a common pattern of backbone chiral centers comprises no more than 2 internucleotidic linkages which are not chiral. In some embodiments, a common pattern of backbone chiral centers comprises no more than 1 internucleotidic linkages which are not chiral. In some embodiments, a common pattern of backbone chiral centers comprises at least 10 internucleotidic linkages in the Sp configuration, and no more than 8 internucleotidic linkages which are not chiral. In some embodiments, a common pattern of backbone chiral centers comprises at least 11 internucleotidic linkages in the Sp configuration, and no more than 7 internucleotidic linkages which are not chiral. In some embodiments, a common pattern of backbone chiral centers comprises at least 12 internucleotidic linkages in the Sp configuration, and no more than 6 internucleotidic linkages which are not chiral. In some embodiments, a common pattern of backbone chiral centers comprises at least 13 internucleotidic linkages in the Sp configuration, and no more than 6 internucleotidic linkages which are not chiral. In some embodiments, a common pattern of backbone chiral centers comprises at least 14 internucleotidic linkages in the Sp configuration, and no more than 5 internucleotidic linkages which are not chiral. In some embodiments, a common pattern of backbone chiral centers comprises at least 15 internucleotidic linkages in the Sp configuration, and no more than 4 internucleotidic linkages which are not chiral. In some embodiments, the internucleotidic linkages in the Sp configuration are optionally contiguous or not contiguous. In some embodiments, the internucleotidic linkages in the Rp configuration are optionally contiguous or not contiguous. In some embodiments, the internucleotidic linkages which are not chiral are optionally contiguous or not contiguous.


In some embodiments, compound of the disclosure comprises a block is a stereochemistry block. In some embodiments, a block is an Rp block in that each internucleotidic linkage of the block is Rp. In some embodiments, a 5′-block is an Rp block. In some embodiments, a 3′-block is an Rp block. In some embodiments, a block is an Sp block in that each internucleotidic linkage of the block is Sp. In some embodiments, a 5′-block is an Sp block. In some embodiments, a 3′-block is an Sp block. In some embodiments, provided oligonucleotides comprise both Rp and Sp blocks. In some embodiments, provided oligonucleotides comprise one or more Rp but no Sp blocks. In some embodiments, provided oligonucleotides comprise one or more Sp but no Rp blocks. In some embodiments, provided oligonucleotides comprise one or more PO blocks wherein each internucleotidic linkage in a natural phosphate linkage.


In some embodiments, compound of the disclosure comprises a 5′-block is an Sp block wherein each sugar moiety comprises a 2′-F modification. In some embodiments, a 5′-block is an Sp block wherein each of internucleotidic linkage is a modified internucleotidic linkage and each sugar moiety comprises a 2′-F modification. In some embodiments, a 5′-block is an Sp block wherein each of internucleotidic linkage is a phosphorothioate linkage and each sugar moiety comprises a 2′-F modification. In some embodiments, a 5′-block comprises 4 or more nucleoside units. In some embodiments, a 5′-block comprises 5 or more nucleoside units. In some embodiments, a 5′-block comprises 6 or more nucleoside units. In some embodiments, a 5′-block comprises 7 or more nucleoside units. In some embodiments, a 3′-block is an Sp block wherein each sugar moiety comprises a 2′-F modification. In some embodiments, a 3′-block is an Sp block wherein each of internucleotidic linkage is a modified internucleotidic linkage and each sugar moiety comprises a 2′-F modification. In some embodiments, a 3′-block is an Sp block wherein each of internucleotidic linkage is a phosphorothioate linkage and each sugar moiety comprises a 2′-F modification. In some embodiments, a 3′-block comprises 4 or more nucleoside units. In some embodiments, a 3′-block comprises 5 or more nucleoside units. In some embodiments, a 3′-block comprises 6 or more nucleoside units. In some embodiments, a 3′-block comprises 7 or more nucleoside units.


In some embodiments, compound of the disclosure comprises a type of nucleoside in a region or an oligonucleotide is followed by a specific type of internucleotidic linkage, e.g., natural phosphate linkage, modified internucleotidic linkage, Rp chiral internucleotidic linkage, Sp chiral internucleotidic linkage, etc. In some embodiments, A is followed by Sp. In some embodiments, A is followed by Rp. In some embodiments, A is followed by natural phosphate linkage (PO). In some embodiments, U is followed by Sp. In some embodiments, U is followed by Rp. In some embodiments, U is followed by natural phosphate linkage (PO). In some embodiments, C is followed by Sp. In some embodiments, C is followed by Rp. In some embodiments, C is followed by natural phosphate linkage (PO). In some embodiments, G is followed by Sp. In some embodiments, G is followed by Rp. In some embodiments, G is followed by natural phosphate linkage (PO). In some embodiments, C and U are followed by Sp. In some embodiments, C and U are followed by Rp. In some embodiments, C and U are followed by natural phosphate linkage (PO). In some embodiments, A and G are followed by Sp. In some embodiments, A and G are followed by Rp.


In some embodiments, the dsRNA molecule of the disclosure comprises mismatch(es) with the target, within the duplex, or combinations thereof. The mismatch can occur in the overhang region or the duplex region. The base pair can be ranked on the basis of their propensity to promote dissociation or melting (e.g., on the free energy of association or dissociation of a particular pairing, the simplest approach is to examine the pairs on an individual pair basis, though next neighbor or similar analysis can also be used). In terms of promoting dissociation: A:U is preferred over G:C; G:U is preferred over G:C; and I:C is preferred over G:C (I=inosine). Mismatches, e.g., non-canonical or other than canonical pairings (as described elsewhere herein) are preferred over canonical (A:T, A:U, G:C) pairings; and pairings which include a universal base are preferred over canonical pairings.


In some embodiments, the dsRNA molecule of the disclosure comprises at least one of the first 1, 2, 3, 4, or 5 base pairs within the duplex regions from the 5′-end of the antisense strand can be chosen independently from the group of: A:U, G:U, I:C, and mismatched pairs, e.g., non-canonical or other than canonical pairings or pairings which include a universal base, to promote the dissociation of the antisense strand at the 5′-end of the duplex.


In some embodiments, the nucleotide at the 1 position within the duplex region from the 5′-end in the antisense strand is selected from the group consisting of A, dA, dU, U, and dT. Alternatively, at least one of the first 1, 2 or 3 base pair within the duplex region from the 5′-end of the antisense strand is an AU base pair. For example, the first base pair within the duplex region from the 5′-end of the antisense strand is an AU base pair.


It was found that introducing 4′-modified or 5′-modified nucleotide to the 3′-end of a phosphodiester (PO), phosphorothioate (PS), or phosphorodithioate (PS2) linkage of a dinucleotide at any position of single stranded or double stranded oligonucleotide can exert steric effect to the internucleotide linkage and, hence, protecting or stabilizing it against nucleases.


In some embodiments, 5′-modified nucleoside is introduced at the 3′-end of a dinucleotide at any position of single stranded or double stranded siRNA. For instance, a 5′-alkylated nucleoside may be introduced at the 3′-end of a dinucleotide at any position of single stranded or double stranded siRNA. The alkyl group at the 5′ position of the ribose sugar can be racemic or chirally pure R or S isomer. An exemplary 5′-alkylated nucleoside is 5′-methyl nucleoside. The 5′-methyl can be either racemic or chirally pure R or S isomer.


In some embodiments, 4′-modified nucleoside is introduced at the 3′-end of a dinucleotide at any position of single stranded or double stranded siRNA. For instance, a 4′-alkylated nucleoside may be introduced at the 3′-end of a dinucleotide at any position of single stranded or double stranded siRNA. The alkyl group at the 4′ position of the ribose sugar can be racemic or chirally pure R or S isomer. An exemplary 4′-alkylated nucleoside is 4′-methyl nucleoside. The 4′-methyl can be either racemic or chirally pure R or S isomer. Alternatively, a 4′-O-alkylated nucleoside may be introduced at the 3′-end of a dinucleotide at any position of single stranded or double stranded siRNA. The 4′-O-alkyl of the ribose sugar can be racemic or chirally pure R or S isomer. An exemplary 4′-O-alkylated nucleoside is 4′-O-methyl nucleoside. The 4′-O-methyl can be either racemic or chirally pure R or S isomer.


In some embodiments, 5′-alkylated nucleoside is introduced at any position on the sense strand or antisense strand of a dsRNA, and such modification maintains or improves potency of the dsRNA. The 5′-alkyl can be either racemic or chirally pure R or S isomer. An exemplary 5′-alkylated nucleoside is 5′-methyl nucleoside. The 5′-methyl can be either racemic or chirally pure R or S isomer.


In some embodiments, 4′-alkylated nucleoside is introduced at any position on the sense strand or antisense strand of a dsRNA, and such modification maintains or improves potency of the dsRNA. The 4′-alkyl can be either racemic or chirally pure R or S isomer. An exemplary 4′-alkylated nucleoside is 4′-methyl nucleoside. The 4′-methyl can be either racemic or chirally pure R or S isomer.


In some embodiments, 4′-O-alkylated nucleoside is introduced at any position on the sense strand or antisense strand of a dsRNA, and such modification maintains or improves potency of the dsRNA. The 5′-alkyl can be either racemic or chirally pure R or S isomer. An exemplary 4′-O-alkylated nucleoside is 4′-O-methyl nucleoside. The 4′-O-methyl can be either racemic or chirally pure R or S isomer.


In some embodiments, the dsRNA molecule of the disclosure can comprise 2′-5′ linkages (with 2′-H, 2′-OH, and 2′-OMe and with P═O or P═S). For example, the 2′-5′ linkages modifications can be used to promote nuclease resistance or to inhibit binding of the sense to the antisense strand, or can be used at the 5′ end of the sense strand to avoid sense strand activation by RISC.


In other embodiments, the dsRNA molecule of the disclosure can comprise L sugars (e.g., L ribose, L-arabinose with 2′-H, 2′-OH and 2′-OMe). For example, these L sugars modifications can be used to promote nuclease resistance or to inhibit binding of the sense to the antisense strand, or can be used at the 5′ end of the sense strand to avoid sense strand activation by RISC.


Various publications describe multimeric siRNA which can all be used with the dsRNA of the disclosure. Such publications include WO2007/091269, U.S. Pat. No. 7,858,769, WO2010/141511, WO2007/117686, WO2009/014887, and WO2011/031520 which are hereby incorporated by their entirely.


In some embodiments dsRNA molecules of the disclosure are 5′ phosphorylated or include a phosphoryl analog at the 5′ prime terminus. 5′-phosphate modifications include those which are compatible with RISC mediated gene silencing. Suitable modifications include: 5′-monophosphate ((HO)2(O)P—O-5′); 5′-diphosphate ((HO)2(O)P—O-P(HO)(O)-O-5′); 5′-triphosphate ((HO)2(O)P—O-(HO)(O)P—O—P(HO)(O)-O-5′); 5′-guanosine cap (7-methylated or non-methylated) (7m-G-O-5′-(HO)(O)P-O—(HO)(O)P—O-P(HO)(O)-O-5′); 5′-adenosine cap (Appp), and any modified or unmodified nucleotide cap structure (N-O-5′-(HO)(O)P-O—(HO)(O)P—O-P(HO)(O)-O-5′); 5′-monothiophosphate (phosphorothioate; (HO)2(S)P-O-5′); 5′-monodithiophosphate (phosphorodithioate; (HO)(HS)(S)P—O-5′), 5′-phosphorothiolate ((HO)2(O)P-S-5′); any additional combination of oxygen/sulfur replaced monophosphate, diphosphate and triphosphates (e.g. 5′-alpha-thiotriphosphate, 5′-gamma-thiotriphosphate, etc.), 5′-phosphoramidates ((HO)2(O)P-NH-5′, (HO)(NH2)(O)P—O-5′), 5′-alkylphosphonates (R=alkyl=methyl, ethyl, isopropyl, propyl, etc., e.g. RP(OH)(O)-O-5′-, 5′-alkenylphosphonates (i.e. vinyl, substituted vinyl), (OH)2(O)P-5′-CH2-), 5′-alkyletherphosphonates (R=alkylether=methoxymethyl (MeOCH2-), ethoxymethyl, etc., e.g. RP(OH)(O)-O-5′-). In one example, the modification can in placed in the antisense strand of a dsRNA molecule.


Linkers


In some embodiments, the conjugate or ligand described herein can be attached to an iRNA oligonucleotide with various linkers that can be cleavable or non-cleavable.


Linkers typically comprise a direct bond or an atom such as oxygen or sulfur, a unit such as NR8, C(O), C(O)NH, SO, SO2, SO2NH or a chain of atoms, such as, but not limited to, substituted or unsubstituted alkyl, substituted or unsubstituted alkenyl, substituted or unsubstituted alkynyl, arylalkyl, arylalkenyl, arylalkynyl, heteroarylalkyl, heteroarylalkenyl, heteroarylalkynyl, heterocyclylalkyl, heterocyclylalkenyl, heterocyclylalkynyl, aryl, heteroaryl, heterocyclyl, cycloalkyl, cycloalkenyl, alkylarylalkyl, alkylarylalkenyl, alkylarylalkynyl, alkenylarylalkyl, alkenylarylalkenyl, alkenylarylalkynyl, alkynylarylalkyl, alkynylarylalkenyl, alkynylarylalkynyl, alkylheteroarylalkyl, alkylheteroarylalkenyl, alkylheteroarylalkynyl, alkenylheteroarylalkyl, alkenylheteroarylalkenyl, alkenylheteroarylalkynyl, alkynylheteroarylalkyl, alkynylheteroarylalkenyl, alkynylheteroarylalkynyl, alkylheterocyclylalkyl, alkylheterocyclylalkenyl, alkylhererocyclylalkynyl, alkenylheterocyclylalkyl, alkenylheterocyclylalkenyl, alkenylheterocyclylalkynyl, alkynylheterocyclylalkyl, alkynylheterocyclylalkenyl, alkynylheterocyclylalkynyl, alkylaryl, alkenylaryl, alkynylaryl, alkylheteroaryl, alkenylheteroaryl, alkynylhereroaryl, which one or more methylenes can be interrupted or terminated by O, S, S(O), SO2, N(R8), C(O), substituted or unsubstituted aryl, substituted or unsubstituted heteroaryl, substituted or unsubstituted heterocyclic; where R8 is hydrogen, acyl, aliphatic or substituted aliphatic. In some embodiments, the linker is between about 1-24 atoms, 2-24, 3-24, 4-24, 5-24, 6-24, 6-18, 7-18, 8-18 atoms, 7-17, 8-17, 6-16, 7-16, or 8-16 atoms.


In some embodiments, a dsRNA of the disclosure is conjugated to a bivalent or trivalent branched linker selected from the group of structures shown in any of formula (XXXI)-(XXXIV):




embedded image


wherein:

    • q2A, q2B, q3A, q3B, q4A, q4B, q5A, q5B and q5C represent independently for each occurrence 0-20 and wherein the repeating unit can be the same or different;


P2A, P2B, P3A, P3B, P4A, P4B, P5A, P5B, P5C, T2A, T2B, T3A, T3B, T4A, T4B, T4A, T5B, T5C are each independently for each occurrence absent, CO, NH, O, S, OC(O), NHC(O), CH2, CH2NH or CH2O;


Q2A, Q2B, Q3A, Q3B, Q4A, Q4B, Q5A, Q5B, Q5C are independently for each occurrence absent, alkylene, substituted alkylene wherein one or more methylenes can be interrupted or terminated by one or more of O, S, S(O), SO2, N(RN), C(R′)═C(R″), CEC or C(O);


R2A, R2B, R3A, R3B, R4A, R4B, R5A, R5B, R5C are each independently for each occurrence absent, NH, O, S, CH2, C(O)O, C(O)NH, NHCH(Ra)C(O), —C(O)—CH(Ra)—NH—, CO, CH═N-O,




embedded image


or heterocyclyl;


L2A, L2B, L3A, L3B, L4A, L4B, L5A, L5B and L5C represent the ligand; i.e. each independently for each occurrence a monosaccharide (such as GalNAc), disaccharide, trisaccharide, tetrasaccharide, oligosaccharide, or polysaccharide; and Ra is H or amino acid side chain. Trivalent conjugating GalNAc derivatives are particularly useful for use with RNAi agents for inhibiting the expression of a target gene, such as those of formula (XXXV):




embedded image


wherein L5, L5B and L5C represent a monosaccharide, such as GalNAc derivative.


Examples of suitable bivalent and trivalent branched linker groups conjugating GalNAc derivatives include, but are not limited to, the structures recited above as formulas II, VII, XI, X, and XIII.


A cleavable linking group is one which is sufficiently stable outside the cell, but which upon entry into a target cell is cleaved to release the two parts the linker is holding together. In a some embodiments, the cleavable linking group is cleaved at least about 10 times, 20, times, 30 times, 40 times, 50 times, 60 times, 70 times, 80 times, 90 times or more, or at least about 100 times faster in a target cell or under a first reference condition (which can, e.g., be selected to mimic or represent intracellular conditions) than in the blood of a subject, or under a second reference condition (which can, e.g., be selected to mimic or represent conditions found in the blood or serum).


Cleavable linking groups are susceptible to cleavage agents, e.g., pH, redox potential or the presence of degradative molecules. Generally, cleavage agents are more prevalent or found at higher levels or activities inside cells than in serum or blood. Examples of such degradative agents include: redox agents which are selected for particular substrates or which have no substrate specificity, including, e.g., oxidative or reductive enzymes or reductive agents such as mercaptans, present in cells, that can degrade a redox cleavable linking group by reduction; esterases; endosomes or agents that can create an acidic environment, e.g., those that result in a pH of five or lower; enzymes that can hydrolyze or degrade an acid cleavable linking group by acting as a general acid, peptidases (which can be substrate specific), and phosphatases.


A cleavable linkage group, such as a disulfide bond can be susceptible to pH. The pH of human serum is 7.4, while the average intracellular pH is slightly lower, ranging from about 7.1-7.3. Endosomes have a more acidic pH, in the range of 5.5-6.0, and lysosomes have an even more acidic pH at around 5.0. Some linkers will have a cleavable linking group that is cleaved at a suitable pH, thereby releasing a cationic lipid from the ligand inside the cell, or into the desired compartment of the cell.


A linker can include a cleavable linking group that is cleavable by a particular enzyme. The type of cleavable linking group incorporated into a linker can depend on the cell to be targeted.


In general, the suitability of a candidate cleavable linking group can be evaluated by testing the ability of a degradative agent (or condition) to cleave the candidate linking group. It will also be desirable to also test the candidate cleavable linking group for the ability to resist cleavage in the blood or when in contact with other non-target tissue. Thus, one can determine the relative susceptibility to cleavage between a first and a second condition, where the first is selected to be indicative of cleavage in a target cell and the second is selected to be indicative of cleavage in other tissues or biological fluids, e.g., blood or serum. The evaluations can be carried out in cell free systems, in cells, in cell culture, in organ or tissue culture, or in whole animals. It can be useful to make initial evaluations in cell-free or culture conditions and to confirm by further evaluations in whole animals. In some embodiments, useful candidate compounds are cleaved at least about 2, 4, 10, 20, 30, 40, 50, 60, 70, 80, 90, or about 100 times faster in the cell (or under in vitro conditions selected to mimic intracellular conditions) as compared to blood or serum (or under in vitro conditions selected to mimic extracellular conditions).


Redox Cleavable Linking Groups


In some embodiments, a cleavable linking group is a redox cleavable linking group that is cleaved upon reduction or oxidation. An example of reductively cleavable linking group is a disulphide linking group (—S—S—). To determine if a candidate cleavable linking group is a suitable “reductively cleavable linking group,” or for example is suitable for use with a particular iRNA moiety and particular targeting agent one can look to methods described herein. For example, a candidate can be evaluated by incubation with dithiothreitol (DTT), or other reducing agent using reagents know in the art, which mimic the rate of cleavage which would be observed in a cell, e.g., a target cell. The candidates can also be evaluated under conditions which are selected to mimic blood or serum conditions. In one, candidate compounds are cleaved by at most about 10% in the blood. In other embodiments, useful candidate compounds are degraded at least about 2, 4, 10, 20, 30, 40, 50, 60, 70, 80, 90, or about 100 times faster in the cell (or under in vitro conditions selected to mimic intracellular conditions) as compared to blood (or under in vitro conditions selected to mimic extracellular conditions). The rate of cleavage of candidate compounds can be determined using standard enzyme kinetics assays under conditions chosen to mimic intracellular media and compared to conditions chosen to mimic extracellular media.


Phosphate-Based Cleavable Linking Groups


In some embodiments, a cleavable linker comprises a phosphate-based cleavable linking group. A phosphate-based cleavable linking group is cleaved by agents that degrade or hydrolyze the phosphate group. An example of an agent that cleaves phosphate groups in cells are enzymes such as phosphatases in cells. Examples of phosphate-based linking groups are —O—P(O)(ORk)-O—, —O—P(S)(ORk)-O—, —O—P(S)(SRk)-O—, —S—P(O)(ORk)-O—, —O—P(O)(ORk)-S—, —S—P(O)(ORk)-S—, —O—P(S)(ORk)-S—, —S—P(S)(ORk)-O—, —O-P(O)(Rk)-O—, —O—P(S)(Rk)-O—, —S—P(O)(Rk)-O—, —S—P(S)(Rk)-O—, —S—P(O)(Rk)-S—, —O—P(S)(Rk)-S—, wherein Rk at each occurrence can be, independently, C1-C20 alkyl, C1-C20 haloalkyl, C6-C10 aryl, or C7-C12 aralkyl. In some embodiments, phosphate-based linking groups are —O—P(O)(OH)—O—, —O—P(S)(OH)—O—, —O—P(S)(SH)—O—, —S—P(O)(OH)—O—, —O—P(O)(OH)—S—, —S—P(O)(OH)—S—, —O—P(S)(OH)—S—, —S—P(S)(OH)—O—, —O—P(O)(H)—O—, —O—P(S)(H)—O—, —S—P(O)(H)—O, —S—P(S)(H)—O—, —S—P(O)(H)—S—, —O—P(S)(H)—S—. In some embodiments, a phosphate-based linking group is —O—P(O)(OH)—O—. These candidates can be evaluated using methods analogous to those described above.


Acid Cleavable Linking Groups


In some embodiments, a cleavable linker comprises an acid cleavable linking group. An acid cleavable linking group is a linking group that is cleaved under acidic conditions. In some embodiments acid cleavable linking groups are cleaved in an acidic environment with a pH of about 6.5 or lower (e.g., about 6.0, 5.75, 5.5, 5.25, 5.0, or lower), or by agents such as enzymes that can act as a general acid. In a cell, specific low pH organelles, such as endosomes and lysosomes can provide a cleaving environment for acid cleavable linking groups. Examples of acid cleavable linking groups include but are not limited to hydrazones, esters, and esters of amino acids. Acid cleavable groups can have the general formula —C═NN—, C(O)O, or —OC(O). In some embodiments, the carbon attached to the oxygen of the ester (the alkoxy group) is an aryl group, substituted alkyl group, or tertiary alkyl group such as dimethyl pentyl or t-butyl. These candidates can be evaluated using methods analogous to those described above.


Ester-Based Cleavable Linking Groups


In some embodiments, a cleavable linker comprises an ester-based cleavable linking group. An ester-based cleavable linking group is cleaved by enzymes such as esterases and amidases in cells. Examples of ester-based cleavable linking groups include but are not limited to esters of alkylene, alkenylene and alkynylene groups. Ester cleavable linking groups have the general formula —C(O)O—, or —OC(O)—. These candidates can be evaluated using methods analogous to those described above.


Peptide-Based Cleavable Linking Groups


In some embodiments, a cleavable linker comprises a peptide-based cleavable linking group. A peptide-based cleavable linking group is cleaved by enzymes such as peptidases and proteases in cells. Peptide-based cleavable linking groups are peptide bonds formed between amino acids to yield oligopeptides (e.g., dipeptides, tripeptides etc.) and polypeptides. Peptide-based cleavable groups do not include the amide group (—C(O)NH—). The amide group can be formed between any alkylene, alkenylene or alkynelene. A peptide bond is a special type of amide bond formed between amino acids to yield peptides and proteins. The peptide-based cleavage group is generally limited to the peptide bond (i.e., the amide bond) formed between amino acids yielding peptides and proteins and does not include the entire amide functional group. Peptide-based cleavable linking groups have the general formula —NHCHRAC(O)NHCHRBC(O)—, where RA and RB are the R groups of the two adjacent amino acids. These candidates can be evaluated using methods analogous to those described above. Representative U.S. patents that teach the preparation of RNA conjugates include, but are not limited to, U.S. Pat. Nos. 4,828,979; 4,948,882; 5,218,105; 5,525,465; 5,541,313; 5,545,730; 5,552,538; 5,578,717, 5,580,731; 5,591,584; 5,109,124; 5,118,802; 5,138,045; 5,414,077; 5,486,603; 5,512,439; 5,578,718; 5,608,046; 4,587,044; 4,605,735; 4,667,025; 4,762,779; 4,789,737; 4,824,941; 4,835,263; 4,876,335; 4,904,582; 4,958,013; 5,082,830; 5,112,963; 5,214,136; 5,082,830; 5,112,963; 5,214,136; 5,245,022; 5,254,469; 5,258,506; 5,262,536; 5,272,250; 5,292,873; 5,317,098; 5,371,241, 5,391,723; 5,416,203, 5,451,463; 5,510,475; 5,512,667; 5,514,785; 5,565,552; 5,567,810; 5,574,142; 5,585,481; 5,587,371; 5,595,726; 5,597,696; 5,599,923; 5,599,928 and 5,688,941; 6,294,664; 6,320,017; 6,576,752; 6,783,931; 6,900,297; 7,037,646; 8,106,022, the entire contents of each of which is herein incorporated by reference.


It is not necessary for all positions in a given compound to be uniformly modified, and in fact more than one of the aforementioned modifications may be incorporated in a single compound or even at a single nucleoside within an iRNA. The present disclosure also includes iRNA compounds that are chimeric compounds.


“Chimeric” iRNA compounds, or “chimeras,” in the context of the present disclosure, are iRNA compounds, e.g., dsRNAs, that contain two or more chemically distinct regions, each made up of at least one monomer unit, i.e., a nucleotide in the case of a dsRNA compound. These iRNAs typically contain at least one region wherein the RNA is modified so as to confer upon the iRNA increased resistance to nuclease degradation, increased cellular uptake, and/or increased binding affinity for the target nucleic acid. An additional region of the iRNA may serve as a substrate for enzymes capable of cleaving RNA:DNA or RNA:RNA hybrids. By way of example, RNase H is a cellular endonuclease which cleaves the RNA strand of an RNA:DNA duplex. Activation of RNase H, therefore, results in cleavage of the RNA target, thereby greatly enhancing the efficiency of iRNA inhibition of gene expression. Consequently, comparable results can often be obtained with shorter iRNAs when chimeric dsRNAs are used, compared to phosphorothioate deoxy dsRNAs hybridizing to the same target region. Cleavage of the RNA target can be routinely detected by gel electrophoresis and, if necessary, associated nucleic acid hybridization techniques known in the art.


In certain instances, the RNA of an iRNA can be modified by a non-ligand group. A number of non-ligand molecules have been conjugated to iRNAs in order to enhance the activity, cellular distribution or cellular uptake of the iRNA, and procedures for performing such conjugations are available in the scientific literature. Such non-ligand moieties have included lipid moieties, such as cholesterol (Kubo, T. et al., Biochem. Biophys. Res. Comm., 2007, 365(1):54-61; Letsinger et al., Proc. Natl. Acad. Sci. USA, 1989, 86:6553), cholic acid (Manoharan et al., Bioorg. Med. Chem. Lett., 1994, 4:1053), a thioether, e.g., hexyl-S-tritylthiol (Manoharan et al., Ann. N.Y. Acad. Sci., 1992, 660:306; Manoharan et al., Bioorg. Med. Chem. Let., 1993, 3:2765), a thiocholesterol (Oberhauser et al., Nucl. Acids Res., 1992, 20:533), an aliphatic chain, e.g., dodecandiol or undecyl residues (Saison-Behmoaras et al., EMBO J., 1991, 10:111; Kabanov et al., FEBS Lett., 1990, 259:327; Svinarchuk et al., Biochimie, 1993, 75:49), a phospholipid, e.g., di-hexadecyl-rac-glycerol or triethylammonium 1,2-di-O-hexadecyl-rac-glycero-3-H-phosphonate (Manoharan et al., Tetrahedron Lett., 1995, 36:3651; Shea et al., Nucl. Acids Res., 1990, 18:3777), a polyamine or a polyethylene glycol chain (Manoharan et al., Nucleosides & Nucleotides, 1995, 14:969), or adamantane acetic acid (Manoharan et al., Tetrahedron Lett., 1995, 36:3651), a palmityl moiety (Mishra et al., Biochim. Biophys. Acta, 1995, 1264:229), or an octadecylamine or hexylamino-carbonyl-oxycholesterol moiety (Crooke et al., J. Pharmacol. Exp. Ther., 1996, 277:923). Representative United States patents that teach the preparation of such RNA conjugates have been listed above. Typical conjugation protocols involve the synthesis of an RNAs bearing an aminolinker at one or more positions of the sequence. The amino group is then reacted with the molecule being conjugated using appropriate coupling or activating reagents. The conjugation reaction may be performed either with the RNA still bound to the solid support or following cleavage of the RNA, in solution phase. Purification of the RNA conjugate by HPLC typically affords the pure conjugate.


Delivery of iRNA


The delivery of an iRNA to a subject in need thereof can be achieved in a number of different ways. In vivo delivery can be performed directly by administering a composition comprising an iRNA, e.g. a dsRNA, to a subject. Alternatively, delivery can be performed indirectly by administering one or more vectors that encode and direct the expression of the iRNA. These alternatives are discussed further below.


Direct Delivery


In general, any method of delivering a nucleic acid molecule can be adapted for use with an iRNA (see e.g., Akhtar S. and Julian R L. (1992) Trends Cell. Biol. 2(5):139-144 and WO94/02595, which are incorporated herein by reference in their entireties). However, there are three factors that are important to consider in order to successfully deliver an iRNA molecule in vivo: (1) biological stability of the delivered molecule, (2) preventing non-specific effects, and (3) accumulation of the delivered molecule in the target tissue. The non-specific effects of an iRNA can be minimized by local administration, for example by direct injection or implantation into a tissue (as a non-limiting example, the spine) or topically administering the preparation. Local administration to a treatment site maximizes local concentration of the agent, limits the exposure of the agent to systemic tissues that may otherwise be harmed by the agent or that may degrade the agent, and permits a lower total dose of the iRNA molecule to be administered. Several studies have shown successful knockdown of gene products when an iRNA is administered locally. For example, intraocular delivery of a VEGF dsRNA by intravitreal injection in cynomolgus monkeys (Tolentino, M J., et al (2004) Retina 24:132-138) and subretinal injections in mice (Reich, S J., et al (2003) Mol. Vis. 9:210-216) were both shown to prevent neovascularization in an experimental model of age-related macular degeneration. In addition, direct intratumoral injection of a dsRNA in mice reduces tumor volume (Pille, J., et al (2005) Mol. Ther. 11:267-274) and can prolong survival of tumor-bearing mice (Kim, W J., et al (2006) Mol. Ther. 14:343-350; Li, S., et al (2007) Mol. Ther. 15:515-523). RNA interference has also shown success with local delivery to the CNS by direct injection (Dorn, G., et al. (2004) Nucleic Acids 32:e49; Tan, P H., et al (2005) Gene Ther. 12:59-66; Makimura, H., et al (2002) BMC Neurosci. 3:18; Shishkina, G T., et al (2004) Neuroscience 129:521-528; Thakker, E R., et al (2004) Proc. Natl. Acad. Sci. U.S.A. 101:17270-17275; Akaneya, Y., et al (2005) J. Neurophysiol. 93:594-602) and to the lungs by intranasal administration (Howard, K A., et al (2006) Mol. Ther. 14:476-484; Zhang, X., et al (2004) J. Biol. Chem. 279:10677-10684; Bitko, V., et al (2005) Nat. Med. 11:50-55). For administering an iRNA systemically for the treatment of a disease, the RNA can be modified or alternatively delivered using a drug delivery system; both methods act to prevent the rapid degradation of the dsRNA by endo- and exo-nucleases in vivo.


Modification of the RNA or the pharmaceutical carrier can also permit targeting of the iRNA composition to the target tissue and avoid undesirable off-target effects. iRNA molecules can be modified by chemical conjugation to other groups, e.g., a lipid or carbohydrate group as described herein. Such conjugates can be used to target iRNA to particular cells, e.g., liver cells, e.g., hepatocytes. For example, GalNAc conjugates or lipid (e.g., LNP) formulations can be used to target iRNA to particular cells, e.g., liver cells, e.g., hepatocytes.


iRNA molecules can also be modified by chemical conjugation to lipophilic groups such as cholesterol to enhance cellular uptake and prevent degradation. For example, an iRNA directed against ApoB conjugated to a lipophilic cholesterol moiety was injected systemically into mice and resulted in knockdown of apoB mRNA in both the liver and jejunum (Soutschek, J., et al (2004) Nature 432:173-178). Conjugation of an iRNA to an aptamer has been shown to inhibit tumor growth and mediate tumor regression in a mouse model of prostate cancer (McNamara, J O., et al (2006) Nat. Biotechnol. 24:1005-1015). In an alternative embodiment, the iRNA can be delivered using drug delivery systems such as a nanoparticle, a dendrimer, a polymer, liposomes, or a cationic delivery system. Positively charged cationic delivery systems facilitate binding of an iRNA molecule (negatively charged) and also enhance interactions at the negatively charged cell membrane to permit efficient uptake of an iRNA by the cell. Cationic lipids, dendrimers, or polymers can either be bound to an iRNA, or induced to form a vesicle or micelle (see e.g., Kim S H., et al (2008) Journal of Controlled Release 129(2):107-116) that encases an iRNA. The formation of vesicles or micelles further prevents degradation of the iRNA when administered systemically. Methods for making and administering cationic-iRNA complexes are well within the abilities of one skilled in the art (see e.g., Sorensen, D R., et al (2003) J. Mol. Biol 327:761-766; Verma, U N., et al (2003) Clin. Cancer Res. 9:1291-1300; Arnold, A S et al (2007) J. Hypertens. 25:197-205, which are incorporated herein by reference in their entirety). Some non-limiting examples of drug delivery systems useful for systemic delivery of iRNAs include DOTAP (Sorensen, D R., et al (2003), supra; Verma, U N., et al (2003), supra), Oligofectamine, “solid nucleic acid lipid particles” (Zimmermann, T S., et al (2006) Nature 441:111-114), cardiolipin (Chien, P Y., et al (2005) Cancer Gene Ther. 12:321-328; Pal, A., et al (2005) Int J. Oncol. 26:1087-1091), polyethyleneimine (Bonnet M E., et al (2008) Pharm. Res. August 16 Epub ahead of print; Aigner, A. (2006) J. Biomed. Biotechnol. 71659), Arg-Gly-Asp (RGD) peptides (Liu, S. (2006) Mol. Pharm. 3:472-487), and polyamidoamines (Tomalia, D A., et al (2007) Biochem. Soc. Trans. 35:61-67; Yoo, H., et al (1999) Pharm. Res. 16:1799-1804). In some embodiments, an iRNA forms a complex with cyclodextrin for systemic administration. Methods for administration and pharmaceutical compositions of iRNAs and cyclodextrins can be found in U.S. Pat. No. 7,427,605, which is herein incorporated by reference in its entirety.


Vector Encoded iRNAs


In some embodiments, iRNA targeting SCN9A can be expressed from transcription units inserted into DNA or RNA vectors (see, e.g., Couture, A, et al., TIG. (1996), 12:5-10; Skillern, A., et al., International PCT Publication No. WO 00/22113, Conrad, International PCT Publication No. WO 00/22114, and Conrad, U.S. Pat. No. 6,054,299). Expression can be transient (on the order of hours to weeks) or sustained (weeks to months or longer), depending upon the specific construct used and the target tissue or cell type. These transgenes can be introduced as a linear construct, a circular plasmid, or a viral vector, which can be an integrating or non-integrating vector. The transgene can also be constructed to permit it to be inherited as an extrachromosomal plasmid (Gassmann, et al., Proc. Natl. Acad. Sci. USA (1995) 92:1292).


The individual strand or strands of an iRNA can be transcribed from a promoter on an expression vector. Where two separate strands are to be expressed to generate, for example, a dsRNA, two separate expression vectors can be co-introduced (e.g., by transfection or infection) into a target cell. Alternatively, each individual strand of a dsRNA can be transcribed by promoters both of which are located on the same expression plasmid. In some embodiments, a dsRNA is expressed as an inverted repeat joined by a linker polynucleotide sequence such that the dsRNA has a stem and loop structure.


An iRNA expression vector is typically a DNA plasmid or viral vector. An expression vector compatible with eukaryotic cells, e.g., with vertebrate cells, can be used to produce recombinant constructs for the expression of an iRNA as described herein. Eukaryotic cell expression vectors are well known in the art and are available from a number of commercial sources. Typically, such vectors contain convenient restriction sites for insertion of the desired nucleic acid segment. Delivery of iRNA expressing vectors can be systemic, such as by intravenous or intramuscular administration, by administration to target cells ex-planted from the patient followed by reintroduction into the patient, or by any other means that allows for introduction into a desired target cell.


An iRNA expression plasmid can be transfected into a target cell as a complex with a cationic lipid carrier (e.g., Oligofectamine) or a non-cationic lipid-based carrier (e.g., Transit-TKO™). Multiple lipid transfections for iRNA-mediated knockdowns targeting different regions of a target RNA over a period of a week or more are also contemplated by the disclosure. Successful introduction of vectors into host cells can be monitored using various known methods. For example, transient transfection can be signaled with a reporter, such as a fluorescent marker, such as Green Fluorescent Protein (GFP). Stable transfection of cells ex vivo can be ensured using markers that provide the transfected cell with resistance to specific environmental factors (e.g., antibiotics and drugs), such as hygromycin B resistance.


Viral vector systems which can be utilized with the methods and compositions described herein include, but are not limited to, (a) adenovirus vectors; (b) retrovirus vectors, including but not limited to lentiviral vectors, moloney murine leukemia virus, etc.; (c) adeno-associated virus vectors; (d) herpes simplex virus vectors; (e) SV40 vectors; (f) polyoma virus vectors; (g) papilloma virus vectors; (h) picornavirus vectors; (i) pox virus vectors such as an orthopox, e.g., vaccinia virus vectors or avipox, e.g. canary pox or fowl pox; and (j) a helper-dependent or gutless adenovirus. Replication-defective viruses can also be advantageous. Different vectors will or will not become incorporated into the cells' genome. The constructs can include viral sequences for transfection, if desired. Alternatively, the construct may be incorporated into vectors capable of episomal replication, e.g EPV and EBV vectors. Constructs for the recombinant expression of an iRNA will generally require regulatory elements, e.g., promoters, enhancers, etc., to ensure the expression of the iRNA in target cells. Other aspects to consider for vectors and constructs are further described below.


Vectors useful for the delivery of an iRNA will include regulatory elements (promoter, enhancer, etc.) sufficient for expression of the iRNA in the desired target cell or tissue. The regulatory elements can be chosen to provide either constitutive or regulated/inducible expression.


Expression of the iRNA can be precisely regulated, for example, by using an inducible regulatory sequence that is sensitive to certain physiological regulators, e.g., circulating glucose levels, or hormones (Docherty et al., 1994, FASEB J. 8:20-24). Such inducible expression systems, suitable for the control of dsRNA expression in cells or in mammals include, for example, regulation by ecdysone, by estrogen, progesterone, tetracycline, chemical inducers of dimerization, and isopropyl-β-D1-thiogalactopyranoside (IPTG). A person skilled in the art would be able to choose the appropriate regulatory/promoter sequence based on the intended use of the iRNA transgene.


In a specific embodiment, viral vectors that contain nucleic acid sequences encoding an iRNA can be used. For example, a retroviral vector can be used (see Miller et al., Meth. Enzymol. 217:581-599 (1993)). These retroviral vectors contain the components necessary for the correct packaging of the viral genome and integration into the host cell DNA. The nucleic acid sequences encoding an iRNA are cloned into one or more vectors, which facilitates delivery of the nucleic acid into a patient. More detail about retroviral vectors can be found, for example, in Boesen et al., Biotherapy 6:291-302 (1994), which describes the use of a retroviral vector to deliver the mdr1 gene to hematopoietic stem cells in order to make the stem cells more resistant to chemotherapy. Other references illustrating the use of retroviral vectors in gene therapy are: Clowes et al., J. Clin. Invest. 93:644-651 (1994); Kiem et al., Blood 83:1467-1473 (1994); Salmons and Gunzberg, Human Gene Therapy 4:129-141 (1993); and Grossman and Wilson, Curr. Opin. in Genetics and Devel. 3:110-114 (1993). Lentiviral vectors contemplated for use include, for example, the HIV based vectors described in U.S. Pat. Nos. 6,143,520; 5,665,557; and 5,981,276, which are herein incorporated by reference.


Adenoviruses are also contemplated for use in delivery of iRNAs. Adenoviruses are especially attractive vehicles, e.g., for delivering genes to respiratory epithelia. Adenoviruses naturally infect respiratory epithelia where they cause a mild disease. Other targets for adenovirus-based delivery systems are liver, the central nervous system, endothelial cells, and muscle. Adenoviruses have the advantage of being capable of infecting non-dividing cells. Kozarsky and Wilson, Current Opinion in Genetics and Development 3:499-503 (1993) present a review of adenovirus-based gene therapy. Bout et al., Human Gene Therapy 5:3-10 (1994) demonstrated the use of adenovirus vectors to transfer genes to the respiratory epithelia of rhesus monkeys. Other instances of the use of adenoviruses in gene therapy can be found in Rosenfeld et al., Science 252:431-434 (1991); Rosenfeld et al., Cell 68:143-155 (1992); Mastrangeli et al., J. Clin. Invest. 91:225-234 (1993); PCT Publication WO94/12649; and Wang, et al., Gene Therapy 2:775-783 (1995). A suitable AV vector for expressing an iRNA featured in the disclosure, a method for constructing the recombinant AV vector, and a method for delivering the vector into target cells, are described in Xia H et al. (2002), Nat. Biotech. 20: 1006-1010.


Use of Adeno-associated virus (AAV) vectors is also contemplated (Walsh et al., Proc. Soc. Exp. Biol. Med. 204:289-300 (1993); U.S. Pat. No. 5,436,146). In some embodiments, the iRNA can be expressed as two separate, complementary single-stranded RNA molecules from a recombinant AAV vector having, for example, either the U6 or H1 RNA promoters, or the cytomegalovirus (CMV) promoter. Suitable AAV vectors for expressing the dsRNA featured in the disclosure, methods for constructing the recombinant AV vector, and methods for delivering the vectors into target cells are described in Samulski R et al. (1987), J. Virol. 61: 3096-3101; Fisher K J et al. (1996), J. Virol., 70: 520-532; Samulski R et al. (1989), J. Virol. 63: 3822-3826; U.S. Pat. Nos. 5,252,479; 5,139,941; International Patent Application No. WO 94/13788; and International Patent Application No. WO 93/24641, the entire disclosures of which are herein incorporated by reference.


Another typical viral vector is a pox virus such as a vaccinia virus, for example an attenuated vaccinia such as Modified Virus Ankara (MVA) or NYVAC, an avipox such as fowl pox or canary pox.


The tropism of viral vectors can be modified by pseudotyping the vectors with envelope proteins or other surface antigens from other viruses, or by substituting different viral capsid proteins, as appropriate. For example, lentiviral vectors can be pseudotyped with surface proteins from vesicular stomatitis virus (VSV), rabies, Ebola, Mokola, and the like. AAV vectors can be made to target different cells by engineering the vectors to express different capsid protein serotypes; see, e.g., Rabinowitz J E et al. (2002), J Virol 76:791-801, the entire disclosure of which is herein incorporated by reference.


The pharmaceutical preparation of a vector can include the vector in an acceptable diluent, or can include a slow release matrix in which the gene delivery vehicle is imbedded. Alternatively, where the complete gene delivery vector can be produced intact from recombinant cells, e.g., retroviral vectors, the pharmaceutical preparation can include one or more cells which produce the gene delivery system.


III. Pharmaceutical Compositions Containing iRNA

In some embodiments, the disclosure provides pharmaceutical compositions containing an iRNA, as described herein, and a pharmaceutically acceptable carrier. The pharmaceutical composition containing the iRNA is useful for treating a disease or disorder related to the expression or activity of SCN9A (e.g., pain, e.g., chronic pain or pain-related disorder). Such pharmaceutical compositions are formulated based on the mode of delivery. In some embodiments, compositions can be formulated for localized delivery, e.g., by CNS delivery (e.g., intrathecal, intracranial, intracerebral, intraventricular, epidural, or intraganglionic routes of injection, optionally by infusion into the brain or spine, e.g., by continuous pump infusion). In another example, compositions can be formulated for systemic administration via parenteral delivery, e.g., by intravenous (IV) delivery, intramuscular (IM), or subcutaneous delivery (subQ). In some embodiments, a composition provided herein (e.g., a composition comprising a GalNAc conjugate or an LNP formulation) is formulated for intravenous delivery.


The pharmaceutical compositions featured herein are administered in a dosage sufficient to inhibit expression of SCN9A. In general, a suitable dose of iRNA will be in the range of 0.01 to 200.0 milligrams per kilogram body weight of the recipient per day, generally in the range of 1 to 50 mg per kilogram body weight per day. For example, the dsRNA can be administered at 0.05 mg/kg, 0.5 mg/kg, 1 mg/kg, 1.5 mg/kg, 2 mg/kg, 3 mg/kg, 10 mg/kg, 20 mg/kg, 30 mg/kg, 40 mg/kg, or 50 mg/kg per single dose.


In some embodiments, a repeat-dose regimen may include administration of a therapeutic amount of a RNAi agent on a regular basis, such as monthly to once every six months. In certain embodiments, the RNAi agent is administered about once per quarter (i.e., about once every three months) to about twice per year.


After an initial treatment regimen (e.g., loading dose), the treatments can be administered on a less frequent basis.


In other embodiments, the pharmaceutical composition may be administered once daily, or the iRNA may be administered as two, three, or more sub-doses at appropriate intervals throughout the day or even using continuous infusion or delivery through a controlled release formulation. In that case, the iRNA contained in each sub-dose must be correspondingly smaller in order to achieve the total daily dosage. The dosage unit can also be compounded for delivery over several days, e.g., using a conventional sustained release formulation which provides sustained release of the iRNA over a several day period. Sustained release formulations are well known in the art and are particularly useful for delivery of agents at a particular site, such as can be used with the agents of the present disclosure. In this embodiment, the dosage unit contains a corresponding multiple of the daily dose.


The effect of a single dose on SCN9A levels can be long lasting, such that subsequent doses are administered at not more than 3, 4, or 5-day intervals, or at not more than 1, 2, 3, 4, 12, 24, or 36-week intervals.


The skilled artisan will appreciate that certain factors may influence the dosage and timing required to effectively treat a subject, including but not limited to the severity of the disease or disorder, previous treatments, the general health and/or age of the subject, and other diseases present. Moreover, treatment of a subject with a therapeutically effective amount of a composition can include a single treatment or a series of treatments. Estimates of effective dosages and in vivo half-lives for the individual iRNAs encompassed by the disclosure can be made using conventional methodologies or on the basis of in vivo testing using a suitable animal model.


A suitable animal model, e.g., a mouse or a cynomolgus monkey, e.g., an animal containing a transgene expressing human SCN9A, can be used to determine the therapeutically effective dose and/or an effective dosage regimen administration of SCN9A siRNA.


In some embodiments, the iRNA compounds described herein can be delivered in a manner to target a particular tissue, such as the CNS (e.g., optionally the brain or spine tissue, e.g., cortex, cerebellum, dorsal root ganglia, substantia nigra, cerebellar dentate nucleus, pallidum, striatum, brainstem, thalamus, subthalamic, red, and pontine nuclei, cranial nerve nuclei and the anterior horn; and Clarke's column of the spinal cord cervical spine, lumbar spine, or thoracic spine).


The present disclosure also includes pharmaceutical compositions and formulations that include the iRNA compounds featured herein. The pharmaceutical compositions of the present disclosure may be administered in a number of ways depending upon whether local or systemic treatment is desired and upon the area to be treated. Administration may be local (e.g., by intrathecal, intraventricular, intracranial, epidural, or intraganglionic injection), topical (e.g., buccal and sublingual administration), oral, intravitreal, transdermal, airway (aerosol), nasal, rectal, or parenteral. Parenteral administration includes intravenous, intraarterial, subcutaneous, intraperitoneal or intramuscular injection or infusion; subdermal, e.g., via an implanted device; or intracranial, e.g., by intraparenchymal, intrathecal, or intraventricular administration.


In some embodiments, the administration is via a bolus injection. In some embodiments, the administration is via a depot injection. A depot injection may release the RNAi agent in a consistent way over a prolonged time period. Thus, a depot injection may reduce the frequency of dosing needed to obtain a desired effect, e.g., a desired inhibition of SCN9A, or a therapeutic or prophylactic effect.


In some embodiments, the administration is via a pump. The pump may be an external pump or a surgically implanted pump. In other embodiments, the pump is an infusion pump. An infusion pump may be used for intracranial, intravenous, or epidural infusions. In certain embodiments, the pump is a surgically implanted pump that delivers the RNAi agent to the CNS.


Pharmaceutical compositions and formulations for topical administration may include transdermal patches, ointments, lotions, creams, gels, drops, suppositories, sprays, liquids and powders. Conventional pharmaceutical carriers, aqueous, powder or oily bases, thickeners and the like may be necessary or desirable. Coated condoms, gloves and the like may also be useful. Suitable topical formulations include those in which the iRNAs featured in the disclosure are in admixture with a topical delivery agent such as lipids, liposomes, fatty acids, fatty acid esters, steroids, chelating agents and surfactants. Suitable lipids and liposomes include neutral (e.g., dioleoylphosphatidyl DOPE ethanolamine, dimyristoylphosphatidyl choline DMPC, distearolyphosphatidyl choline) negative (e.g., dimyristoylphosphatidyl glycerol DMPG) and cationic (e.g., dioleoyltetramethylaminopropyl DOTAP and dioleoylphosphatidyl ethanolamine DOTMA). iRNAs featured in the disclosure may be encapsulated within liposomes or may form complexes thereto, in particular to cationic liposomes. Alternatively, iRNAs may be complexed to lipids, in particular to cationic lipids. Suitable fatty acids and esters include but are not limited to arachidonic acid, oleic acid, eicosanoic acid, lauric acid, caprylic acid, capric acid, myristic acid, palmitic acid, stearic acid, linoleic acid, linolenic acid, dicaprate, tricaprate, monoolein, dilaurin, glyceryl 1-monocaprate, 1-dodecylazacycloheptan-2-one, an acylcarnitine, an acylcholine, or a C1-20 alkyl ester (e.g., isopropylmyristate IPM), monoglyceride, diglyceride or pharmaceutically acceptable salt thereof. Topical formulations are described in detail in U.S. Pat. No. 6,747,014, which is incorporated herein by reference.


Liposomal Formulations


There are many organized surfactant structures besides microemulsions that have been studied and used for the formulation of drugs. These include monolayers, micelles, bilayers and vesicles. Vesicles, such as liposomes, have attracted great interest because of their specificity and the duration of action they offer from the standpoint of drug delivery. As used in the present disclosure, the term “liposome” means a vesicle composed of amphiphilic lipids arranged in a spherical bilayer or bilayers.


Liposomes are unilamellar or multilamellar vesicles which have a membrane formed from a lipophilic material and an aqueous interior. The aqueous portion contains the composition to be delivered. Cationic liposomes possess the advantage of being able to fuse to the cell wall. Non-cationic liposomes, although not able to fuse as efficiently with the cell wall, are taken up by macrophages in vivo.


In order to traverse intact mammalian skin, lipid vesicles must pass through a series of fine pores, each with a diameter less than 50 nm, under the influence of a suitable transdermal gradient. Therefore, it is desirable to use a liposome which is highly deformable and able to pass through such fine pores.


Further advantages of liposomes include; liposomes obtained from natural phospholipids are biocompatible and biodegradable; liposomes can incorporate a wide range of water and lipid soluble drugs; liposomes can protect encapsulated drugs in their internal compartments from metabolism and degradation (Rosoff, in Pharmaceutical Dosage Forms, Lieberman, Rieger and Banker (Eds.), 1988, Marcel Dekker, Inc., New York, N.Y., volume 1, p. 245). Important considerations in the preparation of liposome formulations are the lipid surface charge, vesicle size and the aqueous volume of the liposomes.


Liposomes are useful for the transfer and delivery of active ingredients to the site of action. Because the liposomal membrane is structurally similar to biological membranes, when liposomes are applied to a tissue, the liposomes start to merge with the cellular membranes and as the merging of the liposome and cell progresses, the liposomal contents are emptied into the cell where the active agent may act.


Liposomal formulations have been the focus of extensive investigation as the mode of delivery for many drugs. There is growing evidence that for topical administration, liposomes present several advantages over other formulations. Such advantages include reduced side-effects related to high systemic absorption of the administered drug, increased accumulation of the administered drug at the desired target, and the ability to administer a wide variety of drugs, both hydrophilic and hydrophobic, into the skin.


Several reports have detailed the ability of liposomes to deliver agents including high-molecular weight DNA into the skin. Compounds including analgesics, antibodies, hormones and high-molecular weight DNAs have been administered to the skin. The majority of applications resulted in the targeting of the upper epidermis


Liposomes fall into two broad classes. Cationic liposomes are positively charged liposomes which interact with the negatively charged DNA molecules to form a stable complex. The positively charged DNA/liposome complex binds to the negatively charged cell surface and is internalized in an endosome. Due to the acidic pH within the endosome, the liposomes are ruptured, releasing their contents into the cell cytoplasm (Wang et al., Biochem. Biophys. Res. Commun., 1987, 147, 980-985).


Liposomes which are pH-sensitive or negatively charged, entrap DNA rather than complex with it. Since both the DNA and the lipid are similarly charged, repulsion rather than complex formation occurs. Nevertheless, some DNA is entrapped within the aqueous interior of these liposomes. pH-sensitive liposomes have been used to deliver DNA encoding the thymidine kinase gene to cell monolayers in culture. Expression of the exogenous gene was detected in the target cells (Zhou et al., Journal of Controlled Release, 1992, 19, 269-274).


One major type of liposomal composition includes phospholipids other than naturally derived phosphatidylcholine. Neutral liposome compositions, for example, can be formed from dimyristoyl phosphatidylcholine (DMPC) or dipalmitoyl phosphatidylcholine (DPPC). Anionic liposome compositions generally are formed from dimyristoyl phosphatidylglycerol, while anionic fusogenic liposomes are formed primarily from dioleoyl phosphatidylethanolamine (DOPE). Another type of liposomal composition is formed from phosphatidylcholine (PC) such as, for example, soybean PC, and egg PC. Another type is formed from mixtures of phospholipid and/or phosphatidylcholine and/or cholesterol.


Several studies have assessed the topical delivery of liposomal drug formulations to the skin. Application of liposomes containing interferon to guinea pig skin resulted in a reduction of skin herpes sores while delivery of interferon via other means (e.g., as a solution or as an emulsion) were ineffective (Weiner et al., Journal of Drug Targeting, 1992, 2, 405-410). Further, an additional study tested the efficacy of interferon administered as part of a liposomal formulation to the administration of interferon using an aqueous system, and concluded that the liposomal formulation was superior to aqueous administration (du Plessis et al., Antiviral Research, 1992, 18, 259-265).


Non-ionic liposomal systems have also been examined to determine their utility in the delivery of drugs to the skin, in particular systems comprising non-ionic surfactant and cholesterol. Non-ionic liposomal formulations comprising Novasome™ I (glyceryl dilaurate/cholesterol/polyoxyethylene-10-stearyl ether) and Novasome™ II (glyceryl distearate/cholesterol/polyoxyethylene-10-stearyl ether) were used to deliver cyclosporin-A into the dermis of mouse skin. Results indicated that such non-ionic liposomal systems were effective in facilitating the deposition of cyclosporin-A into different layers of the skin (Hu et al. S.T.P. Pharma. Sci., 1994, 4, 6, 466).


Liposomes also include “sterically stabilized” liposomes, a term which, as used herein, refers to liposomes comprising one or more specialized lipids that, when incorporated into liposomes, result in enhanced circulation lifetimes relative to liposomes lacking such specialized lipids. Examples of sterically stabilized liposomes are those in which part of the vesicle-forming lipid portion of the liposome (A) comprises one or more glycolipids, such as monosialoganglioside GM1, or (B) is derivatized with one or more hydrophilic polymers, such as a polyethylene glycol (PEG) moiety. While not wishing to be bound by any particular theory, it is thought in the art that, at least for sterically stabilized liposomes containing gangliosides, sphingomyelin, or PEG-derivatized lipids, the enhanced circulation half-life of these sterically stabilized liposomes derives from a reduced uptake into cells of the reticuloendothelial system (RES) (Allen et al., FEBS Letters, 1987, 223, 42; Wu et al., Cancer Research, 1993, 53, 3765).


Various liposomes comprising one or more glycolipids are known in the art. Papahadjopoulos et al. (Ann. N.Y. Acad. Sci., 1987, 507, 64) reported the ability of monosialoganglioside GM1, galactocerebroside sulfate and phosphatidylinositol to improve blood half-lives of liposomes. These findings were expounded upon by Gabizon et al. (Proc. Natl. Acad. Sci. U.S.A., 1988, 85, 6949). U.S. Pat. No. 4,837,028 and WO 88/04924, both to Allen et al., disclose liposomes comprising (1) sphingomyelin and (2) the ganglioside GM1 or a galactocerebroside sulfate ester. U.S. Pat. No. 5,543,152 (Webb et al.) discloses liposomes comprising sphingomyelin. Liposomes comprising 1,2-sn-dimyristoylphosphatidylcholine are disclosed in WO 97/13499 (Lim et al).


Many liposomes comprising lipids derivatized with one or more hydrophilic polymers, and methods of preparation thereof, are known in the art. Sunamoto et al. (Bull. Chem. Soc. Jpn., 1980, 53, 2778) described liposomes comprising a nonionic detergent, 2C1215G, that contains a PEG moiety. Ilium et al. (FEBS Lett., 1984, 167, 79) noted that hydrophilic coating of polystyrene particles with polymeric glycols results in significantly enhanced blood half-lives. Synthetic phospholipids modified by the attachment of carboxylic groups of polyalkylene glycols (e.g., PEG) are described by Sears (U.S. Pat. Nos. 4,426,330 and 4,534,899). Klibanov et al. (FEBS Lett., 1990, 268, 235) described experiments demonstrating that liposomes comprising phosphatidylethanolamine (PE) derivatized with PEG or PEG stearate have significant increases in blood circulation half-lives. Blume et al. (Biochimica et Biophysica Acta, 1990, 1029, 91) extended such observations to other PEG-derivatized phospholipids, e.g., DSPE-PEG, formed from the combination of distearoylphosphatidylethanolamine (DSPE) and PEG. Liposomes having covalently bound PEG moieties on their external surface are described in European Patent No. EP 0 445 131 B1 and WO 90/04384 to Fisher. Liposome compositions containing 1-20 mole percent of PE derivatized with PEG, and methods of use thereof, are described by Woodle et al. (U.S. Pat. Nos. 5,013,556 and 5,356,633) and Martin et al. (U.S. Pat. No. 5,213,804 and European Patent No. EP 0 496 813 B1). Liposomes comprising a number of other lipid-polymer conjugates are disclosed in WO 91/05545 and U.S. Pat. No. 5,225,212 (both to Martin et al.) and in WO 94/20073 (Zalipsky et al.). Liposomes comprising PEG-modified ceramide lipids are described in WO 96/10391 (Choi et al). U.S. Pat. No. 5,540,935 (Miyazaki et al.) and U.S. Pat. No. 5,556,948 (Tagawa et al.) describe PEG-containing liposomes that can be further derivatized with functional moieties on their surfaces.


A number of liposomes comprising nucleic acids are known in the art. WO 96/40062 to Thierry et al. discloses methods for encapsulating high molecular weight nucleic acids in liposomes. U.S. Pat. No. 5,264,221 to Tagawa et al. discloses protein-bonded liposomes and asserts that the contents of such liposomes may include a dsRNA. U.S. Pat. No. 5,665,710 to Rahman et al. describes certain methods of encapsulating oligodeoxynucleotides in liposomes. WO 97/04787 to Love et al. discloses liposomes comprising dsRNAs targeted to the raf gene.


Transfersomes are yet another type of liposomes, and are highly deformable lipid aggregates which are attractive candidates for drug delivery vehicles. Transfersomes may be described as lipid droplets which are so highly deformable that they are easily able to penetrate through pores which are smaller than the droplet. Transfersomes are adaptable to the environment in which they are used, e.g., they are self-optimizing (adaptive to the shape of pores in the skin), self-repairing, frequently reach their targets without fragmenting, and often self-loading. To make transfersomes it is possible to add surface edge-activators, usually surfactants, to a standard liposomal composition. Transfersomes have been used to deliver serum albumin to the skin. The transfersome-mediated delivery of serum albumin has been shown to be as effective as subcutaneous injection of a solution containing serum albumin.


Surfactants find wide application in formulations such as emulsions (including microemulsions) and liposomes. The most common way of classifying and ranking the properties of the many different types of surfactants, both natural and synthetic, is by the use of the hydrophile/lipophile balance (HLB). The nature of the hydrophilic group (also known as the “head”) provides the most useful means for categorizing the different surfactants used in formulations (Rieger, in Pharmaceutical Dosage Forms, Marcel Dekker, Inc., New York, N.Y., 1988, p. 285).


If the surfactant molecule is not ionized, it is classified as a nonionic surfactant. Nonionic surfactants find wide application in pharmaceutical and cosmetic products and are usable over a wide range of pH values. In general, their HLB values range from 2 to about 18 depending on their structure. Nonionic surfactants include nonionic esters such as ethylene glycol esters, propylene glycol esters, glyceryl esters, polyglyceryl esters, sorbitan esters, sucrose esters, and ethoxylated esters. Nonionic alkanolamides and ethers such as fatty alcohol ethoxylates, propoxylated alcohols, and ethoxylated/propoxylated block polymers are also included in this class. The polyoxyethylene surfactants are the most popular members of the nonionic surfactant class.


If the surfactant molecule carries a negative charge when it is dissolved or dispersed in water, the surfactant is classified as anionic. Anionic surfactants include carboxylates such as soaps, acyl lactylates, acyl amides of amino acids, esters of sulfuric acid such as alkyl sulfates and ethoxylated alkyl sulfates, sulfonates such as alkyl benzene sulfonates, acyl isethionates, acyl taurates and sulfosuccinates, and phosphates. The most important members of the anionic surfactant class are the alkyl sulfates and the soaps.


If the surfactant molecule carries a positive charge when it is dissolved or dispersed in water, the surfactant is classified as cationic. Cationic surfactants include quaternary ammonium salts and ethoxylated amines. The quaternary ammonium salts are the most used members of this class.


If the surfactant molecule has the ability to carry either a positive or negative charge, the surfactant is classified as amphoteric Amphoteric surfactants include acrylic acid derivatives, substituted alkylamides, N-alkylbetaines and phosphatides.


The use of surfactants in drug products, formulations and in emulsions has been reviewed (Rieger, in Pharmaceutical Dosage Forms, Marcel Dekker, Inc., New York, N.Y., 1988, p. 285).


Nucleic Acid Lipid Particles


In some embodiments, an SCN9A dsRNA featured in the disclosure is fully encapsulated in the lipid formulation, e.g., to form a SPLP, pSPLP, SNALP, or other nucleic acid-lipid particle. SNALPs and SPLPs typically contain a cationic lipid, a non-cationic lipid, and a lipid that prevents aggregation of the particle (e.g., a PEG-lipid conjugate). SNALPs and SPLPs are extremely useful for systemic applications, as they exhibit extended circulation lifetimes following intravenous (i.v.) injection and accumulate at distal sites (e.g., sites physically separated from the administration site). SPLPs include “pSPLP,” which include an encapsulated condensing agent-nucleic acid complex as set forth in PCT Publication No. WO 00/03683. The particles of the present disclosure typically have a mean diameter of about 50 nm to about 150 nm, more typically about 60 nm to about 130 nm, more typically about 70 nm to about 110 nm, most typically about 70 nm to about 90 nm, and are substantially nontoxic. In addition, the nucleic acids when present in the nucleic acid-lipid particles of the present disclosure are resistant in aqueous solution to degradation with a nuclease. Nucleic acid-lipid particles and their method of preparation are disclosed in, e.g., U.S. Pat. Nos. 5,976,567; 5,981,501; 6,534,484; 6,586,410; 6,815,432; and PCT Publication No. WO 96/40964.


In some embodiments, the lipid to drug ratio (mass/mass ratio) (e.g., lipid to dsRNA ratio) will be in the range of from about 1:1 to about 50:1, from about 1:1 to about 25:1, from about 3:1 to about 15:1, from about 4:1 to about 10:1, from about 5:1 to about 9:1, or about 6:1 to about 9:1.


The cationic lipid may be, for example, N,N-dioleyl-N,N-dimethylammonium chloride (DODAC), N,N-distearyl-N,N-dimethylammonium bromide (DDAB), N-(I-(2,3-dioleoyloxy)propyl)-N,N,N-trimethylammonium chloride (DOTAP), N-(I-(2,3-dioleyloxy)propyl)-N,N,N-trimethylammonium chloride (DOTMA), N,N-dimethyl-2,3-dioleyloxy)propylamine (DODMA), 1,2-DiLinoleyloxy-N,N-dimethylaminopropane (DLinDMA), 1,2-Dilinolenyloxy-N,N-dimethylaminopropane (DLenDMA), 1,2-Dilinoleylcarbamoyloxy-3-dimethylaminopropane (DLin-C-DAP), 1,2-Dilinoleyoxy-3-(dimethylamino)acetoxypropane (DLin-DAC), 1,2-Dilinoleyoxy-3-morpholinopropane (DLin-MA), 1,2-Dilinoleoyl-3-dimethylaminopropane (DLinDAP), 1,2-Dilinoleylthio-3-dimethylaminopropane (DLin-S-DMA), 1-Linoleoyl-2-linoleyloxy-3-dimethylaminopropane (DLin-2-DMAP), 1,2-Dilinoleyloxy-3-trimethylaminopropane chloride salt (DLin-TMA.Cl), 1,2-Dilinoleoyl-3-trimethylaminopropane chloride salt (DLin-TAP.Cl), 1,2-Dilinoleyloxy-3-(N-methylpiperazino)propane (DLin-MPZ), or 3-(N,N-Dilinoleylamino)-1,2-propanediol (DLinAP), 3-(N,N-Dioleylamino)-1,2-propanedio (DOAP), 1,2-Dilinoleyloxo-3-(2-N,N-dimethylamino)ethoxypropane (DLin-EG-DMA), 1,2-Dilinolenyloxy-N,N-dimethylaminopropane (DLinDMA), 2,2-Dilinoleyl-4-dimethylaminomethyl-[1,3]-dioxolane (DLin-K-DMA) or analogs thereof, (3aR,5s,6aS)—N,N-dimethyl-2,2-di((9Z,12Z)-octadeca-9,12-dienyl)tetrahydro-3aH-cyclopenta[d][1,3]dioxol-5-amine (ALN100), (6Z,9Z,28Z,31Z)-heptatriaconta-6,9,28,31-tetraen-19-yl 4-(dimethylamino)butanoate (MC3), 1,1′-(2-(4-(2-((2-(bis(2-hydroxydodecyl)amino)ethyl)(2-hydroxydodecyl)amino)ethyl)piperazin-1-yl)ethylazanediyl)didodecan-2-ol (Tech G1), or a mixture thereof. The cationic lipid may comprise from about 20 mol % to about 50 mol % or about 40 mol % of the total lipid present in the particle.


In some embodiments, the compound 2,2-Dilinoleyl-4-dimethylaminoethyl[1,3]-dioxolane can be used to prepare lipid-siRNA nanoparticles. Synthesis of 2,2-Dilinoleyl-4-dimethylaminoethyl-[1,3]-dioxolane is described in U.S. provisional patent application No. 61/107,998 filed on Oct. 23, 2008, which is herein incorporated by reference.


In some embodiments, the lipid-siRNA particle includes 40% 2, 2-Dilinoleyl-4-dimethylaminoethyl-[1,3]-dioxolane: 10% DSPC: 40% Cholesterol: 10% PEG-C-DOMG (mole percent) with a particle size of 63.0±20 nm and a 0.027 siRNA/Lipid Ratio.


The non-cationic lipid may be an anionic lipid or a neutral lipid including, but not limited to, distearoylphosphatidylcholine (DSPC), dioleoylphosphatidylcholine (DOPC), dipalmitoylphosphatidylcholine (DPPC), dioleoylphosphatidylglycerol (DOPG), dipalmitoylphosphatidylglycerol (DPPG), dioleoyl-phosphatidylethanolamine (DOPE), palmitoyloleoylphosphatidylcholine (POPC), palmitoyloleoylphosphatidylethanolamine (POPE), dioleoyl-phosphatidylethanolamine 4-(N-maleimidomethyl)-cyclohexane-1-carboxylate (DOPE-mal), dipalmitoyl phosphatidyl ethanolamine (DPPE), dimyristoylphosphoethanolamine (DMPE), distearoyl-phosphatidyl-ethanolamine (DSPE), 16-O-monomethyl PE, 16-O-dimethyl PE, 18-1-trans PE, 1-stearoyl-2-oleoyl-phosphatidyethanolamine (SOPE), cholesterol, or a mixture thereof. The non-cationic lipid may be from about 5 mol % to about 90 mol %, about 10 mol %, or about 58 mol % if cholesterol is included, of the total lipid present in the particle.


The conjugated lipid that inhibits aggregation of particles may be, for example, a polyethyleneglycol (PEG)-lipid including, without limitation, a PEG-diacylglycerol (DAG), a PEG-dialkyloxypropyl (DAA), a PEG-phospholipid, a PEG-ceramide (Cer), or a mixture thereof. The PEG-DAA conjugate may be, for example, a PEG-dilauryloxypropyl (Ci2), a PEG-dimyristyloxypropyl (Ci4), a PEG-dipalmityloxypropyl (Ci6), or a PEG-distearyloxypropyl (C]8). The conjugated lipid that prevents aggregation of particles may be from 0 mol % to about 20 mol % or about 2 mol % of the total lipid present in the particle.


In some embodiments, the nucleic acid-lipid particle further includes cholesterol at, e.g., about 10 mol % to about 60 mol % or about 48 mol % of the total lipid present in the particle.


In some embodiments, the iRNA is formulated in a lipid nanoparticle (LNP).


LNP01


In some embodiments, the lipidoid ND98.4HCl (MW 1487) (see U.S. patent application Ser. No. 12/056,230, filed Mar. 26, 2008, which is herein incorporated by reference), Cholesterol (Sigma-Aldrich), and PEG-Ceramide C16 (Avanti Polar Lipids) can be used to prepare lipid-dsRNA nanoparticles (e.g., LNP01 particles). Stock solutions of each in ethanol can be prepared as follows: ND98, 133 mg/ml; Cholesterol, 25 mg/ml, PEG-Ceramide C16, 100 mg/ml. The ND98, Cholesterol, and PEG-Ceramide C16 stock solutions can then be combined in a, e.g., 42:48:10 molar ratio. The combined lipid solution can be mixed with aqueous dsRNA (e.g., in sodium acetate pH 5) such that the final ethanol concentration is about 35-45% and the final sodium acetate concentration is about 100-300 mM. Lipid-dsRNA nanoparticles typically form spontaneously upon mixing. Depending on the desired particle size distribution, the resultant nanoparticle mixture can be extruded through a polycarbonate membrane (e.g., 100 nm cut-off) using, for example, a thermobarrel extruder, such as Lipex Extruder (Northern Lipids, Inc). In some cases, the extrusion step can be omitted. Ethanol removal and simultaneous buffer exchange can be accomplished by, for example, dialysis or tangential flow filtration. Buffer can be exchanged with, for example, phosphate buffered saline (PBS) at about pH 7, e.g., about pH 6.9, about pH 7.0, about pH 7.1, about pH 7.2, about pH 7.3, or about pH 7.4.




embedded image


LNP01 formulations are described, e.g., in International Application Publication No. WO 2008/042973, which is hereby incorporated by reference.


Additional exemplary lipid-dsRNA formulations are provided in the following table.









TABLE 7







Exemplary lipid formulations











cationic lipid/non-cationic lipid/




cholesterol/PEG-lipid conjugate



Cationic Lipid
Lipid:siRNA ratio













SNALP
1,2-Dilinolenyloxy-N,N-
DLinDMA/DPPC/Cholesterol/PEG-cDMA



dimethylaminopropane (DLinDMA)
(57.1/7.1/34.4/1.4)




lipid:siRNA ~7:1


S-XTC
2,2-Dilinoleyl-4-dimethylaminoethyl-[1,3]-
XTC/DPPC/Cholesterol/PEG-cDMA



dioxolane (XTC)
57.1/7.1/34.4/1.4




lipid:siRNA ~7:1


LNP05
2,2-Dilinoleyl-4-dimethylaminoethyl-[1,3]-
XTC/DSPC/Cholesterol/PEG-DMG



dioxolane (XTC)
57.5/7.5/31.5/3.5




lipid:siRNA ~6:1


LNP06
2,2-Dilinoleyl-4-dimethylaminoethyl-[1,3]-
XTC/DSPC/Cholesterol/PEG-DMG



dioxolane (XTC)
57.5/7.5/31.5/3.5




lipid:siRNA ~11:1


LNP07
2,2-Dilinoleyl-4-dimethylaminoethyl-[1,3]-
XTC/DSPC/Cholesterol/PEG-DMG



dioxolane (XTC)
60/7.5/31/1.5,




lipid:siRNA ~6:1


LNP08
2,2-Dilinoleyl-4-dimethylaminoethyl-[1,3]-
XTC/DSPC/Cholesterol/PEG-DMG



dioxolane (XTC)
60/7.5/31/1.5,




lipid:siRNA ~11:1


LNP09
2,2-Dilinoleyl-4-dimethylaminoethyl-[1,3]-
XTC/DSPC/Cholesterol/PEG-DMG



dioxolane (XTC)
50/10/38.5/1.5




Lipid:siRNA 10:1


LNP10
(3aR,5s,6aS)-N,N-dimethyl-2,2-di((9Z,12Z)-
ALN100/DSPC/Cholesterol/PEG-DMG



octadeca-9,12-dienyl)tetrahydro-3aH-
50/10/38.5/1.5



cyclopenta[d][1,3]dioxol-5-amine (ALN100)
Lipid:siRNA 10:1


LNP11
(6Z,9Z,28Z,31Z)-heptatriaconta-6,9,28,31-
MC-3/DSPC/Cholesterol/PEG-DMG



tetraen-19-yl 4-(dimethylamino)butanoate
50/10/38.5/1.5



(MC3)
Lipid:siRNA 10:1


LNP12
1,1′-(2-(4-(2-((2-(bis(2-
C12-200/DSPC/Cholesterol/PEG-DMG



hydroxydodecyl)amino)ethyl)(2-
50/10/38.5/1.5



hydroxydodecyl)amino)ethyl)piperazin-1-
Lipid:siRNA 10:1



yl)ethylazanediyl)didodecan-2-ol (C12-200)


LNP13
XTC
XTC/DSPC/Chol/PEG-DMG




50/10/38.5/1.5




Lipid:siRNA: 33:1


LNP14
MC3
MC3/DSPC/Chol/PEG-DMG




40/15/40/5




Lipid:siRNA: 11:1


LNP15
MC3
MC3/DSPC/Chol/PEG-




DSG/GalNAc-PEG-DSG




50/10/35/4.5/0.5




Lipid:siRNA: 11:1


LNP16
MC3
MC3/DSPC/Chol/PEG-DMG




50/10/38.5/1.5




Lipid:siRNA: 7:1


LNP17
MC3
MC3/DSPC/Chol/PEG-DSG




50/10/38.5/1.5




Lipid:siRNA: 10:1


LNP18
MC3
MC3/DSPC/Chol/PEG-DMG




50/10/38.5/1.5




Lipid:siRNA: 12:1


LNP19
MC3
MC3/DSPC/Chol/PEG-DMG




50/10/35/5




Lipid:siRNA: 8:1


LNP20
MC3
MC3/DSPC/Chol/PEG-DPG




50/10/38.5/1.5




Lipid:siRNA: 10:1


LNP21
C12-200
C12-200/DSPC/Chol/PEG-DSG




50/10/38.5/1.5




Lipid:siRNA: 7:1


LNP22
XTC
XTC/DSPC/Chol/PEG-DSG




50/10/38.5/1.5




Lipid:siRNA: 10:1





DSPC: distearoylphosphatidylcholine


DPPC: dipalmitoylphosphatidylcholine


PEG-DMG: PEG-didimyristoyl glycerol (C14-PEG, or PEG-C14) (PEG with avg mol wt of 2000)


PEG-DSG: PEG-distyryl glycerol (C18-PEG, or PEG-C18) (PEG with avg mol wt of 2000)


PEG-cDMA: PEG-carbamoyl-1,2-dimyristyloxypropylamine (PEG with avg mol wt of 2000)


SNALP (1,2-Dilinolenyloxy-N,N-dimethylaminopropane (DLinDMA)) comprising formulations are described in International Publication No. WO2009/127060, filed Apr. 15, 2009, which is hereby incorporated by reference.


XTC comprising formulations are described, e.g., in U.S. Provisional Ser. No. 61/148,366, filed Jan. 29, 2009; U.S. Provisional Ser. No. 61/156,851, filed Mar. 2, 2009; U.S. Provisional Ser. No. 61/185,712, filed Jun. 10, 2009; U.S. Provisional Ser. No. 61/228,373, filed Jul. 24, 2009; U.S. Provisional Ser. No. 61/239,686, filed Sep. 3, 2009, and International Application No. PCT/US2010/022614, filed Jan. 29, 2010, which are hereby incorporated by reference.


MC3 comprising formulations are described, e.g., in U.S. Provisional Ser. No. 61/244,834, filed Sep. 22, 2009, U.S. Provisional Ser. No. 61/185,800, filed Jun. 10, 2009, and International Application No. PCT/US10/28224, filed Jun. 10, 2010, which are hereby incorporated by reference.


ALNY-100 comprising formulations are described, e.g., International patent application number PCT/US09/63933, filed on Nov. 10, 2009, which is hereby incorporated by reference.


C12-200 comprising formulations are described in U.S. Provisional Ser. No. 61/175,770, filed May 5, 2009 and International Application No. PCT/US10/33777, filed May 5, 2010, which are hereby incorporated by reference.






Synthesis of Cationic Lipids


Any of the compounds, e.g., cationic lipids and the like, used in the nucleic acid-lipid particles featured in the disclosure may be prepared by known organic synthesis techniques. All substituents are as defined below unless indicated otherwise.


“Alkyl” means a straight chain or branched, noncyclic or cyclic, saturated aliphatic hydrocarbon containing from 1 to 24 carbon atoms. Representative saturated straight chain alkyls include methyl, ethyl, n-propyl, n-butyl, n-pentyl, n-hexyl, and the like; while saturated branched alkyls include isopropyl, sec-butyl, isobutyl, tert-butyl, isopentyl, and the like. Representative saturated cyclic alkyls include cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, and the like; while unsaturated cyclic alkyls include cyclopentenyl and cyclohexenyl, and the like.


“Alkenyl” means an alkyl, as defined above, containing at least one double bond between adjacent carbon atoms. Alkenyls include both cis and trans isomers. Representative straight chain and branched alkenyls include ethylenyl, propylenyl, 1-butenyl, 2-butenyl, isobutylenyl, 1-pentenyl, 2-pentenyl, 3-methyl-1-butenyl, 2-methyl-2-butenyl, 2,3-dimethyl-2-butenyl, and the like.


“Alkynyl” means any alkyl or alkenyl, as defined above, which additionally contains at least one triple bond between adjacent carbons. Representative straight chain and branched alkynyls include acetylenyl, propynyl, 1-butynyl, 2-butynyl, 1-pentynyl, 2-pentynyl, 3-methyl-1 butynyl, and the like.


“Acyl” means any alkyl, alkenyl, or alkynyl wherein the carbon at the point of attachment is substituted with an oxo group, as defined below. For example, —C(═O)alkyl, —C(═O)alkenyl, and —C(═O)alkynyl are acyl groups.


“Heterocycle” means a 5- to 7-membered monocyclic, or 7- to 10-membered bicyclic, heterocyclic ring which is either saturated, unsaturated, or aromatic, and which contains from 1 or 2 heteroatoms independently selected from nitrogen, oxygen and sulfur, and wherein the nitrogen and sulfur heteroatoms may be optionally oxidized, and the nitrogen heteroatom may be optionally quaternized, including bicyclic rings in which any of the above heterocycles are fused to a benzene ring. The heterocycle may be attached via any heteroatom or carbon atom. Heterocycles include heteroaryls as defined below. Heterocycles include morpholinyl, pyrrolidinonyl, pyrrolidinyl, piperidinyl, piperizynyl, hydantoinyl, valerolactamyl, oxiranyl, oxetanyl, tetrahydrofuranyl, tetrahydropyranyl, tetrahydropyridinyl, tetrahydroprimidinyl, tetrahydrothiophenyl, tetrahydrothiopyranyl, tetrahydropyrimidinyl, tetrahydrothiophenyl, tetrahydrothiopyranyl, and the like.


The terms “optionally substituted alkyl”, “optionally substituted alkenyl”, “optionally substituted alkynyl”, “optionally substituted acyl”, and “optionally substituted heterocycle” means that, when substituted, at least one hydrogen atom is replaced with a substituent. In the case of an oxo substituent (═O) two hydrogen atoms are replaced. In this regard, substituents include oxo, halogen, heterocycle, —CN, —ORx, —NRxRy, —NRxC(═O)Ry, —NRxSO2Ry, —C(═O)Rx, —C(═O)ORx, —C(═O)NRxRy, —SOnRx and —SOnNRxRy, wherein n is 0, 1 or 2, Rx and Ry are the same or different and independently hydrogen, alkyl or heterocycle, and each of said alkyl and heterocycle substituents may be further substituted with one or more of oxo, halogen, —OH, —CN, alkyl, —ORx, heterocycle, —NRxRy, —NRxC(═O)Ry, —NRxSO2Ry, —C(═O)Rx, —C(═O)ORx, —C(═O)NRxRy, —SOnRx and —SOnNRxRy.


“Halogen” means fluoro, chloro, bromo and iodo.


In some embodiments, the methods featured in the disclosure may require the use of protecting groups. Protecting group methodology is well known to those skilled in the art (see, for example, PROTECTIVE GROUPS IN ORGANIC SYNTHESIS, Green, T. W. et al., Wiley-Interscience, New York City, 1999). Briefly, protecting groups within the context of this disclosure are any group that reduces or eliminates unwanted reactivity of a functional group. A protecting group can be added to a functional group to mask its reactivity during certain reactions and then removed to reveal the original functional group. In some embodiments an “alcohol protecting group” is used. An “alcohol protecting group” is any group which decreases or eliminates unwanted reactivity of an alcohol functional group. Protecting groups can be added and removed using techniques well known in the art.


Synthesis of Formula A


In some embodiments, nucleic acid-lipid particles featured in the disclosure are formulated using a cationic lipid of formula A:




embedded image


where R1 and R2 are independently alkyl, alkenyl or alkynyl, each can be optionally substituted, and R3 and R4 are independently lower alkyl or R3 and R4 can be taken together to form an optionally substituted heterocyclic ring. In some embodiments, the cationic lipid is XTC (2,2-Dilinoleyl-4-dimethylaminoethyl-[1,3]-dioxolane). In general, the lipid of formula A above may be made by the following Reaction Schemes 1 or 2, wherein all substituents are as defined above unless indicated otherwise.




embedded image


Lipid A, where R1 and R2 are independently alkyl, alkenyl or alkynyl, each can be optionally substituted, and R3 and R4 are independently lower alkyl or R3 and R4 can be taken together to form an optionally substituted heterocyclic ring, can be prepared according to Scheme 1. Ketone 1 and bromide 2 can be purchased or prepared according to methods known to those of ordinary skill in the art. Reaction of 1 and 2 yields ketal 3. Treatment of ketal 3 with amine 4 yields lipids of formula A. The lipids of formula A can be converted to the corresponding ammonium salt with an organic salt of formula 5, where X is anion counter ion selected from halogen, hydroxide, phosphate, sulfate, or the like.




embedded image


Alternatively, the ketone 1 starting material can be prepared according to Scheme 2. Grignard reagent 6 and cyanide 7 can be purchased or prepared according to methods known to those of ordinary skill in the art. Reaction of 6 and 7 yields ketone 1. Conversion of ketone 1 to the corresponding lipids of formula A is as described in Scheme 1.


Synthesis of MC3


Preparation of DLin-M-C3-DMA (i.e., (6Z,9Z,28Z,31Z)-heptatriaconta-6,9,28,31-tetraen-19-yl 4-(dimethylamino)butanoate) was as follows. A solution of (6Z,9Z,28Z,31Z)-heptatriaconta-6,9,28,31-tetraen-19-ol (0.53 g), 4-N,N-dimethylaminobutyric acid hydrochloride (0.51 g), 4-N,N-dimethylaminopyridine (0.61 g) and 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide hydrochloride (0.53 g) in dichloromethane (5 mL) was stirred at room temperature overnight. The solution was washed with dilute hydrochloric acid followed by dilute aqueous sodium bicarbonate. The organic fractions were dried over anhydrous magnesium sulphate, filtered and the solvent removed on a rotovap. The residue was passed down a silica gel column (20 g) using a 1-5% methanol/dichloromethane elution gradient. Fractions containing the purified product were combined and the solvent removed, yielding a colorless oil (0.54 g).


Synthesis of ALNY-100


Synthesis of ketal 519 [ALNY-100] was performed using the following scheme 3:




embedded image


Synthesis of 515:


To a stirred suspension of LiAlH4 (3.74 g, 0.09852 mol) in 200 ml anhydrous THF in a two neck RBF (1 L), was added a solution of 514 (10 g, 0.04926 mol) in 70 mL of THF slowly at 0° C. under nitrogen atmosphere. After complete addition, reaction mixture was warmed to room temperature and then heated to reflux for 4 h. Progress of the reaction was monitored by TLC. After completion of reaction (by TLC) the mixture was cooled to 0° C. and quenched with careful addition of saturated Na2SO4 solution. Reaction mixture was stirred for 4 h at room temperature and filtered off. Residue was washed well with THF. The filtrate and washings were mixed and diluted with 400 mL dioxane and 26 mL conc. HCl and stirred for 20 minutes at room temperature. The volatilities were stripped off under vacuum to furnish the hydrochloride salt of 515 as a white solid. Yield: 7.12 g 1H-NMR (DMSO, 400 MHz): δ=9.34 (broad, 2H), 5.68 (s, 2H), 3.74 (m, 1H), 2.66-2.60 (m, 2H), 2.50-2.45 (m, 5H).


Synthesis of 516:


To a stirred solution of compound 515 in 100 mL dry DCM in a 250 mL two neck RBF, was added NEt3 (37.2 mL, 0.2669 mol) and cooled to 0° C. under nitrogen atmosphere. After a slow addition of N-(benzyloxy-carbonyloxy)-succinimide (20 g, 0.08007 mol) in 50 mL dry DCM, reaction mixture was allowed to warm to room temperature. After completion of the reaction (2-3 h by TLC) mixture was washed successively with 1N HCl solution (1×100 mL) and saturated NaHCO3 solution (1×50 mL). The organic layer was then dried over anhyd. Na2SO4 and the solvent was evaporated to give crude material which was purified by silica gel column chromatography to get 516 as sticky mass. Yield: 11 g (89%). 1H-NMR (CDCl3, 400 MHz): δ=7.36-7.27 (m, 5H), 5.69 (s, 2H), 5.12 (s, 2H), 4.96 (br., 1H) 2.74 (s, 3H), 2.60 (m, 2H), 2.30-2.25 (m, 2H). LC-MS [M+H] −232.3 (96.94%).


Synthesis of 517A and 517B:


The cyclopentene 516 (5 g, 0.02164 mol) was dissolved in a solution of 220 mL acetone and water (10:1) in a single neck 500 mL RBF and to it was added N-methyl morpholine-N-oxide (7.6 g, 0.06492 mol) followed by 4.2 mL of 7.6% solution of OsO4 (0.275 g, 0.00108 mol) in tert-butanol at room temperature. After completion of the reaction (˜3 h), the mixture was quenched with addition of solid Na2SO3 and resulting mixture was stirred for 1.5 h at room temperature. Reaction mixture was diluted with DCM (300 mL) and washed with water (2×100 mL) followed by saturated NaHCO3(1×50 mL) solution, water (1×30 mL) and finally with brine (1×50 mL). Organic phase was dried over an.Na2SO4 and solvent was removed in vacuum. Silica gel column chromatographic purification of the crude material was afforded a mixture of diastereomers, which were separated by prep HPLC. Yield: −6 g crude


517A—Peak-1 (white solid), 5.13 g (96%). 1H-NMR (DMSO, 400 MHz): δ=7.39-7.31 (m, 5H), 5.04 (s, 2H), 4.78-4.73 (m, 1H), 4.48-4.47 (d, 2H), 3.94-3.93 (m, 2H), 2.71 (s, 3H), 1.72-1.67 (m, 4H). LC-MS-[M+H] −266.3, [M+NH4+] −283.5 present, HPLC-97.86%. Stereochemistry confirmed by X-ray.


Synthesis of 518:


Using a procedure analogous to that described for the synthesis of compound 505, compound 518 (1.2 g, 41%) was obtained as a colorless oil. 1H-NMR (CDCl3, 400 MHz): δ=7.35-7.33 (m, 4H), 7.30-7.27 (m, 1H), 5.37-5.27 (m, 8H), 5.12 (s, 2H), 4.75 (m, 1H), 4.58-4.57 (m, 2H), 2.78-2.74 (m, 7H), 2.06-2.00 (m, 8H), 1.96-1.91 (m, 2H), 1.62 (m, 4H), 1.48 (m, 2H), 1.37-1.25 (br m, 36H), 0.87 (m, 6H). HPLC-98.65%.


General Procedure for the Synthesis of Compound 519:


A solution of compound 518 (1 eq) in hexane (15 mL) was added in a drop-wise fashion to an ice-cold solution of LAH in THF (1 M, 2 eq). After complete addition, the mixture was heated at 40° C. over 0.5 h then cooled again on an ice bath. The mixture was carefully hydrolyzed with saturated aqueous Na2SO4 then filtered through celite and reduced to an oil. Column chromatography provided the pure 519 (1.3 g, 68%) which was obtained as a colorless oil. 13C NMR=130.2, 130.1 (×2), 127.9 (×3), 112.3, 79.3, 64.4, 44.7, 38.3, 35.4, 31.5, 29.9 (×2), 29.7, 29.6 (×2), 29.5 (×3), 29.3 (×2), 27.2 (×3), 25.6, 24.5, 23.3, 226, 14.1; Electrospray MS (+ve): Molecular weight for C44H80NO2 (M+H)+ Calc. 654.6, Found 654.6.


Formulations prepared by either the standard or extrusion-free method can be characterized in similar manners. For example, formulations are typically characterized by visual inspection. They should be whitish translucent solutions free from aggregates or sediment. Particle size and particle size distribution of lipid-nanoparticles can be measured by light scattering using, for example, a Malvern Zetasizer Nano ZS (Malvern, USA). Particles should be about 20-300 nm, such as 40-100 nm in size. The particle size distribution should be unimodal. The total dsRNA concentration in the formulation, as well as the entrapped fraction, is estimated using a dye exclusion assay. A sample of the formulated dsRNA can be incubated with an RNA-binding dye, such as Ribogreen (Molecular Probes) in the presence or absence of a formulation disrupting surfactant, e.g., 0.5% Triton-X100. The total dsRNA in the formulation can be determined by the signal from the sample containing the surfactant, relative to a standard curve. The entrapped fraction is determined by subtracting the “free” dsRNA content (as measured by the signal in the absence of surfactant) from the total dsRNA content. Percent entrapped dsRNA is typically >85%. For SNALP formulation, the particle size is at least 30 nm, at least 40 nm, at least 50 nm, at least 60 nm, at least 70 nm, at least 80 nm, at least 90 nm, at least 100 nm, at least 110 nm, and at least 120 nm. The suitable range is typically about at least 50 nm to about at least 110 nm, about at least 60 nm to about at least 100 nm, or about at least 80 nm to about at least 90 nm.


Compositions and formulations for oral administration include powders or granules, microparticulates, nanoparticulates, suspensions or solutions in water or non-aqueous media, capsules, gel capsules, sachets, tablets or minitablets. Thickeners, flavoring agents, diluents, emulsifiers, dispersing aids or binders may be desirable. In some embodiments, oral formulations are those in which dsRNAs featured in the disclosure are administered in conjunction with one or more penetration enhancers surfactants and chelators. Suitable surfactants include fatty acids and/or esters or salts thereof, bile acids and/or salts thereof. Suitable bile acids/salts include chenodeoxycholic acid (CDCA) and ursodeoxychenodeoxycholic acid (UDCA), cholic acid, dehydrocholic acid, deoxycholic acid, glucholic acid, glycholic acid, glycodeoxycholic acid, taurocholic acid, taurodeoxycholic acid, sodium tauro-24,25-dihydro-fusidate and sodium glycodihydrofusidate. Suitable fatty acids include arachidonic acid, undecanoic acid, oleic acid, lauric acid, caprylic acid, capric acid, myristic acid, palmitic acid, stearic acid, linoleic acid, linolenic acid, dicaprate, tricaprate, monoolein, dilaurin, glyceryl 1-monocaprate, 1-dodecylazacycloheptan-2-one, an acylcarnitine, an acylcholine, or a monoglyceride, a diglyceride or a pharmaceutically acceptable salt thereof (e.g., sodium). In some embodiments, combinations of penetration enhancers are used, for example, fatty acids/salts in combination with bile acids/salts. One exemplary combination is the sodium salt of lauric acid, capric acid and UDCA. Further penetration enhancers include polyoxyethylene-9-lauryl ether, polyoxyethylene-20-cetyl ether. DsRNAs featured in the disclosure may be delivered orally, in granular form including sprayed dried particles, or complexed to form micro or nanoparticles. DsRNA complexing agents include poly-amino acids; polyimines; polyacrylates; polyalkylacrylates, polyoxethanes, polyalkylcyanoacrylates; cationized gelatins, albumins, starches, acrylates, polyethyleneglycols (PEG) and starches; polyalkylcyanoacrylates; DEAE-derivatized polyimines, pollulans, celluloses and starches. Suitable complexing agents include chitosan, N-trimethylchitosan, poly-L-lysine, polyhistidine, polyornithine, polyspermines, protamine, polyvinylpyridine, polythiodiethylaminomethylethylene P(TDAE), polyaminostyrene (e.g., p-amino), poly(methylcyanoacrylate), poly(ethylcyanoacrylate), poly(butylcyanoacrylate), poly(isobutylcyanoacrylate), poly(isohexylcynaoacrylate), DEAE-methacrylate, DEAE-hexylacrylate, DEAE-acrylamide, DEAE-albumin and DEAE-dextran, polymethylacrylate, polyhexylacrylate, poly(D,L-lactic acid), poly(DL-lactic-co-glycolic acid (PLGA), alginate, and polyethyleneglycol (PEG). Oral formulations for dsRNAs and their preparation are described in detail in U.S. Pat. No. 6,887,906, US Publn. No. 20030027780, and U.S. Pat. No. 6,747,014, each of which is incorporated herein by reference.


Compositions and formulations for parenteral, intraparenchymal (into the brain), intrathecal, intravitreal, intraventricular, or intrahepatic administration may include sterile aqueous solutions which may also contain buffers, diluents and other suitable additives such as, but not limited to, penetration enhancers, carrier compounds and other pharmaceutically acceptable carriers or excipients.


Pharmaceutical compositions of the present disclosure include, but are not limited to, solutions, emulsions, and liposome-containing formulations. These compositions may be generated from a variety of components that include, but are not limited to, preformed liquids, self-emulsifying solids and self-emulsifying semisolids.


The pharmaceutical formulations featured in the present disclosure, which may conveniently be presented in unit dosage form, may be prepared according to conventional techniques well known in the pharmaceutical industry. Such techniques include the step of bringing into association the active ingredients with the pharmaceutical carrier(s) or excipient(s). In general, the formulations are prepared by uniformly and intimately bringing into association the active ingredients with liquid carriers or finely divided solid carriers or both, and then, if necessary, shaping the product.


The compositions featured in the present disclosure may be formulated into any of many possible dosage forms such as, but not limited to, tablets, capsules, gel capsules, liquid syrups, soft gels, suppositories, and enemas. The compositions may also be formulated as suspensions in aqueous, non-aqueous or mixed media. Aqueous suspensions may further contain substances which increase the viscosity of the suspension including, for example, sodium carboxymethylcellulose, sorbitol and/or dextran. The suspension may also contain stabilizers.


Additional Formulations


Emulsions


The compositions of the present disclosure may be prepared and formulated as emulsions. Emulsions are typically heterogeneous systems of one liquid dispersed in another in the form of droplets usually exceeding 0.1 μm in diameter (see e.g., Ansel's Pharmaceutical Dosage Forms and Drug Delivery Systems, Allen, L V., Popovich N G., and Ansel H C., 2004, Lippincott Williams & Wilkins (8th ed.), New York, N.Y.; Idson, in Pharmaceutical Dosage Forms, Lieberman, Rieger and Banker (Eds.), 1988, Marcel Dekker, Inc., New York, N.Y., volume 1, p. 199; Rosoff, in Pharmaceutical Dosage Forms, Lieberman, Rieger and Banker (Eds.), 1988, Marcel Dekker, Inc., New York, N.Y., Volume 1, p. 245; Block in Pharmaceutical Dosage Forms, Lieberman, Rieger and Banker (Eds.), 1988, Marcel Dekker, Inc., New York, N.Y., volume 2, p. 335; Higuchi et al., in Remington's Pharmaceutical Sciences, Mack Publishing Co., Easton, Pa., 1985, p. 301). Emulsions are often biphasic systems comprising two immiscible liquid phases intimately mixed and dispersed with each other. In general, emulsions may be of either the water-in-oil (w/o) or the oil-in-water (o/w) variety. When an aqueous phase is finely divided into and dispersed as minute droplets into a bulk oily phase, the resulting composition is called a water-in-oil (w/o) emulsion. Alternatively, when an oily phase is finely divided into and dispersed as minute droplets into a bulk aqueous phase, the resulting composition is called an oil-in-water (o/w) emulsion. Emulsions may contain additional components in addition to the dispersed phases, and the active drug which may be present as a solution in either the aqueous phase, oily phase or itself as a separate phase. Pharmaceutical excipients such as emulsifiers, stabilizers, dyes, and anti-oxidants may also be present in emulsions as needed. Pharmaceutical emulsions may also be multiple emulsions that are comprised of more than two phases such as, for example, in the case of oil-in-water-in-oil (o/w/o) and water-in-oil-in-water (w/o/w) emulsions. Such complex formulations often provide certain advantages that simple binary emulsions do not. Multiple emulsions in which individual oil droplets of an o/w emulsion enclose small water droplets constitute a w/o/w emulsion. Likewise, a system of oil droplets enclosed in globules of water stabilized in an oily continuous phase provides an o/w/o emulsion.


Emulsions are characterized by little or no thermodynamic stability. Often, the dispersed or discontinuous phase of the emulsion is well dispersed into the external or continuous phase and maintained in this form through the means of emulsifiers or the viscosity of the formulation. Either of the phases of the emulsion may be a semisolid or a solid, as is the case of emulsion-style ointment bases and creams. Other means of stabilizing emulsions entail the use of emulsifiers that may be incorporated into either phase of the emulsion. Emulsifiers may broadly be classified into four categories: synthetic surfactants, naturally occurring emulsifiers, absorption bases, and finely dispersed solids (see e.g., Ansel's Pharmaceutical Dosage Forms and Drug Delivery Systems, Allen, L V., Popovich N G., and Ansel H C., 2004, Lippincott Williams & Wilkins (8th ed.), New York, N.Y.; Idson, in Pharmaceutical Dosage Forms, Lieberman, Rieger and Banker (Eds.), 1988, Marcel Dekker, Inc., New York, N.Y., volume 1, p. 199).


Synthetic surfactants, also known as surface active agents, have found wide applicability in the formulation of emulsions and have been reviewed in the literature (see e.g., Ansel's Pharmaceutical Dosage Forms and Drug Delivery Systems, Allen, L V., Popovich N G., and Ansel H C., 2004, Lippincott Williams & Wilkins (8th ed.), New York, N.Y.; Rieger, in Pharmaceutical Dosage Forms, Lieberman, Rieger and Banker (Eds.), 1988, Marcel Dekker, Inc., New York, N.Y., volume 1, p. 285; Idson, in Pharmaceutical Dosage Forms, Lieberman, Rieger and Banker (Eds.), Marcel Dekker, Inc., New York, N.Y., 1988, volume 1, p. 199). Surfactants are typically amphiphilic and comprise a hydrophilic and a hydrophobic portion. The ratio of the hydrophilic to the hydrophobic nature of the surfactant has been termed the hydrophile/lipophile balance (HLB) and is a valuable tool in categorizing and selecting surfactants in the preparation of formulations. Surfactants may be classified into different classes based on the nature of the hydrophilic group: nonionic, anionic, cationic and amphoteric (see e.g., Ansel's Pharmaceutical Dosage Forms and Drug Delivery Systems, Allen, L V., Popovich N G., and Ansel H C., 2004, Lippincott Williams & Wilkins (8th ed.), New York, N.Y. Rieger, in Pharmaceutical Dosage Forms, Lieberman, Rieger and Banker (Eds.), 1988, Marcel Dekker, Inc., New York, N.Y., volume 1, p. 285).


Naturally occurring emulsifiers used in emulsion formulations include lanolin, beeswax, phosphatides, lecithin and acacia. Absorption bases possess hydrophilic properties such that they can soak up water to form w/o emulsions yet retain their semisolid consistencies, such as anhydrous lanolin and hydrophilic petrolatum. Finely divided solids have also been used as good emulsifiers especially in combination with surfactants and in viscous preparations. These include polar inorganic solids, such as heavy metal hydroxides, nonswelling clays such as bentonite, attapulgite, hectorite, kaolin, montmorillonite, colloidal aluminum silicate and colloidal magnesium aluminum silicate, pigments and nonpolar solids such as carbon or glyceryl tristearate.


A large variety of non-emulsifying materials are also included in emulsion formulations and contribute to the properties of emulsions. These include fats, oils, waxes, fatty acids, fatty alcohols, fatty esters, humectants, hydrophilic colloids, preservatives and antioxidants (Block, in Pharmaceutical Dosage Forms, Lieberman, Rieger and Banker (Eds.), 1988, Marcel Dekker, Inc., New York, N.Y., volume 1, p. 335; Idson, in Pharmaceutical Dosage Forms, Lieberman, Rieger and Banker (Eds.), 1988, Marcel Dekker, Inc., New York, N.Y., volume 1, p. 199).


