COMPOSITIONS FOR TREATMENT OF CONDITIONS AND DISEASES ASSOCIATED WITH POLYCYSTIN EXPRESSION

Abstract
Alternative splicing events in genes can lead to non-productive mRNA transcripts which in turn can lead to aberrant protein expression, and therapeutic agents which can target the alternative splicing events in genes can modulate the expression level of functional proteins in patients and/or inhibit aberrant protein expression. Such therapeutic agents can be used to treat a condition or disease caused by protein deficiency.
Description
SEQUENCE LISTING

The instant application contains a Sequence Listing which has been submitted electronically in XML format and is hereby incorporated by reference in its entirety. Said XML copy, created on Nov. 25, 2023, is named 47991_732_301_SL.xml and is 552,720 bytes in size.


BACKGROUND

Alternative splicing events in genes can lead to non-productive mRNA transcripts which in turn can lead to aberrant protein expression, and therapeutic agents which can target the alternative splicing events in genes can modulate the expression level of functional proteins in patients and/or inhibit aberrant protein expression. Such therapeutic agents can be used to treat a condition or disease caused by protein deficiency.


SUMMARY

Described herein, in certain embodiments, is a method of modulating expression of a target protein in a cell having a pre-mRNA that is transcribed from a target gene and that comprises a non-sense mediated RNA decay-inducing exon (NMD exon), the method comprising: contacting an agent or a vector encoding the agent to the cell, whereby the agent modulates splicing of the NMD exon from the pre-mRNA, thereby modulating the level of a processed mRNA that is processed from the pre-mRNA, and modulating the expression of the target protein in the cell, wherein the target protein is encoded by a PKD2 gene.


Described herein, in certain embodiments, is a method of treating or reducing the likelihood of developing a disease or condition in a subject in need thereof by modulating expression of a target protein in a cell of the subject, comprising: contacting an agent or a vector encoding the agent to the cell of the subject, whereby the agent modulates splicing of a non-sense mediated mRNA decay-inducing exon (NMD exon) from a pre-mRNA that is transcribed from a target gene and that comprises the NMD exon, thereby modulating the level of a processed mRNA that is processed from the pre-mRNA, and modulating the expression of the target protein in the cell of the subject, wherein the target protein encoded by a PKD2 gene.


In some embodiments, the target protein is polycystin 2.


In some embodiments, the disease or condition is a disease or condition associated with a deficiency in amount or activity of polycystin 2. In some embodiments, the disease or condition is a disease or condition associated with a deficiency in amount or activity of polycystin 1.


In some embodiments, the disease or condition is a disease or condition associated with a deficiency in amount or activity of a protein that polycystin 2 functionally augments, compensates for, replaces, or functionally interacts with.


In some embodiments, the agent: (a) binds to a targeted portion of the pre-mRNA; (b) modulates binding of a factor involved in splicing of the NMD exon; or (c) a combination of (a) and (b).


In some embodiments, the agent interferes with binding of the factor involved in splicing of the NMD exon to a region of the targeted portion.


In some embodiments, the targeted portion of the pre-mRNA is proximal to the NMD exon.


In some embodiments, the targeted portion of the pre-mRNA is at most about 1500 nucleotides, about 1000 nucleotides, about 800 nucleotides, about 700 nucleotides, about 600 nucleotides, about 500 nucleotides, about 400 nucleotides, about 300 nucleotides, about 200 nucleotides, about 100 nucleotides, about 80 nucleotides, about 70 nucleotides, about 60 nucleotides, about 50 nucleotides upstream of the 5′ end of the NMD exon.


In some embodiments, the targeted portion of the pre-mRNA is at least about 1500 nucleotides, about 1000 nucleotides, about 800 nucleotides, about 700 nucleotides, about 600 nucleotides, about 500 nucleotides, about 400 nucleotides, about 300 nucleotides, about 200 nucleotides, about 100 nucleotides, about 80 nucleotides, about 70 nucleotides, about 60 nucleotides, about 50 nucleotides, about 40 nucleotides, about 30 nucleotides, about 20 nucleotides, about 10 nucleotides, about 5 nucleotides, about 4 nucleotides, about 2 nucleotides, about 1 nucleotides upstream of the 5′ end of the NMD exon.


In some embodiments, the targeted portion of the pre-mRNA is at most about 1500 nucleotides, about 1000 nucleotides, about 800 nucleotides, about 700 nucleotides, about 600 nucleotides, about 500 nucleotides, about 400 nucleotides, about 300 nucleotides, about 200 nucleotides, about 100 nucleotides, about 80 nucleotides, about 70 nucleotides, about 60 nucleotides, about 50 nucleotides downstream of the 3′ end of the NMD exon.


In some embodiments, the targeted portion of the pre-mRNA is at least about 1500 nucleotides, about 1000 nucleotides, about 800 nucleotides, about 700 nucleotides, about 600 nucleotides, about 500 nucleotides, about 400 nucleotides, about 300 nucleotides, about 200 nucleotides, about 100 nucleotides, about 80 nucleotides, about 70 nucleotides, about 60 nucleotides, about 50 nucleotides, about 40 nucleotides, about 30 nucleotides, about 20 nucleotides, about 10 nucleotides, about 5 nucleotides, about 4 nucleotides, about 2 nucleotides, about 1 nucleotides downstream of the 3′ end of the NMD exon.


In some embodiments, the targeted portion of the pre-mRNA is at most about 1500 nucleotides, about 1000 nucleotides, about 800 nucleotides, about 700 nucleotides, about 600 nucleotides, about 500 nucleotides, about 400 nucleotides, about 300 nucleotides, about 200 nucleotides, about 100 nucleotides, about 80 nucleotides, about 70 nucleotides, about 60 nucleotides, about 50 nucleotides upstream of genomic site of GRCh38/hg38: chr4:88031085.


In some embodiments, the targeted portion of the pre-mRNA is at least about 1500 nucleotides, about 1000 nucleotides, about 800 nucleotides, about 700 nucleotides, about 600 nucleotides, about 500 nucleotides, about 400 nucleotides, about 300 nucleotides, about 200 nucleotides, about 100 nucleotides, about 80 nucleotides, about 70 nucleotides, about 60 nucleotides, about 50 nucleotides, about 40 nucleotides, about 30 nucleotides, about 20 nucleotides, about 10 nucleotides, about 5 nucleotides, about 4 nucleotides, about 2 nucleotides, about 1 nucleotides upstream of genomic site of GRCh38/hg38: chr4:88031085.


In some embodiments, the targeted portion of the pre-mRNA is at most about 1500 nucleotides, about 1000 nucleotides, about 800 nucleotides, about 700 nucleotides, about 600 nucleotides, about 500 nucleotides, about 400 nucleotides, about 300 nucleotides, about 200 nucleotides, about 100 nucleotides, about 80 nucleotides, about 70 nucleotides, about 60 nucleotides, about 50 nucleotides downstream of genomic site of GRCh38/hg38: chr4:88031140.


In some embodiments, the targeted portion of the pre-mRNA is at least about 1500 nucleotides, about 1000 nucleotides, about 800 nucleotides, about 700 nucleotides, about 600 nucleotides, about 500 nucleotides, about 400 nucleotides, about 300 nucleotides, about 200 nucleotides, about 100 nucleotides, about 80 nucleotides, about 70 nucleotides, about 60 nucleotides, about 50 nucleotides, about 40 nucleotides, about 30 nucleotides, about 20 nucleotides, about 10 nucleotides, about 5 nucleotides, about 4 nucleotides, about 2 nucleotides, about 1 nucleotides downstream of genomic site of GRCh38/hg38: chr4:88031140.


In some embodiments, the targeted portion of the pre-mRNA is located in an intronic region between two canonical exonic regions of the pre-mRNA, and wherein the intronic region contains the NMD exon.


In some embodiments, the targeted portion of the pre-mRNA at least partially overlaps with the NMD exon.


In some embodiments, the targeted portion of the pre-mRNA at least partially overlaps with an intron upstream or downstream of the NMD exon.


In some embodiments, the targeted portion of the pre-mRNA comprises 5′ NMD exon-intron junction or 3′ NMD exon-intron junction.


In some embodiments, the targeted portion of the pre-mRNA is within the NMD exon.


In some embodiments, the targeted portion of the pre-mRNA comprises about 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, or more consecutive nucleotides of the NMD exon.


In some embodiments, the NMD exon comprises a sequence with at least 80%, at least 90%, or 100% sequence identity to a sequence selected from the group consisting of the sequences listed in Table 2.


In some embodiments, the NMD exon comprises a sequence selected from the group consisting of the sequences listed in Table 2.


In some embodiments, the pre-mRNA comprises a sequence with at least about 80%, 85%, 90%, 95%, 97%, or 100% sequence identity to a sequence selected from the group consisting of the sequences listed in Table 2 or Table 3.


In some embodiments, the pre-mRNA is encoded by a genetic sequence with at least about 80%, 85%, 90%, 95%, 97%, or 100% sequence identity to a sequence selected from the group consisting of the sequences listed in Table 2 or Table 3.


In some embodiments, the targeted portion of the pre-mRNA comprises a sequence with at least 80%, 85%, 90%, 95%, 97%, or 100% sequence identity to a region comprising at least 8 contiguous nucleic acids of a sequence selected from the group consisting of the sequences listed in Table 2 or Table 3.


In some embodiments, the agent is an antisense oligomer (ASO) and wherein the ASO comprises a sequence that is at least about 80%, 85%, 90%, 95%, 97%, or 100% sequence identity to at least 8, 9, 10, 11, 12, 13, 14, 15, 16, 17 or 18 contiguous nucleic acids of a sequence selected from the group consisting of the sequences listed in Table 4.


In some embodiments, the targeted portion of the pre-mRNA is within the non-sense mediated RNA decay-inducing exon GRCh38/hg38: chr4:88031085-88031140.


In some embodiments, the targeted portion of the pre-mRNA is upstream or downstream of the non-sense mediated RNA decay-inducing exon GRCh38/hg38: chr4:88031085-88031140.


In some embodiments, the targeted portion of the pre-mRNA comprises an exon-intron junction of the non-sense mediated RNA decay-inducing exon GRCh38/hg38: chr4:88031085-88031140.


In some embodiments, the polycystin 2 expressed from the processed mRNA is full-length polycystin 2 or wild-type polycystin 2.


In some embodiments, the polycystin 2 expressed from the processed mRNA is at least partially functional as compared to wild-type polycystin 2.


In some embodiments, the polycystin 2 expressed from the processed mRNA is at least partially functional as compared to full-length wild-type polycystin 2.


In some embodiments, the agent promotes exclusion of the NMD exon from the pre-mRNA, thereby modulating the level of a processed mRNA that is processed from the pre-mRNA and that lacks the NMD exon.


In some embodiments, the exclusion of the NMD exon from the pre-mRNA in the cell contacted with the agent is increased by about 1.1 to about 10-fold, about 1.5 to about 10-fold, about 2 to about 10-fold, about 3 to about 10-fold, about 4 to about 10-fold, about 1.1 to about 5-fold, about 1.1 to about 6-fold, about 1.1 to about 7-fold, about 1.1 to about 8-fold, about 1.1 to about 9-fold, about 2 to about 5-fold, about 2 to about 6-fold, about 2 to about 7-fold, about 2 to about 8-fold, about 2 to about 9-fold, about 3 to about 6-fold, about 3 to about 7-fold, about 3 to about 8-fold, about 3 to about 9-fold, about 4 to about 7-fold, about 4 to about 8-fold, about 4 to about 9-fold, at least about 1.1-fold, at least about 1.5-fold, at least about 2-fold, at least about 2.5-fold, at least about 3-fold, at least about 3.5-fold, at least about 4-fold, at least about 5-fold, or at least about 10-fold, compared to exclusion of the NMD exon from the pre-mRNA in a control cell.


In some embodiments, the method results in an increase in the level of the processed mRNA in the cell.


In some embodiments, the level of the processed mRNA in the cell contacted with the agent is increased by about 1.1 to about 10-fold, about 1.5 to about 10-fold, about 2 to about 10-fold, about 3 to about 10-fold, about 4 to about 10-fold, about 1.1 to about 5-fold, about 1.1 to about 6-fold, about 1.1 to about 7-fold, about 1.1 to about 8-fold, about 1.1 to about 9-fold, about 2 to about 5-fold, about 2 to about 6-fold, about 2 to about 7-fold, about 2 to about 8-fold, about 2 to about 9-fold, about 3 to about 6-fold, about 3 to about 7-fold, about 3 to about 8-fold, about 3 to about 9-fold, about 4 to about 7-fold, about 4 to about 8-fold, about 4 to about 9-fold, at least about 1.1-fold, at least about 1.5-fold, at least about 2-fold, at least about 2.5-fold, at least about 3-fold, at least about 3.5-fold, at least about 4-fold, at least about 5-fold, or at least about 10-fold, compared to a level of the processed mRNA in a control cell.


In some embodiments, the agent increases the expression of the target protein in the cell.


In some embodiments, a level of the target protein is increased by about 1.1 to about 10-fold, about 1.5 to about 10-fold, about 2 to about 10-fold, about 3 to about 10-fold, about 4 to about 10-fold, about 1.1 to about 5-fold, about 1.1 to about 6-fold, about 1.1 to about 7-fold, about 1.1 to about 8-fold, about 1.1 to about 9-fold, about 2 to about 5-fold, about 2 to about 6-fold, about 2 to about 7-fold, about 2 to about 8-fold, about 2 to about 9-fold, about 3 to about 6-fold, about 3 to about 7-fold, about 3 to about 8-fold, about 3 to about 9-fold, about 4 to about 7-fold, about 4 to about 8-fold, about 4 to about 9-fold, at least about 1.1-fold, at least about 1.5-fold, at least about 2-fold, at least about 2.5-fold, at least about 3-fold, at least about 3.5-fold, at least about 4-fold, at least about 5-fold, or at least about 10-fold, compared to a level of the target protein produced in a control cell.


In some embodiments, a processed mRNA containing the NMD exon comprises a premature termination codon (PTC). In some embodiments, the premature termination codon (PTC) is downstream of the NMD exon. In some embodiments, the NMD exon comprises a premature termination codon (PTC).


In some embodiments, the disease or condition is associated with a loss-of-function mutation in the target gene or the target protein.


In some embodiments, the disease or condition is associated with haploinsufficiency of the target gene, and wherein the subject has a first allele encoding functional polycystin 2, and a second allele from which polycystin 2 is not produced or produced at a reduced level, or a second allele encoding nonfunctional polycystin 2 or partially functional polycystin 2.


In some embodiments, one or both alleles are hypomorphs or partially functional.


In some embodiments, the disease or condition is selected from the group consisting of: polycystic kidney disease with or without polycystic liver disease, autosomal dominant polycystic kidney disease, and intracranial aneurysm.


In some embodiments, the disease or condition is associated with a mutation of a PKD1 or PKD2 gene, wherein the subject has a first allele encoding from which: (i) the target protein is not produced or produced at a reduced level compared to a wild-type allele; or (ii) the target protein produced is nonfunctional or partially functional compared to a wild-type allele, and a second allele from which: (iii) the target protein is produced at a reduced level compared to a wild-type allele and the target protein produced is at least partially functional compared to a wild-type allele; or (iv) the target protein produced is partially functional compared to a wild-type allele.


In some embodiments, the disease or condition is selected from the group consisting of: polycystic kidney disease with or without polycystic liver disease, autosomal dominant polycystic kidney disease, and intracranial aneurysm.


In some embodiments, the mutation is a hypomorphic mutation.


In some embodiments, the agent promotes exclusion of the NMD exon from the pre-mRNA, thereby modulating the level of a processed mRNA that is processed from the pre-mRNA and that lacks the NMD exon and increases the expression of the target protein in the cell.


In some embodiments, the agent is an antisense oligomer (ASO) and wherein the antisense oligomer comprises a backbone modification comprising a phosphorothioate linkage or a phosphorodiamidate linkage.


In some embodiments, the agent is an antisense oligomer (ASO) and wherein the antisense oligomer comprises a phosphorodiamidate morpholino, a locked nucleic acid, a peptide nucleic acid, a 2′-O-methyl, a 2′-Fluoro, or a 2′-O-methoxyethyl moiety.


In some embodiments, the agent is an antisense oligomer (ASO) and wherein the antisense oligomer comprises at least one modified sugar moiety.


In some embodiments, each sugar moiety is a modified sugar moiety.


In some embodiments, the agent is an antisense oligomer (ASO) and wherein the antisense oligomer consists of from 8 to 50 nucleobases, 8 to 40 nucleobases, 8 to 35 nucleobases, 8 to 30 nucleobases, 8 to 25 nucleobases, 8 to 20 nucleobases, 8 to 15 nucleobases, 9 to 50 nucleobases, 9 to 40 nucleobases, 9 to 35 nucleobases, 9 to 30 nucleobases, 9 to 25 nucleobases, 9 to 20 nucleobases, 9 to 15 nucleobases, 10 to 50 nucleobases, 10 to 40 nucleobases, 10 to 35 nucleobases, 10 to 30 nucleobases, 10 to 25 nucleobases, 10 to 20 nucleobases, 10 to 15 nucleobases, 11 to 50 nucleobases, 11 to 40 nucleobases, 11 to 35 nucleobases, 11 to 30 nucleobases, 11 to 25 nucleobases, 11 to 20 nucleobases, 11 to 15 nucleobases, 12 to 50 nucleobases, 12 to 40 nucleobases, 12 to 35 nucleobases, 12 to 30 nucleobases, 12 to 25 nucleobases, 12 to 20 nucleobases, or 12 to 15 nucleobases.


In some embodiments, the agent is an antisense oligomer (ASO) and wherein the antisense oligomer is at least 80%, at least 85%, at least 90%, at least 95%, at least 98%, at least 99%, or 100%, complementary to the targeted portion of the pre-mRNA.


In some embodiments, the method comprises contacting a vector encoding the agent to the cell.


In some embodiments, the agent is a polynucleotide comprising an antisense oligomer.


In some embodiments, the vector is a viral vector.


In some embodiments, the viral vector is an adenovirus-associated viral vector.


In some embodiments, the polynucleotide further comprises a modified snRNA.


In some embodiments, the modified human snRNA is a modified U1 snRNA or a modified U7 snRNA.


In some embodiments, the modified human snRNA is a modified U7 snRNA and wherein the antisense oligomer has a sequence at least 75%, at least 80%, at least 85%, at least 90%, at least 95%, at least 98%, at least 99%, or 100% identical to a sequence listed in Table 4 or Table 5.


In some embodiments, the method further comprises assessing processed mRNA level or expression level of the target protein.


In some embodiments, the subject is a human.


In some embodiments, the subject is a non-human animal.


In some embodiments, the subject is a fetus, an embryo, or a child.


In some embodiments, the cells are ex vivo.


In some embodiments, the agent is administered by intrathecal injection, intracerebroventricular injection, intraperitoneal injection, intramuscular injection, subcutaneous injection, intravitreal, or intravenous injection of the subject.


In some embodiments, the method further comprises administering a second therapeutic agent to the subject.


In some embodiments, the second therapeutic agent is a small molecule.


In some embodiments, the second therapeutic agent is an antisense oligomer.


In some embodiments, the second therapeutic agent corrects intron retention.


In some embodiments, the method treats the disease or condition.


Described herein, in certain embodiments, is a composition comprising an agent or a vector encoding the agent that modulates splicing of a non-sense mediated RNA decay-inducing exon (NMD exon) from a pre-mRNA that is transcribed from a target gene and that comprises the NMD exon, thereby modulating the level of a processed mRNA that is processed from the pre-mRNA, and modulating expression of a target protein in a cell having the pre-mRNA, wherein the target protein is encoded by a PKD2 gene.


Described herein, in certain embodiments, is a composition comprising an agent or a vector encoding the agent that modulates splicing of a non-sense mediated mRNA decay-inducing exon (NMD exon) from a pre-mRNA that is transcribed from a target gene and that comprises the NMD exon, thereby treating a disease or condition in a subject in need thereof by modulating the level of a processed mRNA that is processed from the pre-mRNA, and modulating expression of a target protein in a cell of the subject, wherein the target protein is encoded by a PKD2 gene.


Described herein, in certain embodiments, is a pharmaceutical composition comprising the composition as described herein; and a pharmaceutically acceptable excipient and/or a delivery vehicle.


Described herein, in certain embodiments, is a composition comprising a non-sense mediated RNA decay alternative splice site (NSASS) modulating agent or a viral vector encoding the agent, wherein the agent modulates expression of a target protein in a cell comprising a pre-mRNA that is transcribed from a target gene and encodes the target protein, wherein the pre-mRNA comprises an alternative 5′ splice-site downstream of a canonical 5′ splice-site, wherein a processed mRNA that is produced by splicing of the pre-mRNA at the alternative 5′ splice-site undergoes non-sense mediated RNA decay, wherein the agent modulates processing of the pre-mRNA by modulating splicing at the alternative 5′ splice-sites; and wherein the target gene is PKD2.


In some embodiments, the agent modulates processing of the pre-RNA by preventing or decreasing splicing at the alternative 5′ splice-site.


In some embodiments, the agent modulates processing of the pre-RNA by promoting or increasing splicing at the canonical 5′ splice-site.


In some embodiments, modulating the splicing of the pre-mRNA at the alternative 5′ splice-site increases the expression of the target protein in the cell.


In some embodiments, the processed mRNA that is produced by splicing of the pre-mRNA at the alternative 5′ splice-site comprises a premature termination codon (PTC).


In some embodiments, the agent is a small molecule.


In some embodiments, the agent is a polypeptide.


In some embodiments, the polypeptide is a nucleic acid binding protein.


In some embodiments, the nucleic acid binding protein contains a TAL-effector or zinc finger binding domain.


In some embodiments, the nucleic acid binding protein is a Cas family protein.


In some embodiments, the polypeptide is accompanied by or complexed with one or more nucleic acid molecules.


In some embodiments, the agent is an antisense oligomer (ASO) complementary to the targeted region of the pre-mRNA.


In some embodiments, the agent is at least 75%, at least 80%, at least 85%, at least 90%, at least 95%, at least 98%, at least 99%, or 100%, complementary to the targeted region of the pre-mRNA encoding the target protein.


In some embodiments, the agent comprises a backbone modification comprising a phosphorothioate linkage or a phosphorodiamidate linkage.


In some embodiments, the agent comprises a phosphorodiamidate morpholino.


In some embodiments, the agent comprises a locked nucleic acid.


In some embodiments, the agent comprises a peptide nucleic acid.


In some embodiments, the agent comprises a 2′-O-methyl.


In some embodiments, the agent comprises a 2′-Fluoro, or a 2′-O-methoxyethyl moiety.


In some embodiments, the agent comprises at least one modified sugar moiety.


In some embodiments, each sugar moiety is a modified sugar moiety.


In some embodiments, the agent is an antisense oligomer, and wherein the agent consists of from 8 to 50 nucleobases, 8 to 40 nucleobases, 8 to 35 nucleobases, 8 to 30 nucleobases, 8 to 25 nucleobases, 8 to 20 nucleobases, 8 to 15 nucleobases, 9 to 50 nucleobases, 9 to 40 nucleobases, 9 to 35 nucleobases, 9 to 30 nucleobases, 9 to 25 nucleobases, 9 to 20 nucleobases, 9 to 15 nucleobases, 10 to 50 nucleobases, 10 to 40 nucleobases, 10 to 35 nucleobases, 10 to 30 nucleobases, 10 to 25 nucleobases, 10 to 20 nucleobases, 10 to 15 nucleobases, 11 to 50 nucleobases, 11 to 40 nucleobases, 11 to 35 nucleobases, 11 to 30 nucleobases, 11 to 25 nucleobases, 11 to 20 nucleobases, 11 to 15 nucleobases, 12 to 50 nucleobases, 12 to 40 nucleobases, 12 to 35 nucleobases, 12 to 30 nucleobases, 12 to 25 nucleobases, 12 to 20 nucleobases, or 12 to 15 nucleobases.


In some embodiments, the composition comprises a vector encoding the agent.


In some embodiments, the agent is a polynucleotide comprising an antisense oligomer.


In some embodiments, the vector is a viral vector.


In some embodiments, the viral vector is an adenovirus-associated viral vector.


In some embodiments, the polynucleotide further comprises a modified snRNA.


In some embodiments, the modified human snRNA is a modified U1 snRNA or a modified U7 snRNA.


In some embodiments, the modified human snRNA is a modified U7 snRNA and wherein the antisense oligomer has a sequence at least 75%, at least 80%, at least 85%, at least 90%, at least 95%, at least 98%, at least 99%, or 100% identical to a sequence listed in Table 4 or Table 5.


Described herein, in certain embodiments, is a composition comprising a nucleic acid molecule that encodes for the agent according to the composition as described herein.


In some embodiments, the nucleic acid molecule is incorporated into a viral delivery system.


In some embodiments, the viral delivery system is an adenovirus-associated vector.


In some embodiments, the viral vector is an adenovirus-associated viral vector.


Described herein, in certain embodiments, is a method of modulating expression of a target protein in a cell comprising a pre-mRNA that is transcribed from a target gene and encodes the target protein, the method comprising: contacting a non-sense mediated RNA decay alternative splice site (NSASS) modulating agent or a viral vector encoding the agent to the cell, wherein the pre-mRNA comprises an alternative 5′ splice-site downstream of a canonical 5′ splice-site, wherein a processed mRNA that is produced by splicing of the pre-mRNA at the alternative 5′ splice-site undergoes non-sense mediated RNA decay, wherein the agent modulates processing of the pre-mRNA by modulating splicing at the alternative 5′ splice-site, thereby modulating expression of the target protein; and wherein the target gene is PKD2.


In some embodiments, the agent: (a) binds to a targeted portion of the pre-mRNA; (b) modulates binding of a factor involved in splicing at the alternative 5′ splice-site; or (c) a combination of (a) and (b).


In some embodiments, the agent interferes with binding of the factor involved in splicing at the alternative 5′ splice-site to a region of the targeted portion.


In some embodiments, the targeted portion of the pre-mRNA is proximal to the alternative 5′ splice-site.


In some embodiments, the targeted portion of the pre-mRNA is at most about 1500 nucleotides, about 1000 nucleotides, about 800 nucleotides, about 700 nucleotides, about 600 nucleotides, about 500 nucleotides, about 400 nucleotides, about 300 nucleotides, about 200 nucleotides, about 100 nucleotides, about 80 nucleotides, about 70 nucleotides, about 60 nucleotides, about 50 nucleotides upstream of the alternative 5′ splice-site.


In some embodiments, the targeted portion of the pre-mRNA is at least about 1500 nucleotides, about 1000 nucleotides, about 800 nucleotides, about 700 nucleotides, about 600 nucleotides, about 500 nucleotides, about 400 nucleotides, about 300 nucleotides, about 200 nucleotides, about 100 nucleotides, about 80 nucleotides, about 70 nucleotides, about 60 nucleotides, about 50 nucleotides, about 40 nucleotides, about 30 nucleotides, about 20 nucleotides, about 10 nucleotides, about 5 nucleotides, about 4 nucleotides, about 2 nucleotides, about 1 nucleotides upstream of the alternative 5′ splice-site.


In some embodiments, the targeted portion of the pre-mRNA is at most about 1500 nucleotides, about 1000 nucleotides, about 800 nucleotides, about 700 nucleotides, about 600 nucleotides, about 500 nucleotides, about 400 nucleotides, about 300 nucleotides, about 200 nucleotides, about 100 nucleotides, about 80 nucleotides, about 70 nucleotides, about 60 nucleotides, about 50 nucleotides downstream of the alternative 5′ splice-site.


In some embodiments, the targeted portion of the pre-mRNA is at least about 1500 nucleotides, about 1000 nucleotides, about 800 nucleotides, about 700 nucleotides, about 600 nucleotides, about 500 nucleotides, about 400 nucleotides, about 300 nucleotides, about 200 nucleotides, about 100 nucleotides, about 80 nucleotides, about 70 nucleotides, about 60 nucleotides, about 50 nucleotides, about 40 nucleotides, about 30 nucleotides, about 20 nucleotides, about 10 nucleotides, about 5 nucleotides, about 4 nucleotides, about 2 nucleotides, about 1 nucleotides downstream of the alternative 5′ splice-site.


In some embodiments, the targeted portion of the pre-mRNA is at most about 1500 nucleotides, about 1000 nucleotides, about 800 nucleotides, about 700 nucleotides, about 600 nucleotides, about 500 nucleotides, about 400 nucleotides, about 300 nucleotides, about 200 nucleotides, about 100 nucleotides, about 80 nucleotides, about 70 nucleotides, about 60 nucleotides, about 50 nucleotides upstream of genomic site of GRCh38/hg38: chr4 88036480.


In some embodiments, the targeted portion of the pre-mRNA is at least about 1500 nucleotides, about 1000 nucleotides, about 800 nucleotides, about 700 nucleotides, about 600 nucleotides, about 500 nucleotides, about 400 nucleotides, about 300 nucleotides, about 200 nucleotides, about 100 nucleotides, about 80 nucleotides, about 70 nucleotides, about 60 nucleotides, about 50 nucleotides upstream of genomic site of GRCh38/hg38: chr4:88036480.


In some embodiments, the targeted portion of the pre-mRNA is at most about 1500 nucleotides, about 1000 nucleotides, about 800 nucleotides, about 700 nucleotides, about 600 nucleotides, about 500 nucleotides, about 400 nucleotides, about 300 nucleotides, about 200 nucleotides, about 100 nucleotides, about 80 nucleotides, about 70 nucleotides, about 60 nucleotides, about 50 nucleotides downstream of genomic site of GRCh38/hg38: chr4:88036480.


In some embodiments, the targeted portion of the pre-mRNA is at least about 1500 nucleotides, about 1000 nucleotides, about 800 nucleotides, about 700 nucleotides, about 600 nucleotides, about 500 nucleotides, about 400 nucleotides, about 300 nucleotides, about 200 nucleotides, about 100 nucleotides, about 80 nucleotides, about 70 nucleotides, about 60 nucleotides, about 50 nucleotides downstream of genomic site of GRCh38/hg38: chr4:88036480.


In some embodiments, the targeted portion of the pre-mRNA is located in a region between the canonical 5′ splice-site and the alternative 5′ splice-site.


In some embodiments, the targeted portion of the pre-mRNA is located in an exon region extended by the splicing at the alternative 5′ splice-site.


In some embodiments, the targeted portion of the pre-mRNA at least partially overlaps with the alternative 5′ splice-site.


In some embodiments, the targeted portion of the pre-mRNA at least partially overlaps with a region upstream or downstream of the alternative 5′ splice-site.


In some embodiments, the targeted portion of the pre-mRNA is within an exon region extended by the splicing at the alternative 5′ splice-site.


In some embodiments, the targeted portion of the pre-mRNA comprises about 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, or more consecutive nucleotides of an exon region extended by the splicing at the alternative 5′ splice-site.


In some embodiments, the targeted portion of the pre-mRNA is located in an intronic region between two canonical exons.


In some embodiments, the targeted portion of the pre-mRNA is located in one of the two canonical exons.


In some embodiments, the targeted portion of the pre-mRNA is located in a region spanning both an intron and a canonical exon.


In some embodiments, the level the target protein in the cell is increased about 1.1 to about 10-fold, about 1.5 to about 10-fold, about 2 to about 10-fold, about 3 to about 10-fold, about 4 to about 10-fold, about 1.1 to about 5-fold, about 1.1 to about 6-fold, about 1.1 to about 7-fold, about 1.1 to about 8-fold, about 1.1 to about 9-fold, about 2 to about 5-fold, about 2 to about 6-fold, about 2 to about 7-fold, about 2 to about 8-fold, about 2 to about 9-fold, about 3 to about 6-fold, about 3 to about 7-fold, about 3 to about 8-fold, about 3 to about 9-fold, about 4 to about 7-fold, about 4 to about 8-fold, about 4 to about 9-fold, at least about 1.1-fold, at least about 1.5-fold, at least about 2-fold, at least about 2.5-fold, at least about 3-fold, at least about 3.5-fold, at least about 4-fold, at least about 5-fold, or at least about 10-fold, compared to the level of processed mRNA encoding the target protein in a control cell.


In some embodiments, modulation of splicing of the pre-mRNA increases production of the processed mRNA encoding the target protein.


In some embodiments, the level of processed mRNA encoding the target protein in the cell contacted with the agent is increased about 1.1 to about 10-fold, about 1.5 to about 10-fold, about 2 to about 10-fold, about 3 to about 10-fold, about 4 to about 10-fold, about 1.1 to about 5-fold, about 1.1 to about 6-fold, about 1.1 to about 7-fold, about 1.1 to about 8-fold, about 1.1 to about 9-fold, about 2 to about 5-fold, about 2 to about 6-fold, about 2 to about 7-fold, about 2 to about 8-fold, about 2 to about 9-fold, about 3 to about 6-fold, about 3 to about 7-fold, about 3 to about 8-fold, about 3 to about 9-fold, about 4 to about 7-fold, about 4 to about 8-fold, about 4 to about 9-fold, at least about 1.1-fold, at least about 1.5-fold, at least about 2-fold, at least about 2.5-fold, at least about 3-fold, at least about 3.5-fold, at least about 4-fold, at least about 5-fold, or at least about 10-fold, compared to the level of processed mRNA encoding the target protein in a control cell.


In some embodiments, the target protein is the canonical isoform of the protein.


In some embodiments, the processed mRNA that is produced by splicing of the pre-mRNA at the alternative 5′ splice-site comprises a premature termination codon (PTC).


In some embodiments, the NSASS modulating agent is the composition as described herein.


Described herein, in certain embodiments, is a pharmaceutical composition comprising the composition as described herein; and a pharmaceutically acceptable excipient and/or a delivery vehicle.


Described herein, in certain embodiments, is a method of treating or reducing the likelihood of developing a disease or condition in a subject in need thereof, the method comprising: administering to the subject a pharmaceutical composition to a subject in need thereof, wherein the pharmaceutical composition comprises a composition comprising a non-sense mediated RNA decay alternative splice site (NSASS) modulating agent or a viral vector encoding the agent, wherein the agent modulates expression of a target protein in a cell comprising a pre-mRNA that is transcribed from a target gene and encodes the target protein, wherein the pre-mRNA comprises an alternative 5′ splice-site downstream of a canonical 5′ splice-site, wherein splicing of the pre-mRNA at the alternative 5′ splice-site leads to non-sense mediated RNA decay of the alternatively spliced mRNA, wherein the agent modulates processing of the pre-mRNA by modulating splicing at the alternative 5′ splice-sites; and wherein the target gene is PKD2 and a pharmaceutically acceptable excipient.


Described herein, in certain embodiments, is a method of treating or reducing the likelihood of developing a disease or condition in a subject in need thereof, the method comprising: administering to the subject the pharmaceutical composition as described herein.


In some embodiments, the disease is polycystic kidney disease with or without polycystic liver disease, autosomal dominant polycystic kidney disease, or intracranial aneurysm.


In some embodiments, the disease or condition is a disease or condition associated with a deficiency in amount or activity of polycystin 2 or polycystin 1.


In some embodiments, the disease or condition is a disease or condition associated with a deficiency in amount or activity of a protein that polycystin 2 functionally augments, compensates for, replaces or functionally interacts with.


In some embodiments, the disease or the condition is caused by a deficient amount or activity of the target protein.


In some embodiments, the agent increases the level of the processed mRNA encoding the target protein in the cell.


In some embodiments, the level of processed mRNA encoding the target protein in the cell contacted with the agent is increased about 1.1 to about 10-fold, about 1.5 to about 10-fold, about 2 to about 10-fold, about 3 to about 10-fold, about 4 to about 10-fold, about 1.1 to about 5-fold, about 1.1 to about 6-fold, about 1.1 to about 7-fold, about 1.1 to about 8-fold, about 1.1 to about 9-fold, about 2 to about 5-fold, about 2 to about 6-fold, about 2 to about 7-fold, about 2 to about 8-fold, about 2 to about 9-fold, about 3 to about 6-fold, about 3 to about 7-fold, about 3 to about 8-fold, about 3 to about 9-fold, about 4 to about 7-fold, about 4 to about 8-fold, about 4 to about 9-fold, at least about 1.1-fold, at least about 1.5-fold, at least about 2-fold, at least about 2.5-fold, at least about 3-fold, at least about 3.5-fold, at least about 4-fold, at least about 5-fold, or at least about 10-fold, compared to the level of processed mRNA encoding the target protein in a control cell.


In some embodiments, the agent increases the expression of the target protein in the cell.


In some embodiments, the level the target protein in the cell is increased about 1.1 to about 10-fold, about 1.5 to about 10-fold, about 2 to about 10-fold, about 3 to about 10-fold, about 4 to about 10-fold, about 1.1 to about 5-fold, about 1.1 to about 6-fold, about 1.1 to about 7-fold, about 1.1 to about 8-fold, about 1.1 to about 9-fold, about 2 to about 5-fold, about 2 to about 6-fold, about 2 to about 7-fold, about 2 to about 8-fold, about 2 to about 9-fold, about 3 to about 6-fold, about 3 to about 7-fold, about 3 to about 8-fold, about 3 to about 9-fold, about 4 to about 7-fold, about 4 to about 8-fold, about 4 to about 9-fold, at least about 1.1-fold, at least about 1.5-fold, at least about 2-fold, at least about 2.5-fold, at least about 3-fold, at least about 3.5-fold, at least about 4-fold, at least about 5-fold, or at least about 10-fold, compared to the level of processed mRNA encoding the target protein in a control cell.


In some embodiments, the method further comprises assessing mRNA levels or expression levels of the target protein.


In some embodiments, the method further comprises assessing the subject's genome for at least one genetic mutation associated with the disease.


In some embodiments, at least one genetic mutation is within a locus of a gene associated with the disease.


In some embodiments, at least one genetic mutation is within a locus associated with expression of a gene associated with the disease.


In some embodiments, at least one genetic mutation is within the PKD2 gene locus.


In some embodiments, at least one genetic mutation is within a locus associated with PKD2 gene expression.


In some embodiments, the subject is a human.


In some embodiments, the subject is a non-human animal.


In some embodiments, the subject is a fetus, an embryo, or a child.


In some embodiments, the cell or the cells is ex vivo, or in a tissue, or organ ex vivo.


In some embodiments, the agent is administered to the subject by intracerebroventricular injection, intraperitoneal injection, intramuscular injection, intrathecal injection, subcutaneous injection, oral administration, synovial injection, intravitreal administration, subretinal injection, topical application, implantation, or intravenous injection.


In some embodiments, the method treats the disease or condition.


Described herein, in certain embodiments, is a therapeutic agent for use in the method as described herein.


Described herein, in certain embodiments, is a pharmaceutical composition comprising the therapeutic agent as described herein and a pharmaceutically acceptable excipient.


Described herein, in certain embodiments, is a method of treating or reducing the likelihood of developing a disease or condition in a subject in need thereof, comprising: administering the pharmaceutical composition as described herein by intracerebroventricular injection, intraperitoneal injection, intramuscular injection, intrathecal injection, subcutaneous injection, oral administration, synovial injection, intravitreal administration, subretinal injection, topical application, implantation, or intravenous injection to the subject.


In some embodiments, the method treats the subject.


Described herein, in certain embodiments, is a method of increasing expression of a polycystin 2 protein in a cell having a processed mRNA that encodes the polycystin 2 protein and that comprises a translation regulatory element that inhibits translation of the processed mRNA, the method comprising contacting an agent or a vector encoding the agent to the cell, wherein the agent modulates a structure of the translation regulatory element, thereby increasing expression of the polycystin 2 protein in the cell.


Described herein, in certain embodiments, is a method of increasing expression of a polycystin 2 protein in a cell having a processed mRNA that encodes the polycystin 2 protein and that comprises a translation regulatory element that inhibits translation of the processed mRNA, the method comprising contacting an agent or a vector encoding the agent to the cell, wherein the agent (a) binds to a targeted portion of the processed mRNA; (b) modulates interaction of the translation regulatory element with a factor involved in translation of the processed mRNA; or (c) a combination of (a) and (b), thereby increasing expression of the polycystin 2 protein in the cell.


Described herein, in certain embodiments, is a method of modulating expression of an polycystin 2 protein in a cell, the method comprising contacting an agent or a vector encoding the agent to the cell, wherein the agent comprises an antisense oligomer with at least 80% sequence identity to a sequence selected from the group consisting of a sequence of Table 4 or Table 5.


Described herein, in certain embodiments, is a composition comprising an agent or a vector encoding the agent, wherein the agent comprises an antisense oligomer with at least 80% sequence identity to a sequence selected from the group consisting of a sequence of Table 4 or Table 5.


Described herein, in certain embodiments, is a composition comprising a vector encoding an agent, wherein the agent comprises a polynucleic acid comprising a sequence with at least 80% sequence identity to a sequence selected from the group consisting sequence of Table 4 or Table 5.


Described herein, in certain embodiments, is a composition comprising an agent, wherein the agent comprises an antisense oligomer that binds to a targeted portion of a processed mRNA that encodes polycystin 2 protein, wherein the targeted portion of the processed mRNA comprises at least one nucleotide of the main start codon of the processed mRNA or is within the 5′ UTR of the processed mRNA.


Described herein, in certain embodiments, is a composition comprising a vector encoding an agent, wherein the agent comprises a polynucleic acid comprising a sequence that binds to a targeted portion of a processed mRNA that encodes polycystin 2 protein, wherein the targeted portion of the processed mRNA comprises at least one nucleotide of the main start codon of the processed mRNA or is within the 5′ UTR of the processed mRNA.


Described herein, in certain embodiments, is a composition comprising an agent, wherein the agent modulates structure of a translation regulatory element of a processed mRNA that encodes an polycystin 2 protein, thereby increasing expression of the polycystin 2 protein, and wherein the translation regulatory element inhibits translation of the processed mRNA.


Described herein, in certain embodiments, is a composition comprising a vector encoding an agent, wherein the agent modulates structure of a translation regulatory element of a processed mRNA that encodes an polycystin 2 protein, thereby increasing expression of the polycystin 2 protein, and wherein the translation regulatory element inhibits translation of the processed mRNA.


Described herein, in certain embodiments, is a composition comprising an agent, wherein the agent increases translation of a processed mRNA in a cell, wherein the processed mRNA encodes polycystin 2 protein and comprises a translation regulatory element that inhibits the translation of the processed mRNA, wherein the agent modulates a structure of the translation regulatory element, thereby increasing translation efficiency and/or the rate of translation of the processed mRNA, wherein the agent (a) binds to a targeted portion of the processed mRNA; (b) modulates interaction of the translation regulatory element with a factor involved in translation of the processed mRNA; or (c) a combination of (a) and (b).


Described herein, in certain embodiments, is a composition comprising a vector encoding an agent, wherein the agent increases translation of a processed mRNA in a cell, wherein the processed mRNA encodes polycystin 2 protein and comprises a translation regulatory element that inhibits the translation of the processed mRNA, wherein the agent modulates a structure of the translation regulatory element, thereby increasing translation efficiency and/or the rate of translation of the processed mRNA, wherein the agent (a) binds to a targeted portion of the processed mRNA; (b) modulates interaction of the translation regulatory element with a factor involved in translation of the processed mRNA; or (c) a combination of (a) and (b).


Described herein, in certain embodiments, is a method of increasing expression of a target protein in a cell having a processed mRNA that encodes the target protein and comprises a translation regulatory element that inhibits translation of the processed mRNA, the method comprising delivering into the cell: (1) a first agent or a first nucleic acid sequence encoding the first agent, and (2) a second agent or a second nucleic acid sequence encoding the second agent, wherein the first agent modulates splicing of a pre-mRNA that is transcribed from an target gene that encodes the target protein, and wherein the second agent modulates a structure of the translation regulatory element of the processed mRNA that encodes the target protein, thereby increasing the expression of the target protein in the cell, wherein the target protein is polycystin 2.


Described herein, in certain embodiments, is a method of increasing expression of a target protein in a cell having a processed mRNA that encodes the target protein and comprises a translation regulatory element that inhibits translation of the processed mRNA, the method comprising delivering into the cell: (1) a first agent or a first nucleic acid sequence encoding the first agent, and (2) a second agent or a second nucleic acid sequence encoding the second agent, wherein the first agent modulates splicing of a pre-mRNA that is transcribed from an target gene that encodes the target protein, and wherein the second agent (a) binds to a targeted portion of the processed mRNA; (b) modulates interaction of the translation regulatory element with a factor involved in translation of the processed mRNA; or (c) a combination of (a) and (b), thereby increasing the expression of the target protein in the cell, wherein the target protein is polycystin 2. In some embodiments, the agent modulates a structure of the translation regulatory element. In some embodiments, the agent: (a) binds to a targeted portion of the processed mRNA; (b) modulates interaction of the translation regulatory element with a factor involved in translation of the processed mRNA; or (c) a combination of (a) and (b). In some embodiments, the translation regulatory element is in a 5′ untranslated region (5′ UTR) of the processed mRNA. In some embodiments, the translation regulatory element comprises at least a portion of a 5′ UTR of the processed mRNA. In some embodiments, the translation regulatory element comprises a secondary mRNA structure that involves base-pairing with at least one nucleotide of the main start codon of the processed mRNA. In some embodiments, the agent inhibits the base-pairing with the at least one nucleotide of the main start codon of the processed mRNA. In some embodiments, the mRNA secondary structure comprises a stem, a stem loop, a Guanine quadruplex, or any combination thereof. In some embodiments, the agent does not bind to the main start codon. In some embodiments, the agent binds to at least one nucleotide of the main start codon. In some embodiments, the agent inhibits or reduces formation of a secondary mRNA structure comprising the at least one nucleotide of the main start codon of the processed mRNA. In some embodiments, the agent inhibits or reduces base-pairing of the at least one nucleotide of the main start codon of the processed mRNA with another nucleotide of the processed mRNA, optionally wherein the another nucleotide is another nucleotide of the 5′ UTR of the processed mRNA. In some embodiments, the translation regulatory element comprises at least part of an upstream open reading frame (uORF). In some embodiments, the agent promotes formation of a secondary mRNA structure that involves the at least part of the uORF. In some embodiments, the translation regulatory element comprises an upstream start codon. In some embodiments, the agent promotes formation of a secondary mRNA structure that involves base-pairing with at least one nucleotide of the upstream start codon. In some embodiments, the agent does not bind to the upstream start codon. In some embodiments, the agent binds to the upstream start codon. In some embodiments, the agent promotes or increases formation of a secondary mRNA structure comprising the at least one nucleotide of the upstream start codon. In some embodiments, the agent promotes or increases base-pairing of the at least one nucleotide of the upstream start codon with another nucleotide of the processed mRNA, optionally wherein the another nucleotide is another nucleotide of the 5′ UTR of the processed mRNA. In some embodiments, the translation regulatory element comprises a Guanine quadruplex formed by a G-rich sequence of the processed mRNA. In some embodiments, the agent inhibits formation of the Guanine quadruplex. In some embodiments, the G-rich sequence comprises at least a portion of 5′ untranslated region (5′ UTR) of the processed mRNA. In some embodiments, the G-rich sequence is present in 5′ untranslated region (5′ UTR) of the processed mRNA. In some embodiments, the G-rich sequence comprises a sequence according to the formula Gx-N1-7-Gx-N1-7-Gx-N1-7-Gx (SEQ ID NO: 227), where x≥3 and N is A, C, G or U. In some embodiments, the G-rich sequence comprises a sequence GGGAGCCGGGCUGGGGCUCACACGGGGG (SEQ ID NO: 228). In some embodiments, at least one, two, three or all four of the Gx sequences are structured, present in a secondary structure, or base-paired with another nucleotide, optionally wherein the another nucleotide is a C or a U. In some embodiments, the agent relaxes, promotes deformation of, or inhibits or reduces formation of the Guanine quadruplex. In some embodiments, the agent relaxes, promotes deformation, or inhibits or reduces base-pairing or a structure of at least one, two, three or all four of the Gx sequences of the Guanine quadruplex. In some embodiments, the targeted portion of the processed mRNA is within the 5′ UTR of the processed mRNA. In some embodiments, the targeted portion of the processed mRNA has a sequence with at least 80% sequence identity to at least 8 contiguous nucleotides of a sequence selected from the group consisting of a sequence in Table 3. In some embodiments, the targeted portion of the processed mRNA comprises at least one nucleotide upstream of the codon immediately downstream from the main start codon of the processed mRNA. In some embodiments, the targeted portion of the processed mRNA is at least 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 150, 160, 180, or 200 nucleotides upstream of the main start codon of the processed mRNA. In some embodiments, the targeted portion of the processed mRNA is about 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 150, 160, 180, 200, or 220 nucleotides upstream of the main start codon. In some embodiments, the processed mRNA has a sequence with at least 80% sequence identity to a sequence selected from the group consisting of a sequence in Table 3. In some embodiments, the agent comprises an antisense oligomer. In some embodiments, the antisense oligomer has at least 80% sequence identity to a sequence selected from the group consisting of a sequence in Table 4 or Table 5. In some embodiments, the translation regulatory element inhibits the translation of the processed mRNA by inhibiting translation efficiency and/or rate of translation of the processed mRNA. In some embodiments, the agent increases the expression of the polycystin 2 protein in the cell by increasing the translation efficiency and/or rate of translation of the processed mRNA. In some embodiments, the antisense oligomer has about 100% sequence identity to a sequence selected from the group consisting of a sequence in Table 4 or Table 5. In some embodiments, the antisense oligomer has at least 80% sequence identity to a sequence selected from the group consisting of a sequence in Table 4 or Table 5. In some embodiments, the antisense oligomer has about 100% sequence identity to a sequence selected from the group consisting of a sequence in Table 4 or Table 5. In some embodiments, the agent modulates binding of one or more factors that regulate translation of the processed mRNA. In some embodiments, the antisense oligomer comprises a backbone modification comprising a phosphorothioate linkage or a phosphorodiamidate linkage. In some embodiments, the antisense oligomer comprises a phosphorodiamidate morpholino, a locked nucleic acid, a peptide nucleic acid, a 2′-O-methyl moiety, a 2′-Fluoro moiety, or a 2′-O-methoxyethyl moiety. In some embodiments, the antisense oligomer comprises at least one modified sugar moiety. In some embodiments, each sugar moiety is a modified sugar moiety. In some embodiments, the antisense oligomer consists of from 8 to 50 nucleobases, 8 to 40 nucleobases, 8 to 35 nucleobases, 8 to 30 nucleobases, 8 to 25 nucleobases, 8 to 20 nucleobases, 8 to 15 nucleobases, 9 to 50 nucleobases, 9 to 40 nucleobases, 9 to 35 nucleobases, 9 to 30 nucleobases, 9 to 25 nucleobases, 9 to 20 nucleobases, 9 to 15 nucleobases, 10 to 50 nucleobases, 10 to 40 nucleobases, 10 to 35 nucleobases, 10 to 30 nucleobases, 10 to 25 nucleobases, 10 to 20 nucleobases, 10 to 15 nucleobases, 11 to 50 nucleobases, 11 to 40 nucleobases, 11 to 35 nucleobases, 11 to 30 nucleobases, 11 to 25 nucleobases, 11 to 20 nucleobases, 11 to 15 nucleobases, 12 to 50 nucleobases, 12 to 40 nucleobases, 12 to 35 nucleobases, 12 to 30 nucleobases, 12 to 25 nucleobases, 12 to 20 nucleobases, or 12 to 15 nucleobases. In some embodiments, the vector comprises a viral vector encoding the agent. In some embodiments, the viral vector comprises an adenoviral vector, adeno-associated viral (AAV) vector, lentiviral vector, Herpes Simplex Virus (HSV) viral vector, or retroviral vector. In some embodiments, the agent further comprises a cell penetrating peptide. In some embodiments, the agent comprises the cell penetrating peptide conjugated to an antisense oligomer. In some embodiments, the antisense oligomer is a phosphorodiamidate morpholino oligomer. In some embodiments, the agent comprises a gene editing molecule or polynucleotide encoding a genomic editing molecule. In some embodiments, the agent comprises a polynucleic acid polymer that binds to a target motif of (i) the processed mRNA transcript, (ii) a pre-mRNA from which the processed mRNA transcript is processed, or (iii) a gene encoding the pre-mRNA. In some embodiments, the gene editing molecule comprises CRISPR-Cas9 or a functional equivalent thereof, and/or a polynucleic acid polymer that binds to a target motif of (i) the processed mRNA transcript, (ii) a pre-mRNA from which the processed mRNA transcript is processed, or (iii) a gene encoding the pre-mRNA. In some embodiments, the polynucleic acid polymer that binds to a target motif comprises a guide RNA (gRNA). In some embodiments, the agent increases expression of the polycystin 2 protein in the cell. In some embodiments, translation efficiency and/or rate of translation of a processed mRNA that encodes the polycystin 2 protein in the cell is increased. In some embodiments, the translation efficiency and/or rate of translation of the processed mRNA that encodes the polycystin 2 protein in the cell contacted with the agent or the vector encoding the agent is increased compared to the translation efficiency and/or rate of translation of the processed mRNA in a control cell not contacted with the agent or the vector encoding the agent. In some embodiments, the translation efficiency and/or rate of translation of the processed mRNA that encodes the polycystin 2 protein in the cell contacted with the agent or the vector encoding the agent is increased by about 1.1 to about 10-fold, about 1.5 to about 10-fold, about 2 to about 10-fold, about 3 to about 10-fold, about 4 to about 10-fold, about 1.1 to about 5-fold, about 1.1 to about 6-fold, about 1.1 to about 7-fold, about 1.1 to about 8-fold, about 1.1 to about 9-fold, about 2 to about 5-fold, about 2 to about 6-fold, about 2 to about 7-fold, about 2 to about 8-fold, about 2 to about 9-fold, about 3 to about 6-fold, about 3 to about 7-fold, about 3 to about 8-fold, about 3 to about 9-fold, about 4 to about 7-fold, about 4 to about 8-fold, about 4 to about 9-fold, at least about 1.1-fold, at least about 1.5-fold, at least about 2-fold, at least about 2.5-fold, at least about 3-fold, at least about 3.5-fold, at least about 4-fold, at least about 5-fold, or at least about 10-fold, compared to the translation efficiency and/or rate of translation of the processed mRNA in a control cell not contacted with the agent or the vector encoding the agent. In some embodiments, the translation efficiency and/or rate of translation of the processed mRNA that encodes the polycystin 2 protein in the cell contacted with the agent or the vector encoding the agent is increased by about 1.1 to about 10-fold, about 1.5 to about 10-fold, about 2 to about 10-fold, about 3 to about 10-fold, about 4 to about 10-fold, about 1.1 to about 5-fold, about 1.1 to about 6-fold, about 1.1 to about 7-fold, about 1.1 to about 8-fold, about 1.1 to about 9-fold, about 2 to about 5-fold, about 2 to about 6-fold, about 2 to about 7-fold, about 2 to about 8-fold, about 2 to about 9-fold, about 3 to about 6-fold, about 3 to about 7-fold, about 3 to about 8-fold, about 3 to about 9-fold, about 4 to about 7-fold, about 4 to about 8-fold, about 4 to about 9-fold, at least about 1.1-fold, at least about 1.5-fold, at least about 2-fold, at least about 2.5-fold, at least about 3-fold, at least about 3.5-fold, at least about 4-fold, at least about 5-fold, or at least about 10-fold, compared to in the absence of the agent. In some embodiments, a level of the polycystin 2 protein expressed in the cell contacted with the agent or the vector encoding the agent is increased compared to the level of the polycystin 2 protein in a control cell not contacted with the agent or the vector encoding the agent. In some embodiments, a level of the polycystin 2 protein expressed in the cell contacted with the agent or the vector encoding the agent is increased by about 1.1 to about 10-fold, about 1.5 to about 10-fold, about 2 to about 10-fold, about 3 to about 10-fold, about 4 to about 10-fold, about 1.1 to about 5-fold, about 1.1 to about 6-fold, about 1.1 to about 7-fold, about 1.1 to about 8-fold, about 1.1 to about 9-fold, about 2 to about 5-fold, about 2 to about 6-fold, about 2 to about 7-fold, about 2 to about 8-fold, about 2 to about 9-fold, about 3 to about 6-fold, about 3 to about 7-fold, about 3 to about 8-fold, about 3 to about 9-fold, about 4 to about 7-fold, about 4 to about 8-fold, about 4 to about 9-fold, at least about 1.1-fold, at least about 1.5-fold, at least about 2-fold, at least about 2.5-fold, at least about 3-fold, at least about 3.5-fold, at least about 4-fold, at least about 5-fold, or at least about 10-fold, compared to the level of the polycystin 2 protein in a control cell not contacted with the agent or the vector encoding the agent. In some embodiments, a level of the polycystin 2 protein expressed in the cell contacted with the agent or the vector encoding the agent is increased by about 1.1 to about 10-fold, about 1.5 to about 10-fold, about 2 to about 10-fold, about 3 to about 10-fold, about 4 to about 10-fold, about 1.1 to about 5-fold, about 1.1 to about 6-fold, about 1.1 to about 7-fold, about 1.1 to about 8-fold, about 1.1 to about 9-fold, about 2 to about 5-fold, about 2 to about 6-fold, about 2 to about 7-fold, about 2 to about 8-fold, about 2 to about 9-fold, about 3 to about 6-fold, about 3 to about 7-fold, about 3 to about 8-fold, about 3 to about 9-fold, about 4 to about 7-fold, about 4 to about 8-fold, about 4 to about 9-fold, at least about 1.1-fold, at least about 1.5-fold, at least about 2-fold, at least about 2.5-fold, at least about 3-fold, at least about 3.5-fold, at least about 4-fold, at least about 5-fold, or at least about 10-fold, compared to in the absence of the agent. In some embodiments, the polycystin 2 protein translated from the processed mRNA is a functional polycystin 2 protein. In some embodiments, the polycystin 2 protein is fully functional. In some embodiments, the polycystin 2 protein translated from the processed mRNA is a wild-type polycystin 2 protein. In some embodiments, the polycystin 2 protein translated from the processed mRNA is a full-length polycystin 2 protein. In some embodiments, the processed mRNA transcript is a mutant processed mRNA transcript. In some embodiments, the processed mRNA transcript is not a mutant processed mRNA transcript. In some embodiments, the processed mRNA is processed from a pre-mRNA that is a mutant pre-mRNA. In some embodiments, the processed mRNA is processed from a pre-mRNA that is not a mutant pre-mRNA. In some embodiments, the agent is a therapeutic agent.


In some embodiments, a level of the target protein expressed in the cell is increased by the delivery of (1) the first agent or the first nucleic acid sequence encoding the first agent, and (2) the second agent or the second nucleic acid sequence encoding the second agent. In some embodiments, the level of the target protein expressed in the cell is increased as compared to a control cell. In some embodiments, the control cell is a cell that has not been contacted with the first agent and that has not been contacted with the second agent, or wherein the control cell is a cell to which the first nucleic acid sequence encoding the first agent has not been delivered and to which the second nucleic acid sequence encoding the second agent has not been delivered. In some embodiments, the control cell is a cell that has not been contacted with the first agent and that has been contacted with the second agent, or wherein the control cell is a cell to which the first nucleic acid sequence encoding the first agent has not been delivered and to which the second nucleic acid sequence encoding the second agent has been delivered. In some embodiments, the control cell is a cell that has not been contacted with the second agent and that has been contacted with the first agent, or wherein the control cell is a cell to which the second nucleic acid sequence encoding the second agent has not been delivered and to which the first nucleic acid sequence encoding the first agent has been delivered. In some embodiments, the level of the target protein expressed in the cell is increased by about 1.1 to about 10-fold, about 1.5 to about 10-fold, about 2 to about 10-fold, about 3 to about 10-fold, about 4 to about 10-fold, about 1.1 to about 5-fold, about 1.1 to about 6-fold, about 1.1 to about 7-fold, about 1.1 to about 8-fold, about 1.1 to about 9-fold, about 2 to about 5-fold, about 2 to about 6-fold, about 2 to about 7-fold, about 2 to about 8-fold, about 2 to about 9-fold, about 3 to about 6-fold, about 3 to about 7-fold, about 3 to about 8-fold, about 3 to about 9-fold, about 4 to about 7-fold, about 4 to about 8-fold, about 4 to about 9-fold, at least about 1.1-fold, at least about 1.5-fold, at least about 2-fold, at least about 2.5-fold, at least about 3-fold, at least about 3.5-fold, at least about 4-fold, at least about 5-fold, or at least about 10-fold, as compared to the control cell. In some embodiments, the level of the target protein expressed in the cell, into which (1) the first agent or the first nucleic acid sequence encoding the first agent, and (2) the second agent or the second nucleic acid sequence encoding the second agent, are delivered, is increased by about 1.1 to about 10-fold, about 1.5 to about 10-fold, about 2 to about 10-fold, about 3 to about 10-fold, about 4 to about 10-fold, about 1.1 to about 5-fold, about 1.1 to about 6-fold, about 1.1 to about 7-fold, about 1.1 to about 8-fold, about 1.1 to about 9-fold, about 2 to about 5-fold, about 2 to about 6-fold, about 2 to about 7-fold, about 2 to about 8-fold, about 2 to about 9-fold, about 3 to about 6-fold, about 3 to about 7-fold, about 3 to about 8-fold, about 3 to about 9-fold, about 4 to about 7-fold, about 4 to about 8-fold, about 4 to about 9-fold, at least about 1.1-fold, at least about 1.5-fold, at least about 2-fold, at least about 2.5-fold, at least about 3-fold, at least about 3.5-fold, at least about 4-fold, at least about 5-fold, or at least about 10-fold, compared to in the absence of the first agent or the second agent. In some embodiments, the level of the target protein expressed in the cell, into which (1) the first agent or the first nucleic acid sequence encoding the first agent, and (2) the second agent or the second nucleic acid sequence encoding the second agent, are delivered, is increased by at least about 1.5-fold compared to in the absence of the first agent or the second agent.


Also provided herein is a pharmaceutical composition comprising a therapeutic agent disclosed herein and a pharmaceutically acceptable carrier or excipient.


Also provided herein is a pharmaceutical composition comprising a vector encoding a therapeutic agent disclosed herein and a pharmaceutically acceptable carrier or excipient.


Also provided herein is a pharmaceutical composition comprising a composition disclosed herein and a pharmaceutically acceptable carrier or excipient.


INCORPORATION BY REFERENCE

All publications, patents, and patent applications mentioned in this specification are herein incorporated by reference to the same extent as if each individual publication, patent, or patent application was specifically and individually indicated to be incorporated by reference.





BRIEF DESCRIPTION OF THE DRAWINGS

The novel features of the disclosure are set forth with particularity in the appended claims. A better understanding of the features and advantages of the present disclosure will be obtained by reference to the following detailed description that sets forth illustrative embodiments, in which the principles of the disclosure are utilized, and the accompanying drawings of which:



FIG. 1A-FIG. 1B depict a schematic representation of a target pre-mRNA that contains a non-sense mediated mRNA decay-inducing exon (NMD exon) and therapeutic agent-mediated exclusion of the nonsense-mediated mRNA decay-inducing exon to increase expression of functional RNA or the full-length target protein. FIG. 1A shows a cell divided into nuclear and cytoplasmic compartments. In the nucleus, a pre-mRNA transcript of a target gene undergoes splicing to generate mRNA, and this mRNA is exported to the cytoplasm and translated into target protein. For this target gene, some fraction of the mRNA contains a nonsense-mediated mRNA decay-inducing exon (NMD exon mRNA) that is degraded in the cytoplasm, thus leading to no target protein production. FIG. 1B shows an example of the same cell divided into nuclear and cytoplasmic compartments. Treatment with a therapeutic agent, such as an antisense oligomer (ASO), promotes the exclusion of the nonsense-mediated mRNA decay-inducing exon and results in an increase in functional (productive) mRNA, which is in turn translated into higher levels of target protein.



FIG. 2 depicts PKD2 NMD (non-sense mediated mRNA decay)-inducing exon inclusion event. NMD-inducing exon inclusion event: UCSC Genome Browser snapshot of a region in the PKD2 gene (exons are rectangles and introns are lines with arrowheads) that contains an NMD-inducing exon inclusion event (chr4:88031085-88031140) depicted by the shaded area and black bar on the top. RNA sequencing traces from four representative human kidney samples and mixed renal epithelial cells treated with cycloheximide (CHX) or DMSO control are shown.



FIG. 3 depicts PKD2 NMD-inducing alt 5′ss event. NMD-inducing alt 5′ss event: UCSC Genome Browser snapshot of a region in the PKD2 gene (exons are rectangles and introns are lines with arrowheads) that contains an NMD-inducing alternative 5′ splice site event (chr4:88036355-88036480) depicted by the shaded area and black bar on the top. RNA sequencing traces from four representative human kidney samples and mixed renal epithelial cells treated with cycloheximide (CHX) or DMSO control are shown. *alt_5 ss refers to an alternative 5′ splice site.



FIG. 4A-FIG. 4C depicts validation of NMD-inducing events. FIG. 4A shows schematic representation of the NMD-inducing exon (chr4 88031085 88031140) event. FIG. 4B shows schematic representation of the alternative 5′ splice site (Alt 5′ss) (chr4 88036354 88036480) event. *alt_5 ss refers to an alternative 5′ splice site. In this example, the exon resulting from the splicing at the alternative 5′ splice-site (alt 5′ ss) contains an exon region extended by the splicing at the alternative 5′ splice-site (grey bar) in addition to the canonical exon 3 (black bar), and thus, is longer than the corresponding canonical exon 3 (black bar). Consistently, the intron resulting from the splicing at the alternative 5′ splice-site (alt 5′ ss) is shorter than the corresponding canonical intron 3. FIG. 4C shows RT-PCR using RNA from human kidney mixed epithelial cells and human kidney cortical epithelial cells treated with either DMSO (−) or cycloheximide (CHX) (+). Primers were positioned in exon 2 and 4.



FIG. 5 depicts ASO walk design for the NMD exon inclusion event. The shaded nucleotides correspond to the NMD-inducing exon 2×. FIG. 5 discloses SEQ ID NOS 263-265, respectively, in order of appearance.



FIGS. 6A-B depict the ASO walk design for the Alt 5′ss event. The shaded nucleotides correspond to portion of the extended exon 3 that results from the selection of the indicated Alt 5′ss. *alt_5 ss refers to an alternative 5′ splice site. FIG. 6 discloses SEQ ID NOS 266-270, respectively, in order of appearance.



FIG. 7A depicts the changes in productive PKD2 mRNA using primary renal mixed epithelial cells transfected for 24 hours with the indicated ASOs (see macrowalk of FIGS. 6A-B) at 80 nM.



FIG. 7B depicts the changes in nonproductive PKD2 mRNA using primary renal mixed epithelial cells transfected for 24 hours with the indicated ASOs (see macrowalk of FIGS. 6A-B) at 80 nM.



FIG. 8A depicts the changes in productive PKD2 mRNA using primary renal mixed epithelial cells transfected for 24 hours with the indicated ASOs (see macrowalk of FIG. 5) at 80 nM.



FIG. 8B depicts the changes in nonproductive PKD2 mRNA using primary renal mixed epithelial cells transfected for 24 hours with the indicated ASOs (see macrowalk of FIG. 5) at 80 nM.



FIG. 9A-FIG. 9E illustrate ASOs targeting two events to increase productive mRNA and protein production. FIG. 9A depicts the effect of combination of ASOs on non-productive exon inclusion NMD event utilization. FIG. 9B depicts the expression of EX2-EX3 productive mRNA with ASO combinations. FIG. 9C depicts the effect of combination of ASOs on non-productive alternative 5′ss NMD event utilization. FIG. 9D depicts the expression of EX3-EX4 productive mRNA with ASO combinations. FIG. 9E depicts the quantification of Polycystin 2 (PKD2) protein western blots after treatment with ASO combinations.



FIG. 10 illustrated an upstream open reading frame macrowalk of PKD2. Shaded nucleotides correspond to the upstream open reading frame and the canonical start codon, respectively. FIG. 10 discloses SEQ ID NO: 271.





DETAILED DESCRIPTION

Certain specific details of this description are set forth in order to provide a thorough understanding of various embodiments. However, one skilled in the art will understand that the present disclosure may be practiced without these details. In other instances, well-known structures have not been shown or described in detail to avoid unnecessarily obscuring descriptions of the embodiments. Unless the context requires otherwise, throughout the specification and claims which follow, the word “comprise” and variations thereof, such as, “comprises” and “comprising” are to be construed in an open, inclusive sense, that is, as “including, but not limited to.” Further, headings provided herein are for convenience only and do not interpret the scope or meaning of the claimed disclosure.


As used in this specification and the appended claims, the singular forms “a,” “an,” and “the” include plural referents unless the content clearly dictates otherwise. It should also be noted that the term “or” is generally employed in its sense including “and/or” unless the content clearly dictates otherwise.


The coordinate as used herein refers to the coordinate of the genome reference assembly GRCh38 (Genome Research Consortium human build 38), also known as Hg38 (Human genome build 38).


Unless otherwise defined, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this disclosure belongs. Although methods and materials similar or equivalent to those described herein can be used in the practice or testing of the present disclosure, suitable methods and materials are described below.


Alternative splicing events in PKD2 gene can lead to non-productive mRNA transcripts which in turn can lead to reduced protein expression, and therapeutic agents which can target the alternative splicing events in PKD2 gene can modulate (e.g., increase) the expression level of functional proteins in patients. Such therapeutic agents can be used to treat a condition caused by polycystin 2 or polycystin 1 deficiency.


One of the alternative splicing events that can lead to non-productive mRNA transcripts is the inclusion of an extra exon in the mRNA transcript that can induce non-sense mediated mRNA decay. The present disclosure also provides compositions and methods for modulating splicing of an extra exon from PKD2 pre-mRNA to increase the production of protein-coding mature mRNA, and thus, translated functional polycystin 2. For example, the compositions and methods provided herein can promote exclusion of an extra exon from PKD2 pre-mRNA, thereby modulating the level of a processed mRNA that is processed from the pre-mRNA and that lacks the extra exon.


Another alternative splicing event that can lead to non-productive mRNA transcripts is an alternative 5′ splice site event. For example, an exon resulting from the splicing at an alternative 5′ splice-site (e.g., downstream of the canonical 5′ ss) can result in a longer exon than the corresponding canonical exon. For example, the intron resulting from the splicing at an alternative 5′ splice-site may be shorter than the corresponding canonical intron. The present disclosure provides compositions and methods for modulating alternative splicing of PKD2 pre-mRNA to increase the production of protein-coding mature mRNA, and thus, translated functional polycystin 2. For example, the compositions and methods provided herein can modulate processing of PKD2 pre-mRNA by preventing or decreasing splicing at the alternative 5′ splice-site.


These compositions and methods include antisense oligomers (ASOs) that can promote constitutive splicing of PKD2 pre-mRNA. In various embodiments, functional polycystin 2 can be increased using the methods of the disclosure to treat a condition caused by polycystin 2 or polycystin 1 deficiency.


“Polycystin 2” also known as APC2, PKD4, Pc-2, TRPP2, Polycystic kidney disease 2, transient receptor potential cation channel, as referred to herein, includes any of the recombinant or naturally-occurring forms of polycystin 2 or variants or homologs thereof that have or maintain polycystin 2 activity (e.g., at least 40% 50%, 60%, 70%, 80%, 90%, 95%, 96%, 97%, 98%, 99% or 100% activity). In some aspects, the variants or homologs have at least 40%, 45%, 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99% or 100% amino acid sequence identity across the whole sequence or a portion of the sequence (e.g., a 50, 100, 150 or 200 continuous amino acid portion) compared to a naturally occurring polycystin 2. In some embodiments, polycystin 2 is substantially identical to the protein identified by the UniProt reference number Q13563 or a variant or homolog having substantial identity thereto.


Autosomal dominant polycystic kidney disease (ADPKD) is a common hereditary disease that accounts for 8-10% of end-stage renal disease. ADPKD is genetically heterogeneous with loci mapped to chromosome 16p13.3 (PKD1) (1) and to chromosome 4q21-23 (PKD2). The predicted structures of polycystin 1 (encoded by PKD1) and polycystin 2 (encoded by PKD2), and their similar disease profiles, suggest their involvement in a common signaling pathway that links extracellular adhesive events to alterations in ion transport. Polycystin 1 and polycystin 2 have been demonstrated to interact through their C-terminal cytoplasmic tails. This interaction resulted in an up-regulation of polycystin 1 but not polycystin 2. The cytoplasmic tail of polycystin 2, but not polycystin 1, formed homodimers through a region distinct from the domain required for interaction with polycystin 1. These results are consistent with a mechanism whereby mutations in polycystin 2 could impede the function of polycystin 1 and thereby result in a disease presentation similar to that of polycystin 1 through distinct molecular lesions of a common signaling pathway operational in normal tubulogenesis. Data supports the idea that polycystin 1 and polycystin 2 participate in a common signaling pathway that prevents cyst formation (Tsiokas et al., PNAS, June 1997, 94 (13) 6965-6970, incorporated herein by reference in its entirety). Data also supports the idea that polycystin 1 and polycystin 2 expression participate in a common signaling pathway that regulates a transition that generally occurs during longer periods of starvation where autophagy is downregulated and cell death increases; polycystin 1 and polycystin 2 can regulate this transition from survival to death starvation in mIMCDs from survival to death (Decuypere, et al., Int. J. Mol. Sci. 2021, 22, 13511). In addition, while it is known that dosage changes in PKD1/PKD2 are important in ADPKD pathogenesis, how PKD1/PKD2 expression is regulated remains poorly understood; although there is evidence of an upstream open reading frame (uORF) in PKD2 that can repress PKD2 translation (Tang, et al., FASEB J. 2013 December; 27(12):4998-5009).


The terms “non-sense mediated RNA decay exon” (or “NSE” or “NMD exon”) and “NMD-inducing exon” (or NIE) are used interchangeably and can refer to an exon (e.g., a noncanonical exon) that can activate the NMD pathway if present in a mature RNA transcript. In constitutive splicing events, the intron containing an NIE is usually spliced out, but the intron or a portion thereof (e.g., NIE) may be retained during alternative or aberrant splicing events. Mature mRNA transcripts containing an NIE may be non-productive, for example, due to frame shifts which induce the NMD pathway. In some embodiments, an NMD exon is an exon that contains a premature stop codon (or premature termination codon (PTC)) or other sequences that facilitate degradation of a mature RNA transcript containing the NMD exon. Inclusion of a NIE in mature RNA transcripts may downregulate gene expression. In some embodiments, an NMD exon is an exon created from alternative splicing events. For example, an NMD exon can be an exon created from an alternative 5′ splice site event. For example, an NMD exon can be an exon that contains a canonical exon and at least a portion of an intron adjacent to the canonical exon. For example, an NMD exon can be an exon that contains an entire canonical exon and at least a portion of an intron immediately downstream of the canonical exon. In some embodiments the NMD exon is a region within an intron (e.g., a canonical intron).


Alternative splicing can result in inclusion of at least one NSE in the mature mRNA transcripts. The terms “mature mRNA,” and “fully-spliced mRNA,” are used interchangeably herein to describe a fully processed mRNA. A mature mRNA that contains an NMD exon can be non-productive mRNA and lead to NMD of the mature mRNA. NIE containing mature mRNA may sometimes lead to reduced protein expression compared to protein expression from a corresponding mature mRNA that does not contain the NIE.


Pseudo splice sites have the same splicing recognition sequences as genuine splice sites but are not used in splicing reactions. They outnumber genuine splice sites in the human genome by an order of a magnitude and are normally repressed by thus far poorly understood molecular mechanisms. Cryptic 5′ splice sites have the consensus NNN/GUNNNN or NNN/GCNNNN where N is any nucleotide and/is the exon-intron boundary. Cryptic 3′ splice sites have the consensus NAG/N. Their activation is positively influenced by surrounding nucleotides that make them more similar to the optimal consensus of authentic splice sites, namely MAG/GURAGU and YAG/G, respectively, where M is C or A, R is G or A, and Y is C or U.


Splice sites and their regulatory sequences can be readily identified by a skilled person using suitable algorithms publicly available, listed for example in Kralovicova, J. and Vorechovsky, I. (2007) Global control of aberrant splice site activation by auxiliary splicing sequences: evidence for a gradient in exon and intron definition. Nucleic Acids Res., 35, 6399-6413, (ncbi.nlm.nih.gov/pmc/articles/PMC2095810/pdf/gkm680.pdf)


Splicing and Nonsense-Mediated mRNA Decay


Intervening sequences or introns are removed by a large and highly dynamic RNA-protein complex termed the spliceosome, which orchestrates complex interactions between primary transcripts, small nuclear RNAs (snRNAs) and a large number of proteins. Spliceosomes assemble ad hoc on each intron in an ordered manner, starting with recognition of the 5′ splice site (5′ss) by U1 snRNA or the 3′splice site (3′ss) by the U2 pathway, which involves binding of the U2 auxiliary factor (U2AF) to the 3′ss region to facilitate U2 binding to the branch point sequence (BPS). U2AF is a stable heterodimer composed of a U2AF2-encoded 65-kD subunit (U2AF65), which binds the polypyrimidine tract (PPT), and a U2AF1-encoded 35-kD subunit (U2AF35), which interacts with highly conserved AG dinucleotides at 3′ss and stabilizes U2AF65 binding. In addition to the BPS/PPT unit and 3′ss/5′ss, accurate splicing requires auxiliary sequences or structures that activate or repress splice site recognition, known as intronic or exonic splicing enhancers or silencers. These elements allow genuine splice sites to be recognized among a vast excess of cryptic or pseudo-sites in the genome of higher eukaryotes, which have the same sequences but outnumber authentic sites by an order of magnitude. Although they often have a regulatory function, the exact mechanisms of their activation or repression are poorly understood.


The decision of whether to splice or not to splice can be typically modeled as a stochastic rather than deterministic process, such that even the most defined splicing signals can sometimes splice incorrectly. However, under normal conditions, pre-mRNA splicing proceeds at surprisingly high fidelity. This is attributed in part to the activity of adjacent cis-acting auxiliary exonic and intronic splicing regulatory elements (ESRs or ISRs). Typically, these functional elements are classified as either exonic or intronic splicing enhancers (ESEs or ISEs) or silencers (ESSs or ISSs) based on their ability to stimulate or inhibit splicing, respectively. Although there is now evidence that some auxiliary cis-acting elements may act by influencing the kinetics of spliceosome assembly, such as the arrangement of the complex between U1 snRNP and the 5′ss, it seems very likely that many elements function in concert with trans-acting RNA-binding proteins (RBPs). For example, the serine- and arginine-rich family of RBPs (SR proteins) is a conserved family of proteins that have a key role in defining exons. SR proteins promote exon recognition by recruiting components of the pre-spliceosome to adjacent splice sites or by antagonizing the effects of ESSs in the vicinity. The repressive effects of ESSs can be mediated by members of the heterogeneous nuclear ribonucleoprotein (hnRNP) family and can alter recruitment of core splicing factors to adjacent splice sites. In addition to their roles in splicing regulation, silencer elements are suggested to have a role in repression of pseudo-exons, sets of decoy intronic splice sites with the typical spacing of an exon but without a functional open reading frame. ESEs and ESSs, in cooperation with their cognate trans-acting RBPs, represent important components in a set of splicing controls that specify how, where and when mRNAs are assembled from their precursors.


The sequences marking the exon-intron boundaries are degenerate signals of varying strengths that can occur at high frequency within human genes. In multi-exon genes, different pairs of splice sites can be linked together in many different combinations, creating a diverse array of transcripts from a single gene. This is commonly referred to as alternative pre-mRNA splicing. Although most mRNA isoforms produced by alternative splicing can be exported from the nucleus and translated into functional polypeptides, different mRNA isoforms from a single gene can vary greatly in their translation efficiency. Those mRNA isoforms with premature termination codons (PTCs) or premature stop codons at least 50 bp upstream of an exon junction complex are likely to be targeted for degradation by the nonsense-mediated mRNA decay (NMD) pathway. Mutations in traditional (BPS/PPT/3′ss/5′ss) and auxiliary splicing motifs can cause aberrant splicing, such as exon skipping or cryptic (or pseudo-) exon inclusion or splice-site activation and contribute significantly to human morbidity and mortality. Both aberrant and alternative splicing patterns can be influenced by natural DNA variants in exons and introns.


Given that exon-intron boundaries can occur at any of the three positions of a codon, it is clear that only a subset of alternative splicing events can maintain the canonical open reading frame. For example, only exons that are evenly divisible by 3 can be skipped or included in the mRNA without any alteration of reading frame. Splicing events that do not have compatible phases will induce a frame-shift. Unless reversed by downstream events, frame-shifts can certainly lead to one or more PTCs, probably resulting in subsequent degradation by NMD. NMD is a translation-coupled mechanism that eliminates mRNAs containing PTCs. NMD can function as a surveillance pathway that exists in all eukaryotes. NMD can reduce errors in gene expression by eliminating mRNA transcripts that contain premature stop codons or PTCs. Translation of these aberrant mRNAs could, in some cases, lead to deleterious gain-of-function or dominant-negative activity of the resulting proteins. NMD targets not only transcripts with PTCs but also a broad array of mRNA isoforms expressed from many endogenous genes, suggesting that NMD is a master regulator that drives both fine and coarse adjustments in steady-state RNA levels in the cell.


Target Genes

The present disclosure provides compositions and methods for modulating alternative splicing of a target to modulate the production of functional protein-coding mature mRNA, and thus, translated functional the target protein, wherein the target is PKD2. These compositions and methods include antisense oligomers (ASOs) that can promote canonical splicing of the target pre-mRNA, wherein the target is PKD2. In various embodiments, functional target protein can be increased using the methods of the disclosure to treat a condition caused by target protein deficiency, wherein the target is selected from the group consisting of PKD2.


In some embodiments, the methods of the invention are used to increase functional the target protein production to treat a condition in a subject in need thereof, wherein the target is PKD2. In some embodiments, the subject has a condition in which the target protein is not necessarily deficient relative to wild-type, but where an increase in the target protein mitigates the condition nonetheless, wherein the target is PKD2. In some embodiments, the condition is caused by sporadic mutation. In some embodiments, the methods of the invention are used to reduce functional target protein production to treat a condition in a subject in need thereof, wherein the target is PKD2. In some embodiments, the methods of the invention are used to modulate functional target protein production to treat a condition in a subject in need thereof, wherein the target is PKD2.


Target Transcripts

In some embodiments, the methods of the present disclosure exploit the presence of NIE in the pre-mRNA transcribed from the PKD2 gene. Splicing of the identified PKD2 NIE pre-mRNA species to produce functional mature PKD2 mRNA may be induced using a therapeutic agent such as an ASO that stimulates skipping of an NIE. The resulting mature PKD2 mRNA can be translated normally without activating NMD pathway, thereby increasing the amount of polycystin 2 in the patient's cells and alleviating symptoms of a condition or disease associated with PKD2 deficiency, such as polycystic kidney disease with or without polycystic liver disease, autosomal dominant polycystic kidney disease, and intracranial aneurysm.


Canonical splicing of the identified target NSE pre-mRNA transcripts to produce the functional, mature target mRNA can be induced using a therapeutic agent, such as an ASO, that promotes constitutive splicing of the target NSE pre-mRNA at the canonical splice sites. In some embodiments, the resulting functional, mature target mRNA can be translated normally, thereby increasing the amount of the functional target protein in the patient's cells and preventing symptoms of the target associated disease.


In various embodiments, the present disclosure provides a therapeutic agent that can target PKD2 pre-mRNA to modulate splicing or protein expression level. The therapeutic agent can be a small molecule, nucleic acid oligomer, or polypeptide. In some embodiments, the therapeutic agent is an ASO. Various regions or sequences on the PKD2 pre-mRNA can be targeted by a therapeutic agent, such as an ASO. In some embodiments, the ASO targets a PKD2 NSE pre-mRNA transcribed from the PKD2 gene. In some embodiments, the ASO targets a PKD2 NSE pre-mRNA transcribed from the PKD2 gene comprising non-sense mediated RNA decay exons (NSEs). In some embodiments, the NSE comprises a portion of canonical intron 3 of a PKD2 pre-mRNA transcript (intron downstream of canonical exon 3 of the PKD2 pre-mRNA transcript). In some embodiments, the NSE comprises the entire canonical exon 3 of a PKD2 pre-mRNA transcript. In some embodiments, the NSE comprises only a portion of canonical intron 3 of a PKD2 pre-mRNA transcript and the entire canonical exon 3 of a PKD2 pre-mRNA transcript. In some embodiments, the NSE is included in a PKD2 pre-mRNA transcript due to aberrant splicing. In some embodiments, the ASO targets a sequence within a NSE of a PKD2 pre-mRNA transcript. In some embodiments, the ASO targets a sequence within exon 3 or 4 of a PKD2 pre-mRNA transcript. In some embodiments, the ASO targets an exon sequence upstream (or 5′) from the 5′ splice site of intron 3 following exon 3 of a PKD2 pre-mRNA transcript. In some embodiments, the ASO targets an exon sequence downstream (or 3′) from the 3′ splice site of intron 2 preceding exon 3 of a PKD2 pre-mRNA transcript. In some embodiments, the ASO targets a sequence within an intron flanking the 3′ end of an NSE of a PKD2 pre-mRNA transcript. In some embodiments, the ASO targets a sequence within intron 2 or 3 or 4 of a PKD2 pre-mRNA transcript. In some embodiments, the ASO targets an intron sequence upstream (or 5′) from the 3′ splice site of intron 2 or 3 or 4 of a PKD2 pre-mRNA transcript. In some embodiments, the ASO targets an intron sequence downstream (or 3′) from the 5′ splice site of intron 2 or 3 or 4 of a PKD2 pre-mRNA transcript. In some embodiments, the ASO targets a sequence within an intron flanking the 5′ end of a NSE of a PKD2 pre-mRNA transcript. In some embodiments, the ASO targets a sequence within intron 2 or 3 or 4 of a PKD2 pre-mRNA transcript. In some embodiments, the ASO targets a sequence within intron 2 or 3 or 4 of a PKD2 pre-mRNA transcript. In some embodiments, the ASO targets an intron sequence upstream (or 5′) from the 3′ splice site of intron 2 or 3 or 4 of a PKD2 pre-mRNA transcript. In some embodiments, the ASO targets an intron sequence downstream (or 3′) from the 5′ splice site of intron 2 or 3 or 4 of a PKD2 pre-mRNA transcript. In some embodiments, the ASO targets a sequence comprising an exon-intron boundary of a PKD2 pre-mRNA transcript. In some embodiments, the exon is a NSE. An exon-intron boundary can refer to the junction of an exon sequence and an intron sequence. In some embodiments, the intron sequence can flank the 5′ end of the NSE, or the 3′ end of the exon. In some embodiments, the ASO targets a sequence comprising both a portion of an intron and a portion of an exon.


In some embodiments, the diseases or conditions that can be treated or ameliorated using the method or composition disclosed herein are not directly associated with the target protein (gene) that the therapeutic agent targets. In some embodiments, a therapeutic agent provided herein can target a protein (gene) that is not directly associated with a disease or condition, but the modulation of expression of the target protein (gene) can treat or ameliorate the disease or condition. For instance, targeting genes like PKD2 by a therapeutic agent provided herein can treat or ameliorate polycystic kidney disease with or without polycystic liver disease, autosomal dominant polycystic kidney disease, or intracranial aneurysm. In some embodiments, such target genes like PKD2 are said to be indicated for Pathway (kidney). In some embodiments, such target genes like PKD2 are said to be indicated for Pathway (polycystic kidney disease with or without polycystic liver disease, or autosomal dominant polycystic kidney disease). In some embodiments, such target genes like PKD2 are said to be indicated for Pathway (intracranial aneurysm).


