Claims
- 1. A composition comprising a peptide associated with a transporter that is capable of increasing the uptake of said peptide by a mammalian cell,
wherein said peptide includes an amino acid sequence motif PPXY and is capable of binding a type I WW-domain of the Nedd4 protein, wherein X is an amino acid.
- 2. The composition according to claim 1, wherein X is selected from the group consisting of proline (P), alanine (A), glutamic acid (E), asparagine (N), and arginine (R).
- 3. The composition of claim 1, wherein said transporter is capable of increasing the uptake of said peptide by a mammalian cell by at least 100%.
- 4. The composition of claim 1, wherein said transporter is capable of increasing the uptake of said peptide by a mammalian cell by at least 300%.
- 5. The composition of claim 1, wherein said peptide is covalently linked to said transporter.
- 6. The composition of claim 5, wherein said transporter is selected from the group consisting of penetratins, l-Tat49-57, d-Tat49-57, retro-inverso isomers of l- or d-Tat49-57, L-arginine oligomers, D-arginine oligomers, L-lysine oligomers, D-lysine oligomers, L-histidine oligomers, D-histidine oligomers, L-ornithine oligomers, D-ornithine oligomers, and HSV-1 structural protein VP22 and fragments thereof, and peptides having at least six contiguous amino acid residues that are L-arginine, D-arginine, L-lysine, D-lysine, L-histidine, D-histidine, L-ornithine, D-ornithine, or a combination thereof; and peptoid analogs thereof.
- 7. The composition according to claim 1, wherein said transporter is selected from the group consisting of liposomes, dendrimers, and siderophores.
- 8. The composition according to claim 1, wherein said peptide includes a contiguous amino acid sequence of at least 6 amino acid residues of a viral protein selected from the group consisting of matrix proteins of rhabdoviruses, matrix proteins of filoviruses, Rous Sarcoma virus GAG protein, hepatitis B virus core antigen, human herpesvirus 4 latent membrane protein 2A, human herpesvirus 1 UL56 protein, human herpesvirus 7 major capsid scaffold protein, infectious pancreatic necrosis virus VP2 protein, Lassa virus Z protein, lymphocytic choriomeningitis virus ringer finger protein, TT virus ORF2 protein, and wherein said contiguous amino acid sequence encompasses the PPXY motif of said viral protein.
- 9. The composition according to claim 1, wherein said peptide includes a contiguous amino acid sequence of at least 6 amino acid residues of a viral protein selected from the group consisting of Ebola virus Matrix (EbVp40) protein, Rous Sarcoma virus GAG protein, Marburg virus matrix protein, VSV matrix protein, and Mason-Pfizer Monkey virus GAG protein, and wherein said contiguous amino acid sequence encompasses the PPXY motif of said viral protein.
- 10. A composition comprising a hybrid polypeptide, said hybrid polypeptide consists of a peptide covalently linked to a peptidic transporter that is capable of increasing the uptake of said peptide by a mammalian cell by at least 100%,
wherein said hybrid polypeptide consists of from about 8 to about 100 amino acid residues, and wherein said peptide comprises an amino acid sequence motif PPXY and is capable of binding a type I WW-domain of the Nedd4 protein, wherein X is an amino acid.
- 11. The composition according to claim 10, wherein said hybrid polypeptide consists of from about 9 to about 50 amino acid residues.
- 12. The composition according to claim 10, wherein said hybrid polypeptide consists of from about 12 to about 30 amino acid residues.
- 13. The composition according to claim 10, wherein X is selected from the group consisting of proline (P), alanine (A), glutamic acid (E), asparagine (N), and arginine (R).
- 14. The composition according to claim 10, wherein said peptide includes a contiguous amino acid sequence of at least 6 amino acid residues of a viral protein selected from the group consisting of matrix proteins of rhabdoviruses, matrix proteins of filoviruses, Rous Sarcoma virus GAG protein, hepatitis B virus core antigen, human herpesvirus 4 latent membrane protein 2A, human herpesvirus 1 UL56 protein, human herpesvirus 7 major capsid scaffold protein, infectious pancreatic necrosis virus VP2 protein, Lassa virus Z protein, lymphocytic choriomeningitis virus ringer finger protein, TT virus ORF2 protein, and wherein said contiguous amino acid sequence encompasses the PPXY motif of said viral protein.