Hydrophilic colloids or hydrocolloids include naturally occurring gums and synthetic polymers such as polysaccharides (for example, acacia, agar, alginic acid, carrageenan, guar gum, karaya gum, and tragacanth), cellulose derivatives (for example, carboxymethylcellulose and carboxypropylcellulose), and synthetic polymers (for example, carbomers, cellulose ethers, and carboxyvinyl polymers). These disperse or swell in water to form colloidal solutions that stabilize emulsions by forming strong interfacial films around the dispersed-phase droplets and by increasing the viscosity of the external phase.


Since emulsions often contain a number of ingredients such as carbohydrates, proteins, sterols and phosphatides that may readily support the growth of microbes, these formulations often incorporate preservatives. Commonly used preservatives included in emulsion formulations include methyl paraben, propyl paraben, quaternary ammonium salts, benzalkonium chloride, esters of p-hydroxybenzoic acid, and boric acid. Antioxidants are also commonly added to emulsion formulations to prevent deterioration of the formulation. Antioxidants used may be free radical scavengers such as tocopherols, alkyl gallates, butylated hydroxyanisole, butylated hydroxytoluene, or reducing agents such as ascorbic acid and sodium metabisulfite, and antioxidant synergists such as citric acid, tartaric acid, and lecithin.


The application of emulsion formulations via dermatological, oral and parenteral routes and methods for their manufacture have been reviewed in the literature (see e.g., Ansel's Pharmaceutical Dosage Forms and Drug Delivery Systems, Allen, L V., Popovich N G., and Ansel H C., 2004, Lippincott Williams & Wilkins (8th ed.), New York, N.Y.; Idson, in Pharmaceutical Dosage Forms, Lieberman, Rieger and Banker (Eds.), 1988, Marcel Dekker, Inc., New York, N.Y., volume 1, p. 199). Emulsion formulations for oral delivery have been very widely used because of ease of formulation, as well as efficacy from an absorption and bioavailability standpoint (see e.g., Ansel's Pharmaceutical Dosage Forms and Drug Delivery Systems, Allen, L V., Popovich N G., and Ansel H C., 2004, Lippincott Williams & Wilkins (8th ed.), New York, N.Y.; Rosoff, in Pharmaceutical Dosage Forms, Lieberman, Rieger and Banker (Eds.), 1988, Marcel Dekker, Inc., New York, N.Y., volume 1, p. 245; Idson, in Pharmaceutical Dosage Forms, Lieberman, Rieger and Banker (Eds.), 1988, Marcel Dekker, Inc., New York, N.Y., volume 1, p. 199). Mineral-oil base laxatives, oil-soluble vitamins and high fat nutritive preparations are among the materials that have commonly been administered orally as o/w emulsions.


In some embodiments of the present disclosure, the compositions of iRNAs and nucleic acids are formulated as microemulsions. A microemulsion may be defined as a system of water, oil and amphiphile which is a single optically isotropic and thermodynamically stable liquid solution (see e.g., Ansel's Pharmaceutical Dosage Forms and Drug Delivery Systems, Allen, L V., Popovich N G., and Ansel H C., 2004, Lippincott Williams & Wilkins (8th ed.), New York, N.Y.; Rosoff, in Pharmaceutical Dosage Forms, Lieberman, Rieger and Banker (Eds.), 1988, Marcel Dekker, Inc., New York, N.Y., volume 1, p. 245). Typically, microemulsions are systems that are prepared by first dispersing an oil in an aqueous surfactant solution and then adding a sufficient amount of a fourth component, generally an intermediate chain-length alcohol to form a transparent system. Therefore, microemulsions have also been described as thermodynamically stable, isotopically clear dispersions of two immiscible liquids that are stabilized by interfacial films of surface-active molecules (Leung and Shah, in: Controlled Release of Drugs: Polymers and Aggregate Systems, Rosoff, M., Ed., 1989, VCH Publishers, New York, pages 185-215). Microemulsions commonly are prepared via a combination of three to five components that include oil, water, surfactant, cosurfactant and electrolyte. Whether the microemulsion is of the water-in-oil (w/o) or an oil-in-water (o/w) type is dependent on the properties of the oil and surfactant used and on the structure and geometric packing of the polar heads and hydrocarbon tails of the surfactant molecules (Schott, in Remington's Pharmaceutical Sciences, Mack Publishing Co., Easton, Pa., 1985, p. 271).


The phenomenological approach utilizing phase diagrams has been extensively studied and has yielded a comprehensive knowledge, to one skilled in the art, of how to formulate microemulsions (see e.g., Ansel's Pharmaceutical Dosage Forms and Drug Delivery Systems, Allen, L V., Popovich N G., and Ansel H C., 2004, Lippincott Williams & Wilkins (8th ed.), New York, N.Y.; Rosoff, in Pharmaceutical Dosage Forms, Lieberman, Rieger and Banker (Eds.), 1988, Marcel Dekker, Inc., New York, N.Y., volume 1, p. 245; Block, in Pharmaceutical Dosage Forms, Lieberman, Rieger and Banker (Eds.), 1988, Marcel Dekker, Inc., New York, N.Y., volume 1, p. 335). Compared to conventional emulsions, microemulsions offer the advantage of solubilizing water-insoluble drugs in a formulation of thermodynamically stable droplets that are formed spontaneously.


Surfactants used in the preparation of microemulsions include, but are not limited to, ionic surfactants, non-ionic surfactants, Brij 96, polyoxyethylene oleyl ethers, polyglycerol fatty acid esters, tetraglycerol monolaurate (ML310), tetraglycerol monooleate (MO310), hexaglycerol monooleate (P0310), hexaglycerol pentaoleate (PO500), decaglycerol monocaprate (MCA750), decaglycerol monooleate (MO750), decaglycerol sequioleate (SO750), decaglycerol decaoleate (DA0750), alone or in combination with cosurfactants. The cosurfactant, usually a short-chain alcohol such as ethanol, 1-propanol, and 1-butanol, serves to increase the interfacial fluidity by penetrating into the surfactant film and consequently creating a disordered film because of the void space generated among surfactant molecules. Microemulsions may, however, be prepared without the use of cosurfactants and alcohol-free self-emulsifying microemulsion systems are known in the art. The aqueous phase may typically be, but is not limited to, water, an aqueous solution of the drug, glycerol, PEG300, PEG400, polyglycerols, propylene glycols, and derivatives of ethylene glycol. The oil phase may include, but is not limited to, materials such as Captex 300, Captex 355, Capmul MCM, fatty acid esters, medium chain (C8-C12) mono, di, and tri-glycerides, polyoxyethylated glyceryl fatty acid esters, fatty alcohols, polyglycolized glycerides, saturated polyglycolized C8-C10 glycerides, vegetable oils and silicone oil.


Microemulsions are particularly of interest from the standpoint of drug solubilization and the enhanced absorption of drugs. Lipid based microemulsions (both o/w and w/o) have been proposed to enhance the oral bioavailability of drugs, including peptides (see e.g., U.S. Pat. Nos. 6,191,105; 7,063,860; 7,070,802; 7,157,099; Constantinides et al., Pharmaceutical Research, 1994, 11, 1385-1390; Ritschel, Meth. Find. Exp. Clin. Pharmacol., 1993, 13, 205). Microemulsions afford advantages of improved drug solubilization, protection of drug from enzymatic hydrolysis, possible enhancement of drug absorption due to surfactant-induced alterations in membrane fluidity and permeability, ease of preparation, ease of oral administration over solid dosage forms, improved clinical potency, and decreased toxicity (see e.g., U.S. Pat. Nos. 6,191,105; 7,063,860; 7,070,802; 7,157,099; Constantinides et al., Pharmaceutical Research, 1994, 11, 1385; Ho et al., J. Pharm. Sci., 1996, 85, 138-143). Often microemulsions may form spontaneously when their components are brought together at ambient temperature. This may be particularly advantageous when formulating thermolabile drugs, peptides or iRNAs. Microemulsions have also been effective in the transdermal delivery of active components in both cosmetic and pharmaceutical applications. It is expected that the microemulsion compositions and formulations of the present disclosure will facilitate the increased systemic absorption of iRNAs and nucleic acids from the gastrointestinal tract, as well as improve the local cellular uptake of iRNAs and nucleic acids.


Microemulsions of the present disclosure may also contain additional components and additives such as sorbitan monostearate (Grill 3), Labrasol, and penetration enhancers to improve the properties of the formulation and to enhance the absorption of the iRNAs and nucleic acids of the present disclosure. Penetration enhancers used in the microemulsions of the present disclosure may be classified as belonging to one of five broad categories—surfactants, fatty acids, bile salts, chelating agents, and non-chelating non-surfactants (Lee et al., Critical Reviews in Therapeutic Drug Carrier Systems, 1991, p. 92). Each of these classes has been discussed above.


Penetration Enhancers


In some embodiments, the present disclosure employs various penetration enhancers to effect the efficient delivery of nucleic acids, particularly iRNAs, to the skin of animals. Most drugs are present in solution in both ionized and nonionized forms. However, usually only lipid soluble or lipophilic drugs readily cross cell membranes. It has been discovered that even non-lipophilic drugs may cross cell membranes if the membrane to be crossed is treated with a penetration enhancer. In addition to aiding the diffusion of non-lipophilic drugs across cell membranes, penetration enhancers also enhance the permeability of lipophilic drugs.


Penetration enhancers may be classified as belonging to one of five broad categories, i.e., surfactants, fatty acids, bile salts, chelating agents, and non-chelating non-surfactants (see e.g., Malmsten, M. Surfactants and polymers in drug delivery, Informa Health Care, New York, N.Y., 2002; Lee et al., Critical Reviews in Therapeutic Drug Carrier Systems, 1991, p. 92). Each of the above-mentioned classes of penetration enhancers are described below in greater detail.


Surfactants: In connection with the present disclosure, surfactants (or “surface-active agents”) are chemical entities which, when dissolved in an aqueous solution, reduce the surface tension of the solution or the interfacial tension between the aqueous solution and another liquid, with the result that absorption of iRNAs through the mucosa is enhanced. In addition to bile salts and fatty acids, these penetration enhancers include, for example, sodium lauryl sulfate, polyoxyethylene-9-lauryl ether and polyoxyethylene-20-cetyl ether) (see e.g., Malmsten, M. Surfactants and polymers in drug delivery, Informa Health Care, New York, N.Y., 2002; Lee et al., Critical Reviews in Therapeutic Drug Carrier Systems, 1991, p. 92); and perfluorochemical emulsions, such as FC-43. Takahashi et al., J. Pharm. Pharmacol., 1988, 40, 252).


Fatty acids: Various fatty acids and their derivatives which act as penetration enhancers include, for example, oleic acid, lauric acid, capric acid (n-decanoic acid), myristic acid, palmitic acid, stearic acid, linoleic acid, linolenic acid, dicaprate, tricaprate, monoolein (1-monooleoyl-rac-glycerol), dilaurin, caprylic acid, arachidonic acid, glycerol 1-monocaprate, 1-dodecylazacycloheptan-2-one, acylcarnitines, acylcholines, C1-20 alkyl esters thereof (e.g., methyl, isopropyl and t-butyl), and mono- and di-glycerides thereof (i.e., oleate, laurate, caprate, myristate, palmitate, stearate, linoleate, etc.) (see e.g., Touitou, E., et al. Enhancement in Drug Delivery, CRC Press, Danvers, Mass., 2006; Lee et al., Critical Reviews in Therapeutic Drug Carrier Systems, 1991, p. 92; Muranishi, Critical Reviews in Therapeutic Drug Carrier Systems, 1990, 7, 1-33; El Hariri et al., J. Pharm. Pharmacol., 1992, 44, 651-654).


Bile salts: The physiological role of bile includes the facilitation of dispersion and absorption of lipids and fat-soluble vitamins (see e.g., Malmsten, M. Surfactants and polymers in drug delivery, Informa Health Care, New York, N.Y., 2002; Brunton, Chapter 38 in: Goodman & Gilman's The Pharmacological Basis of Therapeutics, 9th Ed., Hardman et al. Eds., McGraw-Hill, New York, 1996, pp. 934-935). Various natural bile salts, and their synthetic derivatives, act as penetration enhancers. Thus, the term “bile salts” includes any of the naturally occurring components of bile as well as any of their synthetic derivatives. Suitable bile salts include, for example, cholic acid (or its pharmaceutically acceptable sodium salt, sodium cholate), dehydrocholic acid (sodium dehydrocholate), deoxycholic acid (sodium deoxycholate), glucholic acid (sodium glucholate), glycholic acid (sodium glycocholate), glycodeoxycholic acid (sodium glycodeoxycholate), taurocholic acid (sodium taurocholate), taurodeoxycholic acid (sodium taurodeoxycholate), chenodeoxycholic acid (sodium chenodeoxycholate), ursodeoxycholic acid (UDCA), sodium tauro-24,25-dihydro-fusidate (STDHF), sodium glycodihydrofusidate and polyoxyethylene-9-lauryl ether (POE) (see e.g., Malmsten, M. Surfactants and polymers in drug delivery, Informa Health Care, New York, N.Y., 2002; Lee et al., Critical Reviews in Therapeutic Drug Carrier Systems, 1991, page 92; Swinyard, Chapter 39 In: Remington's Pharmaceutical Sciences, 18th Ed., Gennaro, ed., Mack Publishing Co., Easton, Pa., 1990, pages 782-783; Muranishi, Critical Reviews in Therapeutic Drug Carrier Systems, 1990, 7, 1-33; Yamamoto et al., J. Pharm. Exp. Ther., 1992, 263, 25; Yamashita et al., J. Pharm. Sci., 1990, 79, 579-583).


Chelating Agents: Chelating agents, as used in connection with the present disclosure, can be defined as compounds that remove metallic ions from solution by forming complexes therewith, with the result that absorption of iRNAs through the mucosa is enhanced. With regards to their use as penetration enhancers in the present disclosure, chelating agents have the added advantage of also serving as DNase inhibitors, as most characterized DNA nucleases require a divalent metal ion for catalysis and are thus inhibited by chelating agents (Jarrett, J. Chromatogr., 1993, 618, 315-339). Suitable chelating agents include but are not limited to disodium ethylenediaminetetraacetate (EDTA), citric acid, salicylates (e.g., sodium salicylate, 5-methoxysalicylate and homovanilate), N-acyl derivatives of collagen, laureth-9 and N-amino acyl derivatives of β-diketones (enamines) (see e.g., Katdare, A. et al., Excipient development for pharmaceutical, biotechnology, and drug delivery, CRC Press, Danvers, Mass., 2006; Lee et al., Critical Reviews in Therapeutic Drug Carrier Systems, 1991, page 92; Muranishi, Critical Reviews in Therapeutic Drug Carrier Systems, 1990, 7, 1-33; Buur et al., J. Control Rel., 1990, 14, 43-51).


Non-chelating non-surfactants: As used herein, non-chelating non-surfactant penetration enhancing compounds can be defined as compounds that demonstrate insignificant activity as chelating agents or as surfactants but that nonetheless enhance absorption of iRNAs through the alimentary mucosa (see e.g., Muranishi, Critical Reviews in Therapeutic Drug Carrier Systems, 1990, 7, 1-33). This class of penetration enhancers include, for example, unsaturated cyclic ureas, 1-alkyl- and 1-alkenylazacyclo-alkanone derivatives (Lee et al., Critical Reviews in Therapeutic Drug Carrier Systems, 1991, page 92); and non-steroidal anti-inflammatory agents such as diclofenac sodium, indomethacin and phenylbutazone (Yamashita et al., J. Pharm. Pharmacol., 1987, 39, 621-626).


Agents that enhance uptake of iRNAs at the cellular level may also be added to the pharmaceutical and other compositions of the present disclosure. For example, cationic lipids, such as lipofectin (Junichi et al, U.S. Pat. No. 5,705,188), cationic glycerol derivatives, and polycationic molecules, such as polylysine (Lollo et al., PCT Application WO 97/30731), are also known to enhance the cellular uptake of dsRNAs. Examples of commercially available transfection reagents include, for example Lipofectamine™ (Invitrogen; Carlsbad, Calif.), Lipofectamine2000™ (Invitrogen; Carlsbad, Calif.), 293fectin™ (Invitrogen; Carlsbad, Calif.), Cellfectin™ (Invitrogen; Carlsbad, Calif.), DMRIE-C™ (Invitrogen; Carlsbad, Calif.), FreeStyle™ MAX (Invitrogen; Carlsbad, Calif.), Lipofectamine™ 2000 CD (Invitrogen; Carlsbad, Calif.), Lipofectamine™ (Invitrogen; Carlsbad, Calif.), RNAiMAX (Invitrogen; Carlsbad, Calif.), Oligofectamine™ (Invitrogen; Carlsbad, Calif.), Optifect™ (Invitrogen; Carlsbad, Calif.), X-tremeGENE Q2 Transfection Reagent (Roche; Grenzacherstrasse, Switzerland), DOTAP Liposomal Transfection Reagent (Grenzacherstrasse, Switzerland), DOSPER Liposomal Transfection Reagent (Grenzacherstrasse, Switzerland), or Fugene (Grenzacherstrasse, Switzerland), Transfectam® Reagent (Promega; Madison, Wis.), TransFast™ Transfection Reagent (Promega; Madison, Wis.), Tfx™-20 Reagent (Promega; Madison, Wis.), Tfx™-50 Reagent (Promega; Madison, Wis.), DreamFect™ (OZ Biosciences; Marseille, France), EcoTransfect (OZ Biosciences; Marseille, France), TransPassa D1 Transfection Reagent (New England Biolabs; Ipswich, Mass., USA), LyoVec™/LipoGen™ (Invivogen; San Diego, Calif., USA), PerFectin Transfection Reagent (Genlantis; San Diego, Calif., USA), NeuroPORTER Transfection Reagent (Genlantis; San Diego, Calif., USA), GenePORTER Transfection reagent (Genlantis; San Diego, Calif., USA), GenePORTER 2 Transfection reagent (Genlantis; San Diego, Calif., USA), Cytofectin Transfection Reagent (Genlantis; San Diego, Calif., USA), BaculoPORTER Transfection Reagent (Genlantis; San Diego, Calif., USA), TroganPORTER™ transfection Reagent (Genlantis; San Diego, Calif., USA), RiboFect (Bioline; Taunton, Mass., USA), PlasFect (Bioline; Taunton, Mass., USA), UniFECTOR (B-Bridge International; Mountain View, Calif., USA), SureFECTOR (B-Bridge International; Mountain View, Calif., USA), or HiFect™ (B-Bridge International, Mountain View, Calif., USA), among others.


Other agents may be utilized to enhance the penetration of the administered nucleic acids, including glycols such as ethylene glycol and propylene glycol, pyrrols such as 2-pyrrol, azones, and terpenes such as limonene and menthone.


Carriers


Certain compositions of the present disclosure also incorporate carrier compounds in the formulation. As used herein, “carrier compound” can refer to a nucleic acid, or analog thereof, which is inert (i.e., does not possess biological activity per se) but is recognized as a nucleic acid by in vivo processes that reduce the bioavailability of a nucleic acid having biological activity by, for example, degrading the biologically active nucleic acid or promoting its removal from circulation. The coadministration of a nucleic acid and a carrier compound, typically with an excess of the latter substance, can result in a substantial reduction of the amount of nucleic acid recovered in the liver, kidney or other extracirculatory reservoirs, presumably due to competition between the carrier compound and the nucleic acid for a common receptor. For example, the recovery of a partially phosphorothioate dsRNA in hepatic tissue can be reduced when it is coadministered with polyinosinic acid, dextran sulfate, polycytidic acid or 4-acetamido-4′isothiocyano-stilbene-2,2′-disulfonic acid (Miyao et al., DsRNA Res. Dev., 1995, 5, 115-121; Takakura et al., DsRNA & Nucl. Acid Drug Dev., 1996, 6, 177-183).


Excipients


In contrast to a carrier compound, a pharmaceutical carrier or excipient may comprise, e.g., a pharmaceutically acceptable solvent, suspending agent or any other pharmacologically inert vehicle for delivering one or more nucleic acids to an animal. The excipient may be liquid or solid and is selected, with the planned manner of administration in mind, so as to provide for the desired bulk, consistency, etc., when combined with a nucleic acid and the other components of a given pharmaceutical composition. Typical pharmaceutical carriers include, but are not limited to, binding agents (e.g., pregelatinized maize starch, polyvinylpyrrolidone or hydroxypropyl methylcellulose, etc.); fillers (e.g., lactose and other sugars, microcrystalline cellulose, pectin, gelatin, calcium sulfate, ethyl cellulose, polyacrylates or calcium hydrogen phosphate, etc.); lubricants (e.g., magnesium stearate, talc, silica, colloidal silicon dioxide, stearic acid, metallic stearates, hydrogenated vegetable oils, corn starch, polyethylene glycols, sodium benzoate, sodium acetate, etc.); disintegrants (e.g., starch, sodium starch glycolate, etc.); and wetting agents (e.g., sodium lauryl sulphate, etc).


Pharmaceutically acceptable organic or inorganic excipients suitable for non-parenteral administration which do not deleteriously react with nucleic acids can also be used to formulate the compositions of the present disclosure. Suitable pharmaceutically acceptable carriers include, but are not limited to, water, salt solutions, alcohols, polyethylene glycols, gelatin, lactose, amylose, magnesium stearate, talc, silicic acid, viscous paraffin, hydroxymethylcellulose, polyvinylpyrrolidone and the like.


Formulations for topical administration of nucleic acids may include sterile and non-sterile aqueous solutions, non-aqueous solutions in common solvents such as alcohols, or solutions of the nucleic acids in liquid or solid oil bases. The solutions may also contain buffers, diluents and other suitable additives. Pharmaceutically acceptable organic or inorganic excipients suitable for non-parenteral administration which do not deleteriously react with nucleic acids can be used.


Suitable pharmaceutically acceptable excipients include, but are not limited to, water, salt solutions, alcohol, polyethylene glycols, gelatin, lactose, amylose, magnesium stearate, talc, silicic acid, viscous paraffin, hydroxymethylcellulose, polyvinylpyrrolidone and the like.


Other Components


The compositions of the present disclosure may additionally contain other adjunct components conventionally found in pharmaceutical compositions, e.g., at their art-established usage levels. Thus, for example, the compositions may contain additional, compatible, pharmaceutically-active materials such as, for example, antipruritics, astringents, local anesthetics or anti-inflammatory agents, or may contain additional materials useful in physically formulating various dosage forms of the compositions of the present disclosure, such as dyes, flavoring agents, preservatives, antioxidants, opacifiers, thickening agents and stabilizers. However, such materials, when added, should not unduly interfere with the biological activities of the components of the compositions of the present disclosure. The formulations can be sterilized and, if desired, mixed with auxiliary agents, e.g., lubricants, preservatives, stabilizers, wetting agents, emulsifiers, salts for influencing osmotic pressure, buffers, colorings, flavorings and/or aromatic substances and the like which do not deleteriously interact with the nucleic acid(s) of the formulation.


Aqueous suspensions may contain substances that increase the viscosity of the suspension including, for example, sodium carboxymethylcellulose, sorbitol and/or dextran. The suspension may also contain stabilizers.


In some embodiments, pharmaceutical compositions featured in the disclosure include (a) one or more iRNA compounds and (b) one or more biologic agents which function by a non-RNAi mechanism. Examples of such biologic agents include agents that interfere with an interaction of SCN9A and at least one SCN9A binding partner.


Toxicity and therapeutic efficacy of such compounds can be determined by standard pharmaceutical procedures in cell cultures or experimental animals, e.g., for determining the LD50 (the dose lethal to 50% of the population) and the ED50 (the dose therapeutically effective in 50% of the population). The dose ratio between toxic and therapeutic effects is the therapeutic index and it can be expressed as the ratio LD50/ED50. Compounds that exhibit high therapeutic indices are typical.


The data obtained from cell culture assays and animal studies can be used in formulating a range of dosage for use in humans. The dosage of compositions featured in the disclosure lies generally within a range of circulating concentrations that include the ED50 with little or no toxicity. The dosage may vary within this range depending upon the dosage form employed and the route of administration utilized. For any compound used in the methods featured in the disclosure, the therapeutically effective dose can be estimated initially from cell culture assays. A dose may be formulated in animal models to achieve a circulating plasma concentration range of the compound or, when appropriate, of the polypeptide product of a target sequence (e.g., achieving a decreased concentration of the polypeptide) that includes the IC50 (i.e., the concentration of the test compound which achieves a half-maximal inhibition of symptoms) as determined in cell culture. Such information can be used to more accurately determine useful doses in humans. Levels in plasma may be measured, for example, by high performance liquid chromatography.


In addition to their administration, as discussed above, the iRNAs featured in the disclosure can be administered in combination with other known agents effective in treatment of diseases or disorders related to SCN9A expression (e.g., pain, e.g., chronic pain or pain-related disorder). In any event, the administering physician can adjust the amount and timing of iRNA administration on the basis of results observed using standard measures of efficacy known in the art or described herein.


Methods of Treating Disorders Related to Expression of SCN9A


The present disclosure relates to the use of an iRNA targeting SCN9A to inhibit SCN9A expression and/or to treat a disease, disorder, or pathological process that is related to SCN9A expression (e.g., pain, e.g., chronic pain or pain-related disorder).


In some aspects, a method of treatment of a disorder related to expression of SCN9A is provided, the method comprising administering an iRNA (e.g., a dsRNA) disclosed herein to a subject in need thereof. In some embodiments, the iRNA inhibits (decreases) SCN9A expression.


In some embodiments, the subject is an animal that serves as a model for a disorder related to SCN9A expression, e.g., pain, e.g., chronic pain or pain-related disorder, e.g., inflammatory pain, neuropathic pain, pain hypersensitivity, pain hyposensitivity, inability to sense pain, primary erythromelalgia (PE), paroxysmal extreme pain disorder (PEPD), small fiber neuropathy (SFN), trigeminal neuralgia (TN), and pain associated with, e.g., cancer, arthritis, diabetes, traumatic injury and viral infections.


Chronic Pain and Pain-Related Disorders


In some embodiments, the disorder related to SCN9A expression is pain, e.g., chronic pain or pain related disorders, e.g., pain hypersensitivity or hyposensitivity. Non-limiting examples of pain-related disorders that are treatable using the methods described herein include inflammatory pain, neuropathic pain, pain insensitivity, primary erythromelalgia (PE), paroxysmal extreme pain disorder (PEPD), small fiber neuropathy (SFN), trigeminal neuralgia (TN), and pain associated with cancer, arthritis, diabetes, traumatic injury, and viral infections. In some embodiments, the pain-related disorder is an inherited pain-related disorder, e.g., PE and PEPD.


Clinical and pathological features of pain-related disorders include, but are not limited to, burning pain, redness of skin, flushing, warmth of extremities, joint pain, severe pain, e.g., periods of severe pain in the lower body, upper body (e.g., pain in the eyes or jaw), or extremities (e.g., hands and feet), inability to sense pain, fatigue, and/or insomnia.


In some embodiments, the subject with the pain, e.g., chronic pain, or pain-related disorder is less than 18 years old. In some embodiments, the subject with the pain, e.g., chronic pain, or pain-related disorder is an adult. In some embodiments, the subject has, or is identified as having, elevated levels of SCN9A mRNA or protein relative to a reference level (e.g., a level of SCN9A that is greater than a reference level).


In some embodiments, the pain, e.g., chronic pain, or the pain-related disorder is diagnosed using analysis of a sample from the subject (e.g., an aqueous cerebral spinal fluid (CSF) sample). In some embodiments, the sample is analyzed using a method selected from one or more of: fluorescent in situ hybridization (FISH), immunohistochemistry, SCN9A immunoassay, electron microscopy, laser microdissection, and mass spectrometry. In some embodiments, pain, e.g., chronic pain, or pain-related disorder is diagnosed using any suitable diagnostic test or technique, e.g., SCN9A mutation testing, a measure of pain sensitivity, a measure of pain threshold, a measure of pain level, and/or a measure of pain disability level (Dansie and Turk 2013 Br J Anaesth 111(1):19-25).


Combination Therapies


In some embodiments, an iRNA (e.g., a dsRNA) disclosed herein is administered in combination with a second therapy (e.g., one or more additional therapies) known to be effective in treating a disorder related to SCN9A expression (e.g., pain, e.g., chronic pain or pain-related disorder) or a symptom of such a disorder. The iRNA may be administered before, after, or concurrent with the second therapy. In some embodiments, the iRNA is administered before the second therapy. In some embodiments, the iRNA is administered after the second therapy. In some embodiments, the iRNA is administered concurrent with the second therapy.


The second therapy may be an additional therapeutic agent. The iRNA and the additional therapeutic agent can be administered in combination in the same composition or the additional therapeutic agent can be administered as part of a separate composition.


In some embodiments, the second therapy is a non-iRNA therapeutic agent that is effective to treat the disorder or symptoms of the disorder.


In some embodiments, the iRNA is administered in conjunction with a therapy.


Exemplary combination therapies include, but are not limited to, non-steroidal anti-inflammatory drugs (NSAIDs), acetaminophen, opioids, or corticosteroids, acupuncture, therapeutic massage, dorsal root ganglion stimulation, spinal cord stimulation, or topical pain relievers.


Administration Dosages, Routes, and Timing


A subject (e.g., a human subject, e.g., a patient) can be administered a therapeutic amount of iRNA. The therapeutic amount can be, e.g., 0.05-50 mg/kg. For example, the therapeutic amount can be 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.5, 2.0, or 2.5, 3.0, 3.5, 4.0, 4.5, 5, 10, 15, 20, 25, 30, 35, 40, 45, or 50 mg/kg dsRNA.


In some embodiments, the iRNA is formulated for delivery to a target organ, e.g., to the brain or spinal chord.


In some embodiments, the iRNA is formulated as a lipid formulation, e.g., an LNP formulation as described herein. In some such embodiments, the therapeutic amount is 0.05-5 mg/kg, e.g., 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5, or 5.0 mg/kg dsRNA. In some embodiments, the lipid formulation, e.g., LNP formulation, is administered intravenously. In some embodiments, the iRNA (e.g., dsRNA) is formulated as an LNP formulation and is administered (e.g., intravenously, intrathecally, intracerebrally, intracranially, or intraventricularly administered) at a dose of 0.1 to 1 mg/kg.


In some embodiments, the iRNA is administered by intravenous infusion over a period of time, such as over a 5 minute, 10 minute, 15 minute, 20 minute, or 25 minute period.


In some embodiments, the iRNA is in the form of a lipophilic conjugate (e.g., a C16 conjugate) as described herein. In some such embodiments, the therapeutic amount is 0.5-50 mg, e.g., 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5, 5.0, 6, 7, 8, 9, 10, 15, 20, 25, 30, 35, 40, 45, or 50 mg/kg dsRNA. In some embodiments, the lipophilic conjugate (e.g., a C16 conjugate) is administered subcutaneously. In some embodiments, the iRNA (e.g., dsRNA) is in the form of a lipophilic conjugate and is administered (e.g., subcutaneously administered) at a dose of 1 to 10 mg/kg. In some embodiments, the iRNA is in the form of a GalNAc conjugate e.g., as described herein. In some such embodiments, the therapeutic amount is 0.5-50 mg, e.g., 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5, 5.0, 6, 7, 8, 9, 10, 15, 20, 25, 30, 35, 40, 45, or 50 mg/kg dsRNA. In some embodiments, the e.g., GalNAc conjugate is administered subcutaneously.


In some embodiments, the administration is repeated, for example, on a regular basis, such as, daily, biweekly (i.e., every two weeks) for one month, two months, three months, four months, six months or longer. After an initial treatment regimen, the treatments can be administered on a less frequent basis. For example, after administration biweekly for three months, administration can be repeated once per month, for six months or a year or longer.


In some embodiments, the iRNA agent is administered in two or more doses. In some embodiments, the number or amount of subsequent doses is dependent on the achievement of a desired effect, e.g., to (a) reduce pain; (b) inhibit or reduce the expression or activity of SCN9A or the achievement of a therapeutic or prophylactic effect, e.g., reduction or prevention of one or more symptoms associated with the disorder.


In some embodiments, the iRNA agent is administered according to a schedule. For example, the iRNA agent may be administered once per week, twice per week, three times per week, four times per week, or five times per week. In some embodiments, the schedule involves regularly spaced administrations, e.g., hourly, every four hours, every six hours, every eight hours, every twelve hours, daily, every 2 days, every 3 days, every 4 days, every 5 days, weekly, biweekly, or monthly. In some embodiments, the iRNA agent is administered at the frequency required to achieve a desired effect.


In some embodiments, the schedule involves closely spaced administrations followed by a longer period of time during which the agent is not administered. For example, the schedule may involve an initial set of doses that are administered in a relatively short period of time (e.g., about every 6 hours, about every 12 hours, about every 24 hours, about every 48 hours, or about every 72 hours) followed by a longer time period (e.g., about 1 week, about 2 weeks, about 3 weeks, about 4 weeks, about 5 weeks, about 6 weeks, about 7 weeks, or about 8 weeks) during which the iRNA agent is not administered. In some embodiments, the iRNA agent is initially administered hourly and is later administered at a longer interval (e.g., daily, weekly, biweekly, or monthly). In some embodiments, the iRNA agent is initially administered daily and is later administered at a longer interval (e.g., weekly, biweekly, or monthly). In certain embodiments, the longer interval increases over time or is determined based on the achievement of a desired effect.


Before administration of a full dose of the iRNA, patients can be administered a smaller dose, such as a 5% infusion dose, and monitored for adverse effects, such as an allergic reaction, or for elevated lipid levels or blood pressure. In another example, the patient can be monitored for unwanted effects.


Methods for Modulating Expression of SCN9A


In some aspects, the disclosure provides a method for modulating (e.g., inhibiting or activating) the expression of SCN9A, e.g., in a cell, in a tissue, or in a subject. In some embodiments, the cell or tissue is ex vivo, in vitro, or in vivo. In some embodiments, the cell or tissue is in the central nervous system (e.g., brain or spine tissue, e.g., cortex, cerebellum, dorsal root ganglia, substantia nigra, cerebellar dentate nucleus, pallidum, striatum, brainstem, thalamus, subthalamic, red, and pontine nuclei, cranial nerve nuclei and the anterior horn; and Clarke's column of the spinal cord cervical spine, lumbar spine, or thoracic spine). In some embodiments, the cell or tissue is in a subject (e.g., a mammal, such as, for example, a human) In some embodiments, the subject (e.g., the human) is at risk, or is diagnosed with a disorder related to expression of SCN9A expression, as described herein.


In some embodiments, the method includes contacting the cell with an iRNA as described herein, in an amount effective to decrease the expression of SCN9A in the cell. In some embodiments, contacting a cell with an RNAi agent includes contacting a cell in vitro with the RNAi agent or contacting a cell in vivo with the RNAi agent. In some embodiments, the RNAi agent is put into physical contact with the cell by the individual performing the method, or the RNAi agent may be put into a situation that will permit or cause it to subsequently come into contact with the cell. Contacting a cell in vitro may be done, for example, by incubating the cell with the RNAi agent. Contacting a cell in vivo may be done, for example, by injecting the RNAi agent into or near the tissue where the cell is located, or by injecting the RNAi agent into another area, e.g., a CNS tissue. For example, the RNAi agent may contain or be coupled to a ligand, e.g., a lipophilic moiety or moieties as described below and further detailed, e.g., in PCT/US2019/031170 which is incorporated herein by reference in its entirety, including the passages therein describing lipophilic moieties, that directs or otherwise stabilizes the RNAi agent at a site of interest. Combinations of in vitro and in vivo methods of contacting are also possible. For example, a cell may also be contacted in vitro with an RNAi agent and subsequently transplanted into a subject.


The expression of SCN9A may be assessed based on the level of expression of SCN9A mRNA, SCN9A protein, or the level of another parameter functionally linked to the level of expression of SCN9A. In some embodiments, the expression of SCN9A is inhibited by at least 5%, at least 10%, at least 15%, at least 20%, at least 25%, at least 30%, at least 35%, at least 40%, at least 45%, at least 50%, at least 55%, at least 60%, at least 65%, at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, or at least 95%. In some embodiments, the iRNA has an IC50 in the range of 0.001-0.01 nM, 0.001-0.10 nM, 0.001-1.0 nM, 0.001-10 nM, 0.01-0.05 nM, 0.01-0.50 nM, 0.02-0.60 nM, 0.01-1.0 nM, 0.01-1.5 nM, 0.01-10 nM. The IC50 value may be normalized relative to an appropriate control value, e.g., the IC50 of a non-targeting iRNA.


In some embodiments, the method includes introducing into the cell or tissue an iRNA as described herein and maintaining the cell or tissue for a time sufficient to obtain degradation of the mRNA transcript of SCN9A, thereby inhibiting the expression of SCN9A in the cell or tissue.


In some embodiments, the method includes administering a composition described herein, e.g., a composition comprising an iRNA that binds SCN9A, to the mammal such that expression of the target SCN9A is decreased, such as for an extended duration, e.g., at least two, three, four days or more, e.g., one week, two weeks, three weeks, or four weeks or longer. In some embodiments, the decrease in expression of SCN9A is detectable within 1 hour, 2 hours, 4 hours, 8 hours, 12 hours, or 24 hours of the first administration.


In some embodiments, the method includes administering a composition as described herein to a mammal such that expression of the target SCN9A is increased by e.g., at least 10% compared to an untreated animal. In some embodiments, the activation of SCN9A occurs over an extended duration, e.g., at least two, three, four days or more, e.g., one week, two weeks, three weeks, four weeks, or more. Without wishing to be bound by theory, an iRNA can activate SCN9A expression by stabilizing the SCN9A mRNA transcript, interacting with a promoter in the genome, or inhibiting an inhibitor of SCN9A expression.


The iRNAs useful for the methods and compositions featured in the disclosure specifically target RNAs (primary or processed) of SCN9A. Compositions and methods for inhibiting the expression of SCN9A using iRNAs can be prepared and performed as described elsewhere herein.


In some embodiments, the method includes administering a composition containing an iRNA, where the iRNA includes a nucleotide sequence that is complementary to at least a part of an RNA transcript of SCN9A of the subject, e.g., the mammal, e.g., the human, to be treated. The composition may be administered by any appropriate means known in the art including, but not limited to intracranial, intrathecal, intraventricular, topical, and intravenous administration.


In certain embodiments, the composition is administered, e.g., using oral, intraperitoneal, or parenteral routes, including intracranial (e.g., intraventricular, intraparenchymal, intracranial, and intrathecal), intravenous, intramuscular, intravitreal, subcutaneous, transdermal, airway (aerosol), nasal, or rectal. In other embodiments, the composition is administered topically (e.g., buccal and sublingual administration). In other embodiments, the composition is administered by intravenous infusion or injection. In certain embodiments, the compositions are administered by intrathecal injection. In certain embodiments, the compositions are administered by intraventricular injection. In certain embodiments, the compositions are administered by intracranial injection. In certain embodiments, the compositions are administered by epidural injection. In certain embodiments, the compositions are administered by intraganglionic injection.


In certain embodiments, the composition is administered by intravenous infusion or injection. In some such embodiments, the composition comprises a lipid formulated siRNA (e.g., an LNP formulation, such as an LNP11 formulation) for intravenous infusion.


Unless otherwise defined, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this disclosure belongs. Although methods and materials similar or equivalent to those described herein can be used in the practice or testing of the iRNAs and methods featured in the disclosure, suitable methods and materials are described below. All publications, patent applications, patents, and other references mentioned herein are incorporated by reference in their entirety. In case of conflict, the present specification, including definitions, will control. In addition, the materials, methods, and examples are illustrative only and not intended to be limiting.


Specific Embodiments

1. A double stranded ribonucleic acid (dsRNA) agent for inhibiting expression sodium channel, voltage gated, type IX alpha subunit (SCN9A), wherein the dsRNA agent comprises a sense strand and an antisense strand forming a double stranded region, wherein the sense strand comprises a nucleotide sequence comprising at least 15 contiguous nucleotides, with 0, 1, 2, or 3 mismatches, of a portion of a coding strand of human SCN9A and the antisense strand comprises a nucleotide sequence comprising at least 15 contiguous nucleotides, with 0, 1, 2, or 3 mismatches, of the corresponding portion of a non-coding strand of human SCN9A such that the sense strand is complementary to the at least 15 contiguous nucleotides in the antisense strand.


2. The dsRNA agent of embodiment 1, wherein the coding strand of human SCN9A comprises the sequence SEQ ID NO: 1.


3. The dsRNA agent of embodiment 1 or 2, wherein the non-coding strand of human SCN9A comprises the sequence of SEQ ID NO: 2.


4 The dsRNA agent of embodiment 1, wherein the coding strand of human SCN9A comprises the sequence SEQ ID NO: 4001.


5. The dsRNA agent of embodiment 1 or 4, wherein the non-coding strand of human SCN9A comprises the sequence of SEQ ID NO: 4002.


6. A double stranded ribonucleic acid (dsRNA) agent for inhibiting expression of SCN9A, wherein the dsRNA agent comprises a sense strand and an antisense strand forming a double stranded region, wherein the antisense strand comprises a nucleotide sequence comprising at least 15 contiguous nucleotides, with 0, 1, 2, or 3 mismatches, of a portion of nucleotide sequence of SEQ ID NO: 2 such that the sense strand is complementary to the at least 15 contiguous nucleotides in the antisense strand.


7. The dsRNA agent of embodiment 6, wherein the sense strand comprises a nucleotide sequence comprising at least 15 contiguous nucleotides, with 0, or 1, 2, or 3 mismatches, of the corresponding portion of the nucleotide sequence of SEQ ID NO: 1.


8. A double stranded ribonucleic acid (dsRNA) agent for inhibiting expression of SCN9A, wherein the dsRNA agent comprises a sense strand and an antisense strand forming a double stranded region, wherein the antisense strand comprises a nucleotide sequence comprising at least 15 contiguous nucleotides, with 0, 1, 2, or 3 mismatches, of a portion of nucleotide sequence of SEQ ID NO: 4002 such that the sense strand is complementary to the at least 15 contiguous nucleotides in the antisense strand.


9. The dsRNA agent of embodiment 8, wherein the sense strand comprises a nucleotide sequence comprising at least 15 contiguous nucleotides, with 0, or 1, 2, or 3 mismatches, of the corresponding portion of the nucleotide sequence of SEQ ID NO: 4001.


10. The dsRNA of any of the preceding embodiments, wherein the dsRNA agent comprises a sense strand and an antisense strand, wherein the antisense strand comprises a nucleotide sequence comprising at least 17 contiguous nucleotides, with 0, 1, 2, or 3 mismatches, of a portion of nucleotide sequence of SEQ ID NO: 2 such that the sense strand is complementary to the at least 17 contiguous nucleotides in the antisense strand.


11. The dsRNA of embodiment 10, wherein the sense strand comprises a nucleotide sequence comprising at least 17 contiguous nucleotides, with 0, or 1, 2, or 3 mismatches, of the corresponding portion of the nucleotide sequence of SEQ ID NO: 1.


12. The dsRNA of any of the preceding embodiments, wherein the dsRNA agent comprises a sense strand and an antisense strand, wherein the antisense strand comprises a nucleotide sequence comprising at least 17 contiguous nucleotides, with 0, 1, 2, or 3 mismatches, of a portion of nucleotide sequence of SEQ ID NO: 4002 such that the sense strand is complementary to the at least 17 contiguous nucleotides in the antisense strand.


13. The dsRNA of embodiment 12, wherein the sense strand comprises a nucleotide sequence comprising at least 17 contiguous nucleotides, with 0, or 1, 2, or 3 mismatches, of the corresponding portion of the nucleotide sequence of SEQ ID NO: 4001.


14. The dsRNA of any of the preceding embodiments, wherein the dsRNA agent comprises a sense strand and an antisense strand, wherein the antisense strand comprises a nucleotide sequence comprising at least 19 contiguous nucleotides, with 0, 1, 2, or 3 mismatches, of a portion of nucleotide sequence of SEQ ID NO: 2 such that the sense strand is complementary to the at least 19 contiguous nucleotides in the antisense strand.


15. The dsRNA of embodiment 14, wherein the sense strand comprises a nucleotide sequence comprising at least 19 contiguous nucleotides, with 0, 1, 2, or 3 mismatches, of the corresponding portion of the nucleotide sequence of SEQ ID NO: 1.


16. The dsRNA of any of the preceding embodiments, wherein the dsRNA agent comprises a sense strand and an antisense strand, wherein the antisense strand comprises a nucleotide sequence comprising at least 19 contiguous nucleotides, with 0, 1, 2, or 3 mismatches, of a portion of nucleotide sequence of SEQ ID NO: 4002 such that the sense strand is complementary to the at least 19 contiguous nucleotides in the antisense strand.


17. The dsRNA of embodiment 16, wherein the sense strand comprises a nucleotide sequence comprising at least 19 contiguous nucleotides, with 0, 1, 2, or 3 mismatches, of the corresponding portion of the nucleotide sequence of SEQ ID NO: 4001.


18. The dsRNA of any of the preceding embodiments, wherein the dsRNA agent comprises a sense strand and an antisense strand, wherein the antisense strand comprises a nucleotide sequence comprising at least 21 contiguous nucleotides, with 0, 1, 2, or 3 mismatches, of a portion of nucleotide sequence of SEQ ID NO: 2 such that the sense strand is complementary to the at least 21 contiguous nucleotides in the antisense strand.


19. The dsRNA of embodiment 18, wherein the sense strand comprises a nucleotide sequence comprising at least 21 contiguous nucleotides, with 0, or 1, 2, or 3 mismatches, of the corresponding portion of the nucleotide sequence of SEQ ID NO: 1.


20. The dsRNA of any of the preceding embodiments, wherein the dsRNA agent comprises a sense strand and an antisense strand, wherein the antisense strand comprises a nucleotide sequence comprising at least 21 contiguous nucleotides, with 0, 1, 2, or 3 mismatches, of a portion of nucleotide sequence of SEQ ID NO: 4002 such that the sense strand is complementary to the at least 21 contiguous nucleotides in the antisense strand.


21. The dsRNA of embodiment 20, wherein the sense strand comprises a nucleotide sequence comprising at least 21 contiguous nucleotides, with 0, or 1, 2, or 3 mismatches, of the corresponding portion of the nucleotide sequence of SEQ ID NO: 4001.


22. The dsRNA agent of any one of embodiments 1-21, wherein the portion of the sense strand is a portion within nucleotides 581-601, 760-780, or 8498-8518 of SEQ ID NO: 4001.


23. The dsRNA agent of any one of embodiments 1-22, wherein the portion of the sense strand is a portion within a sense strand from a duplex chosen from AD-1251284 (UGUCGAGUACACUUUUACUGA (SEQ ID NO:4827)), AD-961334 (CAACACAATUTCUUCUUAGCA (SEQ ID NO: 5026)), or AD-1251325 (AAAACAAUCUUCCGUUUCAAA (SEQ ID NO: 4822)).


24. The dsRNA agent of any one of embodiments 1-23, wherein the portion of the sense strand is a sense strand chosen from the sense strands of AD-1251284 (UGUCGAGUACACUUUUACUGA (SEQ ID NO:4827)), AD-961334 (CAACACAATUTCUUCUUAGCA (SEQ ID NO: 5026)), or AD-1251325 (AAAACAAUCUUCCGUUUCAAA (SEQ ID NO: 4822)).


25. The dsRNA of any one of embodiments 1-24, wherein the portion of the antisense strand is a portion within an antisense strand from a duplex chosen from AD-1251284 (UCAGTAAAAGUGUACTCGACAUU (SEQ ID NO: 5093)), AD-961334 (UGCUAAGAAGAAATUGUGUUGUU (SEQ ID NO: 5292)), or AD-1251325 (UUUGAAACGGAAGAUUGUUUUCC (SEQ ID NO: 5088)).


26. The dsRNA of any one of embodiments 1-25, wherein the portion of the antisense strand is an antisense strand chosen the antisense strands of AD-1251284 (UCAGTAAAAGUGUACTCGACAUU (SEQ ID NO: 5093)), AD-961334 (UGCUAAGAAGAAATUGUGUUGUU (SEQ ID NO: 5292)), or AD-1251325 (UUUGAAACGGAAGAUUGUUUUCC (SEQ ID NO: 5088)).


27. The dsRNA of any one of embodiments 1-26, wherein the sense strand and the antisense strand comprise nucleotide sequences of the paired sense strand and antisense strand of a duplex selected from AD-1251284 (SEQ ID NO: 4827 and 5093), AD-961334 (SEQ ID NO: 5026 and 5292), or AD-1251325 (SEQ ID NO: 4822 and 5088).


28. The dsRNA agent of any one of the preceding embodiments, wherein the portion of the sense strand is a portion within a sense strand in any one of Tables 2A, 2B, 4A, 4B, 5A, 5B, 6A, 6B, 13A, 13B, 14A, 14B, 15A, 15B, 16, 18, and 20.


29. The dsRNA agent of any one of the preceding embodiments, wherein the portion of the antisense strand is a portion within an antisense strand in any one of Tables 2A, 2B, 4A, 4B, 5A, 5B, 6A, 6B, 13A, 13B, 14A, 14B, 15A, 15B, 16, 18, and 20.


30. The dsRNA agent of any of the preceding embodiments, wherein the antisense strand comprises a nucleotide sequence comprising at least 15 contiguous nucleotides, with 0, 1, 2, or 3 mismatches, from one of the antisense sequences listed in any one of Tables 2A, 2B, 4A, 4B, 5A, 5B, 6A, 6B, 13A, 13B, 14A, 14B, 15A, 15B, 16, 18, and 20.


31. The dsRNA agent of any of the preceding embodiments, wherein the sense strand comprises a nucleotide sequence comprising at least 15 contiguous nucleotides, with 0, 1, 2, or 3 mismatches, from a sense sequence listed in any one of Tables 2A, 2B, 4A, 4B, 5A, 5B, 6A, 6B, 13A, 13B, 14A, 14B, 15A, 15B, 16, 18, and 20 that corresponds to the antisense sequence.


32. The dsRNA agent of any of the preceding embodiments, wherein the antisense strand comprises a nucleotide sequence comprising at least 17 contiguous nucleotides, with 0, 1, 2, or 3 mismatches, from one of the antisense sequences listed in any one of Tables 2A, 2B, 4A, 4B, 5A, 5B, 6A, 6B, 13A, 13B, 14A, 14B, 15A, 15B, 16, 18, and 20.


33. The dsRNA agent of any of the preceding embodiments, wherein the sense strand comprises a nucleotide sequence comprising at least 17 contiguous nucleotides, with 0, 1, 2, or 3 mismatches, from a sense sequence listed in any one of Tables 2A, 2B, 4A, 4B, 5A, 5B, 6A, 6B, 13A, 13B, 14A, 14B, 15A, 15B, 16, 18, and 20 that corresponds to the antisense sequence.


34. The dsRNA agent of any of the preceding embodiments, wherein the antisense strand comprises a nucleotide sequence comprising at least 19 contiguous nucleotides, with 0,1, 2, or 3 mismatches, from one of the antisense sequences listed in any one of Tables 2A, 2B, 4A, 4B, 5A, 5B, 6A, 6B, 13A, 13B, 14A, 14B, 15A, 15B, 16, 18, and 20.


35. The dsRNA agent of any of the preceding embodiments, wherein the sense strand comprises a nucleotide sequence comprising at least 19 contiguous nucleotides, with 0, 1, 2, or 3 mismatches, from a sense sequence listed in any one of Tables 2A, 2B, 4A, 4B, 5A, 5B, 6A, 6B, 13A, 13B, 14A, 14B, 15A, 15B, 16, 18, and 20 that corresponds to the antisense sequence.


36. The dsRNA agent of any of the preceding embodiments, wherein the antisense strand comprises a nucleotide sequence comprising at least 21 contiguous nucleotides, with 0,1, 2, or 3 mismatches, from one of the antisense sequences listed in any one of Tables 2A, 2B, 4A, 4B, 5A, 5B, 6A, 6B, 13A, 13B, 14A, 14B, 15A, 15B, 16, 18, and 20.


37. The dsRNA agent of any of the preceding embodiments, wherein the sense strand comprises a nucleotide sequence comprising at least 21 contiguous nucleotides, with 0, 1, 2, or 3 mismatches, from a sense sequence listed in any one of Tables 2A, 2B, 4A, 4B, 5A, 5B, 6A, 6B, 13A, 13B, 14A, 14B, 15A, 15B, 16, 18, and 20 that corresponds to the antisense sequence.


38. A double-stranded ribonucleic acid (dsRNA) agent for inhibiting expression of SCN9A, wherein the dsRNA agent comprises a sense strand and an antisense strand forming a double-stranded region, wherein the antisense strand comprises a nucleotide sequence of an antisense sequence listed in any one of Tables 2A, 2B, 4A, 4B, 5A, 5B, 6A, 6B, 13A, 13B, 14A, 14B, 15A, 15B, 16, 18, and 20, and the sense strand comprises a nucleotide sequence of a sense sequence listed in any one of Tables 2A, 2B, 4A, 4B, 5A, 5B, 6A, 6B, 13A, 13B, 14A, 14B, 15A, 15B, 16, 18, and 20 that corresponds to the antisense sequence.


39. The dsRNA agent of embodiment 38, wherein the antisense strand comprises a nucleotide sequence of an antisense sequence listed in Table 5A, and the sense strand comprises a nucleotide sequence of a sense sequence listed in Table 5A that corresponds to the antisense sequence.


40. The dsRNA agent of embodiment 38, wherein the antisense strand comprises a nucleotide sequence of an antisense sequence listed in Table 13A, and the sense strand comprises a nucleotide sequence of a sense sequence listed in Table 13A that corresponds to the antisense sequence.


41. The dsRNA agent of embodiment 38, wherein the antisense strand comprises a nucleotide sequence of an antisense sequence listed in Table 14A, and the sense strand comprises a nucleotide sequence of a sense sequence listed in Table 14A that corresponds to the antisense sequence.


42. The dsRNA agent of embodiment 38, wherein the antisense strand comprises a nucleotide sequence of an antisense sequence listed in Table 15A, and the sense strand comprises a nucleotide sequence of a sense sequence listed in Table 15A that corresponds to the antisense sequence.


43. The dsRNA agent of embodiment 38, wherein the antisense strand comprises a nucleotide sequence of an antisense sequence listed in Table 16, and the sense strand comprises a nucleotide sequence of a sense sequence listed in Table 16 that corresponds to the antisense sequence.


44. The dsRNA agent of any one of embodiments 38, wherein the dsRNA agent is AD-1251284, AD-961334, AD-1251325, AD-1331352, AD-1209344, or AD-1331350.


45. The dsRNA of any one of embodiments 38-44, wherein:


(i) the sense strand comprises the sequence and all the modifications of SEQ ID NO: 4029, and the antisense strand comprises the sequence and all the modifications of SEQ ID NO: 4295;


(ii) the sense strand comprises the sequence and all the modifications of SEQ ID NO: 4228, and the antisense strand comprises the sequence and all the modifications of SEQ ID NO: 4494;


(iii) the sense strand comprises the sequence and all the modifications of SEQ ID NO: 5339, and the antisense strand comprises the sequence and all the modifications of SEQ ID NO: 5355;


(iv) the sense strand comprises the sequence and all the modifications of SEQ ID NO: 5800, and the antisense strand comprises the sequence and all the modifications of SEQ ID NO: 5801;


(v) the sense strand comprises the sequence and all the modifications of SEQ ID NO: 5526, and the antisense strand comprises the sequence and all the modifications of SEQ ID NO: 5681; or


(vi) the sense strand comprises the sequence and all the modifications of SEQ ID NO: 5542, and the antisense strand comprises the sequence and all the modifications of SEQ ID NO: 5697.


46. The dsRNA agent of any of the preceding embodiments, wherein the sense strand is at least 23 nucleotides in length, e.g., 23-30 nucleotides in length.


47. The dsRNA agent of any of the preceding embodiments, wherein at least one of the sense strand and the antisense strand is conjugated to one or more lipophilic moieties.


48. The dsRNA agent of embodiment 47, wherein the lipophilic moiety is conjugated to one or more positions in the double stranded region of the dsRNA agent.


49. The dsRNA agent of embodiment 47 or 48, wherein the lipophilic moiety is conjugated via a linker or carrier.


50. The dsRNA agent of any one of embodiments 47-49, wherein lipophilicity of the lipophilic moiety, measured by logKow, exceeds 0.


51. The dsRNA agent of any one of the preceding embodiments, wherein the hydrophobicity of the double-stranded RNAi agent, measured by the unbound fraction in a plasma protein binding assay of the double-stranded RNAi agent, exceeds 0.2.


52. The dsRNA agent of embodiment 51, wherein the plasma protein binding assay is an electrophoretic mobility shift assay using human serum albumin protein.


53. The dsRNA agent of any of the preceding embodiments, wherein the dsRNA agent comprises at least one modified nucleotide.


54. The dsRNA agent of embodiment 53, wherein no more than five of the sense strand nucleotides and not more than five of the nucleotides of the antisense strand are unmodified nucleotides.


55. The dsRNA agent of embodiment 53, wherein all of the nucleotides of the sense strand and all of the nucleotides of the antisense strand comprise a modification.


56. The dsRNA agent of any one of embodiments 53-55, wherein at least one of the modified nucleotides is selected from the group consisting of a deoxy-nucleotide, a 3′-terminal deoxythimidine (dT) nucleotide, a 2′-O-methyl modified nucleotide, a 2′-fluoro modified nucleotide, a 2′-deoxy-modified nucleotide, a locked nucleotide, an unlocked nucleotide, a conformationally restricted nucleotide, a constrained ethyl nucleotide, an abasic nucleotide, a 2′-amino-modified nucleotide, a 2′-O-allyl-modified nucleotide, 2′-C-alkyl-modified nucleotide, a 2′-methoxyethyl modified nucleotide, a 2′-O-alkyl-modified nucleotide, a morpholino nucleotide, a phosphoramidate, a non-natural base comprising nucleotide, a tetrahydropyran modified nucleotide, a 1,5-anhydrohexitol modified nucleotide, a cyclohexenyl modified nucleotide, a nucleotide comprising a phosphorothioate group, a nucleotide comprising a methylphosphonate group, a nucleotide comprising a 5′-phosphate, a nucleotide comprising a 5′-phosphate mimic, a glycol modified nucleotide, and a 2-O-(N-methylacetamide) modified nucleotide; and combinations thereof.


57. The dsRNA agent of any of embodiments 53-42, wherein no more than five of the sense strand nucleotides and not more than five of the nucleotides of the antisense strand include modifications other than 2′-O-methyl modified nucleotide, a 2′-fluoro modified nucleotide, a 2′-deoxy-modified nucleotide, unlocked nucleic acids (UNA) or glycerol nucleic acid (GNA).


58. The dsRNA agent of any of the preceding embodiments, which comprises a non-nucleotide spacer (wherein optionally the non-nucleotide spacer comprises a C3-C6 alkyl) between two of the contiguous nucleotides of the sense strand or between two of the contiguous nucleotides of the antisense strand.


59. The dsRNA agent of any of the preceding embodiments, wherein each strand is no more than 30 nucleotides in length.


60. The dsRNA agent of any of the preceding embodiments, wherein at least one strand comprises a 3′ overhang of at least 1 nucleotide.


61. The dsRNA agent of any of the preceding embodiments, wherein at least one strand comprises a 3′ overhang of at least 2 nucleotides.


62. The dsRNA agent of any of the preceding embodiments, wherein the double stranded region is 15-30 nucleotide pairs in length.


63. The dsRNA agent of embodiment 62, wherein the double stranded region is 17-23 nucleotide pairs in length.


64. The dsRNA agent of embodiment 62, wherein the double stranded region is 17-25 nucleotide pairs in length.


65. The dsRNA agent of embodiment 62, wherein the double stranded region is 23-27 nucleotide pairs in length.


66. The dsRNA agent of embodiment 62, wherein the double stranded region is 19-21 nucleotide pairs in length.


67. The dsRNA agent of embodiment 62, wherein the double stranded region is 21-23 nucleotide pairs in length.


68. The dsRNA agent of any of the preceding embodiments, wherein each strand has 19-30 nucleotides.


69. The dsRNA agent of any of the preceding embodiments, wherein each strand has 19-23 nucleotides.


70. The dsRNA agent of any of the preceding embodiments, wherein each strand has 21-23 nucleotides.


71. The dsRNA agent of any of the preceding embodiments, wherein the agent comprises at least one phosphorothioate or methylphosphonate internucleotide linkage.


72. The dsRNA agent of embodiment 71, wherein the phosphorothioate or methylphosphonate internucleotide linkage is at the 3′-terminus of one strand.


73. The dsRNA agent of embodiment 72, wherein the strand is the antisense strand.


74. The dsRNA agent of embodiment 72, wherein the strand is the sense strand.


75. The dsRNA agent of embodiment 71, wherein the phosphorothioate or methylphosphonate internucleotide linkage is at the 5′-terminus of one strand.


76. The dsRNA agent of embodiment 75, wherein the strand is the antisense strand.


77. The dsRNA agent of embodiment 75, wherein the strand is the sense strand.


78. The dsRNA agent of embodiment 71, wherein each of the 5′- and 3′-terminus of one strand comprises a phosphorothioate or methylphosphonate internucleotide linkage.


79. The dsRNA agent of embodiment 78, wherein the strand is the antisense strand.


80. The dsRNA agent of any of the preceding embodiments, wherein the base pair at the 1 position of the 5′-end of the antisense strand of the duplex is an AU base pair.


81. The dsRNA agent of embodiment 78, wherein the sense strand has a total of 21 nucleotides and the antisense strand has a total of 23 nucleotides.


82. The dsRNA agent of any one of embodiments 47-81, wherein one or more lipophilic moieties are conjugated to one or more internal positions on at least one strand.


83. The dsRNA agent of embodiment 82, wherein the one or more lipophilic moieties are conjugated to one or more internal positions on at least one strand via a linker or carrier.


84. The dsRNA agent of embodiment 83, wherein the internal positions include all positions except the terminal two positions from each end of the at least one strand.


85. The dsRNA agent of embodiment 83, wherein the internal positions include all positions except the terminal three positions from each end of the at least one strand.


86. The dsRNA agent of any one of embodiments 83-85, wherein the internal positions exclude a cleavage site region of the sense strand.


87. The dsRNA agent of embodiment 86, wherein the internal positions include all positions except positions 9-12, counting from the 5′-end of the sense strand.


88. The dsRNA agent of embodiment 86, wherein the internal positions include all positions except positions 11-13, counting from the 3′-end of the sense strand.


89. The dsRNA agent of any one of embodiments 83-85, wherein the internal positions exclude a cleavage site region of the antisense strand.


90. The dsRNA agent of embodiment 89, wherein the internal positions include all positions except positions 12-14, counting from the 5′-end of the antisense strand.


91. The dsRNA agent of any one of embodiments 83-85, wherein the internal positions include all positions except positions 11-13 on the sense strand, counting from the 3′-end, and positions 12-14 on the antisense strand, counting from the 5′-end.


92. The dsRNA agent of any one of embodiments 47-91, wherein the one or more lipophilic moieties are conjugated to one or more of the internal positions selected from the group consisting of positions 4-8 and 13-18 on the sense strand, and positions 6-10 and 15-18 on the antisense strand, counting from the 5′ end of each strand.


93. The dsRNA agent of embodiment 92, wherein the one or more lipophilic moieties are conjugated to one or more of the internal positions selected from the group consisting of positions 5, 6, 7, 15, and 17 on the sense strand, and positions 15 and 17 on the antisense strand, counting from the 5′-end of each strand.


94. The dsRNA agent of embodiment 48, wherein the positions in the double stranded region exclude a cleavage site region of the sense strand.


95. The dsRNA agent of any one of embodiments 47-80, wherein the sense strand is 21 nucleotides in length, the antisense strand is 23 nucleotides in length, and the lipophilic moiety is conjugated to position 21, position 20, position 15, position 1, position 7, position 6, or position 2 of the sense strand or position 16 of the antisense strand.


96. The dsRNA agent of embodiment 95, wherein the lipophilic moiety is conjugated to position 21, position 20, position 15, position 1, or position 7 of the sense strand.


97. The dsRNA agent of embodiment 95, wherein the lipophilic moiety is conjugated to position 21, position 20, or position 15 of the sense strand.


98. The dsRNA agent of embodiment 95, wherein the lipophilic moiety is conjugated to position 20 or position 15 of the sense strand.


99. The dsRNA agent of embodiment 95, wherein the lipophilic moiety is conjugated to position 16 of the antisense strand.


100. The dsRNA agent of embodiment 95, wherein the lipophilic moiety is conjugated to position 6, counting from the 5′-end of the sense strand.


101. The dsRNA agent of any one of embodiments 47-100, wherein the lipophilic moiety is an aliphatic, alicyclic, or polyalicyclic compound.


102. The dsRNA agent of embodiment 101, wherein the lipophilic moiety is selected from the group consisting of lipid, cholesterol, retinoic acid, cholic acid, adamantane acetic acid, 1-pyrene butyric acid, dihydrotestosterone, 1,3-bis-O(hexadecyl)glycerol, geranyloxyhexyanol, hexadecylglycerol, borneol, menthol, 1,3-propanediol, heptadecyl group, palmitic acid, myristic acid, O3-(oleoyl)lithocholic acid, O3-(oleoyl)cholenic acid, dimethoxytrityl, or phenoxazine.


103. The dsRNA agent of embodiment 102, wherein the lipophilic moiety contains a saturated or unsaturated C4-C30 hydrocarbon chain, and an optional functional group selected from the group consisting of hydroxyl, amine, carboxylic acid, sulfonate, phosphate, thiol, azide, and alkyne.


104. The dsRNA agent of embodiment 103, wherein the lipophilic moiety contains a saturated or unsaturated C6-C18 hydrocarbon chain.


105. The dsRNA agent of embodiment 103, wherein the lipophilic moiety contains a saturated or unsaturated C16 hydrocarbon chain.


106. The dsRNA agent of any one of embodiments 47-105, wherein the lipophilic moiety is conjugated via a carrier that replaces one or more nucleotide(s) in the internal position(s) or the double stranded region.


107. The dsRNA agent of embodiment 106, wherein the carrier is a cyclic group selected from the group consisting of pyrrolidinyl, pyrazolinyl, pyrazolidinyl, imidazolinyl, imidazolidinyl, piperidinyl, piperazinyl, [1,3]dioxolanyl, oxazolidinyl, isoxazolidinyl, morpholinyl, thiazolidinyl, isothiazolidinyl, quinoxalinyl, pyridazinonyl, tetrahydrofuranyl, and decalinyl; or is an acyclic moiety based on a serinol backbone or a diethanolamine backbone.


108. The dsRNA agent of any one of embodiments 47-105, wherein the lipophilic moiety is conjugated to the double-stranded iRNA agent via a linker containing an ether, thioether, urea, carbonate, amine, amide, maleimide-thioether, disulfide, phosphodiester, sulfonamide linkage, a product of a click reaction, or carbamate.


109. The double-stranded iRNA agent of any one of embodiments 47-108, wherein the lipophilic moiety is conjugated to a nucleobase, sugar moiety, or internucleosidic linkage.


110. The dsRNA agent of any one of embodiments 47-109, wherein the lipophilic moiety or targeting ligand is conjugated via a bio-cleavable linker selected from the group consisting of DNA, RNA, disulfide, amide, functionalized monosaccharides or oligosaccharides of galactosamine, glucosamine, glucose, galactose, mannose, and combinations thereof.


111. The dsRNA agent of any one of embodiments 47-110, wherein the 3′ end of the sense strand is protected via an end cap which is a cyclic group having an amine, said cyclic group being selected from the group consisting of pyrrolidinyl, pyrazolinyl, pyrazolidinyl, imidazolinyl, imidazolidinyl, piperidinyl, piperazinyl, [1,3]dioxolanyl, oxazolidinyl, isoxazolidinyl, morpholinyl, thiazolidinyl, isothiazolidinyl, quinoxalinyl, pyridazinonyl, tetrahydrofuranyl, and decalinyl.


112. The dsRNA agent of any one of embodiments 47-111, further comprising a targeting ligand, e.g., a ligand that targets a CNS tissue or a liver tissue.


113. The dsRNA agent of embodiment 112, wherein the CNS tissue is a brain tissue or a spinal tissue.


114. The dsRNA agent of embodiment 112, wherein the targeting ligand is a GalNAc conjugate.


115. The dsRNA agent of any one of embodiments 1-114, further comprising a terminal, chiral modification occurring at the first internucleotide linkage at the 3′ end of the antisense strand, having the linkage phosphorus atom in Sp configuration,


a terminal, chiral modification occurring at the first internucleotide linkage at the 5′ end of the antisense strand, having the linkage phosphorus atom in Rp configuration, and


a terminal, chiral modification occurring at the first internucleotide linkage at the 5′ end of the sense strand, having the linkage phosphorus atom in either Rp configuration or Sp configuration.


116. The dsRNA agent of any one of embodiments 1-114, further comprising


a terminal, chiral modification occurring at the first and second internucleotide linkages at the 3′ end of the antisense strand, having the linkage phosphorus atom in Sp configuration,


a terminal, chiral modification occurring at the first internucleotide linkage at the 5′ end of the antisense strand, having the linkage phosphorus atom in Rp configuration, and


a terminal, chiral modification occurring at the first internucleotide linkage at the 5′ end of the sense strand, having the linkage phosphorus atom in either Rp or Sp configuration.


117. The dsRNA agent of any one of embodiments 1-114, further comprising


a terminal, chiral modification occurring at the first, second and third internucleotide linkages at the 3′ end of the antisense strand, having the linkage phosphorus atom in Sp configuration,


a terminal, chiral modification occurring at the first internucleotide linkage at the 5′ end of the antisense strand, having the linkage phosphorus atom in Rp configuration, and


a terminal, chiral modification occurring at the first internucleotide linkage at the 5′ end of the sense strand, having the linkage phosphorus atom in either Rp or Sp configuration.


118. The dsRNA agent of any one of embodiments 1-114, further comprising


a terminal, chiral modification occurring at the first, and second internucleotide linkages at the 3′ end of the antisense strand, having the linkage phosphorus atom in Sp configuration,


a terminal, chiral modification occurring at the third internucleotide linkages at the 3′ end of the antisense strand, having the linkage phosphorus atom in Rp configuration,


a terminal, chiral modification occurring at the first internucleotide linkage at the 5′ end of the antisense strand, having the linkage phosphorus atom in Rp configuration, and


a terminal, chiral modification occurring at the first internucleotide linkage at the 5′ end of the sense strand, having the linkage phosphorus atom in either Rp or Sp configuration.


119. The dsRNA agent of any one of embodiments 1-114, further comprising


a terminal, chiral modification occurring at the first, and second internucleotide linkages at the 3′ end of the antisense strand, having the linkage phosphorus atom in Sp configuration,


a terminal, chiral modification occurring at the first, and second internucleotide linkages at the 5′ end of the antisense strand, having the linkage phosphorus atom in Rp configuration, and


a terminal, chiral modification occurring at the first internucleotide linkage at the 5′ end of the sense strand, having the linkage phosphorus atom in either Rp or Sp configuration.


120. The dsRNA agent of any one of embodiments 1-119, further comprising a phosphate or phosphate mimic at the 5′-end of the antisense strand.


121. The dsRNA agent of embodiment 120, wherein the phosphate mimic is a 5′-vinyl phosphonate (VP).


122. A cell containing the dsRNA agent of any one of embodiments 1-121.


123. A human peripheral sensory neuron, e.g., (a peripheral sensory neuron in a dorsal root ganglion, or a nociceptive neuron, e.g., an A-delta fiber or a C-type fiber) comprising a reduced level of SCN9A mRNA or a level of SCN9A protein as compared to an otherwise similar untreated peripheral sensory neuron, wherein optionally the level is reduced by at least 10%, 15%, 20%, 25%, 30%, 35%, 40%, 45%, 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, or 95%.


124. The human peripheral sensory neuron of embodiment 123, which was produced by a process comprising contacting a peripheral sensory neuron with the dsRNA agent of any one of embodiments 1-121.


125. A pharmaceutical composition for inhibiting expression of SCN9A, comprising the dsRNA agent of any one of embodiments 1-121.


126. A pharmaceutical composition comprising the dsRNA agent of any one of embodiments 1-121 and a lipid formulation.


127. A method of inhibiting expression of SCN9A in a cell, the method comprising:


(a) contacting the cell with the dsRNA agent of any one of embodiments 1-121, or a pharmaceutical composition of embodiment 125 or 126; and


(b) maintaining the cell produced in step (a) for a time sufficient to obtain degradation of the mRNA transcript of SCN9A thereby inhibiting expression of SCN9A in the cell.


128. A method of inhibiting expression of SCN9A in a cell, the method comprising:


(a) contacting the cell with the dsRNA agent of any one of embodiments 1-121, or a pharmaceutical composition of embodiment 125 or 126; and


(b) maintaining the cell produced in step (a) for a time sufficient to reduce levels of SCN9A mRNA, SCN9A protein, or both of SCN9A mRNA and protein, thereby inhibiting expression of SCN9A in the cell.


129. The method of embodiment 127 or 128, wherein the cell is within a subject.


130. The method of embodiment 129, wherein the subject is a human.


131. The method of any one of embodiments 127-130, wherein the level of SCN9A mRNA is inhibited by at least 50%.


132. The method of any one of embodiments 127-130, wherein the level of SCN9A protein is inhibited by at least 50%.


133. The method of embodiment 130-132, wherein inhibiting expression of SCN9A decreases a SCN9A protein level in a biological sample (e.g., a a cerebral spinal fluid (CSF) sample, or a CNS biopsy sample) from the subject by at least 30%, 40%, 50%, 60%, 70%, 80%, 90%, or 95%.


134. The method of any one of embodiments 130-133, wherein the subject has been diagnosed with a SCN9A-associated disorder, e.g., pain, e.g., chronic pain e.g., inflammatory pain, neuropathic pain, pain hypersensitivity, pain hyposensitivity, inability to sense pain, primary erythromelalgia (PE), paroxysmal extreme pain disorder (PEPD), small fiber neuropathy (SFN), trigeminal neuralgia (TN), and pain associated with, e.g., cancer, arthritis, diabetes, traumatic injury and viral infections.


135. A method of inhibiting expression of SCN9A in an neuronal cell or tissue, the method comprising:


(a) contacting the cell or tissue with a dsRNA agent that binds SCN9A; and


(b) maintaining the cell or tissue produced in step (a) for a time sufficient to reduce levels of SCN9A mRNA, SCN9A protein, or both of SCN9A mRNA and protein, thereby inhibiting expression of SCN9A in the cell or tissue.


136. The method of embodiment 135, wherein the neuronal cell or tissue comprises a peripheral sensory neuron, e.g., a peripheral sensory neuron in a dorsal root ganglion, or a nociceptive neuron, e.g., an A-delta fiber or a C-type fiber.


137. A method of treating a subject having or diagnosed with having a SCN9A-associated disorder comprising administering to the subject a therapeutically effective amount of the dsRNA agent of any one of embodiments 1-121 or a pharmaceutical composition of embodiment 125 or 126, thereby treating the disorder.


138. The method of embodiment 134 or 137, wherein the SCN9A-associated disorder is pain, e.g., chronic pain.


139. The method of embodiment 138, wherein the chronic pain is associated with one or more of the disorders in the group consisting of pain hypersensitivity, pain hyposensitivity, inability to sense pain, primary erythromelalgia (PE), paroxysmal extreme pain disorder (PEPD), small fiber neuropathy (SFN), trigeminal neuralgia (TN), or pain associated with, e.g., cancer, arthritis, diabetes, traumatic injury or viral infections.


140. The method of any one of embodiments 137-139, wherein treating comprises amelioration of at least one sign or symptom of the disorder.


141. The method of embodiment 140, wherein at least one sign or symptom of pain, e.g., chronic pain comprises a measure of one or more of pain sensitivity, pain threshold, pain level, pain disability level presence, level, or activity of SCN9A (e.g., SCN9A gene, SCN9A mRNA, or SCN9A protein).


142. The method of any one of embodiments 137-139, where treating comprises prevention of progression of the disorder.


143. The method of any one of embodiments 137-142, wherein the treating comprises one or more of (a) reducing pain; or (b) inhibiting or reducing the expression or activity of SCN9A.


144. The method of embodiment 143, wherein the treating results in at least a 30% mean reduction from baseline of SCN9A mRNA in the dorsal root ganglion.


145. The method of embodiment 144, wherein the treating results in at least a 60% mean reduction from baseline of SCN9A mRNA in dorsal root ganglion.


146. The method of embodiment 145, wherein the treating results in at least a 90% mean reduction from baseline of SCN9 mRNA in the dorsal root ganglion.


147. The method of any one of embodiments 137-146, wherein after treatment the subject experiences at least an 8-week duration of knockdown following a single dose of dsRNA as assessed by SCN9A protein in a cerebral spinal fluid (CSF) sample or a CNS biopsy sample.


148. The method of embodiment 147, wherein treating results in at least a 12-week duration of knockdown following a single dose of dsRNA as assessed by SCN9A protein in a cerebral spinal fluid (CSF) sample or a CNS biopsy sample.


149. The method of embodiment 148, wherein treating results in at least a 16-week duration of knockdown following a single dose of dsRNA as assessed by SCN9A protein in a cerebral spinal fluid (CSF) sample or a CNS biopsy sample.


150. The method of any of embodiments 129-149, wherein the subject is human.


151. The method of any one of embodiments 130-150, wherein the dsRNA agent is administered at a dose of about 0.01 mg/kg to about 50 mg/kg.


152. The method of any one of embodiments 130-151, wherein the dsRNA agent is administered to the subject intracranially or intrathecally,


153. The method of any one of embodiments 130-151, wherein the dsRNA agent is administered to the subject intrathecally, intraventricularly, or intracerebrally.


154. The method of any one of embodiments 130-153, further comprising measuring level of SCN9A (e.g., SCN9A gene, SCN9A mRNA, or SCN9A protein) in the subject.


155. The method of embodiment 154, where measuring the level of SCN9A in the subject comprises measuring the level of SCN9A gene, SCN9A protein or SCN9A mRNA in a biological sample from the subject (e.g., a cerebral spinal fluid (CSF) sample or a CNS biopsy sample).


156. The method of any one of embodiments 130-155, further comprising performing a blood test, an imaging test, a CNS biopsy sample, or an aqueous cerebral spinal fluid biopsy.


157. The method of any one of embodiments 154-156, wherein measuring level of SCN9A (e.g., SCN9A gene, SCN9A mRNA, or SCN9A protein) in the subject is performed prior to treatment with the dsRNA agent or the pharmaceutical composition.


158. The method of embodiment 157, wherein, upon determination that a subject has a level of SCN9A (e.g., SCN9A gene, SCN9A mRNA, or SCN9A protein) that is greater than a reference level, the dsRNA agent or the pharmaceutical composition is administered to the subject.


159. The method of any one of embodiments 155-158, wherein measuring level of SCN9A (e.g., SCN9A gene, SCN9A mRNA, or SCN9A protein) in the subject is performed after treatment with the dsRNA agent or the pharmaceutical composition.


160. The method of any one of embodiments 137-159, further comprising administering to the subject an additional agent and/or therapy suitable for treatment or prevention of an SCN9A-associated disorder.


161. The method of embodiment 160, wherein the additional agent and/or therapy comprises one or more of a non-steroidal anti-inflammatory drugs (NSAIDs), acetaminophen, opioids, or corticosteroids, acupuncture, therapeutic massage, dorsal root ganglion stimulation, spinal cord stimulation, or topical pain relievers.


EXAMPLES
Example 1. SCN9A siRNA

Nucleic acid sequences provided herein are represented using standard nomenclature. See the abbreviations of Table 1.









TABLE 1







Abbreviations of nucleotide monomers used in nucleic acid sequence representation


It will be understood that these monomers, when present in an oligonucleotide, are mutually linked by 5′-3′-phosphodiester bonds; and


it is understood that when the nucleotide contains a 2′-fluoro modification, then the fluoro replaces the hydroxy at that position


in the parent nucleotide (i.e., it is a 2′-deoxy-2′-fluoronucleotide). . .








Abbreviation
Nucleotide(s)





A
Adenosine-3′-phosphate


Ab
beta-L-adenosine-3′-phosphate


Abs
beta-L-adenosine-3′-phosphorothioate


Af
2′-fluoroadenosine-3′-phosphate


Afs
2′-fluoroadenosine-3′-phosphorothioate


(Ahd)
2′-O-hexadecyl-adenosine-3′-phosphate


(Ahds)
2′-O-hexadecyl-adenosine-3′-phosphorothioate


As
adenosine-3′-phosphorothioate


(A2p)
adenosine 2′-phosphate


C
cytidine-3′-phosphate


Cb
beta-L-cytidine-3′-phosphate


Cbs
beta-L-cytidine-3′-phosphorothioate


Cf
2′-fluorocytidine-3′-phosphate


Cfs
2′-fluorocytidine-3′-phosphorothioate


(Chd)
2′-O-hexadecyl-cytidine-3′-phosphate


(Chds)
2′-O-hexadecyl-cytidine-3′-phosphorothioate


Cs
cytidine-3′-phosphorothioate


(C2p)
cytosine 2′-phosphate


G
guanosine-3′-phosphate


Gb
beta-L-guanosine-3′-phosphate


Gbs
beta-L-guanosine-3′-phosphorothioate


Gf
2′-fluoroguanosine-3′-phosphate


Gfs
2′-fluoroguanosine-3′-phosphorothioate


(Ghd)
2′-O-hexadecyl-guanosine-3′-phosphate


(Ghds)
2′-O-hexadecyl-guanosine-3′-phosphorothioate


Gs
guanosine-3′-phosphorothioate


(G2p)
guanosine 2′-phosphate


T
5′-methyluridine-3′-phosphate


Tb
beta-L-thymidine-3′-phosphate


Tbs
beta-L-thymidine-3′-phosphorothioate


Tf
2′-fluoro-5-methyluridine-3′-phosphate


Tfs
2′-fluoro-5-methyluridine-3′-phosphorothioate


Tgn
thymidine-glycol nucleic acid (GNA) S-Isomer


Agn
adenosine-glycol nucleic acid (GNA) S-Isomer


Cgn
cytidine-glycol nucleic acid (GNA) S-Isomer


Ggn
guanosine-glycol nucleic acid (GNA) S-Isomer


Ts
5-methyluridine-3′-phosphorothioate


(T2p)
thymidine 2′-phosphate


U
Uridine-3′-phosphate


Ub
beta-L-uridine-3′-phosphate


Ubs
beta-L-uridine-3′-phosphorothioate


Uf
2′-fluorouridine-3′-phosphate


Ufs
2′-fluorouridine -3′-phosphorothioate


(Uhd)
2′-O-hexadecyl-uridine-3′-phosphate


(Uhds)
2′-O-hexadecyl-uridine-3′-phosphorothioate


Us
uridine -3′-phosphorothioate


(U2p)
uracil 2′-phosphate


N
any nucleotide (G, A, C, T or U)


VP
Vinyl phosphonate


a
2′-O-methyladenosine-3′-phosphate


as
2′-O-methyladenosine-3′-phosphorothioate


c
2′-O-methylcytidine-3′-phosphate


cs
2′-O-methylcytidine-3′-phosphorothioate


g
2′-O-methylguanosine-3′-phosphate


gs
2′-O-methylguanosine-3′-phosphorothioate


t
2′-O-methyl-5-methyluridine-3′-phosphate


ts
2′-O-methyl-5-methyluridine-3′-phosphorothioate


u
2′-O-methyluridine-3′-phosphate


us
2′-O-methyluridine-3′-phosphorothioate


dA
2′-deoxyadenosine-3′-phosphate


dAs
2′-deoxyadenosine-3′-phosphorothioate


dC
2′-deoxycytidine-3′-phosphate


dCs
2′-deoxycytidine-3′-phosphorothioate


dG
2′-deoxyguanosine-3′-phosphate


dGs
2′-deoxyguanosine-3′-phosphorothioate


dT
2′-deoxythymidine


dTs
2′-deoxythymidine-3′-phosphorothioate


dU
2′-deoxyuridine


s
phosphorothioate linkage


L961
N-[tris(GalNAc-alkyl)-amidodecanoyl)]-4-hydroxyprolinol Hyp-(GalNAc-alkyl)3


(Aeo)
2′-O-methoxyethyladenosine-3′-phosphate


(Aeos)
2′-O-methoxyethyladenosine-3′-phosphorothioate


(Geo)
2′-O-methoxyethylguanosine-3′-phosphate


(Geos)
2′-O-methoxyethylguanosine-3′-phosphorothioate


(Teo)
2′-O-methoxyethyl-5-methyluridine-3′-phosphate


(Teos)
2′-O-methoxyethyl-5-methyluridine-3′-phosphorothioate


(m5Ceo)
2′-O-methoxyethyl-5-methylcytidine-3′-phosphate


(m5Ceos)
2′-O-methoxyethyl-5-methylcytidine-3′-phosphorothioate






1The chemical structure of L96 is as follows:





embedded image








Experimental Methods
Bioinformatics

Transcripts


A set of siRNAs targeting the human SCN9A, “sodium channel, voltage gated, type IX alpha subunit” (human NCBI refseqID NM_002977.3; NCBI GeneID: 6335 or human: NCBI refseqID NM_001365536.1; NCBI GeneID: 6335) were generated. The human NM_002977.3 REFSEQ mRNA, has a length of 9771 bases. The human NM_001365536.1 REFSEQ mRNA, has a length of 9752 bases. Pairs of oligos were generated using bioinformatic methods and ranked, and exemplary pairs of oligos are shown in Table 2A, Table 2B, Table 4A, Table 4B, Table 5A, Table 5B, Table 6A, Table 6B, Table 13A, Table 13B, Table 14A, Table 14B, Table 15A, Table 15B, and Table 16. Modified sequences are presented in Table 2A, Table 4A, Table 5A, Table 6A, Table 13A, Table 14A, Table 15A, and Table 16. Unmodified sequences are presented in Table 2B, Table 4B, Table 5B, Table 6B, Table 13B, Table 14B, and Table 15B. The target mRNA source for each exemplary set of duplexes is in Tables 2A, 2B, 4A, 4B, 5A, 5B, 6A, 6B, 13A, 13B, 14A, 14B, 15A, 15B, and 16 are denoted in the tables. The number following the decimal point in a duplex name as indicated in the tables merely refers to a batch production number.









TABLE 2A







Exemplary Human SCN9A siRNA Modified Single Strands and Duplex Sequences


Column 1 indicates duplex name. Column 2 indicates the name of the sense sequence. Column 3 indicates the sequence ID for the sequence of


column 4. Column 4 provides the modified sequence of a sense strand suitable for use in a duplex described herein. Column 5 indicates the


antisense sequence name. Column 6 indicates the sequence ID for the sequence of column 7. Column 7 provides the sequence of a modified


antisense strand suitable for use in a duplex described herein, e.g., a duplex comprising the sense sequence in the same row of the table.


Column 8 indicates the position in the target mRNA (NM_002977.3) that is complementary to the antisense strand of Column 7. Column9 


indicated the sequence ID for the sequence of column 8.
















Sense
Seq ID

Antisense
Seq ID

mRNA target



Duplex
sequence
NO:
Sense sequence
sequence
NO:
Antisense sequence
sequence in
Seq ID NO:


Name
name
(sense)
(5′-3′)
name
(antisense)
(5′-3′)
NM_002977.3
(mRNA target)


















AD-
A-
3
UCACAAAACAGU
A-1683739.1
4
GCAAGAGACUGUUU
UCACAAAACAGUCUC
3039


887232
1683738.

CUCUUGCdTdT


UGUGAdTdT
UUGC




1












AD-
A-
5
GGAAAACAAUCU
A-1683741.1
6
AAACGGAAGAUUGU
GGAAAACAAUCUUCC
3040


887233
1683740.

UCCGUUUdTdT


UUUCCdTdT
GUUU




1












AD-
A-
7
GAAAACAAUCUU
A-1683743.1
8
GAAACGGAAGAUUG
GAAAACAAUCUUCCG
3041


887234
1683742.

CCGUUUCdTdT


UUUUCdTdT
UUUC




1












AD-
A-
9
AAAACAAUCUUC
A-1683745.1
10
UGAAACGGAAGAUU
AAAACAAUCUUCCGU
3042


887235
1683744.

CGUUUCAdTdT


GUUUUdTdT
UUCA




1












AD-
A-
11
AAACAAUCUUCC
A-1683747.1
12
UUGAAACGGAAGAU
AAACAAUCUUCCGUU
3043


887236
1683746.

GUUUCAAdTdT


UGUUUdTdT
UCAA




1












AD-
A-
13
AACAAUCUUCCG
A-1683749.1
14
AUUGAAACGGAAGA
AACAAUCUUCCGUUU
3044


887237
1683748.

UUUCAAUdTdT


UUGUUdTdT
CAAU




1












AD-
A-
15
CAAUCUUCCGUU
A-1683751.1
16
GCAUUGAAACGGAA
CAAUCUUCCGUUUCA
3045


887238
1683750.

UCAAUGCdTdT


GAUUGdTdT
AUGC




1












AD-
A-
17
CCUGCUUUAUAU
A-1683753.1
18
AAAGCAUAUAUAAA
CCUGCUUUAUAUAUG
3046


887239
1683752.

AUGCUUUdTdT


GCAGGdTdT
CUUU




1












AD-
A-
19
CUGCUUUAUAUA
A-1683755.1
20
GAAAGCAUAUAUAA
CUGCUUUAUAUAUGC
3047


887240
1683754.

UGCUUUCdTdT


AGCAGdTdT
UUUC




1












AD-
A-
21
UAUGCUUUCUCC
A-1683757.1
22
ACUGAAAGGAGAAA
UAUGCUUUCUCCUUU
3048


887241
1683756.

UUUCAGUdTdT


GCAUAdTdT
CAGU




1












AD-
A-
23
AUGCUUUCUCCU
A-1683759.1
24
GACUGAAAGGAGAA
AUGCUUUCUCCUUUC
3049


887242
1683758.

UUCAGUCdTdT


AGCAUdTdT
AGUC




1












AD-
A-
25
UGCUUUCUCCUU
A-1683761.1
26
GGACUGAAAGGAGA
UGCUUUCUCCUUUCA
3050


887243
1683760.

UCAGUCCdTdT


AAGCAdTdT
GUCC




1












AD-
A-
27
cuuucuccuuuc
A-1683763.1
28
GAGGACUGAAAGGA
CUUUCUCCUUUCAGU
3051


887244
1683762.

AGUCCUCdTdT


GAAAGdTdT
CCUC




1












AD-
A-
29
UCUCCUUUCAGU
A-1683765.1
30
UUAGAGGACUGAAA
UCUCCUUUCAGUCCU
3052


887245
1683764.

CCUCUAAdTdT


GGAGAdTdT
CUAA




1












AD-
A-
31
CUCCUUUCAGUC
A-1683767.1
32
CUUAGAGGACUGAA
CUCCUUUCAGUCCUC
3053


887246
1683766.

CUCUAAGdTdT


AGGAGdTdT
UAAG




1












AD-
A-
33
UCCUUUCAGUCC
A-1683769.1
34
UCUUAGAGGACUGA
UCCUUUCAGUCCUCU
3054


887247
1683768.

UCUAAGAdTdT


AAGGAdTdT
AAGA




1












AD-
A-
35
CCUUUCAGUCCU
A-1683771.1
36
UUCUUAGAGGACUG
CCUUUCAGUCCUCUA
3055


887248
1683770.

CUAAGAAdTdT


AAAGGdTdT
AGAA




1












AD-
A-
37
CUUUCAGUCCUC
A-1683773.1
38
CUUCUUAGAGGACU
CUUUCAGUCCUCUAA
3056


887249
1683772.

UAAGAAGdTdT


GAAAGdTdT
GAAG




1












AD-
A-
39
AGUCCUCUAAGA
A-1683775.1
40
AUAUUCUUCUUAGA
AGUCCUCUAAGAAGA
3057


887250
1683774.

AGAAUAUdTdT


GGACUdTdT
AUAU




1












AD-
A-
41
UCCUCUAAGAAG
A-1683777.1
42
AGAUAUUCUUCUUA
UCCUCUAAGAAGAAU
3058


887251
1683776.

AAUAUCUdTdT


GAGGAdTdT
AUCU




1












AD-
A-
43
CCUCUAAGAAGA
A-1683779.1
44
UAGAUAUUCUUCUU
CCUCUAAGAAGAAUA
3059


887252
1683778.

AUAUCUAdTdT


AGAGGdTdT
UCUA




1












AD-
A-
45
CUCUAAGAAGAA
A-1683781.1
46
AUAGAUAUUCUUCU
CUCUAAGAAGAAUAU
3060


887253
1683780.

UAUCUAUdTdT


UAGAGdTdT
CUAU




1












AD-
A-
47
AUUUUAGUACAC
A-1683783.1
48
AUAAGGAGUGUACU
AUUUUAGUACACUCC
3061


887254
1683782.

UCCUUAUdTdT


AAAAUdTdT
UUAU




1












AD-
A-
49
UAGUACACUCCU
A-1683785.1
50
CUGAAUAAGGAGUG
UAGUACACUCCUUAU
3062


887255
1683784.

UAUUCAGdTdT


UACUAdTdT
UCAG




1












AD-
A-
51
AGUACACUCCUU
A-1683787.1
52
GCUGAAUAAGGAGU
AGUACACUCCUUAUU
3063


887256
1683786.

AUUCAGCdTdT


GUACUdTdT
CAGC




1












AD-
A-
53
CCUUAUUCAGCA
A-1683789.1
54
AUGAGCAUGCUGAA
CCUUAUUCAGCAUGC
3064


887257
1683788.

UGCUCAUdTdT


UAAGGdTdT
UCAU




1












AD-
A-
55
UCAUCAUGUGCA
A-1683791.1
56
AGAAUAGUGCACAU
UCAUCAUGUGCACUA
3065


887258
1683790.

CUAUUCUdTdT


GAUGAdTdT
UUCU




1












AD-
A-
57
CAUCAUGUGCAC
A-1683793.1
58
CAGAAUAGUGCACAU
CAUCAUGUGCACUAU
3066


887259
1683792.

UAUUCUGdTdT


GAUGdTdT
UCUG




1












AD-
A-
59
UGUCGAGUACAC
A-1683795.1
60
AGUAAAAGUGUACU
UGUCGAGUACACUUU
3067


887260
1683794.

UUUUACUdTdT


CGACAdTdT
UACU




1












AD-
A-
61
GUCGAGUACACU
A-1683797.1
62
CAGUAAAAGUGUAC
GUCGAGUACACUUUU
3068


887261
1683796.

UUUACUGdTdT


UCGACdTdT
ACUG




1












AD-
A-
63
CUUCUGUGUAG
A-1683799.1
64
GAAUUCUCCUACACA
CUUCUGUGUAGGAGA
3069


887262
1683798.

GAGAAUUCdTdT


GAAGdTdT
AUUC




1












AD-
A-
65
UAGGAGAAUUCA
A-1683801.1
66
AGAAAAGUGAAUUC
UAGGAGAAUUCACUU
3070


887263
1683800.

CUUUUCUdTdT


UCCUAdTdT
UUCU




1












AD-
A-
67
AGGAGAAUUCAC
A-1683803.1
68
AAGAAAAGUGAAUU
AGGAGAAUUCACUUU
3071


887264
1683802.

UUUUCUUdTdT


CUCCUdTdT
UCUU




1












AD-
A-
69
GGAGAAUUCACU
A-1683805.1
70
GAAGAAAAGUGAAU
GGAGAAUUCACUUUU
3072


887265
1683804.

UUUCUUCdTdT


UCUCCdTdT
CUUC




1












AD-
A-
71
GGCAAUGUUUCA
A-1683807.1
72
GAAGAGCUGAAACA
GGCAAUGUUUCAGCU
3073


887266
1683806.

GCUCUUCdTdT


UUGCCdTdT
CUUC




1












AD-
A-
73
AAUGUUUCAGCU
A-1683809.1
74
UUCGAAGAGCUGAA
AAUGUUUCAGCUCUU
3074


887267
1683808.

CUUCGAAdTdT


ACAUUdTdT
CGAA




1












AD-
A-
75
GUUUCAGCUCUU
A-1683811.1
76
AAGUUCGAAGAGCU
GUUUCAGCUCUUCGA
3075


887268
1683810.

CGAACUUdTdT


GAAACdTdT
ACUU




1












AD-
A-
77
UCAGCUCUUCGA
A-1683813.1
78
UGAAAGUUCGAAGA
UCAGCUCUUCGAACU
3076


887269
1683812.

ACUUUCAdTdT


GCUGAdTdT
UUCA




1












AD-
A-
79
AGCUCUUCGAAC
A-1683815.1
80
UCUGAAAGUUCGAA
AGCUCUUCGAACUUU
3077


887270
1683814.

UUUCAGAdTdT


GAGCUdTdT
CAGA




1












AD-
A-
81
CUCUUCGAACUU
A-1683817.1
82
ACUCUGAAAGUUCG
CUCUUCGAACUUUCA
3078


887271
1683816.

UCAGAGUdTdT


AAGAGdTdT
GAGU




1












AD-
A-
83
CUUCGAACUUUC
A-1683819.1
84
AUACUCUGAAAGUU
CUUCGAACUUUCAGA
3079


887272
1683818.

AGAGUAUdTdT


CGAAGdTdT
GUAU




1












AD-
A-
85
UCCUGACUGUGU
A-1683821.1
86
AGACAGAACACAGUC
UCCUGACUGUGUUCU
3080


887273
1683820.

UCUGUCUdTdT


AGGAdTdT
GUCU




1












AD-
A-
87
CUGACUGUGUUC
A-1683823.1
88
UCAGACAGAACACAG
CUGACUGUGUUCUGU
3081


887274
1683822.

UGUCUGAdTdT


UCAGdTdT
CUGA




1












AD-
A-
89
UGACUGUGUUC
A-1683825.1
90
CUCAGACAGAACACA
UGACUGUGUUCUGUC
3082


887275
1683824.

UGUCUGAGdTdT


GUCAdTdT
UGAG




1












AD-
A-
91
GACUGUGUUCU
A-1683827.1
92
ACUCAGACAGAACAC
GACUGUGUUCUGUCU
3083


887276
1683826.

GUCUGAGUdTdT


AGUCdTdT
GAGU




1












AD-
A-
93
ACUGUGUUCUG
A-1683829.1
94
CACUCAGACAGAACA
ACUGUGUUCUGUCUG
3084


887277
1683828.

UCUGAGUGdTdT


CAGUdTdT
AGUG




1












AD-
A-
95
CUGUGUUCUGUC
A-1683831.1
96
ACACUCAGACAGAAC
CUGUGUUCUGUCUGA
3085


887278
1683830.

UGAGUGUdTdT


ACAGdTdT
GUGU




1












AD-
A-
97
UGUGUUCUGUC
A-1683833.1
98
CACACUCAGACAGAA
UGUGUUCUGUCUGA
3086


887279
1683832.

UGAGUGUGdTdT


CACAdTdT
GUGUG




1












AD-
A-
99
UGUUCUGUCUG
A-1683835.1
100
AACACACUCAGACAG
UGUUCUGUCUGAGU
3087


887280
1683834.

AGUGUGUUdTdT


AACAdTdT
GUGUU




1












AD-
A-
101
GUUCUGUCUGA
A-1683837.1
102
AAACACACUCAGACA
GUUCUGUCUGAGUG
3088


887281
1683836.

GUGUGUUUdTdT


GAACdTdT
UGUUU




1












AD-
A-
103
UUCUGUCUGAG
A-1683839.1
104
CAAACACACUCAGAC
UUCUGUCUGAGUGU
3089


887282
1683838.

UGUGUUUGdTdT


AGAAdTdT
GUUUG




1












AD-
A-
105
UCUGUCUGAGU
A-1683841.1
106
GCAAACACACUCAGA
UCUGUCUGAGUGUG
3090


887283
1683840.

GUGUUUGCdTdT


CAGAdTdT
UUUGC




1












AD-
A-
107
UGCUCUCCUUUG
A-1683843.1
108
GAAACCACAAAGGAG
UGCUCUCCUUUGUGG
3091


887284
1683842.

UGGUUUCdTdT


AGCAdTdT
UUUC




1












AD-
A-
109
CUCUCCUUUGUG
A-1683845.1
110
CUGAAACCACAAAGG
CUCUCCUUUGUGGUU
3092


887285
1683844.

GUUUCAGdTdT


AGAGdTdT
UCAG




1












AD-
A-
111
UCUCCUUUGUGG
A-1683847.1
112
GCUGAAACCACAAAG
UCUCCUUUGUGGUU
3093


887286
1683846.

UUUCAGCdTdT


GAGAdTdT
UCAGC




1












AD-
A-
113
CUCCUUUGUGGU
A-1683849.1
114
UGCUGAAACCACAAA
CUCCUUUGUGGUUUC
3094


887287
1683848.

UUCAGCAdTdT


GGAGdTdT
AGCA




1












AD-
A-
115
CGAGCUUUGACA
A-1683851.1
116
CUGAAAGUGUCAAA
CGAGCUUUGACACUU
3095


887288
1683850.

CUUUCAGdTdT


GCUCGdTdT
UCAG




1












AD-
A-
117
ACAUGAUCUUCU
A-1683853.1
118
ACGACAAAGAAGAUC
ACAUGAUCUUCUUUG
3096


887289
1683852.

UUGUCGUdTdT


AUGUdTdT
UCGU




1












AD-
A-
119
CAUGAUCUUCUU
A-1683855.1
120
UACGACAAAGAAGAU
CAUGAUCUUCUUUGU
3097


887290
1683854.

UGUCGUAdTdT


CAUGdTdT
CGUA




1












AD-
A-
121
GAUCUUCUUUG
A-1683857.1
122
CACUACGACAAAGAA
GAUCUUCUUUGUCGU
3098


887291
1683856.

UCGUAGUGdTdT


GAUCdTdT
AGUG




1












AD-
A-
123
UCUUCUUUGUCG
A-1683859.1
124
AUCACUACGACAAAG
UCUUCUUUGUCGUAG
3099


887292
1683858.

UAGUGAUdTdT


AAGAdTdT
UGAU




1












AD-
A-
125
CUUCUUUGUCGU
A-1683861.1
126
AAUCACUACGACAAA
CUUCUUUGUCGUAGU
3100


887293
1683860.

AGUGAUUdTdT


GAAGdTdT
GAUU




1












AD-
A-
127
UUGUCGUAGUG
A-1683863.1
128
AGGAAAAUCACUACG
UUGUCGUAGUGAUU
3101


887294
1683862.

AUUUUCCUdTdT


ACAAdTdT
UUCCU




1












AD-
A-
129
GCUCCUUUUAUC
A-1683865.1
130
UUUAUUAGAUAAAA
GCUCCUUUUAUCUAA
3102


887295
1683864.

UAAUAAAdTdT


GGAGCdTdT
UAAA




1












AD-
A-
131
CUCCUUUUAUCU
A-1683867.1
132
GUUUAUUAGAUAAA
CUCCUUUUAUCUAAU
3103


887296
1683866.

AAUAAACdTdT


AGGAGdTdT
AAAC




1












AD-
A-
133
CCUCUCAGAGAG
A-1683869.1
134
AGAAGAACUCUCUGA
CCUCUCAGAGAGUUC
3104


887297
1683868.

UUCUUCUdTdT


GAGGdTdT
UUCU




1












AD-
A-
135
CUCUCAGAGAGU
A-1683871.1
136
CAGAAGAACUCUCUG
CUCUCAGAGAGUUCU
3105


887298
1683870.

UCUUCUGdTdT


AGAGdTdT
UCUG




1












AD-
A-
137
UCUCAGAGAGUU
A-1683873.1
138
UCAGAAGAACUCUCU
UCUCAGAGAGUUCUU
3106


887299
1683872.