In various embodiments, the present disclosure provides a therapeutic agent which can target PKD2 pre-mRNA transcripts to modulate splicing or protein expression level. The therapeutic agent can be a small molecule, polynucleotide, or polypeptide. In some embodiments, the therapeutic agent is an ASO. Various regions or sequences on the PKD2 pre-mRNA can be targeted by a therapeutic agent, such as an ASO. In some embodiments, the ASO targets a PKD2 pre-mRNA transcript containing an NIE. In some embodiments, the ASO targets a sequence within an NIE of a PKD2 pre-mRNA transcript. In some embodiments, the ASO targets a sequence upstream (or 5′) from the 5′ end of an NIE of a PKD2 pre-mRNA transcript. In some embodiments, the ASO targets a sequence downstream (or 3′) from the 3′ end of an NIE of a PKD2 pre-mRNA transcript. In some embodiments, the ASO targets a sequence that is within an intron flanking the 5′ end of the NIE of a PKD2 pre-mRNA transcript. In some embodiments, the ASO targets a sequence that is within an intron flanking the 3′ end of the NIE of a PKD2 pre-mRNA transcript. In some embodiments, the ASO targets a sequence comprising an NIE-intron boundary of a PKD2 pre-mRNA transcript. An NIE-intron boundary can refer to the junction of an intron sequence and an NIE region. The intron sequence can flank the 5′ end of the NIE, or the 3′ end of the NIE. In some embodiments, the ASO targets a sequence within an exon of a PKD2 pre-mRNA transcript. In some embodiments, the ASO targets a sequence within an intron of a PKD2 pre-mRNA transcript. In some embodiments, the ASO targets a sequence comprising both a portion of an intron and a portion of an exon of a PKD2 pre-mRNA transcript.


In some embodiments, the ASO targets a sequence about 4 to about 300 nucleotides upstream (or 5′) from the 5′ end of the NIE. In some embodiments, the ASO targets a sequence about 1 to about 20 nucleotides, about 20 to about 50 nucleotides, about 50 to about 100 nucleotides, about 100 to about 150 nucleotides, about 150 to about 200 nucleotides, about 200 to about 250 nucleotides, or about 250 to about 300 nucleotides upstream (or 5′) from the 5′ end of the NIE region. In some embodiments, the ASO may target a sequence more than 300 nucleotides upstream from the 5′ end of the NIE. In some embodiments, the ASO targets a sequence about 4 to about 300 nucleotides downstream (or 3′) from the 3′ end of the NIE. In some embodiments, the ASO targets a sequence about 1 to about 20 nucleotides, about 20 to about 50 nucleotides, about 50 to about 100 nucleotides, about 100 to about 150 nucleotides, about 150 to about 200 nucleotides, about 200 to about 250 nucleotides, or about 250 to about 300 nucleotides downstream from the 3′ end of the NIE. In some embodiments, the ASO targets a sequence more than 300 nucleotides downstream from the 3′ end of the NIE.


In some embodiments, the ASOs disclosed herein target a NSE pre-mRNA transcribed from PKD2 genomic sequence. In some embodiments, the ASO targets a NSE pre-mRNA transcript from a genomic sequence comprising a NSE of PKD2 genomic sequences. In some embodiments, the ASO targets a NSE pre-mRNA transcript from a genomic sequence comprising an intron flanking the 3′ end of the NSE and an intron flanking the 5′ end of a NSE of PKD2 genomic sequences. In some embodiments, the ASO targets a NSE pre-mRNA transcript comprising a sequence selected from the group consisting of the pre-mRNA transcripts of Table 3. In some embodiments, the ASO targets a pre-mRNA sequence comprising a NSE of PKD2 pre-mRNA sequences. In some embodiments, the ASO targets a pre-mRNA sequence comprising an intron flanking the 3′ end of the NSE of PKD2 pre-mRNA sequences. In some embodiments, the ASO targets a pre-mRNA sequence comprising an intron flanking the 5′ end of the NSE of PKD2 pre-mRNA sequences. In some embodiments, the transcript is selected from the group consisting of the transcripts of Table 3.


In some embodiments, the PKD2 NIE containing pre-mRNA transcript is encoded by a genetic sequence with at least about 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99% or 100% sequence identity to any one of the sequences listed in Table 2 or Table 3. In some embodiments, the PKD2 NIE pre-mRNA transcript comprises a sequence with at least about 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99% or 100% sequence identity to any one of the sequences listed in Table 2 or Table 3.


In some embodiments, the PKD2 NIE containing pre-mRNA transcript comprises a sequence with at least about 80%, 85%, 90%, 95%, 97%, or 100% sequence identity to any one of the sequences listed in Table 2 or Table 3. In some embodiments, PKD2 NIE containing pre-mRNA transcript is encoded by a sequence with at least about 80%, 85%, 90%, 95%, 97%, or 100% sequence identity to any one of the sequences listed in Table 2 or Table 3. In some embodiments, the targeted portion of the pre-mRNA comprises a sequence with at least 80%, 85%, 90%, 95%, 97%, or 100% sequence identity to a region comprising at least 8 contiguous nucleic acids of any one of the sequences listed in Table 2 or Table 3.


In some embodiments, the pre-mRNA transcript comprises a sequence with at least about 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99% or 100% sequence identity to a pre-mRNA transcript of PKD2 pre-mRNA transcripts or a complement thereof described herein. In some embodiments, the targeted portion of the pre-mRNA selected from the group consisting of PKD2 pre-mRNAs comprises a sequence with at least 80%, 85%, 90%, 95%, 97%, or 100% sequence identity to a region comprising at least 8 contiguous nucleic acids of a sequence of the pre-mRNA transcripts of Table 2 or Table 3 or complements thereof. In some embodiments, the targeted portion of the pre-mRNA of PKD2 pre-mRNA comprises a sequence that is complementary to at least 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19 or 20 contiguous nucleic acids of a sequence of Table 2 or Table 3 or a complement thereof.


In some embodiments, the ASOs disclosed herein target a NSE pre-mRNA transcribed from a PKD2 genomic sequence. In some embodiments, the ASO targets a NSE pre-mRNA transcript from a PKD2 genomic sequence comprising a NSE. In some embodiments the NSE comprises exon 3. In some embodiments the NSE is the third exon of a PKD2 transcript. In some embodiments, the ASO targets a NSE pre-mRNA transcript from a PKD2 genomic sequence comprising exon 3 or 4. In some embodiments, the ASO targets a NSE pre-mRNA transcript from a PKD2 genomic sequence comprising an intron flanking the 3′ end of the NSE and an intron flanking the 5′ end of a NSE. In some embodiments, the intron flanking the 3′ end of the NSE is intron 3 and the intron flanking the 5′ end of a NSE is intron 2. In some embodiments, the ASO targets a NSE pre-mRNA transcript from a PKD2 genomic sequence comprising intron 2, exon 3 and intron 3. In some embodiments, the ASO targets a NSE pre-mRNA transcript comprising exon 3 and exon 4. In some embodiments, the ASO targets a PKD2 pre-mRNA sequence comprising a NSE. In some embodiments, the ASO targets a PKD2 pre-mRNA sequence comprising exon 3. In some embodiments, the ASO targets a PKD2 pre-mRNA sequence comprising an intron flanking the 3′ end of the NSE. In some embodiments, the ASO targets a PKD2 pre-mRNA sequence comprising intron 3. In some embodiments, the ASO targets a PKD2 pre-mRNA sequence comprising an intron flanking the 5′ end of the NSE.


In some embodiments, the PKD2 pre-mRNA transcript is encoded by a genetic sequence with at least about 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99% or 100% sequence identity to the Ensembl reference number ENSG00000118762.8 or a complement thereof. In some embodiments, the PKD2 pre-mRNA transcript comprises a sequence with at least about 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99% or 100% sequence identity to a PKD2 pre-mRNA transcript or a complement thereof described herein.


In some embodiments, the targeted portion of the PKD2 pre-mRNA comprises a sequence with at least 80%, 85%, 90%, 95%, 97%, or 100% sequence identity to a region comprising at least 8 contiguous nucleic acids of a sequence of sequence of Table 3 or complements thereof. In some embodiments, the targeted portion of the PKD2 pre-mRNA comprises a sequence with at least 80%, 85%, 90%, 95%, 97%, or 100% sequence identity to a region comprising at least 8 contiguous nucleic acids of a sequence selected from the group consisting of sequences listed in Table 2 or Table 3 or complements thereof. In some embodiments, the ASO comprises a sequence that is at least about 80%, 85%, 90%, 95%, 97%, or 100% identical to any one the sequences of Table 4 or complements thereof.


In some embodiments, the ASOs disclosed herein target a NSE pre-mRNA transcribed from a target genomic sequence. In some embodiments, the ASO targets a NSE pre-mRNA transcript from a target genomic sequence comprising a NSE. In some embodiments, the ASO targets a NSE pre-mRNA transcript from a target genomic sequence comprising an intron flanking the 3′ end of the NSE and an intron flanking the 5′ end of a NSE. In some embodiments, the ASO targets a NSE pre-mRNA transcript comprising a sequence selected from the pre-mRNA transcript sequences of Table 3. In some embodiments, the ASO targets a NSE pre-mRNA transcript comprising a sequence selected from the pre-mRNA transcript sequences of Table 3 as represented by the Ensembl reference numbers. In some embodiments, the ASO targets a target pre-mRNA sequence comprising a NSE. In some embodiments, the ASO targets a target pre-mRNA sequence comprising an intron flanking the 3′ end of the NSE. In some embodiments, the ASO targets a target pre-mRNA sequence comprising an intron flanking the 5′ end of the NSE. In some embodiments, the transcript is selected from the group consisting of the transcript sequences of Table 3. In some embodiments, the transcript is selected from the group consisting of the transcript sequences of Table 3 as represented by the Ensembl reference numbers.


In some embodiments, the target pre-mRNA transcript is encoded by a genetic sequence with at least about 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99% or 100% sequence identity to the gene sequence as represented by the Ensembl reference number or a complement thereof. In some embodiments, the target pre-mRNA transcript comprises a sequence with at least about 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99% or 100% sequence identity to target pre-mRNA transcript or a complement thereof described herein.


In some embodiments, the targeted portion of the target pre-mRNA comprises a sequence with at least 80%, 85%, 90%, 95%, 97%, or 100% sequence identity to a region comprising at least 8 contiguous nucleic acids of a sequence of Table 2 or a sequence of Table 3 or complements thereof. In some embodiments, the targeted portion of the target pre-mRNA comprises a sequence with at least 80%, 85%, 90%, 95%, 97%, or 100% sequence identity to a region comprising at least 8 contiguous nucleic acids of a sequence of Table 3 as represented by the Ensembl reference numbers or a sequence of Table 2 or complements thereof. In some embodiments, the targeted portion of the target pre-mRNA comprises a sequence that is complementary to at least 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19 or 20 contiguous nucleic acids of a sequence of Table 2 or Table 3 or a complement thereof.


In some embodiments, the ASO targets exon 3 of a PKD2 pre-mRNA comprising a NSE. In some embodiments, the ASO targets a sequence about 2 nucleotides downstream (or 3′) from the 5′ splice site of intron 3 to about 4 nucleotides upstream (or 5′) from the 3′ splice site of intron 2. In some embodiments, the ASO targets a sequence about 2 nucleotides upstream (or 5′) from the 5′ splice site of intron 3 to about 4 nucleotides downstream (or 3′) from the 3′ splice site of intron 2. In some embodiments, the ASO has a sequence according to any one of the sequences listed in Table 4 or complements thereof.


In some embodiments, the ASO targets intron 3 of a PKD2 pre-mRNA comprising a NSE. In some embodiments, the ASO targets a sequence about 4 to about 300 nucleotides upstream (or 5′) from the 3′ splice site of intron 3. In some embodiments, the ASO targets a sequence about 4 to about 300 nucleotides downstream (or 3′) from the 3′ splice site of intron 3. In some embodiments, the ASO targets a sequence about 4 to about 300 nucleotides upstream (or 5′) from the 5′ splice site of intron 3. In some embodiments, the ASO targets a sequence about 4 to about 300 nucleotides downstream (or 3′) from the 5′ splice site of intron 3. In some embodiments, the ASO targets a sequence about 6 to about 100 nucleotides upstream (or 5′) from the 3′ splice site of intron 2. In some embodiments, the ASO targets a sequence about 4 to about 300 nucleotides downstream (or 3′) from the 3′ splice site of intron 2. In some embodiments, the ASO targets a sequence about 6 to about 100 nucleotides upstream (or 5′) from the 5′ splice site of intron 2. In some embodiments, the ASO targets a sequence about 4 to about 300 nucleotides downstream (or 3′) from the 5′ splice site of intron 2. In some embodiments, the ASO has a sequence according to any sequence of Table 4 or complements thereof.


In some embodiments, the targeted portion of the PKD2 pre-mRNA is in intron 2, 3, or 4. In some embodiments, the targeted portion of the PKD2 pre-mRNA is in exon 2, 3, 4, or 5. In some embodiments, hybridization of an ASO to the targeted portion of the NSE pre-mRNA results in inclusion of canonical exon 3, and subsequently increases polycystin 2 production. In some embodiments, hybridization of an ASO to the targeted portion of the NSE pre-mRNA results in exclusion of a canonical exon, and subsequently decreases polycystin 2 production. In some embodiments, hybridization of an ASO to the targeted portion of the NSE pre-mRNA results in inclusion or exclusion of a canonical exon, and subsequently modulates polycystin 2 production. In some embodiments, the targeted portion of the PKD2 pre-mRNA is in exon 3 or 4. In some embodiments, the targeted portion of the PKD2 pre-mRNA is in intron 2. In some embodiments, the targeted portion of the PKD2 pre-mRNA is in intron 3.


In some embodiments, the ASO targets exon 2× of a PKD2 NIE containing pre-mRNA comprising NIE exon 2.


In some embodiments, the ASO targets exon (GRCh38/hg38: chr4:88031085 88031140) of PKD2.


In some embodiments, the ASO targets a sequence about 1500 nucleotides, about 1000 nucleotides, about 800 nucleotides, about 700 nucleotides, about 600 nucleotides, about 500 nucleotides, about 400 nucleotides, about 300 nucleotides, about 200 nucleotides, about 100 nucleotides, about 80 nucleotides, about 70 nucleotides, about 60 nucleotides, about 50 nucleotides upstream (or 5′) from the 5′ end of exon 2× of PKD2. In some embodiments, the ASO targets a sequence about 1500 nucleotides, about 1000 nucleotides, about 800 nucleotides, about 700 nucleotides, about 600 nucleotides, about 500 nucleotides, about 400 nucleotides, about 300 nucleotides, about 200 nucleotides, about 100 nucleotides, about 80 nucleotides, about 70 nucleotides, about 60 nucleotides, about 50 nucleotides upstream (or 5′) from GRCh38/hg38: chr4:88031085 88031140 of PKD2.


In some embodiments, the ASO targets a sequence at most about 1500 nucleotides, about 1000 nucleotides, about 800 nucleotides, about 700 nucleotides, about 600 nucleotides, about 500 nucleotides, about 400 nucleotides, about 300 nucleotides, about 200 nucleotides, about 100 nucleotides, about 80 nucleotides, about 70 nucleotides, about 60 nucleotides, about 50 nucleotides upstream (or 5′) from the 5′ end of exon 2× of PKD2. In some embodiments, the ASO targets a sequence at most about 1500 nucleotides, about 1000 nucleotides, about 800 nucleotides, about 700 nucleotides, about 600 nucleotides, about 500 nucleotides, about 400 nucleotides, about 300 nucleotides, about 200 nucleotides, about 100 nucleotides, about 80 nucleotides, about 70 nucleotides, about 60 nucleotides, about 50 nucleotides upstream (or 5′) from GRCh38/hg38: chr4:88031085 88031140 of PKD2.


In some embodiments, the ASO targets a sequence about 1500 nucleotides, about 1000 nucleotides, about 800 nucleotides, about 700 nucleotides, about 600 nucleotides, about 500 nucleotides, about 400 nucleotides, about 300 nucleotides, about 200 nucleotides, about 100 nucleotides, about 80 nucleotides, about 70 nucleotides, about 60 nucleotides, about 50 nucleotides downstream (or 3′) from the 3′ end of exon 2× of PKD2. In some embodiments, the ASO targets a sequence about 1500 nucleotides, about 1000 nucleotides, about 800 nucleotides, about 700 nucleotides, about 600 nucleotides, about 500 nucleotides, about 400 nucleotides, about 300 nucleotides, about 200 nucleotides, about 100 nucleotides, about 80 nucleotides, about 70 nucleotides, about 60 nucleotides, about 50 nucleotides downstream (or 3′) from GRCh38/hg38: chr4:88031085 88031140 of PKD2.


In some embodiments, the ASO targets a sequence at most about 1500 nucleotides, about 1000 nucleotides, about 800 nucleotides, about 700 nucleotides, about 600 nucleotides, about 500 nucleotides, about 400 nucleotides, about 300 nucleotides, about 200 nucleotides, about 100 nucleotides, about 80 nucleotides, about 70 nucleotides, about 60 nucleotides, about 50 nucleotides downstream (or 3′) from the 3′ end of exon 2× of PKD2. In some embodiments, the ASO targets a sequence at most about 1500 nucleotides, about 1000 nucleotides, about 800 nucleotides, about 700 nucleotides, about 600 nucleotides, about 500 nucleotides, about 400 nucleotides, about 300 nucleotides, about 200 nucleotides, about 100 nucleotides, about 80 nucleotides, about 70 nucleotides, about 60 nucleotides, about 50 nucleotides downstream (or 3′) from GRCh38/hg38: chr4:88031085 88031140 of PKD2.


In some embodiments, the ASO has a sequence complementary to the targeted portion of the pre-mRNA according to any one of the sequences listed in Table 2 or Table 3.


In some embodiments, the ASO targets a sequence upstream from the 5′ end of an NIE. For example, ASOs targeting a sequence upstream from the 5′ end of an NIE (e.g., exon 2× of PKD2) comprises a sequence that is at least about 80%, 85%, 90%, 95%, 97%, or 100% complimentary to at least 8 contiguous nucleic acids of any one of the sequences listed in Table 2 or Table 3. For example, ASOs targeting a sequence upstream from the 5′ end of an NIE (e.g., exon (GRCh38/hg38: chr4:88031085 88031140) of PKD2) can comprise a sequence with at least 80%, 85%, 90%, 95%, 97%, or 100% sequence identity to any one of the sequences listed in Table 2 or Table 3.


In some embodiments, the ASOs target a sequence containing an exon-intron boundary (or junction). For example, ASOs targeting a sequence containing an exon-intron boundary can comprise a sequence that is at least about 80%, 85%, 90%, 95%, 97%, or 100% complimentary to at least 8 contiguous nucleic acids of any one of the sequences listed in Table 2 or Table 3. In some embodiments, the ASOs target a sequence downstream from the 3′ end of an NIE. For example, ASOs targeting a sequence downstream from the 3′ end of an NIE (e.g., exon 2× of PKD2) can comprise a sequence with at least 80%, 85%, 90%, 95%, 97%, or 100% sequence identity to any one of the sequences listed in Table 2 or Table 3. For example, ASOs targeting a sequence downstream from the 3′ end of an NIE (e.g., exon (GRCh38/hg38: chr4:88031085 88031140) of PKD2) can comprise a sequence with at least 80%, 85%, 90%, 95%, 97%, or 100% sequence identity to any one of the sequences listed in Table 2 or Table 3. In some embodiments, ASOs target a sequence within an NIE.


In some embodiments, the ASO targets exon 2× of a PKD2 NIE containing pre-mRNA comprising NIE exon 2. In some embodiments, the ASO targets a sequence downstream (or 3′) from the 5′ end of exon 2× of PKD2 pre-mRNA. In some embodiments, the ASO targets an exon 2× sequence upstream (or 5′) from the 3′ end of exon 2× of PKD2 pre-mRNA.


In some embodiments, the targeted portion of the PKD2 NIE containing pre-mRNA is in intron 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, or 50. In some embodiments, hybridization of an ASO to the targeted portion of the NIE pre-mRNA results in exon skipping of at least one of NIE within intron 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, or 50, and subsequently increases polycystin 2 production. In some embodiments, the targeted portion of the PKD2 NIE containing pre-mRNA is in intron 2 of PKD2. In some embodiments, the targeted portion of the PKD2 NIE containing pre-mRNA is intron (GRCh38/hg38:chr4 88019572 88036219) of PKD2.


In some embodiments, the methods and compositions of the present disclosure are used to increase the expression of PKD2 by inducing exon skipping of a NIE of an PKD2 NIE containing pre-mRNA. In some embodiments, the NIE is a sequence within any of introns 1-50. In some embodiments, the NIE is a sequence within any of introns 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, or 50. In some embodiments, the NIE can be any PKD2 intron or a portion thereof. In some embodiments, the NIE is within intron 2 of PKD2. In some embodiments, the NIE is within intron (GRCh38/hg38:chr4 88019572 88036219) of PKD2.


Protein Expression

In some embodiments, a mutation occurs in both alleles. In some embodiments, a mutation occurs in one of the two alleles. In some embodiments, additional mutation occurs in one of the two alleles. In some embodiments, the additional mutation occurs in the same allele as the first mutation. In other embodiments, the additional mutation occurs is a trans mutation.


In some embodiments, the methods described herein are used to increase the production of a functional polycystin 2 protein or RNA. As used herein, the term “functional” refers to the amount of activity or function of a polycystin 2 protein or RNA that is necessary to eliminate any one or more symptoms of a treated condition or disease, e.g., polycystic kidney disease with or without polycystic liver disease, autosomal dominant polycystic kidney disease, and intracranial aneurysm. In some embodiments, the methods are used to increase the production of a partially functional polycystin 2 protein or RNA. As used herein, the term “partially functional” refers to any amount of activity or function of polycystin 2 protein or RNA that is less than the amount of activity or function that is necessary to eliminate or prevent any one or more symptoms of a disease or condition. In some embodiments, a partially functional protein or RNA will have at least 10%, at least 20%, at least 30%, at least 40%, at least 50%, at least 60%, at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, or at least 95% less activity relative to the fully functional protein or RNA.


In some embodiments, the method is a method of increasing the expression of polycystin 2 by cells of a subject having a NIE containing pre-mRNA encoding polycystin 2, wherein the subject has polycystic kidney disease with or without polycystic liver disease, autosomal dominant polycystic kidney disease, or intracranial aneurysm caused by a deficient amount of activity of polycystin 2, and wherein the deficient amount of polycystin 2 is caused by haploinsufficiency of polycystin 2. In such an embodiment, the subject has a first allele encoding functional polycystin 2, and a second allele from which polycystin 2 is not produced. In another such embodiment, the subject has a first allele encoding functional polycystin 2, and a second allele encoding nonfunctional polycystin 2. In another such embodiment, the subject has a first allele encoding functional polycystin 2, and a second allele encoding partially functional polycystin 2. In any of these embodiments, the antisense oligomer binds to a targeted portion of the NIE containing pre-mRNA transcribed from the second allele, thereby inducing exon skipping of the NIE from the pre-mRNA and causing an increase in the level of mature mRNA encoding functional polycystin 2, and an increase in the expression of polycystin 2 in the cells of the subject.


In some embodiments, the method is a method of decreasing the expression of the target protein by cells of a subject having a NSE pre-mRNA encoding the target protein, wherein the subject has a disease caused by an excess amount of activity of the target protein, wherein the excess amount of the target protein is caused by a mutation, and wherein the target is any one selected from the group consisting of PKD2. In some embodiments, the antisense oligomer binds to a targeted portion of the NSE pre-mRNA transcribed from the allele carrying a mutation, thereby increasing alternate splicing of NSEs into the pre-mRNA, and causing an decrease in the level of mature mRNA encoding the functional target protein, and an decrease in the expression of the target protein in the cells of the subject. In related embodiments, the method is a method of using an ASO to decrease the expression of a functional protein or functional RNA. In some embodiments, an ASO is used to decrease the expression of the target protein in cells of a subject having a NSE pre-mRNA encoding the target protein, wherein the subject has an excess in the amount or function of the target protein.


In some embodiments, the method is a method of modulating the expression of the target protein by cells of a subject having a NSE pre-mRNA encoding the target protein, wherein the subject has a disease caused by a deficient or excess amount of activity of the target protein, wherein the deficient or excess amount of the target protein is caused by a mutation, and wherein the target is any one selected from the group consisting of PKD2. In some embodiments, the antisense oligomer binds to a targeted portion of the NSE pre-mRNA transcribed from the allele carrying a mutation, thereby modulating alternate splicing of NSEs into the pre-mRNA, and causing an modulation in the level of mature mRNA encoding the functional target protein, and an modulation in the expression of the target protein in the cells of the subject. In related embodiments, the method is a method of using an ASO to modulate the expression of a functional protein or functional RNA. In some embodiments, an ASO is used to modulate the expression of the target protein in cells of a subject having a NSE pre-mRNA encoding the target protein, wherein the subject has an abnormality in the amount or function of the target protein.


In some embodiments, the method is a method of increasing the expression of polycystin 2 by cells of a subject having a NIE containing pre-mRNA encoding polycystin 2, wherein the subject has polycystic kidney disease with or without polycystic liver disease, autosomal dominant polycystic kidney disease, or intracranial aneurysm caused by a deficient amount of activity of polycystin 2, and wherein the deficient amount of polycystin 2 is caused by autosomal recessive inheritance.


In some embodiments, the method is a method of increasing the expression of polycystin 2 by cells of a subject having a NIE containing pre-mRNA encoding polycystin 2, wherein the subject has polycystic kidney disease with or without polycystic liver disease, autosomal dominant polycystic kidney disease, or intracranial aneurysm caused by a deficient amount of activity of polycystin 2, and wherein the deficient amount of polycystin 2 is caused by autosomal dominant inheritance.


In some embodiments, the method is a method of increasing the expression of polycystin 2 by cells of a subject having a NIE containing pre-mRNA encoding polycystin 2, wherein the subject has polycystic kidney disease with or without polycystic liver disease, autosomal dominant polycystic kidney disease, or intracranial aneurysm caused by a deficient amount of activity of polycystin 2, and wherein the deficient amount of polycystin 2 is caused by X-linked dominant inheritance.


In related embodiments, the method is a method of using an ASO to increase the expression of a protein or functional RNA. In some embodiments, an ASO may be used to increase the expression of polycystin 2 in cells of a subject having a NIE containing pre-mRNA encoding polycystin 2, wherein the subject has a deficiency, e.g., polycystic kidney disease with or without polycystic liver disease, autosomal dominant polycystic kidney disease, or intracranial aneurysm, in the amount or function of a polycystin 2.


In some embodiments, the NIE containing pre-mRNA transcript that encodes the protein that is causative of the disease or condition is targeted by the ASOs described herein. In some embodiments, a NIE containing pre-mRNA transcript that encodes a protein that is not causative of the disease is targeted by the ASOs. For example, a disease that is the result of a mutation or deficiency of a first protein in a particular pathway may be ameliorated by targeting a NIE containing pre-mRNA that encodes a second protein, thereby increasing production of the second protein. In some embodiments, the function of the second protein is able to compensate for the mutation or deficiency of the first protein (which is causative of the disease or condition). In some embodiments, the subject has (a) a first allele that is wild type and (b) a second allele that is a mutant allele from which (i) polycystin 2 is produced at a reduced level compared to production from a wild-type allele, (ii) polycystin 2 is produced in a form having reduced function compared to an equivalent wild-type protein, or (iii) polycystin 2 or functional RNA is not produced.


In some embodiments, the subject has:

    • (a) a first mutant allele from which
      • (i) polycystin 2 is produced at a reduced level compared to production from a wild-type allele,
      • (ii) polycystin 2 is produced in a form having reduced function compared to an equivalent wild-type protein, or
      • (iii) polycystin 2 or functional RNA is not produced; and
    • (b) a second mutant allele from which
      • (i) polycystin 2 is produced at a reduced level compared to production from a wild-type allele,
      • (ii) polycystin 2 is produced in a form having reduced function compared to an equivalent wild-type protein, or
      • (iii) polycystin 2 is not produced, and


        wherein the NIE containing pre-mRNA is transcribed from the first allele and/or the second allele, and wherein when the subject has the first mutant allele (a)(iii) the second mutant allele is not (b)(iii), and wherein when the subject has the second mutant allele (b)(iii) the first mutant allele is not (a)(iii). In these embodiments, the ASO binds to a targeted portion of the NIE containing pre-mRNA transcribed from the first allele or the second allele, thereby inducing exon skipping of the NIE from the NIE containing pre-mRNA and causing an increase in the level of mRNA encoding polycystin 2 and an increase in the expression of the target protein or functional RNA in the cells of the subject. In these embodiments, the target protein or functional RNA having an increase in expression level resulting from the exon skipping of the NIE from the NIE containing pre-mRNA may be either in a form having reduced function compared to the equivalent wild-type protein (partially-functional), or having full function compared to the equivalent wild-type protein (fully-functional).


In some embodiments, the level of mRNA encoding polycystin 2 is increased 1.1 to 10-fold, when compared to the amount of mRNA encoding polycystin 2 that is produced in a control cell, e.g., one that is not treated with the antisense oligomer or one that is treated with an antisense oligomer that does not bind to the targeted portion of the PKD2 NIE containing pre-mRNA.


In some embodiments, a subject treated using the methods of the present disclosure expresses a partially functional polycystin 2 from one allele, wherein the partially functional polycystin 2 may be caused by a frameshift mutation, a nonsense mutation, a missense mutation, or a partial gene deletion. In some embodiments, a subject treated using the methods of the disclosure expresses a nonfunctional polycystin 2 from one allele, wherein the nonfunctional polycystin 2 may be caused by a frameshift mutation, a nonsense mutation, a missense mutation, a partial gene deletion, in one allele. In some embodiments, a subject treated using the methods of the disclosure has a PKD2 whole gene deletion, in one allele.


Exon Inclusion

In some embodiments, the included NIE is the most abundant NIE in a population of NIE containing pre-mRNAs transcribed from the gene encoding the target protein in a cell. In some embodiments, the included NIE is the most abundant NIE in a population of NIE containing pre-mRNAs transcribed from the gene encoding the target protein in a cell, wherein the population of NIE containing pre-mRNAs comprises two or more included NIEs. In some embodiments, an antisense oligomer targeted to the most abundant NIE in the population of NIE containing pre-mRNAs encoding the target protein induces exon skipping of one or two or more NIEs in the population, including the NIE to which the antisense oligomer is targeted or binds. In some embodiments, the targeted region is in a NIE that is the most abundant NIE in a NIE containing pre-mRNA encoding polycystin 2.


The degree of exon inclusion can be expressed as percent exon inclusion, e.g., the percentage of transcripts in which a given NIE is included. In brief, percent exon inclusion can be calculated as the percentage of the amount of RNA transcripts with the exon inclusion, over the sum of the average of the amount of RNA transcripts with exon inclusion plus the average of the amount of RNA transcripts with exon exclusion.


A NSE can be created as a result of splicing in additional base pairs.


The degree of alternative splicing can be expressed as percent alternative splicing, e.g., the percent-age of transcripts in which a given NSE is included. In brief, percent alternative splicing can be calculated as the percentage of the amount of RNA transcripts with the NSE, over the sum of the average of the amount of RNA transcripts with a NSE plus the average of the amount of RNA transcripts with only the canonical exons.


In some embodiments, an included NIE is an exon that is identified as an included NIE based on a determination of at least about 5%, at least about 10%, at least about 15%, at least about 20%, at least about 25%, at least about 30%, at least about 35%, at least about 40%, at least about 45%, or at least about 50%, inclusion. In embodiments, a included NIE is an exon that is identified as a included NIE based on a determination of about 5% to about 100%, about 5% to about 95%, about 5% to about 90%, about 5% to about 85%, about 5% to about 80%, about 5% to about 75%, about 5% to about 70%, about 5% to about 65%, about 5% to about 60%, about 5% to about 55%, about 5% to about 50%, about 5% to about 45%, about 5% to about 40%, about 5% to about 35%, about 5% to about 30%, about 5% to about 25%, about 5% to about 20%, about 5% to about 15%, about 10% to about 100%, about 10% to about 95%, about 10% to about 90%, about 10% to about 85%, about 10% to about 80%, about 10% to about 75%, about 10% to about 70%, about 10% to about 65%, about 10% to about 60%, about 10% to about 55%, about 10% to about 50%, about 10% to about 45%, about 10% to about 40%, about 10% to about 35%, about 10% to about 30%, about 10% to about 25%, about 10% to about 20%, about 15% to about 100%, about 15% to about 95%, about 15% to about 90%, about 15% to about 85%, about 15% to about 80%, about 15% to about 75%, about 15% to about 70%, about 15% to about 65%, about 15% to about 60%, about 15% to about 55%, about 15% to about 50%, about 15% to about 45%, about 15% to about 40%, about 15% to about 35%, about 15% to about 30%, about 15% to about 25%, about 20% to about 100%, about 20% to about 95%, about 20% to about 90%, about 20% to about 85%, about 20% to about 80%, about 20% to about 75%, about 20% to about 70%, about 20% to about 65%, about 20% to about 60%, about 20% to about 55%, about 20% to about 50%, about 20% to about 45%, about 20% to about 40%, about 20% to about 35%, about 20% to about 30%, about 25% to about 100%, about 25% to about 95%, about 25% to about 90%, about 25% to about 85%, about 25% to about 80%, about 25% to about 75%, about 25% to about 70%, about 25% to about 65%, about 25% to about 60%, about 25% to about 55%, about 25% to about 50%, about 25% to about 45%, about 25% to about 40%, or about 25% to about 35%, inclusion. ENCODE data (described by, e.g., Tilgner, et al., 2012, “Deep sequencing of subcellular RNA fractions shows splicing to be predominantly co-transcriptional in the human genome but inefficient for lncRNAs,” Genome Research 22(9):1616-25) can be used to aid in identifying exon inclusion.


In some embodiments, contacting cells with an ASO that is complementary to a targeted portion of a PKD2 pre-mRNA transcript results in an increase in the amount of polycystin 2 produced by at least 10, 20, 30, 40, 50, 60, 80, 100, 150, 200, 250, 300, 350, 400, 450, 500, or 1000%, compared to the amount of the protein produced by a cell in the absence of the ASO/absence of treatment. In some embodiments, the total amount of polycystin 2 produced by the cell to which the antisense oligomer is contacted is increased about 20% to about 300%, about 50% to about 300%, about 100% to about 300%, about 150% to about 300%, about 20% to about 50%, about 20% to about 100%, about 20% to about 150%, about 20% to about 200%, about 20% to about 250%, about 50% to about 100%, about 50% to about 150%, about 50% to about 200%, about 50% to about 250%, about 100% to about 150%, about 100% to about 200%, about 100% to about 250%, about 150% to about 200%, about 150% to about 250%, about 200% to about 250%, at least about 10%, at least about 20%, at least about 50%, at least about 100%, at least about 150%, at least about 200%, at least about 250%, or at least about 300%, compared to the amount of target protein produced by a control compound. In some embodiments, the total amount of polycystin 2 produced by the cell to which the antisense oligomer is contacted is increased about 1.1 to about 10-fold, about 1.5 to about 10-fold, about 2 to about 10-fold, about 3 to about 10-fold, about 4 to about 10-fold, about 1.1 to about 5-fold, about 1.1 to about 6-fold, about 1.1 to about 7-fold, about 1.1 to about 8-fold, about 1.1 to about 9-fold, about 2 to about 5-fold, about 2 to about 6-fold, about 2 to about 7-fold, about 2 to about 8-fold, about 2 to about 9-fold, about 3 to about 6-fold, about 3 to about 7-fold, about 3 to about 8-fold, about 3 to about 9-fold, about 4 to about 7-fold, about 4 to about 8-fold, about 4 to about 9-fold, at least about 1.1-fold, at least about 1.5-fold, at least about 2-fold, at least about 2.5-fold, at least about 3-fold, at least about 3.5-fold, at least about 4-fold, at least about 5-fold, or at least about 10-fold, compared to the amount of target protein produced by a control compound. A control compound can be, for example, an oligonucleotide that is not complementary to a targeted portion of the pre-mRNA.


In some embodiments, contacting cells with an ASO that is complementary to a targeted portion of a PKD2 pre-mRNA transcript results in an increase in the amount of mRNA encoding PKD2, including the mature mRNA encoding the target protein. In some embodiments, the amount of mRNA encoding polycystin 2, or the mature mRNA encoding polycystin 2, is increased by at least 10, 20, 30, 40, 50, 60, 80, 100, 150, 200, 250, 300, 350, 400, 450, 500, or 1000%, compared to the amount of the protein produced by a cell in the absence of the ASO/absence of treatment. In some embodiments, the total amount of the mRNA encoding polycystin 2, or the mature mRNA encoding polycystin 2 produced in the cell to which the antisense oligomer is contacted is increased about 20% to about 300%, about 50% to about 300%, about 100% to about 300%, about 150% to about 300%, about 20% to about 50%, about 20% to about 100%, about 20% to about 150%, about 20% to about 200%, about 20% to about 250%, about 50% to about 100%, about 50% to about 150%, about 50% to about 200%, about 50% to about 250%, about 100% to about 150%, about 100% to about 200%, about 100% to about 250%, about 150% to about 200%, about 150% to about 250%, about 200% to about 250%, at least about 10%, at least about 20%, at least about 50%, at least about 100%, at least about 150%, at least about 200%, at least about 250%, or at least about 300%, compared to the amount of mature RNA produced in an untreated cell, e.g., an untreated cell or a cell treated with a control compound. In some embodiments, the total amount of the mRNA encoding polycystin 2, or the mature mRNA encoding polycystin 2 produced in the cell to which the antisense oligomer is contacted is increased about 1.1 to about 10-fold, about 1.5 to about 10-fold, about 2 to about 10-fold, about 3 to about 10-fold, about 4 to about 10-fold, about 1.1 to about 5-fold, about 1.1 to about 6-fold, about 1.1 to about 7-fold, about 1.1 to about 8-fold, about 1.1 to about 9-fold, about 2 to about 5-fold, about 2 to about 6-fold, about 2 to about 7-fold, about 2 to about 8-fold, about 2 to about 9-fold, about 3 to about 6-fold, about 3 to about 7-fold, about 3 to about 8-fold, about 3 to about 9-fold, about 4 to about 7-fold, about 4 to about 8-fold, about 4 to about 9-fold, at least about 1.1-fold, at least about 1.5-fold, at least about 2-fold, at least about 2.5-fold, at least about 3-fold, at least about 3.5-fold, at least about 4-fold, at least about 5-fold, or at least about 10-fold compared to the amount of mature RNA produced in an untreated cell, e.g., an untreated cell or a cell treated with a control compound. A control compound can be, for example, an oligonucleotide that is not complementary to a targeted portion of the PKD2 NIE containing pre-mRNA.


In some embodiments, contacting cells with an ASO that is complementary to a targeted portion of a PKD2 pre-mRNA transcript results in a decrease in the amount of polycystin 2 produced by at least 10, 20, 30, 40, 50, 60, 80, 100%, compared to the amount of the protein produced by a cell in the absence of the ASO/absence of treatment. In some embodiments, the total amount of polycystin 2 produced by the cell to which the antisense oligomer is contacted is decreased about 20% to about 100%, about 50% to about 100%, about 20% to about 50%, or about 20% to about 100% compared to the amount of target protein produced by a control compound. In some embodiments, the total amount of polycystin 2 produced by the cell to which the antisense oligomer is contacted is decreased about 1.1 to about 10-fold, about 1.5 to about 10-fold, about 2 to about 10-fold, about 3 to about 10-fold, about 4 to about 10-fold, about 1.1 to about 5-fold, about 1.1 to about 6-fold, about 1.1 to about 7-fold, about 1.1 to about 8-fold, about 1.1 to about 9-fold, about 2 to about 5-fold, about 2 to about 6-fold, about 2 to about 7-fold, about 2 to about 8-fold, about 2 to about 9-fold, about 3 to about 6-fold, about 3 to about 7-fold, about 3 to about 8-fold, about 3 to about 9-fold, about 4 to about 7-fold, about 4 to about 8-fold, about 4 to about 9-fold, at least about 1.1-fold, at least about 1.5-fold, at least about 2-fold, at least about 2.5-fold, at least about 3-fold, at least about 3.5-fold, at least about 4-fold, at least about 5-fold, or at least about 10-fold, compared to the amount of target protein produced by a control compound. A control compound can be, for example, an oligonucleotide that is not complementary to a targeted portion of the pre-mRNA.


In some embodiments, the level of mRNA encoding polycystin 2 is decreased 1.1 to 10-fold, when compared to the amount of mRNA encoding polycystin 2 that is produced in a control cell, e.g., one that is not treated with the antisense oligomer or one that is treated with an antisense oligomer that does not bind to the targeted portion of the PKD2 containing pre-mRNA.


In some embodiments, the level of mRNA encoding polycystin 2 is decreased 1.1 to 10-fold, when compared to the amount of mRNA encoding polycystin 2 that is produced in a control cell, e.g., one that is not treated with the antisense oligomer or one that is treated with an antisense oligomer that does not bind to the targeted portion of the PKD2 pre-mRNA.


In some embodiments of the present invention, a subject can have a mutation in PKD2. A variety of pathogenic variants have been reported to cause PKD2 deficiency, including missense variants, nonsense variants, single- and double-nucleotide insertions and deletions, complex insertion/deletions, and splice site variants. In the presence of this pathogenic variant approximately 2%-5% of transcripts are correctly spliced, allowing for residual enzyme activity. In some embodiments, disease results from loss of function of PKD2 caused by PKD2 pathogenic variants that generate truncated proteins or proteins with altered conformations or reduced activity.


In some embodiments, a subject having any PKD2 mutation known in the art and described as above can be treated using the methods and compositions described herein. In some embodiments, the mutation is within any PKD2 intron or exon. In some embodiments, the mutation is within PKD2 exon 2, 3 or 4.


The NIE can be in any length. In some embodiments, the NIE does not comprise a full sequence of an intron. In some embodiments, the NIE comprises a full sequence of an intron and a full sequence of an exon upstream of the intron and a full sequence of an exon downstream of the intron. In some embodiments, the NIE can be a portion of the intron. In some embodiments, the NIE can comprise a 5′ end portion of a canonical intron sequence. In some embodiments, the NIE can comprise a canonical 5′ss sequence of a canonical intron. In some embodiments, the NIE can comprise a 3′ end portion of a canonical intron. In some embodiments, the NIE can comprise a canonical 3′ss sequence of a canonical intron. In some embodiments, the NIE can be a portion within an intron without inclusion of a canonical 5′ss sequence of the intron. In some embodiments, the NIE can be a portion within an intron without inclusion of a canonical 3′ss sequence of the intron. In some embodiments, the NIE can be a portion within an intron without inclusion of either a canonical 5′ss sequence or a canonical 3′ss sequence of the intron. In some embodiments, the NIE can be from 5 nucleotides to 10 nucleotides in length, from 10 nucleotides to 15 nucleotides in length, from 15 nucleotides to 20 nucleotides in length, from 20 nucleotides to 25 nucleotides in length, from 25 nucleotides to 30 nucleotides in length, from 30 nucleotides to 35 nucleotides in length, from 35 nucleotides to 40 nucleotides in length, from 40 nucleotides to 45 nucleotides in length, from 45 nucleotides to 50 nucleotides in length, from 50 nucleotides to 55 nucleotides in length, from 55 nucleotides to 60 nucleotides in length, from 60 nucleotides to 65 nucleotides in length, from 65 nucleotides to 70 nucleotides in length, from 70 nucleotides to 75 nucleotides in length, from 75 nucleotides to 80 nucleotides in length, from 80 nucleotides to 85 nucleotides in length, from 85 nucleotides to 90 nucleotides in length, from 90 nucleotides to 95 nucleotides in length, or from 95 nucleotides to 100 nucleotides in length. In some embodiments, the NIE can be at least 10 nucleotides, at least 20 nucleotides, at least 30 nucleotides, at least 40 nucleotides, at least 50 nucleotides, at least 60 nucleoids, at least 70 nucleotides, at least 80 nucleotides in length, at least 90 nucleotides, or at least 100 nucleotides in length. In some embodiments, the NIE can be from 100 to 200 nucleotides in length, from 200 to 300 nucleotides in length, from 300 to 400 nucleotides in length, from 400 to 500 nucleotides in length, from 500 to 600 nucleotides in length, from 600 to 700 nucleotides in length, from 700 to 800 nucleotides in length, from 800 to 900 nucleotides in length, from 900 to 1,000 nucleotides in length. In some embodiments, the NIE may be longer than 1,000 nucleotides in length.


Inclusion of a NIE can lead to a frameshift and the introduction of a premature termination codon (PTC) (or premature stop codon)) in the mature mRNA transcript rendering the transcript a target of NMD. Mature mRNA transcript containing NIE can be non-productive mRNA transcript which does not lead to protein expression. The PTC can be present in any position downstream of an NIE. In some embodiments, the PTC can be present in any exon downstream of an NIE. In some embodiments, the PTC can be present within the NIE. For example, inclusion of exon 2× of PKD2 pre-mRNA in an mRNA transcript encoded by the PKD2 gene can induce a PTC in the mRNA transcript. For example, inclusion of exon (GRCh38/hg38: chr4:88031085 88031140) of PKD2 in an mRNA transcript encoded by PKD2.


Therapeutic Agents

In some embodiments, the agents as used herein refers to the therapeutic agents. In some embodiments, the therapeutic agents as used herein refers to the agents.


In various embodiments of the present disclosure, compositions and methods comprising a therapeutic agent are provided to modulate protein expression level of PKD2. In some embodiments, provided herein are compositions and methods to modulate alternative splicing of PKD2 pre-mRNA. In some embodiments, provided herein are compositions and methods to induce exon skipping in the splicing of PKD2 pre-mRNA, e.g., to induce skipping of a NMD exon during splicing of PKD2 pre-mRNA. In other embodiments, therapeutic agents may be used to induce the inclusion of an exon in order to decrease the protein expression level.


A therapeutic agent disclosed herein can be a NIE repressor agent. A therapeutic agent may comprise a polynucleic acid polymer. A therapeutic agent disclosed herein can be an alternative splicing repressor agent. In some embodiments, a therapeutic agent may comprise a polynucleic acid polymer. In other embodiments, a therapeutic agent may comprise a small molecule. In other embodiments, a therapeutic agent may comprise a polypeptide. In some embodiments, the therapeutic agent is a nucleic acid binding protein, with or without being complexed with a nucleic acid molecule. In other embodiments, the therapeutic agent is a nucleic acid molecule that encodes for another therapeutic agent. In further embodiments, the therapeutic agent is incorporated into a viral delivery system, such as an adenovirus-associated vector.


According to one aspect of the present disclosure, provided herein is a method of treatment or prevention of a condition or disease associated with a functional polycystin 2 or polycystin 1 deficiency, comprising administering a NIE repressor agent to a subject to increase levels of functional polycystin 2, wherein the agent binds to a region of the pre-mRNA transcript to decrease inclusion of the NIE in the mature transcript. For example, provided herein is a method of treatment or prevention of a condition associated with a functional polycystin 2 or polycystin 1 deficiency, comprising administering a NIE repressor agent to a subject to increase levels of functional polycystin 2, wherein the agent binds to a region of an intron containing an NIE (e.g., exon 2× of PKD2) of the pre-mRNA transcript or to a NIE-activating regulatory sequence in the same intron. For example, provided herein is a method of treatment or prevention of a condition associated with a functional polycystin 2 or polycystin 1 deficiency, comprising administering a NIE repressor agent to a subject to increase levels of functional polycystin 2, wherein the agent binds to a region of an intron containing an NIE (e.g., exon (GRCh38/hg38: chr4:88031085 88031140) of PKD2) of the pre-mRNA transcript or to a NIE-activating regulatory sequence in the same intron. For another example, provided herein is a method of treatment or prevention of a condition associated with a functional-polycystin 2 or polycystin 1 deficiency, comprising administering an alternative splicing repressor agent to a subject to increase levels of functional polycystin 2, wherein the agent binds to a region of an exon or an intron (e.g., exon 3 or 4, intron 2, 3 or 4 in human PKD2 gene) of the pre-mRNA transcript.


According to one aspect of the present disclosure, provided herein is a method of treatment or prevention of a condition associated with a functional-polycystin 2 or polycystin 1 deficiency, comprising administering an alternative splicing repressor agent to a subject to increase levels of functional polycystin 2, wherein the agent binds to a region of the pre-mRNA transcript to decrease inclusion of the NSE in the mature transcript.


Alternatively, for example, provided herein is a method of treatment or prevention of a condition associated with a functional target protein overexpression, comprising administering an alternative splicing repressor agent to a subject to decrease levels of functional target protein, wherein the agent binds to a region of an exon or an intron of the pre-mRNA transcript, wherein the target protein is polycystin 2.


Where reference is made to reducing NIE inclusion in the mature mRNA, the reduction may be complete, e.g., 100%, or may be partial. The reduction may be clinically significant. The reduction/correction may be relative to the level of NIE inclusion in the subject without treatment, or relative to the amount of NIE inclusion in a population of similar subjects. The reduction/correction may be at least 10% less NIE inclusion relative to the average subject, or the subject prior to treatment. The reduction may be at least 20% less NIE inclusion relative to an average subject, or the subject prior to treatment. The reduction may be at least 40% less NIE inclusion relative to an average subject, or the subject prior to treatment. The reduction may be at least 50% less NIE inclusion relative to an average subject, or the subject prior to treatment. The reduction may be at least 60% less NIE inclusion relative to an average subject, or the subject prior to treatment. The reduction may be at least 80% less NIE inclusion relative to an average subject, or the subject prior to treatment. The reduction may be at least 90% less NIE inclusion relative to an average subject, or the subject prior to treatment.


Where reference is made to increasing active polycystin 2 levels, the increase may be clinically significant. The increase may be relative to the level of active polycystin 2 in the subject without treatment, or relative to the amount of active polycystin 2 in a population of similar subjects. The increase may be at least 10% more active polycystin 2 relative to the average subject, or the subject prior to treatment. The increase may be at least 20% more active polycystin 2 relative to the average subject, or the subject prior to treatment. The increase may be at least 40% more active polycystin 2 relative to the average subject, or the subject prior to treatment. The increase may be at least 50% more active polycystin 2 relative to the average subject, or the subject prior to treatment. The increase may be at least 80% more active polycystin 2 relative to the average subject, or the subject prior to treatment. The increase may be at least 100% more active polycystin 2 relative to the average subject, or the subject prior to treatment. The increase may be at least 200% more active polycystin 2 relative to the average subject, or the subject prior to treatment. The increase may be at least 500% more active polycystin 2 relative to the average subject, or the subject prior to treatment.


Where reference is made to decreasing functional-polycystin 2 levels, the decrease may be clinically significant. The decrease may be relative to the level of functional-polycystin 2 in the subject without treatment, or relative to the amount of functional-polycystin 2 in a population of similar subjects. The decrease may be at least 10% less functional-polycystin 2 relative to the average subject, or the subject prior to treatment. The decrease may be at least 20% less functional-polycystin 2 relative to the average subject, or the subject prior to treatment. The decrease may be at least 40% less functional-polycystin 2 relative to the average subject, or the subject prior to treatment. The decrease may be at least 50% less functional-polycystin 2 relative to the average subject, or the subject prior to treatment. The decrease may be at least 80% less functional-polycystin 2 relative to the average subject, or the subject prior to treatment. The decrease may be at least 100% less functional-polycystin 2 relative to the average subject, or the subject prior to treatment.


In embodiments wherein the NIE repressor agent comprises a polynucleic acid polymer, the polynucleic acid polymer may be about 50 nucleotides in length. The polynucleic acid polymer may be about 45 nucleotides in length. The polynucleic acid polymer may be about 40 nucleotides in length. The polynucleic acid polymer may be about 35 nucleotides in length. The polynucleic acid polymer may be about 30 nucleotides in length. The polynucleic acid polymer may be about 24 nucleotides in length. The polynucleic acid polymer may be about 25 nucleotides in length. The polynucleic acid polymer may be about 20 nucleotides in length. The polynucleic acid polymer may be about 19 nucleotides in length. The polynucleic acid polymer may be about 18 nucleotides in length. The polynucleic acid polymer may be about 17 nucleotides in length. The polynucleic acid polymer may be about 16 nucleotides in length. The polynucleic acid polymer may be about 15 nucleotides in length. The polynucleic acid polymer may be about 14 nucleotides in length. The polynucleic acid polymer may be about 13 nucleotides in length. The polynucleic acid polymer may be about 12 nucleotides in length. The polynucleic acid polymer may be about 11 nucleotides in length. The polynucleic acid polymer may be about 10 nucleotides in length. The polynucleic acid polymer may be between about 10 and about 50 nucleotides in length. The polynucleic acid polymer may be between about 10 and about 45 nucleotides in length. The polynucleic acid polymer may be between about 10 and about 40 nucleotides in length. The polynucleic acid polymer may be between about 10 and about 35 nucleotides in length. The polynucleic acid polymer may be between about 10 and about 30 nucleotides in length. The polynucleic acid polymer may be between about 10 and about 25 nucleotides in length. The polynucleic acid polymer may be between about 10 and about 20 nucleotides in length. The polynucleic acid polymer may be between about 15 and about 25 nucleotides in length. The polynucleic acid polymer may be between about 15 and about 30 nucleotides in length. The polynucleic acid polymer may be between about 12 and about 30 nucleotides in length.


In embodiments wherein the alternative splicing repressor agent comprises a polynucleic acid polymer, the polynucleic acid polymer may be about 50 nucleotides in length. In embodiments wherein the alternative splicing modulator agent comprises a polynucleic acid polymer, the polynucleic acid polymer may be about 50 nucleotides in length. The polynucleic acid polymer may be about 45 nucleotides in length. The polynucleic acid polymer may be about 40 nucleotides in length. The polynucleic acid polymer may be about 35 nucleotides in length. The polynucleic acid polymer may be about 30 nucleotides in length. The polynucleic acid polymer may be about 24 nucleotides in length. The polynucleic acid polymer may be about 25 nucleotides in length. The polynucleic acid polymer may be about 20 nucleotides in length. The polynucleic acid polymer may be about 19 nucleotides in length. The polynucleic acid polymer may be about 18 nucleotides in length. The polynucleic acid polymer may be about 17 nucleotides in length. The polynucleic acid polymer may be about 16 nucleotides in length. The polynucleic acid polymer may be about 15 nucleotides in length. The polynucleic acid polymer may be about 14 nucleotides in length. The polynucleic acid polymer may be about 13 nucleotides in length. The polynucleic acid polymer may be about 12 nucleotides in length. The polynucleic acid polymer may be about 11 nucleotides in length. The polynucleic acid polymer may be about 10 nucleotides in length. The polynucleic acid polymer may be between about 10 and about 50 nucleotides in length. The polynucleic acid polymer may be between about 10 and about 45 nucleotides in length. The polynucleic acid polymer may be between about 10 and about 40 nucleotides in length. The polynucleic acid polymer may be between about 10 and about 35 nucleotides in length. The polynucleic acid polymer may be between about 10 and about 30 nucleotides in length. The polynucleic acid polymer may be between about 10 and about 25 nucleotides in length. The polynucleic acid polymer may be between about 10 and about 20 nucleotides in length. The polynucleic acid polymer may be between about 15 and about 25 nucleotides in length. The polynucleic acid polymer may be between about 15 and about 30 nucleotides in length. The polynucleic acid polymer may be between about 12 and about 30 nucleotides in length.


The sequence of the polynucleic acid polymer may be at least 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 99.5% complementary to a target sequence of an mRNA transcript, e.g., a partially processed mRNA transcript. The sequence of the polynucleic acid polymer may be 100% complementary to a target sequence of a pre-mRNA transcript.


The sequence of the polynucleic acid polymer may have 4 or fewer mismatches to a target sequence of the pre-mRNA transcript. The sequence of the polynucleic acid polymer may have 3 or fewer mismatches to a target sequence of the pre-mRNA transcript. The sequence of the polynucleic acid polymer may have 2 or fewer mismatches to a target sequence of the pre-mRNA transcript. The sequence of the polynucleic acid polymer may have 1 or fewer mismatches to a target sequence of the pre-mRNA transcript. The sequence of the polynucleic acid polymer may have no mismatches to a target sequence of the pre-mRNA transcript.


The polynucleic acid polymer may specifically hybridize to a target sequence of the pre-mRNA transcript. For example, the polynucleic acid polymer may have 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, 99.5% or 100% sequence complementarity to a target sequence of the pre-mRNA transcript. The hybridization may be under high stringent hybridization conditions.


The polynucleic acid polymer comprises a sequence with at least 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 99.5% sequence identity to a sequence selected from the group consisting of the sequences listed in Table 4. The polynucleic acid polymer may comprise a sequence with 100% sequence identity to a sequence selected from the group consisting of the sequences listed in Table 4. The polynucleic acid polymer is a sequence with at least 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 99.5% sequence identity to a sequence selected from the group consisting of the sequences listed in Table 4. The polynucleic acid polymer is a sequence with 100% sequence identity to a sequence selected from the group consisting of the sequences listed in Table 4.


Where reference is made to a polynucleic acid polymer sequence, the skilled person will understand that one or more substitutions may be tolerated, optionally two substitutions may be tolerated in the sequence, such that it maintains the ability to hybridize to the target sequence; or where the substitution is in a target sequence, the ability to be recognized as the target sequence. References to sequence identity may be determined by BLAST sequence alignment using standard/default parameters. For example, the sequence may have 99% identity and still function according to the present disclosure. In other embodiments, the sequence may have 98% identity and still function according to the present disclosure. In another embodiment, the sequence may have 95% identity and still function according to the present disclosure. In another embodiment, the sequence may have 90% identity and still function according to the present disclosure.


Antisense Oligomers

Provided herein is a composition comprising an antisense oligomer that induces exon skipping by binding to a targeted portion of a PKD2 NIE containing pre-mRNA. As used herein, the terms “ASO” and “antisense oligomer” are used interchangeably and refer to an oligomer such as a polynucleotide, comprising nucleobases that hybridizes to a target nucleic acid (e.g., a PKD2 NIE containing pre-mRNA) sequence by Watson-Crick base pairing or wobble base pairing (G-U). The ASO may have exact sequence complementary to the target sequence or near complementarity (e.g., sufficient complementarity to bind the target sequence and enhancing splicing at a splice site). ASOs are designed so that they bind (hybridize) to a target nucleic acid (e.g., a targeted portion of a pre-mRNA transcript) and remain hybridized under physiological conditions. Typically, if they hybridize to a site other than the intended (targeted) nucleic acid sequence, they hybridize to a limited number of sequences that are not a target nucleic acid (to a few sites other than a target nucleic acid). Design of an ASO can take into consideration the occurrence of the nucleic acid sequence of the targeted portion of the pre-mRNA transcript or a sufficiently similar nucleic acid sequence in other locations in the genome or cellular pre-mRNA or transcriptome, such that the likelihood the ASO will bind other sites and cause “off-target” effects is limited. Any antisense oligomers known in the art, for example in PCT Application No. PCT/US2014/054151, published as WO 2015/035091, titled “Reducing Nonsense-Mediated mRNA Decay,” incorporated by reference herein, can be used to practice the methods described herein.


In some embodiments, ASOs “specifically hybridize” to or are “specific” to a target nucleic acid or a targeted portion of a NIE containing pre-mRNA. Typically, such hybridization occurs with a Tm substantially greater than 37° C., preferably at least 50° C., and typically between 60° C. to approximately 90° C. Such hybridization preferably corresponds to stringent hybridization conditions. At a given ionic strength and pH, the Tm is the temperature at which 50% of a target sequence hybridizes to a complementary oligonucleotide.


Oligomers, such as oligonucleotides, are “complementary” to one another when hybridization occurs in an antiparallel configuration between two single-stranded polynucleotides. A double-stranded polynucleotide can be “complementary” to another polynucleotide if hybridization can occur between one of the strands of the first polynucleotide and the second. Complementarity (the degree to which one polynucleotide is complementary with another) is quantifiable in terms of the proportion (e.g., the percentage) of bases in opposing strands that are expected to form hydrogen bonds with each other, according to generally accepted base-pairing rules. The sequence of an antisense oligomer (ASO) need not be 100% complementary to that of its target nucleic acid to hybridize. In certain embodiments, ASOs can comprise at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99% sequence complementarity to a target region within the target nucleic acid sequence to which they are targeted. For example, an ASO in which 18 of 20 nucleobases of the oligomeric compound are complementary to a target region, and would therefore specifically hybridize, would represent 90 percent complementarity. In this example, the remaining non-complementary nucleobases may be clustered together or interspersed with complementary nucleobases and need not be contiguous to each other or to complementary nucleobases. Percent complementarity of an ASO with a region of a target nucleic acid can be determined routinely using BLAST programs (basic local alignment search tools) and PowerBLAST programs known in the art (Altschul, et al., J. Mol. Biol., 1990, 215, 403-410; Zhang and Madden, Genome Res., 1997, 7, 649-656).


An ASO need not hybridize to all nucleobases in a target sequence and the nucleobases to which it does hybridize may be contiguous or noncontiguous. ASOs may hybridize over one or more segments of a pre-mRNA transcript, such that intervening or adjacent segments are not involved in the hybridization event (e.g., a loop structure or hairpin structure may be formed). In certain embodiments, an ASO hybridizes to noncontiguous nucleobases in a target pre-mRNA transcript. For example, an ASO can hybridize to nucleobases in a pre-mRNA transcript that are separated by one or more nucleobase(s) to which the ASO does not hybridize.


The ASOs described herein comprise nucleobases that are complementary to nucleobases present in a target portion of a NIE containing pre-mRNA. The term ASO embodies oligonucleotides and any other oligomeric molecule that comprises nucleobases capable of hybridizing to a complementary nucleobase on a target mRNA but does not comprise a sugar moiety, such as a peptide nucleic acid (PNA). The ASOs may comprise naturally occurring nucleotides, nucleotide analogs, modified nucleotides, or any combination of two or three of the preceding. The term “naturally occurring nucleotides” includes deoxyribonucleotides and ribonucleotides. The term “modified nucleotides” includes nucleotides with modified or substituted sugar groups and/or having a modified backbone. In some embodiments, all of the nucleotides of the ASO are modified nucleotides. Chemical modifications of ASOs or components of ASOs that are compatible with the methods and compositions described herein will be evident to one of skill in the art and can be found, for example, in U.S. Pat. No. 8,258,109 B2, U.S. Pat. No. 5,656,612, U.S. Patent Publication No. 2012/0190728, and Dias and Stein, Mol. Cancer Ther. 2002, 347-355, herein incorporated by reference in their entirety.


One or more nucleobases of an ASO may be any naturally occurring, unmodified nucleobase such as adenine, guanine, cytosine, thymine, and uracil, or any synthetic or modified nucleobase that is sufficiently similar to an unmodified nucleobase such that it is capable of hydrogen bonding with a nucleobase present on a target pre-mRNA. Examples of modified nucleobases include, without limitation, hypoxanthine, xanthine, 7-methylguanine, 5, 6-dihydrouracil, 5-methylcytosine, and 5-hydroxymethylcytosine.


The ASOs described herein also comprise a backbone structure that connects the components of an oligomer. The term “backbone structure” and “oligomer linkages” may be used interchangeably and refer to the connection between monomers of the ASO. In naturally occurring oligonucleotides, the backbone comprises a 3′-5′ phosphodiester linkage connecting sugar moieties of the oligomer. The backbone structure or oligomer linkages of the ASOs described herein may include (but are not limited to) phosphorothioate, phosphorodithioate, phosphoroselenoate, phosphorodiselenoate, phosphoroanilothioate, phosphoranilidate, phosphoramidate, and the like. See, e.g., LaPlanche, et al., Nucleic Acids Res. 14:9081 (1986); Stec, et al., J. Am. Chem. Soc. 106:6077 (1984), Stein, et al., Nucleic Acids Res. 16:3209 (1988), Zon, et al., Anti-Cancer Drug Design 6:539 (1991); Zon, et al., Oligonucleotides and Analogues: A Practical Approach, pp. 87-108 (F. Eckstein, Ed., Oxford University Press, Oxford England (1991)); Stec, et al., U.S. Pat. No. 5,151,510; Uhlmann and Peyman, Chemical Reviews 90:543 (1990). In some embodiments, the backbone structure of the ASO does not contain phosphorous but rather contains peptide bonds, for example in a peptide nucleic acid (PNA), or linking groups including carbamate, amides, and linear and cyclic hydrocarbon groups. In some embodiments, the backbone modification is a phosphorothioate linkage. In some embodiments, the backbone modification is a phosphoramidate linkage.


In some embodiments, the stereochemistry at each of the phosphorus internucleotide linkages of the ASO backbone is random. In some embodiments, the stereochemistry at each of the phosphorus internucleotide linkages of the ASO backbone is controlled and is not random. For example, U.S. Pat. App. Pub. No. 2014/0194610, “Methods for the Synthesis of Functionalized Nucleic Acids,” incorporated herein by reference, describes methods for independently selecting the handedness of chirality at each phosphorous atom in a nucleic acid oligomer. In some embodiments, an ASO used in the methods of the disclosure, including, but not limited to, any of the ASOs set forth herein in Tables 5 and 6, comprises an ASO having phosphorus internucleotide linkages that are not random. In some embodiments, a composition used in the methods of the disclosure comprises a pure diastereomeric ASO. In some embodiments, a composition used in the methods of the disclosure comprises an ASO that has diastereomeric purity of at least about 90%, at least about 91%, at least about 92%, at least about 93%, at least about 94%, at least about 95%, at least about 96%, at least about 97%, at least about 98%, at least about 99%, about 100%, about 90% to about 100%, about 91% to about 100%, about 92% to about 100%, about 93% to about 100%, about 94% to about 100%, about 95% to about 100%, about 96% to about 100%, about 97% to about 100%, about 98% to about 100%, or about 99% to about 100%.


In some embodiments, the ASO has a nonrandom mixture of Rp and Sp configurations at its phosphorus internucleotide linkages. For example, it has been suggested that a mix of Rp and Sp is required in antisense oligonucleotides to achieve a balance between good activity and nuclease stability (Wan, et al., 2014, “Synthesis, biophysical properties and biological activity of second-generation antisense oligonucleotides containing chiral phosphorothioate linkages,” Nucleic Acids Research 42(22): 13456-13468, incorporated herein by reference). In some embodiments, an ASO used in the methods of the disclosure, including, but not limited to, any of the ASOs set forth herein in SEQ ID NOs: 60-191, comprises about 5-100% Rp, at least about 5% Rp, at least about 10% Rp, at least about 15% Rp, at least about 20% Rp, at least about 25% Rp, at least about 30% Rp, at least about 35% Rp, at least about 40% Rp, at least about 45% Rp, at least about 50% Rp, at least about 55% Rp, at least about 60% Rp, at least about 65% Rp, at least about 70% Rp, at least about 75% Rp, at least about 80% Rp, at least about 85% Rp, at least about 90% Rp, or at least about 95% Rp, with the remainder Sp, or about 100% Rp. In some embodiments, an ASO used in the methods of the disclosure, including, but not limited to, any of the ASOs set forth herein comprise a sequence with at least about 80%, 85%, 90%, 95%, 97%, or 100% sequence identity to a region comprising at least 8 contiguous nucleic acids of any one of SEQ ID NOs: 60-191, comprises about 10% to about 100% Rp, about 15% to about 100% Rp, about 20% to about 100% Rp, about 25% to about 100% Rp, about 30% to about 100% Rp, about 35% to about 100% Rp, about 40% to about 100% Rp, about 45% to about 100% Rp, about 50% to about 100% Rp, about 55% to about 100% Rp, about 60% to about 100% Rp, about 65% to about 100% Rp, about 70% to about 100% Rp, about 75% to about 100% Rp, about 80% to about 100% Rp, about 85% to about 100% Rp, about 90% to about 100% Rp, or about 95% to about 100% Rp, about 20% to about 80% Rp, about 25% to about 75% Rp, about 30% to about 70% Rp, about 40% to about 60% Rp, or about 45% to about 55% Rp, with the remainder Sp.


In some embodiments, an ASO used in the methods of the disclosure, including, but not limited to, any of the ASOs set forth herein comprise a sequence with at least about 80%, 85%, 90%, 95%, 97%, or 100% sequence identity to a region comprising at least 8 contiguous nucleic acids of any one of SEQ ID NOs: 60-191, comprises about 5-100% Sp, at least about 5% Sp, at least about 10% Sp, at least about 15% Sp, at least about 20% Sp, at least about 25% Sp, at least about 30% Sp, at least about 35% Sp, at least about 40% Sp, at least about 45% Sp, at least about 50% Sp, at least about 55% Sp, at least about 60% Sp, at least about 65% Sp, at least about 70% Sp, at least about 75% Sp, at least about 80% Sp, at least about 85% Sp, at least about 90% Sp, or at least about 95% Sp, with the remainder Rp, or about 100% Sp. In embodiments, an ASO used in the methods of the disclosure, including, but not limited to, any of the ASOs set forth herein comprise a sequence with at least about 80%, 85%, 90%, 95%, 97%, or 100% sequence identity to a region comprising at least 8 contiguous nucleic acids of any one of SEQ ID NOs: 60-191, comprises about 10% to about 100% Sp, about 15% to about 100% Sp, about 20% to about 100% Sp, about 25% to about 100% Sp, about 30% to about 100% Sp, about 35% to about 100% Sp, about 40% to about 100% Sp, about 45% to about 100% Sp, about 50% to about 100% Sp, about 55% to about 100% Sp, about 60% to about 100% Sp, about 65% to about 100% Sp, about 70% to about 100% Sp, about 75% to about 100% Sp, about 80% to about 100% Sp, about 85% to about 100% Sp, about 90% to about 100% Sp, or about 95% to about 100% Sp, about 20% to about 80% Sp, about 25% to about 75% Sp, about 30% to about 70% Sp, about 40% to about 60% Sp, or about 45% to about 55% Sp, with the remainder Rp.


Any of the ASOs described herein may contain a sugar moiety that comprises ribose or deoxyribose, as present in naturally occurring nucleotides, or a modified sugar moiety or sugar analog, including a morpholine ring. Non-limiting examples of modified sugar moieties include 2′ substitutions such as 2′-O-methyl (2′-O-Me), 2′-O-methoxyethyl (2′MOE), 2′-O-aminoethyl, 2′F; N3′->P5′ phosphoramidate, 2′dimethylaminooxyethoxy, 2′dimethylaminoethoxyethoxy, 2′-guanidinium, 2′-O-guanidinium ethyl, carbamate modified sugars, and bicyclic modified sugars. In some embodiments, the sugar moiety modification is selected from 2′-O-Me, 2′F, and 2′MOE. In some embodiments, the sugar moiety modification is an extra bridge bond, such as in a locked nucleic acid (LNA). In some embodiments the sugar analog contains a morpholine ring, such as phosphorodiamidate morpholino (PMO). In some embodiments, the sugar moiety comprises a ribofuransyl or 2′deoxyribofuransyl modification. In some embodiments, the sugar moiety comprises 2′4′-constrained 2′O-methyloxyethyl (cMOE) modifications. In some embodiments, the sugar moiety comprises cEt 2′, 4′ constrained 2′-O ethyl BNA modifications. In some embodiments, the sugar moiety comprises tricycloDNA (tcDNA) modifications. In some embodiments, the sugar moiety comprises ethylene nucleic acid (ENA) modifications. In some embodiments, the sugar moiety comprises MCE modifications. Modifications are known in the art and described in the literature, e.g., by Jarver, et al., 2014, “A Chemical View of Oligonucleotides for Exon Skipping and Related Drug Applications,” Nucleic Acid Therapeutics 24(1): 37-47, incorporated by reference for this purpose herein.


In some embodiments, each monomer of the ASO is modified in the same way, for example each linkage of the backbone of the ASO comprises a phosphorothioate linkage or each ribose sugar moiety comprises a 2′O-methyl modification. Such modifications that are present on each of the monomer components of an ASO are referred to as “uniform modifications.” In some examples, a combination of different modifications may be desired, for example, an ASO may comprise a combination of phosphorodiamidate linkages and sugar moieties comprising morpholine rings (morpholinos). Combinations of different modifications to an ASO are referred to as “mixed modifications” or “mixed chemistries.”


In some embodiments, the ASO comprises one or more backbone modifications. In some embodiments, the ASO comprises one or more sugar moiety modification. In some embodiments, the ASO comprises one or more backbone modifications and one or more sugar moiety modifications. In some embodiments, the ASO comprises a 2′MOE modification and a phosphorothioate backbone. In some embodiments, the ASO comprises a phosphorodiamidate morpholino (PMO). In some embodiments, the ASO comprises a peptide nucleic acid (PNA). Any of the ASOs or any component of an ASO (e.g., a nucleobase, sugar moiety, backbone) described herein may be modified in order to achieve desired properties or activities of the ASO or reduce undesired properties or activities of the ASO. For example, an ASO or one or more components of any ASO may be modified to enhance binding affinity to a target sequence on a pre-mRNA transcript; reduce binding to any non-target sequence; reduce degradation by cellular nucleases (i.e., RNase H); improve uptake of the ASO into a cell and/or into the nucleus of a cell; alter the pharmacokinetics or pharmacodynamics of the ASO; and/or modulate the half-life of the ASO.


In some embodiments, the ASOs are comprised of 2′-O-(2-methoxyethyl) (MOE) phosphorothioate-modified nucleotides. ASOs comprised of such nucleotides are especially well-suited to the methods disclosed herein; oligomers having such modifications have been shown to have significantly enhanced resistance to nuclease degradation and increased bioavailability, making them suitable, for example, for oral delivery in some embodiments described herein. See e.g., Geary, et al., J Pharmacol Exp Ther. 2001; 296(3):890-7; Geary, et al., J Pharmacol Exp Ther. 2001; 296(3):898-904.


Methods of synthesizing ASOs will be known to one of skill in the art. Alternatively or in addition, ASOs may be obtained from a commercial source.


Unless specified otherwise, the left-hand end of single-stranded nucleic acid (e.g., pre-mRNA transcript, oligonucleotide, ASO, etc.) sequences is the 5′ end and the left-hand direction of single or double-stranded nucleic acid sequences is referred to as the 5′ direction. Similarly, the right-hand end or direction of a nucleic acid sequence (single or double stranded) is the 3′ end or direction. Generally, a region or sequence that is 5′ to a reference point in a nucleic acid is referred to as “upstream,” and a region or sequence that is 3′ to a reference point in a nucleic acid is referred to as “downstream.” Generally, the 5′ direction or end of an mRNA is where the initiation or start codon is located, while the 3′ end or direction is where the termination codon is located. In some aspects, nucleotides that are upstream of a reference point in a nucleic acid may be designated by a negative number, while nucleotides that are downstream of a reference point may be designated by a positive number. For example, a reference point (e.g., an exon-exon junction in mRNA) may be designated as the “zero” site, and a nucleotide that is directly adjacent and upstream of the reference point is designated “minus one,” e.g., “−1,” while a nucleotide that is directly adjacent and downstream of the reference point is designated “plus one,” e.g., “+1.”


In some embodiments, the ASOs are complementary to (and bind to) a targeted portion of a PKD2 NIE containing pre-mRNA that is downstream (in the 3′ direction) of the 5′ splice site of the intron following the included exon in a PKD2 NIE containing pre-mRNA (e.g., the direction designated by positive numbers relative to the 5′ splice site). In some embodiments, the ASOs are complementary to a targeted portion of the PKD2 NIE containing pre-mRNA that is within the region about +1 to about +500 relative to the 5′ splice site of the intron following the included exon. In some embodiments, the ASOs may be complementary to a targeted portion of a PKD2 NIE containing pre-mRNA that is within the region between nucleotides +6 and +40,000 relative to the 5′ splice site of the intron following the included exon. In some aspects, the ASOs are complementary to a targeted portion that is within the region about +1 to about +40,000, about +1 to about +30,000, about +1 to about +20,000, about +1 to about +15,000, about +1 to about +10,000, about +1 to about +5,000, about +1 to about +4,000, about +1 to about +3,000, about +1 to about +2,000, about +1 to about +1,000, about +1 to about +500, about +1 to about +490, about +1 to about +480, about +1 to about +470, about +1 to about +460, about +1 to about +450, about +1 to about +440, about +1 to about +430, about +1 to about +420, about +1 to about +410, about +1 to about +400, about +1 to about +390, about +1 to about +380, about +1 to about +370, about +1 to about +360, about +1 to about +350, about +1 to about +340, about +1 to about +330, about +1 to about +320, about +1 to about +310, about +1 to about +300, about +1 to about +290, about +1 to about +280, about +1 to about +270, about +1 to about +260, about +1 to about +250, about +1 to about +240, about +1 to about +230, about +1 to about +220, about +1 to about +210, about +1 to about +200, about +1 to about +190, about +1 to about +180, about +1 to about +170, about +1 to about +160, about +1 to about +150, about +1 to about +140, about +1 to about +130, about +1 to about +120, about +1 to about +110, about +1 to about +100, about +1 to about +90, about +1 to about +80, about +1 to about +70, about +1 to about +60, about +1 to about +50, about +1 to about +40, about +1 to about +30, or about +1 to about +20 relative to 5′ splice site of the intron following the included exon. In some aspects, the ASOs are complementary to a targeted portion that is within the region from about +1 to about +100, from about +100 to about +200, from about +200 to about +300, from about +300 to about +400, or from about +400 to about +500 relative to 5′ splice site of the intron following the included exon.


In some embodiments, the ASOs are complementary to (and bind to) a targeted portion of a PKD2 NIE containing pre-mRNA that is upstream (in the 5′ direction) of the 5′ splice site of the intron following the included exon in a PKD2 NIE containing pre-mRNA (e.g., the direction designated by negative numbers relative to the 5′ splice site). In some embodiments, the ASOs are complementary to a targeted portion of the PKD2 NIE containing pre-mRNA that is within the region about −4 to about −270 relative to the 5′ splice site of the intron following the included exon. In some embodiments, the ASOs may be complementary to a targeted portion of a PKD2 NIE containing pre-mRNA that is within the region between nucleotides −1 and −40,000 relative to the 5′ splice site of the intron following the included exon. In some aspects, the ASOs are complementary to a targeted portion that is within the region about −1 to about −40,000, about −1 to about −30,000, about −1 to about −20,000, about −1 to about −15,000, about −1 to about −10,000, about −1 to about −5,000, about −1 to about −4,000, about −1 to about −3,000, about −1 to about −2,000, about −1 to about −1,000, about −1 to about −500, about −1 to about −490, about −1 to about −480, about −1 to about −470, about −1 to about −460, about −1 to about −450, about −1 to about −440, about −1 to about −430, about −1 to about −420, about −1 to about −410, about −1 to about −400, about −1 to about −390, about −1 to about −380, about −1 to about −370, about −1 to about −360, about −1 to about −350, about −1 to about −340, about −1 to about −330, about −1 to about −320, about −1 to about −310, about −1 to about −300, about −1 to about −290, about −1 to about −280, about −1 to about −270, about −1 to about −260, about −1 to about −250, about −1 to about −240, about −1 to about −230, about −1 to about −220, about −1 to about −210, about −1 to about −200, about −1 to about −190, about −1 to about −180, about −1 to about −170, about −1 to about −160, about −1 to about −150, about −1 to about −140, about −1 to about −130, about −1 to about −120, about −1 to about −110, about −1 to about −100 about −1 to about −90, about −1 to about −80, about −1 to about −70, about −1 to about −60, about −1 to about −50, about −1 to about −40, about −1 to about −30, or about −1 to about −20 relative to 5′ splice site of the intron following the included exon.


In some embodiments, the ASOs are complementary to a targeted region of a PKD2 NIE containing pre-mRNA that is upstream (in the 5′ direction) of the 3′ splice site of the intron preceding the included exon in a PKD2 NIE containing pre-mRNA (e.g., in the direction designated by negative numbers). In some embodiments, the ASOs are complementary to a targeted portion of the PKD2 NIE containing pre-mRNA that is within the region about −1 to about −500 relative to the 3′ splice site of the intron preceding the included exon. In some embodiments, the ASOs are complementary to a targeted portion of the PKD2 NIE containing pre-mRNA that is within the region −1 to −40,000 relative to the 3′ splice site of the intron preceding the included exon. In some aspects, the ASOs are complementary to a targeted portion that is within the region about −1 to about −40,000, about −1 to about −30,000, −1 to about −20,000, about −1 to about −15,000, about −1 to about −10,000, about −1 to about −5,000, about −1 to about −4,000, about −1 to about −3,000, about −1 to about −2,000, about −1 to about −1,000, about −1 to about −500, about −1 to about −490, about −1 to about −480, about −1 to about −470, about −1 to about −460, about −1 to about −450, about −1 to about −440, about −1 to about −430, about −1 to about −420, about −1 to about −410, about −1 to about −400, about −1 to about −390, about −1 to about −380, about −1 to about −370, about −1 to about −360, about −1 to about −350, about −1 to about −340, about −1 to about −330, about −1 to about −320, about −1 to about −310, about −1 to about −300, about −1 to about −290, about −1 to about −280, about −1 to about −270, about −1 to about −260, about −1 to about −250, about −1 to about −240, about −1 to about −230, about −1 to about −220, about −1 to about −210, about −1 to about −200, about −1 to about −190, about −1 to about −180, about −1 to about −170, about −1 to about −160, about −1 to about −150, about −1 to about −140, about −1 to about −130, about −1 to about −120, about −1 to about −110, about −1 to about −100, about −1 to about −90, about −1 to about −80, about −1 to about −70, about −1 to about −60, about −1 to about −50, about −1 to about −40, about −1 to about −30, or about −1 to about −20 relative to 3′ splice site of the intron preceding the included exon. In some aspects, the ASOs are complementary to a targeted portion that is within the region from about −1 to about −100, from about −100 to about −200, from about −200 to about −300, from about −300 to about −400, or from about −400 to about −500 relative to 3′ splice site of the intron preceding the included exon.


In some embodiments, the ASOs are complementary to a targeted region of a PKD2 NIE containing pre-mRNA that is downstream (in the 3′ direction) of the 3′ splice site of the intron preceding the included exon in a PKD2 NIE containing pre-mRNA (e.g., in the direction designated by positive numbers). In some embodiments, the ASOs are complementary to a targeted portion of the PKD2 NIE containing pre-mRNA that is within the region of about +1 to about +40,000 relative to the 3′ splice site of the intron preceding the included exon. In some aspects, the ASOs are complementary to a targeted portion that is within the region about +1 to about +40,000, about +1 to about +30,000, about +1 to about +20,000, about +1 to about +15,000, about +1 to about +10,000, about +1 to about +5,000, about +1 to about +4,000, about +1 to about +3,000, about +1 to about +2,000, about +1 to about +1,000, about +1 to about +500, about +1 to about +490, about +1 to about +480, about +1 to about +470, about +1 to about +460, about +1 to about +450, about +1 to about +440, about +1 to about +430, about +1 to about +420, about +1 to about +410, about +1 to about +400, about +1 to about +390, about +1 to about +380, about +1 to about +370, about +1 to about +360, about +1 to about +350, about +1 to about +340, about +1 to about +330, about +1 to about +320, about +1 to about +310, about +1 to about +300, about +1 to about +290, about +1 to about +280, about +1 to about +270, about +1 to about +260, about +1 to about +250, about +1 to about +240, about +1 to about +230, about +1 to about +220, about +1 to about +210, about +1 to about +200, about +1 to about +190, about +1 to about +180, about +1 to about +170, about +1 to about +160, about +1 to about +150, about +1 to about +140, about +1 to about +130, about +1 to about +120, about +1 to about +110, about +1 to about +100, about +1 to about +90, about +1 to about +80, about +1 to about +70, about +1 to about +60, about +1 to about +50, about +1 to about +40, about +1 to about +30, or about +1 to about +20, or about +1 to about +10 relative to 3′ splice site of the intron preceding the included exon.


In some embodiments, the targeted portion of the PKD2 pre-mRNA is within the region −4e relative to the 5′ end of the NSE to +2e relative to the 3′ end of the NSE.


In some embodiments, the ASOs are complementary to a targeted region of a PKD2 NIE containing pre-mRNA that is upstream (in the 5′ direction) of the 3′ splice site of the intron preceding the included exon in a PKD2 NIE containing pre-mRNA (e.g., in the direction designated by positive numbers). In some embodiments, the ASOs are complementary to a targeted portion of the PKD2 NIE containing pre-mRNA that is within the region of about +1 to about +40,000 relative to the 3′ splice site of the intron preceding the included exon. In some aspects, the ASOs are complementary to a targeted portion that is within the region about +1 to about +40,000, about +1 to about +30,000, about +1 to about +20,000, about +1 to about +15,000, about +1 to about +10,000, about +1 to about +5,000, about +1 to about +4,000, about +1 to about +3,000, about +1 to about +2,000, about +1 to about +1,000, about +1 to about +500, about +1 to about +490, about +1 to about +480, about +1 to about +470, about +1 to about +460, about +1 to about +450, about +1 to about +440, about +1 to about +430, about +1 to about +420, about +1 to about +410, about +1 to about +400, about +1 to about +390, about +1 to about +380, about +1 to about +370, about +1 to about +360, about +1 to about +350, about +1 to about +340, about +1 to about +330, about +1 to about +320, about +1 to about +310, about +1 to about +300, about +1 to about +290, about +1 to about +280, about +1 to about +270, about +1 to about +260, about +1 to about +250, about +1 to about +240, about +1 to about +230, about +1 to about +220, about +1 to about +210, about +1 to about +200, about +1 to about +190, about +1 to about +180, about +1 to about +170, about +1 to about +160, about +1 to about +150, about +1 to about +140, about +1 to about +130, about +1 to about +120, about +1 to about +110, about +1 to about +100, about +1 to about +90, about +1 to about +80, about +1 to about +70, about +1 to about +60, about +1 to about +50, about +1 to about +40, about +1 to about +30, or about +1 to about +20, or about +1 to about +10 relative to 3′ splice site of the intron preceding the included exon.


In some embodiments, the targeted portion of the PKD2 NIE containing pre-mRNA is within the region +100 relative to the 5′ splice site of the intron following the included exon to −100 relative to the 3′ splice site of the intron preceding the included exon. In some embodiments, the targeted portion of the PKD2 NIE containing pre-mRNA is within the NIE. In some embodiments, the target portion of the PKD2 NIE containing pre-mRNA comprises a NIE and intron boundary.


