The field of invention relates generally to micro-fabrication of structures. More particularly, the present invention is directed to patterning substrates in furtherance of the formation of structures.
Micro-fabrication involves the fabrication of very small structures, e.g., having features on the order of micro-meters or smaller. One area in which micro-fabrication has had a sizeable impact is in the processing of integrated circuits. As the semiconductor processing industry continues to strive for larger production yields while increasing the circuits per unit area formed on a substrate, micro-fabrication becomes increasingly important. Micro-fabrication provides greater process control while allowing reduction of the minimum feature dimension of the structures formed. Other areas of development in which micro-fabrication has been employed include biotechnology, optical technology, mechanical systems and the like.
An exemplary micro-fabrication technique is shown in U.S. Pat. No. 6,334,960 to Willson et al. Willson et al. disclose a method of forming a relief image in a structure. The method includes providing a substrate having a transfer layer. The transfer layer is covered with a polymerizable fluid composition. A mold makes mechanical contact with the polymerizable fluid. The mold includes a relief structure, and the polymerizable fluid composition fills the relief structure. The polymerizable fluid composition is then subjected to conditions to solidify and polymerize the same, forming a solidified polymeric material on the transfer layer that contains a relief structure complimentary to that of the mold. The mold is then separated from the solidified polymeric material such that a replica of the relief structure in the mold is formed in the solidified polymeric material. The transfer layer and the solidified polymeric material are subjected to an environment to selectively etch the transfer layer relative to the solidified polymeric material such that a relief image is formed in the transfer layer. The time required and the minimum feature dimension provided by this technique is dependent upon, inter alia, the composition of the polymerizable material.
It is desired, therefore, to provide improved compositions of polymerizable materials for use in micro-fabrication.
The present invention is directed toward a composition and method of using the same to form a pattern on a substrate using imprint lithography employing dark-field polymerization. To that end, the composition includes a bis vinyl ether component, and an initiator component that produces an acid in response to radiation. The bis vinyl ether component is reactive to the acid and polymerizes in response thereto. The method includes forming a layer of polymerizable material on the substrate, and contacting the layer of polymerizable material with a surface of a mold to conform the layer to the surface. Partial polymerization of the layer is achieved by impinging radiation thereupon and terminating the radiation before polymerization of the polymerizable material is complete. The mold is separated from the layer before complete polymerization of the layer occurs. Complete polymerization of the layer occurs by allowing the acid from the initiator to react with the layer to form a solidified layer of the polymerizable material. These and other embodiments are discussed more fully below.
Referring to
Referring to both
Referring to both
Referring to
Referring to
Referring to
Referring to
Referring to
Referring to
Referring to
0≧θ1<75°
With these two characteristics being satisfied, imprinting layer 24 may be made sufficiently thin while avoiding formation of pits or holes in the thinner regions, such as sub-portions 24b, shown in
Referring to
The constituent components that form material 25a to provide the aforementioned characteristics may differ. This results from substrate 10 being formed from a number of different materials. As a result, the chemical composition of surface 12 varies dependent upon the material from which substrate 10 is formed. For example, substrate 10 may be formed from silicon, plastics, gallium arsenide, mercury telluride, and composites thereof. Additionally, substrate 10 may include one or more layers in sub-portion 24a, e.g., dielectric layer, metal layers, semiconductor layer and the like.
Referring to
Examples of non-silyated monomers include, but are not limited to, butyl acrylate, methyl acrylate, methyl methacrylate, or mixtures thereof. The non-silyated monomer may make up approximately 25 to 60% by weight of material 25a. It is believed that the monomer provides adhesion to an underlying organic transfer layer, discussed more fully below.
The cross-linking agent is a monomer that includes two or more polymerizable groups. In one embodiment, polyfunctional siloxane derivatives may be used as a cross-linking agent. An example of a polyfunctional siloxane derivative is 1,3-bis(3-methacryloxypropyl)-tetramethyl disiloxane. Another suitable cross-linking agent consists of ethylene diol diacrylate. The cross-linking agent may be present in material 25a in amounts of up to 20% by weight, but is more typically present in an amount of 5 to 15% by weight.
The initiator may be any component that initiates a free radical reaction in response to radiation, produced by radiation source 22, impinging thereupon and being absorbed thereby. Suitable initiators may include, but are not limited to, photo-initiators such as 1-hydroxycyclohexyl phenyl ketone or phenylbis(2,4,6-trimethyl benzoyl) phosphine oxide. The initiator may be present in material 25a in amounts of up to 5% by weight, but is typically present in an amount of 1 to 4% by weight.