CUUCUGAdTdT


GAGAdTdT
CUGA




1












AD-
A-
139
CUCAGAGAGUUC
A-1683875.1
140
UUCAGAAGAACUCUC
CUCAGAGAGUUCUUC
3107


887300
1683874.

UUCUGAAdTdT


UGAGdTdT
UGAA




1












AD-
A-
141
UCAGAGAGUUCU
A-1683877.1
142
UUUCAGAAGAACUC
UCAGAGAGUUCUUCU
3108


887301
1683876.

UCUGAAAdTdT


UCUGAdTdT
GAAA




1












AD-
A-
143
CAGAGAGUUCUU
A-1683879.1
144
GUUUCAGAAGAACU
CAGAGAGUUCUUCUG
3109


887302
1683878.

CUGAAACdTdT


CUCUGdTdT
AAAC




1












AD-
A-
145
GAGAGUUCUUCU
A-1683881.1
146
AUGUUUCAGAAGAA
GAGAGUUCUUCUGAA
3110


887303
1683880.

GAAACAUdTdT


CUCUCdTdT
ACAU




1












AD-
A-
147
AGAGUUCUUCUG
A-1683883.1
148
GAUGUUUCAGAAGA
AGAGUUCUUCUGAAA
3111


887304
1683882.

AAACAUCdTdT


ACUCUdTdT
CAUC




1












AD-
A-
149
GAGUUCUUCUGA
A-1683885.1
150
GGAUGUUUCAGAAG
GAGUUCUUCUGAAAC
3112


887305
1683884.

AACAUCCdTdT


AACUCdTdT
AUCC




1












AD-
A-
151
AGUUCUUCUGAA
A-1683887.1
152
UGGAUGUUUCAGAA
AGUUCUUCUGAAACA
3113


887306
1683886.

ACAUCCAdTdT


GAACUdTdT
UCCA




1












AD-
A-
153
GUUCUUCUGAAA
A-1683889.1
154
UUGGAUGUUUCAGA
GUUCUUCUGAAACAU
3114


887307
1683888.

CAUCCAAdTdT


AGAACdTdT
CCAA




1












AD-
A-
155
UCUUCUGAAACA
A-1683891.1
156
GUUUGGAUGUUUCA
UCUUCUGAAACAUCC
3115


887308
1683890.

UCCAAACdTdT


GAAGAdTdT
AAAC




1












AD-
A-
157
CUUCUGAAACAU
A-1683893.1
158
AGUUUGGAUGUUUC
CUUCUGAAACAUCCA
3116


887309
1683892.

CCAAACUdTdT


AGAAGdTdT
AACU




1












AD-
A-
159
UCUGAAACAUCC
A-1683895.1
160
UCAGUUUGGAUGUU
UCUGAAACAUCCAAA
3117


887310
1683894.

AAACUGAdTdT


UCAGAdTdT
CUGA




1












AD-
A-
161
UCCAAACUGAGC
A-1683897.1
162
UUUUAGAGCUCAGU
UCCAAACUGAGCUCU
3118


887311
1683896.

UCUAAAAdTdT


UUGGAdTdT
AAAA




1












AD-
A-
163
AGGCGUUGUAG
A-1683899.1
164
GAUAGGAACUACAAC
AGGCGUUGUAGUUCC
3119


887312
1683898.

UUCCUAUCdTdT


GCCUdTdT
UAUC




1












AD-
A-
165
GCGUUGUAGUU
A-1683901.1
166
GAGAUAGGAACUAC
GCGUUGUAGUUCCUA
3120


887313
1683900.

CCUAUCUCdTdT


AACGCdTdT
UCUC




1












AD-
A-
167
CGUUGUAGUUCC
A-1683903.1
168
GGAGAUAGGAACUA
CGUUGUAGUUCCUAU
3121


887314
1683902.

UAUCUCCdTdT


CAACGdTdT
CUCC




1












AD-
A-
169
GUUGUAGUUCC
A-1683905.1
170
AGGAGAUAGGAACU
GUUGUAGUUCCUAUC
3122


887315
1683904.

UAUCUCCUdTdT


ACAACdTdT
uccu




1












AD-
A-
171
UUGUAGUUCCUA
A-1683907.1
172
AAGGAGAUAGGAAC
UUGUAGUUCCUAUCU
3123


887316
1683906.

UCUCCUUdTdT


UACAAdTdT
CCUU




1












AD-
A-
173
UGUAGUUCCUAU
A-1683909.1
174
AAAGGAGAUAGGAA
UGUAGUUCCUAUCUC
3124


887317
1683908.

CUCCUUUdTdT


CUACAdTdT
CUUU




1












AD-
A-
175
GUAGUUCCUAUC
A-1683911.1
176
GAAAGGAGAUAGGA
GUAGUUCCUAUCUCC
3125


887318
1683910.

UCCUUUCdTdT


ACUACdTdT
UUUC




1












AD-
A-
177
UAGUUCCUAUCU
A-1683913.1
178
UGAAAGGAGAUAGG
UAGUUCCUAUCUCCU
3126


887319
1683912.

CCUUUCAdTdT


AACUAdTdT
UUCA




1












AD-
A-
179
AGUUCCUAUCUC
A-1683915.1
180
CUGAAAGGAGAUAG
AGUUCCUAUCUCCUU
3127


887320
1683914.

CUUUCAGdTdT


GAACUdTdT
UCAG




1












AD-
A-
181
GUUCCUAUCUCC
A-1683917.1
182
UCUGAAAGGAGAUA
GUUCCUAUCUCCUUU
3128


887321
1683916.

UUUCAGAdTdT


GGAACdTdT
CAGA




1












AD-
A-
183
UUCCUAUCUCCU
A-1683919.1
184
CUCUGAAAGGAGAU
UUCCUAUCUCCUUUC
3129


887322
1683918.

UUCAGAGdTdT


AGGAAdTdT
AGAG




1












AD-
A-
185
UCCUAUCUCCUU
A-1683921.1
186
CCUCUGAAAGGAGA
UCCUAUCUCCUUUCA
3130


887323
1683920.

UCAGAGGdTdT


UAGGAdTdT
GAGG




1












AD-
A-
187
UCUCCUUUCAGA
A-1683923.1
188
CAUAUCCUCUGAAAG
UCUCCUUUCAGAGGA
3131


887324
1683922.

GGAUAUGdTdT


GAGAdTdT
UAUG




1












AD-
A-
189
GCAUAUUAACAA
A-1683925.1
190
ACAGUGUUUGUUAA
GCAUAUUAACAAACA
3132


887325
1683924.

ACACUGUdTdT


UAUGCdTdT
CUGU




1












AD-
A-
191
CUUGAUCUGGAA
A-1683927.1
192
AGAGCAAUUCCAGAU
CUUGAUCUGGAAUUG
3133


887326
1683926.

UUGCUCUdTdT


CAAGdTdT
CUCU




1












AD-
A-
193
CUCUCCAUAUUG
A-1683929.1
194
UUUUAUCCAAUAUG
CUCUCCAUAUUGGAU
3134


887327
1683928.

GAUAAAAdTdT


GAGAGdTdT
AAAA




1












AD-
A-
195
UCUCCAUAUUGG
A-1683931.1
196
AUUUUAUCCAAUAU
UCUCCAUAUUGGAUA
3135


887328
1683930.

AUAAAAUdTdT


GGAGAdTdT
AAAU




1












AD-
A-
197
CUCCAUAUUGGA
A-1683933.1
198
AAUUUUAUCCAAUA
CUCCAUAUUGGAUAA
3136


887329
1683932.

UAAAAUUdTdT


UGGAGdTdT
AAUU




1












AD-
A-
199
GAUCUUGCAAUU
A-1683935.1
200
AAAUGGUAAUUGCA
GAUCUUGCAAUUACC
3137


887330
1683934.

ACCAUUUdTdT


AGAUCdTdT
AUUU




1












AD-
A-
201
UUGGUCUUUAC
A-1683937.1
202
AGAUUCCAGUAAAG
UUGGUCUUUACUGGA
3138


887331
1683936.

UGGAAUCUdTdT


ACCAAdTdT
AUCU




1












AD-
A-
203
GGUCUUUACUG
A-1683939.1
204
AAAGAUUCCAGUAAA
GGUCUUUACUGGAAU
3139


887332
1683938.

GAAUCUUUdTdT


GACCdTdT
CUUU




1












AD-
A-
205
GUCUUUACUGGA
A-1683941.1
206
CAAAGAUUCCAGUAA
GUCUUUACUGGAAUC
3140


887333
1683940.

AUCUUUGdTdT


AGACdTdT
UUUG




1












AD-
A-
207
GCCUUAUUGUGA
A-1683943.1
208
CUUAAAGUCACAAUA
GCCUUAUUGUGACUU
3141


887334
1683942.

CUUUAAGdTdT


AGGCdTdT
UAAG




1












AD-
A-
209
GCUCUUUCUAGC
A-1683945.1
210
CACAUCUGCUAGAAA
GCUCUUUCUAGCAGA
3142


887335
1683944.

AGAUGUGdTdT


GAGCdTdT
UGUG




1












AD-
A-
211
CUCUUUCUAGCA
A-1683947.1
212
CCACAUCUGCUAGAA
CUCUUUCUAGCAGAU
3143


887336
1683946.

GAUGUGGdTdT


AGAGdTdT
GUGG




1












AD-
A-
213
GUCAGUUCUGCG
A-1683949.1
214
GAAUGAUCGCAGAAC
GUCAGUUCUGCGAUC
3144


887337
1683948.

AUCAUUCdTdT


UGACdTdT
AUUC




1












AD-
A-
215
UCAGUUCUGCGA
A-1683951.1
216
UGAAUGAUCGCAGA
UCAGUUCUGCGAUCA
3145


887338
1683950.

UCAUUCAdTdT


ACUGAdTdT
UUCA




1












AD-
A-
217
AGUCUUCAAGUU
A-1683953.1
218
UUUUGCCAACUUGA
AGUCUUCAAGUUGGC
3146


887339
1683952.

GGCAAAAdTdT


AGACUdTdT
AAAA




1












AD-
A-
219
UCUUCAAGUUGG
A-1683955.1
220
GAUUUUGCCAACUU
UCUUCAAGUUGGCAA
3147


887340
1683954.

CAAAAUCdTdT


GAAGAdTdT
AAUC




1












AD-
A-
221
CUUCAAGUUGGC
A-1683957.1
222
GGAUUUUGCCAACU
CUUCAAGUUGGCAAA
3148


887341
1683956.

AAAAUCCdTdT


UGAAGdTdT
AUCC




1












AD-
A-
223
CCAUCAUCGUCU
A-1683959.1
224
AAAAUGAAGACGAU
CCAUCAUCGUCUUCA
3149


887342
1683958.

UCAUUUUdTdT


GAUGGdTdT
UUUU




1












AD-
A-
225
CAUCAUCGUCUU
A-1683961.1
226
AAAAAUGAAGACGAU
CAUCAUCGUCUUCAU
3150


887343
1683960.

CAUUUUUdTdT


GAUGdTdT
UUUU




1












AD-
A-
227
GCACAUGAACGA
A-1683963.1
228
GAAGAAGUCGUUCA
GCACAUGAACGACUU
3151


887344
1683962.

CUUCUUCdTdT


UGUGCdTdT
CUUC




1












AD-
A-
229
CACAUGAACGAC
A-1683965.1
230
GGAAGAAGUCGUUC
CACAUGAACGACUUC
3152


887345
1683964.

UUCUUCCdTdT


AUGUGdTdT
UUCC




1












AD-
A-
231
ACAUGAACGACU
A-1683967.1
232
UGGAAGAAGUCGUU
ACAUGAACGACUUCU
3153


887346
1683966.

UCUUCCAdTdT


CAUGUdTdT
UCCA




1












AD-
A-
233
CAUGAACGACUU
A-1683969.1
234
GUGGAAGAAGUCGU
CAUGAACGACUUCUU
3154


887347
1683968.

CUUCCACdTdT


UCAUGdTdT
CCAC




1












AD-
A-
235
UGAACGACUUCU
A-1683971.1
236
GAGUGGAAGAAGUC
UGAACGACUUCUUCC
3155


887348
1683970.

UCCACUCdTdT


GUUCAdTdT
ACUC




1












AD-
A-
237
CGACUUCUUCCA
A-1683973.1
238
GAAGGAGUGGAAGA
CGACUUCUUCCACUC
3156


887349
1683972.

CUCCUUCdTdT


AGUCGdTdT
CUUC




1












AD-
A-
239
UCCACUCCUUCC
A-1683975.1
240
ACAAUCAGGAAGGAG
UCCACUCCUUCCUGA
3157


887350
1683974.

UGAUUGUdTdT


UGGAdTdT
UUGU




1












AD-
A-
241
ACUCCUUCCUGA
A-1683977.1
242
AACACAAUCAGGAAG
ACUCCUUCCUGAUUG
3158


887351
1683976.

UUGUGUUdTdT


GAGUdTdT
UGUU




1












AD-
A-
243
CUCCUUCCUGAU
A-1683979.1
244
GAACACAAUCAGGAA
CUCCUUCCUGAUUGU
3159


887352
1683978.

UGUGUUCdTdT


GGAGdTdT
GUUC




1












AD-
A-
245
UCCUUCCUGAUU
A-1683981.1
246
GGAACACAAUCAGGA
UCCUUCCUGAUUGUG
3160


887353
1683980.

GUGUUCCdTdT


AGGAdTdT
UUCC




1












AD-
A-
247
CUAUGUGCCUUA
A-1683983.1
248
UAAACAAUAAGGCAC
CUAUGUGCCUUAUUG
3161


887354
1683982.

UUGUUUAdTdT


AUAGdTdT
UUUA




1












AD-
A-
249
UGGUCCUAAACC
A-1683985.1
250
AGAAAUAGGUUUAG
UGGUCCUAAACCUAU
3162


887355
1683984.

UAUUUCUdTdT


GACCAdTdT
UUCU




1












AD-
A-
251
GGUCCUAAACCU
A-1683987.1
252
CAGAAAUAGGUUUA
GGUCCUAAACCUAUU
3163


887356
1683986.

AUUUCUGdTdT


GGACCdTdT
UCUG




1












AD-
A-
253
GUCCUAAACCUA
A-1683989.1
254
CCAGAAAUAGGUUU
GUCCUAAACCUAUUU
3164


887357
1683988.

UUUCUGGdTdT


AGGACdTdT
CUGG




1












AD-
A-
255
CCUUACGUGAAU
A-1683991.1
256
AGAAUAAAUUCACG
CCUUACGUGAAUUUA
3165


887358
1683990.

UUAUUCUdTdT


UAAGGdTdT
UUCU




1












AD-
A-
257
CAAAGGUCACAA
A-1683993.1
258
GAGGAAAUUGUGAC
CAAAGGUCACAAUUU
3166


887359
1683992.

UUUCCUCdTdT


CUUUGdTdT
CCUC




1












AD-
A-
259
UCACAAUUUCCU
A-1683995.1
260
UUCCUUGAGGAAAU
UCACAAUUUCCUCAA
3167


887360
1683994.

CAAGGAAdTdT


UGUGAdTdT
GGAA




1












AD-
A-
261
CCUCAAGGAAAA
A-1683997.1
262
UUUAUCUUUUUCCU
CCUCAAGGAAAAAGA
3168


887361
1683996.

AGAUAAAdTdT


UGAGGdTdT
UAAA




1












AD-
A-
263
GCUUCAUUGUCC
A-1683999.1
264
AUCAUGAGGACAAU
GCUUCAUUGUCCUCA
3169


887362
1683998.

UCAUGAUdTdT


GAAGCdTdT
UGAU




1












AD-
A-
265
CUUCAUUGUCCU
A-1684001.1
266
GAUCAUGAGGACAA
CUUCAUUGUCCUCAU
3170


887363
1684000.

CAUGAUCdTdT


UGAAGdTdT
GAUC




1












AD-
A-
267
UGCAGACAAGAU
A-1684003.1
268
AGUGAAGAUCUUGU
UGCAGACAAGAUCUU
3171


887364
1684002.

CUUCACUdTdT


CUGCAdTdT
CACU




1












AD-
A-
269
CAGACAAGAUCU
A-1684005.1
270
UAAGUGAAGAUCUU
CAGACAAGAUCUUCA
3172


887365
1684004.

UCACUUAdTdT


GUCUGdTdT
CUUA




1












AD-
A-
271
AGACAAGAUCUU
A-1684007.1
272
GUAAGUGAAGAUCU
AGACAAGAUCUUCAC
3173


887366
1684006.

CACUUACdTdT


UGUCUdTdT
UUAC




1












AD-
A-
273
GACAAGAUCUUC
A-1684009.1
274
UGUAAGUGAAGAUC
GACAAGAUCUUCACU
3174


887367
1684008.

ACUUACAdTdT


UUGUCdTdT
UACA




1












AD-
A-
275
ACAAGAUCUUCA
A-1684011.1
276
AUGUAAGUGAAGAU
ACAAGAUCUUCACUU
3175


887368
1684010.

CUUACAUdTdT


CUUGUdTdT
ACAU




1












AD-
A-
277
CAAGAUCUUCAC
A-1684013.1
278
GAUGUAAGUGAAGA
CAAGAUCUUCACUUA
3176


887369
1684012.

UUACAUCdTdT


UCUUGdTdT
CAUC




1












AD-
A-
279
AGAUCUUCACUU
A-1684015.1
280
AAGAUGUAAGUGAA
AGAUCUUCACUUACA
3177


887370
1684014.

ACAUCUUdTdT


GAUCUdTdT
UCUU




1












AD-
A-
281
GAUCUUCACUUA
A-1684017.1
282
GAAGAUGUAAGUGA
GAUCUUCACUUACAU
3178


887371
1684016.

CAUCUUCdTdT


AGAUCdTdT
CUUC




1












AD-
A-
283
UCUUCACUUACA
A-1684019.1
284
AUGAAGAUGUAAGU
UCUUCACUUACAUCU
3179


887372
1684018.

UCUUCAUdTdT


GAAGAdTdT
UCAU




1












AD-
A-
285
CUUCACUUACAU
A-1684021.1
286
AAUGAAGAUGUAAG
CUUCACUUACAUCUU
3180


887373
1684020.

CUUCAUUdTdT


UGAAGdTdT
CAUU




1












AD-
A-
287
UUCACUUACAUC
A-1684023.1
288
GAAUGAAGAUGUAA
UUCACUUACAUCUUC
3181


887374
1684022.

UUCAUUCdTdT


GUGAAdTdT
AUUC




1












AD-
A-
289
UCACUUACAUCU
A-1684025.1
290
AGAAUGAAGAUGUA
UCACUUACAUCUUCA
3182


887375
1684024.

UCAUUCUdTdT


AGUGAdTdT
UUCU




1












AD-
A-
291
CACUUACAUCUU
A-1684027.1
292
CAGAAUGAAGAUGU
CACUUACAUCUUCAU
3183


887376
1684026.

CAUUCUGdTdT


AAGUGdTdT
UCUG




1












AD-
A-
293
CUUACAUCUUCA
A-1684029.1
294
UCCAGAAUGAAGAU
CUUACAUCUUCAUUC
3184


887377
1684028.

UUCUGGAdTdT


GUAAGdTdT
UGGA




1












AD-
A-
295
ACAUCUUCAUUC
A-1684031.1
296
AUUUCCAGAAUGAA
ACAUCUUCAUUCUGG
3185


887378
1684030.

UGGAAAUdTdT


GAUGUdTdT
AAAU




1












AD-
A-
297
CAUCUUCAUUCU
A-1684033.1
298
CAUUUCCAGAAUGAA
CAUCUUCAUUCUGGA
3186


887379
1684032.

GGAAAUGdTdT


GAUGdTdT
AAUG




1












AD-
A-
299
UCUUCAUUCUGG
A-1684035.1
300
AGCAUUUCCAGAAU
UCUUCAUUCUGGAAA
3187


887380
1684034.

AAAUGCUdTdT


GAAGAdTdT
UGCU




1












AD-
A-
301
CUUCAUUCUGGA
A-1684037.1
302
AAGCAUUUCCAGAAU
CUUCAUUCUGGAAAU
3188


887381
1684036.

AAUGCUUdTdT


GAAGdTdT
GCUU




1












AD-
A-
303
UCUGGAAAUGCU
A-1684039.1
304
UUUUAGAAGCAUUU
UCUGGAAAUGCUUCU
3189


887382
1684038.

UCUAAAAdTdT


CCAGAdTdT
AAAA




1












AD-
A-
305
GCUGGAUUUCCU
A-1684041.1
306
AACAAUUAGGAAAUC
GCUGGAUUUCCUAAU
3190


887383
1684040.

AAUUGUUdTdT


CAGCdTdT
UGUU




1












AD-
A-
307
CUGGAUUUCCUA
A-1684043.1
308
CAACAAUUAGGAAAU
CUGGAUUUCCUAAUU
3191


887384
1684042.

AUUGUUGdTdT


CCAGdTdT
GUUG




1












AD-
A-
309
CCUCUAAGAGCC
A-1684045.1
310
UAGAUAAGGCUCUU
CCUCUAAGAGCCUUA
3192


887385
1684044.

UUAUCUAdTdT


AGAGGdTdT
UCUA




1












AD-
A-
311
CUCUAAGAGCCU
A-1684047.1
312
CUAGAUAAGGCUCU
CUCUAAGAGCCUUAU
3193


887386
1684046.

UAUCUAGdTdT


UAGAGdTdT
CUAG




1












AD-
A-
313
CUUCCAUCAUGA
A-1684049.1
314
AGCACAUUCAUGAU
CUUCCAUCAUGAAUG
3194


887387
1684048.

AUGUGCUdTdT


GGAAGdTdT
UGCU




1












AD-
A-
315
UUUCCUGCAAGU
A-1684051.1
316
GAACUUGACUUGCA
UUUCCUGCAAGUCAA
3195


887388
1684050.

CAAGUUCdTdT


GGAAAdTdT
GUUC




1












AD-
A-
317
CUGCAAGUCAAG
A-1684053.1
318
UUUGGAACUUGACU
CUGCAAGUCAAGUUC
3196


887389
1684052.

UUCCAAAdTdT


UGCAGdTdT
CAAA




1












AD-
A-
319
AGUCAAGUUCCA
A-1684055.1
320
AACGAUUUGGAACU
AGUCAAGUUCCAAAU
3197


887390
1684054.

AAUCGUUdTdT


UGACUdTdT
CGUU




1












AD-
A-
321
ACUUGGUUACCU
A-1684057.1
322
CAGAGAUAGGUAACC
ACUUGGUUACCUAUC
3198


887391
1684056.

AUCUCUGdTdT


AAGUdTdT
UCUG




1












AD-
A-
323
CUUGGUUACCUA
A-1684059.1
324
GCAGAGAUAGGUAA
CUUGGUUACCUAUCU
3199


887392
1684058.

UCUCUGCdTdT


CCAAGdTdT
CUGC




1












AD-
A-
325
GGUUACCUAUCU
A-1684061.1
326
GAAGCAGAGAUAGG
GGUUACCUAUCUCUG
3200


887393
1684060.

CUGCUUCdTdT


UAACCdTdT
CUUC




1












AD-
A-
327
GUUACCUAUCUC
A-1684063.1
328
UGAAGCAGAGAUAG
GUUACCUAUCUCUGC
3201


887394
1684062.

UGCUUCAdTdT


GUAACdTdT
UUCA




1












AD-
A-
329
UUACCUAUCUCU
A-1684065.1
330
UUGAAGCAGAGAUA
UUACCUAUCUCUGCU
3202


887395
1684064.

GCUUCAAdTdT


GGUAAdTdT
UCAA




1












AD-
A-
331
UACCUAUCUCUG
A-1684067.1
332
CUUGAAGCAGAGAU
UACCUAUCUCUGCUU
3203


887396
1684066.

CUUCAAGdTdT


AGGUAdTdT
CAAG




1












AD-
A-
333
ACCUAUCUCUGC
A-1684069.1
334
ACUUGAAGCAGAGA
ACCUAUCUCUGCUUC
3204


887397
1684068.

UUCAAGUdTdT


UAGGUdTdT
AAGU




1












AD-
A-
335
CCUAUCUCUGCU
A-1684071.1
336
AACUUGAAGCAGAG
CCUAUCUCUGCUUCA
3205


887398
1684070.

UCAAGUUdTdT


AUAGGdTdT
AGUU




1












AD-
A-
337
CUAUCUCUGCUU
A-1684073.1
338
CAACUUGAAGCAGAG
CUAUCUCUGCUUCAA
3206


887399
1684072.

CAAGUUGdTdT


AUAGdTdT
GUUG




1












AD-
A-
339
AUCUCUGCUUCA
A-1684075.1
340
UGCAACUUGAAGCA
AUCUCUGCUUCAAGU
3207


887400
1684074.

AGUUGCAdTdT


GAGAUdTdT
UGCA




1












AD-
A-
341
UCUCUGCUUCAA
A-1684077.1
342
UUGCAACUUGAAGC
UCUCUGCUUCAAGUU
3208


887401
1684076.

GUUGCAAdTdT


AGAGAdTdT
GCAA




1












AD-
A-
343
CUCUGCUUCAAG
A-1684079.1
344
GUUGCAACUUGAAG
CUCUGCUUCAAGUUG
3209


887402
1684078.

UUGCAACdTdT


CAGAGdTdT
CAAC




1












AD-
A-
345
UCUGCUUCAAGU
A-1684081.1
346
AGUUGCAACUUGAA
UCUGCUUCAAGUUGC
3210


887403
1684080.

UGCAACUdTdT


GCAGAdTdT
AACU




1












AD-
A-
347
UAUCAUCUUUGG
A-1684083.1
348
GAAUGACCCAAAGAU
UAUCAUCUUUGGGUC
3211


887404
1684082.

GUCAUUCdTdT


GAUAdTdT
AUUC




1












AD-
A-
349
AUCAUCUUUGGG
A-1684085.1
350
AGAAUGACCCAAAGA
AUCAUCUUUGGGUCA
3212


887405
1684084.

UCAUUCUdTdT


UGAUdTdT
UUCU




1












AD-
A-
351
UCAUCUUUGGG
A-1684087.1
352
AAGAAUGACCCAAAG
UCAUCUUUGGGUCAU
3213


887406
1684086.

UCAUUCUUdTdT


AUGAdTdT
UCUU




1












AD-
A-
353
CAUCUUUGGGUC
A-1684089.1
354
GAAGAAUGACCCAAA
CAUCUUUGGGUCAUU
3214


887407
1684088.

AUUCUUCdTdT


GAUGdTdT
CUUC




1












AD-
A-
355
CUUUGGGUCAU
A-1684091.1
356
AGUGAAGAAUGACCC
CUUUGGGUCAUUCUU
3215


887408
1684090.

UCUUCACUdTdT


AAAGdTdT
CACU




1












AD-
A-
357
UUGGGUCAUUC
A-1684093.1
358
AAAGUGAAGAAUGA
UUGGGUCAUUCUUCA
3216


887409
1684092.

UUCACUUUdTdT


CCCAAdTdT
CUUU




1












AD-
A-
359
UGGGUCAUUCU
A-1684095.1
360
CAAAGUGAAGAAUG
UGGGUCAUUCUUCAC
3217


887410
1684094.

UCACUUUGdTdT


ACCCAdTdT
UUUG




1












AD-
A-
361
GGGUCAUUCUUC
A-1684097.1
362
UCAAAGUGAAGAAU
GGGUCAUUCUUCACU
3218


887411
1684096.

ACUUUGAdTdT


GACCCdTdT
UUGA




1












AD-
A-
363
GGUCAUUCUUCA
A-1684099.1
364
UUCAAAGUGAAGAA
GGUCAUUCUUCACUU
3219


887412
1684098.

CUUUGAAdTdT


UGACCdTdT
UGAA




1












AD-
A-
365
GUCAUUCUUCAC
A-1684101.1
366
GUUCAAAGUGAAGA
GUCAUUCUUCACUUU
3220


887413
1684100.

UUUGAACdTdT


AUGACdTdT
GAAC




1












AD-
A-
367
CAUUCUUCACUU
A-1684103.1
368
AAGUUCAAAGUGAA
CAUUCUUCACUUUGA
3221


887414
1684102.

UGAACUUdTdT


GAAUGdTdT
ACUU




1












AD-
A-
369
UCACUUUGAACU
A-1684105.1
370
AUGAACAAGUUCAAA
UCACUUUGAACUUGU
3222


887415
1684104.

UGUUCAUdTdT


GUGAdTdT
UCAU




1












AD-
A-
371
CUUGUUCAUUG
A-1684107.1
372
GAUGACACCAAUGAA
CUUGUUCAUUGGUG
3223


887416
1684106.

GUGUCAUCdTdT


CAAGdTdT
UCAUC




1












AD-
A-
373
GUGUCAUCAUAG
A-1684109.1
374
AAAUUAUCUAUGAU
GUGUCAUCAUAGAUA
3224


887417
1684108.

AUAAUUUdTdT


GACACdTdT
AUUU




1












AD-
A-
375
UGUCAUCAUAGA
A-1684111.1
376
GAAAUUAUCUAUGA
UGUCAUCAUAGAUAA
3225


887418
1684110.

UAAUUUCdTdT


UGACAdTdT
UUUC




1












AD-
A-
377
GAGGUCAAGACA
A-1684113.1
378
AUAAAGAUGUCUUG
GAGGUCAAGACAUCU
3226


887419
1684112.

UCUUUAUdTdT


ACCUCdTdT
UUAU




1












AD-
A-
379
AGGUCAAGACAU
A-1684115.1
380
CAUAAAGAUGUCUU
AGGUCAAGACAUCUU
3227


887420
1684114.

CUUUAUGdTdT


GACCUdTdT
UAUG




1












AD-
A-
381
GGUCAAGACAUC
A-1684117.1
382
UCAUAAAGAUGUCU
GGUCAAGACAUCUUU
3228


887421
1684116.

UUUAUGAdTdT


UGACCdTdT
AUGA




1












AD-
A-
383
CCACAAAAGCCAA
A-1684119.1
384
GAGGAAUUGGCUUU
CCACAAAAGCCAAUUC
3229


887422
1684118.

UUCCUCdTdT


UGUGGdTdT
cue




1












AD-
A-
385
GACCUAGUGACA
A-1684121.1
386
CUUGAUUUGUCACU
GACCUAGUGACAAAU
3230


887423
1684120.

AAUCAAGdTdT


AGGUCdTdT
CAAG




1












AD-
A-
387
GUAUCAUGGUUC
A-1684123.1
388
CAGAUAAGAACCAUG
GUAUCAUGGUUCUUA
3231


887424
1684122.

UUAUCUGdTdT


AUACdTdT
UCUG




1












AD-
A-
389
UAUCAUGGUUCU
A-1684125.1
390
ACAGAUAAGAACCAU
UAUCAUGGUUCUUAU
3232


887425
1684124.

UAUCUGUdTdT


GAUAdTdT
CUGU




1












AD-
A-
391
UCAUGGUUCUUA
A-1684127.1
392
AGACAGAUAAGAACC
UCAUGGUUCUUAUCU
3233


887426
1684126.

UCUGUCUdTdT


AUGAdTdT
GUCU




1












AD-
A-
393
CAUGGUUCUUAU
A-1684129.1
394
GAGACAGAUAAGAAC
CAUGGUUCUUAUCUG
3234


887427
1684128.

CUGUCUCdTdT


CAUGdTdT
UCUC




1












AD-
A-
395
AUGGUUCUUAUC
A-1684131.1
396
UGAGACAGAUAAGA
AUGGUUCUUAUCUGU
3235


887428
1684130.

UGUCUCAdTdT


ACCAUdTdT
CUCA




1












AD-
A-
397
UGGUUCUUAUC
A-1684133.1
398
UUGAGACAGAUAAG
UGGUUCUUAUCUGUC
3236


887429
1684132.

UGUCUCAAdTdT


AACCAdTdT
UCAA




1












AD-
A-
399
GGUUCUUAUCU
A-1684135.1
400
GUUGAGACAGAUAA
GGUUCUUAUCUGUCU
3237


887430
1684134.

GUCUCAACdTdT


GAACCdTdT
CAAC




1












AD-
A-
401
GUUCUUAUCUG
A-1684137.1
402
UGUUGAGACAGAUA
GUUCUUAUCUGUCUC
3238


887431
1684136.

UCUCAACAdTdT


AGAACdTdT
AACA




1












AD-
A-
403
UCUUAUCUGUCU
A-1684139.1
404
CAUGUUGAGACAGA
UCUUAUCUGUCUCAA
3239


887432
1684138.

CAACAUGdTdT


UAAGAdTdT
CAUG




1












AD-
A-
405
AUCUGUCUCAAC
A-1684141.1
406
UUACCAUGUUGAGA
AUCUGUCUCAACAUG
3240


887433
1684140.

AUGGUAAdTdT


CAGAUdTdT
GUAA




1












AD-
A-
407
UCUGUCUCAACA
A-1684143.1
408
GUUACCAUGUUGAG
UCUGUCUCAACAUGG
3241


887434
1684142.

UGGUAACdTdT


ACAGAdTdT
UAAC




1












AD-
A-
409
CUGUCUCAACAU
A-1684145.1
410
GGUUACCAUGUUGA
CUGUCUCAACAUGGU
3242


887435
1684144.

GGUAACCdTdT


GACAGdTdT
AACC




1












AD-
A-
411
UCCUGGUCAUGU
A-1684147.1
412
UAGAUGAACAUGACC
UCCUGGUCAUGUUCA
3243


887436
1684146.

UCAUCUAdTdT


AGGAdTdT
UCUA




1












AD-
A-
413
AGUUCAUCCUGG
A-1684149.1
414
UGAACUUCCAGGAU
AGUUCAUCCUGGAAG
3244


887437
1684148.

AAGUUCAdTdT


GAACUdTdT
UUCA




1












AD-
A-
415
CCAUCUGUUGGA
A-1684151.1
416
AGAAUAUUCCAACAG
CCAUCUGUUGGAAUA
3245


887438
1684150.

AUAUUCUdTdT


AUGGdTdT
UUCU




1












AD-
A-
417
CAUCUGUUGGAA
A-1684153.1
418
UAGAAUAUUCCAACA
CAUCUGUUGGAAUAU
3246


887439
1684152.

UAUUCUAdTdT


GAUGdTdT
UCUA




1












AD-
A-
419
UCUGUUGGAAU
A-1684155.1
420
AGUAGAAUAUUCCA
UCUGUUGGAAUAUUC
3247


887440
1684154.

AUUCUACUdTdT


ACAGAdTdT
UACU




1












AD-
A-
421
CAUACUGGAGAA
A-1684157.1
422
ACUAAAAUUCUCCAG
CAUACUGGAGAAUUU
3248


887441
1684156.

UUUUAGUdTdT


UAUGdTdT
UAGU




1












AD-
A-
423
CUCCUCUUCUCA
A-1684159.1
424
UUUGCUAUGAGAAG
CUCCUCUUCUCAUAG
3249


887442
1684158.

UAGCAAAdTdT


AGGAGdTdT
CAAA




1












AD-
A-
425
UCCUCUUCUCAU
A-1684161.1
426
UUUUGCUAUGAGAA
UCCUCUUCUCAUAGC
3250


887443
1684160.

AGCAAAAdTdT


GAGGAdTdT
AAAA




1












AD-
A-
427
CCUCUUCUCAUA
A-1684163.1
428
GUUUUGCUAUGAGA
CCUCUUCUCAUAGCA
3251


887444
1684162.

GCAAAACdTdT


AGAGGdTdT
AAAC




1












AD-
A-
429
CUCUUCUCAUAG
A-1684165.1
430
GGUUUUGCUAUGAG
CUCUUCUCAUAGCAA
3252


887445
1684164.

CAAAACCdTdT


AAGAGdTdT
AACC




1












AD-
A-
431
GAUCCAUUGUCU
A-1684167.1
432
GAUGUCAAGACAAU
GAUCCAUUGUCUUGA
3253


887446
1684166.

UGACAUCdTdT


GGAUCdTdT
CAUC




1












AD-
A-
433
AUCCAUUGUCUU
A-1684169.1
434
AGAUGUCAAGACAA
AUCCAUUGUCUUGAC
3254


887447
1684168.

GACAUCUdTdT


UGGAUdTdT
AUCU




1












AD-
A-
435
UCCAUUGUCUUG
A-1684171.1
436
AAGAUGUCAAGACAA
UCCAUUGUCUUGACA
3255


887448
1684170.

ACAUCUUdTdT


UGGAdTdT
UCUU




1












AD-
A-
437
CAUUGUCUUGAC
A-1684173.1
438
AUAAGAUGUCAAGA
CAUUGUCUUGACAUC
3256


887449
1684172.

AUCUUAUdTdT


CAAUGdTdT
UUAU




1












AD-
A-
439
UUGUCUUGACAU
A-1684175.1
440
AAAUAAGAUGUCAA
UUGUCUUGACAUCUU
3257


887450
1684174.

CUUAUUUdTdT


GACAAdTdT
AUUU




1












AD-
A-
441
UGUCUUGACAUC
A-1684177.1
442
CAAAUAAGAUGUCAA
UGUCUUGACAUCUUA
3258


887451
1684176.

UUAUUUGdTdT


GACAdTdT
UUUG




1












AD-
A-
443
GUCUUGACAUCU
A-1684179.1
444
GCAAAUAAGAUGUC
GUCUUGACAUCUUAU
3259


887452
1684178.

UAUUUGCdTdT


AAGACdTdT
UUGC




1












AD-
A-
445
GGAGAUGGAUUC
A-1684181.1
446
ACGAAGAGAAUCCAU
GGAGAUGGAUUCUCU
3260


887453
1684180.

UCUUCGUdTdT


CUCCdTdT
UCGU




1












AD-
A-
447
GAGAUGGAUUCU
A-1684183.1
448
AACGAAGAGAAUCCA
GAGAUGGAUUCUCUU
3261


887454
1684182.

CUUCGUUdTdT


UCUCdTdT
CGUU




1












AD-
A-
449
AGAUGGAUUCUC
A-1684185.1
450
GAACGAAGAGAAUCC
AGAUGGAUUCUCUUC
3262


887455
1684184.

UUCGUUCdTdT


AUCUdTdT
GUUC




1












AD-
A-
451
GAUGGAUUCUCU
A-1684187.1
452
UGAACGAAGAGAAU
GAUGGAUUCUCUUCG
3263


887456
1684186.

UCGUUCAdTdT


CCAUCdTdT
UUCA




1












AD-
A-
453
AUGGAUUCUCUU
A-1684189.1
454
GUGAACGAAGAGAA
AUGGAUUCUCUUCGU
3264


887457
1684188.

CGUUCACdTdT


UCCAUdTdT
UCAC




1












AD-
A-
455
UGGAUUCUCUUC
A-1684191.1
456
UGUGAACGAAGAGA
UGGAUUCUCUUCGUU
3265


887458
1684190.

GUUCACAdTdT


AUCCAdTdT
CACA




1












AD-
A-
457
GGAUUCUCUUCG
A-1684193.1
458
CUGUGAACGAAGAG
GGAUUCUCUUCGUUC
3266


887459
1684192.

UUCACAGdTdT


AAUCCdTdT
ACAG




1












AD-
A-
459
GAUUCUCUUCGU
A-1684195.1
460
UCUGUGAACGAAGA
GAUUCUCUUCGUUCA
3267


887460
1684194.

UCACAGAdTdT


GAAUCdTdT
CAGA




1












AD-
A-
461
UUCUCUUCGUUC
A-1684197.1
462
CAUCUGUGAACGAA
UUCUCUUCGUUCACA
3268


887461
1684196.

ACAGAUGdTdT


GAGAAdTdT
GAUG




1












AD-
A-
463
UCUCUUCGUUCA
A-1684199.1
464
CCAUCUGUGAACGAA
UCUCUUCGUUCACAG
3269


887462
1684198.

CAGAUGGdTdT


GAGAdTdT
AUGG




1












AD-
A-
465
CUCUUCGUUCAC
A-1684201.1
466
UCCAUCUGUGAACGA
CUCUUCGUUCACAGA
3270


887463
1684200.

AGAUGGAdTdT


AGAGdTdT
UGGA




1












AD-
A-
467
UCUUCGUUCACA
A-1684203.1
468
UUCCAUCUGUGAAC
UCUUCGUUCACAGAU
3271


887464
1684202.

GAUGGAAdTdT


GAAGAdTdT
GGAA




1












AD-
A-
469
AGGUUCAUGUCU
A-1684205.1
470
GAUUUGCAGACAUG
AGGUUCAUGUCUGCA
3272


887465
1684204.

GCAAAUCdTdT


AACCUdTdT
AAUC




1












AD-
A-
471
UCUGCAAAUCCU
A-1684207.1
472
CUUUGGAAGGAUUU
UCUGCAAAUCCUUCC
3273


887466
1684206.

UCCAAAGdTdT


GCAGAdTdT
AAAG




1












AD-
A-
473
CUGCAAAUCCUU
A-1684209.1
474
ACUUUGGAAGGAUU
CUGCAAAUCCUUCCA
3274


887467
1684208.

CCAAAGUdTdT


UGCAGdTdT
AAGU




1












AD-
A-
475
GUGUCUGCUACU
A-1684211.1
476
GAAUGACAGUAGCA
GUGUCUGCUACUGUC
3275


887468
1684210.

GUCAUUCdTdT


GACACdTdT
AUUC




1












AD-
A-
477
UGUCUGCUACUG
A-1684213.1
478
UGAAUGACAGUAGC
UGUCUGCUACUGUCA
3276


887469
1684212.

UCAUUCAdTdT


AGACAdTdT
UUCA




1












AD-
A-
479
GUCUGCUACUGU
A-1684215.1
480
CUGAAUGACAGUAG
GUCUGCUACUGUCAU
3277


887470
1684214.

CAUUCAGdTdT


CAGACdTdT
UCAG




1












AD-
A-
481
ACCGCUUAAGGC
A-1684217.1
482
ACAUUUUGCCUUAA
ACCGCUUAAGGCAAA
3278


887471
1684216.

AAAAUGUdTdT


GCGGUdTdT
AUGU




1












AD-
A-
483
CCGCUUAAGGCA
A-1684219.1
484
GACAUUUUGCCUUA
CCGCUUAAGGCAAAA
3279


887472
1684218.

AAAUGUCdTdT


AGCGGdTdT
UGUC




1












AD-
A-
485
UCUCCACCUUCA
A-1684221.1
486
UAUCAUAUGAAGGU
UCUCCACCUUCAUAU
3280


887473
1684220.

UAUGAUAdTdT


GGAGAdTdT
GAUA




1












AD-
A-
487
UGCCAAAAUCCU
A-1684223.1
488
GAUAAAAAGGAUUU
UGCCAAAAUCCUUUU
3281


887474
1684222.

UUUUAUCdTdT


UGGCAdTdT
UAUC




1












AD-
A-
489
GCCAAAAUCCUU
A-1684225.1
490
UGAUAAAAAGGAUU
GCCAAAAUCCUUUUU
3282


887475
1684224.

UUUAUCAdTdT


UUGGCdTdT
AUCA




1












AD-
A-
491
UCGUAAGAGAAC
A-1684227.1
492
CUACAGAGUUCUCU
UCGUAAGAGAACUCU
3283


887476
1684226.

UCUGUAGdTdT


UACGAdTdT
GUAG




1












AD-
A-
493
UCUGCCUUGUCA
A-1684229.1
494
GAAAAGAUGACAAG
UCUGCCUUGUCAUCU
3284


887477
1684228.

UCUUUUCdTdT


GCAGAdTdT
UUUC




1












AD-
A-
495
CUGCCUUGUCAU
A-1684231.1
496
UGAAAAGAUGACAA
CUGCCUUGUCAUCUU
3285


887478
1684230.

CUUUUCAdTdT


GGCAGdTdT
UUCA




1












AD-
A-
497
UGCCUUGUCAUC
A-1684233.1
498
GUGAAAAGAUGACA
UGCCUUGUCAUCUUU
3286


887479
1684232.

UUUUCACdTdT


AGGCAdTdT
UCAC




1












AD-
A-
499
GCCUUGUCAUCU
A-1684235.1
500
UGUGAAAAGAUGAC
GCCUUGUCAUCUUUU
3287


887480
1684234.

UUUCACAdTdT


AAGGCdTdT
CACA




1












AD-
A-
501
CCUUGUCAUCUU
A-1684237.1
502
CUGUGAAAAGAUGA
CCUUGUCAUCUUUUC
3288


887481
1684236.

UUCACAGdTdT


CAAGGdTdT
ACAG




1












AD-
A-
503
CAUCUUUUCACA
A-1684239.1
504
ACAAUCCUGUGAAAA
CAUCUUUUCACAGGA
3289


887482
1684238.

GGAUUGUdTdT


GAUGdTdT
UUGU




1












AD-
A-
505
CCCAUGUAAAUA
A-1684241.1
506
UGUUGUUUAUUUAC
CCCAUGUAAAUAAAC
3290


887483
1684240.

AACAACAdTdT


AUGGGdTdT
AACA




1












AD-
A-
507
CAUUCAUCUUGA
A-1684243.1
508
AUGUGAGUCAAGAU
CAUUCAUCUUGACUC
3291


887484
1684242.

CUCACAUdTdT


GAAUGdTdT
ACAU




1












AD-
A-
509
ACAUAUUACACU
A-1684245.1
510
UUUGAGGAGUGUAA
ACAUAUUACACUCCU
3292


887485
1684244.

CCUCAAAdTdT


UAUGUdTdT
CAAA




1












AD-
A-
511
CAUAUUACACUC
A-1684247.1
512
UUUUGAGGAGUGUA
CAUAUUACACUCCUC
3293


887486
1684246.

CUCAAAAdTdT


AUAUGdTdT
AAAA




1












AD-
A-
513
UGCCCAAAAUAC
A-1684249.1
514
AUUAUCAGUAUUUU
UGCCCAAAAUACUGA
3294


887487
1684248.

UGAUAAUdTdT


GGGCAdTdT
UAAU




1












AD-
A-
515
GCCCAAAAUACU
A-1684251.1
516
UAUUAUCAGUAUUU
GCCCAAAAUACUGAU
3295


887488
1684250.

GAUAAUAdTdT


UGGGCdTdT
AAUA




1












AD-
A-
517
CUGAUAAUAGUC
A-1684253.1
518
UUUAAGAGACUAUU
CUGAUAAUAGUCUCU
3296


887489
1684252.

UCUUAAAdTdT


AUCAGdTdT
UAAA




1












AD-
A-
519
GUCAAAUUUUCC
A-1684255.1
520
GAAAGCAGGAAAAU
GUCAAAUUUUCCUGC
3297


887490
1684254.

UGCUUUCdTdT


UUGACdTdT
UUUC




1












AD-
A-
521
UCAAAUUUUCCU
A-1684257.1
522
AGAAAGCAGGAAAAU
UCAAAUUUUCCUGCU
3298


887491
1684256.

GCUUUCUdTdT


UUGAdTdT
UUCU




1












AD-
A-
523
CAAAUUUUCCUG
A-1684259.1
524
AAGAAAGCAGGAAAA
CAAAUUUUCCUGCUU
3299


887492
1684258.

CUUUCUUdTdT


UUUGdTdT
UCUU




1












AD-
A-
525
AUUGUUUAGUC
A-1684261.1
526
GAAAGGAUGACUAA
AUUGUUUAGUCAUCC
3300


887493
1684260.

AUCCUUUCdTdT


ACAAUdTdT
UUUC




1












AD-
A-
527
GCAUCACUUGUA
A-1684263.1
528
GAUUGUAUACAAGU
GCAUCACUUGUAUAC
3301


887494
1684262.

UACAAUCdTdT


GAUGCdTdT
AAUC




1












AD-
A-
529
CACCAACUUACU
A-1684265.1
530
UUAGGAAAGUAAGU
CACCAACUUACUUUC
3302


887495
1684264.

UUCCUAAdTdT


UGGUGdTdT
CUAA




1












AD-
A-
531
ACCAACUUACUU
A-1684267.1
532
UUUAGGAAAGUAAG
ACCAACUUACUUUCC
3303


887496
1684266.

UCCUAAAdTdT


UUGGUdTdT
UAAA




1












AD-
A-
533
CCAACUUACUUU
A-1684269.1
534
AUUUAGGAAAGUAA
CCAACUUACUUUCCU
3304


887497
1684268.

CCUAAAUdTdT


GUUGGdTdT
AAAU




1












AD-
A-
535
CAACUUACUUUC
A-1684271.1
536
AAUUUAGGAAAGUA
CAACUUACUUUCCUA
3305


887498
1684270.

CUAAAUUdTdT


AGUUGdTdT
AAUU




1












AD-
A-
537
AGGAAGAUGUCA
A-1684273.1
538
GAGAAGGUGACAUC
AGGAAGAUGUCACCU
3306


887499
1684272.

CCUUCUCdTdT


UUCCUdTdT
UCUC




1












AD-
A-
539
GAAGAUGUCACC
A-1684275.1
540
AGGAGAAGGUGACA
GAAGAUGUCACCUUC
3307


887500
1684274.

UUCUCCUdTdT


UCUUCdTdT
UCCU




1












AD-
A-
541
AGAUGUCACCUU
A-1684277.1
542
UAAGGAGAAGGUGA
AGAUGUCACCUUCUC
3308


887501
1684276.

CUCCUUAdTdT


CAUCUdTdT
CUUA




1












AD-
A-
543
GAUGUCACCUUC
A-1684279.1
544
UUAAGGAGAAGGUG
GAUGUCACCUUCUCC
3309


887502
1684278.

UCCUUAAdTdT


ACAUCdTdT
UUAA




1












AD-
A-
545
AUGUCACCUUCU
A-1684281.1
546
UUUAAGGAGAAGGU
AUGUCACCUUCUCCU
3310


887503
1684280.

CCUUAAAdTdT


GACAUdTdT
UAAA




1












AD-
A-
547
UGUCACCUUCUC
A-1684283.1
548
UUUUAAGGAGAAGG
UGUCACCUUCUCCUU
3311


887504
1684282.

CUUAAAAdTdT


UGACAdTdT
AAAA




1












AD-
A-
549
GUCACCUUCUCC
A-1684285.1
550
AUUUUAAGGAGAAG
GUCACCUUCUCCUUA
3312


887505
1684284.

UUAAAAUdTdT


GUGACdTdT
AAAU




1












AD-
A-
551
UCACCUUCUCCU
A-1684287.1
552
AAUUUUAAGGAGAA
UCACCUUCUCCUUAA
3313


887506
1684286.

UAAAAUUdTdT


GGUGAdTdT
AAUU




1












AD-
A-
553
ACCUUCUCCUUA
A-1684289.1
554
AGAAUUUUAAGGAG
ACCUUCUCCUUAAAA
3314


887507
1684288.

AAAUUCUdTdT


AAGGUdTdT
UUCU




1












AD-
A-
555
CCUUCUCCUUAA
A-1684291.1
556
UAGAAUUUUAAGGA
CCUUCUCCUUAAAAU
3315


887508
1684290.

AAUUCUAdTdT


GAAGGdTdT
UCUA




1












AD-
A-
557
CUUCUCCUUAAA
A-1684293.1
558
AUAGAAUUUUAAGG
CUUCUCCUUAAAAUU
3316


887509
1684292.

AUUCUAUdTdT


AGAAGdTdT
CUAU




1












AD-
A-
559
UGAGAUCUUUCU
A-1684295.1
560
UUAUAGAAGAAAGA
UGAGAUCUUUCUUCU
3317


887510
1684294.

UCUAUAAdTdT


UCUCAdTdT
AUAA




1












AD-
A-
561
GAUCUUUCUUCU
A-1684297.1
562
ACUUUAUAGAAGAA
GAUCUUUCUUCUAUA
3318


887511
1684296.

AUAAAGUdTdT


AGAUCdTdT
AAGU




1












AD-
A-
563
UACCAUCUUAGG
A-1684299.1
564
GAAUGAACCUAAGA
UACCAUCUUAGGUUC
3319


887512
1684298.

UUCAUUCdTdT


UGGUAdTdT
AUUC




1












AD-
A-
565
ACCAUCUUAGGU
A-1684301.1
566
UGAAUGAACCUAAG
ACCAUCUUAGGUUCA
3320


887513
1684300.

UCAUUCAdTdT


AUGGUdTdT
UUCA




1












AD-
A-
567
CCAUCUUAGGUU
A-1684303.1
568
AUGAAUGAACCUAA
CCAUCUUAGGUUCAU
3321


887514
1684302.

CAUUCAUdTdT


GAUGGdTdT
UCAU




1












AD-
A-
569
CAUCUUAGGUUC
A-1684305.1
570
GAUGAAUGAACCUA
CAUCUUAGGUUCAUU
3322


887515
1684304.

AUUCAUCdTdT


AGAUGdTdT
CAUC




1












AD-
A-
571
UCUUAGGUUCAU
A-1684307.1
572
AAGAUGAAUGAACC
UCUUAGGUUCAUUCA
3323


887516
1684306.

UCAUCUUdTdT


UAAGAdTdT
UCUU




1












AD-
A-
573
CUUAGGUUCAUU
A-1684309.1
574
UAAGAUGAAUGAAC
CUUAGGUUCAUUCAU
3324


887517
1684308.

CAUCUUAdTdT


CUAAGdTdT
CUUA




1












AD-
A-
575
UUAGGUUCAUUC
A-1684311.1
576
CUAAGAUGAAUGAA
UUAGGUUCAUUCAUC
3325


887518
1684310.

AUCUUAGdTdT


CCUAAdTdT
UUAG




1












AD-
A-
577
UAGGUUCAUUCA
A-1684313.1
578
CCUAAGAUGAAUGA
UAGGUUCAUUCAUCU
3326


887519
1684312.

UCUUAGGdTdT


ACCUAdTdT
UAGG




1












AD-
A-
579
CUGCAUUAUGAA
A-1684315.1
580
GUAAGUAUUCAUAA
CUGCAUUAUGAAUAC
3327


887520
1684314.

UACUUACdTdT


UGCAGdTdT
UUAC




1












AD-
A-
581
ACACAAUUUCUU
A-1684317.1
582
UGCUAAGAAGAAAU
ACACAAUUUCUUCUU
3328


887521
1684316.

CUUAGCAdTdT


UGUGUdTdT
AGCA




1












AD-
A-
583
GUUCUUUUUCC
A-1684319.1
584
AUGAAAUAGGAAAA
GUUCUUUUUCCUAUU
3329


887522
1684318.

UAUUUCAUdTdT


AGAACdTdT
UCAU




1












AD-
A-
585
UCCUAUUUCAUG
A-1684321.1
586
CAUAGUUCAUGAAA
UCCUAUUUCAUGAAC
3330


887523
1684320.

AACUAUGdTdT


UAGGAdTdT
UAUG




1












AD-
A-
587
CCUAUUUCAUGA
A-1684323.1
588
ACAUAGUUCAUGAA
CCUAUUUCAUGAACU
3331


887524
1684322.

ACUAUGUdTdT


AUAGGdTdT
AUGU




1












AD-
A-
589
AUGUCUACUUGU
A-1684325.1
590
AAAAGUCACAAGUAG
AUGUCUACUUGUGAC
3332


887525
1684324.

GACUUUUdTdT


ACAUdTdT
UUUU




1












AD-
A-
591
UGUCUACUUGU
A-1684327.1
592
AAAAAGUCACAAGUA
UGUCUACUUGUGACU
3333


887526
1684326.

GACUUUUUdTdT


GACAdTdT
UUUU




1












AD-
A-
593
UCUACUUGUGAC
A-1684329.1
594
AUAAAAAGUCACAAG
UCUACUUGUGACUUU
3334


887527
1684328.

UUUUUAUdTdT


UAGAdTdT
UUAU




1












AD-
A-
595
CUACUUGUGACU
A-1684331.1
596
GAUAAAAAGUCACAA
CUACUUGUGACUUUU
3335


887528
1684330.

UUUUAUCdTdT


GUAGdTdT
UAUC




1












AD-
A-
597
GUUCUAAAUAGC
A-1684333.1
598
UGAAAUAGCUAUUU
GUUCUAAAUAGCUAU
3336


887529
1684332.

UAUUUCAdTdT


AGAACdTdT
UUCA




1












AD-
A-
599
GCUGUUUACAUA
A-1684335.1
600
AGAAUCCUAUGUAA
GCUGUUUACAUAGGA
3337


887530
1684334.

GGAUUCUdTdT


ACAGCdTdT
UUCU




1












AD-
A-
601
GCUCAAAAUGUU
A-1684337.1
602
AAACUCAAACAUUUU
GCUCAAAAUGUUUGA
3338


887531
1684336.

UGAGUUUdTdT


GAGCdTdT
GUUU




1
















TABLE 2B







Exemplary Human SCN9A Unmodified Single Strands and Duplex Sequences.


Column 1 indicates duplex name. Column 2 indicates the sense sequence name. Column 3 indicates the sequence ID for the sequence of column


4. Column 4 provides the unmodified sequence of a sense strand suitable for use in a duplex described herein. Column 5 provides the position in


the target mRNA (NM_002977.3) of the sense strand of Column 4. Column 6 indicates the antisense sequence name. Column 7 indicates the


sequence ID for the sequence of column 8. Column 8 provides the sequence of an antisense strand suitable for use in a duplex described herein,


without specifying chemical modifications. Column 9 indicates the position in the target mRNA (NM_002977.3) that is complementary to the


antisense strand of Column 8.




















Anti
Seq ID





Sense
Seq ID

mRNA target
sense
NO:

mRNA target


Duplex
sequence
NO:
Sense sequence
range in
sequence
(anti
antisense sequence
range in


Name
name
(sense)
(5′-3′)
NM_002977.3
name
sense)
(5′-3′)
NM_002977.3





AD-887232
A-1683738.1
 603
UCACAAAACAGUCUCU
 342-360
A-
 604
GCAAGAGACUGU
 342-360





UGC

1683739.1

UUUGUGA






AD-887233
A-1683740.1
 605
GGAAAACAAUCUUCCG
 579-597
A-
 606
AAACGGAAGAUU
 579-597





UUU

1683741.1

GUUUUCC






AD-887234
A-1683742.1
 607
GAAAACAAUCUUCCGU
 580-598
A-
 608
GAAACGGAAGAU
 580-598





UUC

1683743.1

UGUUUUC






AD-887235
A-1683744.1
 609
AAAACAAUCUUCCGUU
 581-599
A-
 610
UGAAACGGAAGA
 581-599





UCA

1683745.1

UUGUUUU






AD-887236
A-1683746.1
 611
AAACAAUCUUCCGUUU
 582-600
A-
 612
UUGAAACGGAAG
 582-600





CAA

1683747.1

AUUGUUU






AD-887237
A-1683748.1
 613
AACAAUCUUCCGUUUC
 583-601
A-
 614
AUUGAAACGGAA
 583-601





AAU

1683749.1

GAUUGUU






AD-887238
A-1683750.1
 615
CAAUCUUCCGUUUCAA
 585-603
A-
 616
GCAUUGAAACGG
 585-603





UGC

1683751.1

AAGAUUG






AD-887239
A-1683752.1
 617
CCUGCUUUAUAUAUGC
 608-626
A-
 618
AAAGCAUAUAUA
 608-626





UUU

1683753.1

AAGCAGG






AD-887240
A-1683754.1
 619
CUGCUUUAUAUAUGC
 609-627
A-
 620
GAAAGCAUAUAU
 609-627





UUUC

1683755.1

AAAGCAG






AD-887241
A-1683756.1
 621
UAUGCUUUCUCCUUUC
 619-637
A-
 622
ACUGAAAGGAGA
 619-637





AGU

1683757.1

AAGCAUA






AD-887242
A-1683758.1
 623
AUGCUUUCUCCUUUCA
 620-638
A-
 624
GACUGAAAGGAG
 620-638





GUC

1683759.1

AAAGCAU






AD-887243
A-1683760.1
 625
UGCUUUCUCCUUUCAG
 621-639
A-
 626
GGACUGAAAGGA
 621-639





UCC

1683761.1

GAAAGCA






AD-887244
A-1683762.1
 627
CUUUCUCCUUUCAGUC
 623-641
A-
 628
GAGGACUGAAAG
 623-641





CUC

1683763.1

GAGAAAG






AD-887245
A-1683764.1
 629
UCUCCUUUCAGUCCUC
 626-644
A-
 630
UUAGAGGACUGA
 626-644





UAA

1683765.1

AAGGAGA






AD-887246
A-1683766.1
 631
CUCCUUUCAGUCCUCU
 627-645
A-
 632
CUUAGAGGACUG
 627-645





AAG

1683767.1

AAAGGAG






AD-887247
A-1683768.1
 633
UCCUUUCAGUCCUCUA
 628-646
A-
 634
UCUUAGAGGACU
 628-646





AGA

1683769.1

GAAAGGA






AD-887248
A-1683770.1
 635
CCUUUCAGUCCUCUAA
 629-647
A-
 636
UUCUUAGAGGAC
 629-647





GAA

1683771.1

UGAAAGG






AD-887249
A-1683772.1
 637
CUUUCAGUCCUCUAAG
 630-648
A-
 638
CUUCUUAGAGGA
 630-648





AAG

1683773.1

CUGAAAG






AD-887250
A-1683774.1
 639
AGUCCUCUAAGAAGAA
 635-653
A-
 640
AUAUUCUUCUUA
 635-653





UAU

1683775.1

GAGGACU






AD-887251
A-1683776.1
 641
UCCUCUAAGAAGAAUA
 637-655
A-
 642
AGAUAUUCUUCU
 637-655





UCU

1683777.1

UAGAGGA






AD-887252
A-1683778.1
 643
CCUCUAAGAAGAAUAU
 638-656
A-
 644
UAGAUAUUCUUC
 638-656





CUA

1683779.1

UUAGAGG






AD-887253
A-1683780.1
 645
CUCUAAGAAGAAUAUC
 639-657
A-
 646
AUAGAUAUUCUU
 639-657





UAU

1683781.1

CUUAGAG






AD-887254
A-1683782.1
 647
AUUUUAGUACACUCCU
 662-680
A-
 648
AUAAGGAGUGUA
 662-680





UAU

1683783.1

CUAAAAU






AD-887255
A-1683784.1
 649
UAGUACACUCCUUAUU
 666-684
A-
 650
CUGAAUAAGGAG
 666-684





CAG

1683785.1

UGUACUA






AD-887256
A-1683786.1
 651
AGUACACUCCUUAUUC
 667-685
A-
 652
GCUGAAUAAGGA
 667-685





AGC

1683787.1

GUGUACU






AD-887257
A-1683788.1
 653
CCUUAUUCAGCAUGCU
 675-693
A-
 654
AUGAGCAUGCUG
 675-693





CAU

1683789.1

AAUAAGG






AD-887258
A-1683790.1
 655
UCAUCAUGUGCACUAU
 690-708
A-
 656
AGAAUAGUGCAC
 690-708





UCU

1683791.1

AUGAUGA






AD-887259
A-1683792.1
 657
CAUCAUGUGCACUAUU
 691-709
A-
 658
CAGAAUAGUGCA
 691-709





CUG

1683793.1

CAUGAUG






AD-887260
A-1683794.1
 659
UGUCGAGUACACUUU
 760-778
A-
 660
AGUAAAAGUGUA
 760-778





UACU

1683795.1

CUCGACA






AD-887261
A-1683796.1
 661
GUCGAGUACACUUUUA
 761-779
A-
 662
CAGUAAAAGUGU
 761-779





CUG

1683797.1

ACUCGAC






AD-887262
A-1683798.1
 663
CUUCUGUGUAGGAGA
 823-841
A-
 664
GAAUUCUCCUAC
 823-841





AUUC

1683799.1

ACAGAAG






AD-887263
A-1683800.1
 665
UAGGAGAAUUCACUU
 831-849
A-
 666
AGAAAAGUGAAU
 831-849





UUCU

1683801.1

UCUCCUA






AD-887264
A-1683802.1
 667
AGGAGAAUUCACUUU
 832-850
A-
 668
AAGAAAAGUGAA
 832-850





UCUU

1683803.1

UUCUCCU






AD-887265
A-1683804.1
 669
GGAGAAUUCACUUUUC
 833-851
A-
 670
GAAGAAAAGUGA
 833-851





UUC

1683805.1

AUUCUCC






AD-887266
A-1683806.1
 671
GGCAAUGUUUCAGCUC
 920-938
A-
 672
GAAGAGCUGAAA
 920-938





UUC

1683807.1

CAUUGCC






AD-887267
A-1683808.1
 673
AAUGUUUCAGCUCUUC
 923-941
A-
 674
UUCGAAGAGCUG
 923-941





GAA

1683809.1

AAACAUU






AD-887268
A-1683810.1
 675
GUUUCAGCUCUUCGAA
 926-944
A-
 676
AAGUUCGAAGAG
 926-944





CUU

1683811.1

CUGAAAC






AD-887269
A-1683812.1
 677
UCAGCUCUUCGAACUU
 929-947
A-
 678
UGAAAGUUCGAA
 929-947





UCA

1683813.1

GAGCUGA






AD-887270
A-1683814.1
 679
AGCUCUUCGAACUUUC
 931-949
A-
5804
UCUGAAAGUUCG
 931-949





AGA

1683815.1

AAGAGCU






AD-887271
A-1683816.1
5805
CUCUUCGAACUUUCAG
 933-951
A-
5806
ACUCUGAAAGUU
 933-951





AGU

1683817.1

CGAAGAG






AD-887272
A-1683818.1
5807
CUUCGAACUUUCAGAG
 935-953
A-
5808
AUACUCUGAAAG
 935-953





UAU

1683819.1

UUCGAAG






AD-887273
A-1683820.1
5809
UCCUGACUGUGUUCU
1047-1065
A-
5810
AGACAGAACACAG
1047-1065





GUCU

1683821.1

UCAGGA






AD-887274
A-1683822.1
5811
CUGACUGUGUUCUGU
1049-1067
A-
5812
UCAGACAGAACAC
1049-1067





CUGA

1683823.1

AGUCAG






AD-887275
A-1683824.1
5813
UGACUGUGUUCUGUC
1050-1068
A-
 680
CUCAGACAGAACA
1050-1068





UGAG

1683825.1

CAGUCA






AD-887276
A-1683826.1
 681
GACUGUGUUCUGUCU
1051-1069
A-
 682
ACUCAGACAGAAC
1051-1069





GAGU

1683827.1

ACAGUC






AD-887277
A-1683828.1
 683
ACUGUGUUCUGUCUG
1052-1070
A-
 684
CACUCAGACAGAA
1052-1070





AGUG

1683829.1

CACAGU






AD-887278
A-1683830.1
 685
CUGUGUUCUGUCUGA
1053-1071
A-
 686
ACACUCAGACAGA
1053-1071





GUGU

1683831.1

ACACAG






AD-887279
A-1683832.1
 687
UGUGUUCUGUCUGAG
1054-1072
A-
 688
CACACUCAGACAG
1054-1072





UGUG

1683833.1

AACACA






AD-887280
A-1683834.1
 689
UGUUCUGUCUGAGUG
1056-1074
A-
 690
AACACACUCAGAC
1056-1074





UGUU

1683835.1

AGAACA






AD-887281
A-1683836.1
 691
GUUCUGUCUGAGUGU
1057-1075
A-
 692
AAACACACUCAGA
1057-1075





GUUU

1683837.1

CAGAAC






AD-887282
A-1683838.1
 693
UUCUGUCUGAGUGUG
1058-1076
A-
 694
CAAACACACUCAG
1058-1076





UUUG

1683839.1

ACAGAA






AD-887283
A-1683840.1
 695
UCUGUCUGAGUGUGU
1059-1077
A-
 696
GCAAACACACUCA
1059-1077





UUGC

1683841.1

GACAGA






AD-887284
A-1683842.1
 697
UGCUCUCCUUUGUGG
1231-1249
A-
 698
GAAACCACAAAGG
1231-1249





UUUC

1683843.1

AGAGCA






AD-887285
A-1683844.1
 699
CUCUCCUUUGUGGUU
1233-1251
A-
 700
CUGAAACCACAAA
1233-1251





UCAG

1683845.1

GGAGAG






AD-887286
A-1683846.1
 701
UCUCCUUUGUGGUUU
1234-1252
A-
 702
GCUGAAACCACAA
1234-1252





CAGC

1683847.1

AGGAGA






AD-887287
A-1683848.1
 703
CUCCUUUGUGGUUUC
1235-1253
A-
 704
UGCUGAAACCACA
1235-1253





AGCA

1683849.1

AAGGAG






AD-887288
A-1683850.1
 705
CGAGCUUUGACACUUU
1323-1341
A-
 706
CUGAAAGUGUCA
1323-1341





CAG

1683851.1

AAGCUCG






AD-887289
A-1683852.1
 707
ACAUGAUCUUCUUUG
1431-1449
A-
 708
ACGACAAAGAAGA
1431-1449





UCGU

1683853.1

UCAUGU






AD-887290
A-1683854.1
 709
CAUGAUCUUCUUUGU
1432-1450
A-
 710
UACGACAAAGAA
1432-1450





CGUA

1683855.1

GAUCAUG






AD-887291
A-1683856.1
 711
GAUCUUCUUUGUCGU
1435-1453
A-
 712
CACUACGACAAAG
1435-1453





AGUG

1683857.1

AAGAUC






AD-887292
A-1683858.1
 713
UCUUCUUUGUCGUAG
1437-1455
A-
 714
AUCACUACGACAA
1437-1455





UGAU

1683859.1

AGAAGA






AD-887293
A-1683860.1
 715
CUUCUUUGUCGUAGU
1438-1456
A-
 716
AAUCACUACGACA
1438-1456





GAUU

1683861.1

AAGAAG






AD-887294
A-1683862.1
 717
UUGUCGUAGUGAUUU
1443-1461
A-
 718
AGGAAAAUCACU
1443-1461





UCCU

1683863.1

ACGACAA






AD-887295
A-1683864.1
 719
GCUCCUUUUAUCUAAU
1464-1482
A-
 720
UUUAUUAGAUAA
1464-1482





AAA

1683865.1

AAGGAGC






AD-887296
A-1683866.1
 721
CUCCUUUUAUCUAAUA
1465-1483
A-
 722
GUUUAUUAGAUA
1465-1483





AAC

1683867.1

AAAGGAG






AD-887297
A-1683868.1
 723
CCUCUCAGAGAGUUCU
1669-1687
A-
 724
AGAAGAACUCUC
1669-1687





UCU

1683869.1

UGAGAGG






AD-887298
A-1683870.1
 725
CUCUCAGAGAGUUCUU
1670-1688
A-
 726
CAGAAGAACUCUC
1670-1688





CUG

1683871.1

UGAGAG






AD-887299
A-1683872.1
 727
UCUCAGAGAGUUCUUC
1671-1689
A-
 728
UCAGAAGAACUC
1671-1689





UGA

1683873.1

UCUGAGA






AD-887300
A-1683874.1
 729
CUCAGAGAGUUCUUCU
1672-1690
A-
 730
UUCAGAAGAACU
1672-1690





GAA

1683875.1

CUCUGAG






AD-887301
A-1683876.1
 731
UCAGAGAGUUCUUCU
1673-1691
A-
 732
UUUCAGAAGAAC
1673-1691





GAAA

1683877.1

UCUCUGA






AD-887302
A-1683878.1
 733
CAGAGAGUUCUUCUGA
1674-1692
A-
 734
GUUUCAGAAGAA
1674-1692





AAC

1683879.1

CUCUCUG






AD-887303
A-1683880.1
 735
GAGAGUUCUUCUGAA
1676-1694
A-
 736
AUGUUUCAGAAG
1676-1694





ACAU

1683881.1

AACUCUC






AD-887304
A-1683882.1
 737
AGAGUUCUUCUGAAAC
1677-1695
A-
 738
GAUGUUUCAGAA
1677-1695





AUC

1683883.1

GAACUCU






AD-887305
A-1683884.1
 739
GAGUUCUUCUGAAACA
1678-1696
A-
 740
GGAUGUUUCAGA
1678-1696





UCC

1683885.1

AGAACUC






AD-887306
A-1683886.1
 741
AGUUCUUCUGAAACAU
1679-1697
A-
 742
UGGAUGUUUCAG
1679-1697





CCA

1683887.1

AAGAACU






AD-887307
A-1683888.1
 743
GUUCUUCUGAAACAUC
1680-1698
A-
 744
UUGGAUGUUUCA
1680-1698





CAA

1683889.1

GAAGAAC






AD-887308
A-1683890.1
 745
UCUUCUGAAACAUCCA
1682-1700
A-
 746
GUUUGGAUGUUU
1682-1700





AAC

1683891.1

CAGAAGA






AD-887309
A-1683892.1
 747
CUUCUGAAACAUCCAA
1683-1701
A-
 748
AGUUUGGAUGUU
1683-1701





ACU

1683893.1

UCAGAAG






AD-887310
A-1683894.1
 749
UCUGAAACAUCCAAAC
1685-1703
A-
 750
UCAGUUUGGAUG
1685-1703





UGA

1683895.1

UUUCAGA






AD-887311
A-1683896.1
 751
UCCAAACUGAGCUCUA
1694-1712
A-
 752
UUUUAGAGCUCA
1694-1712





AAA

1683897.1

GUUUGGA






AD-887312
A-1683898.1
 753
AGGCGUUGUAGUUCC
2300-2318
A-
 754
GAUAGGAACUAC
2300-2318





UAUC

1683899.1

AACGCCU






AD-887313
A-1683900.1
 755
GCGUUGUAGUUCCUA
2302-2320
A-
 756
GAGAUAGGAACU
2302-2320





UCUC

1683901.1

ACAACGC






AD-887314
A-1683902.1
 757
CGUUGUAGUUCCUAU
2303-2321
A-
 758
GGAGAUAGGAAC
2303-2321





CUCC

1683903.1

UACAACG






AD-887315
A-1683904.1
 759
GUUGUAGUUCCUAUC
2304-2322
A-
 760
AGGAGAUAGGAA
2304-2322





UCCU

1683905.1

CUACAAC






AD-887316
A-1683906.1
 761
UUGUAGUUCCUAUCU
2305-2323
A-
 762
AAGGAGAUAGGA
2305-2323





CCUU

1683907.1

ACUACAA






AD-887317
A-1683908.1
 763
UGUAGUUCCUAUCUCC
2306-2324
A-
 764
AAAGGAGAUAGG
2306-2324





UUU

1683909.1

AACUACA






AD-887318
A-1683910.1
 765
GUAGUUCCUAUCUCCU
2307-2325
A-
 766
GAAAGGAGAUAG
2307-2325





UUC

1683911.1

GAACUAC






AD-887319
A-1683912.1
 767
UAGUUCCUAUCUCCUU
2308-2326
A-
 768
UGAAAGGAGAUA
2308-2326





UCA

1683913.1

GGAACUA






AD-887320
A-1683914.1
 769
AGUUCCUAUCUCCUUU
2309-2327
A-
 770
CUGAAAGGAGAU
2309-2327





CAG

1683915.1

AGGAACU






AD-887321
A-1683916.1
 771
GUUCCUAUCUCCUUUC
2310-2328
A-
 772
UCUGAAAGGAGA
2310-2328





AGA

1683917.1

UAGGAAC






AD-887322
A-1683918.1
 773
UUCCUAUCUCCUUUCA
2311-2329
A-
 774
CUCUGAAAGGAG
2311-2329





GAG

1683919.1

AUAGGAA






AD-887323
A-1683920.1
 775
UCCUAUCUCCUUUCAG
2312-2330
A-
 776
CCUCUGAAAGGA
2312-2330





AGG

1683921.1

GAUAGGA






AD-887324
A-1683922.1
 777
UCUCCUUUCAGAGGAU
2317-2335
A-
 778
CAUAUCCUCUGA
2317-2335





AUG

1683923.1

AAGGAGA






AD-887325
A-1683924.1
 779
GCAUAUUAACAAACAC
2379-2397
A-
 780
ACAGUGUUUGUU
2379-2397





UGU

1683925.1

AAUAUGC






AD-887326
A-1683926.1
 781
CUUGAUCUGGAAUUG
2461-2479
A-
 782
AGAGCAAUUCCA
2461-2479





CUCU

1683927.1

GAUCAAG






AD-887327
A-1683928.1
 783
CUCUCCAUAUUGGAUA
2476-2494
A-
 784
UUUUAUCCAAUA
2476-2494





AAA

1683929.1

UGGAGAG






AD-887328
A-1683930.1
 785
UCUCCAUAUUGGAUAA
2477-2495
A-
 786
AUUUUAUCCAAU
2477-2495





AAU

1683931.1

AUGGAGA






AD-887329
A-1683932.1
 787
CUCCAUAUUGGAUAAA
2478-2496
A-
 788
AAUUUUAUCCAA
2478-2496





AUU

1683933.1

UAUGGAG






AD-887330
A-1683934.1
 789
GAUCUUGCAAUUACCA
2537-2555
A-
 790
AAAUGGUAAUUG
2537-2555





UUU

1683935.1

CAAGAUC






AD-887331
A-1683936.1
 791
UUGGUCUUUACUGGA
2639-2657
A-
 792
AGAUUCCAGUAA
2639-2657





AUCU

1683937.1

AGACCAA






AD-887332
A-1683938.1
 793
GGUCUUUACUGGAAU
2641-2659
A-
 794
AAAGAUUCCAGU
2641-2659





CUUU

1683939.1

AAAGACC






AD-887333
A-1683940.1
 795
GUCUUUACUGGAAUC
2642-2660
A-
 796
CAAAGAUUCCAG
2642-2660





UUUG

1683941.1

UAAAGAC






AD-887334
A-1683942.1
 797
GCCUUAUUGUGACUU
2736-2754
A-
 798
CUUAAAGUCACA
2736-2754





UAAG

1683943.1

AUAAGGC






AD-887335
A-1683944.1
 799
GCUCUUUCUAGCAGAU
2764-2782
A-
 800
CACAUCUGCUAG
2764-2782





GUG

1683945.1

AAAGAGC






AD-887336
A-1683946.1
 801
CUCUUUCUAGCAGAUG
2765-2783
A-
 802
CCACAUCUGCUAG
2765-2783





UGG

1683947.1

AAAGAG






AD-887337
A-1683948.1
 803
GUCAGUUCUGCGAUCA
2791-2809
A-
 804
GAAUGAUCGCAG
2791-2809





UUC

1683949.1

AACUGAC






AD-887338
A-1683950.1
 805
UCAGUUCUGCGAUCAU
2792-2810
A-
 806
UGAAUGAUCGCA
2792-2810





UCA

1683951.1

GAACUGA






AD-887339
A-1683952.1
 807
AGUCUUCAAGUUGGCA
2821-2839
A-
 808
UUUUGCCAACUU
2821-2839





AAA

1683953.1

GAAGACU






AD-887340
A-1683954.1
 809
UCUUCAAGUUGGCAAA
2823-2841
A-
 810
GAUUUUGCCAAC
2823-2841





AUC

1683955.1

UUGAAGA






AD-887341
A-1683956.1
 811
CUUCAAGUUGGCAAAA
2824-2842
A-
 812
GGAUUUUGCCAA
2824-2842





UCC

1683957.1

CUUGAAG






AD-887342
A-1683958.1
 813
CCAUCAUCGUCUUCAU
2919-2937
A-
 814
AAAAUGAAGACG
2919-2937





UUU

1683959.1

AUGAUGG






AD-887343
A-1683960.1
 815
CAUCAUCGUCUUCAUU
2920-2938
A-
 816
AAAAAUGAAGAC
2920-2938





UUU

1683961.1

GAUGAUG






AD-887344
A-1683962.1
 817
GCACAUGAACGACUUC
3022-3040
A-
 818
GAAGAAGUCGUU
3022-3040





UUC

1683963.1

CAUGUGC






AD-887345
A-1683964.1
 819
CACAUGAACGACUUCU
3023-3041
A-
 820
GGAAGAAGUCGU
3023-3041





UCC

1683965.1

UCAUGUG






AD-887346
A-1683966.1
 821
ACAUGAACGACUUCUU
3024-3042
A-
 822
UGGAAGAAGUCG
3024-3042





CCA

1683967.1

UUCAUGU






AD-887347
A-1683968.1
 823
CAUGAACGACUUCUUC
3025-3043
A-
 824
GUGGAAGAAGUC
3025-3043





CAC

1683969.1

GUUCAUG






AD-887348
A-1683970.1
 825
UGAACGACUUCUUCCA
3027-3045
A-
 826
GAGUGGAAGAAG
3027-3045





CUC

1683971.1

UCGUUCA






AD-887349
A-1683972.1
 827
CGACUUCUUCCACUCC
3031-3049
A-
 828
GAAGGAGUGGAA
3031-3049





UUC

1683973.1

GAAGUCG






AD-887350
A-1683974.1
 829
UCCACUCCUUCCUGAU
3039-3057
A-
 830
ACAAUCAGGAAG
3039-3057





UGU

1683975.1

GAGUGGA






AD-887351
A-1683976.1
 831
ACUCCUUCCUGAUUGU
3042-3060
A-
 832
AACACAAUCAGGA
3042-3060





GUU

1683977.1

AGGAGU






AD-887352
A-1683978.1
 833
CUCCUUCCUGAUUGUG
3043-3061
A-
 834
GAACACAAUCAGG
3043-3061





UUC

1683979.1

AAGGAG






AD-887353
A-1683980.1
 835
UCCUUCCUGAUUGUG
3044-3062
A-
 836
GGAACACAAUCAG
3044-3062





UUCC

1683981.1

GAAGGA






AD-887354
A-1683982.1
 837
CUAUGUGCCUUAUUG
3123-3141
A-
 838
UAAACAAUAAGG
3123-3141





UUUA

1683983.1

CACAUAG






AD-887355
A-1683984.1
 839
UGGUCCUAAACCUAUU
3171-3189
A-
 840
AGAAAUAGGUUU
3171-3189





UCU

1683985.1

AGGACCA






AD-887356
A-1683986.1
 841
GGUCCUAAACCUAUUU
3172-3190
A-
 842
CAGAAAUAGGUU
3172-3190





CUG

1683987.1

UAGGACC






AD-887357
A-1683988.1
 843
GUCCUAAACCUAUUUC
3173-3191
A-
 844
CCAGAAAUAGGU
3173-3191





UGG

1683989.1

UUAGGAC






AD-887358
A-1683990.1
 845
CCUUACGUGAAUUUA
3312-3330
A-
 846
AGAAUAAAUUCA
3312-3330





UUCU

1683991.1

CGUAAGG






AD-887359
A-1683992.1
 847
CAAAGGUCACAAUUUC
3439-3457
A-
 848
GAGGAAAUUGUG
3439-3457





CUC

1683993.1

ACCUUUG






AD-887360
A-1683994.1
 849
UCACAAUUUCCUCAAG
3445-3463
A-
 850
UUCCUUGAGGAA
3445-3463





GAA

1683995.1

AUUGUGA






AD-887361
A-1683996.1
 851
CCUCAAGGAAAAAGAU
3454-3472
A-
 852
UUUAUCUUUUUC
3454-3472





AAA

1683997.1

CUUGAGG






AD-887362
A-1683998.1
 853
GCUUCAUUGUCCUCAU
3885-3903
A-
 854
AUCAUGAGGACA
3885-3903





GAU

1683999.1

AUGAAGC






AD-887363
A-1684000.1
 855
CUUCAUUGUCCUCAUG
3886-3904
A-
 856
GAUCAUGAGGAC
3886-3904





AUC

1684001.1

AAUGAAG






AD-887364
A-1684002.1
 857
UGCAGACAAGAUCUUC
3982-4000
A-
 858
AGUGAAGAUCUU
3982-4000





ACU

1684003.1

GUCUGCA






AD-887365
A-1684004.1
 859
CAGACAAGAUCUUCAC
3984-4002
A-
 860
UAAGUGAAGAUC
3984-4002





UUA

1684005.1

UUGUCUG






AD-887366
A-1684006.1
 861
AGACAAGAUCUUCACU
3985-4003
A-
 862
GUAAGUGAAGAU
3985-4003





UAC

1684007.1

CUUGUCU






AD-887367
A-1684008.1
 863
GACAAGAUCUUCACUU
3986-4004
A-
 864
UGUAAGUGAAGA
3986-4004





ACA

1684009.1

UCUUGUC






AD-887368
A-1684010.1
 865
ACAAGAUCUUCACUUA
3987-4005
A-
 866
AUGUAAGUGAAG
3987-4005





CAU

1684011.1

AUCUUGU






AD-887369
A-1684012.1
 867
CAAGAUCUUCACUUAC
3988-4006
A-
 868
GAUGUAAGUGAA
3988-4006





AUC

1684013.1

GAUCUUG






AD-887370
A-1684014.1
 869
AGAUCUUCACUUACAU
3990-4008
A-
 870
AAGAUGUAAGUG
3990-4008





CUU

1684015.1

AAGAUCU






AD-887371
A-1684016.1
 871
GAUCUUCACUUACAUC
3991-4009
A-
 872
GAAGAUGUAAGU
3991-4009





UUC

1684017.1

GAAGAUC






AD-887372
A-1684018.1
 873
UCUUCACUUACAUCUU
3993-4011
A-
 874
AUGAAGAUGUAA
3993-4011





CAU

1684019.1

GUGAAGA






AD-887373
A-1684020.1
 875
CUUCACUUACAUCUUC
3994-4012
A-
 876
AAUGAAGAUGUA
3994-4012





AUU

1684021.1

AGUGAAG






AD-887374
A-1684022.1
 877
UUCACUUACAUCUUCA
3995-4013
A-
 878
GAAUGAAGAUGU
3995-4013





UUC

1684023.1

AAGUGAA






AD-887375
A-1684024.1
 879
UCACUUACAUCUUCAU
3996-4014
A-
 880
AGAAUGAAGAUG
3996-4014





UCU

1684025.1

UAAGUGA






AD-887376
A-1684026.1
 881
CACUUACAUCUUCAUU
3997-4015
A-
 882
CAGAAUGAAGAU
3997-4015





CUG

1684027.1

GUAAGUG






AD-887377
A-1684028.1
 883
CUUACAUCUUCAUUCU
3999-4017
A-
 884
UCCAGAAUGAAG
3999-4017





GGA

1684029.1

AUGUAAG






AD-887378
A-1684030.1
 885
ACAUCUUCAUUCUGGA
4002-4020
A-
 886
AUUUCCAGAAUG
4002-4020





AAU

1684031.1

AAGAUGU






AD-887379
A-1684032.1
 887
CAUCUUCAUUCUGGAA
4003-4021
A-
 888
CAUUUCCAGAAU
4003-4021





AUG

1684033.1

GAAGAUG






AD-887380
A-1684034.1
 889
UCUUCAUUCUGGAAA
4005-4023
A-
 890
AGCAUUUCCAGA
4005-4023





UGCU

1684035.1

AUGAAGA






AD-887381
A-1684036.1
 891
CUUCAUUCUGGAAAUG
4006-4024
A-
 892
AAGCAUUUCCAG
4006-4024





CUU

1684037.1

AAUGAAG






AD-887382
A-1684038.1
 893
UCUGGAAAUGCUUCUA
4012-4030
A-
 894
UUUUAGAAGCAU
4012-4030





AAA

1684039.1

UUCCAGA






AD-887383
A-1684040.1
 895
GCUGGAUUUCCUAAU
4078-4096
A-
 896
AACAAUUAGGAA
4078-4096





UGUU

1684041.1

AUCCAGC






AD-887384
A-1684042.1
 897
CUGGAUUUCCUAAUU
4079-4097
A-
 898
CAACAAUUAGGA
4079-4097





GUUG

1684043.1

AAUCCAG






AD-887385
A-1684044.1
 899
CCUCUAAGAGCCUUAU
4187-4205
A-
 900
UAGAUAAGGCUC
4187-4205





CUA

1684045.1

UUAGAGG






AD-887386
A-1684046.1
 901
CUCUAAGAGCCUUAUC
4188-4206
A-
 902
CUAGAUAAGGCU
4188-4206





UAG

1684047.1

CUUAGAG






AD-887387
A-1684048.1
 903
CUUCCAUCAUGAAUGU
4254-4272
A-
 904
AGCACAUUCAUG
4254-4272





GCU

1684049.1

AUGGAAG






AD-887388
A-1684050.1
 905
UUUCCUGCAAGUCAAG
4373-4391
A-
 906
GAACUUGACUUG
4373-4391





UUC

1684051.1

CAGGAAA






AD-887389
A-1684052.1
 907
CUGCAAGUCAAGUUCC
4377-4395
A-
 908
UUUGGAACUUGA
4377-4395





AAA

1684053.1

CUUGCAG






AD-887390
A-1684054.1
 909
AGUCAAGUUCCAAAUC
4382-4400
A-
 910
AACGAUUUGGAA
4382-4400





GUU

1684055.1

CUUGACU






AD-887391
A-1684056.1
 911
ACUUGGUUACCUAUCU
4477-4495
A-
 912
CAGAGAUAGGUA
4477-4495





CUG

1684057.1

ACCAAGU






AD-887392
A-1684058.1
 913
CUUGGUUACCUAUCUC
4478-4496
A-
 914
GCAGAGAUAGGU
4478-4496





UGC

1684059.1

AACCAAG






AD-887393
A-1684060.1
 915
GGUUACCUAUCUCUGC
4481-4499
A-
 916
GAAGCAGAGAUA
4481-4499





UUC

1684061.1

GGUAACC






AD-887394
A-1684062.1
 917
GUUACCUAUCUCUGCU
4482-4500
A-
 918
UGAAGCAGAGAU
4482-4500





UCA

1684063.1

AGGUAAC






AD-887395
A-1684064.1
 919
UUACCUAUCUCUGCUU
4483-4501
A-
 920
UUGAAGCAGAGA
4483-4501





CAA

1684065.1

UAGGUAA






AD-887396
A-1684066.1
 921
UACCUAUCUCUGCUUC
4484-4502
A-
 922
CUUGAAGCAGAG
4484-4502





AAG

1684067.1

AUAGGUA






AD-887397
A-1684068.1
 923
ACCUAUCUCUGCUUCA
4485-4503
A-
 924
ACUUGAAGCAGA
4485-4503





AGU

1684069.1

GAUAGGU






AD-887398
A-1684070.1
 925
CCUAUCUCUGCUUCAA
4486-4504
A-
 926
AACUUGAAGCAG
4486-4504





GUU

1684071.1

AGAUAGG






AD-887399
A-1684072.1
 927
CUAUCUCUGCUUCAAG
4487-4505
A-
 928
CAACUUGAAGCA
4487-4505





UUG

1684073.1

GAGAUAG






AD-887400
A-1684074.1
 929
AUCUCUGCUUCAAGUU
4489-4507
A-
 930
UGCAACUUGAAG
4489-4507





GCA

1684075.1

CAGAGAU






AD-887401
A-1684076.1
 931
UCUCUGCUUCAAGUU
4490-4508
A-
 932
UUGCAACUUGAA
4490-4508





GCAA

1684077.1

GCAGAGA






AD-887402
A-1684078.1
 933
CUCUGCUUCAAGUUGC
4491-4509
A-
 934
GUUGCAACUUGA
4491-4509





AAC

1684079.1

AGCAGAG






AD-887403
A-1684080.1
 935
UCUGCUUCAAGUUGCA
4492-4510
A-
 936
AGUUGCAACUUG
4492-4510





ACU

1684081.1

AAGCAGA






AD-887404
A-1684082.1
 937
UAUCAUCUUUGGGUC
4618-4636
A-
 938
GAAUGACCCAAAG
4618-4636





AUUC

1684083.1

AUGAUA






AD-887405
A-1684084.1
 939
AUCAUCUUUGGGUCA
4619-4637
A-
 940
AGAAUGACCCAAA
4619-4637





UUCU

1684085.1

GAUGAU






AD-887406
A-1684086.1
 941
UCAUCUUUGGGUCAU
4620-4638
A-
 942
AAGAAUGACCCAA
4620-4638





UCUU

1684087.1

AGAUGA






AD-887407
A-1684088.1
 943
CAUCUUUGGGUCAUU
4621-4639
A-
 944
GAAGAAUGACCCA
4621-4639





CUUC

1684089.1

AAGAUG






AD-887408
A-1684090.1
 945
CUUUGGGUCAUUCUU
4624-4642
A-
 946
AGUGAAGAAUGA
4624-4642





CACU

1684091.1

CCCAAAG






AD-887409
A-1684092.1
 947
UUGGGUCAUUCUUCA
4626-4644
A-
 948
AAAGUGAAGAAU
4626-4644





CUUU

1684093.1

GACCCAA






AD-887410
A-1684094.1
 949
UGGGUCAUUCUUCAC
4627-4645
A-
 950
CAAAGUGAAGAA
4627-4645





UUUG

1684095.1

UGACCCA






AD-887411
A-1684096.1
 951
GGGUCAUUCUUCACU
4628-4646
A-
 952
UCAAAGUGAAGA
4628-4646





UUGA

1684097.1

AUGACCC






AD-887412
A-1684098.1
 953
GGUCAUUCUUCACUU
4629-4647
A-
 954
UUCAAAGUGAAG
4629-4647





UGAA

1684099.1

AAUGACC






AD-887413
A-1684100.1
 955
GUCAUUCUUCACUUU
4630-4648
A-
 956
GUUCAAAGUGAA
4630-4648





GAAC

1684101.1

GAAUGAC






AD-887414
A-1684102.1
 957
CAUUCUUCACUUUGAA
4632-4650
A-
 958
AAGUUCAAAGUG
4632-4650





CUU

1684103.1

AAGAAUG






AD-887415
A-1684104.1
 959
UCACUUUGAACUUGU
4638-4656
A-
 960
AUGAACAAGUUC
4638-4656





UCAU

1684105.1

AAAGUGA






AD-887416
A-1684106.1
 961
CUUGUUCAUUGGUGU
4648-4666
A-
 962
GAUGACACCAAU
4648-4666





CAUC

1684107.1

GAACAAG






AD-887417
A-1684108.1
 963
GUGUCAUCAUAGAUAA
4659-4677
A-
 964
AAAUUAUCUAUG
4659-4677





UUU

1684109.1

AUGACAC






AD-887418
A-1684110.1
 965
UGUCAUCAUAGAUAAU
4660-4678
A-
 966
GAAAUUAUCUAU
4660-4678





UUC

1684111.1

GAUGACA






AD-887419
A-1684112.1
 967
GAGGUCAAGACAUCUU
4701-4719
A-
 968
AUAAAGAUGUCU
4701-4719





UAU

1684113.1

UGACCUC






AD-887420
A-1684114.1
 969
AGGUCAAGACAUCUUU
4702-4720
A-
 970
CAUAAAGAUGUC
4702-4720





AUG

1684115.1

UUGACCU






AD-887421
A-1684116.1
 971
GGUCAAGACAUCUUUA
4703-4721
A-
 972
UCAUAAAGAUGU
4703-4721





UGA

1684117.1

CUUGACC






AD-887422
A-1684118.1
 973
CCACAAAAGCCAAUUC
4775-4793
A-
 974
GAGGAAUUGGCU
4775-4793





CUC

1684119.1

UUUGUGG






AD-887423
A-1684120.1
 975
GACCUAGUGACAAAUC
4826-4844
A-
 976
CUUGAUUUGUCA
4826-4844





AAG

1684121.1

CUAGGUC






AD-887424
A-1684122.1
 977
GUAUCAUGGUUCUUA
4857-4875
A-
 978
CAGAUAAGAACCA
4857-4875





UCUG

1684123.1

UGAUAC






AD-887425
A-1684124.1
 979
UAUCAUGGUUCUUAU
4858-4876
A-
 980
ACAGAUAAGAACC
4858-4876





CUGU

1684125.1

AUGAUA






AD-887426
A-1684126.1
 981
UCAUGGUUCUUAUCU
4860-4878
A-
 982
AGACAGAUAAGA
4860-4878





GUCU

1684127.1

ACCAUGA






AD-887427
A-1684128.1
 983
CAUGGUUCUUAUCUG
4861-4879
A-
 984
GAGACAGAUAAG
4861-4879





UCUC

1684129.1

AACCAUG






AD-887428
A-1684130.1
 985
AUGGUUCUUAUCUGU
4862-4880
A-
 986
UGAGACAGAUAA
4862-4880





CUCA

1684131.1

GAACCAU






AD-887429
A-1684132.1
 987
UGGUUCUUAUCUGUC
4863-4881
A-
 988
UUGAGACAGAUA
4863-4881





UCAA

1684133.1

AGAACCA






AD-887430
A-1684134.1
 989
GGUUCUUAUCUGUCU
4864-4882
A-
 990
GUUGAGACAGAU
4864-4882





CAAC

1684135.1

AAGAACC






AD-887431
A-1684136.1
 991
GUUCUUAUCUGUCUC
4865-4883
A-
 992
UGUUGAGACAGA
4865-4883





AACA

1684137.1

UAAGAAC






AD-887432
A-1684138.1
 993
UCUUAUCUGUCUCAAC
4867-4885
A-
 994
CAUGUUGAGACA
4867-4885





AUG

1684139.1

GAUAAGA






AD-887433
A-1684140.1
 995
AUCUGUCUCAACAUGG
4871-4889
A-
 996
UUACCAUGUUGA
4871-4889





UAA

1684141.1

GACAGAU






AD-887434
A-1684142.1
 997
UCUGUCUCAACAUGGU
4872-4890
A-
 998
GUUACCAUGUUG
4872-4890





AAC

1684143.1

AGACAGA






AD-887435
A-1684144.1
 999
CUGUCUCAACAUGGUA
4873-4891
A-
1000
GGUUACCAUGUU
4873-4891





ACC

1684145.1

GAGACAG






AD-887436
A-1684146.1
1001
UCCUGGUCAUGUUCA
5253-5271
A-
1002
UAGAUGAACAUG
5253-5271





UCUA

1684147.1

ACCAGGA






AD-887437
A-1684148.1
1003
AGUUCAUCCUGGAAGU
5455-5473
A-
1004
UGAACUUCCAGG
5455-5473





UCA

1684149.1

AUGAACU






AD-887438
A-1684150.1
1005
CCAUCUGUUGGAAUAU
5495-5513
A-
1006
AGAAUAUUCCAA
5495-5513





UCU

1684151.1

CAGAUGG






AD-887439
A-1684152.1
1007
CAUCUGUUGGAAUAU
5496-5514
A-
1008
UAGAAUAUUCCA
5496-5514





UCUA

1684153.1

ACAGAUG






AD-887440
A-1684154.1
1009
UCUGUUGGAAUAUUC
5498-5516
A-
1010
AGUAGAAUAUUC
5498-5516





UACU

1684155.1

CAACAGA






AD-887441
A-1684156.1
1011
CAUACUGGAGAAUUU
5572-5590
A-
1012
ACUAAAAUUCUCC
5572-5590





UAGU

1684157.1

AGUAUG






AD-887442
A-1684158.1
1013
CUCCUCUUCUCAUAGC
5730-5748
A-
1014
UUUGCUAUGAGA
5730-5748





AAA

1684159.1

AGAGGAG






AD-887443
A-1684160.1
1015
UCCUCUUCUCAUAGCA
5731-5749
A-
1016
UUUUGCUAUGAG
5731-5749





AAA

1684161.1

AAGAGGA






AD-887444
A-1684162.1
1017
CCUCUUCUCAUAGCAA
5732-5750
A-
1018
GUUUUGCUAUGA
5732-5750





AAC

1684163.1

GAAGAGG






AD-887445
A-1684164.1
1019
CUCUUCUCAUAGCAAA
5733-5751
A-
1020
GGUUUUGCUAUG
5733-5751





ACC

1684165.1

AGAAGAG






AD-887446
A-1684166.1
1021
GAUCCAUUGUCUUGAC
5803-5821
A-
1022
GAUGUCAAGACA
5803-5821





AUC

1684167.1

AUGGAUC






AD-887447
A-1684168.1
1023
AUCCAUUGUCUUGACA
5804-5822
A-
1024
AGAUGUCAAGAC
5804-5822





UCU

1684169.1

AAUGGAU






AD-887448
A-1684170.1
1025
UCCAUUGUCUUGACAU
5805-5823
A-
1026
AAGAUGUCAAGA
5805-5823





CUU

1684171.1

CAAUGGA






AD-887449
A-1684172.1
1027
CAUUGUCUUGACAUCU
5807-5825
A-
1028
AUAAGAUGUCAA
5807-5825





UAU

1684173.1

GACAAUG






AD-887450
A-1684174.1
1029
UUGUCUUGACAUCUU
5809-5827
A-
1030
AAAUAAGAUGUC
5809-5827





AUUU

1684175.1

AAGACAA






AD-887451
A-1684176.1
1031
UGUCUUGACAUCUUA
5810-5828
A-
1032
CAAAUAAGAUGU
5810-5828





UUUG

1684177.1

CAAGACA






AD-887452
A-1684178.1
1033
GUCUUGACAUCUUAU
5811-5829
A-
1034
GCAAAUAAGAUG
5811-5829





UUGC

1684179.1

UCAAGAC






AD-887453
A-1684180.1
1035
GGAGAUGGAUUCUCU
5860-5878
A-
1036
ACGAAGAGAAUCC
5860-5878





UCGU

1684181.1

AUCUCC






AD-887454
A-1684182.1
1037
GAGAUGGAUUCUCUU
5861-5879
A-
1038
AACGAAGAGAAU
5861-5879





CGUU

1684183.1

CCAUCUC






AD-887455
A-1684184.1
1039
AGAUGGAUUCUCUUC
5862-5880
A-
1040
GAACGAAGAGAA
5862-5880





GUUC

1684185.1

UCCAUCU






AD-887456
A-1684186.1
1041
GAUGGAUUCUCUUCG
5863-5881
A-
1042
UGAACGAAGAGA
5863-5881





UUCA

1684187.1

AUCCAUC






AD-887457
A-1684188.1
1043
AUGGAUUCUCUUCGU
5864-5882
A-
1044
GUGAACGAAGAG
5864-5882





UCAC

1684189.1

AAUCCAU






AD-887458
A-1684190.1
1045
UGGAUUCUCUUCGUU
5865-5883
A-
1046
UGUGAACGAAGA
5865-5883





CACA

1684191.1

GAAUCCA






AD-887459
A-1684192.1
1047
GGAUUCUCUUCGUUC
5866-5884
A-
1048
CUGUGAACGAAG
5866-5884





ACAG

1684193.1

AGAAUCC






AD-887460
A-1684194.1
1049
GAUUCUCUUCGUUCAC
5867-5885
A-
1050
UCUGUGAACGAA
5867-5885





AGA

1684195.1

GAGAAUC






AD-887461
A-1684196.1
1051
UUCUCUUCGUUCACAG
5869-5887
A-
1052
CAUCUGUGAACG
5869-5887





AUG

1684197.1

AAGAGAA






AD-887462
A-1684198.1
1053
UCUCUUCGUUCACAGA
5870-5888
A-
1054
CCAUCUGUGAAC
5870-5888





UGG

1684199.1

GAAGAGA






AD-887463
A-1684200.1
1055
CUCUUCGUUCACAGAU
5871-5889
A-
1056
UCCAUCUGUGAA
5871-5889





GGA

1684201.1

CGAAGAG






AD-887464
A-1684202.1
1057
UCUUCGUUCACAGAUG
5872-5890
A-
1058
UUCCAUCUGUGA
5872-5890





GAA

1684203.1

ACGAAGA






AD-887465
A-1684204.1
1059
AGGUUCAUGUCUGCAA
5894-5912
A-
1060
GAUUUGCAGACA
5894-5912





AUC

1684205.1

UGAACCU






AD-887466
A-1684206.1
1061
UCUGCAAAUCCUUCCA
5903-5921
A-
1062
CUUUGGAAGGAU
5903-5921





AAG

1684207.1

UUGCAGA






AD-887467
A-1684208.1
1063
CUGCAAAUCCUUCCAA
5904-5922
A-
1064
ACUUUGGAAGGA
5904-5922





AGU

1684209.1

UUUGCAG






AD-887468
A-1684210.1
1065
GUGUCUGCUACUGUC
5969-5987
A-
1066
GAAUGACAGUAG
5969-5987





AUUC

1684211.1

CAGACAC






AD-887469
A-1684212.1
1067
UGUCUGCUACUGUCA
5970-5988
A-
1068
UGAAUGACAGUA
5970-5988





UUCA

1684213.1

GCAGACA






AD-887470
A-1684214.1
1069
GUCUGCUACUGUCAU
5971-5989
A-
1070
CUGAAUGACAGU
5971-5989





UCAG

1684215.1

AGCAGAC






AD-887471
A-1684216.1
1071
ACCGCUUAAGGCAAAA
6006-6024
A-
1072
ACAUUUUGCCUU
6006-6024





UGU

1684217.1

AAGCGGU






AD-887472
A-1684218.1
1073
CCGCUUAAGGCAAAAU
6007-6025
A-
1074
GACAUUUUGCCU
6007-6025





GUC

1684219.1

UAAGCGG






AD-887473
A-1684220.1
1075
UCUCCACCUUCAUAUG
6158-6176
A-
1076
UAUCAUAUGAAG
6158-6176





AUA

1684221.1

GUGGAGA






AD-887474
A-1684222.1
1077
UGCCAAAAUCCUUUUU
6344-6362
A-
1078
GAUAAAAAGGAU
6344-6362





AUC

1684223.1

UUUGGCA






AD-887475
A-1684224.1
1079
GCCAAAAUCCUUUUUA
6345-6363
A-
1080
UGAUAAAAAGGA
6345-6363





UCA

1684225.1

UUUUGGC






AD-887476
A-1684226.1
1081
UCGUAAGAGAACUCUG
6463-6481
A-
1082
CUACAGAGUUCU
6463-6481





UAG

1684227.1

CUUACGA






AD-887477
A-1684228.1
1083
UCUGCCUUGUCAUCUU
6563-6581
A-
1084
GAAAAGAUGACA
6563-6581





UUC

1684229.1

AGGCAGA






AD-887478
A-1684230.1
1087
CUGCCUUGUCAUCUUU
6564-6582
A-
1086
UGAAAAGAUGAC
6564-6582





UCA

1684231.1

AAGGCAG






AD-887479
A-1684232.1
1085
UGCCUUGUCAUCUUU
6565-6583
A-
1088
GUGAAAAGAUGA
6565-6583





UCAC

1684233.1

CAAGGCA






AD-887480
A-1684234.1
1089
GCCUUGUCAUCUUUUC
6566-6584
A-
1090
UGUGAAAAGAUG
6566-6584





ACA

1684235.1

ACAAGGC






AD-887481
A-1684236.1
1091
CCUUGUCAUCUUUUCA
6567-6585
A-
1092
CUGUGAAAAGAU
6567-6585





CAG

1684237.1

GACAAGG






AD-887482
A-1684238.1
1093
CAUCUUUUCACAGGAU
6573-6591
A-
1094
ACAAUCCUGUGA
6573-6591





UGU

1684239.1

AAAGAUG






AD-887483
A-1684240.1
1095
CCCAUGUAAAUAAACA
6606-6624
A-
1096
UGUUGUUUAUU
6606-6624





ACA

1684241.1

UACAUGGG






AD-887484
A-1684242.1
1097
CAUUCAUCUUGACUCA
6911-6929
A-
1098
AUGUGAGUCAAG
6911-6929





CAU

1684243.1

AUGAAUG






AD-887485
A-1684244.1
1099
ACAUAUUACACUCCUC
7040-7058
A-
1100
UUUGAGGAGUGU
7040-7058





AAA

1684245.1

AAUAUGU






AD-887486
A-1684246.1
1101
CAUAUUACACUCCUCA
7041-7059
A-
1102
UUUUGAGGAGUG
7041-7059





AAA

1684247.1

UAAUAUG






AD-887487
A-1684248.1
1103
UGCCCAAAAUACUGAU
7140-7158
A-
1104
AUUAUCAGUAUU
7140-7158





AAU

1684249.1

UUGGGCA






AD-887488
A-1684250.1
1105
GCCCAAAAUACUGAUA
7141-7159
A-
1106
UAUUAUCAGUAU
7141-7159





AUA

1684251.1

UUUGGGC






AD-887489
A-1684252.1
1107
CUGAUAAUAGUCUCU
7151-7169
A-
1108
UUUAAGAGACUA
7151-7169





UAAA

1684253.1

UUAUCAG






AD-887490
A-1684254.1
1109
GUCAAAUUUUCCUGCU
7177-7195
A-
1110
GAAAGCAGGAAA
7177-7195





UUC

1684255.1

AUUUGAC






AD-887491
A-1684256.1
1111
UCAAAUUUUCCUGCUU
7178-7196
A-
1112
AGAAAGCAGGAA
7178-7196





UCU

1684257.1

AAUUUGA






AD-887492
A-1684258.1
1113
CAAAUUUUCCUGCUUU
7179-7197
A-
1114
AAGAAAGCAGGA
7179-7197





CUU

1684259.1

AAAUUUG






AD-887493
A-1684260.1
1115
AUUGUUUAGUCAUCC
7205-7223
A-
1116
GAAAGGAUGACU
7205-7223





UUUC

1684261.1

AAACAAU






AD-887494
A-1684262.1
1117
GCAUCACUUGUAUACA
7322-7340
A-
1118
GAUUGUAUACAA
7322-7340





AUC

1684263.1

GUGAUGC






AD-887495
A-1684264.1
1119
CACCAACUUACUUUCC
7453-7471
A-
1120
UUAGGAAAGUAA
7453-7471





UAA

1684265.1

GUUGGUG






AD-887496
A-1684266.1
1121
ACCAACUUACUUUCCU
7454-7472
A-
1122
UUUAGGAAAGUA
7454-7472





AAA

1684267.1

AGUUGGU






AD-887497
A-1684268.1
1123
CCAACUUACUUUCCUA
7455-7473
A-
1124
AUUUAGGAAAGU
7455-7473





AAU

1684269.1

AAGUUGG






AD-887498
A-1684270.1
1125
CAACUUACUUUCCUAA
7456-7474
A-
1126
AAUUUAGGAAAG
7456-7474





AUU

1684271.1

UAAGUUG






AD-887499
A-1684272.1
1127
AGGAAGAUGUCACCUU
7517-7535
A-
5814
GAGAAGGUGACA
7517-7535





CUC

1684273.1

UCUUCCU






AD-887500
A-1684274.1
1128
GAAGAUGUCACCUUCU
7519-7537
A-
1130
AGGAGAAGGUGA
7519-7537





CCU

1684275.1

CAUCUUC






AD-887501
A-1684276.1
1131
AGAUGUCACCUUCUCC
7521-7539
A-
1132
UAAGGAGAAGGU
7521-7539





UUA

1684277.1

GACAUCU






AD-887502
A-1684278.1
1133
GAUGUCACCUUCUCCU
7522-7540
A-
1134
UUAAGGAGAAGG
7522-7540





UAA

1684279.1

UGACAUC






AD-887503
A-1684280.1
1135
AUGUCACCUUCUCCUU
7523-7541
A-
1136
UUUAAGGAGAAG
7523-7541





AAA

1684281.1

GUGACAU






AD-887504
A-1684282.1
1137
UGUCACCUUCUCCUUA
7524-7542
A-
1138
UUUUAAGGAGAA
7524-7542





AAA

1684283.1

GGUGACA






AD-887505
A-1684284.1
1139
GUCACCUUCUCCUUAA
7525-7543
A-
1140
AUUUUAAGGAGA
7525-7543





AAU

1684285.1

AGGUGAC






AD-887506
A-1684286.1
1141
UCACCUUCUCCUUAAA
7526-7544
A-
1142
AAUUUUAAGGAG
7526-7544





AUU

1684287.1

AAGGUGA






AD-887507
A-1684288.1
1143
ACCUUCUCCUUAAAAU
7528-7546
A-
1144
AGAAUUUUAAGG
7528-7546





UCU

1684289.1

AGAAGGU






AD-887508
A-1684290.1
1145
CCUUCUCCUUAAAAUU
7529-7547
A-
1146
UAGAAUUUUAAG
7529-7547





CUA

1684291.1

GAGAAGG






AD-887509
A-1684292.1
1147
CUUCUCCUUAAAAUUC
7530-7548
A-
1148
AUAGAAUUUUAA
7530-7548





UAU

1684293.1

GGAGAAG






AD-887510
A-1684294.1
1149
UGAGAUCUUUCUUCU
7721-7739
A-
1150
UUAUAGAAGAAA
7721-7739





AUAA

1684295.1

GAUCUCA






AD-887511
A-1684296.1
1151
GAUCUUUCUUCUAUA
7724-7742
A-
1152
ACUUUAUAGAAG
7724-7742





AAGU

1684297.1

AAAGAUC






AD-887512
A-1684298.1
1153
UACCAUCUUAGGUUCA
8105-8123
A-
1154
GAAUGAACCUAA
8105-8123





UUC

1684299.1

GAUGGUA






AD-887513
A-1684300.1
1155
ACCAUCUUAGGUUCAU
8106-8124
A-
1156
UGAAUGAACCUA
8106-8124





UCA

1684301.1

AGAUGGU






AD-887514
A-1684302.1
1157
CCAUCUUAGGUUCAUU
8107-8125
A-
1158
AUGAAUGAACCU
8107-8125





CAU

1684303.1

AAGAUGG






AD-887515
A-1684304.1
1159
CAUCUUAGGUUCAUUC
8108-8126
A-
1160
GAUGAAUGAACC
8108-8126





AUC

1684305.1

UAAGAUG






AD-887516
A-1684306.1
1161
UCUUAGGUUCAUUCA
8110-8128
A-
1162
AAGAUGAAUGAA
8110-8128





UCUU

1684307.1

CCUAAGA






AD-887517
A-1684308.1
1163
CUUAGGUUCAUUCAUC
8111-8129
A-
1164
UAAGAUGAAUGA
8111-8129





UUA

1684309.1

ACCUAAG






AD-887518
A-1684310.1
1165
UUAGGUUCAUUCAUC
8112-8130
A-
1166
CUAAGAUGAAUG
8112-8130





UUAG

1684311.1

AACCUAA






AD-887519
A-1684312.1
1167
UAGGUUCAUUCAUCU
8113-8131
A-
1168
CCUAAGAUGAAU
8113-8131





UAGG

1684313.1

GAACCUA






AD-887520
A-1684314.1
1169
CUGCAUUAUGAAUACU
8368-8386
A-
1170
GUAAGUAUUCAU
8368-8386





UAC

1684315.1

AAUGCAG






AD-887521
A-1684316.1
1171
ACACAAUUUCUUCUUA
8500-8518
A-
1172
UGCUAAGAAGAA
8500-8518





GCA

1684317.1

AUUGUGU






AD-887522
A-1684318.1
1173
GUUCUUUUUCCUAUU
8541-8559
A-
1174
AUGAAAUAGGAA
8541-8559





UCAU

1684319.1

AAAGAAC






AD-887523
A-1684320.1
1175
UCCUAUUUCAUGAACU
8549-8567
A-
1176
CAUAGUUCAUGA
8549-8567





AUG

1684321.1

AAUAGGA






AD-887524
A-1684322.1
1177
CCUAUUUCAUGAACUA
8550-8568
A-
1178
ACAUAGUUCAUG
8550-8568





UGU

1684323.1

AAAUAGG






AD-887525
A-1684324.1
1179
AUGUCUACUUGUGAC
8623-8641
A-
1180
AAAAGUCACAAG
8623-8641





UUUU

1684325.1

UAGACAU






AD-887526
A-1684326.1
1181
UGUCUACUUGUGACU
8624-8642
A-
1182
AAAAAGUCACAAG
8624-8642





UUUU

1684327.1

UAGACA






AD-887527
A-1684328.1
1183
UCUACUUGUGACUUU
8626-8644
A-
1184
AUAAAAAGUCAC
8626-8644





UUAU

1684329.1

AAGUAGA






AD-887528
A-1684330.1
1185
CUACUUGUGACUUUU
8627-8645
A-
5815
GAUAAAAAGUCA
8627-8645





UAUC

1684331.1

CAAGUAG






AD-887529
A-1684332.1
1186
GUUCUAAAUAGCUAU
9384-9402
A-
1188
UGAAAUAGCUAU
9384-9402





UUCA

1684333.1

UUAGAAC






AD-887530
A-1684334.1
1189
GCUGUUUACAUAGGA
9600-9618
A-
1190
AGAAUCCUAUGU
9600-9618





UUCU

1684335.1

AAACAGC






AD-887531
A-1684336.1
1191
GCUCAAAAUGUUUGA
9644-9662
A-
1192
AAACUCAAACAUU
9644-9662





GUUU

1684337.1

UUGAGC
















TABLE 4A







Exemplary Human SCN9A siRNA Modified Single Strands and Duplex Sequences


Column 1 indicates duplex name and the number following the decimal point in a duplex name merely refers to a batch production number.