The ASOs may be of any length suitable for specific binding and effective enhancement of splicing. In some embodiments, the ASOs consist of 8 to 50 nucleobases. For example, the ASO may be 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 40, 45, or 50 nucleobases in length. In some embodiments, the ASOs consist of more than 50 nucleobases. In some embodiments, the ASO is from 8 to 50 nucleobases, 8 to 40 nucleobases, 8 to 35 nucleobases, 8 to 30 nucleobases, 8 to 25 nucleobases, 8 to 20 nucleobases, 8 to 15 nucleobases, 9 to 50 nucleobases, 9 to 40 nucleobases, 9 to 35 nucleobases, 9 to 30 nucleobases, 9 to 25 nucleobases, 9 to 20 nucleobases, 9 to 15 nucleobases, 10 to 50 nucleobases, 10 to 40 nucleobases, 10 to 35 nucleobases, 10 to 30 nucleobases, 10 to 25 nucleobases, 10 to 20 nucleobases, 10 to 15 nucleobases, 11 to 50 nucleobases, 11 to 40 nucleobases, 11 to 35 nucleobases, 11 to 30 nucleobases, 11 to 25 nucleobases, 11 to 20 nucleobases, 11 to 15 nucleobases, 12 to 50 nucleobases, 12 to 40 nucleobases, 12 to 35 nucleobases, 12 to 30 nucleobases, 12 to 25 nucleobases, 12 to 20 nucleobases, 12 to 15 nucleobases, 13 to 50 nucleobases, 13 to 40 nucleobases, 13 to 35 nucleobases, 13 to 30 nucleobases, 13 to 25 nucleobases, 13 to 20 nucleobases, 14 to 50 nucleobases, 14 to 40 nucleobases, 14 to 35 nucleobases, 14 to 30 nucleobases, 14 to 25 nucleobases, 14 to 20 nucleobases, 15 to 50 nucleobases, 15 to 40 nucleobases, 15 to 35 nucleobases, 15 to 30 nucleobases, 15 to 25 nucleobases, 15 to 20 nucleobases, 20 to 50 nucleobases, 20 to 40 nucleobases, 20 to 35 nucleobases, 20 to 30 nucleobases, 20 to 25 nucleobases, 25 to 50 nucleobases, 25 to 40 nucleobases, 25 to 35 nucleobases, or 25 to 30 nucleobases in length. In some embodiments, the ASOs are 18 nucleotides in length. In some embodiments, the ASOs are 15 nucleotides in length. In some embodiments, the ASOs are 25 nucleotides in length.


In some embodiments, two or more ASOs with different chemistries but complementary to the same targeted portion of the NIE containing pre-mRNA are used. In some embodiments, two or more ASOs that are complementary to different targeted portions of the NIE containing pre-mRNA are used.


In some embodiments, the antisense oligonucleotides of the disclosure are chemically linked to one or more moieties or conjugates, e.g., a targeting moiety or other conjugate that enhances the activity or cellular uptake of the oligonucleotide. Such moieties include, but are not limited to, a lipid moiety, e.g., as a cholesterol moiety, a cholesteryl moiety, an aliphatic chain, e.g., dodecandiol or undecyl residues, a polyamine, or a polyethylene glycol chain, or adamantane acetic acid. Oligonucleotides comprising lipophilic moieties and preparation methods have been described in the published literature. In embodiments, the antisense oligonucleotide is conjugated with a moiety including, but not limited to, an abasic nucleotide, a polyether, a polyamine, a polyamide, a peptides, a carbohydrate, e.g., N-acetylgalactosamine (GalNAc), N-Ac-Glucosamine (GluNAc), or mannose (e.g., mannose-6-phosphate), a lipid, or a polyhydrocarbon compound. Conjugates can be linked to one or more of any nucleotides comprising the antisense oligonucleotide at any of several positions on the sugar, base, or phosphate group, as understood in the art and described in the literature, e.g., using a linker. Linkers can include a bivalent or trivalent branched linker. In embodiments, the conjugate is attached to the 3′ end of the antisense oligonucleotide. Methods of preparing oligonucleotide conjugates are described, e.g., in U.S. Pat. No. 8,450,467, “Carbohydrate conjugates as delivery agents for oligonucleotides,” incorporated by reference herein.


In some embodiments, the nucleic acid to be targeted by an ASO is a PKD2 NIE containing pre-mRNA expressed in a cell, such as a eukaryotic cell. In some embodiments, the term “cell” may refer to a population of cells. In some embodiments, the cell is in a subject. In some embodiments, the cell is isolated from a subject. In some embodiments, the cell is ex vivo. In some embodiments, the cell is a condition or disease-relevant cell or a cell line. In some embodiments, the cell is in vitro (e.g., in cell culture).


In some embodiments, an ASO that targets a pre-mRNA disclosed herein is selected from the group consisting of the sequences listed in Table 4.


Pharmaceutical Compositions

Pharmaceutical compositions or formulations comprising the agent, e.g., antisense oligonucleotide, of the described compositions and for use in any of the described methods can be prepared according to conventional techniques well known in the pharmaceutical industry and described in the published literature. In embodiments, a pharmaceutical composition or formulation for treating a subject comprises an effective amount of any antisense oligomer as described herein, or a pharmaceutically acceptable salt, solvate, hydrate or ester thereof. The pharmaceutical formulation comprising an antisense oligomer may further comprise a pharmaceutically acceptable excipient, diluent, or carrier.


Pharmaceutically acceptable salts are suitable for use in contact with the tissues of humans and lower animals without undue toxicity, irritation, allergic response, etc., and are commensurate with a reasonable benefit/risk ratio. (See, e.g., S. M. Berge, et al., J. Pharmaceutical Sciences, 66: 1-19 (1977), incorporated herein by reference for this purpose. The salts can be prepared in situ during the final isolation and purification of the compounds, or separately by reacting the free base form with a suitable organic acid. Examples of pharmaceutically acceptable, nontoxic acid addition salts are salts of an amino group formed with inorganic acids such as hydrochloric acid, hydrobromic acid, phosphoric acid, sulfuric acid and perchloric acid or with organic acids such as acetic acid, oxalic acid, maleic acid, tartaric acid, citric acid, succinic acid or malonic acid or by using other documented methodologies such as ion exchange. Other pharmaceutically acceptable salts include adipate, alginate, ascorbate, aspartate, benzenesulfonate, benzoate, bisulfate, borate, butyrate, camphorate, camphorsulfonate, citrate, cyclopentanepropionate, digluconate, dodecylsulfate, ethanesulfonate, formate, fumarate, glucoheptonate, glycerophosphate, gluconate, hemisulfate, heptanoate, hexanoate, hydroiodide, 2-hydroxy-ethanesulfonate, lactobionate, lactate, laurate, lauryl sulfate, malate, maleate, malonate, methanesulfonate, 2-naphthalenesulfonate, nicotinate, nitrate, oleate, oxalate, palmitate, pamoate, pectinate, persulfate, 3-phenylpropionate, phosphate, picrate, pivalate, propionate, stearate, succinate, sulfate, tartrate, thiocyanate, p-toluenesulfonate, undecanoate, valerate salts, and the like. Representative alkali or alkaline earth metal salts include sodium, lithium, potassium, calcium, magnesium, and the like. Further pharmaceutically acceptable salts include, when appropriate, nontoxic ammonium, quaternary ammonium, and amine cations formed using counterions such as halide, hydroxide, carboxylate, sulfate, phosphate, nitrate, loweralkyl sulfonate and aryl sulfonate.


In some embodiments, the compositions are formulated into any of many possible dosage forms such as, but not limited to, tablets, capsules, gel capsules, liquid syrups, soft gels, suppositories, and enemas. In embodiments, the compositions are formulated as suspensions in aqueous, non-aqueous or mixed media. Aqueous suspensions may further contain substances that increase the viscosity of the suspension including, for example, sodium carboxymethylcellulose, sorbitol and/or dextran. The suspension may also contain stabilizers. In embodiments, a pharmaceutical formulation or composition of the present disclosure includes, but is not limited to, a solution, emulsion, microemulsion, foam or liposome-containing formulation (e.g., cationic or noncationic liposomes).


The pharmaceutical composition or formulation described herein may comprise one or more penetration enhancers, carriers, excipients or other active or inactive ingredients as appropriate and well known to those of skill in the art or described in the published literature. In embodiments, liposomes also include sterically stabilized liposomes, e.g., liposomes comprising one or more specialized lipids. These specialized lipids result in liposomes with enhanced circulation lifetimes. In embodiments, a sterically stabilized liposome comprises one or more glycolipids or is derivatized with one or more hydrophilic polymers, such as a polyethylene glycol (PEG) moiety. In some embodiments, a surfactant is included in the pharmaceutical formulation or compositions. The use of surfactants in drug products, formulations and emulsions is well known in the art. In embodiments, the present disclosure employs a penetration enhancer to affect the efficient delivery of the antisense oligonucleotide, e.g., to aid diffusion across cell membranes and/or enhance the permeability of a lipophilic drug. In some embodiments, the penetration enhancers are a surfactant, fatty acid, bile salt, chelating agent, or non-chelating nonsurfactant.


In some embodiments, the pharmaceutical formulation comprises multiple antisense oligonucleotides. In embodiments, the antisense oligonucleotide is administered in combination with another drug or therapeutic agent.


Combination Therapies

In some embodiments, provided herein is a composition comprising one or more NSE-modulating agents. In some embodiments, provided herein is a composition comprising two or more NSE-modulating agents. In some embodiments, provided herein is a composition comprising one or more ASO complementary to a targeted region of PKD2 pre-mRNA. In some embodiments, provided herein is a composition comprising two or more ASO complementary to a targeted region of PKD2 pre-mRNA. In some embodiments, provided herein is a composition comprising one or more ASO complementary to a same targeted region of PKD2 pre-mRNA. In some embodiments, provided herein is a composition comprising two or more ASO complementary to a same targeted region of PKD2 pre-mRNA. In some embodiments, provided herein is a composition comprising one or more ASO complementary to different targeted regions of PKD2 pre-mRNA. In some embodiments, provided herein is a composition comprising two or more ASO complementary to different targeted regions of PKD2 pre-mRNA. In some embodiments, provided herein is a composition comprising one or more ASOs of Table 4. In some embodiments, provided herein is a composition comprising two and more ASOs of in Table 4.


In some embodiments, the therapeutics (e.g., ASOs) disclosed in the present disclosure can be used in combination with one or more additional therapeutic agents. In some embodiments, the one or more additional therapeutic agents can comprise a small molecule. For example, the one or more additional therapeutic agents can comprise a small molecule described in WO2016128343A1, WO2017053982A1, WO2016196386A1, WO201428459A1, WO201524876A2, WO2013119916A2, and WO2014209841A2, which are incorporated by reference herein in their entirety. In some embodiments, the one or more additional therapeutic agents can comprise tolvaptan (Jynarque®, Samsca). In some embodiments, the one or more additional therapeutic agents comprise an ASO that can be used to correct intron retention.


Treatment of Subjects

Any of the compositions provided herein may be administered to an individual. “Individual” may be used interchangeably with “subject” or “patient.” An individual may be a mammal, for example a human or animal such as a non-human primate, a rodent, a rabbit, a rat, a mouse, a horse, a donkey, a goat, a cat, a dog, a cow, a pig, or a sheep. In embodiments, the individual is a human. In embodiments, the individual is a fetus, an embryo, or a child. In other embodiments, the individual may be another eukaryotic organism, such as a plant. In some embodiments, the compositions provided herein are administered to a cell ex vivo.


In some embodiments, the compositions provided herein are administered to an individual as a method of treating a disease or disorder. In some embodiments, the individual has a genetic disease, such as any of the diseases described herein. In some embodiments, the individual is at risk of having a disease, such as any of the diseases described herein. In some embodiments, the individual is at increased risk of having a disease or disorder caused by insufficient amount of a protein or insufficient activity of a protein. If an individual is “at an increased risk” of having a disease or disorder caused insufficient amount of a protein or insufficient activity of a protein, the method involves preventative or prophylactic treatment. For example, an individual may be at an increased risk of having such a disease or disorder because of family history of the disease. Typically, individuals at an increased risk of having such a disease or disorder benefit from prophylactic treatment (e.g., by preventing or delaying the onset or progression of the disease or disorder). In embodiments, a fetus is treated in utero, e.g., by administering the ASO composition to the fetus directly or indirectly (e.g., via the mother).


Suitable routes for administration of ASOs of the present disclosure may vary depending on cell type to which delivery of the ASOs is desired. The ASOs of the present disclosure may be administered to patients parenterally, for example, by intrathecal injection, intracerebroventricular injection, intraperitoneal injection, intramuscular injection, subcutaneous injection, or intravenous injection.


In embodiments, the antisense oligonucleotide is administered with one or more agents capable of promoting penetration of the subject antisense oligonucleotide across the blood-brain barrier by any method known in the art. For example, delivery of agents by administration of an adenovirus vector to motor neurons in muscle tissue is described in U.S. Pat. No. 6,632,427, “Adenoviral-vector-mediated gene transfer into medullary motor neurons,” incorporated herein by reference. Delivery of vectors directly to the brain, e.g., the striatum, the thalamus, the hippocampus, or the substantia nigra, is described, e.g., in U.S. Pat. No. 6,756,523, “Adenovirus vectors for the transfer of foreign genes into cells of the central nervous system particularly in brain,” incorporated herein by reference.


In some embodiments, the antisense oligonucleotides are linked or conjugated with agents that provide desirable pharmaceutical or pharmacodynamic properties. In embodiments, the antisense oligonucleotide is coupled to a substance, known in the art to promote penetration or transport across the blood-brain barrier, e.g., an antibody to the transferrin receptor. In embodiments, the antisense oligonucleotide is linked with a viral vector, e.g., to render the antisense compound more effective or increase transport across the blood-brain barrier. In embodiments, osmotic blood brain barrier disruption is assisted by infusion of sugars, e.g., meso erythritol, xylitol, D(+) galactose, D(+) lactose, D(+) xylose, dulcitol, myo-inositol, L(−) fructose, D(−) mannitol, D(+) glucose, D(+) arabinose, D(−) arabinose, cellobiose, D(+) maltose, D(+) raffinose, L(+) rhamnose, D(+) melibiose, D(−) ribose, adonitol, D(+) arabitol, L(−) arabitol, D(+) fucose, L(−) fucose, D(−) lyxose, L(+) lyxose, and L(−) lyxose, or amino acids, e.g., glutamine, lysine, arginine, asparagine, aspartic acid, cysteine, glutamic acid, glycine, histidine, leucine, methionine, phenylalanine, proline, serine, threonine, tyrosine, valine, and taurine. Methods and materials for enhancing blood brain barrier penetration are described, e.g., in U.S. Pat. No. 9,193,969, “Compositions and methods for selective delivery of oligonucleotide molecules to specific neuron types,” U.S. Pat. No. 4,866,042, “Method for the delivery of genetic material across the blood brain barrier,” U.S. Pat. No. 6,294,520, “Material for passage through the blood-brain barrier,” and U.S. Pat. No. 6,936,589, “Parenteral delivery systems,” each incorporated herein by reference.


In some embodiments, an ASO of the disclosure is coupled to a dopamine reuptake inhibitor (DRI), a selective serotonin reuptake inhibitor (SSRI), a noradrenaline reuptake inhibitor (NRI), a norepinephrine-dopamine reuptake inhibitor (NDRI), and a serotonin-norepinephrine-dopamine reuptake inhibitor (SNDRI), using methods described in, e.g., U.S. Pat. No. 9,193,969, incorporated herein by reference.


In some embodiments, subjects treated using the methods and compositions are evaluated for improvement in condition using any methods known and described in the art.


In some cases, a therapeutic agent comprises a modified snRNA, such as a modified human snRNA. In some cases, a therapeutic agent comprises a vector, such as a viral vector, that encodes a modified snRNA. In some embodiments, the modified snRNA is a modified U1 snRNA (see, e.g., Alanis et al., Human Molecular Genetics, 2012, Vol. 21, No. 11 2389-2398). In some embodiments, the modified snRNA is a modified U7 snRNA (see, e.g., Gadgil et al., J Gene Med. 2021; 23:e3321). Modified U7 snRNAs can be made by any method known in the art including the methods described in Meyer, K.; Schtimperli, Daniel (2012), Antisense Derivatives of U7 Small Nuclear RNA as Modulators of Pre-mRNA Splicing. In: Stamm, Stefan; Smith, Christopher W. J.; Lührmann, Reinhard (eds.) Alternative pre-mRNA Splicing: Theory and Protocols (pp. 481-494), Chichester: John Wiley & Sons 10.1002/9783527636778.ch45, incorporated by reference herein in its entirety. In some embodiments, a modified U7 (smOPT) does not compete with WT U7 (Stefanovic et al., 1995).


In some embodiments, the modified snRNA comprises an smOPT modification. For example, the modified snRNA can comprise a sequence AAUUUUUGGAG (SEQ ID NO: 229). For example, the sequence AAUUUUUGGAG (SEQ ID NO: 229) can replace a sequence AAUUUGUCUAG (SEQ ID NO: 230) in a wild-type U7 snRNA to generate the modified U& snRNA (smOPT). In some embodiments, a smOPT modification of a U7 snRNA renders the particle functionally inactive in histone pre-mRNA processing (Stefanovic et al., 1995). In some embodiments, a modified U7 (smOPT) is expressed stably in the nucleus and at higher levels than WT U7 (Stefanovic et al., 1995). In some embodiments, the snRNA comprises a U1 snRNP-targeted sequence. In some embodiments, the snRNA comprises a U7 snRNP-targeted sequence. In some embodiments, the snRNA comprises a modified U7 snRNP-targeted sequence and wherein the modified U7 snRNP-targeted sequence comprises smOPT. In some embodiments, the modified snRNA has been modified to comprise a single-stranded nucleotide sequence that hybridizes to a PKD2 pre-mRNA. In some embodiments, the modified snRNA has been modified to comprise a single-stranded nucleotide sequence that hybridizes to a PKD2 mRNA.


In some embodiments, the modified snRNA has been modified to comprise a single-stranded nucleotide sequence that hybridizes to a target region of a PKD2 pre-mRNA or a processed PKD2 mRNA, such as a target region of a PKD2 pre-mRNA that modulates exclusion of an NMD exon, a target region of a PKD2 pre-mRNA that modulates splicing at an alternative 5′ ss, or a target region of a processed PKD2 mRNA that modulates translation of a PKD2 mRNA, such as a 5′ UTR target region. In some embodiments, the modified snRNA has been modified to comprise a single-stranded nucleotide sequence that comprises one or two or more sequences of the ASOs disclosed herein. In some embodiments, the modified snRNA has been modified to comprise a single-stranded nucleotide sequence that hybridizes to sequence of a PKD2 pre-mRNA with a mutation, such as a PKD2 NMD exon-containing pre-mRNA with a mutation. In some embodiments, the modified snRNA has been modified to comprise a single-stranded nucleotide sequence that comprises two or more sequences that hybridize to two or more target regions of a PKD2 NMD exon-containing pre-mRNA. For example, a modified snRNA can be modified to comprise a single-stranded nucleotide sequence that hybridizes to at least 8 contiguous nucleic acids of a PKD2 NMD exon-containing pre-mRNA. In some embodiments, the modified snRNA has been modified to comprise a single-stranded nucleotide sequence that hybridizes to any of the target regions of a PKD2 NMD exon-containing pre-mRNA disclosed herein. In some embodiments, the modified snRNA has been modified to comprise a single-stranded nucleotide sequence that comprises two or more sequences that hybridize to two or more target regions of a PKD2 NMD exon-containing pre-mRNA. For example, a modified snRNA can be modified to comprise a single-stranded nucleotide sequence that hybridizes to one or two or more sequences of an intron containing an NMD exon (e.g., exon 2× of PKD2 (e.g., exon (GRCh38/hg38: chr4:88031085 88031140) of PKD2) of the pre-mRNA transcript or to a NMD exon-activating regulatory sequence in the same intron. For example, a modified snRNA can be modified to comprise a single-stranded nucleotide sequence that hybridizes to a region within an NMD exon or upstream or downstream of an NMD exon (e.g., exon 2× of PKD2 (e.g., exon (GRCh38/hg38: chr4:88031085 88031140) of PKD2). In some embodiments, the modified snRNA has a 5′ region that has been modified to comprise a single-stranded nucleotide sequence that hybridizes to a PKD2 NMD exon-containing pre-mRNA. In some embodiments, the modified snRNA has a 3′ region that has been modified to comprise a single-stranded nucleotide sequence that hybridizes to a PKD2 NMD exon-containing pre-mRNA.


In some embodiments, the modified snRNA has been modified to comprise a single-stranded nucleotide sequence that hybridizes to a target region of a PKD2 pre-mRNA that modulates exclusion of an NMD exon. For example, a modified snRNA can be modified to comprise a single-stranded nucleotide sequence that hybridizes to a region that overlaps with an NMD exon and an intron upstream of the NMD exon (e.g., exon 2× of PKD2 (e.g., exon (GRCh38/hg38: chr4:88031085 88031140) of PKD2). For example, a modified snRNA can be modified to comprise a single-stranded nucleotide sequence that hybridizes to a region that overlaps with an NMD exon and an intron downstream of the NMD exon (e.g., exon 2× of PKD2 (e.g., exon (GRCh38/hg38: chr4:88031085 88031140) of PKD2). For example, a modified snRNA can be modified to comprise a single-stranded nucleotide sequence that is complementary to an intron sequence that is downstream of an NMD exon (e.g., exon 2× of PKD2 (e.g., exon (GRCh38/hg38: chr4:88031085 88031140) of PKD2). For example, a modified snRNA can be modified to comprise a single-stranded nucleotide sequence that is complementary to a 3′ splice site of an intron sequence that is downstream of an NMD exon (e.g., exon 2× of PKD2 (e.g., exon (GRCh38/hg38: chr4:88031085 88031140) of PKD2). For example, a modified snRNA can be modified to comprise a single-stranded nucleotide sequence that is complementary to a 5′ splice site of an intron sequence that is downstream of an NMD exon (e.g., exon 2× of PKD2 (e.g., exon (GRCh38/hg38: chr4:88031085 88031140) of PKD2). For example, a modified snRNA can be modified to comprise a single-stranded nucleotide sequence that is complementary to an intron sequence that is upstream of an NMD exon (e.g., exon 2× of PKD2 (e.g., exon (GRCh38/hg38: chr4:88031085 88031140) of PKD2). For example, a modified snRNA can be modified to comprise a single-stranded nucleotide sequence that is complementary to a splice site of an intron sequence that is upstream of an NMD exon (e.g., exon 2× of PKD2 (e.g., exon (GRCh38/hg38: chr4:88031085 88031140) of PKD2). For example, a modified snRNA can be modified to comprise a single-stranded nucleotide sequence that is complementary to a 3′ splice site of an intron sequence that is upstream of an NMD exon (e.g., exon 2× of PKD2 (e.g., exon (GRCh38/hg38: chr4:88031085 88031140) of PKD2). For example, a modified snRNA can be modified to comprise a single-stranded nucleotide sequence that is complementary to a 5′ splice site of an intron sequence that is upstream of an NMD exon (e.g., exon 2× of PKD2 (e.g., exon (GRCh38/hg38: chr4:88031085 88031140) of PKD2).


In some embodiments, the modified snRNA has been modified to comprise a single-stranded nucleotide sequence that hybridizes to a target region of a PKD2 pre-mRNA that modulates splicing at an alternative 5′ ss. For example, a modified snRNA can be modified to comprise a single-stranded nucleotide sequence that hybridizes to a region that overlaps with an alternative 5′ ss of an intron of a PKD2 pre-mRNA (e.g., an alternative 5′ ss of intron 3 of PKD2 (e.g., GRCh38/hg38: chr4 88036480) of PKD2). For example, a modified snRNA can be modified to comprise a single-stranded nucleotide sequence that hybridizes to a region that overlaps with an alternative 5′ ss of an intron of a PKD2 pre-mRNA and an NMD exon upstream of the alternative 5′ ss (e.g., an alternative 5′ ss of intron 3 of PKD2 (e.g., GRCh38/hg38: chr4 88036480) of PKD2 and an NMD exon upstream of the alternative 5′ ss (e.g., exon 2)). For example, a modified snRNA can be modified to comprise a single-stranded nucleotide sequence that is complementary to an intronic sequence that is downstream of an alternative 5′ ss of an intron of a PKD2 pre-mRNA (e.g., an intronic sequence that is downstream of an alternative 5′ ss of intron 3 of PKD2 (e.g., GRCh38/hg38: chr4 88036480) of PKD2). For example, a modified snRNA can be modified to comprise a single-stranded nucleotide sequence that is complementary to a sequence of an NMD exon (e.g., an alternative exon) that is upstream of an alternative 5′ ss of an intron of a PKD2 pre-mRNA (e.g., a sequence of an NMD exon (e.g., an alternative exon) that is upstream of an alternative 5′ ss of intron 3 of PKD2 (e.g., GRCh38/hg38: chr4 88036480) of PKD2). For example, a modified snRNA can be modified to comprise a single-stranded nucleotide sequence that is complementary to an alternative 5′ splice site of an intron that is downstream of an NMD exon (e.g., an alternative exon) (e.g., an alternative 5′ splice site of intron 3 (e.g., GRCh38/hg38: chr4 88036480) of PKD2 that is downstream of an NMD exon (e.g., an alternative exon)).


In some embodiments, the modified snRNA has been modified to comprise a single-stranded nucleotide sequence that hybridizes to a target region of a PKD2 mRNA that modulates translation of a processed PKD2 mRNA, such as a 5′ UTR target region. For example, a modified snRNA can be modified to comprise a single-stranded nucleotide sequence that hybridizes to a 5′ UTR sequence of a processed PKD2 mRNA. For example, a modified snRNA can be modified to comprise a single-stranded nucleotide sequence that hybridizes to an upstream open reading frame start codon of a processed PKD2 mRNA. For example, a modified snRNA can be modified to comprise a single-stranded nucleotide sequence that hybridizes to a sequence upstream of an upstream open reading frame start codon of a processed PKD2 mRNA. For example, a modified snRNA can be modified to comprise a single-stranded nucleotide sequence that hybridizes to a sequence downstream of an upstream open reading frame start codon of a processed PKD2 mRNA. For example, a modified snRNA can be modified to comprise a single-stranded nucleotide sequence that hybridizes to a sequence upstream of a canonical open reading frame start codon of a processed PKD2 mRNA. For example, a modified snRNA can be modified to comprise a single-stranded nucleotide sequence that hybridizes to a sequence downstream of a first upstream open reading frame start codon of a processed PKD2 mRNA and upstream of a second upstream open reading frame start codon of a processed PKD2 mRNA. For example, a modified snRNA can be modified to comprise a single-stranded nucleotide sequence that hybridizes to a sequence upstream of a first upstream open reading frame start codon of a processed PKD2 mRNA and upstream of a second upstream open reading frame start codon of a processed PKD2 mRNA. For example, a modified snRNA can be modified to comprise a single-stranded nucleotide sequence that hybridizes to a sequence upstream of a first upstream open reading frame start codon of a processed PKD2 mRNA, upstream of a second upstream open reading frame start codon of a processed PKD2 mRNA and upstream of a canonical open reading frame start codon of a processed PKD2 mRNA.


Methods of Identifying Additional ASOs that Induce Exon Skipping


Also within the scope of the present disclosure are methods for identifying or determining ASOs that induce exon skipping of a PKD2 NIE containing pre-mRNA. For example, a method can comprise identifying or determining ASOs that induce NIE skipping of a PKD2 NIE containing pre-mRNA. ASOs that specifically hybridize to different nucleotides within the target region of the pre-mRNA may be screened to identify or determine ASOs that improve the rate and/or extent of splicing of the target intron. In some embodiments, the ASO may block or interfere with the binding site(s) of a splicing repressor(s)/silencer. Any method known in the art may be used to identify (determine) an ASO that when hybridized to the target region of the exon results in the desired effect (e.g., NIE skipping, protein or functional RNA production). These methods also can be used for identifying ASOs that induce exon skipping of the included exon by binding to a targeted region in an intron flanking the included exon, or in a non-included exon. An example of a method that may be used is provided below.


A round of screening, referred to as an ASO “walk” may be performed using ASOs that have been designed to hybridize to a target region of a pre-mRNA. For example, the ASOs used in the ASO walk can be tiled every 5 nucleotides from approximately 100 nucleotides upstream of the 3′ splice site of the intron preceding the included exon (e.g., a portion of sequence of the intron located upstream of the target/included exon) to approximately 100 nucleotides downstream of the 3′ splice site of the intron preceding the target/included exon and/or from approximately 100 nucleotides upstream of the 5′ splice site of the intron following the included exon to approximately 100 nucleotides downstream of the 5′ splice site of the intron following the target/included exon (e.g., a portion of sequence of the intron located downstream of the target/included exon). For example, a first ASO of 15 nucleotides in length may be designed to specifically hybridize to nucleotides +6 to +20 relative to the 3′ splice site of the intron preceding of the target/included exon. A second ASO may be designed to specifically hybridize to nucleotides +11 to +25 relative to the 3′ splice site of the intron preceding the target/included exon. ASOs are designed as such spanning the target region of the pre-mRNA. In embodiments, the ASOs can be tiled more closely, e.g., every 1, 2, 3, or 4 nucleotides. Further, the ASOs can be tiled from 100 nucleotides downstream of the 5′ splice site, to 100 nucleotides upstream of the 3′ splice site. In some embodiments, the ASOs can be tiled from about 1,160 nucleotides upstream of the 3′ splice site, to about 500 nucleotides downstream of the 5′ splice site. In some embodiments, the ASOs can be tiled from about 500 nucleotides upstream of the 3′ splice site, to about 1,920 nucleotides downstream of the 3′ splice site.


One or more ASOs, or a control ASO (an ASO with a scrambled sequence, sequence that is not expected to hybridize to the target region) are delivered, for example by transfection, into a disease-relevant cell line that expresses the target pre-mRNA (e.g., a NIE containing pre-mRNA described herein). The exon skipping effects of each of the ASOs may be assessed by any method known in the art, for example by reverse transcriptase (RT)-PCR using primers that span the splice junction, as described in Example 4. A reduction or absence of a longer RT-PCR product produced using the primers spanning the region containing the included exon (e.g., including the flanking exons of the NIE) in ASO-treated cells as compared to in control ASO-treated cells indicates that splicing of the target NIE has been enhanced. In some embodiments, the exon skipping efficiency (or the splicing efficiency to splice the intron containing the NIE), the ratio of spliced to unspliced pre-mRNA, the rate of splicing, or the extent of splicing may be improved using the ASOs described herein. The amount of protein or functional RNA that is encoded by the target pre-mRNA can also be assessed to determine whether each ASO achieved the desired effect (e.g., enhanced functional protein production). Any method known in the art for assessing and/or quantifying protein production, such as Western blotting, flow cytometry, immunofluorescence microscopy, and ELISA, can be used.


A second round of screening, referred to as an ASO “micro-walk” may be performed using ASOs that have been designed to hybridize to a target region of a pre-mRNA. The ASOs used in the ASO micro-walk are tiled every 1 nucleotide to further refine the nucleotide acid sequence of the pre-mRNA that when hybridized with an ASO results in exon skipping (or enhanced splicing of NIE).


Regions defined by ASOs that promote splicing of the target intron are explored in greater detail by means of an ASO “micro-walk”, involving ASOs spaced in 1-nt steps, as well as longer ASOs, typically 18-25 nt.


As described for the ASO walk above, the ASO micro-walk is performed by delivering one or more ASOs, or a control ASO (an ASO with a scrambled sequence, sequence that is not expected to hybridize to the target region), for example by transfection, into a disease-relevant cell line that expresses the target pre-mRNA. The splicing-inducing effects of each of the ASOs may be assessed by any method known in the art, for example by reverse transcriptase (RT)-PCR using primers that span the NIE, as described herein (see, e.g., Example 4). A reduction or absence of a longer RT-PCR product produced using the primers spanning the NIE in ASO-treated cells as compared to in control ASO-treated cells indicates that exon skipping (or splicing of the target intron containing an NIE) has been enhanced. In some embodiments, the exon skipping efficiency (or the splicing efficiency to splice the intron containing the NIE), the ratio of spliced to unspliced pre-mRNA, the rate of splicing, or the extent of splicing may be improved using the ASOs described herein. The amount of protein or functional RNA that is encoded by the target pre-mRNA can also be assessed to determine whether each ASO achieved the desired effect (e.g., enhanced functional protein production). Any method known in the art for assessing and/or quantifying protein production, such as Western blotting, flow cytometry, immunofluorescence microscopy, and ELISA, can be used.


ASOs that when hybridized to a region of a pre-mRNA result in exon skipping (or enhanced splicing of the intron containing a NIE) and increased protein production may be tested in vivo using animal models, for example transgenic mouse models in which the full-length human gene has been knocked-in or in humanized mouse models of disease. Suitable routes for administration of ASOs may vary depending on the disease and/or the cell types to which delivery of the ASOs is desired. ASOs may be administered, for example, by intrathecal injection, intracerebroventricular injection, intraperitoneal injection, intramuscular injection, subcutaneous injection, or intravenous injection. Following administration, the cells, tissues, and/or organs of the model animals may be assessed to determine the effect of the ASO treatment by for example evaluating splicing (e.g., efficiency, rate, extent) and protein production by methods known in the art and described herein. The animal models may also be any phenotypic or behavioral indication of the disease or disease severity.


Also within the scope of the present disclosure is a method to identify or validate an NMD-inducing exon in the presence of an NMD inhibitor, for example, cycloheximide. An exemplary method is provided in Example 2.


Exemplary genes are summarized in Table 1. The sequence for each intron is summarized in Table 2.