Were it desired to include silylated monomers in material 25a, suitable silylated monomers may include, but are not limited to, silyl-acryloxy and silyl methacryloxy derivatives. Specific examples are methacryloxypropyl tris(tri-methylsiloxy)silane and (3-acryloxypropyl)tris(tri-methoxysiloxy)-silane. Silylated monomers may be present in material 25a in amounts from 25 to 50% by weight. The curable liquid may also include a dimethyl siloxane derivative. Examples of dimethyl siloxane derivatives include, but are not limited to, (acryloxypropyl) methylsiloxane dimethylsiloxane copolymer.
Referring to both
The above-identified compositions also include stabilizers that are well known in the chemical art to increase the operational life, as well as initiators.
Referring to both
Taking advantage of properties of the silicon-containing (bis) vinyl ethers, a method of imprinting includes depositing a polymerizable layer including silicon-containing (bis) vinyl ethers upon substrate 10 to form imprinting layer 24, at step 100. Imprint device 14 is brought into mechanical contact with imprinting layer 24 to record the pattern thereon, at step 102. After imprint device 14 is brought into contact with imprinting layer 24, bright-field polymerization occurs by exposing imprinting layer 24 to actinic radiation, at step 104. To increase the throughput of the process the bright-field polymerization achieves only partial polymerization. As a result bright-field polymerization occurs for the minimum time required to ensure that the pattern recorded in imprinting layer 24 is sufficient to maintain a stable pattern when imprint device 14 is separated from imprinting layer 24, at step 106. The time during which bright-field polymerization takes place is dependent upon, inter alia, the feature size in the pattern, the thickness of imprinting layer 24, radiation intensity, as well as environmental conditions. Polymerization is then completed employing dark-field polymerization, at step 108. Thereafter, subsequent processing steps may take place, as discussed above.
Referring to
Employing ethylene glycol diacrylate, planarization layer 32 is fabricated in a manner similar to imprinting layer 24 using a featureless mold having a planar surface. In this manner, planarization layer 32 is fabricated to possess a continuous, smooth, relatively defect-free surface that may exhibit excellent adhesion to the imprinting layer 24.
Additionally, to ensure that imprinting layer 24 does not adhere to imprint device 14, surface 14a may be treated with a modifying agent. One such modifying agent is a release layer 34 formed from a fluorocarbon silylating agent. Release layer 34 and other surface modifying agents, may be applied using any known process. For example, processing techniques that may include chemical vapor deposition method, physical vapor deposition, atomic layer deposition or various other techniques, brazing and the like. In this configuration, imprinting layer 24 is located between planarization layer 32 and release layer 34, during imprint lithography processes.
The embodiments of the present invention described above are exemplary. Many changes and modifications may be made to the disclosure recited above, while remaining within the scope of the invention. The scope of the invention should, therefore, be determined not with reference to the above description, but instead should be determined with reference to the appended claims along with their full scope of equivalents.
Number | Name | Date | Kind |
---|---|---|---|
3810874 | Mitsch et al. | May 1974 | A |
4512848 | Deckman et al. | Apr 1985 | A |
4614667 | Larson et al. | Sep 1986 | A |
4617238 | Crivello et al. | Oct 1986 | A |
4731155 | Napoli et al. | Mar 1988 | A |
4826943 | Ito et al. | May 1989 | A |
4931351 | McColgin et al. | Jun 1990 | A |
5028366 | Harakal et al. | Jul 1991 | A |