Column 2 indicates the name of the sense sequence. Column 3 indicates the sequence ID for the sequence of column 4. Column 4 provides the


modified sequence of a sense strand suitable for use in a duplex described herein. Column 5 indicates the antisense sequence name. Column 6


indicates the sequence ID for the sequence of column 7. Column 7 provides the sequence of a modified antisense strand suitable for use in a


duplex described herein, e.g., a duplex comprising the sense sequence in the same row of the table. Column 8 indicates the position in the target


mRNA (NM_001365536.1) that is complementary to the antisense strand of Column 7. Column 9 indicated the sequence ID for the sequence of


column 8.




















Seq ID






Sense
Seq ID

Antisense
NO:

mRNA target 



Duplex
sequence
NO:
Sense sequence
sequence
(anti
Antisense sequence
sequence in
Seq ID NO:


Name
name
(sense)
(5′-3′)
name
sense)
(5′-3′)
NM_001365536.1
(mRNA target)





AD-
A-
1795
ususugu(Ahd)GfaUf
A-
1796
VPusGfsuaaUfuGf
CUUUUGUAGAUCUUG
3339


796825.1
1525636.1

CfUfugcaauuacaL96
1257916.1

CfaagaUfcUfacaa
CAAUUACC









asasg







AD-
A-
1797
ususcug(Uhd)GfuAf
A-
1798
VPusGfsugaAfuUf
GCUUCUGUGUAGGAG
3340


795366.1
1522818.1

GfGfagaauucacaL96
1522819.1

CfuccuAfcAfcaga
AAUUCACU









asgsc







AD-
A-
1799
asusgug(Ahd)AfaCf
A-
1800
VPusAfscguAfaGf
UUAUGUGAAACAAACC
3341


797565.2
1527044.1

AfAfaccuuacguaL96
1527045.1

GfuuugUfuUfcac
UUACGUG









ausasa







AD-
A-
1801
usgsuag(Ghd)AfgAf
A-
1802
VPusGfsaaaAfgUf
UGUGUAGGAGAAUUC
3342


795371.1
1522828.1

AfUfucacuuuucaL96
1522829.1

GfaauuCfuCfcuac
ACUUUUCU









ascsa







AD-
A-
1803
usasugu(Ghd)AfaAf
A-
1804
VPusCfsguaAfgGf
AUUAUGUGAAACAAAC
3343


797564.2
1527042.1

CfAfaaccuuacgaL96
1527043.1

UfuuguUfuCfaca
CUUACGU









uasasu







AD-
A-
1805
asgscau(Ahd)AfaUf
A-
1806
VPusAfsuuuCfgAf
GAAGCAUAAAUGUUU
3344


795634.2
1523299.1

GfUfuuucgaaauaL96
1523300.1

AfaacaUfuUfaugc
UCGAAAUU









USUSC







AD-
A-
1807
gsasucu(Uhd)CfuUf
A-
1808
VPusUfscacUfaCf
AUGAUCUUCUUUGUC
3345


795913.1
1523849.1

UfGfucguagugaaL96
1523850.1

GfacaaAfgAfagau
GUAGUGAU









csasu







AD-
A-
1809
gsgscgu(Uhd)GfuAf
A-
1810
VPusGfsagaUfaGf
AAGGCGUUGUAGUUC
3346


796618.1
1525247.1

GfUfuccuaucucaL96
1525248.1

GfaacuAfcAfacgc
CUAUCUCC









csusu







AD-
A-
1811
asuscuu(Chd)UfuUf
A-
1812
VPusAfsucaCfuAf
UGAUCUUCUUUGUCG
3347


795914.1
1523851.1

GfUfcguagugauaL96
1523852.1

CfgacaAfaGfaaga
UAGUGAUU









uscsa







AD-
A-
1813
usgsguu(Uhd)CfaGf
A-
1814
VPusCfsugaAfuCf
UGUGGUUUCAGCACA
3348


795739.1
1523509.1

CfAfcagauucagaL96
1523510.1

UfgugcUfgAfaacc
GAUUCAGG









ascsa







AD-
A-
1815
usgsucg(Ahd)GfuAf
A-
1816
VPusCfsaguAfaAf
AAUGUCGAGUACACUU
3349


795305.1
1522697.1

CfAfcuuuuacugaL96
1522698.1

AfguguAfcUfcgac
UUACUGG









asusu







AD-
A-
1817
asasgca(Ghd)AfaGf
A-
1818
VPusAfsguaUfuCf
ACAAGCAGAAGAUCUG
3350


797636.2
1527186.1

AfUfcugaauacuaL96
1527187.1

AfgaucUfuCfugcu
AAUACUA









usgsu







AD-
A-
1819
csasagu(Ghd)UfuCf
A-
1820
VPusCfsaugAfcAf
UUCAAGUGUUCCUACU
3351


802471.2
1536717.1

CfUfacugucaugaL96
1536718.1

GfuaggAfaCfacuu
GUCAUGA









gsasa







AD-
A-
1821
asusgcu(Ghd)AfgAf
A-
1822
VPusUfsuucGfaCf
AGAUGCUGAGAAAUU
3352


796209.1
1524439.1

AfAfuugucgaaaaL96
1524440.1

AfauuuCfuCfagca
GUCGAAAU









uscsu







AD-
A-
1823
asusguu(Uhd)CfuAf
A-
1824
VPusAfsucaAfaUf
GUAUGUUUCUAGCUG
3353


799223.1
1530270.1

GfCfugauuugauaL96
1530271.1

CfagcuAfgAfaaca
AUUUGAUU









usasc







AD-
A-
1825
gsasgau(Ghd)GfaUf
A-
1826
VPusGfsaacGfaAf
GGGAGAUGGAUUCUC
3354


799938.1
1531655.1

UfCfucuucguucaL96
1531656.1

GfagaaUfcCfaucu
UUCGUUCA









cscsc







AD-
A-
1827
ususgug(Ahd)CfuUf
A-
1828
VPusCfsacuAfaAf
UAUUGUGACUUUAAG
3355


797036.1
1526036.1

UfAfaguuuagugaL96
1526037.1

CfuuaaAfgUfcaca
UUUAGUGG









asusa







AD-
A-
1829
asusgau(Chd)UfuCf
A-
1830
VPusAfscuaCfgAf
ACAUGAUCUUCUUUG
3356


795911.1
1523845.1

UfUfugucguaguaL96
1523846.1

CfaaagAfaGfauca
UCGUAGUG









usgsu







AD-
A-
1831
asasggg(Ahd)AfaAf
A-
1832
VPusAfscggAfaGf
CAAAGGGAAAACAAUC
3357


795132.1
1522351.1

CfAfaucuuccguaL96
1522352.1

AfuuguUfuUfcccu
UUCCGUU









ususg







AD-
A-
1833
csusucu(Ghd)AfaAf
A-
1834
VPusCfsaguUfuGf
UUCUUCUGAAACAUCC
3358


796138.1
1524297.1

CfAfuccaaacugaL96
1524298.1

GfauguUfuCfagaa
AAACUGA









gsasa







AD-
A-
1835
ususgcu(Ahd)UfaGf
A-
1836
VPusGfsaccAfaAf
ACUUGCUAUAGGAAAU
3359


796919.1
1525802.1

GfAfaauuuggucaL96
1525803.1

UfuuccUfaUfagca
UUGGUCU









asgsu







AD-
A-
1837
usasuug(Uhd)GfaCf
A-
1838
VPusCfsuaaAfcUf
CUUAUUGUGACUUUA
3360


797034.1
1526032.1

UfUfuaaguuuagaL96
1526033.1

UfaaagUfcAfcaau
AGUUUAGU









asasg







AD-
A-
1839
ususggc(Ahd)GfaAf
A-
1840
VPusAfsuaaUfcAf
AAUUGGCAGAAACCCU
3361


795774.1
1523579.1

AfCfccugauuauaL96
1523580.1

GfgguuUfcUfgcca
GAUUAUG









asusu







AD-
A-
1841
ascsaug(Ahd)UfcUf
A-
1842
VPusUfsacgAfcAf
CUACAUGAUCUUCUUU
3362


795909.1
1523841.1

UfCfuuugucguaaL96
1523842.1

AfagaaGfaUfcaug
GUCGUAG









usasg







AD-
A-
1843
asgscuu(Ghd)AfaGf
A-
1844
VPusGfsucuAfaUf
UAAGCUUGAAGUAAAA
3363


802123.1
1536023.1

UfAfaaauuagacaL96
1536024.1

UfuuacUfuCfaagc
UUAGACC









ususa







AD-
A-
1845
uscscaa(Ahd)UfcGf
A-
1846
VPusAfsacaUfuCf
GUUCCAAAUCGUUCCG
3364


798588.2
1529045.1

UfUfccgaauguuaL96
1529046.1

GfgaacGfaUfuugg
AAUGUUU









asasc







AD-
A-
1847
asuscug(Ahd)GfaCf
A-
1848
VPusCfsggcAfaAf
GGAUCUGAGACUGAA
3365


796396.1
1524811.1

UfGfaauuugccgaL96
1524812.1

UfucagUfcUfcaga
UUUGCCGA









uscsc







AD-
A-
1849
gscsguu(Ghd)UfaGf
A-
1850
VPusGfsgagAfuAf
AGGCGUUGUAGUUCC
3366


796619.1
1525249.1

UfUfccuaucuccaL96
1525250.1

GfgaacUfaCfaacg
UAUCUCCU









CSCSU







AD-
A-
1851
usasuau(Uhd)UfuAf
A-
1852
VPusAfsacgGfaUf
GAUAUAUUUUACAACA
3367


801647.1
1535071.1

CfAfacauccguuaL96
1535072.1

GfuuguAfaAfaua
UCCGUUA









uasusc







AD-
A-
1853
asusguc(Ghd)AfgUf
A-
1854
VPusAfsguaAfaAf
AAAUGUCGAGUACACU
3368


795304.1
1522695.1

AfCfacuuuuacuaL96
1522696.1

GfuguaCfuCfgaca
UUUACUG









ususu







AD-
A-
1855
usgsaua(Ghd)UfuAf
A-
1856
VPusUfsgcaAfaCf
UUUGAUAGUUACCUA
3369


802553.1
1536879.1

CfCfuaguuugcaaL96
1536880.1

UfagguAfaCfuauc
GUUUGCAA









asasa







AD-
A-
1857
gsascuu(Ahd)CfcUf
A-
1858
VPusCfsaauAfcUf
AAGACUUACCUUUAGA
3370


800819.1
1533415.1

UfUfagaguauugaL96
1533416.1

CfuaaaGfgUfaagu
GUAUUGU









csusu







AD-
A-
1859
csusaaa(Uhd)UfaUf
A-
1860
VPusAfsgauUfaCf
UCCUAAAUUAUGGAAG
3371


801263.1
1534303.1

GfGfaaguaaucuaL96
1534304.1

UfuccaUfaAfuuua
UAAUCUU









gsgsa







AD-
A-
1861
asgsuca(Ahd)GfuUf
A-
1862
VPusGfsaacGfaUf
CAAGUCAAGUUCCAAA
3372


798580.1
1529029.1

CfCfaaaucguucaL96
1529030.1

UfuggaAfcUfugac
UCGUUCC









ususg







AD-
A-
1863
usgsauc(Uhd)UfcUf
A-
1864
VPusCfsacuAfcGf
CAUGAUCUUCUUUGU
3373


795912.1
1523847.1

UfUfgucguagugaL96
1523848.1

AfcaaaGfaAfgauc
CGUAGUGA









asusg







AD-
A-
1865
gsusuug(Ahd)AfcAf
A-
1866
VPusCfsgaaAfgAf
AGGUUUGAACACAAAU
3374


802503.1
1536779.1

CfAfaaucuuucgaL96
1536780.1

UfuuguGfuUfcaa
CUUUCGG









acscsu







AD-
A-
1867
asasguu(Chd)CfaAf
A-
1868
VPusUfsucgGfaAf
UCAAGUUCCAAAUCGU
3375


798584.2
1529037.1

AfUfcguuccgaaaL96
1529038.1

CfgauuUfgGfaacu
UCCGAAU









usgsa







AD-
A-
1869
usgsuag(Ahd)UfcUf
A-
1870
VPusUfsgguAfaUf
UUUGUAGAUCUUGCA
3376


796827.1
1525638.1

UfGfcaauuaccaaL96
1257918.1

UfgcaaGfaUfcuac
AUUACCAU









asasa







AD-
A-
1871
csasuga(Uhd)CfuUf
A-
1872
VPusCfsuacGfaCf
UACAUGAUCUUCUUU
3377


795910.1
1523843.1

CfUfuugucguagaL96
1523844.1

AfaagaAfgAfucau
GUCGUAGU









gsusa







AD-
A-
1873
ususgau(Ahd)GfuUf
A-
1874
VPusGfscaaAfcUf
UUUUGAUAGUUACCU
3378


802552.1
1536877.1

AfCfcuaguuugcaL96
1536878.1

AfgguaAfcUfauca
AGUUUGCA









asasa







AD-
A-
1875
csasccu(Uhd)CfuCfC
A-
1876
VPusAfsgaaUfuUf
GUCACCUUCUCCUUAA
3379


801304.1
1534385.1

fUfuaaaauucuaL96
1534386.1

UfaaggAfgAfaggu
AAUUCUA









gsasc







AD-
A-
1877
csusgau(Uhd)UfcCf
A-
1878
VPusCfsaccUfuUf
CUCUGAUUUCCUAAGA
3380


800334.1
1532445.1

UfAfagaaaggugaL96
1532446.1

CfuuagGfaAfauca
AAGGUGG









gsasg







AD-
A-
1879
usgsaga(Chd)UfgAf
A-
1880
VPusAfsuuaCfaAf
CUUGAGACUGACACAU
3381


802946.1
1537662.1

CfAfcauuguaauaL96
1537663.1

UfguguCfaGfucuc
UGUAAUA









asasg







AD-
A-
1881
csusgaa(Uhd)AfuAf
A-
1882
VPusCfscuaAfuAf
GGCUGAAUAUACAAGU
3382


796087.1
1524195.1

CfAfaguauuaggaL96
1524196.1

CfuuguAfuAfuuca
AUUAGGA









gscsc







AD-
A-
1883
csasacc(Chd)AfaAfA
A-
1884
VPusAfsugcUfaAf
CACAACCCAAAAUACU
3383


802625.2
1537023.1

fUfacuuagcauaL96
1537024.1

GfuauuUfuGfggu
UAGCAUG









ugsusg







AD-
A-
1885
csusgau(Ahd)AfuAf
A-
1886
VPusGfsuuuAfaGf
UACUGAUAAUAGUCUC
3384


800966.1
1533709.1

GfUfcucuuaaacaL96
1533710.1

AfgacuAfuUfauca
UUAAACU









gsusa







AD-
A-
1887
ususugu(Chd)GfuAf
A-
1888
VPusAfsggaAfaAf
UCUUUGUCGUAGUGA
3385


795920.1
1523863.1

GfUfgauuuuccuaL96
1523864.1

UfcacuAfcGfacaa
UUUUCCUG









asgsa







AD-
A-
1889
usgsaau(Ahd)UfaCf
A-
1890
VPusUfsccuAfaUf
GCUGAAUAUACAAGUA
3386


796088.1
1524197.1

AfAfguauuaggaaL96
1524198.1

AfcuugUfaUfauuc
UUAGGAG









asgsc







AD-
A-
1891
asgsaug(Ghd)AfuUf
A-
1892
VPusUfsgaaCfgAf
GGAGAUGGAUUCUCU
3387


799939.1
1531657.1

CfUfcuucguucaaL96
1531658.1

AfgagaAfuCfcauc
UCGUUCAC









uscsc







AD-
A-
1893
asasuau(Chd)AfuAf
A-
1894
VPusGfsuaaAfcAf
UGAAUAUCAUAAAGCU
3388


802853.2
1537477.1

AfAfgcuguuuacaL96
1537478.1

GfcuuuAfuGfaua
GUUUACA









uuscsa







AD-
A-
1895
uscsuuu(Ahd)UfaCf
A-
1896
VPusAfsaccUfaAf
AUUCUUUAUACCAUCU
3389


801724.1
1535225.1

CfAfucuuagguuaL96
1535226.1

GfauggUfaUfaaag
UAGGUUC









asasu







AD-
A-
1897
gscsaaa(Ghd)GfuCf
A-
1898
VPusGfsaggAfaAf
GAGCAAAGGUCACAAU
3390


797699.1
1527312.1

AfCfaauuuccucaL96
1527313.1

UfugugAfcCfuuug
UUCCUCA









csusc







AD-
A-
1899
asgsuca(Chd)CfaCf
A-
1900
VPusAfscgaAfuGf
UCAGUCACCACUCAGC
3391


796304.1
1524627.1

UfCfagcauucguaL96
1524628.1

CfugagUfgGfugac
AUUCGUG









usgsa







AD-
A-
1901
usgscua(Uhd)AfgGf
A-
1902
VPusAfsgacCfaAf
CUUGCUAUAGGAAAU
3392


796920.1
1525804.1

AfAfauuuggucuaL96
1525805.1

AfuuucCfuAfuagc
UUGGUCUU









asasg







AD-
A-
1903
gsascag(Ahd)GfaUf
A-
1904
VPusAfsguaAfaUf
GAGACAGAGAUGAUGA
3393


800110.1
1531997.1

GfAfugauuuacuaL96
1531998.1

CfaucaUfcUfcugu
UUUACUC









csusc







AD-
A-
1905
asasguc(Ahd)AfgUf
A-
1906
VPusAfsacgAfuUf
GCAAGUCAAGUUCCAA
3394


798579.1
1529027.1

UfCfcaaaucguuaL96
1529028.1

UfggaaCfuUfgacu
AUCGUUC









usgsc







AD-
A-
1907
usasggc(Uhd)AfaUf
A-
1908
VPusAfsaucUfuGf
UUUAGGCUAAUGACCC
3395


795841.1
1523713.1

GfAfcccaagauuaL96
1523714.1

GfgucaUfuAfgccu
AAGAUUA









asasa







AD-
A-
1909
asasgag(Chd)UfuAf
A-
1910
VPusCfsuuaUfaCf
GAAAGAGCUUAUUAA
3396


802105.2
1535987.1

UfUfaaguauaagaL96
1535988.1

UfuaauAfaGfcucu
GUAUAAGC









USUSC







AD-
A-
1911
usgsgaa(Uhd)AfuUf
A-
1912
VPusUfsaacAfaAf
GUUGGAAUAUUCUAC
3397


799594.1
1531002.1

CfUfacuuuguuaaL96
1531003.1

GfuagaAfuAfuucc
UUUGUUAG









asasc







AD-
A-
1913
asusgua(Chd)AfgAf
A-
1914
VPusAfsuagAfaUf
CAAUGUACAGAGGUUA
3398


800661.1
1533099.1

GfGfuuauucuauaL9
1533100.1

AfaccuCfuGfuaca
UUCUAUA






6


ususg







AD-
A-
1915
asuscgu(Ahd)AfgAf
A-
1916
VPusCfsuacAfgAf
GAAUCGUAAGAGAACU
3399


800400.1
1532577.1

GfAfacucuguagaL96
1532578.1

GfuucuCfuUfacga
CUGUAGG









USUSC







AD-
A-
1917
csasucu(Ghd)UfuGf
A-
1918
VPusGfsuagAfaUf
CCCAUCUGUUGGAAUA
3400


799587.1
1530988.1

GfAfauauucuacaL96
1530989.1

AfuuccAfaCfagau
UUCUACU









gsgsg







AD-
A-
1919
gsuscuu(Uhd)AfcUf
A-
1920
VPusGfscaaAfgAf
UGGUCUUUACUGGAA
3401


796936.1
1525836.1

GfGfaaucuuugcaL96
1525837.1

UfuccaGfuAfaaga
UCUUUGCA









cscsa







AD-
A-
1921
csasaca(Chd)AfaUf
A-
1922
VPusGfscuaAfgAf
AACAACACAAUUUCUU
3402


802014.1
1535805.1

UfUfcuucuuagcaL96
1535806.1

AfgaaaUfuGfugu
CUUAGCA









ugsusu







AD-
A-
1923
usgsgau(Uhd)CfuCf
A-
1924
VPusCfsuguGfaAf
GAUGGAUUCUCUUCG
3403


799942.1
1531663.1

UfUfcguucacagaL96
1531664.1

CfgaagAfgAfaucc
UUCACAGA









asusc







AD-
A-
1925
gsusaug(Uhd)UfuCf
A-
1926
VPusCfsaaaUfcAf
AGGUAUGUUUCUAGC
3404


799221.1
1530266.1

UfAfgcugauuugaL96
1530267.1

GfcuagAfaAfcaua
UGAUUUGA









cscsu







AD-
A-
1927
cscsuuc(Chd)UfgAf
A-
1928
VPusCfsuaaCfuGf
AUCCUUCCUGAUAUGC
3405


801062.1
1533901.1

UfAfugcaguuagaL96
1533902.1

CfauauCfaGfgaag
AGUUAGU









gsasu







AD-
A-
1929
gsgsaga(Uhd)GfgAf
A-
1930
VPusAfsacgAfaGf
GGGGAGAUGGAUUCU
3406


799937.1
1531653.1

UfUfcucuucguuaL96
1531654.1

AfgaauCfcAfucuc
CUUCGUUC









CSCSC







AD-
A-
1931
gsusaga(Ahd)AfaCf
A-
1932
VPusCfsagaUfgUf
AUGUAGAAAACUUUU
3407


800461.1
1532699.1

UfUfuuacaucugaL96
1532700.1

AfaaagUfuUfucua
ACAUCUGC









csasu







AD-
A-
1933
asgscgu(Ghd)CfuUf
A-
1934
VPusGfsuaaCfgUf
UCAGCGUGCUUAUAGA
3408


800058.1
1531895.1

AfUfagacguuacaL96
1531896.1

CfuauaAfgCfacgc
CGUUACC









usgsa







AD-
A-
1935
gsusuuc(Uhd)AfgCf
A-
1936
VPusCfsaauCfaAf
AUGUUUCUAGCUGAU
3409


799225.1
1530274.1

UfGfauuugauugaL9
1530275.1

AfucagCfuAfgaaa
UUGAUUGA






6


csasu







AD-
A-
1937
gscscca(Ahd)AfaUfA
A-
1938
VPusCfsuauUfaUf
CUGCCCAAAAUACUGA
3410


800956.1
1533689.1

fCfugauaauagaL96
1533690.1

CfaguaUfuUfuggg
UAAUAGU









csasg










AD-
A-
1939
ususugu(Chd)CfuAf
A-
1940
VPusUfsauaCfgUf
CAUUUGUCCUAAUCUA
3411


801681.2
1535139.1

AfUfcuacguauaaL96
1535140.1

AfgauuAfgGfacaa
CGUAUAA









asusg







AD-
A-
1941
usasauc(Ghd)CfuGf
A-
1942
VPusUfsguaAfuAf
UAUAAUCGCUGAACUU
3412


802206.2
1536189.1

AfAfcuuauuacaaL96
1536190.1

AfguucAfgCfgauu
AUUACAC









asusa







AD-
A-
1943
ususuga(Ahd)UfuCf
A-
1944
VPusAfsacgGfuAf
AAUUUGAAUUCAAUC
3413


801883.2
1535543.1

AfAfucuaccguuaL96
1535544.1

GfauugAfaUfucaa
UACCGUUA









asusu







AD-
A-
1945
csuscuu(Uhd)UfgAf
A-
1946
VPusCfsauaGfaCf
AACUCUUUUGAGGAA
3414


800273.2
1532323.1

GfGfaagucuaugaL96
1532324.1

UfuccuCfaAfaaga
GUCUAUGC









gsusu







AD-
A-
1947
asgscug(Ahd)UfuUf
A-
1948
VPusAfscguUfuCf
CUAGCUGAUUUGAUU
3415


799231.2
1530286.1

GfAfuugaaacguaL96
1530287.1

AfaucaAfaUfcagc
GAAACGUA









usasg







AD-
A-
1949
csusuua(Uhd)AfcCf
A-
1950
VPusGfsaacCfuAf
UUCUUUAUACCAUCUU
3416


801725.1
1535227.1

AfUfcuuagguucaL96
1535228.1

AfgaugGfuAfuaaa
AGGUUCA









gsasa







AD-
A-
1951
ususgca(Ahd)GfcCf
A-
1952
VPusCfsucaCfaUf
GGUUGCAAGCCUCUUA
3417


794914.1
1521918.1

UfCfuuaugugagaL96
1521919.1

AfagagGfcUfugca
UGUGAGG









ascsc







AD-
A-
1953
ususauu(Ghd)CfaUf
A-
1954
VPusGfsuauAfcAf
AUUUAUUGCAUCACU
3418


801132.1
1534041.1

CfAfcuuguauacaL96
1534042.1

AfgugaUfgCfaaua
UGUAUACA









asasu







AD-
A-
1955
ususuca(Chd)AfgGf
A-
1956
VPusCfsuaaUfuAf
CUUUUCACAGGAUUG
3419


800492.2
1532761.1

AfUfuguaauuagaL96
1532762.1

CfaaucCfuGfugaa
UAAUUAGU









asasg







AD-
A-
1957
csusuuu(Chd)AfcAf
A-
1958
VPusAfsauuAfcAf
AUCUUUUCACAGGAU
3420


800490.1
1532757.1

GfGfauuguaauuaL96
1532758.1

AfuccuGfuGfaaaa
UGUAAUUA









gsasu







AD-
A-
1959
csusgua(Ghd)GfaAf
A-
1960
VPusAfsuaaUfcAf
CUCUGUAGGAAUUAU
3421


800414.2
1532605.1

UfUfauugauuauaL96
1532606.1

AfuaauUfcCfuaca
UGAUUAUA









gsasg







AD-
A-
1961
ususccu(Ghd)AfuAf
A-
1962
VPusAfsacuAfaCf
CCUUCCUGAUAUGCAG
3422


801064.1
1533905.1

UfGfcaguuaguuaL96
1533906.1

UfgcauAfuCfagga
UUAGUUG









asgsg







AD-
A-
1963
gscsaag(Uhd)CfaAf
A-
1964
VPusCfsgauUfuGf
CUGCAAGUCAAGUUCC
3423


798577.1
1529023.1

GfUfuccaaaucgaL96
1529024.1

GfaacuUfgAfcuug
AAAUCGU









csasg







AD-
A-
1965
gsgsaag(Ahd)AfaGf
A-
1966
VPusCfsagaCfaUf
AUGGAAGAAAGGUUC
3424


799959.1
1531697.1

GfUfucaugucugaL96
1531698.1

GfaaccUfuUfcuuc
AUGUCUGC









csasu







AD-
A-
1967
asuscua(Ghd)GfgCf
A-
1968
VPusAfsagaAfuCf
CAAUCUAGGGCUAAAG
3425


801708.2
1535193.1

UfAfaagauucuuaL96
1535194.1

UfuuagCfcCfuaga
AUUCUUU









ususg







AD-
A-
1969
usasgcu(Ghd)AfuUf
A-
1970
VPusCfsguuUfcAf
UCUAGCUGAUUUGAU
3426


799230.2
1530284.1

UfGfauugaaacgaL96
1530285.1

AfucaaAfuCfagcu
UGAAACGU









asgsa







AD-
A-
1971
csusucc(Uhd)GfaUf
A-
1972
VPusAfscuaAfcUf
UCCUUCCUGAUAUGCA
3427


801063.1
1533903.1

AfUfgcaguuaguaL96
1533904.1

GfcauaUfcAfggaa
GUUAGUU









gsgsa







AD-
A-
1973
ascsuga(Uhd)GfaUf
A-
1974
VPusAfsuucUfuAf
GCACUGAUGAUUCUU
3428


800382.2
1532541.1

UfCfuuuaagaauaL96
1532542.1

AfagaaUfcAfucag
UAAGAAUC









usgsc







AD-
A-
1975
asgsacg(Uhd)UfaCf
A-
1976
VPusUfsgccUfuAf
AUAGACGUUACCGCUU
3429


800069.1
1531917.1

CfGfcuuaaggcaaL96
1531918.1

AfgcggUfaAfcguc
AAGGCAA









usasu







AD-
A-
1977
uscsgug(Ghd)CfuCf
A-
1978
VPusCfsagaAfaAf
AUUCGUGGCUCCUUG
3430


796318.1
1524655.1

CfUfuguuuucugaL96
1524656.1

CfaaggAfgCfcacg
UUUUCUGC









asasu







AD-
A-
1979
cscsuuu(Chd)UfuCf
A-
1980
VPusGfsggaUfaUf
AGCCUUUCUUCUUUCA
3431


800849.2
1533475.1

UfUfucauaucccaL96
1533476.1

GfaaagAfaGfaaag
UAUCCCU









gscsu







AD-
A-
1981
csasucu(Uhd)UfuCf
A-
1982
VPusUfsacaAfuCf
GUCAUCUUUUCACAGG
3432


800487.1
1532751.1

AfCfaggauuguaaL96
1532752.1

CfugugAfaAfagau
AUUGUAA









gsasc







AD-
A-
1983
csusguu(Ghd)GfaAf
A-
1984
VPusUfscaaAfaCf
GCCUGUUGGAAAUAG
3433


801835.1
1535447.1

AfUfagguuuugaaL96
1535448.1

CfuauuUfcCfaaca
GUUUUGAU









gsgsc







AD-
A-
1985
gsgsgag(Ahd)UfgGf
A-
1986
VPusAfscgaAfgAf
UGGGGAGAUGGAUUC
3434


799936.1
1531651.1

AfUfucucuucguaL96
1531652.1

GfaaucCfaUfcucc
UCUUCGUU









cscsa







AD-
A-
1987
ususgaa(Uhd)UfcAf
A-
1988
VPusUfsaacGfgUf
AUUUGAAUUCAAUCU
3435


801884.2
1535545.1

AfUfcuaccguuaaL96
1535546.1

AfgauuGfaAfuuca
ACCGUUAU









asasu







AD-
A-
1989
uscsauc(Uhd)UfaGf
A-
1990
VPusGfsuucAfaAf
AUUCAUCUUAGGCUA
3436


801747.2
1535271.1

GfCfuauuugaacaL96
1535272.1

UfagccUfaAfgaug
UUUGAACC









asasu







AD-
A-
1991
usgsauu(Chd)UfuUf
A-
1992
VPusUfsuacGfaUf
GAUGAUUCUUUAAGA
3437


800387.2
1532551.1

AfAfgaaucguaaaL96
1532552.1

UfcuuaAfaGfaauc
AUCGUAAG









asusc







AD-
A-
1993
gsusaau(Ghd)GfaCf
A-
1994
VPusUfscauAfaCf
AAGUAAUGGACAUUA
3438


800606.2
1532989.1

AfUfuaguuaugaaL96
1532990.1

UfaaugUfcCfauua
GUUAUGAA









csusu







AD-
A-
1995
ususgag(Ahd)CfuGf
A-
1996
VPusUfsuacAfaUf
ACUUGAGACUGACACA
3439


802945.2
1537660.1

AfCfacauuguaaaL96
1537661.1

GfugucAfgUfcuca
UUGUAAU









asgsu







AD-
A-
1997
gsasauu(Chd)AfaUf
A-
1998
VPusAfsauaAfcGf
UUGAAUUCAAUCUACC
3440


801886.2
1535549.1

CfUfaccguuauuaL96
1535550.1

GfuagaUfuGfaau
GUUAUUU









ucsasa







AD-
A-
1999
asusgau(Uhd)CfuUf
A-
2000
VPusUfsacgAfuUf
UGAUGAUUCUUUAAG
3441


800386.2
1532549.1

UfAfagaaucguaaL96
1532550.1

CfuuaaAfgAfauca
AAUCGUAA









uscsa







AD-
A-
2001
asgsccu(Ghd)UfuGf
A-
2002
VPusAfsaacCfuAf
CAAGCCUGUUGGAAAU
3442


801832.1
1535441.1

GfAfaauagguuuaL96
1535442.1

UfuuccAfaCfaggc
AGGUUUU









ususg







AD-
A-
2003
csgsugc(Uhd)UfaUf
A-
2004
VPusCfsgguAfaCf
AGCGUGCUUAUAGACG
3443


800060.1
1531899.1

AfGfacguuaccgaL96
1531900.1

GfucuaUfaAfgcac
UUACCGC









gscsu







AD-
A-
2005
ususuag(Uhd)GfgCf
A-
2006
VPusCfsaagAfgUf
ACUUUAGUGGCAAACA
3444


798332.1
1528540.1

AfAfacacucuugaL96
1528541.1

GfuuugCfcAfcuaa
CUCUUGG









asgsu







AD-
A-
2007
ascscuc(Uhd)CfuUf
A-
2008
VPusAfsucuAfcAf
AGACCUCUCUUUCCAU
3445


802141.2
1536059.1

UfCfcauguagauaL96
1536060.1

UfggaaAfgAfgagg
GUAGAUU









USCSU







AD-
A-
2009
csasacu(Uhd)AfcUf
A-
2010
VPusUfsaauUfuAf
ACCAACUUACUUUCCU
3446


801251.1
1534279.1

UfUfccuaaauuaaL96
1534280.1

GfgaaaGfuAfaguu
AAAUUAU









gsgsu







AD-
A-
2011
gscsuga(Ahd)CfcUf
A-
2012
VPusUfscggAfaUf
AGGCUGAACCUAUGAA
3447


797963.1
1527829.1

AfUfgaauuccgaaL96
1527830.1

UfcauaGfgUfucag
UUCCGAU









CSCSU







AD-
A-
2013
usasuca(Ahd)AfaUf
A-
2014
VPusCfscuuCfgAf
UUUAUCAAAAUAUUC
3448


800297.2
1532371.1

AfUfucucgaaggaL96
1532372.1

GfaauaUfuUfuga
UCGAAGGC









uasasa







AD-
A-
2015
ascsauc(Chd)GfuUf
A-
2016
VPusCfsucaAfaGf
CAACAUCCGUUAUUAC
3449


801658.2
1535093.1

AfUfuacuuugagaL96
1535094.1

UfaauaAfcGfgaug
UUUGAGA









ususg







AD-
A-
2017
asgsaca(Uhd)UfuGf
A-
2018
VPusGfsuagAfuUf
UGAGACAUUUGUCCUA
3450


801676.2
1535129.1

UfCfcuaaucuacaL96
1535130.1

AfggacAfaAfuguc
AUCUACG









uscsa







AD-
A-
2019
usgscca(Chd)UfgAf
A-
2020
VPusCfsaguAfcUf
GUUGCCACUGAAGAAA
3451


799683.1
1531160.1

AfGfaaaguacugaL96
1531161.1

UfucuuCfaGfuggc
GUACUGA









asasc







AD-
A-
2021
uscsauc(Uhd)UfuUf
A-
2022
VPusAfscaaUfcCf
UGUCAUCUUUUCACAG
3452


800486.1
1532749.1

CfAfcaggauuguaL96
1532750.1

UfgugaAfaAfgaug
GAUUGUA









ascsa







AD-
A-
2023
csgsgac(Uhd)UfgGf
A-
2024
VPusGfsagaUfaGf
GUCGGACUUGGUUACC
3453


798672.1
1529207.1

UfUfaccuaucucaL96
1529208.1

GfuaacCfaAfgucc
UAUCUCU









gsasc







AD-
A-
2025
csuscuu(Uhd)CfcAf
A-
2026
VPusAfsguaAfuCf
CUCUCUUUCCAUGUAG
3454


802145.2
1536067.1

UfGfuagauuacuaL9
1536068.1

UfacauGfgAfaaga
AUUACUG






6


gsasg







AD-
A-
2027
ascsaac(Uhd)UfuCf
A-
2028
VPusAfsgcaAfaUf
AAACAACUUUCACUAA
3455


801540.2
1534857.1

AfCfuaauuugcuaL96
1534858.1

UfagugAfaAfguug
UUUGCUU









USUSU







AD-
A-
2029
usascaa(Chd)AfuCf
A-
2030
VPusAfsaguAfaUf
UUUACAACAUCCGUUA
3456


801654.2
1535085.1

CfGfuuauuacuuaL96
1535086.1

AfacggAfuGfuugu
UUACUUU









asasa







AD-
A-
2031
asasugu(Chd)GfgAf
A-
2032
VPusAfsgguAfaCf
AUAAUGUCGGACUUG
3457


798667.1
1529197.1

CfUfugguuaccuaL96
1529198.1

CfaaguCfcGfacau
GUUACCUA









usasu







AD-
A-
2033
ascsaac(Ahd)UfcCf
A-
2034
VPusAfsaagUfaAf
UUACAACAUCCGUUAU
3458


801655.2
1535087.1

GfUfuauuacuuuaL9
1535088.1

UfaacgGfaUfguug
UACUUUG






6


usasa







AD-
A-
2035
csusucu(Uhd)AfgCf
A-
2036
VPusGfsccuAfaAf
GCCUUCUUAGCCUUGU
3459


795826.1
1523683.1

CfUfuguuuaggcaL96
1523684.1

CfaaggCfuAfagaa
UUAGGCU









gsgsc







AD-
A-
2037
ascsaca(Ghd)GfuAf
A-
2038
VPusAfsaacUfaCf
CUACACAGGUAGAAUG
3460


801490.2
1534757.1

GfAfauguaguuuaL9
1534758.1

AfuucuAfcCfugug
UAGUUUU






6


usasg







AD-
A-
2039
csusgaa(Chd)CfuAf
A-
2040
VPusAfsucgGfaAf
GGCUGAACCUAUGAAU
3461


797964.1
1527831.1

UfGfaauuccgauaL96
1527832.1

UfucauAfgGfuuca
UCCGAUG









gscsc







AD-
A-
2041
asusucu(Uhd)UfaAf
A-
2042
VPusUfscuuAfcGf
UGAUUCUUUAAGAAU
3462


800389.2
1532555.1

GfAfaucguaagaaL96
1532556.1

AfuucuUfaAfagaa
CGUAAGAG









uscsa







AD-
A-
2043
gsasuuc(Uhd)UfuAf
A-
2044
VPusCfsuuaCfgAf
AUGAUUCUUUAAGAA
3463


800388.2
1532553.1

AfGfaaucguaagaL96
1532554.1

UfucuuAfaAfgaau
UCGUAAGA









csasu







AD-
A-
2045
gsusuuc(Ahd)GfgAf
A-
2046
VPusCfsaagUfaGf
UUGUUUCAGGAAUGU
3464


802070.2
1535917.1

AfUfgucuacuugaL96
1535918.1

AfcauuCfcUfgaaa
CUACUUGU









csasa







AD-
A-
2047
usasuag(Ahd)AfaCf
A-
2048
VPusCfsauaAfaUf
CCUAUAGAAACAAAGA
3465


801601.2
1534979.1

AfAfagauuuaugaL96
1534980.1

CfuuugUfuUfcua
UUUAUGG









uasgsg







AD-
A-
2049
ususaca(Ahd)CfaUf
A-
2050
VPusAfsguaAfuAf
UUUUACAACAUCCGUU
3466


801653.1
1535083.1

CfCfguuauuacuaL96
1535084.1

AfcggaUfgUfugua
AUUACUU









asasa







AD-
A-
2051
ususuca(Ghd)GfaAf
A-
2052
VPusAfscaaGfuAf
UGUUUCAGGAAUGUC
3467


802071.2
1535919.1

UfGfucuacuuguaL96
1535920.1

GfacauUfcCfugaa
UACUUGUG









ascsa







AD-
A-
2053
gsasuaa(Uhd)AfgUf
A-
2054
VPusGfsaguUfuAf
CUGAUAAUAGUCUCU
3468


800968.2
1533713.1

CfUfcuuaaacucaL96
1533714.1

AfgagaCfuAfuuau
UAAACUCU









csasg







AD-
A-
2055
asgsagg(Uhd)UfaUf
A-
2056
VPusCfsaaaAfuAf
ACAGAGGUUAUUCUA
3469


800667.2
1533111.1

UfCfuauauuuugaL96
1533112.1

UfagaaUfaAfccuc
UAUUUUGA









usgsu







AD-
A-
2057
uscsaca(Ahd)CfcAfC
A-
2058
VPusCfscguUfuUf
CAUCACAACCACACUAA
3470


800008.2
1531795.1

fAfcuaaaacggaL96
1531796.1

AfguguGfgUfugu
AACGGA









gasusg







AD-
A-
2059
ascsaca(Ahd)UfuUf
A-
2060
VPusAfsugcUfaAf
CAACACAAUUUCUUCU
3471


802016.2
1535809.1

CfUfucuuagcauaL96
1535810.1

GfaagaAfaUfugug
UAGCAUU









ususg







AD-
A-
2061
uscsauc(Chd)UfgGf
A-
2062
VPusCfsaacUfgAf
GUUCAUCCUGGAAGU
3472


799549.1
1530912.1

AfAfguucaguugaL96
1530913.1

AfcuucCfaGfgaug
UCAGUUGA









asasc







AD-
A-
2063
ususgca(Uhd)CfaGf
A-
2064
VPusAfsuaaAfuUf
CAUUGCAUCAGAACCA
3473


800706.2
1533189.1

AfAfccaauuuauaL96
1533190.1

GfguucUfgAfugca
AUUUAUA









asusg







AD-
A-
2065
ususcau(Chd)UfuAf
A-
2066
VPusUfsucaAfaUf
CAUUCAUCUUAGGCUA
3474


801746.2
1535269.1

GfGfcuauuugaaaL96
1535270.1

AfgccuAfaGfauga
UUUGAAC









asusg







AD-
A-
2067
gsasuuc(Uhd)UfuAf
A-
2068
VPusCfsuaaGfaUf
AAGAUUCUUUAUACCA
3475


801721.2
1535219.1

UfAfccaucuuagaL96
1535220.1

GfguauAfaAfgaau
UCUUAGG









csusu







AD-
A-
2069
asusaau(Chd)GfcUf
A-
2070
VPusGfsuaaUfaAf
UUAUAAUCGCUGAACU
3476


802205.2
1536187.1

GfAfacuuauuacaL96
1536188.1

GfuucaGfcGfauua
UAUUACA









usasa







AD-
A-
2071
asusuug(Uhd)CfcUf
A-
2072
VPusAfsuacGfuAf
ACAUUUGUCCUAAUCU
3477


801680.2
1535137.1

AfAfucuacguauaL96
1535138.1

GfauuaGfgAfcaaa
ACGUAUA









usgsu







AD-
A-
2073
ususuua(Chd)AfuCf
A-
2074
VPusAfsugaCfaAf
ACUUUUACAUCUGCCU
3478


800470.1
1532717.1

UfGfccuugucauaL96
1532718.1

GfgcagAfuGfuaaa
UGUCAUC









asgsu







AD-
A-
2075
ascsauu(Uhd)GfuCf
A-
2076
VPusAfscguAfgAf
AGACAUUUGUCCUAAU
3479


801678.2
1535133.1

CfUfaaucuacguaL96
1535134.1

UfuaggAfcAfaaug
CUACGUA









uscsu







AD-
A-
2077
usgsuuu(Ahd)GfuCf
A-
2078
VPusAfsgcgAfaAf
AUUGUUUAGUCAUCC
3480


801022.2
1533821.1

AfUfccuuucgcuaL96
1533822.1

GfgaugAfcUfaaac
UUUCGCUG









asasu







AD-
A-
2079
uscsucc(Uhd)UfaAf
A-
2080
VPusAfsucaUfaGf
CUUCUCCUUAAAAUUC
3481


801309.2
1534395.1

AfAfuucuaugauaL96
1534396.1

AfauuuUfaAfggag
UAUGAUG









asasg







AD-
A-
2081
ascsagg(Ahd)UfuGf
A-
2082
VPusAfsagaCfuAf
UCACAGGAUUGUAAU
3482


800496.2
1532769.1

UfAfauuagucuuaL96
1532770.1

AfuuacAfaUfccug
UAGUCUUG









usgsa







AD-
A-
2083
usasggu(Uhd)CfaUf
A-
2084
VPusGfsccuAfaGf
CUUAGGUUCAUUCAUC
3483


801738.2
1535253.1

UfCfaucuuaggcaL96
1535254.1

AfugaaUfgAfaccu
UUAGGCU









asasg







AD-
A-
2085
asascaa(Chd)UfuUf
A-
2086
VPusGfscaaAfuUf
AAAACAACUUUCACUA
3484


801539.2
1534855.1

CfAfcuaauuugcaL96
1534856.1

AfgugaAfaGfuugu
AUUUGCU









ususu







AD-
A-
2087
asasgcc(Uhd)UfuGf
A-
2088
VPusGfsauaCfuAf
UCAAGCCUUUGAUAU
3485


799010.2
1529846.1

AfUfauuaguaucaL96
1529847.1

AfuaucAfaAfggcu
UAGUAUCA









usgsa







AD-
A-
2089
csusuuc(Uhd)UfcUf
A-
2090
VPusAfsgggAfuAf
GCCUUUCUUCUUUCAU
3486


800850.2
1533477.1

UfUfcauaucccuaL96
1533478.1

UfgaaaGfaAfgaaa
AUCCCUU









gsgsc







AD-
A-
2091
uscsaca(Ghd)GfaUf
A-
2092
VPusGfsacuAfaUf
UUUCACAGGAUUGUA
3487


800494.2
1532765.1

UfGfuaauuagucaL96
1532766.1

UfacaaUfcCfugug
AUUAGUCU









asasa







AD-
A-
2093
ususgcc(Chd)UfuAf
A-
2094
VPusAfscuaAfcAf
UUUUGCCCUUAUGAA
3488


798614.1
1529091.1

UfGfaauguuaguaL96
1529092.1

UfucauAfaGfggca
UGUUAGUC









asasa







AD-
A-
2095
csasuca(Ghd)AfaCfC
A-
2096
VPusCfsauaUfaAf
UGCAUCAGAACCAAUU
3489


800709.2
1533195.1

fAfauuuauaugaL96
1533196.1

AfuuggUfuCfugau
UAUAUGU









gscsa







AD-
A-
2097
asusuca(Ahd)UfcUf
A-
2098
VPusGfsaaaUfaAf
GAAUUCAAUCUACCGU
3490


801888.2
1535553.1

AfCfcguuauuucaL96
1535554.1

CfgguaGfaUfugaa
UAUUUCA









USUSC







AD-
A-
2099
ususucg(Chd)UfgUf
A-
2100
VPusCfsaacUfuUf
CCUUUCGCUGUAAGCA
3491


801035.2
1533847.1

AfAfgcaaaguugaL96
1533848.1

GfcuuaCfaGfcgaa
AAGUUGA









asgsg







AD-
A-
2101
asusugu(Uhd)UfaGf
A-
2102
VPusCfsgaaAfgGf
GUAUUGUUUAGUCAU
3492


801020.2
1533817.1

UfCfauccuuucgaL96
1533818.1

AfugacUfaAfacaa
CCUUUCGC









usasc







AD-
A-
2103
gsasgac(Ahd)UfuUf
A-
2104
VPusUfsagaUfuAf
UUGAGACAUUUGUCC
3493


801675.2
1535127.1

GfUfccuaaucuaaL96
1535128.1

GfgacaAfaUfgucu
UAAUCUAC









csasa







AD-
A-
2105
ususgcc(Ahd)AfcUf
A-
2106
VPusGfscaaGfaGf
UCUUGCCAACUUGCUC
3494


801228.2
1534233.1

UfGfcucucuugcaL96
1534234.1

AfgcaaGfuUfggca
UCUUGCC









asgsa







AD-
A-
2107
asusgua(Uhd)AfuUf
A-
2108
VPusUfscacUfaGf
GGAUGUAUAUUUGAC
3495


798984.1
1529794.1

UfGfaccuagugaaL96
1529795.1

GfucaaAfuAfuaca
CUAGUGAC









uscsc







AD-
A-
2109
csascag(Ghd)AfuUf
A-
2110
VPusAfsgacUfaAf
UUCACAGGAUUGUAA
3496


800495.2
1532767.1

GfUfaauuagucuaL96
1532768.1

UfuacaAfuCfcugu
UUAGUCUU









gsasa







AD-
A-
2111
gsasugu(Uhd)UfgAf
A-
2112
VPusAfscacGfaAf
AAGAUGUUUGACAGG
3497


801957.2
1535691.1

CfAfgguucguguaL96
1535692.1

CfcuguCfaAfacau
UUCGUGUG









csusu







AD-
A-
2113
usasgcu(Ghd)UfaGf
A-
2114
VPusAfsaacUfaGf
AUUAGCUGUAGACAUC
3498


801399.2
1534575.1

AfCfaucuaguuuaL96
1534576.1

AfugucUfaCfagcu
UAGUUUU









asasu







AD-
A-
2115
usascac(Ahd)GfgUf
A-
2116
VPusAfsacuAfcAf
GCUACACAGGUAGAAU
3499


801489.2
1534755.1

AfGfaauguaguuaL96
1534756.1

UfucuaCfcUfgugu
GUAGUUU









asgsc







AD-
A-
2117
asgsucu(Chd)UfuAf
A-
2118
VPusAfscaaAfaGf
AUAGUCUCUUAAACUC
3500


800974.2
1533725.1

AfAfcucuuuuguaL96
1533726.1

AfguuuAfaGfagac
UUUUGUC









usasu







AD-
A-
2119
asuscac(Ahd)AfcCfA
A-
2120
VPusCfsguuUfuAf
CCAUCACAACCACACUA
3501


800007.2
1531793.1

fCfacuaaaacgaL96
1531794.1

GfugugGfuUfgug
AAACGG









ausgsg







AD-
A-
2121
csasuuu(Ghd)UfcCf
A-
2122
VPusUfsacgUfaGf
GACAUUUGUCCUAAUC
3502


801679.2
1535135.1

UfAfaucuacguaaL96
1535136.1

AfuuagGfaCfaaau
UACGUAU









gsusc







AD-
A-
2123
csusgcc(Ahd)AfgUf
A-
2124
VPusAfscucUfaUf
UGCUGCCAAGUUAACA
3503


798031.1
1527964.1

UfAfacauagaguaL96
1527965.1

GfuuaaCfuUfggca
UAGAGUC









gscsa







AD-
A-
2125
asusuag(Chd)UfgUf
A-
2126
VPusAfscuaGfaUf
GCAUUAGCUGUAGACA
3504


801397.2
1534571.1

AfGfacaucuaguaL96
1534572.1

GfucuaCfaGfcuaa
UCUAGUU









usgsc







AD-
A-
2127
gsuscuc(Uhd)UfaAf
A-
2128
VPusGfsacaAfaAf
UAGUCUCUUAAACUCU
3505


800975.2
1533727.1

AfCfucuuuugucaL96
1533728.1

GfaguuUfaAfgaga
UUUGUCA









csusa







AD-
A-
2129
gsascau(Uhd)UfgUf
A-
2130
VPusCfsguaGfaUf
GAGACAUUUGUCCUAA
3506


801677.2
1535131.1

CfCfuaaucuacgaL96
1535132.1

UfaggaCfaAfaugu
UCUACGU









csusc







AD-
A-
2131
ususcuu(Uhd)AfuAf
A-
2132
VPusAfsccuAfaGf
GAUUCUUUAUACCAUC
3507


801723.2
1535223.1

CfCfaucuuagguaL96
1535224.1

AfugguAfuAfaaga
UUAGGUU









asusc







AD-
A-
2133
csascag(Ghd)UfaGf
A-
2134
VPusAfsaaaCfuAf
UACACAGGUAGAAUGU
3508


801491.2
1534759.1

AfAfuguaguuuuaL96
1534760.1

CfauucUfaCfcugu
AGUUUUA









gsusa







AD-
A-
2135
asusgua(Ghd)AfuUf
A-
2136
VPusGfsuacAfaAf
CCAUGUAGAUUACUGU
3509


802153.2
1536083.1

AfCfuguuuguacaL96
1536084.1

CfaguaAfuCfuaca
UUGUACU









usgsg







AD-
A-
2137
uscsacu(Uhd)GfuAf
A-
2138
VPusAfscggGfaUf
CAUCACUUGUAUACAA
3510


801140.2
1534057.1

UfAfcaaucccguaL96
1534058.1

UfguauAfcAfagug
UCCCGUG









asusg







AD-
A-
2139
asusuca(Uhd)CfuUf
A-
2140
VPusUfscaaAfuAf
UCAUUCAUCUUAGGCU
3511


801745.2
1535267.1

AfGfgcuauuugaaL96
1535268.1

GfccuaAfgAfugaa
AUUUGAA









usgsa







AD-
A-
2141
csasuuc(Ahd)UfcUf
A-
2142
VPusCfsaaaUfaGf
UUCAUUCAUCUUAGGC
3512


801744.2
1535265.1

UfAfggcuauuugaL96
1535266.1

CfcuaaGfaUfgaau
UAUUUGA









gsasa







AD-
A-
2143
asgsagc(Uhd)UfaUf
A-
2144
VPusGfscuuAfuAf
AAAGAGCUUAUUAAG
3513


802106.2
1535989.1

UfAfaguauaagcaL96
1535990.1

CfuuaaUfaAfgcuc
UAUAAGCU









ususu







AD-
A-
2145
usgsaug(Ahd)UfuCf
A-
2146
VPusCfsgauUfcUf
ACUGAUGAUUCUUUA
3514


800384.2
1532545.1

UfUfuaagaaucgaL96
1532546.1

UfaaagAfaUfcauc
AGAAUCGU









asgsu







AD-
A-
2147
csasaca(Ghd)AfuGf
A-
2148
VPusAfsgacGfgUf
UUCAACAGAUGUUAGA
3515


796041.1
1524103.1

UfUfagaccgucuaL96
1524104.1

CfuaacAfuCfuguu
CCGUCUU









gsasa
















TABLE 4B







Exemplary Human SCN9A Unmodified Single Strands and Duplex Sequences.


Column 1 indicates duplex name and the number following the decimal


point in a duplex name merely refers to a batch production number.


Column 2 indicates the sense sequence name. Column 3 indicates the


sequence ID for the sequence of column 4. Column 4 provides the


unmodified sequence of a sense strand suitable for use in a duplex


described herein. Column 5 provides the position in the target mRNA


(NM_001365536.1) of the sense strand of Column 4. Column 6 indicates


the antisense sequence name. Column 7 indicates the sequence ID for


the sequence of column 8. Column 8 provides the sequence of an


antisense strand suitable for use in a duplex described herein,


without specifying chemical modifications. Column 9 indicates


the position in the target mRNA (NM_001365536.1) that is


complementary to the antisense strand of Column 8.



















mRNA target
Anti
Seq ID

mRNA target



Sense
Seq ID

range in
sense
NO:
antisense
range in


Duplex
sequence
NO:
Sense sequence
NM_00136
sequence
(anti
sequence
NM_0013


Name
name
(sense)
(5′-3′)
5536.1
name
sense)
(5′-3′)
65536.1





AD-
A-
2149
UUUGUAGAUCUUGCAAUU
2531-2551
A-
2150
UGUAAUUGCAAGAUC
2529-2551


796825.1
1525636.1

ACA

1257916.1

UACAAAAG






AD-
A-
2151
UUCUGUGUAGGAGAAUUC
824-844
A-
2152
UGUGAAUUCUCCUACA
822-844


795366.1
1522818.1

ACA

1522819.1

CAGAAGC






AD-
A-
2153
AUGUGAAACAAACCUUAC
3300-3320
A-
2154
UACGUAAGGUUUGUU
3298-3320


797565.2
1527044.1

GUA

1527045.1

UCACAUAA






AD-
A-
2155
UGUAGGAGAAUUCACUUU
829-849
A-
2156
UGAAAAGUGAAUUCUC
827-849


795371.1
1522828.1

UCA

1522829.1

CUACACA






AD-
A-
2157
UAUGUGAAACAAACCUUA
3299-3319
A-
2158
UCGUAAGGUUUGUUU
3297-3319


797564.2
1527042.1

CGA

1527043.1

CACAUAAU






AD-
A-
2159
AGCAUAAAUGUUUUCGAA
1113-1133
A-
2160
UAUUUCGAAAACAUU
1111-1133


795634.2
1523299.1

AUA

1523300.1

UAUGCUUC






AD-
A-
2161
GAUCUUCUUUGUCGUAGU
1435-1455
A-
2162
UUCACUACGACAAAGA
1433-1455


795913.1
1523849.1

GAA

1523850.1

AGAUCAU






AD-
A-
2163
GGCGUUGUAGUUCCUAUC
2301-2321
A-
2164
UGAGAUAGGAACUACA
2299-2321


796618.1
1525247.1

UCA

1525248.1

ACGCCUU






AD-
A-
2165
AUCUUCUUUGUCGUAGUG
1436-1456
A-
2166
UAUCACUACGACAAAG
1434-1456


795914.1
1523851.1

AUA

1523852.1

AAGAUCA






AD-
A-
2167
UGGUUUCAGCACAGAUUC
1243-1263
A-
2168
UCUGAAUCUGUGCUG
1241-1263


795739.1
1523509.1

AGA

1523510.1

AAACCACA






AD-
A-
2169
UGUCGAGUACACUUUUAC
760-780
A-
2170
UCAGUAAAAGUGUACU
758-780


795305.1
1522697.1

UGA

1522698.1

CGACAUU






AD-
A-
2171
AAGCAGAAGAUCUGAAUA
3375-3395
A-
2172
UAGUAUUCAGAUCUU
3373-3395


797636.2
1527186.1

CUA

1527187.1

CUGCUUGU






AD-
A-
2173
CAAGUGUUCCUACUGUCA
9104-9124
A-
2174
UCAUGACAGUAGGAAC
9102-9124


802471.2
1536717.1

UGA

1536718.1

ACUUGAA






AD-
A-
2175
AUGCUGAGAAAUUGUCGA
1785-1805
A-
2176
UUUUCGACAAUUUCUC
1783-1805


796209.1
1524439.1

AAA

1524440.1

AGCAUCU






AD-
A-
2177
AUGUUUCUAGCUGAUUU
5075-5095
A-
2178
UAUCAAAUCAGCUAGA
5073-5095


799223.1
1530270.1

GAUA

1530271.1

AACAUAC






AD-
A-
2179
GAGAUGGAUUCUCUUCGU
5861-5881
A-
2180
UGAACGAAGAGAAUCC
5859-5881


799938.1
1531655.1

UCA

1531656.1

AUCUCCC






AD-
A-
2181
UUGUGACUUUAAGUUUA
2742-2762
A-
2182
UCACUAAACUUAAAGU
2740-2762


797036.1
1526036.1

GUGA

1526037.1

CACAAUA






AD-
A-
2183
AUGAUCUUCUUUGUCGUA
1433-1453
A-
2184
UACUACGACAAAGAAG
1431-1453


795911.1
1523845.1

GUA

1523846.1

AUCAUGU






AD-
A-
2185
AAGGGAAAACAAUCUUCC
576-596
A-
2186
UACGGAAGAUUGUUU
574-596


795132.1
1522351.1

GUA

1522352.1

UCCCUUUG






AD-
A-
2187
CUUCUGAAACAUCCAAACU
1683-1703
A-
2188
UCAGUUUGGAUGUUU
1681-1703


796138.1
1524297.1

GA

1524298.1

CAGAAGAA






AD-
A-
2189
UUGCUAUAGGAAAUUUGG
2625-2645
A-
2190
UGACCAAAUUUCCUAU
2623-2645


796919.1
1525802.1

UCA

1525803.1

AGCAAGU






AD-
A-
2191
UAUUGUGACUUUAAGUU
2740-2760
A-
2192
UCUAAACUUAAAGUCA
2738-2760


797034.1
1526032.1

UAGA

1526033.1

CAAUAAG






AD-
A-
2193
UUGGCAGAAACCCUGAUU
1296-1316
A-
2194
UAUAAUCAGGGUUUC
1294-1316


795774.1
1523579.1

AUA

1523580.1

UGCCAAUU






AD-
A-
2195
ACAUGAUCUUCUUUGUCG
1431-1451
A-
2196
UUACGACAAAGAAGAU
1429-1451


795909.1
1523841.1

UAA

1523842.1

CAUGUAG






AD-
A-
2197
AGCUUGAAGUAAAAUUAG
8687-8707
A-
2198
UGUCUAAUUUUACUU
8685-8707


802123.1
1536023.1

ACA

1536024.1

CAAGCUUA






AD-
A-
2199
UCCAAAUCGUUCCGAAUG
4390-4410
A-
2200
UAACAUUCGGAACGAU
4388-4410


798588.2
1529045.1

UUA

1529046.1

UUGGAAC






AD-
A-
2201
AUCUGAGACUGAAUUUGC
1993-2013
A-
2202
UCGGCAAAUUCAGUCU
1991-2013


796396.1
1524811.1

CGA

1524812.1

CAGAUCC






AD-
A-
2203
GCGUUGUAGUUCCUAUCU
2302-2322
A-
2204
UGGAGAUAGGAACUAC
2300-2322


796619.1
1525249.1

CCA

1525250.1

AACGCCU






AD-
A-
2205
UAUAUUUUACAACAUCCG
8022-8042
A-
2206
UAACGGAUGUUGUAA
8020-8042


801647.1
1535071.1

UUA

1535072.1

AAUAUAUC






AD-
A-
2207
AUGUCGAGUACACUUUUA
759-779
A-
2208
UAGUAAAAGUGUACUC
757-779


795304.1
1522695.1

CUA

1522696.1

GACAUUU






AD-
A-
2209
UGAUAGUUACCUAGUUUG
9226-9246
A-
2210
UUGCAAACUAGGUAAC
9224-9246


802553.1
1536879.1

CAA

1536880.1

UAUCAAA






AD-
A-
2211
GACUUACCUUUAGAGUAU
6944-6964
A-
2212
UCAAUACUCUAAAGGU
6942-6964


800819.1
1533415.1

UGA

1533416.1

AAGUCUU






AD-
A-
2213
CUAAAUUAUGGAAGUAAU
7468-7488
A-
2214
UAGAUUACUUCCAUAA
7466-7488


801263.1
1534303.1

CUA

1534304.1

UUUAGGA






AD-
A-
2215
AGUCAAGUUCCAAAUCGU
4382-4402
A-
2216
UGAACGAUUUGGAAC
4380-4402


798580.1
1529029.1

UCA

1529030.1

UUGACUUG






AD-
A-
2217
UGAUCUUCUUUGUCGUAG
1434-1454
A-
2218
UCACUACGACAAAGAA
1432-1454


795912.1
1523847.1

UGA

1523848.1

GAUCAUG






AD-
A-
2219
GUUUGAACACAAAUCUUU
9174-9194
A-
2220
UCGAAAGAUUUGUGU
9172-9194


802503.1
1536779.1

CGA

1536780.1

UCAAACCU






AD-
A-
2221
AAGUUCCAAAUCGUUCCG
4386-4406
A-
2222
UUUCGGAACGAUUUG
4384-4406


798584.2
1529037.1

AAA

1529038.1

GAACUUGA






AD-
A-
2223
UGUAGAUCUUGCAAUUAC
2533-2553
A-
2224
UUGGUAAUUGCAAGA
2531-2553


796827.1
1525638.1

CAA

1257918.1

UCUACAAA






AD-
A-
2225
CAUGAUCUUCUUUGUCGU
1432-1452
A-
2226
UCUACGACAAAGAAGA
1430-1452


795910.1
1523843.1

AGA

1523844.1

UCAUGUA






AD-
A-
2227
UUGAUAGUUACCUAGUUU
9225-9245
A-
2228
UGCAAACUAGGUAACU
9223-9245


802552.1
1536877.1

GCA

1536878.1

AUCAAAA






AD-
A-
2229
CACCUUCUCCUUAAAAUU
7527-7547
A-
2230
UAGAAUUUUAAGGAG
7525-7547


801304.1
1534385.1

CUA

1534386.1

AAGGUGAC






AD-
A-
2231
CUGAUUUCCUAAGAAAGG
6396-6416
A-
2232
UCACCUUUCUUAGGAA
6394-6416


800334.1
1532445.1

UGA

1532446.1

AUCAGAG






AD-
A-
2233
UGAGACUGACACAUUGUA
9700-9720
A-
2234
UAUUACAAUGUGUCA
9698-9720


802946.1
1537662.1

AUA

1537663.1

GUCUCAAG






AD-
A-
2235
CUGAAUAUACAAGUAUUA
1632-1652
A-
2236
UCCUAAUACUUGUAUA
1630-1652


796087.1
1524195.1

GGA

1524196.1

UUCAGCC






AD-
A-
2237
CAACCCAAAAUACUUAGCA
9298-9318
A-
2238
UAUGCUAAGUAUUUU
9296-9318


802625.2
1537023.1

UA

1537024.1

GGGUUGUG






AD-
A-
2239
CUGAUAAUAGUCUCUUAA
7151-7171
A-
2240
UGUUUAAGAGACUAU
7149-7171


800966.1
1533709.1

ACA

1533710.1

UAUCAGUA






AD-
A-
2241
UUUGUCGUAGUGAUUUU
1442-1462
A-
2242
UAGGAAAAUCACUACG
1440-1462


795920.1
1523863.1

CCUA

1523864.1

ACAAAGA






AD-
A-
2243
UGAAUAUACAAGUAUUAG
1633-1653
A-
2244
UUCCUAAUACUUGUA
1631-1653


796088.1
1524197.1

GAA

1524198.1

UAUUCAGC






AD-
A-
2245
AGAUGGAUUCUCUUCGUU
5862-5882
A-
2246
UUGAACGAAGAGAAUC
5860-5882


799939.1
1531657.1

CAA

1531658.1

CAUCUCC






AD-
A-
2247
AAUAUCAUAAAGCUGUUU
9589-9609
A-
2248
UGUAAACAGCUUUAU
9587-9609


802853.2
1537477.1

ACA

1537478.1

GAUAUUCA






AD-
A-
2249
UCUUUAUACCAUCUUAGG
8099-8119
A-
2250
UAACCUAAGAUGGUAU
8097-8119


801724.1
1535225.1

UUA

1535226.1

AAAGAAU






AD-
A-
2251
GCAAAGGUCACAAUUUCC
3438-3458
A-
2252
UGAGGAAAUUGUGAC
3436-3458


797699.1
1527312.1

UCA

1527313.1

CUUUGCUC






AD-
A-
2253
AGUCACCACUCAGCAUUCG
1899-1919
A-
2254
UACGAAUGCUGAGUG
1897-1919


796304.1
1524627.1

UA

1524628.1

GUGACUGA






AD-
A-
2255
UGCUAUAGGAAAUUUGGU
2626-2646
A-
2256
UAGACCAAAUUUCCUA
2624-2646


796920.1
1525804.1

CUA

1525805.1

UAGCAAG






AD-
A-
2257
GACAGAGAUGAUGAUUUA
6059-6079
A-
2258
UAGUAAAUCAUCAUCU
6057-6079


800110.1
1531997.1

CUA

1531998.1

CUGUCUC






AD-
A-
2259
AAGUCAAGUUCCAAAUCG
4381-4401
A-
2260
UAACGAUUUGGAACU
4379-4401


798579.1
1529027.1

UUA

1529028.1

UGACUUGC






AD-
A-
2261
UAGGCUAAUGACCCAAGA
1363-1383
A-
2262
UAAUCUUGGGUCAUU
1361-1383


795841.1
1523713.1

UUA

1523714.1

AGCCUAAA






AD-
A-
2263
AAGAGCUUAUUAAGUAUA
8669-8689
A-
2264
UCUUAUACUUAAUAA
8667-8689


802105.2
1535987.1

AGA

1535988.1

GCUCUUUC






AD-
A-
2265
UGGAAUAUUCUACUUUGU
5503-5523
A-
2266
UUAACAAAGUAGAAUA
5501-5523


799594.1
1531002.1

UAA

1531003.1

UUCCAAC






AD-
A-
2267
AUGUACAGAGGUUAUUCU
6778-6798
A-
2268
UAUAGAAUAACCUCUG
6776-6798


800661.1
1533099.1

AUA

1533100.1

UACAUUG






AD-
A-
2269
AUCGUAAGAGAACUCUGU
6462-6482
A-
2270
UCUACAGAGUUCUCUU
6460-6482


800400.1
1532577.1

AGA

1532578.1

ACGAUUC






AD-
A-
2271
CAUCUGUUGGAAUAUUCU
5496-5516
A-
2272
UGUAGAAUAUUCCAAC
5494-5516


799587.1
1530988.1

ACA

1530989.1

AGAUGGG






AD-
A-
2273
GUCUUUACUGGAAUCUUU
2642-2662
A-
2274
UGCAAAGAUUCCAGUA
2640-2662


796936.1
1525836.1

GCA

1525837.1

AAGACCA






AD-
A-
2275
CAACACAAUUUCUUCUUA
8498-8518
A-
2276
UGCUAAGAAGAAAUU
8496-8518


802014.1
1535805.1

GCA

1535806.1

GUGUUGUU






AD-
A-
2277
UGGAUUCUCUUCGUUCAC
5865-5885
A-
2278
UCUGUGAACGAAGAGA
5863-5885


799942.1
1531663.1

AGA

1531664.1

AUCCAUC






AD-
A-
2279
GUAUGUUUCUAGCUGAU
5073-5093
A-
2280
UCAAAUCAGCUAGAAA
5071-5093


799221.1
1530266.1

UUGA

1530267.1

CAUACCU






AD-
A-
2281
CCUUCCUGAUAUGCAGUU
7247-7267
A-
2282
UCUAACUGCAUAUCAG
7245-7267


801062.1
1533901.1

AGA

1533902.1

GAAGGAU






AD-
A-
2283
GGAGAUGGAUUCUCUUCG
5860-5880
A-
2284
UAACGAAGAGAAUCCA
5858-5880


799937.1
1531653.1

UUA

1531654.1

UCUCCCC






AD-
A-
2285
GUAGAAAACUUUUACAUC
6547-6567
A-
2286
UCAGAUGUAAAAGUU
6545-6567


800461.1
1532699.1

UGA

1532700.1

UUCUACAU






AD-
A-
2287
AGCGUGCUUAUAGACGUU
5988-6008
A-
2288
UGUAACGUCUAUAAGC
5986-6008


800058.1
1531895.1

ACA

1531896.1

ACGCUGA






AD-
A-
2289
GUUUCUAGCUGAUUUGA
5077-5097
A-
2290
UCAAUCAAAUCAGCUA
5075-5097


799225.1
1530274.1

UUGA

1530275.1

GAAACAU






AD-
A-
2291
GCCCAAAAUACUGAUAAU
7141-7161
A-
2292
UCUAUUAUCAGUAUU
7139-7161


800956.1
1533689.1

AGA

1533690.1

UUGGGCAG






AD-
A-
2293
UUUGUCCUAAUCUACGUA
8056-8076
A-
2294
UUAUACGUAGAUUAG
8054-8076


801681.2
1535139.1

UAA

1535140.1

GACAAAUG






AD-
A-
2295
UAAUCGCUGAACUUAUUA
8787-8807
A-
2296
UUGUAAUAAGUUCAG
8785-8807


802206.2
1536189.1

CAA

1536190.1

CGAUUAUA






AD-
A-
2297
UUUGAAUUCAAUCUACCG
8327-8347
A-
2298
UAACGGUAGAUUGAA
8325-8347


801883.2
1535543.1

UUA

1535544.1

UUCAAAUU






AD-
A-
2299
CUCUUUUGAGGAAGUCUA
6326-6346
A-
2300
UCAUAGACUUCCUCAA
6324-6346


800273.2
1532323.1

UGA

1532324.1

AAGAGUU






AD-
A-
2301
AGCUGAUUUGAUUGAAAC
5083-5103
A-
2302
UACGUUUCAAUCAAAU
5081-5103


799231.2
1530286.1

GUA

1530287.1

CAGCUAG






AD-
A-
2303
CUUUAUACCAUCUUAGGU
8100-8120
A-
2304
UGAACCUAAGAUGGUA
8098-8120


801725.1
1535227.1

UCA

1535228.1

UAAAGAA






AD-
A-
2305
UUGCAAGCCUCUUAUGUG
243-263
A-
2306
UCUCACAUAAGAGGCU
241-263


794914.1
1521918.1

AGA

1521919.1

UGCAACC






AD-
A-
2307
UUAUUGCAUCACUUGUAU
7317-7337
A-
2308
UGUAUACAAGUGAUG
7315-7337


801132.1
1534041.1

ACA

1534042.1

CAAUAAAU






AD-
A-
2309
UUUCACAGGAUUGUAAUU
6578-6598
A-
2310
UCUAAUUACAAUCCUG
6576-6598


800492.2
1532761.1

AGA

1532762.1

UGAAAAG






AD-
A-
2311
CUUUUCACAGGAUUGUAA
6576-6596
A-
2312
UAAUUACAAUCCUGUG
6574-6596


800490.1
1532757.1

UUA

1532758.1

AAAAGAU






AD-
A-
2313
CUGUAGGAAUUAUUGAUU
6476-6496
A-
2314
UAUAAUCAAUAAUUCC
6474-6496


800414.2
1532605.1

AUA

1532606.1

UACAGAG






AD-
A-
2315
UUCCUGAUAUGCAGUUAG
7249-7269
A-
2316
UAACUAACUGCAUAUC
7247-7269


801064.1
1533905.1

UUA

1533906.1

AGGAAGG






AD-
A-
2317
GCAAGUCAAGUUCCAAAU
4379-4399
A-
2318
UCGAUUUGGAACUUG
4377-4399


798577.1
1529023.1

CGA

1529024.1

ACUUGCAG






AD-
A-
2319
GGAAGAAAGGUUCAUGUC
5887-5907
A-
2320
UCAGACAUGAACCUUU
5885-5907


799959.1
1531697.1

UGA

1531698.1

CUUCCAU






AD-
A-
2321
AUCUAGGGCUAAAGAUUC
8083-8103
A-
2322
UAAGAAUCUUUAGCCC
8081-8103


801708.2
1535193.1

UUA

1535194.1

UAGAUUG






AD-
A-
2323
UAGCUGAUUUGAUUGAAA
5082-5102
A-
2324
UCGUUUCAAUCAAAUC
5080-5102


799230.2
1530284.1

CGA

1530285.1

AGCUAGA






AD-
A-
2325
CUUCCUGAUAUGCAGUUA
7248-7268
A-
2326
UACUAACUGCAUAUCA
7246-7268


801063.1
1533903.1

GUA

1533904.1

GGAAGGA






AD-
A-
2327
ACUGAUGAUUCUUUAAGA
6444-6464
A-
2328
UAUUCUUAAAGAAUCA
6442-6464


800382.2
1532541.1

AUA

1532542.1

UCAGUGC






AD-
A-
2329
AGACGUUACCGCUUAAGG
5999-6019
A-
2330
UUGCCUUAAGCGGUAA
5997-6019


800069.1
1531917.1

CAA

1531918.1

CGUCUAU






AD-
A-
2331
UCGUGGCUCCUUGUUUUC
1915-1935
A-
2332
UCAGAAAACAAGGAGC
1913-1935


796318.1
1524655.1

UGA

1524656.1

CACGAAU






AD-
A-
2333
CCUUUCUUCUUUCAUAUC
6974-6994
A-
2334
UGGGAUAUGAAAGAA
6972-6994


800849.2
1533475.1

CCA

1533476.1

GAAAGGCU






AD-
A-
2335
CAUCUUUUCACAGGAUUG
6573-6593
A-
2336
UUACAAUCCUGUGAAA
6571-6593


800487.1
1532751.1

UAA

1532752.1

AGAUGAC






AD-
A-
2337
CUGUUGGAAAUAGGUUU
8222-8242
A-
2338
UUCAAAACCUAUUUCC
8220-8242


801835.1
1535447.1

UGAA

1535448.1

AACAGGC






AD-
A-
2339
GGGAGAUGGAUUCUCUUC
5859-5879
A-
2340
UACGAAGAGAAUCCAU
5857-5879


799936.1
1531651.1

GUA

1531652.1

CUCCCCA






AD-
A-
2341
UUGAAUUCAAUCUACCGU
8328-8348
A-
2342
UUAACGGUAGAUUGA
8326-8348


801884.2
1535545.1

UAA

1535546.1

AUUCAAAU






AD-
A-
2343
UCAUCUUAGGCUAUUUGA
8122-8142
A-
2344
UGUUCAAAUAGCCUAA
8120-8142


801747.2
1535271.1

ACA

1535272.1

GAUGAAU






AD-
A-
2345
UGAUUCUUUAAGAAUCGU
6449-6469
A-
2346
UUUACGAUUCUUAAA
6447-6469


800387.2
1532551.1

AAA

1532552.1

GAAUCAUC






AD-
A-
2347
GUAAUGGACAUUAGUUAU
6714-6734
A-
2348
UUCAUAACUAAUGUCC
6712-6734


800606.2
1532989.1

GAA

1532990.1

AUUACUU






AD-
A-
2349
UUGAGACUGACACAUUGU
9699-9719
A-
2350
UUUACAAUGUGUCAG
9697-9719


802945.2
1537660.1

AAA

1537661.1

UCUCAAGU






AD-
A-
2351
GAAUUCAAUCUACCGUUA
8330-8350
A-
2352
UAAUAACGGUAGAUU
8328-8350


801886.2
1535549.1

UUA

1535550.1

GAAUUCAA






AD-
A-
2353
AUGAUUCUUUAAGAAUCG
6448-6468
A-
2354
UUACGAUUCUUAAAGA
6446-6468


800386.2
1532549.1

UAA

1532550.1

AUCAUCA






AD-
A-
2355
AGCCUGUUGGAAAUAGGU
8219-8239
A-
2356
UAAACCUAUUUCCAAC
8217-8239


801832.1
1535441.1

UUA

1535442.1

AGGCUUG






AD-
A-
2357
CGUGCUUAUAGACGUUAC
5990-6010
A-
2358
UCGGUAACGUCUAUAA
5988-6010


800060.1
1531899.1

CGA

1531900.1

GCACGCU






AD-
A-
2359
UUUAGUGGCAAACACUCU
4114-4134
A-
2360
UCAAGAGUGUUUGCCA
4112-4134


798332.1
1528540.1

UGA

1528541.1

CUAAAGU






AD-
A-
2361
ACCUCUCUUUCCAUGUAG
8705-8725
A-
2362
UAUCUACAUGGAAAGA
8703-8725


802141.2
1536059.1

AUA

1536060.1

GAGGUCU






AD-
A-
2363
CAACUUACUUUCCUAAAU
7456-7476
A-
2364
UUAAUUUAGGAAAGU
7454-7476


801251.1
1534279.1

UAA

1534280.1

AAGUUGGU






AD-
A-
2365
GCUGAACCUAUGAAUUCC
3725-3745
A-
2366
UUCGGAAUUCAUAGG
3723-3745


797963.1
1527829.1

GAA

1527830.1

UUCAGCCU






AD-
A-
2367
UAUCAAAAUAUUCUCGAA
6359-6379
A-
2368
UCCUUCGAGAAUAUU
6357-6379


800297.2
1532371.1

GGA

1532372.1

UUGAUAAA






AD-
A-
2369
ACAUCCGUUAUUACUUUG
8033-8053
A-
2370
UCUCAAAGUAAUAACG
8031-8053


801658.2
1535093.1

AGA

1535094.1

GAUGUUG






AD-
A-
2371
AGACAUUUGUCCUAAUCU
8051-8071
A-
2372
UGUAGAUUAGGACAA
8049-8071


801676.2
1535129.1

ACA

1535130.1

AUGUCUCA






AD-
A-
2373
UGCCACUGAAGAAAGUAC
5593-5613
A-
2374
UCAGUACUUUCUUCAG
5591-5613


799683.1
1531160.1

UGA

1531161.1

UGGCAAC






AD-
A-
2375
UCAUCUUUUCACAGGAUU
6572-6592
A-
2376
UACAAUCCUGUGAAAA
6570-6592


800486.1
1532749.1

GUA

1532750.1

GAUGACA






AD-
A-
2377
CGGACUUGGUUACCUAUC
4474-4494
A-
2378
UGAGAUAGGUAACCAA
4472-4494


798672.1
1529207.1

UCA

1529208.1

GUCCGAC






AD-
A-
2379
CUCUUUCCAUGUAGAUUA
8709-8729
A-
2380
UAGUAAUCUACAUGGA
8707-8729


802145.2
1536067.1

CUA

1536068.1

AAGAGAG






AD-
A-
2381
ACAACUUUCACUAAUUUG
7834-7854
A-
2382
UAGCAAAUUAGUGAAA
7832-7854


801540.2
1534857.1

CUA

1534858.1

GUUGUUU






AD-
A-
2383
UACAACAUCCGUUAUUAC
8029-8049
A-
2384
UAAGUAAUAACGGAU
8027-8049


801654.2
1535085.1

UUA

1535086.1

GUUGUAAA






AD-
A-
2385
AAUGUCGGACUUGGUUAC
4469-4489
A-
2386
UAGGUAACCAAGUCCG
4467-4489


798667.1
1529197.1

CUA

1529198.1

ACAUUAU






AD-
A-
2387
ACAACAUCCGUUAUUACU
8030-8050
A-
2388
UAAAGUAAUAACGGAU
8028-8050


801655.2
1535087.1

UUA

1535088.1

GUUGUAA






AD-
A-
2389
CUUCUUAGCCUUGUUUAG
1348-1368
A-
2390
UGCCUAAACAAGGCUA
1346-1368


795826.1
1523683.1

GCA

1523684.1

AGAAGGC






AD-
A-
2391
ACACAGGUAGAAUGUAGU
7770-7790
A-
2392
UAAACUACAUUCUACC
7768-7790


801490.2
1534757.1

UUA

1534758.1

UGUGUAG






AD-
A-
2393
CUGAACCUAUGAAUUCCG
3726-3746
A-
2394
UAUCGGAAUUCAUAG
3724-3746


797964.1
1527831.1

AUA

1527832.1

GUUCAGCC






AD-
A-
2395
AUUCUUUAAGAAUCGUAA
6451-6471
A-
2396
UUCUUACGAUUCUUA
6449-6471


800389.2
1532555.1

GAA

1532556.1

AAGAAUCA






AD-
A-
2397
GAUUCUUUAAGAAUCGUA
6450-6470
A-
2398
UCUUACGAUUCUUAAA
6448-6470


800388.2
1532553.1

AGA

1532554.1

GAAUCAU






AD-
A-
2399
GUUUCAGGAAUGUCUACU
8614-8634
A-
2400
UCAAGUAGACAUUCCU
8612-8634


802070.2
1535917.1

UGA

1535918.1

GAAACAA






AD-
A-
2401
UAUAGAAACAAAGAUUUA
7958-7978
A-
2402
UCAUAAAUCUUUGUU
7956-7978


801601.2
1534979.1

UGA

1534980.1

UCUAUAGG






AD-
A-
2403
UUACAACAUCCGUUAUUA
8028-8048
A-
2404
UAGUAAUAACGGAUG
8026-8048


801653.1
1535083.1

CUA

1535084.1

UUGUAAAA






AD-
A-
2405
UUUCAGGAAUGUCUACUU
8615-8635
A-
2406
UACAAGUAGACAUUCC
8613-8635


802071.2
1535919.1

GUA

1535920.1

UGAAACA






AD-
A-
2407
GAUAAUAGUCUCUUAAAC
7153-7173
A-
2408
UGAGUUUAAGAGACU
7151-7173


800968.2
1533713.1

UCA

1533714.1

AUUAUCAG






AD-
A-
2409
AGAGGUUAUUCUAUAUUU
6784-6804
A-
2410
UCAAAAUAUAGAAUAA
6782-6804


800667.2
1533111.1

UGA

1533112.1

CCUCUGU






AD-
A-
2411
UCACAACCACACUAAAACG
5937-5957
A-
2412
UCCGUUUUAGUGUGG
5935-5957


800008.2
1531795.1

GA

1531796.1

UUGUGAUG






AD-
A-
2413
ACACAAUUUCUUCUUAGC
8500-8520
A-
2414
UAUGCUAAGAAGAAAU
8498-8520


802016.2
1535809.1

AUA

1535810.1

UGUGUUG






AD-
A-
2415
UCAUCCUGGAAGUUCAGU
5458-5478
A-
2416
UCAACUGAACUUCCAG
5456-5478


799549.1
1530912.1

UGA

1530913.1

GAUGAAC






AD-
A-
2417
UUGCAUCAGAACCAAUUU
6826-6846
A-
2418
UAUAAAUUGGUUCUG
6824-6846


800706.2
1533189.1

AUA

1533190.1

AUGCAAUG






AD-
A-
2419
UUCAUCUUAGGCUAUUUG
8121-8141
A-
2420
UUUCAAAUAGCCUAAG
8119-8141


801746.2
1535269.1

AAA

1535270.1

AUGAAUG






AD-
A-
2421
GAUUCUUUAUACCAUCUU
8096-8116
A-
2422
UCUAAGAUGGUAUAA
8094-8116


801721.2
1535219.1

AGA

1535220.1

AGAAUCUU






AD-
A-
2423
AUAAUCGCUGAACUUAUU
8786-8806
A-
2424
UGUAAUAAGUUCAGC
8784-8806


802205.2
1536187.1

ACA

1536188.1

GAUUAUAA






AD-
A-
2425
AUUUGUCCUAAUCUACGU
8055-8075
A-
2426
UAUACGUAGAUUAGG
8053-8075


801680.2
1535137.1

AUA

1535138.1

ACAAAUGU






AD-
A-
2427
UUUUACAUCUGCCUUGUC
6556-6576
A-
2428
UAUGACAAGGCAGAUG
6554-6576


800470.1
1532717.1

AUA

1532718.1

UAAAAGU






AD-
A-
2429
ACAUUUGUCCUAAUCUAC
8053-8073
A-
2430
UACGUAGAUUAGGACA
8051-8073


801678.2
1535133.1

GUA

1535134.1

AAUGUCU






AD-
A-
2431
UGUUUAGUCAUCCUUUCG
7207-7227
A-
2432
UAGCGAAAGGAUGACU
7205-7227


801022.2
1533821.1

CUA

1533822.1

AAACAAU






AD-
A-
2433
UCUCCUUAAAAUUCUAUG
7532-7552
A-
2434
UAUCAUAGAAUUUUA
7530-7552


801309.2
1534395.1

AUA

1534396.1

AGGAGAAG






AD-
A-
2435
ACAGGAUUGUAAUUAGUC
6582-6602
A-
2436
UAAGACUAAUUACAAU
6580-6602


800496.2
1532769.1

UUA

1532770.1

CCUGUGA






AD-
A-
2437
UAGGUUCAUUCAUCUUAG
8113-8133
A-
2438
UGCCUAAGAUGAAUGA
8111-8133


801738.2
1535253.1

GCA

1535254.1

ACCUAAG






AD-
A-
2439
AACAACUUUCACUAAUUU
7833-7853
A-
2440
UGCAAAUUAGUGAAA
7831-7853


801539.2
1534855.1

GCA

1534856.1

GUUGUUUU






AD-
A-
2441
AAGCCUUUGAUAUUAGUA
4842-4862
A-
2442
UGAUACUAAUAUCAAA
4840-4862


799010.2
1529846.1

UCA

1529847.1

GGCUUGA






AD-
A-
2443
CUUUCUUCUUUCAUAUCC
6975-6995
A-
2444
UAGGGAUAUGAAAGA
6973-6995


800850.2
1533477.1

CUA

1533478.1

AGAAAGGC






AD-
A-
2445
UCACAGGAUUGUAAUUAG
6580-6600
A-
2446
UGACUAAUUACAAUCC
6578-6600


800494.2
1532765.1

UCA

1532766.1

UGUGAAA






AD-
A-
2447
UUGCCCUUAUGAAUGUUA
4410-4430
A-
2448
UACUAACAUUCAUAAG
4408-4430


798614.1
1529091.1

GUA

1529092.1

GGCAAAA






AD-
A-
2449
CAUCAGAACCAAUUUAUA
6829-6849
A-
2450
UCAUAUAAAUUGGUU
6827-6849


800709.2
1533195.1

UGA

1533196.1

CUGAUGCA






AD-
A-
2451
AUUCAAUCUACCGUUAUU
8332-8352
A-
2452
UGAAAUAACGGUAGA
8330-8352


801888.2
1535553.1

UCA

1535554.1

UUGAAUUC






AD-
A-
2453
UUUCGCUGUAAGCAAAGU
7220-7240
A-
2454
UCAACUUUGCUUACAG
7218-7240


801035.2
1533847.1

UGA

1533848.1

CGAAAGG






AD-
A-
2455
AUUGUUUAGUCAUCCUUU
7205-7225
A-
2456
UCGAAAGGAUGACUAA
7203-7225


801020.2
1533817.1

CGA

1533818.1

ACAAUAC






AD-
A-
2457
GAGACAUUUGUCCUAAUC
8050-8070
A-
2458
UUAGAUUAGGACAAA
8048-8070


801675.2
1535127.1

UAA

1535128.1

UGUCUCAA






AD-
A-
2459
UUGCCAACUUGCUCUCUU
7433-7453
A-
2460
UGCAAGAGAGCAAGUU
7431-7453


801228.2
1534233.1

GCA

1534234.1

GGCAAGA






AD-
A-
2461
AUGUAUAUUUGACCUAGU
4816-4836
A-
2462
UUCACUAGGUCAAAUA
4814-4836


798984.1
1529794.1

GAA

1529795.1

UACAUCC






AD-
A-
2463
CACAGGAUUGUAAUUAGU
6581-6601
A-
2464
UAGACUAAUUACAAUC
6579-6601


800495.2
1532767.1

CUA

1532768.1

CUGUGAA






AD-
A-
2465
GAUGUUUGACAGGUUCGU
8404-8424
A-
2466
UACACGAACCUGUCAA
8402-8424


801957.2
1535691.1

GUA

1535692.1

ACAUCUU






AD-
A-
2467
UAGCUGUAGACAUCUAGU
7625-7645
A-
2468
UAAACUAGAUGUCUAC
7623-7645


801399.2
1534575.1

UUA

1534576.1

AGCUAAU






AD-
A-
2469
UACACAGGUAGAAUGUAG
7769-7789
A-
2470
UAACUACAUUCUACCU
7767-7789


801489.2
1534755.1

UUA

1534756.1

GUGUAGC






AD-
A-
2471
AGUCUCUUAAACUCUUUU
7159-7179
A-
2472
UACAAAAGAGUUUAAG
7157-7179


800974.2
1533725.1

GUA

1533726.1

AGACUAU






AD-
A-
2473
AUCACAACCACACUAAAAC
5936-5956
A-
2474
UCGUUUUAGUGUGGU
5934-5956


800007.2
1531793.1

GA

1531794.1

UGUGAUGG






AD-
A-
2475
CAUUUGUCCUAAUCUACG
8054-8074
A-
2476
UUACGUAGAUUAGGA
8052-8074


801679.2
1535135.1

UAA

1535136.1

CAAAUGUC






AD-
A-
2477
CUGCCAAGUUAACAUAGA
3793-3813
A-
2478
UACUCUAUGUUAACU
3791-3813


798031.1
1527964.1

GUA

1527965.1

UGGCAGCA






AD-
A-
2479
AUUAGCUGUAGACAUCUA
7623-7643
A-
2480
UACUAGAUGUCUACAG
7621-7643


801397.2
1534571.1

GUA

1534572.1

CUAAUGC






AD-
A-
2481
GUCUCUUAAACUCUUUUG
7160-7180
A-
2482
UGACAAAAGAGUUUAA
7158-7180


800975.2
1533727.1

UCA

1533728.1

GAGACUA






AD-
A-
2483
GACAUUUGUCCUAAUCUA
8052-8072
A-
2484
UCGUAGAUUAGGACAA
8050-8072


801677.2
1535131.1

CGA

1535132.1

AUGUCUC






AD-
A-
2485
UUCUUUAUACCAUCUUAG
8098-8118
A-
2486
UACCUAAGAUGGUAUA
8096-8118


801723.2
1535223.1

GUA

1535224.1

AAGAAUC






AD-
A-
2487
CACAGGUAGAAUGUAGUU
7771-7791
A-
2488
UAAAACUACAUUCUAC
7769-7791


801491.2
1534759.1

UUA

1534760.1

CUGUGUA






AD-
A-
2489
AUGUAGAUUACUGUUUG
8717-8737
A-
2490
UGUACAAACAGUAAUC
8715-8737


802153.2
1536083.1

UACA

1536084.1

UACAUGG






AD-
A-
2491
UCACUUGUAUACAAUCCC
7325-7345
A-
2492
UACGGGAUUGUAUAC
7323-7345


801140.2
1534057.1

GUA

1534058.1

AAGUGAUG






AD-
A-
2493
AUUCAUCUUAGGCUAUUU
8120-8140
A-
2494
UUCAAAUAGCCUAAGA
8118-8140


801745.2
1535267.1

GAA

1535268.1

UGAAUGA






AD-
A-
2495
CAUUCAUCUUAGGCUAUU
8119-8139
A-
2496
UCAAAUAGCCUAAGAU
8117-8139


801744.2
1535265.1

UGA

1535266.1

GAAUGAA






AD-
A-
2497
AGAGCUUAUUAAGUAUAA
8670-8690
A-
2498
UGCUUAUACUUAAUA
8668-8690


802106.2
1535989.1

GCA

1535990.1

AGCUCUUU






AD-
A-
2499
UGAUGAUUCUUUAAGAAU
6446-6466
A-
2500
UCGAUUCUUAAAGAAU
6444-6466


800384.2
1532545.1

CGA

1532546.1

CAUCAGU






AD-
A-
2501
CAACAGAUGUUAGACCGU
1568-1588
A-
2502
UAGACGGUCUAACAUC
1566-1588


796041.1
1524103.1

CUA

1524104.1

UGUUGAA

















TABLE 5A







Exemplary Human SCN9A siRNA Modified Single Strands and Duplex Sequences


Column 1 indicates duplex name and the number following the decimal point in a duplex name merely refers to a batch production number. Column 


2 indicates the name of the sense sequence. Column 3 indicates the sequence ID for the sequence of column 4. Column 4 provides the modified


sequence of a sense strand suitable for use in a duplex described herein. Column 5 indicates the antisense sequence name. Column 6 indicates


the sequence ID for the sequence of column 7. Column 7 provides the sequence of a modified antisense strand suitable for use in a duplex


described herein, e.g., a duplex comprising the sense sequence in the same row of the table. Column 8 indicates the position in the target


mRNA (NM_002977.3) that is complementary to the antisense strand of Column 7. Column 9 indicated the sequence ID for the sequence of column 8.