TABLE 1







List of exemplary target gene sequences











Gene
Gene





Symbol
ID No.
Disease
OMIM
Genetics





PKD2
5311
polycystic kidney disease
613095
Haploinsuf-




with or without polycystic

ficient, Loss-




liver disease, autosomal

of-function




dominant polycystic kidney




disease, or intracranial




aneurysm
















TABLE 2





PKD2 sequences







PKD2








genomic
AGGCGGCGGCGGGCGCCGGGAAGAAAGGAACATGGCTCCTGAGGCGCACAG


sequence
CGCCGAGCGCGGCGCCGCGCACCCGCGCGCCGGACGCCAGTGACCGCGATG



GTGAACTCCAGTCGCGTGCAGCCTCAGCAGCCCGGGGACGCCAAGCGGCCG



CCCGCGCCCCGCGCGCCGGACCCGGGCCGGCTGATGGCTGGCTGCGCGGCCG



TGGGCGCCAGCCTCGCCGCCCCGGGCGGCCTCTGCGAGCAGCGGGGCCTGG



AGATCGAGATGCAGCGCATCCGGCAGGCGGCCGCGCGGGACCCCCCGGCCG



GAGCCGCGGCCTCCCCTTCTCCTCCGCTCTCGTCGTGCTCCCGGCAGGCGTGG



AGCCGCGATAACCCCGGCTTCGAGGCCGAGGAGGAGGAGGAGGAGGTGGAA



GGGGAAGAAGGCGGAATGGTGGTGGAGATGGACGTAGAGTGGCGCCCGGGC



AGCCGGAGGTCGGCCGCCTCCTCGGCCGTGAGCTCCGTGGGCGCGCGGAGCC



GGGGGCTTGGGGGCTACCACGGCGCGGGCCACCCGAGCGGGAGGCGGCGCC



GGCGAGAGGACCAGGGCCCGCCGTGCCCCAGCCCAGTCGGCGGCGGGGACC



CGCTGCATCGCCACCTCCCCCTGGAAGGGCAGCCGCCCCGAGTGGCCTGGGC



GGAGAGGCTGGTTCGCGGGCTGCGAGGTAAGAGCGCGCGACCCGCAGCGGC



AGATGCACGAACCAGAACGGCCGGCGCCGGCCGGGGCCATCGCCCGCTGCG



GCAGCTCCCCGGGCTCCATCTCGCATCCCCTCTGCGTTCCGCCTCCCTTGGAA



GCGCATTCCCCACCTCCGCTAGTGCTGCCCTATTTCCGGTACCCAGCGCGGA



ATTCCACTGCTCTTTTGTTGGTGCATATTTATTGGATACCTCCTTCTTCAGGAT



ATGTCACCATAGTCTTTTTTACTGAAAATTAGTGAAAGCCTAATTAGAGTGA



AAGAGTACATCTGGGTTTTGTTTTTTTTTTTCTTGTAGAGGAAAAAATGAACA



TTACTTGTGTAACTGATGGTAGTTGCAACTGCATATTTGCCAATGTCACAAAA



TCTAAAGGAAAATGTTATAGTCACCCGTGGTTTCCTTCTTGCCTGGACACTCC



ATTGTCCCGGGCTGAAAAGGGTAGCAGTACAGTGCATATAATGTCAAGTTGT



GGGAGGAGTGTGGCAGATTGTCATTGGTGCATTTTTTTGGTGATGTGTGTGGT



TGTTTTGAGGAGTGGGAGCTGTTAAGAACACCACAAATAGAATAAAATAATA



TCGTGAAGTTATTTGGCCGTTTCTAATTCTAGACATTTTTCTAAAAACAGTTG



CAAAGGAAAGATTACATTGTTTTAAAAAAATTTGAAGTATGTTTTTAAATAA



CTAAATTAATGTTCTTTGAAATTCCACCAAAATGATGAAGTCACCAGATAGC



AGCTGATAAATGTGTCTGAGCCCAGTGCGCCCAGCTCTACAAAAGGCAGAAG



AGGAATTTTCAAATTTGCCAGTGCCCAGTAAGAGGACATGAATTTTCTAGTA



CCAGAGGAAATTCTCTTTTTACAAATTTTGTCAGAGGTATCCTTGGGAAAGTA



TTTCATTTGCTTTTACCCTCCAAATTATTTTAATCTATATTTTTAAGAGTTTCC



ATTCTCAGTTGAGTTTTTCTTGTTCTTCTCCTTCTGTCAGTTTTGAAAGTCTTG



CACAAAAACAATCCAGGTGTTGTTACAGCAGTGTGATTAAAACCAGGTCAGG



CCTACACTGAAATCCCAGTTCCACCACTCATTAGCTGTACGACCTTGAGCAA



GTTACTTATCCTCTCTGATACCCAATTTTTGGATTTTTTTTTTTTTTAAAGAGA



TGATCATAACGCTTAGGACTTGACTCTTTGGGAGAATTAAGTGAGTTAAGAC



ATAAAATGTGCAGCATGTATTTGTCATGTTATTAGCGCTTCAGAAATATAAAT



GTAAACATTTTGGTACTTCGTTTATGGAGATTCTTATACTAGTTAATTTTATTA



AAAGCATGATGGGGAACAGAAGATCCTTTTCGGATAACCTGTGTGAGTAAAT



TAATAAAACACTAACACTTTTTAAGATTCAAAACTGGATTAATTATGTTATTT



TACACCATTTAAAATGTGCATTTAAAAAATATTCACTGAAGTGAGAGAGAAG



TTCCTTTTAAGTTAATAAATAATGGTAAGTTGCATGATCCTTTTAACTCAGTT



TAAGCATTTGATAACACCCCTAACCTTGTTTGAATAAACTCAATAACAGAAT



ATAGAGAAATAAAATATATATTTCATATGAGTATGTATGTAAATTTATTTCTT



TTAAAGGAAAATTTCAGGAAACAAAATGAATAAGCTCATAGTCATAAAACCT



CTAGCCAAAGTGTGTCAATGGTCTGATTTGTAGGAGAGCAGACTCAGGAATC



GGGAATTTTTTTTTTTTTTTTAAGAGTCGGGGTTTCACTCTGTCACTGAGGCTG



GAGTGCGGGGAAGCAAACGTAGCTCACTGCGGCCTCAAACTCCTGGGCTCAA



GCTGCCCTCCCACCTCAGCTTCCCAAGTAGTTGGGATTACAGGTGCAAGCTG



CTGCTCCTAGCTGAAAAGTTTTAATTATATAAAATGTTTAAATAAATTGTTAT



TCCTTTCTTTTATGAAGAAATATAATTGATATTCTTGTCACTTATTAAATAAG



CAACATTTTAAAATGTTTAGCACCTACTGTGAAGATAGCACTGTGCTAGCTG



CTATGAATAAACTAGAATAGCATATCACTGTTTTCCTATGGACAAAAACCCA



GAAATGTAAAATAAATAGCCATGAATGGGTTGAGATTCCCCCTGCCCCCTTT



GGATACTGATGACAGAAATCTTATATGCACTATGTAAGCAGTGCCCTAGGAT



CAGAACAGAAAGTAACTTGCAATTTTTAAAGGTGGGAGAAATGACTGAAGTT



TGGAGTGGTCAGGAGTTTCCCTGGAAGTCTCTTGCCTTTGTGACTTTGTATAG



CTCCCTCAAACTACCTGAGCCTGAGCTCCTCATTTATAAAATGGAAGAATTG



AACCTAGCTTCCAAGGTCCTTTCTAGCTTCACCATGCTCTGGTCTGTTGTTTA



ATGACATGAATCCAAGATGGACAACAAATGGTCGATTTTGCTCCTTCTACAG



TAAATAGATCTATCTTCTTAGCAGAAGTAAAATAGTAAAGAAAGAAGACATG



TTTGAGGCCTGTTGAGGCCTGTTTGCTGTATGCATTGTATCTAATCAAGGAAT



TGAGAATGTAGCCCTAAATATTAGGAAGGAGTTGAAAGTTTCTGAGCAGGAA



CAGAACATGCTGAAAGGAAATTGTGTCAGCAGCATGGTGTACAGGAGAGCT



TGGCAGAGAGAAAGGAGGCAAGAAGACCTGTGGGAGGCAGCCAGTAAGGA



GGTGAAGAGGGCCTGGACCAAAGGAAGCCAAGGATGACCGAAAGATTTAAA



GATGAAGCCCAGATTTAAAAGTATCCTCAAGTATTTGTTTATTCTTTTCTTAG



CAAATTCTTTTTAGTACAAAGATAAAATATGGCACTCTGAGTCATAAAATTTT



CTGAATTTCAGAAGTTGAATGTTTTTCTGAATGTATCAACCTGTTAAAGTCAG



TTCCTGTTTGTTATTTTAGGCGTATATTCTTGGGCTTTTTTTTTTTTTTCCTAGA



GAAACTATGAAGTACTAGCTGTGCAAGTCAGGGTGGGCTAAGCTGCTAAAAC



AGATACCTCCCTCCCCTTCAATACCCTGAAGAACAAGAAGTTAATTTTTTGCT



CGTGTAACATTTTAGAGAGGGTATTCCAGGTTGAATACCTGGAATAATGAAT



GAAATAATAAGTCGACTCTTATTTCTCCTAAAATAATTGGATCTTGACATTGA



AATTGGTGTGCTGATTGTATTTAATAAGTGACCTCCAATGCAGTTATTTCATT



TTGCCATACTTTATGTAATTTTTATTTTTTCTGCCTTCCCTTTCGATGTCTAAA



GGGAAGCATAATTAGTTATTGGAAAGGTTATTGAGACTTAAAAAAAGATTTG



AACATGGCTTTGGTTGATGCTACCACACAGAAACTGCAAACATCCAACTCAC



CGCTCTTAGTTGCTGTTCATGATAGTCTATGCACAGTGACTGATGAATTTAGC



CTGTCTTGAGGCTTCAGAACTTAGTCTTATGTCATCACGAGCAGAGCTTTATC



CTAAATTACAGGTTTTCAATGGGGGGGGGGGGGAGGGGCAGTTTTGCCCCTC



AGGGGACATTTGGCAATCTCTGGAGACATTTTTGATTGTCATACCTGGGGGG



ATGCCCCTGGCATCTCCTGGGTTGAGGTTAAGGATGCTGCTAATCTACAATG



CACAGTACAGCCACCCCACACACACACACTACAAAGCATTCTCCCACCCAAA



TTGCCAGGAGTGAGGACTTTGAGAAACCCTGCCCTAGACTGTTAAATTCAAA



AGGAAATAATGGTTTATTGCTCACAGTGTGCCAGGCACTGTGTTAAACTCCTT



ATATTCATAGTTTTGTTTTTATCCTCACAACAACCTGTGAAGAAAGAACTCTC



ATCCGTCACCACTTTACTGTTGAGGGCACTAAGCCTTCTAAAGGTTAAATGA



CTTGCCCAGGGCCGCAACTATTAGATGTTGCAGTCAGGATTTAATTCCAGGC



ACTTTGTGTTCAAAGTGTTTCTCATCCACTGTGCTATATGCCAGTAGTGCCCA



AACCTAACTTTAGCCAGCAATTGTCTGCATCTCTTCAGTTTATGAACATTTAT



TTATTAGGACATGCAGGATAATCATACCAACACAGTCCGTGTATCCAGAATT



CTAATTGATCTAGGGAGTGGGAGAGCCTGCCTCTCTATTTTTTTTAAATTGGT



GTGAAATATACATAACATAAAATTGGCCATTTTAACCATTTTAAGTATATAAT



TGAGTGACATTAGGTAGATTTATTATATTATGTAAATGGACTTAACACAATTT



ATTTCCAGAACTTTTTTATCATCCCAAACAGAAACTCTGTACTCATTAAACAG



TAACTCCCTGTTTCCCCACTCCCCCTTGCCCCAGACGCTAGTAACCTCCATTC



TACTTCCCCTTTCTGTGAGTCTCCCTGTTGTAGCTACCTGATGTAAGTGAAAT



CAGACCATGTTTGATCTTTTGTGTCTGGCTTATTCACTTAGCATAGTATTTTCA



AGGTTTATCCATGCGTGCAAATTCCCTTCTTTTTTATGACGAAATACTATTTA



ATTGTGTGTGTACATGTGCACACACAATGAAATACTATTTCATCATAAAAAG



GAAGTTTGTACACATATATACACACACACCAAATTTTGTTTATCCATTCATCA



GTTCATGGGCATTTGCGGTTTTTTTCCACCTTTCGACTGTTGTGACTTTCCGTT



TATTTTTAATCTGAACTTTACTCCATCACTTCCTCCCTTTCCTTTTTTATTCGCA



CCATAATTTTGAACAAGCAGACTTTGTATTTTCATTACTCTGGGGATTTTTTT



GAGGGAGGCTTGCTACCCTTTGGGGTTGTGGTAAGGTTGTGCCAGTAACAGA



ATTCATGCAGTAAAAAACATTCATGGGACTTTCTTTTGTGATAGGTACTAGG



GATGCAGAGATGAATAATACAAGGTCTCGACCTTCAAGGAGCTCAGGGTTTA



GTAGGGAAAACAGAGGTATAAGTAAGTCATTGCAATGCCAGGTCCCAGATA



TGGGAGGATTCCAGCAAAGAGAGGATAAGGCCAGGCACAGCCGCTCATGCC



TATAGTCCCAACACTTTGGGAAGCTGAGATGGGAGGATCACTTAAGCCCAGC



AGTTCAAGGCTACCCTGGGCAACATAGTGAGTGGCAAAAAATACAAAAATT



AGCCAGGCAGGGTGGCACATGCCTGTGGTCCCAGTTATTTGGGAGTTTGAGG



TGGGAGAATCACCTGAGCCTGGGAGATTGAGGCTGCAGTGAGCTGTGATCAC



GCCACTGCACTCCAGCCTGGGTGACACAGTGAGAGGTGAGAGCCTGTATCTA



AAAAAAAAAAAAAGAGAGGATCAGATTTACCTGGAGAGGTCAGAGAAGGTT



TCCAGAGGGAGTAAAACTTGAGCTTCATTTTGAAGAATGAGAGGGGAATAC



AAGGAGGGAAAAATAATAGGAACAAGACCTGTTCCTGTTACAGCAAACCTG



TAACTCCCACCATGGAATGGGCACGTTTTCCTGTAGACATTTGGAGCCAGTG



TGGGCTTCAAGCCTAGGGGGCTGATATGATCATTTGTCAATCTGAAGATGAC



TCTTGGAACAACGTAGAGGATAGGGTGAGGTGGGTAGGCTGGTGGCTGACA



GACTAGGTCAGGAGAGGGCTGACCAAGAGGAGGAGGGGTGACGAGGGCTG



GAACTAAGGCATATGAGCTGGGATGGAAAGAAGCTAGATAGAAAGGAAACA



AAAACCATCAGAACTGTGGAACCAACTCCATGGGAGGGATAAGAAGAGGGC



CTATTCTAGGGTGAAACCCAAATTTCTGGCATGGTACCATTAACCCAAACAG



AAAGAGGAGATTTCCAGAGAAAGAAAAGCAAATTTTGCGGGAGGTGAGTGT



GAGCTGTCTAGAGAATATGCAGGTAGAACTACATGTTAACTGTAACATATAC



TTGTCTGCACCTCAGGAGATGGCTGATTAAGAATTCAGGATTCAGGCCAGGC



ACGGTGGCACACGCCTTTAATCCCAGCTGCTTAAGAGACTGGGGGGGGAGGA



TTGCTTGAGCCTGGGAATCCGAGATCAGCCTGGGCAACATAGCAAGACACTG



TCTCTAAAAAAAAAAAAAAATTCAAGATTCTGGAGTCAATATTACTTAAGGT



AGCAACTGTCTATTCTATAGAAAATGGACAAATATAGATAAAAAGCCACTTC



CCTTTCTAAAAGTGTCCCTGCAATTCAAGTGAATACTAGGAAGGATTGTGTTC



ATTCTTCTAAACAAGACTCACATGTATCTTAGCACAAAAAGAGGATTCTTTTA



TGATACAAATGCACTGAGAATTTGGTCAGGCTATCACAATGAACTGATAGTT



CAGATGGATTTGAGTCTTTATACCACTCTGGAATCTGGACCAACTGGGCCTCC



TAAGGCCATTTTGCAGATCTGGGCTTGTTTCTGAAGCTACAGACAGGCCTCTT



CCAAGCACTCTAAGTGCTCCACAAATAATATTTCTGTTTCCCAGAACAACCCC



ACAAAAAGGTACTCTTACTCCATTTTTAGATGAGGAAGTGGAGGCTCATGAT



GTCAGGTAAGCTTTCTCAGCTCCCAAGTGGTTAAGCCCTCAGTTTAATGTCAT



TTGACTCCAGAGCCCTATGTTGCACCATGCCTTGATAATAGGCCATATGGGTT



TCATGTATTTCAGATGGGGAAGGTTAGTGTGAGGTGAAAGATACACAATTAA



CCTTTTAACCATGGAACTGAAATATTTACAGATGAAGTGATACAATAGCTGG



AATTAATTCCAAAATAATTGGGGTGGTACTGGTCCATGGCCTGTTAGGAACT



GGGCCGCAGAGCAGGAGGTGAGCAGCAGGCTAGTGAGCATTGCTACCCCCT



ATCATATCAGCAGTGGCATCAGATGGGTGAGGATGTAAATGAACTAGGATTG



GCATTGAGTTGATATTGTTGGATCTAGGTGATAGATTTATCATTATAATATTC



TCTCTTTGTGATATTTCTGATATTTTCTAAAATAAAAAGTTGTAGTTATTTATT



TATTTAGACGGAGTTTCACTCTTTTGCCCAGGTTGGAGTGCAGTGGTGTGATC



TCGGCTCACTGTAGCCTCCGCCTCCCGGGTTCAAGCGATTCTCCTGCCTCAGC



CTCCCGAGTAGCTGGGACTACAGCCTCCCGAGTAGCTCACCACCACACCCAG



CTAACTTTTGTATTTTTAGTAGAGAGGAGGTTTCACCATGTTAGATAGGCTGG



TCTCAAACTCCTGACCTCAGGTGATCCACCCACCTCGGCCTCCCAGAGTGCT



GGGATTACAGGCGTGAGCCAGTGTGCCCAGCCAATAAAAAGTTTTTGAAAGG



ATTTAGATAAAATAGTTGGGGAAATGGCATTTTTGTTCAAAGCCAATTATTTA



TGTTTGGAATATCTTTTGTGCTTGGAGTTCTCCATTACAGAGTTCCCCAGTGT



TCCTATTAATAAGTAACATTGAGCAGAGGAATGCACTGTTTAGATCAGCAGT



CCCCAACCTTTTTGGCACCAGGGACCGGCTTCATGGAAGACAATTTTTCCAC



AGACCTGGGGTAGGAAGTGTTTGGGGATGAAACTGTTCCACCTCAGATCATC



AGGCATTAGTGAGATTCTCATAAGGAGCAGGCAATCTAGATTCTTCACATGC



GCAGTTCACAATAGGGTTCTCACTCCTGTGAGAATCTAATGCCACCCCTGATC



TGACAGGAGGCGGAGCTCGGGCGGTAATGCTCACTTGCCTGCGGCTCACCTC



CTGCTGTGGGGCCCGGTTCCTAACAGGCCATGGACCAGTACCCGTCTGCAGC



CTGGGGACTGGGGACCCTGCTTTAGATGATGTACTCTGGCTTTGCATTCTGGC



ATTAGCTAAGCACCCTCTTAAAGGAAATTGGGTCTATACTCTCAGTCCGTGTT



CTCCCTAACACCTGGAAACATTGAATACCTTCAATGCTGGGAAGTTAACTCC



CACCACAACTAGAACAGCTATGGGAAAGACAACAGTTGATTTTGAAGAGTGT



CACCAATTTGCACATGATTCCATCCTTAACCATTCTTATCCTATCAGCTCTGC



CAAACATGGAGAATAGTTGGCTGCAGGACAGCTATTTTTCCTACTTGTAGAT



GCAACTATTTCTCACCCACCAGGATGTAAAAGGTCCCTGTACCCTAAGATTG



GTCCTACATACACACCCAATGGGAAAATGAGATGAAAAATTTAAAGCAGTA



AATATTTGAGGAAGTAGATAGAGTAATTTAGAAAAAGAAAATACACAGGGC



CAAGCACAGTGGCTCACATCTGTAATCCCAGCACTTTGAGAGGCCAAGGTGA



GAGGATTGCTTGAGCTCAGGAGTTTGAGGCCAGCCTAGGCAATGTAGTGAGA



CCCCACCTCTACAAAAAATTAAAAACTTAGTTGGGCTTGGTAGTATGTACCT



GTAGTTTAAGAAACTTGGGAGGCTGAGCTGAGGCAGGAGGATTGTTTGAGCC



CGGGTGGTCAAGGCTGCAGTGGGCCATGATTGTGCCAGAGTACTCCAGCCTG



GGTGATAGAGTGAGACTCTGTCTCAAACAAAAAAAAAAACAGAGACAGAAA



AAAAGAAAGAAAATATATGGATGTATATCATATAAAAATATAAATAAGGGA



GGCCAAGTGCAGTGGCATGCCTGTAATCCCAGCACTTTGGGAGGCTGAAGCA



GGAGGATCACTTGAGGCCGAGAATTCGAGACCAGCCTGGGCAACGTATTGA



GACCTCATCTCTGCAAAAAATCAAAAAATGAGGCGGAAGGATGGCTTGAGC



CCAGGAGATCAAGCCTTCAGTGAGCTGTGATCGTACCACTACACTCCAGGCT



GGGTAACAGAGAGAGACCCTGCCTCAAGATAAATAAATTCATACATACATAC



ATACATACGTACATACATACATACATAAGAAGACTTGTTTCTTTCCATTTGCA



ATGTTTCATTCAAAGGCTAGAATTAAATTGCCGTAGGCCATCACAAGTTTAG



CTTGAATATTATTATTTTTTCAAGATGGAGTCTCACTCTGTCACCCAGGCTGG



AGTGCAGTGGTGTGATTTTGGCTCACTGCAACCTCTGTCTCCCGGGTTCAACC



GATTCTTCTGCCTCAGCCTCCCATGTAGCTGGGATTACAGGCGCCCGCCACCA



CACCTGGCTAAGTTTTGTATTTTTAGTAGAGACAGGGTTTCACCATGTTGGCC



AGACTGGTCTTGAACTCCTGACCTCAAGTGATCTACCCGCCTCACCCTCCCAA



AGTGCTGGGATTATAGGCTTGAGCCACTGCACCCAGCCTAGCTTGAAGAAAA



TTTGATAGGAGTTTGTTTTTTTCTATTTATAGGCCAAGCAATACCACGTATAA



ATATTAAGAATCATGGCTGTTCCTTAGTGCCTAGTTGTTTATAAACCATGGGA



AAGAATGAAATCATTGACCAAATGAGACAGGGTAACAGTCTTCCCTGGGAGT



AAAGAGACTAGCAGTCTCTATTGACATATATTTTAGGCCTGGCCTCCAAAAT



AAATTTACCCAAAGAAGTGATGTATTTGTGTCCAGGGCTACCGAGCCTAATC



TTTGGCTGCCTCTGTGTTATTCTAAGTTGTAATTTTCCATGTCATCTAAATTTG



TAATAATTCTTTAATATGATAGTGTTTCAGTGAACAAACATTCTGCTTGCTGC



ATTTCTTCTGAGTGAGTAATTCCCTGACAACTACCAGATCTTGGCAGAAGCA



AAGTTGGTCATAAGTTATGCTCCACTCTCAGTGCTGGTGAAACGTATGATGC



GTAACACAGTGTTTTTGAATTCAGTGCTGATTTTCCTAAAGGACATTTGGAAG



GAAAAAAGAAAAGGAAAGGAAATACCCAAATTCAGGAATAGAACTTACATA



TTATTATAAGACTTAAAAAATACATGAACACTAATGATGAACTCATTTCTTCG



AAGTAAAAGGCCTTATGCTATTTTTTCCCATTTCCCTATGTGGCTTGATTGTG



GCGAAAGTGGCTGTGTGAGTTTCCATTATTGAAGGAGTTAAGGTCTGTGGAA



TCAAAGCATGAGACAACATGCAAGGACCAGGTTGGTTTCCATTTAACAGCCA



ACCTAATCTAACTGAAAGGATTGAGAGGTTTGTCTTTTTTGGAAAGTGTTAA



GGTTCTTCCAAGTAACCAGCAATGTGACTTTACCACACTGTTCATTAACGGG



GCTTTGGATGGCCACCATGTCTGCTGCTGGCTGAGTCCAAAACTGCGGTCAC



TCTCTCCAGCAAGCTCATGGAGGGTTACGTCATCTTCACTCAGCCAGCCCAA



CGCTTTTTCCATCTGCTAAAATGTAGAACATGGTTGTTGATTCTACTCTTTCTA



CAAAGAAAGAGAGGGAACATGGATGAGTTGCTGCTTTTAAAGATTATATGTT



AATTGCTGTTTTAAAAATCTGCTCAGCTAAGCACGCTTAGTGTAATCAGTCAC



CATGGAGTTTTTTAATAGGACAGCTTCTGCTCTTACAGAGCAGAGTTTTTATG



CCAGTAGGTTAGAAGCATAACATGTTTCTATATTGAAGTGATTCTCCAACAA



GGACTTCTTTTCATCAGGGGTGACCTAAAAGTTATTACTTGAAATATAATTAC



ATCATGTTCTTAACTGGGTTTAGTAGTAGGATAATTACAAGGTTGTATCCACC



TCAAATAGGAAGAACTGATAAGTTTTGCACAATTATTTAACTCCTCTGTTAGG



CCTTCCTTATTTCCTGTTCTCTTTTTAAAATTTGACTAAGATATTGCTAATGGG



CTTGGGAGCCTATAAAATGATCAGAATTGTTGCCTTATGTTTTGCATGTTTGG



GGTAACATTGGAGCCAGATGTACTCTTAAATAAAAGGTAGGCCTACAAAACC



AGTTTCTCAGTTGCATTCAAAATGTGATTAAAAAAAAAAAAAGGAGAATCTC



CCTTATAGGTGAACTTTTTAATTTGTGCTTTATTTTCCCTTTTGCCATTCATGA



GATTTCTTAAATAAAATGATATCTTTTCTTTTCTTCATTATTATTTTAAAGGTC



TCTGGGGAACAAGACTCATGGAGGAAAGCAGCACTAACCGAGAGAAATACC



TTAAAAGTGTTTTACGGGAACTGGTCACATACCTCCTTTTTCTCATAGTCTTG



TGCATCTGTAAGTAGAATATTTCCTTGCACTAATGGGAAAGTTTTGAAAAGA



TTTGACCTATCCAAATCATAATTAAAAGGAAGTGTGTATGCACCAGAGGGGC



AACTGGGAAGTTACCTTCTTACCTTTGTTTTTAATTCTAATATTTTTATTTGGG



CATTTGTTTATTGACTATCTTCCTATGGTAGAATGCAAGCTTTATAAGAGAAG



GGACGTGATTTGTTCTCTGCTGTACCCCCATTTCCCAAAACTGCAGATGGCAA



CAGAAGGCTCTGAAAAATATATAAGAAAGAATTTTTCTAATTGTGACTAAAT



TGTGACCAAATGCTAAGTGACTGTGGACTTGCGTTTAACACAGGACGGGAGA



GGCAAAGAGTTCAATTCCAATTTAGAATTTGGTCAAGTTCTCTTCTGCACTCT



GGTAAACATTAATTAAAAATCAGCATTATCTGACCAGCCAGTTCATCGTCAG



TGGTGGTGATTTTCACTATGAGATACGCGTGGCAACTTGCCAGACACCAAGA



AACCAAGTTAGAGGATTTTTGTATTAGATTCCTTAACAATGAATACAGTATC



ACCATTATTACAGTATCATCATTATTGTCATACTATTATTATATCAGTTAACA



TAAAGTCTGCATAAGAATTGTTTCCAGAAAAATGACTTTCCAAATTTAACTTT



CAGGAAATACAAATAATGCTACTAATATTGCTTTTATTGGCGTATACATGTA



ATATCCCCTTCTTTTGGATTTGGATATGTTGTGTCATTGCCTCATTTTAATTCA



TTATTTCTTCTCAATCTTTAATAATTGCTGGACTTTTACTCCACAAGAAACTTG



CTATAGGCCCATCTCTTTCGTCTTCTTTCCTTCTTTCAGTTCGTCTTCCCATCCT



CTGGTAGGGGGAGGGGAGGGATGCCTGAGCGAGAGACTAGCTGTAGGAACC



ATTTGTCTCAAAGTCCAGAAAGCCACAGGTGATGGATTTGTCCTCTGAATCA



AAGGGCGTTCGATGATGGATTTCTGTCATGTCTCATCTAAAGTCTTCACGAGA



ACAGATGAGGAAGCAGTTTTATGACCCCAGAGCCTCCTACCAAACTCCTCTG



AGAAAAGGTTTCCTTTTTTTTTTTTTTTTTTAAATTAGAGACAGAGTCTTGATC



TGTTTCACAGGCCGGAGTGCAGTGGCACAATCATAGCTCACTGCAGCCTCGA



GCTCCTAGGCTTCAGTGATCCTCCCACCTCAGTCACCCACGTAGCTGGGACTA



CAGCTGCACACCACCATGCCCAGCTAACTTTTAAAACATTTTTGTAGAGGTG



GGGTCTCACTTTGCTGCCTATACTGGTCTCCAGCTCCTAGCTTCAAGTGATCC



TCCTGCCTTGGAAGTTCTGGGATTATAGGCATGAGCCACTGCACCCAGCCTG



GATGTGATATTTTTATGTTTTAAATTGTTAGAGTTTAGAAACTTGAGATTGAG



TTTGCTGCCTGCATTAAAATGATGCTTAAACATTAAACTGCAGTGGCCTTAAA



TATTAACAAGTTGATTAGAATTACTAAGTTCTTTTCAAGCTTTACATATACAG



ACAAATTTCTTATGCAAAATAGAAGGTAACCCCTGTACGTAAGTCTAGAATT



TCAGCAGTCCCCAAAACTGACTGAGCATTAGAATCACTCTGATTTTAAAATA



CATATGTGGTTTTCCGAGATCTACTAACAGAGCCTCCATAATGTAGCCTAGA



GAAACGAGTTTTCAGATGTAGTGATAAATTTGGAAGGTAAGTCAGAGAAGTA



AGCTGAAGACAGAGTTTTAGGAAATATGCCTAAAGTCACATAATGAATTGGT



TTTCTTGTTTATTTGAGAATATTGTCGCTTTTTGTTCTTTTTCATGCAAATCAC



ATTTTATTTCTTATGTGAGTAGCTATATATTTAAAAATTTTGTTTTTGGAATAT



TGTAGAATCTCTACTTAAGAAAGTATCTTAGCAGTCATATGGTCTGACCTCAC



TGAATGCTAAATTCTCTTTAAAACATCCGTCTCAGATGGTTACTCATACTGCC



TCTGATTGAACAAGAGTCCCAGGTTAAGGGACTTACTTCTTTGAAATCGTTCA



TTTCATTTTTCTACAGCTATGTTAGAAAGTTCGTCCTTAGCAGTGAAGCCAGA



GTCTATCTCTTATAACTTCTACCCAGTTGCACCCTCCAAGCCTACCTATACCA



AGTATCTTTTTTCCACGTTGCTTTTCCAATTCAGCTCTTCGCAAGTTTGGAGAC



AAATACCTAATCTCCTCTAAGCCTTCTCCAGGTTAAGCCTTTCCAGTTCATCC



AGCTGTTGATTATGTGATTGGAGACACAAGTTTGAGTAACTCCCATGATGGA



AAGTCCCTCTGGTGAATGTTCTGTTCATCAGAGTCCCTAAGAAAGCACATGA



GCCTCACCATGGTGAGTGGGGCCATGAGATTCCTAAACCAGACACTACACTG



TGGCTTGTGCAACCTACCATGGCCAGACTCATGAGGCTGTTTCATCATATAA



ATAATTCCTTAGTCTCTTCACCAAAAACTGTGAAGCACTGTGTCCCCCAGCTG



TATGTGAGCTAGCCTGGGACCATAGTGGAGGACTCCTCTTTCAACCCTGTTA



AATTTCATCTTGTTAGGATCTGCCCATTTTTCCATTCTGTTGAAATTATCTTGG



AACTGGATTCATTCATCTCACATCAGCTACTCCCCGAAGCCTCACAGTATCAG



CAGAGTTATTATCTCTATCCATATCCTTGTAAATTATTAAACTAAAAAAGATT



GGTCTAAGAACATCAGTCCATTAATCAAGGCTCTTTGGTTGGAGTTCACTTCA



TTATATTATCATCCAGCTCAGAGTGTTCATAAACAAGATGATAGGAAAGACT



TTTCCAAATGCCTGTCTGAGTAATTCCCCCATTCCTGTGATCTGTGAGCTGTT



GACCAGATTAAAAAGGAAGTGAGAATAACCAGGCAAGATTTACTCCTAGCA



AAACCTTACTGGCTTCTAGTGACTGAGTCCTTTCCCTATTGCTTACCAGCTAT



CTTTTTAATTACTAGTTTTAAAATCTTGCCAGCAATGTCAATATCAAATGACC



AAGAATATCAAACTCATTACTCTGTATGTAAATGAGATAGTGTACTTACCCCT



ATGGCTTAAGTATTAGGCTGTTCTTGCATTGCCCTAAATACCTGAGACTGGGT



AATTTATAAAAAAAGAGGTTTGGCCAGGCACTGTGGATCAGGCCTGTAATCT



CAGCACTTTGTCAGGCTGAAGCAGGTGTAATGGTGAGCCAAGAGTTCAAACT



TAGCCTGGACAACAAGGTGAAACCCCCTCTCTGCAAAAAATACAAAAATTAT



CTGGGCATGGTGGCATGCACCTGTAGTCCCAGCCACCCAGGAGGCTGAGGTG



GGAAAATTGTTTGAAGCTGGGAGTCAGTGATTGCAGTGAGCCATGATTGCAA



CACTGCACTCCATCCAGCCTGGGCGACAGAGCAAGACCCTGTCTCAAAAAAT



AAATAAATGAATAAATAAATAAAATAAATAAATAAATAGAAAAGAAAAAGA



AAGAAAAGAGATTTATTTGCCTCATGGTTCTGCAGGCTGTAAGGGAAGCATA



GCTCCAGCATCTGCTTCTGGGGAGGCCTCAGGAAGCTGTTACTCATGGCAGA



AGGTGAAGCAGGAGCTTGCACATCATGTGGCAAAAGCAGGAGCAAGAGAGA



GAGAATGGGGCAGGGAAGAAGCCCCACACTTTTAAATGACCAGATCGCATG



AGAAATCACTCGTTACCTCAAGGACAGTACCAAGAGGATGGTACTAAATTCC



TGAGAAATCCACCCCCATGATCTGATCACCTCGTACCAGGCCCCGCCTTCAG



CATTGGGGATTATGTTTCAACATGAGATTTGGATGGGGACAACATCCAAACT



ATATCACCTTGCATAGTAGGTAGGGTTTTAAAAAGCAGTTTGGCACAGTAAG



AAAAGTACAGATTTTTTTTGCATCAGACAGACCTGAGTTAAAATCCCAGCTT



CACTGCTAACATGCTAGGTAAATGTGGGCAAGTTAATTAACATTTCTAAGCC



TTTGTTTCCTCACTGGTAAAACAAGTATTTGGAAATATCATTGTGAAGATTAG



AAATAATACATGAAAAGATCCTAGGATGCTGTCTGTCATACAGTAGTAGTAG



TAAGAAGTTATTCTTGCCAAAGATTGTTGAGAATGGCAGAATTATCTCAGTT



CTAAGAGCTATAGTTTCTAATTATTTGAGCCTAGACTCAGATTCATTTGGAGC



AGCTAACTGCTCACCAAGAGCTTATTTTCCATCTTACCAATGAGGTTATGTGC



CCTGTGTTTTTAAAATCAGTCTACTTAACCAAGAGAACAGAAATGACATGAG



AATTAAGTAATCTCACTTTCTCTGTTATTTAGGATTTATTCCTACTCAAAACCT



GAGAGTTGCTATGAATTCACCATTAAAGCACTTATTAATATACATGGGTTACT



GTTATAAATAGCAATAGTATTGCTATTGTGTGAGTTAGGTGTTGAAGTTCAA



GAAAGGAATAAAGAATATTTAGAAGATCTTTGAAAACAGTGTCTGGGTACG



GTGGCTCATGCCTGTAATCTCAGCACTTTGGGAGGCCGAGGCAGGCAGATCA



CTTGAGGTCACGAGTTCAAGACCAGCCTGGGCAACTTGGCGAGACCTCGTCT



CTACAAGATATACAAAAATTAGCCGGGTATGTTGGCATGCACCTGTAATCCC



AGCTACTTAGGAGGCTGAAGCACAAGAATCACTTGAACCTGGGAAGCAGAG



GTTGCAGTGAGCCAAGATTGTACCACTGCACTCCAGCCTGGGCAATAGAGCA



ACACTCTGTCTCGAAAAAAAAAAAAAAAAAAAAAAAAAGAAAGAAAGAAG



GAAGGAAGGAAAGAAAAAAAAAGGAAAAAATGCAAGGAAGGTATTTGGTG



AATCTATAATAATAAAAATGTATTTGTCATTTCCTTTTTCTGTGCTCTCATTCT



ATAAAATTGAGTAAAAAATCTATATATAGTTTAAACACATTAATAGAAATCA



CAAAAGTTAGCTGAGTCAACATTGTAGAAACATAATATTTCTGTATGTCAAA



GAAATAGACAACATTAAAAAGCAGAAAGCAATTACAAAGAATGATTATAAG



AAACATCACAAAGGGTTAATATTTTAACACATTTGAAACTCAAAAATCACTG



AGAAAAGCAGTAGACTTCCATAAATATTTTATAGAGTAGAAAAAATAGGCC



AAGCACAGTGGCTCATGCCTGTAATTCCAGCACTTTGGGAGGCCGAGGAGGG



TGGATCACGAGGTCAGGAGTTCAAGACCAGCCCGGCCAAGATGGTGAAACC



CCATCTCTACTAAAAATACAAAAACTAGCCAGGCGTGGTGGCAGGTGCCTGT



AATCCCAGCTACTTGGGAGGCTGAGGCAGGGAATTGCTTAAACCCTTAAACC



CGGGAGGTGGAGGTTGCAGTGAGCCAAGTTCGCACCACTGCATTCCAGCCTG



GGCGACAGAACGAGACTCTGTCTCAGAAAAAGAAAAGAAAAGAATAGAAA



AAGAATCCATGGGCAGGCACAGTGGCTCATGCTTATAATCCCAGTACTCTAG



GAAGCCAAGGTGAGAGGATCAATTGAGGCCAGGAGTTCAAGGCCAGCCTGG



GCAACATAGCAAGACTTTGTCTCTATTAAAAATTTTAAAATTAGCCAGGCAT



GGTGACGCACACCTGTAGTCCCAATTACTTGGGAGCCTGAGGCAGGAGAACT



GCTTGAGGCTGCAGTGAGCTATGATTAGACCACTGCACTCCAGCCTGAGCTA



CACAGTGAGACCTTGTGTCAAAAAAGTAAAAAAATAAAAATTAGCCAGGCA



TGGTGGCACATGCCTGTAGTCCCAGCTACTCAGGAGGCTGAGGCAAGAGGAT



GACTTGAGTCTGGAAGATGGAGACTGCAGTGAGCTGTGGTCATGCCACTGCA



CTCCAGCCTGGGTGACAGAGCAAGACCCTGTCTCAAAAAAAAAAAAAAGAA



AAGAAAAGAAAAATAAATAAAATTTATTCAAATACAAAAGTGATGTGGTTT



GACTCTGTGTTGCCACCCAGATCTCATCTCCAATTGTAATCCCCGTGTATTGA



CGGAGGTTCCTGGTAGGAGATGATTGGATCATGGGGATGGTTTCCCCTCTGC



TGTTCTCATGATAGTGAGTGAGTTCTCATGAAATCTGGTTGTTTGGTAGGTGT



CTGTCACTTACCCCTTCTTTTTCTCTCTCCTGCTGCCTTGTGAAGAAGGTACTT



CCTTCTCCTTTGCCTTCCACCATGATTATAAGTTTCCTGAGGCCTTCCCAGCC



ATTTGGAACTGTAAGTCAATTAAACCTCTTTCCTTTATAAATTACCGAGTCTC



AGGCAGTTTTTTATAGAAGTGTGAAAATGGTCTAATACAGAGACTTGGTACC



AGGAGTGGGGTACTGCTATAAAAAATAACCTGAAGATATGGAAGCGACTCT



GGAACTGGGTAACAGGCAGCAATTGGAACAGTTTGGAGGGCTCAGAAGAAG



ACAGGAAGATGTGGGAAAGTTTGGAATTTCCTAGAGACTTGTTGAATGGCTT



TGACCAATACACTGATAGTGATATGGACAATGAAGTCCAGGCTGAGATGGTC



TCAGGTGGAGATGAGGAACTTATTGGGAACTGGAGTAAACGTCACTCTTACA



TGTTTTAGCGAAGAGACTGGCAGCATTTTTCCCCTGCCCTAGAGATCTGTGGA



ACTTTGAACTTGAGAGACATGATTTAGAGTATCTGGCAGAAGATATTTCTAA



GCACCAAAGCATTCGAGAGGTGACCTGGCTTTTCCTGAAAGCATACAGTTAT



ATGTGCTCACAAAGAGATGGTTTGAAATTGGAACTTATGTTTAAAGGGGAAG



CAGAGTGCAACAAAAGTTTAGGGAGTTTGCAGCCTGACCATGTGGTAGAAA



AGAAAAACCCATTTTCTGGGGAGAAATTCAAGCTGGCTGGAGAAATTTGCAT



AAGTAACGAGGAGCTGAATGTGAGTTGCCAAGACAATGGGGTAAATGTCTC



CAGGGCGTTTCAGAAAATCTTCAGGGCAGACCCTCACAACACAAGCCTGGAG



GCCTAGAAGGGAAAAATGGTGTGAGCCAGGCCCAGGCCCAGGCCCCAGCTG



TTCTGTGCAGCCTTGGGACATGGCACCCTGTGTTCCAGCCACTCCAGCTCCAG



CTGTGGTTAAAAGGAGCCAAGGTACAGCTGGACCATTGCTTCAGAGGGTACA



AATCCCAAGCATTAGCAGCTTCCATGTGGTGTTGGGTCTTTGGGTGCACAGA



AGACAAAAGTTGAGCTTTGGAAGCCGCTGCCTAGATTTCAGAGGATGTATGG



AAACACCTCGATGTCCAGGCAGAAGTCTGCTGCAGGGGCAGAGCCTTATGGA



GAACCTCTGCTAGGGCAATGCAGGGGGGAAATGTGGGGTTGGAGCTCCCAC



ACAGAGTCCCCACTGGGGCACTGCCTCATGGAGCTGTGAGAAAAGGACCAC



CATCCTCCAGACTCCAGAATGGTAGATCCACCAACAGATTGCACTCTGCGCT



TAGAAAAGCTGCAGGCACTCAATGCCAGCCTGTGAAAGCAGCTGCAGGGGC



TGTACCCTGCAGAGCCACAGAGGTGGAGCTGTCCAAGGCCATGGGAGCCCA



CCCCTTGCATTAGCATGGAGACAGGGGATCAAAGGAGATTTTGGAGATCTAA



GATTTAATGAATGCCCTGTCGAGTTTCAGACTTGAATGGGGCCTGTGACCCCT



TTGTTTTGGCCAATTTCTCCTATTTGGAATGGGAACATATACCCAATGCCTGT



ACCCCCATTGTATCTTGGAAGTAACTAACTTGCTTTTGATTTTACAGACTCAG



GCAGAAGGGACTTGCCTTGTCTCAGATGAGACTTTGGACTTGAACTTTTGAG



TTAATGTTGGAACGAATTAAGACATTGGGGTTCTGTTGGGAAGGCGTATTTG



GTTTTGAAATGTGAGAAGGACATGAGATTTTGGAGGGGCCAGGGGTAGAAT



GATATGGTTTGACTCTGTGTCTCCACCCAAATCTCATCTCCAATTGTAATCCC



CATGTGTCAAGGGAGGGACCTGATGGGAGGTGACTGAATCATAGGGGCAGT



TTCCCCCATGCTGTTTGCATGATAGTGAGGGAGTTCTCATGAGATCTGGTTTT



TTGGTAAGTGTCTGGGCTTCCCCCTTTTCCCTCTCTCTCCTACTGCCTTGTGAA



GAAGGTACTTGCTTCTCCTTTGCCTTCTGCCATGATTGTAAGTTTCCTGAGGT



CTCCCCAGCCATTCAGAACTGTGAGTCAATTAAACCTCTTCCTGCCTATTCTC



AGGCAGTTCTTTATAGCAGTATGAAAATGGACTACTACAGAAAGTGTGTAAC



TTTAAACTCAGTAGTATCCAAAGAAGTAATGAAAATGGAGAAACGAACAAC



AAAATCATAGTACAATATGGTGTATGTACTAGGACAGGAAGAGCCCTTTTAA



GAAGAGATCTATGTATTTCCATTTGTTTATCTCTGAAAGAAAGCAACTTTGCC



TTGTATTCTGAAAAAGAAAGGAATATTTTATTTTACTTGTAAAAATCTTACAA



GGATGCTAGTCTAAATATAGTTTTCCTAATTTGCCAGAGAATCCATGAAGAT



CGAGTTGATAACAAGATCAGTGAAGTAAAGGTCAGTGAGTTAATCTCACAGC



AGCTGCAGGCTAATTCCATTTCCAGTGAAAAACGTCTTGATTGCTCACCACAT



ATCTTTTCACCACAAACAGTTTCAGTCTTAAGATCACATGTTGCAATCCATGA



GAAGTAACTATTAAGCCTTCAACTATGACTGGAGGGCTCCTCGCCCTTTCTGA



TAAATTGACTGGACAAAAACTCAATTTTAAAATGACAAGAAATAGAAGATGT



ATAAATGTACTTTAAATGTGACCAAAATGGGTTGTGAAAACACAAGACACAA



TATCCAAAAATGCTGGCAACACAGTACACTGTAGAGTATTGGTTGTTTATTTA



CCCTTGCTATTGTGTGGCTGAGCTTACTGCCACTGCCCAGCATTGCAAGGGCA



TCAAACTGCCTATCACTAGCCTAGGAAAAGATCAAAATTCAAAATTCTAAGT



ACAGTTTCTACTGAATGCTTATCACTTTTGCACCATTTTAAAGTAAAAAAATC



AGTAAGTTGAACCATCATATATCCAAGATTGTCTGTATATAAATATTATACAT



CTTTCTCTCACTTTTAAAACAAAATAATACTAGCCAATACTACCATTCTCAAA



AGCACTTGTGTCAACAGCCTTTACCCCTTAAAGATTTTCCTCACAATTTTAAA



ATTGTTACTTACTATTTTCTTTGAAATGTTGACCAAACCTGGATTAAAAGATT



TGGGGGTTTTAGTGACTGTATTTCACAAACTCTCTTATTGATTCTGCAGCCTC



ACTTCTGCCTCCTAAAAAGCCCTCACCAAGGTCACGGGGGATGGCTCTTTTC



AGCCTCTTCCTGGCATTTGGTCCAGTGGCATTTGGCATTCTAGGACTTCCCTC



TTTGTCTTTGATAACTCCCTCTCTTCCTGTGTTCCTCCTTGCTGTGTTCACTTG



CTTCGCTTTCTTCTTTCTGAAGCATGTTTACACAGTGTTTTCTCTGATTGGGCC



TGTGACGTTCTTTAGGTCATCTTTTCCACAAATAATGCTTCAACTAGTACTTG



CGTGCCAGTGACTCCACGTCCCACTCATGAGCTCTGAACCTAGTACCAGCTTC



TGCTGGACATCTACAATGGGATCTCTCACAGGCCTCTCTCATTGGTAACATGC



CCCAGCCTGAACTCATCTCCCACCCATCTATCCAGCCATGCTCTCTAGTTCAC



CTGAACACTTGGGTGTCATCCTAGATGCTTTCCCTTCCCAGTCTTCTGTGATC



ATTCTGCCTCATCAGAGGCTCTCTAATCTGTCTTCTTTCCTATATCGCTCTTGT



CCCTATTTTAATCCTAATCATCTATTTCCTGACTTATTCATTCCTTAAGTTGGT



CAGTAATTTAATTAAAAACAGATTTAGGCCCTGACCTTAAATGTGATAAGTG



ATATGAAAGGAGATGACTGGGGAAAAGGATTTCCCTCAAGGAAGGCCTCTG



TGAAGCCTGAAGCAAGAATGAAAACGAGTCAGACGAAGAGAGAATTGTATG



AATGAAGGCTCTGAGGCAGGAAAACACTCAGATCATTCCAGAATCACTTAGA



AGCCAAGTGAAGCCAGTTCCTGGAGAGCAGATCATCAAATGAAGATGGAAA



GGTGACCAGGGGCCAGACCTGTAGTTTTGGTGGGCCTTGGTGAGGGATTTAC



AGTAGGACACCCCATGGTTTAAGTATGAAAGTGACAAGATTCCTTTAAGTTT



TAAGAGGCCTCGAAATATGAACCACAGATTAGATGGAAGCTACTCTCCCTGT



GTCTGGACTTTTTAGAATTTCCAAGAGCTGCTGTTTCTGGAACCAGATTAATA



CAAGTCAGTCTTCCATTTATTTATTTATGTATTTATTTGAGACAGGGTCTCACT



CTGTCACCCAGGCTGGGGTGCAGTGGCATGAACACAGCTCACTGCAGCTTGG



GGGCTCAAGAGATCCTCCTGCCTCAGCCTCCCATGTAGTTGGGACCACAGGC



ACCTACCACCCAGCTAATTTTATTTGTTGTAGAAATGAGGTCTCATTTTGCTG



CCCAGGCTGTTCTTGAACTCTTGGGCTCAAGCGATCCTCCTGCAACATCTTCC



CAAAGTGCTGGGATCACTCTTCCATTTAACATGCTATCTCAACGTCAAGATA



AACTTTAAAATCTTTAGATAATAGGCTGGCATTTTACTTAAACGATCTTTACT



TCTTCAGAACTGCCATTCCCTATAAATATCTGGTTCTTCAACCACATCAAACC



ACTTGTGATCTCAAAAAGCCTCAGCGTACACTGTCCTTTCTGTCATTCTAATT



CCTCCTCATCCTTCAAAATCAACTCAAGGACCAGATCCAGGGAGAAGCTTAG



TGGTGCCCACCCGAACCGGCCCCCTCCTTCGAGTTGTGCTGCCATTCGGGCCC



ACCTCTTCACACAGGGTTGTCAGACCAGACCAGCTCATGCGTTCACCGCCCTT



GCAGGGATGGGATGCAGCTGTGCACCTCTCAGTGCCGACACCTGGAGAGTCT



CACGAAATGTTGACAACATGGCCTGTTTCCATTTCTTGTTCACTAGGACTTCT



CATTTACTAACACACAGAATTTCCTGTAGTATGTCCACTTAATCAGTTCAAGC



CTAATAATTCCTTGATTTGGGTATAGTGCTTTGCATTTATATACTGATGGTCC



CCAACTTACGATGGTTCGATTTATGATTTTTCAACTTCATGGTGATGTGAAAG



TGATACACATTCTATAGAAACCACACTTTCAATTTTGAATTTTGGTCTTTTTCC



AGGCTACCATACTCTAAAGATAGAGCCACAGATCCCAGTCAGCCATGTGATT



ATGAGGGTAAGCGACCAATACTCTACAGTGTATTGTATTGCCAGATGGTTTT



GCCCAACTAGCCTAATGTAAGTATTCTAAACATGTTTAAGGTAGGCCAGGCT



AAGCTGTGTTGCTCATTCAGTAGGTTAGGTATATTAAATGCATTTTCAACTTA



TGATATTTTCAATTTACAATGAGTTTATCAGGATGTAACTCTACTATAAGTCA



AGGATCATCTTGTATAGCACTTTTAATTTATAGAGTCCCTTCAAATGTTTGTT



TGTATTTTATTTCCACTGCATCCCTGTGAGGATACCATAAGTTATACAGCTAA



CAAAACAGTTAGTTTTCCTGTGCAAAGTGATGGCTTCATCTTGTGGCAGATTA



CCTGGAATACTGTGGCCAAGGCATCTTAGTTCTACTGTCTTTATATATCTAGT



ACAGTTATATTTTTATGGCAGCTCTGATTTCTTCTTTGGCCCAAGGGTTATTA



AGAGAGGGAAAAAATTTAATTTCTTAACAGATATATATATCTATGTCAAGTC



ATATATTTAATTCAAACCCTTAATATTCCTAGGTAATTTTTGTCTACTTTCTCT



GTCAAAGATTGAAAGATACAGGGTTTTAAGTTTCCAACTGTAATTGTAGTTTT



GGTAATTGTTTTATTACTAACAGGTATTGCTCTGTATATTTTGATGTTCTGTTA



TTCAATACATAAGAATTCATTACAGTTGAATCATCATGTATAGTATAATTTAC



CAATGTAAAATAACCTTTTTATCAAACTGAGTATTCACCTTATAATGTCCTCT



GTCAGAGGATTATAATACCACTTAAAACCTTTTAAAAAATATTTTGTTCCTGA



TAATTTTAGCTTTGAGTGGTTTTCTTATAACAATTCTAGAGATGCGTTTTTATT



TTTTAACCAAGATTTAAAGCTTTGTGATTTAGTAAGAGTCTAAACCATTCACA



GTTCATGCTTTTTTGTCAAATTTCTATTATTTAGTATTTTCCTCTCTTTTATATT



TTCCTGTTATTTTCCATTTCTATTCTTTTGTTAGACTGGAAATTTTTTCTTTGCT



TTCTTTTATCCTAGTGATTTGAAATTTATGTAATATATACTATTCTACAATACC



CTTTATTTGTTTTCAATATTTGAACCTATATTTTTCAACATTATTAAGAATAAA



ATAGTATTTGTTGCTATTTTGAAATGATAGACCATGTTTTTAAGGCAGGTTGG



TGGTTGTTAAGGCACCAGTATCGGCCAGGCACGATGGCTCACACCTGTAATC



TCAGCACTTTCGGAGGCCGAGGTGGGCAGATCGTTTGAGCCCAGCACTTTGG



CCGATACTGTGGTTTACTGTATTTTGTTCTAGTTTATTTTATGGAAAATGGGA



ATTCAGTGGTTAAGACAAGGATTAAATAGCAGAAGAAAGATGTGTACATAT



GTACAGATGTATGTGTCCTTTATATGTTTTTTAGTACTCTTGTCTCCTTTCTGG



TCCTCATTTAAGGTTATCTATTTCATGCAGTAAATTTTTCTTCACAATTCATTT



CATTTAGAGAGTGAATGCTACCTTCCAAGTGGGCTTTCTCCAGTTTTCCTTTC



AGGGACTTAAAGGAGAAGTGATGTTAACAGTTTTATATTTCCATTGCATTTTA



CAGTGTGCAGATGTCTTCACATATATTTCCCCATTTGAGCTTTACAAAAGCCC



TTAGTATTATTCTCATTGTCTAGATTCCAAAATCAGGCTTAGAGGAGTTAAAT



AGTTGTCCAGGATCTCAAGATGCAAGACCCACAATCATGAACAGAGGCAGA



TGTTCAGGATGGAGGCAAGCTGAAACTCAAAACCAAATCATTATGACTCCAA



ATTCAGGAGTCTTTTAGCTGCCACCTGCATGGGCTCTTGGTGTAGCTGACCAC



CAGAGTTTGTAGAGCTGTCATTCAGGTGTGCCATGGACTTTCCTGGGACCTG



GCACAGGAGAAGGACTGAGTTAATGTTTGCTGATTAAATATCTGTTACAGGC



TGGGCGCGGTGGCTCACGACCGTAATCCCAGCACTTTGGGAGGCCGAGCAGG



GAGGATCACTTGAGCTCACAAGTTTGAGACCAGCCTGGGCAGCATGGCGAA



ACCCCGTCTCTACAAAAAATTTGAAAATTAGCTGGCCATGGTGATGCATGCC



TGTAGTCCCAGGTACTCAGGAAGCTGAGGTGGGAGGATCACATGAGCCCATG



AGATTGAAGCTGCAGTGAGCTGAGATGGTGCCACTGCACTCCAGCCTTGGCC



ATAGAGCCAGACCTTATCTCAAAAAAAAAAAAAAAAAGTTACAATAATCTTC



CCTTCAAAGCTGGAAGGCATTATTTACCTGTCTGTCCAGCAGATGGTGCTAC



ATAACCAAGGGAATCTGTTGCTTGCCCTTGGTGAAGCTATTAAAGCCAATAC



AGATCTTGAGAATTTCAAAAGCAAAAATCAATACTGGATTATGAGTGCTCTA



GGAAAATAAAGAGATAAATTTTCAATTTACATACTTATATATAGTTATACCA



TATTTGTAAATAAAAATATATAAATAATTTATCAAAATTCCTTTTTAACAGCA



ACAACCACAGTAAACCCACAGGTTAAAAACTCCACAACAGTCTATATTAATC



AGTCAATGCAAAGTACATTCCAATTCCAAGTTAACTGAAAATAATCAACTTA



ATCATTTGGTTGGCTCTGAGCAGCCTTCACTGCTTGCTCTTGTGTCATGTTTCT



TTCTGTCCTCGATTGGCTATAGACTTACAGACGGCTTTTGCAGAGGACAGTGT



ACTCATGTCCATCCTTTGCATCCTTTGTGGGAGTTGGCTAGGCAGCACTCTCC



CTGGGGACACTATGAACTCCTCTTCTTGAGTGCAGAGATCACGTCTTGTTCAT



CTTCATGCCCAATACCTTGTTCCATAAATATGAATGGATTAGAATTCTAAACT



CTTAACTCTGCCCCAAGACAGTTCTGAGAGGTAGTAAGTCATATAACACCTG



AAGAGGACTGTTCTTGTCCTAATTACATTAGGTTATAAGATGACAGGTGAGG



GAGCCAAACCAGGGGGCCTGGAAATTATTCATACATCTCTAGATACAGTATA



CAAGTTGTGTGTATTATGTGTATTTACTCTGTAATTGATTGCTTGAGATGAAC



CCCCAAACACACTCGTGTTTGGATCATTATTATCTACCCTTCTCCTTAAATAA



TCTTAATTTCCTATGATGCTTGAAAGGGAAAGAGGGGCCAGGTGTGGTGGTT



CACACCTGTAATCCCAGCACTTTGGGAGGCTGAGGTGGGAGCATCACCTGAG



GTCTGGAGTTCAAGACCAACCTGACCAACATGGTGAAACCCTGTCTCTACTA



AAAATAAAAAATCAGCTGGGCATGGTAGCACATGCCTGTAATCCCAGCTACT



TGGGAGGCTGAAGTGGGAGAATCGCTTGAACCTGGGAGGGGGAGGTTGCAG



TGAGCCGAGATCACTCCATTGCACTCCAGACTGGGCAACAACAGTGAAACTC



CGTCTCAAAAAAAAAAAAAAAAAAAAGGCAGAGTGGGGAAGAGAGCTGCA



TGAAGGAGAGATTTACTAAATAGTACTTAATCCCAAAATAATTTCTATAGGT



TTGAATATGATCCCTGAAATTTATTATAGGTTCAGGTAAGTATTAATCACGGG



TATTCAGAACTGTGGTTTAAAAAATGTATAGAACATGTTTCCTTCCCCTTGAA



ACTTTTTATCAGCTAATTATAGGAATTATATTATACCTGCAATCATTAAAGTC



CAGAATGAGACAGTACTTGGTAAAGTGCTGAAATTTATAATAAATGCATTAT



AGCAATCCAGTTAAGGAGGAAGAGCCACCATTATTGAACATTTGTTAAGTGT



CAGCCATTGTACTAGATAAATTTTAGTTATTATTTTTATTTAGGCACCAAAAA



ATCCATGGGATAGTTGGTTATCCCCATCTTACTGAAGAGGAAACTGAAGCTC



AGAAAGTTTAAGCAACTTGCACAGGTCACATAGCAAGTAAGGAGCATGGCC



AGGAATCAGACCCTGATCTCCTTTGGTCTACTAAGCTTGCAAAGGATCTTCCC



GCCTCCTTCCAAGACCATTCAATATTATCAGTAAATGTCCATGGCAAGGATG



TAGTTCGAGTTATAGGGTTCCATTCAAGATATGATTGGTAGGTGGGAAGCAG



ATATGTCTGTGTCAATCAGTATCCTGGAAGAAGGAGATGATGAACTCAAGTG



GTGATTAAGGGAAGTTTAATGAAGGGACTATTTACAGAGATGTGGTGGGGTT



AAGAGAACCAACAAGGGGAAGTGATGCACTCAAAAAGTTACTACCTCCAGG



CTTTAGGGGATTGGGGGAGGGAGTGGCACAGTGTGAACCCAGTGTGGTTGTG



AGAAAAGGGATTCCCTCAGCAGCCATGGCCAAGGTTAGAGTCTCCACTGCCA



AACTGCATCCAGGTGGTGAGGGAATGGAGAATAGGGGTGGGGTAACAAACT



CTGACCTCGGTATCCCCAAAGGGCAAAGGATTCCAGGTGGTACAGTTCGTAA



AGATTAGCCTCAGGGCACAGAACAGGGCAGAGAAGAATGGAGAATTGATCT



GGAGGAAACAAACAATGGCTTGCCCATGTTATTGCAGGGAGAGTAGGCTGG



TGTGCACAGCAGGAGGGTGGGGAGCCCAGCATATAGCTGTGTTGGGGCCTGT



GCAGATCAGCCTCACTGGCAGGGAGGATCTGAGCCGAGAGGTGGTGGAAGA



TGAAATCGAGTAGGCATGTTGGTAGTCCTAAATATCAAGTAAACGTTCCTGA



TCTTACATTGATACTCAATAGTAAGCCAATTTTGTTTCCCATAAGCCAATATT



AATATTACGTATTTCTTTTATAAGCCAGAGATATAGAGAGATACCCTAGAAG



AATGATAGGGGAAAGGAAGGCAAGGGTGAGAGAAGACCTTGTGTGAATTTG



TCCAAAATGTTTATCCACAGGAACAATCCCTTTGTGAAGGCTGCTGGTATGT



GAATGTGTGCCGGTTCCCTTGGGGCGTTCATTTGGATCTTTCTGTGTTCCAGT



GACCTACGGCATGATGAGCTCCAATGTGTACTACTACACCCGGATGATGTCA



CAGCTCTTCCTAGACACCCCCGTGTCCAAAACGGAGAAAACTAACTTTAAAA



CTCTGTCTTCCATGGAAGACTTCTGGAAGGTATTTGCAAATAACTTTGAAAGT



ACCTCTCTATCACAGAAAATTGTTCATTTGGCTTCATCATTTCAATGCATGAG



TATCGACAGGACCTGCTTTGCATTTAACACTGTGTGAGACGTAAGTTATGGT



GAGTTGTTAGAAGTTACTGTTCCTACTCTCAAAGGGGGTAAACTAACATTGA



GAACTTTGCCTGTGCCTTGCACTGTGCTGAGTGTTTCATATCTTACCTTATTTA



ATTTCTATAGTCTAACTCTATAAGGTAAGTACTAAGACTATGCCCTAGTTTGT



TAATGAGGAAAATGAGATTCAGGATGTTTAAATGCGTATGGTCACATGGCTA



GGGAACAAGAAAAATTGATTTTTTTCTAGCCTGACAGCTACTTCATCCTAGTT



TGTAATTCATTCCATGAGTCAAGATTCAATAAATATTTATTGAGAATCTCCTA



GAATGTAAGGCCAATGAAGGGCAGTGTGGTTCTTCTGTCTTGCTTCGCCTTTT



GTGTTTTGTCTCTTTGTTGATGATGGCATGTATCCCCAGCTCTTAGAACAGTG



CTTGATTCAAAGTAAGCACATTCTTTCAAAGGTCTGCTGTTGGTGGGGCTTGG



TGGCTCACGCCTGTAATCCCAGCACTTTGGGAGGCCAAGGCAGGAGGATTGC



TTTAGCCCAGGATTTTGAAACCAGCTGGGCACAACATAGTATGACTTTGTCTC



TCCAAAAAAGTTAAAGAATTAGCAGGGTGTGGTGGTACACACCTGCAGTCCC



AGCTACTCAGGAGGCTGAGGTGGGAGAATCACTTGAGCGATTGCTTGAGGTC



AAGGCTGCAGTGAGCCATGGCCATGCTACTGCATTCCAGCTGGGGCAACAGA



GTGAGACCCTTTCTCAAAAAAAATCCCCCCCAAAAAAAAACCCAAAAACAA



ACAAAAAAGGTCTGCTGTTGTGAAGTTCAACCCAATCCAGCCCCTTCCCAAG



TTGTCACAAATTCCAACGTAGTTAACAGTATACCAATGAGTGATACCACAGG



AAAAATATTAAACTGATCTGAGGGATATGGGGCTTGGAATCTAAGAAAATTG



GAAGGGAAATTGAAAAGGAAATTATTATTTCTCCTTGGGGAGATAGTTTCTA



AAATTCTTACTACACCCTGGGGTCAGAGCTGTTGATTTTAAGGATAGAGACA



ACTGAGTCACAGGAAACTATTCATATATAAAAGTACCTGGCATCCAAAACCA



CACTTGTATAATATGAATCTTTCACCATCTGAGTAGGGCAAATCAGTCTATCT



CTGTTGATCATCTGACAAGGATAGCACACTGAGAAATAGATCTGTCTTCCCT



ACAGGCATAGCTAGTTGTACAAACTAACAAGAGACTTTTGTATACACATTCC



ATGATGATAAATGCCAATCACTAAAGGGACGAGGAGGGATTGGAGAGTTCA



CCATACAGCAAAATAGTCCAGACAGGTGAAAGGTCTATCAAATGCCAGGCT



GGTAATCAAAACTGTAGCCTTTTCTCTAAACAAAGTTTAGAACCATGATTGT



GTGGGACATTATTTTAATAAGGGAAAGTGCAGTTAATCATGACCCCACCTTT



AGTCCAAGAACAAAAATCAGAGCTGCCACGTATTAAGTACCCACTCTGTGCC



AGGTGCAGTAACTATGCAAAAGATGGGTTTTCCAGATGCAAGAACCTTGGTT



CAGAGGACCCTGCTCAAGGCCTCATAGCTAACAAATGATGGGGCAAGATGCT



ATCCCAAATCTCTCTGACAACAAAACTCATTCTTATCACTCTACTATTTTCAT



AGAGTTGCCAAATGCTTGGTTATGCAAACGATGCAGGCAGGGGCAAGACAG



CGGCTGAGCTTGGAACTTTTTCAGAGATGTTTCCTTTGCTTTTAGTTCACAGA



AGGCTCCTTATTGGATGGGCTGTACTGGAAGATGCAGCCCAGCAACCAGACT



GAAGCTGACAACCGAAGTTTCATCTTCTATGAGAACCTGCTGTTAGGGGTTC



CACGAATACGGCAACTCCGAGTCAGAAATGGATCCTGCTCTATCCCCCAGGA



CTTGAGAGATGAAATTAAAGAGTGCTATGATGTCTACTCTGTCAGTAGTGAA



GATAGGGCTCCCTTTGGGCCCCGAAATGGAACCGCGTAAGTGTCTGTGACTC



ATTGCCACTCGGTGATATTCATTCATTTATTCTCTGAACTCCCACCATTCATTC



ATTCATTCCCTGACACCTTCACCAAGGCAAAAATAAGTTCAGTGACTCTTCA



GTGCTTATATTTAAACCTTGGCCAACTTGACCTTTGACTTCTTAAGTTTTCACT



ACTTCTTAGCCTTCTTTTAGTTTCTACATGCATATTTTTCAGAAGACTAAATCG



TTGACCATATAACCCCTCAAAAATTAATTATCTGAGCGTTTGAAAATTTCATT



TAAGATGCCCTGGGCCCTGTTTTTACAGGTGCAGTAACATCATCCACTAAGTT



ATTTAACACAAGTTTTCTGGTTCAGGAACTCTTTTTATAGGTCTTGCAAACAG



GTTTTTGTTCAGAATGGAGTTATTTAATGTGTAAGCTTGTGAGGCAATTTTTT



GTTAGGTTTAAAGCCCATTTTGTTCAAATGTTTGAGATTTTAGGTATATATTT



GTACACGTGCATATTTACAGGGGCTTTTTGTACACTTTGGTACTCCTACTTCA



AACATCTTGTGTATTAAGGGAGGTCACTTACTATTTTAGAAGTATTGTAGTTA



TTATAAAGAAACAAGAAGACCTCCAAGGCCGTTTCAGGGTGGGCCTTTGCGG



TTGCTGTCCCTGGGTACGTCACTGGTCGGAGTCATCTTCTAAGCTTTGCTCAG



CTAATTCTGTCGGTTCATCTAGGTTCTTTTCTTGGAAACTGAGTTGCCCAGAA



TCCACATTTGTTACTATACAATGGGCAATCACCTTTTCAATTAGTATATTCTT



CTTGTACCTTCCAGTATACACTCTATTTAATACCAGAACCCATAAGAAACAA



ATTTAGTAAAAATCCAGGTTGGGCACAGTTTCTCATGCCTGTAATCCCAGCA



CTTTGGAAAGCCAAGGCGGACAGATCACTTGAGGTCAGGAGTTCAAGACCA



GCCTAGCCAACATGGTGAAACCCTGACTCTACTAAAAATACAAAAATTAGCT



GGGTGTGGTGACATGTGCCTATAGTCACAGCTATTCGGGAGGCTGAGGCAGG



AGAATTGCTTGAGCCCGAGTGGTGGGGGTTGCAGTGAGCTGAGGTCTCATCA



TTGCACTCCAGCCTGGGCAACAGAGCAAGACTCCCCCTCAAAAAAAAAAAA



AAACAAATTTAGTGAAAATCCAGAGCTTTAGAACAAAGGAACTAAATAGTCT



CAAAGGACATTATCATCCAAGTTATGATAGTGATTTCGCTTTCTTTAAAAAAA



AAATTATTACAGATAGAGTTTCTTGATGTTGCCCAGGCTGGCCTCAAACTCCT



GGGCTCAAGCAGTCCTCCAGCCTCAGCCTCCCAAGTAGCTGGGACTATGAGA



ATATGCCACCATGCCCAGCTTTATTTTGCTTTCTAATGTGCCTTTTTGTAGTTC



CTGCAAAGCATAAGCATGCCTTCATCTGTGGTACCCTTTCCAATATTTTATTT



ATCTCACATCACTAATAAGATAAATTTATACAGCCACTGCTCTGTGCCAGAC



ATTATTTAAGAAGTTATTTCACGCATTATCTCATCTGCCTTCACAAAACAACT



CTAAAATAGGTATCACCTCCATTTTATAGATGAAAAAACTGAGGCTCACTTG



CCCAAAGTGTCACAGCTAACAAATTGGACTGAACCAAGATTTAAGCAGCCTG



ACTCCAAAACCCATGTTTCGCCTACTAAACCTCTTCCATATTAATTCCTCCTC



CATATTAATTGCGTCGTTAGGGTGGCTTGTCGACGCTCTCAGCTCCCCATCAG



TACTCAAGCTTCCTGAGGGCAGGGATTCTATTTTGTTAACTGCTGTATTCTCA



AAGCCTTGAACAATGCCTCATATGTAAAGATACTAATA (SEQ ID NO: 231)










Alternative splice site event








Canonical
TGACCTACGGCATGATGAGCTCCAATGTGTACTACTACACCCGGATGATGTC


exon
ACAGCTCTTCCTAGACACCCCCGTGTCCAAAACGGAGAAAACTAACTTTAAA


chr4
ACTCTGTCTTCCATGGAAGACTTCTGGAAG (SEQ ID NO: 232)


88036220



88036353






Canonical
gtatttgcaaataactttgaaagtacctctctatcacagaaaattgttcatttgg


intron
cttcatcatttcaatgcatgagtatcgacaggacctgctttgcatttaacactgt


chr4
gtgagacgtaagttatggtgagttgttagaagttactgttcctactctcaaaggg


88036354
ggtaaactaacattgagaactttgcctgtgccttgcactgtgctgagtgtttcat


88038250
atcttaccttatttaatttctatagtctaactctataaggtaagtactaagacta



tgccctagtttgttaatgaggaaaatgagattcaggatgtttaaatgcgtatggt



cacatggctagggaacaagaaaaattgatttttttctagcctgacagctacttca



tcctagtttgtaattcattccatgagtcaagattcaataaatatttattgagaat



ctcctagaatgtaaggccaatgaagggcagtgtggttcttctgtcttgcttcgcc



ttttgtgttttgtctctttgttgatgatggcatgtatccccagctcttagaacag



tgcttgattcaaagtaagcacattctttcaaaggtctgctgttggtggggcttgg



tggctcacgcctgtaatcccagcactttgggaggccaaggcaggaggattgcttt



agcccaggattttgaaaccagctgggcacaacatagtatgactttgtctctccaa



aaaagttaaagaattagcagggtgtggtggtacacacctgcagtcccagctactc



aggaggctgaggtgggagaatcacttgagcgattgcttgaggtcaaggctgcagt



gagccatggccatgctactgcattccagctggggcaacagagtgagaccctttct



caaaaaaaatcccccccaaaaaaaaacccaaaaacaaacaaaaaaggtctgctgt



tgtgaagttcaacccaatccagccccttcccaagttgtcacaaattccaacgtag



ttaacagtataccaatgagtgataccacaggaaaaatattaaactgatctgaggg



atatggggcttggaatctaagaaaattggaagggaaattgaaaaggaaattatta



tttctccttggggagatagtttctaaaattcttactacaccctggggtcagagct



gttgattttaaggatagagacaactgagtcacaggaaactattcatatataaaag



tacctggcatccaaaaccacacttgtataatatgaatctttcaccatctgagtag



ggcaaatcagtctatctctgttgatcatctgacaaggatagcacactgagaaata



gatctgtcttccctacaggcatagctagttgtacaaactaacaagagacttttgt



atacacattccatgatgataaatgccaatcactaaagggacgaggagggattgga



gagttcaccatacagcaaaatagtccagacaggtgaaaggtctatcaaatgccag



gctggtaatcaaaactgtagccttttctctaaacaaagtttagaaccatgattgt



gtgggacattattttaataagggaaagtgcagttaatcatgaccccacctttagt



ccaagaacaaaaatcagagctgccacgtattaagtacccactctgtgccaggtgc



agtaactatgcaaaagatgggttttccagatgcaagaaccttggttcagaggacc



ctgctcaaggcctcatagctaacaaatgatggggcaagatgctatcccaaatctc



tctgacaacaaaactcattcttatcactctactattttcatagagttgccaaatg



cttggttatgcaaacgatgcaggcaggggcaagacagcggctgagcttggaactt



tttcagagatgtttcctttgcttttag (SEQ ID NO: 233)





Exon
TGACCTACGGCATGATGAGCTCCAATGTGTACTACTACACCCGGATGATGTC


resulting
ACAGCTCTTCCTAGACACCCCCGTGTCCAAAACGGAGAAAACTAACTTTAAA


from
ACTCTGTCTTCCATGGAAGACTTCTGGAAGGTATTTGCAAATAACTTTGAAA


splicing at
GTACCTCTCTATCACAGAAAATTGTTCATTTGGCTTCATCATTTCAATGCATG


the alt 5′ ss
AGTATCGACAGGACCTGCTTTGCATTTAACACTGTGTGAGACGTAAGTTATG


chr4
(SEQ ID NO: 234)


88036220



88036480






Intron
gtgagttgttagaagttactgttcctactctcaaagggggtaaactaacattgag


resulting
aactttgcctgtgccttgcactgtgctgagtgtttcatatcttaccttatttaat


from
ttctatagtctaactctataaggtaagtactaagactatgccctagtttgttaat


splicing at
gaggaaaatgagattcaggatgtttaaatgcgtatggtcacatggctagggaaca


the alt 5′ ss
agaaaaattgatttttttctagcctgacagctacttcatcctagtttgtaattca


chr4
ttccatgagtcaagattcaataaatatttattgagaatctcctagaatgtaaggc


88036481
caatgaagggcagtgtggttcttctgtcttgcttcgccttttgtgttttgtctct


88038250
ttgttgatgatggcatgtatccccagctcttagaacagtgcttgattcaaagtaa



gcacattctttcaaaggtctgctgttggtggggcttggtggctcacgcctgtaat



cccagcactttgggaggccaaggcaggaggattgctttagcccaggattttgaaa



ccagctgggcacaacatagtatgactttgtctctccaaaaaagttaaagaattag



cagggtgtggtggtacacacctgcagtcccagctactcaggaggctgaggtggga



gaatcacttgagcgattgcttgaggtcaaggctgcagtgagccatggccatgcta



ctgcattccagctggggcaacagagtgagaccctttctcaaaaaaaatccccccc



aaaaaaaaacccaaaaacaaacaaaaaaggtctgctgttgtgaagttcaacccaa



tccagccccttcccaagttgtcacaaattccaacgtagttaacagtataccaatg



agtgataccacaggaaaaatattaaactgatctgagggatatggggcttggaatc



taagaaaattggaagggaaattgaaaaggaaattattatttctccttggggagat



agtttctaaaattcttactacaccctggggtcagagctgttgattttaaggatag



agacaactgagtcacaggaaactattcatatataaaagtacctggcatccaaaac



cacacttgtataatatgaatctttcaccatctgagtagggcaaatcagtctatct



ctgttgatcatctgacaaggatagcacactgagaaatagatctgtcttccctaca



ggcatagctagttgtacaaactaacaagagacttttgtatacacattccatgatg



ataaatgccaatcactaaagggacgaggagggattggagagttcaccatacagca



aaatagtccagacaggtgaaaggtctatcaaatgccaggctggtaatcaaaactg



tagccttttctctaaacaaagtttagaaccatgattgtgtgggacattattttaa



taagggaaagtgcagttaatcatgaccccacctttagtccaagaacaaaaatcag



agctgccacgtattaagtacccactctgtgccaggtgcagtaactatgcaaaaga



tgggttttccagatgcaagaaccttggttcagaggaccctgctcaaggcctcata



gctaacaaatgatggggcaagatgctatcccaaatctctctgacaacaaaactca



ttcttatcactctactattttcatagagttgccaaatgcttggttatgcaaacga



tgcaggcaggggcaagacagcggctgagcttggaactttttcagagatgtttcct



ttgcttttag (SEQ ID NO: 235)










NMD exon event








NMD exon
GCTACCATACTCTAAAGATAGAGCCACAGATCCCAGTCAGCCATGTGATTAT


chr4
GAGG (SEQ ID NO: 236)


88031085



88031140






Canonical
gtaagtagaatatttccttgcactaatgggaaagttttgaaaagatttgacctat


intron
ccaaatcataattaaaaggaagtgtgtatgcaccagaggggcaactgggaagtta


containing
ccttcttacctttgtttttaattctaatatttttatttgggcatttgtttattga


NMD exon
ctatcttcctatggtagaatgcaagctttataagagaagggacgtgatttgttct


chr4
ctgctgtacccccatttcccaaaactgcagatggcaacagaaggctctgaaaaat


88019572
atataagaaagaatttttctaattgtgactaaattgtgaccaaatgctaagtgac


88036219
tgtggacttgcgtttaacacaggacgggagaggcaaagagttcaattccaattta



gaatttggtcaagttctcttctgcactctggtaaacattaattaaaaatcagcat



tatctgaccagccagttcatcgtcagtggtggtgattttcactatgagatacgcg



tggcaacttgccagacaccaagaaaccaagttagaggatttttgtattagattcc



ttaacaatgaatacagtatcaccattattacagtatcatcattattgtcatacta



ttattatatcagttaacataaagtctgcataagaattgtttccagaaaaatgact



ttccaaatttaactttcaggaaatacaaataatgctactaatattgcttttattg



gcgtatacatgtaatatccccttcttttggatttggatatgttgtgtcattgcct



cattttaattcattatttcttctcaatctttaataattgctggacttttactcca



caagaaacttgctataggcccatctctttcgtcttctttccttctttcagttcgt



cttcccatcctctggtagggggaggggagggatgcctgagcgagagactagctgt



aggaaccatttgtctcaaagtccagaaagccacaggtgatggatttgtcctctga



atcaaagggcgttcgatgatggatttctgtcatgtctcatctaaagtcttcacga



gaacagatgaggaagcagttttatgaccccagagcctcctaccaaactcctctga



gaaaaggtttccttttttttttttttttttaaattagagacagagtcttgatctg



tttcacaggccggagtgcagtggcacaatcatagctcactgcagcctcgagctcc



taggcttcagtgatcctcccacctcagtcacccacgtagctgggactacagctgc



acaccaccatgcccagctaacttttaaaacatttttgtagaggtggggtctcact



ttgctgcctatactggtctccagctcctagcttcaagtgatcctcctgccttgga



agttctgggattataggcatgagccactgcacccagcctggatgtgatattttta



tgttttaaattgttagagtttagaaacttgagattgagtttgctgcctgcattaa



aatgatgcttaaacattaaactgcagtggccttaaatattaacaagttgattaga



attactaagttcttttcaagctttacatatacagacaaatttcttatgcaaaata



gaaggtaacccctgtacgtaagtctagaatttcagcagtccccaaaactgactga



gcattagaatcactctgattttaaaatacatatgtggttttccgagatctactaa



cagagcctccataatgtagcctagagaaacgagttttcagatgtagtgataaatt



tggaaggtaagtcagagaagtaagctgaagacagagttttaggaaatatgcctaa



agtcacataatgaattggttttcttgtttatttgagaatattgtcgctttttgtt



ctttttcatgcaaatcacattttatttcttatgtgagtagctatatatttaaaaa



ttttgtttttggaatattgtagaatctctacttaagaaagtatcttagcagtcat



atggtctgacctcactgaatgctaaattctctttaaaacatccgtctcagatggt



tactcatactgcctctgattgaacaagagtcccaggttaagggacttacttcttt



gaaatcgttcatttcatttttctacagctatgttagaaagttcgtccttagcagt



gaagccagagtctatctcttataacttctacccagttgcaccctccaagcctacc



tataccaagtatcttttttccacgttgcttttccaattcagctcttcgcaagttt



ggagacaaatacctaatctcctctaagccttctccaggttaagcctttccagttc



atccagctgttgattatgtgattggagacacaagtttgagtaactcccatgatgg



aaagtccctctggtgaatgttctgttcatcagagtccctaagaaagcacatgagc



ctcaccatggtgagtggggccatgagattcctaaaccagacactacactgtggct



tgtgcaacctaccatggccagactcatgaggctgtttcatcatataaataattcc



ttagtctcttcaccaaaaactgtgaagcactgtgtcccccagctgtatgtgagct



agcctgggaccatagtggaggactcctctttcaaccctgttaaatttcatcttgt



taggatctgcccatttttccattctgttgaaattatcttggaactggattcattc



atctcacatcagctactccccgaagcctcacagtatcagcagagttattatctct



atccatatccttgtaaattattaaactaaaaaagattggtctaagaacatcagtc



cattaatcaaggctctttggttggagttcacttcattatattatcatccagctca



gagtgttcataaacaagatgataggaaagacttttccaaatgcctgtctgagtaa



ttcccccattcctgtgatctgtgagctgttgaccagattaaaaaggaagtgagaa



taaccaggcaagatttactcctagcaaaaccttactggcttctagtgactgagtc



ctttccctattgcttaccagctatctttttaattactagttttaaaatcttgcca



gcaatgtcaatatcaaatgaccaagaatatcaaactcattactctgtatgtaaat



gagatagtgtacttacccctatggcttaagtattaggctgttcttgcattgccct



aaatacctgagactgggtaatttataaaaaaagaggtttggccaggcactgtgga



tcaggcctgtaatctcagcactttgtcaggctgaagcaggtgtaatggtgagcca



agagttcaaacttagcctggacaacaaggtgaaaccccctctctgcaaaaaatac



aaaaattatctgggcatggtggcatgcacctgtagtcccagccacccaggaggct



gagggggaaaattgtttgaagctgggagtcagtgattgcagtgagccatgattgc



aacactgcactccatccagcctgggcgacagagcaagaccctgtctcaaaaaata



aataaatgaataaataaataaaataaataaataaatagaaaagaaaaagaaagaa



aagagatttatttgcctcatggttctgcaggctgtaagggaagcatagctccagc



atctgcttctggggaggcctcaggaagctgttactcatggcagaaggtgaagcag



gagcttgcacatcatgtggcaaaagcaggagcaagagagagagaatggggcaggg



aagaagccccacacttttaaatgaccagatcgcatgagaaatcactcgttacctc



aaggacagtaccaagaggatggtactaaattcctgagaaatccacccccatgatc



tgatcacctcgtaccaggccccgccttcagcattggggattatgtttcaacatga



gatttggatggggacaacatccaaactatatcaccttgcatagtaggtagggttt



taaaaagcagtttggcacagtaagaaaagtacagattttttttgcatcagacaga



cctgagttaaaatcccagcttcactgctaacatgctaggtaaatgtgggcaagtt



aattaacatttctaagcctttgtttcctcactggtaaaacaagtatttggaaata



tcattgtgaagattagaaataatacatgaaaagatcctaggatgctgtctgtcat



acagtagtagtagtaagaagttattcttgccaaagattgttgagaatggcagaat



tatctcagttctaagagctatagtttctaattatttgagcctagactcagattca



tttggagcagctaactgctcaccaagagcttattttccatcttaccaatgaggtt



atgtgccctgtgtttttaaaatcagtctacttaaccaagagaacagaaatgacat



gagaattaagtaatctcactttctctgttatttaggatttattcctactcaaaac



ctgagagttgctatgaattcaccattaaagcacttattaatatacatgggttact



gttataaatagcaatagtattgctattgtgtgagttaggtgttgaagttcaagaa



aggaataaagaatatttagaagatctttgaaaacagtgtctgggtacggtggctc



atgcctgtaatctcagcactttgggaggccgaggcaggcagatcacttgaggtca



cgagttcaagaccagcctgggcaacttggcgagacctcgtctctacaagatatac



aaaaattagccgggtatgttggcatgcacctgtaatcccagctacttaggaggct



gaagcacaagaatcacttgaacctgggaagcagaggttgcagtgagccaagattg



taccactgcactccagcctgggcaatagagcaacactctgtctcgaaaaaaaaaa



aaaaaaaaaaaaaaagaaagaaagaaggaaggaaggaaagaaaaaaaaaggaaaa



caatgaaggaaggtatttggtgaatctataataataaaaatgtatttgtcatttc



ctttttctgtgctctcattctataaaattgagtaaaaaatctatatatagtttaa



acacattaatagaaatcacaaaagttagctgagtcaacattgtagaaacataata



tttctgtatgtcaaagaaatagacaacattaaaaagcagaaagcaattacaaaga



atgattataagaaacatcacaaagggttaatattttaacacatttgaaactcaaa



aatcactgagaaaagcagtagacttccataaatattttatagagtagaaaaaata



ggccaagcacagtggctcatgcctgtaattccagcactttgggaggccgaggagg



gtggatcacgaggtcaggagttcaagaccagcccggccaagatggtgaaacccca



tctctactaaaaatacaaaaactagccaggcgtggtggcaggtgcctgtaatccc



agctacttgggaggctgaggcagggaattgcttaaacccttaaacccgggaggtg



gaggttgcagtgagccaagttcgcaccactgcattccagcctgggcgacagaacg



agactctgtctcagaaaaagaaaagaaaagaatagaaaaagaatccatgggcagg



cacagtggctcatgcttataatcccagtactctaggaagccaaggtgagaggatc



aattgaggccaggagttcaaggccagcctgggcaacatagcaagactttgtctct



attaaaaattttaaaattagccaggcatggtgacgcacacctgtagtcccaatta



cttgggagcctgaggcaggagaactgcttgaggctgcagtgagctatgattagac



cactgcactccagcctgagctacacagtgagaccttgtgtcaaaaaagtaaaaaa



ataaaaattagccaggcatggtggcacatgcctgtagtcccagctactcaggagg



ctgaggcaagaggatgacttgagtctggaagatggagactgcagtgagctgtggt



catgccactgcactccagcctgggtgacagagcaagaccctgtctcaaaaaaaaa



aaaaagaaaagaaaagaaaaataaataaaatttattcaaatacaaaagtgatgtg



gtttgactctgtgttgccacccagatctcatctccaattgtaatccccgtgtatt



gacggaggttcctggtaggagatgattggatcatggggatggtttcccctctgct



gttctcatgatagtgagtgagttctcatgaaatctggttgtttggtaggtgtctg



tcacttaccccttctttttctctctcctgctgccttgtgaagaaggtacttcctt



ctcctttgccttccaccatgattataagtttcctgaggccttcccagccatttgg



aactgtaagtcaattaaacctctttcctttataaattaccgagtctcaggcagtt



ttttatagaagtgtgaaaatggtctaatacagagacttggtaccaggagtggggt



actgctataaaaaataacctgaagatatggaagcgactctggaactgggtaacag



gcagcaattggaacagtttggagggctcagaagaagacaggaagatgtgggaaag



tttggaatttcctagagacttgttgaatggctttgaccaatacactgatagtgat



atggacaatgaagtccaggctgagatggtctcaggtggagatgaggaacttattg



ggaactggagtaaacgtcactcttacatgttttagcgaagagactggcagcattt



ttcccctgccctagagatctgtggaactttgaacttgagagacatgatttagagt



atctggcagaagatatttctaagcaccaaagcattcgagaggtgacctggctttt



cctgaaagcatacagttatatgtgctcacaaagagatggtttgaaattggaactt



atgtttaaaggggaagcagagtgcaacaaaagtttagggagtttgcagcctgacc



atgtggtagaaaagaaaaacccattttctggggagaaattcaagctggctggaga



aatttgcataagtaacgaggagctgaatgtgagttgccaagacaatggggtaaat



gtctccagggcgtttcagaaaatcttcagggcagaccctcacaacacaagcctgg



aggcctagaagggaaaaatggtgtgagccaggcccaggcccaggccccagctgtt



ctgtgcagccttgggacatggcaccctgtgttccagccactccagctccagctgt



ggttaaaaggagccaaggtacagctggaccattgcttcagagggtacaaatccca



agcattagcagcttccatgtggtgttgggtctttgggtgcacagaagacaaaagt



tgagctttggaagccgctgcctagatttcagaggatgtatggaaacacctcgatg



tccaggcagaagtctgctgcaggggcagagccttatggagaacctctgctagggc



aatgcaggggggaaatgtggggttggagctcccacacagagtccccactggggca



ctgcctcatggagctgtgagaaaaggaccaccatcctccagactccagaatggta



gatccaccaacagattgcactctgcgcttagaaaagctgcaggcactcaatgcca



gcctgtgaaagcagctgcaggggctgtaccctgcagagccacagaggtggagctg



tccaaggccatgggagcccaccccttgcattagcatggagacaggggatcaaagg



agattttggagatctaagatttaatgaatgccctgtcgagtttcagacttgaatg



gggcctgtgacccctttgttttggccaatttctcctatttggaatgggaacatat



acccaatgcctgtacccccattgtatcttggaagtaactaacttgcttttgattt



tacagactcaggcagaagggacttgccttgtctcagatgagactttggacttgaa



cttttgagttaatgttggaacgaattaagacattggggttctgttgggaaggcgt



atttggttttgaaatgtgagaaggacatgagattttggaggggccaggggtagaa



tgatatggtttgactctgtgtctccacccaaatctcatctccaattgtaatcccc



atgtgtcaagggagggacctgatgggaggtgactgaatcataggggcagtttccc



ccatgctgtttgcatgatagtgagggagttctcatgagatctggttttttggtaa



gtgtctgggcttcccccttttccctctctctcctactgccttgtgaagaaggtac



ttgcttctcctttgccttctgccatgattgtaagtttcctgaggtctccccagcc



attcagaactgtgagtcaattaaacctcttcctgcctattctcaggcagttcttt



atagcagtatgaaaatggactactacagaaagtgtgtaactttaaactcagtagt



atccaaagaagtaatgaaaatggagaaacgaacaacaaaatcatagtacaatatg



gtgtatgtactaggacaggaagagcccttttaagaagagatctatgtatttccat



ttgtttatctctgaaagaaagcaactttgccttgtattctgaaaaagaaaggaat



attttattttacttgtaaaaatcttacaaggatgctagtctaaatatagttttcc



taatttgccagagaatccatgaagatcgagttgataacaagatcagtgaagtaaa



ggtcagtgagttaatctcacagcagctgcaggctaattccatttccagtgaaaaa



cgtcttgattgctcaccacatatcttttcaccacaaacagtttcagtcttaagat



cacatgttgcaatccatgagaagtaactattaagccttcaactatgactggaggg



ctcctcgccctttctgataaattgactggacaaaaactcaattttaaaatgacaa



gaaatagaagatgtataaatgtactttaaatgtgaccaaaatgggttgtgaaaac



acaagacacaatatccaaaaatgctggcaacacagtacactgtagagtattggtt



gtttatttacccttgctattgtgtggctgagcttactgccactgcccagcattgc



aagggcatcaaactgcctatcactagcctaggaaaagatcaaaattcaaaattct



aagtacagtttctactgaatgcttatcacttttgcaccattttaaagtaaaaaaa



tcagtaagttgaaccatcatatatccaagattgtctgtatataaatattatacat



ctttctctcacttttaaaacaaaataatactagccaatactaccattctcaaaag



cacttgtgtcaacagcctttaccccttaaagattttcctcacaattttaaaattg



ttacttactattttctttgaaatgttgaccaaacctggattaaaagatttggggg



ttttagtgactgtatttcacaaactctcttattgattctgcagcctcacttctgc



ctcctaaaaagccctcaccaaggtcacgggggatggctcttttcagcctcttcct



ggcatttggtccagtggcatttggcattctaggacttccctctttgtctttgata



actccctctcttcctgtgttcctccttgctgtgttcacttgcttcgctttcttct



ttctgaagcatgtttacacagtgttttctctgattgggcctgtgacgttctttag



gtcatcttttccacaaataatgcttcaactagtacttgcgtgccagtgactccac



gtcccactcatgagctctgaacctagtaccagcttctgctggacatctacaatgg



gatctctcacaggcctctctcattggtaacatgccccagcctgaactcatctccc



acccatctatccagccatgctctctagttcacctgaacacttgggtgtcatccta



gatgctttcccttcccagtcttctgtgatcattctgcctcatcagaggctctcta



atctgtcttctttcctatatcgctcttgtccctattttaatcctaatcatctatt



tcctgacttattcattccttaagttggtcagtaatttaattaaaaacagatttag



gccctgaccttaaatgtgataagtgatatgaaaggagatgactggggaaaaggat



ttccctcaaggaaggcctctgtgaagcctgaagcaagaatgaaaacgagtcagac



gaagagagaattgtatgaatgaaggctctgaggcaggaaaacactcagatcattc



cagaatcacttagaagccaagtgaagccagttcctggagagcagatcatcaaatg



aagatggaaaggtgaccaggggccagacctgtagttttggtgggccttggtgagg



gatttacagtaggacaccccatggtttaagtatgaaagtgacaagattcctttaa



gttttaagaggcctcgaaatatgaaccacagattagatggaagctactctccctg



tgtctggactttttagaatttccaagagctgctgtttctggaaccagattaatac



aagtcagtcttccatttatttatttatgtatttatttgagacagggtctcactct



gtcacccaggctggggtgcagtggcatgaacacagctcactgcagcttgggggct



caagagatcctcctgcctcagcctcccatgtagttgggaccacaggcacctacca



cccagctaattttatttgttgtagaaatgaggtctcattttgctgcccaggctgt



tcttgaactcttgggctcaagcgatcctcctgcaacatcttcccaaagtgctggg



atcactcttccatttaacatgctatctcaacgtcaagataaactttaaaatcttt



agataataggctggcattttacttaaacgatctttacttcttcagaactgccatt



ccctataaatatctggttcttcaaccacatcaaaccacttgtgatctcaaaaagc



ctcagcgtacactgtcctttctgtcattctaattcctcctcatccttcaaaatca



actcaaggaccagatccagggagaagcttagtggtgcccacccgaaccggccccc



tccttcgagttgtgctgccattcgggcccacctcttcacacagggttgtcagacc



agaccagctcatgcgttcaccgcccttgcagggatgggatgcagctgtgcacctc



tcagtgccgacacctggagagtctcacgaaatgttgacaacatggcctgtttcca



tttcttgttcactaggacttctcatttactaacacacagaatttcctgtagtatg



tccacttaatcagttcaagcctaataattccttgatttgggtatagtgctttgca



tttatatactgatggtccccaacttacgatggttcgatttatgatttttcaactt



catggtgatgtgaaagtgatacacattctatagaaaccacactttcaattttgaa



ttttggtctttttccaggctaccatactctaaagatagagccacagatcccagtc



agccatgtgattatgagggtaagcgaccaatactctacagtgtattgtattgcca



gatggttttgcccaactagcctaatgtaagtattctaaacatgtttaaggtaggc



caggctaagctgtgttgctcattcagtaggttaggtatattaaatgcattttcaa



cttatgatattttcaatttacaatgagtttatcaggatgtaactctactataagt



caaggatcatcttgtatagcacttttaatttatagagtcccttcaaatgtttgtt



tgtattttatttccactgcatccctgtgaggataccataagttatacagctaaca



aaacagttagttttcctgtgcaaagtgatggcttcatcttgtggcagattacctg



gaatactgtggccaaggcatcttagttctactgtctttatatatctagtacagtt



atatttttatggcagctctgatttcttctttggcccaagggttattaagagaggg



aaaaaatttaatttcttaacagatatatatatctatgtcaagtcatatatttaat



tcaaacccttaatattcctaggtaatttttgtctactttctctgtcaaagattga



aagatacagggttttaagtttccaactgtaattgtagttttggtaattgttttat



tactaacaggtattgctctgtatattttgatgttctgttattcaatacataagaa



ttcattacagttgaatcatcatgtatagtataatttaccaatgtaaaataacctt



tttatcaaactgagtattcaccttataatgtcctctgtcagaggattataatacc



acttaaaaccttttaaaaaatattttgttcctgataattttagctttgagtggtt



ttcttataacaattctagagatgcgtttttattttttaaccaagatttaaagctt



tgtgatttagtaagagtctaaaccattcacagttcatgcttttttgtcaaatttc



tattatttagtattttcctctcttttatattttcctgttattttccatttctatt



cttttgttagactggaaattttttctttgctttcttttatcctagtgatttgaaa



tttatgtaatatatactattctacaataccctttatttgttttcaatatttgaac



ctatatttttcaacattattaagaataaaatagtatttgttgctattttgaaatg



atagaccatgtttttaaggcaggttggtggttgttaaggcaccagtatcggccag



gcacgatggctcacacctgtaatctcagcactttcggaggccgaggtgggcagat



cgtttgagcccagcactttggccgatactgtggtttactgtattttgttctagtt



tattttatggaaaatgggaattcagtggttaagacaaggattaaatagcagaaga



aagatgtgtacatatgtacagatgtatgtgtcctttatatgttttttagtactct



tgtctcctttctggtcctcatttaaggttatctatttcatgcagtaaatttttct



tcacaattcatttcatttagagagtgaatgctaccttccaagtgggctttctcca



gttttcctttcagggacttaaaggagaagtgatgttaacagttttatatttccat



tgcattttacagtgtgcagatgtcttcacatatatttccccatttgagctttaca



aaagcccttagtattattctcattgtctagattccaaaatcaggcttagaggagt



taaatagttgtccaggatctcaagatgcaagacccacaatcatgaacagaggcag



atgttcaggatggaggcaagctgaaactcaaaaccaaatcattatgactccaaat



tcaggagtcttttagctgccacctgcatgggctcttggtgtagctgaccaccaga



gtttgtagagctgtcattcaggtgtgccatggactttcctgggacctggcacagg



agaaggactgagttaatgtttgctgattaaatatctgttacaggctgggcgcggt



ggctcacgaccgtaatcccagcactttgggaggccgagcagggaggatcacttga



gctcacaagtttgagaccagcctgggcagcatggcgaaaccccgtctctacaaaa



aatttgaaaattagctggccatggtgatgcatgcctgtagtcccaggtactcagg



aagctgaggtgggaggatcacatgagcccatgagattgaagctgcagtgagctga



gatggtgccactgcactccagccttggccatagagccagaccttatctcaaaaaa



aaaaaaaaaaagttacaataatcttcccttcaaagctggaaggcattatttacct



gtctgtccagcagatggtgctacataaccaagggaatctgttgcttgcccttggt



gaagctattaaagccaatacagatcttgagaatttcaaaagcaaaaatcaatact



ggattatgagtgctctaggaaaataaagagataaattttcaatttacatacttat



atatagttataccatatttgtaaataaaaatatataaataatttatcaaaattcc



tttttaacagcaacaaccacagtaaacccacaggttaaaaactccacaacagtct



atattaatcagtcaatgcaaagtacattccaattccaagttaactgaaaataatc



aacttaatcatttggttggctctgagcagccttcactgcttgctcttgtgtcatg



tttctttctgtcctcgattggctatagacttacagacggcttttgcagaggacag



tgtactcatgtccatcctttgcatcctttgtgggagttggctaggcagcactctc



cctggggacactatgaactcctcttcttgagtgcagagatcacgtcttgttcatc



ttcatgcccaataccttgttccataaatatgaatggattagaattctaaactctt



aactctgccccaagacagttctgagaggtagtaagtcatataacacctgaagagg



actgttcttgtcctaattacattaggttataagatgacaggtgagggagccaaac



cagggggcctggaaattattcatacatctctagatacagtatacaagttgtgtgt



attatgtgtatttactctgtaattgattgcttgagatgaacccccaaacacactc



gtgtttggatcattattatctacccttctccttaaataatcttaatttcctatga



tgcttgaaagggaaagaggggccaggtgtggtggttcacacctgtaatcccagca



ctttgggaggctgaggtgggagcatcacctgaggtctggagttcaagaccaacct



gaccaacatggtgaaaccctgtctctactaaaaataaaaaatcagctgggcatgg



tagcacatgcctgtaatcccagctacttgggaggctgaagtgggagaatcgcttg



aacctgggagggggaggttgcagtgagccgagatcactccattgcactccagact



gggcaacaacagtgaaactccgtctcaaaaaaaaaaaaaaaaaaaaggcagagtg



gggaagagagctgcatgaaggagagatttactaaatagtacttaatcccaaaata



atttctataggtttgaatatgatccctgaaatttattataggttcaggtaagtat



taatcacgggtattcagaactgtggtttaaaaaatgtatagaacatgtttccttc



cccttgaaactttttatcagctaattataggaattatattatacctgcaatcatt



aaagtccagaatgagacagtacttggtaaagtgctgaaatttataataaatgcat



tatagcaatccagttaaggaggaagagccaccattattgaacatttgttaagtgt



cagccattgtactagataaattttagttattatttttatttaggcaccaaaaaat



ccatgggatagttggttatccccatcttactgaagaggaaactgaagctcagaaa



gtttaagcaacttgcacaggtcacatagcaagtaaggagcatggccaggaatcag



accctgatctcctttggtctactaagcttgcaaaggatcttcccgcctccttcca



agaccattcaatattatcagtaaatgtccatggcaaggatgtagttcgagttata



gggttccattcaagatatgattggtaggtgggaagcagatatgtctgtgtcaatc



agtatcctggaagaaggagatgatgaactcaagtggtgattaagggaagtttaat



gaagggactatttacagagatgtggtggggttaagagaaccaacaaggggaagtg



atgcactcaaaaagttactacctccaggctttaggggattgggggagggagtggc



acagtgtgaacccagtgtggttgtgagaaaagggattccctcagcagccatggcc



aaggttagagtctccactgccaaactgcatccaggtggtgagggaatggagaata



ggggggggtaacaaactctgacctcggtatccccaaagggcaaaggattccaggt



ggtacagttcgtaaagattagcctcagggcacagaacagggcagagaagaatgga



gaattgatctggaggaaacaaacaatggcttgcccatgttattgcagggagagta



ggctggtgtgcacagcaggagggtggggagcccagcatatagctgtgttggggcc



tgtgcagatcagcctcactggcagggaggatctgagccgagaggtggtggaagat



gaaatcgagtaggcatgttggtagtcctaaatatcaagtaaacgttcctgatctt



acattgatactcaatagtaagccaattttgtttcccataagccaatattaatatt



acgtatttcttttataagccagagatatagagagataccctagaagaatgatagg



ggaaaggaaggcaagggtgagagaagaccttgtgtgaatttgtccaaaatgttta



tccacaggaacaatccctttgtgaaggctgctggtatgtgaatgtgtgccggttc



ccttggggcgttcatttggatctttctgtgttccag



(SEQ ID NO: 237)
