- 15. The composition according to claim 10, wherein said peptide includes a contiguous amino acid sequence of at least 6 amino acid residues of a viral protein selected from the group consisting of Ebola virus Matrix (EbVp40) protein, Rous Sarcoma virus GAG protein, Marburg virus matrix protein, VSV matrix protein, and Mason-Pfizer Monkey virus GAG protein, and wherein said contiguous amino acid sequence encompasses the PPXY motif of said viral protein.
- 16. The composition according to claim 10, wherein said peptide does not include a contiguous amino acid sequence of Ebola virus Matrix (EbVp40) protein that is sufficient to impart an ability to bind the UEV domain of the human Tsg101 protein.
- 17. The composition according to claim 10, wherein said transporter that is capable of increasing the uptake of said peptide by a mammalian cell by at least 300%.
- 18. The composition according to claim 10, wherein said transporter is selected from the group consisting of penetratins, l-Tat49-57, retro-inverso isomers of l-Tat49-57, L-arginine oligomers, L-lysine oligomers, HSV-1 structural protein VP22 and fragments thereof, and peptides consisting of at least six contiguous amino acid residues that are a combination of two or more of L-arginine, L-lysine and L-histidine.
- 19. The composition according to claim 11, wherein said peptide comprises an amino acid sequence selected from the group consisting of SEQ ID NOs:24-36, SEQ ID NOs:154-295, SEQ ID NOs:296-438, SEQ ID NOs:439-581, SEQ ID NOs:582-724, SEQ ID NOs:725-1010, SEQ ID NOs:1011-1296, SEQ ID NOs:1297-1439, SEQ ID NOs:1440-1452, SEQ ID NOs:1453-1491, SEQ ID NOs:1492-1530, and SEQ ID NOs:1531-1673.
- 20. The composition according to claim 10, wherein said hybrid polypeptide does not contain a terminal L-histidine oligomer.
- 21. A composition comprising a hybrid polypeptide, said hybrid polypeptide consists of a peptide covalently linked to a peptidic transporter that is capable of increasing the uptake of said peptide by a mammalian cell by at least 200%,
wherein said hybrid polypeptide consists of from about 10 to about 30 amino acid residues, and wherein said peptide comprises an amino acid sequence motif PPXY and is capable of binding a type I WW-domain of the Nedd4 protein, wherein X is an amino acid.
- 22. The composition of claim 21, wherein said hybrid polypeptide does not contain a terminal L-histidine oligomer of at least 6 histidine residues.
- 23. An isolated nucleic acid encoding the hybrid polypeptide according to claim 10.
- 24. An isolated nucleic acid encoding the hybrid polypeptide according to claim 11.
- 25. An isolated nucleic acid encoding the hybrid polypeptide according to claim 22.
- 26. A host cell comprising the isolated nucleic acid according to claim 23.
- 27. A host cell comprising the isolated nucleic acid according to claim 24.
- 28. A host cell comprising the isolated nucleic acid according to claim 25.
- 29. An isolated peptide consisting of a contiguous amino acid sequence of from 8 to about 30 amino acid residues of a viral protein selected from the group consisting of hepatitis B virus core antigen, human herpesvirus 4 latent membrane protein 2A, human herpesvirus 1 UL56 protein, human herpesvirus 7 major capsid scaffold protein, infectious pancreatic necrosis virus VP2 protein, Lassa virus Z protein, lymphocytic choriomeningitis virus ringer finger protein, and TT virus ORF2 protein, wherein said contiguous amino acid sequence encompasses the PPXY motif of said viral protein, and wherein said peptide is capable of binding a type I WW-domain of the Nedd4 protein.
- 30. The isolated peptide according to claim 29, wherein said isolated peptide consists of from 9 to about 20 amino acid residues.
- 31. The isolated peptide of claim 29, wherein said peptide comprises of an amino acid sequence selected from the group consisting of SEQ ID NOs:24-36, SEQ ID NOs:154-295, SEQ ID NOs:296-438, SEQ ID NOs:439-581, SEQ ID NOs:582-724, SEQ ID NOs:725-1010, SEQ ID NOs:1011-1296, SEQ ID NOs:1297-1439, SEQ ID NOs:1440-1452, SEQ ID NOs:1453-1491, SEQ ID NOs:1492-1530, and SEQ ID NOs:1531-1673.
- 32. An isolated nucleic acid encoding the isolated peptide according to claim 29.
- 33. An isolated nucleic acid encoding the isolated peptide according to claim 30.
- 34. An isolated nucleic acid encoding the isolated peptide according to claim 31.