SEQ ID







Seq ID


NO:



Sense
Seq ID

Antisense
NO:

mRNA target
(mRNA


Duplex
sequence
NO:
Sense sequence
sequence
(anti
Antisense sequence
sequence
target)


Name
name
(sense)
(5′-3′)
name
sense)
(5′-3′)
in NM_002977.3





AD-
A-
2503
ususgug(Ahd)cudTu
A-
2593
VPusdCsacdTadAacuu
UAUUGUGACUUUAAG
3516


961208.1
1812652.1

dAaguuuagugaL96
1812653.1

dAadAgdTcacaasusa
UUUAGUGG






AD-
A-
2504
usasuug(Uhd)gadCu
A-
2594
VPusdCsuadAadCuua
CUUAUUGUGACUUUA
3517


961207.1
1812650.1

dTuaaguuuagaL96
1812651.1

adAgdTcdAcaauasasg
AGUUUAGU






AD-
A-
2505
ususcug(Uhd)gudAg
A-
2595
VPusdGsugdAadTucu
GCUUCUGUGUAGGAG
3518


1010662.1
1851786.1

dGagaauucacaL96
1875200.1

cdCudAcdAcagaasgsc
AAUUCACU






AD-
A-
2506
csasuga(Uhd)cudTc
A-
2596
VPusdCsuadCgdAcaa
UACAUGAUCUUCUUU
3519


961188.1
1812612.1

dTuugucguagaL96
1812613.1

adGadAgdAucaugsus
GUCGUAGU









a







AD-
A-
2507
usgsuag(Ghd)agdAa
A-
2597
VPusdGsaadAadGuga
UGUGUAGGAGAAUUC
3520


1010663.1
1851796.1

dTucacuuuucaL96
1875201.1

adTudCudCcuacascsa
ACUUUUCU






AD-
A-
2508
usgsucg(Ahd)gudAc
A-
2598
VPusdCsagdTadAaag
AAUGUCGAGUACACUU
3521


1010661.1
1851664.1

dAcuuuuacugaL96
1875199.1

udGudAcdTcgacasus
UUACUGG









u







AD-
A-
2509
asusgau(Chd)uudCu
A-
2599
VPusdAscudAcdGaca
ACAUGAUCUUCUUUG
3522


961189.1
1812614.1

dTugucguaguaL96
1812615.1

adAgdAadGaucausgs
UCGUAGUG









u







AD-
A-
2510
asuscug(Ahd)gadCu
A-
2600
VPusdCsggdCadAauu
GGAUCUGAGACUGAA
3523


1010671.1
1853827.1

dGaauuugccgaL96
1875209.1

cdAgdTcdTcagauscsc
UUUGCCGA






AD-
A-
2511
usgsauc(Uhd)ucdTu
A-
2601
VPusdCsacdTadCgaca
CAUGAUCUUCUUUGU
3524


961190.1
1812616.1

dTgucguagugaL96
1812617.1

dAadGadAgaucasusg
CGUAGUGA






AD-
A-
2512
asasggg(Ahd)aadAc
A-
2602
VPusdAscgdGadAgau
CAAAGGGAAAACAAUC
3525


961179.1
1812594.1

dAaucuuccguaL96
1812595.1

udGudTudTcccuusus
UUCCGUU









g







AD-
A-
2513
asgscuu(Ghd)aadGu
A-
2603
VPusdGsucdTadAuuu
UAAGCUUGAAGUAAAA
3526


961342.1
1812920.1

dAaaauuagacaL96
1812921.1

udAcdTudCaagcususa
UUAGACC






AD-
A-
2514
usgscua(Uhd)agdGa
A-
2604
VPusdAsgadCcdAaau
CUUGCUAUAGGAAAU
3527


1010673.1
1854804.1

dAauuuggucuaL96
1875211.1

udTcdCudAuagcasasg
UUGGUCUU






AD-
A-
2515
asuscuu(Chd)uudTg
A-
2605
VPusdAsucdAcdTacga
UGAUCUUCUUUGUCG
3528


961192.1
1812620.1

dTcguagugauaL96
1812621.1

dCadAadGaagauscsa
UAGUGAUU






AD-
A-
2516
gsasucu(Uhd)cudTu
A-
2606
VPusdTscadCudAcgac
AUGAUCUUCUUUGUC
3529


961191.1
1812618.1

dGucguagugaaL96
1812619.1

dAadAgdAagaucsasu
GUAGUGAU






AD-
A-
2517
ususauu(Ghd)cadTc
A-
2607
VPusdGsuadTadCaag
AUUUAUUGCAUCACU
3530


1010693.1
1863139.1

dAcuuguauacaL96
1875231.1

udGadTgdCaauaasas
UGUAUACA









u







AD-
A-
2518
csasaca(Chd)aadTu
A-
2608
VPusdGscudAadGaag
AACAACACAAUUUCUU
3531


961334.1
1812904.1

dTcuucuuagcaL96
1812905.1

adAadTudGuguugsus
CUUAGCA









u







AD-
A-
2519
csusguu(Ghd)gadAa
A-
2609
VPusdTscadAadAccua
GCCUGUUGGAAAUAG
3532


1010697.1
1864516.1

dTagguuuugaaL96
1875235.1

dTudTcdCaacagsgsc
GUUUUGAU






AD-
A-
2520
ususugu(Ahd)gadTc
A-
2610
VPusdGsuadAudTgca
CUUUUGUAGAUCUUG
3533


961203.1
1812642.1

dTugcaauuacaL96
1812643.1

adGadTcdTacaaasasg
CAAUUACC






AD-
A-
2521
usgsguu(Uhd)cadGc
A-
2611
VPusdCsugdAadTcug
UGUGGUUUCAGCACA
3534


1010664.1
1852529.1

dAcagauucagaL96
1875202.1

udGcdTgdAaaccascsa
GAUUCAGG






AD-
A-
2522
ususgau(Ahd)gudTa
A-
2612
VPusdGscadAadCuag
UUUUGAUAGUUACCU
3535


1010698.1
1865925.1

dCcuaguuugcaL96
1875236.1

gdTadAcdTaucaasasa
AGUUUGCA






AD-
A-
2523
ascsaug(Ahd)ucdTu
A-
2613
VPusdTsacdGadCaaag
CUACAUGAUCUUCUUU
3536


961187.1
1812610.1

dCuuugucguaaL96
1812611.1

dAadGadTeaugusasg
GUCGUAG






AD-
A-
2524
gsusuug(Ahd)acdAc
A-
2614
VPusdCsgadAadGauu
AGGUUUGAACACAAAU
3537


961350.1
1812936.1

dAaaucuuucgaL96
1812937.1

udGudGudTcaaacscs
CUUUCGG









u







AD-
A-
2525
usgsaga(Chd)ugdAc
A-
2615
VPusdAsuudAcdAaug
CUUGAGACUGACACAU
3538


1010700.1
1866708.1

dAcauuguaauaL96
1875238.1

udGudCadGucucasas
UGUAAUA









g







AD-
A-
2526
asusguc(Ghd)agdTa
A-
2616
VPusdAsgudAadAagu
AAAUGUCGAGUACACU
3539


961182.1
1812600.1

dCacuuuuacuaL96
1812601.1

gdTadCudCgacaususu
UUUACUG






AD-
A-
2527
usgsaua(Ghd)uudAc
A-
2617
VPusdTsgcdAadAcuag
UUUGAUAGUUACCUA
3540


1010699.1
1865927.1

dCuaguuugcaaL96
1875237.1

dGudAadCuaucasasa
GUUUGCAA






AD-
A-
2528
usasuau(Uhd)uudA
A-
2618
VPusdAsacdGgdAugu
GAUAUAUUUUACAACA
3541


1010696.1
1864159.1

cdAacauccguuaL96
1875234.1

udGudAadAauauasus
UCCGUUA









c







AD-
A-
2529
csusuua(Uhd)acdCa
A-
2619
VPusdGsaadCcdTaaga
UUCUUUAUACCAUCUU
3542


961321.1
1812878.1

dTcuuagguucaL96
1812879.1

dTgdGudAuaaagsasa
AGGUUCA






AD-
A-
2530
asusgua(Chd)agdAg
A-
2620
VPusdAsuadGadAuaa
CAAUGUACAGAGGUUA
3543


961279.1
1812794.1

dGuuauucuauaL96
1812795.1

cdCudCudGuacausus
UUCUAUA









g







AD-
A-
2531
gscsguu(Ghd)uadG
A-
2621
VPusdGsgadGadTagg
AGGCGUUGUAGUUCC
3544


1010672.1
1854206.1

udTccuaucuccaL96
1875210.1

adAcdTadCaacgcscsu
UAUCUCCU






AD-
A-
2532
asasguc(Ahd)agdTu
A-
2622
VPusdAsacdGadTuug
GCAAGUCAAGUUCCAA
3545


961226.1
1812688.1

dCcaaaucguuaL96
1812689.1

gdAadCudTgacuusgsc
AUCGUUC






AD-
A-
2533
gscsaag(Uhd)cadAg
A-
2623
VPusdCsgadTudTggaa
CUGCAAGUCAAGUUCC
3546


961225.1
1812686.1

dTuccaaaucgaL96
1812687.1

dCudTgdAcuugcsasg
AAAUCGU






AD-
A-
2534
ususggc(Ahd)gadAa
A-
2624
VPusdAsuadAudCagg
AAUUGGCAGAAACCCU
3547


1010665.1
1852599.1

dCccugauuauaL96
1875203.1

gdTudTcdTgccaasusu
GAUUAUG






AD-
A-
2535
csusgau(Uhd)ucdCu
A-
2625
VPusdCsacdCudTucu
CUCUGAUUUCCUAAGA
3548


961259.1
1812754.1

dAagaaaggugaL96
1812755.1

udAgdGadAaucagsas
AAGGUGG









g







AD-
A-
2536
uscsgug(Ghd)cudCc
A-
2626
VPusdCsagdAadAaca
AUUCGUGGCUCCUUG
3549


961201.1
1812638.1

dTuguuuucugaL96
1812639.1

adGgdAgdCcacgasasu
UUUUCUGC






AD-
A-
2537
gsuscuu(Uhd)acdTg
A-
2627
VPusdGscadAadGauu
UGGUCUUUACUGGAA
3550


1010674.1
1854836.1

dGaaucuuugcaL96
1875212.1

cdCadGudAaagacscsa
UCUUUGCA






AD-
A-
2538
csusucu(Ghd)aadAc
A-
2628
VPusdCsagdTudTggau
UUCUUCUGAAACAUCC
3551


1010670.1
1853318.1

dAuccaaacugaL96
1875208.1

dGudTudCagaagsasa
AAACUGA






AD-
A-
2539
ususgcu(Ahd)uadGg
A-
2629
VPusdGsacdCadAauu
ACUUGCUAUAGGAAAU
3552


961206.1
1812648.1

dAaauuuggucaL96
1812649.1

udCcdTadTagcaasgsu
UUGGUCU






AD-
A-
2540
asgsccu(Ghd)uudGg
A-
2630
VPusdAsaadCcdTauu
CAAGCCUGUUGGAAAU
3553


961326.1
1812888.1

dAaauagguuuaL96
1812889.1

udCcdAadCaggcususg
AGGUUUU






AD-
A-
2541
asusguu(Uhd)cudAg
A-
2631
VPusdAsucdAadAuca
GUAUGUUUCUAGCUG
3554


961239.1
1812714.1

dCugauuugauaL96
1812715.1

gdCudAgdAaacausasc
AUUUGAUU






AD-
A-
2542
ususgca(Ahd)gcdCu
A-
2632
VPusdCsucdAcdAuaa
GGUUGCAAGCCUCUUA
3555


1010660.1
1850886.1

dCuuaugugagaL96
1875198.1

gdAgdGcdTugcaascsc
UGUGAGG






AD-
A-
2543
ususuag(Uhd)ggdCa
A-
2633
VPusdCsaadGadGugu
ACUUUAGUGGCAAACA
3556


1010677.1
1857611.1

dAacacucuugaL96
1875215.1

udTgdCcdAcuaaasgsu
CUCUUGG






AD-
A-
2544
gsascuu(Ahd)ccdTu
A-
2634
VPusdCsaadTadCucua
AAGACUUACCUUUAGA
3557


1010690.1
1862528.1

dTagaguauugaL96
1875228.1

dAadGgdTaagucsusu
GUAUUGU






AD-
A-
2545
gsgscgu(Uhd)gudAg
A-
2635
VPusdGsagdAudAgga
AAGGCGUUGUAGUUC
3558


961202.1
1812640.1

dTuccuaucucaL96
1812641.1

adCudAcdAacgccsusu
CUAUCUCC






AD-
A-
2546
ususugu(Chd)gudAg
A-
2636
VPusdAsggdAadAauc
UCUUUGUCGUAGUGA
3559


1010668.1
1852884.1

dTgauuuuccuaL96
1875206.1

adCudAcdGacaaasgsa
UUUUCCUG






AD-
A-
2547
csasacu(Uhd)acdTu
A-
2637
VPusdTsaadTudTagga
ACCAACUUACUUUCCU
3560


1010694.1
1863376.1

dTccuaaauuaaL96
1875232.1

dAadGudAaguugsgsu
AAAUUAU






AD-
A-
2548
gsusaug(Uhd)uudC
A-
2638
VPusdCsaadAudCagc
AGGUAUGUUUCUAGC
3561


1010679.1
1859377.1

udAgcugauuugaL96
1875217.1

udAgdAadAcauacscs
UGAUUUGA









U







AD-
A-
2549
gsascag(Ahd)gadTg
A-
2639
VPusdAsgudAadAuca
GAGACAGAGAUGAUG
3562


961257.1
1812750.1

dAugauuuacuaL96
1812751.1

udCadTcdTcugucsusc
AUUUACUC






AD-
A-
2550
gsasgau(Ghd)gadTu
A-
2640
VPusdGsaadCgdAaga
GGGAGAUGGAUUCUC
3563


961245.1
1812726.1

dCucuucguucaL96
1812727.1

gdAadTcdCaucucscsc
UUCGUUCA






AD-
A-
2551
ususccu(Ghd)audAu
A-
2641
VPusdAsacdTadAcugc
CCUUCCUGAUAUGCAG
3564


1010692.1
1863006.1

dGcaguuaguuaL96
1875230.1

dAudAudCaggaasgsg
UUAGUUG






AD-
A-
2552
csasccu(Uhd)cudCc
A-
2642
VPusdAsgadAudTuua
GUCACCUUCUCCUUAA
3565


1010695.1
1863481.1

dTuaaaauucuaL96
1875233.1

adGgdAgdAaggugsas
AAUUCUA









c







AD-
A-
2553
csusgau(Ahd)audAg
A-
2643
VPusdGsuudTadAgag
UACUGAUAAUAGUCUC
3566


961285.1
1812806.1

dTcucuuaaacaL96
1812807.1

adCudAudTaucagsus
UUAAACU









a







AD-
A-
2554
csusaaa(Uhd)uadTg
A-
2644
VPusdAsgadTudAcuu
UCCUAAAUUAUGGAAG
3567


961300.1
1812836.1

dGaaguaaucuaL96
1812837.1

cdCadTadAuuuagsgsa
UAAUCUU






AD-
A-
2555
uscsuuu(Ahd)uadCc
A-
2645
VPusdAsacdCudAaga
AUUCUUUAUACCAUCU
3568


961320.1
1812876.1

dAucuuagguuaL96
1812877.1

udGgdTadTaaagasasu
UAGGUUC






AD-
A-
2556
gsgsaga(Uhd)ggdAu
A-
2646
VPusdAsacdGadAgag
GGGGAGAUGGAUUCU
3569


1010684.1
1860794.1

dTcucuucguuaL96
1875222.1

adAudCcdAucuccscsc
CUUCGUUC






AD-
A-
2557
usgsaau(Ahd)uadCa
A-
2647
VPusdTsccdTadAuacu
GCUGAAUAUACAAGUA
3570


1010669.1
1853216.1

dAguauuaggaaL96
1875207.1

dTgdTadTauucasgsc
UUAGGAG






AD-
A-
2558
gsusuuc(Uhd)agdCu
A-
2648
VPusdCsaadTcdAaauc
AUGUUUCUAGCUGAU
3571


1010680.1
1859383.1

dGauuugauugaL96
1875218.1

dAgdCudAgaaacsasu
UUGAUUGA






AD-
A-
2559
asgsuca(Ahd)gudTc
A-
2649
VPusdGsaadCgdAuuu
CAAGUCAAGUUCCAAA
3572


961227.1
1812690.1

dCaaaucguucaL96
1812691.1

gdGadAcdTugacusus
UCGUUCC









g







AD-
A-
2560
csasucu(Ghd)uudGg
A-
2650
VPusdGsuadGadAuau
CCCAUCUGUUGGAAUA
3573


961243.1
1812722.1

dAauauucuacaL96
1812723.1

udCcdAadCagaugsgsg
UUCUACU






AD-
A-
2561
csusgaa(Chd)cudAu
A-
2651
VPusdAsucdGgdAauu
GGCUGAACCUAUGAAU
3574


961221.1
1812678.1

dGaauuccgauaL96
1812679.1

cdAudAgdGuucagscsc
UCCGAUG






AD-
A-
2562
csusuuu(Chd)acdAg
A-
2652
VPusdAsaudTadCaau
AUCUUUUCACAGGAU
3575


961271.1
1812778.1

dGauuguaauuaL96
1812779.1

cdCudGudGaaaagsas
UGUAAUUA









U







AD-
A-
2563
asgscgu(Ghd)cudTa
A-
2653
VPusdGsuadAcdGucu
UCAGCGUGCUUAUAGA
3576


961251.1
1812738.1

dTagacguuacaL96
1812739.1

adTadAgdCacgcusgsa
CGUUACC






AD-
A-
2564
csusucc(Uhd)gadTa
A-
2654
VPusdAscudAadCugc
UCCUUCCUGAUAUGCA
3577


961296.1
1812828.1

dTgcaguuaguaL96
1812829.1

adTadTcdAggaagsgsa
GUUAGUU






AD-
A-
2565
gsgsaag(Ahd)aadGg
A-
2655
VPusdCsagdAcdAuga
AUGGAAGAAAGGUUC
3578


961246.1
1812728.1

dTucaugucugaL96
1812729.1

adCcdTudTcuuccsasu
AUGUCUGC






AD-
A-
2566
gsusaga(Ahd)aadCu
A-
2656
VPusdCsagdAudGuaa
AUGUAGAAAACUUUU
3579


1010688.1
1861826.1

dTuuacaucugaL96
1875226.1

adAgdTudTucuacsasu
ACAUCUGC






AD-
A-
2567
uscsauc(Uhd)uudTc
A-
2657
VPusdAscadAudCcug
UGUCAUCUUUUCACAG
3580


961269.1
1812774.1

dAcaggauuguaL96
1812775.1

udGadAadAgaugascs
GAUUGUA









a







AD-
A-
2568
gscscca(Ahd)aadTa
A-
2658
VPusdCsuadTudAuca
CUGCCCAAAAUACUGA
3581


1010691.1
1862804.1

dCugauaauagaL96
1875229.1

gdTadTudTugggcsasg
UAAUAGU






AD-
A-
2569
ususuua(Chd)audCu
A-
2659
VPusdAsugdAcdAagg
ACUUUUACAUCUGCCU
3582


1010689.1
1861844.1

dGccuugucauaL96
1875227.1

cdAgdAudGuaaaasgs
UGUCAUC









u







AD-
A-
2570
usasggc(Uhd)aadTg
A-
2660
VPusdAsaudCudTggg
UUUAGGCUAAUGACCC
3583


1010667.1
1852732.1

dAcccaagauuaL96
1875205.1

udCadTudAgccuasasa
AAGAUUA






AD-
A-
2571
csgsugc(Uhd)uadTa
A-
2661
VPusdCsggdTadAcguc
AGCGUGCUUAUAGACG
3584


961252.1
1812740.1

dGacguuaccgaL96
1812741.1

dTadTadAgcacgscsu
UUACCGC






AD-
A-
2572
csusucu(Uhd)agdCc
A-
2662
VPusdGsccdTadAacaa
GCCUUCUUAGCCUUGU
3585


1010666.1
1852704.1

dTuguuuaggcaL96
1875204.1

dGgdCudAagaagsgsc
UUAGGCU






AD-
A-
2573
usgsgaa(Uhd)audTc
A-
2663
VPusdTsaadCadAagu
GUUGGAAUAUUCUAC
3586


1010682.1
1860117.1

dTacuuuguuaaL96
1875220.1

adGadAudAuuccasas
UUUGUUAG









c







AD-
A-
2574
csusgaa(Uhd)audAc
A-
2664
VPusdCscudAadTacu
GGCUGAAUAUACAAGU
3587


961196.1
1812628.1

dAaguauuaggaL96
1812629.1

udGudAudAuucagscs
AUUAGGA









c







AD-
A-
2575
csusgcc(Ahd)agdTu
A-
2665
VPusdAscudCudAugu
UGCUGCCAAGUUAACA
3588


1010676.1
1857011.1

dAacauagaguaL96
1875214.1

udAadCudTggcagscsa
UAGAGUC






AD-
A-
2576
usgsgau(Uhd)cudCu
A-
2666
VPusdCsugdTgdAacga
GAUGGAUUCUCUUCG
3589


1010686.1
1860802.1

dTcguucacagaL96
1875224.1

dAgdAgdAauccasusc
UUCACAGA






AD-
A-
2577
gscsaaa(Ghd)gudCa
A-
2667
VPusdGsagdGadAauu
GAGCAAAGGUCACAAU
3590


1010675.1
1856353.1

dCaauuuccucaL96
1875213.1

gdTgdAcdCuuugcsusc
UUCCUCA






AD-
A-
2578
usgscca(Chd)ugdAa
A-
2668
VPusdCsagdTadCuuu
GUUGCCACUGAAGAAA
3591


961244.1
1812724.1

dGaaaguacugaL96
1812725.1

cdTudCadGuggcasasc
GUACUGA






AD-
A-
2579
cscsuuc(Chd)ugdAu
A-
2669
VPusdCsuadAcdTgcau
AUCCUUCCUGAUAUGC
3592


961295.1
1812826.1

dAugcaguuagaL96
1812827.1

dAudCadGgaaggsasu
AGUUAGU






AD-
A-
2580
csasucu(Uhd)uudCa
A-
2670
VPusdTsacdAadTccug
GUCAUCUUUUCACAGG
3593


961270.1
1812776.1

dCaggauuguaaL96
1812777.1

dTgdAadAagaugsasc
AUUGUAA






AD-
A-
2581
gsgsgag(Ahd)ugdGa
A-
2671
VPusdAscgdAadGaga
UGGGGAGAUGGAUUC
3594


1010683.1
1860792.1

dTucucuucguaL96
1875221.1

adTcdCadTcucccscsa
UCUUCGUU






AD-
A-
2582
asasugu(Chd)ggdAc
A-
2672
VPusdAsggdTadAccaa
AUAAUGUCGGACUUG
3595


1010678.1
1858274.1

dTugguuaccuaL96
1875216.1

dGudCcdGacauusasu
GUUACCUA






AD-
A-
2583
uscsauc(Chd)ugdGa
A-
2673
VPusdCsaadCudGaac
GUUCAUCCUGGAAGU
3596


1010681.1
1860028.1

dAguucaguugaL96
1875219.1

udTcdCadGgaugasasc
UCAGUUGA






AD-
A-
2584
asusgua(Uhd)audTu
A-
2674
VPusdTscadCudAgguc
GGAUGUAUAUUUGAC
3597


961233.1
1812702.1

dGaccuagugaaL96
1812703.1

dAadAudAuacauscsc
CUAGUGAC






AD-
A-
2585
asgsuca(Chd)cadCu
A-
2675
VPusdAscgdAadTgcug
UCAGUCACCACUCAGC
3598


961200.1
1812636.1

dCagcauucguaL96
1812637.1

dAgdTgdGugacusgsa
AUUCGUG






AD-
A-
2586
asuscgu(Ahd)agdAg
A-
2676
VPusdCsuadCadGagu
GAAUCGUAAGAGAACU
3599


961267.1
1812770.1

dAacucuguagaL96
1812771.1

udCudCudTacgaususc
CUGUAGG






AD-
A-
2587
gscsuga(Ahd)ccdTa
A-
2677
VPusdTscgdGadAuuc
AGGCUGAACCUAUGAA
3600


961220.1
1812676.1

dTgaauuccgaaL96
1812677.1

adTadGgdTucagcscsu
UUCCGAU






AD-
A-
2588
csgsgac(Uhd)ugdGu
A-
2678
VPusdGsagdAudAggu
GUCGGACUUGGUUAC
3601


961232.1
1812700.1

dTaccuaucucaL96
1812701.1

adAcdCadAguccgsasc
CUAUCUCU






AD-
A-
2589
asgsaug(Ghd)audTc
A-
2679
VPusdTsgadAcdGaag
GGAGAUGGAUUCUCU
3602


1010685.1
1860796.1

dTcuucguucaaL96
1875223.1

adGadAudCcaucuscsc
UCGUUCAC






AD-
A-
2590
asgsacg(Uhd)uadCc
A-
2680
VPusdTsgcdCudTaagc
AUAGACGUUACCGCUU
3603


1010687.1
1861054.1

dGcuuaaggcaaL96
1875225.1

dGgdTadAcgucusasu
AAGGCAA






AD-
A-
2591
usgsuag(Ahd)ucdTu
A-
2681
VPusdTsggdTadAuugc
UUUGUAGAUCUUGCA
3604


961204.1
1812644.1

dGcaauuaccaaL96
1812645.1

dAadGadTcuacasasa
AUUACCAU






AD-
A-
2592
ususgcc(Chd)uudAu
A-
2682
VPusdAscudAadCauu
UUUUGCCCUUAUGAA
3605


961231.1
1812698.1

dGaauguuaguaL96
1812699.1

cdAudAadGggcaasas
UGUUAGUC









a
















TABLE 5B







Exemplary Human SCN9A Unmodified Single Strands and Duplex Sequences.


Column 1 indicates duplex name and the number following the decimal


point in a duplex name merely refers to a batch production number.


Column 2 indicates the sense sequence name. Column 3 indicates the


sequence ID for the sequence of column 4. Column 4 provides the


unmodified sequence of a sense strand suitable for use in a duplex


described herein. Column 5 provides the position in the target mRNA


(NM_002977.3) of the sense strand of Column 4. Column 6 indicates


the antisense sequence name. Column 7 indicates the sequence ID


for the sequence of column 8. Column 8 provides the sequence of


an antisense strand suitable for use in a duplex described herein,


without specifying chemical modifications. Column 9 indicates the


position in the target mRNA (NM_002977.3) that is complementary


to the antisense strand of Column 8.



















mRNA 



mRNA






target
Anti
Seq ID

target



Sense
Seq ID

range in
sense
NO:

range in


Duplex
sequence
NO:
Sense sequence
NM_
sequence
(anti
antisense sequence
NM_00297


Name
name
(sense)
 (5′-3′)
002977.3
name
sense)
 (5′-3′)
7.3





AD-
A-
2683
UUGUGACUTUAAGUUUA
2752-2772
A-
2773
UCACTAAACUUAAAGTCAC
2750-2772


961208.1
1812652.1

GUGA

1812653.1

AAUA






AD-
A-
2684
UAUUGUGACUTUAAGUU
2750-2770
A-
2774
UCUAAACUUAAAGTCACAA
2748-2770


961207.1
1812650.1

UAGA

1812651.1

UAAG






AD-
A-
2685
UUCUGUGUAGGAGAAUU
867-887
A-
2775
UGUGAATUCUCCUACACAG
865-887


1010662.1
1851786.1

CACA

1875200.1

AAGC






AD-
A-
2686
CAUGAUCUTCTUUGUCGU
1475-1495
A-
2776
UCUACGACAAAGAAGAUCA
1473-1495


961188.1
1812612.1

AGA

1812613.1

UGUA






AD-
A-
2687
UGUAGGAGAATUCACUUU
872-892
A-
2777
UGAAAAGUGAATUCUCCUA
870-892


1010663.1
1851796.1

UCA

1875201.1

CACA






AD-
A-
2688
UGUCGAGUACACUUUUA
803-823
A-
2778
UCAGTAAAAGUGUACTCGA
801-823


1010661.1
1851664.1

CUGA

1875199.1

CAUU






AD-
A-
2689
AUGAUCUUCUTUGUCGU
1476-1496
A-
2779
UACUACGACAAAGAAGAUC
1474-1496


961189.1
1812614.1

AGUA

1812615.1

AUGU






AD-
A-
2690
AUCUGAGACUGAAUUUG
2036-2056
A-
2780
UCGGCAAAUUCAGTCTCAG
2034-2056


1010671.1
1853827.1

CCGA

1875209.1

AUCC



AD-
A-
2691
UGAUCUUCTUTGUCGUAG
1477-1497
A-
2781
UCACTACGACAAAGAAGAU
1475-1497


961190.1
1812616.1

UGA

1812617.1

CAUG






AD-
A-
2692
AAGGGAAAACAAUCUUCC
619-639
A-
2782
UACGGAAGAUUGUTUTCCC
617-639


961179.1
1812594.1

GUA

1812595.1

UUUG






AD-
A-
2693
AGCUUGAAGUAAAAUUA
8697-8717
A-
2783
UGUCTAAUUUUACTUCAAG
8695-8717


961342.1
1812920.1

GACA

1812921.1

CUUA






AD-
A-
2694
UGCUAUAGGAAAUUUGG
2636-2656
A-
2784
UAGACCAAAUUTCCUAUAG
2634-2656


1010673.1
1854804.1

UCUA

1875211.1

CAAG






AD-
A-
2695
AUCUUCUUTGTCGUAGUG
1479-1499
A-
2785
UAUCACTACGACAAAGAAG
1477-1499


961192.1
1812620.1

AUA

1812621.1

AUCA






AD-
A-
2696
GAUCUUCUTUGUCGUAG
1478-1498
A-
2786
UTCACUACGACAAAGAAGA
1476-1498


961191.1
1812618.1

UGAA

1812619.1

UCAU






AD-
A-
2697
UUAUUGCATCACUUGUAU
7327-7347
A-
2787
UGUATACAAGUGATGCAAU
7325-7347


1010693.1
1863139.1

ACA

1875231.1

AAAU






AD-
A-
2698
CAACACAATUTCUUCUUA
8508-8528
A-
2788
UGCUAAGAAGAAATUGUG
8506-8528


961334.1
1812904.1

GCA

1812905.1

UUGUU






AD-
A-
2699
CUGUUGGAAATAGGUUU
8232-8252
A-
2789
UTCAAAACCUATUTCCAACA
8230-8252


1010697.1
1864516.1

UGAA

1875235.1

GGC






AD-
A-
2700
UUUGUAGATCTUGCAAUU
2541-2561
A-
2790
UGUAAUTGCAAGATCTACA
2539-2561


961203.1
1812642.1

ACA

1812643.1

AAAG






AD-
A-
2701
UGGUUUCAGCACAGAUUC
1286-1306
A-
2791
UCUGAATCUGUGCTGAAAC
1284-1306


1010664.1
1852529.1

AGA

1875202.1

CACA






AD-
A-
2702
UUGAUAGUTACCUAGUU
9235-9255
A-
2792
UGCAAACUAGGTAACTAUC
9233-9255


1010698.1
1865925.1

UGCA

1875236.1

AAAA






AD-
A-
2703
ACAUGAUCTUCUUUGUCG
1474-1494
A-
2793
UTACGACAAAGAAGATCAU
1472-1494


961187.1
1812610.1

UAA

1812611.1

GUAG






AD-
A-
2704
GUUUGAACACAAAUCUU
9184-9204
A-
2794
UCGAAAGAUUUGUGUTCA
9182-9204


961350.1
1812936.1

UCGA

1812937.1

AACCU



AD-
A-
2705
UGAGACUGACACAUUGUA
9710-9730
A-
2795
UAUUACAAUGUGUCAGUC
9708-9730


1010700.1
1866708.1

AUA

1875238.1

UCAAG






AD-
A-
2706
AUGUCGAGTACACUUUUA
802-822
A-
2796
UAGUAAAAGUGTACUCGAC
800-822


961182.1
1812600.1

CUA

1812601.1

AUUU






AD-
A-
2707
UGAUAGUUACCUAGUUU
9236-9256
A-
2797
UTGCAAACUAGGUAACUAU
9234-9256


1010699.1
1865927.1

GCAA

1875237.1

CAAA






AD-
A-
2708
UAUAUUUUACAACAUCCG
8032-8052
A-
2798
UAACGGAUGUUGUAAAAU
8030-8052


1010696.1
1864159.1

UUA

1875234.1

AUAUC






AD-
A-
2709
CUUUAUACCATCUUAGGU
8110-8130
A-
2799
UGAACCTAAGATGGUAUAA
8108-8130


961321.1
1812878.1

UCA

1812879.1

AGAA






AD-
A-
2710
AUGUACAGAGGUUAUUC
6788-6808
A-
2800
UAUAGAAUAACCUCUGUA
6786-6808


961279.1
1812794.1

UAUA

1812795.1

CAUUG






AD-
A-
2711
GCGUUGUAGUTCCUAUCU
2312-2332
A-
2801
UGGAGATAGGAACTACAAC
2310-2332


1010672.1
1854206.1

CCA

1875210.1

GCCU






AD-
A-
2712
AAGUCAAGTUCCAAAUCG
4391-4411
A-
2802
UAACGATUUGGAACUTGAC
4389-4411


961226.1
1812688.1

UUA

1812689.1

UUGC






AD-
A-
2713
GCAAGUCAAGTUCCAAAU
4389-4409
A-
2803
UCGATUTGGAACUTGACUU
4387-4409


961225.1
1812686.1

CGA

1812687.1

GCAG






AD-
A-
2714
UUGGCAGAAACCCUGAUU
1339-1359
A-
2804
UAUAAUCAGGGTUTCTGCC
1337-1359


1010665.1
1852599.1

AUA

1875203.1

AAUU






AD-
A-
2715
CUGAUUUCCUAAGAAAGG
6406-6426
A-
2805
UCACCUTUCUUAGGAAAUC
6404-6426


961259.1
1812754.1

UGA

1812755.1

AGAG






AD-
A-
2716
UCGUGGCUCCTUGUUUUC
1958-1978
A-
2806
UCAGAAAACAAGGAGCCAC
1956-1978


961201.1
1812638.1

UGA

1812639.1

GAAU






AD-
A-
2717
GUCUUUACTGGAAUCUU
2652-2672
A-
2807
UGCAAAGAUUCCAGUAAA
2650-2672


1010674.1
1854836.1

UGCA

1875212.1

GACCA






AD-
A-
2718
CUUCUGAAACAUCCAAAC
1726-1746
A-
2808
UCAGTUTGGAUGUTUCAGA
1724-1746


1010670.1
1853318.1

UGA

1875208.1

AGAA



AD-
A-
2719
UUGCUAUAGGAAAUUUG
2635-2655
A-
2809
UGACCAAAUUUCCTATAGC
2633-2655


961206.1
1812648.1

GUCA

1812649.1

AAGU






AD-
A-
2720
AGCCUGUUGGAAAUAGG
8229-8249
A-
2810
UAAACCTAUUUCCAACAGG
8227-8249


961326.1
1812888.1

UUUA

1812889.1

CUUG






AD-
A-
2721
AUGUUUCUAGCUGAUUU
5085-5105
A-
2811
UAUCAAAUCAGCUAGAAAC
5083-5105


961239.1
1812714.1

GAUA

1812715.1

AUAC






AD-
A-
2722
UUGCAAGCCUCUUAUGU
286-306
A-
2812
UCUCACAUAAGAGGCTUGC
284-306


1010660.1
1850886.1

GAGA

1875198.1

AACC






AD-
A-
2723
UUUAGUGGCAAACACUCU
4124-4144
A-
2813
UCAAGAGUGUUTGCCACUA
4122-4144


1010677.1
1857611.1

UGA

1875215.1

AAGU






AD-
A-
2724
GACUUACCTUTAGAGUAU
6954-6974
A-
2814
UCAATACUCUAAAGGTAAG
6952-6974


1010690.1
1862528.1

UGA

1875228.1

UCUU






AD-
A-
2725
GGCGUUGUAGTUCCUAUC
2311-2331
A-
2815
UGAGAUAGGAACUACAAC
2309-2331


961202.1
1812640.1

UCA

1812641.1

GCCUU






AD-
A-
2726
UUUGUCGUAGTGAUUUU
1485-1505
A-
2816
UAGGAAAAUCACUACGACA
1483-1505


1010668.1
1852884.1

CCUA

1875206.1

AAGA






AD-
A-
2727
CAACUUACTUTCCUAAAU
7466-7486
A-
2817
UTAATUTAGGAAAGUAAGU
7464-7486


1010694.1
1863376.1

UAA

1875232.1

UGGU






AD-
A-
2728
GUAUGUUUCUAGCUGAU
5083-5103
A-
2818
UCAAAUCAGCUAGAAACAU
5081-5103


1010679.1
1859377.1

UUGA

1875217.1

ACCU






AD-
A-
2729
GACAGAGATGAUGAUUUA
6069-6089
A-
2819
UAGUAAAUCAUCATCTCUG
6067-6089


961257.1
1812750.1

CUA

1812751.1

UCUC






AD-
A-
2730
GAGAUGGATUCUCUUCG
5871-5891
A-
2820
UGAACGAAGAGAATCCAUC
5869-5891


961245.1
1812726.1

UUCA

1812727.1

UCCC






AD-
A-
2731
UUCCUGAUAUGCAGUUA
7259-7279
A-
2821
UAACTAACUGCAUAUCAGG
7257-7279


1010692.1
1863006.1

GUUA

1875230.1

AAGG






AD-
A-
2732
CACCUUCUCCTUAAAAUU
7537-7557
A-
2822
UAGAAUTUUAAGGAGAAG
7535-7557


1010695.1
1863481.1

CUA

1875233.1

GUGAC



AD-
A-
2733
CUGAUAAUAGTCUCUUAA
7161-7181
A-
2823
UGUUTAAGAGACUAUTAUC
7159-7181


961285.1
1812806.1

ACA

1812807.1

AGUA






AD-
A-
2734
CUAAAUUATGGAAGUAAU
7478-7498
A-
2824
UAGATUACUUCCATAAUUU
7476-7498


961300.1
1812836.1

CUA

1812837.1

AGGA






AD-
A-
2735
UCUUUAUACCAUCUUAG
8109-8129
A-
2825
UAACCUAAGAUGGTATAAA
8107-8129


961320.1
1812876.1

GUUA

1812877.1

GAAU






AD-
A-
2736
GGAGAUGGAUTCUCUUCG
5870-5890
A-
2826
UAACGAAGAGAAUCCAUCU
5868-5890


1010684.1
1860794.1

UUA

1875222.1

CCCC






AD-
A-
2737
UGAAUAUACAAGUAUUA
1676-1696
A-
2827
UTCCTAAUACUTGTATAUU
1674-1696


1010669.1
1853216.1

GGAA

1875207.1

CAGC






AD-
A-
2738
GUUUCUAGCUGAUUUGA
5087-5107
A-
2828
UCAATCAAAUCAGCUAGAA
5085-5107


1010680.1
1859383.1

UUGA

1875218.1

ACAU






AD-
A-
2739
AGUCAAGUTCCAAAUCGU
4392-4412
A-
2829
UGAACGAUUUGGAACTUG
4390-4412


961227.1
1812690.1

UCA

1812691.1

ACUUG






AD-
A-
2740
CAUCUGUUGGAAUAUUC
5506-5526
A-
2830
UGUAGAAUAUUCCAACAG
5504-5526


961243.1
1812722.1

UACA

1812723.1

AUGGG






AD-
A-
2741
CUGAACCUAUGAAUUCCG
3736-3756
A-
2831
UAUCGGAAUUCAUAGGUU
3734-3756


961221.1
1812678.1

AUA

1812679.1

CAGCC






AD-
A-
2742
CUUUUCACAGGAUUGUA
6586-6606
A-
2832
UAAUTACAAUCCUGUGAAA
6584-6606


961271.1
1812778.1

AUUA

1812779.1

AGAU






AD-
A-
2743
AGCGUGCUTATAGACGUU
5998-6018
A-
2833
UGUAACGUCUATAAGCACG
5996-6018


961251.1
1812738.1

ACA

1812739.1

CUGA






AD-
A-
2744
CUUCCUGATATGCAGUUA
7258-7278
A-
2834
UACUAACUGCATATCAGGA
7256-7278


961296.1
1812828.1

GUA

1812829.1

AGGA






AD-
A-
2745
GGAAGAAAGGTUCAUGUC
5897-5917
A-
2835
UCAGACAUGAACCTUTCUU
5895-5917


961246.1
1812728.1

UGA

1812729.1

CCAU






AD-
A-
2746
GUAGAAAACUTUUACAUC
6557-6577
A-
2836
UCAGAUGUAAAAGTUTUCU
6555-6577


1010688.1
1861826.1

UGA

1875226.1

ACAU



AD-
A-
2747
UCAUCUUUTCACAGGAUU
6582-6602
A-
2837
UACAAUCCUGUGAAAAGA
6580-6602


961269.1
1812774.1

GUA

1812775.1

UGACA






AD-
A-
2748
GCCCAAAATACUGAUAAU
7151-7171
A-
2838
UCUATUAUCAGTATUTUGG
7149-7171


1010691.1
1862804.1

AGA

1875229.1

GCAG






AD-
A-
2749
UUUUACAUCUGCCUUGU
6566-6586
A-
2839
UAUGACAAGGCAGAUGUA
6564-6586


1010689.1
1861844.1

CAUA

1875227.1

AAAGU






AD-
A-
2750
UAGGCUAATGACCCAAGA
1406-1426
A-
2840
UAAUCUTGGGUCATUAGCC
1404-1426


1010667.1
1852732.1

UUA

1875205.1

UAAA






AD-
A-
2751
CGUGCUUATAGACGUUAC
6000-6020
A-
2841
UCGGTAACGUCTATAAGCA
5998-6020


961252.1
1812740.1

CGA

1812741.1

CGCU






AD-
A-
2752
CUUCUUAGCCTUGUUUAG
1391-1411
A-
2842
UGCCTAAACAAGGCUAAGA
1389-1411


1010666.1
1852704.1

GCA

1875204.1

AGGC






AD-
A-
2753
UGGAAUAUTCTACUUUGU
5513-5533
A-
2843
UTAACAAAGUAGAAUAUUC
5511-5533


1010682.1
1860117.1

UAA

1875220.1

CAAC






AD-
A-
2754
CUGAAUAUACAAGUAUUA
1675-1695
A-
2844
UCCUAATACUUGUAUAUUC
1673-1695


961196.1
1812628.1

GGA

1812629.1

AGCC






AD-
A-
2755
CUGCCAAGTUAACAUAGA
3803-3823
A-
2845
UACUCUAUGUUAACUTGG
3801-3823


1010676.1
1857011.1

GUA

1875214.1

CAGCA






AD-
A-
2756
UGGAUUCUCUTCGUUCAC
5875-5895
A-
2846
UCUGTGAACGAAGAGAAUC
5873-5895


1010686.1
1860802.1

AGA

1875224.1

CAUC






AD-
A-
2757
GCAAAGGUCACAAUUUCC
3448-3468
A-
2847
UGAGGAAAUUGTGACCUU
3446-3468


1010675.1
1856353.1

UCA

1875213.1

UGCUC






AD-
A-
2758
UGCCACUGAAGAAAGUAC
5603-5623
A-
2848
UCAGTACUUUCTUCAGUGG
5601-5623


961244.1
1812724.1

UGA

1812725.1

CAAC






AD-
A-
2759
CCUUCCUGAUAUGCAGUU
7257-7277
A-
2849
UCUAACTGCAUAUCAGGAA
7255-7277


961295.1
1812826.1

AGA

1812827.1

GGAU






AD-
A-
2760
CAUCUUUUCACAGGAUU
6583-6603
A-
2850
UTACAATCCUGTGAAAAGA
6581-6603


961270.1
1812776.1

GUAA

1812777.1

UGAC






AD-
A-
2761
GGGAGAUGGATUCUCUUC
5869-5889
A-
2851
UACGAAGAGAATCCATCUC
5867-5889


1010683.1
1860792.1

GUA

1875221.1

CCCA






AD-
A-
2762
AAUGUCGGACTUGGUUAC
4479-4499
A-
2852
UAGGTAACCAAGUCCGACA
4477-4499


1010678.1
1858274.1

CUA

1875216.1

UUAU






AD-
A-
2763
UCAUCCUGGAAGUUCAGU
5468-5488
A-
2853
UCAACUGAACUTCCAGGAU
5466-5488


1010681.1
1860028.1

UGA

1875219.1

GAAC






AD-
A-
2764
AUGUAUAUTUGACCUAG
4826-4846
A-
2854
UTCACUAGGUCAAAUAUAC
4824-4846


961233.1
1812702.1

UGAA

1812703.1

AUCC






AD-
A-
2765
AGUCACCACUCAGCAUUC
1942-1962
A-
2855
UACGAATGCUGAGTGGUGA
1940-1962


961200.1
1812636.1

GUA

1812637.1

CUGA






AD-
A-
2766
AUCGUAAGAGAACUCUGU
6472-6492
A-
2856
UCUACAGAGUUCUCUTACG
6470-6492


961267.1
1812770.1

AGA

1812771.1

AUUC






AD-
A-
2767
GCUGAACCTATGAAUUCC
3735-3755
A-
2857
UTCGGAAUUCATAGGTUCA
3733-3755


961220.1
1812676.1

GAA

1812677.1

GCCU






AD-
A-
2768
CGGACUUGGUTACCUAUC
4484-4504
A-
2858
UGAGAUAGGUAACCAAGU
4482-4504


961232.1
1812700.1

UCA

1812701.1

CCGAC






AD-
A-
2769
AGAUGGAUTCTCUUCGUU
5872-5892
A-
2859
UTGAACGAAGAGAAUCCAU
5870-5892


1010685.1
1860796.1

CAA

1875223.1

CUCC






AD-
A-
2770
AGACGUUACCGCUUAAGG
6009-6029
A-
2860
UTGCCUTAAGCGGTAACGU
6007-6029


1010687.1
1861054.1

CAA

1875225.1

CUAU






AD-
A-
2771
UGUAGAUCTUGCAAUUAC
2543-2563
A-
2861
UTGGTAAUUGCAAGATCUA
2541-2563


961204.1
1812644.1

CAA

1812645.1

CAAA






AD-
A-
2772
UUGCCCUUAUGAAUGUU
4420-4440
A-
2862
UACUAACAUUCAUAAGGGC
4418-4440


961231.1
1812698.1

AGUA

1812699.1

AAAA
















TABLE 6A







Exemplary Human SCN9A siRNA Modified Single Strands and Duplex Sequences


Column 1 indicates duplex name and the number following the decimal


pointin a duplex name merely refers to a batch production number.


Column 2 indicates the name of the sense sequence. Column 3 indicates


the sequence ID for the sequence of column 4. Column 4 provides the


modified sequence of a sense strand suitable for use in a duplex


described herein. Column 5 indicates the antisense sequence name.


Column 6 indicates the sequence ID for the sequence of column 7.


Column 7 provides the sequence of a modified antisense strand


suitable for use in a duplex described herein, e.g., a duplex


comprising the sense sequence in the same row of the table.


Column 8 indicates the position in the target mRNA (NM_001365536.1)


that is complementary to the antisense strand of Column 7.


Column 9 indicated the sequence ID for the sequence of column 8.




















Seq ID

mRNA target
SEQ ID



Sense
Seq ID

Antisense
NO:

sequence in
NO:


Duplex
sequence
NO:
Sense sequence
sequence
(anti
Antisense sequence
NM_0013
(mRNA


Name
name
(sense)
(5′-3′)
name
sense)
(5′-3′)
65536.1
target)





AD-
A-
5816
gsgscgu(Uhd)GfuAf
A-
5905
VPusGfsagau(Agn)gg
AAGGCGUUGUAGU
3606


996318.
1525247.1

GfUfuccuaucucaL96
1240821.1

aacuAfcAfacgccsusu
UCCUAUCUCC



1













AD-
A-
5817
ususcug(Uhd)GfuAf
A-
5906
VPusGfsugaa(Tgn)uc
GCUUCUGUGUAGG
3607


995116.
1522818.1

GfGfagaauucacaL96
1238317.1

uccuAfcAfcagaasgsc
AGAAUUCACU



1













AD-
A-
5818
usgsguu(Uhd)CfaGf
A-
5907
VPusCfsugaa(Tgn)cu
UGUGGUUUCAGCA
3608


995486.
1523509.1

CfAfcagauucagaL96
1239063.1

gugcUfgAfaaccascsa
CAGAUUCAGG



1













AD-
A-
5819
usgsuag(Ghd)AfgAf
A-
5908
VPusGfsaaaa(Ggn)ug
UGUGUAGGAGAA
3609


995121.
1522828.1

AfUfucacuuuucaL96
1238327.1

aauuCfuCfcuacascsa
UUCACUUUUCU



1













AD-
A-
5820
ususugu(Ahd)GfaUf
A-
5909
VPusGfsuaau(Tgn)gc
CUUUUGUAGAUCU
3610


961022.
1525636.1

CfUfugcaauuacaL96
1241249.1

aagaUfcUfacaaasasg
UGCAAUUACC



1













AD-
A-
5821
gsusuug(Ahd)AfcAf
A-
5910
VPusCfsgaaa(Ggn)au
AGGUUUGAACACA
3611


1002051
1536779.1

CfAfaaucuuucgaL96
1252583.1

uuguGfuUfcaaacscs
AAUCUUUCGG



.1





u







AD-
A-
5822
csusucu(Ghd)AfaAf
A-
5911
VPusCfsaguu(Tgn)gg
UUCUUCUGAAACA
3612


995873.
1524297.1

CfAfuccaaacugaL96
1239861.1

auguUfuCfagaagsasa
UCCAAACUGA



1













AD-
A-
5823
asgsuca(Ahd)GfuUf
A-
5912
VPusGfsaacg(Agn)uu
CAAGUCAAGUUCC
3613


961040.
1529029.1

CfCfaaaucguucaL96
1244745.1

uggaAfcUfugacususg
AAAUCGUUCC



1













AD-
A-
5824
gsasucu(Uhd)CfuUf
A-
5913
VPusUfscacu(Agn)cg
AUGAUCUUCUUUG
3614


961013.
1523849.1

UfGfucguagugaaL96
1239411.1

acaaAfgAfagaucsasu
UCGUAGUGAU



1













AD-
A-
5825
usgsucg(Ahd)GfuAf
A-
5914
VPusCfsagua(Agn)aa
AAUGUCGAGUACA
3615


995055.
1522697.1

CfAfcuuuuacugaL96
1238195.1

guguAfcUfcgacasusu
CUUUUACUGG



1













AD-
A-
5826
csasuga(Uhd)CfuUf
A-
5915
VPusCfsuacg(Agn)ca
UACAUGAUCUUCU
3616


961010.
1523843.1

CfUfuugucguagaL96
1239405.1

aagaAfgAfucaugsusa
UUGUCGUAGU



1













AD-
A-
5827
asasggg(Ahd)AfaAf
A-
5916
VPusAfscgga(Agn)ga
CAAAGGGAAAACA
3617


961000.
1522351.1

CfAfaucuuccguaL96
1237849.1

uuguUfuUfcccuusus
AUCUUCCGUU



1





g







AD-
A-
5828
asgsaug(Ghd)AfuUf
A-
5917
VPusUfsgaac(Ggn)aa
GGAGAUGGAUUCU
3618


999598.
1531657.1

CfUfcuucguucaaL96
1247453.1

gagaAfuCfcaucuscsc
CUUCGUUCAC



1













AD-
A-
5829
usgsaua(Ghd)UfuAf
A-
5918
VPusUfsgcaa(Agn)cu
UUUGAUAGUUACC
3619


1002101
1536879.1

CfCfuaguuugcaaL96
1252683.1

agguAfaCfuaucasasa
UAGUUUGCAA



.1













AD-
A-
5830
usasuau(Uhd)UfuAf
A-
5919
VPusAfsacgg(Agn)ug
GAUAUAUUUUACA
3620


1001246
1535071.1

CfAfacauccguuaL96
1250879.1

uuguAfaAfauauasus
ACAUCCGUUA



.1





c







AD-
A-
5831
ususgcu(Ahd)UfaGf
A-
5920
VPusGfsacca(Agn)au
ACUUGCUAUAGGA
3621


996618.
1525802.1

GfAfaauuuggucaL96
1241423.1

uuccUfaUfagcaasgsu
AAUUUGGUCU



1













AD-
A-
5832
asuscuu(Chd)UfuUf
A-
5921
VPusAfsucac(Tgn)ac
UGAUCUUCUUUG
3622


961014.
1523851.1

GfUfcguagugauaL96
1239413.1

gacaAfaGfaagauscsa
UCGUAGUGAUU



1













AD-
A-
5833
asuscgu(Ahd)AfgAf
A-
5922
VPusCfsuaca(Ggn)ag
GAAUCGUAAGAGA
3623


1000046
1532577.1

GfAfacucuguagaL96
1248385.1

uucuCfuUfacgaususc
ACUCUGUAGG



.1













AD-
A-
5834
gscsguu(Ghd)UfaGf
A-
5923
VPusGfsgaga(Tgn)ag
AGGCGUUGUAGU
3624


996319.
1525249.1

UfUfccuaucuccaL96
1240823.1

gaacUfaCfaacgcscsu
UCCUAUCUCCU



1













AD-
A-
5835
asusgau(Chd)UfuCf
A-
5924
VPusAfscuac(Ggn)ac
ACAUGAUCUUCUU
3625


961011.
1523845.1

UfUfugucguaguaL96
1239407.1

aaagAfaGfaucausgsu
UGUCGUAGUG



1













AD-
A-
5836
gscsugu(Uhd)UfaCf
A-
5925
VPusAfsagaa(Tgn)cc
AAGCUGUUUACAU
3626


1002409
1537499.1

AfUfaggauucuuaL96
1253305.1

uaugUfaAfacagcsusu
AGGAUUCUUU



.1













AD-
A-
5837
csasccu(Uhd)CfuCfC
A-
5926
VPusAfsgaau(Tgn)uu
GUCACCUUCUCCU
3627


1000916
1534385.1

fUfuaaaauucuaL96
1250193.1

aaggAfgAfaggugsasc
UAAAAUUCUA



.1













AD-
A-
5838
ususgug(Ahd)CfuUf
A-
5927
VPusCfsacua(Agn)ac
UAUUGUGACUUU
3628


996733.
1526036.1

UfAfaguuuagugaL96
1241657.1

uuaaAfgUfcacaasusa
AAGUUUAGUGG



1













AD-
A-
5839
uscsuuu(Ahd)UfaCf
A-
5928
VPusAfsaccu(Agn)ag
AUUCUUUAUACCA
3629


961137.
1535225.1

CfAfucuuagguuaL96
1251033.1

auggUfaUfaaagasas
UCUUAGGUUC



1





u







AD-
A-
5840
gsasgau(Ghd)GfaUf
A-
5929
VPusGfsaacg(Agn)ag
GGGAGAUGGAUUC
3630


961057.
1531655.1

UfCfucuucguucaL96
1247451.1

agaaUfcCfaucucscsc
UCUUCGUUCA



1













AD-
A-
5841
ususgau(Ahd)GfuUf
A-
5930
VPusGfscaaa(Cgn)ua
UUUUGAUAGUUA
3631


1002100
1536877.1

AfCfcuaguuugcaL96
1252681.1

gguaAfcUfaucaasasa
CCUAGUUUGCA



.1













AD-
A-
5842
gsascag(Ahd)GfaUf
A-
5931
VPusAfsguaa(Agn)uc
GAGACAGAGAUGA
3632


999762.
1531997.1

GfAfugauuuacuaL96
1247805.1

aucaUfcUfcugucsusc
UGAUUUACUC



1













AD-
A-
5843
asusgua(Chd)AfgAf
A-
5932
VPusAfsuaga(Agn)ua
CAAUGUACAGAGG
3633


961085.
1533099.1

GfGfuuauucuauaL9
1248907.1

accuCfuGfuacaususg
UUAUUCUAUA



1


6










AD-
A-
5844
asusguu(Uhd)CfuAf
A-
5933
VPusAfsucaa(Agn)uc
GUAUGUUUCUAGC
3634


961049.
1530270.1

GfCfugauuugauaL96
1246031.1

agcuAfgAfaacausasc
UGAUUUGAUU



1













AD-
A-
5845
csasaca(Chd)AfaUf
A-
5934
VPusGfscuaa(Ggn)aa
AACAACACAAUUU
3635


961155.
1535805.1

UfUfcuucuuagcaL96
1251613.1

gaaaUfuGfuguugsus
CUUCUUAGCA



1





u







AD-
A-
5846
gscsaag(Uhd)CfaAf
A-
5935
VPusCfsgauu(Tgn)gg
CUGCAAGUCAAGU
3636


961039.
1529023.1

GfUfuccaaaucgaL96
1244739.1

aacuUfgAfcuugcsasg
UCCAAAUCGU



1













AD-
A-
5847
asasugu(Chd)GfgAf
A-
5936
VPusAfsggua(Agn)cc
AUAAUGUCGGACU
3637


998346.
1529197.1

CfUfugguuaccuaL96
1244919.1

aaguCfcGfacauusasu
UGGUUACCUA



1













AD-
A-
5848
csasucu(Ghd)UfuGf
A-
5937
VPusGfsuaga(Agn)ua
CCCAUCUGUUGGA
3638


961056.
1530988.1

GfAfauauucuacaL96
1246759.1

uuccAfaCfagaugsgsg
AUAUUCUACU



1













AD-
A-
5849
usgsgaa(Uhd)AfuUf
A-
5938
VPusUfsaaca(Agn)ag
GUUGGAAUAUUCU
3639


999259.
1531002.1

CfUfacuuuguuaaL96
1246773.1

uagaAfuAfuuccasasc
ACUUUGUUAG



1













AD-
A-
5850
csusgau(Ahd)AfuAf
A-
5939
VPusGfsuuua(Agn)ga
UACUGAUAAUAGU
3640


961093.
1533709.1

GfUfcucuuaaacaL96
1249517.1

gacuAfuUfaucagsusa
CUCUUAAACU



1













AD-
A-
5851
ususggc(Ahd)GfaAf
A-
5940
VPusAfsuaau(Cgn)ag
AAUUGGCAGAAAC
3641


995521.
1523579.1

AfCfccugauuauaL96
1239133.1

gguuUfcUfgccaasusu
CCUGAUUAUG



1













AD-
A-
5852
gscsaaa(Ghd)GfuCf
A-
5941
VPusGfsagga(Agn)au
GAGCAAAGGUCAC
3642


997386.
1527312.1

AfCfaauuuccucaL96
1242983.1

ugugAfcCfuuugcsusc
AAUUUCCUCA



1













AD-
A-
5853
csusgaa(Chd)CfuAf
A-
5942
VPusAfsucgg(Agn)au
GGCUGAACCUAUG
3643


961037.
1527831.1

UfGfaauuccgauaL96
1243513.1

ucauAfgGfuucagscsc
AAUUCCGAUG



1













AD-
A-
5854
gsgsaag(Ahd)AfaGf
A-
5943
VPusCfsagac(Agn)ug
AUGGAAGAAAGGU
3644


961058.
1531697.1

GfUfucaugucugaL96
1247503.1

aaccUfuUfcuuccsasu
UCAUGUCUGC



1













AD-
A-
5855
asgsccu(Ghd)UfuGf
A-
5944
VPusAfsaacc(Tgn)au
CAAGCCUGUUGGA
3645


961146.
1535441.1

GfAfaauagguuuaL96
1251249.1

uuccAfaCfaggcususg
AAUAGGUUUU



1













AD-
A-
5856
ususauu(Ghd)CfaUf
A-
5945
VPusGfsuaua(Cgn)aa
AUUUAUUGCAUCA
3646


1000747
1534041.1

CfAfcuuguauacaL96
1249849.1

gugaUfgCfaauaasasu
CUUGUAUACA



.1













AD-
A-
5857
csusguu(Ghd)GfaAf
A-
5946
VPusUfscaaa(Agn)cc
GCCUGUUGGAAAU
3647


1001409
1535447.1

AfUfagguuuugaaL96
1251255.1

uauuUfcCfaacagsgsc
AGGUUUUGAU



.1













AD-
A-
5858
asuscug(Ahd)GfaCf
A-
5947
VPusCfsggca(Agn)au
GGAUCUGAGACUG
3648


996130.
1524811.1

UfGfaauuugccgaL96
1240377.1

ucagUfcUfcagauscsc
AAUUUGCCGA



1













AD-
A-
5859
asgscgu(Ghd)CfuUf
A-
5948
VPusGfsuaac(Ggn)uc
UCAGCGUGCUUAU
3649


999715.
1531895.1

AfUfagacguuacaL96
1247701.1

uauaAfgCfacgcusgsa
AGACGUUACC



1













AD-
A-
5860
cscsuuc(Chd)UfgAf
A-
5949
VPusCfsuaac(Tgn)gc
AUCCUUCCUGAUA
3650


1000678
1533901.1

UfAfugcaguuagaL96
1249709.1

auauCfaGfgaaggsasu
UGCAGUUAGU



.1













AD-
A-
5861
gsusaga(Ahd)AfaCf
A-
5950
VPusCfsagau(Ggn)ua
AUGUAGAAAACUU
3651


1000106
1532699.1

UfUfuuacaucugaL96
1248507.1

aaagUfuUfucuacsas
UUACAUCUGC



.1





u







AD-
A-
5862
gscscca(Ahd)AfaUfA
A-
5951
VPusCfsuauu(Agn)uc
CUGCCCAAAAUAC
3652


1000585
1533689.1

fCfugauaauagaL96
1249497.1

aguaUfuUfugggcsas
UGAUAAUAGU



.1





g







AD-
A-
5863
gsuscuu(Uhd)AfcUf
A-
5952
VPusGfscaaa(Ggn)au
UGGUCUUUACUG
3653


996635.
1525836.1

GfGfaaucuuugcaL96
1241457.1

uccaGfuAfaagacscsa
GAAUCUUUGCA



1













AD-
A-
5864
asgscuu(Ghd)AfaGf
A-
5953
VPusGfsucua(Agn)uu
UAAGCUUGAAGUA
3654


961163.
1536023.1

UfAfaaauuagacaL96
1251831.1

uuacUfuCfaagcususa
AAAUUAGACC



1













AD-
A-
5865
usgsgau(Uhd)CfuCf
A-
5954
VPusCfsugug(Agn)ac
GAUGGAUUCUCUU
3655


999601.
1531663.1

UfUfcguucacagaL96
1247459.1

gaagAfgAfauccasusc
CGUUCACAGA



1













AD-
A-
5866
ususuag(Uhd)GfgCf
A-
5955
VPusCfsaaga(Ggn)ug
ACUUUAGUGGCAA
3656


998015.
1528540.1

AfAfacacucuugaL96
1244249.1

uuugCfcAfcuaaasgsu
ACACUCUUGG



1













AD-
A-
5867
ascsaug(Ahd)UfcUf
A-
5956
VPusUfsacga(Cgn)aa
CUACAUGAUCUUC
3657


961009.
1523841.1

UfCfuuugucguaaL96
1239403.1

agaaGfaUfcaugusasg
UUUGUCGUAG



1













AD-
A-
5868
csasucu(Uhd)UfuCf
A-
5957
VPusUfsacaa(Tgn)cc
GUCAUCUUUUCAC
3658


961078.
1532751.1

AfCfaggauuguaaL96
1248559.1

ugugAfaAfagaugsasc
AGGAUUGUAA



1













AD-
A-
5869
csusgau(Uhd)UfcCf
A-
5958
VPusCfsaccu(Tgn)uc
CUCUGAUUUCCUA
3659


999986.
1532445.1

UfAfagaaaggugaL96
1248253.1

uuagGfaAfaucagsasg
AGAAAGGUGG



1













AD-
A-
5870
csusuua(Uhd)AfcCf
A-
5959
VPusGfsaacc(Tgn)aa
UUCUUUAUACCAU
3660


961138.
1535227.1

AfUfcuuagguucaL96
1251035.1

gaugGfuAfuaaagsas
CUUAGGUUCA



1





a







AD-
A-
5871
csgsugc(Uhd)UfaUf
A-
5960
VPusCfsggua(Agn)cg
AGCGUGCUUAUAG
3661


961066.
1531899.1

AfGfacguuaccgaL96
1247705.1

ucuaUfaAfgcacgscsu
ACGUUACCGC



1













AD-
A-
5872
asasguc(Ahd)AfgUf
A-
5961
VPusAfsacga(Tgn)uu
GCAAGUCAAGUUC
3662


998261.
1529027.1

UfCfcaaaucguuaL96
1244743.1

ggaaCfuUfgacuusgsc
CAAAUCGUUC



1













AD-
A-
5873
csusgaa(Uhd)AfuAf
A-
5962
VPusCfscuaa(Tgn)ac
GGCUGAAUAUACA
3663


995823.
1524195.1

CfAfaguauuaggaL96
1239759.1

uuguAfuAfuucagscsc
AGUAUUAGGA



1













AD-
A-
5874
uscsgug(Ghd)CfuCf
A-
5963
VPusCfsagaa(Agn)ac
AUUCGUGGCUCCU
3664


996052.
1524655.1

CfUfuguuuucugaL96
1240221.1

aaggAfgCfcacgasasu
UGUUUUCUGC



1













AD-
A-
5875
asgsacg(Uhd)UfaCf
A-
5964
VPusUfsgccu(Tgn)aa
AUAGACGUUACCG
3665


999721.
1531917.1

CfGfcuuaaggcaaL96
1247723.1

gcggUfaAfcgucusasu
CUUAAGGCAA



1













AD-
A-
5876
uscsauc(Uhd)UfuUf
A-
5965
VPusAfscaau(Cgn)cu
UGUCAUCUUUUCA
3666


1000130
1532749.1

CfAfcaggauuguaL96
1248557.1

gugaAfaAfgaugascsa
CAGGAUUGUA



.1













AD-
A-
5877
ususuua(Chd)AfuCf
A-
5966
VPusAfsugac(Agn)ag
ACUUUUACAUCUG
3667


1000115
1532717.1

UfGfccuugucauaL96
1248525.1

gcagAfuGfuaaaasgsu
CCUUGUCAUC



.1













AD-
A-
5878
csusucc(Uhd)GfaUf
A-
5967
VPusAfscuaa(Cgn)ug
UCCUUCCUGAUAU
3668


961106.
1533903.1

AfUfgcaguuaguaL96
1249711.1

cauaUfcAfggaagsgsa
GCAGUUAGUU



1













AD-
A-
5879
usgsaau(Ahd)UfaCf
A-
5968
VPusUfsccua(Agn)ua
GCUGAAUAUACAA
3669


995824.
1524197.1

AfAfguauuaggaaL96
1239761.1

cuugUfaUfauucasgsc
GUAUUAGGAG



1













AD-
A-
5880
gsusuuc(Uhd)AfgCf
A-
5969
VPusCfsaauc(Agn)aa
AUGUUUCUAGCUG
3670


998897.
1530274.1

UfGfauuugauugaL9
1246035.1

ucagCfuAfgaaacsasu
AUUUGAUUGA



1


6










AD-
A-
5881
usgscca(Chd)UfgAf
A-
5970
VPusCfsagua(Cgn)uu
GUUGCCACUGAAG
3671


999348.
1531160.1

AfGfaaaguacugaL96
1246951.1

ucuuCfaGfuggcasasc
AAAGUACUGA



1










AD-
A-
5882
usgsauc(Uhd)UfcUf
A-
5971
VPusCfsacua(Cgn)ga
CAUGAUCUUCUUU
3672


961012.
1523847.1

UfUfgucguagugaL96
1239409.1

caaaGfaAfgaucasusg
GUCGUAGUGA



1













AD-
A-
5883
uscsauc(Chd)UfgGf
A-
5972
VPusCfsaacu(Ggn)aa
GUUCAUCCUGGAA
3673


999215.
1530912.1

AfAfguucaguugaL96
1246683.1

cuucCfaGfgaugasasc
GUUCAGUUGA



1













AD-
A-
5884
asusgua(Uhd)AfuUf
A-
5973
VPusUfscacu(Agn)gg
GGAUGUAUAUUU
3674


961044.
1529794.1

UfGfaccuagugaaL96
1245553.1

ucaaAfuAfuacauscsc
GACCUAGUGAC



1













AD-
A-
5885
asusguc(Ghd)AfgUf
A-
5974
VPusAfsguaa(Agn)ag
AAAUGUCGAGUAC
3675


961004.
1522695.1

AfCfacuuuuacuaL96
1238193.1

uguaCfuCfgacaususu
ACUUUUACUG



1













AD-
A-
5886
usasuug(Uhd)GfaCf
A-
5975
VPusCfsuaaa(Cgn)uu
CUUAUUGUGACUU
3676


961024.
1526032.1

UfUfuaaguuuagaL9
1241653.1

aaagUfcAfcaauasasg
UAAGUUUAGU



1


6










AD-
A-
5887
gsusaug(Uhd)UfuCf
A-
5976
VPusCfsaaau(Cgn)ag
AGGUAUGUUUCUA
3677


998894.
1530266.1

UfAfgcugauuugaL96
1246027.1

cuagAfaAfcauacscsu
GCUGAUUUGA



1













AD-
A-
5888
gsgsgag(Ahd)UfgGf
A-
5977
VPusAfscgaa(Ggn)ag
UGGGGAGAUGGA
3678


999596.
1531651.1

AfUfucucuucguaL96
1247447.1

aaucCfaUfcucccscsa
UUCUCUUCGUU



1













AD-
A-
5889
ususccu(Ghd)AfuAf
A-
5978
VPusAfsacua(Agn)cu
CCUUCCUGAUAUG
3679


1000679
1533905.1

UfGfcaguuaguuaL96
1249713.1

gcauAfuCfaggaasgsg
CAGUUAGUUG



.1













AD-
A-
5890
csasacu(Uhd)AfcUf
A-
5979
VPusUfsaauu(Tgn)ag
ACCAACUUACUUU
3680


1000864
1534279.1

UfUfccuaaauuaaL96
1250087.1

gaaaGfuAfaguugsgs
CCUAAAUUAU



.1





u







AD-
A-
5891
usgscua(Uhd)AfgGf
A-
5980
VPusAfsgacc(Agn)aa
CUUGCUAUAGGAA
3681


996619.
1525804.1

AfAfauuuggucuaL96
1241425.1

uuucCfuAfuagcasasg
AUUUGGUCUU



1










AD-
A-
5892
csusaaa(Uhd)UfaUf
A-
5981
VPusAfsgauu(Agn)cu
UCCUAAAUUAUGG
3682


961109.
1534303.1

GfGfaaguaaucuaL96
1250111.1

uccaUfaAfuuuagsgsa
AAGUAAUCUU



1













AD-
A-
5893
gsascuu(Ahd)CfcUf
A-
5982
VPusCfsaaua(Cgn)uc
AAGACUUACCUUU
3683


1000451
1533415.1

UfUfagaguauugaL9
1249223.1

uaaaGfgUfaagucsus
AGAGUAUUGU



.1


6


u







AD-
A-
5894
csgsgac(Uhd)UfgGf
A-
5983
VPusGfsagau(Agn)gg
GUCGGACUUGGUU
3684


961043.
1529207.1

UfUfaccuaucucaL96
1244929.1

uaacCfaAfguccgsasc
ACCUAUCUCU



1













AD-
A-
5895
asgsuca(Chd)CfaCf
A-
5984
VPusAfscgaa(Tgn)gc
UCAGUCACCACUC
3685


996036.
1524627.1

UfCfagcauucguaL96
1240189.1

ugagUfgGfugacusgs
AGCAUUCGUG



1





a







AD-
A-
5896
ususgcc(Chd)UfuAf
A-
5985
VPusAfscuaa(Cgn)au
UUUUGCCCUUAUG
3686


961042.
1529091.1

UfGfaauguuaguaL9
1244801.1

ucauAfaGfggcaasasa
AAUGUUAGUC



1


6










AD-
A-
5897
csusuuu(Chd)AfcAf
A-
5986
VPusAfsauua(Cgn)aa
AUCUUUUCACAGG
3687


1000133
1532757.1

GfGfauuguaauuaL9
1248565.1

uccuGfuGfaaaagsas
AUUGUAAUUA



.1


6


u







AD-
A-
5898
gscsuga(Ahd)CfcUf
A-
5987
VPusUfscgga(Agn)uu
AGGCUGAACCUAU
3688


961036.
1527829.1

AfUfgaauuccgaaL96
1243511.1

cauaGfgUfucagcscsu
GAAUUCCGAU



1













AD-
A-
5899
csusucu(Uhd)AfgCf
A-
5988
VPusGfsccua(Agn)ac
GCCUUCUUAGCCU
3689


995573.
1523683.1

CfUfuguuuaggcaL96
1239237.1

aaggCfuAfagaagsgsc
UGUUUAGGCU



1













AD-
A-
5900
csusgcc(Ahd)AfgUf
A-
5989
VPusAfscucu(Agn)ug
UGCUGCCAAGUUA
3690


997715.
1527964.1

UfAfacauagaguaL96
1243647.1

uuaaCfuUfggcagscsa
ACAUAGAGUC



1













AD-
A-
5901
usgsuag(Ahd)UfcUf
A-
5990
VPusUfsggua(Agn)uu
UUUGUAGAUCUU
3691


996533.
1525638.1

UfGfcaauuaccaaL96
1241253.1

gcaaGfaUfcuacasasa
GCAAUUACCAU



1













AD-
A-
5902
usasggc(Uhd)AfaUf
A-
5991
VPusAfsaucu(Tgn)gg
UUUAGGCUAAUGA
3692


995587.
1523713.1

GfAfcccaagauuaL96
1239267.1

gucaUfuAfgccuasasa
CCCAAGAUUA



1













AD-
A-
5903
ususugu(Chd)GfuAf
A-
5992
VPusAfsggaa(Agn)au
UCUUUGUCGUAG
3693


995660.
1523863.1

GfUfgauuuuccuaL96
1239425.1

cacuAfcGfacaaasgsa
UGAUUUUCCUG



1













AD-
A-
5904
ususgca(Ahd)GfcCf
A-
5993
VPusCfsucac(Agn)ua
GGUUGCAAGCCUC
3694


994670.
1521918.1

UfCfuuaugugagaL96
1237413.1

agagGfcUfugcaascsc
UUAUGUGAGG



1
















TABLE 6B







Exemplary Human SCN9A Unmodified Single Strands and Duplex Sequences.


Column 1 indicates duplex name and the number following the decimal point in


a duplex name merely refers to a batch production number. Column 2 indicates


the sense sequence name. Column 3 indicates the sequence ID for the sequence


of column 4. Column 4 provides the unmodified sequence of a sense strand


suitable for use in a duplex described herein. Column 5 provides the position


in the target mRNA (NM_001365536.1) of the sense strand of Column 4. Column 6


indicates the antisense sequence name. Column 7 indicates the sequence ID for


the sequence of column 8. Column 8 provides the sequence of an antisense strand


suitable for use in a duplex described herein, without specifying chemical


modifications. Column 9 indicates the position in the target mRNA


(NM_001365536.1) that is complementary to the antisense strand of Column 8.

















Seq ID

mRNA target
Anti
Seq ID

mRNA target



Sense
NO:

range in
sense
NO:

range in


Duplex
sequence
(sense)
Sense
NM_00136
sequence
(anti
antisense sequence
NM_0013655


Name
name

sequence (5′-3′)
5536.1
name
sense)
(5′-3′)
36.1





AD-
A-
5994
GGCGUUGUAGUUCCUAUC
2301-2321
A-
2950
UGAGAUAGGAACUACAAC
2299-2321


996318.1
1525247.1

UCA

1240821.1

GCCUU






AD-
A-
5995
UUCUGUGUAGGAGAAUU
824-844
A-
2951
UGUGAATUCUCCUACACA
822-844


995116.1
1522818.1

CACA

1238317.1

GAAGC






AD-
A-
2863
UGGUUUCAGCACAGAUUC
1243-1263
A-
2952
UCUGAATCUGUGCUGAAA
1241-1263


995486.1
1523509.1

AGA

1239063.1

CCACA






AD-
A-
2864
UGUAGGAGAAUUCACUU
829-849
A-
2953
UGAAAAGUGAAUUCUCCU
827-849


995121.1
1522828.1

UUCA

1238327.1

ACACA






AD-
A-
2865
UUUGUAGAUCUUGCAAU
2531-2551
A-
2954
UGUAAUTGCAAGAUCUAC
2529-2551


961022.1
1525636.1

UACA

1241249.1

AAAAG






AD-
A-
2866
GUUUGAACACAAAUCUUU
9174-9194
A-
2955
UCGAAAGAUUUGUGUUC
9172-9194


1002051.1
1536779.1

CGA

1252583.1

AAACCU






AD-
A-
2867
CUUCUGAAACAUCCAAAC
1683-1703
A-
2956
UCAGUUTGGAUGUUUCA
1681-1703


995873.1
1524297.1

UGA

1239861.1

GAAGAA






AD-
A-
2868
AGUCAAGUUCCAAAUCGU
4382-4402
A-
2957
UGAACGAUUUGGAACUU
4380-4402


961040.1
1529029.1

UCA

1244745.1

GACUUG






AD-
A-
2869
GAUCUUCUUUGUCGUAG
1435-1455
A-
2958
UUCACUACGACAAAGAAG
1433-1455


961013.1
1523849.1

UGAA

1239411.1

AUCAU






AD-
A-
2870
UGUCGAGUACACUUUUAC
760-780
A-
2959
UCAGUAAAAGUGUACUCG
758-780


995055.1
1522697.1

UGA

1238195.1

ACAUU






AD-
A-
2871
CAUGAUCUUCUUUGUCG
1432-1452
A-
2960
UCUACGACAAAGAAGAUC
1430-1452


961010.1
1523843.1

UAGA

1239405.1

AUGUA






AD-
A-
2872
AAGGGAAAACAAUCUUCC
576-596
A-
2961
UACGGAAGAUUGUUUUC
574-596


961000.1
1522351.1

GUA

1237849.1

CCUUUG






AD-
A-
2873
AGAUGGAUUCUCUUCGU
5862-5882
A-
2962
UUGAACGAAGAGAAUCCA
5860-5882


999598.1
1531657.1

UCAA

1247453.1

UCUCC






AD-
A-
2874
UGAUAGUUACCUAGUUU
9226-9246
A-
2963
UUGCAAACUAGGUAACUA
9224-9246


1002101.1
1536879.1

GCAA

1252683.1

UCAAA






AD-
A-
2875
UAUAUUUUACAACAUCCG
8022-8042
A-
2964
UAACGGAUGUUGUAAAA
8020-8042


1001246.1
1535071.1

UUA

1250879.1

UAUAUC






AD-
A-
2876
UUGCUAUAGGAAAUUUG
2625-2645
A-
2965
UGACCAAAUUUCCUAUAG
2623-2645


996618.1
1525802.1

GUCA

1241423.1

CAAGU






AD-
A-
2877
AUCUUCUUUGUCGUAGU
1436-1456
A-
2966
UAUCACTACGACAAAGAA
1434-1456


961014.1
1523851.1

GAUA

1239413.1

GAUCA






AD-
A-
2878
AUCGUAAGAGAACUCUGU
6462-6482
A-
2967
UCUACAGAGUUCUCUUAC
6460-6482


1000046.1
1532577.1

AGA

1248385.1

GAUUC






AD-
A-
2879
GCGUUGUAGUUCCUAUCU
2302-2322
A-
2968
UGGAGATAGGAACUACAA
2300-2322


996319.1
1525249.1

CCA

1240823.1

CGCCU






AD-
A-
2880
AUGAUCUUCUUUGUCGU
1433-1453
A-
2969
UACUACGACAAAGAAGAU
1431-1453


961011.1
1523845.1

AGUA

1239407.1

CAUGU






AD-
A-
2881
GCUGUUUACAUAGGAUUC
9600-9620
A-
2970
UAAGAATCCUAUGUAAAC
9598-9620


1002409.1
1537499.1

UUA

1253305.1

AGCUU






AD-
A-
2882
CACCUUCUCCUUAAAAUU
7527-7547
A-
2971
UAGAAUTUUAAGGAGAAG
7525-7547


1000916.1
1534385.1

CUA

1250193.1

GUGAC






AD-
A-
2883
UUGUGACUUUAAGUUUA
2742-2762
A-
2972
UCACUAAACUUAAAGUCA
2740-2762


996733.1
1526036.1

GUGA

1241657.1

CAAUA






AD-
A-
2884
UCUUUAUACCAUCUUAGG
8099-8119
A-
2973
UAACCUAAGAUGGUAUAA
8097-8119


961137.1
1535225.1

UUA

1251033.1

AGAAU






AD-
A-
2885
GAGAUGGAUUCUCUUCG
5861-5881
A-
2974
UGAACGAAGAGAAUCCAU
5859-5881


961057.1
1531655.1

UUCA

1247451.1

CUCCC






AD-
A-
2886
UUGAUAGUUACCUAGUU
9225-9245
A-
2975
UGCAAACUAGGUAACUAU
9223-9245


1002100.1
1536877.1

UGCA

1252681.1

CAAAA






AD-
A-
2887
GACAGAGAUGAUGAUUUA
6059-6079
A-
2976
UAGUAAAUCAUCAUCUCU
6057-6079


999762.1
1531997.1

CUA

1247805.1

GUCUC






AD-
A-
2888
AUGUACAGAGGUUAUUC
6778-6798
A-
2977
UAUAGAAUAACCUCUGUA
6776-6798


961085.1
1533099.1

UAUA

1248907.1

CAUUG






AD-
A-
2889
AUGUUUCUAGCUGAUUU
5075-5095
A-
2978
UAUCAAAUCAGCUAGAAA
5073-5095


961049.1
1530270.1

GAUA

1246031.1

CAUAC






AD-
A-
2890
CAACACAAUUUCUUCUUA
8498-8518
A-
2979
UGCUAAGAAGAAAUUGU
8496-8518


961155.1
1535805.1

GCA

1251613.1

GUUGUU






AD-
A-
2891
GCAAGUCAAGUUCCAAAU
4379-4399
A-
2980
UCGAUUTGGAACUUGACU
4377-4399


961039.1
1529023.1

CGA

1244739.1

UGCAG






AD-
A-
2892
AAUGUCGGACUUGGUUAC
4469-4489
A-
2981
UAGGUAACCAAGUCCGAC
4467-4489


998346.1
1529197.1

CUA

1244919.1

AUUAU






AD-
A-
2893
CAUCUGUUGGAAUAUUCU
5496-5516
A-
2982
UGUAGAAUAUUCCAACAG
5494-5516


961056.1
1530988.1

ACA

1246759.1

AUGGG






AD-
A-
2894
UGGAAUAUUCUACUUUG
5503-5523
A-
2983
UUAACAAAGUAGAAUAUU
5501-5523


999259.1
1531002.1

UUAA

1246773.1

CCAAC






AD-
A-
2895
CUGAUAAUAGUCUCUUAA
7151-7171
A-
2984
UGUUUAAGAGACUAUUA
7149-7171


961093.1
1533709.1

ACA

1249517.1

UCAGUA






AD-
A-
2896
UUGGCAGAAACCCUGAUU
1296-1316
A-
2985
UAUAAUCAGGGUUUCUG
1294-1316


995521.1
1523579.1

AUA

1239133.1

CCAAUU






AD-
A-
2897
GCAAAGGUCACAAUUUCC
3438-3458
A-
2986
UGAGGAAAUUGUGACCU
3436-3458


997386.1
1527312.1

UCA

1242983.1

UUGCUC






AD-
A-
2898
CUGAACCUAUGAAUUCCG
3726-3746
A-
2987
UAUCGGAAUUCAUAGGU
3724-3746


961037.1
1527831.1

AUA

1243513.1

UCAGCC






AD-
A-
2899
GGAAGAAAGGUUCAUGUC
5887-5907
A-
2988
UCAGACAUGAACCUUUCU
5885-5907


961058.1
1531697.1

UGA

1247503.1

UCCAU






AD-
A-
2900
AGCCUGUUGGAAAUAGG
8219-8239
A-
2989
UAAACCTAUUUCCAACAG
8217-8239


961146.1
1535441.1

UUUA

1251249.1

GCUUG






AD-
A-
2901
UUAUUGCAUCACUUGUA
7317-7337
A-
2990
UGUAUACAAGUGAUGCAA
7315-7337


1000747.1
1534041.1

UACA

1249849.1

UAAAU






AD-
A-
2902
CUGUUGGAAAUAGGUUU
8222-8242
A-
2991
UUCAAAACCUAUUUCCAA
8220-8242


1001409.1
1535447.1

UGAA

1251255.1

CAGGC






AD-
A-
2903
AUCUGAGACUGAAUUUGC
1993-2013
A-
2992
UCGGCAAAUUCAGUCUCA
1991-2013


996130.1
1524811.1

CGA

1240377.1

GAUCC






AD-
A-
2904
AGCGUGCUUAUAGACGUU
5988-6008
A-
2993
UGUAACGUCUAUAAGCAC
5986-6008


999715.1
1531895.1

ACA

1247701.1

GCUGA






AD-
A-
2905
CCUUCCUGAUAUGCAGUU
7247-7267
A-
2994
UCUAACTGCAUAUCAGGA
7245-7267


1000678.1
1533901.1

AGA

1249709.1

AGGAU






AD-
A-
2906
GUAGAAAACUUUUACAUC
6547-6567
A-
2995
UCAGAUGUAAAAGUUUU
6545-6567


1000106.1
1532699.1

UGA

1248507.1

CUACAU






AD-
A-
2907
GCCCAAAAUACUGAUAAU
7141-7161
A-
2996
UCUAUUAUCAGUAUUUU
7139-7161


1000585.1
1533689.1

AGA

1249497.1

GGGCAG






AD-
A-
2908
GUCUUUACUGGAAUCUU
2642-2662
A-
2997
UGCAAAGAUUCCAGUAAA
2640-2662


996635.1
1525836.1

UGCA

1241457.1

GACCA






AD-
A-
2909
AGCUUGAAGUAAAAUUAG
8687-8707
A-
2998
UGUCUAAUUUUACUUCA
8685-8707


961163.1
1536023.1

ACA

1251831.1

AGCUUA






AD-
A-
2910
UGGAUUCUCUUCGUUCAC
5865-5885
A-
2999
UCUGUGAACGAAGAGAAU
5863-5885


999601.1
1531663.1

AGA

1247459.1

CCAUC






AD-
A-
2911
UUUAGUGGCAAACACUCU
4114-4134
A-
3000
UCAAGAGUGUUUGCCACU
4112-4134


998015.1
1528540.1

UGA

1244249.1

AAAGU






AD-
A-
2912
ACAUGAUCUUCUUUGUCG
1431-1451
A-
3001
UUACGACAAAGAAGAUCA
1429-1451


961009.1
1523841.1

UAA

1239403.1

UGUAG






AD-
A-
2913
CAUCUUUUCACAGGAUUG
6573-6593
A-
3002
UUACAATCCUGUGAAAAG
6571-6593


961078.1
1532751.1

UAA

1248559.1

AUGAC






AD-
A-
2914
CUGAUUUCCUAAGAAAGG
6396-6416
A-
3003
UCACCUTUCUUAGGAAAU
6394-6416


999986.1
1532445.1

UGA

1248253.1

CAGAG






AD-
A-
2915
CUUUAUACCAUCUUAGGU
8100-8120
A-
3004
UGAACCTAAGAUGGUAUA
8098-8120


961138.1
1535227.1

UCA

1251035.1

AAGAA






AD-
A-
2916
CGUGCUUAUAGACGUUAC
5990-6010
A-
3005
UCGGUAACGUCUAUAAGC
5988-6010


961066.1
1531899.1

CGA

1247705.1

ACGCU






AD-
A-
2917
AAGUCAAGUUCCAAAUCG
4381-4401
A-
3006
UAACGATUUGGAACUUGA
4379-4401


998261.1
1529027.1

UUA

1244743.1

CUUGC






AD-
A-
2918
CUGAAUAUACAAGUAUUA
1632-1652
A-
3007
UCCUAATACUUGUAUAUU
1630-1652


995823.1
1524195.1

GGA

1239759.1

CAGCC






AD-
A-
2919
UCGUGGCUCCUUGUUUU
1915-1935
A-
3008
UCAGAAAACAAGGAGCCA
1913-1935


996052.1
1524655.1

CUGA

1240221.1

CGAAU






AD-
A-
2920
AGACGUUACCGCUUAAGG
5999-6019
A-
3009
UUGCCUTAAGCGGUAACG
5997-6019


999721.1
1531917.1

CAA

1247723.1

UCUAU






AD-
A-
2921
UCAUCUUUUCACAGGAUU
6572-6592
A-
3010
UACAAUCCUGUGAAAAGA
6570-6592


1000130.1
1532749.1

GUA

1248557.1

UGACA






AD-
A-
2922
UUUUACAUCUGCCUUGUC
6556-6576
A-
3011
UAUGACAAGGCAGAUGUA
6554-6576


1000115.1
1532717.1

AUA

1248525.1

AAAGU






AD-
A-
2923
CUUCCUGAUAUGCAGUUA
7248-7268
A-
3012
UACUAACUGCAUAUCAGG
7246-7268


961106.1
1533903.1

GUA

1249711.1

AAGGA






AD-
A-
2924
UGAAUAUACAAGUAUUAG
1633-1653
A-
3013
UUCCUAAUACUUGUAUA
1631-1653


995824.1
1524197.1

GAA

1239761.1

UUCAGC






AD-
A-
2925
GUUUCUAGCUGAUUUGA
5077-5097
A-
3014
UCAAUCAAAUCAGCUAGA
5075-5097


998897.1
1530274.1

UUGA

1246035.1

AACAU






AD-
A-
2926
UGCCACUGAAGAAAGUAC
5593-5613
A-
3015
UCAGUACUUUCUUCAGU
5591-5613


999348.1
1531160.1

UGA

1246951.1

GGCAAC






AD-
A-
2927
UGAUCUUCUUUGUCGUA
1434-1454
A-
3016
UCACUACGACAAAGAAGA
1432-1454


961012.1
1523847.1

GUGA

1239409.1

UCAUG






AD-
A-
2928
UCAUCCUGGAAGUUCAGU
5458-5478
A-
3017
UCAACUGAACUUCCAGGA
5456-5478


999215.1
1530912.1

UGA

1246683.1

UGAAC






AD-
A-
2929
AUGUAUAUUUGACCUAG
4816-4836
A-
3018
UUCACUAGGUCAAAUAUA
4814-4836


961044.1
1529794.1

UGAA

1245553.1

CAUCC






AD-
A-
2930
AUGUCGAGUACACUUUUA
759-779
A-
3019
UAGUAAAAGUGUACUCGA
757-779


961004.1
1522695.1

CUA

1238193.1

CAUUU






AD-
A-
2931
UAUUGUGACUUUAAGUU
2740-2760
A-
3020
UCUAAACUUAAAGUCACA
2738-2760


961024.1
1526032.1

UAGA

1241653.1

AUAAG






AD-
A-
2932
GUAUGUUUCUAGCUGAU
5073-5093
A-
3021
UCAAAUCAGCUAGAAACA
5071-5093


998894.1
1530266.1

UUGA

1246027.1

UACCU






AD-
A-
2933
GGGAGAUGGAUUCUCUU
5859-5879
A-
3022
UACGAAGAGAAUCCAUCU
5857-5879


999596.1
1531651.1

CGUA

1247447.1

CCCCA






AD-
A-
2934
UUCCUGAUAUGCAGUUAG
7249-7269
A-
3023
UAACUAACUGCAUAUCAG
7247-7269


1000679.1
1533905.1

UUA

1249713.1

GAAGG






AD-
A-
2935
CAACUUACUUUCCUAAAU
7456-7476
A-
3024
UUAAUUTAGGAAAGUAAG
7454-7476


1000864.1
1534279.1

UAA

1250087.1

UUGGU






AD-
A-
2936
UGCUAUAGGAAAUUUGG
2626-2646
A-
3025
UAGACCAAAUUUCCUAUA
2624-2646


996619.1
1525804.1

UCUA

1241425.1

GCAAG






AD-
A-
2937
CUAAAUUAUGGAAGUAAU
7468-7488
A-
3026
UAGAUUACUUCCAUAAUU
7466-7488


961109.1
1534303.1

CUA

1250111.1

UAGGA






AD-
A-
2938
GACUUACCUUUAGAGUAU
6944-6964
A-
3027
UCAAUACUCUAAAGGUAA
6942-6964


1000451.1
1533415.1

UGA

1249223.1

GUCUU






AD-
A-
2939
CGGACUUGGUUACCUAUC
4474-4494
A-
3028
UGAGAUAGGUAACCAAGU
4472-4494


961043.1
1529207.1

UCA

1244929.1

CCGAC






AD-
A-
2940
AGUCACCACUCAGCAUUC
1899-1919
A-
3029
UACGAATGCUGAGUGGUG
1897-1919


996036.1
1524627.1

GUA

1240189.1

ACUGA






AD-
A-
2941
UUGCCCUUAUGAAUGUUA
4410-4430
A-
3030
UACUAACAUUCAUAAGGG
4408-4430


961042.1
1529091.1

GUA

1244801.1

CAAAA






AD-
A-
2942
CUUUUCACAGGAUUGUAA
6576-6596
A-
3031
UAAUUACAAUCCUGUGAA
6574-6596


1000133.1
1532757.1

UUA

1248565.1

AAGAU






AD-
A-
2943
GCUGAACCUAUGAAUUCC
3725-3745
A-
3032
UUCGGAAUUCAUAGGUU
3723-3745


961036.1
1527829.1

GAA

1243511.1

CAGCCU






AD-
A-
2944
CUUCUUAGCCUUGUUUA
1348-1368
A-
3033
UGCCUAAACAAGGCUAAG
1346-1368


995573.1
1523683.1

GGCA

1239237.1

AAGGC






AD-
A-
2945
CUGCCAAGUUAACAUAGA
3793-3813
A-
3034
UACUCUAUGUUAACUUG
3791-3813


997715.1
1527964.1

GUA

1243647.1

GCAGCA






AD-
A-
2946
UGUAGAUCUUGCAAUUAC
2533-2553
A-
3035
UUGGUAAUUGCAAGAUC
2531-2553


996533.1
1525638.1

CAA

1241253.1

UACAAA






AD-
A-
2947
UAGGCUAAUGACCCAAGA
1363-1383
A-
3036
UAAUCUTGGGUCAUUAGC
1361-1383


995587.1
1523713.1

UUA

1239267.1

CUAAA






AD-
A-
2948
UUUGUCGUAGUGAUUUU
1442-1462
A-
3037
UAGGAAAAUCACUACGAC
1440-1462


995660.1
1523863.1

CCUA

1239425.1

AAAGA






AD-
A-
2949
UUGCAAGCCUCUUAUGUG
243-263
A-
3038
UCUCACAUAAGAGGCUUG
241-263


994670.1
1521918.1

AGA

1237413.1

CAACC
















TABLE 13A







Exemplary Human SCN9A siRNA Modified Single Strands and Duplex Sequences


Column 1 indicates duplex name and the number following the decimal point in a duplex


name merely refers to a batch production number. Column 2 indicates the name of the


sense sequence. Column 3 indicates the sequence ID for the sequence of column 4.


Column 4 provides the modified sequence of a sense strand suitable for use in a


duplex described herein. Column 5 indicates the antisense sequence name. Column 6


indicates the sequence ID for the sequence of column 7. Column 7 provides the


sequence of a modified antisense strand suitable for use in a duplex described


herein, e.g., a duplex comprising the sense sequence in the same row of the table.


Column 8 indicates the position in the target mRNA (NM_001365536.1) that is


complementary to the antisense strand of Column 7. Column 9 indicated the sequence


ID for the sequence of column 8.




