5039716 | Vara et al. | Aug 1991 | A |
5169494 | Hashimoto et al. | Dec 1992 | A |
5331020 | Brown et al. | Jul 1994 | A |
5389696 | Dempsey et al. | Feb 1995 | A |
5409963 | Takfoka | Apr 1995 | A |
5425848 | Haisma et al. | Jun 1995 | A |
5437896 | Kloosterboer et al. | Aug 1995 | A |
5542978 | Kindt-Larsen et al. | Aug 1996 | A |
5594042 | Glover et al. | Jan 1997 | A |
5601641 | Stephens | Feb 1997 | A |
5629095 | Bujanowski et al. | May 1997 | A |
5650261 | Winkle | Jul 1997 | A |
5772905 | Chou | Jun 1998 | A |
5837314 | Beaton et al. | Nov 1998 | A |
5849209 | Kindt-Larsen et al. | Dec 1998 | A |
5849222 | Jen et al. | Dec 1998 | A |
5861467 | Bujanowski et al. | Jan 1999 | A |
5888650 | Calhoun et al. | Mar 1999 | A |
6039897 | Lochhead et al. | Mar 2000 | A |
6204343 | Barucha et al. | Mar 2001 | B1 |
6309580 | Chou | Oct 2001 | B1 |
6334960 | Willson et al. | Jan 2002 | B1 |
6391217 | Schaffer et al. | May 2002 | B2 |
6468642 | Bray et al. | Oct 2002 | B1 |
6482742 | Chou | Nov 2002 | B1 |
6503914 | Benish et al. | Jan 2003 | B1 |
6517995 | Jacobenson et al. | Feb 2003 | B1 |
6518189 | Chou | Feb 2003 | B1 |
6544594 | Linford et al. | Apr 2003 | B2 |
6565776 | Li et al. | May 2003 | B1 |
6580172 | Mancini et al. | Jun 2003 | B2 |
6646662 | Nebashi et al. | Nov 2003 | B1 |
6649272 | Moore et al. | Nov 2003 | B2 |
6664306 | Gaddam et al. | Dec 2003 | B2 |
6696220 | Bailey et al. | Feb 2004 | B2 |
6713238 | Chou et al. | Mar 2004 | B1 |
6719915 | Willson et al. | Apr 2004 | B2 |
6721529 | Chen et al. | Apr 2004 | B2 |
6737489 | Linert et al. | May 2004 | B2 |
6774183 | Palumbo et al. | Aug 2004 | B1 |
6776094 | Whitesides et al. | Aug 2004 | B1 |
6790905 | Fitzgerald et al. | Sep 2004 | B2 |
6802870 | Chang et al. | Oct 2004 | B2 |
6809356 | Chou | Oct 2004 | B2 |
6828244 | Chou | Dec 2004 | B2 |
6830819 | Kaplan et al. | Dec 2004 | B2 |
6921615 | Sreenivasan et al. | Jul 2005 | B2 |
6929762 | Rubin | Aug 2005 | B2 |
6954275 | Choi et al. | Oct 2005 | B2 |
6964793 | Willson et al. | Nov 2005 | B2 |
7157036 | Choi et al. | Jan 2007 | B2 |
20010044075 | Nishimura et al. | Nov 2001 | A1 |
20010056197 | Albert et al. | Dec 2001 | A1 |
20020042027 | Chou et al. | Apr 2002 | A1 |
20040112862 | Willson et al. | Jun 2002 | A1 |
20020132482 | Chou | Sep 2002 | A1 |
20020150398 | Choi et al. | Oct 2002 | A1 |
20020167117 | Chou | Nov 2002 | A1 |
20020177319 | Chou | Nov 2002 | A1 |
20030034329 | Chou | Feb 2003 | A1 |
20030080471 | Chou | May 2003 | A1 |
20030080472 | Chou | May 2003 | A1 |
20030235787 | Watts et al. | Dec 2003 | A1 |
20040007799 | Choi et al. | Jan 2004 | A1 |
20040008334 | Sreenivasan et al. | Jan 2004 | A1 |
20040009673 | Sreenivasan et al. | Jan 2004 | A1 |
20040021254 | Sreenivasan et al. | Feb 2004 | A1 |
20040021866 | Watts et al. | Feb 2004 | A1 |
20040022888 | Sreenivasan et al. | Feb 2004 | A1 |
20040036201 | Chou et al. | Feb 2004 | A1 |
20040046288 | Chou | Mar 2004 | A1 |
20040065252 | Sreenivasan et al. | Apr 2004 | A1 |
20040110856 | Young et al. | Jun 2004 | A1 |
20040118809 | Chou et al. | Jun 2004 | A1 |
20040124566 | Sreenivasan et al. | Jul 2004 | A1 |
20040131718 | Chou et al. | Jul 2004 | A1 |
20040137734 | Chou et al. | Jul 2004 | A1 |
20040156108 | Chou et al. | Aug 2004 | A1 |
20040168613 | Nguyen et al. | Sep 2004 | A1 |
20040170770 | Nguyen et al. | Sep 2004 | A1 |
20040192041 | Jeong et al. | Sep 2004 | A1 |
20040197843 | Chou et al. | Oct 2004 | A1 |
20050218481 | Lee et al. | Oct 2005 | A1 |
Number | Date | Country |
---|---|---|
02-24848 | Jan 1990 | JP |
02-92603 | Apr 1990 | JP |
WO 0021689 | WO | |
WO9905724 | Feb 1999 | WO |
WO 0147003 | Jun 2001 | WO |
WO 0207199 | Jan 2002 | WO |
WO 03010289 | Feb 2003 | WO |
WO 03079416 | Sep 2003 | WO |
WO 03099536 | Dec 2003 | WO |
WO 2004114016 | Dec 2004 | WO |
Number | Date | Country | |
---|---|---|---|
20040116548 A1 | Jun 2004 | US |