- 35. A method for treating an infection caused by a virus selected from the group consisting of hepatitis B virus and human herpesvirus 1, said method comprising:
introducing into a patient in need of such treatment a peptide consisting of from 8 to about 30 amino acid residues and having an amino acid sequence motif PPXY, wherein X is an amino acid, and wherein said peptide is capable of binding a type I WW-domain of the Nedd4 protein.
- 36. The method of claim 35, wherein said introducing step comprises administering to the cells a nucleic acid encoding said peptide.
- 37. The method of claim 35, wherein X is selected from the group consisting of proline (P), alanine (A), glutamic acid (E), asparagine (N), and arginine (R).
- 38. The method of claim 35, wherein said peptide includes a contiguous amino acid sequence of at least 8 residues of a viral protein selected from the group consisting of matrix proteins of rhabdoviruses, matrix proteins of filoviruses, Rous Sarcoma virus GAG protein, Mason-Pfizer Monkey virus GAG protein, hepatitis B virus core antigen, human herpesvirus 4 latent membrane protein 2A, human herpesvirus 1 UL56 protein, human herpesvirus 7 major capsid scaffold protein, infectious pancreatic necrosis virus VP2 protein, Lassa virus Z protein, lymphocytic choriomeningitis virus ringer finger protein, TT virus ORF2 protein, and wherein said contiguous amino acid sequence encompasses the PPXY motif of said viral protein.
- 39. A method for treating an infection caused by a virus selected from the group consisting of hepatitis B virus and human herpesvirus 1, said method comprising:
administering to a patient in need of such treatment a composition comprising a peptide associated with a transporter that is capable of increasing the uptake of said peptide by a mammalian cell, wherein said peptide includes an amino acid sequence motif PPXY and is capable of binding a type I WW-domain of the Nedd4 protein, wherein X is an amino acid.
- 40. The method according to claim 39, wherein X is selected from the group consisting of proline (P), alanine (A), glutamic acid (E), asparagine (N), and arginine (R).
- 41. The method according to claim 39, wherein said transporter is capable of increasing the uptake of said peptide by a mammalian cell by at least 100%.
- 42. The method according to claim 39, wherein said transporter is capable of increasing the uptake of said peptide by a mammalian cell by at least 300%.
- 43. The method according to claim 39, wherein said peptide is covalently linked to said transporter.
- 44. The method according to claim 43, wherein said transporter is selected from the group consisting of penetrating, l-Tat49-57, d-Tat49-57, retro-inverso isomers of l- or d-Tat49-57, L-arginine oligomers, D-arginine oligomers, L-lysine oligomers, D-lysine oligomers, L-histidine oligomers, D-histidine oligomers, L-ornithine oligomers, D-ornithine oligomers, and HSV-1 structural protein VP22 and fragments thereof, and peptides having at least six contiguous amino acid residues that are L-arginine, D-arginine, L-lysine, D-lysine, L-histidine, D-histidine, L-ornithine, D-ornithine, or a combination thereof; and peptoid analogs thereof.
- 45. The method according to claim 39, wherein said transporter is selected from the group consisting of liposomes, dendrimers, and siderophores.
- 46. The method according to claim 39, wherein said peptide includes a contiguous amino acid sequence of at least 6 amino acid residues of a viral protein selected from the group consisting of matrix proteins of rhabdoviruses, matrix proteins of filoviruses, Rous Sarcoma virus GAG protein, Mason-Pfizer Monkey virus GAG protein, hepatitis B virus core antigen, human herpesvirus 4 latent membrane protein 2A, human herpesvirus 1 UL56 protein, human herpesvirus 7 major capsid scaffold protein, infectious pancreatic necrosis virus VP2 protein, Lassa virus Z protein, lymphocytic choriomeningitis virus ringer finger protein, TT virus ORF2 protein, and wherein said contiguous amino acid sequence encompasses the PPXY motif of said viral protein.
- 47. The method according to claim 39, wherein said peptide includes a contiguous amino acid sequence of at least 6 amino acid residues of a viral protein selected from the group consisting of Ebola virus Matrix (EbVp40) protein, Rous Sarcoma virus GAG protein, Marburg virus matrix protein, VSV matrix protein, and Mason-Pfizer Monkey virus GAG protein, and wherein said contiguous amino acid sequence encompasses the PPXY motif of said viral protein.