Seq ID

mRNA target
SEQ ID



Sense
Seq ID

Antisense
NO:
Antisense
sequence in
NO:


Duplex
sequence
NO:
Sense sequence
sequence
(anti
sequence
NM_00136
(mRNA


Name
name
(sense)
(5′-3′)
name
sense)
(5′-3′)
5536.1
target)





AD-
A-
4000
ascsacaaagdGgdAa
A-
4266
VPusAfsgadTu(G2p)




1251302
2337487.1

aa(Chd)aaucuaL96
2337488.1

uuuudCcCfuUfugugu




.1





susc







AD-
A-
5802
csascaaagggAfAfaac
A-
4267
VPusAfsagdAudTguu




1251303
2337489.1

aa(Uhd)cuuaL96
2337490.1

uucCfcUfuugugsusu




.1













AD-
A-
5803
ascsaaagggAfAfAfac
A-
4268
VPudGaadGadTuguu
GAACAAAGGGAAA
4534


1251304
2337491.1

aa(Uhd)cuucaL96
2337492.1

uuCfcCfuuugusgsu
ACAAUCUUCC



.1













AD-
A-
4003
csasaagggaAfAfAfca
A-
4269
VPudGgadAgdAuugu
AACAAAGGGAAAA
4535


1251305
2337493.1

au(Chd)uuccaL96
2337494.1

uuUfcCfcuuugsusg
CAAUCUUCCG



.1













AD-
A-
4004
asasagggAfaAfAfCfa
A-
4270
VPusCfsggdAadGauu
ACAAAGGGAAAAC
4536


1251306
2337495.1

auc(Uhd)uccgaL96
2337496.1

guuUfuCfccuuusgsu
AAUCUUCCGU



.1













AD-
A-
4005
asasagggaadAaCfaa
A-
4271
VPuCfggdAadGauug
ACAAAGGGAAAAC
4537


1251307
2337497.1

uc(Uhd)uccgaL96
2337498.1

dTuUfuCfccuuusgsu
AAUCUUCCGU



.1













AD-
A-
4006
asasgggaaaAfCfAfa
A-
4272
VPusdAscgdGa(A2p)
CAAAGGGAAAACA
4538


1251315
2337506.1

ucu(Uhd)ccguaL96
2337501.1

gauudGuUfudTcccu
AUCUUCCGUU



.1





ususg







AD-
A-
4007
asasgggaaadAcdAa
A-
4273
VPusdAscgdGa(A2p)
CAAAGGGAAAACA
4539


1251310
2337499.1

ucu(Uhd)ccguaL96
2337501.1

gauudGuUfudTcccu
AUCUUCCGUU



.1





ususg







AD-
A-
4008
asasggg(Ahd)aadAc
A-
4274
VPusdAscgdGadAga
CAAAGGGAAAACA
4540


961179.
1812594.1

dAaucuuccguaL96
1812595.1

uudGudTudTcccuus
AUCUUCCGUU



3





usg







AD-
A-
4009
asasgggaaadAcdAa
A-
4275
VPusdAscgdGadAga
CAAAGGGAAAACA
4541


1251308
2337499.1

ucu(Uhd)ccguaL96
1812595.1

uudGudTudTcccuus
AUCUUCCGUU



.1





usg







AD-
A-
4010
asasgggaaaAfCfAfa
A-
4276
VPusdAscgdGa(Agn)
CAAAGGGAAAACA
4542


1251314
2337506.1

ucu(Uhd)ccguaL96
2337500.1

gauudGuUfudTcccu
AUCUUCCGUU



.1





ususg







AD-
A-
4011
asasgggaaadAcdAa
A-
4277
VPusdAscgdGa(Agn)
CAAAGGGAAAACA
4543


1251309
2337499.1

ucu(Uhd)ccguaL96
2337500.1

gauudGuUfudTcccu
AUCUUCCGUU



.2





ususg







AD-
A-
4012
asasgggaaaAfCfAfa
A-
4278
VPudAcgdGa(Agn)ga
CAAAGGGAAAACA
4544


1251316
2337506.1

ucu(Uhd)ccguaL96
2337507.1

uudGuUfudTcccuus
AUCUUCCGUU



.1





usg







AD-
A-
4013
asasgggaaaAfCfAfa
A-
4279
VPudAcgdGa(A2p)ga
CAAAGGGAAAACA
4545


1251317
2337506.1

ucu(Uhd)ccguaL96
2337508.1

uudGuUfudTcccuus
AUCUUCCGUU



.1





usg







AD-
A-
4014
asasgggaaadAcdAa
A-
4280
VPusdAscgdGa(A2p)
CAAAGGGAAAACA
4546


1251311
2337499.1

ucu(Uhd)ccguaL96
2337502.1

gauudGuUfudTcccu
AUCUUCCGUU



.1





uscsc







AD-
A-
4015
asasgggaaadAcdAa
A-
4281
VPusdAscgdGa(Agn)
CAAAGGGAAAACA
4547


1251309
2337499.1

ucu(Uhd)ccguaL96
2337500.1

gauudGuUfudTcccu
AUCUUCCGUU



.1





ususg







AD-
A-
4016
asgsggaaAfaCfAfAfu
A-
4282
VPusAfsacdGgdAaga
AAAGGGAAAACAA
4548


1251318
2337509.1

cuu(Chd)cguuaL96
2337510.1

uugUfuUfucccususu
UCUUCCGUUU



.1













AD-
A-
4017
asgsggaaaaCfadAuc
A-
4283
VPudAacdGgdAagau
AAAGGGAAAACAA
4549


1251319
2337511.1

uu(Chd)cguuaL96
2337512.1

dTgUfuUfucccususu
UCUUCCGUUU



.1













AD-
A-
4018
gsgsgaaadAcdAauc
A-
4284
VPusdAscgdGa(A2p)
AAGGGAAAACAAU
4550


1251313
2337503.1

u(Uhd)ccguaL96
2337505.1

gauudGuUfudTcccsu
CUUCCGUU



.1





SU







AD-
A-
4019
gsgsgaaadAcdAauc
A-
4285
VPusdAscgdGa(Agn)
AAGGGAAAACAAU
4551


1251312
2337503.1

u(Uhd)ccguaL96
2337504.1

gauudGuUfudTcccsu
CUUCCGUU



.1





su







AD-
A-
4020
gsgsgaaaAfcAfaUfc
A-
4286
VPusAfsaadCgdGaag
AAGGGAAAACAAU
4552


1251320
2337513.1

uuc(Chd)guuuaL96
2337514.1

adTudGuUfuucccsus
CUUCCGUUUC



.1





u







AD-
A-
4021
gsgsaaaa(Chd)aaUf
A-
4287
VPudGaadAcdGgaag
AGGGAAAACAAUC
4553


1251321
2337515.1

CfuuccguuucaL96
2337516.1

auUfgUfuuuccscsu
UUCCGUUUCA



.1













AD-
A-
4022
gsasaaa(Chd)aaUfCf
A-
4288
VPuUfgadAa(C2p)gg
GGGAAAACAAUCU
4554


1251323
2337519.1

UfuccguuucaaL96
2337520.1

aagaUfudGuuuucscs
UCCGUUUCAA



.1





c







AD-
A-
4023
gsasaaa(Chd)aaUfCf
A-
4289
VPuUfgadAadTggaag
GGGAAAACAAUCU
4555


1251322
2337517.1

UfuccauuucaaL96
2337518.1

aUfudGuuuucscsc
UCCGUUUCAA



.1













AD-
A-
4024
asasaacaauCfUfUfc
A-
4290
VPuUfugdAadAcgga
GGAAAACAAUCUU
4556


1251325
2337523.1

cgu(Uhd)ucaaaL96
2337524.1

dAgdAuUfguuuuscsc
CCGUUUCAAU



.1













AD-
A-
4025
asasaacaAfuCfUfUf
A-
4291
VPusUfsugdAadAcgg
GGAAAACAAUCUU
4557


1251324
2337521.1

ccgu(Uhd)ucaaaL96
2337522.1

aagAfuUfguuuuscsc
CCGUUUCAAU



.1













AD-
A-
4026
usgsucgaguAfCfAfc
A-
4292
VPusCfsagdTadAaag
AAUGUCGAGUACA
4558


1251249
2337423.1

uuu(Uhd)acugaL96
2337424.1

uguAfcUfcgacasusu
CUUUUACUGG



.1













AD-
A-
4027
usgsucgaguAfCfAfc
A-
4293
VPuCfagdTadAaagug
AAUGUCGAGUACA
4559


1251254
2337423.1

uuu(Uhd)acugaL96
2337431.1

uAfcUfcgacascsc
CUUUUACUGG



.1













AD-
A-
4028
usgsucgaguAfCfAfc
A-
4294
VPusCfsaguAfaAfAfg
AAUGUCGAGUACA
4560


1251248
2337423.1

uuu(Uhd)acugaL96
1522698.1

uguAfcUfcgacasusu
CUUUUACUGG



.1













AD-
A-
4029
usgsucgaguAfCfAfc
A-
4295
VPusCfsagdTadAaag
AAUGUCGAGUACA
4561


1251284
2337423.1

uuu(Uhd)acugaL96
2337467.1

udGuAfcdTcgacasus
CUUUUACUGG



.1





u







AD-
A-
4030
usgsucgagudAcdAc
A-
4296
VPusCfsagdTadAaag
AAUGUCGAGUACA
4562


1251253
2337428.1

uuu(Uhd)acugaL96
2337430.1

udGudAcUfcgacascs
CUUUUACUGG



.1





c







AD-
A-
4031
usgsucgaguAfCfAfc
A-
4297
VPusCfsagdTadAaag
AAUGUCGAGUACA
4563


1251286
2337423.1

uuu(Uhd)acugaL96
2337469.1

udGuAfcdTcgacascsc
CUUUUACUGG



.1













AD-
A-
4032
usgsucgaguAfCfAfc
A-
4298
VPusdCsagdTadAaag
AAUGUCGAGUACA
4564


1251282
2337423.1

uuu(Uhd)acugaL96
1875199.1

udGudAcdTcgacasus
CUUUUACUGG



.1





u







AD-
A-
4033
usgsucg(Ahd)gudAc
A-
4299
VPusdCsagdTadAaag
AAUGUCGAGUACA
4565


1010661
1851664.1

dAcuuuuacugaL96
1875199.1

udGudAcdTcgacasus
CUUUUACUGG



.3





u







AD-
A-
4034
usgsucg(Ahd)GfuAf
A-
4300
VPusCfsaguAfaAfAfg
AAUGUCGAGUACA
4566


795305.
1522697.1

CfAfcuuuuacugaL96
1522698.1

uguAfcUfcgacasusu
CUUUUACUGG



3













AD-
A-
4035
usgsucgaguAfCfAfc
A-
4301
VPusCfsagdTadAaag
AAUGUCGAGUACA
4567


1251250
2337423.1

uuu(Uhd)acugaL96
2337425.1

uguAfcUfcgacascsc
CUUUUACUGG



.1













AD-
A-
4036
usgsucgaguAfCfAfc
A-
4302
VPusCfsagdTadAaag
AAUGUCGAGUACA
4568


1251283
2337423.1

uuu(Uhd)acugaL96
2337466.1

udGudAcdTcgacasus
CUUUUACUGG



.1





u







AD-
A-
4037
usgsucgagudAcdAc
A-
4303
VPusCfsagdTadAaag
AAUGUCGAGUACA
4569


1251281
2337428.1

uuu(Uhd)acugaL96
2337466.1

udGudAcdTcgacasus
CUUUUACUGG



.1





u







AD-
A-
4038
usgsucgagudAcdAc
A-
4304
VPuCfagdTadAaagud
AAUGUCGAGUACA
4570


1251255
2337428.1

uuu(Uhd)acugaL96
2337432.1

GudAcUfcgacascsc
CUUUUACUGG



.1













AD-
A-
4039
usgsucgagudAcdAc
A-
4305
VPuCfagdTadAaagud
AAUGUCGAGUACA
4571


1251289
2337428.1

uuu(Uhd)acugaL96
2337473.1

GudAcdTcgacasusu
CUUUUACUGG



.1













AD-
A-
4040
usgsucgagudAcdAc
A-
4306
VPusCfsagdTadAaag
AAUGUCGAGUACA
4572


1251252
2337428.1

uuu(Uhd)acugaL96
2337429.1

udGudAcUfcgacasus
CUUUUACUGG



.1





u







AD-
A-
4041
usgsucgagudAcdAc
A-
4307
VPusCfsagdTadAaag
AAUGUCGAGUACA
4573


1251285
2337428.1

uuu(Uhd)acugaL96
2337468.1

udGudAcdTcgacascs
CUUUUACUGG



.1





c







AD-
A-
4042
usgsucgagudAcdAc
A-
4308
VPuCfagdTadAaagud
AAUGUCGAGUACA
4574


1251291
2337428.1

uuu(Uhd)acugaL96
2337475.1

GudAcdTcgacascsc
CUUUUACUGG



.1













AD-
A-
4043
usgsucgaguAfCfAfc
A-
4309
VPuCfagdTadAaagud
AAUGUCGAGUACA
4575


1251290
2337423.1

uuu(Uhd)acugaL96
2337474.1

GuAfcdTcgacasusu
CUUUUACUGG



.1













AD-
A-
4044
uscsgaguAfCfAfcuu
A-
4310
VPusCfsagdTadAaag
UGUCGAGUACACU
4576


1251251
2337426.1

u(Uhd)acugaL96
2337427.1

uguAfcUfcgascsg
UUUACUGG



.1













AD-
A-
4045
uscsgagudAcdAcuu
A-
4311
VPusCfsagdTadAaag
UGUCGAGUACACU
4577


1251287
2337470.1

u(Uhd)acugaL96
2337471.1

udGudAcdTcgascsg
UUUACUGG



.1













AD-
A-
4046
uscsgaguAfCfAfcuu
A-
4312
VPusCfsagdTadAaag
UGUCGAGUACACU
4578


1251288
2337426.1

u(Uhd)acugaL96
2337472.1

udGuAfcdTcgascsg
UUUACUGG



.1













AD-
A-
4047
gsasggc(Uhd)UfcUf
A-
4313
VPuUfucdTc(C2p)ua
AAGAGGCUUCUGU
4579


1251326
2337525.1

gUfguaggagaaaL96
2337526.1

cadCadGaAfgccucsu
GUAGGAGAAU



.1





SU







AD-
A-
4048
asgsgcu(Uhd)cudGu
A-
4314
VPudAuudCu(C2p)cu
AGAGGCUUCUGUG
4580


1251327
1851778.1

dGuaggagaauaL96
2337527.1

acdAcdAgdAagccusc
UAGGAGAAUU



.1





SU







AD-
A-
4049
gsgscuu(Chd)UfgUf
A-
4315
VPudAaudTc(Tgn)cc
GAGGCUUCUGUGU
4581


1251328
2337528.1

gUfaggagaauuaL96
2337529.1

uadCaCfadGaagccsu
AGGAGAAUUC



.1





sc







AD-
A-
4050
gscsuuc(Uhd)gugUf
A-
4316
VPudGaadTu(C2p)uc
AGGCUUCUGUGUA
4582


1251329
2337530.1

AfggagaauucaL96
2337531.1

cuacAfcAfgaagcscsu
GGAGAAUUCA



.1













AD-
A-
4051
csusucug(Uhd)gdTa
A-
4317
VPuUfgadAu(Tgn)cu
GGCUUCUGUGUAG
4583


1251330
2337532.1

dGgagaauucaaL96
2337533.1

ccdTaCfaCfagaagscs
GAGAAUUCAC



.1





c







AD-
A-
4052
ususcug(Uhd)GfuAf
A-
4318
VPusGfsugaAfuUfCf
GCUUCUGUGUAGG
4584


795366.
1522818.1

GfGfagaauucacaL96
1522819.1

uccuAfcAfcagaasgsc
AGAAUUCACU



3













AD-
A-
4053
ususcug(Uhd)GfuAf
A-
4319
VPusGfsugdAa(Tgn)
GCUUCUGUGUAGG
4585


1251331
1522818.1

GfGfagaauucacaL96
2337534.1

ucuccuAfcAfcagaasg
AGAAUUCACU



.1





sc







AD-
A-
4054
ususcug(Uhd)guAfg
A-
4320
VPusdGsugdAa(U2p)
GCUUCUGUGUAGG
4586


1251334
2337536.1

dGagaauucacaL96
2337538.1

ucucdCuAfcAfcagaas
AGAAUUCACU



.1





gsc







AD-
A-
4055
ususcug(Uhd)guAfg
A-
4321
VPusdGsugdAa(Tgn)
GCUUCUGUGUAGG
4587


1251333
2337536.1

dGagaauucacaL96
2337537.1

ucucdCuAfcAfcagaas
AGAAUUCACU



.1





gsc







AD-
A-
4056
ususcug(Uhd)gudAg
A-
4322
VPudGugdAa(U2p)u
GCUUCUGUGUAGG
4588


1251338
1851786.1

dGagaauucacaL96
2337542.1

cucdCudAcdAcagaas
AGAAUUCACU



.1





gsc







AD-
A-
4057
ususcug(Uhd)gudAg
A-
4323
VPudGugdAa(Tgn)uc
GCUUCUGUGUAGG
4589


1251337
1851786.1

dGagaauucacaL96
2337541.1

ucdCudAcdAcagaasg
AGAAUUCACU



.1





sc







AD-
A-
4058
ususcug(Uhd)guAfg
A-
4324
VPusdGsugdAa(U2p)
GCUUCUGUGUAGG
4590


1251336
2337536.1

dGagaauucacaL96
2337540.1

ucucdCuAfcAfcagaas
AGAAUUCACU



.1





use







AD-
A-
4059
ususcug(Uhd)guAfg
A-
4325
VPusdGsugdAa(Tgn)
GCUUCUGUGUAGG
4591


1251335
2337536.1

dGagaauucacaL96
2337539.1

ucucdCuAfcAfcagaas
AGAAUUCACU



.1





use







AD-
A-
4060
uscsuguguadGgdAg
A-
4326
VPudAgudGa(Agn)u
CUUCUGUGUAGGA
4592


1251339
2337543.1

aau(Uhd)cacuaL96
2337544.1

ucudCcUfaCfacagasg
GAAUUCACUU



.1





sg







AD-
A-
4061
csusgug(Uhd)agdGa
A-
4327
VPudAagdTgdAauuc
UUCUGUGUAGGA
4593


1251340
1851790.1

dGaauucacuuaL96
2337545.1

dTcCfudAcacagsgsg
GAAUUCACUUU



.1













AD-
A-
4062
usgsug(Uhd)aggAfg
A-
4328
VPudAaadGu(G2p)a
UCUGUGUAGGAGA
4594


1251341
2337546.1

AfauucacuuuaL96
2337547.1

auudCuCfcUfacacas
AUUCACUUUU



.1





gsg







AD-
A-
4063
gsusguaggadGadAu
A-
4329
VPudAaadAgdTgaau
CUGUGUAGGAGAA
4595


1251342
2337548.1

uca(Chd)uuuuaL96
2337549.1

dTcUfcCfuacacsgsg
UUCACUUUUC



.1













AD-
A-
4064
usgsuaggagdAaUfu
A-
4330
VPusdGsaadAa(G2p)
UGUGUAGGAGAA
4596


1251347
2337481.1

cac(Uhd)uuucaL96
2337555.1

ugaadTuCfuCfcuacas
UUCACUUUUCU



.1





esg







AD-
A-
4065
usgsuag(Ghd)AfgAf
A-
4331
VPusGfsaaaAfgUfGfa
UGUGUAGGAGAA
4597


795371.
1522828.1

AfUfucacuuuucaL96
1522829.1

auuCfuCfcuacascsa
UUCACUUUUCU



3













AD-
A-
4066
usgsuag(Ghd)agdAa
A-
4332
VPusdGsaadAadGug
UGUGUAGGAGAA
4598


1010663
1851796.1

dTucacuuuucaL96
1875201.1

aadTudCudCcuacasc
UUCACUUUUCU



.3





sa







AD-
A-
4067
usgsuaggagdAaUfU
A-
4333
VPudGaadAa(G2p)u
UGUGUAGGAGAA
4599


1251301
2337482.1

fcac(Uhd)uuucaL96
2337486.1

gaadTudCudCcuacas
UUCACUUUUCU



.1





csg







AD-
A-
4068
usgsuaggagdAaUfu
A-
4334
VPusdGsaadAadAug
UGUGUAGGAGAA
4600


1251348
2337556.1

cau(Uhd)uuucaL96
2337557.1

aadTuCfuCfcuacascs
UUCACUUUUCU



.1





g







AD-
A-
4069
usgsuaggAfgAfAfUf
A-
4335
VPusGfsaaaAfgUfGfa
UGUGUAGGAGAA
4601


1251343
2337550.1

ucac(Uhd)uuucaL96
1522829.1

auuCfuCfcuacascsa
UUCACUUUUCU



.1













AD-
A-
4070
usgsuaggAfgAfAfUf
A-
4336
VPusdGsaadAa(G2p)
UGUAGGAGAAUUC
4602


1251346
2337550.1

ucac(Uhd)uuucaL96
2337554.1

ugaauuCfuCfcuascsg
ACUUUUCU



.1













AD-
A-
4071
usgsuaggagdAadTu
A-
4337
VPudGaadAa(G2p)u
UGUGUAGGAGAA
4603


1251299
2337476.1

cac(Uhd)uuucaL96
2337486.1

gaadTudCudCcuacas
UUCACUUUUCU



.1





csg







AD-
A-
4072
usgsuaggAfgAfAfUf
A-
4338
VPusdGsaadAadAug
UGUGUAGGAGAA
4604


1251345
2337552.1

ucau(Uhd)uuucaL96
2337553.1

aauuCfuCfcuacascsg
UUCACUUUUCU



.1













AD-
A-
4073
usgsuaggagdAaUfu
A-
4339
VPudGaadAa(G2p)u
UGUGUAGGAGAA
4605


1251349
2337481.1

cac(Uhd)uuucaL96
2337558.1

gaadTuCfuCfcuacasc
UUCACUUUUCU



.1





sg







AD-
A-
4074
usgsuaggagdAadTu
A-
4340
VPusdGsaadAadGug
UGUGUAGGAGAA
4606


1251292
2337476.1

cac(Uhd)uuucaL96
2337477.1

aadTudCudCcuacasc
UUCACUUUUCU



.1





sg







AD-
A-
4075
usgsuaggagdAadTu
A-
4341
VPusdGsaadAa(G2p)
UGUGUAGGAGAA
4607


1251293
2337476.1

cac(Uhd)uuucaL96
2337478.1

ugaadTudCudCcuac
UUCACUUUUCU



.1





ascsg







AD-
A-
4076
usgsuaggagdAadTu
A-
4342
VPusdGsaadAadAug
UGUGUAGGAGAA
4608


1251294
2337479.1

cau(Uhd)uuucaL96
2337480.1

aadTudCudCcuacasc
UUCACUUUUCU



.1





sg







AD-
A-
4077
usgsuaggAfgAfAfUf
A-
4343
VPusdGsaadAa(G2p)
UGUGUAGGAGAA
4609


1251344
2337550.1

ucac(Uhd)uuucaL96
2337551.1

ugaauuCfuCfcuacasc
UUCACUUUUCU



.1





sg







AD-
A-
4078
usgsuaggagdAaUfu
A-
4344
VPudGaadAa(G2p)u
UGUGUAGGAGAA
4610


1251300
2337481.1

cac(Uhd)uuucaL96
2337486.1

gaadTudCudCcuacas
UUCACUUUUCU



.1





csg







AD-
A-
4079
usgsuaggagdAaUfu
A-
4345
VPusdGsaadAa(G2p)
UGUGUAGGAGAA
4611


1251295
2337481.1

cac(Uhd)uuucaL96
2337478.1

ugaadTudCudCcuac
UUCACUUUUCU



.1





ascsg







AD-
A-
4080
usgsuaggagdAaUfu
A-
4346
VPusdGsaadAa(G2p)
UGUGUAGGAGAA
4612


1251296
2337482.1

fcac(Uhd)uuucaL96
2337478.1

ugaadTudCudCcuac
UUCACUUUUCU



.1





ascsg







AD-
A-
4081
gsusaggagaAfUfUfc
A-
4347
VPusAfsgadAadAgug
GUGUAGGAGAAU
4613


1251350
2337559.1

acu(Uhd)uucuaL96
2337560.1

aauUfcUfccuacsgsc
UCACUUUUCUU



.1













AD-
A-
4082
gsusaggagaaUfUfca
A-
4348
VPudAgadAadAguga
GUGUAGGAGAAU
4614


1251351
2337561.1

cu(Uhd)uucuaL96
2337562.1

auUfcUfccuacsgsc
UCACUUUUCUU



.1













AD-
A-
4083
usasggagaaUfUfCfa
A-
4349
VPusdAsagdAadAag
UGUAGGAGAAUUC
4615


1251353
2337565.1

cuu(Uhd)ucuuaL96
2337566.1

ugaaUfuCfuccuascsg
ACUUUUCUUC



.1













AD-
A-
4084
usasggagAfaUfUfCf
A-
4350
VPusAfsagdAadAagu
UGUAGGAGAAUUC
4616


1251352
2337563.1

acuu(Uhd)ucuuaL96
2337564.1

gaaUfuCfuccuascsg
ACUUUUCUUC



.1













AD-
A-
4085
usasggagdAaUfUfca
A-
4351
VPusdGsaadAa(G2p)
UGUAGGAGAAUUC
4617


1251298
2337485.1

c(Uhd)uuucaL96
2337484.1

ugaadTudCudCcuasc
ACUUUUCU



.1





sg







AD-
A-
4086
usasggagdAaUfucac
A-
4352
VPusdGsaadAa(G2p)
UGUAGGAGAAUUC
4618


1251297
2337483.1

(Uhd)uuucaL96
2337484.1

ugaadTudCudCcuasc
ACUUUUCU



.1





sg







AD-
A-
4087
asgsgagaauUfcdAcu
A-
4353
VPudGaadGadAaagu
GUAGGAGAAUUCA
4619


1251354
2337567.1

uu(Uhd)cuucaL96
2337568.1

dGaAfuUfcuccusgsc
CUUUUCUUCG



.1













AD-
A-
4088
gsgsagaaUfuCfAfCf
A-
4354
VPusCfsgadAgdAaaa
UAGGAGAAUUCAC
4620


1251355
2337569.1

uuuu(Chd)uucgaL96
2337570.1

gugAfaUfucuccsusg
UUUUCUUCGU



.1













AD-
A-
4089
gsgsagaaUfuCfaCfu
A-
4355
VPuCfgadAgdAaaagd
UAGGAGAAUUCAC
4621


1251356
2337571.1

uuu(Chd)uucgaL96
2337572.1

TgdAaUfucuccsusg
UUUUCUUCGU



.1













AD-
A-
4090
gsasgaa(Uhd)UfcaC
A-
4356
VPudAcgdAadGaaaa
AGGAGAAUUCACU
4622


1251357
2337573.1

fUfuuucuucguaL96
2337574.1

dGudGadAuucucscs
UUUCUUCGUG



.1





u







AD-
A-
4091
cscsugaagcAfUfAfa
A-
4357
VPusdGsaadAadCau
AACCUGAAGCAUA
4623


1251358
2337575.1

aug(Uhd)uuucaL96
2337576.1

uudAudGcUfucaggs
AAUGUUUUCG



.1





USU







AD-
A-
4092
csusgaagCfaUfAfAf
A-
4358
VPusCfsgadAadAcau
ACCUGAAGCAUAA
4624


1251359
2337577.1

augu(Uhd)uucgaL96
2337578.1

uuaUfgCfuucagsgsu
AUGUUUUCGA



.1













AD-
A-
4093
csusgaagcadTadAau
A-
4359
VPuCfgadAadAcauu
ACCUGAAGCAUAA
4625


1251360
2337579.1

gu(Uhd)uucgaL96
2337580.1

uaUfgCfuucagsgsu
AUGUUUUCGA



.1













AD-
A-
4094
usgsaag(Chd)audAa
A-
4360
VPuUfcgdAadAacau
CCUGAAGCAUAAA
4626


1251361
1852317.1

dAuguuuucgaaL96
2337581.1

dTuAfudGcuucasgsg
UGUUUUCGAA



.1













AD-
A-
4095
gsasagcauadAaUfgu
A-
4361
VPuUfucdGadAaaca
CUGAAGCAUAAAU
4627


1251363
2337584.1

uu(Uhd)cgaaaL96
2337585.1

dTuUfaUfgcuucsasg
GUUUUCGAAA



.1













AD-
A-
4096
gsasagcaUfaAfAfUf
A-
4362
VPusUfsucdGadAaac
CUGAAGCAUAAAU
4628


1251362
2337582.1

guuu(Uhd)cgaaaL96
2337583.1

auuUfaUfgcuucsasg
GUUUUCGAAA



.1













AD-
A-
4097
asasgca(Uhd)aadAu
A-
4363
VPuUfuudCgdAaaac
UGAAGCAUAAAUG
4629


1251364
1812604.1

dGuuuucgaaaaL96
2337586.1

dAuUfudAugcuuscsg
UUUUCGAAAU



.1













AD-
A-
4098
asgscauaaaUfgUfuu
A-
4364
VPudAuudTc(G2p)aa
GAAGCAUAAAUGU
4630


1251372
2337591.1

u(Chd)gaaauaL96
2337598.1

aadCaUfuUfaugcusu
UUUCGAAAUU



.1





sc







AD-
A-
4099
asgscauaAfaUfGfUf
A-
4365
VPusAfsuuuCfgAfAfa
GAAGCAUAAAUGU
4631


1251366
2337589.1

uuu(Chd)gaaauaL96
1523300.1

acaUfuUfaugcususc
UUUCGAAAUU



.1













AD-
A-
4100
asgscauaAfaUfGfUf
A-
4366
VPusAfsuudTc(G2p)a
GAAGCAUAAAUGU
4632


1251367
2337589.1

uuu(Chd)gaaauaL96
2337590.1

aaacaUfuUfaugcusu
UUUCGAAAUU



.1





sc







AD-
A-
4101
asgscau(Ahd)AfaUf
A-
4367
VPusAfsuuuCfgAfAfa
GAAGCAUAAAUGU
4633


795634.
1523299.1

GfUfuuucgaaauaL9
1523300.1

acaUfuUfaugcususc
UUUCGAAAUU



4


6










AD-
A-
4102
asgscauaaaUfgUfuu
A-
4368
VPusAfsuudTcdAaaa
GAAGCAUAAAUGU
4634


1251369
2337593.1

u(Uhd)gaaauaL96
2337594.1

adCaUfuUfaugcusus
UUUCGAAAUU



.1





c







AD-
A-
4103
asgscauaaaUfgUfuu
A-
4369
VPusAfsuudTc(G2p)a
GAAGCAUAAAUGU
4635


1251368
2337591.1

u(Chd)gaaauaL96
2337592.1

aaadCaUfuUfaugcus
UUUCGAAAUU



.1





use







AD-
A-
4104
asgscauaaaUfgUfuu
A-
4370
VPudAuudTc(G2p)aa
GAAGCAUAAAUGU
4636


1251373
2337591.1

u(Chd)gaaauaL96
2337599.1

aadCaUfuUfaugcusc
UUUCGAAAUU



.1





sc







AD-
A-
4105
asgsca(Uhd)aaaUfg
A-
4371
VPudAuudTcdGaaaa
GAAGCAUAAAUGU
4637


1251365
2337587.1

UfuuucgaaauaL96
2337588.1

dCaUfuUfaugcususc
UUUCGAAAUU



.1













AD-
A-
4106
asgscauaaaUfgUfuu
A-
4372
VPusdAsuudTc(G2p)
GAAGCAUAAAUGU
4638


1251370
2337591.1

u(Chd)gaaauaL96
2337595.1

aaaadCaUfuUfaugcu
UUUCGAAAUU



.1





scsc







AD-
A-
4107
gscsa(Uhd)aaaugUf
A-
4373
VPusdAsaudTu(C2p)
AAGCAUAAAUGUU
4639


1251374
2337600.1

UfuucgaaauuaL96
2337601.1

gaaaacAfuUfuaugcs
UUCGAAAUUC



.1





usu







AD-
A-
4108
csasuaaa(Uhd)gUfU
A-
4374
VPusdGsaadTu(Tgn)
AGCAUAAAUGUUU
4640


1251375
2337602.1

fUfucgaaauucaL96
2337603.1

cgaaaaCfaUfuuaugsc
UCGAAAUUCA



.1





su







AD-
A-
4109
csasuaaaUfgUfuuu(
A-
4375
VPusdAsuudTc(G2p)
AGCAUAAAUGUUU
4641


1251371
2337596.1

Chd)gaaauaL96
2337597.1

aaaadCaUfuUfaugsc
UCGAAAUU



.1





su







AD-
A-
4110
asusaaa(Uhd)guUfU
A-
4376
VPusUfsgadAudTucg
GCAUAAAUGUUUU
4642


1251376
2337604.1

fUfcgaaauucaaL96
2337605.1

aaaAfcAfuuuausgsc
CGAAAUUCAC



.1













AD-
A-
4111
asusaaa(Uhd)guUfU
A-
4377
VPusUfsgadAudTucg
GCAUAAAUGUUUU
4643


1251377
2337604.1

fUfcgaaauucaaL96
2337606.1

aaaAfcAfuuuausgsu
CGAAAUUCAC



.1













AD-
A-
4112
usasaaugUfuUfuCfg
A-
4378
VPudGugdAadTuucg
CAUAAAUGUUUUC
4644


1251378
2337607.1

aaa(Uhd)ucacaL96
2337608.1

dAadAaCfauuuasusg
GAAAUUCACU



.1













AD-
A-
4113
asasaug(Uhd)uuUfc
A-
4379
VPudAgudGa(A2p)u
AUAAAUGUUUUCG
4645


1251379
2337609.1

dGaaauucacuaL96
2337610.1

uucdGaAfaAfcauuus
AAAUUCACUU



.1





gsu







AD-
A-
4114
usasca(Uhd)gAfuCf
A-
4380
VPusAfscgdAcdAaag
CCUACAUGAUCUU
4646


1251380
2337611.1

UfUfcuuugucguaL96
2337612.1

aagAfuCfauguasgsg
CUUUGUCGUA



.1













AD-
A-
4115
usasca(Uhd)gauCfU
A-
4381
VPudAscgdAcdAaag
CCUACAUGAUCUU
4647


1251381
2337613.1

fUfcuuugucguaL96
2337614.1

aagAfuCfauguascsc
CUUUGUCGUA



.1













AD-
A-
4116
ascsaugaUfcUfUfCf
A-
4382
VPuUfacdGa(C2p)aa
CUACAUGAUCUUC
4648


1251382
2337615.1

uuug(Uhd)cguaaL96
2337616.1

agdAadGaUfcaugusg
UUUGUCGUAG



.1





sg







AD-
A-
4117
csasuga(Uhd)CfuUf
A-
4383
VPuCfuadCgdAcaaad
UACAUGAUCUUCU
4649


1251384
1523843.1

CfUfuugucguagaL96
2337457.1

GadAgdAucaugsusg
UUGUCGUAGU



.1













AD-
A-
4118
csasuga(Uhd)cuUfC
A-
4384
VPuCfuadCgdAcaaad
UACAUGAUCUUCU
4650


1251274
2337449.1

fUfuugucguagaL96
2337457.1

GadAgdAucaugsusg
UUGUCGUAGU



.2













AD-
A-
4119
csasuga(Uhd)cudTc
A-
4385
VPusdCsuadCgdAcaa
UACAUGAUCUUCU
4651


961188.
1812612.1

dTuugucguagaL96
1812613.1

adGadAgdAucaugsu
UUGUCGUAGU



3





sa







AD-
A-
4120
csasuga(Uhd)CfuUf
A-
4386
VPusCfsuadCgdAcaa
UACAUGAUCUUCU
4652


1251383
1523843.1

CfUfuugucguagaL96
2337617.1

agaAfgAfucaugsusg
UUGUCGUAGU



.1













AD-
A-
4121
csasuga(Uhd)cuUfC
A-
4387
VPusCfsuadCgdAcaa
UACAUGAUCUUCU
4653


1251269
2337449.1

fUfuugucguagaL96
2337451.1

adGadAgdAucaugsu
UUGUCGUAGU



.1





sg







AD-
A-
4122
csasuga(Uhd)cuUfC
A-
4388
VPusdCsuadCgdAcaa
UACAUGAUCUUCU
4654


1251270
2337449.1

fUfuugucguagaL96
2337452.1

adGadAgdAucaugscs
UUGUCGUAGU



.1





c







AD-
A-
4123
csasuga(Uhd)cuUfC
A-
4389
VPusdCsuadCgdAcaa
UACAUGAUCUUCU
4655


1251268
2337449.1

fUfuugucguagaL96
2337450.1

adGadAgdAucaugsu
UUGUCGUAGU



.1





sg







AD-
A-
4124
csasuga(Uhd)cuUfC
A-
4390
VPuCfuadCgdAcaaad
UACAUGAUCUUCU
4656


1251274
2337449.1

fUfuugucguagaL96
2337457.1

GadAgdAucaugsusg
UUGUCGUAGU



.1













AD-
A-
4125
csasuga(Uhd)cuUfC
A-
4391
VPusCfsuadCgdAcaa
UACAUGAUCUUCU
4657


1251271
2337449.1

fUfuugucguagaL96
2337453.1

adGadAgdAucaugscs
UUGUCGUAGU



.1





c







AD-
A-
4126
csasuga(Uhd)cuUfC
A-
4392
VPudCuadCgdAcaaa
UACAUGAUCUUCU
4658


1251275
2337449.1

fUfuugucguagaL96
2337458.1

dGadAgdAucaugsus
UUGUCGUAGU



.2





g







AD-
A-
4127
csasuga(Uhd)cuUfC
A-
4393
VPudCuadCgdAcaaa
UACAUGAUCUUCU
4659


1251275
2337449.1

fUfuugucguagaL96
2337458.1

dGadAgdAucaugsus
UUGUCGUAGU



.1





g







AD-
A-
4128
asusgau(Chd)UfuCf
A-
4394
VPudAcudAcdGacaa
ACAUGAUCUUCUU
4660


1251385
1523845.1

UfUfugucguaguaL96
2337618.1

dAgdAadGaucausgs
UGUCGUAGUG



.1





u







AD-
A-
4129
usgsaucuUfCfUfuug
A-
4395
VPusdCsuadCgdAcaa
CAUGAUCUUCUUU
4661


1251272
2337454.1

u(Chd)guagaL96
2337455.1

adGadAgdAucasusg
GUCGUAGU



.1













AD-
A-
4130
usgsauc(Uhd)UfcUf
A-
4396
VPudCacdTadCgacad
CAUGAUCUUCUUU
4662


1251386
1523847.1

UfUfgucguagugaL96
2337619.1

AadGadAgaucasusg
GUCGUAGUGA



.1













AD-
A-
4131
usgsaucuUfCfUfuug
A-
4397
VPusCfsuadCgdAcaa
CAUGAUCUUCUUU
4663


1251273
2337454.1

u(Chd)guagaL96
2337456.1

adGadAgdAucasusg
GUCGUAGU



.1













AD-
A-
4132
gsasucu(Uhd)CfuUf
A-
4398
VPusUfscadCu(A2p)c
AUGAUCUUCUUUG
4664


1251390
2337622.1

udGucguagugaaL96
2337624.1

gacdAaAfgAfagaucsg
UCGUAGUGAU



.1





su







AD-
A-
4133
gsasucu(Uhd)CfuUf
A-
4399
VPuUfcadCu(A2p)cg
AUGAUCUUCUUUG
4665


1251398
2337622.1

udGucguagugaaL96
2337630.1

acdAaAfgAfagaucsgs
UCGUAGUGAU



.1





u







AD-
A-
4134
gsasucu(Uhd)CfuUf
A-
4400
VPusUfscadCu(A2p)c
AUGAUCUUCUUUG
4666


1251396
2337629.1

UfgUfCfguagugaaL9
2337621.1

gacaaAfgAfagaucsgs
UCGUAGUGAU



.1


6


u







AD-
A-
4135
gsasucu(Uhd)CfuUf
A-
4401
VPuUfcadCu(A2p)cg
AUGAUCUUCUUUG
4667


1251399
2337628.1

udGUfcguagugaaL9
2337630.1

acdAaAfgAfagaucsgs
UCGUAGUGAU



.1


6


u







AD-
A-
4136
gsasucu(Uhd)CfuUf
A-
4402
VPusUfscacUfaCfGfa
AUGAUCUUCUUUG
4668


795913.
1523849.1

UfGfucguagugaaL96
1523850.1

caaAfgAfagaucsasu
UCGUAGUGAU



3













AD-
A-
4137
gsasucu(Uhd)CfuUf
A-
4403
VPuUfcadCu(A2p)cg
AUGAUCUUCUUUG
4669


1251400
2337629.1

UfgUfCfguagugaaL9
2337631.1

acaaAfgAfagaucsgsu
UCGUAGUGAU



.1


6










AD-
A-
4138
gsasucu(Uhd)CfuUf
A-
4404
VPusUfscadCu(A2p)c
AUGAUCUUCUUUG
4670


1251388
1523849.1

UfGfucguagugaaL96
2337621.1

gacaaAfgAfagaucsgs
UCGUAGUGAU



.1





u







AD-
A-
4139
gsasucu(Uhd)cudTu
A-
4405
VPusUfscadCu(A2p)c
AUGAUCUUCUUUG
4671


1251397
1812618.1

dGucguagugaaL96
2337624.1

gacdAaAfgAfagaucsg
UCGUAGUGAU



.1





SU







AD-
A-
4140
gsasucu(Uhd)CfuUf
A-
4406
VPusUfscadCu(A2p)c
AUGAUCUUCUUUG
4672


1251395
2337628.1

udGUfcguagugaaL9
2337624.1

gacdAaAfgAfagaucsg
UCGUAGUGAU



.1


6


su







AD-
A-
4141
gsasucu(Uhd)CfuUf
A-
4407
VPusUfscadCu(Agn)c
AUGAUCUUCUUUG
4673


1251387
1523849.1

UfGfucguagugaaL96
2337620.1

gacaaAfgAfagaucsgs
UCGUAGUGAU



.1





u







AD-
A-
4142
gsasucu(Uhd)CfuUf
A-
4408
VPusUfscadCu(Agn)c
AUGAUCUUCUUUG
4674


1251389
2337622.1

udGucguagugaaL96
2337623.1

gacdAaAfgAfagaucsg
UCGUAGUGAU



.1





su







AD-
A-
4143
gsasucu(Uhd)CfuUf
A-
4409
VPusUfscadCu(Agn)c
AUGAUCUUCUUUG
4675


1251393
2337628.1

udGUfcguagugaaL9
2337623.1

gacdAaAfgAfagaucsg
UCGUAGUGAU



.1


6


su







AD-
A-
4144
gsasucu(Uhd)CfuUf
A-
4410
VPusUfscadCu(Agn)c
AUGAUCUUCUUUG
4676


1251394
2337629.1

UfgUfCfguagugaaL9
2337620.1

gacaaAfgAfagaucsgs
UCGUAGUGAU



.1


6


u







AD-
A-
4145
asuscuu(Chd)UfuUf
A-
4411
VPudAsucdAc(Tgn)a
UGAUCUUCUUUG
4677


1251401
2337632.1

gUfcguagugauaL96
2337633.1

cgadCaAfadGaagaus
UCGUAGUGAUU



.1





csg







AD-
A-
4146
uscsu(Uhd)CfuUfud
A-
4412
VPusUfscadCu(Agn)c
GAUCUUCUUUGUC
4678


1251391
2337625.1

GucguagugaaL96
2337626.1

gacdAaAfgAfagasusc
GUAGUGAU



.1













AD-
A-
4147
uscsu(Uhd)CfuUfud
A-
4413
VPusUfscadCu(A2p)c
GAUCUUCUUUGUC
4679


1251392
2337625.1

GucguagugaaL96
2337627.1

gacdAaAfgAfagasusc
GUAGUGAU



.1













AD-
A-
4148
uscsuuc(Uhd)UfugU
A-
4414
VPudAaudCa(C2p)ua
GAUCUUCUUUGUC
4680


1251402
2337634.1

fCfguagugauuaL96
2337635.1

cgacAfaAfgaagasusc
GUAGUGAUUU



.1













AD-
A-
4149
csusucu(Uhd)ugUfc
A-
4415
VPudAaadTc(A2p)cu
AUCUUCUUUGUCG
4681


1251403
2337636.1

dGuagugauuuaL96
2337637.1

acdGaCfaAfagaagsgs
UAGUGAUUUU



.1





u







AD-
A-
4150
ususcuu(Uhd)guCfg
A-
4416
VPudAaadAu(C2p)ac
UCUUCUUUGUCGU
4682


1251404
2337638.1

UfagugauuuuaL96
2337639.1

uadCgAfcAfaagaasgs
AGUGAUUUUC



.1





g







AD-
A-
4151
uscsuuugUfcgUfAfg
A-
4417
VPudGaadAadTcacu
CUUCUUUGUCGUA
4683


1251405
2337640.1

uga(Uhd)uuucaL96
2337641.1

dAcdGaCfaaagasgsg
GUGAUUUUCC



.1













AD-
A-
4152
asusccu(Uhd)UfugU
A-
4418
VPusUfsgcdAa(G2p)
GGAUCCUUUUGUA
4684


1251406
2337642.1

fAfgaucuugcaaL96
2337643.1

aucuacAfaAfaggausc
GAUCUUGCAA



.1





sc







AD-
A-
4153
uscscuu(Uhd)UfgUf
A-
4419
VPusUfsugdCa(Agn)
GAUCCUUUUGUAG
4685


1251407
2337644.1

adGaucuugcaaaL96
2337645.1

gaucdTaCfaAfaaggas
AUCUUGCAAU



.1





use







AD-
A-
4154
cscsuuu(Uhd)gudAg
A-
4420
VPudAuudGc(A2p)ag
AUCCUUUUGUAGA
4686


1251408
1854629.1

dAucuugcaauaL96
2337646.1

audCuAfcAfaaaggsgs
UCUUGCAAUU



.1





u







AD-
A-
4155
csusuuugUfagAfUfc
A-
4421
VPusAfsaudTg(C2p)a
UCCUUUUGUAGAU
4687


1251409
2337647.1

uug(Chd)aauuaL96
2337648.1

agaucUfaCfaaaagsgs
CUUGCAAUUA



.1





g







AD-
A-
4156
ususuug(Uhd)agAfU
A-
4422
VPusUfsaadTu(G2p)




1251411
2337650.1

fCfuugcaauuaaL96
2337651.1

caagauCfuAfcaaagsc




.1





sc







AD-
A-
4157
ususuug(Uhd)AfgAf
A-
4423
VPusUfsaadTu(G2p)
CCUUUUGUAGAUC
4689


1251410
1525635.1

UfCfuugcaauuaaL96
2337649.1

caagauCfuAfcaaaasg
UUGCAAUUAC



.1





sg







AD-
A-
4158
ususug(Uhd)agaUfC
A-
4424
VPusGfsuaaUfuGfCf
CUUUUGUAGAUCU
4690


1251412
2337652.1

fUfugcaauuacaL96
2337653.1

aagaUfcUfacaaasgsg
UGCAAUUACC



.1













AD-
A-
4159
ususugu(Ahd)GfaUf
A-
4425
VPusGfsuaaUfuGfCf
CUUUUGUAGAUCU
4691


796825.
1525636.1

CfUfugcaauuacaL96
1257916.1

aagaUfcUfacaaasasg
UGCAAUUACC



3













AD-
A-
4160
ususug(Uhd)agaUfC
A-
4426
VPusdGsuadAu(Tgn)
CUUUUGUAGAUCU
4692


1251413
2337652.1

fUfugcaauuacaL96
2337654.1

gcaagaUfcUfacaaasg
UGCAAUUACC



.1





sg







AD-
A-
4161
ususug(Uhd)agaUfC
A-
4427
VPusdGsuadAu(U2p)
CUUUUGUAGAUCU
4693


1251414
2337652.1

fUfugcaauuacaL96
2337655.1

gcaagaUfcUfacaaasg
UGCAAUUACC



.1





sg







AD-
A-
4162
ususug(Uhd)agaUfC
A-
4428
VPudGuadAu(Tgn)gc
CUUUUGUAGAUCU
4694


1251415
2337652.1

fUfugcaauuacaL96
2337656.1

aagaUfcUfacaaasgsg
UGCAAUUACC



.1













AD-
A-
4163
ususug(Uhd)agaUfC
A-
4429
VPudGuadAu(U2p)g
CUUUUGUAGAUCU
4695


1251416
2337652.1

fUfugcaauuacaL96
2337657.1

caagaUfcUfacaaasgs
UGCAAUUACC



.1





g







AD-
A-
4164
ususguagauCfUfUfg
A-
4430
VPusdGsgudAa(U2p)
UUUUGUAGAUCU
4696


1251417
2337658.1

caa(Uhd)uaccaL96
2337659.1

ugcaagAfuCfuacaasg
UGCAAUUACCA



.1





sg







AD-
A-
4165
usgsuagaUfcUfudG
A-
4431
VPuUfggdTadAuugc
UUUGUAGAUCUU
4697


1251418
2337660.1

caau(Uhd)accaaL96
2337661.1

dAadGaUfcuacasgsg
GCAAUUACCAU



.1













AD-
A-
4166
gsusaga(Uhd)CfuUf
A-
4432
VPudAugdGudAauug
UUGUAGAUCUUGC
4698


1251419
2337662.1

gCfaauuaccauaL96
2337663.1

dCaAfgAfucuacsgsg
AAUUACCAUU



.1













AD-
A-
4167
usasgau(Chd)UfugC
A-
4433
VPusAfsaudGg(Tgn)a
UGUAGAUCUUGCA
4699


1251420
2337664.1

fAfauuaccauuaL96
2337665.1

auugcAfadGaucuasc
AUUACCAUUU



.1





sg







AD-
A-
4168
asgsauc(Uhd)UfgCf
A-
4434
VPusAfsaadTg(G2p)u
GUAGAUCUUGCAA
4700


1251421
1525641.1

AfAfuuaccauuuaL96
2337666.1

aauugCfaAfgaucusgs
UUACCAUUUG



.1





C







AD-
A-
4169
asgsauc(Uhd)ugCfa
A-
4435
VPudAaadTg(G2p)ua
GUAGAUCUUGCAA
4701


1251422
2337667.1

dAuuaccauuuaL96
2337668.1

audTgCfadAgaucusg
UUACCAUUUG



.1





sc







AD-
A-
4170
usasaau(Uhd)audG
A-
4436
VPudGgudTu(G2p)u
AAUAAAUUAUGUG
4702


1251423
1856083.1

udGaaacaaaccaL96
2337669.1

uucdAcAfuAfauuuas
AAACAAACCU



.1





usu







AD-
A-
4171
asasuua(Uhd)gudG
A-
4437
VPudAagdGu(U2p)u
UAAAUUAUGUGAA
4703


1251425
1856087.1

adAacaaaccuuaL96
2337672.1

guudTcAfcAfuaauus
ACAAACCUUA



.1





usg







AD-
A-
4172
asusuaugugdAadAc
A-
4438
VPuUfaadGg(Tgn)uu
AAAUUAUGUGAAA
4704


1251427
2337675.1

aaa(Chd)cuuaaL96
2337676.1

gudTuCfaCfauaausu
CAAACCUUAC



.1





SU







AD-
A-
4173
asusuaugUfgAfAfAf
A-
4439
VPusUfsaadGg(Tgn)
AAAUUAUGUGAAA
4705


1251426
2337673.1

caaa(Chd)cuuaaL96
2337674.1

uuguuuCfaCfauaaus
CAAACCUUAC



.1





usu







AD-
A-
4174
ususaug(Uhd)gaAfA
A-
4440
VPudGuadAg(G2p)u
AAUUAUGUGAAAC
4706


1251428
2337677.1

fCfaaaccuuacaL96
2337678.1

uuguuUfcAfcauaasu
AAACCUUACG



.1





SU







AD-
A-
4175
usasugu(Ghd)AfaAf
A-
4441
VPusCfsguaAfgGfUfu
AUUAUGUGAAACA
4707


797564.
1527042.1

CfAfaaccuuacgaL96
1527043.1

uguUfuCfacauasasu
AACCUUACGU



4













AD-
A-
4176
usasugugAfaAfCfAf
A-
4442
VPuCfgudAa(G2p)gu
AUUAUGUGAAACA
4708


1251434
2337679.1

aacc(Uhd)uacgaL96
2337687.1

uuguUfuCfacauasgs
AACCUUACGU



.1





u







AD-
A-
4177
usasugugAfaAfCfAf
A-
4443
VPusCfsgudAadAguu
AUUAUGUGAAACA
4709


1251431
2337681.1

aacu(Uhd)uacgaL96
2337682.1

uguUfuCfacauasgsu
AACCUUACGU



.1













AD-
A-
4178
usasugugaadAcdAa
A-
4444
VPusCfsgudAa(G2p)
AUUAUGUGAAACA
4710


1251433
2337685.1

acc(Uhd)uacgaL96
2337686.1

guuudGuUfuCfacaua
AACCUUACGU



.1





sgsu







AD-
A-
4179
usasugugAfaAfCfAf
A-
4445
VPusCfsgudAa(G2p)
AUUAUGUGAAACA
4711


1251430
2337679.1

aacc(Uhd)uacgaL96
2337680.1

guuuguUfuCfacauas
AACCUUACGU



.1





gsu







AD-
A-
4180
usasugugAfaAfCfAf
A-
4446
VPusCfsguaAfgGfUfu
AUUAUGUGAAACA
4712


1251429
2337679.1

aacc(Uhd)uacgaL96
1527043.1

uguUfuCfacauasasu
AACCUUACGU



.1













AD-
A-
4181
usasugugaadAcdAa
A-
4447
VPuCfgudAa(G2p)gu
AUUAUGUGAAACA
4713


1251435
2337685.1

acc(Uhd)uacgaL96
2337688.1

uudGuUfuCfacauasg
AACCUUACGU



.1





SU







AD-
A-
4182
asusgugaAfaCfAfAf
A-
4448
VPusAfscgdTa(A2p)g
UUAUGUGAAACAA
4714


1251438
2337689.1

accu(Uhd)acguaL96
2337691.1

guuugUfuUfcacausg
ACCUUACGUG



.1





sg







AD-
A-
4183
asusgugaAfaCfAfAf
A-
4449
VPusAfscguAfaGfGfu
UUAUGUGAAACAA
4715


1251436
2337689.1

accu(Uhd)acguaL96
1527045.1

uugUfuUfcacausasa
ACCUUACGUG



.1













AD-
A-
4184
asusgugaAfaCfAfAf
A-
4450
VPusAfscgdTa(Agn)g
UUAUGUGAAACAA
4716


1251437
2337689.1

accu(Uhd)acguaL96
2337690.1

guuugUfuUfcacausg
ACCUUACGUG



.1





sg







AD-
A-
4185
asusgug(Ahd)AfaCf
A-
4451
VPusAfscguAfaGfGfu
UUAUGUGAAACAA
4717


797565.
1527044.1

AfAfaccuuacguaL96
1527045.1

uugUfuUfcacausasa
ACCUUACGUG



4













AD-
A-
4186
asusgugaAfaCfAfAf
A-
4452
VPuAfcgdTa(Agn)gg
UUAUGUGAAACAA
4718


1251443
2337689.1

accu(Uhd)acguaL96
2337698.1

uuugUfuUfcacausgs
ACCUUACGUG



.1





g







AD-
A-
4187
asusgugaaaCfadAac
A-
4453
VPudAcgdTa(A2p)gg
UUAUGUGAAACAA
4719


1251444
2337695.1

cu(Uhd)acguaL96
2337699.1

uudTgUfuUfcacausg
ACCUUACGUG



.1





sg







AD-
A-
4188
asusgugaaaCfadAac
A-
4454
VPusdAscgdTa(A2p)
UUAUGUGAAACAA
4720


1251442
2337695.1

cu(Uhd)acguaL96
2337697.1

gguudTgUfuUfcacau
ACCUUACGUG



.1





sgsg







AD-
A-
4189
asusgugaaaCfadAac
A-
4455
VPusdAscgdTa(Agn)
UUAUGUGAAACAA
4721


1251441
2337695.1

cu(Uhd)acguaL96
2337696.1

gguudTgUfuUfcacau
ACCUUACGUG



.1





sgsg







AD-
A-
4190
usgsugaaacdAadAc
A-
4456
VPusdCsacdGudAag
UAUGUGAAACAAA
4722


1251445
2337700.1

cu(Uhd)acgugaL96
2337701.1

gudTudGuUfucacasu
CCUUACGUGA



.1





sg







AD-
A-
4191
gsusgaAfaCfAfAfacc
A-
4457
VPusAfscgdTa(Agn)g
AUGUGAAACAAAC
4723


1251439
2337692.1

u(Uhd)acguaL96
2337693.1

guuugUfuUfcacsgsu
CUUACGUG



.1













AD-
A-
4192
gsusgaaaCfadAaCfc
A-
4458
VPuUfcadCgdTaaggd
AUGUGAAACAAAC
4724


1251447
2337704.1

uua(Chd)gugaaL96
2337705.1

TuUfgUfuucacsgsu
CUUACGUGAA



.1













AD-
A-
4193
gsusgaaaCfaAfAfCfc
A-
4459
VPusUfscadCgdTaag
AUGUGAAACAAAC
4725


1251446
2337702.1

uua(Chd)gugaaL96
2337703.1

guuUfgUfuucacsgsu
CUUACGUGAA



.1













AD-
A-
4194
usgsaaa(Chd)aaaCf
A-
4460
VPusUfsucdAc(G2p)
UGUGAAACAAACC
4726


1251448
2337706.1

CfuuacgugaaaL96
2337707.1

uaagguUfudGuuuca
UUACGUGAAU



.1





scsa







AD-
A-
4195
gsasaacaaaCfCfUfu
A-
4461
VPusdAsuudCa(C2p)
GUGAAACAAACCU
4727


1251450
2337710.1

acg(Uhd)gaauaL96
2337711.1

guaaggUfuUfguuucs
UACGUGAAUU



.1





asc







AD-
A-
4196
gsasaacaAfaCfCfUfu
A-
4462
VPusAfsuudCa(C2p)g
GUGAAACAAACCU
4728


1251449
2337708.1

acg(Uhd)gaauaL96
2337709.1

uaaggUfuUfguuucsa
UACGUGAAUU



.1





sc







AD-
A-
4197
asasacaaacCfUfUfac
A-
4463
VPusdAsaudTc(A2p)




1251451
2337712.1

g(Uhd)gaauuaL96
2337713.1

cugadAgdGuUfuguu




.1





uscsg







AD-
A-
4198
usgsuga(Uhd)auaUf
A-
4464
VPudAugdTu(G2p)u
AUUGUGAUAUAU
4730


1251453
2337716.1

UfuuacaacauaL96
2337717.1

aaaauAfuAfucacasgs
UUUACAACAUC



.1





u







AD-
A-
4199
usgsuga(Uhd)AfuAf
A-
4465
VPusAfsugdTu(G2p)
AUUGUGAUAUAU
4731


1251452
2337714.1

UfUfuuacaacauaL96
2337715.1

uaaaauAfuAfucacas
UUUACAACAUC



.1





gsu







AD-
A-
4200
gsusga(Uhd)aUfaUf
A-
4466
VPudGaudGu(U2p)g
UUGUGAUAUAUU
4732


1251454
2337718.1

UfUfuacaacaucaL96
2337719.1

uaaaaUfaUfaucacsgs
UUACAACAUCC



.1





g







AD-
A-
4201
usgsaua(Uhd)auUf
A-
4467
VPudGgadTg(U2p)ug
UGUGAUAUAUUU
4733


1251455
2337720.1

UfUfacaacauccaL96
2337721.1

uaaaAfuAfuaucascsg
UACAACAUCCG



.1













AD-
A-
4202
gsasua(Uhd)aUfuUf
A-
4468
VPusCfsggdAudGuug
GUGAUAUAUUUU
4734


1251456
2337722.1

UfAfcaacauccgaL96
2337723.1

uaaAfaUfauaucsgsc
ACAACAUCCGU



.1













AD-
A-
4203
gsasua(Uhd)aUfuUf
A-
4469
VPuCfggdAudGuugu
GUGAUAUAUUUU
4735


1251457
2337724.1

udAcaacauccgaL96
2337725.1

dAadAaUfauaucsgsc
ACAACAUCCGU



.1













AD-
A-
4204
asusaua(Uhd)UfuUf
A-
4470
VPudAcgdGadTguug
UGAUAUAUUUUAC
4736


1251459
2337727.1

aCfaacauccguaL96
2337728.1

dTadAadAuauauscsg
AACAUCCGUU



.1













AD-
A-
4205
asusaua(Uhd)UfuUf
A-
4471
VPusAfscgdGadTguu
UGAUAUAUUUUAC
4737


1251458
1535069.1

AfCfaacauccguaL96
2337726.1

guaAfaAfuauauscsg
AACAUCCGUU



.1













AD-
A-
4206
usasuau(Uhd)UfuAf
A-
4472
VPusAfsacdGg(Agn)u
GAUAUAUUUUACA
4738


1251462
1535071.1

CfAfacauccguuaL96
2337731.1

guuguAfaAfauauasc
ACAUCCGUUA



.1





sc







AD-
A-
4207
usasuau(Uhd)UfuAf
A-
4473
VPusAfsacdGg(A2p)
GAUAUAUUUUACA
4739


1251461
1535071.1

CfAfacauccguuaL96
2337730.1

uguuguAfaAfauauas
ACAUCCGUUA



.1





use







AD-
A-
4208
usasuau(Uhd)UfuAf
A-
4474
VPuAfacdGg(Agn)ug
GAUAUAUUUUACA
4740


1251468
1535071.1

CfAfacauccguuaL96
2337738.1

uuguAfaAfauauascsc
ACAUCCGUUA



.1













AD-
A-
4209
usasuau(Uhd)UfuAf
A-
4475
VPusAfsacdGg(A2p)
GAUAUAUUUUACA
4741


1251463
1535071.1

CfAfacauccguuaL96
2337732.1

uguuguAfaAfauauas
ACAUCCGUUA



.1





CSC







AD-
A-
4210
usasuau(Uhd)UfuAf
A-
4476
VPusAfsacdGg(Agn)u
GAUAUAUUUUACA
4742


1251460
1535071.1

CfAfacauccguuaL96
2337729.1

guuguAfaAfauauasu
ACAUCCGUUA



.1





sc







AD-
A-
4211
usasuau(Uhd)uudA
A-
4477
VPudAacdGg(A2p)ug
GAUAUAUUUUACA
4743


1251469
1864159.1

cdAacauccguuaL96
2337739.1

uudGudAadAauauas
ACAUCCGUUA



.1





use







AD-
A-
4212
usasuau(Uhd)UfuAf
A-
4478
VPusAfsacgGfaUfGfu
GAUAUAUUUUACA
4744


801647.
1535071.1

CfAfacauccguuaL96
1535072.1

uguAfaAfauauasusc
ACAUCCGUUA



3













AD-
A-
4213
usasuau(Uhd)uudA
A-
4479
VPusdAsacdGg(A2p)
GAUAUAUUUUACA
4745


1251467
1864159.1

cdAacauccguuaL96
2337737.1

uguudGudAadAauau
ACAUCCGUUA



.1





asusc







AD-
A-
4214
usasuau(Uhd)Ufud
A-
4480
VPusdAsacdGg(A2p)
GAUAUAUUUUACA
4746


1251466
2337736.1

AcdAacauccguuaL9
2337737.1

uguudGudAadAauau
ACAUCCGUUA



.1


6


asusc







AD-
A-
4215
asusauu(Uhd)UfaCf
A-
4481
VPusUfsaadCgdGaug
AUAUAUUUUACAA
4747


1251470
1535073.1

AfAfcauccguuaaL96
2337740.1

uugUfaAfaauausgsu
CAUCCGUUAU



.1













AD-
A-
4216
asusauu(Uhd)UfaCf
A-
4482
VPuUfaadCgdGaugu
AUAUAUUUUACAA
4748


1251471
2337741.1

adAcauccguuaaL96
2337742.1

dTgUfadAaauausgsu
CAUCCGUUAU



.1













AD-
A-
4217
usasu(Uhd)UfuAfCf
A-
4483
VPusAfsacdGg(A2p)
UAUAUUUUACAAC
4749


1251465
2337733.1

AfacauccguuaL96
2337735.1

uguuguAfaAfauasus
AUCCGUUA



.1





g







AD-
A-
4218
usasuuu(Uhd)acdA
A-
4484
VPudAuadAcdGgaug
UAUAUUUUACAAC
4750


1251472
2337743.1

aCfauccguuauaL96
2337744.1

dTudGudAaaauasus
AUCCGUUAUU



.1





g







AD-
A-
4219
usasu(Uhd)UfuAfCf
A-
4485
VPusAfsacdGg(Agn)u
UAUAUUUUACAAC
4751


1251464
2337733.1

AfacauccguuaL96
2337734.1

guuguAfaAfauasusg
AUCCGUUA



.1













AD-
A-
4220
asusuuuaCfaAfCfAf
A-
4486
VPusAfsaudAadCgga
AUAUUUUACAACA
4752


1251473
2337745.1

uccg(Uhd)uauuaL96
2337746.1

uguUfgUfaaaausgsu
UCCGUUAUUA



.1













AD-
A-
4221
asusuuuacadAcdAu
A-
4487
VPudAaudAadCggau
AUAUUUUACAACA
4753


1251474
2337747.1

ccg(Uhd)uauuaL96
2337748.1

dGuUfgUfaaaausgsu
UCCGUUAUUA



.1













AD-
A-
4222
ususuua(Chd)aaCfa
A-
4488
VPuUfaadTadAcggad
UAUUUUACAACAU
4754


1251475
2337749.1

UfccguuauuaaL96
2337750.1

TgUfudGuaaaasusg
CCGUUAUUAC



.1













AD-
A-
4223
ususua(Chd)aacaUf
A-
4489
VPudGuadAudAacgg
AUUUUACAACAUC
4755


1251476
2337751.1

CfcguuauuacaL96
2337752.1

dAudGuUfguaaasgs
CGUUAUUACU



.1





u







AD-
A-
4224
csasaca(Chd)aaUfUf
A-
4490
VPudGcudAadGaaga
AACAACACAAUUU
4756


1251279
2337459.1

UfcuucuuagcaL96
2337464.1

dAaUfudGuguugsus
CUUCUUAGCA



.1





u







AD-
A-
4225
csasaca(Chd)aaUfUf
A-
4491
VPusdGscudAadGaa
AACAACACAAUUU
4757


1251276
2337459.1

UfcuucuuagcaL96
2337460.1

gadAaUfudGuguugs
CUUCUUAGCA



.1





USU







AD-
A-
4226
csasaca(Chd)aaUfUf
A-
4492
VPudGcudAadGaaga
AACAACACAAUUU
4758


1251280
2337459.1

UfcuucuuagcaL96
2337465.1

dAaUfudGuguugscsc
CUUCUUAGCA



.1













AD-
A-
4227
csasaca(Chd)aaUfUf
A-
4493
VPusdGscudAadGaa
AACAACACAAUUU
4759


1251277
2337459.1

UfcuucuuagcaL96
2337461.1

gadAaUfudGuguugs
CUUCUUAGCA



.1





CSC







AD-
A-
4228
csasaca(Chd)aadTu
A-
4494
VPusdGscudAadGaa
AACAACACAAUUU
4760


961334.
1812904.1

dTcuucuuagcaL96
1812905.1

gadAadTudGuguugs
CUUCUUAGCA



3





USU







AD-
A-
4229
ascsacaaUfUfUfcuu
A-
4495
VPusdGscudAadGaa
CAACACAAUUUCU
4761


1251278
2337462.1

c(Uhd)uagcaL96
2337463.1

gadAaUfudGugusus
UCUUAGCA



.1





g







AD-
A-
4230
gsgscuu(Chd)aadGu
A-
4496
VPuCfagdTadGgaacd
CUGGCUUCAAGUG
4762


1251477
1865763.1

dGuuccuacugaL96
2337753.1

AcUfudGaagccsgsg
UUCCUACUGU



.1













AD-
A-
4231
gscsuu(Chd)aagUfg
A-
4497
VPudAcadGu(Agn)gg
UGGCUUCAAGUGU
4763


1251478
2337754.1

UfuccuacuguaL96
2337755.1

aadCaCfuUfgaagcscs
UCCUACUGUC



.1





g







AD-
A-
4232
csusucaagugUfUfcc
A-
4498
VPusdGsacdAg(Tgn)
GGCUUCAAGUGUU
4764


1251479
2337756.1

ua(Chd)ugucaL96
2337757.1

aggaacAfcUfugaagsc
CCUACUGUCA



.1





sc







AD-
A-
4233
ususcaagUfgUfUfCf
A-
4499
VPuUfgadCa(G2p)ua
GCUUCAAGUGUUC
4765


1251481
2337758.1

cuac(Uhd)gucaaL96
2337760.1

ggaaCfaCfuugaasgsc
CUACUGUCAU



.1













AD-
A-
4234
ususcaagUfgUfUfCf
A-
4500
VPusUfsgadCa(G2p)
GCUUCAAGUGUUC
4766


1251480
2337758.1

cuac(Uhd)gucaaL96
2337759.1

uaggaaCfaCfuugaasg
CUACUGUCAU



.1





sc







AD-
A-
4235
uscsaag(Uhd)guUfC
A-
4501
VPusAfsugdAc(Agn)g
CUUCAAGUGUUCC
4767


1251482
2337761.1

fCfuacugucauaL96
2337762.1

uaggaAfcAfcuugasgs
UACUGUCAUG



.1





g







AD-
A-
4236
uscsaag(Uhd)guUfC
A-
4502
VPusdAsugdAc(A2p)
CUUCAAGUGUUCC
4768


1251483
2337761.1

fCfuacugucauaL96
2337763.1

guagdGadAcdAcuug
UACUGUCAUG



.1





asgsg







AD-
A-
4237
csasagugUfuCfCfUf
A-
4503
VPuCfaudGa(C2p)ag
UUCAAGUGUUCCU
4769


1251492
2337764.1

acug(Uhd)caugaL96
2337773.1

uaggAfaCfacuugscsc
ACUGUCAUGA



.1













AD-
A-
4238
csasagugUfuCfCfUf
A-
4504
VPusCfsaudGadCagu
UUCAAGUGUUCCU
4770


1251485
2337764.1

acug(Uhd)caugaL96
2337766.1

adGgdAaCfacuugsgs
ACUGUCAUGA



.1





g







AD-
A-
4239
csasagu(Ghd)UfuCf
A-
4505
VPusCfsaugAfcAfGfu
UUCAAGUGUUCCU
4771


802471.
1536717.1

CfUfacugucaugaL96
1536718.1

aggAfaCfacuugsasa
ACUGUCAUGA



4













AD-
A-
4240
csasagugUfuCfCfUf
A-
4506
VPusCfsaugAfcAfGfu
UUCAAGUGUUCCU
4772


1251486
2337764.1

acug(Uhd)caugaL96
1536718.1

aggAfaCfacuugsasa
ACUGUCAUGA



.1













AD-
A-
4241
csasagugUfuCfCfUf
A-
4507
VPusCfsaudGadCagu
UUCAAGUGUUCCU
4773


1251484
2337764.1

acug(Uhd)caugaL96
2337765.1

aggAfaCfacuugsgsg
ACUGUCAUGA



.1













AD-
A-
4242
csasagugUfuCfCfUf
A-
4508
VPuCfaudGa(C2p)ag
UUCAAGUGUUCCU
4774


1251491
2337764.1

acug(Uhd)caugaL96
2337772.1

uaggAfaCfacuugsgsg
ACUGUCAUGA



.1













AD-
A-
4243
csasagugUfuCfCfUf
A-
4509
VPusCfsaudGa(C2p)
UUCAAGUGUUCCU
4775


1251487
2337764.1

acug(Uhd)caugaL96
2337767.1

aguaggAfaCfacuugsg
ACUGUCAUGA



.1





sg







AD-
A-
4244
csasagugUfuCfCfUf
A-
4510
VPusCfsaudGa(C2p)
UUCAAGUGUUCCU
4776


1251488
2337764.1

acug(Uhd)caugaL96
2337768.1

aguaggAfaCfacuugsc
ACUGUCAUGA



.1





sc







AD-
A-
4245
csasagugUfuCfCfUf
A-
4511
VPusCfsaudGa(C2p)
UUCAAGUGUUCCU
4777


1251490
2337764.1

acug(Uhd)caugaL96
2337771.1

aguadGgdAaCfacuug
ACUGUCAUGA



.1





sgsg







AD-
A-
4246
asasgug(Uhd)UfcCf
A-
4512
VPuUfcadTg(A2p)ca
UCAAGUGUUCCUA
4778


1251494
2337775.1

udAcugucaugaaL96
2337776.1

gudAgdGadAcacuus
CUGUCAUGAC



.1





gsg







AD-
A-
4247
asgsugUfuCfCfUfac
A-
4513
VPuCfaudGa(C2p)ag
CAAGUGUUCCUAC
4779


1251493
2337769.1

ug(Uhd)caugaL96
2337774.1

uaggAfaCfacususg
UGUCAUGA



.1













AD-
A-
4248
asgsugUfuCfCfUfac
A-
4514
VPusCfsaudGa(C2p)
CAAGUGUUCCUAC
4780


1251489
2337769.1

ug(Uhd)caugaL96
2337770.1

aguaggAfaCfacususg
UGUCAUGA



.1













AD-
A-
4249
asgsugu(Uhd)CfcUf
A-
4515
VPudGucdAu(G2p)ac
CAAGUGUUCCUAC
4781


1251495
2337777.1

aCfugucaugacaL96
2337778.1

agdTadGgdAacacusu
UGUCAUGACC



.1





sg







AD-
A-
4250
gsusguu(Chd)CfuaC
A-
4516
VPudGgudCa(Tgn)ga
AAGUGUUCCUACU
4782


1251496
2337779.1

fUfgucaugaccaL96
2337780.1

caguAfgdGaacacsus
GUCAUGACCU



.1





u







AD-
A-
4251
usgsuuc(Chd)UfaCf
A-
4517
VPudAggdTc(Agn)ug
AGUGUUCCUACUG
4783


1251497
2337781.1

udGUfcaugaccuaL9
2337782.1

acdAgUfadGgaacasc
UCAUGACCUG



.1


6


SU







AD-
A-
4252
gsusucc(Uhd)acUfg
A-
4518
VPuCfagdGu(C2p)au
GUGUUCCUACUGU
4784


1251498
2337783.1

UfcaugaccugaL96
2337784.1

gadCadGudAggaacs
CAUGACCUGC



.1





gsc







AD-
A-
4253
ususgau(Ahd)GfuUf
A-
4519
VPusGfscaaAfcUfAfg
UUUUGAUAGUUA
4785


802552.
1536877.1

AfCfcuaguuugcaL96
1536878.1

guaAfcUfaucaasasa
CCUAGUUUGCA



3













AD-
A-
4254
ususgauagudTadCc
A-
4520
VPudGcadAadCuagg
UUUUGAUAGUUA
4786


1251267
2337439.1

uag(Uhd)uugcaL96
2337448.1

dTadAcUfaucaasgsg
CCUAGUUUGCA



.1













AD-
A-
4255
ususgauagudTadCc
A-
4521
VPusdGscadAadCua
UUUUGAUAGUUA
4787


1251260
2337439.1

uag(Uhd)uugcaL96
2337438.1

ggdTadAcUfaucaasg
CCUAGUUUGCA



.1





sg







AD-
A-
4256
ususgauaGfuUfAfCf
A-
4522
VPusGfscaaAfcUfAfg
UUUUGAUAGUUA
4788


1251256
2337433.1

cuag(Uhd)uugcaL96
1536878.1

guaAfcUfaucaasasa
CCUAGUUUGCA



.1













AD-
A-
4257
ususgauaguUfAfCfc
A-
4523
VPudGcadAadCuagg
UUUUGAUAGUUA
4789


1251265
2337436.1

uag(Uhd)uugcaL96
2337447.1

uaAfcUfaucaasgsg
CCUAGUUUGCA



.1













AD-
A-
4258
ususgau(Ahd)guUfA
A-
4524
VPusdGscadAadCua
UUUUGAUAGUUA
4790


1251257
2337434.1

fCfcuaguuugcaL96
2337435.1

gguaAfcUfaucaasgsg
CCUAGUUUGCA



.1













AD-
A-
4259
ususgauaguUfaCfcu
A-
4525
VPudGcadAadCuagg
UUUUGAUAGUUA
4791


1251266
2337437.1

ag(Uhd)uugcaL96
2337448.1

dTadAcUfaucaasgsg
CCUAGUUUGCA



.1













AD-
A-
4260
ususgauaguUfAfCfc
A-
4526
VPusdGscadAadTua




1251264
2337445.1

uaa(Uhd)uugcaL96
2337446.1

gguaAfcUfaucaasgsg




.1













AD-
A-
4261
ususgauaguUfaCfcu
A-
4527
VPusdGscadAadCua
UUUUGAUAGUUA
4793


1251259
2337437.1

ag(Uhd)uugcaL96
2337438.1

ggdTadAcUfaucaasg
CCUAGUUUGCA



.1





sg







AD-
A-
4262
ususgauaguUfAfCfc
A-
4528
VPusdGscadAadCua
UUUUGAUAGUUA
4794


1251258
2337436.1

uag(Uhd)uugcaL96
2337435.1

gguaAfcUfaucaasgsg
CCUAGUUUGCA



.1













AD-
A-
4263
gsasuagudTadCcua
A-
4529
VPusdGscadAadCua
UUGAUAGUUACCU
4795


1251263
2337444.1

g(Uhd)uugcaL96
2337443.1

ggdTadAcUfaucsgsg
AGUUUGCA



.1













AD-
A-
4264
gsasuaguUfaCfcuag
A-
4530
VPusdGscadAadCua
UUGAUAGUUACCU
4796


1251262
2337442.1

(Uhd)uugcaL96
2337443.1

ggdTadAcUfaucsgsg
AGUUUGCA



.1













AD-
A-
4265
gsasuaguUfAfCfcua
A-
4531
VPusdGscadAadCua
UUGAUAGUUACCU
4797


1251261
2337440.1

g(Uhd)uugcaL96
2337441.1

gguaAfcUfaucsgsg
AGUUUGCA



.1
















TABLE 13B







Exemplary Human SCN9A Unmodified Single Strands and Duplex Sequences.


Column 1 indicates duplex name; the number following the decimal point in a duplex name merely refers to a batch production number. Column


2 indicates the sense sequence name. Column 3 indicates the sequence ID for the sequence of column 4. Column 4 provides the unmodified


sequence of a sense strand suitable for use in a duplex described herein. Column 5 provides the position in the target mRNA (NM_001365536.1)


of the sense strand of Column 4. Column 6 indicates the antisense sequence name. Column 7 indicates the sequence ID for the sequence of


column 8. Column 8 provides the sequence of an antisense strand suitable for use in a duplex described herein, without specifying chemical


modifications. Column 9 indicates the position in the target mRNA (NM_001365536.1) that is complementary to the antisense strand of Column


8.
















Sense
Seq ID

mRNA target
Antisense


mRNA target


Duplex
sequence
NO:
Sense sequence
range in
sequence
Seq ID NO:
antisense sequence
range in