TABLE 3





Sequences of exemplary PKD2 pre-mRNA transcripts and mRNA 


transcript sequences







PKD2









pre-
premrna
AGGCGGCGGCGGGCGCCGGGAAGAAAGGAACATGGCTCCTGAG


mRNA
ENST0000
GCGCACAGCGCCGAGCGCGGCGCCGCGCACCCGCGCGCCGGAC


transcript
0237596.7
GCCAGTGACCGCGATGGTGAACTCCAGTCGCGTGCAGCCTCAGC




AGCCCGGGGACGCCAAGCGGCCGCCCGCGCCCCGCGCGCCGGA




CCCGGGCCGGCTGATGGCTGGCTGCGCGGCCGTGGGCGCCAGCC




TCGCCGCCCCGGGCGGCCTCTGCGAGCAGCGGGGCCTGGAGATC




GAGATGCAGCGCATCCGGCAGGCGGCCGCGCGGGACCCCCCGG




CCGGAGCCGCGGCCTCCCCTTCTCCTCCGCTCTCGTCGTGCTCCC




GGCAGGCGTGGAGCCGCGATAACCCCGGCTTCGAGGCCGAGGA




GGAGGAGGAGGAGGTGGAAGGGGAAGAAGGCGGAATGGTGGT




GGAGATGGACGTAGAGTGGCGCCCGGGCAGCCGGAGGTCGGCC




GCCTCCTCGGCCGTGAGCTCCGTGGGCGCGCGGAGCCGGGGGCT




TGGGGGCTACCACGGCGCGGGCCACCCGAGCGGGAGGCGGCGC




CGGCGAGAGGACCAGGGCCCGCCGTGCCCCAGCCCAGTCGGCG




GCGGGGACCCGCTGCATCGCCACCTCCCCCTGGAAGGGCAGCCG




CCCCGAGTGGCCTGGGCGGAGAGGCTGGTTCGCGGGCTGCGAGgt




aagagcgcgcgacccgcagcggcagatgcacgaaccagaacggcc




ggcgccggccggggccatcgcccgctgcggcagctccccgggctc




catctcgcatcccctctgcgttccgcctcccttggaagcgcattc




cccacctccgctagtgctgccctatttccggtacccagcgcggaa




ttccactgctcttttgttggtgcatatttattggatacctccttc




ttcaggatatgtcaccatagtcttttttactgaaaattagtgaaa




gcctaattagagtgaaagagtacatctgggttttgtttttttttt




tcttgtagaggaaaaaatgaacattacttgtgtaactgatggtag




ttgcaactgcatatttgccaatgtcacaaaatctaaaggaaaatg




ttatagtcacccgtggtttccttcttgcctggacactccattgtc




ccgggctgaaaagggtagcagtacagtgcatataatgtcaagttg




tgggaggagtgtggcagattgtcattggtgcatttttttggtgat




gtgtgtggttgttttgaggagtgggagctgttaagaacaccacaa




atagaataaaataatatcgtgaagttatttggccgtttctaattc




tagacatttttctaaaaacagttgcaaaggaaagattacattgtt




ttaaaaaaatttgaagtatgtttttaaataactaaattaatgttc




tttgaaattccaccaaaatgatgaagtcaccagatagcagctgat




aaatgtgtctgagcccagtgcgcccagctctacaaaaggcagaag




aggaattttcaaatttgccagtgcccagtaagaggacatgaattt




tctagtaccagaggaaattctctttttacaaattttgtcagaggt




atccttgggaaagtatttcatttgcttttaccctccaaattattt




taatctatatttttaagagtttccattctcagttgagtttttctt




gttcttctccttctgtcagttttgaaagtcttgcacaaaaacaat




ccaggtgttgttacagcagtgtgattaaaaccaggtcaggcctac




actgaaatcccagttccaccactcattagctgtacgaccttgagc




aagttacttatcctctctgatacccaatttttggatttttttttt




ttttaaagagatgatcataacgcttaggacttgactctttgggag




aattaagtgagttaagacataaaatgtgcagcatgtatttgtcat




gttattagcgcttcagaaatataaatgtaaacattttggtacttc




gtttatggagattcttatactagttaattttattaaaagcatgat




ggggaacagaagatccttttcggataacctgtgtgagtaaattaa




taaaacactaacactttttaagattcaaaactggattaattatgt




tattttacaccatttaaaatgtgcatttaaaaaatattcactgaa




gtgagagagaagttccttttaagttaataaataatggtaagttgc




atgatccttttaactcagtttaagcatttgataacacccctaacc




ttgtttgaataaactcaataacagaatatagagaaataaaatata




tatttcatatgagtatgtatgtaaatttatttcttttaaaggaaa




atttcaggaaacaaaatgaataagctcatagtcataaaacctcta




gccaaagtgtgtcaatggtctgatttgtaggagagcagactcagg




aatcgggaattttttttttttttttaagagtcggggtttcactct




gtcactgaggctggagtgcggggaagcaaacgtagctcactgcgg




cctcaaactcctgggctcaagctgccctcccacctcagcttccca




agtagttgggattacaggtgcaagctgctgctcctagctgaaaag




ttttaattatataaaatgtttaaataaattgttattcctttcttt




tatgaagaaatataattgatattcttgtcacttattaaataagca




acattttaaaatgtttagcacctactgtgaagatagcactgtgct




agctgctatgaataaactagaatagcatatcactgttttcctatg




gacaaaaacccagaaatgtaaaataaatagccatgaatgggttga




gattccccctgccccctttggatactgatgacagaaatcttatat




gcactatgtaagcagtgccctaggatcagaacagaaagtaacttg




caatttttaaaggtgggagaaatgactgaagtttggagtggtcag




aggtttccctggaagtctcttgcctttgtgactttgtatagctcc




ctcaaactacctgagcctgagctcctcatttataaaatggaagaa




ttgaacctagcttccaaggtcctttctagcttcaccatgctctgg




tctgttgtttaatgacatgaatccaagatggacaacaaatggtcg




attttgctccttctacagtaaatagatctatcttcttagcagaag




taaaatagtaaagaaagaagacatgtttgaggcctgttgaggcct




gtttgctgtatgcattgtatctaatcaaggaattgagaatgtagc




cctaaatattaggaaggagttgaaagtttctgagcaggaacagaa




catgctgaaaggaaattgtgtcagcagcatggtgtacaggagagc




ttggcagagagaaaggaggcaagaagacctgtgggaggcagccag




taaggaggtgaagagggcctggaccaaaggaagccaaggatgacc




gaaagatttaaagatgaagcccagatttaaaagtatcctcaagta




tttgtttattcttttcttagcaaattctttttagtacaaagataa




aatatggcactctgagtcataaaattttctgaatttcagaagttg




aatgtttttctgaatgtatcaacctgttaaagtcagttcctgttt




gttattttaggcgtatattcttgggcttttttttttttttcctag




agaaactatgaagtactagctgtgcaagtcaggggggctaagctg




ctaaaacagatacctccctccccttcaataccctgaagaacaaga




agttaattttttgctcgtgtaacattttagagagggtattccagg




ttgaatacctggaataatgaatgaaataataagtcgactcttatt




tctcctaaaataattggatcttgacattgaaattggtgtgctgat




tgtatttaataagtgacctccaatgcagttatttcattttgccat




actttatgtaatttttattttttctgccttccctttcgatgtcta




aagggaagcataattagttattggaaaggttattgagacttaaaa




aaagatttgaacatggctttggttgatgctaccacacagaaactg




caaacatccaactcaccgctcttagttgctgttcatgatagtcta




tgcacagtgactgatgaatttagcctgtcttgaggcttcagaact




tagtcttatgtcatcacgagcagagctttatcctaaattacaggt




tttcaatgggggggggggggaggggcagttttgcccctcagggga




catttggcaatctctggagacatttttgattgtcatacctggggg




gatgcccctggcatctcctgggttgaggttaaggatgctgctaat




ctacaatgcacagtacagccaccccacacacacacactacaaagc




attctcccacccaaattgccaggagtgaggactttgagaaaccct




gccctagactgttaaattcaaaaggaaataatggtttattgctca




cagtgtgccaggcactgtgttaaactccttatattcatagttttg




tttttatcctcacaacaacctgtgaagaaagaactctcatccgtc




accactttactgttgagggcactaagccttctaaaggttaaatga




cttgcccagggccgcaactattagatgttgcagtcaggatttaat




tccaggcactttgtgttcaaagtgtttctcatccactgtgctata




tgccagtagtgcccaaacctaactttagccagcaattgtctgcat




ctcttcagtttatgaacatttatttattaggacatgcaggataat




cataccaacacagtccgtgtatccagaattctaattgatctaggg




agtgggagagcctgcctctctattttttttaaattggtgtgaaat




atacataacataaaattggccattttaaccattttaagtatataa




ttgagtgacattaggtagatttattatattatgtaaatggactta




acacaatttatttccagaacttttttatcatcccaaacagaaact




ctgtactcattaaacagtaactccctgtttccccactcccccttg




ccccagacgctagtaacctccattctacttcccctttctgtgagt




ctccctgttgtagctacctgatgtaagtgaaatcagaccatgttt




gatcttttgtgtctggcttattcacttagcatagtattttcaagg




tttatccatgcgtgcaaattcccttcttttttatgacgaaatact




atttaattgtgtgtgtacatgtgcacacacaatgaaatactattt




catcataaaaaggaagtttgtacacatatatacacacacaccaaa




ttttgtttatccattcatcagttcatgggcatttgcggttttttt




ccacctttcgactgttgtgactttccgtttatttttaatctgaac




tttactccatcacttcctccctttccttttttattcgcaccataa




ttttgaacaagcagactttgtattttcattactctggggattttt




ttgagggaggcttgctaccctttggggttgtggtaaggttgtgcc




agtaacagaattcatgcagtaaaaaacattcatgggactttcttt




tgtgataggtactagggatgcagagatgaataatacaaggtctcg




accttcaaggagctcagggtttagtagggaaaacagaggtataag




taagtcattgcaatgccaggtcccagatatgggaggattccagca




aagagaggataaggccaggcacagccgctcatgcctatagtccca




acactttgggaagctgagatgggaggatcacttaagcccagcagt




tcaaggctaccctgggcaacatagtgagtggcaaaaaatacaaaa




attagccaggcagggtggcacatgcctgtggtcccagttatttgg




gagtttgaggtgggagaatcacctgagcctgggagattgaggctg




cagtgagctgtgatcacgccactgcactccagcctgggtgacaca




gtgagaggtgagagcctgtatctaaaaaaaaaaaaaagagaggat




cagatttacctggagaggtcagagaaggtttccagagggagtaaa




acttgagcttcattttgaagaatgagaggggaatacaaggaggga




aaaataataggaacaagacctgttcctgttacagcaaacctgtaa




ctcccaccatggaatgggcacgttttcctgtagacatttggagcc




agtgtgggcttcaagcctagggggctgatatgatcatttgtcaat




ctgaagatgactcttggaacaacgtagaggatagggtgaggtggg




taggctggtggctgacagactaggtcaggagagggctgaccaaga




ggaggaggggtgacgagggctggaactaaggcatatgagctggga




tggaaagaagctagatagaaaggaaacaaaaaccatcagaactgt




ggaaccaactccatgggagggataagaagagggcctattctaggg




tgaaacccaaatttctggcatggtaccattaacccaaacagaaag




aggagatttccagagaaagaaaagcaaattttgcgggaggtgagt




gtgagctgtctagagaatatgcaggtagaactacatgttaactgt




aacatatacttgtctgcacctcaggagatggctgattaagaattc




aggattcaggccaggcacggtggcacacgcctttaatcccagctg




cttaagagactgggggggaggattgcttgagcctgggaatccgag




atcagcctgggcaacatagcaagacactgtctctaaaaaaaaaaa




aaaattcaagattctggagtcaatattacttaaggtagcaactgt




ctattctatagaaaatggacaaatatagataaaaagccacttccc




tttctaaaagtgtccctgcaattcaagtgaatactaggaaggatt




gtgttcattcttctaaacaagactcacatgtatcttagcacaaaa




agaggattcttttatgatacaaatgcactgagaatttggtcaggc




tatcacaatgaactgatagttcagatggatttgagtctttatacc




actctggaatctggaccaactgggcctcctaaggccattttgcag




atctgggcttgtttctgaagctacagacaggcctcttccaagcac




tctaagtgctccacaaataatatttctgtttcccagaacaacccc




acaaaaaggtactcttactccatttttagatgaggaagtggaggc




tcatgatgtcaggtaagctttctcagctcccaagtggttaagccc




tcagtttaatgtcatttgactccagagccctatgttgcaccatgc




cttgataataggccatatgggtttcatgtatttcagatggggaag




gttagtgtgaggtgaaagatacacaattaaccttttaaccatgga




actgaaatatttacagatgaagtgatacaatagctggaattaatt




ccaaaataattggggggtactggtccatggcctgttaggaactgg




gccgcagagcaggaggtgagcagcaggctagtgagcattgctacc




ccctatcatatcagcagtggcatcagatgggtgaggatgtaaatg




aactaggattggcattgagttgatattgttggatctaggtgatag




atttatcattataatattctctctttgtgatatttctgatatttt




ctaaaataaaaagttgtagttatttatttatttagacggagtttc




actcttttgcccaggttggagtgcagtggtgtgatctcggctcac




tgtagcctccgcctcccgggttcaagcgattctcctgcctcagcc




tcccgagtagctgggactacagcctcccgagtagctcaccaccac




acccagctaacttttgtatttttagtagagaggaggtttcaccat




gttagataggctggtctcaaactcctgacctcaggtgatccaccc




acctcggcctcccagagtgctgggattacaggcgtgagccagtgt




gcccagccaataaaaagtttttgaaaggatttagataaaatagtt




ggggaaatggcatttttgttcaaagccaattatttatgtttggaa




tatcttttgtgcttggagttctccattacagagttccccagtgtt




cctattaataagtaacattgagcagaggaatgcactgtttagatc




agcagtccccaacctttttggcaccagggaccggcttcatggaag




acaatttttccacagacctggggtaggaagtgtttggggatgaaa




ctgttccacctcagatcatcaggcattagtgagattctcataagg




agcaggcaatctagattcttcacatgcgcagttcacaatagggtt




ctcactcctgtgagaatctaatgccacccctgatctgacaggagg




cggagctcgggcggtaatgctcacttgcctgcggctcacctcctg




ctgtggggcccggttcctaacaggccatggaccagtacccgtctg




cagcctggggactggggaccctgctttagatgatgtactctggct




ttgcattctggcattagctaagcaccctcttaaaggaaattgggt




ctatactctcagtccgtgttctccctaacacctggaaacattgaa




taccttcaatgctgggaagttaactcccaccacaactagaacagc




tatgggaaagacaacagttgattttgaagagtgtcaccaatttgc




acatgattccatccttaaccattcttatcctatcagctctgccaa




acatggagaatagttggctgcaggacagctatttttcctacttgt




agatgcaactatttctcacccaccaggatgtaaaaggtccctgta




ccctaagattggtcctacatacacacccaatgggaaaatgagatg




aaaaatttaaagcagtaaatatttgaggaagtagatagagtaatt




tagaaaaagaaaatacacagggccaagcacagtggctcacatctg




taatcccagcactttgagaggccaaggtgagaggattgcttgagc




tcaggagtttgaggccagcctaggcaatgtagtgagaccccacct




ctacaaaaaattaaaaacttagttgggcttggtagtatgtacctg




tagtttaagaaacttgggaggctgagctgaggcaggaggattgtt




tgagcccgggtggtcaaggctgcagtgggccatgattgtgccaga




gtactccagcctgggtgatagagtgagactctgtctcaaacaaaa




aaaaaaacagagacagaaaaaaagaaagaaaatatatggatgtat




atcatataaaaatataaataagggaggccaagtgcagtggcatgc




ctgtaatcccagcactttgggaggctgaagcaggaggatcacttg




aggccgagaattcgagaccagcctgggcaacgtattgagacctca




tctctgcaaaaaatcaaaaaatgaggcggaaggatggcttgagcc




caggagatcaagccttcagtgagctgtgatcgtaccactacactc




caggctgggtaacagagagagaccctgcctcaagataaataaatt




catacatacatacatacatacgtacatacatacatacataagaag




acttgtttctttccatttgcaatgtttcattcaaaggctagaatt




aaattgccgtaggccatcacaagtttagcttgaatattattattt




tttcaagatggagtctcactctgtcacccaggctggagtgcagtg




gtgtgattttggctcactgcaacctctgtctcccgggttcaaccg




attcttctgcctcagcctcccatgtagctgggattacaggcgccc




gccaccacacctggctaagttttgtatttttagtagagacagggt




ttcaccatgttggccagactggtcttgaactcctgacctcaagtg




atctacccgcctcaccctcccaaagtgctgggattataggcttga




gccactgcacccagcctagcttgaagaaaatttgataggagtttg




tttttttctatttataggccaagcaataccacgtataaatattaa




gaatcatggctgttccttagtgcctagttgtttataaaccatggg




aaagaatgaaatcattgaccaaatgagacagggtaacagtcttcc




ctgggagtaaagagactagcagtctctattgacatatattttagg




cctggcctccaaaataaatttacccaaagaagtgatgtatttgtg




tccagggctaccgagcctaatctttggctgcctctgtgttattct




aagttgtaattttccatgtcatctaaatttgtaataattctttaa




tatgatagtgtttcagtgaacaaacattctgcttgctgcatttct




tctgagtgagtaattccctgacaactaccagatcttggcagaagc




aaagttggtcataagttatgctccactctcagtgctggtgaaacg




tatgatgcgtaacacagtgtttttgaattcagtgctgattttcct




aaaggacatttggaaggaaaaaagaaaaggaaaggaaatacccaa




attcaggaatagaacttacatattattataagacttaaaaaatac




atgaacactaatgatgaactcatttcttcgaagtaaaaggcctta




tgctattttttcccatttccctatgtggcttgattgtggcgaaag




tggctgtgtgagtttccattattgaaggagttaaggtctgtggaa




tcaaagcatgagacaacatgcaaggaccaggttggtttccattta




acagccaacctaatctaactgaaaggattgagaggtttgtctttt




ttggaaagtgttaaggttcttccaagtaaccagcaatgtgacttt




accacactgttcattaacggggctttggatggccaccatgtctgc




tgctggctgagtccaaaactgcggtcactctctccagcaagctca




tggagggttacgtcatcttcactcagccagcccaacgctttttcc




atctgctaaaatgtagaacatggttgttgattctactctttctac




aaagaaagagagggaacatggatgagttgctgcttttaaagatta




tatgttaattgctgttttaaaaatctgctcagctaagcacgctta




gtgtaatcagtcaccatggagttttttaataggacagcttctgct




cttacagagcagagtttttatgccagtaggttagaagcataacat




gtttctatattgaagtgattctccaacaaggacttcttttcatca




ggggtgacctaaaagttattacttgaaatataattacatcatgtt




cttaactgggtttagtagtaggataattacaaggttgtatccacc




tcaaataggaagaactgataagttttgcacaattatttaactcct




ctgttaggccttccttatttcctgttctctttttaaaatttgact




aagatattgctaatgggcttgggagcctataaaatgatcagaatt




gttgccttatgttttgcatgtttggggtaacattggagccagatg




tactcttaaataaaaggtaggcctacaaaaccagtttctcagttg




cattcaaaatgtgattaaaaaaaaaaaaaggagaatctcccttat




aggtgaactttttaatttgtgctttattttcccttttgccattca




tgagatttcttaaataaaatgatatcttttcttttcttcattatt




attttaaagGTCTCTGGGGAACAAGACTCATGGAGGAAAGCAGCA




CTAACCGAGAGAAATACCTTAAAAGTGTTTTACGGGAACTGGTCA




CATACCTCCTTTTTCTCATAGTCTTGTGCATCTgtaagtagaata




tttccttgcactaatgggaaagttttgaaaagatttgacctatcc




aaatcataattaaaaggaagtgtgtatgcaccagaggggcaactg




ggaagttaccttcttacctttgtttttaattctaatatttttatt




tgggcatttgtttattgactatcttcctatggtagaatgcaagct




ttataagagaagggacgtgatttgttctctgctgtacccccattt




cccaaaactgcagatggcaacagaaggctctgaaaaatatataag




aaagaatttttctaattgtgactaaattgtgaccaaatgctaagt




gactgtggacttgcgtttaacacaggacgggagaggcaaagagtt




caattccaatttagaatttggtcaagttctcttctgcactctggt




aaacattaattaaaaatcagcattatctgaccagccagttcatcg




tcagtggtggtgattttcactatgagatacgcgtggcaacttgcc




agacaccaagaaaccaagttagaggatttttgtattagattcctt




aacaatgaatacagtatcaccattattacagtatcatcattattg




tcatactattattatatcagttaacataaagtctgcataagaatt




gtttccagaaaaatgactttccaaatttaactttcaggaaataca




aataatgctactaatattgcttttattggcgtatacatgtaatat




ccccttcttttggatttggatatgttgtgtcattgcctcatttta




attcattatttcttctcaatctttaataattgctggacttttact




ccacaagaaacttgctataggcccatctctttcgtcttctttcct




tctttcagttcgtcttcccatcctctggtagggggaggggaggga




tgcctgagcgagagactagctgtaggaaccatttgtctcaaagtc




cagaaagccacaggtgatggatttgtcctctgaatcaaagggcgt




tcgatgatggatttctgtcatgtctcatctaaagtcttcacgaga




acagatgaggaagcagttttatgaccccagagcctcctaccaaac




tcctctgagaaaaggtttccttttttttttttttttttaaattag




agacagagtcttgatctgtttcacaggccggagtgcagtggcaca




atcatagctcactgcagcctcgagctcctaggcttcagtgatcct




cccacctcagtcacccacgtagctgggactacagctgcacaccac




catgcccagctaacttttaaaacatttttgtagaggtggggtctc




actttgctgcctatactggtctccagctcctagcttcaagtgatc




ctcctgccttggaagttctgggattataggcatgagccactgcac




ccagcctggatgtgatatttttatgttttaaattgttagagttta




gaaacttgagattgagtttgctgcctgcattaaaatgatgcttaa




acattaaactgcagtggccttaaatattaacaagttgattagaat




tactaagttcttttcaagctttacatatacagacaaatttcttat




gcaaaatagaaggtaacccctgtacgtaagtctagaatttcagca




gtccccaaaactgactgagcattagaatcactctgattttaaaat




acatatgtggttttccgagatctactaacagagcctccataatgt




agcctagagaaacgagttttcagatgtagtgataaatttggaagg




taagtcagagaagtaagctgaagacagagttttaggaaatatgcc




taaagtcacataatgaattggttttcttgtttatttgagaatatt




gtcgctttttgttctttttcatgcaaatcacattttatttcttat




gtgagtagctatatatttaaaaattttgtttttggaatattgtag




aatctctacttaagaaagtatcttagcagtcatatggtctgacct




cactgaatgctaaattctctttaaaacatccgtctcagatggtta




ctcatactgcctctgattgaacaagagtcccaggttaagggactt




acttctttgaaatcgttcatttcatttttctacagctatgttaga




aagttcgtccttagcagtgaagccagagtctatctcttataactt




ctacccagttgcaccctccaagcctacctataccaagtatctttt




ttccacgttgcttttccaattcagctcttcgcaagtttggagaca




aatacctaatctcctctaagccttctccaggttaagcctttccag




ttcatccagctgttgattatgtgattggagacacaagtttgagta




actcccatgatggaaagtccctctggtgaatgttctgttcatcag




agtccctaagaaagcacatgagcctcaccatggtgagtggggcca




tgagattcctaaaccagacactacactgtggcttgtgcaacctac




catggccagactcatgaggctgtttcatcatataaataattcctt




agtctcttcaccaaaaactgtgaagcactgtgtcccccagctgta




tgtgagctagcctgggaccatagtggaggactcctctttcaaccc




tgttaaatttcatcttgttaggatctgcccatttttccattctgt




tgaaattatcttggaactggattcattcatctcacatcagctact




ccccgaagcctcacagtatcagcagagttattatctctatccata




tccttgtaaattattaaactaaaaaagattggtctaagaacatca




gtccattaatcaaggctctttggttggagttcacttcattatatt




atcatccagctcagagtgttcataaacaagatgataggaaagact




tttccaaatgcctgtctgagtaattcccccattcctgtgatctgt




gagctgttgaccagattaaaaaggaagtgagaataaccaggcaag




atttactcctagcaaaaccttactggcttctagtgactgagtcct




ttccctattgcttaccagctatctttttaattactagttttaaaa




tcttgccagcaatgtcaatatcaaatgaccaagaatatcaaactc




attactctgtatgtaaatgagatagtgtacttacccctatggctt




aagtattaggctgttcttgcattgccctaaatacctgagactggg




taatttataaaaaaagaggtttggccaggcactgtggatcaggcc




tgtaatctcagcactttgtcaggctgaagcaggtgtaatggtgag




ccaagagttcaaacttagcctggacaacaaggtgaaaccccctct




ctgcaaaaaatacaaaaattatctgggcatggtggcatgcacctg




tagtcccagccacccaggaggctgaggtgggaaaattgtttgaag




ctgggagtcagtgattgcagtgagccatgattgcaacactgcact




ccatccagcctgggcgacagagcaagaccctgtctcaaaaaataa




ataaatgaataaataaataaaataaataaataaatagaaaagaaa




aagaaagaaaagagatttatttgcctcatggttctgcaggctgta




agggaagcatagctccagcatctgcttctggggaggcctcaggaa




gctgttactcatggcagaaggtgaagcaggagcttgcacatcatg




tggcaaaagcaggagcaagagagagagaatggggcagggaagaag




ccccacacttttaaatgaccagatcgcatgagaaatcactcgtta




cctcaaggacagtaccaagaggatggtactaaattcctgagaaat




ccacccccatgatctgatcacctcgtaccaggccccgccttcagc




attggggattatgtttcaacatgagatttggatggggacaacatc




caaactatatcaccttgcatagtaggtagggttttaaaaagcagt




ttggcacagtaagaaaagtacagattttttttgcatcagacagac




ctgagttaaaatcccagcttcactgctaacatgctaggtaaatgt




gggcaagttaattaacatttctaagcctttgtttcctcactggta




aaacaagtatttggaaatatcattgtgaagattagaaataataca




tgaaaagatcctaggatgctgtctgtcatacagtagtagtagtaa




gaagttattcttgccaaagattgttgagaatggcagaattatctc




agttctaagagctatagtttctaattatttgagcctagactcaga




ttcatttggagcagctaactgctcaccaagagcttattttccatc




ttaccaatgaggttatgtgccctgtgtttttaaaatcagtctact




taaccaagagaacagaaatgacatgagaattaagtaatctcactt




tctctgttatttaggatttattcctactcaaaacctgagagttgc




tatgaattcaccattaaagcacttattaatatacatgggttactg




ttataaatagcaatagtattgctattgtgtgagttaggtgttgaa




gttcaagaaaggaataaagaatatttagaagatctttgaaaacag




tgtctgggtacggtggctcatgcctgtaatctcagcactttggga




ggccgaggcaggcagatcacttgaggtcacgagttcaagaccagc




ctgggcaacttggcgagacctcgtctctacaagatatacaaaaat




tagccgggtatgttggcatgcacctgtaatcccagctacttagga




ggctgaagcacaagaatcacttgaacctgggaagcagaggttgca




gtgagccaagattgtaccactgcactccagcctgggcaatagagc




aacactctgtctcgaaaaaaaaaaaaaaaaaaaaaaaaagaaaga




aagaaggaaggaaggaaagaaaaaaaaaggaaaaaatgcaaggaa




ggtatttggtgaatctataataataaaaatgtatttgtcatttcc




tttttctgtgctctcattctataaaattgagtaaaaaatctatat




atagtttaaacacattaatagaaatcacaaaagttagctgagtca




acattgtagaaacataatatttctgtatgtcaaagaaatagacaa




cattaaaaagcagaaagcaattacaaagaatgattataagaaaca




tcacaaagggttaatattttaacacatttgaaactcaaaaatcac




tgagaaaagcagtagacttccataaatattttatagagtagaaaa




aataggccaagcacagtggctcatgcctgtaattccagcactttg




ggaggccgaggagggtggatcacgaggtcaggagttcaagaccag




cccggccaagatggtgaaaccccatctctactaaaaatacaaaaa




ctagccaggcgtggtggcaggtgcctgtaatcccagctacttggg




aggctgaggcagggaattgcttaaacccttaaacccgggaggtgg




aggttgcagtgagccaagttcgcaccactgcattccagcctgggc




gacagaacgagactctgtctcagaaaaagaaaagaaaagaataga




aaaagaatccatgggcaggcacagtggctcatgcttataatccca




gtactctaggaagccaaggtgagaggatcaattgaggccaggagt




tcaaggccagcctgggcaacatagcaagactttgtctctattaaa




aattttaaaattagccaggcatggtgacgcacacctgtagtccca




attacttgggagcctgaggcaggagaactgcttgaggctgcagtg




agctatgattagaccactgcactccagcctgagctacacagtgag




accttgtgtcaaaaaagtaaaaaaataaaaattagccaggcatgg




tggcacatgcctgtagtcccagctactcaggaggctgaggcaaga




ggatgacttgagtctggaagatggagactgcagtgagctgtggtc




atgccactgcactccagcctgggtgacagagcaagaccctgtctc




aaaaaaaaaaaaaagaaaagaaaagaaaaataaataaaatttatt




caaatacaaaagtgatgtggtttgactctgtgttgccacccagat




ctcatctccaattgtaatccccgtgtattgacggaggttcctggt




aggagatgattggatcatggggatggtttcccctctgctgttctc




atgatagtgagtgagttctcatgaaatctggttgtttggtaggtg




tctgtcacttaccccttctttttctctctcctgctgccttgtgaa




gaaggtacttccttctcctttgccttccaccatgattataagttt




cctgaggccttcccagccatttggaactgtaagtcaattaaacct




ctttcctttataaattaccgagtctcaggcagttttttatagaag




tgtgaaaatggtctaatacagagacttggtaccaggagtggggta




ctgctataaaaaataacctgaagatatggaagcgactctggaact




gggtaacaggcagcaattggaacagtttggagggctcagaagaag




acaggaagatgtgggaaagtttggaatttcctagagacttgttga




atggctttgaccaatacactgatagtgatatggacaatgaagtcc




aggctgagatggtctcaggtggagatgaggaacttattgggaact




ggagtaaacgtcactcttacatgttttagcgaagagactggcagc




atttttcccctgccctagagatctgtggaactttgaacttgagag




acatgatttagagtatctggcagaagatatttctaagcaccaaag




cattcgagaggtgacctggcttttcctgaaagcatacagttatat




gtgctcacaaagagatggtttgaaattggaacttatgtttaaagg




ggaagcagagtgcaacaaaagtttagggagtttgcagcctgacca




tgtggtagaaaagaaaaacccattttctggggagaaattcaagct




ggctggagaaatttgcataagtaacgaggagctgaatgtgagttg




ccaagacaatggggtaaatgtctccagggcgtttcagaaaatctt




cagggcagaccctcacaacacaagcctggaggcctagaagggaaa




aatggtgtgagccaggcccaggcccaggccccagctgttctgtgc




agccttgggacatggcaccctgtgttccagccactccagctccag




ctgtggttaaaaggagccaaggtacagctggaccattgcttcaga




gggtacaaatcccaagcattagcagcttccatgtggtgttgggtc




tttgggtgcacagaagacaaaagttgagctttggaagccgctgcc




tagatttcagaggatgtatggaaacacctcgatgtccaggcagaa




gtctgctgcaggggcagagccttatggagaacctctgctagggca




atgcaggggggaaatgtggggttggagctcccacacagagtcccc




actggggcactgcctcatggagctgtgagaaaaggaccaccatcc




tccagactccagaatggtagatccaccaacagattgcactctgcg




cttagaaaagctgcaggcactcaatgccagcctgtgaaagcagct




gcaggggctgtaccctgcagagccacagaggtggagctgtccaag




gccatgggagcccaccccttgcattagcatggagacaggggatca




aaggagattttggagatctaagatttaatgaatgccctgtcgagt




ttcagacttgaatggggcctgtgacccctttgttttggccaattt




ctcctatttggaatgggaacatatacccaatgcctgtacccccat




tgtatcttggaagtaactaacttgcttttgattttacagactcag




gcagaagggacttgccttgtctcagatgagactttggacttgaac




ttttgagttaatgttggaacgaattaagacattggggttctgttg




ggaaggcgtatttggttttgaaatgtgagaaggacatgagatttt




ggaggggccaggggtagaatgatatggtttgactctgtgtctcca




cccaaatctcatctccaattgtaatccccatgtgtcaagggaggg




acctgatgggaggtgactgaatcataggggcagtttcccccatgc




tgtttgcatgatagtgagggagttctcatgagatctggttttttg




gtaagtgtctgggcttcccccttttccctctctctcctactgcct




tgtgaagaaggtacttgcttctcctttgccttctgccatgattgt




aagtttcctgaggtctccccagccattcagaactgtgagtcaatt




aaacctcttcctgcctattctcaggcagttctttatagcagtatg




aaaatggactactacagaaagtgtgtaactttaaactcagtagta




tccaaagaagtaatgaaaatggagaaacgaacaacaaaatcatag




tacaatatggtgtatgtactaggacaggaagagcccttttaagaa




gagatctatgtatttccatttgtttatctctgaaagaaagcaact




ttgccttgtattctgaaaaagaaaggaatattttattttacttgt




aaaaatcttacaaggatgctagtctaaatatagttttcctaattt




gccagagaatccatgaagatcgagttgataacaagatcagtgaag




taaaggtcagtgagttaatctcacagcagctgcaggctaattcca




tttccagtgaaaaacgtcttgattgctcaccacatatcttttcac




cacaaacagtttcagtcttaagatcacatgttgcaatccatgaga




agtaactattaagccttcaactatgactggagggctcctcgccct




ttctgataaattgactggacaaaaactcaattttaaaatgacaag




aaatagaagatgtataaatgtactttaaatgtgaccaaaatgggt




tgtgaaaacacaagacacaatatccaaaaatgctggcaacacagt




acactgtagagtattggttgtttatttacccttgctattgtgtgg




ctgagcttactgccactgcccagcattgcaagggcatcaaactgc




ctatcactagcctaggaaaagatcaaaattcaaaattctaagtac




agtttctactgaatgcttatcacttttgcaccattttaaagtaaa




aaaatcagtaagttgaaccatcatatatccaagattgtctgtata




taaatattatacatctttctctcacttttaaaacaaaataatact




agccaatactaccattctcaaaagcacttgtgtcaacagccttta




ccccttaaagattttcctcacaattttaaaattgttacttactat




tttctttgaaatgttgaccaaacctggattaaaagatttgggggt




tttagtgactgtatttcacaaactctcttattgattctgcagcct




cacttctgcctcctaaaaagccctcaccaaggtcacgggggatgg




ctcttttcagcctcttcctggcatttggtccagtggcatttggca




ttctaggacttccctctttgtctttgataactccctctcttcctg




tgttcctccttgctgtgttcacttgcttcgctttcttctttctga




agcatgtttacacagtgttttctctgattgggcctgtgacgttct




ttaggtcatcttttccacaaataatgcttcaactagtacttgcgt




gccagtgactccacgtcccactcatgagctctgaacctagtacca




gcttctgctggacatctacaatgggatctctcacaggcctctctc




attggtaacatgccccagcctgaactcatctcccacccatctatc




cagccatgctctctagttcacctgaacacttgggtgtcatcctag




atgctttcccttcccagtcttctgtgatcattctgcctcatcaga




ggctctctaatctgtcttctttcctatatcgctcttgtccctatt




ttaatcctaatcatctatttcctgacttattcattccttaagttg




gtcagtaatttaattaaaaacagatttaggccctgaccttaaatg




tgataagtgatatgaaaggagatgactggggaaaaggatttccct




caaggaaggcctctgtgaagcctgaagcaagaatgaaaacgagtc




agacgaagagagaattgtatgaatgaaggctctgaggcaggaaaa




cactcagatcattccagaatcacttagaagccaagtgaagccagt




tcctggagagcagatcatcaaatgaagatggaaaggtgaccaggg




gccagacctgtagttttggtgggccttggtgagggatttacagta




ggacaccccatggtttaagtatgaaagtgacaagattcctttaag




ttttaagaggcctcgaaatatgaaccacagattagatggaagcta




ctctccctgtgtctggactttttagaatttccaagagctgctgtt




tctggaaccagattaatacaagtcagtcttccatttatttattta




tgtatttatttgagacagggtctcactctgtcacccaggctgggg




tgcagtggcatgaacacagctcactgcagcttgggggctcaagag




atcctcctgcctcagcctcccatgtagttgggaccacaggcacct




accacccagctaattttatttgttgtagaaatgaggtctcatttt




gctgcccaggctgttcttgaactcttgggctcaagcgatcctcct




gcaacatcttcccaaagtgctgggatcactcttccatttaacatg




ctatctcaacgtcaagataaactttaaaatctttagataataggc




tggcattttacttaaacgatctttacttcttcagaactgccattc




cctataaatatctggttcttcaaccacatcaaaccacttgtgatc




tcaaaaagcctcagcgtacactgtcctttctgtcattctaattcc




tcctcatccttcaaaatcaactcaaggaccagatccagggagaag




cttagtggtgcccacccgaaccggccccctccttcgagttgtgct




gccattcgggcccacctcttcacacagggttgtcagaccagacca




gctcatgcgttcaccgcccttgcagggatgggatgcagctgtgca




cctctcagtgccgacacctggagagtctcacgaaatgttgacaac




atggcctgtttccatttcttgttcactaggacttctcatttacta




acacacagaatttcctgtagtatgtccacttaatcagttcaagcc




taataattccttgatttgggtatagtgctttgcatttatatactg




atggtccccaacttacgatggttcgatttatgatttttcaacttc




atggtgatgtgaaagtgatacacattctatagaaaccacactttc




aattttgaattttggtctttttccaggctaccatactctaaagat




agagccacagatcccagtcagccatgtgattatgagggtaagcga




ccaatactctacagtgtattgtattgccagatggttttgcccaac




tagcctaatgtaagtattctaaacatgtttaaggtaggccaggct




aagctgtgttgctcattcagtaggttaggtatattaaatgcattt




tcaacttatgatattttcaatttacaatgagtttatcaggatgta




actctactataagtcaaggatcatcttgtatagcacttttaattt




atagagtcccttcaaatgtttgtttgtattttatttccactgcat




ccctgtgaggataccataagttatacagctaacaaaacagttagt




tttcctgtgcaaagtgatggcttcatcttgtggcagattacctgg




aatactgtggccaaggcatcttagttctactgtctttatatatct




agtacagttatatttttatggcagctctgatttcttctttggccc




aagggttattaagagagggaaaaaatttaatttcttaacagatat




atatatctatgtcaagtcatatatttaattcaaacccttaatatt




cctaggtaatttttgtctactttctctgtcaaagattgaaagata




cagggttttaagtttccaactgtaattgtagttttggtaattgtt




ttattactaacaggtattgctctgtatattttgatgttctgttat




tcaatacataagaattcattacagttgaatcatcatgtatagtat




aatttaccaatgtaaaataacctttttatcaaactgagtattcac




cttataatgtcctctgtcagaggattataataccacttaaaacct




tttaaaaaatattttgttcctgataattttagctttgagtggttt




tcttataacaattctagagatgcgtttttattttttaaccaagat




ttaaagctttgtgatttagtaagagtctaaaccattcacagttca




tgcttttttgtcaaatttctattatttagtattttcctctctttt




atattttcctgttattttccatttctattcttttgttagactgga




aattttttctttgctttcttttatcctagtgatttgaaatttatg




taatatatactattctacaataccctttatttgttttcaatattt




gaacctatatttttcaacattattaagaataaaatagtatttgtt




gctattttgaaatgatagaccatgtttttaaggcaggttggtggt




tgttaaggcaccagtatcggccaggcacgatggctcacacctgta




atctcagcactttcggaggccgaggtgggcagatcgtttgagccc




agcactttggccgatactgtggtttactgtattttgttctagttt




attttatggaaaatgggaattcagtggttaagacaaggattaaat




agcagaagaaagatgtgtacatatgtacagatgtatgtgtccttt




atatgttttttagtactcttgtctcctttctggtcctcatttaag




gttatctatttcatgcagtaaatttttcttcacaattcatttcat




ttagagagtgaatgctaccttccaagtgggctttctccagttttc




ctttcagggacttaaaggagaagtgatgttaacagttttatattt




ccattgcattttacagtgtgcagatgtcttcacatatatttcccc




atttgagctttacaaaagcccttagtattattctcattgtctaga




ttccaaaatcaggcttagaggagttaaatagttgtccaggatctc




aagatgcaagacccacaatcatgaacagaggcagatgttcaggat




ggaggcaagctgaaactcaaaaccaaatcattatgactccaaatt




caggagtcttttagctgccacctgcatgggctcttggtgtagctg




accaccagagtttgtagagctgtcattcaggtgtgccatggactt




tcctgggacctggcacaggagaaggactgagttaatgtttgctga




ttaaatatctgttacaggctgggcgcggtggctcacgaccgtaat




cccagcactttgggaggccgagcagggaggatcacttgagctcac




aagtttgagaccagcctgggcagcatggcgaaaccccgtctctac




aaaaaatttgaaaattagctggccatggtgatgcatgcctgtagt




cccaggtactcaggaagctgaggtgggaggatcacatgagcccat




gagattgaagctgcagtgagctgagatggtgccactgcactccag




ccttggccatagagccagaccttatctcaaaaaaaaaaaaaaaaa




gttacaataatcttcccttcaaagctggaaggcattatttacctg




tctgtccagcagatggtgctacataaccaagggaatctgttgctt




gcccttggtgaagctattaaagccaatacagatcttgagaatttc




aaaagcaaaaatcaatactggattatgagtgctctaggaaaataa




agagataaattttcaatttacatacttatatatagttataccata




tttgtaaataaaaatatataaataatttatcaaaattccttttta




acagcaacaaccacagtaaacccacaggttaaaaactccacaaca




gtctatattaatcagtcaatgcaaagtacattccaattccaagtt




aactgaaaataatcaacttaatcatttggttggctctgagcagcc




ttcactgcttgctcttgtgtcatgtttctttctgtcctcgattgg




ctatagacttacagacggcttttgcagaggacagtgtactcatgt




ccatcctttgcatcctttgtgggagttggctaggcagcactctcc




ctggggacactatgaactcctcttcttgagtgcagagatcacgtc




ttgttcatcttcatgcccaataccttgttccataaatatgaatgg




attagaattctaaactcttaactctgccccaagacagttctgaga




ggtagtaagtcatataacacctgaagaggactgttcttgtcctaa




ttacattaggttataagatgacaggtgagggagccaaaccagggg




gcctggaaattattcatacatctctagatacagtatacaagttgt




gtgtattatgtgtatttactctgtaattgattgcttgagatgaac




ccccaaacacactcgtgtttggatcattattatctacccttctcc




ttaaataatcttaatttcctatgatgcttgaaagggaaagagggg




ccaggtgtggtggttcacacctgtaatcccagcactttgggaggc




tgaggtgggagcatcacctgaggtctggagttcaagaccaacctg




accaacatggtgaaaccctgtctctactaaaaataaaaaatcagc




tgggcatggtagcacatgcctgtaatcccagctacttgggaggct




gaagtgggagaatcgcttgaacctgggagggggaggttgcagtga




gccgagatcactccattgcactccagactgggcaacaacagtgaa




actccgtctcaaaaaaaaaaaaaaaaaaaaggcagagtggggaag




agagctgcatgaaggagagatttactaaatagtacttaatcccaa




aataatttctataggtttgaatatgatccctgaaatttattatag




gttcaggtaagtattaatcacgggtattcagaactgtggtttaaa




aaatgtatagaacatgtttccttccccttgaaactttttatcagc




taattataggaattatattatacctgcaatcattaaagtccagaa




tgagacagtacttggtaaagtgctgaaatttataataaatgcatt




atagcaatccagttaaggaggaagagccaccattattgaacattt




gttaagtgtcagccattgtactagataaattttagttattatttt




tatttaggcaccaaaaaatccatgggatagttggttatccccatc




ttactgaagaggaaactgaagctcagaaagtttaagcaacttgca




caggtcacatagcaagtaaggagcatggccaggaatcagaccctg




atctcctttggtctactaagcttgcaaaggatcttcccgcctcct




tccaagaccattcaatattatcagtaaatgtccatggcaaggatg




tagttcgagttatagggttccattcaagatatgattggtaggtgg




gaagcagatatgtctgtgtcaatcagtatcctggaagaaggagat




gatgaactcaagtggtgattaagggaagtttaatgaagggactat




ttacagagatgtggtggggttaagagaaccaacaaggggaagtga




tgcactcaaaaagttactacctccaggctttaggggattggggga




gggagtggcacagtgtgaacccagtgtggttgtgagaaaagggat




tccctcagcagccatggccaaggttagagtctccactgccaaact




gcatccaggtggtgagggaatggagaataggggggggtaacaaac




tctgacctcggtatccccaaagggcaaaggattccaggtggtaca




gttcgtaaagattagcctcagggcacagaacagggcagagaagaa




tggagaattgatctggaggaaacaaacaatggcttgcccatgtta




ttgcagggagagtaggctggtgtgcacagcaggagggtggggagc




ccagcatatagctgtgttggggcctgtgcagatcagcctcactgg




cagggaggatctgagccgagaggtggtggaagatgaaatcgagta




ggcatgttggtagtcctaaatatcaagtaaacgttcctgatctta




cattgatactcaatagtaagccaattttgtttcccataagccaat




attaatattacgtatttcttttataagccagagatatagagagat




accctagaagaatgataggggaaaggaaggcaagggtgagagaag




accttgtgtgaatttgtccaaaatgtttatccacaggaacaatcc




ctttgtgaaggctgctggtatgtgaatgtgtgccggttcccttgg




ggcgttcatttggatctttctgtgttccagTGACCTACGGCATGA




TGAGCTCCAATGTGTACTACTACACCCGGATGATGTCACAGCTCT




TCCTAGACACCCCCGTGTCCAAAACGGAGAAAACTAACTTTAAAA




CTCTGTCTTCCATGGAAGACTTCTGGAAGgtatttgcaaataact




ttgaaagtacctctctatcacagaaaattgttcatttggcttcat




catttcaatgcatgagtatcgacaggacctgctttgcatttaaca




ctgtgtgagacgtaagttatggtgagttgttagaagttactgttc




ctactctcaaagggggtaaactaacattgagaactttgcctgtgc




cttgcactgtgctgagtgtttcatatcttaccttatttaatttct




atagtctaactctataaggtaagtactaagactatgccctagttt




gttaatgaggaaaatgagattcaggatgtttaaatgcgtatggtc




acatggctagggaacaagaaaaattgatttttttctagcctgaca




gctacttcatcctagtttgtaattcattccatgagtcaagattca




ataaatatttattgagaatctcctagaatgtaaggccaatgaagg




gcagtgtggttcttctgtcttgcttcgccttttgtgttttgtctc




tttgttgatgatggcatgtatccccagctcttagaacagtgcttg




attcaaagtaagcacattctttcaaaggtctgctgttggtggggc




ttggtggctcacgcctgtaatcccagcactttgggaggccaaggc




aggaggattgctttagcccaggattttgaaaccagctgggcacaa




catagtatgactttgtctctccaaaaaagttaaagaattagcagg




gtgtggtggtacacacctgcagtcccagctactcaggaggctgag




gtgggagaatcacttgagcgattgcttgaggtcaaggctgcagtg




agccatggccatgctactgcattccagctggggcaacagagtgag




accctttctcaaaaaaaatcccccccaaaaaaaaacccaaaaaca




aacaaaaaaggtctgctgttgtgaagttcaacccaatccagcccc




ttcccaagttgtcacaaattccaacgtagttaacagtataccaat




gagtgataccacaggaaaaatattaaactgatctgagggatatgg




ggcttggaatctaagaaaattggaagggaaattgaaaaggaaatt




attatttctccttggggagatagtttctaaaattcttactacacc




ctggggtcagagctgttgattttaaggatagagacaactgagtca




caggaaactattcatatataaaagtacctggcatccaaaaccaca




cttgtataatatgaatctttcaccatctgagtagggcaaatcagt




ctatctctgttgatcatctgacaaggatagcacactgagaaatag




atctgtcttccctacaggcatagctagttgtacaaactaacaaga




gacttttgtatacacattccatgatgataaatgccaatcactaaa




ggggacgagagggattggagagttcaccatacagcaaaatagtcc




agacaggtgaaaggtctatcaaatgccaggctggtaatcaaaact




gtagccttttctctaaacaaagtttagaaccatgattgtgtggga




cattattttaataagggaaagtgcagttaatcatgaccccacctt




tagtccaagaacaaaaatcagagctgccacgtattaagtacccac




tctgtgccaggtgcagtaactatgcaaaagatgggttttccagat




gcaagaaccttggttcagaggaccctgctcaaggcctcatagcta




acaaatgatggggcaagatgctatcccaaatctctctgacaacaa




aactcattcttatcactctactattttcatagagttgccaaatgc




ttggttatgcaaacgatgcaggcaggggcaagacagcggctgagc




ttggaactttttcagagatgtttcctttgcttttagTTCACAGAA




GGCTCCTTATTGGATGGGCTGTACTGGAAGATGCAGCCCAGCAAC




CAGACTGAAGCTGACAACCGAAGTTTCATCTTCTATGAGAACCTG




CTGTTAGGGGTTCCACGAATACGGCAACTCCGAGTCAGAAATGGA




TCCTGCTCTATCCCCCAGGACTTGAGAGATGAAATTAAAGAGTGC




TATGATGTCTACTCTGTCAGTAGTGAAGATAGGGCTCCCTTTGGG




CCCCGAAATGGAACCGCgtaagtgtctgtgactcattgccactcg




gtgatattcattcatttattctctgaactcccaccattcattcat




tcattccctgacaccttcaccaaggcaaaaataagttcagtgact




cttcagtgcttatatttaaaccttggccaacttgacctttgactt




cttaagttttcactacttcttagccttcttttagtttctacatgc




atatttttcagaagactaaatcgttgaccatataacccctcaaaa




attaattatctgagcgtttgaaaatttcatttaagatgccctggg




ccctgtttttacaggtgcagtaacatcatccactaagttatttaa




cacaagttttctggttcaggaactctttttataggtcttgcaaac




aggtttttgttcagaatggagttatttaatgtgtaagcttgtgag




gcaattttttgttaggtttaaagcccattttgttcaaatgtttga




gattttaggtatatatttgtacacgtgcatatttacaggggcttt




ttgtacactttggtactcctacttcaaacatcttgtgtattaagg




gaggtcacttactattttagaagtattgtagttattataaagaaa




caagaagacctccaaggccgtttcagggtgggcctttgcggttgc




tgtccctgggtacgtcactggtcggagtcatcttctaagctttgc




tcagctaattctgtcggttcatctaggttcttttcttggaaactg




agttgcccagaatccacatttgttactatacaatgggcaatcacc




ttttcaattagtatattcttcttgtaccttccagtatacactcta




tttaataccagaacccataagaaacaaatttagtaaaaatccagg




ttgggcacagtttctcatgcctgtaatcccagcactttggaaagc




caaggcggacagatcacttgaggtcaggagttcaagaccagccta




gccaacatggtgaaaccctgactctactaaaaatacaaaaattag




ctgggtgtggtgacatgtgcctatagtcacagctattcgggaggc




tgaggcaggagaattgcttgagcccgagtggtgggggttgcagtg




agctgaggtctcatcattgcactccagcctgggcaacagagcaag




actccccctcaaaaaaaaaaaaaaacaaatttagtgaaaatccag




agctttagaacaaaggaactaaatagtctcaaaggacattatcat




ccaagttatgatagtgatttcgctttctttaaaaaaaaaattatt




acagatagagtttcttgatgttgcccaggctggcctcaaactcct




gggctcaagcagtcctccagcctcagcctcccaagtagctgggac




tatgagaatatgccaccatgcccagctttattttgctttctaatg




tgcctttttgtagttcctgcaaagcataagcatgccttcatctgt




ggtaccctttccaatattttatttatctcacatcactaataagat




aaatttatacagccactgctctgtgccagacattatttaagaagt




tatttcacgcattatctcatctgccttcacaaaacaactctaaaa




taggtatcacctccattttatagatgaaaaaactgaggctcactt




gcccaaagtgtcacagctaacaaattggactgaaccaagatttaa




gcagcctgactccaaaacccatgtttcgcctactaaacctcttcc




atattaattcctcctccatattaattgcgtcgttagggtggcttg




tcgacgctctcagctccccatcagtactcaagcttcctgagggca




gggattctattttgttaactgctgtattctcaaagccttgaacaa




tgcctcatatgtaaagatactaata (SEQ ID NO: 231)






premrna
ATGTCTTCTCTCTCTTACAGCTCTTCAAATTCATCAATTTTAACA



ENST0000
GGACCATGAGCCAGCTCTCGACAACCATGTCTCGATGTGCCAAAG



0502363.1
ACCTGTTTGGCTTTGCTATTATGTTCTTCATTATTTTCCTAGCGT




TGCTCAGTTGGCATACCTTGTCTTTGGCACTCAGGTCGATGACTT




ACAGTACTTTCCAAGAGTGTATgtaagtatatatgaaattaagaa




gaaaaatttaatcagagttgtcactgcttctcaagaataaatctt




catatgaggttgctatatgaccaccaattatttaaaaccagttat




tttaagtaagaattaattaccttttcccaaaacattgatctaccc




atgcaaagaagacaatgcatcctgaaatgctgatgcttaagatag




cagcccaaagtagtaaaatacagttaacagacataggaaaccaac




actgttctgaagactgagtttttctttgcaccaaatgcagatggt




agcttctagaaggctgtttgcctatattcttactcctgttgaata




ttgttgccatatatttagaacttcaagttattttctaaggaaaaa




aacaagatatttctaatattctaaggtaaactcagaccagtacaa




gaattttcagtttttttttccaaagatcccaaatgtgaaataaaa




caacaaaaagcagccagtgtcagatttctatgccatttagaaagg




agttagtttaaaaaggaatggaagtaatagggttttgtgcataga




tatctcgaattaatattgctgttgataaaagtgattttgctaaga




cccagcactgacaacacttggccactttgatcccattttaagtac




ttgtcagaatattggatctttgaactcaaaccattttgggttttt




ggggtttttttgttttgtttttttttgttttgttttgtttttgag




gcacggtcttgctctgttgcccaggctggagtgcagtggtgcaat




catagctcactgcagccttgaactcctaggctcaagcaatcctgc




tgcctcagcctgctgagtagctgggactacaagtgtatgccacca




tgcctggccaatttttaactttttttatgagaagggatctcactg




tgtagcccagggtggtattgaactccagggcctcacactgtcctc




tcacctcagcttccaaaagtactgggattacaggcatgagccacc




acaccaggccctgttgttttttttttaaagaaatttttaacttta




gaccgagggtgactgttgtcaaggtttagggttaagatgttttac




ctagattatgtgttgaaatgttatagccaattgctttataagtta




ttgaataataattgtattttctttttttttttttttttgagatgg




agtctcgttccatcgcccaagctagagtgcagcggtgtaatctca




gctcactgcaacctctgcctcccgggttcaagcgattctcctgcc




tcagcctcccgaatagctgagattatgggcgcacgccaccaagcc




cagctaatttttgtatttttagtagagacggggtttcactatatt




ggccaggctgttctcgaactcctgacctcgtgatccgcccgcctc




ggcctcccaaagtgctgggattacagacgtgatccaccgtgccca




gcttgtgttttctttttaaccaaatggaaataacctctgtagcat




gaaagcattttattattattgcagaaggctttaattgctgataca




agtagcaagactttgtaaatgggattgacaattttctgttattcg




gcagctacctatactgctaaaaggtccaaaaataatgaaatcatc




tttaagaaatgttgcatcaactagtggacattctttgtttttgta




ttgtggtgttttgttttatttttatagCTTCACTCAATTCCGTAT




CATTTTGGGCGATATCAACTTTGCAGAGATTGAGGAAGCTAATCG




AGTTTTGGGACCAATTTATTTCACTACATTTGTGTTCTTTATGTT




CTTCATTCTTTTGgtatgtacatttttatttatagtgaggttcaa




tttaaacttcgtaaatccttgtcttctcttttctctcacacttta




tgtcctatcaattttaaataaagacccaggaagtagaaaaaagtg




tggatgttggaaaacttattttccttttattaattcacagttttg




agactcatatcaaatgtcttttctgtggtctttcattgatccatg




tatatgtgtctattcaatgcaaaaaaaattagatctcttccatgg




tctttcatttctctctctatatatgtatctattccatgcaaaaaa




gaaattagatcaagtacaaatttataaagatacctaaaatagtgc




tttgcctaaaaagtagaatatgcttacatgctttttaaactcata




tgtcagcactttcgtagtcacttgctagcatgacttttctctctt




tcttcttttctttttaaaaaataagaacggaaaagcaagctagat




ctaagatgtcgagtaatagttgagtgaatcattgcatgtcaaaat




taggatattctgttttaaattatttatatcccattcatctagaga




ctgcctacagagaatattcaaataattaagtttaaaactaaatgt




aacaatgaatggaaattgcattaaaattattttcaaaaataattt




ttttattctcttgatttggtacaaatgaacatttttaatgttttt




gccctaagtcaattaagtttttttaaggtgttttgttctttttct




taacatttatatattcaattgtctactgagaaggtgttaagccag




cttaatttaggcaatatttttcatctaaacactaacagtcatctt




aagaacaattttcttaagaaaataacattttttccatttcagtaa




attgtgtaaagatcccttgaggaaggttaagtgatcacattttca




gtaattcagtgtaataactctaaagtcagtccaggtattactggt




taagtatatggtatttattgattgggtattagatgtactgtatta




atttcctgtttaaaaaaaattttttttccggggagacacagcctc




tggtgtaaaacaaaggtgtgttccctagctgtactttaacaggac




tgaaaaggtcaggaatatcattcaagttcatatgtatcttgctgt




atgcatggtttatggctcatttttaaacttacacctcttaagctt




cttcttcctatcatatattaaaacaatggagagaagaataagcct




ctgttactctaccattgatagtacttcggattctagagtacctga




atctctactaagaaggcaaaaaccaggaattgagagtcctgcacc




tgacccttcagttgatctcaggccacctagttttctccgtttatc




aatctgccaaacaaggatggatagagtcgtggcaactggaaaggc




tcaaatgtggaattgtttgaatgtggtcctttagtaggcagccat




cttaccagatctagagtattcagtcatcttaccagatcagtcacc




agaacatgaaaagaagctcttagtttctatctttatactaaaatt




gtttttttgtacgactgcacaaaaaagaattgctctccttgcacc




tcccagagatataggtggatagatacatacatacgtacatacata




catacatacatacatacatacatacatagacacatacatagatag




aagtctactttcaatacaaacctgtcttttaaggaaatgacaagc




tgagcatagggttggccacctttctgagccgattgcctggtatta




gtttattgcccctgtttagcaagaaggcacagtgttaagaagtgg




ctcagctgaaccaggataaccccactcttcccccacatcaacagg




aaagacatcctggtgcagatgtccatctgataattcagggaacct




cgggagacaggatggagaggagggtgagctagcttcctcttccca




caccttcaagagcctttctcaagcactttctattttttgaaatct




ctttagaggtcccagactttgatctgtttcaattaaggtattggc




aggcattagttaacagccacttggaagcaaaaatagaacattaga




tccctgagttggaagagagaaggtagaaggtgttacttggactgc




aattatctgcacttggaattgagcatttagtcaaaaacttatatg




tattctatattctattctcatttctgctacagaattgtaaacaat




attcttccttaatacagaaattcatagcccactaaaataagagcg




ttctcatttgttcatttctcaatcatttaataagtatttactaag




ccactatatccatatatatatatatatcatatatactgtataata




cacactgtagtgttttttgtggattgtgtactatgaggtagtatg




ttagatactgccagtactggggtaaggaaaacagcctgattaggc




ccttacgaagattcctcagacttgtggggaaaacagacattatca




aatagaaatacttgcaaaccacagttatgtgttaaaaaggaaaaa




caaagtaaaaaaaaagttggtgggggggaacctgatctcctggat




acagtgcttcgagaaagtttgttgttggaaatgcaaaccattact




actgtggaagggaaaggtcagaaaaatgaactcaccattactgaa




tagtaatagtagctatcaattaggtggcacttacctgcatcagga




cctgtcctgagcactttacatagattgtctcactaaccagcccaa




caaatatgtaagggagatactattatttttcccattttattaatg




taaaacaattaaataattctttaaaattagacttagaaaagtgga




gcaacaatcttagcagtgctaggactgaaatccaagtttgcttga




ctccaaagtctatctctcttccagaaacttttttttactatctgc




ctagtaggcctgctgtattcctatttgcaacagccttttaaactc




tttaaaaatgtgtcctgtaaatttcatatatgattatacaaaaaa




acttggaataagcatacaattctacttatctgtgttaactgttga




aatttgaagagctttttggaattctatacccttcagtagtgtatg




taaaagtttctaaatatagagaacatagataagcaaaaataatat




taaataaaataatcgcaccattagtaggtaaatatactaatattt




tgttgtattttattcttgtatgttttcacaaagtatatcataaaa




tttttcctgtggcatgacttaacggagaaaataatcttcccaaaa




catgtggcagcaaaactgttaatttattacatcaggctgggcaca




gtggctcacgcttgcaatcccagcactttgggaagccgaggcggg




cagatcacttgaggccaggagttcgagaccagcctggccaacgtg




gtgaaacactgtctctactaaaaatacaacagttagccaggtgta




gtggcacatgcctgtaatcccagctactcaggaggctgagactca




agaattgcttgaacccaggaggcagaggttgcagtaagctgaggt




cgcgcccctgcactccagcctgggcaacacagtgagactctgtct




caaaaaaaaaaatttttttttaaataaataaataataaatttatg




tcttcataaagcactcagattaggaaaaaaaggataaacaaaaag




gcatgtgtcatttttttgattgataattccaaattatgtttcttc




ctttaatttttgccctcctttcatttacaaacagAATATGTTTTT




GGCTATCATCAATGATACTTACTCTGAAGTGAAATCTGACTTGGC




ACAGCAGAAAGCTGAAATGGAACTCTCAGATCTTATCAGAAAGgt




aggaaaaaccttaattctcagaattcttctgtttctgacataaaa




tgagcattgtttcacccagattttcaaatcaacattgatccattg




aaattgtttgaaataaagaatacattgctatatttcaggaataat




ttaaatgttccctatcttggagtcttgatggatatactgctatct




tgaattttaattctgggaatccttttatgccctggaattaaattc




tcaacaatcttttgacactttaagagctgagctgaaggttcatca




ccttcattattttgacatctcctgtagctggctctcacttcagga




tcctgagttgagaataaactagaagggaagattatataaagggat




ttccacctcttctgtctcaattaccattttaaaaaaataaaaagt




tttagaggaaaacacttagtagttcaccctttacccttgaccttc




cacggcagttttaaaataagcaaaggaaaagattcatgaattcag




gccatagcctggggcctgagaacttttacttatgcaccttctcag




gaagggtttcattgttaaatagaagggcaggacaggaaagttggg




cctctttgttcttctcaatgtaacttctttatttggtttaaagta




taaaatgtatacaacaacaaataaccacatttaaaatacacagtt




tgtttcccaacatcattttgctaagtcatagtggctccttaactg




taatttttttttttattagtccaagccttaggattatgttatctg




tgatatatgttataatagaaaacttaagcctcttaaaacaaagtc




cttgggatgggacctaagattcacattatcttgattccgcataac




agttgcttacattttagcaaatctccagtgtgtatgcaagcactc




ctcacttggcacaattctgatacacacaaactttggttaccccag




ttttgttatgtaacaccaccttcaacaacacagttcaaatttcag




ttatcatagtatattaactctgagtaacagcacaaagtacaaact




ccactgctagctcttcagtgtatagatcagttacctgagtaacag




atgtgcaggctgagcaggctcactggtcagtcatgacactatttt




cagtctgttactaattggtcactgagcatctgctatccaattcac




aaacaaagaaagcatgtagtgttgcttccttgtgttccagtaata




agcccatgtgacattttacaaaaatggataattgaaaaagagaat




gggtgcagtggctcacgcatgttgggaggccaaggcggatggatc




acctgaggtcaggagttcgaaaccagcctggccaacatggtgaaa




ccccatctctactaaaaatacaaaattagctgagtgtggcgacag




atgcctgtaatcccagctactggggaggctgaggcaggagaatcg




cttgcacctaggaggcggaggttgcagtgagccgagatcgtgcca




ttgcactccagcctgggtaacaagagcgaaactccgtctcaaaaa




aaaaaaagaaaagaaaagaaaagaaaaagagaatgggctagcaaa




gaaatgaaaaatggtaacactggaagtgaaaatcaaaacagagta




atggatttatagaagaaatagctgagtgaagaagaaataggagtg




ttgacactgcgatcattcaagagatccagatatggagccagaaga




acttagggcaggtctatcaacttaaatgaggaaaatagctgtgat




aaaacagatgaagatgtcttgaggaaatgatgcctgcaaaaaact




tcacattaagggaagtcttattagagatatttcacaataatgaaa




gtacaaaagaaaaaatgttggggctggacatggtggcttactcct




gtaatcccagcactttgagaggccaaggtgggtggatcacttgag




gccaggaagtcgagacaagcctgatcaacatgatgaaaccccgtc




tctattaaaaatacaaaaattagccagacatgatggtgcacacct




gtaattccagctactcaagtggctgaggcacgagaattgcttgaa




ccagggaggcggaggttgcagtaagctgagattgcaccactgcaa




tccagccaggtgacagggtaagactgtgtctcaaaaataaataaa




agaaaaatatgttggaagctcatccacatttaagaaggaatatga




caattcactaatgcatagaaaagaagttcactccacattgtaaag




tgtacagtgtaatattatacaatgaaaacaaggcaagtgctgttt




aaactactctggatacattttttacaaagaaataaaacactttag




tttttaatgtttctaatgttttacattttagtgtattaaatcaat




attagttttcttcttttttaagctccctatacatttataactgac




actaagggagtgtttaatgttttgattaaaagttgtaaagatcac




agaacaattgtaattcttcccactgattattcagatcattttgca




caatttcagcttgcatggtcacttacagtgccgcactatgtgcaa




agcaaggtcaggtctaaagttcgctaatgaaaaatcctcggccag




gggcagtggctcacccctgtaatcctagcactttggaaggcgagg




caggcagatcgcttgagctcaggagttcaacaccagcctgggcaa




catggtgagaccctgtctctacaaaaaaaaaaaaatagcaaggcg




tggtgactcacacctgtagtcccagctacttgttgggggctgagt




tgggaaaatcacttgagctcaggaggtcgaggctgcagtgagcca




gaatcacgccactgcccttctgcctgggtgacagagtaagatcct




gtctcaaaaaaagggaaaatcctcatctacatttcactgggtttt




ttgtttgtttgtttgtttgtttatacacacttaaggaaattactg




tctagaagatagataatataaaaaataaaaatgcaattcatgatt




cgggtttcttggtattcctaagaactgttgcacagtactttatgc




tctgaggcagacagctatagcatatatagtaatttttgtttctat




cacataaacttgaatacacatatgagtaaaagacctttagttctt




catgacttactgaaagaccctgactttttccatgtaactgttcca




caagtgttttatggaaaactggatacattaattcttcattcatcc




agcacgtacttgttgaatggccaatgtacaccaggtttgtagtag




ttactactgtgaatggaaagtaaaacagatgcaaaaggagaatac




actaaaccaagtcttttattttttctctctctgatagGGCTACCA




TAAAGCTTTGGTCAAACTAAAACTGAAAAAAAATACCGTGGATGA




CATTTCAGAGAGTCTGCGGCAAGGAGGAGGCAAGTTAAACTTTGA




CGAACTTCGACAAGATCTCAAAGGgtgagaatcatgcttcctgag




gttctgaaaaattcctgcttctaaagataaattcctggtgataag




agtatttctagcccaagggctcatacagatacttttttttttttt




ttccagaggcaggtatctttctggaacatgttataagaggaaaac




ttgcccccatttggtgatttctcctttcctcctgcattttgatgt




ctctgtgttgagggtgaactgggtacaaggaatgatttttatctg




tatcctctctctaatttcagGAAGGGCCATACTGATGCAGAGATT




GAGGCAATATTCACAAAGTACGACCAAGATGGAGACCAAGAACTG




ACCGAACATGAACATCAGCAGATGAGAGACGACTTGGAGAAAGAG




AGGgtgggtctggtttaggagaaccggatttgatttggtacctac




aacaccacagatgtatcaaacactatagaagtagtgggttattga




gtctcttgcccattccccaccacactctctctctctctcagtcgg




tttatgtgttagtaccctgtttattccagaaagaatatataacac




aattatgtataaaaatgggtggttagcatgatataaaaacgtcaa




aatgaaaagcaagcaaaacaaaagtaaaaataatggattattaat




gaagcttaaaaatgcattcataaaaacacatatgcttattaagat




tgggctacaaattgggccctaagcttgctggtaatcagcttgaaa




agagaagcctgattagctgcagagtccacaatgtccgtgagagtg




aagaaaacaaaaaatgacttaccaagagatgtgaaattattctgg




ttagttagtggctatttaaattgttaacttttttttctttttttt




ttttttttgagatggagtcttgctctgcctcccaggctggagtgc




agtggcacaatcgcgactcactgcaacctccacctcccgggttca




agcgattctcttgcctcagcctcccaagtagctaggactacaggc




acatgccatcatgcccggctaatttttgtatttgtagtagatatg




gggtttcaccatgttggtctcaaactcctgactgcaagcaatctg




cccaccttggcctcccaaagtggtgggattacaggcagtagccac




cgtgcctttcctaaattattaacatttataataaaattaacagcc




gccttccatttgaatactttttacaaaatagttaaaaataaacat




aagtgggcttttatagtcagaaaaaaaaattcaaagctttaccat




taactttcaaaaataaatggttagacagcaacaacaaaaatctgt




ggtaactgaggtacagagaacacagatgaatgttattacaaaagc




cactttcctatgagaagtctaggacagtggtttctaaatgccact




ccacagacagtgctagtaggtgacagacttctccagtcacagtga




aatttaagcataaagaaaatgaggaaaatttttacaaggctctat




ttagacaaagttcttattctgacattacatctttcctactttgga




gctgttgaatgtattatcttttatgaaaagaaggcgatccaggtt




gagcatccctaacccaaatatgtgagtctgaaatgctccaaaacc




taaaacttcttgagcacaaacatgatagtcaaaggtcatgcttaa




aggaaatgctgtcattggagcagtttggattttgggttttcagat




tagggatgctgaaccagtaagtataatgcaaacattccaaaatat




ttttgaaaatcccaaatccaaaacacttctgatcccaagtatttc




aaataagggatactcaacctgtaatatatttcttcatttctttat




ttattttattattattttaagatggctcatggcccactgcagcct




caaactcctaggctcaagtgatcttccgacctcaacctcccaggt




agctcaggtagctgggactgcaggcatgcatcaccatgcctggct




aattttttaaaaaattttttgtggaggcagagtctcaccttgctg




cccaggccagtctcaaactcctggcttcaagcagtactcctgcct




cagcctcccaaagtattaggattacaggtgtgaccactatgcctg




gcccatatttcttcatttagttttttctttgcctgctgtgttttt




aatgttctttcttgttcaaacaaaaagttggctattccttgctgt




tagttaaatttgccaatctatgaaactgaaaaatgcaggagtccc




agcctggtgttaaatacaaagaaatcccaggtaaatggcatgcac




ccagttcctgcttgcccaagtccttggtgaggcttctgtggggtc




tcagtgttctgctcctcactcagtgaccccttgttcttcagGAGG




ACCTGGATTTGGATCACAGTTCTTTACCACGTCCCATGAGCAGCC




GAAGTTTCCCTCGAAGCCTGGATGACTCTGAGGAGGATGACGATG




AAGATAGCGGACATAGCTCCAGAAGGAGGGGAAGCATTTCTAGTG




GCGTTTCTTACGAAGAGTTTCAAGTgtaagtataaaggaattggc




agaatttgcgttgacaagagtccacatgagaccaggcagttccct




catctctctgaattcactcctttccattactaatcatccagcttt




taaaaataacttatactggccagacgcagtggctcatgcctgtaa




tcccaccactttgggaggccaaagcaggcaggtcatgaggtcaga




agttcgagacgagcctggccaacatagtgaaaccccatctctatt




aaaaatacaaaaaattagctgggcatggtggtgggcacctgtaat




cctagctacttgggaggctgaggcaagagaattgcttgaacccgg




gaggcggaggttacagagagccgagatggctccactgcacaccag




cctgggcgacagtgcaagactctgtctcaaaaaaaaaaaaacttg




tcaattggtgttttgtttcttacataatatgtttactataaaaat




tagcaaataagagcaaaagaaaacattaacatttcacatatttct




accaatgaaaaatgtttattaatatatcagtgtttgtgtctctat




ttgcatgtgtttatcaatgtttctatatatttttatggcctaaca




tatggttcgtcctgaagaatgttccttgtgcatttgagaagaatg




aatattctgctgttcaagtgttctgtagatgtttgttaggtctag




tttgtttacagttttattcaggtctcccatttcctggttgatctt




agatgtgcctagatgtggtattcacgtttgaaagtggggtattaa




agtctccaagtattattagttggagttcatcccttcaattctgta




aggttttgctttgtgtattttggaactctgttgttgggtgcatac




atatttataactagtatattttcctaatatattgaccctattttc




tctctcaacttaatgaggctaaagaaaaaaaagaattgaccctgt




tttcattacaagatgttatccactttatctctagtaaaattcttt




gttttaagtattttttgtttgatattactgtaaccactccagctt




tcttttggttgctgtttgcatgataaatctttttccatcctttta




ctttaaacttatttatatctttcagtctgaagtatgtctctcctg




tagacagcatataattggatcttatctttttatccagtttgacaa




tttctgtttttgattagattgcttaatccattcatttaatgttat




cattgatgtagttgatttctgtctgctattttattttttgttttc




tagcttacttttttttgttcctctttcactgctttcttgtacatt




aagtgaatattttcaagtataacatttaaatttttttaatgattt




ttcattttttttagtcaggagttgctctaagacttagtttataca




attaagttatgaaaaattacttcagatatatattaactgaatcca




gtgagatatagaaatcatttctatttagcttttttcctcttccct




ctttttgtgctatatattcatctatctatatgtatatatagtcat




ctacatatgttgcaaatcacattgttagaacaatgttacattttt




ataacacactgtgtaatatatagtatataattttatatctcttaa




tgaagctgagagaagaggaagtatatatttataaatgtgtatatt




aacctacttttttaccatttctaattctcttcttttgctcctctg




gattcaagttatcatctgtcgtcattctctttctccgatacagct




ttgctactgcctacctcctattattgtcaaatatattacatttct




attatagaccttcagatccaattatgtacatatttttacacaact




gctttttaaatcagttaaggaacaaaaggagaaatgtacatatat




actatattttatacctacacagttatctttaccagtgttctttgc




cttttcatgtggattctgattactatctggagtcacttgctttca




gcataaagaatttcctttagtattttttgtaaagcaggtttgcta




gcaatgaattctttcattttttgtttatctgagaatgtttttctt




tctccttcatttcctctggcttgtattgtttctgatgagaagaca




ggtgctaattttactgtggtccccttgtacatgatgactcaattt




tctctcaccactttcaagatttttttgcttttgtctttcattatt




tttactgtgatatgtctgggtataaatctctgagttcatcctact




tagaaagtgttttttctgcttctttcactttctcttctcctttgg




gacccgcattatgcatatgcttaggggtatcacatatttctctta




ggctctgttcgtcgtcattttttttccctctctgttcctcagagt




gcatagtctgtattgatgtatcttcaagttcactgacttgttctt




ctgtcagcttgcttaaatctctgttgagctcctctagttatttat




ttatttatttatttattttatatatatatatatatatatatatat




agagagagagagagagagagagagagaaagagagagagagagaga




cagggagacagggtctcactccatcacccaggctggagtacagtg




gtgtaatcatggctctctacagcctgaacacctgggctcaaatga




tcctcctgcctcaacctcccaagtagctaggactatgggcacatg




ctgccatgcctggctaatttttaaaaaaaaatttgtagagatggc




atcttgttatgttgcccaggttggtctcaaactcccggcctcaag




tgatccttccgcctcggcctcccaaagtgctggggtcacaggtat




gagccaccgcacttagcctgaattttttatttattatacttttca




actccagaatttctatttggttctttttagcaatctctgtctctt




tattctgtatttgatgatatcctgtatttgatgagacaatgtcat




cataacttccttttttttttaagagatagggtctctctctgtcac




ccaggctagagtgcagtggcatgatcctagctcactgcagcctcg




aactcctgaactcaagcaatcctcccacctcagcctcctaagtac




ctgacactacaggcatgagccactgtacccagctaatttttattt




tttgtagagatggggtctaagttgcccaggctggtctcaaactcc




tgggctcaagtgatcctccctgctcaggctcccaaagtgctggga




ttacaggcatgaaccactggacccagcctcctttatttctttaac




catggtggggttttttattatttgtttgtttgttttaacctgttt




gaatatatttataataggtaccttcaggtctttgtctgctaagtc




tgacatctgggccctctcaaagacagtttcagttgtctttttttt




tttcttcttgtgtatgggaacattttcctgtttttttgttttgtt




ttttgttgttttgttttgttgttgttgttgttgttaaagattgga




catgttagataatatattgtaggaactctggctagtgattccctt




tcctccccaggacttgtttttatttctctttgcttgtttactttt




tcatacagtctgtttccccacagtgtctgcctctgactttattcc




ttagagggcgcagctgtggccatgtacgtagtcactctgggaaga




cagtggttttagcagcgtgctcattaactttctctgacctctttg




ttatacctcctgcctctgtggatattagacccagttattacattt




cattgtttactgattggtctattgttttccagaatgccttgggat




gtaatttgctccacagtctgatccacttaaattcaggcctctttg




cagggctagttttagaggccagtcttttttttttttttttttttt




ttttgagacagagtctcactctgttgcccaggccggaatgtagtg




gtgcagtctcagctcactgcagcctcaatctctcaggctcaagca




atcttcccacctcagcttctcaagtagctaggactacaggtgcac




gccaccatgcctggttaatttttgcattttttatagagatggggt




tttaccatgttgccccggctggtctcaaactcctgagttcaagca




atccacccacctcagcctcacaaaaggccgggattacagatatgc




accaccacgcctggcccctgaggccagtctttaactgtcttctta




gctgtctctttccctggttctctctggtgaactagctggtaattt




gtttatctcataaggctaccagattccttgtaaatgcttatcccc




acaatctccattgttttcaagagcatcgttagtctttaatttcct




cacgcttcattccaaataaagtccattcacttgagaagagttcta




tattcctatgacctgtgtctccccatgagcaaaactgctactgct




ttacagagccagggacagtggcccacctctctgtggcatcctgct




ttatgaacaagtcactgggctcagatggcagtctctgattttctc




accttgcttcttctggcatggaaactccaccctacaagtgggaac




tgagtggaagaagagagccccattccccttagccactcttaacag




gattagaacctctgcaacatgcatttaagaatgggaacaggctgg




gcacagtggctcacgcctgtaatcctagcactttgggaggtcaag




gcaggaggattgcttgagccaggagttcaggaccagcctgtgcaa




catggtgagaccctcatctctacaagaaatagaaaaattaactgg




tgggttgtgtatacctgtaatcccagctactcgggagcctgaagt




gggaggattgcttgaacctggaggcagaggttgcagtgagtcaag




attacaccattgcacgccagcctgggcaacagagtgagactctgt




ctcaaaaaaaaaaaaaaaaaaagagtaggaacattgaggctgggc




atggtggctcatgcctgtaatcctagcactatgggaggccaaggc




aggagtatcacttgacgctaggagttcaagaccaacctgggtaac




atagcgagactttgtctctattaaaaaaaaaaaaaaaaaaggtgt




aaaaaacttttgtaacaagagtgggaaagccgggcacagtggctc




acacctgtaatcccagcactttggaaggccaaggcaggcaggcgg




atcacctgaggtcaggagtttgagaccagcctggccaacgtggtg




aaaccccatctctactaaaaaatagaaaaattatctgggcatggt




ggtgcacacctgtagtcccagctactcgggaggctgaggcaggag




aatcacttgaacctacgaggcagaagttgcagtaagccaagatca




cgccactgcactccagcctgggcgacagagcaagactctgtctca




aaaaaaaaaaaagagtggaaatgttaggatgagaaatgctggcag




cctgcccctccctgggagatactgtagccctagactggaagttgg




gggaggagggagccctgtgctcttagctgcacccatgtgaagttg




tgcttctatcacatgagctggggacaggagagaaggctcagatta




tggcttcagtgccacagaatctcttcatactaaaatttagtagat




tttcttgaataaatgctttttcatttgctgtacacccttaaaagt




ttctagaaatttttaatatttgagttttaaaaaataattttcaac




agttacagttatttcactaaagagagagtctacagaaccctcttg




ccaccattgcagaggttgtctttggcttacgagtttttaaagtat




ttgtatacattttttaagttcaaaataatagaattgtaagtgaac




atgctgttttcatactgtttttcaagctttatttaatatattgta




aatctaattctattttattaaatagtctgccacagtataatgtct




gatgtctccttagaattttattgtatggatgaacaatgattattt




aatttcctaccaattgttgggtgttttttgtttgtttgtttgttt




ttgagactgggtctcactctgtcacccaggctggagtgcaggagt




gcggtggaatgatcacggctcactgcagcctcaacatcccaaggc




tcaggtgatccttccacctcagcctcgcaagtagctgggagtaca




ggcacatgccaccatgcccacctattttttagagatgaagttttg




ccatcctgcccaggctggctcgaactcctggcctcaagcgatctg




cacacttccgcctcccaaaatgccaggattacaggcgtgagccat




catgccctacccccccatcaattgtttgatgtagccatttttcaa




tgatccgcgattaagaagcagcactcttttatagccaaaaattac




acatatataaaattttcctttagaaaatgttctaaaaatggaatg




tctaactaaagggttaggcatacattcttaagacttctgatacgc




gctgacttgcaggaaagttgtttcagttaacactcctaccagcgg




catccgagagttaatctgtaaagcttgagacaacttagaaagtgt




ttcaaatgattgtgttgcttaagaaaaaaatcttagcacttcctt




ttgaaaagccagtggggctgaaaagacaatgacaagcactttgtc




cctctgtactgtgttttccttgcagCCTGGTGAGACGAGTGGACC




GGATGGAGCATTCCATCGGCAGCATAGTGTCCAAGATTGACGCCG




TGATCGTGAAGCTAGAGATTATGGAGCGAGCCAAACTGAAGAGGA




GGGAGGTGCTGGGAAGGCTGTTGGATGGGGTGGCCGAGgtcagta




gtcatgagctgaaaacaccgctgctgagcatggtgttattaatga




aaatatatgttgctgacagttgtatttgaagtattgaagaagagt




aaaaaaaatttacgtttatagaaattcacaatgatgtttccattt




actctcattttcagatttttttctctgaaacagaaacactctttc




tataaaatctcttgctataaaacatcaatgtagtcatattgtcta




acccttaggctgagatgtttatctttctccataactacagataaa




attataatctggaggtgttactttcttaatactccatatgctaat




ggtcctgccttcactgcagggtagaattaagtgaaaaattactcc




agcaactctgagatttgctattatatgctgtaaatctccagcctt




accaaactacagattatttggtccctggacttcctaaggcatttc




cttctactgcccccaacaccagtttctttttccctttttagGATG




AAAGGCTGGGTCGTGACAGTGAAATCCATAGGGAACAGATGGAAC




GGCTAGTACGTGAAGAGTTGGAACGCTGGGAATCCGATGATGCAG




CTTCCCAGATCAGTCATGGTTTAGGCACGCCAGTGGGACTAAATG




GTCAACCTCGCCCCAGAAGCTCCCGCCCATCTTCCTCCCAATCTA




CAGAAGGCATGGAAGGTGCAGGTGGAAATGGGAGTTCTAATGTCC




ACGTATGATATGTGTGTTT (SEQ ID NO: 238)






premrna
GAATGATAGGGGAAAGGAAGGCAAGGGTGAGAGAAGACCTTGT



ENST0000
GTGAATTTGTCCAAAATGTTTATCCACAGGAACAATCCCTTTGTG



0506367.1
AAGGCTGCTGGTATGTGAATGTGTGCCGGTTCCCTTGGGGCGTTC




ATTTGGATCTTTCTGTGTTCCAGTGACCTACGGCATGATGAGCTC




CAATGTGTACTACTACACCCGGATGATGTCACAGCTCTTCCTAGA




CACCCCCGTGTCCAAAACGGAGAAAACTAACTTTAAAACTCTGT




CTTCCATGGAAGACTTCTGGAAGgtatttgcaaataactttgaaa




gtacctctctatcacagaaaattgttcatttggcttcatcatttc




aatgcatgagtatcgacaggacctgctttgcatttaacactgtgt




gagacgtaagttatggtgagttgttagaagttactgttcctactc




tcaaagggggtaaactaacattgagaactttgcctgtgccttgca




ctgtgctgagtgtttcatatcttaccttatttaatttctatagtc




taactctataaggtaagtactaagactatgccctagtttgttaat




gaggaaaatgagattcaggatgtttaaatgcgtatggtcacatgg




ctagggaacaagaaaaattgatttttttctagcctgacagctact




tcatcctagtttgtaattcattccatgagtcaagattcaataaat




atttattgagaatctcctagaatgtaaggccaatgaagggcagtg




tggttcttctgtcttgcttcgccttttgtgttttgtctctttgtt




gatgatggcatgtatccccagctcttagaacagtgcttgattcaa




agtaagcacattctttcaaaggtctgctgttggtggggcttggtg




gctcacgcctgtaatcccagcactttgggaggccaaggcaggagg




attgctttagcccaggattttgaaaccagctgggcacaacatagt




atgactttgtctctccaaaaaagttaaagaattagcagggtgtgg




tggtacacacctgcagtcccagctactcaggaggctgaggtggga




gaatcacttgagcgattgcttgaggtcaaggctgcagtgagccat




ggccatgctactgcattccagctggggcaacagagtgagaccctt




tctcaaaaaaaatcccccccaaaaaaaaacccaaaaacaaacaaa




aaaggtctgctgttgtgaagttcaacccaatccagccccttccca




agttgtcacaaattccaacgtagttaacagtataccaatgagtga




taccacaggaaaaatattaaactgatctgagggatatggggcttg




gaatctaagaaaattggaagggaaattgaaaaggaaattattatt




tctccttggggagatagtttctaaaattcttactacaccctgggg




tcagagctgttgattttaaggatagagacaactgagtcacaggaa




actattcatatataaaagtacctggcatccaaaaccacacttgta




taatatgaatctttcaccatctgagtagggcaaatcagtctatct




ctgttgatcatctgacaaggatagcacactgagaaatagatctgt




cttccctacaggcatagctagttgtacaaactaacaagagacttt




tgtatacacattccatgatgataaatgccaatcactaaagggacg




aggagggattggagagttcaccatacagcaaaatagtccagacag




gtgaaaggtctatcaaatgccaggctggtaatcaaaactgtagcc




ttttctctaaacaaagtttagaaccatgattgtgtgggacattat




tttaataagggaaagtgcagttaatcatgaccccacctttagtcc




aagaacaaaaatcagagctgccacgtattaagtacccactctgtg




ccaggtgcagtaactatgcaaaagatgggttttccagatgcaaga




accttggttcagaggaccctgctcaaggcctcatagctaacaaat




gatggggcaagatgctatcccaaatctctctgacaacaaaactca




ttcttatcactctactattttcatagagttgccaaatgcttggtt




atgcaaacgatgcaggcaggggcaagacagcggctgagcttggaa




ctttttcagagatgtttcctttgcttttagTTCACAGAAGGCTCC




TTATTGGATGGGCTGTACTGGAAGATGCAGCCCAGCAACCAGACT




GAAGCTGACAACCGAAGTTTCATCTTCTATGAGAACCTGCTGTTA




GGGGTTCCACGAATACGGCAACTCCGAGTCAGAAATGGATCCTGC




TCTATCCCCCAGGACTTGAGAGATGAAATTAAAGAGTGCTATGAT




GTCTACTCTGTCAGTAGTGAAGATAGGGCTCCCTTTGGGCCCCGA




AATGGAACCGCgtaagtgtctgtgactcattgccactcggtgata




ttcattcatttattctctgaactcccaccattcattcattcattc




cctgacaccttcaccaaggcaaaaataagttcagtgactcttcag




tgcttatatttaaaccttggccaacttgacctttgacttcttaag




ttttcactacttcttagccttcttttagtttctacatgcatattt




ttcagaagactaaatcgttgaccatataacccctcaaaaattaat




tatctgagcgtttgaaaatttcatttaagatgccctgggccctgt




ttttacaggtgcagtaacatcatccactaagttatttaacacaag




ttttctggttcaggaactctttttataggtcttgcaaacaggttt




ttgttcagaatggagttatttaatgtgtaagcttgtgaggcaatt




ttttgttaggtttaaagcccattttgttcaaatgtttgagatttt




aggtatatatttgtacacgtgcatatttacaggggctttttgtac




actttggtactcctacttcaaacatcttgtgtattaagggaggtc




acttactattttagaagtattgtagttattataaagaaacaagaa




gacctccaaggccgtttcagggtgggcctttgcggttgctgtccc




tgggtacgtcactggtcggagtcatcttctaagctttgctcagct




aattctgtcggttcatctaggttcttttcttggaaactgagttgc




ccagaatccacatttgttactatacaatgggcaatcaccttttca




attagtatattcttcttgtaccttccagtatacactctatttaat




accagaacccataagaaacaaatttagtaaaaatccaggttgggc




acagtttctcatgcctgtaatcccagcactttggaaagccaaggc




ggacagatcacttgaggtcaggagttcaagaccagcctagccaac




atggtgaaaccctgactctactaaaaatacaaaaattagctgggt




gtggtgacatgtgcctatagtcacagctattcgggaggctgaggc




aggagaattgcttgagcccgagtggtgggggttgcagtgagctga




ggtctcatcattgcactccagcctgggcaacagagcaagactccc




cctcaaaaaaaaaaaaaaacaaatttagtgaaaatccagagcttt




agaacaaaggaactaaatagtctcaaaggacattatcatccaagt




tatgatagtgatttcgctttctttaaaaaaaaaattattacagat




agagtttcttgatgttgcccaggctggcctcaaactcctgggctc




aagcagtcctccagcctcagcctcccaagtagctgggactatgag




aatatgccaccatgcccagctttattttgctttctaatgtgcctt




tttgtagttcctgcaaagcataagcatgccttcatctgtggtacc




ctttccaatattttatttatctcacatcactaataagataaattt




atacagccactgctctgtgccagacattatttaagaagttatttc




acgcattatctcatctgccttcacaaaacaactctaaaataggta




tcacctccattttatagatgaaaaaactgaggctcacttgcccaa




agtgtcacagctaacaaattggactgaaccaagatttaagcagcc




tgactccaaaacccatgtttcgcctactaaacctcttccatatta




attcctcctccatattaattgcgtcgttagggtggcttgtcgacg




ctctcagctccccatcagtactcaagcttcctgagggcagggatt




ctattttgttaactgctgtattctcaaagccttgaacaatgcctc




atatgtaaagatactaataaatatgtgctggatgcattcgagtga




tttctactccagggtggattgccaaaggggaccttccctgtcata




tctaaactatccttttattcttctacattctcaagtcactcccat




ttcttcttcccttcaactccaaacttcttggaagaatagtcttca




tttgccacttccatttccttaccatcaattcacgtcttaaagctt




aggttcttgcttttgacatctcaccaggaagctactagggacctc




tagttagcaaatccactgaacaaatctcagtttttatccccttca




tactgtctgcagaaagtggcagtgttgaccgctcattcttttgac




ttccatgaagaactctacactttgggttcttttaactctgaaacc




cctttctctcacttctcttattcccaggttctatattcatatctc




cgtcttttctttcttttctctctttcccatgacattcagatggct




tccactgacatctttatttggtgactcatcatttcttcaacaatg




tgccaggcatgttcccattgctagaagtcccccctcttctagtag




tgcccttgatgctggagaaacaaagcagcaggaaacagaagaaac




gtcctttcttcacagagcttgcattctagtgatacaagacacatc




tctattccacctggatgtcccacacctcttgtgatttaatatgcc




ccaaactaaactcatcgttttcttatgagatctgctctttgttct




gttaatggcactgccgtcttcctattgccctgaaagagactccag




agtcatttttgagccatgtttcctccttgccccaacttccaaatc




agttaccaagttctgctggcagtcactgtggttacgacactctct




cactccttcctttcccttcccatcttcactgagtgacttcaggcc




tcattacctcttggttattgcagactttgctaagggagctgtgtc




aggggtccctaagaccacccccaggttcagtgattcactagaagg




actcagcatagaggcatccttacagctaaggtttattatggtgaa




aggatacaaaagaaaaggcacatggcaatatctggggaaaacctg




gtgtaggcttccaggagccctctcccagtgaggtcacataggatg




tgctgaatttctccaggaacgagttgtagcaacatgtgtgaaatg




tctatcagagagattaattagagactcagtgcctggggtgttcac




tgggtactggtactggtttatgactagcatgtgccaaaattcccg




actctcagaaggaaagcaggtgttgagtgtaagccacattgctta




tacaaatagcacaggcacagcaagcctctcttaccggtcagggaa




agttgaatactggtgcagggagctgtttatcagtcaagttcccag




atgccagccaaagtccaaccttgcaaacaggccttcctaaagaaa




ggccatctcaggcctgctgtgttaactcttttctgcacatgagcc




ctctgttcctccccactccagtcttccctgctgccaccagaccag




ccctgttgtgtgcctcttagaactttcccttcacagactccttca




tgtttgcccttcacaagctgaccacagaccacctttcaatctgcc




attctttatcttatgggagccaaactgaactacttcttctcttga




ccaatggctcacggttgaaaatgcccttcccatttgtattagtct




ggtctcatgctgctgataaagacatacctgagactgggcaattta




ccaaagaaagaggtttaatggacttacagttccacatggctgggg




aggcctcacaatcatggtggaaggcgaggagcaagtcacgtctta




cgtggatggcagcaggcaaagagagagagcttgtgcagggaaaat




cccacttataaaaccatcagatctcgtgagacttactcactatca




tgagaccagcatgggaaagacctgcccccatgattcaattacctc




ctaccgggtttctccaacaaaacatgggaattgtgggagttacaa




ttcaagatgagtttggttggggacacagccaacccatatgaccat




tcacctgtgcaagtccagatcctactcacctttcatggttcaggt




ccaacacagcttcttcctaaagccttttctaatccatccctccac




tgccagatccccaaataaggacagctttcctctgatctgccagcc




ttatttcttttctcttttgcttcttattattatccaccttgtatt




ttacttgtttaattataactcttatttccctacttgttataaatt




tgggagggaaaggacctttatatccccattagtgctgaagaagca




tctgttttctaagagatcctctgaatatttgtggatgaaattccc




aaatgctgacaatgccacttgatgaacttgtccctcttttggctg




taattttctctggggacctcaagtcgtctagtccctgagcacagt




tacccagagaaggcagccgtataaactgagcagaggctctagagc




agagcagaggctctagggacaaacagccctggcattggttcccga




gtctgccctcaaaagctttgggactacattgacctcactaagcct




cagggccctcattcctaaagaggctaataacagtatgagaattaa




ccaagaaaacatgaactgccaggtcaggcacagtacccagcttga




taggccttaatacatactttattttacaaggaaccagctgtcctt




gtaattgcctcaagtgttccactgattgtaactgtttgttttttg




gttttgtttttaatcagTTGGATCTACACAAGTGAAAAAGACTTG




AATGGTAGTAGCCACTGGGGAATCATTGCAACTTATAGTGGAGCT




GGCTATTATCTGGATTTGTCAAGAACAAGAGAGGAAACAGCTGCA




CAAGTTGCTAGCCTCAAGAAAAATGTCTGGCTGG 




(SEQ ID NO: 239)