- 48. A method for treating an infection caused by a virus selected from the group consisting of hepatitis B virus and human herpesvirus 1, said method comprising:
administering to a patient in need of such treatment a hybrid polypeptide, said hybrid polypeptide consists of a peptide covalently linked to a peptidic transporter that is capable of increasing the uptake of said peptide by a mammalian cell by at least 100%, wherein said hybrid polypeptide consists of from about 8 to about 100 amino acid residues, and wherein said peptide comprises an amino acid sequence motif PPXY and is capable of binding a type I WW-domain of the Nedd4 protein, wherein X is an amino acid.
- 49. The method according to claim 48, wherein said hybrid polypeptide consists of from about 9 to about 50 amino acid residues.
- 50. The method according to claim 48, wherein said hybrid polypeptide consists of from about 12 to about 30 amino acid residues.
- 51. The method according to claim 48, wherein X is selected from the group consisting of proline (P), alanine (A), glutamic acid (E), asparagine (N), and arginine (R).
- 52. The method according to claim 48, wherein said peptide includes a contiguous amino acid sequence of at least 6 amino acid residues of a viral protein selected from the group consisting of matrix proteins of rhabdoviruses, matrix proteins of filoviruses, Rous Sarcoma virus GAG protein, Mason-Pfizer Monkey virus GAG protein, hepatitis B virus core antigen, human herpesvirus 4 latent membrane protein 2A, human herpesvirus 1 UL56 protein, human herpesvirus 7 major capsid scaffold protein, infectious pancreatic necrosis virus VP2 protein, Lassa virus Z protein, lymphocytic choriomeningitis virus ringer finger protein, TT virus ORF2 protein, and wherein said contiguous amino acid sequence encompasses the PPXY motif of said viral protein.
- 53. The method according to claim 48, wherein said peptide includes a contiguous amino acid sequence of at least 6 amino acid residues of a viral protein selected from the group consisting of Ebola virus Matrix (EbVp40) protein, Rous Sarcoma virus GAG protein, Marburg virus matrix protein, VSV matrix protein, and Mason-Pfizer Monkey virus GAG protein, and wherein said contiguous amino acid sequence encompasses the PPXY motif of said viral protein.
- 54. The method according to claim 48, wherein said peptide does not include a contiguous amino acid sequence of Ebola virus Matrix (EbVp40) protein that is sufficient to impart an ability to bind the UEV domain of the human Tsg101 protein.
- 55. The method according to claim 48, wherein said transporter is capable of increasing the uptake of said peptide by a mammalian cell by at least 300%.
- 56. The method according to claim 48, wherein said transporter is selected from the group consisting of penetratins, l-Tat49-57, retro-inverso isomers of l-Tat49-57, L-arginine oligomers, L-lysine oligomers, HSV-1 structural protein VP22 and fragments thereof, and peptides consisting of at least six contiguous amino acid residues that include two or more of the group consisting of L-arginine, L-lysine and L-histidine.
- 57. The method according to claim 48, wherein said peptide comprises an amino acid sequence selected from the group consisting of SEQ ID NOs:24-36, SEQ ID NOs:154-295, SEQ ID NOs:296-438, SEQ ID NOs:439-581, SEQ ID NOs:582-724, SEQ ID NOs:725-1010, SEQ ID NOs:1011-1296, SEQ ID NOs:1297-1439, SEQ ID NOs:1440-1452, SEQ ID NOs:1453-1491, SEQ ID NOs:1492-1530, and SEQ ID NOs:1531-1673.
- 58. The method according to claim 48, wherein said hybrid polypeptide does not contain a terminal L-histidine oligomer.
- 59. A method for treating an infection caused by a virus selected from the group consisting of hepatitis B virus and human herpesvirus 1, said method comprising:
administering to a patient in need of such treatment a composition comprising a hybrid polypeptide, said hybrid polypeptide consists of a peptide covalently linked to a peptidic transporter that is capable of increasing the uptake of said peptide by a mammalian cell by at least 200%, wherein said hybrid polypeptide consists of from about 10 to about 30 amino acid residues, and wherein said peptide comprises an amino acid sequence motif PPXY and is capable of binding a type I WW-domain of the Nedd4 protein, wherein X is an amino acid.
RELATED U.S. APPLICATIONS
[0001] This application claims priority under 35 U.S.C. §119(e) to U.S. Provisional Application Serial No. 60/313,883 filed on Aug. 21, 2001, which is incorporated herein by reference in its entirety.
Provisional Applications (1)
|
Number |
Date |
Country |
|
60313883 |
Aug 2001 |
US |