Name
name
(sense)
(5′-3′)
NM_001365536.1
name
(antisense)
(5′-3′)
NM_001365536.1





AD-
A-
4798
ACACAAAGGGAAAAC
 571-591
A-
5064
UAGATUGUUUUCCC



1251302.1
2337487.1

AAUCUA

2337488.1

UUUGUGUUC






AD-
A-
4799
CACAAAGGGAAAACA
 572-592
A-
5065
UAAGAUTGUUUUCC



1251303.1
2337489.1

AUCUUA

2337490.1

CUUUGUGUU






AD-
A-
4800
ACAAAGGGAAAACAA
 573-593
A-
5066
UGAAGATUGUUUU
 571-593


1251304.1
2337491.1

UCUUCA

2337492.1

CCCUUUGUGU






AD-
A-
4801
CAAAGGGAAAACAAU
 574-594
A-
5067
UGGAAGAUUGUUU
 572-594


1251305.1
2337493.1

CUUCCA

2337494.1

UCCCUUUGUG






AD-
A-
4802
AAAGGGAAAACAAUC
 575-595
A-
5068
UCGGAAGAUUGUU
 573-595


1251306.1
2337495.1

UUCCGA

2337496.1

UUCCCUUUGU






AD-
A-
4803
AAAGGGAAAACAAUC
 575-595
A-
5069
UCGGAAGAUUGTU
 573-595


1251307.1
2337497.1

UUCCGA

2337498.1

UUCCCUUUGU






AD-
A-
4804
AAGGGAAAACAAUCU
 576-596
A-
5070
UACGGAAGAUUGU
 574-596


1251315.1
2337506.1

UCCGUA

2337501.1

UUTCCCUUUG






AD-
A-
4805
AAGGGAAAACAAUCU
 576-596
A-
5071
UACGGAAGAUUGU
 574-596


1251310.1
2337499.1

UCCGUA

2337501.1

UUTCCCUUUG






AD-
A-
4806
AAGGGAAAACAAUCU
 576-596
A-
5072
UACGGAAGAUUGUT
 574-596


961179.3
1812594.1

UCCGUA

1812595.1

UTCCCUUUG






AD-
A-
4807
AAGGGAAAACAAUCU
 576-596
A-
5073
UACGGAAGAUUGUT
 574-596


1251308.1
2337499.1

UCCGUA

1812595.1

UTCCCUUUG






AD-
A-
4808
AAGGGAAAACAAUCU
 576-596
A-
5074
UACGGAAGAUUGU
 574-596


1251314.1
2337506.1

UCCGUA

2337500.1

UUTCCCUUUG






AD-
A-
4809
AAGGGAAAACAAUCU
 576-596
A-
5075
UACGGAAGAUUGU
 574-596


1251309.2
2337499.1

UCCGUA

2337500.1

UUTCCCUUUG






AD-
A-
4810
AAGGGAAAACAAUCU
 576-596
A-
5076
UACGGAAGAUUGU
 574-596


1251316.1
2337506.1

UCCGUA

2337507.1

UUTCCCUUUG






AD-
A-
4811
AAGGGAAAACAAUCU
 576-596
A-
5077
UACGGAAGAUUGU
 574-596


1251317.1
2337506.1

UCCGUA

2337508.1

UUTCCCUUUG






AD-
A-
4812
AAGGGAAAACAAUCU
 576-596
A-
5078
UACGGAAGAUUGU
 574-596


1251311.1
2337499.1

UCCGUA

2337502.1

UUTCCCUUCC






AD-
A-
4813
AAGGGAAAACAAUCU
 576-596
A-
5079
UACGGAAGAUUGU
 574-596


1251309.1
2337499.1

UCCGUA

2337500.1

UUTCCCUUUG






AD-
A-
4814
AGGGAAAACAAUCU
 577-597
A-
5080
UAACGGAAGAUUG
 575-597


1251318.1
2337509.1

UCCGUUA

2337510.1

UUUUCCCUUU






AD-
A-
4815
AGGGAAAACAAUCU
 577-597
A-
5081
UAACGGAAGAUTGU
 575-597


1251319.1
2337511.1

UCCGUUA

2337512.1

UUUCCCUUU






AD-
A-
4816
GGGAAAACAAUCUU
 578-596
A-
5082
UACGGAAGAUUGU
 576-596


1251313.1
2337503.1

CCGUA

2337505.1

UUTCCCUU






AD-
A-
4817
GGGAAAACAAUCUU
 578-596
A-
5083
UACGGAAGAUUGU
 576-596


1251312.1
2337503.1

CCGUA

2337504.1

UUTCCCUU






AD-
A-
4818
GGGAAAACAAUCUU
 578-598
A-
5084
UAAACGGAAGATUG
 576-598


1251320.1
2337513.1

CCGUUUA

2337514.1

UUUUCCCUU






AD-
A-
4819
GGAAAACAAUCUUCC
 579-599
A-
5085
UGAAACGGAAGAU
 577-599


1251321.1
2337515.1

GUUUCA

2337516.1

UGUUUUCCCU






AD-
A-
4820
GAAAACAAUCUUCCG
 580-600
A-
5086
UUGAAACGGAAGA
 578-600


1251323.1
2337519.1

UUUCAA

2337520.1

UUGUUUUCCC






AD-
A-
4821
GAAAACAAUCUUCCA
 580-600
A-
5087
UUGAAATGGAAGAU
 578-600


1251322.1
2337517.1

UUUCAA

2337518.1

UGUUUUCCC






AD-
A-
4822
AAAACAAUCUUCCGU
 581-601
A-
5088
UUUGAAACGGAAG
 579-601


1251325.1
2337523.1

UUCAAA

2337524.1

AUUGUUUUCC






AD-
A-
4823
AAAACAAUCUUCCGU
 581-601
A-
5089
UUUGAAACGGAAG
 579-601


1251324.1
2337521.1

UUCAAA

2337522.1

AUUGUUUUCC






AD-
A-
4824
UGUCGAGUACACUU
 760-780
A-
5090
UCAGTAAAAGUGUA
 758-780


1251249.1
2337423.1

UUACUGA

2337424.1

CUCGACAUU






AD-
A-
4825
UGUCGAGUACACUU
 760-780
A-
5091
UCAGTAAAAGUGUA
 758-780


1251254.1
2337423.1

UUACUGA

2337431.1

CUCGACACC



AD-
A-
4826
UGUCGAGUACACUU
 760-780
A-
5092
UCAGUAAAAGUGU
 758-780





1251248.1
2337423.1

UUACUGA

1522698.1

ACUCGACAUU



AD-
A-
4827
UGUCGAGUACACUU
 760-780
A-
5093
UCAGTAAAAGUGUA
 758-780


1251284.1
2337423.1

UUACUGA

2337467.1

CTCGACAUU






AD-
A-
4828
UGUCGAGUACACUU
 760-780
A-
5094
UCAGTAAAAGUGUA
 758-780


1251253.1
2337428.1

UUACUGA

2337430.1

CUCGACACC






AD-
A-
4829
UGUCGAGUACACUU
 760-780
A-
5095
UCAGTAAAAGUGUA
 758-780


1251286.1
2337423.1

UUACUGA

2337469.1

CTCGACACC






AD-
A-
4830
UGUCGAGUACACUU
 760-780
A-
5096
UCAGTAAAAGUGUA
 758-780


1251282.1
2337423.1

UUACUGA

1875199.1

CTCGACAUU






AD-
A-
4831
UGUCGAGUACACUU
 803-823
A-
5097
UCAGTAAAAGUGUA
 801-823


1010661.3
1851664.1

UUACUGA

1875199.1

CTCGACAUU






AD-
A-
4832
UGUCGAGUACACUU
 760-780
A-
5098
UCAGUAAAAGUGU
 758-780


795305.3
1522697.1

UUACUGA

1522698.1

ACUCGACAUU






AD-
A-
4833
UGUCGAGUACACUU
 760-780
A-
5099
UCAGTAAAAGUGUA
 758-780


1251250.1
2337423.1

UUACUGA

2337425.1

CUCGACACC






AD-
A-
4834
UGUCGAGUACACUU
 760-780
A-
5100
UCAGTAAAAGUGUA
 758-780


1251283.1
2337423.1

UUACUGA

2337466.1

CTCGACAUU






AD-
A-
4835
UGUCGAGUACACUU
 760-780
A-
5101
UCAGTAAAAGUGUA
 758-780


1251281.1
2337428.1

UUACUGA

2337466.1

CTCGACAUU






AD-
A-
4836
UGUCGAGUACACUU
 760-780
A-
5102
UCAGTAAAAGUGUA
 758-780


1251255.1
2337428.1

UUACUGA

2337432.1

CUCGACACC






AD-
A-
4837
UGUCGAGUACACUU
 760-780
A-
5103
UCAGTAAAAGUGUA
 758-780


1251289.1
2337428.1

UUACUGA

2337473.1

CTCGACAUU






AD-
A-
4838
UGUCGAGUACACUU
 760-780
A-
5104
UCAGTAAAAGUGUA
 758-780


1251252.1
2337428.1

UUACUGA

2337429.1

CUCGACAUU






AD-
A-
4839
UGUCGAGUACACUU
 760-780
A-
5105
UCAGTAAAAGUGUA
 758-780


1251285.1
2337428.1

UUACUGA

2337468.1

CTCGACACC






AD-
A-
4840
UGUCGAGUACACUU
 760-780
A-
5106
UCAGTAAAAGUGUA
 758-780


1251291.1
2337428.1

UUACUGA

2337475.1

CTCGACACC






AD-
A-
4841
UGUCGAGUACACUU
 760-780
A-
5107
UCAGTAAAAGUGUA
 758-780


1251290.1
2337423.1

UUACUGA

2337474.1

CTCGACAUU






AD-
A-
4842
UCGAGUACACUUUU
 762-780
A-
5108
UCAGTAAAAGUGUA
 760-780


1251251.1
2337426.1

ACUGA

2337427.1

CUCGACG






AD-
A-
4843
UCGAGUACACUUUU
 762-780
A-
5109
UCAGTAAAAGUGUA
 760-780


1251287.1
2337470.1

ACUGA

2337471.1

CTCGACG






AD-
A-
4844
UCGAGUACACUUUU
 762-780
A-
5110
UCAGTAAAAGUGUA
 760-780


1251288.1
2337426.1

ACUGA

2337472.1

CTCGACG






AD-
A-
4845
GAGGCUUCUGUGUA
 819-839
A-
5111
UUUCTCCUACACAG
 817-839


1251326.1
2337525.1

GGAGAAA

2337526.1

AAGCCUCUU






AD-
A-
4846
AGGCUUCUGUGUAG
 863-883
A-
5112
UAUUCUCCUACACA
 861-883


1251327.1
1851778.1

GAGAAUA

2337527.1

GAAGCCUCU






AD-
A-
4847
GGCUUCUGUGUAGG
 821-841
A-
5113
UAAUTCTCCUACAC
 819-841


1251328.1
2337528.1

AGAAUUA

2337529.1

AGAAGCCUC






AD-
A-
4848
GCUUCUGUGUAGGA
 822-842
A-
5114
UGAATUCUCCUACA
 820-842


1251329.1
2337530.1

GAAUUCA

2337531.1

CAGAAGCCU






AD-
A-
4849
CUUCUGUGTAGGAG
 823-843
A-
5115
UUGAAUTCUCCTAC
 821-843


1251330.1
2337532.1

AAUUCAA

2337533.1

ACAGAAGCC






AD-
A-
4850
UUCUGUGUAGGAGA
 824-844
A-
5116
UGUGAAUUCUCCU
 822-844


795366.3
1522818.1

AUUCACA

1522819.1

ACACAGAAGC






AD-
A-
4851
UUCUGUGUAGGAGA
 824-844
A-
5117
UGUGAATUCUCCUA
 822-844


1251331.1
1522818.1

AUUCACA

2337534.1

CACAGAAGC






AD-
A-
4852
UUCUGUGUAGGAGA
 824-844
A-
5118
UGUGAAUUCUCCU
 822-844


1251334.1
2337536.1

AUUCACA

2337538.1

ACACAGAAGC






AD-
A-
4853
UUCUGUGUAGGAGA
 824-844
A-
5119
UGUGAATUCUCCUA
 822-844


1251333.1
2337536.1

AUUCACA

2337537.1

CACAGAAGC



AD-
A-
4854
UUCUGUGUAGGAGA
 867-887
A-
5120
UGUGAAUUCUCCU
 865-887


1251338.1
1851786.1

AUUCACA

2337542.1

ACACAGAAGC






AD-
A-
4855
UUCUGUGUAGGAGA
 867-887
A-
5121
UGUGAATUCUCCUA
 865-887


1251337.1
1851786.1

AUUCACA

2337541.1

CACAGAAGC






AD-
A-
4856
UUCUGUGUAGGAGA
 824-844
A-
5122
UGUGAAUUCUCCU
 822-844


1251336.1
2337536.1

AUUCACA

2337540.1

ACACAGAAUC






AD-
A-
4857
UUCUGUGUAGGAGA
 824-844
A-
5123
UGUGAATUCUCCUA
 822-844


1251335.1
2337536.1

AUUCACA

2337539.1

CACAGAAUC






AD-
A-
4858
UCUGUGUAGGAGAA
 825-845
A-
5124
UAGUGAAUUCUCC
 823-845


1251339.1
2337543.1

UUCACUA

2337544.1

UACACAGAGG






AD-
A-
4859
CUGUGUAGGAGAAU
 869-889
A-
5125
UAAGTGAAUUCTCC
 867-889


1251340.1
1851790.1

UCACUUA

2337545.1

UACACAGGG






AD-
A-
4860
UGUGUAGGAGAAUU
 827-847
A-
5126
UAAAGUGAAUUCU
 825-847


1251341.1
2337546.1

CACUUUA

2337547.1

CCUACACAGG






AD-
A-
4861
GUGUAGGAGAAUUC
 828-848
A-
5127
UAAAAGTGAAUTCU
 826-848


1251342.1
2337548.1

ACUUUUA

2337549.1

CCUACACGG






AD-
A-
4862
UGUAGGAGAAUUCA
 829-849
A-
5128
UGAAAAGUGAATUC
 827-849


1251347.1
2337481.1

CUUUUCA

2337555.1

UCCUACACG






AD-
A-
4863
UGUAGGAGAAUUCA
 829-849
A-
5129
UGAAAAGUGAAUU
 827-849


795371.3
1522828.1

CUUUUCA

1522829.1

CUCCUACACA






AD-
A-
4864
UGUAGGAGAATUCA
 872-892
A-
5130
UGAAAAGUGAATUC
 870-892


1010663.3
1851796.1

CUUUUCA

1875201.1

UCCUACACA






AD-
A-
4865
UGUAGGAGAAUUCA
 829-849
A-
5131
UGAAAAGUGAATUC
 827-849


1251301.1
2337482.1

CUUUUCA

2337486.1

UCCUACACG






AD-
A-
4866
UGUAGGAGAAUUCA
 829-849
A-
5132
UGAAAAAUGAATUC
 827-849


1251348.1
2337556.1

UUUUUCA

2337557.1

UCCUACACG






AD-
A-
4867
UGUAGGAGAAUUCA
 829-849
A-
5133
UGAAAAGUGAAUU
 827-849


1251343.1
2337550.1

CUUUUCA

1522829.1

CUCCUACACA






AD-
A-
4868
UGUAGGAGAAUUCA
 829-849
A-
5134
UGAAAAGUGAAUU
 829-849


1251346.1
2337550.1

CUUUUCA

2337554.1

CUCCUACG






AD-
A-
4869
UGUAGGAGAATUCA
 829-849
A-
5135
UGAAAAGUGAATUC
 827-849


1251299.1
2337476.1

CUUUUCA

2337486.1

UCCUACACG






AD-
A-
4870
UGUAGGAGAAUUCA
 829-849
A-
5136
UGAAAAAUGAAUUC
 827-849


1251345.1
2337552.1

UUUUUCA

2337553.1

UCCUACACG






AD-
A-
4871
UGUAGGAGAAUUCA
 829-849
A-
5137
UGAAAAGUGAATUC
 827-849


1251349.1
2337481.1

CUUUUCA

2337558.1

UCCUACACG






AD-
A-
4872
UGUAGGAGAATUCA
 829-849
A-
5138
UGAAAAGUGAATUC
 827-849


1251292.1
2337476.1

CUUUUCA

2337477.1

UCCUACACG






AD-
A-
4873
UGUAGGAGAATUCA
 829-849
A-
5139
UGAAAAGUGAATUC
 827-849


1251293.1
2337476.1

CUUUUCA

2337478.1

UCCUACACG






AD-
A-
4874
UGUAGGAGAATUCA
 829-849
A-
5140
UGAAAAAUGAATUC
 827-849


1251294.1
2337479.1

UUUUUCA

2337480.1

UCCUACACG






AD-
A-
4875
UGUAGGAGAAUUCA
 829-849
A-
5141
UGAAAAGUGAAUU
 827-849


1251344.1
2337550.1

CUUUUCA

2337551.1

CUCCUACACG






AD-
A-
4876
UGUAGGAGAAUUCA
 829-849
A-
5142
UGAAAAGUGAATUC
 827-849


1251300.1
2337481.1

CUUUUCA

2337486.1

UCCUACACG






AD-
A-
4877
UGUAGGAGAAUUCA
 829-849
A-
5143
UGAAAAGUGAATUC
 827-849


1251295.1
2337481.1

CUUUUCA

2337478.1

UCCUACACG






AD-
A-
4878
UGUAGGAGAAUUCA
 829-849
A-
5144
UGAAAAGUGAATUC
 827-849


1251296.1
2337482.1

CUUUUCA

2337478.1

UCCUACACG






AD-
A-
4879
GUAGGAGAAUUCAC
 830-850
A-
5145
UAGAAAAGUGAAU
 828-850


1251350.1
2337559.1

UUUUCUA

2337560.1

UCUCCUACGC






AD-
A-
4880
GUAGGAGAAUUCAC
 830-850
A-
5146
UAGAAAAGUGAAU
 828-850


1251351.1
2337561.1

UUUUCUA

2337562.1

UCUCCUACGC






AD-
A-
4881
UAGGAGAAUUCACU
 831-851
A-
5147
UAAGAAAAGUGAA
 829-851


1251353.1
2337565.1

UUUCUUA

2337566.1

UUCUCCUACG






AD-
A-
4882
UAGGAGAAUUCACU
 831-851
A-
5148
UAAGAAAAGUGAA
 829-851


1251352.1
2337563.1

UUUCUUA

2337564.1

UUCUCCUACG






AD-
A-
4883
UAGGAGAAUUCACU
 831-849
A-
5149
UGAAAAGUGAATUC
 829-849


1251298.1
2337485.1

UUUCA

2337484.1

UCCUACG






AD-
A-
4884
UAGGAGAAUUCACU
 831-849
A-
5150
UGAAAAGUGAATUC
 829-849


1251297.1
2337483.1

UUUCA

2337484.1

UCCUACG






AD-
A-
4885
AGGAGAAUUCACUU
 832-852
A-
5151
UGAAGAAAAGUGA
 830-852


1251354.1
2337567.1

UUCUUCA

2337568.1

AUUCUCCUGC






AD-
A-
4886
GGAGAAUUCACUUU
 833-853
A-
5152
UCGAAGAAAAGUGA
 831-853


1251355.1
2337569.1

UCUUCGA

2337570.1

AUUCUCCUG






AD-
A-
4887
GGAGAAUUCACUUU
 833-853
A-
5153
UCGAAGAAAAGTGA
 831-853


1251356.1
2337571.1

UCUUCGA

2337572.1

AUUCUCCUG






AD-
A-
4888
GAGAAUUCACUUUU
 834-854
A-
5154
UACGAAGAAAAGUG
 832-854


1251357.1
2337573.1

CUUCGUA

2337574.1

AAUUCUCCU






AD-
A-
4889
CCUGAAGCAUAAAU
 1108-1128
A-
5155
UGAAAACAUUUAU
1106-1128


1251358.1
2337575.1

GUUUUCA

2337576.1

GCUUCAGGUU






AD-
A-
4890
CUGAAGCAUAAAUG
1109-1129
A-
5156
UCGAAAACAUUUAU
1107-1129


1251359.1
2337577.1

UUUUCGA

2337578.1

GCUUCAGGU






AD-
A-
4891
CUGAAGCATAAAUGU
1109-1129
A-
5157
UCGAAAACAUUUAU
1107-1129


1251360.1
2337579.1

UUUCGA

2337580.1

GCUUCAGGU






AD-
A-
4892
UGAAGCAUAAAUGU
1153-1173
A-
5158
UUCGAAAACAUTUA
1151-1173


1251361.1
1852317.1

UUUCGAA

2337581.1

UGCUUCAGG






AD-
A-
4893
GAAGCAUAAAUGUU
1111-1131
A-
5159
UUUCGAAAACATUU
1109-1131


1251363.1
2337584.1

UUCGAAA

2337585.1

AUGCUUCAG






AD-
A-
4894
GAAGCAUAAAUGUU
1111-1131
A-
5160
UUUCGAAAACAUU
1109-1131


1251362.1
2337582.1

UUCGAAA

2337583.1

UAUGCUUCAG






AD-
A-
4895
AAGCAUAAAUGUUU
1112-1132
A-
5161
UUUUCGAAAACAU
1110-1132


1251364.1
1812604.1

UCGAAAA

2337586.1

UUAUGCUUCG






AD-
A-
4896
AGCAUAAAUGUUUU
1113-1133
A-
5162
UAUUTCGAAAACAU
1111-1133


1251372.1
2337591.1

CGAAAUA

2337598.1

UUAUGCUUC






AD-
A-
4897
AGCAUAAAUGUUUU
1113-1133
A-
5163
UAUUUCGAAAACAU
1111-1133


1251366.1
2337589.1

CGAAAUA

1523300.1

UUAUGCUUC






AD-
A-
4898
AGCAUAAAUGUUUU
1113-1133
A-
5164
UAUUTCGAAAACAU
1111-1133


1251367.1
2337589.1

CGAAAUA

2337590.1

UUAUGCUUC






AD-
A-
4899
AGCAUAAAUGUUUU
1113-1133
A-
5165
UAUUUCGAAAACAU
1111-1133


795634.4
1523299.1

CGAAAUA

1523300.1

UUAUGCUUC






AD-
A-
4900
AGCAUAAAUGUUUU
1113-1133
A-
5166
UAUUTCAAAAACAU
1111-1133


1251369.1
2337593.1

UGAAAUA

2337594.1

UUAUGCUUC






AD-
A-
4901
AGCAUAAAUGUUUU
1113-1133
A-
5167
UAUUTCGAAAACAU
1111-1133


1251368.1
2337591.1

CGAAAUA

2337592.1

UUAUGCUUC






AD-
A-
4902
AGCAUAAAUGUUUU
1113-1133
A-
5168
UAUUTCGAAAACAU
1111-1133


1251373.1
2337591.1

CGAAAUA

2337599.1

UUAUGCUCC






AD-
A-
4903
AGCAUAAAUGUUUU
1113-1133
A-
5169
UAUUTCGAAAACAU
1111-1133


1251365.1
2337587.1

CGAAAUA

2337588.1

UUAUGCUUC






AD-
A-
4904
AGCAUAAAUGUUUU
1113-1133
A-
5170
UAUUTCGAAAACAU
1111-1133


1251370.1
2337591.1

CGAAAUA

2337595.1

UUAUGCUCC






AD-
A-
4905
GCAUAAAUGUUUUC
1114-1134
A-
5171
UAAUTUCGAAAACA
1112-1134


1251374.1
2337600.1

GAAAUUA

2337601.1

UUUAUGCUU






AD-
A-
4906
CAUAAAUGUUUUCG
1115-1135
A-
5172
UGAATUTCGAAAAC
1113-1135


1251375.1
2337602.1

AAAUUCA

2337603.1

AUUUAUGCU






AD-
A-
4907
CAUAAAUGUUUUCG
1115-1133
A-
5173
UAUUTCGAAAACAU
1113-1133


1251371.1
2337596.1

AAAUA

2337597.1

UUAUGCU






AD-
A-
4908
AUAAAUGUUUUCGA
1116-1136
A-
5174
UUGAAUTUCGAAAA
1114-1136


1251376.1
2337604.1

AAUUCAA

2337605.1

CAUUUAUGC






AD-
A-
4909
AUAAAUGUUUUCGA
1116-1136
A-
5175
UUGAAUTUCGAAAA
1114-1136


1251377.1
2337604.1

AAUUCAA

2337606.1

CAUUUAUGU






AD-
A-
4910
UAAAUGUUUUCGAA
1117-1137
A-
5176
UGUGAATUUCGAAA
1115-1137


1251378.1
2337607.1

AUUCACA

2337608.1

ACAUUUAUG






AD-
A-
4911
AAAUGUUUUCGAAA
1118-1138
A-
5177
UAGUGAAUUUCGA
1116-1138


1251379.1
2337609.1

UUCACUA

2337610.1

AAACAUUUGU






AD-
A-
4912
UACAUGAUCUUCUU
1430-1450
A-
5178
UACGACAAAGAAGA
1428-1450


1251380.1
2337611.1

UGUCGUA

2337612.1

UCAUGUAGG






AD-
A-
4913
UACAUGAUCUUCUU
1430-1450
A-
5179
UACGACAAAGAAGA
1428-1450


1251381.1
2337613.1

UGUCGUA

2337614.1

UCAUGUACC






AD-
A-
4914
ACAUGAUCUUCUUU
1431-1451
A-
5180
UUACGACAAAGAAG
1429-1451


1251382.1
2337615.1

GUCGUAA

2337616.1

AUCAUGUGG






AD-
A-
4915
CAUGAUCUUCUUUG
1432-1452
A-
5181
UCUACGACAAAGAA
1430-1452


1251384.1
1523843.1

UCGUAGA

2337457.1

GAUCAUGUG






AD-
A-
4916
CAUGAUCUUCUUUG
1432-1452
A-
5182
UCUACGACAAAGAA
1430-1452


1251274.2
2337449.1

UCGUAGA

2337457.1

GAUCAUGUG






AD-
A-
4917
CAUGAUCUTCTUUGU
1432-1452
A-
5183
UCUACGACAAAGAA
1430-1452


961188.3
1812612.1

CGUAGA

1812613.1

GAUCAUGUA






AD-
A-
4918
CAUGAUCUUCUUUG
1432-1452
A-
5184
UCUACGACAAAGAA
1430-1452


1251383.1
1523843.1

UCGUAGA

2337617.1

GAUCAUGUG






AD-
A-
4919
CAUGAUCUUCUUUG
1432-1452
A-
5185
UCUACGACAAAGAA
1430-1452


1251269.1
2337449.1

UCGUAGA

2337451.1

GAUCAUGUG






AD-
A-
4920
CAUGAUCUUCUUUG
1432-1452
A-
5186
UCUACGACAAAGAA
1430-1452


1251270.1
2337449.1

UCGUAGA

2337452.1

GAUCAUGCC






AD-
A-
4921
CAUGAUCUUCUUUG
1432-1452
A-
5187
UCUACGACAAAGAA
1430-1452


1251268.1
2337449.1

UCGUAGA

2337450.1

GAUCAUGUG






AD-
A-
4922
CAUGAUCUUCUUUG
1432-1452
A-
5188
UCUACGACAAAGAA
1430-1452


1251274.1
2337449.1

UCGUAGA

2337457.1

GAUCAUGUG






AD-
A-
4923
CAUGAUCUUCUUUG
1432-1452
A-
5189
UCUACGACAAAGAA
1430-1452


1251271.1
2337449.1

UCGUAGA

2337453.1

GAUCAUGCC






AD-
A-
4924
CAUGAUCUUCUUUG
1432-1452
A-
5190
UCUACGACAAAGAA
1430-1452


1251275.2
2337449.1

UCGUAGA

2337458.1

GAUCAUGUG






AD-
A-
4925
CAUGAUCUUCUUUG
1432-1452
A-
5191
UCUACGACAAAGAA
1430-1452


1251275.1
2337449.1

UCGUAGA

2337458.1

GAUCAUGUG






AD-
A-
4926
AUGAUCUUCUUUGU
1433-1453
A-
5192
UACUACGACAAAGA
1431-1453


1251385.1
1523845.1

CGUAGUA

2337618.1

AGAUCAUGU






AD-
A-
4927
UGAUCUUCUUUGUC
1434-1452
A-
5193
UCUACGACAAAGAA
1432-1452


1251272.1
2337454.1

GUAGA

2337455.1

GAUCAUG






AD-
A-
4928
UGAUCUUCUUUGUC
1434-1454
A-
5194
UCACTACGACAAAG
1432-1454


1251386.1
1523847.1

GUAGUGA

2337619.1

AAGAUCAUG






AD-
A-
4929
UGAUCUUCUUUGUC
1434-1452
A-
5195
UCUACGACAAAGAA
1432-1452


1251273.1
2337454.1

GUAGA

2337456.1

GAUCAUG






AD-
A-
4930
GAUCUUCUUUGUCG
1435-1455
A-
5196
UUCACUACGACAAA
1433-1455


1251390.1
2337622.1

UAGUGAA

2337624.1

GAAGAUCGU






AD-
A-
4931
GAUCUUCUUUGUCG
1435-1455
A-
5197
UUCACUACGACAAA
1433-1455


1251398.1
2337622.1

UAGUGAA

2337630.1

GAAGAUCGU






AD-
A-
4932
GAUCUUCUUUGUCG
1435-1455
A-
5198
UUCACUACGACAAA
1433-1455


1251396.1
2337629.1

UAGUGAA

2337621.1

GAAGAUCGU






AD-
A-
4933
GAUCUUCUUUGUCG
1435-1455
A-
5199
UUCACUACGACAAA
1433-1455


1251399.1
2337628.1

UAGUGAA

2337630.1

GAAGAUCGU






AD-
A-
4934
GAUCUUCUUUGUCG
1435-1455
A-
5200
UUCACUACGACAAA
1433-1455


795913.3
1523849.1

UAGUGAA

1523850.1

GAAGAUCAU






AD-
A-
4935
GAUCUUCUUUGUCG
1435-1455
A-
5201
UUCACUACGACAAA
1433-1455


1251400.1
2337629.1

UAGUGAA

2337631.1

GAAGAUCGU






AD-
A-
4936
GAUCUUCUUUGUCG
1435-1455
A-
5202
UUCACUACGACAAA
1433-1455


1251388.1
1523849.1

UAGUGAA

2337621.1

GAAGAUCGU






AD-
A-
4937
GAUCUUCUTUGUCG
1435-1455
A-
5203
UUCACUACGACAAA
1433-1455


1251397.1
1812618.1

UAGUGAA

2337624.1

GAAGAUCGU






AD-
A-
4938
GAUCUUCUUUGUCG
1435-1455
A-
5204
UUCACUACGACAAA
1433-1455


1251395.1
2337628.1

UAGUGAA

2337624.1

GAAGAUCGU






AD-
A-
4939
GAUCUUCUUUGUCG
1435-1455
A-
5205
UUCACUACGACAAA
1433-1455


1251387.1
1523849.1

UAGUGAA

2337620.1

GAAGAUCGU






AD-
A-
4940
GAUCUUCUUUGUCG
1435-1455
A-
5206
UUCACUACGACAAA
1433-1455


1251389.1
2337622.1

UAGUGAA

2337623.1

GAAGAUCGU






AD-
A-
4941
GAUCUUCUUUGUCG
1435-1455
A-
5207
UUCACUACGACAAA
1433-1455


1251393.1
2337628.1

UAGUGAA

2337623.1

GAAGAUCGU






AD-
A-
4942
GAUCUUCUUUGUCG
1435-1455
A-
5208
UUCACUACGACAAA
1433-1455


1251394.1
2337629.1

UAGUGAA

2337620.1

GAAGAUCGU






AD-
A-
4943
AUCUUCUUUGUCGU
1436-1456
A-
5209
UAUCACTACGACAA
1434-1456


1251401.1
2337632.1

AGUGAUA

2337633.1

AGAAGAUCG






AD-
A-
4944
UCUUCUUUGUCGUA
1437-1455
A-
5210
UUCACUACGACAAA
1435-1455


1251391.1
2337625.1

GUGAA

2337626.1

GAAGAUC






AD-
A-
4945
UCUUCUUUGUCGUA
1437-1455
A-
5211
UUCACUACGACAAA
1435-1455


1251392.1
2337625.1

GUGAA

2337627.1

GAAGAUC






AD-
A-
4946
UCUUCUUUGUCGUA
1437-1457
A-
5212
UAAUCACUACGACA
1435-1457


1251402.1
2337634.1

GUGAUUA

2337635.1

AAGAAGAUC






AD-
A-
4947
CUUCUUUGUCGUAG
1438-1458
A-
5213
UAAATCACUACGAC
1436-1458


1251403.1
2337636.1

UGAUUUA

2337637.1

AAAGAAGGU






AD-
A-
4948
UUCUUUGUCGUAGU
1439-1459
A-
5214
UAAAAUCACUACGA
1437-1459


1251404.1
2337638.1

GAUUUUA

2337639.1

CAAAGAAGG






AD-
A-
4949
UCUUUGUCGUAGUG
1440-1460
A-
5215
UGAAAATCACUACG
1438-1460


1251405.1
2337640.1

AUUUUCA

2337641.1

ACAAAGAGG






AD-
A-
4950
AUCCUUUUGUAGAU
2526-2546
A-
5216
UUGCAAGAUCUACA
2524-2546


1251406.1
2337642.1

CUUGCAA

2337643.1

AAAGGAUCC






AD-
A-
4951
UCCUUUUGUAGAUC
2527-2547
A-
5217
UUUGCAAGAUCTAC
2525-2547


1251407.1
2337644.1

UUGCAAA

2337645.1

AAAAGGAUC






AD-
A-
4952
CCUUUUGUAGAUCU
2538-2558
A-
5218
UAUUGCAAGAUCU
2536-2558


1251408.1
1854629.1

UGCAAUA

2337646.1

ACAAAAGGGU






AD-
A-
4953
CUUUUGUAGAUCUU
2529-2549
A-
5219
UAAUTGCAAGAUCU
2527-2549


1251409.1
2337647.1

GCAAUUA

2337648.1

ACAAAAGGG






AD-
A-
4954
UUUUGUAGAUCUUG
2530-2550
A-
5220
UUAATUGCAAGAUC



1251411.1
2337650.1

CAAUUAA

2337651.1

UACAAAGCC






AD-
A-
4955
UUUUGUAGAUCUUG
2530-2550
A-
5221
UUAATUGCAAGAUC
2528-2550


1251410.1
1525635.1

CAAUUAA

2337649.1

UACAAAAGG






AD-
A-
4956
UUUGUAGAUCUUGC
2531-2551
A-
5222
UGUAAUUGCAAGA
2529-2551


1251412.1
2337652.1

AAUUACA

2337653.1

UCUACAAAGG






AD-
A-
4957
UUUGUAGAUCUUGC
2531-2551
A-
5223
UGUAAUUGCAAGA
2529-2551


796825.3
1525636.1

AAUUACA

1257916.1

UCUACAAAAG






AD-
A-
4958
UUUGUAGAUCUUGC
2531-2551
A-
5224
UGUAAUTGCAAGAU
2529-2551


1251413.1
2337652.1

AAUUACA

2337654.1

CUACAAAGG






AD-
A-
4959
UUUGUAGAUCUUGC
2531-2551
A-
5225
UGUAAUUGCAAGA
2529-2551


1251414.1
2337652.1

AAUUACA

2337655.1

UCUACAAAGG






AD-
A-
4960
UUUGUAGAUCUUGC
2531-2551
A-
5226
UGUAAUTGCAAGAU
2529-2551


1251415.1
2337652.1

AAUUACA

2337656.1

CUACAAAGG






AD-
A-
4961
UUUGUAGAUCUUGC
2531-2551
A-
5227
UGUAAUUGCAAGA
2529-2551


1251416.1
2337652.1

AAUUACA

2337657.1

UCUACAAAGG






AD-
A-
4962
UUGUAGAUCUUGCA
2532-2552
A-
5228
UGGUAAUUGCAAG
2530-2552


1251417.1
2337658.1

AUUACCA

2337659.1

AUCUACAAGG






AD-
A-
4963
UGUAGAUCUUGCAA
2533-2553
A-
5229
UUGGTAAUUGCAAG
2531-2553


1251418.1
2337660.1

UUACCAA

2337661.1

AUCUACAGG






AD-
A-
4964
GUAGAUCUUGCAAU
2534-2554
A-
5230
UAUGGUAAUUGCA
2532-2554


1251419.1
2337662.1

UACCAUA

2337663.1

AGAUCUACGG






AD-
A-
4965
UAGAUCUUGCAAUU
2535-2555
A-
5231
UAAUGGTAAUUGCA
2533-2555


1251420.1
2337664.1

ACCAUUA

2337665.1

AGAUCUACG






AD-
A-
4966
AGAUCUUGCAAUUA
2536-2556
A-
5232
UAAATGGUAAUUGC
2534-2556


1251421.1
1525641.1

CCAUUUA

2337666.1

AAGAUCUGC






AD-
A-
4967
AGAUCUUGCAAUUA
2536-2556
A-
5233
UAAATGGUAAUTGC
2534-2556


1251422.1
2337667.1

CCAUUUA

2337668.1

AAGAUCUGC






AD-
A-
4968
UAAAUUAUGUGAAA
3304-3324
A-
5234
UGGUTUGUUUCAC
3302-3324


1251423.1
1856083.1

CAAACCA

2337669.1

AUAAUUUAUU






AD-
A-
4969
AAUUAUGUGAAACA
3306-3326
A-
5235
UAAGGUUUGUUTC
3304-3326


1251425.1
1856087.1

AACCUUA

2337672.1

ACAUAAUUUG






AD-
A-
4970
AUUAUGUGAAACAA
3297-3317
A-
5236
UUAAGGTUUGUTUC
3295-3317


1251427.1
2337675.1

ACCUUAA

2337676.1

ACAUAAUUU






AD-
A-
4971
AUUAUGUGAAACAA
3297-3317
A-
5237
UUAAGGTUUGUUU
3295-3317


1251426.1
2337673.1

ACCUUAA

2337674.1

CACAUAAUUU






AD-
A-
4972
UUAUGUGAAACAAA
3298-3318
A-
5238
UGUAAGGUUUGUU
3296-3318


1251428.1
2337677.1

CCUUACA

2337678.1

UCACAUAAUU






AD-
A-
4973
UAUGUGAAACAAACC
3299-3319
A-
5239
UCGUAAGGUUUGU
3297-3319


797564.4
1527042.1

UUACGA

1527043.1

UUCACAUAAU






AD-
A-
4974
UAUGUGAAACAAACC
3299-3319
A-
5240
UCGUAAGGUUUGU
3297-3319


1251434.1
2337679.1

UUACGA

2337687.1

UUCACAUAGU






AD-
A-
4975
UAUGUGAAACAAAC
3299-3319
A-
5241
UCGUAAAGUUUGU
3297-3319


1251431.1
2337681.1

UUUACGA

2337682.1

UUCACAUAGU






AD-
A-
4976
UAUGUGAAACAAACC
3299-3319
A-
5242
UCGUAAGGUUUGU
3297-3319


1251433.1
2337685.1

UUACGA

2337686.1

UUCACAUAGU






AD-
A-
4977
UAUGUGAAACAAACC
3299-3319
A-
5243
UCGUAAGGUUUGU
3297-3319


1251430.1
2337679.1

UUACGA

2337680.1

UUCACAUAGU






AD-
A-
4978
UAUGUGAAACAAACC
3299-3319
A-
5244
UCGUAAGGUUUGU
3297-3319


1251429.1
2337679.1

UUACGA

1527043.1

UUCACAUAAU






AD-
A-
4979
UAUGUGAAACAAACC
3299-3319
A-
5245
UCGUAAGGUUUGU
3297-3319


1251435.1
2337685.1

UUACGA

2337688.1

UUCACAUAGU






AD-
A-
4980
AUGUGAAACAAACCU
3300-3320
A-
5246
UACGTAAGGUUUG
3298-3320


1251438.1
2337689.1

UACGUA

2337691.1

UUUCACAUGG






AD-
A-
4981
AUGUGAAACAAACCU
3300-3320
A-
5247
UACGUAAGGUUUG
3298-3320


1251436.1
2337689.1

UACGUA

1527045.1

UUUCACAUAA






AD-
A-
4982
AUGUGAAACAAACCU
3300-3320
A-
5248
UACGTAAGGUUUG
3298-3320


1251437.1
2337689.1

UACGUA

2337690.1

UUUCACAUGG






AD-
A-
4983
AUGUGAAACAAACCU
3300-3320
A-
5249
UACGUAAGGUUUG
3298-3320


797565.4
1527044.1

UACGUA

1527045.1

UUUCACAUAA






AD-
A-
4984
AUGUGAAACAAACCU
3300-3320
A-
5250
UACGTAAGGUUUG
3298-3320


1251443.1
2337689.1

UACGUA

2337698.1

UUUCACAUGG






AD-
A-
4985
AUGUGAAACAAACCU
3300-3320
A-
5251
UACGTAAGGUUTGU
3298-3320


1251444.1
2337695.1

UACGUA

2337699.1

UUCACAUGG






AD-
A-
4986
AUGUGAAACAAACCU
3300-3320
A-
5252
UACGTAAGGUUTGU
3298-3320


1251442.1
2337695.1

UACGUA

2337697.1

UUCACAUGG






AD-
A-
4987
AUGUGAAACAAACCU
3300-3320
A-
5253
UACGTAAGGUUTGU
3298-3320


1251441.1
2337695.1

UACGUA

2337696.1

UUCACAUGG






AD-
A-
4988
UGUGAAACAAACCU
3301-3321
A-
5254
UCACGUAAGGUTUG
3299-3321


1251445.1
2337700.1

UACGUGA

2337701.1

UUUCACAUG






AD-
A-
4989
GUGAAACAAACCUUA
3302-3320
A-
5255
UACGTAAGGUUUG
3300-3320


1251439.1
2337692.1

CGUA

2337693.1

UUUCACGU






AD-
A-
4990
GUGAAACAAACCUUA
3302-3322
A-
5256
UUCACGTAAGGTUU
3300-3322


1251447.1
2337704.1

CGUGAA

2337705.1

GUUUCACGU






AD-
A-
4991
GUGAAACAAACCUUA
3302-3322
A-
5257
UUCACGTAAGGUUU
3300-3322


1251446.1
2337702.1

CGUGAA

2337703.1

GUUUCACGU






AD-
A-
4992
UGAAACAAACCUUAC
3303-3323
A-
5258
UUUCACGUAAGGU
3301-3323


1251448.1
2337706.1

GUGAAA

2337707.1

UUGUUUCACA






AD-
A-
4993
GAAACAAACCUUACG
3304-3324
A-
5259
UAUUCACGUAAGG
3302-3324


1251450.1
2337710.1

UGAAUA

2337711.1

UUUGUUUCAC






AD-
A-
4994
GAAACAAACCUUACG
3304-3324
A-
5260
UAUUCACGUAAGG
3302-3324


1251449.1
2337708.1

UGAAUA

2337709.1

UUUGUUUCAC






AD-
A-
4995
AAACAAACCUUACGU
3305-3325
A-
5261
UAAUTCACUGAAGG



1251451.1
2337712.1

GAAUUA

2337713.1

UUUGUUUCG






AD-
A-
4996
UGUGAUAUAUUUUA
8017-8037
A-
5262
UAUGTUGUAAAAU
8015-8037


1251453.1
2337716.1

CAACAUA

2337717.1

AUAUCACAGU






AD-
A-
4997
UGUGAUAUAUUUUA
8017-8037
A-
5263
UAUGTUGUAAAAU
8015-8037


1251452.1
2337714.1

CAACAUA

2337715.1

AUAUCACAGU






AD-
A-
4998
GUGAUAUAUUUUAC
8018-8038
A-
5264
UGAUGUUGUAAAA
8016-8038


1251454.1
2337718.1

AACAUCA

2337719.1

UAUAUCACGG






AD-
A-
4999
UGAUAUAUUUUACA
8019-8039
A-
5265
UGGATGUUGUAAA
8017-8039


1251455.1
2337720.1

ACAUCCA

2337721.1

AUAUAUCACG






AD-
A-
5000
GAUAUAUUUUACAA
8020-8040
A-
5266
UCGGAUGUUGUAA
8018-8040


1251456.1
2337722.1

CAUCCGA

2337723.1

AAUAUAUCGC






AD-
A-
5001
GAUAUAUUUUACAA
8020-8040
A-
5267
UCGGAUGUUGUAA
8018-8040


1251457.1
2337724.1

CAUCCGA

2337725.1

AAUAUAUCGC






AD-
A-
5002
AUAUAUUUUACAAC
8021-8041
A-
5268
UACGGATGUUGTAA
8019-8041


1251459.1
2337727.1

AUCCGUA

2337728.1

AAUAUAUCG






AD-
A-
5003
AUAUAUUUUACAAC
8021-8041
A-
5269
UACGGATGUUGUAA
8019-8041


1251458.1
1535069.1

AUCCGUA

2337726.1

AAUAUAUCG






AD-
A-
5004
UAUAUUUUACAACA
8022-8042
A-
5270
UAACGGAUGUUGU
8020-8042


1251462.1
1535071.1

UCCGUUA

2337731.1

AAAAUAUACC






AD-
A-
5005
UAUAUUUUACAACA
8022-8042
A-
5271
UAACGGAUGUUGU
8020-8042


1251461.1
1535071.1

UCCGUUA

2337730.1

AAAAUAUAUC






AD-
A-
5006
UAUAUUUUACAACA
8022-8042
A-
5272
UAACGGAUGUUGU
8020-8042


1251468.1
1535071.1

UCCGUUA

2337738.1

AAAAUAUACC






AD-
A-
5007
UAUAUUUUACAACA
8022-8042
A-
5273
UAACGGAUGUUGU
8020-8042


1251463.1
1535071.1

UCCGUUA

2337732.1

AAAAUAUACC






AD-
A-
5008
UAUAUUUUACAACA
8022-8042
A-
5274
UAACGGAUGUUGU
8020-8042


1251460.1
1535071.1

UCCGUUA

2337729.1

AAAAUAUAUC






AD-
A-
5009
UAUAUUUUACAACA
8032-8052
A-
5275
UAACGGAUGUUGU
8030-8052


1251469.1
1864159.1

UCCGUUA

2337739.1

AAAAUAUAUC






AD-
A-
5010
UAUAUUUUACAACA
8022-8042
A-
5276
UAACGGAUGUUGU
8020-8042


801647.3
1535071.1

UCCGUUA

1535072.1

AAAAUAUAUC






AD-
A-
5011
UAUAUUUUACAACA
8032-8052
A-
5277
UAACGGAUGUUGU
8030-8052


1251467.1
1864159.1

UCCGUUA

2337737.1

AAAAUAUAUC






AD-
A-
5012
UAUAUUUUACAACA
8022-8042
A-
5278
UAACGGAUGUUGU
8020-8042


1251466.1
2337736.1

UCCGUUA

2337737.1

AAAAUAUAUC






AD-
A-
5013
AUAUUUUACAACAU
8023-8043
A-
5279
UUAACGGAUGUUG
8021-8043


1251470.1
1535073.1

CCGUUAA

2337740.1

UAAAAUAUGU






AD-
A-
5014
AUAUUUUACAACAU
8023-8043
A-
5280
UUAACGGAUGUTG
8021-8043


1251471.1
2337741.1

CCGUUAA

2337742.1

UAAAAUAUGU






AD-
A-
5015
UAUUUUACAACAUC
8024-8042
A-
5281
UAACGGAUGUUGU
8022-8042


1251465.1
2337733.1

CGUUA

2337735.1

AAAAUAUG






AD-
A-
5016
UAUUUUACAACAUC
8024-8044
A-
5282
UAUAACGGAUGTUG
8022-8044


1251472.1
2337743.1

CGUUAUA

2337744.1

UAAAAUAUG






AD-
A-
5017
UAUUUUACAACAUC
8024-8042
A-
5283
UAACGGAUGUUGU
8022-8042


1251464.1
2337733.1

CGUUA

2337734.1

AAAAUAUG






AD-
A-
5018
AUUUUACAACAUCCG
8025-8045
A-
5284
UAAUAACGGAUGU
8023-8045


1251473.1
2337745.1

UUAUUA

2337746.1

UGUAAAAUGU






AD-
A-
5019
AUUUUACAACAUCCG
8025-8045
A-
5285
UAAUAACGGAUGU
8023-8045


1251474.1
2337747.1

UUAUUA

2337748.1

UGUAAAAUGU






AD-
A-
5020
UUUUACAACAUCCG
8026-8046
A-
5286
UUAATAACGGATGU
8024-8046


1251475.1
2337749.1

UUAUUAA

2337750.1

UGUAAAAUG






AD-
A-
5021
UUUACAACAUCCGU
8027-8047
A-
5287
UGUAAUAACGGAU
8025-8047


1251476.1
2337751.1

UAUUACA

2337752.1

GUUGUAAAGU






AD-
A-
5022
CAACACAAUUUCUUC
8498-8518
A-
5288
UGCUAAGAAGAAAU
8496-8518


1251279.1
2337459.1

UUAGCA

2337464.1

UGUGUUGUU






AD-
A-
5023
CAACACAAUUUCUUC
8498-8518
A-
5289
UGCUAAGAAGAAAU
8496-8518


1251276.1
2337459.1

UUAGCA

2337460.1

UGUGUUGUU






AD-
A-
5024
CAACACAAUUUCUUC
8498-8518
A-
5290
UGCUAAGAAGAAAU
8496-8518


1251280.1
2337459.1

UUAGCA

2337465.1

UGUGUUGCC






AD-
A-
5025
CAACACAAUUUCUUC
8498-8518
A-
5291
UGCUAAGAAGAAAU
8496-8518


1251277.1
2337459.1

UUAGCA

2337461.1

UGUGUUGCC






AD-
A-
5026
CAACACAATUTCUUC
8498-8518
A-
5292
UGCUAAGAAGAAAT
8496-8518


961334.3
1812904.1

UUAGCA

1812905.1

UGUGUUGUU






AD-
A-
5027
ACACAAUUUCUUCU
8500-8518
A-
5293
UGCUAAGAAGAAAU
8498-8518


1251278.1
2337462.1

UAGCA

2337463.1

UGUGUUG






AD-
A-
5028
GGCUUCAAGUGUUC
9109-9129
A-
5294
UCAGTAGGAACACU
9107-9129


1251477.1
1865763.1

CUACUGA

2337753.1

UGAAGCCGG






AD-
A-
5029
GCUUCAAGUGUUCC
9100-9120
A-
5295
UACAGUAGGAACAC
9098-9120


1251478.1
2337754.1

UACUGUA

2337755.1

UUGAAGCCG






AD-
A-
5030
CUUCAAGUGUUCCU
9101-9121
A-
5296
UGACAGTAGGAACA
9099-9121


1251479.1
2337756.1

ACUGUCA

2337757.1

CUUGAAGCC






AD-
A-
5031
UUCAAGUGUUCCUA
9102-9122
A-
5297
UUGACAGUAGGAAC
9100-9122


1251481.1
2337758.1

CUGUCAA

2337760.1

ACUUGAAGC






AD-
A-
5032
UUCAAGUGUUCCUA
9102-9122
A-
5298
UUGACAGUAGGAAC
9100-9122


1251480.1
2337758.1

CUGUCAA

2337759.1

ACUUGAAGC






AD-
A-
5033
UCAAGUGUUCCUAC
9103-9123
A-
5299
UAUGACAGUAGGA
9101-9123


1251482.1
2337761.1

UGUCAUA

2337762.1

ACACUUGAGG






AD-
A-
5034
UCAAGUGUUCCUAC
9103-9123
A-
5300
UAUGACAGUAGGA
9101-9123


1251483.1
2337761.1

UGUCAUA

2337763.1

ACACUUGAGG






AD-
A-
5035
CAAGUGUUCCUACU
9104-9124
A-
5301
UCAUGACAGUAGGA
9102-9124


1251492.1
2337764.1

GUCAUGA

2337773.1

ACACUUGCC






AD-
A-
5036
CAAGUGUUCCUACU
9104-9124
A-
5302
UCAUGACAGUAGGA
9102-9124


1251485.1
2337764.1

GUCAUGA

2337766.1

ACACUUGGG






AD-
A-
5037
CAAGUGUUCCUACU
9104-9124
A-
5303
UCAUGACAGUAGGA
9102-9124


802471.4
1536717.1

GUCAUGA

1536718.1

ACACUUGAA






AD-
A-
5038
CAAGUGUUCCUACU
9104-9124
A-
5304
UCAUGACAGUAGGA
9102-9124


1251486.1
2337764.1

GUCAUGA

1536718.1

ACACUUGAA






AD-
A-
5039
CAAGUGUUCCUACU
9104-9124
A-
5305
UCAUGACAGUAGGA
9102-9124


1251484.1
2337764.1

GUCAUGA

2337765.1

ACACUUGGG






AD-
A-
5040
CAAGUGUUCCUACU
9104-9124
A-
5306
UCAUGACAGUAGGA
9102-9124


1251491.1
2337764.1

GUCAUGA

2337772.1

ACACUUGGG






AD-
A-
5041
CAAGUGUUCCUACU
9104-9124
A-
5307
UCAUGACAGUAGGA
9102-9124


1251487.1
2337764.1

GUCAUGA

2337767.1

ACACUUGGG






AD-
A-
5042
CAAGUGUUCCUACU
9104-9124
A-
5308
UCAUGACAGUAGGA
9102-9124


1251488.1
2337764.1

GUCAUGA

2337768.1

ACACUUGCC






AD-
A-
5043
CAAGUGUUCCUACU
9104-9124
A-
5309
UCAUGACAGUAGGA
9102-9124


1251490.1
2337764.1

GUCAUGA

2337771.1

ACACUUGGG






AD-
A-
5044
AAGUGUUCCUACUG
9105-9125
A-
5310
UUCATGACAGUAGG
9103-9125


1251494.1
2337775.1

UCAUGAA

2337776.1

AACACUUGG






AD-
A-
5045
AGUGUUCCUACUGU
9106-9124
A-
5311
UCAUGACAGUAGGA
9104-9124


1251493.1
2337769.1

CAUGA

2337774.1

ACACUUG






AD-
A-
5046
AGUGUUCCUACUGU
9106-9124
A-
5312
UCAUGACAGUAGGA
9104-9124


1251489.1
2337769.1

CAUGA

2337770.1

ACACUUG






AD-
A-
5047
AGUGUUCCUACUGU
9106-9126
A-
5313
UGUCAUGACAGTAG
9104-9126


1251495.1
2337777.1

CAUGACA

2337778.1

GAACACUUG






AD-
A-
5048
GUGUUCCUACUGUC
9107-9127
A-
5314
UGGUCATGACAGUA
9105-9127


1251496.1
2337779.1

AUGACCA

2337780.1

GGAACACUU






AD-
A-
5049
UGUUCCUACUGUCA
9108-9128
A-
5315
UAGGTCAUGACAGU
9106-9128


1251497.1
2337781.1

UGACCUA

2337782.1

AGGAACACU






AD-
A-
5050
GUUCCUACUGUCAU
9109-9129
A-
5316
UCAGGUCAUGACAG
9107-9129


1251498.1
2337783.1

GACCUGA

2337784.1

UAGGAACGC






AD-
A-
5051
UUGAUAGUUACCUA
9225-9245
A-
5317
UGCAAACUAGGUAA
9223-9245


802552.3
1536877.1

GUUUGCA

1536878.1

CUAUCAAAA






AD-
A-
5052
UUGAUAGUTACCUA
9225-9245
A-
5318
UGCAAACUAGGTAA
9223-9245


1251267.1
2337439.1

GUUUGCA

2337448.1

CUAUCAAGG






AD-
A-
5053
UUGAUAGUTACCUA
9225-9245
A-
5319
UGCAAACUAGGTAA
9223-9245


1251260.1
2337439.1

GUUUGCA

2337438.1

CUAUCAAGG






AD-
A-
5054
UUGAUAGUUACCUA
9225-9245
A-
5320
UGCAAACUAGGUAA
9223-9245


1251256.1
2337433.1

GUUUGCA

1536878.1

CUAUCAAAA






AD-
A-
5055
UUGAUAGUUACCUA
9225-9245
A-
5321
UGCAAACUAGGUAA
9223-9245


1251265.1
2337436.1

GUUUGCA

2337447.1

CUAUCAAGG






AD-
A-
5056
UUGAUAGUUACCUA
9225-9245
A-
5322
UGCAAACUAGGUAA
9223-9245


1251257.1
2337434.1

GUUUGCA

2337435.1

CUAUCAAGG






AD-
A-
5057
UUGAUAGUUACCUA
9225-9245
A-
5323
UGCAAACUAGGTAA
9223-9245


1251266.1
2337437.1

GUUUGCA

2337448.1

CUAUCAAGG






AD-
A-
5058
UUGAUAGUUACCUA
9225-9245
A-
5324
UGCAAATUAGGUAA



1251264.1
2337445.1

AUUUGCA

2337446.1

CUAUCAAGG






AD-
A-
5059
UUGAUAGUUACCUA
9225-9245
A-
5325
UGCAAACUAGGTAA
9223-9245


1251259.1
2337437.1

GUUUGCA

2337438.1

CUAUCAAGG






AD-
A-
5060
UUGAUAGUUACCUA
9225-9245
A-
5326
UGCAAACUAGGUAA
9223-9245


1251258.1
2337436.1

GUUUGCA

2337435.1

CUAUCAAGG






AD-
A-
5061
GAUAGUTACCUAGU
9227-9245
A-
5327
UGCAAACUAGGTAA
9225-9245


1251263.1
2337444.1

UUGCA

2337443.1

CUAUCGG






AD-
A-
5062
GAUAGUUACCUAGU
9227-9245
A-
5328
UGCAAACUAGGTAA
9225-9245


1251262.1
2337442.1

UUGCA

2337443.1

CUAUCGG






AD-
A-
5063
GAUAGUUACCUAGU
9227-9245
A-
5329
UGCAAACUAGGUAA
9225-9245


1251261.1
2337440.1

UUGCA

2337441.1

CUAUCGG
















TABLE 14A







Exemplary Human SCN9A siRNA Modified Single Strands and Duplex Sequences


Column 1 indicates duplex name and the number following the decimal point in a duplex name merely refers to a batch production number.


Column 2 indicates the name of the sense sequence. Column 3 indicates the sequence ID for the sequence of column 4. Column 4 provides the


modified sequence of a sense strand suitable for use in a duplex described herein. Column 5 indicates the antisense sequence name. Column 6


indicates the sequence ID for the sequence of column 7. Column 7 provides the sequence of a modified antisense strand suitable for use in a


duplex described herein, e.g., a duplex comprising the sense sequence in the same row of the table. Column 8 indicates the position in the


target mRNA (NM_001365536.1) that is complementary to the antisense strand of Column 7. Column 9 indicated the sequence ID for the sequence


of column 8.
















Sense
Seq ID

Antisense
Seq ID

mRNA target
SEQ ID NO:


Duplex
sequence
NO:
Sense sequence
sequence
NO:
Antisense sequence
sequence in
(mRNA


Name
name
(sense)
(5′-3′)
name
(antisense)
(5′-3′)
NM_001365536.1
target)





AD-
A-
5330
usgsucg(Ahd)GfuAf
A-
5346
VPusCfsaguAfaAfAfgu
AAUGUCGAGUACACU
5362


795305.2
1522697.1

CfAfcuuuuacugaL96
1522698.1

guAfcUfcgacasusu
UUUACUGG






AD-
A-
5331
usgsucgaguAfCfAfc
A-
5347
VPusCfsagdTadAaagu
AAUGUCGAGUACACU
5363


1251249.1
2337423.1

uuu(Uhd)acugaL96
2337424.1

guAfcUfcgacasusu
UUUACUGG






AD-
A-
5332
uscsgaguAfCfAfcuu
A-
5348
VPusCfsagdTadAaagu
UGUCGAGUACACUUU
5364


1251251.1
2337426.1

u(Uhd)acugaL96
2337427.1

guAfcUfcgascsg
UACUGG






AD-
A-
5333
usgsuag(Ghd)agdAa
A-
5349
VPusdGsaadAadGuga
UGUGUAGGAGAAUUC
5365


1010663.2
1851796.1

dTucacuuuucaL96
1875201.1

adTudCudCcuacascsa
ACUUUUCU






AD-
A-
5334
usgsuaggagdAaUfU
A-
5350
VPudGaadAa(G2p)ug
UGUGUAGGAGAAUUC
5366


1251301.1
2337482.1

fcac(Uhd)uuucaL96
2337486.1

aadTudCudCcuacascs
ACUUUUCU









g







AD-
A-
5335
asasggg(Ahd)aadAc
A-
5351
VPusdAscgdGadAgau
CAAAGGGAAAACAAU
5367


961179.3
1812594.1

dAaucuuccguaL96
1812595.1

udGudTudTcccuusus
CUUCCGUU









g







AD-
A-
5336
asasgggaaaAfCfAfa
A-
5352
VPudAcgdGa(A2p)ga
CAAAGGGAAAACAAU
5368


1251317.1
2337506.1

ucu(Uhd)ccguaL96
2337508.1

uudGuUfudTcccuusus
CUUCCGUU









g







AD-
A-
5337
asgsggaaAfaCfAfAfu
A-
5353
VPusAfsacdGgdAagau
AAAGGGAAAACAAUC
5369


1251318.1
2337509.1

cuu(Chd)cguuaL96
2337510.1

ugUfuUfucccususu
UUCCGUUU






AD-
A-
5338
gsasaaa(Chd)aaUfCf
A-
5354
VPuUfgadAa(C2p)gga
GGGAAAACAAUCUUC
5370


1251323.1
2337519.1

UfuccguuucaaL96
2337520.1

agaUfudGuuuucscsc
CGUUUCAA






AD-
A-
5339
asasaacaauCfUfUfc
A-
5355
VPuUfugdAadAcggad
GGAAAACAAUCUUCC
5371


1251325.1
2337523.1

cgu(Uhd)ucaaaL96
2337524.1

AgdAuUfguuuuscsc
GUUUCAAU






AD-
A-
5340
asgscau(Ahd)AfaUf
A-
5356
VPusAfsuuuCfgAfAfaa
GAAGCAUAAAUGUUU
5372


795634.3
1523299.1

GfUfuuucgaaauaL9
1523300.1

caUfuUfaugcususc
UCGAAAUU






AD-
A-
5341
gsasagcauadAaUfgu
A-
5357
VPuUfucdGadAaacad
CUGAAGCAUAAAUGU
5373


1251363.1
2337584.1

uu(Uhd)cgaaaL96
2337585.1

TuUfaUfgcuucsasg
UUUCGAAA






AD-
A-
5342
asasgca(Uhd)aadAu
A-
5358
VPuUfuudCgdAaaacd
UGAAGCAUAAAUGUU
5374


1251364.1
1812604.1

dGuuuucgaaaaL96
2337586.1

AuUfudAugcuuscsg
UUCGAAAU






AD-
A-
5343
asgscauaaaUfgUfuu
A-
5359
VPudAuudTc(G2p)aaa
GAAGCAUAAAUGUUU
5375


1251373.1
2337591.1

u(Chd)gaaauaL96
2337599.1

adCaUfuUfaugcuscsc
UCGAAAUU






AD-
A-
5344
asusgau(Chd)UfuCf
A-
5360
VPudAcudAcdGacaad
ACAUGAUCUUCUUUG
5376


1251385.1
1523845.1

UfUfugucguaguaL96
2337618.1

AgdAadGaucausgsu
UCGUAGUG






AD-
A-
5345
uscsu(Uhd)CfuUfud
A-
5361
VPusUfscadCu(Agn)cg
GAUCUUCUUUGUCGU
5377


1251391.1
2337625.1

GucguagugaaL96
2337626.1

acdAaAfgAfagasusc
AGUGAU
















TABLE 14B







Exemplary Human SCN9A Unmodified Single Strands and Duplex Sequences.


Column 1 indicates duplex name; the number following the decimal point in a duplex name merely refers to a batch production number. Column


2 indicates the sense sequence name. Column 3 indicates the sequence ID for the sequence of column 4. Column 4 provides the unmodified


sequence of a sense strand suitable for use in a duplex described herein. Column 5 provides the position in the target mRNA (NM_001365536.1)


of the sense strand of Column 4. Column 6 indicates the antisense sequence name. Column 7 indicates the sequence ID for the sequence of


column 8. Column 8 provides the sequence of an antisense strand suitable for use in a duplex described herein, without specifying chemical


modifications. Column 9 indicates the position in the target mRNA (NM_001365536.1) that is complementary to the antisense strand of Column


8.
















Sense
Seq ID

mRNA target
Antisense


mRNA target


Duplex
sequence
NO:
Sense sequence
range in
sequence
Seq ID NO:
antisense sequence
range in


Name
name
(sense)
(5′-3′)
NM_001365536.1
name
(antisense)
(5′-3′)
NM_001365536.1





AD-
A-
5378
UGUCGAGUACACUU
 760-780
A-
5394
UCAGUAAAAGUGU
 758-780


795305.2
1522697.1

UUACUGA

1522698.1

ACUCGACAUU






AD-
A-
5379
UGUCGAGUACACUU
 760-780
A-
5395
UCAGTAAAAGUGUA
 758-780


1251249.1
2337423.1

UUACUGA

2337424.1

CUCGACAUU






AD-
A-
5380
UCGAGUACACUUUU
 762-780
A-
5396
UCAGTAAAAGUGUA
 760-780


1251251.1
2337426.1

ACUGA

2337427.1

CUCGACG






AD-
A-
5381
UGUAGGAGAATUCA
 872-892
A-
5397
UGAAAAGUGAATUC
 870-892


1010663.2
1851796.1

CUUUUCA

1875201.1

UCCUACACA






AD-
A-
5382
UGUAGGAGAAUUCA
 829-849
A-
5398
UGAAAAGUGAATUC
 827-849


1251301.1
2337482.1

CUUUUCA

2337486.1

UCCUACACG






AD-
A-
5383
AAGGGAAAACAAUCU
 576-596
A-
5399
UACGGAAGAUUGUT
 574-596


961179.3
1812594.1

UCCGUA

1812595.1

UTCCCUUUG






AD-
A-
5384
AAGGGAAAACAAUCU
 576-596
A-
5400
UACGGAAGAUUGU
 574-596


1251317.1
2337506.1

UCCGUA

2337508.1

UUTCCCUUUG






AD-
A-
5385
AGGGAAAACAAUCU
 577-597
A-
5401
UAACGGAAGAUUG
 575-597


1251318.1
2337509.1

UCCGUUA

2337510.1

UUUUCCCUUU






AD-
A-
5386
GAAAACAAUCUUCCG
 580-600
A-
5402
UUGAAACGGAAGA
 578-600


1251323.1
2337519.1

UUUCAA

2337520.1

UUGUUUUCCC






AD-
A-
5387
AAAACAAUCUUCCGU
 581-601
A-
5403
UUUGAAACGGAAG
 579-601


1251325.1
2337523.1

UUCAAA

2337524.1

AUUGUUUUCC






AD-
A-
5388
AGCAUAAAUGUUUU
1113-1133
A-
5404
UAUUUCGAAAACAU
1111-1133


795634.3
1523299.1

CGAAAUA

1523300.1

UUAUGCUUC






AD-
A-
5389
GAAGCAUAAAUGUU
1111-1131
A-
5405
UUUCGAAAACATUU
1109-1131


1251363.1
2337584.1

UUCGAAA

2337585.1

AUGCUUCAG






AD-
A-
5390
AAGCAUAAAUGUUU
1112-1132
A-
5406
UUUUCGAAAACAU
1110-1132


1251364.1
1812604.1

UCGAAAA

2337586.1

UUAUGCUUCG






AD-
A-
5391
AGCAUAAAUGUUUU
1113-1133
A-
5407
UAUUTCGAAAACAU
1111-1133


1251373.1
2337591.1

CGAAAUA

2337599.1

UUAUGCUCC






AD-
A-
5392
AUGAUCUUCUUUGU
1433-1453
A-
5408
UACUACGACAAAGA
1431-1453


1251385.1
1523845.1

CGUAGUA

2337618.1

AGAUCAUGU






AD-
A-
5393
UCUUCUUUGUCGUA
1437-1455
A-
5409
UUCACUACGACAAA
1435-1455


1251391.1
2337625.1

GUGAA

2337626.1

GAAGAUC
















TABLE 15A







Exemplary Human SCN9A siRNA Modified Single Strands and Duplex Sequences


Column 1 indicates duplex name and the number following the decimal point in a duplex name merely refers to a batch production number.


Column 2 indicates the name of the sense sequence. Column 3 indicates the sequence ID for the sequence of column 4. Column 4 provides the


modified sequence of a sense strand suitable for use in a duplex described herein. Column 5 indicates the antisense sequence name. Column 6


indicates the sequence ID for the sequence of column 7. Column 7 provides the sequence of a modified antisense strand suitable for use in a


duplex described herein, e.g., a duplex comprising the sense sequence in the same row of the table. Column 8 indicates the position in the target


mRNA (NM_001365536.1) that is complementary to the antisense strand of Column 7. Column 9 indicated the sequence ID for the sequence of


column 8.




















Seq ID






Sense
Seq ID

Antisense
NO:

mRNA target
SEQ ID NO:


Duplex
sequence
NO:
Sense sequence
sequence
(anti
Antisense sequence
sequence in
(mRNA


Name
name
(sense)
(5′-3′)
name
sense)
(5′-3′)
NM_001365536.1
target)





AD-
A-
5410
csasagugUfuCfCfUf
A-
5426
VPuCfaudGa(C2p)agu
UUCAAGUGUUCCUAC
5442


1251492.2
2337764.1

acug(Uhd)caugaL96
2337773.1

aggAfaCfacuugscsc
UGUCAUGA






AD-
A-
5411
csasaca(Chd)aadTu
A-
5427
VPusdGscudAadGaag
AACAACACAAUUUCU
5443


961334.2
1812904.1

dTcuucuuagcaL96
1812905.1

adAadTudGuguugsus
UCUUAGCA









U







AD-
A-
5412
csasaca(Chd)aaUfUf
A-
5428
VPudGcudAadGaagad
AACAACACAAUUUCU
5444


1251279.2
2337459.1

UfcuucuuagcaL96
2337464.1

AaUfudGuguugsusu
UCUUAGCA






AD-
A-
5413
usgsucgaguAfCfAfc
A-
5429
VPusCfsagdTadAaagu
AAUGUCGAGUACACU
5445


1251284.2
2337423.1

uuu(Uhd)acugaL96
2337467.1

dGuAfcdTcgacasusu
UUUACUGG






AD-
A-
5414
ususcug(Uhd)guAfg
A-
5430
VPusdGsugdAa(U2p)
GCUUCUGUGUAGGAG
5446


1251334.2
2337536.1

dGagaauucacaL96
2337538.1

ucucdCuAfcAfcagaas
AAUUCACU









gsc







AD-
A-
5415
asusaaa(Uhd)guUfU
A-
5431
VPusUfsgadAudTucga
GCAUAAAUGUUUUCG
5447


1251377.2
2337604.1

fUfcgaaauucaaL96
2337606.1

aaAfcAfuuuausgsu
AAAUUCAC






AD-
A-
5416
gsasucu(Uhd)CfuUf
A-
5432
VPuUfcadCu(A2p)cga
AUGAUCUUCUUUGUC
5448


1251398.2
2337622.1

udGucguagugaaL96
2337630.1

cdAaAfgAfagaucsgsu
GUAGUGAU






AD-
A-
5417
gsasucu(Uhd)CfuUf
A-
5433
VPuUfcadCu(A2p)cga
AUGAUCUUCUUUGUC
5449


1251399.2
2337628.1

udGUfcguagugaaL96
2337630.1

cdAaAfgAfagaucsgsu
GUAGUGAU






AD-
A-
5418
csasuga(Uhd)cudTc
A-
5434
VPusdCsuadCgdAcaa
UACAUGAUCUUCUUU
5450


961188.2
1812612.1

dTuugucguagaL96
1812613.1

adGadAgdAucaugsus
GUCGUAGU









a







AD-
A-
5419
csasuga(Uhd)cuUfC
A-
5435
VPuCfuadCgdAcaaad
UACAUGAUCUUCUUU
5451


1251274.3
2337449.1

fUfuugucguagaL96
2337457.1

GadAgdAucaugsusg
GUCGUAGU






AD-
A-
5420
ususugu(Ahd)GfaUf
A-
5436
VPusGfsuaaUfuGfCfa
CUUUUGUAGAUCUU
5452


796825.2
1525636.1

CfUfugcaauuacaL96
1257916.1

agaUfcUfacaaasasg
GCAAUUACC






AD-
A-
5421
ususuug(Uhd)agAfU
A-
5437
VPusUfsaadTu(G2p)c




1251411.2
2337650.1

fCfuugcaauuaaL96
2337651.1

aagauCfuAfcaaagscsc







AD-
A-
5422
gsusaga(Uhd)CfuUf
A-
5438
VPudAugdGudAauug
UUGUAGAUCUUGCAA
5454


1251419.2
2337662.1

gCfaauuaccauaL96
2337663.1

dCaAfgAfucuacsgsg
UUACCAUU






AD-
A-
5423
usasugu(Ghd)AfaAf
A-
5439
VPusCfsguaAfgGfUfu
AUUAUGUGAAACAAA
5455


797564.3
1527042.1

CfAfaaccuuacgaL96
1527043.1

uguUfuCfacauasasu
CCUUACGU






AD-
A-
5424
ususaug(Uhd)gaAfA
A-
5440
VPudGuadAg(G2p)uu
AAUUAUGUGAAACAA
5456


1251428.2
2337677.1

fCfaaaccuuacaL96
2337678.1

uguuUfcAfcauaasusu
ACCUUACG






AD-
A-
5425
usasugugAfaAfCfAf
A-
5441
VPuCfgudAa(G2p)guu
AUUAUGUGAAACAAA
5457


1251434.2
2337679.1

aacc(Uhd)uacgaL96
2337687.1

uguUfuCfacauasgsu
CCUUACGU

















TABLE 15B







Exemplary Human SCN9A Unmodified Single Strands and Duplex Sequences.


Column 1 indicates duplex name; the number following the decimal point in a duplex name merely refers to a batch production number. Column


2 indicates the sense sequence name. Column 3 indicates the sequence ID for the sequence of column 4. Column 4 provides the unmodified


sequence of a sense strand suitable for use in a duplex described herein. Column 5 provides the position in the target mRNA (NM_001365536.1)


of the sense strand of Column 4. Column 6 indicates the antisense sequence name. Column 7 indicates the sequence ID for the sequence of


column 8. Column 8 provides the sequence of an antisense strand suitable for use in a duplex described herein, without specifying chemical


modifications. Column 9 indicates the position in the target mRNA (NM_001365536.1) that is complementary to the antisense strand of Column


8.
















Sense
Seq ID

mRNA target
Antisense


mRNA target


Duplex
sequence
NO:
Sense sequence
range in
sequence
Seq ID NO:
antisense sequence
range in


Name
name
(sense)
(5′-3′)
NM_001365536.1
name
(antisense)
(5′-3′)
NM_001365536.1





AD-
A-
5458
CAAGUGUUCCUACU
9104-9124
A-
5474
UCAUGACAGUAGGA
9102-9124


1251492.2
2337764.1

GUCAUGA

2337773.1

ACACUUGCC






AD-
A-
5459
CAACACAATUTCUUC
8498-8518
A-
5475
UGCUAAGAAGAAAT
8496-8518


961334.2
1812904.1

UUAGCA

1812905.1

UGUGUUGUU






AD-
A-
5460
CAACACAAUUUCUUC
8498-8518
A-
5476
UGCUAAGAAGAAAU
8496-8518


1251279.2
2337459.1

UUAGCA

2337464.1

UGUGUUGUU






AD-
A-
5461
UGUCGAGUACACUU
 760-780
A-
5477
UCAGTAAAAGUGUA
 758-780


1251284.2
2337423.1

UUACUGA

2337467.1

CTCGACAUU






AD-
A-
5462
UUCUGUGUAGGAGA
 824-844
A-
5478
UGUGAAUUCUCCU
 822-844


1251334.2
2337536.1

AUUCACA

2337538.1

ACACAGAAGC






AD-
A-
5463
AUAAAUGUUUUCGA
1116-1136
A-
5479
UUGAAUTUCGAAAA
1114-1136


1251377.2
2337604.1

AAUUCAA

2337606.1

CAUUUAUGU






AD-
A-
5464
GAUCUUCUUUGUCG
1435-1455
A-
5480
UUCACUACGACAAA
1433-1455


1251398.2
2337622.1

UAGUGAA

2337630.1

GAAGAUCGU






AD-
A-
5465
GAUCUUCUUUGUCG
1435-1455
A-
5481
UUCACUACGACAAA
1433-1455


1251399.2
2337628.1

UAGUGAA

2337630.1

GAAGAUCGU






AD-
A-
5466
CAUGAUCUTCTUUGU
1432-1452
A-
5482
UCUACGACAAAGAA
1430-1452


961188.2
1812612.1

CGUAGA

1812613.1

GAUCAUGUA






AD-
A-
5467
CAUGAUCUUCUUUG
1432-1452
A-
5483
UCUACGACAAAGAA
1430-1452


1251274.3
2337449.1

UCGUAGA

2337457.1

GAUCAUGUG






AD-
A-
5468
UUUGUAGAUCUUGC
2531-2551
A-
5484
UGUAAUUGCAAGA
2529-2551


796825.2
1525636.1

AAUUACA

1257916.1

UCUACAAAAG






AD-
A-
5469
UUUUGUAGAUCUUG
2530-2550
A-
5485
UUAATUGCAAGAUC



1251411.2
2337650.1

CAAUUAA

2337651.1

UACAAAGCC






AD-
A-
5470
GUAGAUCUUGCAAU
2534-2554
A-
5486
UAUGGUAAUUGCA
2532-2554


1251419.2
2337662.1

UACCAUA

2337663.1

AGAUCUACGG






AD-
A-
5471
UAUGUGAAACAAACC
3299-3319
A-
5487
UCGUAAGGUUUGU
3297-3319


797564.3
1527042.1

UUACGA

1527043.1

UUCACAUAAU






AD-
A-
5472
UUAUGUGAAACAAA
3298-3318
A-
5488
UGUAAGGUUUGUU
3296-3318


1251428.2
2337677.1

CCUUACA

2337678.1

UCACAUAAUU






AD-
A-
5473
UAUGUGAAACAAACC
3299-3319
A-
5489
UCGUAAGGUUUGU
3297-3319


1251434.2
2337679.1

UUACGA

2337687.1

UUCACAUAGU
















TABLE 16







SCN9A Lipid-Conjugated Modified Sequences.


The C16 modifications shown are exemplary modifications. It is understood other lipophilic


moieties may be used at other locations within the duplex as provided above.













SEQ

SEQ


Duplex

ID

ID


Name
Modified sense strand sequence
NO:
Modified antisense strand sequence
NO:





AD-1479539
gscscca(Ahd)AfaUfAfCfugauaauasgsa
5490
VPusCfsuauUfaUfCfaguaUfuUfugggcsasg
5645





AD-1479540
asasggg(Ahd)AfaAfCfAfaucuuccgsusa
5491
VPusAfscggAfaGfAfuuguUfuUfcccuususg
5646





AD-1479541
ususugu(Ahd)gadTcdTugcaauuascsa
5492
VPusdGsuadAudTgcaadGadTcdTacaaasasg
5647





AD-1479542
asusguc(Ghd)AfgUfAfCfacuuuuacsusa
5493
VPusAfsguaAfaAfGfuguaCfuCfgacaususu
5648





AD-1479543
csusaaa(Uhd)UfaUfGfGfaaguaaucsusa
5494
VPusAfsgauUfaCfUfuccaUfaAfuuuagsgsa
5649





AD-1479544
usgsaga(Chd)UfgAfCfAfcauuguaasusa
5495
VPusAfsuuaCfaAfUfguguCfaGfucucasasg
5650





AD-1479545
asuscuu(Chd)uudTgdTcguagugasusa
5496
VPusdAsucdAcdTacgadCadAadGaagauscsa
5651





AD-1479546
usgsguu(Uhd)CfaGfCfAfcagauucasgsa
5497
VPusCfsugaAfuCfUfgugcUfgAfaaccascsa
5652





AD-1479547
ascsaug(Ahd)ucdTudCuuugucgusasa
5498
VPusdTsacdGadCaaagdAadGadTcaugusasg
5653





AD-1479548
csusucu(Ghd)AfaAfCfAfuccaaacusgsa
5499
VPusCfsaguUfuGfGfauguUfuCfagaagsasa
5654





AD-1479549
usasuug(Uhd)GfaCfUfUfuaaguuuasgsa
5500
VPusCfsuaaAfcUfUfaaagUfcAfcaauasasg
5655





AD-1479550
csasccu(Uhd)CfuCfCfUfuaaaauucsusa
5501
VPusAfsgaaUfuUfUfaaggAfgAfaggugsasc
5656





AD-1479551
ususgug(Ahd)CfuUfUfAfaguuuagusgsa
5502
VPusCfsacuAfaAfCfuuaaAfgUfcacaasusa
5657





AD-1479552
gsasucu(Uhd)cudTudGucguagugsasa
5503
VPusdTscadCudAcgacdAadAgdAagaucsasu
5658





AD-1479553
ususgcu(Ahd)UfaGfGfAfaauuugguscsa
5504
VPusGfsaccAfaAfUfuuccUfaUfagcaasgsu
5659





AD-1479554
csasuga(Uhd)CfuUfCfUfuugucguasgsa
5505
VPusCfsuacGfaCfAfaagaAfgAfucaugsusa
5660





AD-1479555
ususgau(Ahd)GfuUfAfCfcuaguuugscsa
5506
VPusGfscaaAfcUfAfgguaAfcUfaucaasasa
5661





AD-1479556
ususcug(Uhd)GfuAfGfGfagaauucascsa
5507
VPusGfsugaa(Tgn)ucuccuAfcAfcagaasgsc
5662





AD-1479557
usgscua(Uhd)agdGadAauuuggucsusa
5508
VPusdAsgadCcdAaauudTcdCudAuagcasasg
5663





AD-1479558
ususcug(Uhd)gudAgdGagaauucascsa
5509
VPusdGsugdAadTucucdCudAcdAcagaasgsc
5664





AD-1479559
usgsaua(Ghd)UfuAfCfCfuaguuugcsasa
5510
VPusUfsgcaAfaCfUfagguAfaCfuaucasasa
5665





AD-1479560
gsusuug(Ahd)AfcAfCfAfaaucuuucsgsa
5511
VPusCfsgaaAfgAfUfuuguGfuUfcaaacscsu
5666





AD-1479561
gsasgau(Ghd)GfaUfUfCfucuucguuscsa
5512
VPusGfsaacGfaAfGfagaaUfcCfaucucscsc
5667





AD-1479562
asusgau(Chd)UfuCfUfUfugucguagsusa
5513
VPusAfscuaCfgAfCfaaagAfaGfaucausgsu
5668





AD-1479563
asgscuu(Ghd)AfaGfUfAfaaauuagascsa
5514
VPusGfsucuAfaUfUfuuacUfuCfaagcususa
5669





AD-1479564
asuscuu(Chd)UfuUfGfUfcguagugasusa
5515
VPusAfsucaCfuAfCfgacaAfaGfaagauscsa
5670





AD-1479565
usgsauc(Uhd)ucdTudTgucguagusgsa
5516
VPusdCsacdTadCgacadAadGadAgaucasusg
5671





AD-1479566
asuscug(Ahd)gadCudGaauuugccsgsa
5517
VPusdCsggdCadAauucdAgdTcdTcagauscsc
5672





AD-1479567
asusgau(Chd)uudCudTugucguagsusa
5518
VPusdAscudAcdGacaadAgdAadGaucausgsu
5673





AD-1479568
csasagu(Ghd)UfuCfCfUfacugucausgsa
5519
VPusCfsaugAfcAfGfuaggAfaCfacuugsasa
5674





AD-1479569
asusgug(Ahd)AfaCfAfAfaccuuacgsusa
5520
VPusAfscguAfaGfGfuuugUfuUfcacausasa
5675





AD-1479570
usgsucg(Ahd)gudAcdAcuuuuacusgsa
5521
VPusdCsagdTadAaagudGudAcdTcgacasusu
5676





AD-1479571
usgsuag(Ghd)AfgAfAfUfucacuuuuscsa
5522
VPusGfsaaaAfgUfGfaauuCfuCfcuacascsa
5677





AD-1479572
gsgscgu(Uhd)GfuAfGfUfuccuaucuscsa
5523
VPusGfsagaUfaGfGfaacuAfcAfacgccsusu
5678





AD-1479573
usasuug(Uhd)gadCudTuaaguuuasgsa
5524
VPusdCsuadAadCuuaadAgdTcdAcaauasasg
5679





AD-1479574
ususgug(Ahd)cudTudAaguuuagusgsa
5525
VPusdCsacdTadAacuudAadAgdTcacaasusa
5680





AD-1209344
csasaca(Chd)aadTudTcuucuuagscsa
5526
VPusdGscudAadGaagadAadTudGuguugsusu
5681





AD-1479575
asasggg(Ahd)aadAcdAaucuuccgsusa
5527
VPusdAscgdGadAgauudGudTudTcccuususg
5682





AD-1331347
usgsucg(Ahd)GfuAfCfAfcuuuuacusgsa
5528
VPusCfsaguAfaAfAfguguAfcUfcgacasusu
5683





AD-1479576
gsasucu(Uhd)CfuUfUfGfucguagugsasa
5529
VPusUfscacUfaCfGfacaaAfgAfagaucsasu
5684





AD-1443073
asgscau(Ahd)AfaUfGfUfuuucgaaasusa
5530
VPusAfsuuuCfgAfAfaacaUfuUfaugcususc
5685





AD-1479577
usasugu(Ghd)AfaAfCfAfaaccuuacsgsa
5531
VPusCfsguaAfgGfUfuuguUfuCfacauasasu
5686





AD-1479578
usgsuag(Ghd)agdAadTucacuuuuscsa
5532
VPusdGsaadAadGugaadTudCudCcuacascsa
5687





AD-1479579
csasuga(Uhd)cudTcdTuugucguasgsa
5533
VPusdCsuadCgdAcaaadGadAgdAucaugsusa
5688





AD-1183928
ususcug(Uhd)GfuAfGfGfagaauucascsa
5534
VPusGfsugaAfuUfCfuccuAfcAfcagaasgsc
5689





AD-1183930
ususugu(Ahd)GfaUfCfUfugcaauuascsa
5535
VPusGfsuaaUfuGfCfaagaUfcUfacaaasasg
5690





AD-1331355
usgsucgaguAfCfAfcuuu(Uhd)acusgsa
5536
VPusCfsagdTadAaaguguAfcUfcgacasusu
5691





AD-1479580
uscsgaguAfCfAfcuuu(Uhd)acusgsa
5537
VPusCfsagdTadAaaguguAfcUfcgascsg
5692





AD-1331354
csasuga(Uhd)cuUfCfUfuugucguasgsa
5538
VPuCfuadCgdAcaaadGadAgdAucaugsusg
5693





AD-1479581
gsasaaa(Chd)aaUfCfUfuccauuucsasa
5539
VPuUfgadAadTggaagaUfudGuuuucscsc
5694





AD-1331351
gsasaaa(Chd)aaUfCfUfuccguuucsasa
5540
VPuUfgadAa(C2p)ggaagaUfudGuuuucscsc
5695





AD-1479582
asasaacaAfuCfUfUfccgu(Uhd)ucasasa
5541
VPusUfsugdAadAcggaagAfuUfguuuuscsc
5696





AD-1331350
asasaacaauCfUfUfccgu(Uhd)ucasasa
5542
VPuUfugdAadAcggadAgdAuUfguuuuscsc
5697





AD-1479583
gsgscuu(Chd)UfgUfgUfaggagaaususa
5543
VPudAaudTc(Tgn)ccuadCaCfadGaagccsusc
5698





AD-1479584
ususcug(Uhd)guAfgdGagaauucascsa
5544
VPusdGsugdAa(U2p)ucucdCuAfcAfcagaasg
5699





sc






AD-1479585
gsusguaggadGadAuuca(Chd)uuususa
5545
VPudAaadAgdTgaaudTcUfcCfuacacsgsg
5700





AD-1479586
usgsuaggagdAaUfucau(Uhd)uuuscsa
5546
VPusdGsaadAadAugaadTuCfuCfcuacascsg
5701





AD-1479587
gsgsagaaUfuCfAfCfuuuu(Chd)uucsgsa
5547
VPusCfsgadAgdAaaagugAfaUfucuccsusg
5702





AD-1479588
gsgsagaaUfuCfaCfuuuu(Chd)uucsgsa
5548
VPuCfgadAgdAaaagdTgdAaUfucuccsusg
5703





AD-1479589
csusgaagCfaUfAfAfaugu(Uhd)uucsgsa
5549
VPusCfsgadAadAcauuuaUfgCfuucagsgsu
5704





AD-1479590
usgsaag(Chd)audAadAuguuuucgsasa
5550
VPuUfcgdAadAacaudTuAfudGcuucasgsg
5705





AD-1479591
gsasagcaUfaAfAfUfguuu(Uhd)cgasasa
5551
VPusUfsucdGadAaacauuUfaUfgcuucsasg
5706





AD-1331349
gsasagcauadAaUfguuu(Uhd)cgasasa
5552
VPuUfucdGadAaacadTuUfaUfgcuucsasg
5707





AD-1479592
asasgca(Uhd)aadAudGuuuucgaasasa
5553
VPuUfuudCgdAaaacdAuUfudAugcuuscsg
5708





AD-1479593
asgsca(Uhd)aaaUfgUfuuucgaaasusa
5554
VPudAuudTcdGaaaadCaUfuUfaugcususc
5709





AD-1479594
asgscauaAfaUfGfUfuuu(Chd)gaaasusa
5555
VPusAfsuuuCfgAfAfaacaUfuUfaugcususc
5710





AD-1479595
asgscauaAfaUfGfUfuuu(Chd)gaaasusa
5556
VPusAfsuudTc(G2p)aaaacaUfuUfaugcususc
5711





AD-1479596
asgscauaaaUfgUfuuu(Uhd)gaaasusa
5557
VPusAfsuudTcdAaaaadCaUfuUfaugcususc
5712





AD-1479597
asgscauaaaUfgUfuuu(Chd)gaaasusa
5558
VPusdAsuudTc(G2p)aaaadCaUfuUfaugcusc
5713





sc






AD-1479598
csasuaaaUfgUfuuu(Chd)gaaasusa
5559
VPusdAsuudTc(G2p)aaaadCaUfuUfaugscsu
5714





AD-1479599
asgscauaaaUfgUfuuu(Chd)gaaasusa
5560
VPudAuudTc(G2p)aaaadCaUfuUfaugcususc
5715





AD-1479600
gscsa(Uhd)aaaugUfUfuucgaaaususa
5561
VPusdAsaudTu(C2p)gaaaacAfuUfuaugcsusu
5716





AD-1479601
asusaaa(Uhd)guUfUfUfcgaaauucsasa
5562
VPusUfsgadAudTucgaaaAfcAfuuuausgsc
5717





AD-1479602
asusaaa(Uhd)guUfUfUfcgaaauucsasa
5563
VPusUfsgadAudTucgaaaAfcAfuuuausgsu
5718





AD-1479603
usasaaugUfuUfuCfgaaa(Uhd)ucascsa
5564
VPudGugdAadTuucgdAadAaCfauuuasusg
5719





AD-1479604
usasca(Uhd)gAfuCfUfUfcuuugucgsusa
5565
VPusAfscgdAcdAaagaagAfuCfauguasgsg
5720





AD-1479605
csasuga(Uhd)CfuUfCfUfuugucguasgsa
5566
VPusCfsuadCgdAcaaagaAfgAfucaugsusg
5721





AD-1479606
csasuga(Uhd)CfuUfCfUfuugucguasgsa
5567
VPuCfuadCgdAcaaadGadAgdAucaugsusg
5722





AD-1331348
asusgau(Chd)UfuCfUfUfugucguagsusa
5568
VPudAcudAcdGacaadAgdAadGaucausgsu
5723





AD-1479607
usgsauc(Uhd)UfcUfUfUfgucguagusgsa
5569
VPudCacdTadCgacadAadGadAgaucasusg
5724





AD-1479608
uscsu(Uhd)CfuUfudGucguagugsasa
5570
VPusUfscadCu(Agn)cgacdAaAfgAfagasusc
5725





AD-1479609
uscsu(Uhd)CfuUfudGucguagugsasa
5571
VPusUfscadCu(A2p)cgacdAaAfgAfagasusc
5726





AD-1443072
gsasucu(Uhd)CfuUfudGucguagugsasa
5572
VPuUfcadCu(A2p)cgacdAaAfgAfagaucsgsu
5727





AD-1479610
gsasucu(Uhd)CfuUfudGUfcguagugsasa
5573
VPuUfcadCu(A2p)cgacdAaAfgAfagaucsgsu
5728





AD-1479611
gsasucu(Uhd)CfuUfUfgUfCfguagugsasa
5574
VPuUfcadCu(A2p)cgacaaAfgAfagaucsgsu
5729





AD-1479612
uscsuuugUfcgUfAfguga(Uhd)uuuscsa
5575
VPudGaadAadTcacudAcdGaCfaaagasgsg
5730





AD-1479613
asusccu(Uhd)UfugUfAfgaucuugcsasa
5576
VPusUfsgcdAa(G2p)aucuacAfaAfaggauscsc
5731





AD-1479614
cscsuuu(Uhd)gudAgdAucuugcaasusa
5577
VPudAuudGc(A2p)agaudCuAfcAfaaaggsgsu
5732





AD-1479615
csusuuugUfagAfUfcuug(Chd)aaususa
5578
VPusAfsaudTg(C2p)aagaucUfaCfaaaagsgsg
5733





AD-1479616
ususuug(Uhd)AfgAfUfCfuugcaauusasa
5579
VPusUfsaadTu(G2p)caagauCfuAfcaaaasgsg
5734





AD-1479617
ususuug(Uhd)agAfUfCfuugcaauusasa
5580
VPusUfsaadTu(G2p)caagauCfuAfcaaagscsc
5735





AD-1479618
ususug(Uhd)agaUfCfUfugcaauuascsa
5581
VPusGfsuaaUfuGfCfaagaUfcUfacaaasgsg
5736





AD-1479619
ususug(Uhd)agaUfCfUfugcaauuascsa
5582
VPusdGsuadAu(Tgn)gcaagaUfcUfacaaasgsg
5737





AD-1479620
ususug(Uhd)agaUfCfUfugcaauuascsa
5583
VPudGuadAu(Tgn)gcaagaUfcUfacaaasgsg
5738





AD-1479621
ususguagauCfUfUfgcaa(Uhd)uacscsa
5584
VPusdGsgudAa(U2p)ugcaagAfuCfuacaasgsg
5739





AD-1479622
gsusaga(Uhd)CfuUfgCfaauuaccasusa
5585
VPudAugdGudAauugdCaAfgAfucuacsgsg
5740





AD-1479623
asasuua(Uhd)gudGadAacaaaccususa
5586
VPudAagdGu(U2p)uguudTcAfcAfuaauususg
5741





AD-1479624
asusuaugugdAadAcaaa(Chd)cuusasa
5587
VPuUfaadGg(Tgn)uugudTuCfaCfauaaususu
5742





AD-1479625
ususaug(Uhd)gaAfAfCfaaaccuuascsa
5588
VPudGuadAg(G2p)uuuguuUfcAfcauaasusu
5743





AD-1331354
csasuga(Uhd)cuUfCfUfuugucguasgsa
5589
VPuCfuadCgdAcaaadGadAgdAucaugsusg
5744





AD-1479581
gsasaaa(Chd)aaUfCfUfuccauuucsasa
5590
VPuUfgadAadTggaagaUfudGuuuucscsc
5745





AD-1331351
gsasaaa(Chd)aaUfCfUfuccguuucsasa
5591
VPuUfgadAa(C2p)ggaagaUfudGuuuucscsc
5746





AD-1331350
asasaacaauCfUfUfccgu(Uhd)ucasasa
5592
VPuUfugdAadAcggadAgdAuUfguuuuscsc
5747





AD-1479583
gsgscuu(Chd)UfgUfgUfaggagaaususa
5593
VPudAaudTc(Tgn)ccuadCaCfadGaagccsusc
5748





AD-1479585
gsusguaggadGadAuuca(Chd)uuususa
5594
VPudAaadAgdTgaaudTcUfcCfuacacsgsg
5749





AD-1479588
gsgsagaaUfuCfaCfuuuu(Chd)uucsgsa
5595
VPuCfgadAgdAaaagdTgdAaUfucuccsusg
5750





AD-1479590
usgsaag(Chd)audAadAuguuuucgsasa
5596
VPuUfcgdAadAacaudTuAfudGcuucasgsg
5751





AD-1331349
gsasagcauadAaUfguuu(Uhd)cgasasa
5597
VPuUfucdGadAaacadTuUfaUfgcuucsasg
5752





AD-1479592
asasgca(Uhd)aadAudGuuuucgaasasa
5598
VPuUfuudCgdAaaacdAuUfudAugcuuscsg
5753





AD-1479593
asgsca(Uhd)aaaUfgUfuuucgaaasusa
5599
VPudAuudTcdGaaaadCaUfuUfaugcususc
5754





AD-1479599
asgscauaaaUfgUfuuu(Chd)gaaasusa
5600
VPudAuudTc(G2p)aaaadCaUfuUfaugcususc
5755





AD-1479603
usasaaugUfuUfuCfgaaa(Uhd)ucascsa
5601
VPudGugdAadTuucgdAadAaCfauuuasusg
5756





AD-1479606
csasuga(Uhd)CfuUfCfUfuugucguasgsa
5602
VPuCfuadCgdAcaaadGadAgdAucaugsusg
5757





AD-1331348
asusgau(Chd)UfuCfUfUfugucguagsusa
5603
VPudAcudAcdGacaadAgdAadGaucausgsu
5758





AD-1479607
usgsauc(Uhd)UfcUfUfUfgucguagusgsa
5604
VPudCacdTadCgacadAadGadAgaucasusg
5759





AD-1443072
gsasucu(Uhd)CfuUfudGucguagugsasa
5605
VPuUfcadCu(A2p)cgacdAaAfgAfagaucsgsu
5760





AD-1479610
gsasucu(Uhd)CfuUfudGUfcguagugsasa
5606
VPuUfcadCu(A2p)cgacdAaAfgAfagaucsgsu
5761





AD-1479611
gsasucu(Uhd)CfuUfUfgUfCfguagugsasa
5607
VPuUfcadCu(A2p)cgacaaAfgAfagaucsgsu
5762





AD-1479612
uscsuuugUfcgUfAfguga(Uhd)uuuscsa
5608
VPudGaadAadTcacudAcdGaCfaaagasgsg
5763





AD-1479614
cscsuuu(Uhd)gudAgdAucuugcaasusa
5609
VPudAuudGc(A2p)agaudCuAfcAfaaaggsgsu
5764





AD-1479620
ususug(Uhd)agaUfCfUfugcaauuascsa
5610
VPudGuadAu(Tgn)gcaagaUfcUfacaaasgsg
5765





AD-1479622
gsusaga(Uhd)CfuUfgCfaauuaccasusa
5611
VPudAugdGudAauugdCaAfgAfucuacsgsg
5766





AD-1479623
asasuua(Uhd)gudGadAacaaaccususa
5612
VPudAagdGu(U2p)uguudTcAfcAfuaauususg
5767





AD-1479624
asusuaugugdAadAcaaa(Chd)cuusasa
5613
VPuUfaadGg(Tgn)uugudTuCfaCfauaaususu
5768





AD-1479625
ususaug(Uhd)gaAfAfCfaaaccuuascsa
5614
VPudGuadAg(G2p)uuuguuUfcAfcauaasusu
5769





AD-1481938
gsusaga(Uhd)CfuUfgCfaauuaccasusa
5615
VPusdAsugdGudAauugdCaAfgAfucuacsgsg
5770





AD-1481939
asasuua(Uhd)gudGadAacaaaccususa
5616
VPusdAsagdGu(U2p)uguudTcAfcAfuaauusu
5771





sg






AD-1481940
asusuaugugdAadAcaaa(Chd)cuusasa
5617
VPusUfsaadGg(Tgn)uugudTuCfaCfauaausu
5772





su






AD-1481941
ususaug(Uhd)gaAfAfCfaaaccuuascsa
5618
VPusdGsuadAg(G2p)uuuguuUfcAfcauaasusu
5773





AD-1481942
csasuga(Uhd)cuUfCfUfuugucguasgsa
5619
VPusCfsuadCgdAcaaadGadAgdAucaugsusg
5774





AD-1481943
gsasaaa(Chd)aaUfCfUfuccauuucsasa
5620
VPusUfsgadAadTggaagaUfudGuuuucscsc
5775





AD-1481944
gsasaaa(Chd)aaUfCfUfuccguuucsasa
5621
VPusUfsgadAa(C2p)ggaagaUfudGuuuucscsc
5776





AD-1481945
asasaacaauCfUfUfccgu(Uhd)ucasasa
5622
VPusUfsugdAadAcggadAgdAuUfguuuuscsc
5777





AD-1481946
gsgscuu(Chd)UfgUfgUfaggagaaususa
5623
VPusdAsaudTc(Tgn)ccuadCaCfadGaagccsu
5778





sc






AD-1481947
gsusguaggadGadAuuca(Chd)uuususa
5624
VPusdAsaadAgdTgaaudTcUfcCfuacacsgsg
5779





AD-1481948
gsgsagaaUfuCfaCfuuuu(Chd)uucsgsa
5625
VPusCfsgadAgdAaaagdTgdAaUfucuccsusg
5780





AD-1481949
usgsaag(Chd)audAadAuguuuucgsasa
5626
VPuslIfscgdAadAacaudTuAfudGcuucasgsg
5781





AD-1481950
gsasagcauadAaUfguuu(Uhd)cgasasa
5627
VPusUfsucdGadAaacadTuUfaUfgcuucsasg
5782





AD-1481951
asasgca(Uhd)aadAudGuuuucgaasasa
5628
VPusUfsuudCgdAaaacdAuUfudAugcuuscsg
5783





AD-1481952
asgsca(Uhd)aaaUfgUfuuucgaaasusa
5629
VPusdAsuudTcdGaaaadCaUfuUfaugcususc
5784





AD-1481953
asgscauaaaUfgUfuuu(Chd)gaaasusa
5630
VPusdAsuudTc(G2p)aaaadCaUfuUfaugcusu
5785





sc






AD-1481954
usasaaugUfuUfuCfgaaa(Uhd)ucascsa
5631
VPusdGsugdAadTuucgdAadAaCfauuuasusg
5786





AD-1481955
csasuga(Uhd)CfuUfCfUfuugucguasgsa
5632
VPusCfsuadCgdAcaaadGadAgdAucaugsusg
5787





AD-1481956
asusgau(Chd)UfuCfUfUfugucguagsusa
5633
VPusdAscudAcdGacaadAgdAadGaucausgsu
5788





AD-1481957
usgsauc(Uhd)UfcUfUfUfgucguagusgsa
5634
VPusdCsacdTadCgacadAadGadAgaucasusg
5789





AD-1481958
gsasucu(Uhd)CfuUfudGucguagugsasa
5635
VPusUfscadCu(A2p)cgacdAaAfgAfagaucsg
5790





su






AD-1481959
gsasucu(Uhd)CfuUfudGUfcguagugsasa
5636
VPusUfscadCu(A2p)cgacdAaAfgAfagaucsg
5791





su






AD-1481960
gsasucu(Uhd)CfuUfUfgUfCfguagugsasa
5637
VPusUfscadCu(A2p)cgacaaAfgAfagaucsgsu
5792





AD-1481961
uscsuuugUfcgUfAfguga(Uhd)uuuscsa
5638
VPusdGsaadAadTcacudAcdGaCfaaagasgsg
5793





AD-1481962
cscsuuu(Uhd)gudAgdAucuugcaasusa
5639
VPusdAsuudGc(A2p)agaudCuAfcAfaaaggsg
5794





su






AD-1479619
ususug(Uhd)agaUfCfUfugcaauuascsa
5640
VPusdGsuadAu(Tgn)gcaagaUfcUfacaaasgsg
5795





AD-1481938
gsusaga(Uhd)CfuUfgCfaauuaccasusa
5641
VPusdAsugdGudAauugdCaAfgAfucuacsgsg
5796





AD-1481939
asasuua(Uhd)gudGadAacaaaccususa
5642
VPusdAsagdGu(U2p)uguudTcAfcAfuaauusu
5797





sg






AD-1481940
asusuaugugdAadAcaaa(Chd)cuusasa
5643
VPusUfsaadGg(Tgn)uugudTuCfaCfauaausu
5798





su






AD-1481941
ususaug(Uhd)gaAfAfCfaaaccuuascsa
5644
VPusdGsuadAg(G2p)uuuguuUfcAfcauaasusu
5799





AD-1331352
usgsucgaguAfCfAfcuuu(Uhd)acusgsa
5800
VPusCfsagdTadAaagudGuAfcdTcgacasusu
5801









Example 2. In Vitro Screening of SCN9A siRNA

Experimental Methods


Dual-Glo® Luciferase Assay


Hepa1-6 cells (ATCC) were grown to near confluence at 37° C. in an atmosphere of 5% CO2 in DMEM (ATCC) supplemented with 10% FBS, before being released from the plate by trypsinization. A single-dose experiment was performed at 10 nM final duplex concentration. Three different siRNA and psiCHECK2-SCN9A plasmid transfections were carried out with each plasmid containing the 3′ untranslated region (UTR). The three plasmids were referred to as SCN9A-1, SCN9A-2, and SCN9A-3. Transfection was carried out by adding 10 nM of siRNA duplexes and 30-75 ng of one of the three psiCHECK2-SCN9A plasmids per well along with 4.9 μL of Opti-MEM plus 0.5 μL of Lipofectamine 2000 per well (Invitrogen, Carlsbad Calif. cat #13778-150) and then incubated at room temperature for 15 minutes. The mixture was then added to the cells (approximately 15,000 per well), which were re-suspended in 35 μL of fresh complete media. The transfected cells were incubated at 37° C. in an atmosphere of 5% CO2.


Twenty-four hours after the siRNAs and psiCHECK2-SCN9A plasmid were transfected; Firefly (transfection control) and Renilla (fused to SCN9A target sequence) luciferase were measured. First, media was removed from cells. Then Firefly luciferase activity was measured by adding 20 μL of Dual-Glo® Luciferase Reagent (Promega) equal to the culture medium volume to each well and mixing. The mixture was incubated at room temperature for 30 minutes before luminescence (500 nm) was measured on a Spectramax (Molecular Devices) to detect the Firefly luciferase signal. Renilla luciferase activity was measured by adding 20 μL of room temperature of Dual-Glo® Stop & Glo® Reagent (Promega) were added to each well and the plates were incubated for 10-15 minutes before luminescence was again measured to determine the Renilla luciferase signal. The Dual-Glo® Stop & Glo® Reagent quenched the firefly luciferase signal and sustained luminescence for the Renilla luciferase reaction. siRNA activity was determined by normalizing the Renilla (SCN9A) signal to the Firefly (control) signal within each well. The magnitude of siRNA activity was then assessed relative to cells that were transfected with the same vector but were not treated with siRNA or were treated with a non-SCN9A targeting siRNA. All transfections are done with n=4.


Results


The results of the single-dose dual luciferase screen in Hepa1-6 cells transfected with either the SCN9A-1 (added at 30 ng/well), SCN9A-2 (added at 75 ng/well), or SCN9A-3 plasmid (added at 30 ng/well) and treated with an exemplary set of SCN9A siRNAs is shown in Table 3 (correspond to siRNAs in Table 2A). The single-dose experiment was performed at a 10 nM final duplex concentration and the data are expressed as percent SCN9A luciferase signal remaining relative to cells treated with a non-targeting control.


Of the siRNA duplexes evaluated in cells transfected with SCN9A-1, 2 achieved ≥80% knockdown of SCN9A, 34 achieved ≥60% knockdown of SCN9A, 92 achieved ≥30% knockdown of SCN9A, and 95 achieved ≥20% knockdown of SCN9A.


Of the siRNA duplexes evaluated in cells transfected with SCN9A-2, 9 achieved ≥80% knockdown of SCN9A, 90 achieved ≥60% knockdown of SCN9A, 130 achieved ≥30% knockdown of SCN9A, and 132 achieved ≥20% knockdown of SCN9A.


Of the siRNA duplexes evaluated in cells transfected with SCN9A-3, 7 achieved ≥60% knockdown of SCN9A, 34 achieved ≥30% knockdown of SCN9A, and 47 achieved ≥20% knockdown of SCN9A.









TABLE 3







SCN9A in vitro dual luciferase 10 nM screen


with one set of exemplary human SCN9A siRNAs









10 nM












% of SCN9A Luciferase



Duplex ID*
Plasmid
signal Remaining
StDev













AD-887232.1
SCN9A-1
93.8
0.080


AD-887233.1

20.6
0.038


AD-887234.1

42.8
0.086


AD-887235.1

20.6
0.035


AD-887236.1

21.9
0.037


AD-887237.1

24.8
0.018


AD-887238.1

57.6
0.040


AD-887239.1

28.7
0.014


AD-887240.1

60.8
0.043


AD-887241.1

35.2
0.014


AD-887242.1

58.7
0.092


AD-887243.1

65.6
0.099


AD-887244.1

23.7
0.019


AD-887245.1

15.9
0.020


AD-887246.1

20.4
0.022


AD-887247.1

20.1
0.018


AD-887248.1

19.9
0.011


AD-887249.1

24.1
0.045


AD-887250.1

31.5
0.039


AD-887251.1

27.1
0.040


AD-887252.1

22.4
0.026


AD-887253.1

23.1
0.015


AD-887254.1

24.6
0.033


AD-887255.1

44.5
0.072


AD-887256.1

51.4
0.082


AD-887257.1

21.8
0.025


AD-887258.1

51.7
0.124


AD-887259.1

30.2
0.046


AD-887260.1

26.8
0.043


AD-887261.1

27.9
0.030


AD-887262.1

33.3
0.094


AD-887263.1

40.6
0.042


AD-887264.1

31.2
0.047


AD-887265.1

37.0
0.045


AD-887266.1

44.5
0.131


AD-887267.1

46.4
0.059


AD-887268.1

36.7
0.035


AD-887269.1

35.2
0.038


AD-887270.1

34.1
0.046


AD-887271.1

71.6
0.036


AD-887272.1

49.4
0.018


AD-887273.1

50.6
0.041


AD-887274.1

36.7
0.099


AD-887275.1

89.3
0.041


AD-887276.1

49.8
0.036


AD-887277.1

97.5
0.152


AD-887278.1

49.3
0.052


AD-887279.1

86.3
0.086


AD-887280.1

45.5
0.025


AD-887281.1

42.7
0.086


AD-887282.1

105.3
0.240


AD-887283.1

121.4
0.208


AD-887284.1

82.6
0.116


AD-887285.1

54.7
0.147


AD-887286.1

122.0
0.057


AD-887287.1

44.2
0.090


AD-887288.1

40.7
0.026


AD-887289.1

54.0
0.083


AD-887290.1

51.4
0.094


AD-887291.1

52.5
0.112


AD-887292.1

37.5
0.061


AD-887293.1

41.8
0.083


AD-887294.1

103.6
0.109


AD-887295.1

46.0
0.100


AD-887296.1

60.7
0.049


AD-887297.1

42.3
0.072


AD-887298.1

47.6
0.035


AD-887299.1

65.9
0.068


AD-887300.1

89.9
0.040


AD-887301.1

66.6
0.078


AD-887302.1

59.6
0.053


AD-887303.1

31.3
0.032


AD-887304.1

37.5
0.055


AD-887305.1

73.2
0.056


AD-887306.1

35.5
0.021


AD-887307.1

36.7
0.032


AD-887308.1

97.6
0.098


AD-887309.1

60.5
0.066


AD-887310.1

45.8
0.018


AD-887311.1

40.8
0.037


AD-887312.1

44.9
0.113


AD-887313.1

48.3
0.077


AD-887314.1

45.3
0.056


AD-887315.1

44.2
0.029


AD-887316.1

55.0
0.054


AD-887317.1

51.3
0.045


AD-887318.1

55.8
0.053


AD-887319.1

44.2
0.020


AD-887320.1

50.9
0.060


AD-887321.1

50.3
0.093


AD-887322.1

104.1
0.129


AD-887323.1

99.3
0.064


AD-887324.1

94.8
0.083


AD-887325.1

36.2
0.063


AD-887326.1

42.4
0.033


AD-887327.1

57.2
0.104


AD-887328.1

57.9
0.036


AD-887329.1

65.0
0.124


AD-887330.1

61.0
0.026


AD-887331.1

89.2
0.079


AD-887332.1

44.3
0.078


AD-887333.1

42.7
0.135


AD-887334.1

57.7
0.035


AD-887335.1

59.8
0.088


AD-887336.1

75.3
0.098


AD-887337.1

47.5
0.080


AD-887338.1

51.8
0.056


AD-887339.1

60.2
0.068


AD-887340.1

126.3
0.223


AD-887341.1

109.1
0.127


AD-887342.1

53.1
0.101


AD-887343.1

55.3
0.042


AD-887344.1
SCN9A-2
13.5
0.039


AD-887345.1

21.4
0.006


AD-887346.1

13.0
0.026


AD-887347.1

27.0
0.041


AD-887348.1

34.9
0.039


AD-887349.1

13.6
0.045


AD-887350.1

18.4
0.033


AD-887351.1

12.8
0.021


AD-887352.1

14.6
0.034


AD-887353.1

84.0
0.081


AD-887354.1

12.8
0.028


AD-887355.1

25.5
0.051


AD-887356.1

17.7
0.040


AD-887357.1

17.3
0.009


AD-887358.1

22.6
0.033


AD-887359.1

35.0
0.032


AD-887360.1

23.8
0.048


AD-887361.1

21.7
0.026


AD-887362.1

21.5
0.027


AD-887363.1

25.6
0.044


AD-887364.1

33.5
0.038


AD-887365.1

28.2
0.037


AD-887366.1

25.6
0.015


AD-887367.1

23.4
0.028


AD-887368.1

21.5
0.033


AD-887369.1

30.8
0.032


AD-887370.1

28.8
0.034


AD-887371.1

27.6
0.050


AD-887372.1

27.0
0.053


AD-887373.1

39.0
0.042


AD-887374.1

78.8
0.037


AD-887375.1

37.0
0.056


AD-887376.1

30.0
0.069


AD-887377.1

28.1
0.032


AD-887378.1

20.8
0.025


AD-887379.1

26.2
0.023


AD-887380.1

39.9
0.086


AD-887381.1

34.5
0.007


AD-887382.1

25.5
0.027


AD-887383.1

29.2
0.040


AD-887384.1

27.2
0.043


AD-887385.1

33.6
0.044


AD-887386.1

29.4
0.020


AD-887387.1

28.8
0.060


AD-887388.1

45.3
0.087


AD-887389.1

32.6
0.062


AD-887390.1

27.0
0.055


AD-887391.1

43.3
0.039


AD-887392.1

35.7
0.019


AD-887393.1

30.5
0.017


AD-887394.1

33.3
0.022


AD-887395.1

32.9
0.051


AD-887396.1

39.5
0.028


AD-887397.1

33.7
0.040


AD-887398.1

37.0
0.020


AD-887399.1

36.5
0.069


AD-887400.1

42.4
0.042


AD-887401.1

44.3
0.074


AD-887402.1

35.2
0.070


AD-887403.1

35.7
0.027


AD-887404.1

45.5
0.126


AD-887405.1

37.8
0.065


AD-887406.1

36.6
0.064


AD-887407.1

37.9
0.036


AD-887408.1

41.0
0.049


AD-887409.1

39.5
0.044


AD-887410.1

47.0
0.031


AD-887411.1

39.3
0.014


AD-887412.1

34.6
0.052


AD-887413.1

42.1
0.057


AD-887414.1

34.1
0.051


AD-887415.1

32.0
0.036


AD-887416.1

34.1
0.032


AD-887417.1

35.4
0.041


AD-887418.1

42.5
0.078


AD-887419.1

46.2
0.067


AD-887420.1

53.0
0.047


AD-887421.1

37.1
0.025


AD-887422.1

38.0
0.099


AD-887423.1

29.6
0.038


AD-887424.1

44.5
0.077


AD-887425.1

50.5
0.065


AD-887426.1

49.4
0.026


AD-887427.1

38.5
0.067


AD-887428.1

34.0
0.033


AD-887429.1

33.5
0.035


AD-887430.1

33.4
0.046


AD-887431.1

25.2
0.045


AD-887432.1

43.8
0.055


AD-887433.1

34.8
0.043


AD-887434.1

67.0
0.075


AD-887435.1

49.0
0.021


AD-887436.1

35.6
0.099


AD-887437.1

36.8
0.076


AD-887438.1

34.1
0.096


AD-887439.1

32.6
0.031


AD-887440.1

37.9
0.016


AD-887441.1

35.9
0.065


AD-887442.1

46.6
0.085


AD-887443.1

40.5
0.027


AD-887444.1

42.6
0.028


AD-887445.1

63.9
0.129


AD-887446.1

41.0
0.105


AD-887447.1

56.1
0.053


AD-887448.1

37.8
0.101


AD-887449.1

38.8
0.041


AD-887450.1

45.4
0.057


AD-887451.1

61.1
0.024


AD-887452.1

36.3
0.034


AD-887453.1

40.6
0.028


AD-887454.1

45.3
0.081


AD-887455.1

42.7
0.097


AD-887456.1

36.1
0.068


AD-887457.1

54.0
0.057


AD-887458.1

45.0
0.056


AD-887459.1

55.9
0.041


AD-887460.1

37.2
0.023


AD-887461.1

70.7
0.120


AD-887462.1

63.4
0.050


AD-887463.1

28.7
0.015


AD-887464.1

39.9
0.043


AD-887465.1

30.2
0.046


AD-887466.1

43.0
0.056


AD-887467.1

27.8
0.032


AD-887468.1

27.2
0.021


AD-887469.1

49.1
0.052


AD-887470.1

39.3
0.067


AD-887471.1

46.1
0.074


AD-887472.1

40.3
0.071


AD-887473.1

52.3
0.055


AD-887474.1

61.7
0.079


AD-887475.1

55.7
0.020


AD-887476.1

57.8
0.026


AD-887477.1
SCN9A-3
45.3
0.027


AD-887478.1

26.4
0.033


AD-887479.1

69.3
0.083


AD-887480.1

24.3
0.035


AD-887481.1

28.9
0.054


AD-887482.1

32.8
0.077


AD-887483.1

31.6
0.044


AD-887484.1

39.4
0.012


AD-887485.1

38.0
0.044


AD-887486.1

46.3
0.049


AD-887487.1

50.4
0.087


AD-887488.1

47.2
0.076


AD-887489.1

54.9
0.050


AD-887490.1

65.3
0.052


AD-887491.1

74.5
0.080


AD-887492.1

63.8
0.105


AD-887493.1

89.2
0.223


AD-887494.1

43.8
0.085


AD-887495.1

71.7
0.140


AD-887496.1

85.9
0.069


AD-887497.1

72.9
0.025


AD-887498.1

52.9
0.083


AD-887499.1

78.7
0.071


AD-887500.1

70.3
0.062


AD-887501.1

60.9
0.073


AD-887502.1

59.3
0.077


AD-887503.1

55.1
0.068


AD-887504.1

63.9
0.087


AD-887505.1

63.0
0.031


AD-887506.1

62.3
0.062


AD-887507.1

70.9
0.095


AD-887508.1

56.3
0.072


AD-887509.1

78.4
0.065


AD-887510.1

50.9
0.038


AD-887511.1

75.0
0.029


AD-887512.1

81.5
0.154


AD-887513.1

65.7
0.039


AD-887514.1

53.4
0.036


AD-887515.1

55.2
0.084


AD-887516.1

69.7
0.099


AD-887517.1

68.3
0.057


AD-887518.1

91.5
0.134


AD-887519.1

101.2
0.188


AD-887520.1

72.9
0.082


AD-887521.1

75.7
0.048


AD-887522.1

70.8
0.082


AD-887523.1

89.9
0.104


AD-887524.1

54.1
0.062


AD-887525.1

61.5
0.034


AD-887526.1

58.1
0.098


AD-887527.1

66.2
0.138


AD-887528.1

72.5
0.096


AD-887529.1

80.7
0.122


AD-887530.1

73.8
0.018


AD-887531.1

81.8
0.090





(*the number following the decimal point in a duplex name merely refers to a batch production number)






Example 3. In Vitro Screening of SCN9A siRNA

Experimental Methods


Cell Culture and Transfections:


Human neuroblastoma BE(2)-C cells expressing a SC9NA gene were transfected independently by adding 5 μl of Opti-MEM plus 0.1 μl of Lipofectamine RNAiMax per well (Invitrogen, Carlsbad Calif. cat #13778-150) to 5.1 μl of siRNA duplexes per well into a 384-well plate and are incubated at room temperature for 15 minutes. 40 μl of InVitroGRO CP Medium (BioIVT Cat #Z99029) containing 5×103 BE(2)-C cells were then added to the siRNA mixture. Cells were incubated for 24 hours prior to RNA purification. Experiments were performed at 0.1 nM, 1 nM, 10 nM, and 50 nM final duplex concentrations and the results are shown in Table 8.


In a second experiment, BE(2)-C cells expressing a SC9NA gene were transfected independently by adding 5 μl of Opti-MEM plus 0.1 μl of Lipofectamine RNAiMax per well (Invitrogen, Carlsbad Calif. cat #13778-150) to 5.1 μl of siRNA duplexes per well into a 384-well plate and are incubated at room temperature for 15 minutes. 40 μl of InVitroGRO CP Medium (BioIVT Cat #Z99029) containing 5×103 BE(2)-C cells were then added to the siRNA mixture. Cells were incubated for 24 hours prior to RNA purification. Experiments were performed at 0.1 nM, 1 nM, 10 nM, and 50 nM final duplex concentrations and the results are shown in Table 17.


RNA Isolation:


RNA was isolated using an automated protocol on a BioTek-EL406 platform using DYNABEADs (Invitrogen, Cat #61012). Briefly, 70 μl of Lysis/Binding Buffer and 10 μl of lysis buffer containing 3 μl of magnetic beads were added to the plate with cells. Plates were incubated on an electromagnetic shaker for 10 minutes at room temperature and then magnetic beads were captured and the supernatant was removed. Bead-bound RNA was then washed 2 times with 150 μl Wash Buffer A and once with Wash Buffer B. Beads were then washed with 150 μl Elution Buffer, re-captured and supernatant removed.


cDNA Synthesis:


cDNA was synthesized using ABI High capacity cDNA reverse transcription kit (Applied Biosystems, Foster City, Calif., Cat #4368813). 10 μl of a master mix containing 1 μl 10× Buffer, 0.4 μl 25×dNTPs, 1 μl 10× Random primers, 0.5 μl Reverse Transcriptase, 0.5 μl RNase inhibitor and 6.6 μl of H2O per reaction was added to RNA isolated above. Plates were sealed, mixed, and incubated on an electromagnetic shaker for 10 minutes at room temperature, followed by 2 h 37° C.


Real Time PCR:


Two μl of cDNA and 5 μl Lightcycler 480 probe master mix (Roche Cat #04887301001) were added to either 0.5 μl of Human GAPDH TaqMan Probe (4326317E) and 0.5 μl SCN9A Human probe per well in a 384 well plates (Roche cat #04887301001). Real time PCR was done in a LightCycler480 Real Time PCR system (Roche). Each duplex was tested at least two times and data were normalized to cells transfected with a non-targeting control siRNA. To calculate relative fold change, real time data were analyzed using the ΔΔCt method and normalized to assays performed with cells transfected with a non-targeting control siRNA.


Results:


The results of the multi-dose screen in BE(2)-C cells transfected with SCN9A and treated with an exemplary set of SCN9A siRNAs is shown in Table 8 (correspond to siRNAs in Table 4A, 4B, 5A, 5B, 6A, and 6B). The experiment was performed at a 0.1 nM, 1 nM, 10 nM, and 50 nM final duplex concentrations and the data are expressed as percent message remaining relative to non-targeting control.


Of the siRNA duplexes evaluated at 50 nM, 5 achieved ≥80% knockdown of SCN9A, 86 achieved ≥60% knockdown of SCN9A, 266 achieved ≥30% knockdown of SCN9A, 298 achieved ≥20% knockdown of SCN9A, and 314 achieved ≥10% knockdown of SCN9A.


Of the siRNA duplexes evaluated at 10 nM, 2 achieved ≥80% knockdown of SCN9A, 104 achieved ≥60% knockdown of SCN9A, 290 achieved ≥30% knockdown of SCN9A, 316 achieved ≥20% knockdown of SCN9A, and 324 achieved ≥10% knockdown of SCN9A.


Of the siRNA duplexes evaluated at 1 nM, 32 achieved ≥60% knockdown of SCN9A, 203 achieved ≥30% knockdown of SCN9A, 256 achieved ≥20% knockdown of SCN9A, and 296 achieved ≥10% knockdown of SCN9A.


Of the siRNA duplexes evaluated at 0.1 nM, 6 achieved ≥60% knockdown of SCN9A, 111 achieved ≥30% knockdown of SCN9A, 167 achieved ≥20% knockdown of SCN9A, and 213 achieved ≥10% knockdown of SCN9A.









TABLE 8







SCN9A in vitro multidose-dose screen with one set of exemplary human


SCN9A siRNA duplexes (*the number following the decimal point


in a duplex name merely refers to a batch production number)












50 nM
10 nM
1 nM
0.1 nM
















% message
St.
% message
St.
% message
St.
% message
St.


Duplex Name*
remaining
Dev.
remaining
Dev.
remaining
Dev.
remaining
Dev.


