premrna
CCAGTCGGCGGCGGGGACCCGCTGCATCGCCACCTCCCCCTGGAA



ENST0000
GGGCAGCCGCCCCGAGTGGCCTGGGCGGAGAGGCTGGTTCGCGGG



0506727.1
CTGCGAGgtaagagcgcgcgacccgcagcggcagatgcacgaacc




agaacggccggcgccggccggggccatcgcccgctgcggcagctc




cccgggctccatctcgcatcccctctgcgttccgcctcccttgga




agcgcattccccacctccgctagtgctgccctatttccggtaccc




agcgcggaattccactgctcttttgttggtgcatatttattggat




acctccttcttcaggatatgtcaccatagtcttttttactgaaaa




ttagtgaaagcctaattagagtgaaagagtacatctgggttttgt




ttttttttttcttgtagaggaaaaaatgaacattacttgtgtaac




tgatggtagttgcaactgcatatttgccaatgtcacaaaatctaa




aggaaaatgttatagtcacccgtggtttccttcttgcctggacac




tccattgtcccgggctgaaaagggtagcagtacagtgcatataat




gtcaagttgtgggaggagtgtggcagattgtcattggtgcatttt




tttggtgatgtgtgtggttgttttgaggagtgggagctgttaaga




acaccacaaatagaataaaataatatcgtgaagttatttggccgt




ttctaattctagacatttttctaaaaacagttgcaaaggaaagat




tacattgttttaaaaaaatttgaagtatgtttttaaataactaaa




ttaatgttctttgaaattccaccaaaatgatgaagtcaccagata




gcagctgataaatgtgtctgagcccagtgcgcccagctctacaaa




aggcagaagaggaattttcaaatttgccagtgcccagtaagagga




catgaattttctagtaccagaggaaattctctttttacaaatttt




gtcagaggtatccttgggaaagtatttcatttgcttttaccctcc




aaattattttaatctatatttttaagagtttccattctcagttga




gtttttcttgttcttctccttctgtcagttttgaaagtcttgcac




aaaaacaatccaggtgttgttacagcagtgtgattaaaaccaggt




caggcctacactgaaatcccagttccaccactcattagctgtacg




accttgagcaagttacttatcctctctgatacccaatttttggat




tttttttttttttaaagagatgatcataacgcttaggacttgact




ctttgggagaattaagtgagttaagacataaaatgtgcagcatgt




atttgtcatgttattagcgcttcagaaatataaatgtaaacattt




tggtacttcgtttatggagattcttatactagttaattttattaa




aagcatgatggggaacagaagatccttttcggataacctgtgtga




gtaaattaataaaacactaacactttttaagattcaaaactggat




taattatgttattttacaccatttaaaatgtgcatttaaaaaata




ttcactgaagtgagagagaagttccttttaagttaataaataatg




gtaagttgcatgatccttttaactcagtttaagcatttgataaca




cccctaaccttgtttgaataaactcaataacagaatatagagaaa




taaaatatatatttcatatgagtatgtatgtaaatttatttcttt




taaaggaaaatttcaggaaacaaaatgaataagctcatagtcata




aaacctctagccaaagtgtgtcaatggtctgatttgtaggagagc




agactcaggaatcgggaattttttttttttttttaagagtcgggg




tttcactctgtcactgaggctggagtgcggggaagcaaacgtagc




tcactgcggcctcaaactcctgggctcaagctgccctcccacctc




agcttcccaagtagttgggattacaggtgcaagctgctgctccta




gctgaaaagttttaattatataaaatgtttaaataaattgttatt




cctttcttttatgaagaaatataattgatattcttgtcacttatt




aaataagcaacattttaaaatgtttagcacctactgtgaagatag




cactgtgctagctgctatgaataaactagaatagcatatcactgt




tttcctatggacaaaaacccagaaatgtaaaataaatagccatga




atgggttgagattccccctgccccctttggatactgatgacagaa




atcttatatgcactatgtaagcagtgccctaggatcagaacagaa




agtaacttgcaatttttaaaggtgggagaaatgactgaagtttgg




agtggtcaggagtttccctggaagtctcttgcctttgtgactttg




tatagctccctcaaactacctgagcctgagctcctcatttataaa




atggaagaattgaacctagcttccaaggtcctttctagcttcacc




atgctctggtctgttgtttaatgacatgaatccaagatggacaac




aaatggtcgattttgctccttctacagtaaatagatctatcttct




tagcagaagtaaaatagtaaagaaagaagacatgtttgaggcctg




ttgaggcctgtttgctgtatgcattgtatctaatcaaggaattga




gaatgtagccctaaatattaggaaggagttgaaagtttctgagca




ggaacagaacatgctgaaaggaaattgtgtcagcagcatggtgta




caggagagcttggcagagagaaaggaggcaagaagacctgtggga




ggcagccagtaaggaggtgaagagggcctggaccaaaggaagcca




aggatgaccgaaagatttaaagatgaagcccagatttaaaagtat




cctcaagtatttgtttattcttttcttagcaaattctttttagta




caaagataaaatatggcactctgagtcataaaattttctgaattt




cagaagttgaatgtttttctgaatgtatcaacctgttaaagtcag




ttcctgtttgttattttaggcgtatattcttgggctttttttttt




ttttcctagagaaactatgaagtactagctgtgcaagtcagggtg




ggctaagctgctaaaacagatacctccctccccttcaataccctg




aagaacaagaagttaattttttgctcgtgtaacattttagagagg




gtattccaggttgaatacctggaataatgaatgaaataataagtc




gactcttatttctcctaaaataattggatcttgacattgaaattg




gtgtgctgattgtatttaataagtgacctccaatgcagttatttc




attttgccatactttatgtaatttttattttttctgccttccctt




tcgatgtctaaagggaagcataattagttattggaaaggttattg




agacttaaaaaaagatttgaacatggctttggttgatgctaccac




acagaaactgcaaacatccaactcaccgctcttagttgctgttca




tgatagtctatgcacagtgactgatgaatttagcctgtcttgagg




cttcagaacttagtcttatgtcatcacgagcagagctttatccta




aattacaggttttcaatgggggggggggggaggggcagttttgcc




cctcaggggacatttggcaatctctggagacatttttgattgtca




tacctggggggatgcccctggcatctcctgggttgaggttaagga




tgctgctaatctacaatgcacagtacagccaccccacacacacac




actacaaagcattctcccacccaaattgccaggagtgaggacttt




gagaaaccctgccctagactgttaaattcaaaaggaaataatggt




ttattgctcacagtgtgccaggcactgtgttaaactccttatatt




catagttttgtttttatcctcacaacaacctgtgaagaaagaact




ctcatccgtcaccactttactgttgagggcactaagccttctaaa




ggttaaatgacttgcccagggccgcaactattagatgttgcagtc




aggatttaattccaggcactttgtgttcaaagtgtttctcatcca




ctgtgctatatgccagtagtgcccaaacctaactttagccagcaa




ttgtctgcatctcttcagtttatgaacatttatttattaggacat




gcaggataatcataccaacacagtccgtgtatccagaattctaat




tgatctagggagtgggagagcctgcctctctattttttttaaatt




ggtgtgaaatatacataacataaaattggccattttaaccatttt




aagtatataattgagtgacattaggtagatttattatattatgta




aatggacttaacacaatttatttccagaacttttttatcatccca




aacagaaactctgtactcattaaacagtaactccctgtttcccca




ctcccccttgccccagacgctagtaacctccattctacttcccct




ttctgtgagtctccctgttgtagctacctgatgtaagtgaaatca




gaccatgtttgatcttttgtgtctggcttattcacttagcatagt




attttcaaggtttatccatgcgtgcaaattcccttcttttttatg




acgaaatactatttaattgtgtgtgtacatgtgcacacacaatga




aatactatttcatcataaaaaggaagtttgtacacatatatacac




acacaccaaattttgtttatccattcatcagttcatgggcatttg




cggtttttttccacctttcgactgttgtgactttccgtttatttt




taatctgaactttactccatcacttcctccctttccttttttatt




cgcaccataattttgaacaagcagactttgtattttcattactct




ggggatttttttgagggaggcttgctaccctttggggttgtggta




aggttgtgccagtaacagaattcatgcagtaaaaaacattcatgg




gactttcttttgtgataggtactagggatgcagagatgaataata




caaggtctcgaccttcaaggagctcagggtttagtagggaaaaca




gaggtataagtaagtcattgcaatgccaggtcccagatatgggag




gattccagcaaagagaggataaggccaggcacagccgctcatgcc




tatagtcccaacactttgggaagctgagatgggaggatcacttaa




gcccagcagttcaaggctaccctgggcaacatagtgagtggcaaa




aaatacaaaaattagccaggcagggtggcacatgcctgtggtccc




agttatttgggagtttgaggtgggagaatcacctgagcctgggag




attgaggctgcagtgagctgtgatcacgccactgcactccagcct




gggtgacacagtgagaggtgagagcctgtatctaaaaaaaaaaaa




aagagaggatcagatttacctggagaggtcagagaaggtttccag




agggagtaaaacttgagcttcattttgaagaatgagaggggaata




caaggagggaaaaataataggaacaagacctgttcctgttacagc




aaacctgtactcccaccatggaatgggcacgttttcctgtaagac




atttggagccagtgtgggcttcaagcctagggggctgatatgatc




atttgtcaatctgaagatgactcttggaacaacgtagaggatagg




gtgaggtgggtaggctggtggctgacagactaggtcaggagaggg




ctgaccaagaggaggaggggtgacgagggctggaactaaggcata




tgagctgggatggaaagaagctagatagaaaggaaacaaaaacca




tcagaactgtggaaccaactccatgggagggataagaagagggcc




tattctagggtgaaacccaaatttctggcatggtaccattaaccc




aaacagaaagaggagatttccagagaaagaaaagcaaattttgcg




ggaggtgagtgtgagctgtctagagaatatgcaggtagaactaca




tgttaactgtaacatatacttgtctgcacctcaggagatggctga




ttaagaattcaggattcaggccaggcacggtggcacacgccttta




atcccagctgcttaagagactgggggggaggattgcttgagcctg




ggaatccgagatcagcctgggcaacatagcaagacactgtctcta




aaaaaaaaaaaaaattcaagattctggagtcaatattacttaagg




tagcaactgtctattctatagaaaatggacaaatatagataaaaa




gccacttccctttctaaaagtgtccctgcaattcaagtgaatact




aggaaggattgtgttcattcttctaaacaagactcacatgtatct




tagcacaaaaagaggattcttttatgatacaaatgcactgagaat




ttggtcaggctatcacaatgaactgatagttcagatggatttgag




tctttataccactctggaatctggaccaactgggcctcctaaggc




cattttgcagatctgggcttgtttctgaagctacagacaggcctc




ttccaagcactctaagtgctccacaaataatatttctgtttccca




gaacaaccccacaaaaaggtactcttactccatttttagatgagg




aagtggaggctcatgatgtcaggtaagctttctcagctcccaagt




ggttaagccctcagtttaatgtcatttgactccagagccctatgt




tgcaccatgccttgataataggccatatgggtttcatgtatttca




gatggggaaggttagtgtgaggtgaaagatacacaattaaccttt




taaccatggaactgaaatatttacagatgaagtgatacaatagct




ggaattaattccaaaataattggggtggtactggtccatggcctg




ttaggaactgggccgcagagcaggaggtgagcagcaggctagtga




gcattgctaccccctatcatatcagcagtggcatcagatgggtga




ggatgtaaatgaactaggattggcattgagttgatattgttggat




ctaggtgatagatttatcattataatattctctctttgtgatatt




tctgatattttctaaaataaaaagttgtagttatttatttattta




gacggagtttcactcttttgcccaggttggagtgcagtggtgtga




tctcggctcactgtagcctccgcctcccgggttcaagcgattctc




ctgcctcagcctcccgagtagctgggactacagcctcccgagtag




ctcaccaccacacccagctaacttttgtatttttagtagagagga




ggtttcaccatgttagataggctggtctcaaactcctgacctcag




gtgatccacccacctcggcctcccagagtgctgggattacaggcg




tgagccagtgtgcccagccaataaaaagtttttgaaaggatttag




ataaaatagttggggaaatggcatttttgttcaaagccaattatt




tatgtttggaatatcttttgtgcttggagttctccattacagagt




tccccagtgttcctattaataagtaacattgagcagaggaatgca




ctgtttagatcagcagtccccaacctttttggcaccagggaccgg




cttcatggaagacaatttttccacagacctggggtaggaagtgtt




tggggatgaaactgttccacctcagatcatcaggcattagtgaga




ttctcataaggagcaggcaatctagattcttcacatgcgcagttc




acaatagggttctcactcctgtgagaatctaatgccacccctgat




ctgacaggaggcggagctcgggcggtaatgctcacttgcctgcgg




ctcacctcctgctgtggggcccggttcctaacaggccatggacca




gtacccgtctgcagcctggggactggggaccctgctttagatgat




gtactctggctttgcattctggcattagctaagcaccctcttaaa




ggaaattgggtctatactctcagtccgtgttctccctaacacctg




gaaacattgaataccttcaatgctgggaagttaactcccaccaca




actagaacagctatgggaaagacaacagttgattttgaagagtgt




caccaatttgcacatgattccatccttaaccattcttatcctatc




agctctgccaaacatggagaatagttggctgcaggacagctattt




ttcctacttgtagatgcaactatttctcacccaccaggatgtaaa




aggtccctgtaccctaagattggtcctacatacacacccaatggg




aaaatgagatgaaaaatttaaagcagtaaatatttgaggaagtag




atagagtaatttagaaaaagaaaatacacagggccaagcacagtg




gctcacatctgtaatcccagcactttgagaggccaaggtgagagg




attgcttgagctcaggagtttgaggccagcctaggcaatgtagtg




agaccccacctctacaaaaaattaaaaacttagttgggcttggta




gtatgtacctgtagtttaagaaacttgggaggctgagctgaggca




ggaggattgtttgagcccgggtggtcaaggctgcagtgggccatg




attgtgccagagtactccagcctgggtgatagagtgagactctgt




ctcaaacaaaaaaaaaaacagagacagaaaaaaagaaagaaaata




tatggatgtatatcatataaaaatataaataagggaggccaagtg




cagtggcatgcctgtaatcccagcactttgggaggctgaagcagg




aggatcacttgaggccgagaattcgagaccagcctgggcaacgta




ttgagacctcatctctgcaaaaaatcaaaaaatgaggcggaagga




tggcttgagcccaggagatcaagccttcagtgagctgtgatcgta




ccactacactccaggctgggtaacagagagagaccctgcctcaag




ataaataaattcatacatacatacatacatacgtacatacataca




tacataagaagacttgtttctttccatttgcaatgtttcattcaa




aggctagaattaaattgccgtaggccatcacaagtttagcttgaa




tattattattttttcaagatggagtctcactctgtcacccaggct




ggagtgcagtggtgtgattttggctcactgcaacctctgtctccc




gggttcaaccgattcttctgcctcagcctcccatgtagctgggat




tacaggcgcccgccaccacacctggctaagttttgtatttttagt




agagacagggtttcaccatgttggccagactggtcttgaactcct




gacctcaagtgatctacccgcctcaccctcccaaagtgctgggat




tataggcttgagccactgcacccagcctagcttgaagaaaatttg




ataggagtttgtttttttctatttataggccaagcaataccacgt




ataaatattaagaatcatggctgttccttagtgcctagttgttta




taaaccatgggaaagaatgaaatcattgaccaaatgagacagggt




aacagtcttccctgggagtaaagagactagcagtctctattgaca




tatattttaggcctggcctccaaaataaatttacccaaagaagtg




atgtatttgtgtccagggctaccgagcctaatctttggctgcctc




tgtgttattctaagttgtaattttccatgtcatctaaatttgtaa




taattctttaatatgatagtgtttcagtgaacaaacattctgctt




gctgcatttcttctgagtgagtaattccctgacaactaccagatc




ttggcagaagcaaagttggtcataagttatgctccactctcagtg




ctggtgaaacgtatgatgcgtaacacagtgtttttgaattcagtg




ctgattttcctaaaggacatttggaaggaaaaaagaaaaggaaag




gaaatacccaaattcaggaatagaacttacatattattataagac




ttaaaaaatacatgaacactaatgatgaactcatttcttcgaagt




aaaaggccttatgctattttttcccatttccctatgtggcttgat




tgtggcgaaagtggctgtgtgagtttccattattgaaggagttaa




ggtctgtggaatcaaagcatgagacaacatgcaaggaccaggttg




gtttccatttaacagccaacctaatctaactgaaaggattgagag




gtttgtcttttttggaaagtgttaaggttcttccaagtaaccagc




aatgtgactttaccacactgttcattaacggggctttggatggcc




accatgtctgctgctggctgagtccaaaactgcggtcactctctc




cagcaagctcatggagggttacgtcatcttcactcagccagccca




acgctttttccatctgctaaaatgtagaacatggttgttgattct




actctttctacaaagaaagagagggaacatggatgagttgctgct




tttaaagattatatgttaattgctgttttaaaaatctgctcagct




aagcacgcttagtgtaatcagtcaccatggagttttttaatagga




cagcttctgctcttacagagcagagtttttatgccagtaggttag




aagcataacatgtttctatattgaagtgattctccaacaaggact




tcttttcatcaggggtgacctaaaagttattacttgaaatataat




tacatcatgttcttaactgggtttagtagtaggataattacaagg




ttgtatccacctcaaataggaagaactgataagttttgcacaatt




atttaactcctctgttaggccttccttatttcctgttctcttttt




aaaatttgactaagatattgctaatgggcttgggagcctataaaa




tgatcagaattgttgccttatgttttgcatgtttggggtaacatt




ggagccagatgtactcttaaataaaaggtaggcctacaaaaccag




tttctcagttgcattcaaaatgtgattaaaaaaaaaaaaaggaga




atctcccttataggtgaactttttaatttgtgctttattttccct




tttgccattcatgagatttcttaaataaaatgatatcttttcttt




tcttcattattattttaaagGTCTCTGGGGAACAAGACTCATGGA




GGAAAGCAGCACTAACCGAGAGAAATACCTTAAAAGTGTTTTACG




GGAACTGGTCACATACCTCCTTTTTCTCATAGTCTTGTGCATCTg




taagtagaatatttccttgcactaatgggaaagttttgaaaagat




ttgacctatccaaatcataattaaaaggaagtgtgtatgcaccag




aggggcaactgggaagttaccttcttacctttgtttttaattcta




atatttttatttgggcatttgtttattgactatcttcctatggta




gaatgcaagctttataagagaagggacgtgatttgttctctgctg




tacccccatttcccaaaactgcagatggcaacagaaggctctgaa




aaatatataagaaagaatttttctaattgtgactaaattgtgacc




aaatgctaagtgactgtggacttgcgtttaacacaggacgggaga




ggcaaagagttcaattccaatttagaatttggtcaagttctcttc




tgcactctggtaaacattaattaaaaatcagcattatctgaccag




ccagttcatcgtcagtggtggtgattttcactatgagatacgcgt




ggcaacttgccagacaccaagaaaccaagttagaggatttttgta




ttagattccttaacaatgaatacagtatcaccattattacagtat




catcattattgtcatactattattatatcagttaacataaagtct




gcataagaattgtttccagaaaaatgactttccaaatttaacttt




caggaaatacaaataatgctactaatattgcttttattggcgtat




acatgtaatatccccttcttttggatttggatatgttgtgtcatt




gcctcattttaattcattatttcttctcaatctttaataattgct




ggacttttactccacaagaaacttgctataggcccatctctttcg




tcttctttccttctttcagttcgtcttcccatcctctggtagggg




gaggggagggatgcctgagcgagagactagctgtaggaaccattt




gtctcaaagtccagaaagccacaggtgatggatttgtcctctgaa




tcaaagggcgttcgatgatggatttctgtcatgtctcatctaaag




tcttcacgagaacagatgaggaagcagttttatgaccccagagcc




tcctaccaaactcctctgagaaaaggtttcctttttttttttttt




ttttaaattagagacagagtcttgatctgtttcacaggccggagt




gcagtggcacaatcatagctcactgcagcctcgagctcctaggct




tcagtgatcctcccacctcagtcacccacgtagctgggactacag




ctgcacaccaccatgcccagctaacttttaaaacatttttgtaga




ggtggggtctcactttgctgcctatactggtctccagctcctagc




ttcaagtgatcctcctgccttggaagttctgggattataggcatg




agccactgcacccagcctggatgtgatatttttatgttttaaatt




gttagagtttagaaacttgagattgagtttgctgcctgcattaaa




atgatgcttaaacattaaactgcagtggccttaaatattaacaag




ttgattagaattactaagttcttttcaagctttacatatacagac




aaatttcttatgcaaaatagaaggtaacccctgtacgtaagtcta




gaatttcagcagtccccaaaactgactgagcattagaatcactct




gattttaaaatacatatgtggttttccgagatctactaacagagc




ctccataatgtagcctagagaaacgagttttcagatgtagtgata




aatttggaaggtaagtcagagaagtaagctgaagacagagtttta




ggaaatatgcctaaagtcacataatgaattggttttcttgtttat




ttgagaatattgtcgctttttgttctttttcatgcaaatcacatt




ttatttcttatgtgagtagctatatatttaaaaattttgtttttg




gaatattgtagaatctctacttaagaaagtatcttagcagtcata




tggtctgacctcactgaatgctaaattctctttaaaacatccgtc




tcagatggttactcatactgcctctgattgaacaagagtcccagg




ttaagggacttacttctttgaaatcgttcatttcatttttctaca




gctatgttagaaagttcgtccttagcagtgaagccagagtctatc




tcttataacttctacccagttgcaccctccaagcctacctatacc




aagtatcttttttccacgttgcttttccaattcagctcttcgcaa




gtttggagacaaatacctaatctcctctaagccttctccaggtta




agcctttccagttcatccagctgttgattatgtgattggagacac




aagtttgagtaactcccatgatggaaagtccctctggtgaatgtt




ctgttcatcagagtccctaagaaagcacatgagcctcaccatggt




gagtggggccatgagattcctaaaccagacactacactgtggctt




gtgcaacctaccatggccagactcatgaggctgtttcatcatata




aataattccttagtctcttcaccaaaaactgtgaagcactgtgtc




ccccagctgtatgtgagctagcctgggaccatagtggaggactcc




tctttcaaccctgttaaatttcatcttgttaggatctgcccattt




ttccattctgttgaaattatcttggaactggattcattcatctca




catcagctactccccgaagcctcacagtatcagcagagttattat




ctctatccatatccttgtaaattattaaactaaaaaagattggtc




taagaacatcagtccattaatcaaggctctttggttggagttcac




ttcattatattatcatccagctcagagtgttcataaacaagatga




taggaaagacttttccaaatgcctgtctgagtaattcccccattc




ctgtgatctgtgagctgttgaccagattaaaaaggaagtgagaat




aaccaggcaagatttactcctagcaaaaccttactggcttctagt




gactgagtcctttccctattgcttaccagctatctttttaattac




tagttttaaaatcttgccagcaatgtcaatatcaaatgaccaaga




atatcaaactcattactctgtatgtaaatgagatagtgtacttac




ccctatggcttaagtattaggctgttcttgcattgccctaaatac




ctgagactgggtaatttataaaaaaagaggtttggccaggcactg




tggatcaggcctgtaatctcagcactttgtcaggctgaagcaggt




gtaatggtgagccaagagttcaaacttagcctggacaacaaggtg




aaaccccctctctgcaaaaaatacaaaaattatctgggcatggtg




gcatgcacctgtagtcccagccacccaggaggctgaggtgggaaa




attgtttgaagctgggagtcagtgattgcagtgagccatgattgc




aacactgcactccatccagcctgggcgacagagcaagaccctgtc




tcaaaaaataaataaatgaataaataaataaaataaataaataaa




tagaaaagaaaaagaaagaaaagagatttatttgcctcatggttc




tgcaggctgtaagggaagcatagctccagcatctgcttctgggga




ggcctcaggaagctgttactcatggcagaaggtgaagcaggagct




tgcacatcatgtggcaaaagcaggagcaagagagagagaatgggg




cagggaagaagccccacacttttaaatgaccagatcgcatgagaa




atcactcgttacctcaaggacagtaccaagaggatggtactaaat




tcctgagaaatccacccccatgatctgatcacctcgtaccaggcc




ccgccttcagcattggggattatgtttcaacatgagatttggatg




gggacaacatccaaactatatcaccttgcatagtaggtagggttt




taaaaagcagtttggcacagtaagaaaagtacagattttttttgc




atcagacagacctgagttaaaatcccagcttcactgctaacatgc




taggtaaatgtgggcaagttaattaacatttctaagcctttgttt




cctcactggtaaaacaagtatttggaaatatcattgtgaagatta




gaaataatacatgaaaagatcctaggatgctgtctgtcatacagt




agtagtagtaagaagttattcttgccaaagattgttgagaatggc




agaattatctcagttctaagagctatagtttctaattatttgagc




ctagactcagattcatttggagcagctaactgctcaccaagagct




tattttccatcttaccaatgaggttatgtgccctgtgtttttaaa




atcagtctacttaaccaagagaacagaaatgacatgagaattaag




taatctcactttctctgttatttaggatttattcctactcaaaac




ctgagagttgctatgaattcaccattaaagcacttattaatatac




atgggttactgttataaatagcaatagtattgctattgtgtgagt




taggtgttgaagttcaagaaaggaataaagaatatttagaagatc




tttgaaaacagtgtctgggtacggtggctcatgcctgtaatctca




gcactttgggaggccgaggcaggcagatcacttgaggtcacgagt




tcaagaccagcctgggcaacttggcgagacctcgtctctacaaga




tatacaaaaattagccgggtatgttggcatgcacctgtaatccca




gctacttaggaggctgaagcacaagaatcacttgaacctgggaag




cagaggttgcagtgagccaagattgtaccactgcactccagcctg




ggcaatagagcaacactctgtctcgaaaaaaaaaaaaaaaaaaaa




aaaaagaaagaaagaaggaaggaaggaaagaaaaaaaaaggaaaa




aatgcaaggaaggtatttggtgaatctataataataaaaatgtat




ttgtcatttcctttttctgtgctctcattctataaaattgagtaa




aaaatctatatatagtttaaacacattaatagaaatcacaaaagt




tagctgagtcaacattgtagaaacataatatttctgtatgtcaaa




gaaatagacaacattaaaaagcagaaagcaattacaaagaatgat




tataagaaacatcacaaagggttaatattttaacacatttgaaac




tcaaaaatcactgagaaaagcagtagacttccataaatattttat




agagtagaaaaaataggccaagcacagtggctcatgcctgtaatt




ccagcactttgggaggccgaggagggtggatcacgaggtcaggag




ttcaagaccagcccggccaagatggtgaaaccccatctctactaa




aaatacaaaaactagccaggcgtggtggcaggtgcctgtaatccc




agctacttgggaggctgaggcagggaattgcttaaacccttaaac




ccgggaggtggaggttgcagtgagccaagttcgcaccactgcatt




ccagcctgggcgacagaacgagactctgtctcagaaaaagaaaag




aaaagaatagaaaaagaatccatgggcaggcacagtggctcatgc




ttataatcccagtactctaggaagccaaggtgagaggatcaattg




aggccaggagttcaaggccagcctgggcaacatagcaagactttg




tctctattaaaaattttaaaattagccaggcatggtgacgcacac




ctgtagtcccaattacttgggagcctgaggcaggagaactgcttg




aggctgcagtgagctatgattagaccactgcactccagcctgagc




tacacagtgagaccttgtgtcaaaaaagtaaaaaaataaaaatta




gccaggcatggtggcacatgcctgtagtcccagctactcaggagg




ctgaggcaagaggatgacttgagtctggaagatggagactgcagt




gagctgtggtcatgccactgcactccagcctgggtgacagagcaa




gaccctgtctcaaaaaaaaaaaaaagaaaagaaaagaaaaataaa




taaaatttattcaaatacaaaagtgatgtggtttgactctgtgtt




gccacccagatctcatctccaattgtaatccccgtgtattgacgg




aggttcctggtaggagatgattggatcatggggatggtttcccct




ctgctgttctcatgatagtgagtgagttctcatgaaatctggttg




tttggtaggtgtctgtcacttaccccttctttttctctctcctgc




tgccttgtgaagaaggtacttccttctcctttgccttccaccatg




attataagtttcctgaggccttcccagccatttggaactgtaagt




caattaaacctctttcctttataaattaccgagtctcaggcagtt




ttttatagaagtgtgaaaatggtctaatacagagacttggtacca




ggagtggggtactgctataaaaaataacctgaagatatggaagcg




actctggaactgggtaacaggcagcaattggaacagtttggaggg




ctcagaagaagacaggaagatgtgggaaagtttggaatttcctag




agacttgttgaatggctttgaccaatacactgatagtgatatgga




caatgaagtccaggctgagatggtctcaggtggagatgaggaact




tattgggaactggagtaaacgtcactcttacatgttttagcgaag




agactggcagcatttttcccctgccctagagatctgtggaacttt




gaacttgagagacatgatttagagtatctggcagaagatatttct




aagcaccaaagcattcgagaggtgacctggcttttcctgaaagca




tacagttatatgtgctcacaaagagatggtttgaaattggaactt




atgtttaaaggggaagcagagtgcaacaaaagtttagggagtttg




cagcctgaccatgtggtagaaaagaaaaacccattttctggggag




aaattcaagctggctggagaaatttgcataagtaacgaggagctg




aatgtgagttgccaagacaatggggtaaatgtctccagggcgttt




cagaaaatcttcagggcagaccctcacaacacaagcctggaggcc




tagaagggaaaaatggtgtgagccaggcccaggcccaggccccag




ctgttctgtgcagccttgggacatggcaccctgtgttccagccac




tccagctccagctgtggttaaaaggagccaaggtacagctggacc




attgcttcagagggtacaaatcccaagcattagcagcttccatgt




ggtgttgggtctttgggtgcacagaagacaaaagttgagctttgg




aagccgctgcctagatttcagaggatgtatggaaacacctcgatg




tccaggcagaagtctgctgcaggggcagagccttatggagaacct




ctgctagggcaatgcaggggggaaatgtggggttggagctcccac




acagagtccccactggggcactgcctcatggagctgtgagaaaag




acgcaccatcctccagactccagaatggtagatccaccaacagat




tgcactctgcgcttagaaaagctgcaggcactcaatgccagcctg




tgaaagcagctgcaggggctgtaccctgcagagccacagaggtgg




agctgtccaaggccatgggagcccaccccttgcattagcatggag




acaggggatcaaaggagattttggagatctaagatttaatgaatg




ccctgtcgagtttcagacttgaatggggcctgtgacccctttgtt




ttggccaatttctcctatttggaatgggaacatatacccaatgcc




tgtacccccattgtatcttggaagtaactaacttgcttttgattt




tacagactcaggcagaagggacttgccttgtctcagatgagactt




tggacttgaacttttgagttaatgttggaacgaattaagacattg




gggttctgttgggaaggcgtatttggttttgaaatgtgagaagga




catgagattttggaggggccaggggtagaatgatatggtttgact




ctgtgtctccacccaaatctcatctccaattgtaatccccatgtg




tcaagggagggacctgatgggaggtgactgaatcataggggcagt




ttcccccatgctgtttgcatgatagtgagggagttctcatgagat




ctggttttttggtaagtgtctgggcttcccccttttccctctctc




tcctactgccttgtgaagaaggtacttgcttctcctttgccttct




gccatgattgtaagtttcctgaggtctccccagccattcagaact




gtgagtcaattaaacctcttcctgcctattctcaggcagttcttt




atagcagtatgaaaatggactactacagaaagtgtgtaactttaa




actcagtagtatccaaagaagtaatgaaaatggagaaacgaacaa




caaaatcatagtacaatatggtgtatgtactaggacaggaagagc




ccttttaagaagagatctatgtatttccatttgtttatctctgaa




agaaagcaactttgccttgtattctgaaaaagaaaggaatatttt




attttacttgtaaaaatcttacaaggatgctagtctaaatatagt




tttcctaatttgccagagaatccatgaagatcgagttgataacaa




gatcagtgaagtaaaggtcagtgagttaatctcacagcagctgca




ggctaattccatttccagtgaaaaacgtcttgattgctcaccaca




tatcttttcaccacaaacagtttcagtcttaagatcacatgttgc




aatccatgagaagtaactattaagccttcaactatgactggaggg




ctcctcgccctttctgataaattgactggacaaaaactcaatttt




aaaatgacaagaaatagaagatgtataaatgtactttaaatgtga




ccaaaatgggttgtgaaaacacaagacacaatatccaaaaatgct




ggcaacacagtacactgtagagtattggttgtttatttacccttg




ctattgtgtggctgagcttactgccactgcccagcattgcaaggg




catcaaactgcctatcactagcctaggaaaagatcaaaattcaaa




attctaagtacagtttctactgaatgcttatcacttttgcaccat




tttaaagtaaaaaaatcagtaagttgaaccatcatatatccaaga




ttgtctgtatataaatattatacatctttctctcacttttaaaac




aaaataatactagccaatactaccattctcaaaagcacttgtgtc




aacagcctttaccccttaaagattttcctcacaattttaaaattg




ttacttactattttctttgaaatgttgaccaaacctggattaaaa




gatttgggggttttagtgactgtatttcacaaactctcttattga




ttctgcagcctcacttctgcctcctaaaaagccctcaccaaggtc




acgggggatggctcttttcagcctcttcctggcatttggtccagt




ggcatttggcattctaggacttccctctttgtctttgataactcc




ctctcttcctgtgttcctccttgctgtgttcacttgcttcgcttt




cttctttctgaagcatgtttacacagtgttttctctgattgggcc




tgtgacgttctttaggtcatcttttccacaaataatgcttcaact




agtacttgcgtgccagtgactccacgtcccactcatgagctctga




acctagtaccagcttctgctggacatctacaatgggatctctcac




aggcctctctcattggtaacatgccccagcctgaactcatctccc




acccatctatccagccatgctctctagttcacctgaacacttggg




tgtcatcctagatgctttcccttcccagtcttctgtgatcattct




gcctcatcagaggctctctaatctgtcttctttcctatatcgctc




ttgtccctattttaatcctaatcatctatttcctgacttattcat




tccttaagttggtcagtaatttaattaaaaacagatttaggccct




gaccttaaatgtgataagtgatatgaaaggagatgactggggaaa




aggatttccctcaaggaaggcctctgtgaagcctgaagcaagaat




gaaaacgagtcagacgaagagagaattgtatgaatgaaggctctg




aggcaggaaaacactcagatcattccagaatcacttagaagccaa




gtgaagccagttcctggagagcagatcatcaaatgaagatggaaa




ggtgaccaggggccagacctgtagttttggtgggccttggtgagg




gatttacagtaggacaccccatggtttaagtatgaaagtgacaag




attcctttaagttttaagaggcctcgaaatatgaaccacagatta




gatggaagctactctccctgtgtctggactttttagaatttccaa




gagctgctgtttctggaaccagattaatacaagtcagtcttccat




ttatttatttatgtatttatttgagacagggtctcactctgtcac




ccaggctggggtgcagtggcatgaacacagctcactgcagcttgg




gggctcaagagatcctcctgcctcagcctcccatgtagttgggac




cacaggcacctaccacccagctaattttatttgttgtagaaatga




ggtctcattttgctgcccaggctgttcttgaactcttgggctcaa




gcgatcctcctgcaacatcttcccaaagtgctgggatcactcttc




catttaacatgctatctcaacgtcaagataaactttaaaatcttt




agataataggctggcattttacttaaacgatctttacttcttcag




aactgccattccctataaatatctggttcttcaaccacatcaaac




cacttgtgatctcaaaaagcctcagcgtacactgtcctttctgtc




attctaattcctcctcatccttcaaaatcaactcaaggaccagat




ccagggagaagcttagtggtgcccacccgaaccggccccctcctt




cgagttgtgctgccattcgggcccacctcttcacacagggttgtc




agaccagaccagctcatgcgttcaccgcccttgcagggatgggat




gcagctgtgcacctctcagtgccgacacctggagagtctcacgaa




atgttgacaacatggcctgtttccatttcttgttcactaggactt




ctcatttactaacacacagaatttcctgtagtatgtccacttaat




cagttcaagcctaataattccttgatttgggtatagtgctttgca




tttatatactgatggtccccaacttacgatggttcgatttatgat




ttttcaacttcatggtgatgtgaaagtgatacacattctatagaa




accacactttcaattttgaattttggtctttttccaggctaccat




actctaaagatagagccacagatcccagtcagccatgtgattatg




agggtaagcgaccaatactctacagtgtattgtattgccagatgg




ttttgcccaactagcctaatgtaagtattctaaacatgtttaagg




taggccaggctaagctgtgttgctcattcagtaggttaggtatat




taaatgcattttcaacttatgatattttcaatttacaatgagttt




atcaggatgtaactctactataagtcaaggatcatcttgtatagc




acttttaatttatagagtcccttcaaatgtttgtttgtattttat




ttccactgcatccctgtgaggataccataagttatacagctaaca




aaacagttagttttcctgtgcaaagtgatggcttcatcttgtggc




agattacctggaatactgtggccaaggcatcttagttctactgtc




tttatatatctagtacagttatatttttatggcagctctgatttc




ttctttggcccaagggttattaagagagggaaaaaatttaatttc




ttaacagatatatatatctatgtcaagtcatatatttaattcaaa




cccttaatattcctaggtaatttttgtctactttctctgtcaaag




attgaaagatacagggttttaagtttccaactgtaattgtagttt




tggtaattgttttattactaacaggtattgctctgtatattttga




tgttctgttattcaatacataagaattcattacagttgaatcatc




atgtatagtataatttaccaatgtaaaataacctttttatcaaac




tgagtattcaccttataatgtcctctgtcagaggattataatacc




acttaaaaccttttaaaaaatattttgttcctgataattttagct




ttgagtggttttcttataacaattctagagatgcgtttttatttt




ttaaccaagatttaaagctttgtgatttagtaagagtctaaacca




ttcacagttcatgcttttttgtcaaatttctattatttagtattt




tcctctcttttatattttcctgttattttccatttctattctttt




gttagactggaaattttttctttgctttcttttatcctagtgatt




tgaaatttatgtaatatatactattctacaataccctttatttgt




tttcaatatttgaacctatatttttcaacattattaagaataaaa




tagtatttgttgctattttgaaatgatagaccatgtttttaaggc




aggttggtggttgttaaggcaccagtatcggccaggcacgatggc




tcacacctgtaatctcagcactttcggaggccgaggtgggcagat




cgtttgagcccagcactttggccgatactgtggtttactgtattt




tgttctagtttattttatggaaaatgggaattcagtggttaagac




aaggattaaatagcagaagaaagatgtgtacatatgtacagatgt




atgtgtcctttatatgttttttagtactcttgtctcctttctggt




cctcatttaaggttatctatttcatgcagtaaatttttcttcaca




attcatttcatttagagagtgaatgctaccttccaagtgggcttt




ctccagttttcctttcagggacttaaaggagaagtgatgttaaca




gttttatatttccattgcattttacagtgtgcagatgtcttcaca




tatatttccccatttgagctttacaaaagcccttagtattattct




cattgtctagattccaaaatcaggcttagaggagttaaatagttg




tccaggatctcaagatgcaagacccacaatcatgaacagaggcag




atgttcaggatggaggcaagctgaaactcaaaaccaaatcattat




gactccaaattcaggagtcttttagctgccacctgcatgggctct




tggtgtagctgaccaccagagtttgtagagctgtcattcaggtgt




gccatggactttcctgggacctggcacaggagaaggactgagtta




atgtttgctgattaaatatctgttacaggctgggcgcggtggctc




acgaccgtaatcccagcactttgggaggccgagcagggaggatca




cttgagctcacaagtttgagaccagcctgggcagcatggcgaaac




cccgtctctacaaaaaatttgaaaattagctggccatggtgatgc




atgcctgtagtcccaggtactcaggaagctgaggtgggaggatca




catgagcccatgagattgaagctgcagtgagctgagatggtgcca




ctgcactccagccttggccatagagccagaccttatctcaaaaaa




aaaaaaaaaaagttacaataatcttcccttcaaagctggaaggca




ttatttacctgtctgtccagcagatggtgctacataaccaaggga




atctgttgcttgcccttggtgaagctattaaagccaatacagatc




ttgagaatttcaaaagcaaaaatcaatactggattatgagtgctc




taggaaaataaagagataaattttcaatttacatacttatatata




gttataccatatttgtaaataaaaatatataaataatttatcaaa




attcctttttaacagcaacaaccacagtaaacccacaggttaaaa




actccacaacagtctatattaatcagtcaatgcaaagtacattcc




aattccaagttaactgaaaataatcaacttaatcatttggttggc




tctgagcagccttcactgcttgctcttgtgtcatgtttctttctg




tcctcgattggctatagacttacagacggcttttgcagaggacag




tgtactcatgtccatcctttgcatcctttgtgggagttggctagg




cagcactctccctggggacactatgaactcctcttcttgagtgca




gagatcacgtcttgttcatcttcatgcccaataccttgttccata




aatatgaatggattagaattctaaactcttaactctgccccaaga




cagttctgagaggtagtaagtcatataacacctgaagaggactgt




tcttgtcctaattacattaggttataagatgacaggtgagggagc




caaaccagggggcctggaaattattcatacatctctagatacagt




atacaagttgtgtgtattatgtgtatttactctgtaattgattgc




ttgagatgaacccccaaacacactcgtgtttggatcattattatc




tacccttctccttaaataatcttaatttcctatgatgcttgaaag




ggaaagaggggccaggtgtggtggttcacacctgtaatcccagca




ctttgggaggctgaggtgggagcatcacctgaggtctggagttca




agaccaacctgaccaacatggtgaaaccctgtctctactaaaaat




aaaaaatcagctgggcatggtagcacatgcctgtaatcccagcta




cttgggaggctgaagtgggagaatcgcttgaacctgggaggggga




ggttgcagtgagccgagatcactccattgcactccagactgggca




acaacagtgaaactccgtctcaaaaaaaaaaaaaaaaaaaaggca




gagtggggaagagagctgcatgaaggagagatttactaaatagta




cttaatcccaaaataatttctataggtttgaatatgatccctgaa




atttattataggttcaggtaagtattaatcacgggtattcagaac




tgtggtttaaaaaatgtatagaacatgtttccttccccttgaaac




tttttatcagctaattataggaattatattatacctgcaatcatt




aaagtccagaatgagacagtacttggtaaagtgctgaaatttata




ataaatgcattatagcaatccagttaaggaggaagagccaccatt




attgaacatttgttaagtgtcagccattgtactagataaatttta




gttattatttttatttaggcaccaaaaaatccatgggatagttgg




ttatccccatcttactgaagaggaaactgaagctcagaaagttta




agcaacttgcacaggtcacatagcaagtaaggagcatggccagga




atcagaccctgatctcctttggtctactaagcttgcaaaggatct




tcccgcctccttccaagaccattcaatattatcagtaaatgtcca




tggcaaggatgtagttcgagttatagggttccattcaagatatga




ttggtaggtgggaagcagatatgtctgtgtcaatcagtatcctgg




aagaaggagatgatgaactcaagtggtgattaagggaagtttaat




gaagggactatttacagagatgtggtggggttaagagaaccaaca




aggggaagtgatgcactcaaaaagttactacctccaggctttagg




ggattgggggagggagtggcacagtgtgaacccagtgtggttgtg




agaaaagggattccctcagcagccatggccaaggttagagtctcc




actgccaaactgcatccaggtggtgagggaatggagaataggggg




gggtaacaaactctgacctcggtatccccaaagggcaaaggattc




caggtggtacagttcgtaaagattagcctcagggcacagaacagg




gcagagaagaatggagaattgatctggaggaaacaaacaatggct




tgcccatgttattgcagggagagtaggctggtgtgcacagcagga




gggtggggagcccagcatatagctgtgttggggcctgtgcagatc




agcctcactggcagggaggatctgagccgagaggtggtggaagat




gaaatcgagtaggcatgttggtagtcctaaatatcaagtaaacgt




tcctgatcttacattgatactcaatagtaagccaattttgtttcc




cataagccaatattaatattacgtatttcttttataagccagaga




tatagagagataccctagaagaatgataggggaaaggaaggcaag




ggtgagagaagaccttgtgtgaatttgtccaaaatgtttatccac




agGAACAATCCCTTTGTGAAGGCTGCTGGTATGTGAATGTGTGCC




GGTTCCCTTGGGGCGTTCATTTGGATCTTTCTGTGTTCCAGTGAC




CTACGGCATGATGAGCTCCAATGTGTACTACTACACCCGGATGAT




GTCACAGCTCTTCCTAGACACCCCCGTGTCCAAAACGGAGAAAAC




TAACTTTAAAACTCTGTCTTCCATGGAAGACTTCTGGAAGgtatt




tgcaaataactttgaaagtacctctctatcacagaaaattgttca




tttggcttcatcatttcaatgcatgagtatcgacaggacctgctt




tgcatttaacactgtgtgagacgtaagttatggtgagttgttaga




agttactgttcctactctcaaagggggtaaactaacattgagaac




tttgcctgtgccttgcactgtgctgagtgtttcatatcttacctt




atttaatttctatagtctaactctataaggtaagtactaagacta




tgccctagtttgttaatgaggaaaatgagattcaggatgtttaaa




tgcgtatggtcacatggctagggaacaagaaaaattgattttttt




ctagcctgacagctacttcatcctagtttgtaattcattccatga




gtcaagattcaataaatatttattgagaatctcctagaatgtaag




gccaatgaagggcagtgtggttcttctgtcttgcttcgccttttg




tgttttgtctctttgttgatgatggcatgtatccccagctcttag




aacagtgcttgattcaaagtaagcacattctttcaaaggtctgct




gttggtggggcttggtggctcacgcctgtaatcccagcactttgg




gaggccaaggcaggaggattgctttagcccaggattttgaaacca




gctgggcacaacatagtatgactttgtctctccaaaaaagttaaa




gaattagcagggtgtggtggtacacacctgcagtcccagctactc




aggaggctgaggtgggagaatcacttgagcgattgcttgaggtca




aggctgcagtgagccatggccatgctactgcattccagctggggc




aacagagtgagaccctttctcaaaaaaaatcccccccaaaaaaaa




acccaaaaacaaacaaaaaaggtctgctgttgtgaagttcaaccc




aatccagccccttcccaagttgtcacaaattccaacgtagttaac




agtataccaatgagtgataccacaggaaaaatattaaactgatct




gagggatatggggcttggaatctaagaaaattggaagggaaattg




aaaaggaaattattatttctccttggggagatagtttctaaaatt




cttactacaccctggggtcagagctgttgattttaaggatagaga




caactgagtcacaggaaactattcatatataaaagtacctggcat




ccaaaaccacacttgtataatatgaatctttcaccatctgagtag




ggcaaatcagtctatctctgttgatcatctgacaaggatagcaca




ctgagaaatagatctgtcttccctacaggcatagctagttgtaca




aactaacaagagacttttgtatacacattccatgatgataaatgc




caatcactaaagggacgaggagggattggagagttcaccatacag




caaaatagtccagacaggtgaaaggtctatcaaatgccaggctgg




taatcaaaactgtagccttttctctaaacaaagtttagaaccatg




attgtgtgggacattattttaataagggaaagtgcagttaatcat




gaccccacctttagtccaagaacaaaaatcagagctgccacgtat




taagtacccactctgtgccaggtgcagtaactatgcaaaagatgg




gttttccagatgcaagaaccttggttcagaggaccctgctcaagg




cctcatagctaacaaatgatggggcaagatgctatcccaaatctc




tctgacaacaaaactcattcttatcactctactattttcatagag




ttgccaaatgcttggttatgcaaacgatgcaggcaggggcaagac




agcggctgagcttggaactttttcagagatgtttcctttgctttt




agTTCACAGAAGGCTCCTTATTGGATGGGCTGTACTGGAAGATGC




AGCCCAGCAACCAGACTGAAGCTGACAACCGAAGTTTCATCTTCT




ATGAGAACCTGCTGTTAGGGGTTCCACGAATAC 




(SEQ ID NO: 240)






premrna
AATGGTAGTAGCCACTGGGGAATCATTGCAACTTATAGTGGAGC



ENST0000
TGGCTATTATCTGGATTTGTCAAGAACAAGAGAGGAAACAGCTG



0508588.5
CACAAGTTGCTAGCCTCAAGAAAAATGTCTGGCTGGACCGAGGA




ACCAGGGCAACTTTTATTGACTTCTCAGTGTACAACGCCAACATT




AACCTGTTCTGTGTGGTCAGgtgtgtactgaggacatgcatccct




cctatttctgtgtggttgtacatacatcctattctggggttagcc




agaaaaacctttgcctgcagttagctacatgaggatgccaaggac




ccagacggatagcaagggaggggtaaaaactgaaggcttaccgaa




ataaaggatatttgaggaagggagttgggatcctagaatattacg




agttggaaagaaccataactctggtccaagttcatctcaatgctg




gaacctttccagaaaaagtattgtgtttttctaacatctgtcttt




acccattataaggatggttagtgccacatgttccatcaccaagtc




ccccggccatcaaatcttgactcatttcctggagtttctcactct




cagatgagcctctgctattagcacacaagcacagtaaccggagtg




cttgtaggatgctcagtaggatacccaggttacctgctcgtgctc




agggctaccaaaggcacgtaaagttccttccacagatcctgggat




gttgccatgatgacccctctgtgagatagtaacaaaaatgacaaa




gattccactggcttgtctgggactcttcttcattcatttattcag




caaacattcattggacacttaatatgggctaggcattgttctcgg




ctcttgggacatgtcagcaaacaaaataaagatccgcaccttggc




agagcttgcatccaaccaggaggagactagagaataaacattaaa




caatacaaataaatagtatagtatattagaaggtaataggtacta




ttaaaaagaaagaaaaagcagagcaagaggaagtcagagttcacc




cactttaatcttcctggtgagcatgtcagcaacacccaaacatca




ctaacatggattattgcatgtatatttacacataagataagaagt




gtttattctcataatagtctttgtcatcattcttgaggttaagtt




caattctgctttatgtggcttgttggattgtcccagtccttgtat




ttaacaacatttgcagaaaatagtaccacattaaatcaattatag




attatcccttatccaaaatgcttaagaccagaatgtttgagattt




aagaaatttttcaggttttggaatgtctgcatatatataatgaga




tatcttggggatgggacccaagtctaaacacaaaattcatttatg




tttcataaatgaaacttaatgcacatagcctgaaggaaattttat




ttttcccttagggatgttgaatcaactgttgtgtgccagcatgtt




gacaatgacctgtcacatgaagtcgggtgtggaattttccacttg




tgcgttcatggcggtgctcagaaagtttgggattttgaagcattt




tatatttcagattttcacattagaaatactcaagctgtccttgct




cacagtggccaaaaaaaaagaaagaaagaaaagaaatactcaacc




agtagtccagtagtagttatcactagaaatgaatgaaaatctatt




gcagtattattgagtttttcctaattattccagtgcagataaaaa




gaaaagaataaaaaggaagagaataaaaacagagaggcaactctg




atattttagtaaattctatttatagaaggtcttgagtatttcttc




tgcttcctcccttactttaaggatgaacattgttaagacaactgc




ttcatttctctatactgtttttctaagtttctggaagtggttgac




tactgcagggccagaatgggccagagaaatgacttgacacttgaa




ggccacttccttcccttttgagttcccaatgaagctgtcacatac




aaggctcttggcttcagagttgctctcctgagtttttgattctca




cccctactctctaacacatcaaataggaaagaaagaacaggagaa




ctgacaatgaaaaggaaggaaaattttcacacttctctgaccagt




tctaatttaccatagtcctgtttttacttgattattgctcatgca




tgtgtcctgtatgctcaggttccaggtgcggctacctgtcctgta




atggcagagatagtgatggctagtagctgactaaagggcttttaa




atgtctcaaaatgaagcagctagagattctatttctagttagaaa




agaagtctgtatcattaactgaatcacccagctttctcagtgtga




cacctacaaaatgggcatttgacaagaaaaaaaccctcagtccag




ttatggtaaagcagtaaagatcagagccatcagtatggatgtaaa




atagtgtatgttttagacaatcagacatctattgagtacccacct




attaactataaggctctgggaagaagagagaaaactaccctggag




gacaaactatttgatgctatttaggtgttacataatgaatgaatg




actcagttcctatctttatatatgtacaaaatatatcctacttct




caaccagattacacatgttttgagtggatggtttatatttcttta




tattcttcatgttgcctagtagaaggacttgaatttaatagaagt




cctagggccaggcatggtggctccttcctgtaattccagcactct




gaaaggcccaggcaggaggatcatttgagcccaggagtttgagac




caacctgggcaaaagggcaagactcagtctctgccaaaaaaaaaa




aaattagttgggcatggtgctgcacacttacattcccagctactc




aggaggctaaggcaggagaatcccttgagccctggaatttgaggc




agcagtgagctatgattgcaacactgcactccagcctgggcaaca




aagcgagtccctgtctcttaaaaaaataataacagaagtcctaga




aaagtttgtgtgttgatttacttttacattaaaagtatatggcat




gttgagcagcgtaaatatagaaaagtgtagggaagactgagcagg




aagtactcctttgggactgaaagacctcaggaagtcttattcctt




tgatggcacaaaattctccaagtatggaattattagctatgataa




aaatgttttgccgctagtttggggggactcatggtagcagtttca




ttaccttgtaatgcatgaacagaacagatggacatccattcctgg




ctgtattcatgtgttgttgttgttattgttttaattgttcttatt




tacatgcaggttattggttgaattcccagcaacaggtggtgtgat




tccatcttggcaatttcagcctttaaagctgatccgatatgtcac




aacttttgatttcttcctggcagcctgtgagattatcttttgttt




ctttatcttttactatgtggtggaagagatattggaaattcgcat




tcacaaactacactatttcaggagtttctggaattgtctggatgt




tgtgatcgttgtggtaggtttgagaacaacaccaaatttcctatt




ctattctacaagcatgttaactagagtctttgatctcctcagcat




tgtggatcttgatattcccaaaaaagaatctaaaagtccccctca




attatatcaacttctgttactaattattttctcattttgcatgag




taactttgctgagtatgaagtggagaggtatttacagtatgctct




cagccacgctaataacaagagtatctcagtaattcatatttggct




ttagtatgccgtatgagatgtggaggagaaaacagttttttttct




ttgtttttttttccactaatgatatttttcttcaactgctggtaa




aaatcaatttatattttcctgcacatgtgtgaagttacagcaata




aaaaaacttgtcggccaggtgtggtagctcatgcctgtaatccca




gcacttggggaggccaaggcaggaggatcacttaagccccagagt




tcaagcccagccagggtaacatagtgagaccctgtctttacaaaa




aaaaaaaaatttaattagtcaggcatggtggcacacacctgtagt




ctcagctattccagaggccgaagtgggaggatcatttgagcccag




gaggctgaggctgcagtgagctataaatgcaccactgcactgcag




cctgggtgacagagtgagaccttgcctcaaaaagaaaagaaaaaa




gaaaaatcatcctgaaaatattttgtgcggcagagaaaactttct




gcagtttaaaattttctgcaaatagtctgcagagtacaaatgtaa




gttatattcatcaaagttttctgtatgaggtataagaaatcaaag




gcaggccatgcacagtggctcatacctataatccctgcactttag




ggaactgaggtgggaggatcacttgagatcaggagtttgatacca




gcctgggcaacatagtgagaccccatctctaaaaaataaaaataa




aaaataaatcaaaggcagagtcataatcaagaccatgacaccatg




taaattctgtgtctgctcttgactctattataacttctaagattt




ttttcaagatgttttcccttcatccttatcacttaattaagcatc




cgtcacttccttcctgtggtttcagtgtataaaagaatttttaca




agcttttctcccttcagcaataacaggtaacatttcgctaagtcc




agttgtacatttaagcatataacaacatgcttaattattagatgc




ttacaagctttgcttggcataggtgtaccatgtattattctatgt




ctttccttcccactgtcctatgatagccattaccttctgaaatct




cagtaaatgatgcactaccctattagcattctctcttctgttagc




cctccttatgagagttattctttccctcatcccactcctaaaaat




tcatttggcctttgtggagtatttagatcaagtcattattaaact




attccccactagaattattaatagttgataaaatatggaaaatat




attattcatatgtgagtgaaagaacacttaaagcataaaaaagaa




ctacatggccatatattgcatggcaataactatattagcagcaat




aataattgtaatagtaataataataatggctaacactttagaagc




ttctgtgttaggcatttccgggtgcttttcatggtacagaagctc




atttgttcctcatactaaccctcttcactactctgccactgcctc




tcaagccatggatatgtgcactttagagtttttacttaaagtaaa




aattcctgtagaatagatggtgttgaccccatcagaccgtgatgc




agttagaagtgcatcccgtcttttacgatggccatacaacatcac




acaaatcaaggtaaacccttgatccccaaattctcaatgtattaa




taatgaacagagttacacaagaattttagcatttaaggaaacagg




agagacgataatactggaaataatttttcagaatatttctgttcg




gattgatggcagagtgcaggccatatacattgacaattattccag




aacacaattattgtttggagctaaaaggatgcaaaccctgcctct




tggcttatatggatttatttatgtttaggccattgaaataatggt




agaaaggtaagtatgatatgctaattaagaacagacttccttttt




atattttaaccaaagaactcaatatcaacaaaagactagtcagtg




gtattcaccctttttgatcatacacacctatcagtgaaagctttg




actactacacaccctaatttattatctttatttgtaaattgtgtg




cctactttggtgtaacaggtacatccgtaaaacatacacatacat




agaattttaaagattggaataaaagttaatacaaatagaattcca




aaactttcttaccacctacctagaagttgtaacattttcttccca




tagcccagtgaattgccttgcacctgctttggcgaccaataggaa




gaaaggcaatgatatcatggaaattgtctctttggctcaacagcc




acagcattttgcaagtgtttctttgaaaacttgcttcactgtgtt




tttcaattttttttttaaacaacacttaatactgccagacaacaa




ttcagacagtgtgctttttgtttataaagaacaaggaagggctac




tggaatctcacttgtcctttgaaacttttgctgaccaagtgtaga




agtgagggcatgccttctgctcacccacaaaacacaccctgtgct




ccactggaccttcaaaccagtggaaagacccaacgctttttgttt




tatctagccaaaatttgcttatgcttacccaaaacctgaaaagaa




attatattcttaatataaatacaatcacatcttgaaatcactttg




aaattttctttattttccttttttctttccccaacatatgttctg




aagtacacaggctgcatcagtcagccatttgtcctgagcaatagt




ctttcaaaactagaagaattacttgaaaaaaagaagactattaag




gaatttaaactcaaataatttattgaccacttgctaggttgtaca




gggtaaatttttttttttttttttttttttgagatggagtcttgc




tctgtcacccagactggagtacagtggcaccatctcggctcactg




caagctctgcctcccgggttcacgccattctccctcctcagcctc




ctgagtagctgggactacaggtgcctgccaccatgcccagctaat




tttttgtatttttagtagagacagggtttcaccgagttagccagg




atggtctcgatctcctgacctcgtgatccgcccacctcagcctcc




caaagtgctgggattacaggcgtgaaccaccgcgcctggcccgac




taattcatttattcagcgagtgttttctgagcacctactatgtac




ttgccactgttctaggcactggggatacaggaatgaacaaaatca




cccaaatctctgccctcccaattttctggtatggagagaaagttc




ttttgtagatagggatgagaatcccacagaaaactcaggagtgat




gtaacaatgcaaatgctcacaaaatctctttcctcatctttcatt




ccctatttggaaggaaaggtttcaaagacattgatgttgtataaa




tgaccatcttcttcattattttataaacatttgtcctgtgcagag




taaaaacaactggactgcataacaaattatacctattgagagttg




ggtaaagagttaccattggatccagtccaccaacccaaatgtttt




tctacatgtattagctgagatgagctcctcatctcaggagaagcc




tattcccactgcaggccttcttgagtctgctgtgttcatcattcc




caccaccaacacaaaaatacaagattggctctggaaatccttcac




agagaaggaaggaaaggaagatggtgaggttggctttttagctgt




gatcagcaaccaagctggtctttgctatgagaatcagtgggacca




tgatctctatggtcatctcaggaagggagggctaatgaagtggtc




tctggccatgattcctaagaagagagaatggacagcaaagatcgc




agcacctgccacagcccacctgctgcagattcagaccccctggtg




gggccaggttgttatgactaacccctagcactgtctacatttagt




ggtgatggatgccaaggagggggcagtgtccccttggatctgatt




gtaaagcttagaaccaaagcatatgtggaaagttgtagggtcatg




agttaagggacagaaatgagcaagagagaagcccttggctcatat




attcccactgcaggccttcttgagccctctgtattcatcattccc




actgtctttcaagcccaagctcatgctttgttctcatgggcactc




atttttaggatatcttttgtccctcttgactttatgttgtgtgat




accaactctttagtagttttttgtattatttaacttcatgtgttt




atctgctcttgagtctcgagggcaggatttatgcagtttacttct




gtttattcctcttagcccttgcacagtgctgtatacatagacatc




tactatatttttgttaaacagagcaaagaatggctggcaattgga




gaatgcagagaaaccgaaaaattttaaatttaaaaatcacaaata




aaaacagcaggatgaaggcaagaaagcaaaagggtggaaagtgat




taaaatgaaggtggcagaaaaaacagaaagcattcctctttgagt




ttgagtctgttatagtgtgatctcttctgtgtatgcatgtatgtg




tgtgtaatgtatatgtgcacacacatgcatgcatgccttcgttga




gtttctattccgaactaaggaaatgcaagcaatatactgttttac




ttattttatggcagggcttaacactttccatttgagtgagtgact




tttaagaatgacatcgggtaagtataatggtgagcccttataatt




aatacattggtgaagaaaaatatactagtcatattaaggtaagtt




tcatatttctaaaacactgtaataaaatataaatattttgctttt




cagCTGTCAGTGGTAGCTATAGGAATTAACATATACAGAACATCA




AATGTGGAGGTGCTACTACAGTTTCTGGAAGATCAAAATACTTTC




CCCAACTTTGAGCATCTGGCATATTGGCAGATACAGTTCAACAAT




ATAGCTGCTGTCACAGTATTTTTTGTCTGGATTAAGgtaatttat




aaatttcatgttctacattttaaataatattttctttaaaaaaaa




tgagttccacaaaatcatggaatacttgaatttgaaattcaagtg




accagccaaagctgctcaatatttactttgagacagggtctcact




ctgtcacccaggctggagtgcagtggtatgattacagctcattgc




agcctcgacttcccaggcccaagcgatcctcccaccttatcctcc




gaagtcactgggactacaggcatgtgccaccatacccggctaatt




tttaaattttttcgtagagacaaggtctcattatgttgcccaggc




tggttttgaactcctgggttcaagcaatcctcccacctcagcctc




ccaaagtgctgggattacaggcatgagccaccgtgccaggcctca




tattttacatataaagtaaactattgagactcatgtgatcattcc




tctcactgtcaatgacatacttctgctatctgaattagtgcaaga




tcagtccctataggttttgtttaacaaatgcagtaagaggccttt




cagtgtgttagctgggcctggggccccaggctgctaacagatgag




atgaacaggtgaaggaaaaggaacttagagaaagagagggaagga




gcaggtggagggaaggggagagttgctgcacttggaaatgcttgc




tagaagggatcgcctcttttccaggtagaggctgtaagggaagct




ttacctagaattaaggttggaacagacactgcttccaaatagttc




cttgctcactattttccttattgtcccaagatataatgtgcattt




ccatgtgtgtgaaaggttatgacatttcatatacaacaagcctca




attctggagatgcaggaaatttcaataattctcaggcagcagctg




ccattcggtcaccagcacaggctctgattgtgctgtccagacagt




aagtactagccacatgtgcctatttaaattcaaatttaaattagt




taagcttaaatacaattaaaaacgcagttccttggtcctactggc




cacacattaagtgttcaatggctactgtctaggacagtggaaatg




tagaacatttccatcatcacagaacgttctcttgaaaagcactgt




tctggaaggtacttacccgttatgtacttttctgagttggtattc




atacctagaagacctgaggtttatcacaagacatagacttggacc




aggcgcagtggctcatgcctgtaattccagcattttgggaggccg




agataggtcccctgagcccaggagtctgataccagcctgggcaac




atggcaaaacctcatctctactaaaaatacaaaaattagctgggg




gtggtggcacgtgcctgtagtcctagctacttaggaggcttaggc




gggaggattgcttgaatccagaaggcggagggtgcagtgagccaa




gatcgcaccgctgcactccagcctgggcaacagagtgagaccctg




tctcaaaaaaaaaaaaaaaatgcatagactttatcctgtatttct




catgctatttatttattgacatgcttgttcaagagaaaccatcac




taaagcacaaaaccttgatcataacatagtaataataatcaaaca




gcaaaaataataatagtaataagaatgttctgtggtgatggaaat




gttctatattttcattgtcctagacagtagccactaaccatgtat




aggcatggaacacttaacatgtggctagtaggaccaagggactga




atttttaattgtatttaatcttacttaatttaaatttgaatttag




atatccacacatgtttggatagcacagtcagagcctgtgctggtg




aaaggatggcaggtgctgcctgagaattactgaagtttccttgat




tattattagtttaataataataatcaagatagtaataataatcaa




gatagtaataataatcaagatctcagctgggcacagtggctcacg




cactttgggaggctgaggcgggcagatcacctgacgtcgggtttg




agaccagcctggccaacatggtgaaaccctgtccctactaaaaat




acaaaaaaaaaaaattagctgggtgtggtggcacgtgcctatgat




cccagctacttgggaatctgaggcaggagaattgcttgaacccag




gaagcagaggttgcggtgagctgaatcatgccactgcactccagc




ctgggcaacagagcagcacttcgtctcaaaaaaaaaaaaaaaaga




tctcaaatgaattgggattgtattaagtaatgattaagtaatgtg




attacagcaatcctcaagaaatatttcactgtggccagtaacaat




gtgtaacagacctttaaacttctagagattttcctacaacatgtg




tctcaggctgatgtgttttatttagtgcttctcttggaaatgtct




tgcccctcgatactttatcattaaggtctttaaggcagggatcat




gactctacttttttttttttttttttttttgggacggagtcttgc




tctgtcgcccaggctggagtgcagtggcacaatcttagctcactg




caacctccgtctcctgggttcacgccattctcctgcctcagcctc




ccgagtagctgggactacaggcggctgccaccacgcccggctaat




tttttatatttttagtagagacggggtttcaccgtgttagccagg




atggtctcgatctcctgacctcgtgatccacccacctcggcctcc




caaagtgctgggattacaggcttgagccaccacgcccggcctcat




gactctacttctaatatctcatcatgtgctcttccactgaggctt




ctacttagagctacacaatctgggcagccatcctcagtgccttat




ctaccaacatgctcaatatggctttgcagggttcactgtctacca




gcagggttcactatctaccaacatgctcaatatttctttgcagtc




aggcagagcaggctttgcagttcaggcagggcagctggctgcagg




ccccagctgactcctggggatagaatgccaatatttcagacattg




cagagatttgaggcaatgtacataaagccctccacatataactga




tgcacaataaatgacagttaatattatgcaacaagaatttcctgg




ggggttttataattaatttttatttgtgtgaagttttttccctcc




cttttactttaatcctttttggggggaaagcatcactagtcacag




ttcacggcagcctcgacctcccaggctcaagcaaccctcccacct




cagcctcctgagtagctgaaaccacaggtgtgtgccaccacacct




gactaatttatttttattttctaatgaaacagaatcttgccatat




tgcccaggctgatcttaaactcatgggctcaagcgatcctcctgc




ctcagtcttccaaagtgccgggattatagatgtgagccactgcac




tcagcctttttttttttttttttaattgtagatagcataaaacct




actgttttaaccatgcttaagtgtacaattcagtggcattaagta




cattcacagtgttgtgcagccatcgccattatgctgcattatttt




cagaactttttcattattctaaactgaaactttgtatccattgaa




cactaactcccaattcccccagtccctggtaacctccattctact




ttctgtcactgtgagtttgactattctaagtacctaatttaagtg




gaatcatacagtatttgtccttttgtgtcaggcttatttcacttt




gcatgatgttttcaaggttcatccatgttgtaacctgtcagaatt




taatttcttttcaggatgaaataatgttttattatatacagtcac




accattttgtttatccattcatctattgatgtcttctctctctta




cagCTCTTCAAATTCATCAATTTTAACAGGACCATGAGCCAGCTC




TCGACAACCATGTCTCGATGTGCCAAAGACCTGTTTGGCTTTGCT




ATTATGTTCTTCATTATTTTCCTAGCGTATGCTCAGTTGGCATAC




CTTGTCTTTGGCACTCAGGTCGATGACTTCAGTACTTTCCAAGAG




TGTATgtaagtatatatgaaattaagaagaaaaatttaatcagag




ttgtcactgcttctcaagaataaatcttcatatgaggttgctata




tgaccaccaattatttaaaaccagttattttaagtaagaattaat




taccttttcccaaaacattgatctacccatgcaaagaagacaatg




catcctgaaatgctgatgcttaagatagcagcccaaagtagtaaa




atacagttaacagacataggaaaccaacactgttctgaagactga




gtttttctttgcaccaaatgcagatggtagcttctagaaggctgt




ttgcctatattcttactcctgttgaatattgttgccatatattta




gaacttcaagttattttctaaggaaaaaaacaagatatttctaat




attctaaggtaaactcagaccagtacaagaattttcagttttttt




ttccaaagatcccaaatgtgaaataaaacaacaaaaagcagccag




tgtcagatttctatgccatttagaaaggagttagtttaaaaagga




atggaagtaatagggttttgtgcatagatatctcgaattaatatt




gctgttgataaaagtgattttgctaagacccagcactgacaacac




ttggccactttgatcccattttaagtacttgtcagaatattggat




ctttgaactcaaaccattttgggtttttggggtttttttgttttg




tttttttttgttttgttttgtttttgaggcacggtcttgctctgt




tgcccaggctggagtgcagtggtgcaatcatagctcactgcagcc




ttgaactcctaggctcaagcaatcctgctgcctcagcctgctgag




tagctgggactacaagtgtatgccaccatgcctggccaattttta




actttttttatgagaagggatctcactgtgtagcccagggtggta




ttgaactccagggcctcacactgtcctctcacctcagcttccaaa




agtactgggattacaggcatgagccaccacaccaggccctgttgt




tttttttttaaagaaatttttaactttagaccgagggtgactgtt




gtcaaggtttagggttaagatgttttacctagattatgtgttgaa




atgttatagccaattgctttataagttattgaataataattgtat




tttctttttttttttttttttgagatggagtctcgttccatcgcc




caagctagagtgcagcggtgtaatctcagctcactgcaacctctg




cctcccgggttcaagcgattctcctgcctcagcctcccgaatagc




tgagattatgggcgcacgccaccaagcccagctaatttttgtatt




tttagtagagacggggtttcactatattggccaggctgttctcga




actcctgacctcgtgatccgcccgcctcggcctcccaaagtgctg




ggattacagacgtgatccaccgtgcccagcttgtgttttcttttt




aaccaaatggaaataacctctgtagcatgaaagcattttattatt




attgcagaaggctttaattgctgatacaagtagcaagactttgta




aatgggattgacaattttctgttattcggcagctacctatactgc




taaaaggtccaaaaataatgaaatcatctttaagaaatgttgcat




caactagtggacattctttgtttttgtattgtggtgttttgtttt




atttttatagCTTCACTCAATTCCGTATCATTTTGGGCGATATCA




ACTTTGCAGAGATTGAGGAAGCTAATCGAGTTTTGGGACCAATTT




ATTTCACTACATTTGTGTTCTTTATGTTCTTCATTCTTTTGgtat




gtacatttttatttatagtgaggttcaatttaaacttcgtaaatc




cttgtcttctcttttctctcacactttatgtcctatcaattttaa




ataaagacccaggaagtagaaaaaagtgtggatgttggaaaactt




attttccttttattaattcacagttttgagactcatatcaaatgt




cttttctgtggtctttcattgatccatgtatatgtgtctattcaa




tgcaaaaaaaattagatctcttccatggtctttcatttctctctc




tatatatgtatctattccatgcaaaaaagaaattagatcaagtac




aaatttataaagatacctaaaatagtgctttgcctaaaaagtaga




atatgcttacatgctttttaaactcatatgtcagcactttcgtag




tcacttgctagcatgacttttctctctttcttcttttctttttaa




aaaataagaacggaaaagcaagctagatctaagatgtcgagtaat




agttgagtgaatcattgcatgtcaaaattaggatattctgtttta




aattatttatatcccattcatctagagactgcctacagagaatat




tcaaataattaagtttaaaactaaatgtaacaatgaatggaaatt




gcattaaaattattttcaaaaataatttttttattctcttgattt




ggtacaaatgaacatttttaatgtttttgccctaagtcaattaag




tttttttaaggtgttttgttctttttcttaacatttatatattca




attgtctactgagaaggtgttaagccagcttaatttaggcaatat




ttttcatctaaacactaacagtcatcttaagaacaattttcttaa




gaaaataacattttttccatttcagtaaattgtgtaaagatccct




tgaggaaggttaagtgatcacattttcagtaattcagtgtaataa




ctctaaagtcagtccaggtattactggttaagtatatggtattta




ttgattgggtattagatgtactgtattaatttcctgtttaaaaaa




aattttttttccggggagacacagcctctggtgtaaaacaaaggt




gtgttccctagctgtactttaacaggactgaaaaggtcaggaata




tcattcaagttcatatgtatcttgctgtatgcatggtttatggct




catttttaaacttacacctcttaagcttcttcttcctatcatata




ttaaaacaatggagagaagaataagcctctgttactctaccattg




atagtacttcggattctagagtacctgaatctctactaagaaggc




aaaaaccaggaattgagagtcctgcacctgacccttcagttgatc




tcaggccacctagttttctccgtttatcaatctgccaaacaagga




tggatagagtcgtggcaactggaaaggctcaaatgtggaattgtt




tgaatgtggtcctttagtaggcagccatcttaccagatctagagt




attcagtcatcttaccagatcagtcaccagaacatgaaaagaagc




tcttagtttctatctttatactaaaattgtttttttgtacgactg




cacaaaaaagaattgctctccttgcacctcccagagatataggtg




gatagatacatacatacgtacatacatacatacatacatacatac




atacatacatagacacatacatagatagaagtctactttcaatac




aaacctgtcttttaaggaaatgacaagctgagcatagggttggcc




acctttctgagccgattgcctggtattagtttattgcccctgttt




agcaagaaggcacagtgttaagaagtggctcagctgaaccaggat




aaccccactcttcccccacatcaacaggaaagacatcctggtgca




gatgtccatctgataattcagggaacctcgggagacaggatggag




aggagggtgagctagcttcctcttcccacaccttcaagagccttt




ctcaagcactttctattttttgaaatctctttagaggtcccagac




tttgatctgtttcaattaaggtattggcaggcattagttaacagc




cacttggaagcaaaaatagaacattagatccctgagttggaagag




agaaggtagaaggtgttacttggactcaattatctgcacttggaa




ttgaggcatttagtcaaaaacttatatgtattctatattctattc




tcatttctgctacagaattgtaaacaatattcttccttaatacag




aaattcatagcccactaaaataagagcgttctcatttgttcattt




ctcaatcatttaataagtatttactaagccactatatccatatat




atatatatatcatatatactgtataatacacactgtagtgttttt




tgtggattgtgtactatgaggtagtatgttagatactgccagtac




tggggtaaggaaaacagcctgattaggcccttacgaagattcctc




agacttgtggggaaaacagacattatcaaatagaaatacttgcaa




accacagttatgtgttaaaaaggaaaaacaaagtaaaaaaaaagt




tggtgggggggaacctgatctcctggatacagtgcttcgagaaag




tttgttgttggaaatgcaaaccattactactgtggaagggaaagg




tcagaaaaatgaactcaccattactgaatagtaatagtagctatc




aattaggtggcacttacctgcatcaggacctgtcctgagcacttt




acatagattgtctcactaaccagcccaacaaatatgtaagggaga




tactattatttttcccattttattaatgtaaaacaattaaataat




tctttaaaattagacttagaaaagtggagcaacaatcttagcagt




gctaggactgaaatccaagtttgcttgactccaaagtctatctct




cttccagaaactttttctttactatctgcctagtaggcctgctgt




attcctatttgcaacagccttttaaactctttaaaaatgtgtcct




gtaaatttcatatatgattatacaaaaaaacttggaataagcata




caattctacttatctgtgttaactgttgaaatttgaagagctttt




tggaattctatacccttcagtagtgtatgtaaaagtttctaaata




tagagaacatagataagcaaaaataatattaaataaaataatcgc




accattagtaggtaaatatactaatattttgttgtattttattct




tgtatgttttcacaaagtatatcataaaatttttcctgtggcatg




acttaacggagaaaataatcttcccaaaacatgtggcagcaaaac




tgttaatttattacatcaggctgggcacagtggctcacgcttgca




atcccagcactttgggaagccgaggcgggcagatcacttgaggcc




aggagttcgagaccagcctggccaacgtggtgaaacactgtctct




actaaaaatacaacagttagccaggtgtagtggcacatgcctgta




atcccagctactcaggaggctgagactcaagaattgcttgaaccc




aggaggcagaggttgcagtaagctgaggtcgcgcccctgcactcc




agcctgggcaacacagtgagactctgtctcaaaaaaaaaaatttt




tttttaaataaataaataataaatttatgtcttcataaagcactc




agattaggaaaaaaaggataaacaaaaaggcatgtgtcatttttt




tgattgataattccaaattatgtttcttcctttaatttttgccct




cctttcatttacaaacagAATATGTTTTTGGCTATCATCAATGAT




ACTTACTCTGAAGTGAAATCTGACTTGGCACAGCAGAAAGCTGAA




ATGGAACTCTCAGATCTTATCAGAAAGgtaggaaaaaccttaatt




ctcagaattcttctgtttctgacataaaatgagcattgtttcacc




cagattttcaaatcaacattgatccattgaaattgtttgaaataa




agaatacattgctatatttcaggaataatttaaatgttccctatc




ttggagtcttgatggatatactgctatcttgaattttaattctgg




gaatccttttatgccctggaattaaattctcaacaatcttttgac




actttaagagctgagctgaaggttcatcaccttcattattttgac




atctcctgtagctggctctcacttcaggatcctgagttgagaata




aactagaagggaagattatataaagggatttccacctcttctgtc




tcaattaccattttaaaaaaataaaaagttttagaggaaaacact




tagtagttcaccctttacccttgaccttccacggcagttttaaaa




taagcaaaggaaaagattcatgaattcaggccatagcctggggcc




tgagaacttttacttatgcaccttctcaggaagggtttcattgtt




aaatagaagggcaggacaggaaagttgggcctctttgttcttctc




aatgtaacttctttatttggtttaaagtataaaatgtatacaaca




acaaataaccacatttaaaatacacagtttgtttcccaacatcat




tttgctaagtcatagtggctccttaactgtaatttttttttttat




tagtccaagccttaggattatgttatctgtgatatatgttataat




agaaaacttaagcctcttaaaacaaagtccttgggatgggaccta




agattcacattatcttgattccgcataacagttgcttacatttta




gcaaatctccagtgtgtatgcaagcactcctcacttggcacaatt




ctgatacacacaaactttggttaccccagttttgttatgtaacac




caccttcaacaacacagttcaaatttcagttatcatagtatatta




actctgagtaacagcacaaagtacaaactccactgctagctcttc




agtgtatagatcagttacctgagtaacagatgtgcaggctgagca




ggctcactggtcagtcatgacactattttcagtctgttactaatt




ggtcactgagcatctgctatccaattcacaaacaaagaaagcatg




tagtgttgcttccttgtgttccagtaataagcccatgtgacattt




tacaaaaatggataattgaaaaagagaatgggtgcagtggctcac




gcatgttgggaggccaaggcggatggatcacctgaggtcaggagt




tcgaaaccagcctggccaacatggtgaaaccccatctctactaaa




aatacaaaattagctgagtgtggcgacagatgcctgtaatcccag




ctactggggaggctgaggcaggagaatcgcttgcacctaggaggc




ggaggttgcagtgagccgagatcgtgccattgcactccagcctgg




gtaacaagagcgaaactccgtctcaaaaaaaaaaaagaaaagaaa




agaaaagaaaaagagaatgggctagcaaagaaatgaaaaatggta




acactggaagtgaaaatcaaaacagagtaatggatttatagaaga




aatagctgagtgaagaagaaataggagtgttgacactgcgatcat




tcaagagatccagatatggagccagaagaacttagggcaggtcta




tcaacttaaatgaggaaaatagctgtgataaaacagatgaagatg




tcttgaggaaatgatgcctgcaaaaaacttcacattaagggaagt




cttattagagatatttcacaataatgaaagtacaaaagaaaaaat




gttggggctggacatggtggcttactcctgtaatcccagcacttt




gagaggccaaggtgggtggatcacttgaggccaggaagtcgagac




aagcctgatcaacatgatgaaaccccgtctctattaaaaatacaa




aaattagccagacatgatggtgcacacctgtaattccagctactc




aagtggctgaggcacgagaattgcttgaaccagggaggcggaggt




tgcagtaagctgagattgcaccactgcaatccagccaggtgacag




ggtaagactgtgtctcaaaaataaataaaagaaaaatatgttgga




agctcatccacatttaagaaggaatatgacaattcactaatgcat




agaaaagaagttcactccacattgtaaagtgtacagtgtaatatt




atacaatgaaaacaaggcaagtgctgtttaaactactctggatac




attttttacaaagaaataaaacactttagtttttaatgtttctaa




tgttttacattttagtgtattaaatcaatattagttttcttcttt




tttaagctccctatacatttataactgacactaagggagtgttta




atgttttgattaaaagttgtaaagatcacagaacaattgtaattc




ttcccactgattattcagatcattttgcacaatttcagcttgcat




ggtcacttacagtgccgcactatgtgcaaagcaaggtcaggtcta




aagttcgctaatgaaaaatcctcggccaggggcagtggctcaccc




ctgtaatcctagcactttggaaggcgaggcaggcagatcgcttga




gctcaggagttcaacaccagcctgggcaacatggtgagaccctgt




ctctacaaaaaaaaaaaaatagcaaggcgtggtgactcacacctg




tagtcccagctacttgttgggggctgagttgggaaaatcacttga




gctcaggaggtcgaggctgcagtgagccagaatcacgccactgcc




cttctgcctgggtgacagagtaagatcctgtctcaaaaaaaggga




aaatcctcatctacatttcactgggttttttgtttgtttgtttgt




ttgtttatacacacttaaggaaattactgtctagaagatagataa




tataaaaaataaaaatgcaattcatgattcgggtttcttggtatt




cctaagaactgttgcacagtactttatgctctgaggcagacagct




atagcatatatagtaatttttgtttctatcacataaacttgaata




cacatatgagtaaaagacctttagttcttcatgacttactgaaag




accctgactttttccatgtaactgttccacaagtgttttatggaa




aactggatacattaattcttcattcatccagcacgtacttgttga




atggccaatgtacaccaggtttgtagtagttactactgtgaatgg




aaagtaaaacagatgcaaaaggagaatacactaaaccaagtcttt




tattttttctctctctgatagGGCTACCATAAAGCTTTGGTCAAA




CTAAAACTGAAAAAAAATACCGTGGATGACATTTCAGAGAGTCTG




CGGCAAGGAGGAGGCAAGTTAAACTTTGACGAACTTCGACAAGAT




CTCAAAGGgtgagaatcatgcttcctgaggttctgaaaaattcct




gcttctaaagataaattcctggtgataagagtatttctagcccaa




gggctcatacagatactttttttttttttttccagaggcaggtat




ctttctggaacatgttataagaggaaaacttgcccccatttggtg




atttctcctttcctcctgcattttgatgtctctgtgttgagggtg




aactgggtacaaggaatgatttttatctgtatcctctctctaatt




tcagGAAGGGCCATACTGATGCAGAGATTGAGGCAATATTCACAA




AGTACGACCAAGATGGAGACCAAGAACTGACCGAACATGAACATC




AGCAGATGAGAGACGACTTGGAGAAAGAGAGGgtgggtctggttt




aggagaaccggatttgatttggtacctacaacaccacagatgtat




caaacactatagaagtagtgggttattgagtctcttgcccattcc




ccaccacactctctctctctctcagtcggtttatgtgttagtacc




ctgtttattccagaaagaatatataacacaattatgtataaaaat




gggtggttagcatgatataaaaacgtcaaaatgaaaagcaagcaa




aacaaaagtaaaaataatggattattaatgaagcttaaaaatgca




ttcataaaaacacatatgcttattaagattgggctacaaattggg




ccctaagcttgctggtaatcagcttgaaaagagaagcctgattag




ctgcagagtccacaatgtccgtgagagtgaagaaaacaaaaaatg




acttaccaagagatgtgaaattattctggttagttagtggctatt




taaattgttaacttttttttcttttttttttttttttgagatgga




gtcttgctctgcctcccaggctggagtgcagtggcacaatcgcga




ctcactgcaacctccacctcccgggttcaagcgattctcttgcct




cagcctcccaagtagctaggactacaggcacatgccatcatgccc




ggctaatttttgtatttgtagtagatatggggtttcaccatgttg




gtctcaaactcctgactgcaagcaatctgcccaccttggcctccc




aaagtggtgggattacaggcagtagccaccgtgcctttcctaaat




tattaacatttataataaaattaacagccgccttccatttgaata




ctttttacaaaatagttaaaaataaacataagtgggcttttatag




tcagaaaaaaaaattcaaagctttaccattaactttcaaaaataa




atggttagacagcaacaacaaaaatctgtggtaactgaggtacag




agaacacagatgaatgttattacaaaagccactttcctatgagaa




gtctaggacagtggtttctaaatgccactccacagacagtgctag




taggtgacagacttctccagtcacagtgaaatttaagcataaaga




aaatgaggaaaatttttacaaggctctatttagacaaagttctta




ttctgacattacatctttcctactttggagctgttgaatgtatta




tcttttatgaaaagaaggcgatccaggttgagcatccctaaccca




aatatgtgagtctgaaatgctccaaaacctaaaacttcttgagca




caaacatgatagtcaaaggtcatgcttaaaggaaatgctgtcatt




ggagcagtttggattttgggttttcagattagggatgctgaacca




gtaagtataatgcaaacattccaaaatatttttgaaaatcccaaa




tccaaaacacttctgatcccaagtatttcaaataagggatactca




acctgtaatatatttcttcatttctttatttattttattattatt




ttaagatggctcatggcccactgcagcctcaaactcctaggctca




agtgatcttccgacctcaacctcccaggtagctcaggtagctggg




actgcaggcatgcatcaccatgcctggctaattttttaaaaaatt




ttttgtggaggcagagtctcaccttgctgcccaggccagtctcaa




actcctggcttcaagcagtactcctgcctcagcctcccaaagtat




taggattacaggtgtgaccactatgcctggcccatatttcttcat




ttagttttttctttgcctgctgtgtttttaatgttctttcttgtt




caaacaaaaagttggctattccttgctgttagttaaatttgccaa




tctatgaaactgaaaaatgcaggagtcccagcctggtgttaaata




caaagaaatcccaggtaaatggcatgcacccagttcctgcttgcc




caagtccttggtgaggcttctgtggggtctcagtgttctgctcct




cactcagtgaccccttgttcttcagGAGGACCTGGATTTGGATCA




CAGTTCTTTACCACGTCCCATGAGCAGCCGAAGTTTCCCTCGAAG




CCTGGATGACTCTGAGGAGGATGACGATGAAGATAGCGGACATAG




CTCCAGAAGGAGGGGAAGCATTTCTAGTGGCGTTTCTTACGAAGA




GTTTCAAGTgtaagtataaaggaattggcagaatttgcgttgaca




agagtccacatgagaccaggcagttccctcatctctctgaattca




ctcctttccattactaatcatccagcttttaaaaataacttatac




tggccagacgcagtggctcatgcctgtaatcccaccactttggga




ggccaaagcaggcaggtcatgaggtcagaagttcgagacgagcct




ggccaacatagtgaaaccccatctctattaaaaatacaaaaaatt




agctgggcatggtggtgggcacctgtaatcctagctacttgggag




gctgaggcaagagaattgcttgaacccgggaggcggaggttacag




agagccgagatggctccactgcacaccagcctgggcgacagtgca




agactctgtctcaaaaaaaaaaaaacttgtcaattggtgttttgt




ttcttacataatatgtttactataaaaattagcaaataagagcaa




aagaaaacattaacatttcacatatttctaccaatgaaaaatgtt




tattaatatatcagtgtttgtgtctctatttgcatgtgtttatca




atgtttctatatatttttatggcctaacatatggttcgtcctgaa




gaatgttccttgtgcatttgagaagaatgaatattctgctgttca




agtgttctgtagatgtttgttaggtctagtttgtttacagtttta




ttcaggtctcccatttcctggttgatcttagatgtgcctagatgt




ggtattcacgtttgaaagtggggtattaaagtctccaagtattat




tagttggagttcatcccttcaattctgtaaggttttgctttgtgt




attttggaactctgttgttgggtgcatacatatttataactagta




tattttcctaatatattgaccctattttctctctcaacttaatga




ggctaaagaaaaaaaagaattgaccctgttttcattacaagatgt




tatccactttatctctagtaaaattctttgttttaagtatttttt




gtttgatattactgtaaccactccagctttcttttggttgctgtt




tgcatgataaatctttttccatccttttactttaaacttatttat




atctttcagtctgaagtatgtctctcctgtagacagcatataatt




ggatcttatctttttatccagtttgacaatttctgtttttgatta




gattgcttaatccattcatttaatgttatcattgatgtagttgat




ttctgtctgctattttattttttgttttctagcttactttttttt




gttcctctttcactgctttcttgtacattaagtgaatattttcaa




gtataacatttaaatttttttaatgatttttcattttttttagtc




aggagttgctctaagacttagtttatacaattaagttatgaaaaa




ttacttcagatatatattaactgaatccagtgagatatagaaatc




atttctatttagcttttttcctcttccctctttttgtgctatata




ttcatctatctatatgtatatatagtcatctacatatgttgcaaa




tcacattgttagaacaatgttacatttttataacacactgtgtaa




tatatagtatataattttatatctcttaatgaagctgagagaaga




ggaagtatatatttataaatgtgtatattaacctacttttttacc




atttctaattctcttcttttgctcctctggattcaagttatcatc




tgtcgtcattctctttctccgatacagctttgctactgcctacct




cctattattgtcaaatatattacatttctattatagaccttcaga




tccaattatgtacatatttttacacaactgctttttaaatcagtt




aaggaacaaaaggagaaatgtacatatatactatattttatacct




acacagttatctttaccagtgttctttgccttttcatgtggattc




tgattactatctggagtcacttgctttcagcataaagaatttcct




ttagtattttttgtaaagcaggtttgctagcaatgaattctttca




ttttttgtttatctgagaatgtttttctttctccttcatttcctc




tggcttgtattgtttctgatgagaagacaggtgctaattttactg




tggtccccttgtacatgatgactcaattttctctcaccactttca




agatttttttgcttttgtctttcattatttttactgtgatatgtc




tgggtataaatctctgagttcatcctacttagaaagtgttttttc




tgcttctttcactttctcttctcctttgggacccgcattatgcat




atgcttaggggtatcacatatttctcttaggctctgttcgtcgtc




attttttttccctctctgttcctcagagtgcatagtctgtattga




tgtatcttcaagttcactgacttgttcttctgtcagcttgcttaa




atctctgttgagctcctctagttatttatttatttatttatttat




tttatatatatatatatatatatatatatagagagagagagagag




agagagagagaaagagagagagagagagacagggagacagggtct




cactccatcacccaggctggagtacagtggtgtaatcatggctct




ctacagcctgaacacctgggctcaaatgatcctcctgcctcaacc




tcccaagtagctaggactatgggcacatgctgccatgcctggcta




atttttaaaaaaaaatttgtagagatggcatcttgttatgttgcc




caggttggtctcaaactcccggcctcaagtgatccttccgcctcg




gcctcccaaagtgctggggtcacaggtatgagccaccgcacttag




cctgaattttttatttattatacttttcaactccagaatttctat




ttggttctttttagcaatctctgtctctttattctgtatttgatg




atatcctgtatttgatgagacaatgtcatcataacttcctttttt




ttttaagagatagggtctctctctgtcacccaggctagagtgcag




tggcatgatcctagctcactgcagcctcgaactcctgaactcaag




caatcctcccacctcagcctcctaagtacctgacactacaggcat




gagccactgtacccagctaatttttattttttgtagagatggggt




ctaagttgcccaggctggtctcaaactcctgggctcaagtgatcc




tccctgctcaggctcccaaagtgctgggattacaggcatgaacca




ctggacccagcctcctttatttctttaaccatggtggggtttttt




attatttgtttgtttgttttaacctgtttgaatatatttataata




ggtaccttcaggtctttgtctgctaagtctgacatctgggccctc




tcaaagacagtttcagttgtctttttttttttcttcttgtgtatg




ggaacattttcctgtttttttgttttgttttttgttgttttgttt




tgttgttgttgttgttgttaaagattggacatgttagataatata




ttgtaggaactctggctagtgattccctttcctccccaggacttg




tttttatttctctttgcttgtttactttttcatacagtctgtttc




cccacagtgtctgcctctgactttattccttagagggcgcagctg




tggccatgtacgtagtcactctgggaagacagtggttttagcagc




gtgctcattaactttctctgacctctttgttatacctcctgcctc




tgtggatattagacccagttattacatttcattgtttactgattg




gtctattgttttccagaatgccttgggatgtaatttgctccacag




tctgatccacttaaattcaggcctctttgcagggctagttttaga




ggccagtctttttttttttttttttttttttttgagacagagtct




cactctgttgcccaggccggaatgtagtggtgcagtctcagctca




ctgcagcctcaatctctcaggctcaagcaatcttcccacctcagc




ttctcaagtagctaggactacaggtgcacgccaccatgcctggtt




aatttttgcattttttatagagatggggttttaccatgttgcccc




ggctggtctcaaactcctgagttcaagcaatccacccacctcagc




ctcacaaaaggccgggattacagatatgcaccaccacgcctggcc




cctgaggccagtctttaactgtcttcttagctgtctctttccctg




gttctctctggtgaactagctggtaatttgtttatctcataaggc




taccagattccttgtaaatgcttatccccacaatctccattgttt




tcaagagcatcgttagtctttaatttcctcacgcttcattccaaa




taaagtccattcacttgagaagagttctatattcctatgacctgt




gtctccccatgagcaaaactgctactgctttacagagccagggac




agtggcccacctctctgtggcatcctgctttatgaacaagtcact




gggctcagatggcagtctctgattttctcaccttgcttcttctgg




catggaaactccaccctacaagtgggaactgagtggaagaagaga




gccccattccccttagccactcttaacaggattagaacctctgca




acatgcatttaagaatgggaacaggctgggcacagtggctcacgc




ctgtaatcctagcactttgggaggtcaaggcaggaggattgcttg




agccaggagttcaggaccagcctgtgcaacatggtgagaccctca




tctctacaagaaatagaaaaattaactggtgggttgtgtatacct




gtaatcccagctactcgggagcctgaagtgggaggattgcttgaa




cctggaggcagaggttgcagtgagtcaagattacaccattgcacg




ccagcctgggcaacagagtgagactctgtctcaaaaaaaaaaaaa




aaaaaagagtaggaacattgaggctgggcatggtggctcatgcct




gtaatcctagcactatgggaggccaaggcaggagtatcacttgac




gctaggagttcaagaccaacctgggtaacatagcgagactttgtc




tctattaaaaaaaaaaaaaaaaaaggtgtaaaaaacttttgtaac




aagagtgggaaagccgggcacagtggctcacacctgtaatcccag




cactttggaaggccaaggcaggcaggcggatcacctgaggtcagg




agtttgagaccagcctggccaacgtggtgaaaccccatctctact




aaaaaatagaaaaattatctgggcatggtggtgcacacctgtagt




cccagctactcgggaggctgaggcaggagaatcacttgaacctac




gaggcagaagttgcagtaagccaagatcacgccactgcactccag




cctgggcgacagagcaagactctgtctcaaaaaaaaaaaaagagt




ggaaatgttaggatgagaaatgctggcagcctgcccctccctggg




agatactgtagccctagactggaagttgggggaggagggagccct




gtgctcttagctgcacccatgtgaagttgtgcttctatcacatga




gctggggacaggagagaaggctcagattatggcttcagtgccaca




gaatctcttcatactaaaatttagtagattttcttgaataaatgc




tttttcatttgctgtacacccttaaaagtttctagaaatttttaa




tatttgagttttaaaaaataattttcaacagttacagttatttca




ctaaagagagagtctacagaaccctcttgccaccattgcagaggt




tgtctttggcttacgagtttttaaagtatttgtatacatttttta




agttcaaaataatagaattgtaagtgaacatgctgttttcatact




gtttttcaagctttatttaatatattgtaaatctaattctatttt




attaaatagtctgccacagtataatgtctgatgtctccttagaat




tttattgtatggatgaacaatgattatttaatttcctaccaattg




ttgggtgttttttgtttgtttgtttgtttttgagactgggtctca




ctctgtcacccaggctggagtgcaggagtgcggtggaatgatcac




ggctcactgcagcctcaacatcccaaggctcaggtgatccttcca




cctcagcctcgcaagtagctgggagtacaggcacatgccaccatg




cccacctattttttagagatgaagttttgccatcctgcccaggct




ggctcgaactcctggcctcaagcgatctgcacacttccgcctccc




aaaatgccaggattacaggcgtgagccatcatgccctaccccccc




atcaattgtttgatgtagccatttttcaatgatccgcgattaaga




agcagcactcttttatagccaaaaattacacatatataaaatttt




cctttagaaaatgttctaaaaatggaatgtctaactaaagggtta




ggcatacattcttaagacttctgatacgcgctgacttgcaggaaa




gttgtttcagttaacactcctaccagcggcatccgagagttaatc




tgtaaagcttgagacaacttagaaagtgtttcaaatgattgtgtt




gcttaagaaaaaaatcttagcacttccttttgaaaagccagtggg




gctgaaaagacaatgacaagcactttgtccctctgtactgtgttt




tccttgcagCCTGGTGAGACGAGTGGACCGGATGGAGCATTCCAT




CGGCAGCATAGTGTCCAAGATTGACGCCGTGATCGTGAAGCTAGA




GATTATGGAGCGAGCCAAACTGAAGAGGAGGGAGGTGCTGGGAAG




GCTGTTGGATGGGGTGGCCGAGgtcagtagtcatgagctgaaaac




accgctgctgagcatggtgttattaatgaaaatatatgttgctga




cagttgtatttgaagtattgaagaagagtaaaaaaaatttacgtt




tatagaaattcacaatgatgtttccatttactctcattttcagat




ttttttctctgaaacagaaacactctttctataaaatctcttgct




ataaaacatcaatgtagtcatattgtctaacccttaggctgagat




gtttatctttctccataactacagataaaattataatctggaggt




gttactttcttaatactccatatgctaatggtcctgccttcactg




cagggtagaattaagtgaaaaattactccagcaactctgagattt




gctattatatgctgtaaatctccagccttaccaaactacagatta




tttggtccctggacttcctaaggcatttccttctactgcccccaa




caccagtttctttttccctttttagGATGAAAGGCTGGGTCGTGA




CAGTGAAATCCATAGGGAACAGATGGAACGGCTAGTACGTGAAGA




GTTGGAACGCTGGGAATCCGATGATGCAGCTTCCCAGATCAGTCA




TGGTTTAGGCACGCCAGTGGGACTAAATGGTCAACCTCGCCCCAG




AAGCTCCCGCCCATCTTCCTCCCAATCTACAGAAGGCATGGAAGG




TGCAGGTGGAAATGGGAGTTCTAATGTCCACGTATGATATGTGTG




TTTCAGTATGTGTGTTTCTAATAAGTGAGGAAGTGGCTGTCCTGA




ATTGCTGTAACAAGCACACTATTTATATGCCCTGACCACCATAGG




ATGCTAGTCTTTGTGACCGATTGCTAATCTTCTGCACTTTAATTT




ATTTTATATAAACTTTACCCA (SEQ ID NO: 241)