AD-1010663.1
20.4
3.1
22.0
3.4
32.2
3.3
29.7
6.2


AD-802123.1
25.2
4.1
31.1
2.6
27.8
2.8
34.8
5.0


AD-961342.1
44.6
9.2
28.8
3.5
46.6
3.0
37.3
1.3


AD-961334.1
40.1
15.1
29.6
3.2
42.0
1.2
39.5
8.9


AD-961179.1
26.1
1.9
28.8
3.1
38.8
1.4
39.6
2.9


AD-1010661.1
22.6
2.8
24.1
5.0
39.5
4.4
39.8
5.5


AD-1010662.1
27.0
4.9
21.1
3.0
44.6
7.0
40.5
7.3


AD-961192.1
29.4
2.2
28.9
2.4
53.5
2.4
40.8
4.0


AD-961189.1
23.7
6.1
24.3
5.6
37.6
1.4
40.9
7.4


AD-961188.1
19.0
0.6
22.0
4.6
34.3
5.6
41.6
1.0


AD-1010665.1
48.8
5.4
36.9
1.7
69.6
4.1
42.2
3.8


AD-802853.2
35.3
3.2
36.9
6.4
40.1
4.2
44.1
5.2


AD-802471.2
23.7
5.7
26.1
4.9
24.5
2.6
44.5
4.4


AD-1010664.1
31.0
3.8
29.9
2.3
54.2
4.4
45.0
5.2


AD-802552.1
27.9
5.0
34.3
2.6
37.9
5.3
45.1
5.5


AD-802625.2
37.8
5.1
36.4
8.7
36.9
4.0
45.2
1.4


AD-802503.1
26.6
1.1
33.7
4.0
34.4
4.0
45.3
6.4


AD-1010700.1
63.7
5.0
32.4
1.4
50.5
1.4
45.4
6.4


AD-961207.1
19.3
1.9
21.0
4.8
43.9
10.2
45.5
10.5


AD-1010671.1
23.7
4.0
26.8
4.0
52.8
7.8
45.6
2.5


AD-1002101.1
33.4
7.3
39.2
3.0
50.1
6.3
45.8
4.9


AD-961208.1
18.6
1.9
20.9
1.5
45.8
10.4
46.6
6.8


AD-1010693.1
44.0
9.9
29.5
2.5
54.2
6.6
46.6
9.2


AD-802553.1
26.7
2.6
32.2
3.2
39.1
5.6
46.9
1.3


AD-961190.1
24.7
1.0
28.4
5.3
49.4
5.0
47.5
4.4


AD-802946.1
29.8
3.8
35.8
4.1
41.1
6.2
48.0
4.5


AD-961191.1
28.3
1.1
29.0
3.0
62.2
5.6
48.9
4.8


AD-801647.1
31.3
4.1
31.6
3.6
45.0
6.6
48.9
6.2


AD-961279.1
42.0
9.7
33.9
5.3
44.2
4.5
50.0
12.3


AD-1010697.1
33.1
4.3
29.8
1.2
54.9
6.5
50.0
15.7


AD-799938.1
26.4
3.5
27.5
8.3
38.6
4.0
51.0
9.2


AD-797636.2
34.7
6.4
25.7
2.7
53.2
9.9
52.4
8.4


AD-961326.1
57.6
9.4
45.9
12.6
48.8
3.2
52.6
7.4


AD-802945.2
46.1
6.1
50.0
3.4
46.1
8.6
52.7
5.3


AD-802206.2
37.4
2.7
43.6
2.8
40.6
9.1
53.0
2.6


AD-1002409.1
40.8
11.4
43.9
2.2
48.4
7.1
53.3
6.3


AD-801263.1
29.9
2.8
33.1
7.1
36.9
4.3
53.4
5.0


AD-961201.1
35.3
3.4
40.8
9.3
66.4
8.6
53.9
7.0


AD-795371.1
22.4
3.7
21.4
1.9
31.9
1.9
54.0
3.8


AD-799587.1
45.6
4.9
40.8
2.1
45.6
4.1
54.4
2.5


AD-802014.1
43.0
2.7
41.3
1.7
46.1
4.2
54.8
4.1


AD-961182.1
32.5
3.1
33.2
5.5
39.8
3.8
54.8
26.8


AD-800966.1
33.8
3.3
36.4
2.5
52.5
2.7
54.9
5.2


AD-795305.1
24.5
1.5
24.8
2.0
38.9
6.0
55.0
9.3


AD-798584.2
45.7
5.5
33.7
3.7
55.1
5.8
55.2
7.5


AD-795366.1
17.1
2.2
19.4
2.7
28.5
3.2
56.2
4.1


AD-1002051.1
38.2
6.7
33.0
5.6
40.3
7.5
56.3
6.6


AD-961321.1
65.9
6.7
33.8
7.4
57.5
5.1
56.7
7.8


AD-797565.2
23.0
1.2
20.6
4.3
43.1
4.8
56.8
3.7


AD-1010698.1
57.0
8.8
30.9
2.7
49.6
2.3
56.8
12.7


AD-799223.1
31.0
3.2
26.8
7.1
36.6
5.3
57.2
5.8


AD-801883.2
42.9
6.3
43.7
8.6
36.9
7.0
57.2
7.5


AD-961155.1
58.5
4.5
50.1
5.2
54.9
9.4
57.5
8.8


AD-1002100.1
45.6
11.2
48.9
6.3
58.7
6.6
57.9
11.8


AD-801658.2
52.9
11.9
51.7
5.9
54.5
5.6
57.9
5.4


AD-800110.1
44.3
8.0
38.6
5.0
44.2
2.1
58.2
3.5


AD-800819.1
32.8
1.7
32.9
6.5
48.0
7.8
58.5
4.3


AD-796618.1
20.8
2.1
23.4
2.2
31.7
3.0
58.6
7.9


AD-797564.2
21.6
3.1
22.7
5.7
48.6
9.8
58.9
7.8


AD-796825.1
13.9
1.4
18.5
2.1
26.3
2.6
59.0
6.8


AD-800297.2
63.1
6.1
51.5
6.4
79.9
8.4
59.3
6.8


AD-801304.1
28.5
2.6
35.0
3.7
46.5
3.5
59.5
3.2


AD-801708.2
48.9
5.3
46.0
7.2
57.8
5.5
59.7
9.0


AD-1010673.1
27.2
4.7
28.8
4.3
52.6
17.0
59.9
8.6


AD-1010699.1
72.3
3.2
33.3
4.7
53.4
2.3
59.9
10.1


AD-1001246.1
40.3
4.9
40.0
1.2
51.9
7.1
60.1
10.8


AD-796209.1
31.6
5.6
26.7
3.0
42.6
3.6
60.5
8.6


AD-801835.1
45.7
2.8
48.9
3.6
55.6
3.5
60.6
3.2


AD-1010677.1
40.4
4.5
49.1
5.8
61.3
13.3
61.1
7.1


AD-802141.2
51.4
7.1
50.8
3.7
54.8
3.8
61.9
1.8


AD-802153.2
67.9
2.2
73.0
4.5
64.5
9.1
63.0
4.7


AD-1010670.1
34.8
4.1
45.0
6.9
58.9
3.2
63.3
15.2


AD-800661.1
42.7
5.7
40.6
2.9
48.7
2.1
63.3
4.1


AD-800058.1
50.9
6.3
42.3
2.5
46.1
1.2
63.8
3.0


AD-795910.1
28.0
1.8
34.2
7.6
39.7
2.7
64.0
5.4


AD-961200.1
52.8
6.6
92.3
36.4
75.1
9.5
64.1
11.1


AD-799939.1
34.8
3.9
36.8
0.3
39.9
3.7
64.1
3.8


AD-1010660.1
42.2
1.5
48.5
9.5
70.2
10.6
64.3
10.0


AD-961093.1
54.9
9.5
53.1
1.9
59.8
4.7
64.4
3.5


AD-1000916.1
42.0
3.3
44.1
2.9
52.6
2.9
64.4
7.3


AD-801681.2
45.4
2.6
43.0
4.6
68.1
5.1
64.5
2.9


AD-995116.1
27.9
6.6
25.8
2.9
48.1
13.4
64.7
3.7


AD-800461.1
40.2
4.1
42.2
1.6
51.0
5.8
64.7
5.6


AD-996318.1
34.1
4.7
23.8
2.0
48.5
7.4
64.8
15.1


AD-795634.2
23.4
6.1
23.2
7.2
46.2
15.6
65.0
9.2


AD-795911.1
26.3
3.0
27.9
4.3
38.4
2.1
65.0
7.0


AD-797036.1
28.3
4.7
27.8
3.2
36.2
3.2
65.1
8.0


AD-961137.1
44.6
5.1
45.9
1.2
63.0
7.1
65.1
5.8


AD-801884.2
41.9
2.3
49.3
3.0
60.9
11.5
65.2
11.4


AD-801490.2
54.0
5.7
56.2
5.9
56.4
6.6
65.3
4.7


AD-802145.2
47.7
1.9
54.3
4.7
45.5
8.3
65.6
10.6


AD-961146.1
54.6
6.1
55.3
2.4
72.6
10.4
65.8
7.3


AD-795909.1
31.2
7.9
30.8
2.9
35.2
2.7
65.9
1.8


AD-1010690.1
75.9
12.7
49.3
12.4
57.5
3.7
66.0
12.8


AD-802071.2
64.9
7.0
58.4
6.1
70.0
2.7
66.2
5.9


AD-795913.1
23.9
3.0
23.3
2.3
35.0
2.5
66.4
8.4


AD-800334.1
37.2
4.7
35.3
6.1
50.8
8.2
66.4
6.1


AD-795739.1
29.0
5.7
24.7
2.4
42.3
6.4
66.6
2.8


AD-796619.1
33.1
2.9
31.4
5.2
39.4
3.1
66.7
4.7


AD-800400.1
31.8
1.9
40.7
3.5
47.8
1.4
66.9
4.9


AD-800414.2
53.0
5.0
45.4
1.9
66.4
4.2
67.5
3.4


AD-801886.2
49.6
4.0
50.2
4.5
59.2
3.6
67.5
7.9


AD-961187.1
28.8
2.4
31.2
4.7
51.7
4.6
68.4
17.7


AD-799594.1
47.2
2.9
40.6
4.0
47.2
3.6
69.0
2.2


AD-798579.1
43.3
3.6
39.4
1.9
44.3
2.3
69.1
6.9


AD-802105.2
36.1
7.1
40.4
6.5
37.8
9.7
69.5
6.2


AD-798588.2
40.3
3.4
31.2
2.7
66.5
8.6
69.5
4.1


AD-797034.1
28.6
4.1
30.3
1.7
35.2
5.9
69.5
13.4


AD-961203.1
30.2
6.1
29.8
5.7
39.5
6.4
69.6
9.5


AD-961259.1
58.2
9.8
40.3
6.0
53.0
5.0
69.7
18.2


AD-798580.1
35.5
1.6
33.4
4.7
41.5
3.4
69.9
4.9


AD-1010696.1
78.4
6.6
33.4
6.3
49.7
3.9
70.3
14.2


AD-802205.2
49.5
6.6
61.7
3.0
55.9
6.6
70.4
11.7


AD-801724.1
36.5
4.2
37.2
2.9
51.0
5.0
70.4
5.4


AD-801738.2
51.2
2.1
63.5
4.7
65.4
3.2
70.4
5.5


AD-801064.1
48.5
9.8
45.5
2.6
53.6
4.4
70.5
8.3


AD-995486.1
36.1
3.1
27.0
4.4
52.9
6.8
70.9
7.8


AD-961163.1
50.2
9.8
60.6
16.2
58.8
14.9
71.1
2.7


AD-961138.1
63.7
4.3
68.4
7.2
71.9
4.3
71.1
3.8


AD-799231.2
40.6
3.3
44.5
8.0
60.1
7.3
71.3
7.9


AD-1000046.1
40.3
4.2
41.6
3.5
62.9
5.8
71.4
8.7


AD-800273.2
52.4
3.2
43.9
5.5
68.2
6.6
71.5
14.9


AD-800487.1
51.9
2.7
48.7
4.4
59.8
3.7
71.6
8.4


AD-800069.1
56.3
4.7
46.9
2.3
52.3
3.1
71.6
3.0


AD-1010694.1
81.7
6.5
50.5
9.8
67.0
4.5
71.6
19.8


AD-799221.1
48.7
4.7
41.8
4.1
50.5
3.6
71.8
7.9


AD-961257.1
47.5
3.9
52.3
4.9
70.0
22.0
71.8
12.1


AD-961014.1
58.5
4.4
40.6
3.0
78.8
5.4
72.0
3.1


AD-961300.1
96.3
24.0
59.2
5.3
60.8
4.2
72.3
20.0


AD-800492.2
60.4
8.3
45.2
4.5
70.2
6.9
72.4
8.3


AD-801957.2
53.6
4.6
68.1
8.0
59.3
7.1
72.4
5.8


AD-799937.1
48.1
6.0
42.2
4.1
50.9
5.6
72.4
6.8


AD-800709.2
63.6
4.5
64.5
4.7
79.1
9.5
72.5
8.7


AD-801832.1
42.6
4.7
50.5
6.9
55.1
2.1
72.6
5.5


AD-999598.1
46.5
5.4
38.9
4.2
65.0
5.0
72.7
12.7


AD-800956.1
30.7
1.7
42.5
3.5
65.7
14.9
72.8
9.8


AD-961225.1
36.2
0.4
36.1
3.6
60.2
8.7
73.3
10.4


AD-801063.1
40.5
4.5
46.1
2.5
53.2
7.8
73.4
5.5


AD-801676.2
42.2
0.7
51.9
2.3
57.8
5.1
73.5
14.7


AD-799942.1
38.6
5.7
41.7
4.3
47.1
3.9
73.5
5.7


AD-802016.2
51.8
1.8
59.8
6.8
61.6
5.6
73.7
9.2


AD-1000585.1
55.5
8.8
59.6
5.4
76.8
6.6
73.8
8.8


AD-1010674.1
32.5
2.1
43.9
4.0
76.7
12.1
74.1
12.7


AD-801725.1
42.2
2.6
44.5
2.8
58.5
1.2
74.2
6.3


AD-961350.1
62.6
6.5
31.3
2.6
57.5
2.6
74.5
10.7


AD-799959.1
46.2
8.8
45.7
2.2
52.0
2.9
74.5
7.1


AD-800486.1
46.9
3.0
53.4
6.3
54.7
1.5
74.6
10.4


AD-961245.1
52.3
10.7
53.5
10.2
54.0
2.9
74.6
13.1


AD-995121.1
35.1
7.6
28.8
3.3
46.8
6.8
75.2
6.8


AD-995521.1
81.9
13.8
53.3
6.1
87.0
13.5
75.3
8.9


AD-800849.2
57.0
4.8
47.4
6.3
80.3
3.5
75.5
11.3


AD-801654.2
52.5
4.4
55.3
5.1
71.1
2.6
75.6
5.7


AD-802070.2
53.7
2.3
57.9
3.4
63.2
5.1
75.8
10.7


AD-797699.1
43.6
5.1
37.5
4.4
54.0
4.5
76.1
15.5


AD-1001409.1
54.0
3.1
58.0
4.5
65.7
6.5
76.3
1.6


AD-801062.1
43.7
8.3
42.1
5.3
64.3
3.7
76.3
5.5


AD-801675.2
52.4
2.7
66.7
4.3
65.1
1.9
76.4
9.3


AD-797964.1
53.2
10.9
56.6
3.8
54.4
4.3
76.7
5.5


AD-795914.1
24.8
1.7
24.4
0.6
38.2
4.2
77.6
19.2


AD-796041.1
45.7
2.5
116.1
16.4
66.8
10.4
77.8
10.4


AD-798667.1
47.4
6.7
55.7
20.4
55.6
5.1
78.1
12.0


AD-799225.1
48.5
10.3
42.3
6.9
54.2
3.9
79.1
4.6


AD-961000.1
43.8
5.3
37.5
5.3
65.4
1.0
79.2
4.8


AD-800490.1
50.9
6.5
45.3
5.8
53.9
4.9
79.5
8.8


AD-961040.1
57.2
11.3
35.3
4.7
77.3
11.3
79.8
11.7


AD-795304.1
30.0
2.9
32.1
6.3
43.3
5.5
79.9
17.9


AD-798577.1
53.6
3.6
45.7
6.7
51.5
3.6
79.9
8.8


AD-801132.1
48.0
2.8
45.2
2.7
58.5
4.6
80.2
8.5


AD-961106.1
71.2
14.7
78.0
8.6
89.8
6.5
80.2
17.7


AD-801747.2
49.5
5.9
49.7
4.3
75.9
6.8
80.2
4.6


AD-1010667.1
71.4
16.0
71.0
15.6
73.6
3.0
80.3
21.0


AD-961085.1
60.0
3.9
49.2
1.1
66.3
7.8
80.5
5.7


AD-961267.1
77.9
4.6
96.8
63.6
52.3
2.5
80.6
8.3


AD-961221.1
57.2
12.8
66.5
7.7
79.9
23.0
80.9
20.1


AD-795920.1
39.6
9.3
36.6
5.6
52.4
6.9
81.3
6.4


AD-1000678.1
54.1
6.6
59.0
5.2
68.5
7.5
81.5
10.9


AD-796396.1
32.3
2.9
31.3
4.6
43.5
3.1
81.8
9.8


AD-1010695.1
100.2
23.6
57.9
20.2
56.9
3.8
82.2
31.8


AD-1010679.1
44.4
2.9
50.8
6.2
84.4
19.0
82.6
9.3


AD-999715.1
60.0
9.6
58.4
10.7
71.5
5.0
83.1
6.2


AD-796304.1
39.4
6.4
37.9
2.9
48.4
6.1
83.3
2.9


AD-795132.1
30.6
1.6
28.3
2.9
45.1
3.5
83.3
11.6


AD-800060.1
54.7
4.2
50.5
5.9
56.5
3.9
83.4
3.9


AD-1000106.1
75.0
7.6
59.6
11.5
80.3
9.4
83.5
7.7


AD-795912.1
32.2
5.7
33.5
3.9
49.4
4.4
83.6
5.2


AD-961056.1
51.2
4.5
50.5
0.9
74.5
11.3
83.8
9.1


AD-1010684.1
48.0
5.6
59.3
8.8
83.1
16.0
83.9
7.8


AD-801601.2
58.6
2.8
57.9
1.8
75.3
11.2
84.0
6.1


AD-1010666.1
64.5
9.2
72.3
15.1
78.2
5.2
84.1
21.0


AD-801746.2
62.8
3.2
60.7
2.7
77.7
2.2
84.7
7.9


AD-796919.1
28.1
1.1
29.9
2.8
43.1
8.4
84.8
5.2


AD-1000130.1
71.1
11.5
74.5
5.6
81.1
9.7
85.2
5.8


AD-800387.2
53.1
4.4
49.7
4.9
75.4
3.1
85.6
15.5


AD-801680.2
57.5
1.7
61.9
6.1
73.5
2.5
85.8
12.0


AD-1010692.1
76.4
9.2
54.3
4.3
57.8
7.2
86.2
26.9


AD-801540.2
52.6
3.2
54.5
4.7
65.3
4.2
86.6
9.7


AD-801251.1
58.6
4.9
50.9
2.1
61.0
6.8
86.6
12.2


AD-996733.1
63.0
13.1
45.7
5.2
88.0
6.5
86.7
16.2


AD-961013.1
47.9
5.1
36.5
3.8
65.6
10.8
86.8
7.5


AD-1000679.1
78.4
6.9
93.8
3.9
89.7
7.8
86.9
9.2


AD-800389.2
63.3
4.4
56.9
6.5
81.1
11.2
87.2
9.5


AD-961049.1
48.2
5.6
49.7
10.0
74.6
5.9
87.3
13.2


AD-961320.1
78.9
8.5
59.3
5.6
56.5
2.4
87.5
19.6


AD-801491.2
59.2
3.2
71.8
8.3
75.2
13.8
87.7
2.1


AD-800706.2
65.7
1.9
60.7
6.0
81.8
3.6
87.8
11.6


AD-801723.2
61.3
8.1
71.3
2.1
81.4
5.5
88.0
3.2


AD-800606.2
54.0
3.4
50.0
10.3
89.4
4.4
88.6
13.6


AD-801721.2
49.3
4.6
61.3
5.5
70.1
5.1
89.5
5.3


AD-1000747.1
52.2
7.4
57.5
6.7
68.7
6.0
89.6
12.2


AD-797963.1
61.3
8.6
51.2
5.4
63.7
6.8
89.7
9.3


AD-995055.1
44.4
3.0
37.0
3.6
66.9
11.9
89.8
6.6


AD-800470.1
61.6
8.8
62.7
4.0
71.1
3.2
89.9
5.1


AD-961226.1
47.0
10.8
34.8
4.4
65.4
15.8
90.0
14.2


AD-801678.2
56.3
3.0
62.9
5.8
68.2
2.7
90.2
10.6


AD-801677.2
59.8
1.9
70.7
7.4
79.4
9.1
90.3
8.1


AD-801035.2
63.3
3.1
64.8
5.2
84.3
7.3
90.4
8.0


AD-800386.2
49.6
1.5
50.3
3.0
67.6
9.5
91.1
5.7


AD-798332.1
59.2
12.3
50.5
2.3
63.2
6.8
91.1
7.1


AD-802106.2
78.8
2.3
93.0
9.7
84.6
13.3
91.5
7.9


AD-798614.1
70.8
15.0
64.3
8.5
89.6
14.2
91.7
12.9


AD-798672.1
63.7
7.8
53.8
6.3
65.7
6.2
91.8
5.5


AD-961196.1
48.3
5.6
74.3
44.2
77.1
9.4
91.9
11.8


AD-799230.2
48.7
3.2
46.1
4.7
68.2
6.2
92.1
6.1


AD-961206.1
43.2
2.7
45.8
7.5
58.2
4.8
92.1
5.2


AD-800667.2
64.2
3.4
59.5
4.7
88.0
17.1
92.6
9.3


AD-961022.1
39.3
2.1
31.1
2.7
62.9
5.8
92.7
11.1


AD-796920.1
32.8
3.1
38.5
6.0
48.3
3.4
92.8
14.5


AD-801888.2
57.3
4.9
64.7
1.1
78.4
15.3
92.9
3.8


AD-961239.1
52.9
5.5
45.9
9.3
57.9
6.1
93.0
10.8


AD-800008.2
61.9
9.1
59.8
2.5
84.5
10.6
93.0
15.5


AD-800494.2
64.5
3.2
64.2
6.0
69.1
8.2
93.7
2.0


AD-961296.1
92.8
5.4
67.6
5.6
99.0
54.9
94.1
18.4


AD-796827.1
37.3
3.3
33.9
3.8
53.6
9.2
94.2
11.7


AD-961270.1
91.7
10.3
81.5
22.7
65.3
8.8
94.3
17.1


AD-961012.1
116.4
6.8
82.2
2.8
122.2
12.1
94.6
14.2


AD-800382.2
60.6
5.2
46.6
5.8
76.2
11.6
94.7
18.1


AD-799683.1
56.0
4.2
52.2
2.8
58.6
6.3
95.0
9.7


AD-799549.1
63.4
4.6
60.6
3.7
67.2
2.5
95.0
4.3


AD-801655.2
65.3
7.5
55.8
5.0
86.9
9.4
95.1
10.5


AD-801679.2
60.1
4.0
69.5
1.9
73.1
5.1
95.6
15.9


AD-961011.1
47.8
4.4
42.2
3.6
73.7
11.5
95.6
4.4


AD-961058.1
65.7
3.6
55.0
7.5
78.8
12.6
95.7
16.0


AD-800968.2
61.3
3.7
58.7
3.1
76.2
7.2
96.0
16.7


AD-961010.1
43.1
5.8
37.5
1.9
72.8
11.0
96.6
10.3


AD-1000864.1
107.1
13.4
95.5
6.0
97.1
2.3
96.7
13.9


AD-796087.1
36.1
3.3
36.1
6.2
53.6
2.7
96.7
8.6


AD-961251.1
110.4
13.6
67.3
15.3
80.3
15.8
96.8
7.9


AD-800495.2
64.7
6.5
67.3
7.1
82.9
7.5
97.2
7.5


AD-799936.1
58.4
2.6
49.1
4.7
62.2
3.6
97.3
3.7


AD-801539.2
53.2
1.9
63.5
3.2
72.3
6.5
97.4
10.1


AD-996130.1
61.5
4.0
58.1
7.9
87.1
8.9
97.4
11.1


AD-1010669.1
42.6
4.8
61.2
10.8
71.8
10.7
97.4
21.9


AD-1000115.1
81.7
6.2
74.8
14.4
85.0
3.0
97.5
9.0


AD-796088.1
37.4
6.2
36.8
4.3
50.2
1.8
97.7
8.5


AD-795841.1
54.9
4.4
39.4
5.1
61.5
4.4
97.9
12.5


AD-999259.1
56.4
9.1
52.2
3.5
78.0
10.3
98.3
24.5


AD-999762.1
65.0
12.5
49.0
7.1
82.6
12.1
98.4
9.3


AD-801653.1
54.6
4.6
58.3
7.0
75.1
4.0
98.5
5.8


AD-796138.1
28.7
5.8
29.5
4.0
44.4
1.9
98.6
13.1


AD-1010676.1
56.7
10.5
76.0
8.7
101.2
44.8
98.7
14.9


AD-801744.2
65.2
2.8
74.7
4.6
76.3
4.7
98.8
5.9


AD-795774.1
38.0
5.1
30.6
5.0
55.3
10.0
99.2
8.4


AD-999601.1
75.3
4.1
61.4
2.9
97.2
18.3
99.3
19.7


AD-961078.1
62.3
4.2
65.4
9.3
76.8
19.5
99.4
15.9


AD-798984.1
75.3
6.8
67.0
2.9
82.7
7.3
99.8
12.7


AD-800007.2
68.0
5.0
69.4
7.5
98.3
9.2
100.6
7.6


AD-801228.2
68.9
4.0
66.9
6.9
77.7
10.6
101.0
10.6


AD-961109.1
101.8
15.6
98.2
19.2
97.9
13.9
101.1
14.5


AD-961057.1
57.9
7.9
47.1
5.7
79.8
8.2
101.9
10.1


AD-801745.2
72.4
9.2
74.1
4.5
89.2
6.6
102.0
16.4


AD-801489.2
72.9
6.2
69.0
5.9
84.2
5.7
102.3
6.5


AD-800388.2
71.5
1.7
57.6
3.1
95.3
3.6
102.9
9.8


AD-796936.1
37.1
3.5
40.9
3.8
61.3
1.8
103.7
9.8


AD-796318.1
44.4
7.3
47.3
3.3
66.9
8.6
103.9
6.5


AD-801397.2
64.6
4.3
69.9
11.1
80.7
2.8
104.1
7.6


AD-961004.1
89.4
11.4
88.5
8.5
107.5
19.2
104.7
9.5


AD-961202.1
53.4
5.1
49.3
15.0
71.3
8.2
104.8
10.1


AD-995873.1
40.1
1.2
34.6
6.0
78.2
9.9
105.0
18.1


AD-801022.2
62.7
2.8
63.0
5.3
88.2
7.8
105.3
11.8


AD-800496.2
68.4
1.8
63.4
5.7
90.2
7.0
105.5
11.7


AD-1010668.1
54.7
6.4
50.1
10.3
61.7
4.4
105.6
30.8


AD-801399.2
61.6
4.5
68.1
6.4
78.8
4.5
106.3
6.9


AD-961227.1
70.7
13.2
62.4
18.3
69.4
13.2
106.6
24.6


AD-961285.1
84.7
4.3
58.6
4.4
57.0
4.0
106.8
12.3


AD-799010.2
72.4
3.2
63.8
6.6
88.7
8.9
107.6
22.6


AD-961243.1
64.6
17.0
66.4
9.0
60.3
13.3
107.8
12.8


AD-800974.2
62.8
3.6
69.2
4.8
80.5
5.3
108.5
6.8


AD-800850.2
68.8
7.6
64.0
1.7
83.0
5.1
110.0
9.7


AD-961066.1
64.2
6.4
68.6
9.0
94.8
8.0
110.6
11.9


AD-961220.1
91.6
11.9
97.9
17.5
106.8
19.0
111.3
15.8


AD-1010683.1
91.9
9.3
84.9
13.1
91.8
11.9
111.6
15.8


AD-961009.1
86.0
8.0
64.8
11.9
94.8
15.3
111.9
10.9


AD-961269.1
91.7
11.5
69.7
4.0
74.8
15.5
112.3
11.0


AD-961271.1
54.8
11.6
66.8
8.6
63.9
4.8
112.5
10.4


AD-961042.1
131.0
17.7
104.1
14.8
132.1
19.7
113.1
16.1


AD-961233.1
86.8
2.7
92.3
11.2
115.2
12.0
113.5
24.6


AD-1010691.1
83.2
13.4
70.3
12.5
70.5
20.0
114.3
9.2


AD-1010680.1
75.5
14.3
62.1
20.6
69.2
3.6
115.3
9.3


AD-997386.1
75.4
11.9
54.6
2.2
102.7
5.3
115.7
10.0


AD-801140.2
81.4
2.3
73.8
7.3
110.3
8.9
115.8
18.3


AD-996618.1
49.0
6.8
40.5
1.0
83.2
17.7
115.9
14.5


AD-1000451.1
102.3
7.4
100.7
10.4
117.9
11.6
116.1
6.2


AD-961024.1
102.3
1.9
90.5
8.4
129.4
9.6
116.2
7.7


AD-1010688.1
81.2
10.5
68.2
16.2
76.2
10.5
116.4
5.1


AD-999721.1
88.2
14.5
74.3
8.8
105.7
7.6
117.0
15.7


AD-999986.1
92.1
7.1
68.3
4.2
103.6
25.5
117.7
4.4


AD-961252.1
76.5
5.7
71.6
8.5
93.7
5.0
118.3
8.2


AD-1000133.1
108.6
9.9
104.8
4.5
103.4
14.8
118.4
22.2


AD-1010672.1
47.9
7.7
34.5
10.1
67.6
14.0
119.1
14.0


AD-961039.1
63.3
8.9
50.4
6.3
92.7
18.6
119.5
8.3


AD-800384.2
109.7
11.6
107.5
11.0
157.3
12.1
119.8
16.6


AD-998897.1
95.0
7.2
80.0
8.1
113.6
10.8
119.8
13.0


AD-996319.1
50.5
3.3
41.7
4.8
93.7
5.9
119.9
18.3


AD-996635.1
69.5
5.3
60.3
5.6
107.1
1.9
120.2
14.4


AD-1010678.1
88.1
12.5
85.5
10.6
89.0
17.2
121.1
15.0


AD-1010685.1
111.6
15.7
108.7
12.2
78.0
7.2
122.2
7.9


AD-961044.1
97.5
9.6
88.4
12.2
134.5
10.9
122.7
22.2


AD-1010686.1
78.7
6.5
76.7
7.0
86.1
26.9
123.1
19.5


AD-1010687.1
117.9
15.8
115.2
30.5
107.5
26.3
124.7
19.7


AD-994670.1
129.5
59.3
134.9
46.8
118.4
32.5
124.8
42.9


AD-996052.1
91.5
4.9
72.6
13.5
121.3
21.0
125.5
29.0


AD-961244.1
76.7
11.0
77.3
12.3
86.9
17.0
125.7
11.9


AD-1010689.1
97.6
12.4
70.6
13.0
72.1
13.8
125.7
12.1


AD-998894.1
99.2
7.1
92.6
8.1
127.6
21.1
126.2
23.1


AD-995824.1
79.3
6.1
79.4
5.6
132.8
21.0
127.8
17.2


AD-998346.1
63.5
10.6
50.5
11.1
83.0
29.0
127.9
17.0


AD-995660.1
136.0
20.1
113.3
16.3
138.8
21.7
128.3
27.5


AD-961204.1
131.2
6.3
120.0
23.3
93.0
6.9
128.4
16.1


AD-998261.1
92.0
5.8
69.2
3.7
120.4
14.9
128.8
10.2


AD-800975.2
68.4
14.1
70.0
14.9
93.4
23.3
128.9
30.2


AD-794914.1
54.4
20.5
45.0
8.5
85.8
5.5
129.1
22.5


AD-1010682.1
74.2
13.6
73.0
10.6
77.2
11.2
129.5
7.4


AD-961246.1
74.2
5.9
67.8
8.9
104.0
16.8
130.0
10.2


AD-961037.1
73.0
6.1
55.0
6.2
97.9
11.1
130.1
15.6


AD-961043.1
113.8
12.2
101.4
8.0
136.2
19.6
131.8
6.0


AD-798031.1
80.4
12.9
69.9
8.2
86.4
19.4
132.3
18.6


AD-961232.1
106.8
22.1
102.7
18.1
127.4
26.3
132.5
16.0


AD-996036.1
110.9
9.5
102.8
7.5
123.2
6.6
132.5
11.3


AD-995573.1
144.5
17.9
109.1
8.6
139.9
28.2
132.8
12.3


AD-995587.1
141.8
15.3
112.6
18.3
141.1
16.7
133.9
11.4


AD-961295.1
100.5
8.5
78.2
5.3
76.0
6.5
135.3
15.9


AD-999596.1
102.6
5.7
93.6
13.8
131.0
1.9
136.1
27.0


AD-996619.1
94.9
5.1
96.5
13.6
118.2
17.2
136.6
10.8


AD-795826.1
70.1
11.1
56.1
13.8
100.3
7.9
136.7
18.9


AD-998015.1
82.1
2.8
63.8
3.4
107.7
11.0
137.3
5.5


AD-1010675.1
90.0
16.1
76.8
13.1
99.9
24.3
137.7
24.0


AD-1010681.1
102.6
13.3
91.2
26.3
119.3
18.8
138.2
22.6


AD-995823.1
77.4
5.2
69.6
8.2
127.3
13.1
138.3
14.2


AD-999215.1
97.0
18.5
87.0
4.4
113.7
16.5
139.4
19.5


AD-801020.2
78.5
6.5
66.2
5.4
101.1
4.1
139.7
11.6


AD-999348.1
87.0
12.7
80.6
3.6
111.4
12.2
141.1
13.3


AD-996533.1
110.0
6.7
110.4
11.6
148.8
15.8
146.0
22.6


AD-961036.1
129.0
17.9
106.4
13.8
135.2
13.4
149.0
12.0


AD-961231.1
131.4
20.6
127.4
10.6
126.4
31.6
155.5
24.9


AD-997715.1
117.7
16.6
110.1
14.6
129.0
20.5
157.2
35.0


AD-801309.2
59.4
6.8
63.1
7.3
83.8
4.8
158.4
66.9









The results of the multi-dose screen in BE(2)-C cells expressing a SCN9A gene and treated with an exemplary set of SCN9A siRNAs is shown in Table 17 (correspond to siRNAs in Table 13A). The experiment was performed at a 0.1 nM, 1 nM, 10 nM, and 50 nM final duplex concentrations and the data are expressed as percent message remaining relative to non-targeting control.


Of the siRNA duplexes evaluated at 50 nM in Table 17, 5 achieved ≥90% knockdown of SCN9A, 52 achieved ≥80% knockdown of SCN9A, 180 achieved ≥60% knockdown of SCN9A, 254 achieved ≥30% knockdown of SCN9A, 261 achieved ≥20% knockdown of SCN9A, and 264 achieved ≥10% knockdown of SCN9A.


Of the siRNA duplexes evaluated at 10 nM in Table 17, 3 achieved ≥90% knockdown of SCN9A, 59 achieved ≥80% knockdown of SCN9A, 174 achieved ≥60% knockdown of SCN9A, 233 achieved ≥30% knockdown of SCN9A, 249 achieved ≥20% knockdown of SCN9A, and 255 achieved ≥10% knockdown of SCN9A.


Of the siRNA duplexes evaluated at 1 nM in Table 17, 2 achieved ≥90% knockdown of SCN9A, 15 achieved ≥80% knockdown of SCN9A, 109 achieved ≥60% knockdown of SCN9A, 228 achieved ≥30% knockdown of SCN9A, 247 achieved ≥20% knockdown of SCN9A, and 258 achieved ≥10% knockdown of SCN9A.


Of the siRNA duplexes evaluated at 0.1 nM in Table 17, 9 achieved ≥70% knockdown of SCN9A, 30 achieved ≥60% knockdown of SCN9A, 77 achieved ≥50% knockdown of SCN9A, 178 achieved ≥30% knockdown of SCN9A, 203 achieved ≥20% knockdown of SCN9A, and 225 achieved ≥10% knockdown of SCN9A.









TABLE 17







SCN9A in vitro multidose-dose screen with one set of exemplary human SCN9A siRNA duplexes (*the


number following the decimal point in a duplex name merely refers to a batch production number)












50 nM
10 nM
1 nM
0.1 nM



















Mis-
% message

% message

% message

% message



Duplex
SC9NA
match
remaining
St. Dev.
remaining
St. Dev.
remaining
St. Dev.
remaining
St. Dev.




















AD-1251302.1
HsSCN9A_ORF1rp
3
88.2
15.4
75.7
19.8
81.6
6.1
70.8
2.7


AD-1251303.1
HsSCN9A_ORF1rp
2
73.2
8.7
84.2
27.4
61.9
8.6
68.2
3.6


AD-1251304.1
HsSCN9A_ORF1rp
1
25.8
4.0
53.2
23.0
44.2
5.1
43.9
1.7


AD-1251305.1
HsSCN9A_ORF1rp
1
25.6
4.7
18.8
3.3
38.3
6.9
49.1
3.4


AD-1251306.1
HsSCN9A_ORF1rp
1
27.7
5.2
20.7
2.1
40.2
9.0
55.6
5.5


AD-1251307.1
HsSCN9A_ORF1rp
1
40.5
2.1
64.0
22.8
56.1
4.4
68.3
4.1


AD-1251315.1
HsSCN9A_ORF1rp
1
26.6
1.3
24.7
1.5
44.7
4.8
46.9
2.6


AD-1251310.1
HsSCN9A_ORF1rp
1
32.0
1.1
28.3
2.0
48.9
5.1
59.8
5.1


AD-961179.3
HsSCN9A_ORF1rp
1
33.9
2.9
29.3
3.2
42.5
4.8
49.9
3.7


AD-1251308.1
HsSCN9A_ORF1rp
1
40.3
3.7
29.4
2.8
49.1
6.4
58.1
3.5


AD-1251314.1
HsSCN9A_ORF1rp
1
41.7
3.0
34.1
2.9
58.0
8.3
58.8
3.4


AD-1251309.2
HsSCN9A_ORF1rp
1
48.4
3.9
34.4
1.1
66.1
10.1
60.3
4.9


AD-1251316.1
HsSCN9A_ORF1rp
1
43.4
2.5
37.1
6.7
49.8
1.7
72.8
16.2


AD-1251317.1
HsSCN9A_ORF1rp
1
27.2
2.9
58.7
43.5
34.3
2.0
40.3
2.7


AD-1251311.1
HsSCN9A_ORF1rp
1
45.9
14.8
58.9
37.2
59.2
4.8
69.3
24.8


AD-1251309.1
HsSCN9A_ORF1rp
1
53.5
3.2
80.0
46.2
57.9
4.1
64.7
5.8


AD-1251318.1
HsSCN9A_ORF1rp
1
23.3
1.3
18.0
2.7
30.2
5.3
37.7
7.8


AD-1251319.1
HsSCN9A_ORF1rp
1
25.4
0.9
21.3
1.9
48.0
13.8
46.8
1.6


AD-1251313.1
HsSCN9A_ORF1rp
1
36.3
1.6
30.8
7.3
53.0
4.0
65.6
4.2


AD-1251312.1
HsSCN9A_ORF1rp
1
54.4
6.9
38.8
2.4
66.9
5.4
69.3
3.5


AD-1251320.1
HsSCN9A_ORF1rp
1
26.5
2.0
43.2
29.5
39.8
5.2
47.7
5.3


AD-1251321.1
HsSCN9A_ORF1rp
0
19.3
3.3
15.3
3.5
38.1
12.7
36.2
2.4


AD-1251323.1
HsSCN9A_ORF1rp
0
17.3
4.1
18.9
9.8
27.2
4.7
35.9
5.5


AD-1251322.1
HsSCN9A_ORF1rp
1
16.3
2.4
22.5
10.0
27.5
1.2
40.8
5.4


AD-1251325.1
HsSCN9A_ORF1rp
1
19.6
2.8
30.6
15.0
29.2
5.3
35.4
1.6


AD-1251324.1
HsSCN9A_ORF1rp
1
22.0
9.0
33.4
14.4
27.5
6.9
33.2
2.7


AD-1251249.1
HsSCN9A_ORF1rp
1
25.0
2.2
15.0
1.3
29.6
6.1
36.6
5.4


AD-1251254.1
HsSCN9A_ORF1rp
1
19.3
1.3
17.6
2.9
30.4
4.1
43.8
20.0


AD-1251248.1
HsSCN9A_ORF1rp
1
29.8
5.2
17.8
2.4
35.8
4.6
47.0
6.4


AD-1251284.1
HsSCN9A_ORF1rp
1
21.8
1.9
19.0
2.4
30.1
3.3
32.2
1.8


AD-1251253.1
HsSCN9A_ORF1rp
1
28.6
2.0
22.0
3.0
48.2
5.9
102.4
47.0


AD-1251286.1
HsSCN9A_ORF1rp
1
25.4
4.1
22.6
3.5
36.5
5.9
37.3
3.7


AD-1251282.1
HsSCN9A_ORF1rp
1
30.9
8.8
22.8
9.3
36.9
5.5
50.8
3.4


AD-1010661.3
HsSCN9A_ORF1rp
1
34.2
4.6
23.1
5.5
48.8
11.5
56.1
6.3


AD-795305.3
HsSCN9A_ORF1rp
1
23.6
3.8
23.4
16.3
47.7

36.0
2.0


AD-1251250.1
HsSCN9A_ORF1rp
1
22.9
1.8
24.6
12.5
30.6
3.7
43.6
4.7


AD-1251283.1
HsSCN9A_ORF1rp
1
28.9
6.0
26.8
9.0
36.5
7.8
45.0
5.7


AD-1251281.1
HsSCN9A_ORF1rp
1
33.7
11.0
26.8
5.7
54.1
5.9
61.1
2.6


AD-1251255.1
HsSCN9A_ORF1rp
1
30.5
1.9
26.9
10.7
49.1
8.5
63.8
5.7


AD-1251289.1
HsSCN9A_ORF1rp
1
26.4
1.6
35.1
5.9
49.0
4.2
68.1
9.7


AD-1251252.1
HsSCN9A_ORF1rp
1
28.1
1.9
44.5
31.9
44.9
4.2
58.8
6.1


AD-1251285.1
HsSCN9A_ORF1rp
1
34.3
5.6
47.3
33.3
50.0
5.3
60.3
8.1


AD-1251291.1
HsSCN9A_ORF1rp
1
39.7
7.7
48.5
18.9
64.0
15.2
64.5
3.5


AD-1251290.1
HsSCN9A_ORF1rp
1
23.7
2.0
66.4
27.7
36.9
2.3
42.2
3.7


AD-1251251.1
HsSCN9A_ORF1rp
1
17.9
0.8
13.9
1.9
27.8
4.8
35.4
3.9


AD-1251287.1
HsSCN9A_ORF1rp
1
27.9
7.8
25.9
0.7
49.1
10.2
55.2
7.4


AD-1251288.1
HsSCN9A_ORF1rp
1
21.3
4.1
29.0
7.5
51.3
18.3
41.2
2.0


AD-1251326.1
HsSCN9A_ORF1rp
1
32.0
5.4
24.4
0.2
52.9
3.2
63.0
3.0


AD-1251327.1
HsSCN9A_ORF1rp
1
67.9
7.7
74.9
27.8
69.2
9.1
69.9
2.9


AD-1251328.1
HsSCN9A_ORF1rp
1
19.3
2.3
25.3
4.0
27.3
6.1
66.1
5.8


AD-1251329.1
HsSCN9A_ORF1rp
0
34.9
1.9
101.9
3.9
55.1
4.7
91.4
8.7


AD-1251330.1
HsSCN9A_ORF1rp
1
54.9
5.1
48.1
3.6
55.2
9.0
77.1
10.3


AD-795366.3
HsSCN9A_ORF1rp
1
18.6
5.7
15.7
2.4
26.1
8.5
42.8
7.0


AD-1251331.1
HsSCN9A_ORF1rp
1
17.6
2.0
20.9
1.5
30.8
6.1
56.5
4.6


AD-1251334.1
HsSCN9A_ORF1rp
1
20.1
5.8
26.4
2.8
24.2
2.8
37.1
6.4


AD-1251333.1
HsSCN9A_ORF1rp
1
27.0
1.6
28.8
4.2
40.8
4.7
59.1
6.6


AD-1251338.1
HsSCN9A_ORF1rp
1
28.5
2.0
31.6
6.3
47.9
0.7
92.7
10.2


AD-1251337.1
HsSCN9A_ORF1rp
1
39.3
2.5
41.6
5.2
65.7
13.5
98.8
6.2


AD-1251336.1
HsSCN9A_ORF1rp
1
45.9
3.6
54.4
6.2
72.8
7.3
106.0
11.0


AD-1251335.1
HsSCN9A_ORF1rp
1
52.5
6.1
71.4
5.5
66.2
6.9
101.9
22.0


AD-1251339.1
HsSCN9A_ORF1rp
1
25.4
1.0
28.3
2.1
51.9
2.0
78.1
7.9


AD-1251340.1
HsSCN9A_ORF1rp
1
34.1
3.9
29.5
5.2
45.8
1.2
65.6
8.5


AD-1251341.1
HsSCN9A_ORF1rp
1
51.9
2.9
48.3
5.0
51.3
3.3
60.1
7.4


AD-1251342.1
HsSCN9A_ORF1rp
1
18.3
4.3
20.8
1.3
20.2
2.5
27.9
2.1


AD-1251347.1
HsSCN9A_ORF1rp
1
25.4
4.3
15.9
5.6
34.8
4.4
55.2
6.2


AD-795371.3
HsSCN9A_ORF1rp
1
17.3
3.2
19.0
4.2
24.1
8.2
43.4
5.8


AD-1010663.3
HsSCN9A_ORF1rp
1
28.3
2.4
20.4
1.6
32.5
3.5
45.2
5.2


AD-1251301.1
HsSCN9A_ORF1rp
1
26.4
1.3
20.4
1.5
39.6
3.0
47.9
5.8


AD-1251348.1
HsSCN9A_ORF1rp
2
17.5
8.4
22.8
2.1
29.8
6.8
41.0
5.3


AD-1251343.1
HsSCN9A_ORF1rp
1
23.1
1.6
23.3
4.6
41.3
7.1
63.7
11.5


AD-1251346.1
HsSCN9A_ORF1rp
1
29.4
3.4
26.2
4.3
46.1
2.1
68.6
14.2


AD-1251299.1
HsSCN9A_ORF1rp
1
32.4
7.9
29.5
14.3
48.7
3.5
58.7
3.8


AD-1251345.1
HsSCN9A_ORF1rp
2
30.4
2.1
29.7
3.6
47.7
6.3
78.9
7.2


AD-1251349.1
HsSCN9A_ORF1rp
1
23.8
4.4
31.2
6.1
33.6
11.0
55.6
10.1


AD-1251292.1
HsSCN9A_ORF1rp
1
27.0
3.7
31.8
12.7
42.1
6.7
128.8
66.1


AD-1251293.1
HsSCN9A_ORF1rp
1
32.4
4.6
32.5
13.1
43.9
4.9
58.5
4.1


AD-1251294.1
HsSCN9A_ORF1rp
2
44.6
3.5
33.3
3.3
54.8
5.2
65.1
0.8


AD-1251344.1
HsSCN9A_ORF1rp
1
30.0
2.9
33.5
2.0
47.0
4.6
81.8
7.0


AD-1251300.1
HsSCN9A_ORF1rp
1
32.2
4.4
39.5
21.6
42.6
3.6
58.2
4.4


AD-1251295.1
HsSCN9A_ORF1rp
1
31.6
5.8
43.2
12.4
64.8
4.1
62.3
3.7


AD-1251296.1
HsSCN9A_ORF1rp
1
37.2
7.3
60.8
31.7
52.5
11.4
60.4
7.7


AD-1251350.1
HsSCN9A_ORF1rp
1
28.0
2.9
29.3
3.3
36.9
4.9
67.8
7.3


AD-1251351.1
HsSCN9A_ORF1rp
1
26.3
2.2
31.5
3.6
52.4
5.5
80.5
10.0


AD-1251353.1
HsSCN9A_ORF1rp
1
25.4
0.8
26.4
5.8
39.2
5.0
60.7
4.0


AD-1251352.1
HsSCN9A_ORF1rp
1
27.1
1.4
28.1
3.9
38.7
4.4
79.3
7.7


AD-1251298.1
HsSCN9A_ORF1rp
1
58.5
11.3
34.5
6.3
61.7
6.7
61.1
3.2


AD-1251297.1
HsSCN9A_ORF1rp
1
50.7
9.4
45.4
19.9
64.9
11.2
68.5
3.1


AD-1251354.1
HsSCN9A_ORF1rp
1
25.6
3.7
25.2
4.1
36.5
3.5
61.3
10.9


AD-1251355.1
HsSCN9A_ORF1rp
1
12.9
6.8
15.5
5.4
14.6
2.6
27.9
3.6


AD-1251356.1
HsSCN9A_ORF1rp
1
21.4
6.6
30.9
2.2
21.2
13.2
45.7
5.6


AD-1251357.1
HsSCN9A_ORF1rp
1
29.0
1.0
31.8
4.9
49.7
14.6
60.1
17.7


AD-1251358.1
HsSCN9A_ORF1rp
1
19.3
1.3
26.5
6.7
52.1
6.5
76.8
36.1


AD-1251359.1
HsSCN9A_ORF1rp
0
16.3
2.0
16.5
3.6
26.8
12.1
47.0
25.6


AD-1251360.1
HsSCN9A_ORF1rp
0
23.5
2.1
23.0
3.3
33.2
9.9
62.8
5.0


AD-1251361.1
HsSCN9A_ORF1rp
0
20.0
1.2
19.8
4.4
29.8
8.5
46.8
5.4


AD-1251363.1
HsSCN9A_ORF1rp
0
9.4
3.0
10.9
1.9
14.7
2.8
34.0
12.5


AD-1251362.1
HsSCN9A_ORF1rp
0
12.5
1.7
13.3
1.5
24.3
5.1
36.3
7.1


AD-1251364.1
HsSCN9A_ORF1rp
1
12.5
4.1
14.8
1.7
11.8
6.0
25.0
1.5


AD-1251372.1
HsSCN9A_ORF1rp
1
21.3
3.1
11.0
6.1
23.6
4.6
58.5
8.3


AD-1251366.1
HsSCN9A_ORF1rp
1
14.5
0.6
13.8
3.9
25.6
3.5
62.5
3.0


AD-1251367.1
HsSCN9A_ORF1rp
1
15.0
2.6
16.2
1.0
27.2
5.6
56.8
4.9


AD-795634.4
HsSCN9A_ORF1rp
1
14.1
0.7
16.8
1.9
28.4
7.4
64.4
2.7


AD-1251369.1
HsSCN9A_ORF1rp
2
19.5
0.8
17.4
2.7
20.9
6.9
41.7
11.7


AD-1251368.1
HsSCN9A_ORF1rp
1
17.8
1.5
19.2
2.7
33.2
2.1
50.7
2.7


AD-1251373.1
HsSCN9A_ORF1rp
1
25.3
1.3
22.3
2.8
30.5
15.1
42.5
22.0


AD-1251365.1
HsSCN9A_ORF1rp
1
17.8
1.2
22.4
2.2
28.4
4.6
49.9
11.6


AD-1251370.1
HsSCN9A_ORF1rp
1
26.1
3.8
24.4
3.3
10.0
2.8
49.2
12.9


AD-1251374.1
HsSCN9A_ORF1rp
1
23.6
4.5
27.5
6.8
20.9
9.6
69.2
12.6


AD-1251375.1
HsSCN9A_ORF1rp
0
22.3
1.0
21.8
9.4
30.5
14.9
63.2
2.8


AD-1251371.1
HsSCN9A_ORF1rp
1
29.4
2.4
27.1
2.4
25.0
6.3
65.7
8.7


AD-1251376.1
HsSCN9A_ORF1rp
1
15.5
2.3
14.2
4.8
16.8
4.7
27.4
7.1


AD-1251377.1
HsSCN9A_ORF1rp
1
10.7
6.8
15.6
2.6
10.1
3.8
22.6
5.2


AD-1251378.1
HsSCN9A_ORF1rp
1
20.9
1.8
21.1
3.7
10.0
5.3
48.6
19.4


AD-1251379.1
HsSCN9A_ORF1rp
1
39.1
4.1
42.8
3.2
53.8
8.1
96.8
2.1


AD-1251380.1
HsSCN9A_ORF1rp
0
22.4
3.5
21.1
1.1
22.0
4.9
50.0
2.7


AD-1251381.1
HsSCN9A_ORF1rp
0
22.0
1.9
22.1
2.9
32.0
8.8
51.8
2.8


AD-1251382.1
HsSCN9A_ORF1rp
1
25.7
2.1
20.8
4.3
40.1
15.4
76.5
9.5


AD-1251384.1
HsSCN9A_ORF1rp
1
15.0
0.8
11.8
4.4
20.7
1.8
40.7
1.4


AD-1251274.2
HsSCN9A_ORF1rp
1
22.3
1.4
14.2
5.0
29.3
2.4
38.5
4.7


AD-961188.3
HsSCN9A_ORF1rp
1
20.9
1.1
14.8
1.8
35.5
5.8
49.9
4.7


AD-1251383.1
HsSCN9A_ORF1rp
1
16.6
2.2
14.8
3.3
27.8
6.5
47.5
6.1


AD-1251269.1
HsSCN9A_ORF1rp
1
23.0
6.7
15.5
1.4
41.6
17.6
43.6
4.3


AD-1251270.1
HsSCN9A_ORF1rp
1
22.1
2.9
16.8
4.6
47.0
8.0
60.8
4.2


AD-1251268.1
HsSCN9A_ORF1rp
1
20.3
3.0
17.1
6.6
46.2
12.4
46.8
4.1


AD-1251274.1
HsSCN9A_ORF1rp
1
16.9
3.7
17.9
6.9
34.3
5.2
104.5
47.1


AD-1251271.1
HsSCN9A_ORF1rp
1
23.6
2.1
19.9
3.1
35.2
1.9
53.7
5.6


AD-1251275.2
HsSCN9A_ORF1rp
1
23.0
4.1
26.0
7.7
54.8
20.9
51.3
2.6


AD-1251275.1
HsSCN9A_ORF1rp
1
21.0
3.5
38.9
22.9
43.9
15.8
51.1
6.7


AD-1251385.1
HsSCN9A_ORF1rp
1
8.9
3.7
9.4
4.8
11.9
6.0
30.3
5.2


AD-1251272.1
HsSCN9A_ORF1rp
1
22.0
2.4
19.3
6.8
31.8
2.2
54.8
4.8


AD-1251386.1
HsSCN9A_ORF1rp
0
24.8
2.7
26.0
2.1
27.1
13.8
47.2
17.2


AD-1251273.1
HsSCN9A_ORF1rp
1
24.4
1.5
50.5
19.9
35.7
7.0
49.2
1.9


AD-1251390.1
HsSCN9A_ORF1rp
1
23.4
1.8
13.0
4.8
37.9
11.8
59.5
9.9


AD-1251398.1
HsSCN9A_ORF1rp
1
19.9
10.8
16.2
3.1
14.6
6.5
47.5
8.8


AD-1251396.1
HsSCN9A_ORF1rp
1
23.8
1.5
17.1
4.6
31.1
8.8
55.7
3.6


AD-1251399.1
HsSCN9A_ORF1rp
1
20.2
4.6
17.6
3.9
19.9
6.1
39.4
17.9


AD-795913.3
HsSCN9A_ORF1rp
1
19.2
1.0
18.1
2.2
31.3
8.2
62.2
3.8


AD-1251400.1
HsSCN9A_ORF1rp
1
22.4
3.4
19.1
2.1
29.6
14.6
58.7
5.9


AD-1251388.1
HsSCN9A_ORF1rp
1
21.1
1.8
21.5
2.8
33.9
13.3
62.8
6.4


AD-1251397.1
HsSCN9A_ORF1rp
1
30.5
2.0
24.4
12.3
51.6
11.2
63.9
12.3


AD-1251395.1
HsSCN9A_ORF1rp
1
29.4
4.9
26.1
5.4
40.4
12.2
66.6
8.5


AD-1251387.1
HsSCN9A_ORF1rp
1
27.9
1.4
28.4
3.1
43.0
18.2
80.9
9.0


AD-1251389.1
HsSCN9A_ORF1rp
1
37.3
2.3
35.9
9.6
60.0
7.4
87.0
15.3


AD-1251393.1
HsSCN9A_ORF1rp
1
39.6
2.8
41.8
6.2
60.0
21.7
105.3
8.9


AD-1251394.1
HsSCN9A_ORF1rp
1
50.4
2.6
42.5
11.2
83.4
17.4
98.1
10.9


AD-1251401.1
HsSCN9A_ORF1rp
1
59.1
3.9
46.0
9.7
51.5
22.8
77.7
15.2


AD-1251391.1
HsSCN9A_ORF1rp
1
10.1
6.8
16.4
8.0
15.4
3.1
47.9
20.6


AD-1251392.1
HsSCN9A_ORF1rp
1
22.9
2.8
20.8
5.9
21.1
5.7
71.0
16.2


AD-1251402.1
HsSCN9A_ORF1rp
1
45.1
7.4
40.7
6.9
87.2
6.8
86.2
10.2


AD-1251403.1
HsSCN9A_ORF1rp
1
35.1
2.3
31.3
3.4
47.0
8.7
62.7
3.4


AD-1251404.1
HsSCN9A_ORF1rp
1
55.3
6.4
58.0
15.5
48.7
18.2
73.5
8.5


AD-1251405.1
HsSCN9A_ORF1rp
1
22.8
2.4
25.5
5.8
25.1
12.5
37.4
19.6


AD-1251406.1
HsSCN9A_ORF2rp
0
29.5
11.4
34.2
5.4
26.3
4.9
38.7
13.3


AD-1251407.1
HsSCN9A_ORF2rp
1
26.6
2.6
26.2
2.1
43.8
8.8
63.4
16.8


AD-1251408.1
HsSCN9A_ORF2rp
1
14.1
4.2
17.4
4.7
22.3
6.1
54.1
14.5


AD-1251409.1
HsSCN9A_ORF2rp
0
17.7
2.5
17.5
5.5
28.9
7.3
55.6
9.0


AD-1251411.1
HsSCN9A_ORF2rp
1
11.9
0.5
11.5
2.5
16.2
2.1
29.2
3.6


AD-1251410.1
HsSCN9A_ORF2rp
1
12.0
2.1
11.7
2.9
17.7
2.5
29.6
7.2


AD-1251412.1
HsSCN9A_ORF2rp
1
4.7
1.7
7.6
3.0
15.2
3.4
23.1
9.5


AD-796825.3
HsSCN9A_ORF2rp
1
5.2
2.5
9.6
2.6
16.6
3.1
35.0
7.7


AD-1251413.1
HsSCN9A_ORF2rp
1
14.2
2.9
12.0
1.9
26.6
7.3
46.9
4.2


AD-1251414.1
HsSCN9A_ORF2rp
1
13.6
1.7
15.4
2.7
31.7
4.6
64.8
9.0


AD-1251415.1
HsSCN9A_ORF2rp
1
13.5
0.7
15.9
2.4
23.0
3.6
51.2
6.1


AD-1251416.1
HsSCN9A_ORF2rp
1
12.8
2.2
17.3
2.6
31.1
2.8
57.0
6.5


AD-1251417.1
HsSCN9A_ORF2rp
0
11.3
2.4
13.5
3.9
23.6
2.2
42.4
10.3


AD-1251418.1
HsSCN9A_ORF2rp
1
46.4
5.0
48.1
2.6
50.6
2.9
57.6
9.0


AD-1251419.1
HsSCN9A_ORF2rp
1
8.7
1.3
12.9
1.4
23.0
2.3
27.2
3.2


AD-1251420.1
HsSCN9A_ORF2rp
1
15.3
1.1
18.7
1.3
35.5
2.9
44.8
3.1


AD-1251421.1
HsSCN9A_ORF2rp
1
16.5
1.2
18.2
2.7
32.3
4.0
56.2
6.1


AD-1251422.1
HsSCN9A_ORF2rp
1
21.9
2.5
23.5
4.6
36.5
3.7
68.5
4.2


AD-1251423.1
HsSCN9A_ORF2rp
1
48.6
3.7
45.7
3.8
62.7
3.8
84.1
8.5


AD-1251425.1
HsSCN9A_ORF2rp
0
18.0
2.3
25.7
3.4
28.3
2.9
45.7
2.3


AD-1251427.1
HsSCN9A_ORF2rp
1
18.5
2.3
22.0
1.3
29.6
1.3
42.5
3.1


AD-1251426.1
HsSCN9A_ORF2rp
1
29.7
1.9
29.7
3.0
38.7
3.9
67.0
10.6


AD-1251428.1
HsSCN9A_ORF2rp
1
12.5
0.8
17.5
1.9
23.6
0.1
30.9
3.4


AD-797564.4
HsSCN9A_ORF2rp
1
21.2
3.5
23.9
6.1
39.4
2.3
69.2
7.9


AD-1251434.1
HsSCN9A_ORF2rp
1
16.3
1.0
25.1
4.2
34.4
3.1
39.1
2.5


AD-1251431.1
HsSCN9A_ORF2rp
2
21.3
3.5
27.4
5.5
34.6
5.4
62.8
3.1


AD-1251433.1
HsSCN9A_ORF2rp
1
22.1
6.3
28.4
2.7
39.3
2.2
48.6
7.5


AD-1251430.1
HsSCN9A_ORF2rp
1
32.1
3.3
30.9
4.2
49.6
7.5
81.5
6.4


AD-1251429.1
HsSCN9A_ORF2rp
1
30.0
4.6
33.3
9.9
52.0
3.4
92.1
4.8


AD-1251435.1
HsSCN9A_ORF2rp
1
34.9
6.3
47.8
8.5
58.1
7.4
93.2
14.2


AD-1251438.1
HsSCN9A_ORF2rp
1
20.1
3.8
25.1
5.2
35.5
3.8
55.5
2.9


AD-1251436.1
HsSCN9A_ORF2rp
1
25.0
3.0
33.4
11.1
47.7
9.8
86.2
24.0


AD-1251437.1
HsSCN9A_ORF2rp
1
24.6
3.9
34.4
3.9
41.8
7.1
65.3
7.3


AD-797565.4
HsSCN9A_ORF2rp
1
28.2
6.0
39.3
8.0
54.4
0.0
76.1
7.2


AD-1251443.1
HsSCN9A_ORF2rp
1
43.2
4.4
52.4
3.6
63.0
4.0
94.7
10.5


AD-1251444.1
HsSCN9A_ORF2rp
1
39.3
7.9
54.5
13.1
59.8
14.9
72.2
9.9


AD-1251442.1
HsSCN9A_ORF2rp
1
44.2
5.8
61.1
9.7
76.8
8.9
102.9
5.6


AD-1251441.1
HsSCN9A_ORF2rp
1
51.0
10.9
71.0
14.2
78.9
12.0
119.7
14.5


AD-1251445.1
HsSCN9A_ORF2rp
0
56.7
7.7
57.9
1.8
84.7
14.2
101.1
18.9


AD-1251439.1
HsSCN9A_ORF2rp
1
21.7
4.1
30.7
2.6
35.2
0.3
49.0
4.9


AD-1251447.1
HsSCN9A_ORF2rp
0
34.1
3.4
32.8
4.6
47.4
1.8
77.8
6.3


AD-1251446.1
HsSCN9A_ORF2rp
0
29.8
4.3
34.6
0.9
46.9
9.3
64.0
8.0


AD-1251448.1
HsSCN9A_ORF2rp
1
21.7
3.3
24.6
3.4
36.2
2.3
57.2
8.1


AD-1251450.1
HsSCN9A_ORF2rp
1
45.4
5.5
64.0
8.0
80.5
11.1
90.5
5.5


AD-1251449.1
HsSCN9A_ORF2rp
1
39.5
1.9
66.5
8.8
70.0
13.7
79.7
8.7


AD-1251451.1
HsSCN9A_ORF2rp
1
151.3
26.1
173.5
16.6
134.6
12.6
112.4
20.9


AD-1251453.1
HsSCN9A_3UTR2
1
63.7
11.4
79.2
7.3
88.9
12.9
94.1
6.4


AD-1251452.1
HsSCN9A_3UTR2
1
71.3
4.8
81.2
9.3
85.0
10.8
82.6
5.4


AD-1251454.1
HsSCN9A_3UTR2
1
63.5
13.3
79.3
9.2
75.8
9.3
97.6
6.8


AD-1251455.1
HsSCN9A_3UTR2
1
51.7
9.1
46.1
4.9
63.5
3.0
80.6
2.1


AD-1251456.1
HsSCN9A_3UTR2
1
64.3
6.0
90.5
11.6
78.4
4.2
101.9
20.7


AD-1251457.1
HsSCN9A_3UTR2
1
79.1
14.7
110.0
9.9
115.5
20.4
112.2
12.8


AD-1251459.1
HsSCN9A_3UTR2
1
67.9
17.2
95.3
3.1
98.0
8.5
98.4
13.2


AD-1251458.1
HsSCN9A_3UTR2
1
65.7
8.9
96.7
5.2
89.7
8.1
92.6
19.5


AD-1251462.1
HsSCN9A_3UTR2
0
53.7
11.0
45.4
8.0
69.1
7.1
92.5
10.8


AD-1251461.1
HsSCN9A_3UTR2
0
39.5
4.4
52.2
9.5
52.4
10.0
73.4
7.2


AD-1251468.1
HsSCN9A_3UTR2
0
57.2
11.7
69.7
6.9
69.9
27.8
96.3
13.0


AD-1251463.1
HsSCN9A_3UTR2
0
59.0
6.0
71.0
7.3
76.1
25.4
84.5
0.7


AD-1251460.1
HsSCN9A_3UTR2
0
51.7
11.9
76.8
8.3
73.0
13.5
78.6
10.6


AD-1251469.1
HsSCN9A_3UTR2
0
58.2
6.4
80.9
6.3
86.4
9.0
93.7
7.8


AD-801647.3
HsSCN9A_3UTR2
0
64.5
11.9
83.8
8.1
78.4
5.2
80.1
7.9


AD-1251467.1
HsSCN9A_3UTR2
0
56.8
15.2
100.9
15.2
104.8
8.8
86.3
15.7


AD-1251466.1
HsSCN9A_3UTR2
0
72.3
18.5
105.2
10.0
112.2
10.3
113.0
13.4


AD-1251470.1
HsSCN9A_3UTR2
1
44.9
7.9
52.3
9.7
61.4
3.7
63.6
4.1


AD-1251471.1
HsSCN9A_3UTR2
1
51.3
2.7
69.5
5.1
54.2
3.3
80.1
11.2


AD-1251465.1
HsSCN9A_3UTR2
0
66.1
11.7
76.8
7.3
84.5
9.8
94.9
20.2


AD-1251472.1
HsSCN9A_3UTR2
1
86.2
4.2
98.3
12.9
76.8
8.6
109.5
6.7


AD-1251464.1
HsSCN9A_3UTR2
0
77.4
9.8
108.6
13.9
115.7
4.2
106.4
8.1


AD-1251473.1
HsSCN9A_3UTR2
0
57.3
1.8
68.9
6.8
76.5
6.6
84.0
8.0


AD-1251474.1
HsSCN9A_3UTR2
0
57.4
9.3
74.5
4.4
71.6
7.7
84.8
1.6


AD-1251475.1
HsSCN9A_3UTR2
1
57.3
6.3
64.7
8.7
70.6
9.1
80.0
9.0


AD-1251476.1
HsSCN9A_3UTR2
1
55.1
8.6
88.3
7.1
79.4
6.6
90.9
18.5


AD-1251279.1
HsSCN9A_3UTR2
0
41.1
2.9
30.9
2.1
38.7
4.8
46.6
2.3


AD-1251276.1
HsSCN9A_3UTR2
0
39.0
7.0
33.4
11.2
49.1
7.2
54.6
8.2


AD-1251280.1
HsSCN9A_3UTR2
0
43.9
2.9
41.1
13.8
43.0
4.2
46.3
3.9


AD-1251277.1
HsSCN9A_3UTR2
0
42.6
6.4
47.0
24.3
51.8
8.4
52.3
4.9


AD-961334.3
HsSCN9A_3UTR2
0
52.6
8.4
68.4
20.0
52.5
7.6
59.3
5.8


AD-1251278.1
HsSCN9A_3UTR2
0
36.6
3.1
45.6
20.8
44.7
4.7
47.2
2.1


AD-1251477.1
HsSCN9A_3UTR2
1
46.1
17.5
58.6
8.4
90.9
1.7
93.4
12.8


AD-1251478.1
HsSCN9A_3UTR2
1
78.6
3.2
82.8
1.1
77.7
8.7
112.7
15.5


AD-1251479.1
HsSCN9A_3UTR2
0
81.1
10.6
103.1
8.9
91.1
9.8
115.5
10.6


AD-1251481.1
HsSCN9A_3UTR2
1
65.0
4.7
76.1
9.1
73.4
3.7
98.6
9.3


AD-1251480.1
HsSCN9A_3UTR2
1
69.5
4.9
76.6
2.6
88.1
8.3
117.5
12.9


AD-1251482.1
HsSCN9A_3UTR2
1
60.8
2.9
65.6
13.3
72.6
8.4
91.2
14.0


AD-1251483.1
HsSCN9A_3UTR2
1
62.5
12.5
75.6
7.9
75.4
6.0
91.5
12.7


AD-1251492.1
HsSCN9A_3UTR2
0
22.3
2.6
29.1
3.3
33.3
3.4
52.8
7.6


AD-1251485.1
HsSCN9A_3UTR2
0
27.9
3.7
33.9
7.3
41.4
5.4
56.2
6.4


AD-802471.4
HsSCN9A_3UTR2
0
38.5
4.6
39.0
5.3
57.9
8.0
82.7
17.2


AD-1251486.1
HsSCN9A_3UTR2
0
38.5
2.8
39.8
8.1
51.6
4.4
78.1
11.1


AD-1251484.1
HsSCN9A_3UTR2
0
33.7
2.8
39.9
9.1
72.9
27.3
76.1
3.9


AD-1251491.1
HsSCN9A_3UTR2
0
33.7
7.5
45.6
5.7
48.4
6.8
61.9
11.3


AD-1251487.1
HsSCN9A_3UTR2
0
46.0
7.1
50.1
12.4
61.6
10.6
82.9
8.4


AD-1251488.1
HsSCN9A_3UTR2
0
47.9
6.4
52.1
6.6
57.2
8.0
82.0
7.7


AD-1251490.1
HsSCN9A_3UTR2
0
46.5
12.0
53.9
17.4
52.6
4.1
79.0
5.3


AD-1251494.1
HsSCN9A_3UTR2
1
51.7
6.1
42.6
2.8
51.8
7.3
80.5
5.4


AD-1251493.1
HsSCN9A_3UTR2
0
28.2
1.2
30.4
2.3
38.7
3.8
53.6
2.8


AD-1251489.1
HsSCN9A_3UTR2
0
38.9
4.4
54.3
8.1
59.3
13.6
83.7
16.5


AD-1251495.1
HsSCN9A_3UTR2
1
67.8
6.5
58.8
3.1
68.8
14.7
77.6
25.9


AD-1251496.1
HsSCN9A_3UTR2
1
61.6
7.8
48.6
5.8
64.2
7.1
78.7
7.9


AD-1251497.1
HsSCN9A_3UTR2
1
78.9
10.4
71.3
9.4
67.7
5.5
93.1
6.0


AD-1251498.1
HsSCN9A_3UTR2
1
91.0
6.2
79.9
14.1
79.0
11.5
89.1
10.4


AD-802552.3
HsSCN9A_3UTR2
0
45.8
3.9
31.8
4.5
60.8
9.9
51.1
3.4


AD-1251267.1
HsSCN9A_3UTR2
0
44.9
2.7
32.2
2.1
48.4
2.2
55.7
3.8


AD-1251260.1
HsSCN9A_3UTR2
0
48.1
7.6
33.0
6.6
59.5
10.8
58.4
1.8


AD-1251256.1
HsSCN9A_3UTR2
0
42.3
4.0
33.6
8.3
47.5
3.2
52.8
3.1


AD-1251265.1
HsSCN9A_3UTR2
0
50.9
6.8
34.5
10.1
60.0
16.7
58.4
4.3


AD-1251257.1
HsSCN9A_3UTR2
0
50.0
5.2
40.8
7.9
50.1
4.1
65.8
11.6


AD-1251266.1
HsSCN9A_3UTR2
0
52.4
7.1
41.8
6.8
58.0
5.5
70.0
16.1


AD-1251264.1
HsSCN9A_3UTR2
1
49.2
3.0
47.6
11.3
64.5
5.4
71.7
10.0


AD-1251259.1
HsSCN9A_3UTR2
0
49.0
4.7
48.9
23.0
49.1
3.1
64.4
1.8


AD-1251258.1
HsSCN9A_3UTR2
0
47.3
8.8
54.9
42.4
52.1
7.1
52.7
4.2


AD-1251263.1
HsSCN9A_3UTR2
0
30.4
1.6
22.8
4.0
67.4
15.5
71.5
24.2


AD-1251262.1
HsSCN9A_3UTR2
0
45.1
3.6
30.5
4.3
57.8
3.6
57.4
1.7


AD-1251261.1
HsSCN9A_3UTR2
0
43.1
5.3
34.1
10.0
47.5
5.0
51.5
4.8









Example 4. In Vivo Screening of SCN9A siRNA

Experimental Methods


Wildtype B6/C57 mice (Charles Rivers Laboratory) were retro-orbitally injected with human SCN9A constructs designed to span various regions of human SCN9A (e.g., the 3′ UTR_AAV1 (positions 6266 to 7998), 3′UTR-AAV2 (positions 7999 to 9750) and two open reading frames (ORF-1 (positions 299 to 2441) or ORF-2 (positions 2392 to 4354)) packaged in AAV particles (2×1010 gc/mouse). After two weeks, mice were injected subcutaneously with 3 mg/kg of exemplary siRNAs (C16, VCP, or GalNAc) (Tables 4A, 5A, 6A, 18 (also summarized in FIGS. 1A-1C) or 20 (also summarized in FIGS. 3A-3D), or a PBS or non-targeting siRNA control (Table 9). On day 14 post-treatment, livers were harvested for qPCR analysis with a probe specifically recognizing SCN9A. Mouse GAPDH was used as normalization control. Relative levels of SCN9A mRNA in the liver were calculated with the delta/delta Ct method, normalized to the control groups, and is depicted as the percent message remaining in Tables 10-12, 19, and 21 below.









TABLE 9







Control siRNA Sequences













Duplex


Seq ID No:
Modified
Seq ID No:
Unmodified


Name
Target
Strand
(modified)
Sequences
(unmodified)
Sequences





AD-
none
Sense
3695
asascaguGfuUfCfUf
3696
AACAGUGUUC


64228.39



ugcucuauaaL96

UUGCUCUAUA








A





AD-
mTTR
Antisense
3697
usUfsauaGfaGfCfaa
3698
UUAUAGAGCA


86460



gaAfcAfcuguususu

AGAACACUGU








UUU
















TABLE 18







Exemplary SCN9A duplexes investigated and corresponding chemistry that target ORF-1


of SCN9A (e.g., positions 299-2441). In this table the column “Duplex Name”


provides the numerical part of the duplex name with a suffix (number following the


decimal point in a duplex name) that merely refers to a batch production number.


The suffix can be omitted from the duplex name without changing the chemical


structure.












SEQ ID



Duplex Name
Strand
NO:
Modified Sequence





AD-795305.2
sense
5330
usgsucg(Ahd)GfuAfCfAfcuuuuacugaL96


(parent)
anti-
5346
VPusCfsaguAfaAfAfguguAfcUfcgacasusu



sense







AD-1251249.1
sense
5331
usgsucgaguAfCfAfcuuu(Uhd)acugaL96



anti-
5347
VPusCfsagdTadAaaguguAfcUfcgacasusu



sense







AD-1251251.1
sense
5332
uscsgaguAfCfAfcuuu(Uhd)acugaL96



anti-
5348
VPusCfsagdTadAaaguguAfcUfcgascsg



sense







AD-1010663.2
sense
5333
usgsuag(Ghd)agdAadTucacuuuucaL96


(parent)
anti-
5349
VPusdGsaadAadGugaadTudCudCcuacascsa



sense







AD-1251301.1
sense
5334
usgsuaggagdAaUfUfcac(Uhd)uuucaL96



anti-
5350
VPudGaadAa(G2p)ugaadTudCudCcuacascsg



sense







AD-961179.3
sense
5335
asasggg(Ahd)aadAcdAaucuuccguaL96


(parent)
anti-
5351
VPusdAscgdGadAgauudGudTudTcccuususg



sense







AD-1251317.1
sense
5336
asasgggaaaAfCfAfaucu(Uhd)ccguaL96



anti-
5352
VPudAcgdGa(A2p)gauudGuUfudTcccuususg



sense







AD-1251318.1
sense
5337
asgsggaaAfaCfAfAfucuu(Chd)cguuaL96



anti-
5353
VPusAfsacdGgdAagauugUfuUfucccususu



sense







AD-1251323.1
sense
5338
gsasaaa(Chd)aaUfCfUfuccguuucaaL96



anti-
5354
VPuUfgadAa(C2p)ggaagaUfudGuuuucscsc



sense







AD-1251325.1
sense
5339
asasaacaauCfUfUfccgu(Uhd)ucaaaL96



anti-
5355
VPuUfugdAadAcggadAgdAuUfguuuuscsc



sense







AD-795634.3
sense
5340
asgscau(Ahd)AfaUfGfUfuuucgaaauaL96


(parent)
anti-
5356
VPusAfsuuuCfgAfAfaacaUfuUfaugcususc



sense







AD-1251363.1
sense
5341
gsasagcauadAaUfguuu(Uhd)cgaaaL96



anti-
5357
VPuUfucdGadAaacadTuUfaUfgcuucsasg



sense







AD-1251364.1
sense
5342
asasgca(Uhd)aadAudGuuuucgaaaaL96



anti-
5358
VPuUfuudCgdAaaacdAuUfudAugcuuscsg



sense







AD-1251373.1
sense
5343
asgscauaaaUfgUfuuu(Chd)gaaauaL96



anti-
5359
VPudAuudTc(G2p)aaaadCaUfuUfaugcuscsc



sense







AD-1251385.1
sense
5344
asusgau(Chd)UfuCfUfUfugucguaguaL96


(parent: AD-
anti-
5360
VPudAcudAcdGacaadAgdAadGaucausgsu


795913)
sense







AD-1251391.1
sense
5345
uscsu(Uhd)CfuUfudGucguagugaaL96


(parent: AD-
anti-
5361
VPusUfscadCu(Agn)cgacdAaAfgAfagasusc


795913)
sense
















TABLE 20







Exemplary SCN9A duplexes investigated and corresponding chemistry that target region


2 of the 3′ UTR of SCN9A (HsSCN9A_3UTR2, e.g., positions 7999 to 9750), ORF-1 of SCN9A


(HsSCN9A_ORF1rp, e.g., positions 299-2441), and ORF2 of SCN9A (HsSCN9A_ORF2rp, e.g.,


positions 2392-4345). In this table the column “Duplex Name” provides the numerical part


of the duplex name with a suffix (number following the decimal point in a duplex name)


production number. The suffix can be omitted from the duplex name without changing the


that merely refers to a batch chemical structure.













Duplex

SEQ ID

Parent


AAV
Name
Strand
NO:
Modified Sequence





HsSCN9A_
AD-
sense
5410
csasagugUfuCfCfUfacug(Uhd)
AD-


3UTR2
1251492.2


caugaL96
802471




anti-
5426
VPuCfaudGa(C2p)aguaggAfaC





sense

facuugscsc




AD-
sense
5411
csasaca(Chd)aadTudTcuucuua
Self



961334.2


gcaL96




(Parent)
anti-
5427
VPusdGscudAadGaagadAadTu





sense

dGuguugsusu




AD-
sense
5412
csasaca(Chd)aaufUfUfcuucuu
AD-



1251279.2


agcaL96
961334




anti-
5428
VPudGcudAadGaagadAaufud





sense

Guguugsusu






HsSCN9A_
AD-
sense
5413
usgsucgaguAfCfAfcuuu(Uhd)a
AD-


ORF1rp
1251284.2


cugaL96
1010661




anti-
5429
VPusCfsagdTadAaagudGuAfcd





sense

Tcgacasusu




AD-
sense
5414
ususcug(Uhd)guAfgdGagaauu
AD-



1251334.2


cacaL96
795366




anti-
5430
VPusdGsugdAa(U2p)ucucdCu





sense

AfcAfcagaasgsc




AD-
sense
5415
asusaaa(Uhd)guUfUfUfcgaaau
AD-



1251377.2


ucaaL96
795634




anti-
5431
VPusufsgadAudTucgaaaAfcAf





sense

uuuausgsu




AD-
sense
5416
gsasucu(Uhd)CfuUfudGucgua
AD-



1251398.2


gugaaL96
795913




anti-
5432
VPuufcadCu(A2p)cgacdAaAfg





sense

Afagaucsgsu




AD-
sense
5417
gsasucu(Uhd)CfuUfudGUfcgu
AD-



1251399.2


agugaaL96
795913




anti-
5433
VPuufcadCu(A2p)cgacdAaAfg





sense

Afagaucsgsu




AD-
sense
5418
csasuga(Uhd)cudTcdTuugucgu
Self



961188.2


agaL96




(Parent)
anti-
5434
VPusdCsuadCgdAcaaadGadAg





sense

dAucaugsusa




AD-
sense
5419
csasuga(Uhd)cuufCfUfuugucg
AD-



1251274.3


uagaL96
961188




anti-
5435
VPuCfuadCgdAcaaadGadAgdA





sense

ucaugsusg






HsSCN9A_
AD-
sense
5420
ususugu(Ahd)GfaufCfUfugcaa
Self


ORF2rp
796825.2


uuacaL96




(Parent)
anti-
5436
VPusGfsuaaUfuGfCfaagaUfcUf





sense

acaaasasg




AD-
sense
5421
ususuug(Uhd)agAfUfCfuugcaa
AD-



1251411.2


uuaaL96
796825




anti-
5437
VPusufsaadTu(G2p)caagauCfu





sense

Afcaaagscsc




AD-
sense
5422
gsusaga(Uhd)CfuufgCfaauuac
AD-



1251419.2


cauaL96
796825




anti-
5438
VPudAugdGudAauugdCaAfgAf





sense

ucuacsgsg




AD-
sense
5423
usasugu(Ghd)AfaAfCfAfaaccu
Self



797564.3


uacgaL96




(Parent)
anti-
5439
VPusCfsguaAfgGfUfuuguUfuCf





sense

acauasasu




AD-
sense
5424
ususaug(Uhd)gaAfAfCfaaaccu
AD-



1251428.2


uacaL96
1251428




anti-
5440
VPudGuadAg(G2p)uuuguuufc





sense

Afcauaasusu




AD-
sense
5425
usasugugAfaAfCfAfaacc(Uhd)
AD-



1251434.2


uacgaL96
1251428




anti-
5441
VPuCfgudAa(G2p)guuuguUfu





sense

Cfacauasgsu









Results

Table 10 (siRNA duplexes correspond to siRNA sequences in Tables 4A and 5A) demonstrates the results of the in vivo screen for the ORF-1 targeting duplexes, and includes siRNA duplexes with Fluoro and Non-Fluoro chemistries. Of the siRNA duplexes evaluated in the in vivo screen shown in Table 10, 1 achieved ≥80% knockdown of SCN9A, 8 achieved ≥60% knockdown of SCN9A, 13 achieved ≥40% knockdown of SCN9A, and 15 achieved ≥20% knockdown of SCN9A.









TABLE 10







Efficacy and duration of exemplary ORF-1


targeting SCN9A siRNAs in mice












% message remaining at



Treatment*
Chemistry
day 14 post-treatment
St. Dev.













PBS
N/A
100.00
19.46


Naïve (AAV-only)

115.79
22.37


AD-64228.39 (AAV-
Fluoro
59.06
27.45


control)


AD-961179.2
NonFluoro
20.49
0.95


AD-795305.2
Fluoro
21.96
5.16


AD-1010661.2
NonFluoro
41.08
6.19


AD-795366.2
Fluoro
29.15
4.74


AD-1010662.2
NonFluoro
52.17
4.57


AD-795371.2
Fluoro
16.30
6.34


AD-1010663.2
NonFluoro
21.60
1.20


AD-795634.3
Fluoro
20.80
6.50


AD-795739.2
Fluoro
41.18
10.45


AD-1010664.2
NonFluoro
71.93
4.59


AD-961188.2
NonFluoro
38.51
0.36


AD-961189.2
NonFluoro
55.25
14.04


AD-795913.2
Fluoro
26.74
5.61


AD-795914.2
Fluoro
76.20
11.80


AD-961192.2
NonFluoro
104.26
12.37


AD-1010671.2
NonFluoro
98.29
17.97


AD-796618.2
Fluoro
57.42
1.30





(*the number following the decimal point in a duplex name merely refers to a batch production number)






Table 11 (siRNA duplexes correspond to siRNA sequences in Tables 4A, 5A, and 6A) demonstrates the results of the in vivo screen for the ORF-2-targeting duplexes as well as the 3′UTR_AAV1 and 3′UTR_AAV2 targeting duplexes and includes siRNA duplexes with Fluoro, Non-Fluoro, Fluoro+GNA chemistries. Of the ORF-2 targeting siRNA duplexes evaluated in the in vivo screen shown in Table 11, 3 achieved ≥80% knockdown of SCN9A, 4 achieved ≥30% knockdown of SCN9A, and 5 achieved ≥20% knockdown of SCN9A. Of the 3′UTR_AAV1 targeting siRNA duplexes (positions 6266 to 7998) evaluated in this screen shown in Table 11, 2 achieved ≥20% knockdown of SCN9A. Of the 3′UTR_AAV2 targeting siRNA duplexes (positions 7999 to 9750) evaluated in this screen shown in Table 11, 2 achieved ≥60% knockdown of SCN9A, and 5 achieved ≥30% knockdown of SCN9A.









TABLE 11







Efficacy and duration of exemplary ORF-2


and 3′UTR targeting SCN9A siRNAs in mice














% message






remaining at





day 14 post-
St.


AAV
Treatment*
Chemistry
treatment
Dev.














HsSCN9A_ORF2rp
PBS
n/a
100.00
13.04



naïve (AAV-only)

96.31
19.26



AD-796825.1
Fluoro
12.49
2.90



AD-961207.1
NonFluoro
71.01
17.81



AD-961208.1
NonFluoro
66.66
10.33



AD-797564.2
Fluoro
13.59
5.19



AD-797565.2
Fluoro
12.26
1.86


3′UTR_AAV1
PBS
n/a
100.00
21.53



naïve (AAV-only)

117.95
19.80



AD-800819.1
Fluoro
79.02
5.13



AD-1010693.1
NonFluoro
70.89
9.77


3′UTR_AAV2
PBS
n/a
100.00
28.24



naïve (AAV-only)

114.62
35.06



AD-802503.1
Fluoro
50.95
7.80



AD-802552.1
Fluoro
31.59
5.19



AD-1002101.1
Fluoro +
55.04
23.31




GNA



AD-802625.2
Fluoro
47.78
4.47



AD-802853.2
Fluoro
35.44
5.41





(*the number following the decimal point in a duplex name merely refers to a batch production number)






Table 12 (siRNA duplexes correspond to siRNA sequences in Tables 4A, 5A, and 6A) demonstrates the results of the in vivo screen for 3′UTR AAV2 targeting siRNA duplexes (positions 7999 to 9750), and includes siRNA duplexes with alternate chemistries. Of the 3′UTR_AAV2 targeting siRNA duplexes (positions 7999 to 9750) evaluated in the in vivo screen shown in Table 12, 1 achieved ≥80% knockdown of SCN9A, 4 achieved ≥60% knockdown of SCN9A, 6 achieved ≥30% knockdown of SCN9A, and 7 achieved ≥20% knockdown of SCN9A.









TABLE 12







Efficacy and duration of exemplary distal 3′UTR


targeting SCN9A siRNAs (positions 7999 to 9750) in mice












% Message





Remaining at Day
St.


Treatment*
Chemistry
14 post treatment
Dev.













PBS
n/a
100.00
9.16


AAV-only

109.27
7.75


AD-64228.39
(AAV control) Fluoro
64.03
9.62


(TTR control)


AD-802471.2
N6-C16 + VP + Fluoro
28.30
3.24


AD-961342.2
N6-C16 + VP + Non-Fluoro
42.46
6.81


AD-961334.2
N6-C16 + VP + Non-Fluoro
29.65
2.41


AD-1010697.2
N6-C16 + VP + Non-Fluoro
84.05
13.41


AD-1010698.2
N6-C16 + VP + Non-Fluoro
72.76
10.07


AD-802123.2
N6-C16 + VP + Fluoro
36.01
1.91


AD-801647.2
N6-C16 + VP + Fluoro
10.26
0.94


AD-961163.2
N6-C16 + VP + Fluoro +
61.24
15.34



GNA





(*the number following the decimal point in a duplex name merely refers to a batch production number)






Table 19 and FIG. 2 (siRNA duplexes correspond to siRNA sequences in Table 18 and FIGS. 1A-1C) demonstrate the results of the in vivo screen for the ORF-1-targeting duplexes with the chemistries described in Table 18 and shown in FIGS. 1A-1C. Of the ORF-1 targeting duplexes evaluated in the in vivo screen shown in Table 19, 1 achieved ≥80% knockdown of SCN9A, 8 achieved ≥70% knockdown of SCN9A, 13 achieved ≥60% knockdown of SCN9A, 14 achieved ≥50% knockdown of SCN9A, and 15 achieved ≥30% knockdown of SCN9A. The results summarized in Table 19 also demonstrate that several modifications were tolerable in vivo with similar or improved potency compared to parent duplexes.









TABLE 19







Efficacy of exemplary SCN9A siRNA duplexes in mice. In this


table, the column “Duplex Name” provides the numerical


part of the duplex name without a suffix (e.g., number following


the decimal point that can be included in a duplex name). The


suffix merely refers to a batch production number. The suffix


can be omitted from the duplex name without changing the chemical


structure. For example, duplex AD-795305 in Table 19 refers


to the same duplex as AD-795305.2 in Table 18.








Duplex Name
Day 14 post-treatment









(Administered at 3 mg/kg)
% SCN9A Message Remaining
StDev












PBS
100.00
4.16


AD-795305 (parent)
31.56
2.46


AD-1251249
23.56
3.45


AD-1251251
19.56
1.28


AD-1010663 (parent)
34.01
4.55


AD-1251301
64.01
6.65


AD-961179 (parent)
35.99
21.51


AD-1251317
36.50
6.98


AD-1251318
23.35
2.38


AD-1251323
33.32
5.62


AD-1251325
27.82
2.14


AD-795634 (parent)
25.39
5.54


AD-1251363
20.81
6.51


AD-1251364
26.37
6.88


AD-1251373
41.23
5.94


AD-1251385
29.05
12.32


AD-1251391
86.58
13.78









Following in vitro testing in Example 3 and the results in Table 17, a subset of duplexes were selected and placed in two groups: screen 1, which included AD-1010663.3, AD-1251301.1, AD-1251249.1, AD-1251251.1, AD-795305.3, AD-1251363.1, AD-1251364.1, AD-1251373.1, AD-795634.4, AD-1251385.1, AD-1251391.1, AD-1251317.1, AD-1251318.1, AD-1251323.1, AD-1251325.1, and AD-961179.3, screen 2 which included AD-1251492.1, AD-1251279.1, AD-961334.3, AD-1251284.1, AD-1251334.1, AD-1251377.1, AD-1251398.1, AD-1251399.1, AD-1251274.2, AD-961188.3, AD-1251411.1, AD-1251419.1, AD-796825, AD-1251428.1, AD-797564.4, and AD-1251434.1. The percent SCN9A message remaining when these duplexes were tested at a 0.1 nM (FIG. 4A), 1 nM (FIG. 4B), and 10 nM (FIG. 4C) was graphed versus the position in the target SCN9A mRNA of the sense strand of the tested duplex. From these graphs, a set of duplexes was selected for in vivo investigation, which are shown in Table 20 and FIGS. 3A-3D.


Table 21 and FIG. 5 (siRNA duplexes correspond to siRNA sequences in Table 20 and FIGS. 3A-3D) demonstrate the results of the in vivo screen for the duplexes targeting region 2 of the 3′ UTR of SCN9A (HsSCN9A_3 UTR2, e.g., positions 7999 to 9750), ORF-1 of SCN9A (HsSCN9A_ORF1rp, e.g., positions 299-2441), and ORF2 of SCN9A (HsSCN9A_ORF2rp, e.g., positions 2392-4345), with the chemistries described in Table 20 and shown in FIGS. 3A-3D. Of the exemplary duplexes investigated in the in vivo screen shown in Table 20, 4 achieved ≥80% knockdown of SCN9A, 11 achieved ≥70% knockdown of SCN9A, 13 achieved ≥50% knockdown of SCN9A, 14 achieved ≥30% knockdown of SCN9A, 15 achieved ≥20% knockdown of SCN9A, and 16 achieved ≥10% knockdown of SCN9A. The results summarized in Table 19 also demonstrate that several modifications were tolerable in vivo with similar potency compared to parent duplexes.









TABLE 21







Efficacy of exemplary SCN9A siRNA duplexes in mice. In this table, the exemplary duplexes investigated


correspond to those summarized in Table 20 and FIGS. 3A-3D. The prior parent data corresponds to


duplexes tested with data summarized in Tables 10-12. The column “Parent Duplex Name” provides


the numerical part of the duplex name without a suffix (e.g., number following the decimal point


that can be included in a duplex name). The suffix merely refers to a batch production number.


The suffix can be omitted from the duplex name without changing the chemical structure. For example,


duplex AD-802471 in Table 21 refers to the same duplex as AD-802471.2 in Table 12.










Exemplary Duplexes Investigated
Prior Parent Data (see, Tables 10-12)












Duplex Name
Day 14 post-treatment

Day 14 post-treatment














(Administered
% SCN9A Message

Parent Duplex
% SCN9A Message



AAV
at 3 mg/kg)
Remaining
StDev
Name
Remaining
StDev
















3UTR2
PBS
100.00
17.39






AD-1251492.2*
19.42
13.58
AD-802471
28.30
3.24



AD-961334.2 (Parent)
17.15
1.96
AD-961334 (self)
29.65
2.41



AD-1251279.2
13.34
3.34
AD-961334
29.65
2.41


ORF1rp
PBS
100.00
29.22



AD-1251284.2*
14.43
2.84
AD-1010661
41.08
6.19



AD-1251334.2*
65.74
28.11
AD-795366
29.15
4.74



AD-1251377.2*
28.53
17.61
AD-795634
20.80
6.50



AD-1251398.2*
81.26
6.35
AD-795913
26.74
5.61



AD-1251399.2*
75.63
37.43
AD-795913
26.74
5.61



AD-961188.2 (Parent)
44.91
20.18
AD-961188 (self)
38.51
0.36



AD-1251274.2
27.38
2.23
AD-961188
38.51
0.36


ORF2rp
PBS
100.00
21.48



AD-796825.2 (Parent)
20.38
2.13
AD-796825 Self)
12.49
2.90



AD-1251411.2
24.57
5.44
AD-796825
12.49
2.90



AD-1251419.2
28.49
4.48
AD-796825
12.49
2.90



AD-797564.3 (Parent)
22.90
5.49
AD-797564 (self)
13.59
5.19



AD-1251428.2
43.00
7.98
AD-797564
13.59
5.19



AD-1251434.2
26.85
10.83
AD-797564
13.59
5.19





*parents not screened in this study





Claims
  • 1. A double stranded ribonucleic acid (dsRNA) agent for inhibiting expression of sodium channel, voltage gated, type IX alpha subunit (SCN9A), wherein the dsRNA agent comprises a sense strand and an antisense strand forming a double stranded region, wherein the antisense strand comprises a nucleotide sequence comprising at least 15 contiguous nucleotides, with 0, 1, 2, or 3 mismatches, from one of the antisense sequences listed in any one of Tables 2A, 2B, 4A, 4B, 5A, 5B, 6A 6B, 13A, 13B, 14A, 14B, 15A, 15B, 16, 18, and 20 and wherein the sense strand comprises a nucleotide sequence comprising at least 15 contiguous nucleotides, with 0, 1, 2, or 3 mismatches, from a sense sequence listed in any one of Tables 2A 2B, 4A, 4B, 5A, 5B, 6A, 6B, 13A, 13B, 14A, 14B, 15A, 15B, 16, 18, and 20 that corresponds to the antisense sequence.
  • 2. The dsRNA agent of claim 1, wherein the portion of the sense strand is a portion within nucleotides 581-601, 760-780, or 8498-8518 of SEQ ID NO: 4001.
  • 3. The dsRNA agent of claim 1 or 2, wherein the portion of the sense strand is a portion within a sense strand from a duplex chosen from AD-1251284 (UGUCGAGUACACUUUUACUGA (SEQ ID NO:4827)), AD-961334 (CAACACAATUTCUUCUUAGCA (SEQ ID NO: 5026)), or AD-1251325 (AAAACAAUCUUCCGUUUCAAA (SEQ ID NO: 4822)).
  • 4. The dsRNA agent of any one of claims 1-3, wherein the portion of the sense strand is a sense strand chosen from the sense strands of AD-1251284 (UGUCGAGUACACUUUUACUGA (SEQ ID NO:4827)), AD-961334 (CAACACAATUTCUUCUUAGCA (SEQ ID NO: 5026)), or AD-1251325 (AAAACAAUCUUCCGUUUCAAA (SEQ ID NO: 4822)).
  • 5. The dsRNA of any one of claims 1-4, wherein the portion of the antisense strand is a portion within an antisense strand from a duplex chosen from AD-1251284 (UCAGTAAAAGUGUACTCGACAUU (SEQ ID NO: 5093)), AD-961334 (UGCUAAGAAGAAATUGUGUUGUU (SEQ ID NO: 5292)), or AD-1251325 (UUUGAAACGGAAGAUUGUUUUCC (SEQ ID NO: 5088)).
  • 6. The dsRNA of any one of claims 1-5, wherein the portion of the antisense strand is an antisense strand chosen the antisense strands of AD-1251284 (UCAGTAAAAGUGUACTCGACAUU (SEQ ID NO: 5093)), AD-961334 (UGCUAAGAAGAAATUGUGUUGUU (SEQ ID NO: 5292)), or AD-1251325 (UUUGAAACGGAAGAUUGUUUUCC (SEQ ID NO: 5088)).
  • 7. The dsRNA of any one of claims 1-6, wherein the sense strand and the antisense strand comprise nucleotide sequences of the paired sense strand and antisense strand of a duplex selected from AD-1251284 (SEQ ID NO: 4827 and 5093), AD-961334 (SEQ ID NO: 5026 and 5292), or AD-1251325 (SEQ ID NO: 4822 and 5088).
  • 8. The dsRNA agent of any one of claims 1-7, wherein the antisense strand comprises a nucleotide sequence of an antisense sequence listed in Table 16, and the sense strand comprises a nucleotide sequence of a sense sequence listed in Table 16 that corresponds to the antisense sequence.
  • 9. The dsRNA agent of any one of claims 1-8, wherein the dsRNA agent is AD-1251284, AD-961334, AD-1251325, AD-1331352, AD-1209344, or AD-1331350.
  • 10. The dsRNA agent of any one of claims 1-9, wherein at least one of the sense strand and the antisense strand is conjugated to one or more lipophilic moieties.
  • 11. The dsRNA agent of claim 10, wherein the lipophilic moiety is conjugated via a linker or carrier.
  • 12. The dsRNA agent of claim 10 or 11, wherein one or more lipophilic moieties are conjugated to one or more internal positions on at least one strand.
  • 13. The dsRNA agent of claim 12, wherein the one or more lipophilic moieties are conjugated to one or more internal positions on at least one strand via a linker or carrier.
  • 14. The dsRNA agent of any one of claims 10-13, wherein the lipophilic moiety is an aliphatic, alicyclic, or polyalicyclic compound.
  • 15. The dsRNA agent of claim 14, wherein the lipophilic moiety contains a saturated or unsaturated C16 hydrocarbon chain.
  • 16. The dsRNA agent of any one of claims 10-15, wherein the lipophilic moiety is conjugated via a carrier that replaces one or more nucleotide(s) in the internal position(s) or the double stranded region.
  • 17. The dsRNA agent of any one of claims 10-15, wherein the lipophilic moiety is conjugated to the double-stranded iRNA agent via a linker containing an ether, thioether, urea, carbonate, amine, amide, maleimide-thioether, disulfide, phosphodiester, sulfonamide linkage, a product of a click reaction, or carbamate.
  • 18. The double-stranded iRNA agent of any one of claims 10-16, wherein the lipophilic moiety is conjugated to a nucleobase, sugar moiety, or internucleosidic linkage.
  • 19. The dsRNA agent of any of the preceding claims, wherein the dsRNA agent comprises at least one modified nucleotide.
  • 20. The dsRNA agent of claim 19, wherein no more than five of the sense strand nucleotides and not more than five of the nucleotides of the antisense strand are unmodified nucleotides.
  • 21. The dsRNA agent of claim 19, wherein all of the nucleotides of the sense strand and all of the nucleotides of the antisense strand comprise a modification.
  • 22. The dsRNA agent of any one of claims 19-21, wherein at least one of the modified nucleotides is selected from the group consisting of a deoxy-nucleotide, a 3′-terminal deoxythimidine (dT) nucleotide, a 2′-O-methyl modified nucleotide, a 2′-fluoro modified nucleotide, a 2′-deoxy-modified nucleotide, a locked nucleotide, an unlocked nucleotide, a conformationally restricted nucleotide, a constrained ethyl nucleotide, an abasic nucleotide, a 2′-amino-modified nucleotide, a 2′-O-allyl-modified nucleotide, 2′-C-alkyl-modified nucleotide, a 2′-methoxyethyl modified nucleotide, a 2′-O-alkyl-modified nucleotide, a morpholino nucleotide, a phosphoramidate, a non-natural base comprising nucleotide, a tetrahydropyran modified nucleotide, a 1,5-anhydrohexitol modified nucleotide, a cyclohexenyl modified nucleotide, a nucleotide comprising a phosphorothioate group, a nucleotide comprising a methylphosphonate group, a nucleotide comprising a 5′-phosphate, a nucleotide comprising a 5′-phosphate mimic, a glycol modified nucleotide, and a 2-O-(N-methylacetamide) modified nucleotide; and combinations thereof.
  • 23. The dsRNA agent of any of the preceding claims, wherein at least one strand comprises a 3′ overhang of at least 2 nucleotides.
  • 24. The dsRNA agent of any of the preceding claims, wherein the double stranded region is 15-30 nucleotide pairs in length.
  • 25. The dsRNA agent of claim 24, wherein the double stranded region is 17-23 nucleotide pairs in length.
  • 26. The dsRNA agent of any of the preceding claims, wherein each strand has 19-30 nucleotides.
  • 27. The dsRNA agent of any of the preceding claims, wherein the agent comprises at least one phosphorothioate or methylphosphonate internucleotide linkage.
  • 28. The dsRNA agent of any one of claims 10-27, further comprising a targeting ligand, e.g., a ligand that targets a CNS tissue.
  • 29. The dsRNA agent of claim 28, wherein the targeting ligand is a ligand that targets a CNS tissue.
  • 30. The dsRNA agent of claim 29, wherein the CNS tissue is a brain tissue or a spinal tissue.
  • 31. The dsRNA agent of any one of the preceding claims, further comprising a phosphate or phosphate mimic at the 5′-end of the antisense strand.
  • 32. The dsRNA agent of claim 31, wherein the phosphate mimic is a 5′-vinyl phosphonate (VP).
  • 33. The dsRNA of any one of the preceding claims, wherein: (i) the sense strand comprises the sequence and all the modifications of SEQ ID NO: 4029, and the antisense strand comprises the sequence and all the modifications of SEQ ID NO: 4295;(ii) the sense strand comprises the sequence and all the modifications of SEQ ID NO: 4228, and the antisense strand comprises the sequence and all the modifications of SEQ ID NO: 4494;(iii) the sense strand comprises the sequence and all the modifications of SEQ ID NO: 5339, and the antisense strand comprises the sequence and all the modifications of SEQ ID NO: 5355;(iv) the sense strand comprises the sequence and all the modifications of SEQ ID NO: 5800, and the antisense strand comprises the sequence and all the modifications of SEQ ID NO: 5801;(v) the sense strand comprises the sequence and all the modifications of SEQ ID NO: 5526, and the antisense strand comprises the sequence and all the modifications of SEQ ID NO: 5681; or(vi) the sense strand comprises the sequence and all the modifications of SEQ ID NO: 5542, and the antisense strand comprises the sequence and all the modifications of SEQ ID NO: 5697.
  • 34. A cell containing the dsRNA agent of any one of claims 1-33.
  • 35. A pharmaceutical composition for inhibiting expression of a SCN9A, comprising the dsRNA agent of any one of claims 1-33.
  • 36. A method of inhibiting expression of SCN9A in a cell, the method comprising: (a) contacting the cell with the dsRNA agent of any one of claims 1-33, or a pharmaceutical composition of claim 35; and(b) maintaining the cell produced in step (a) for a time sufficient to reduce levels of SCN9A mRNA, SCN9A protein, or both of SCN9A mRNA and protein, thereby inhibiting expression of SCN9A in the cell.
  • 37. The method of claim 36, wherein the cell is within a subject.
  • 38. The method of claim 37, wherein the subject is a human.
  • 39. The method of claim 38, wherein the subject has been diagnosed with a SCN9A-associated disorder, e.g., pain, e.g., chronic pain e.g., inflammatory pain, neuropathic pain, pain hypersensitivity, pain hyposensitivity, primary erythromelalgia (PE), paroxysmal extreme pain disorder (PEPD), small fiber neuropathy (SFN), trigeminal neuralgia (TN), and pain associated with, e.g., cancer, arthritis, diabetes, traumatic injury and viral infections.
  • 40. A method of treating a subject having or diagnosed with having a SCN9A-associated disorder comprising administering to the subject a therapeutically effective amount of the dsRNA agent of any one of claims 1-33 or a pharmaceutical composition of claim 35, thereby treating the disorder.
  • 41. The method of claim 40, wherein the SCN9A-associated disorder is pain, e.g., chronic pain.
  • 42. The method of claim 40, wherein the SCN9A-associated disorder is chronic pain.
  • 43. The method of claim 41 or 42, wherein the chronic pain is associated with one or more of the disorders in the group consisting of pain hypersensitivity, pain hyposensitivity, inability to sense pain, primary erythromelalgia (PE), paroxysmal extreme pain disorder (PEPD), small fiber neuropathy (SFN), trigeminal neuralgia (TN), or pain associated with cancer, arthritis, diabetes, traumatic injury or viral infections.
  • 44. The method of any one of claims 40-43, wherein treating comprises amelioration of at least one sign or symptom of the disorder.
  • 45. The method of any one of claims 40-44, wherein the treating comprises (a) reducing pain; or (b) inhibiting or reducing the expression or activity of SCN9A.
  • 46. The method of any one of claims 37-45, wherein the dsRNA agent is administered to the subject intracranially or intrathecally.
  • 47. The method of claim 44, wherein the dsRNA agent is administered to the subject intrathecally, intraventricularly, or intracerebrally.
  • 48. The method of any one of claims 37-47, further comprising administering to the subject an additional agent or therapy suitable for treatment or prevention of an SCN9A-associated disorder (e.g., non-steroidal anti-inflammatory drugs (NSAIDs), acetaminophen, opioids, or corticosteroids, acupuncture, therapeutic massage, dorsal root ganglion stimulation, spinal cord stimulation, or topical pain relievers).
RELATED APPLICATIONS

This application claims priority to U.S. provisional application No. 63/006,328, filed on Apr. 7, 2020, and U.S. provisional application No. 63/161,313, filed on Mar. 15, 2021. The entire contents of the foregoing applications are hereby incorporated herein by reference.

PCT Information
Filing Document Filing Date Country Kind
PCT/US2021/025956 4/6/2021 WO
Provisional Applications (2)
Number Date Country
63161313 Mar 2021 US
63006328 Apr 2020 US