premrna
ATACTTTCCCCAACTTTGAGCATCTGGCATATTGGCAGATACAGT



ENST0000
TCAACAATATAGCTGCTGTCACAGTATTTTTTGTCTGGATTAAGg



0511337.5
taatttataaatttcatgttctacattttaaataatattttcttt




aaaaaaaatgagttccacaaaatcatggaatacttgaatttgaaa




ttcaagtgaccagccaaagctgctcaatatttactttgagacagg




gtctcactctgtcacccaggctggagtgcagtggtatgattacag




ctcattgcagcctcgacttcccaggcccaagcgatcctcccacct




tatcctccgaagtcactgggactacaggcatgtgccaccataccc




ggctaatttttaaattttttcgtagagacaaggtctcattatgtt




gcccaggctggttttgaactcctgggttcaagcaatcctcccacc




tcagcctcccaaagtgctgggattacaggcatgagccaccgtgcc




aggcctcatattttacatataaagtaaactattgagactcatgtg




atcattcctctcactgtcaatgacatacttctgctatctgaatta




gtgcaagatcagtccctataggttttgtttaacaaatgcagtaag




aggcctttcagtgtgttagctgggcctggggccccaggctgctaa




cagatgagatgaacaggtgaaggaaaaggaacttagagaaagaga




gggaaggagcaggtggagggaaggggagagttgctgcacttggaa




atgcttgctagaagggatcgcctcttttccaggtagaggctgtaa




gggaagctttacctagaattaaggttggaacagacactgcttcca




aatagttccttgctcactattttccttattgtcccaagatataat




gtgcatttccatgtgtgtgaaaggttatgacatttcatatacaac




aagcctcaattctggagatgcaggaaatttcaataattctcaggc




agcagctgccattcggtcaccagcacaggctctgattgtgctgtc




cagacagtaagtactagccacatgtgcctatttaaattcaaattt




aaattagttaagcttaaatacaattaaaaacgcagttccttggtc




ctactggccacacattaagtgttcaatggctactgtctaggacag




tggaaatgtagaacatttccatcatcacagaacgttctcttgaaa




agcactgttctggaaggtacttacccgttatgtacttttctgagt




tggtattcatacctagaagacctgaggtttatcacaagacataga




cttggaccaggcgcagtggctcatgcctgtaattccagcattttg




ggaggccgagataggtcccctgagcccaggagtctgataccagcc




tgggcaacatggcaaaacctcatctctactaaaaatacaaaaatt




agctgggggtggtggcacgtgcctgtagtcctagctacttaggag




gcttaggcgggaggattgcttgaatccagaaggcggagggtgcag




tgagccaagatcgcaccgctgcactccagcctgggcaacagagtg




agaccctgtctcaaaaaaaaaaaaaaaatgcatagactttatcct




gtatttctcatgctatttatttattgacatgcttgttcaagagaa




accatcactaaagcacaaaaccttgatcataacatagtaataata




atcaaacagcaaaaataataatagtaataagaatgttctgtggtg




atggaaatgttctatattttcattgtcctagacagtagccactaa




ccatgtataggcatggaacacttaacatgtggctagtaggaccaa




gggactgaatttttaattgtatttaatcttacttaatttaaattt




gaatttagatatccacacatgtttggatagcacagtcagagcctg




tgctggtgaaaggatggcaggtgctgcctgagaattactgaagtt




tccttgattattattagtttaataataataatcaagatagtaata




ataatcaagatagtaataataatcaagatctcagctgggcacagt




ggctcacgcactttgggaggctgaggcgggcagatcacctgacgt




cgggtttgagaccagcctggccaacatggtgaaaccctgtcccta




ctaaaaatacaaaaaaaaaaaattagctgggtgtggtggcacgtg




cctatgatcccagctacttgggaatctgaggcaggagaattgctt




gaacccaggaagcagaggttgcggtgagctgaatcatgccactgc




actccagcctgggcaacagagcagcacttcgtctcaaaaaaaaaa




aaaaaagatctcaaatgaattgggattgtattaagtaatgattaa




gtaatgtgattacagcaatcctcaagaaatatttcactgtggcca




gtaacaatgtgtaacagacctttaaacttctagagattttcctac




aacatgtgtctcaggctgatgtgttttatttagtgcttctcttgg




aaatgtcttgcccctcgatactttatcattaaggtctttaaggca




gggatcatgactctacttttttttttttttttttttttgggacgg




agtcttgctctgtcgcccaggctggagtgcagtggcacaatctta




gctcactgcaacctccgtctcctgggttcacgccattctcctgcc




tcagcctcccgagtagctgggactacaggcggctgccaccacgcc




cggctaattttttatatttttagtagagacggggtttcaccgtgt




tagccaggatggtctcgatctcctgacctcgtgatccacccacct




cggcctcccaaagtgctgggattacaggcttgagccaccacgccc




ggcctcatgactctacttctaatatctcatcatgtgctcttccac




tgaggcttctacttagagctacacaatctgggcagccatcctcag




tgccttatctaccaacatgctcaatatggctttgcagggttcact




gtctaccagcagggttcactatctaccaacatgctcaatatttct




ttgcagtcaggcagagcaggctttgcagttcaggcagggcagctg




gctgcaggccccagctgactcctggggatagaatgccaatatttc




agacattgcagagatttgaggcaatgtacataaagccctccacat




ataactgatgcacaataaatgacagttaatattatgcaacaagaa




tttcctggggggttttataattaatttttatttgtgtgaagtttt




ttccctcccttttactttaatcctttttggggggaaagcatcact




agtcacagttcacggcagcctcgacctcccaggctcaagcaaccc




tcccacctcagcctcctgagtagctgaaaccacaggtgtgtgcca




ccacacctgactaatttatttttattttctaatgaaacagaatct




tgccatattgcccaggctgatcttaaactcatgggctcaagcgat




cctcctgcctcagtcttccaaagtgccgggattatagatgtgagc




cactgcactcagcctttttttttttttttttaattgtagatagca




taaaacctactgttttaaccatgcttaagtgtacaattcagtggc




attaagtacattcacagtgttgtgcagccatcgccattatgctgc




attattttcagaactttttcattattctaaactgaaactttgtat




ccattgaacactaactcccaattcccccagtccctggtaacctcc




attctactttctgtcactgtgagtttgactattctaagtacctaa




tttaagtggaatcatacagtatttgtccttttgtgtcaggcttat




ttcactttgcatgatgttttcaaggttcatccatgttgtaacctg




tcagaatttaatttcttttcaggatgaaataatgttttattatat




acagtcacaccattttgtttatccattcatctattgatgtcttct




ctctcttacagCTCTTCAAATTCATCAATTTTAACAGGACCATGA




GCCAGCTCTCGACAACCATGTCTCGATGTGCCAAAGACCTGTTTG




GCTTTGCTATTATGTTCTTCATTATTTTCCTAGCGTATGCTCAGT




TGGCATACCTTGTCTTTGGCACTCAGGTCGATGACTTCAGTACTT




TCCAAGAGTGTATgtaagtatatatgaaattaagaagaaaaattt




aatcagagttgtcactgcttctcaagaataaatcttcatatgagg




ttgctatatgaccaccaattatttaaaaccagttattttaagtaa




gaattaattaccttttcccaaaacattgatctacccatgcaaaga




agacaatgcatcctgaaatgctgatgcttaagatagcagcccaaa




gtagtaaaatacagttaacagacataggaaaccaacactgttctg




aagactgagtttttctttgcaccaaatgcagatggtagcttctag




aaggctgtttgcctatattcttactcctgttgaatattgttgcca




tatatttagaacttcaagttattttctaaggaaaaaaacaagata




tttctaatattctaaggtaaactcagaccagtacaagaattttca




gtttttttttccaaagatcccaaatgtgaaataaaacaacaaaaa




gcagccagtgtcagatttctatgccatttagaaaggagttagttt




aaaaaggaatggaagtaatagggttttgtgcatagatatctcgaa




ttaatattgctgttgataaaagtgattttgctaagacccagcact




gacaacacttggccactttgatcccattttaagtacttgtcagaa




tattggatctttgaactcaaaccattttgggtttttggggttttt




ttgttttgtttttttttgttttgttttgtttttgaggcacggtct




tgctctgttgcccaggctggagtgcagtggtgcaatcatagctca




ctgcagccttgaactcctaggctcaagcaatcctgctgcctcagc




ctgctgagtagctgggactacaagtgtatgccaccatgcctggcc




aatttttaactttttttatgagaagggatctcactgtgtagccca




gggtggtattgaactccagggcctcacactgtcctctcacctcag




cttccaaaagtactgggattacaggcatgagccaccacaccaggc




cctgttgttttttttttaaagaaatttttaactttagaccgaggg




tgactgttgtcaaggtttagggttaagatgttttacctagattat




gtgttgaaatgttatagccaattgctttataagttattgaataat




aattgtattttctttttttttttttttttgagatggagtctcgtt




ccatcgcccaagctagagtgcagcggtgtaatctcagctcactgc




aacctctgcctcccgggttcaagcgattctcctgcctcagcctcc




cgaatagctgagattatgggcgcacgccaccaagcccagctaatt




tttgtatttttagtagagacggggtttcactatattggccaggct




gttctcgaactcctgacctcgtgatccgcccgcctcggcctccca




aagtgctgggattacagacgtgatccaccgtgcccagcttgtgtt




ttctttttaaccaaatggaaataacctctgtagcatgaaagcatt




ttattattattgcagaaggctttaattgctgatacaagtagcaag




actttgtaaatgggattgacaattttctgttattcggcagctacc




tatactgctaaaaggtccaaaaataatgaaatcatctttaagaaa




tgttgcatcaactagtggacattctttgtttttgtattgtggtgt




tttgttttatttttatagcttcactcaattccgtatcattttggg




cgatatcaactttgcagagattgaggaagctaatcgagttttggg




accaatttatttcactacatttgtgttctttatgttcttcattct




tttggtatgtacatttttatttatagtgaggttcaatttaaactt




cgtaaatccttgtcttctcttttctctcacactttatgtcctatc




aattttaaataaagacccaggaagtagaaaaaagtgtggatgttg




gaaaacttattttccttttattaattcacagttttgagactcata




tcaaatgtcttttctgtggtctttcattgatccatgtatatgtgt




ctattcaatgcaaaaaaaattagatctcttccatggtctttcatt




tctctctctatatatgtatctattccatgcaaaaaagaaattaga




tcaagtacaaatttataaagatacctaaaatagtgctttgcctaa




aaagtagaatatgcttacatgctttttaaactcatatgtcagcac




tttcgtagtcacttgctagcatgacttttctctctttcttctttt




ctttttaaaaaataagaacggaaaagcaagctagatctaagatgt




cgagtaatagttgagtgaatcattgcatgtcaaaattaggatatt




ctgttttaaattatttatatcccattcatctagagactgcctaca




gagaatattcaaataattaagtttaaaactaaatgtaacaatgaa




tggaaattgcattaaaattattttcaaaaataatttttttattct




cttgatttggtacaaatgaacatttttaatgtttttgccctaagt




caattaagtttttttaaggtgttttgttctttttcttaacattta




tatattcaattgtctactgagaaggtgttaagccagcttaattta




ggcaatatttttcatctaaacactaacagtcatcttaagaacaat




tttcttaagaaaataacattttttccatttcagtaaattgtgtaa




agatcccttgaggaaggttaagtgatcacattttcagtaattcag




tgtaataactctaaagtcagtccaggtattactggttaagtatat




ggtatttattgattgggtattagatgtactgtattaatttcctgt




ttaaaaaaaattttttttccggggagacacagcctctggtgtaaa




acaaaggtgtgttccctagctgtactttaacaggactgaaaaggt




caggaatatcattcaagttcatatgtatcttgctgtatgcatggt




ttatggctcatttttaaacttacacctcttaagcttcttcttcct




atcatatattaaaacaatggagagaagaataagcctctgttactc




taccattgatagtacttcggattctagagtacctgaatctctact




aagaaggcaaaaaccaggaattgagagtcctgcacctgacccttc




agttgatctcaggccacctagttttctccgtttatcaatctgcca




aacaaggatggatagagtcgtggcaactggaaaggctcaaatgtg




gaattgtttgaatgtggtcctttagtaggcagccatcttaccaga




tctagagtattcagtcatcttaccagatcagtcaccagaacatga




aaagaagctcttagtttctatctttatactaaaattgtttttttg




tacgactgcacaaaaaagaattgctctccttgcacctcccagaga




tataggtggatagatacatacatacgtacatacatacatacatac




atacatacatacatacatagacacatacatagatagaagtctact




ttcaatacaaacctgtcttttaaggaaatgacaagctgagcatag




ggttggccacctttctgagccgattgcctggtattagtttattgc




ccctgtttagcaagaaggcacagtgttaagaagtggctcagctga




accaggataaccccactcttcccccacatcaacaggaaagacatc




ctggtgcagatgtccatctgataattcagggaacctcgggagaca




ggatggagaggagggtgagctagcttcctcttcccacaccttcaa




gagcctttctcaagcactttctattttttgaaatctctttagagg




tcccagactttgatctgtttcaattaaggtattggcaggcattag




ttaacagccacttggaagcaaaaatagaacattagatccctgagt




tggaagagagaaggtagaaggtgttacttggactgcaattatctg




cacttggaattgagcatttagtcaaaaacttatatgtattctata




ttctattctcatttctgctacagaattgtaaacaatattcttcct




taatacagaaattcatagcccactaaaataagagcgttctcattt




gttcatttctcaatcatttaataagtatttactaagccactatat




ccatatatatatatatatcatatatactgtataatacacactgta




gtgttttttgtggattgtgtactatgaggtagtatgttagatact




gccagtactggggtaaggaaaacagcctgattaggcccttacgaa




gattcctcagacttgtggggaaaacagacattatcaaatagaaat




acttgcaaaccacagttatgtgttaaaaaggaaaaacaaagtaaa




aaaaaagttggtgggggggaacctgatctcctggatacagtgctt




cgagaaagtttgttgttggaaatgcaaaccattactactgtggaa




gggaaaggtcagaaaaatgaactcaccattactgaatagtaatag




tagctatcaattaggtggcacttacctgcatcaggacctgtcctg




agcactttacatagattgtctcactaaccagcccaacaaatatgt




aagggagatactattatttttcccattttattaatgtaaaacaat




taaataattctttaaaattagacttagaaaagtggagcaacaatc




ttagcagtgctaggactgaaatccaagtttgcttgactccaaagt




ctatctctcttccagaaactttttctttactatctgcctagtagg




cctgctgtattcctatttgcaacagccttttaaactctttaaaaa




tgtgtcctgtaaatttcatatatgattatacaaaaaaacttggaa




taagcatacaattctacttatctgtgttaactgttgaaatttgaa




gagctttttggaattctatacccttcagtagtgtatgtaaaagtt




tctaaatatagagaacatagataagcaaaaataatattaaataaa




ataatcgcaccattagtaggtaaatatactaatattttgttgtat




tttattcttgtatgttttcacaaagtatatcataaaatttttcct




gtggcatgacttaacggagaaaataatcttcccaaaacatgtggc




agcaaaactgttaatttattacatcaggctgggcacagtggctca




cgcttgcaatcccagcactttgggaagccgagggggcagatcact




tgaggccaggagttcgagaccagcctggccaacgtggtgaaacac




ctgttctactaaaaatacaacagttagccaggtgtagtggcacat




gcctgtaatcccagctactcaggaggctgagactcaagaattgct




tgaacccaggaggcagaggttgcagtaagctgaggtcgcgcccct




gcactccagcctgggcaacacagtgagactctgtctcaaaaaaaa




aaatttttttttaaataaataaataataaatttatgtcttcataa




agcactcagattaggaaaaaaaggataaacaaaaaggcatgtgtc




atttttttgattgataattccaaattatgtttcttcctttaattt




ttgccctcctttcatttacaaacagAATATGTTTTTGGCTATCAT




CAATGATACTTACTCTGAAGTGAAATCTGACTTGGCACAGCAGAA




AGCTGAAATGGAACTCTCAGATCTTATCAGAAAGgtaggaaaaac




cttaattctcagaattcttctgtttctgacataaaatgagcattg




tttcacccagattttcaaatcaacattgatccattgaaattgttt




gaaataaagaatacattgctatatttcaggaataatttaaatgtt




ccctatcttggagtcttgatggatatactgctatcttgaatttta




attctgggaatccttttatgccctggaattaaattctcaacaatc




ttttgacactttaagagctgagctgaaggttcatcaccttcatta




ttttgacatctcctgtagctggctctcacttcaggatcctgagtt




gagaataaactagaagggaagattatataaagggatttccacctc




ttctgtctcaattaccattttaaaaaaataaaaagttttagagga




aaacacttagtagttcaccctttacccttgaccttccacggcagt




tttaaaataagcaaaggaaaagattcatgaattcaggccatagcc




tggggcctgagaacttttacttatgcaccttctcaggaagggttt




cattgttaaatagaagggcaggacaggaaagttgggcctctttgt




tcttctcaatgtaacttctttatttggtttaaagtataaaatgta




tacaacaacaaataaccacatttaaaatacacagtttgtttccca




acatcattttgctaagtcatagtggctccttaactgtaatttttt




tttttattagtccaagccttaggattatgttatctgtgatatatg




ttataatagaaaacttaagcctcttaaaacaaagtccttgggatg




ggacctaagattcacattatcttgattccgcataacagttgctta




cattttagcaaatctccagtgtgtatgcaagcactcctcacttgg




cacaattctgatacacacaaactttggttaccccagttttgttat




gtaacaccaccttcaacaacacagttcaaatttcagttatcatag




tatattaactctgagtaacagcacaaagtacaaactccactgcta




gctcttcagtgtatagatcagttacctgagtaacagatgtgcagg




ctgagcaggctcactggtcagtcatgacactattttcagtctgtt




actaattggtcactgagcatctgctatccaattcacaaacaaaga




aagcatgtagtgttgcttccttgtgttccagtaataagcccatgt




gacattttacaaaaatggataattgaaaaagagaatgggtgcagt




ggctcacgcatgttgggaggccaaggcggatggatcacctgaggt




caggagttcgaaaccagcctggccaacatggtgaaaccccatctc




tactaaaaatacaaaattagctgagtgtggcgacagatgcctgta




atcccagctactggggaggctgaggcaggagaatcgcttgcacct




aggaggcggaggttgcagtgagccgagatcgtgccattgcactcc




agcctgggtaacaagagcgaaactccgtctcaaaaaaaaaaaaga




aaagaaaagaaaagaaaaagagaatgggctagcaaagaaatgaaa




aatggtaacactggaagtgaaaatcaaaacagagtaatggattta




tagaagaaatagctgagtgaagaagaaataggagtgttgacactg




cgatcattcaagagatccagatatggagccagaagaacttagggc




aggtctatcaacttaaatgaggaaaatagctgtgataaaacagat




gaagatgtcttgaggaaatgatgcctgcaaaaaacttcacattaa




gggaagtcttattagagatatttcacaataatgaaagtacaaaag




aaaaaatgttggggctggacatggtggcttactcctgtaatccca




gcactttgagaggccaaggtgggtggatcacttgaggccaggaag




tcgagacaagcctgatcaacatgatgaaaccccgtctctattaaa




aatacaaaaattagccagacatgatggtgcacacctgtaattcca




gctactcaagtggctgaggcacgagaattgcttgaaccagggagg




cggaggttgcagtaagctgagattgcaccactgcaatccagccag




gtgacagggtaagactgtgtctcaaaaataaataaaagaaaaata




tgttggaagctcatccacatttaagaaggaatatgacaattcact




aatgcatagaaaagaagttcactccacattgtaaagtgtacagtg




taatattatacaatgaaaacaaggcaagtgctgtttaaactactc




tggatacattttttacaaagaaataaaacactttagtttttaatg




tttctaatgttttacattttagtgtattaaatcaatattagtttt




cttcttttttaagctccctatacatttataactgacactaaggga




gtgtttaatgttttgattaaaagttgtaaagatcacagaacaatt




gtaattcttcccactgattattcagatcattttgcacaatttcag




cttgcatggtcacttacagtgccgcactatgtgcaaagcaaggtc




aggtctaaagttcgctaatgaaaaatcctcggccaggggcagtgg




ctcacccctgtaatcctagcactttggaaggcgaggcaggcagat




cgcttgagctcaggagttcaacaccagcctgggcaacatggtgag




accctgtctctacaaaaaaaaaaaaatagcaaggcgtggtgactc




acacctgtagtcccagctacttgttgggggctgagttgggaaaat




cacttgagctcaggaggtcgaggctgcagtgagccagaatcacgc




cactgcccttctgcctgggtgacagagtaagatcctgtctcaaaa




aaagggaaaatcctcatctacatttcactgggttttttgtttgtt




tgtttgtttgtttatacacacttaaggaaattactgtctagaaga




tagataatataaaaaataaaaatgcaattcatgattcgggtttct




tggtattcctaagaactgttgcacagtactttatgctctgaggca




gacagctatagcatatatagtaatttttgtttctatcacataaac




ttgaatacacatatgagtaaaagacctttagttcttcatgactta




ctgaaagaccctgactttttccatgtaactgttccacaagtgttt




tatggaaaactggatacattaattcttcattcatccagcacgtac




ttgttgaatggccaatgtacaccaggtttgtagtagttactactg




tgaatggaaagtaaaacagatgcaaaaggagaatacactaaacca




agtcttttattttttctctctctgatagGGCTACCATAAAGCTTT




GGTCAAACTAAAACTGAAAAAAAATACCGTGGATGACATTTCAGA




GAGTCTGCGGCAAGGAGGAGGCAAGTTAAACTTTGACGAACTTCG




ACAAGATCTCAAAGGgtgagaatcatgcttcctgaggttctgaaa




aattcctgcttctaaagataaattcctggtgataagagtatttct




agcccaagggctcatacagatactttttttttttttttccagagg




caggtatctttctggaacatgttataagaggaaaacttgccccca




tttggtgatttctcctttcctcctgcattttgatgtctctgtgtt




gagggtgaactgggtacaaggaatgatttttatctgtatcctctc




tctaatttcagGAAGGGCCATACTGATGCAGAGATTGAGGCAATA




TTCACAAAGTACGACCAAGATGGAGACCAAGAACTGACCGAACAT




GAACATCAGCAGATGAGAGACGACTTGGAGAAAGAGAGGgtgggt




ctggtttaggagaaccggatttgatttggtacctacaacaccaca




gatgtatcaaacactatagaagtagtgggttattgagtctcttgc




ccattccccaccacactctctctctctctcagtcggtttatgtgt




tagtaccctgtttattccagaaagaatatataacacaattatgta




taaaaatgggtggttagcatgatataaaaacgtcaaaatgaaaag




caagcaaaacaaaagtaaaaataatggattattaatgaagcttaa




aaatgcattcataaaaacacatatgcttattaagattgggctaca




aattgggccctaagcttgctggtaatcagcttgaaaagagaagcc




tgattagctgcagagtccacaatgtccgtgagagtgaagaaaaca




aaaaatgacttaccaagagatgtgaaattattctggttagttagt




ggctatttaaattgttaacttttttttcttttttttttttttttg




agatggagtcttgctctgcctcccaggctggagtgcagtggcaca




atcgcgactcactgcaacctccacctcccgggttcaagcgattct




cttgcctcagcctcccaagtagctaggactacaggcacatgccat




catgcccggctaatttttgtatttgtagtagatatggggtttcac




catgttggtctcaaactcctgactgcaagcaatctgcccaccttg




gcctcccaaagtggtgggattacaggcagtagccaccgtgccttt




cctaaattattaacatttataataaaattaacagccgccttccat




ttgaatactttttacaaaatagttaaaaataaacataagtgggct




tttatagtcagaaaaaaaaattcaaagctttaccattaactttca




aaaataaatggttagacagcaacaacaaaaatctgtggtaactga




ggtacagagaacacagatgaatgttattacaaaagccactttcct




atgagaagtctaggacagtggtttctaaatgccactccacagaca




gtgctagtaggtgacagacttctccagtcacagtgaaatttaagc




ataaagaaaatgaggaaaatttttacaaggctctatttagacaaa




gttcttattctgacattacatctttcctactttggagctgttgaa




tgtattatcttttatgaaaagaaggcgatccaggttgagcatccc




taacccaaatatgtgagtctgaaatgctccaaaacctaaaacttc




ttgagcacaaacatgatagtcaaaggtcatgcttaaaggaaatgc




tgtcattggagcagtttggattttgggttttcagattagggatgc




tgaaccagtaagtataatgcaaacattccaaaatatttttgaaaa




tcccaaatccaaaacacttctgatcccaagtatttcaaataaggg




atactcaacctgtaatatatttcttcatttctttatttattttat




tattattttaagatggctcatggcccactgcagcctcaaactcct




aggctcaagtgatcttccgacctcaacctcccaggtagctcaggt




agctgggactgcaggcatgcatcaccatgcctggctaatttttta




aaaaattttttgtggaggcagagtctcaccttgctgcccaggcca




gtctcaaactcctggcttcaagcagtactcctgcctcagcctccc




aaagtattaggattacaggtgtgaccactatgcctggcccatatt




tcttcatttagttttttctttgcctgctgtgtttttaatgttctt




tcttgttcaaacaaaaagttggctattccttgctgttagttaaat




ttgccaatctatgaaactgaaaaatgcaggagtcccagcctggtg




ttaaatacaaagaaatcccaggtaaatggcatgcacccagttcct




gcttgcccaagtccttggtgaggcttctgtggggtctcagtgttc




tgctcctcactcagtgaccccttgttcttcagGAGGACCTGGATT




TGGATCACAGTTCTTTACCACGTCCCATGAGCAGCCGAAGTTTCC




CTCGAAGCCTGGATGACTCTGAGGAGGATGACGATGAAGATAGCG




GACATAGCTCCAGAAGGAGGGGAAGCATTTCTAGTGGCGTTTCTT




ACGAAGAGTTTCAAGTgtaagtataaaggaattggcagaatttgc




gttgacaagagtccacatgagaccaggcagttccctcatctctct




gaattcactcctttccattactaatcatccagcttttaaaaataa




cttatactggccagacgcagtggctcatgcctgtaatcccaccac




tttgggaggccaaagcaggcaggtcatgaggtcagaagttcgaga




cgagcctggccaacatagtgaaaccccatctctattaaaaataca




aaaaattagctgggcatggtggtgggcacctgtaatcctagctac




ttgggaggctgaggcaagagaattgcttgaacccgggaggcggag




gttacagagagccgagatggctccactgcacaccagcctgggcga




cagtgcaagactctgtctcaaaaaaaaaaaaacttgtcaattggt




gttttgtttcttacataatatgtttactataaaaattagcaaata




agagcaaaagaaaacattaacatttcacatatttctaccaatgaa




aaatgtttattaatatatcagtgtttgtgtctctatttgcatgtg




tttatcaatgtttctatatatttttatggcctaacatatggttcg




tcctgaagaatgttccttgtgcatttgagaagaatgaatattctg




ctgttcaagtgttctgtagatgtttgttaggtctagtttgtttac




agttttattcaggtctcccatttcctggttgatcttagatgtgcc




tagatgtggtattcacgtttgaaagtggggtattaaagtctccaa




gtattattagttggagttcatcccttcaattctgtaaggttttgc




tttgtgtattttggaactctgttgttgggtgcatacatatttata




actagtatattttcctaatatattgaccctattttctctctcaac




ttaatgaggctaaagaaaaaaaagaattgaccctgttttcattac




aagatgttatccactttatctctagtaaaattctttgttttaagt




attttttgtttgatattactgtaaccactccagctttcttttggt




tgctgtttgcatgataaatctttttccatccttttactttaaact




tatttatatctttcagtctgaagtatgtctctcctgtagacagca




tataattggatcttatctttttatccagtttgacaatttctgttt




ttgattagattgcttaatccattcatttaatgttatcattgatgt




agttgatttctgtctgctattttattttttgttttctagcttact




tttttttgttcctctttcactgctttcttgtacattaagtgaata




ttttcaagtataacatttaaatttttttaatgatttttcattttt




tttagtcaggagttgctctaagacttagtttatacaattaagtta




tgaaaaattacttcagatatatattaactgaatccagtgagatat




agaaatcatttctatttagcttttttcctcttccctctttttgtg




ctatatattcatctatctatatgtatatatagtcatctacatatg




ttgcaaatcacattgttagaacaatgttacatttttataacacac




tgtgtaatatatagtatataattttatatctcttaatgaagctga




gagaagaggaagtatatatttataaatgtgtatattaacctactt




ttttaccatttctaattctcttcttttgctcctctggattcaagt




tatcatctgtcgtcattctctttctccgatacagctttgctactg




cctacctcctattattgtcaaatatattacatttctattatagac




cttcagatccaattatgtacatatttttacacaactgctttttaa




atcagttaaggaacaaaaggagaaatgtacatatatactatattt




tatacctacacagttatctttaccagtgttctttgccttttcatg




tggattctgattactatctggagtcacttgctttcagcataaaga




atttcctttagtattttttgtaaagcaggtttgctagcaatgaat




tctttcattttttgtttatctgagaatgtttttctttctccttca




tttcctctggcttgtattgtttctgatgagaagacaggtgctaat




tttactgtggtccccttgtacatgatgactcaattttctctcacc




actttcaagatttttttgcttttgtctttcattatttttactgtg




atatgtctgggtataaatctctgagttcatcctacttagaaagtg




ttttttctgcttctttcactttctcttctcctttgggacccgcat




tatgcatatgcttaggggtatcacatatttctcttaggctctgtt




cgtcgtcattttttttccctctctgttcctcagagtgcatagtct




gtattgatgtatcttcaagttcactgacttgttcttctgtcagct




tgcttaaatctctgttgagctcctctagttatttatttatttatt




tatttattttatatatatatatatatatatatatatagagagaga




gagagagagagagagagaaagagagagagagagagacagggagac




agggtctcactccatcacccaggctggagtacagtggtgtaatca




tggctctctacagcctgaacacctgggctcaaatgatcctcctgc




ctcaacctcccaagtagctaggactatgggcacatgctgccatgc




ctggctaatttttaaaaaaaaatttgtagagatggcatcttgtta




tgttgcccaggttggtctcaaactcccggcctcaagtgatccttc




cgcctcggcctcccaaagtgctggggtcacaggtatgagccaccg




cacttagcctgaattttttatttattatacttttcaactccagaa




tttctatttggttctttttagcaatctctgtctctttattctgta




tttgatgatatcctgtatttgatgagacaatgtcatcataacttc




cttttttttttaagagatagggtctctctctgtcacccaggctag




agtgcagtggcatgatcctagctcactgcagcctcgaactcctga




actcaagcaatcctcccacctcagcctcctaagtacctgacacta




caggcatgagccactgtacccagctaatttttattttttgtagag




atggggtctaagttgcccaggctggtctcaaactcctgggctcaa




gtgatcctccctgctcaggctcccaaagtgctgggattacaggca




tgaaccactggacccagcctcctttatttctttaaccatggtggg




gttttttattatttgtttgtttgttttaacctgtttgaatatatt




tataataggtaccttcaggtctttgtctgctaagtctgacatctg




ggccctctcaaagacagtttcagttgtctttttttttttcttctt




gtgtatgggaacattttcctgtttttttgttttgttttttgttgt




tttgttttgttgttgttgttgttgttaaagattggacatgttaga




taatatattgtaggaactctggctagtgattccctttcctcccca




ggacttgtttttatttctctttgcttgtttactttttcatacagt




ctgtttccccacagtgtctgcctctgactttattccttagagggc




gcagctgtggccatgtacgtagtcactctgggaagacagtggttt




tagcagcgtgctcattaactttctctgacctctttgttatacctc




ctgcctctgtggatattagacccagttattacatttcattgttta




ctgattggtctattgttttccagaatgccttgggatgtaatttgc




tccacagtctgatccacttaaattcaggcctctttgcagggctag




ttttagaggccagtctttttttttttttttttttttttttgagac




agagtctcactctgttgcccaggccggaatgtagtggtgcagtct




cagctcactgcagcctcaatctctcaggctcaagcaatcttccca




cctcagcttctcaagtagctaggactacaggtgcacgccaccatg




cctggttaatttttgcattttttatagagatggggttttaccatg




ttgccccggctggtctcaaactcctgagttcaagcaatccaccca




cctcagcctcacaaaaggccgggattacagatatgcaccaccacg




cctggcccctgaggccagtctttaactgtcttcttagctgtctct




ttccctggttctctctggtgaactagctggtaatttgtttatctc




ataaggctaccagattccttgtaaatgcttatccccacaatctcc




attgttttcaagagcatcgttagtctttaatttcctcacgcttca




ttccaaataaagtccattcacttgagaagagttctatattcctat




gacctgtgtctccccatgagcaaaactgctactgctttacagagc




cagggacagtggcccacctctctgtggcatcctgctttatgaaca




agtcactgggctcagatggcagtctctgattttctcaccttgctt




cttctggcatggaaactccaccctacaagtgggaactgagtggaa




gaagagagccccattccccttagccactcttaacaggattagaac




ctctgcaacatgcatttaagaatgggaacaggctgggcacagtgg




ctcacgcctgtaatcctagcactttgggaggtcaaggcaggagga




ttgcttgagccaggagttcaggaccagcctgtgcaacatggtgag




accctcatctctacaagaaatagaaaaattaactggtgggttgtg




tatacctgtaatcccagctactcgggagcctgaagtgggaggatt




gcttgaacctggaggcagaggttgcagtgagtcaagattacacca




ttgcacgccagcctgggcaacagagtgagactctgtctcaaaaaa




aaaaaaaaaaaaagagtaggaacattgaggctgggcatggtggct




catgcctgtaatcctagcactatgggaggccaaggcaggagtatc




acttgacgctaggagttcaagaccaacctgggtaacatagcgaga




ctttgtctctattaaaaaaaaaaaaaaaaaaggtgtaaaaaactt




ttgtaacaagagtgggaaagccgggcacagtggctcacacctgta




atcccagcactttggaaggccaaggcaggcaggcggatcacctga




ggtcaggagtttgagaccagcctggccaacgtggtgaaaccccat




ctctactaaaaaatagaaaaattatctgggcatggtggtgcacac




ctgtagtcccagctactcgggaggctgaggcaggagaatcacttg




aacctacgaggcagaagttgcagtaagccaagatcacgccactgc




actccagcctgggcgacagagcaagactctgtctcaaaaaaaaaa




aaagagtggaaatgttaggatgagaaatgctggcagcctgcccct




ccctgggagatactgtagccctagactggaagttgggggaggagg




gagccctgtgctcttagctgcacccatgtgaagttgtgcttctat




cacatgagctggggacaggagagaaggctcagattatggcttcag




tgccacagaatctcttcatactaaaatttagtagattttcttgaa




taaatgctttttcatttgctgtacacccttaaaagtttctagaaa




tttttaatatttgagttttaaaaaataattttcaacagttacagt




tatttcactaaagagagagtctacagaaccctcttgccaccattg




cagaggttgtctttggcttacgagtttttaaagtatttgtataca




ttttttaagttcaaaataatagaattgtaagtgaacatgctgttt




tcatactgtttttcaagctttatttaatatattgtaaatctaatt




ctattttattaaatagtctgccacagtataatgtctgatgtctcc




ttagaattttattgtatggatgaacaatgattatttaatttccta




ccaattgttgggtgttttttgtttgtttgtttgtttttgagactg




ggtctcactctgtcacccaggctggagtgcaggagtgcggtggaa




tgatcacggctcactgcagcctcaacatcccaaggctcaggtgat




ccttccacctcagcctcgcaagtagctgggagtacaggcacatgc




caccatgcccacctattttttagagatgaagttttgccatcctgc




ccaggctggctcgaactcctggcctcaagcgatctgcacacttcc




gcctcccaaaatgccaggattacaggcgtgagccatcatgcccta




cccccccatcaattgtttgatgtagccatttttcaatgatccgcg




attaagaagcagcactcttttatagccaaaaattacacatatata




aaattttcctttagaaaatgttctaaaaatggaatgtctaactaa




agggttaggcatacattcttaagacttctgatacgcgctgacttg




caggaaagttgtttcagttaacactcctaccagcggcatccgaga




gttaatctgtaaagcttgagacaacttagaaagtgtttcaaatga




ttgtgttgcttaagaaaaaaatcttagcacttccttttgaaaagc




cagtggggctgaaaagacaatgacaagcactttgtccctctgtac




tgtgttttccttgcagCCTGGTGAGACGAGTGGACCGGATGGAGC




ATTCCATCGGCAGCATAGTGTCCAAGATTGACGCCGTGATCGTGA




AGCTAGAGATTATGGAGCGAGCCAAACTGAAGAGGAGGGAGGTGC




TGGGAAGGCTGTTGGATGGGGTGGCCGAGgtcagtagtcatgagc




tgaaaacaccgctgctgagcatggtgttattaatgaaaatatatg




ttgctgacagttgtatttgaagtattgaagaagagtaaaaaaaat




ttacgtttatagaaattcacaatgatgtttccatttactctcatt




ttcagatttttttctctgaaacagaaacactctttctataaaatc




tcttgctataaaacatcaatgtagtcatattgtctaacccttagg




ctgagatgtttatctttctccataactacagataaaattataatc




tggaggtgttactttcttaatactccatatgctaatggtcctgcc




ttcactgcagggtagaattaagtgaaaaattactccagcaactct




gagatttgctattatatgctgtaaatctccagccttaccaaacta




cagattatttggtccctggacttcctaaggcatttccttctactg




cccccaacaccagtttctttttccctttttagGATGAAAGGCTGG




GTCGTGACAGTGAAATCCATAGGGAACAGATGGAACGGCTAGTAC




GTGAAGAGTTGGAACGCTGGGAATCCGATGATGCAGCTTCCCAGA




TCAGTCATGGTTTAGGCACGCCAGTGGGACTAAATGGTCAACCTC




GCCCCAGAAGCTCCCGCCCATCTTCCTCCCAATCTACAGAAGGCA




TGGAAGGTGCAGGTGGAAATGGGAGTTCTAATGTCCACGTATGAT




ATGTGTGTTTCAGTATGTGTGTTTCTAATAAGTGAGGAAGTGGCT




GTCCTGAATTGCTGTAACAAGCACACTATTTATATGCCCTGACCA




CCATAGGATGCTAGTCTTTGTGACCGATTGCTAATCTTCTGCACT




TTAATTTATTTTATATAAACTTTACCCATGGTTCAAAGATTTTTT




TTTCTTTTTCTCATATAAGAAA (SEQ ID NO: 242)






premrna
ACAGTTCAACAATATAGCTGCTGTCACAGTATTTTTTGTCTGGAT



ENST0000
TAAGgtaatttataaatttcatgttctacattttaaataatattt



0512858.1
tctttaaaaaaaatgagttccacaaaatcatggaatacttgaatt




tgaaattcaagtgaccagccaaagctgctcaatatttactttgag




acagggtctcactctgtcacccaggctggagtgcagtggtatgat




tacagctcattgcagcctcgacttcccaggcccaagcgatcctcc




caccttatcctccgaagtcactgggactacaggcatgtgccacca




tacccggctaatttttaaattttttcgtagagacaaggtctcatt




atgttgcccaggctggttttgaactcctgggttcaagcaatcctc




ccacctcagcctcccaaagtgctgggattacaggcatgagccacc




gtgccaggcctcatattttacatataaagtaaactattgagactc




atgtgatcattcctctcactgtcaatgacatacttctgctatctg




aattagtgcaagatcagtccctataggttttgtttaacaaatgca




gtaagaggcctttcagtgtgttagctgggcctggggccccaggct




gctaacagatgagatgaacaggtgaaggaaaaggaacttagagaa




agagagggaaggagcaggtggagggaaggggagagttgctgcact




tggaaatgcttgctagaagggatcgcctcttttccaggtagaggc




tgtaagggaagctttacctagaattaaggttggaacagacactgc




ttccaaatagttccttgctcactattttccttattgtcccaagat




ataatgtgcatttccatgtgtgtgaaaggttatgacatttcatat




acaacaagcctcaattctggagatgcaggaaatttcaataattct




caggcagcagctgccattcggtcaccagcacaggctctgattgtg




ctgtccagacagtaagtactagccacatgtgcctatttaaattca




aatttaaattagttaagcttaaatacaattaaaaacgcagttcct




tggtcctactggccacacattaagtgttcaatggctactgtctag




gacagtggaaatgtagaacatttccatcatcacagaacgttctct




tgaaaagcactgttctggaaggtacttacccgttatgtacttttc




tgagttggtattcatacctagaagacctgaggtttatcacaagac




atagacttggaccaggcgcagtggctcatgcctgtaattccagca




ttttgggaggccgagataggtcccctgagcccaggagtctgatac




cagcctgggcaacatggcaaaacctcatctctactaaaaatacaa




aaattagctgggggtggtggcacgtgcctgtagtcctagctactt




aggaggcttaggcgggaggattgcttgaatccagaaggcggaggg




tgcagtgagccaagatcgcaccgctgcactccagcctgggcaaca




gagtgagaccctgtctcaaaaaaaaaaaaaaaatgcatagacttt




atcctgtatttctcatgctatttatttattgacatgcttgttcaa




gagaaaccatcactaaagcacaaaaccttgatcataacatagtaa




taataatcaaacagcaaaaataataatagtaataagaatgttctg




tggtgatggaaatgttctatattttcattgtcctagacagtagcc




actaaccatgtataggcatggaacacttaacatgtggctagtagg




accaagggactgaatttttaattgtatttaatcttacttaattta




aatttgaatttagatatccacacatgtttggatagcacagtcaga




gcctgtgctggtgaaaggatggcaggtgctgcctgagaattactg




aagtttccttgattattattagtttaataataataatcaagatag




taataataatcaagatagtaataataatcaagatctcagctgggc




acagtggctcacgcactttgggaggctgaggcgggcagatcacct




gacgtcgggtttgagaccagcctggccaacatggtgaaaccctgt




ccctactaaaaatacaaaaaaaaaaaattagctgggtgtggtggc




acgtgcctatgatcccagctacttgggaatctgaggcaggagaat




tgcttgaacccaggaagcagaggttgcggtgagctgaatcatgcc




actgcactccagcctgggcaacagagcagcacttcgtctcaaaaa




aaaaaaaaaaagatctcaaatgaattgggattgtattaagtaatg




attaagtaatgtgattacagcaatcctcaagaaatatttcactgt




ggccagtaacaatgtgtaacagacctttaaacttctagagatttt




cctacaacatgtgtctcaggctgatgtgttttatttagtgcttct




cttggaaatgtcttgcccctcgatactttatcattaaggtcttta




aggcagggatcatgactctacttttttttttttttttttttttgg




gacggagtcttgctctgtcgcccaggctggagtgcagtggcacaa




tcttagctcactgcaacctccgtctcctgggttcacgccattctc




ctgcctcagcctcccgagtagctgggactacaggcggctgccacc




acgcccggctaattttttatatttttagtagagacggggtttcac




cgtgttagccaggatggtctcgatctcctgacctcgtgatccacc




cacctcggcctcccaaagtgctgggattacaggcttgagccacca




cgcccggcctcatgactctacttctaatatctcatcatgtgctct




tccactgaggcttctacttagagctacacaatctgggcagccatc




ctcagtgccttatctaccaacatgctcaatatggctttgcagggt




tcactgtctaccagcagggttcactatctaccaacatgctcaata




tttctttgcagtcaggcagagcaggctttgcagttcaggcagggc




agctggctgcaggccccagctgactcctggggatagaatgccaat




atttcagacattgcagagatttgaggcaatgtacataaagccctc




cacatataactgatgcacaataaatgacagttaatattatgcaac




aagaatttcctggggggttttataattaatttttatttgtgtgaa




gttttttccctcccttttactttaatcctttttggggggaaagca




tcactagtcacagttcacggcagcctcgacctcccaggctcaagc




aaccctcccacctcagcctcctgagtagctgaaaccacaggtgtg




tgccaccacacctgactaatttatttttattttctaatgaaacag




aatcttgccatattgcccaggctgatcttaaactcatgggctcaa




gcgatcctcctgcctcagtcttccaaagtgccgggattatagatg




tgagccactgcactcagcctttttttttttttttttaattgtaga




tagcataaaacctactgttttaaccatgcttaagtgtacaattca




gtggcattaagtacattcacagtgttgtgcagccatcgccattat




gctgcattattttcagaactttttcattattctaaactgaaactt




tgtatccattgaacactaactcccaattcccccagtccctggtaa




cctccattctactttctgtcactgtgagtttgactattctaagta




cctaatttaagtggaatcatacagtatttgtccttttgtgtcagg




cttatttcactttgcatgatgttttcaaggttcatccatgttgta




acctgtcagaatttaatttcttttcaggatgaaataatgttttat




tatatacagtcacaccattttgtttatccattcatctattgatgt




cttctctctcttacagCTCTTCAAATTCATCAATTTTAACAGGAC




CATGAGCCAGCTCTCGACAACCATGTCTCGATGTGCCAAAGACCT




GTTTGGCTTTGCTATTATGTTCTTCATTATTTTCCTAGCGTATGC




TCAGTTGGCATACCTTGTCTTTGGCACTCAGGTCGATGACTTCAG




TACTTTCCAAGAGTGTATgtaagtatatatgaaattaagaagaaa




aatttaatcagagttgtcactgcttctcaagaataaatcttcata




tgaggttgctatatgaccaccaattatttaaaaccagttatttta




agtaagaattaattaccttttcccaaaacattgatctacccatgc




aaagaagacaatgcatcctgaaatgctgatgcttaagatagcagc




ccaaagtagtaaaatacagttaacagacataggaaaccaacactg




ttctgaagactgagtttttctttgcaccaaatgcagatggtagct




tctagaaggctgtttgcctatattcttactcctgttgaatattgt




tgccatatatttagaacttcaagttattttctaaggaaaaaaaca




agatatttctaatattctaaggtaaactcagaccagtacaagaat




tttcagtttttttttccaaagatcccaaatgtgaaataaaacaac




aaaaagcagccagtgtcagatttctatgccatttagaaaggagtt




agtttaaaaaggaatggaagtaatagggttttgtgcatagatatc




tcgaattaatattgctgttgataaaagtgattttgctaagaccca




gcactgacaacacttggccactttgatcccattttaagtacttgt




cagaatattggatctttgaactcaaaccattttgggtttttgggg




tttttttgttttgtttttttttgttttgttttgtttttgaggcac




ggtcttgctctgttgcccaggctggagtgcagtggtgcaatcata




gctcactgcagccttgaactcctaggctcaagcaatcctgctgcc




tcagcctgctgagtagctgggactacaagtgtatgccaccatgcc




tggccaatttttaactttttttatgagaagggatctcactgtgta




gcccagggtggtattgaactccagggcctcacactgtcctctcac




ctcagcttccaaaagtactgggattacaggcatgagccaccacac




caggccctgttgttttttttttaaagaaatttttaactttagacc




gagggtgactgttgtcaaggtttagggttaagatgttttacctag




attatgtgttgaaatgttatagccaattgctttataagttattga




ataataattgtattttctttttttttttttttttgagatggagtc




tcgttccatcgcccaagctagagtgcagcggtgtaatctcagctc




actgcaacctctgcctcccgggttcaagcgattctcctgcctcag




cctcccgaatagctgagattatgggcgcacgccaccaagcccagc




taatttttgtatttttagtagagacggggtttcactatattggcc




aggctgttctcgaactcctgacctcgtgatccgcccgcctcggcc




tcccaaagtgctgggattacagacgtgatccaccgtgcccagctt




gtgttttctttttaaccaaatggaaataacctctgtagcatgaaa




gcattttattattattgcagaaggctttaattgctgatacaagta




gcaagactttgtaaatgggattgacaattttctgttattcggcag




ctacctatactgctaaaaggtccaaaaataatgaaatcatcttta




agaaatgttgcatcaactagtggacattctttgtttttgtattgt




ggtgttttgttttatttttatagcttcactcaattccgtatcatt




ttgggcgatatcaactttgcagagattgaggaagctaatcgagtt




ttgggaccaatttatttcactacatttgtgttctttatgttcttc




attcttttggtatgtacatttttatttatagtgaggttcaattta




aacttcgtaaatccttgtcttctcttttctctcacactttatgtc




ctatcaattttaaataaagacccaggaagtagaaaaaagtgtgga




tgttggaaaacttattttccttttattaattcacagttttgagac




tcatatcaaatgtcttttctgtggtctttcattgatccatgtata




tgtgtctattcaatgcaaaaaaaattagatctcttccatggtctt




tcatttctctctctatatatgtatctattccatgcaaaaaagaaa




ttagatcaagtacaaatttataaagatacctaaaatagtgctttg




cctaaaaagtagaatatgcttacatgctttttaaactcatatgtc




agcactttcgtagtcacttgctagcatgacttttctctctttctt




cttttctttttaaaaaataagaacggaaaagcaagctagatctaa




gatgtcgagtaatagttgagtgaatcattgcatgtcaaaattagg




atattctgttttaaattatttatatcccattcatctagagactgc




ctacagagaatattcaaataattaagtttaaaactaaatgtaaca




atgaatggaaattgcattaaaattattttcaaaaataattttttt




attctcttgatttggtacaaatgaacatttttaatgtttttgccc




taagtcaattaagtttttttaaggtgttttgttctttttcttaac




atttatatattcaattgtctactgagaaggtgttaagccagctta




atttaggcaatatttttcatctaaacactaacagtcatcttaaga




acaattttcttaagaaaataacattttttccatttcagtaaattg




tgtaaagatcccttgaggaaggttaagtgatcacattttcagtaa




ttcagtgtaataactctaaagtcagtccaggtattactggttaag




tatatggtatttattgattgggtattagatgtactgtattaattt




cctgtttaaaaaaaattttttttccggggagacacagcctctggt




gtaaaacaaaggtgtgttccctagctgtactttaacaggactgaa




aaggtcaggaatatcattcaagttcatatgtatcttgctgtatgc




atggtttatggctcatttttaaacttacacctcttaagcttcttc




ttcctatcatatattaaaacaatggagagaagaataagcctctgt




tactctaccattgatagtacttcggattctagagtacctgaatct




ctactaagaaggcaaaaaccaggaattgagagtcctgcacctgac




ccttcagttgatctcaggccacctagttttctccgtttatcaatc




tgccaaacaaggatggatagagtcgtggcaactggaaaggctcaa




atgtggaattgtttgaatgtggtcctttagtaggcagccatctta




ccagatctagagtattcagtcatcttaccagatcagtcaccagaa




catgaaaagaagctcttagtttctatctttatactaaaattgttt




ttttgtacgactgcacaaaaaagaattgctctccttgcacctccc




agagatataggtggatagatacatacatacgtacatacatacata




catacatacatacatacatacatagacacatacatagatagaagt




ctactttcaatacaaacctgtcttttaaggaaatgacaagctgag




catagggttggccacctttctgagccgattgcctggtattagttt




attgcccctgtttagcaagaaggcacagtgttaagaagtggctca




gctgaaccaggataaccccactcttcccccacatcaacaggaaag




acatcctggtgcagatgtccatctgataattcagggaacctcggg




agacaggatggagaggagggtgagctagcttcctcttcccacacc




ttcaagagcctttctcaagcactttctattttttgaaatctcttt




agaggtcccagactttgatctgtttcaattaaggtattggcaggc




attagttaacagccacttggaagcaaaaatagaacattagatccc




tgagttggaagagagaaggtagaaggtgttacttggactgcaatt




atctgcacttggaattgagcatttagtcaaaaacttatatgtatt




ctatattctattctcatttctgctacagaattgtaaacaatattc




ttccttaatacagaaattcatagcccactaaaataagagcgttct




catttgttcatttctcaatcatttaataagtatttactaagccac




tatatccatatatatatatatatcatatatactgtataatacaca




ctgtagtgttttttgtggattgtgtactatgaggtagtatgttag




atactgccagtactggggtaaggaaaacagcctgattaggccctt




acgaagattcctcagacttgtggggaaaacagacattatcaaata




gaaatacttgcaaaccacagttatgtgttaaaaaggaaaaacaaa




gtaaaaaaaaagttggtgggggggaacctgatctcctggatacag




tgcttcgagaaagtttgttgttggaaatgcaaaccattactactg




tggaagggaaaggtcagaaaaatgaactcaccattactgaatagt




aatagtagctatcaattaggtggcacttacctgcatcaggacctg




tcctgagcactttacatagattgtctcactaaccagcccaacaaa




tatgtaagggagatactattatttttcccattttattaatgtaaa




acaattaaataattctttaaaattagacttagaaaagtggagcaa




caatcttagcagtgctaggactgaaatccaagtttgcttgactcc




aaagtctatctctcttccagaaactttttctttactatctgccta




gtaggcctgctgtattcctatttgcaacagccttttaaactcttt




aaaaatgtgtcctgtaaatttcatatatgattatacaaaaaaact




tggaataagcatacaattctacttatctgtgttaactgttgaaat




ttgaagagctttttggaattctatacccttcagtagtgtatgtaa




aagtttctaaatatagagaacatagataagcaaaaataatattaa




ataaaataatcgcaccattagtaggtaaatatactaatattttgt




tgtattttattcttgtatgttttcacaaagtatatcataaaattt




ttcctgtggcatgacttaacggagaaaataatcttcccaaaacat




gtggcagcaaaactgttaatttattacatcaggctgggcacagtg




gctcacgcttgcaatcccagcactttgggaagccgaggcgggcag




atcacttgaggccaggagttcgagaccagcctggccaacgtggtg




aaacactgtctctactaaaaatacaacagttagccaggtgtagtg




gcacatgcctgtaatcccagctactcaggaggctgagactcaaga




attgcttgaacccaggaggcagaggttgcagtaagctgaggtcgc




gcccctgcactccagcctgggcaacacagtgagactctgtctcaa




aaaaaaaaatttttttttaaataaataaataataaatttatgtct




tcataaagcactcagattaggaaaaaaaggataaacaaaaaggca




tgtgtcatttttttgattgataattccaaattatgtttcttcctt




taatttttgccctcctttcatttacaaacagAATATGTTTTTGGC




TATCATCAATGATACTTACTCTGAAGTGAAATCTGACTTGGCACA




GCAGAAAGCTGAAATGGAACTCTCAGATCTTATCAGAAAGgtagg




aaaaaccttaattctcagaattcttctgtttctgacataaaatga




gcattgtttcacccagattttcaaatcaacattgatccattgaaa




ttgtttgaaataaagaatacattgctatatttcaggaataattta




aatgttccctatcttggagtcttgatggatatactgctatcttga




attttaattctgggaatccttttatgccctggaattaaattctca




acaatcttttgacactttaagagctgagctgaaggttcatcacct




tcattattttgacatctcctgtagctggctctcacttcaggatcc




tgagttgagaataaactagaagggaagattatataaagggatttc




cacctcttctgtctcaattaccattttaaaaaaataaaaagtttt




agaggaaaacacttagtagttcaccctttacccttgaccttccac




ggcagttttaaaataagcaaaggaaaagattcatgaattcaggcc




atagcctggggcctgagaacttttacttatgcaccttctcaggaa




gggtttcattgttaaatagaagggcaggacaggaaagttgggcct




ctttgttcttctcaatgtaacttctttatttggtttaaagtataa




aatgtatacaacaacaaataaccacatttaaaatacacagtttgt




ttcccaacatcattttgctaagtcatagtggctccttaactgtaa




tttttttttttattagtccaagccttaggattatgttatctgtga




tatatgttataatagaaaacttaagcctcttaaaacaaagtcctt




gggatgggacctaagattcacattatcttgattccgcataacagt




tgcttacattttagcaaatctccagtgtgtatgcaagcactcctc




acttggcacaattctgatacacacaaactttggttaccccagttt




tgttatgtaacaccaccttcaacaacacagttcaaatttcagtta




tcatagtatattaactctgagtaacagcacaaagtacaaactcca




ctgctagctcttcagtgtatagatcagttacctgagtaacagatg




tgcaggctgagcaggctcactggtcagtcatgacactattttcag




tctgttactaattggtcactgagcatctgctatccaattcacaaa




caaagaaagcatgtagtgttgcttccttgtgttccagtaataagc




ccatgtgacattttacaaaaatggataattgaaaaagagaatggg




tgcagtggctcacgcatgttgggaggccaaggcggatggatcacc




tgaggtcaggagttcgaaaccagcctggccaacatggtgaaaccc




catctctactaaaaatacaaaattagctgagtgtggcgacagatg




cctgtaatcccagctactggggaggctgaggcaggagaatcgctt




gcacctaggaggcggaggttgcagtgagccgagatcgtgccattg




cactccagcctgggtaacaagagcgaaactccgtctcaaaaaaaa




aaaagaaaagaaaagaaaagaaaaagagaatgggctagcaaagaa




atgaaaaatggtaacactggaagtgaaaatcaaaacagagtaatg




gatttatagaagaaatagctgagtgaagaagaaataggagtgttg




acactgcgatcattcaagagatccagatatggagccagaagaact




tagggcaggtctatcaacttaaatgaggaaaatagctgtgataaa




acagatgaagatgtcttgaggaaatgatgcctgcaaaaaacttca




cattaagggaagtcttattagagatatttcacaataatgaaagta




caaaagaaaaaatgttggggctggacatggtggcttactcctgta




atcccagcactttgagaggccaaggtgggtggatcacttgaggcc




aggaagtcgagacaagcctgatcaacatgatgaaaccccgtctct




attaaaaatacaaaaattagccagacatgatggtgcacacctgta




attccagctactcaagtggctgaggcacgagaattgcttgaacca




gggaggcggaggttgcagtaagctgagattgcaccactgcaatcc




agccaggtgacagggtaagactgtgtctcaaaaataaataaaaga




aaaatatgttggaagctcatccacatttaagaaggaatatgacaa




ttcactaatgcatagaaaagaagttcactccacattgtaaagtgt




acagtgtaatattatacaatgaaaacaaggcaagtgctgtttaaa




ctactctggatacattttttacaaagaaataaaacactttagttt




ttaatgtttctaatgttttacattttagtgtattaaatcaatatt




agttttcttcttttttaagctccctatacatttataactgacact




aagggagtgtttaatgttttgattaaaagttgtaaagatcacaga




acaattgtaattcttcccactgattattcagatcattttgcacaa




tttcagcttgcatggtcacttacagtgccgcactatgtgcaaagc




aaggtcaggtctaaagttcgctaatgaaaaatcctcggccagggg




cagtggctcacccctgtaatcctagcactttggaaggcgaggcag




gcagatcgcttgagctcaggagttcaacaccagcctgggcaacat




ggtgagaccctgtctctacaaaaaaaaaaaaatagcaaggcgtgg




tgactcacacctgtagtcccagctacttgttgggggctgagttgg




gaaaatcacttgagctcaggaggtcgaggctgcagtgagccagaa




tcacgccactgcccttctgcctgggtgacagagtaagatcctgtc




tcaaaaaaagggaaaatcctcatctacatttcactgggttttttg




tttgtttgtttgtttgtttatacacacttaaggaaattactgtct




agaagatagataatataaaaaataaaaatgcaattcatgattcgg




gtttcttggtattcctaagaactgttgcacagtactttatgctct




gaggcagacagctatagcatatatagtaatttttgtttctatcac




ataaacttgaatacacatatgagtaaaagacctttagttcttcat




gacttactgaaagaccctgactttttccatgtaactgttccacaa




gtgttttatggaaaactggatacattaattcttcattcatccagc




acgtacttgttgaatggccaatgtacaccaggtttgtagtagtta




ctactgtgaatggaaagtaaaacagatgcaaaaggagaatacact




aaaccaagtcttttattttttctctctctgatagGGCTACCATAA




AGCTTTGGTCAAACTAAAACTGAAAAAAAATACCGTGGATGACAT




TTCAGAGAGTCTGCGGCAAGGAGGAGGCAAGTTAAACTTTGACGA




ACTTCGACAAGATCTCAAAGGGTGAGAATCATGCTTCCTGAGGTT




ACTGAAAATTCCTGCTTCTAAAGATAAATTCCTGGTGATAAGAGT




ATTTCTAGCCCAAGGGCTCATACAGATACTTTTTTTTTTTTTTTC




CAGAGGCAGGTATCTTTCTGGAACATGTTATAAGAGGAAAACTTG




CCCCCATTTGGTGATTTCTCCTTTCCTCCTGCATTTTGATGTCTC




TGTGTTGAGGGTGAACTGGGTACAAGGAATGATTTTTATCTGTAT




CCTCTCTCTAATTTCAGGAAGGGCCATACTGATGCAGAGATTGAG




GCAATATTCACAAAGTACGACCAAGATGGAGACCAAGAACTGACC




GAACATGAACATCAGCAGATGAGAGACGACTTGGAGAAAGAGAGG




gtgggtctggtttaggagaaccggatttgatttggtacctacaac




accacagatgtatcaaacactatagaagtagtgggttattgagtc




tcttgcccattccccaccacactctctctctctctcagtcggttt




atgtgttagtaccctgtttattccagaaagaatatataacacaat




tatgtataaaaatgggtggttagcatgatataaaaacgtcaaaat




gaaaagcaagcaaaacaaaagtaaaaataatggattattaatgaa




gcttaaaaatgcattcataaaaacacatatgcttattaagattgg




gctacaaattgggccctaagcttgctggtaatcagcttgaaaaga




gaagcctgattagctgcagagtccacaatgtccgtgagagtgaag




aaaacaaaaaatgacttaccaagagatgtgaaattattctggtta




gttagtggctatttaaattgttaacttttttttcttttttttttt




tttttgagatggagtcttgctctgcctcccaggctggagtgcagt




ggcacaatcgcgactcactgcaacctccacctcccgggttcaagc




gattctcttgcctcagcctcccaagtagctaggactacaggcaca




tgccatcatgcccggctaatttttgtatttgtagtagatatgggg




tttcaccatgttggtctcaaactcctgactgcaagcaatctgccc




accttggcctcccaaagtggtgggattacaggcagtagccaccgt




gcctttcctaaattattaacatttataataaaattaacagccgcc




ttccatttgaatactttttacaaaatagttaaaaataaacataag




tgggcttttatagtcagaaaaaaaaattcaaagctttaccattaa




ctttcaaaaataaatggttagacagcaacaacaaaaatctgtggt




aactgaggtacagagaacacagatgaatgttattacaaaagccac




tttcctatgagaagtctaggacagtggtttctaaatgccactcca




cagacagtgctagtaggtgacagacttctccagtcacagtgaaat




ttaagcataaagaaaatgaggaaaatttttacaaggctctattta




gacaaagttcttattctgacattacatctttcctactttggagct




gttgaatgtattatcttttatgaaaagaaggcgatccaggttgag




catccctaacccaaatatgtgagtctgaaatgctccaaaacctaa




aacttcttgagcacaaacatgatagtcaaaggtcatgcttaaagg




aaatgctgtcattggagcagtttggattttgggttttcagattag




ggatgctgaaccagtaagtataatgcaaacattccaaaatatttt




tgaaaatcccaaatccaaaacacttctgatcccaagtatttcaaa




taagggatactcaacctgtaatatatttcttcatttctttattta




ttttattattattttaagatggctcatggcccactgcagcctcaa




actcctaggctcaagtgatcttccgacctcaacctcccaggtagc




tcaggtagctgggactgcaggcatgcatcaccatgcctggctaat




tttttaaaaaattttttgtggaggcagagtctcaccttgctgccc




aggccagtctcaaactcctggcttcaagcagtactcctgcctcag




cctcccaaagtattaggattacaggtgtgaccactatgcctggcc




catatttcttcatttagttttttctttgcctgctgtgtttttaat




gttctttcttgttcaaacaaaaagttggctattccttgctgttag




ttaaatttgccaatctatgaaactgaaaaatgcaggagtcccagc




ctggtgttaaatacaaagaaatcccaggtaaatggcatgcaccca




gttcctgcttgcccaagtccttggtgaggcttctgtggggtctca




gtgttctgctcctcactcagtgaccccttgttcttcagGAGGACC




TGGATTTGGATCACAGTTCTTTACCACGTCCCATGAGCAGCCGAA




GTTTCCCTCGAAGCCTGGATGACTCTGAGGAGGATGACGATGAAG




ATAGCGGACATAGCTCCAGAAGGAGGGGAAGCATTTCTAGTGGCG




TTTCTTACGAAGAGTTTCAAGTgtaagtataaaggaattggcaga




atttgcgttgacaagagtccacatgagaccaggcagttccctcat




ctctctgaattcactcctttccattactaatcatccagcttttaa




aaataacttatactggccagacgcagtggctcatgcctgtaatcc




caccactttgggaggccaaagcaggcaggtcatgaggtcagaagt




tcgagacgagcctggccaacatagtgaaaccccatctctattaaa




aatacaaaaaattagctgggcatggtggtgggcacctgtaatcct




agctacttgggaggctgaggcaagagaattgcttgaacccgggag




gcggaggttacagagagccgagatggctccactgcacaccagcct




gggcgacagtgcaagactctgtctcaaaaaaaaaaaaacttgtca




attggtgttttgtttcttacataatatgtttactataaaaattag




caaataagagcaaaagaaaacattaacatttcacatatttctacc




aatgaaaaatgtttattaatatatcagtgtttgtgtctctatttg




catgtgtttatcaatgtttctatatatttttatggcctaacatat




ggttcgtcctgaagaatgttccttgtgcatttgagaagaatgaat




attctgctgttcaagtgttctgtagatgtttgttaggtctagttt




gtttacagttttattcaggtctcccatttcctggttgatcttaga




tgtgcctagatgtggtattcacgtttgaaagtggggtattaaagt




ctccaagtattattagttggagttcatcccttcaattctgtaagg




ttttgctttgtgtattttggaactctgttgttgggtgcatacata




tttataactagtatattttcctaatatattgaccctattttctct




ctcaacttaatgaggctaaagaaaaaaaagaattgaccctgtttt




cattacaagatgttatccactttatctctagtaaaattctttgtt




ttaagtattttttgtttgatattactgtaaccactccagctttct




tttggttgctgtttgcatgataaatctttttccatccttttactt




taaacttatttatatctttcagtctgaagtatgtctctcctgtag




acagcatataattggatcttatctttttatccagtttgacaattt




ctgtttttgattagattgcttaatccattcatttaatgttatcat




tgatgtagttgatttctgtctgctattttattttttgttttctag




cttacttttttttgttcctctttcactgctttcttgtacattaag




tgaatattttcaagtataacatttaaatttttttaatgatttttc




attttttttagtcaggagttgctctaagacttagtttatacaatt




aagttatgaaaaattacttcagatatatattaactgaatccagtg




agatatagaaatcatttctatttagcttttttcctcttccctctt




tttgtgctatatattcatctatctatatgtatatatagtcatcta




catatgttgcaaatcacattgttagaacaatgttacatttttata




acacactgtgtaatatatagtatataattttatatctcttaatga




agctgagagaagaggaagtatatatttataaatgtgtatattaac




ctacttttttaccatttctaattctcttcttttgctcctctggat




tcaagttatcatctgtcgtcattctctttctccgatacagctttg




ctactgcctacctcctattattgtcaaatatattacatttctatt




atagaccttcagatccaattatgtacatatttttacacaactgct




ttttaaatcagttaaggaacaaaaggagaaatgtacatatatact




atattttatacctacacagttatctttaccagtgttctttgcctt




ttcatgtggattctgattactatctggagtcacttgctttcagca




taaagaatttcctttagtattttttgtaaagcaggtttgctagca




atgaattctttcattttttgtttatctgagaatgtttttctttct




ccttcatttcctctggcttgtattgtttctgatgagaagacaggt




gctaattttactgtggtccccttgtacatgatgactcaattttct




ctcaccactttcaagatttttttgcttttgtctttcattattttt




actgtgatatgtctgggtataaatctctgagttcatcctacttag




aaagtgttttttctgcttctttcactttctcttctcctttgggac




ccgcattatgcatatgcttaggggtatcacatatttctcttaggc




tctgttcgtcgtcattttttttccctctctgttcctcagagtgca




tagtctgtattgatgtatcttcaagttcactgacttgttcttctg




tcagcttgcttaaatctctgttgagctcctctagttatttattta




tttatttatttattttatatatatatatatatatatatatataga




gagagagagagagagagagagagaaagagagagagagagagacag




ggagacagggtctcactccatcacccaggctggagtacagtggtg




taatcatggctctctacagcctgaacacctgggctcaaatgatcc




tcctgcctcaacctcccaagtagctaggactatgggcacatgctg




ccatgcctggctaatttttaaaaaaaaatttgtagagatggcatc




ttgttatgttgcccaggttggtctcaaactcccggcctcaagtga




tccttccgcctcggcctcccaaagtgctggggtcacaggtatgag




ccaccgcacttagcctgaattttttatttattatacttttcaact




ccagaatttctatttggttctttttagcaatctctgtctctttat




tctgtatttgatgatatcctgtatttgatgagacaatgtcatcat




aacttccttttttttttaagagatagggtctctctctgtcaccca




ggctagagtgcagtggcatgatcctagctcactgcagcctcgaac




tcctgaactcaagcaatcctcccacctcagcctcctaagtacctg




acactacaggcatgagccactgtacccagctaatttttatttttt




gtagagatggggtctaagttgcccaggctggtctcaaactcctgg




gctcaagtgatcctccctgctcaggctcccaaagtgctgggatta




caggcatgaaccactggacccagcctcctttatttctttaaccat




ggtggggttttttattatttgtttgtttgttttaacctgtttgaa




tatatttataataggtaccttcaggtctttgtctgctaagtctga




catctgggccctctcaaagacagtttcagttgtcttttttttttt




cttcttgtgtatgggaacattttcctgtttttttgttttgttttt




tgttgttttgttttgttgttgttgttgttgttaaagattggacat




gttagataatatattgtaggaactctggctagtgattccctttcc




tccccaggacttgtttttatttctctttgcttgtttactttttca




tacagtctgtttccccacagtgtctgcctctgactttattcctta




gagggcgcagctgtggccatgtacgtagtcactctgggaagacag




tggttttagcagcgtgctcattaactttctctgacctctttgtta




tacctcctgcctctgtggatattagacccagttattacatttcat




tgtttactgattggtctattgttttccagaatgccttgggatgta




atttgctccacagtctgatccacttaaattcaggcctctttgcag




ggctagttttagaggccagtctttttttttttttttttttttttt




tgagacagagtctcactctgttgcccaggccggaatgtagtggtg




cagtctcagctcactgcagcctcaatctctcaggctcaagcaatc




ttcccacctcagcttctcaagtagctaggactacaggtgcacgcc




accatgcctggttaatttttgcattttttatagagatggggtttt




accatgttgccccggctggtctcaaactcctgagttcaagcaatc




cacccacctcagcctcacaaaaggccgggattacagatatgcacc




accacgcctggcccctgaggccagtctttaactgtcttcttagct




gtctctttccctggttctctctggtgaactagctggtaatttgtt




tatctcataaggctaccagattccttgtaaatgcttatccccaca




atctccattgttttcaagagcatcgttagtctttaatttcctcac




gcttcattccaaataaagtccattcacttgagaagagttctatat




tcctatgacctgtgtctccccatgagcaaaactgctactgcttta




cagagccagggacagtggcccacctctctgtggcatcctgcttta




tgaacaagtcactgggctcagatggcagtctctgattttctcacc




ttgcttcttctggcatggaaactccaccctacaagtgggaactga




gtggaagaagagagccccattccccttagccactcttaacaggat




tagaacctctgcaacatgcatttaagaatgggaacaggctgggca




cagtggctcacgcctgtaatcctagcactttgggaggtcaaggca




ggaggattgcttgagccaggagttcaggaccagcctgtgcaacat




ggtgagaccctcatctctacaagaaatagaaaaattaactggtgg




gttgtgtatacctgtaatcccagctactcgggagcctgaagggga




ggattgcttgaacctggaggcagaggttgcagtgagtcaagatta




caccattgcacgccagcctgggcaacagagtgagactctgtctca




aaaaaaaaaaaaaaaaaagagtaggaacattgaggctgggcatgg




tggctcatgcctgtaatcctagcactatgggaggccaaggcagga




gtatcacttgacgctaggagttcaagaccaacctgggtaacatag




cgagactttgtctctattaaaaaaaaaaaaaaaaaaggtgtaaaa




aacttttgtaacaagagtgggaaagccgggcacagtggctcacac




ctgtaatcccagcactttggaaggccaaggcaggcaggcggatca




cctgaggtcaggagtttgagaccagcctggccaacgtggtgaaac




cccatctctactaaaaaatagaaaaattatctgggcatggtggtg




cacacctgtagtcccagctactcgggaggctgaggcaggagaatc




acttgaacctacgaggcagaagttgcagtaagccaagatcacgcc




actgcactccagcctgggcgacagagcaagactctgtctcaaaaa




aaaaaaaagagtggaaatgttaggatgagaaatgctggcagcctg




cccctccctgggagatactgtagccctagactggaagttggggga




ggagggagccctgtgctcttagctgcacccatgtgaagttgtgct




tctatcacatgagctggggacaggagagaaggctcagattatggc




ttcagtgccacagaatctcttcatactaaaatttagtagattttc




ttgaataaatgctttttcatttgctgtacacccttaaaagtttct




agaaatttttaatatttgagttttaaaaaataattttcaacagtt




acagttatttcactaaagagagagtctacagaaccctcttgccac




cattgcagaggttgtctttggcttacgagtttttaaagtatttgt




atacattttttaagttcaaaataatagaattgtaagtgaacatgc




tgttttcatactgtttttcaagctttatttaatatattgtaaatc




taattctattttattaaatagtctgccacagtataatgtctgatg




tctccttagaattttattgtatggatgaacaatgattatttaatt




tcctaccaattgttgggtgttttttgtttgtttgtttgtttttga




gactgggtctcactctgtcacccaggctggagtgcaggagtgcgg




tggaatgatcacggctcactgcagcctcaacatcccaaggctcag




gtgatccttccacctcagcctcgcaagtagctgggagtacaggca




catgccaccatgcccacctattttttagagatgaagttttgccat




cctgcccaggctggctcgaactcctggcctcaagcgatctgcaca




cttccgcctcccaaaatgccaggattacaggcgtgagccatcatg




ccctacccccccatcaattgtttgatgtagccatttttcaatgat




ccgcgattaagaagcagcactcttttatagccaaaaattacacat




atataaaattttcctttagaaaatgttctaaaaatggaatgtcta




actaaagggttaggcatacattcttaagacttctgatacgcgctg




acttgcaggaaagttgtttcagttaacactcctaccagcggcatc




cgagagttaatctgtaaagcttgagacaacttagaaagtgtttca




aatgattgtgttgcttaagaaaaaaatcttagcacttccttttga




aaagccagtggggctgaaaagacaatgacaagcactttgtccctc




tgtactgtgttttccttgcagCCTGGTGAGACGAGTGGACCGGAT




GGAGCATTCCATCGGCAGCATAGTGTCCAAGATTGACGCCGTGAT




CGTGAAGCTAGAGATTATGGAGCGAGCCAAACTGAAGAGGAGGGA




GGTGCTGGGAAGGCTGTTGGATGGGGTGGCCGAGgtcagtagtca




tgagctgaaaacaccgctgctgagcatggtgttattaatgaaaat




atatgttgctgacagttgtatttgaagtattgaagaagagtaaaa




aaaatttacgtttatagaaattcacaatgatgtttccatttactc




tcattttcagatttttttctctgaaacagaaacactctttctata




aaatctcttgctataaaacatcaatgtagtcatattgtctaaccc




ttaggctgagatgtttatctttctccataactacagataaaatta




taatctggaggtgttactttcttaatactccatatgctaatggtc




ctgccttcactgcagggtagaattaagtgaaaaattactccagca




actctgagatttgctattatatgctgtaaatctccagccttacca




aactacagattatttggtccctggacttcctaaggcatttcctta




ctgcccccaacaccagtttctttttcccttttttcagGATGAAAG




GCTGGGTCGTGACAGTGAAATCCATAGGGAACAGATGGAACGGCT




AGTACGTGAAGAGTTGGAACGCTGGGAATCCGATGATGCAGCTTC




CCAGATCAGTCATGGTTTAGGCACGCCAGTGGGACTAAATGGTCA




ACCTCGCCCCAGAAGCTCCCGCCCATCTTCCTCCCAATCTACAGA




AGGCATGGAAGGTGCAGGTGGAAATGGGAGTTCTAATGTCCACGT




ATGATATGTGTGTTTCAGTATGTGTGTTTCTAATAAGTGAGGAAG




TGGCTGTCCTGAATTGCTGTAACAAGCACACTATTTATATGCCCT




GACCACCATAGGATGCTAGTCTTTGTGACCGATTGCTAATCTTCT




GCACTTTAATTTATTTTATATAAACTTTACCCATGGTT




(SEQ ID NO: 243)





transcript
transcript
AGGCGGCGGCGGGCGCCGGGAAGAAAGGAACATGGCTCCTGAG



ENST0000
GCGCACAGCGCCGAGCGCGGCGCCGCGCACCCGCGCGCCGGAC



0237596.7
GCCAGTGACCGCGATGGTGAACTCCAGTCGCGTGCAGCCTCAGC




AGCCCGGGGACGCCAAGCGGCCGCCCGCGCCCCGCGCGCCGGA




CCCGGGCCGGCTGATGGCTGGCTGCGCGGCCGTGGGCGCCAGCC




TCGCCGCCCCGGGCGGCCTCTGCGAGCAGCGGGGCCTGGAGATC




GAGATGCAGCGCATCCGGCAGGCGGCCGCGCGGGACCCCCCGG




CCGGAGCCGCGGCCTCCCCTTCTCCTCCGCTCTCGTCGTGCTCC




CGGCAGGCGTGGAGCCGCGATAACCCCGGCTTCGAGGCCGAGGA




GGAGGAGGAGGAGGTGGAAGGGGAAGAAGGCGGAATGGTGGT




GGAGATGGACGTAGAGTGGCGCCCGGGCAGCCGGAGGTCGGCC




GCCTCCTCGGCCGTGAGCTCCGTGGGCGCGCGGAGCCGGGGGCT




TGGGGGCTACCACGGCGCGGGCCACCCGAGCGGGAGGCGGCGC




CGGCGAGAGGACCAGGGCCCGCCGTGCCCCAGCCCAGTCGGCG




GCGGGGACCCGCTGCATCGCCACCTCCCCCTGGAAGGGCAGCCG




CCCCGAGTGGCCTGGGCGGAGAGGCTGGTTCGCGGGCTGCGAGG




TCTCTGGGGAACAAGACTCATGGAGGAAAGCAGCACTAACCGA




GAGAAATACCTTAAAAGTGTTTTACGGGAACTGGTCACATACCT




CCTTTTTCTCATAGTCTTGTGCATCTTGACCTACGGCATGATGA




GCTCCAATGTGTACTACTACACCCGGATGATGTCACAGCTCTTC




CTAGACACCCCCGTGTCCAAAACGGAGAAAACTAACTTTAAAAC




TCTGTCTTCCATGGAAGACTTCTGGAAGTTCACAGAAGGCTCCT




TATTGGATGGGCTGTACTGGAAGATGCAGCCCAGCAACCAGACT




GAAGCTGACAACCGAAGTTTCATCTTCTATGAGAACCTGCTGTT




AGGGGTTCCACGAATACGGCAACTCCGAGTCAGAAATGGATCCT




GCTCTATCCCCCAGGACTTGAGAGATGAAATTAAAGAGTGCTAT




CCGAAGATGTCTACTCTGTCAGTAGTGAAGATAGGGCTCCCTTT




GGGCCATGGAACCGCTTGGATCTACACAAGTGAAAAAGACTTGA




ATGGTAGTAGCCACTGGGGAATCATTGCAACTTATAGTGGAGCT




GGCTATTATCTGGATTTGTCAAGAACAAGAGAGGAAACAGCTGC




ACAAGTTGCTAGCCTCAAGAAAAATGTCTGGCTGGACCGAGGAA




CCAGGGCAACTTTTATTGACTTCTCAGTGTACAACGCCAACATT




AACCTGTTCTGTGTGGTCAGGTTATTGGTTGAATTCCCAGCAAC




AGGTGGTGTGATTCCATCTTGGCAATTTCAGCCTTTAAAGCTGA




TCCGATATGTCACAACTTTTGATTTCTTCCTGGCAGCCTGTGAG




ATTATCTTTTGTTTCTTTATCTTTTACTATGTGGTGGAAGAGAT




ATTGGAAATTCGCATTCACAAACTACACTATTTCAGGAGTTTCT




GGAATTGTCTGGATGTTGTGATCGTTGTGCTGTCAGTGGTAGCT




ATAGGAATTAACATATACAGAACATCAAATGTGGAGGTGCTACT




ACAGTTTCTGGAAGATCAAAATACTTTCCCCAACTTTGAGCATC




TGGCATATTGGCAGATACAGTTCAACAATATAGCTGCTGTCACA




GTATTTTTTGTCTGGATTAAGCTCTTCAAATTCATCAATTTTAA




CAGGACCATGAGCCAGCTCTCGACAACCATGTCTCGATGTGCCA




AAGACCTGTTTGGCTTTGCTATTATGTTCTTCATTATTTTCCTA




GCGTATGCTCAGTTGGCATACCTTGTCTTTGGCACTCAGGTCGA




TGACTTCAGTACTTTCCAAGAGTGTATCTTCACTCAATTCCGTA




TCATTTTGGGCGATATCAACTTTGCAGAGATTGAGGAAGCTAAT




CGAGTTTTGGGACCAATTTATTTCACTACATTTGTGTTCTTTAT




GTTCTTCATTCTTTTGAATATGTTTTTGGCTATCATCAATGATA




CTTACTCTGAAGTGAAATCTGACTTGGCACAGCAGAAAGCTGAA




ATGGAACTCTCAGATCTTATCAGAAAGGGCTACCATAAAGCTTT




GGTCAAACTAAAACTGAAAAAAAATACCGTGGATGACATTTCAG




AGAGTCTGCGGCAAGGAGGAGGCAAGTTAAACTTTGACGAACTT




CGACAAGATCTCAAAGGGAAGGGCCATACTGATGCAGAGATTGA




GGCAATATTCACAAAGTACGACCAAGATGGAGACCAAGAACTGA




CCGAACATGAACATCAGCAGATGAGAGACGACTTGGAGAAAGAG




AGGGAGGACCTGGATTTGGATCACAGTTCTTTACCACGTCCCAT




GAGCAGCCGAAGTTTCCCTCGAAGCCTGGATGACTCTGAGGAGG




ATGACGATGAAGATAGCGGACATAGCTCCAGAAGGAGGGGAAGC




ATTTCTAGTGGCGTTTCTTACGAAGAGTTTCAAGTCCTGGTGAG




ACGAGTGGACCGGATGGAGCATTCCATCGGCAGCATAGTGTCCA




AGATTGACGCCGTGATCGTGAAGCTAGAGATTATGGAGCGAGCC




AAACTGAAGAGGAGGGAGGTGCTGGGAAGGCTGTTGGATGGGGT




GGCCGAGGATGAAAGGCTGGGTCGTGACAGTGAAATCCATAGGG




AACAGATGGAACGGCTAGTACGTGAAGAGTTGGAACGCTGGGAA




TCCGATGATGCAGCTTCCCAGATCAGTCATGGTTTAGGCACGCC




AGTGGGACTAAATGGTCAACCTCGCCCCAGAAGCTCCCGCCCAT




CTTCCTCCCAATCTACAGAAGGCATGGAAGGTGCAGGTGGAAAT




GGGAGTTCTAATGTCCACGTATGATATGTGTGTTTCAGTATGTG




TGTTTCTAATAAGTGAGGAAGTGGCTGTCCTGAATTGCTGTAAC




AAGCACACTATTTATATGCCCTGACCACCATAGGATGCTAGTCT




TTGTGACCGATTGCTAATCTTCTGCACTTTAATTTATTTTATAT




AAACTTTACCCATGGTTCAAAGATTTTTTTTTCTTTTTCTCATA




TAAGAAATCTAGGTGTAAATATTGAGTACAGAAAAAAAATCTTC




ATGATGTGTATTGAGCGGTACGCCCAGTTGCCACCATGACTGAG




TCTTCTCAGTTGACAATGAAGTAGCCTTTTAAAGCTAGAAAACT




GTCAAAGGGCTTCTGAGTTTCATTTCCAGTCACAAAAATCAGTA




TTGTTATTTTTTTCCAAGAGTGTGAAGGAAAATGGGGCATTCCT




TTCCACTCTGGCATAGTTCATGAGCTTAATACATAGCTTTCTTT




TAAGAAAGGAGCCTTTTTTTTCAACTAGCTTCCTGGGGTAAACT




TTTCTAAAAGATAAAATGGAAAGGAACTCCAAACTATGATAGAA




TCTGTGTGAATGGTTAAGATGAATGTTAAATACTATGCTTTTTT




GTAAGTTGATCGTATCTGATGTCTGTGGGACTAACTGTATCACT




TAATTTTTACCTTATTTTGGCTCTAATTTGAATAAGCTGAGTAA




AACCACCAAAGATCAGTTATAGGATAAAATGGCATCTCTAACCA




TAACACAGGAGAATTGGAAGGAGCCCTAAGTTGTCACTCAGTTT




AATTTCTTTTAATGGTTAGTTTAGCCTAAAGATTTATCTGCATA




TTCTTTTTCCCATGTGGCTCTACTCATTTGCAACTGAATTTAAT




GTTATAACTCATCTAGTGAGACCAACTTACTAAATTTTTAGTAT




GCACTGAAAGTTTTTATCCAACAATTATGTTCATTTTAAGCAAA




ATTTTAAGAAAGTTTTGAAATTCATAAAGCATTTGGTTTTAAAC




TATTTTAAGAATATAGTACTCGGTCAGGTATGACGGCTCACGCC




TGTAATCCCAGCACTTTGGGAGGCCGAAACAGGCGAATCACTTG




AGCCCAGGAGTTCAAGACCAACATGGGCAATGTGGCGAAACTCC




ATCTCTACAAAAAATGCAAAAATAAAAAATATAGTACTCAAGTA




TTCTTGATCCTGTGTTTCAAAACTAGAATTTGTAATGCAAATGG




AGCTCAGTCTAATAAAAAAGAGGTTTTGGTATTAAAAGTTCATA




CATTAGACAGTATCAGCCAAAATTTGAGTTAGCAACACTGTTTT




CTTTACGAGAGGGTCTCACCCAAATTTATGGGGAGAAATCTATT




TCTCAAAAAAAAAAATCTTCTTTTACAGAAATGTTGAGTAAGGT




GACATTTTGAGCGCTAATAAGCAAAAGAGCATGCAGTGCTGTTG




AATAACCCTCACTTGGAGAACCAAGAGAATCCTGTCGTTTAATG




CTATATTTTAATTTCACAAGTTGTTCATTTAACTGGTAGAATGT




CAGTCCAATCTCCAATGAGAACATGAGCAAATAGACCTTTCCAG




GTTGAAAGTGAAACATACTGGGTTTCTGTAAGTTTTTCCTCATG




GCTTCATCTCTATCTTTACTTTCTCTTGAATATGCTACACAAAG




TTCTTTATTACTACATACTAAAGTTTGCATTCCAGGGATATTGA




CTGTACATATTTATGTATATGTACCATGTTGTTACATGTAAACA




AACTTCAATTTGAAGTGCAGCTATTATGTGGTATCCATGTGTAT




CGACCATGTGCCATATATCAATTATGGTCACTAGAAAGTCTCTT




TATGATACTTTTTATTGTACTGTTTTTCATTTCACTTGCAAAAT




TTTGCAGAATTCCTCCTTTCTACCCATAAATTACATATATTTTT




CTTCTTTAGTCATGGAGAACTCCCCCCCTCATCTCTTCCCTATT




ATCTTTCCCTGTGTACTGGTATTATTAAAAAGACATTACATACG




CAAGTCTTTCTCGACAATCAAGAATGTTATTAATGTGTAATACT




GAGCACTTTACTTCTTAATAAAAACTTGATATAGTAGCA




(SEQ ID NO: 244)






transcript
ATGTCTTCTCTCTCTTACAGCTCTTCAAATTCATCAATTTTAAC



ENST0000
AGGACCATGAGCCAGCTCTCGACAACCATGTCTCGATGTGCCAA



0502363.1
AGACCTGTTTGGCTTTGCTATTATGTTCTTCATTATTTTCCTAG




CGTATGCTCAGTTGGCATACCTTGTCTTTGGCACTCAGGTCGAT




GACTTCAGTACTTTCCAAGAGTGTATCTTCACTCAATTCCGTAT




CATTTTGGGCGATATCAACTTTGCAGAGATTGAGGAAGCTAATC




GAGTTTTGGGACCAATTTATTTCACTACATTTGTGTTCTTTATG




TTCTTCATTCTTTTGAATATGTTTTTGGCTATCATCAATGATAC




TTACTCTGAAGTGAAATCTGACTTGGCACAGCAGAAAGCTGAAA




TGGAACTCTCAGATCTTATCAGAAAGGGCTACCATAAAGCTTTG




GTCAAACTAAAACTGAAAAAAAATACCGTGGATGACATTTCAGA




GAGTCTGCGGCAAGGAGGAGGCAAGTTAAACTTTGACGAACTTC




GACAAGATCTCAAAGGGAAGGGCCATACTGATGCAGAGATTGAG




GCAATATTCACAAAGTACGACCAAGATGGAGACCAAGAACTGAC




CGAACATGAACATCAGCAGATGAGAGACGACTTGGAGAAAGAGA




GGGAGGACCTGGATTTGGATCACAGTTCTTTACCACGTCCCATG




AGCAGCCGAAGTTTCCCTCGAAGCCTGGATGACTCTGAGGAGGA




TGACGATGAAGATAGCGGACATAGCTCCAGAAGGAGGGGAAGCA




TTTCTAGTGGCGTTTCTTACGAAGAGTTTCAAGTCCTGGTGAGA




CGAGTGGACCGGATGGAGCATTCCATCGGCAGCATAGTGTCCAA




GATTGACGCCGTGATCGTGAAGCTAGAGATTATGGAGCGAGCCA




AACTGAAGAGGAGGGAGGTGCTGGGAAGGCTGTTGGATGGGGTG




GCCGAGGATGAAAGGCTGGGTCGTGACAGTGAAATCCATAGGGA




ACAGATGGAACGGCTAGTACGTGAAGAGTTGGAACGCTGGGAAT




CCGATGATGCAGCTTCCCAGATCAGTCATGGTTTAGGCACGCCA




GTGGGACTAAATGGTCAACCTCGCCCCAGAAGCTCCCGCCCATC




TTCCTCCCAATCTACAGAAGGCATGGAAGGTGCAGGTGGAAATG




GGAGTTCTAATGTCCACGTATGATATGTGTGTTT




(SEQ ID NO: 245)






transcript
GAATGATAGGGGAAAGGAAGGCAAGGGTGAGAGAAGACCTTGTG



ENST0000
TGAATTTGTCCAAAATGTTTATCCACAGGAACAATCCCTTTGTG



0506367.1
AAGGCTGCTGGTATGTGAATGTGTGCCGGTTCCCTTGGGGCGTT




CATTTGGATCTTTCTGTGTTCCAGTGACCTACGGCATGATGAGC




TCCAATGTGTACTACTACACCCGGATGATGTCACAGCTCTTCCT




AGACACCCCCGTGTCCAAAACGGAGAAAACTAACTTTAAAACTC




TGTCTTCCATGGAAGACTTCTGGAAGTTCACAGAAGGCTCCTTA




TTGGATGGGCTGTACTGGAAGATGCAGCCCAGCAACCAGACTGA




AGCTGACAACCGAAGTTTCATCTTCTATGAGAACCTGCTGTTAG




GGGTTCCACGAATACGGCAACTCCGAGTCAGAAATGGATCCTGC




TCTATCCCCCAGGACTTGAGAGATGAAATTAAAGAGTGCTATGA




TGTCTACTCTGTCAGTAGTGAAGATAGGGCTCCCTTTGGGCCCC




GAAATGGAACCGCTTGGATCTACACAAGTGAAAAAGACTTGAAT




GGTAGTAGCCACTGGGGAATCATTGCAACTTATAGTGGAGCTGG




CTATTATCTGGATTTGTCAAGAACAAGAGAGGAAACAGCTGCAC




AAGTTGCTAGCCTCAAGAAAAATGTCTGGCTGG




(SEQ ID NO: 246)






transcript
CCAGTCGGCGGCGGGGACCCGCTGCATCGCCACCTCCCCCTGGA



ENST0000
AGGGCAGCCGCCCCGAGTGGCCTGGGCGGAGAGGCTGGTTCGCG



0506727.1
GGCTGCGAGGTCTCTGGGGAACAAGACTCATGGAGGAAAGCAGC




ACTAACCGAGAGAAATACCTTAAAAGTGTTTTACGGGAACTGGT




CACATACCTCCTTTTTCTCATAGTCTTGTGCATCTGAACAATCC




CTTTGTGAAGGCTGCTGGTATGTGAATGTGTGCCGGTTCCCTTG




GGGCGTTCATTTGGATCTTTCTGTGTTCCAGTGACCTACGGCAT




GATGAGCTCCAATGTGTACTACTACACCCGGATGATGTCACAGC




TCTTCCTAGACACCCCCGTGTCCAAAACGGAGAAAACTAACTTT




AAAACTCTGTCTTCCATGGAAGACTTCTGGAAGTTCACAGAAGG




CTCCTTATTGGATGGGCTGTACTGGAAGATGCAGCCCAGCAACC




AGACTGAAGCTGACAACCGAAGTTTCATCTTCTATGAGAACCTG




CTGTTAGGGGTTCCACGAATAC




(SEQ ID NO: 247)






transcript
AATGGTAGTAGCCACTGGGGAATCATTGCAACTTATAGTGGAGC



ENST0000
TGGCTATTATCTGGATTTGTCAAGAACAAGAGAGGAAACAGCTG



0508588.5
CACAAGTTGCTAGCCTCAAGAAAAATGTCTGGCTGGACCGAGGA




ACCAGGGCAACTTTTATTGACTTCTCAGTGTACAACGCCAACAT




TAACCTGTTCTGTGTGGTCAGCTGTCAGTGGTAGCTATAGGAAT




TAACATATACAGAACATCAAATGTGGAGGTGCTACTACAGTTTC




TGGAAGATCAAAATACTTTCCCCAACTTTGAGCATCTGGCATAT




TGGCAGATACAGTTCAACAATATAGCTGCTGTCACAGTATTTTT




TGTCTGGATTAAGCTCTTCAAATTCATCAATTTTAACAGGACCA




TGAGCCAGCTCTCGACAACCATGTCTCGATGTGCCAAAGACCTG




TTTGGCTTTGCTATTATGTTCTTCATTATTTTCCTAGCGTATGC




TCAGTTGGCATACCTTGTCTTTGGCACTCAGGTCGATGACTTCA




GTACTTTCCAAGAGTGTATCTTCACTCAATTCCGTATCATTTTG




GGCGATATCAACTTTGCAGAGATTGAGGAAGCTAATCGAGTTTT




GGGACCAATTTATTTCACTACATTTGTGTTCTTTATGTTCTTCA




TTCTTTTGAATATGTTTTTGGCTATCATCAATGATACTTACTCT




GAAGTGAAATCTGACTTGGCACAGCAGAAAGCTGAAATGGAACT




CTCAGATCTTATCAGAAAGGGCTACCATAAAGCTTTGGTCAAAC




TAAAACTGAAAAAAAATACCGTGGATGACATTTCAGAGAGTCTG




CGGCAAGGAGGAGGCAAGTTAAACTTTGACGAACTTCGACAAGA




TCTCAAAGGGAAGGGCCATACTGATGCAGAGATTGAGGCAATAT




TCACAAAGTACGACCAAGATGGAGACCAAGAACTGACCGAACAT




GAACATCAGCAGATGAGAGACGACTTGGAGAAAGAGAGGGAGGA




CCTGGATTTGGATCACAGTTCTTTACCACGTCCCATGAGCAGCC




GAAGTTTCCCTCGAAGCCTGGATGACTCTGAGGAGGATGACGAT




GAAGATAGCGGACATAGCTCCAGAAGGAGGGGAAGCATTTCTAG




TGGCGTTTCTTACGAAGAGTTTCAAGTCCTGGTGAGACGAGTGG




ACCGGATGGAGCATTCCATCGGCAGCATAGTGTCCAAGATTGAC




GCCGTGATCGTGAAGCTAGAGATTATGGAGCGAGCCAAACTGAA




GAGGAGGGAGGTGCTGGGAAGGCTGTTGGATGGGGTGGCCGAGG




ATGAAAGGCTGGGTCGTGACAGTGAAATCCATAGGGAACAGATG




GAACGGCTAGTACGTGAAGAGTTGGAACGCTGGGAATCCGATGA




TGCAGCTTCCCAGATCAGTCATGGTTTAGGCACGCCAGTGGGAC




TAAATGGTCAACCTCGCCCCAGAAGCTCCCGCCCATCTTCCTCC




CAATCTACAGAAGGCATGGAAGGTGCAGGTGGAAATGGGAGTTC




TAATGTCCACGTATGATATGTGTGTTTCAGTATGTGTGTTTCTA




ATAAGTGAGGAAGTGGCTGTCCTGAATTGCTGTAACAAGCACAC




TATTTATATGCCCTGACCACCATAGGATGCTAGTCTTTGTGACC




GATTGCTAATCTTCTGCACTTTAATTTATTTTATATAAACTTTA




CCCA (SEQ ID NO: 248)






transcript
ATACTTTCCCCAACTTTGAGCATCTGGCATATTGGCAGATACAG



ENST0000
TTCAACAATATAGCTGCTGTCACAGTATTTTTTGTCTGGATTAA



0511337.5
GCTCTTCAAATTCATCAATTTTAACAGGACCATGAGCCAGCTCT




CGACAACCATGTCTCGATGTGCCAAAGACCTGTTTGGCTTTGCT




ATTATGTTCTTCATTATTTTCCTAGCGTATGCTCAGTTGGCATA




CCTTGTCTTTGGCACTCAGGTCGATGACTTCAGTACTTTCCAAG




AGTGTATAATATGTTTTTGGCTATCATCAATGATACTTACTCTG




AAGTGAAATCTGACTTGGCACAGCAGAAAGCTGAAATGGAACTC




TCAGATCTTATCAGAAAGGGCTACCATAAAGCTTTGGTCAAACT




AAAACTGAAAAAAAATACCGTGGATGACATTTCAGAGAGTCTGC




GGCAAGGAGGAGGCAAGTTAAACTTTGACGAACTTCGACAAGAT




CTCAAAGGGAAGGGCCATACTGATGCAGAGATTGAGGCAATATT




CACAAAGTACGACCAAGATGGAGACCAAGAACTGACCGAACATG




AACATCAGCAGATGAGAGACGACTTGGAGAAAGAGAGGGAGGAC




CTGGATTTGGATCACAGTTCTTTACCACGTCCCATGAGCAGCCG




AAGTTTCCCTCGAAGCCTGGATGACTCTGAGGAGGATGACGATG




AAGATAGCGGACATAGCTCCAGAAGGAGGGGAAGCATTTCTAGT




GGCGTTTCTTACGAAGAGTTTCAAGTCCTGGTGAGACGAGTGGA




CCGGATGGAGCATTCCATCGGCAGCATAGTGTCCAAGATTGACG




CCGTGATCGTGAAGCTAGAGATTATGGAGCGAGCCAAACTGAAG




AGGAGGGAGGTGCTGGGAAGGCTGTTGGATGGGGTGGCCGAGGA




TGAAAGGCTGGGTCGTGACAGTGAAATCCATAGGGAACAGATGG




AACGGCTAGTACGTGAAGAGTTGGAACGCTGGGAATCCGATGAT




GCAGCTTCCCAGATCAGTCATGGTTTAGGCACGCCAGTGGGACT




AAATGGTCAACCTCGCCCCAGAAGCTCCCGCCCATCTTCCTCCC




AATCTACAGAAGGCATGGAAGGTGCAGGTGGAAATGGGAGTTCT




AATGTCCACGTATGATATGTGTGTTTCAGTATGTGTGTTTCTAA




TAAGTGAGGAAGTGGCTGTCCTGAATTGCTGTAACAAGCACACT




ATTTATATGCCCTGACCACCATAGGATGCTAGTCTTTGTGACCG




ATTGCTAATCTTCTGCACTTTAATTTATTTTATATAAACTTTAC




CCATGGTTCAAAGATTTTTTTTTCTTTTTCTCATATAAGAAA




(SEQ ID NO: 249)






transcript
ACAGTTCAACAATATAGCTGCTGTCACAGTATTTTTTGTCTGGAT



ENST0000
TAAGCTCTTCAAATTCATCAATTTTAACAGGACCATGAGCCAGCT



0512858.1
CTCGACAACCATGTCTCGATGTGCCAAAGACCTGTTTGGCTTTGC




TATTATGTTCTTCATTATTTTCCTAGCGTATGCTCAGTTGGCATA




CCTTGTCTTTGGCACTCAGGTCGATGACTTCAGTACTTTCCAAGA




GTGTATAATATGTTTTTGGCTATCATCAATGATACTTACTCTGAA




GTGAAATCTGACTTGGCACAGCAGAAAGCTGAAATGGAACTCTCA




GATCTTATCAGAAAGGGCTACCATAAAGCTTTGGTCAAACTAAAA




CTGAAAAAAAATACCGTGGATGACATTTCAGAGAGTCTGCGGCAA




GGAGGAGGCAAGTTAAACTTTGACGAACTTCGACAAGATCTCAAA




GGGTGAGAATCATGCTTCCTGAGGTTCTGAAAAATTCCTGCTTCT




AAAGATAAATTCCTGGTGATAAGAGTATTTCTAGCCCAAGGGCTC




ATACAGATACTTTTTTTTTTTTTTTCCAGAGGCAGGTATCTTTCT




GGAACATGTTATAAGAGGAAAACTTGCCCCCATTTGGTGATTTCT




CCTTTCCTCCTGCATTTTGATGTCTCTGTGTTGAGGGTGAACTGG




GTACAAGGAATGATTTTTATCTGTATCCTCTCTCTAATTTCAGGA




AGGGCCATACTGATGCAGAGATTGAGGCAATATTCACAAAGTACG




ACCAAGATGGAGACCAAGAACTGACCGAACATGAACATCAGCAGA




TGAGAGACGACTTGGAGAAAGAGAGGGAGGACCTGGATTTGGATC




ACAGTTCTTTACCACGTCCCATGAGCAGCCGAAGTTTCCCTCGAA




GCCTGGATGACTCTGAGGAGGATGACGATGAAGATAGCGGACATA




GCTCCAGAAGGAGGGGAAGCATTTCTAGTGGCGTTTCTTACGAAG




AGTTTCAAGTCCTGGTGAGACGAGTGGACCGGATGGAGCATTCCA




TCGGCAGCATAGTGTCCAAGATTGACGCCGTGATCGTGAAGCTAG




AGATTATGGAGCGAGCCAAACTGAAGAGGAGGGAGGTGCTGGGAA




GGCTGTTGGATGGGGTGGCCGAGGATGAAAGGCTGGGTCGTGACA




GTGAAATCCATAGGGAACAGATGGAACGGCTAGTACGTGAAGAGT




TGGAACGCTGGGAATCCGATGATGCAGCTTCCCAGATCAGTCATG




GTTTAGGCACGCCAGTGGGACTAAATGGTCAACCTCGCCCCAGAA




GCTCCCGCCCATCTTCCTCCCAATCTACAGAAGGCATGGAAGGTG




CAGGTGGAAATGGGAGTTCTAATGTCCACGTATGATATGTGTGTT




TCAGTATGTGTGTTTCTAATAAGTGAGGAAGTGGCTGTCCTGAAT




TGCTGTAACAAGCACACTATTTATATGCCCTGACCACCATAGGAT




GCTAGTCTTTGTGACCGATTGCTAATCTTCTGCACTTTAATTTAT




TTTATATAAACTTTACCCATGGTT




(SEQ ID NO: 250)










Translation modulation mechanism








PKD2 5′ UTR sequence
AGGCGGCGGCGGGCGCCGGGAAGAAAGGAACATGGCTCCTGAGGC


(ENST00000237596.7
GCACAGCGCCGAGCGCGGCGCCGCGCACCCGCGCGCCGGACGCCA



GTGACCGCG (SEQ ID NO: 251)
















TABLE 4







PKD2 ASO sequences












SEQ



Oligo Start (chr
Oligo End (chr


ID
Event
Sequence
Chr
coordinate)
coordinate)















1
Alt 5′ss
GTACTTTCAAAGTTATTT
chr4
88036361
88036379





2
Alt 5′ss
GAGAGGTACTTTCAAAGT
chr4
88036366
88036384





3
Alt 5′ss
TGATAGAGAGGTACTTTC
chr4
88036371
88036389





4
Alt 5′ss
TTCTGTGATAGAGAGGTA
chr4
88036376
88036394





5
Alt 5′ss
CAATTTTCTGTGATAGAG
chr4
88036381
88036399





6
Alt 5′ss
ATGAACAATTTTCTGTGA
chr4
88036386
88036404





7
Alt 5′ss
GCCAAATGAACAATTTTC
chr4
88036391
88036409





8
Alt 5′ss
ATGAAGCCAAATGAACAA
chr4
88036396
88036414





9
Alt 5′ss
AAATGATGAAGCCAAATG
chr4
88036401
88036419





10
Alt 5′ss
CATTGAAATGATGAAGCC
chr4
88036406
88036424





11
Alt 5′ss
TCATGCATTGAAATGATG
chr4
88036411
88036429





12
Alt 5′ss
GATACTCATGCATTGAAA
chr4
88036416
88036434





13
Alt 5′ss
CTGTCGATACTCATGCAT
chr4
88036421
88036439





14
Alt 5′ss
AGGTCCTGTCGATACTCA
chr4
88036426
88036444





15
Alt 5′ss
AAAGCAGGTCCTGTCGAT
chr4
88036431
88036449





16
Alt 5′ss
AATGCAAAGCAGGTCCTG
chr4
88036436
88036454





17
Alt 5′ss
TGTTAAATGCAAAGCAGG
chr4
88036441
88036459





18
Alt 5′ss
CACAGTGTTAAATGCAAA
chr4
88036446
88036464





19
Alt 5′ss
TCTCACACAGTGTTAAAT
chr4
88036451
88036469





20
Alt 5′ss
TTACGTCTCACACAGTGT
chr4
88036456
88036474





21
Alt 5′ss
ATAACTTACGTCTCACAC
chr4
88036461
88036479





22
Alt 5′ss
TCACCATAACTTACGTCT
chr4
88036466
88036484





23
Alt 5′ss
ACAACTCACCATAACTTA
chr4
88036471
88036489





24
Alt 5′ss
TTCTAACAACTCACCATA
chr4
88036476
88036494





25
Alt 5′ss
GTAACTTCTAACAACTCA
chr4
88036481
88036499





26
Alt 5′ss
GAACAGTAACTTCTAACA
chr4
88036486
88036504





27
Alt 5′ss
AGTAGGAACAGTAACTTC
chr4
88036491
88036509





28
Alt 5′ss
TTGAGAGTAGGAACAGTA
chr4
88036496
88036514





29
Alt 5′ss
ACCCCCTTTGAGAGTAGG
chr4
88036503
88036521





30
Alt 5′ss
AGTTTACCCCCTTTGAGA
chr4
88036508
88036526





31
Alt 5′ss
ATGTTAGTTTACCCCCTT
chr4
88036513
88036531





32
Alt 5′ss
TCTCAATGTTAGTTTACC
chr4
88036518
88036536





33
Alt 5′ss
AAAGTTCTCAATGTTAGT
chr4
88036523
88036541





34
Alt 5′ss
CAGGCAAAGTTCTCAATG
chr4
88036528
88036546





35
Alt 5′ss
AGGCACAGGCAAAGTTCT
chr4
88036533
88036551





36
Alt 5′ss
GTGCAAGGCACAGGCAAA
chr4
88036538
88036556





37
Alt 5′ss
GCACAGTGCAAGGCACAG
chr4
88036543
88036561





38
Alt 5′ss
ACTCAGCACAGTGCAAGG
chr4
88036548
88036566





39
Alt 5′ss
GAAACACTCAGCACAGTG
chr4
88036553
88036571





40
Alt 5′ss
GATATGAAACACTCAGCA
chr4
88036558
88036576





41
Alt 5′ss
GGTAAGATATGAAACACT
chr4
88036563
88036581





42
Alt 5′ss
AATAAGGTAAGATATGAA
chr4
88036568
88036586





43
Alt 5′ss
AATTAAATAAGGTAAGAT
chr4
88036573
88036591





44
Alt 5′ss
ATAGAAATTAAATAAGGT
chr4
88036578
88036596





45
Alt 5′ss
AGACTATAGAAATTAAAT
chr4
88036583
88036601





46
Alt 5′ss
GAGTTAGACTATAGAAAT
chr4
88036588
88036606





47
Alt 5′ss
TTATAGAGTTAGACTATA
chr4
88036593
88036611





48
Alt 5′ss
TTACCTTATAGAGTTAGA
chr4
88036598
88036616





49
Alt 5′ss
AGTACTTACCTTATAGAG
chr4
88036603
88036621





50
NMD exon
ATAAATCGAACCATCGTA
chr4
88030981
88030999





51
NMD exon
AAATCATAAATCGAACCA
chr4
88030986
88031004





52
NMD exon
TTGAAAAATCATAAATCG
chr4
88030991
88031009





53
NMD exon
TGAAGTTGAAAAATCATA
chr4
88030996
88031014





54
NMD exon
CACCATGAAGTTGAAAAA
chr4
88031001
88031019





55
NMD exon
CACATCACCATGAAGTTG
chr4
88031006
88031024





56
NMD exon
ACTTTCACATCACCATGA
chr4
88031011
88031029





57
NMD exon
GTATCACTTTCACATCAC
chr4
88031016
88031034





58
NMD exon
AATGTGTATCACTTTCAC
chr4
88031021
88031039





59
NMD exon
TATAGAATGTGTATCACT
chr4
88031026
88031044





60
NMD exon
GTTTCTATAGAATGTGTA
chr4
88031031
88031049





61
NMD exon
GTGTGGTTTCTATAGAAT
chr4
88031036
88031054





62
NMD exon
TGAAAGTGTGGTTTCTAT
chr4
88031041
88031059





63
NMD exon
AAAATTGAAAGTGTGGTT
chr4
88031046
88031064





64
NMD exon
AATTCAAAATTGAAAGTG
chr4
88031051
88031069





65
NMD exon
ACCAAAATTCAAAATTGA
chr4
88031056
88031074





66
NMD exon
AAAAGACCAAAATTCAAA
chr4
88031061
88031079





67
NMD exon
CTGGAAAAAGACCAAAAT
chr4
88031066
88031084





68
NMD exon
GTAGCCTGGAAAAAGACC
chr4
88031071
88031089





69
NMD exon
GTATGGTAGCCTGGAAAA
chr4
88031076
88031094





70
NMD exon
TTAGAGTATGGTAGCCTG
chr4
88031081
88031099





71
NMD exon
TCTTTAGAGTATGGTAGC
chr4
88031084
88031102





72
NMD exon
CTCTATCTTTAGAGTATG
chr4
88031089
88031107





73
NMD exon
TGTGGCTCTATCTTTAGA
chr4
88031094
88031112





74
NMD exon
GGATCTGTGGCTCTATCT
chr4
88031099
88031117





75
NMD exon
GACTGGGATCTGTGGCTC
chr4
88031104
88031122





76
NMD exon
ACATGGCTGACTGGGATC
chr4
88031112
88031130





77
NMD exon
TAATCACATGGCTGACTG
chr4
88031117
88031135





78
NMD exon
CCTCATAATCACATGGCT
chr4
88031122
88031140





79
NMD exon
TACCCTCATAATCACATG
chr4
88031125
88031143





80
NMD exon
TCGCTTACCCTCATAATC
chr4
88031130
88031148





81
NMD exon
ATTGGTCGCTTACCCTCA
chr4
88031135
88031153





82
NMD exon
AGAGTATTGGTCGCTTAC
chr4
88031140
88031158





83
NMD exon
ACTGTAGAGTATTGGTCG
chr4
88031145
88031163





84
NMD exon
AATACACTGTAGAGTATT
chr4
88031150
88031168





85
NMD exon
AATACAATACACTGTAGA
chr4
88031155
88031173





86
NMD exon
CTGGCAATACAATACACT
chr4
88031160
88031178





87
NMD exon
ACCATCTGGCAATACAAT
chr4
88031165
88031183





88
NMD exon
GCAAAACCATCTGGCAAT
chr4
88031170
88031188





89
NMD exon
GTTGGGCAAAACCATCTG
chr4
88031175
88031193





90
NMD exon
GGCTAGTTGGGCAAAACC
chr4
88031180
88031198





91
NMD exon
CATTAGGCTAGTTGGGCA
chr4
88031185
88031203





92
NMD exon
ACTTACATTAGGCTAGTT
chr4
88031190
88031208





93
NMD exon
AGAATACTTACATTAGGC
chr4
88031195
88031213





94
NMD exon
TGTTTAGAATACTTACAT
chr4
88031200
88031218





95
NMD exon
AAACATGTTTAGAATACT
chr4
88031205
88031223





96
NMD exon
ACCTTAAACATGTTTAGA
chr4
88031210
88031228





97
NMD exon
GGCCTACCTTAAACATGT
chr4
88031215
88031233





98
NMD exon
AGCCTGGCCTACCTTAAA
chr4
88031220
88031238





99
NMD exon
AGCTTAGCCTGGCCTACC
chr4
88031225
88031243





100
uORF
TTTCTTCCCGGCGCCCGC
chr4
88007642
88007660





101
uORF
CCTTTCTTCCCGGCGCCC
chr4
88007644
88007662





102
uORF
TTCCTTTCTTCCCGGCGC
chr4
88007646
88007664





103
uORF
TGTTCCTTTCTTCCCGGC
chr4
88007648
88007666





104
uORF
CATGTTCCTTTCTTCCCG
chr4
88007650
88007668





105
uORF
GCCATGTTCCTTTCTTCC
chr4
88007652
88007670





106
uORF
GAGCCATGTTCCTTTCTT
chr4
88007654
88007672





107
uORF
AGGAGCCATGTTCCTTTC
chr4
88007656
88007674





108
uORF
TCAGGAGCCATGTTCCTT
chr4
88007658
88007676





109
uORF
CCTCAGGAGCCATGTTCC
chr4
88007660
88007678





110
uORF
CGCCTCAGGAGCCATGTT
chr4
88007662
88007680





111
uORF
TGCGCCTCAGGAGCCATG
chr4
88007664
88007682





112
uORF
TGTGCGCCTCAGGAGCCA
chr4
88007666
88007684





113
uORF
CTGTGCGCCTCAGGAGCC
chr4
88007667
88007685





114
Alt 5′ss
GUACUUUCAAAGUUAUUU
chr4
88036361
88036379





115
Alt 5′ss
GAGAGGUACUUUCAAAGU
chr4
88036366
88036384





116
Alt 5′ss
UGAUAGAGAGGUACUUUC
chr4
88036371
88036389





117
Alt 5′ss
UUCUGUGAUAGAGAGGUA
chr4
88036376
88036394





118
Alt 5′ss
CAAUUUUCUGUGAUAGAG
chr4
88036381
88036399





119
Alt 5′ss
AUGAACAAUUUUCUGUGA
chr4
88036386
88036404





120
Alt 5′ss
GCCAAAUGAACAAUUUUC
chr4
88036391
88036409





121
Alt 5′ss
AUGAAGCCAAAUGAACAA
chr4
88036396
88036414





122
Alt 5′ss
AAAUGAUGAAGCCAAAUG
chr4
88036401
88036419





123
Alt 5′ss
CAUUGAAAUGAUGAAGCC
chr4
88036406
88036424





124
Alt 5′ss
UCAUGCAUUGAAAUGAUG
chr4
88036411
88036429





125
Alt 5′ss
GAUACUCAUGCAUUGAAA
chr4
88036416
88036434





126
Alt 5′ss
CUGUCGAUACUCAUGCAU
chr4
88036421
88036439





127
Alt 5′ss
AGGUCCUGUCGAUACUCA
chr4
88036426
88036444





128
Alt 5′ss
AAAGCAGGUCCUGUCGAU
chr4
88036431
88036449





129
Alt 5′ss
AAUGCAAAGCAGGUCCUG
chr4
88036436
88036454





130
Alt 5′ss
UGUUAAAUGCAAAGCAGG
chr4
88036441
88036459





131
Alt 5′ss
CACAGUGUUAAAUGCAAA
chr4
88036446
88036464





132
Alt 5′ss
UCUCACACAGUGUUAAAU
chr4
88036451
88036469





133
Alt 5′ss
UUACGUCUCACACAGUGU
chr4
88036456
88036474





134
Alt 5′ss
AUAACUUACGUCUCACAC
chr4
88036461
88036479





135
Alt 5′ss
UCACCAUAACUUACGUCU
chr4
88036466
88036484





136
Alt 5′ss
ACAACUCACCAUAACUUA
chr4
88036471
88036489





137
Alt 5′ss
UUCUAACAACUCACCAUA
chr4
88036476
88036494





138
Alt 5′ss
GUAACUUCUAACAACUCA
chr4
88036481
88036499





139
Alt 5′ss
GAACAGUAACUUCUAACA
chr4
88036486
88036504





140
Alt 5′ss
AGUAGGAACAGUAACUUC
chr4
88036491
88036509





141
Alt 5′ss
UUGAGAGUAGGAACAGUA
chr4
88036496
88036514





142
Alt 5′ss
ACCCCCUUUGAGAGUAGG
chr4
88036503
88036521





143
Alt 5′ss
AGUUUACCCCCUUUGAGA
chr4
88036508
88036526





144
Alt 5′ss
AUGUUAGUUUACCCCCUU
chr4
88036513
88036531





145
Alt 5′ss
UCUCAAUGUUAGUUUACC
chr4
88036518
88036536





146
Alt 5′ss
AAAGUUCUCAAUGUUAGU
chr4
88036523
88036541





147
Alt 5′ss
CAGGCAAAGUUCUCAAUG
chr4
88036528
88036546





148
Alt 5′ss
AGGCACAGGCAAAGUUCU
chr4
88036533
88036551





149
Alt 5′ss
GUGCAAGGCACAGGCAAA
chr4
88036538
88036556





150
Alt 5′ss
GCACAGUGCAAGGCACAG
chr4
88036543
88036561





151
Alt 5′ss
ACUCAGCACAGUGCAAGG
chr4
88036548
88036566





152
Alt 5′ss
GAAACACUCAGCACAGUG
chr4
88036553
88036571





153
Alt 5′ss
GAUAUGAAACACUCAGCA
chr4
88036558
88036576





154
Alt 5′ss
GGUAAGAUAUGAAACACU
chr4
88036563
88036581





155
Alt 5′ss
AAUAAGGUAAGAUAUGAA
chr4
88036568
88036586





156
Alt 5′ss
AAUUAAAUAAGGUAAGAU
chr4
88036573
88036591





157
Alt 5′ss
AUAGAAAUUAAAUAAGGU
chr4
88036578
88036596





158
Alt 5′ss
AGACUAUAGAAAUUAAAU
chr4
88036583
88036601





159
Alt 5′ss
GAGUUAGACUAUAGAAAU
chr4
88036588
88036606





160
Alt 5′ss
UUAUAGAGUUAGACUAUA
chr4
88036593
88036611





161
Alt 5′ss
UUACCUUAUAGAGUUAGA
chr4
88036598
88036616





162
Alt 5′ss
AGUACUUACCUUAUAGAG
chr4
88036603
88036621





163
NMD exon
AUAAAUCGAACCAUCGUA
chr4
88030981
88030999





164
NMD exon
AAAUCAUAAAUCGAACCA
chr4
88030986
88031004





165
NMD exon
UUGAAAAAUCAUAAAUCG
chr4
88030991
88031009





166
NMD exon
UGAAGUUGAAAAAUCAUA
chr4
88030996
88031014





167
NMD exon
CACCAUGAAGUUGAAAAA
chr4
88031001
88031019





168
NMD exon
CACAUCACCAUGAAGUUG
chr4
88031006
88031024





169
NMD exon
ACUUUCACAUCACCAUGA
chr4
88031011
88031029





170
NMD exon
GUAUCACUUUCACAUCAC
chr4
88031016
88031034





171
NMD exon
AAUGUGUAUCACUUUCAC
chr4
88031021
88031039





172
NMD exon
UAUAGAAUGUGUAUCACU
chr4
88031026
88031044





173
NMD exon
GUUUCUAUAGAAUGUGUA
chr4
88031031
88031049





174
NMD exon
GUGUGGUUUCUAUAGAAU
chr4
88031036
88031054





175
NMD exon
UGAAAGUGUGGUUUCUAU
chr4
88031041
88031059





176
NMD exon
AAAAUUGAAAGUGUGGUU
chr4
88031046
88031064





177
NMD exon
AAUUCAAAAUUGAAAGUG
chr4
88031051
88031069





178
NMD exon
ACCAAAAUUCAAAAUUGA
chr4
88031056
88031074





179
NMD exon
AAAAGACCAAAAUUCAAA
chr4
88031061
88031079





180
NMD exon
CUGGAAAAAGACCAAAAU
chr4
88031066
88031084





181
NMD exon
GUAGCCUGGAAAAAGACC
chr4
88031071
88031089





182
NMD exon
GUAUGGUAGCCUGGAAAA
chr4
88031076
88031094





183
NMD exon
UUAGAGUAUGGUAGCCUG
chr4
88031081
88031099





184
NMD exon
UCUUUAGAGUAUGGUAGC
chr4
88031084
88031102





185
NMD exon
CUCUAUCUUUAGAGUAUG
chr4
88031089
88031107





186
NMD exon
UGUGGCUCUAUCUUUAGA
chr4
88031094
88031112





187
NMD exon
GGAUCUGUGGCUCUAUCU
chr4
88031099
88031117





188
NMD exon
GACUGGGAUCUGUGGCUC
chr4
88031104
88031122





189
NMD exon
ACAUGGCUGACUGGGAUC
chr4
88031112
88031130





190
NMD exon
UAAUCACAUGGCUGACUG
chr4
88031117
88031135





191
NMD exon
CCUCAUAAUCACAUGGCU
chr4
88031122
88031140





192
NMD exon
UACCCUCAUAAUCACAUG
chr4
88031125
88031143





193
NMD exon
UCGCUUACCCUCAUAAUC
chr4
88031130
88031148





194
NMD exon
AUUGGUCGCUUACCCUCA
chr4
88031135
88031153





195
NMD exon
AGAGUAUUGGUCGCUUAC
chr4
88031140
88031158





196
NMD exon
ACUGUAGAGUAUUGGUCG
chr4
88031145
88031163





197
NMD exon
AAUACACUGUAGAGUAUU
chr4
88031150
88031168





198
NMD exon
AAUACAAUACACUGUAGA
chr4
88031155
88031173





199
NMD exon
CUGGCAAUACAAUACACU
chr4
88031160
88031178





200
NMD exon
ACCAUCUGGCAAUACAAU
chr4
88031165
88031183





201
NMD exon
GCAAAACCAUCUGGCAAU
chr4
88031170
88031188





202
NMD exon
GUUGGGCAAAACCAUCUG
chr4
88031175
88031193





203
NMD exon
GGCUAGUUGGGCAAAACC
chr4
88031180
88031198





204
NMD exon
CAUUAGGCUAGUUGGGCA
chr4
88031185
88031203





205
NMD exon
ACUUACAUUAGGCUAGUU
chr4
88031190
88031208





206
NMD exon
AGAAUACUUACAUUAGGC
chr4
88031195
88031213





207
NMD exon
UGUUUAGAAUACUUACAU
chr4
88031200
88031218





208
NMD exon
AAACAUGUUUAGAAUACU
chr4
88031205
88031223





209
NMD exon
ACCUUAAACAUGUUUAGA
chr4
88031210
88031228





210
NMD exon
GGCCUACCUUAAACAUGU
chr4
88031215
88031233





211
NMD exon
AGCCUGGCCUACCUUAAA
chr4
88031220
88031238





212
NMD exon
AGCUUAGCCUGGCCUACC
chr4
88031225
88031243





213
uORF
UUUCUUCCCGGCGCCCGC
chr4
88007642
88007660





214
uORF
CCUUUCUUCCCGGCGCCC
chr4
88007644
88007662





215
uORF
UUCCUUUCUUCCCGGCGC
chr4
88007646
88007664





216
uORF
UGUUCCUUUCUUCCCGGC
chr4
88007648
88007666





217
uORF
CAUGUUCCUUUCUUCCCG
chr4
88007650
88007668





218
uORF
GCCAUGUUCCUUUCUUCC
chr4
88007652
88007670





219
uORF
GAGCCAUGUUCCUUUCUU
chr4
88007654
88007672





220
uORF
AGGAGCCAUGUUCCUUUC
chr4
88007656
88007674





221
uORF
UCAGGAGCCAUGUUCCUU
chr4
88007658
88007676





222
uORF
CCUCAGGAGCCAUGUUCC
chr4
88007660
88007678





223
uORF
CGCCUCAGGAGCCAUGUU
chr4
88007662
88007680





224
uORF
UGCGCCUCAGGAGCCAUG
chr4
88007664
88007682





225
uORF
UGUGCGCCUCAGGAGCCA
chr4
88007666
88007684





226
uORF
CUGUGCGCCUCAGGAGCC
chr4
88007667
88007685





*alt 5 ss refers to an alternative 5′ splice site of an intron.













TABLE 5







Exemplary PKD2 Vectorized ASO Sequences












SEQ



Oligo Start (chr
Oligo End (chr


ID
Event
Sequence
Chr
coordinate)
coordinate)















1
Alt 5′ss
GTACTTTCAAAGTTATTT
chr4
88036361
88036379





2
Alt 5′ss
GAGAGGTACTTTCAAAGT
chr4
88036366
88036384





3
Alt 5′ss
TGATAGAGAGGTACTTTC
chr4
88036371
88036389





4
Alt 5′ss
TTCTGTGATAGAGAGGTA
chr4
88036376
88036394





5
Alt 5′ss
CAATTTTCTGTGATAGAG
chr4
88036381
88036399





6
Alt 5′ss
ATGAACAATTTTCTGTGA
chr4
88036386
88036404





7
Alt 5′ss
GCCAAATGAACAATTTTC
chr4
88036391
88036409





8
Alt 5′ss
ATGAAGCCAAATGAACAA
chr4
88036396
88036414





9
Alt 5′ss
AAATGATGAAGCCAAATG
chr4
88036401
88036419





10
Alt 5′ss
CATTGAAATGATGAAGCC
chr4
88036406
88036424





11
Alt 5′ss
TCATGCATTGAAATGATG
chr4
88036411
88036429





12
Alt 5′ss
GATACTCATGCATTGAAA
chr4
88036416
88036434





13
Alt 5′ss
CTGTCGATACTCATGCAT
chr4
88036421
88036439





14
Alt 5′ss
AGGTCCTGTCGATACTCA
chr4
88036426
88036444





15
Alt 5′ss
AAAGCAGGTCCTGTCGAT
chr4
88036431
88036449





16
Alt 5′ss
AATGCAAAGCAGGTCCTG
chr4
88036436
88036454





17
Alt 5′ss
TGTTAAATGCAAAGCAGG
chr4
88036441
88036459





18
Alt 5′ss
CACAGTGTTAAATGCAAA
chr4
88036446
88036464





19
Alt 5′ss
TCTCACACAGTGTTAAAT
chr4
88036451
88036469





20
Alt 5′ss
TTACGTCTCACACAGTGT
chr4
88036456
88036474





21
Alt 5′ss
ATAACTTACGTCTCACAC
chr4
88036461
88036479





22
Alt 5′ss
TCACCATAACTTACGTCT
chr4
88036466
88036484





23
Alt 5′ss
ACAACTCACCATAACTTA
chr4
88036471
88036489





24
Alt 5′ss
TTCTAACAACTCACCATA
chr4
88036476
88036494





25
Alt 5′ss
GTAACTTCTAACAACTCA
chr4
88036481
88036499





26
Alt 5′ss
GAACAGTAACTTCTAACA
chr4
88036486
88036504





27
Alt 5′ss
AGTAGGAACAGTAACTTC
chr4
88036491
88036509





28
Alt 5′ss
TTGAGAGTAGGAACAGTA
chr4
88036496
88036514





29
Alt 5′ss
ACCCCCTTTGAGAGTAGG
chr4
88036503
88036521





30
Alt 5′ss
AGTTTACCCCCTTTGAGA
chr4
88036508
88036526





31
Alt 5′ss
ATGTTAGTTTACCCCCTT
chr4
88036513
88036531





32
Alt 5′ss
TCTCAATGTTAGTTTACC
chr4
88036518
88036536





33
Alt 5′ss
AAAGTTCTCAATGTTAGT
chr4
88036523
88036541





34
Alt 5′ss
CAGGCAAAGTTCTCAATG
chr4
88036528
88036546





35
Alt 5′ss
AGGCACAGGCAAAGTTCT
chr4
88036533
88036551





36
Alt 5′ss
GTGCAAGGCACAGGCAAA
chr4
88036538
88036556





37
Alt 5′ss
GCACAGTGCAAGGCACAG
chr4
88036543
88036561





38
Alt 5′ss
ACTCAGCACAGTGCAAGG
chr4
88036548
88036566





39
Alt 5′ss
GAAACACTCAGCACAGTG
chr4
88036553
88036571





40
Alt 5′ss
GATATGAAACACTCAGCA
chr4
88036558
88036576





41
Alt 5′ss
GGTAAGATATGAAACACT
chr4
88036563
88036581





42
Alt 5′ss
AATAAGGTAAGATATGAA
chr4
88036568
88036586





43
Alt 5′ss
AATTAAATAAGGTAAGAT
chr4
88036573
88036591





44
Alt 5′ss
ATAGAAATTAAATAAGGT
chr4
88036578
88036596





45
Alt 5′ss
AGACTATAGAAATTAAAT
chr4
88036583
88036601





46
Alt 5′ss
GAGTTAGACTATAGAAAT
chr4
88036588
88036606





47
Alt 5′ss
TTATAGAGTTAGACTATA
chr4
88036593
88036611





48
Alt 5′ss
TTACCTTATAGAGTTAGA
chr4
88036598
88036616





49
Alt 5′ss
AGTACTTACCTTATAGAG
chr4
88036603
88036621





50
NMD exon
ATAAATCGAACCATCGTA
chr4
88030981
88030999





51
NMD exon
AAATCATAAATCGAACCA
chr4
88030986
88031004





52
NMD exon
TTGAAAAATCATAAATCG
chr4
88030991
88031009





53
NMD exon
TGAAGTTGAAAAATCATA
chr4
88030996
88031014





54
NMD exon
CACCATGAAGTTGAAAAA
chr4
88031001
88031019





55
NMD exon
CACATCACCATGAAGTTG
chr4
88031006
88031024





56
NMD exon
ACTTTCACATCACCATGA
chr4
88031011
88031029





57
NMD exon
GTATCACTTTCACATCAC
chr4
88031016
88031034





58
NMD exon
AATGTGTATCACTTTCAC
chr4
88031021
88031039





59
NMD exon
TATAGAATGTGTATCACT
chr4
88031026
88031044





60
NMD exon
GTTTCTATAGAATGTGTA
chr4
88031031
88031049





61
NMD exon
GTGTGGTTTCTATAGAAT
chr4
88031036
88031054





62
NMD exon
TGAAAGTGTGGTTTCTAT
chr4
88031041
88031059





63
NMD exon
AAAATTGAAAGTGTGGTT
chr4
88031046
88031064





64
NMD exon
AATTCAAAATTGAAAGTG
chr4
88031051
88031069





65
NMD exon
ACCAAAATTCAAAATTGA
chr4
88031056
88031074





66
NMD exon
AAAAGACCAAAATTCAAA
chr4
88031061
88031079





67
NMD exon
CTGGAAAAAGACCAAAAT
chr4
88031066
88031084





68
NMD exon
GTAGCCTGGAAAAAGACC
chr4
88031071
88031089





69
NMD exon
GTATGGTAGCCTGGAAAA
chr4
88031076
88031094





70
NMD exon
TTAGAGTATGGTAGCCTG
chr4
88031081
88031099





71
NMD exon
TCTTTAGAGTATGGTAGC
chr4
88031084
88031102





72
NMD exon
CTCTATCTTTAGAGTATG
chr4
88031089
88031107





73
NMD exon
TGTGGCTCTATCTTTAGA
chr4
88031094
88031112





74
NMD exon
GGATCTGTGGCTCTATCT
chr4
88031099
88031117





75
NMD exon
GACTGGGATCTGTGGCTC
chr4
88031104
88031122





76
NMD exon
ACATGGCTGACTGGGATC
chr4
88031112
88031130





77
NMD exon
TAATCACATGGCTGACTG
chr4
88031117
88031135





78
NMD exon
CCTCATAATCACATGGCT
chr4
88031122
88031140





79
NMD exon
TACCCTCATAATCACATG
chr4
88031125
88031143





80
NMD exon
TCGCTTACCCTCATAATC
chr4
88031130
88031148





81
NMD exon
ATTGGTCGCTTACCCTCA
chr4
88031135
88031153





82
NMD exon
AGAGTATTGGTCGCTTAC
chr4
88031140
88031158





83
NMD exon
ACTGTAGAGTATTGGTCG
chr4
88031145
88031163





84
NMD exon
AATACACTGTAGAGTATT
chr4
88031150
88031168





85
NMD exon
AATACAATACACTGTAGA
chr4
88031155
88031173





86
NMD exon
CTGGCAATACAATACACT
chr4
88031160
88031178





87
NMD exon
ACCATCTGGCAATACAAT
chr4
88031165
88031183





88
NMD exon
GCAAAACCATCTGGCAAT
chr4
88031170
88031188





89
NMD exon
GTTGGGCAAAACCATCTG
chr4
88031175
88031193





90
NMD exon
GGCTAGTTGGGCAAAACC
chr4
88031180
88031198





91
NMD exon
CATTAGGCTAGTTGGGCA
chr4
88031185
88031203





92
NMD exon
ACTTACATTAGGCTAGTT
chr4
88031190
88031208





93
NMD exon
AGAATACTTACATTAGGC
chr4
88031195
88031213





94
NMD exon
TGTTTAGAATACTTACAT
chr4
88031200
88031218





95
NMD exon
AAACATGTTTAGAATACT
chr4
88031205
88031223





96
NMD exon
ACCTTAAACATGTTTAGA
chr4
88031210
88031228





97
NMD exon
GGCCTACCTTAAACATGT
chr4
88031215
88031233





98
NMD exon
AGCCTGGCCTACCTTAAA
chr4
88031220
88031238





99
NMD exon
AGCTTAGCCTGGCCTACC
chr4
88031225
88031243





100
uORF
TTTCTTCCCGGCGCCCGC
chr4
88007642
88007660





101
uORF
CCTTTCTTCCCGGCGCCC
chr4
88007644
88007662





102
uORF
TTCCTTTCTTCCCGGCGC
chr4
88007646
88007664





103
uORF
TGTTCCTTTCTTCCCGGC
chr4
88007648
88007666





104
uORF
CATGTTCCTTTCTTCCCG
chr4
88007650
88007668





105
uORF
GCCATGTTCCTTTCTTCC
chr4
88007652
88007670





106
uORF
GAGCCATGTTCCTTTCTT
chr4
88007654
88007672





107
uORF
AGGAGCCATGTTCCTTTC
chr4
88007656
88007674





108
uORF
TCAGGAGCCATGTTCCTT
chr4
88007658
88007676





109
uORF
CCTCAGGAGCCATGTTCC
chr4
88007660
88007678





110
uORF
CGCCTCAGGAGCCATGTT
chr4
88007662
88007680





111
uORF
TGCGCCTCAGGAGCCATG
chr4
88007664
88007682





112
uORF
TGTGCGCCTCAGGAGCCA
chr4
88007666
88007684





113
uORF
CTGTGCGCCTCAGGAGCC
chr4
88007667
88007685





114
Alt 5′ss
GUACUUUCAAAGUUAUUU
chr4
88036361
88036379





115
Alt 5′ss
GAGAGGUACUUUCAAAGU
chr4
88036366
88036384





116
Alt 5′ss
UGAUAGAGAGGUACUUUC
chr4
88036371
88036389





117
Alt 5′ss
UUCUGUGAUAGAGAGGUA
chr4
88036376
88036394





118
Alt 5′ss
CAAUUUUCUGUGAUAGAG
chr4
88036381
88036399





119
Alt 5′ss
AUGAACAAUUUUCUGUGA
chr4
88036386
88036404





120
Alt 5′ss
GCCAAAUGAACAAUUUUC
chr4
88036391
88036409





121
Alt 5′ss
AUGAAGCCAAAUGAACAA
chr4
88036396
88036414





122
Alt 5′ss
AAAUGAUGAAGCCAAAUG
chr4
88036401
88036419





123
Alt 5′ss
CAUUGAAAUGAUGAAGCC
chr4
88036406
88036424





124
Alt 5′ss
UCAUGCAUUGAAAUGAUG
chr4
88036411
88036429





125
Alt 5′ss
GAUACUCAUGCAUUGAAA
chr4
88036416
88036434





126
Alt 5′ss
CUGUCGAUACUCAUGCAU
chr4
88036421
88036439





127
Alt 5′ss
AGGUCCUGUCGAUACUCA
chr4
88036426
88036444





128
Alt 5′ss
AAAGCAGGUCCUGUCGAU
chr4
88036431
88036449





129
Alt 5′ss
AAUGCAAAGCAGGUCCUG
chr4
88036436
88036454





130
Alt 5′ss
UGUUAAAUGCAAAGCAGG
chr4
88036441
88036459





131
Alt 5′ss
CACAGUGUUAAAUGCAAA
chr4
88036446
88036464





132
Alt 5′ss
UCUCACACAGUGUUAAAU
chr4
88036451
88036469





133
Alt 5′ss
UUACGUCUCACACAGUGU
chr4
88036456
88036474





134
Alt 5′ss
AUAACUUACGUCUCACAC
chr4
88036461
88036479





135
Alt 5′ss
UCACCAUAACUUACGUCU
chr4
88036466
88036484





136
Alt 5′ss
ACAACUCACCAUAACUUA
chr4
88036471
88036489





137
Alt 5′ss
UUCUAACAACUCACCAUA
chr4
88036476
88036494





138
Alt 5′ss
GUAACUUCUAACAACUCA
chr4
88036481
88036499





139
Alt 5′ss
GAACAGUAACUUCUAACA
chr4
88036486
88036504





140
Alt 5′ss
AGUAGGAACAGUAACUUC
chr4
88036491
88036509





141
Alt 5′ss
UUGAGAGUAGGAACAGUA
chr4
88036496
88036514





142
Alt 5′ss
ACCCCCUUUGAGAGUAGG
chr4
88036503
88036521





143
Alt 5′ss
AGUUUACCCCCUUUGAGA
chr4
88036508
88036526





144
Alt 5′ss
AUGUUAGUUUACCCCCUU
chr4
88036513
88036531





145
Alt 5′ss
UCUCAAUGUUAGUUUACC
chr4
88036518
88036536





146
Alt 5′ss
AAAGUUCUCAAUGUUAGU
chr4
88036523
88036541





147
Alt 5′ss
CAGGCAAAGUUCUCAAUG
chr4
88036528
88036546





148
Alt 5′ss
AGGCACAGGCAAAGUUCU
chr4
88036533
88036551





149
Alt 5′ss
GUGCAAGGCACAGGCAAA
chr4
88036538
88036556





150
Alt 5′ss
GCACAGUGCAAGGCACAG
chr4
88036543
88036561





151
Alt 5′ss
ACUCAGCACAGUGCAAGG
chr4
88036548
88036566





152
Alt 5′ss
GAAACACUCAGCACAGUG
chr4
88036553
88036571





153
Alt 5′ss
GAUAUGAAACACUCAGCA
chr4
88036558
88036576





154
Alt 5′ss
GGUAAGAUAUGAAACACU
chr4
88036563
88036581





155
Alt 5′ss
AAUAAGGUAAGAUAUGAA
chr4
88036568
88036586





156
Alt 5′ss
AAUUAAAUAAGGUAAGAU
chr4
88036573
88036591





157
Alt 5′ss
AUAGAAAUUAAAUAAGGU
chr4
88036578
88036596





158
Alt 5′ss
AGACUAUAGAAAUUAAAU
chr4
88036583
88036601





159
Alt 5′ss
GAGUUAGACUAUAGAAAU
chr4
88036588
88036606





160
Alt 5′ss
UUAUAGAGUUAGACUAUA
chr4
88036593
88036611





161
Alt 5′ss
UUACCUUAUAGAGUUAGA
chr4
88036598
88036616





162
Alt 5′ss
AGUACUUACCUUAUAGAG
chr4
88036603
88036621





163
NMD exon
AUAAAUCGAACCAUCGUA
chr4
88030981
88030999





164
NMD exon
AAAUCAUAAAUCGAACCA
chr4
88030986
88031004





165
NMD exon
UUGAAAAAUCAUAAAUCG
chr4
88030991
88031009





166
NMD exon
UGAAGUUGAAAAAUCAUA
chr4
88030996
88031014





167
NMD exon
CACCAUGAAGUUGAAAAA
chr4
88031001
88031019





168
NMD exon
CACAUCACCAUGAAGUUG
chr4
88031006
88031024





169
NMD exon
ACUUUCACAUCACCAUGA
chr4
88031011
88031029





170
NMD exon
GUAUCACUUUCACAUCAC
chr4
88031016
88031034





171
NMD exon
AAUGUGUAUCACUUUCAC
chr4
88031021
88031039





172
NMD exon
UAUAGAAUGUGUAUCACU
chr4
88031026
88031044





173
NMD exon
GUUUCUAUAGAAUGUGUA
chr4
88031031
88031049





174
NMD exon
GUGUGGUUUCUAUAGAAU
chr4
88031036
88031054





175
NMD exon
UGAAAGUGUGGUUUCUAU
chr4
88031041
88031059





176
NMD exon
AAAAUUGAAAGUGUGGUU
chr4
88031046
88031064





177
NMD exon
AAUUCAAAAUUGAAAGUG
chr4
88031051
88031069





178
NMD exon
ACCAAAAUUCAAAAUUGA
chr4
88031056
88031074





179
NMD exon
AAAAGACCAAAAUUCAAA
chr4
88031061
88031079





180
NMD exon
CUGGAAAAAGACCAAAAU
chr4
88031066
88031084





181
NMD exon
GUAGCCUGGAAAAAGACC
chr4
88031071
88031089





182
NMD exon
GUAUGGUAGCCUGGAAAA
chr4
88031076
88031094





183
NMD exon
UUAGAGUAUGGUAGCCUG
chr4
88031081
88031099





184
NMD exon
UCUUUAGAGUAUGGUAGC
chr4
88031084
88031102





185
NMD exon
CUCUAUCUUUAGAGUAUG
chr4
88031089
88031107





186
NMD exon
UGUGGCUCUAUCUUUAGA
chr4
88031094
88031112





187
NMD exon
GGAUCUGUGGCUCUAUCU
chr4
88031099
88031117





188
NMD exon
GACUGGGAUCUGUGGCUC
chr4
88031104
88031122





189
NMD exon
ACAUGGCUGACUGGGAUC
chr4
88031112
88031130





190
NMD exon
UAAUCACAUGGCUGACUG
chr4
88031117
88031135





191
NMD exon
CCUCAUAAUCACAUGGCU
chr4
88031122
88031140





192
NMD exon
UACCCUCAUAAUCACAUG
chr4
88031125
88031143





193
NMD exon
UCGCUUACCCUCAUAAUC
chr4
88031130
88031148





194
NMD exon
AUUGGUCGCUUACCCUCA
chr4
88031135
88031153





195
NMD exon
AGAGUAUUGGUCGCUUAC
chr4
88031140
88031158





196
NMD exon
ACUGUAGAGUAUUGGUCG
chr4
88031145
88031163





197
NMD exon
AAUACACUGUAGAGUAUU
chr4
88031150
88031168





198
NMD exon
AAUACAAUACACUGUAGA
chr4
88031155
88031173





199
NMD exon
CUGGCAAUACAAUACACU
chr4
88031160
88031178





200
NMD exon
ACCAUCUGGCAAUACAAU
chr4
88031165
88031183





201
NMD exon
GCAAAACCAUCUGGCAAU
chr4
88031170
88031188





202
NMD exon
GUUGGGCAAAACCAUCUG
chr4
88031175
88031193





203
NMD exon
GGCUAGUUGGGCAAAACC
chr4
88031180
88031198





204
NMD exon
CAUUAGGCUAGUUGGGCA
chr4
88031185
88031203





205
NMD exon
ACUUACAUUAGGCUAGUU
chr4
88031190
88031208





206
NMD exon
AGAAUACUUACAUUAGGC
chr4
88031195
88031213





207
NMD exon
UGUUUAGAAUACUUACAU
chr4
88031200
88031218





208
NMD exon
AAACAUGUUUAGAAUACU
chr4
88031205
88031223





209
NMD exon
ACCUUAAACAUGUUUAGA
chr4
88031210
88031228





210
NMD exon
GGCCUACCUUAAACAUGU
chr4
88031215
88031233





211
NMD exon
AGCCUGGCCUACCUUAAA
chr4
88031220
88031238





212
NMD exon
AGCUUAGCCUGGCCUACC
chr4
88031225
88031243





213
uORF
UUUCUUCCCGGCGCCCGC
chr4
88007642
88007660





214
uORF
CCUUUCUUCCCGGCGCCC
chr4
88007644
88007662





215
uORF
UUCCUUUCUUCCCGGCGC
chr4
88007646
88007664





216
uORF
UGUUCCUUUCUUCCCGGC
chr4
88007648
88007666





217
uORF
CAUGUUCCUUUCUUCCCG
chr4
88007650
88007668





218
uORF
GCCAUGUUCCUUUCUUCC
chr4
88007652
88007670





219
uORF
GAGCCAUGUUCCUUUCUU
chr4
88007654
88007672





220
uORF
AGGAGCCAUGUUCCUUUC
chr4
88007656
88007674





221
uORF
UCAGGAGCCAUGUUCCUU
chr4
88007658
88007676





222
uORF
CCUCAGGAGCCAUGUUCC
chr4
88007660
88007678





223
uORF
CGCCUCAGGAGCCAUGUU
chr4
88007662
88007680





224
uORF
UGCGCCUCAGGAGCCAUG
chr4
88007664
88007682





225
uORF
UGUGCGCCUCAGGAGCCA
chr4
88007666
88007684





226
uORF
CUGUGCGCCUCAGGAGCC
chr4
88007667
88007685
















TABLE 6







Exemplary Mouse U7 vector sequence








Region
Sequence





Promoter
cccacaucgccugccacuacuuaaguccgauucacuucggcuuuagcuccaagccuuuaaucucgcgaag


sequence (Mouse
cucuuuuuuuuuuuuuaacaacauaggagcugugauuggcguuuucagccaaucagcacugacucau


U7 promoter)
uugcauagccuuuacaagoggucacaaacucaagaaacgagcgguuuuaauagucuuuuagaauauugu



uuaucgaaccgaauaaggaacugugcuuugugauucacauaucaguggagggguguggaaauggcacc



uugaucucacccucaucgaaaguggaguugauguccuucccuggcucguacagageacuuccgc



(SEQ ID NO: 252)





Wild-type U7

AAGUGUUACAGCUCUUUUAG (SEQ ID NO: 253)



Antisense



sequence






Wild-type U7


AAUUUGUCUAGCAGGUUUUCUGACUUCGGUCGGAAAACCCCU
 (SEQ



non-coding RNA
ID NO: 254)


sequence






ASO sequences

GTACTTTCAAAGTTATTT (SEQ ID NO: 1)



replacing the

ATAAATCGAACCATCGTA (SEQ ID NO: 50)



Wild-type U7

TTTCTTCCCGGCGCCCGC (SEQ ID NO: 100)



Antisense



sequence






Modified U7


AAUUUUUGGAGCAGGUUUUCUGACUUCGGUCGGAAAACCCCU
 (SEQ



snRNA (smOPT)
ID NO: 255)


non-coding RNA



sequence






smOPT sequence


AAUUUUUGGAG
 (SEQ ID NO: 229)






3′ regulatory
cccaauuucacuggucuacaaugaaagcaaaacaguucucuuccccgcuccccggugugugagaggggc


sequence
uuugauccuucucugguuuccuaggaaacgcguaugugcuagagccacgcucugagacuuccgccucgu



gcggucccgcuuccuuucugccuccucugg (SEQ ID NO: 256)





Exemplary Full
cccacaucgccugccacuacuuaaguccgauucacuucggcuuuagcuccaagccuuuaaucucgcgaag


sequence of wild-
cucuuuuuuuuuuuuuaacaacauaggagcugugauuggcuguuuucagccaaucagcacugacucau


type U7 snRNA
uugcauagccuuuacaagoggucacaaacucaagaaacgagogguuuuaauagucuuuuagaauauugu



uuaucgaaccgaauaaggaacugugcuuugugauucacauaucaguggagggguguggaaauggcacc



uugaucucacccucaucgaaaguggaguugauguccuucccuggcucgcuacagacgcacuuccgcAA




GUGUUACAGCUCUUUUAG

AAUUUGUCUAGCAGGUUUUCUGACUUC






GGUCGGAAAACCCCUcccaauuucacuggucuacaaugaaagcaaaacaguucucuuccccg




cuccccggugugugagaggggcuuugauccuucucugguuuccuaggaaagcguauguguagagcc



acgcucugagacuuccgccucgugcggucccgcuucuuucugccuccucugg (SEQ ID NO: 



257)





Exemplary Full
cccacaucgccugccacuacuuaaguccgauucacuucggcuuuagcuccaagccuuuaaucucgcgaag


sequence of
cucuuuuuuuuuuuuuaacaacauaggagugugauuggcuguuuucacaucagacugacucau


modified U7
uugcauagccuuuacaagoggucacaaacucaagaaacgagcgguuuuaauagucuuuuagaauauugu


snRNA (smOPT)
uuaucgaaccgaauaaggaacugugcuuugugauucacauaucaguggagggguguggaaauggcacc



uugaucucacccucaucgaaaguggaguugauguccuucccuggcucgcuacagacgcacuuccgcAA




GUGUUACAGCUCUUUUAG

AAUUUUUGGAGCAGGUUUUCUGACUUC






GGUCGGAAAACCCCUcccaauuucacuggucuacaaugaaagcaaaacaguucucuuccccg




cuccccggugugugagaggggcuuugauccuucucugguuuccuaggaaacgcguaugugcuagagcc



acgcucugagacuuccgccucgugcggucccgcuuccuuucugccuccucugg (SEQ ID NO:



258)





Full sequence of
cccacaucgccugccacuacuuaaguccgauucacuucggcuuuagcuccaagccuuuaaucucgcgaag


modified U7
cucuuuuuuuuuuuuuaacaacauaggagcugugauuggcuguuuucagccaaucagcacugacucau


snRNA (smOPT)
uugcauagccuuuacaagoggucacaaacucaagaaacgagcgguuuuaauagucuuuuagaauauugu


containing an
uuaucgaaccgaauaaggaacugugcuuugugauucacauaucaguggagggguguggaaauggcacc


ASO sequence
uugaucucacccucaucgaaaguggaguugauguccuucccuggcucgcuacagacgcacuuccgc[ASO


replacing the


sequence
]AAUUUUUGGAGCAGGU



antisense

UUUCUGACUUCGGUCGGAAAACCCCUcccaauuucacuggucuacaaugaaagcaaa



sequence of U7
acaguucucuuccccgcuccccggugugugagaggggcuuugauccuucucugguuuccuaggaaacg


snRNA
cguaugugcuagagccacgcucugagacuuccgccucgugcggucccgcuuccuuucugccuccucugg


(Exemplary
(SEQ ID NOS 252 and 259, respectively)


sequences of [ASO



sequence] include



those in Table 4



and Table 5)






Exemplary full
cccacaucgccugccacuacuuaaguccgauucacuucggcuuuagcuccaagccuuuaaucucgcgaag


sequence of
cucuuuuuuuuuuuuuaacaacauaggagugugauuggcuguuuucagccaaucagcacugacucau


modified U7
uugcauagccuuuacaagcggucacaaacucaagaaacgagcgguuuuaauagucuuuuagaauauugu


snRNA (smOPT)
uuaucgaaccgaauaaggaacugugcuuugugauucacauaucaguggagggguguggaaauggcacc


containing an
uugaucucacccucaucgaaaguggaguugauguccuucccuggcucgcuacagacgcacuuccgcGU


ASO sequence

ACUUUCAAAGUUAUUU

AAUUUUUGGAGCAGGUUUUCUGACUUCGG




replacing the

UCGGAAAACCCCUcccaauuucacuggucuacaaugaaagcaaaacaguucucuuccccgcuc



antisense
cccggugugugagaggggcuuugauccuucucugguuuccuaggaaacgcguaugugcuagagccacg


sequence of U7
cucugagacuuccgccucgugcggucccgcuuccuuucugccuccucugg (SEQ ID NO: 260)


snRNA






Exemplary full
cccacaucgccugccacuacuuaaguccgauucacuucggcuuuagcuccaagccuuuaaucucgcgaag


sequence of
cucuuuuuuuuuuuuuaacaacauaggagcugugauuggcuguuuucagccaaucagcacugacucau


modified U7
uugcauagccuuuacaagoggucacaaacucaagaaacgagcgguuuuaauagucuuuuagaauauugu


snRNA (smOPT)
uuaucgaaccgaauaaggaacugugcuuugugauucacauaucaguggagggguguggaaauggcacc


containing an
uugaucucacccucaucgaaaguggaguugauguccuucccuggcucgcuacagacgcacuuccgcAU


ASO sequence

AAAUCGAACCAUCGUA

AAUUUUUGGAGCAGGUUUUCUGACUUCGG




replacing the

UCGGAAAACCCCUcccaauuucacuggucuacaaugaaagcaaaacaguucucuuccccgcuc



antisense
cccggugugugagaggggcuuugauccuucucugguuuccuaggaaacgcguaugugcuagagccacg


sequence of U7
cucugagacuuccgccucgugcggucccgcuuccuuucugccuccucugg


snRNA
(SEQ ID NO: 261)





Exemplary full
cccacaucgccugccacuacuuaaguccgauucacuucggcuuuagcuccaagccuuuaaucucgcgaag


sequence of
cucuuuuuuuuuuuuuaacaacauaggagugugauuggcuguuuucagcaucagacugacucau


modified U7
uugcauagccuuuacaagoggucacaaacucaagaaacgagcgguuuuaauagucuuuuagaauauugu


snRNA (smOPT)
uuaucgaaccgaauaaggaacugugcuuugugauucacauaucaguggagggguguggaaauggcacc


containing an
uugaucucacccucaucgaaaguggaguugauguccuucccuggcucguacagacgcacuuccgcUU


ASO sequence

UCUUCCCGGCGCCCGC

AAUUUUUGGAGCAGGUUUUCUGACUUCGG




replacing the

UCGGAAAACCCCUcccaauuucacuggucuacaaugaaagcaaaacaguucucuuccccgcuc



antisense
cccggugugugagaggggcuuugauccuucucugguuuccuaggaaacgcguaugugcuagagccacg


sequence of U7
cucugagacuuccgccucgugcggucccgcuuccuuucugccuccucugg (SEQ ID NO: 262)


snRNA










EXAMPLES

The present disclosure will be more specifically illustrated by the following Examples. However, it should be understood that the present disclosure is not limited by these examples in any manner.


Example 1: Identification of NMD-Inducing Exon Inclusion Events in Transcripts by RNAseq Using Next Generation Sequencing

Whole transcriptome shotgun sequencing was carried out using next generation sequencing to reveal a snapshot of transcripts produced by the genes described herein to identify NIE inclusion events. For this purpose, polyA+ RNA from nuclear and cytoplasmic fractions of human cells was isolated and cDNA libraries were constructed using Illumina's TruSeq Stranded mRNA library Prep Kit. The libraries are pair-end sequenced resulting in 100-nucleotide reads that are mapped to the human genome (Grch38/hg38 assembly). FIG. 2 depicts identification of different exemplary nonsense-mediated mRNA decay (NMD)-inducing exons in PKD2 gene.


Example 2: Confirmation of NIE Via Cycloheximide Treatment

RT-PCR analysis using cytoplasmic RNA from DMSO-treated or cycloheximide-treated human kidney mixed epithelial cells and human kidney cortical epithelial cells and primers in exons can confirm the presence of a band corresponding to an NMD-inducing exon. The identity of the product was confirmed by sequencing. Densitometry analysis of the bands was performed to calculate percent NMD exon inclusion of total transcript. Treatment of cells with cycloheximide to inhibit NMD can lead to an increase of the product corresponding to the NMD-inducing exon in the cytoplasmic fraction. FIG. 4B depicts confirmation of exemplary NIE exons in various gene transcripts using cycloheximide treatment, respectively.


Example 3: NMD Exon Region ASO Walk

An ASO walk was performed for NMD exon region targeting sequences immediately upstream of the 3′ splice site, across the 3′splice site, the NMD exon, across the 5′ splice site, and downstream of the 5′ splice site using ASOs. ASOs are designed to cover these regions by shifting 5 nucleotides at a time. FIG. 5 depicts ASO walk for an exemplary NIE exon region.


Example 4: NMD Exon Region ASO Walk Evaluated by RT-PCR

ASO walk sequences can be evaluated by for example RT-PCR. PAGE can be used to show SYBR-safe-stained RT-PCR products of human cells treated with a ASO targeting the NMD exon regions as described herein in human cells by gymnotic uptake, transfection or nucleofection. Products corresponding to NMD exon inclusion and full-length are quantified and percent NMD exon inclusion is plotted. Full-length products can be normalized to internal mRNA controls and fold-change relative to control can be plotted. FIG. 7A depicts the changes in productive PKD2 mRNA as evaluated by probe-based RT-qPCR (see Example 5, normalized to RPL32) using primary renal mixed epithelial cells transfected for 24 hours with the indicated ASOs (see macrowalk of FIGS. 6A-B) at 80 nM. FIG. 7B depicts the changes in nonproductive PKD2 mRNA as evaluated by probe-based RT-qPCR (see Example 5, normalized to RPL32) using primary renal mixed epithelial cells transfected for 24 hours with the indicated ASOs (see macrowalk of FIGS. 6A-B) at 80 nM. FIG. 8A depicts the changes in productive PKD2 mRNA as evaluated by probe-based RT-qPCR (see Example 5, normalized to RPL32) using primary renal mixed epithelial cells transfected for 24 hours with the indicated ASOs (see macrowalk of FIG. 5) at 80 nM. FIG. 8B. depicts the changes in nonproductive PKD2 mRNA as evaluated by probe-based RT-qPCR (see Example 5, normalized to RPL32) using primary renal mixed epithelial cells transfected for 24 hours with the indicated ASOs (see macrowalk of FIG. 5) at 80 nM.


Example 5: NMD Exon Region ASO Walk Evaluated by RT-qPCR

SYBR-green or any probe-based RT-qPCR amplification results normalized to the internal mRNA control can be obtained using the same ASO uptake experiment that can be evaluated by RT-qPCR and can be plotted as fold change relative to Sham to confirm RT-qPCR results.


Example 6: Dose-Dependent Effect of Selected ASO in CXH-Treated Cells

PAGE can be used to show SYBR-safe-stained RT-PCR products of mock-treated (Sham, RNAiMAX alone), or treated with ASOs targeting NMD exons at 30 nM, 80 nM, and 200 nM concentrations in mouse or human cells by RNAiMAX transfection. Products corresponding to NMD exon inclusion and full-length are quantified and percent NMD exon inclusion can be plotted. The full-length products can also be normalized to HPRT internal control and fold-change relative to Sham can be plotted.


Example 7: Injection of Selected ASOs

PAGEs of SYBR-safe-stained RT-PCR products of mice from PBS-injected (1 μL) (−) or ASOs or Cep290 (negative control ASO; Gerard et al, Mol. Ther. Nuc. Ac., 2015) 2′-ASO-injected (1 μL) (+) at various concentration. Products corresponding to NMD exon inclusion and full-length are quantified and percent NMD exon inclusion can be plotted. Full-length products can be normalized to GAPDH internal control and fold-change of ASO-injected relative to PBS-injected can plotted.


Example 8: Identification of NMD-Inducing Alternative Splicing Events in Transcripts by RNAseq Using Next Generation Sequencing

Non-productive AS events in organs known to be accessible by ASOs were identified by analyzing 83 publicly available RNA-sequencing (RNA-seq) datasets from human liver, kidney, central nervous system (CNS), and eye tissues. Computational analysis discovered 7,819 unique genes containing a total of 13,121 non-productive AS events of various types. By cross-referencing these genes with genetic disease databases such as Orphanet (www.orpha.net/), 1,265 disease-associated genes with non-productive AS events were identified. As many NMD-sensitive transcripts are efficiently degraded in the analyzed tissues and are not detectable by RNAseq, there are many more genes with non-productive AS events than have been identified to date. FIG. 3 depicts identification of different exemplary nonsense-mediated mRNA decay (NMD)-inducing alternative splicing events in PKD2 gene.


Example 9: Confirmation of Alternative Splicing Via Cycloheximide Treatment

To validate the in-silico predictions and to quantify the abundance of potentially targetable non-productive AS events, cells were treated with cycloheximide (CHX), a translation inhibitor known to inhibit NMD. Expectedly, reverse transcriptase (RT)-PCR analysis showed a consistent increase in the predicted non-productive PKD2 splicing events in various cell lines upon CHX treatment compared to DMSO-treated cells. The increase indicates that these non-productive AS events lead to transcript degradation by NMD. FIG. 4B depicts confirmation of exemplary NIE exons in various gene transcripts using cycloheximide treatment, respectively Example 10: PKD2 Exon, alternative 5′ ss and 5′UTR Region ASO Walk


To identify ASOs that can prevent the non-productive AS events and/or modulate translation of a PKD2 mRNA transcript, an initial systematic ASO walk was performed in 5-nt steps along the AS event of interest or the 5′ UTR of PKD2. FIG. 5 shows a systematic ASO walk along an NMD exon AS event of PKD2 pre-mRNA. FIGS. 6A and 6B show a systematic ASO walk along an alternative 5′ ss AS event of PKD2 pre-mRNA. FIG. 10 shows a systematic ASO walk along a 5′ UTR of PKD2 mRNA. These ASOs may have a uniform phosphorothioate backbone and methoxyethyl at the 2′ ribose position (2′MOE-PS). These modifications were previously shown to allow binding to RNA with high affinity and to confer resistance to both nucleases and RNase H cleavage of the target RNA-ASO complex. RT-PCR analysis from transfected cells identifies several ASOs that reduce AS in the PKD2 mRNA and increase productive mRNA or promote translation of PKD2. The observed increase in PKD2 productive mRNA is confirmed by TaqMan qPCR. The observed increase in PKD2 translation is confirmed by Western blotting. The fold change of AS may be plotted vs the increase in productive mRNA (qPCR) to demonstrate that the ASOs are functioning on mechanism. The observed increase in PKD2 translation is confirmed by Western blotting. The fold change of translation may be plotted vs the increase in polycystin 2 protein (Western blotting) to demonstrate that the ASOs are functioning on mechanism. These results are expected to strongly suggest that gene expression upregulation can be achieved by preventing non-productive AS with ASOs.


Example 11: Use of ASO's to Increase Cellular Protein Expression in a Dose-Dependent Manner

As the desirable upregulation level varies among target genes and diseases, selected positive ASO hits from the initial walks are used to determine whether the increase in productive mRNA can be titrated across non-productive AS events. An exemplary PKD2 ASO is transfected in cells at increasing concentrations to demonstrate dose-dependent upregulation. The concentration is selected based on the potency of the ASO. RT-PCR results show a dose-dependent decrease of the non-productive alternative 3′ss selection in PKD2 compared to a non-targeting ASO control transfected at the same respective doses. Conversely, a dose-dependent increase in productive mRNA is observed as measured by TaqMan qPCR compared to a non-targeting ASO control. To determine whether the observed upregulation in productive mRNAs translates to a dose-dependent increase in protein levels, polycystin 2 is measured in extracts from transfected cells with increasing concentrations of targeting ASOs. First, antibodies against PKD2 are validated by short interfering (si)RNA-mediated knockdown of protein expression and western blot analysis. Immunoblotting results of extracts from cells transfected with the selected ASOs are expected to show a dose-dependent increase in polycystin 2. A non-targeting ASO control is expected no significant effect on protein levels. Altogether, the data are expected to indicate that ASOs targeting various types of non-productive AS events lead to a titratable increase in productive mRNA resulting in an increase in protein expression. The titratable nature of TANGO ASO-mediated protein upregulation is expected to suggest that one could tightly control protein levels and reduce the risk of overexpression. This aspect of the TANGO technology is expected to make it especially suited to address autosomal dominant haploinsufficient diseases.


Example 12: Validation of TANGO Approach In Vivo

To prove the applicability of the TANGO mechanism in vivo, one may select a positive hit from an ASO walk targeting a non-productive exon inclusion event in PKD2. The non-productive AS event in the human PKD2 gene also occurs in mice and is highly conserved at the sequence level (data not shown), allowing for testing the human targeting ASO in mice. Similar to other ASOs presented here, gymnotic (free) uptake of increasing concentrations of PKD2 ASO leads to a dose-dependent decrease of AS and an inversely correlated increase in productive mRNA in cells compared to a non-targeting ASO control. To ascertain whether the observed effect of the ASO can be recapitulated in vivo, administer ASO to mice or PBS to mice via injection. RNA and protein can be extracted from the treated mice 5 days post-injection. RT-PCR analysis can be done to show clear target engagement and a consistent reduction of non-productive exon inclusion in ASO-treated mice compared to the control PBS cohort. This reduction can be effectively translated to a roughly 4-fold increase in productive mRNA measured by TaqMan qPCR. Concomitantly, increases in protein by western blot can be detected using a validated antibody. These data provide in vivo proof of concept of the TANGO approach to upregulate protein expression by leveraging non-productive AS events.


Example 13: TANGO (Targeted Augmentation of Nuclear Gene Output) for the Treatment of Genetic Diseases

TANGO (Targeted Augmentation of Nuclear Gene Output), a novel technology which exploits antisense-mediated modulation of pre-mRNA splicing was developed to increase protein expression. TANGO prevents naturally occurring non-productive splicing events that lead to either transcript degradation by nonsense-mediated mRNA decay (NMD) or nuclear retention. By doing so, TANGO increases the generation of productive mRNA, resulting in an increase of full-length, fully-functional protein. Bioinformatic analyses of RNA sequencing (RNAseq) datasets were undertaken to identify non-productive events. Non-productive events were found in more than 50% of protein-coding genes, of which approximately 2,900 are disease-associated. To validate the in-silico predictions, targets (e.g., PKD2) representing various types of NMD-inducing, non-productive alternative splicing (AS) events (cassette exons, alternative splice sites, and alternative introns) were selected and quantified their abundance by treating cells with cycloheximide (CHX), a translation inhibitor that is known to inhibit NMD. RT-PCR analyses of the selected targets was performed and an increase of the non-productive mRNA upon CHX treatment was observed compared to DMSO-treated cells. Antisense oligonucleotides (ASOs) are designed to target the three types of NMD-inducing, non-productive AS events and TANGO ASOs are expected to be able to modulate splicing to increase productive mRNA and protein in a dose-dependent manner in vitro. Consistent with the TANGO mechanism, the level of ASO-mediated upregulation is expected to be observed to be directly proportional to the abundance of the targeted NMD-inducing event. Moreover, injection in wild-type mice of a TANGO ASO targeting a non-productive AS event in PKD2 is expected to lead to an increase in productive mRNA and polycystin 2. As TANGO exploits naturally occurring non-productive AS, this novel approach can be employed to upregulate gene expression from wild-type or hypomorphic alleles, providing a potentially unique strategy to treat genetic diseases. TANGO is being applied to develop treatment for autosomal dominant haploinsufficiency diseases such as genetic epilepsies. TANGO ASOs that increase expression from the wild-type alleles can be used to restore physiological levels of the deficient proteins.


Example 14: Transcript Database and Labeling of NMD Junctions

Annotated transcripts are downloaded from GENCODE (v. 28) and REFSEQ (via UCSC). Each annotated exon-exon junction is labeled as “coding” or “NMD”. Junctions are labeled “NMD” if and only if that junction is exclusively found in transcripts labeled “nonsense_mediated_decay” (GENCODE) or “NR” (REFSEQ).


RNA-Seq Library Processing:

All RNA-seq samples are aligned to the hg38 genome and a combined transcript database using STAR1 v2.6.1b to generate splice junction counts.


Identification and Quantification of Putative NMD-Inducing Splicing Events:

All samples are run through SUPPA22 to define annotated alternative splicing events. Different approaches are then used to label and quantify each type of alternative splicing as follows:


Exon inclusion (EI) and exon skipping (ES): The “skipped exon” events are parsed from SUPPA to obtain the inclusion and skipping junctions for each event. If the skipping junction is labeled “NMD”, the event is labeled “ES_NMD”. If either of the inclusion junctions are labeled as “NMD”, the event is labeled “EI_NMD”. Otherwise, the event is labeled “cassette exon.” Inclusion and skipping junction counts are retrieved from the STAR output, and these counts are summed across all events sharing the same alternatively spliced exon.


The final PSI for the inclusion is calculated as:






Ψ
=



sj
inc



sj
inc

+

2
·

sj
skip




.





For inclusion events, ΨEI_NMD=Ψ.


For skipping events, ΨES_NMD=1−Ψ.


Alternative 3′ and 5′ splice sites (A3 and A5): The A3 and A5 events are parsed from SUPPA to obtain the junctions corresponding to each alternative event. If either the long or short junction is labeled as “NMD”, an NMD event is reported. If both junctions report NMD it is not reported because there is likely complex splicing in that region. Splice junction counts are retrieved from the STAR output. The PSI is reported as







Ψ

A


{

3
,
5

}



_

NMD



=



sj
NMD


sj
coding


.





Alternative intron events (AI): The retained intron events are parsed from SUPPA to obtain the list of alternative intron events. The AI event is labeled NMD if the event junction is labeled NMD. To calculate PSI, the expression level of the exon within which the AI is located is estimated by summing all junctions using its 3′ and 5′ splice sites (and all other parent exons containing the same AI event). Usage of the AI junction will then fall within the range







[

0
,





sj

3



+

sj

5





2



]

,




because full use of the AI junction (which results in no intron retention) is achieved with similar counts at the exon junctions and the AI junction (full intron retention has 0 reads for the junction). To calculate Ψ, the junction counts are normalized, such that this range would now be [0,1]







Ψ
AI





min

(


sj

AI








sj

3



+

sj

5





2


)




sj

3



+

sj

5





2


.





Annotation of Disease Relevance:

Gene-disease association data from Orphadata (http://www.orphadata.org), the publicly available data repository of Orphanet is downloaded. The annotations were extended to cover all gene symbol aliases.


Example 15: Treatment with Cycloheximide (CHX), Cell Culture, and Transfections

To determine the abundance of the non-productive mRNAs, cells are incubated with 50 μg/ml of CHX (Cell Signaling Technology) dissolved in DMSO for 3 hours.


For example, cells are grown in EMEM with 10% FBS and 1×105 cells are seeded in 24-well plate and reverse-transfected with 80 nM ASOs for initial screening or 1, 5, 25 nM of selected ASO using Lipofectamine RNAiMax reagent (Invitrogen) according to manufacturer's instructions. Total RNA is extracted using RNeasy mini kit (Qiagen) 24 hrs post-transfection and cDNA is synthesized with ImProm-II reverse transcriptase (Promega). Total protein is extracted with RIPA buffer (Cell Signaling Technology) 48 hrs post transfection.


For another example, HEK293 cells are grown in EMEM with 10% FBS and 7×105 cells are seeded in 6-well plate and reverse-transfected with 30, 60, and 120 nM of antisense oligonucleotide (ASO) using Lipofectamine RNAiMax reagent (Invitrogen) according to manufacturer's instructions. Total RNA is extracted using RNeasy mini kit (Qiagen) 24 hrs post-transfection and cDNA is synthesized with ImProm-II reverse transcriptase (Promega). Total protein is extracted with RIPA buffer (Cell Signaling Technology) 48 hrs post transfection.


For another example, Huh7 cells are grown in DMEM with 10% FBS and 1×105 cells are seeded in a 12-well plate and reverse transfected with 5, 20, or 80 nM ASO using Lipofectamine RNAiMAX (Invitrogen) according to manufacturer's instructions. For RT-PCR analysis, cells are treated with 50 μg/mL of CHX (Cell Signaling Technology) in DMSO for 3 hours 21 hours post transfection. Total RNA is extracted using RNeasy mini kit (Qiagen) 24 hrs post-transfection and cDNA is synthesized with ImProm-II reverse transcriptase (Promega). Total protein is extracted with RIPA buffer (Cell Signaling Technology) 48 hrs post transfection.


For another example, ReNcell VM cells are grown in complete NSC medium containing 20 ng/mL of bFGF and EGF each on laminin coated flasks (2D culture) until reaching ˜90% confluency. The cells are then detached by accutase treatment, washed with PBS, and cultured in complete NSC medium in ultra-low attachment surface 24-well polystyrene plate with 3, 8, 20 μM ASO for gymnotic (free) uptake. Total RNA is extracted using RNeasy mini kit (Qiagen) 72 hrs post-ASO addition to media and cDNA is synthesized with ImProm-II reverse transcriptase (Promega).


Example 16: qPCR and RT-PCR Assays

For expression analysis of the productive mRNA, TaqMan qPCR (Thermo Fisher SC) is performed for PKD2. SYBR green qPCR or probe-based qPCR is performed for human PKD2 with forward primer and reverse primer, and probe. The cycling conditions are, for example, 30 sec at 95° C. for denaturation, 30 sec at 60° C. for annealing and 60 sec at 72° C. for extension for 30 cycles. For another example, the cycling conditions were 30 sec at 95° C. for denaturation, 30 sec at 55° C. for annealing, and 30 sec at 72° C. for extension for 29 cycles. For another example, The cycling conditions were 30 sec at 95° C. for denaturation, 30 sec at 55° C. for annealing, and 75 sec at 72° C. for extension for 28 cycles. For another example, The cycling conditions were 30 sec at 95° C. for denaturation, 30 sec at 56° C. for annealing, and 75 sec at 72° C. for extension for 28 cycles. The PCR products are separated on 5% polyacrylamide gel and quantified with Multi Gauge software Version 2.3.


Example 17: Western Blotting

Protein extracts are quantified by colorimetric assay using Pierce BCA protein assay kit (ThermoFisher).


For example, immunoblotting is carried out with 25 μg of lysate. For another example, immunoblotting is carried out with 60 μg of lysate. For another example, immunoblotting is carried out with 120 μg of lysate. For another example, immunoblotting is carried out with 30 μg of lysate. The primary antibody and the secondary antibody are purchased. Blots are scanned using Typhoon RLA 9000 imager (General Electric). Densitometric analysis is carried out using Multi Gauge software Version 2.3.


Example 18: Flow Cytometry

Cells are lifted from culture plates in FACS buffer. Cells are stained with APC-antibody (1:250). Data from 15,000 cells are collected on a Guava Easycyte 12HT (EMD Millipore) flow cytometer. Fluorescence minus one is used to determine the positive gate.


Example 19: PKD2 Exon Region and 5′UTR Vectorized ASO Walk

To identify vectorized ASOs that can prevent the non-productive AS events, a systematic vectorized ASO walk can be performed in 5-nt or 2-nt steps along the AS event of interest. These vectorized ASOs can be expressed from a vector as a modified U1 snRNA or U7 snRNA, which contains an ASO sequence as its targeting sequence. FIG. 5 shows a systematic vectorized ASO walk along an NMD exon AS event of PKD2 pre-mRNA. FIGS. 6A and 6B show a systematic vectorized ASO walk along an alternative 5′ ss AS event of PKD2 pre-mRNA. FIG. 10 shows a systematic vectorized ASO walk along a 5′ UTR of PKD2 mRNA. The vectorized ASO is expressed as a modified U7 snRNA. RT-PCR analysis from transfected cell lines can identify several vectorized ASOs that lead to reduced AS in the PKD2 mRNA and increase in productive mRNA. The observed increase in PKD2 productive mRNA can be confirmed by TaqMan qPCR. The fold change of AS may be plotted vs the increase in productive mRNA (qPCR) to demonstrate that the vectorized ASOs are functioning on mechanism.


While preferred embodiments of the present invention have been shown and described herein, it will be obvious to those skilled in the art that such embodiments are provided by way of example only. Numerous variations, changes, and substitutions will now occur to those skilled in the art without departing from the invention. It should be understood that various alternatives to the embodiments of the invention described herein may be employed in practicing the invention. It is intended that the following claims define the scope of the invention and that methods and structures within the scope of these claims and their equivalents be covered thereby.


Exemplary Embodiments I

Described herein, in certain embodiments, is a method of modulating expression of a target protein in a cell having a pre-mRNA that is transcribed from a target gene and that comprises a non-sense mediated RNA decay-inducing exon (NMD exon), the method comprising contacting an agent or a vector encoding the agent to the cell, whereby the agent modulates splicing of the NMD exon from the pre-mRNA, thereby modulating the level of a processed mRNA that is processed from the pre-mRNA, and modulating the expression of the target protein in the cell, wherein the target protein is a polycystin 2 and the target gene is a PKD2 gene.


Described herein, in certain embodiments, is a method of treating or reducing the likelihood of developing a disease or condition in a subject in need thereof by modulating expression of a target protein in a cell of the subject, comprising: contacting the cell of the subject with an agent or a vector encoding the agent to the cell, whereby the agent modulates splicing of a non-sense mediated mRNA decay-inducing exon (NMD exon) from a pre-mRNA that is transcribed from a target gene and that comprises the NMD exon, thereby modulating the level of a processed mRNA that is processed from the pre-mRNA, and modulating the expression of the target protein in the cell of the subject, wherein the target protein is a polycystin 2 and the target gene is a PKD2 gene.


In some embodiments, the agent: (a) binds to a targeted portion of the pre-mRNA; (b) modulates binding of a factor involved in splicing of the NMD exon; or (c) a combination of (a) and (b).


In some embodiments, the agent interferes with binding of the factor involved in splicing of the NMD exon to a region of the targeted portion.


In some embodiments, the targeted portion of the pre-mRNA is proximal to the NMD exon.


In some embodiments, the targeted portion of the pre-mRNA is at most about 1500 nucleotides, about 1000 nucleotides, about 800 nucleotides, about 700 nucleotides, about 600 nucleotides, about 500 nucleotides, about 400 nucleotides, about 300 nucleotides, about 200 nucleotides, about 100 nucleotides, about 80 nucleotides, about 70 nucleotides, about 60 nucleotides, about 50 nucleotides upstream of 5′ end of the NMD exon.


In some embodiments, the targeted portion of the pre-mRNA is at least about 1500 nucleotides, about 1000 nucleotides, about 800 nucleotides, about 700 nucleotides, about 600 nucleotides, about 500 nucleotides, about 400 nucleotides, about 300 nucleotides, about 200 nucleotides, about 100 nucleotides, about 80 nucleotides, about 70 nucleotides, about 60 nucleotides, about 50 nucleotides, about 40 nucleotides, about 30 nucleotides, about 20 nucleotides, about 10 nucleotides, about 5 nucleotides, about 4 nucleotides, about 2 nucleotides, about 1 nucleotides upstream of 5′ end of the NMD exon.


In some embodiments, the targeted portion of the pre-mRNA is at most about 1500 nucleotides, about 1000 nucleotides, about 800 nucleotides, about 700 nucleotides, about 600 nucleotides, about 500 nucleotides, about 400 nucleotides, about 300 nucleotides, about 200 nucleotides, about 100 nucleotides, about 80 nucleotides, about 70 nucleotides, about 60 nucleotides, about 50 nucleotides downstream of 3′ end of the NMD exon.


In some embodiments, the targeted portion of the pre-mRNA is at least about 1500 nucleotides, about 1000 nucleotides, about 800 nucleotides, about 700 nucleotides, about 600 nucleotides, about 500 nucleotides, about 400 nucleotides, about 300 nucleotides, about 200 nucleotides, about 100 nucleotides, about 80 nucleotides, about 70 nucleotides, about 60 nucleotides, about 50 nucleotides, about 40 nucleotides, about 30 nucleotides, about 20 nucleotides, about 10 nucleotides, about 5 nucleotides, about 4 nucleotides, about 2 nucleotides, about 1 nucleotides downstream of 3′ end of the NMD exon.


In some embodiments, the targeted portion of the pre-mRNA is at most about 1500 nucleotides, about 1000 nucleotides, about 800 nucleotides, about 700 nucleotides, about 600 nucleotides, about 500 nucleotides, about 400 nucleotides, about 300 nucleotides, about 200 nucleotides, about 100 nucleotides, about 80 nucleotides, about 70 nucleotides, about 60 nucleotides, about 50 nucleotides upstream of genomic site of GRCh38/hg38: chr4:88031085.


In some embodiments, the targeted portion of the pre-mRNA is about 1500 nucleotides, about 1000 nucleotides, about 800 nucleotides, about 700 nucleotides, about 600 nucleotides, about 500 nucleotides, about 400 nucleotides, about 300 nucleotides, about 200 nucleotides, about 100 nucleotides, about 80 nucleotides, about 70 nucleotides, about 60 nucleotides, about 50 nucleotides upstream of genomic site of GRCh38/hg38: chr4:88031085.


In some embodiments, the targeted portion of the pre-mRNA is at most about 1500 nucleotides, about 1000 nucleotides, about 800 nucleotides, about 700 nucleotides, about 600 nucleotides, about 500 nucleotides, about 400 nucleotides, about 300 nucleotides, about 200 nucleotides, about 100 nucleotides, about 80 nucleotides, about 70 nucleotides, about 60 nucleotides, about 50 nucleotides downstream of genomic site of GRCh38/hg38: chr4:88031140.


In some embodiments, the targeted portion of the pre-mRNA is about 1500 nucleotides, about 1000 nucleotides, about 800 nucleotides, about 700 nucleotides, about 600 nucleotides, about 500 nucleotides, about 400 nucleotides, about 300 nucleotides, about 200 nucleotides, about 100 nucleotides, about 80 nucleotides, about 70 nucleotides, about 60 nucleotides, about 50 nucleotides downstream of genomic site of GRCh38/hg38: chr4:88031140.


In some embodiments, the targeted portion of the pre-mRNA is located in an intronic region between two canonical exonic regions of the pre-mRNA, and wherein the intronic region contains the NMD exon.


In some embodiments, the targeted portion of the pre-mRNA at least partially overlaps with the NMD exon.


In some embodiments, targeted portion of the pre-mRNA at least partially overlaps with an intron upstream or downstream of the NMD exon.


In some embodiments, the targeted portion of the pre-mRNA comprises 5′ NMD exon-intron junction or 3′ NMD exon-intron junction.


In some embodiments, the targeted portion of the pre-mRNA is within the NMD exon.


In some embodiments, the targeted portion of the pre-mRNA comprises about 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, or more consecutive nucleotides of the NMD exon.


In some embodiments, the NMD exon comprises a sequence with at least 80%, at least 90%, or 100% sequence identity to a sequence selected from the group consisting of the sequences listed in Table 2. In some embodiments, the NMD exon comprises a sequence with at least 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, 99.5%, 99.9%, or 100% sequence identity to a sequence selected from the group consisting of the sequences listed in Table 2.


In some embodiments, the NMD exon comprises a sequence selected from the group consisting of the sequences listed in Table 2.


In some embodiments, the pre-mRNA comprises a sequence with at least about 80%, 85%, 90%, 95%, 97%, or 100% sequence identity to a sequence selected from the group consisting of the sequences listed in Table 2 or Table 3.


In some embodiments, the pre-mRNA is encoded by a genetic sequence with at least about 80%, 85%, 90%, 95%, 97%, or 100% sequence identity to a sequence selected from the group consisting of the sequences listed in Table 2 or Table 3.


In some embodiments, the targeted portion of the pre-mRNA comprises a sequence with at least 80%, 85%, 90%, 95%, 97%, or 100% sequence identity to a region comprising at least 8 contiguous nucleic acids of a sequence selected from the group consisting of the sequences listed in Table 2 or Table 3.


In some embodiments, the agent is an antisense oligomer (ASO) and wherein the ASO comprises a sequence that is at least about 80%, 85%, 90%, 95%, 97%, or 100% complementary to at least 8 contiguous nucleic acids of a sequence selected from the group consisting of the sequences listed in Table 4.


In some embodiments, the targeted portion of the pre-mRNA is within the non-sense mediated RNA decay-inducing exon GRCh38/hg38: chr4:88031085 88031140.


In some embodiments, the targeted portion of the pre-mRNA is upstream or downstream of the non-sense mediated RNA decay-inducing exon GRCh38/hg38: chr4:88031085 88031140.


In some embodiments, the targeted portion of the pre-mRNA comprises an exon-intron junction of exon GRCh38/hg38: chr4:88031085 88031140.


In some embodiments, the polycystin 2 expressed from the processed mRNA is full-length polycystin 2 or wild-type polycystin 2.


In some embodiments, the polycystin 2 expressed from the processed mRNA is at least partially functional as compared to wild-type polycystin 2.


In some embodiments, the polycystin 2 expressed from the processed mRNA is at least partially functional as compared to full-length wild-type polycystin 2.


In some embodiments, the agent promotes exclusion of the NMD exon from the pre-mRNA.


In some embodiments, the exclusion of the NMD exon from the pre-mRNA in the cell contacted with the agent is increased by about 1.1 to about 10-fold, about 1.5 to about 10-fold, about 2 to about 10-fold, about 3 to about 10-fold, about 4 to about 10-fold, about 1.1 to about 5-fold, about 1.1 to about 6-fold, about 1.1 to about 7-fold, about 1.1 to about 8-fold, about 1.1 to about 9-fold, about 2 to about 5-fold, about 2 to about 6-fold, about 2 to about 7-fold, about 2 to about 8-fold, about 2 to about 9-fold, about 3 to about 6-fold, about 3 to about 7-fold, about 3 to about 8-fold, about 3 to about 9-fold, about 4 to about 7-fold, about 4 to about 8-fold, about 4 to about 9-fold, at least about 1.1-fold, at least about 1.5-fold, at least about 2-fold, at least about 2.5-fold, at least about 3-fold, at least about 3.5-fold, at least about 4-fold, at least about 5-fold, or at least about 10-fold, compared to exclusion of the NMD exon from the pre-mRNA in a control cell.


In some embodiments, the agent increases the level of the processed mRNA in the cell.


In some embodiments, the level of the processed mRNA in the cell contacted with the agent is increased by about 1.1 to about 10-fold, about 1.5 to about 10-fold, about 2 to about 10-fold, about 3 to about 10-fold, about 4 to about 10-fold, about 1.1 to about 5-fold, about 1.1 to about 6-fold, about 1.1 to about 7-fold, about 1.1 to about 8-fold, about 1.1 to about 9-fold, about 2 to about 5-fold, about 2 to about 6-fold, about 2 to about 7-fold, about 2 to about 8-fold, about 2 to about 9-fold, about 3 to about 6-fold, about 3 to about 7-fold, about 3 to about 8-fold, about 3 to about 9-fold, about 4 to about 7-fold, about 4 to about 8-fold, about 4 to about 9-fold, at least about 1.1-fold, at least about 1.5-fold, at least about 2-fold, at least about 2.5-fold, at least about 3-fold, at least about 3.5-fold, at least about 4-fold, at least about 5-fold, or at least about 10-fold, compared to a level of the processed mRNA in a control cell.


In some embodiments, the agent increases the expression of the target protein in the cell.


In some embodiments, a level of the target protein expressed from the pre-mRNA in the cell contacted with the agent is increased by about 1.1 to about 10-fold, about 1.5 to about 10-fold, about 2 to about 10-fold, about 3 to about 10-fold, about 4 to about 10-fold, about 1.1 to about 5-fold, about 1.1 to about 6-fold, about 1.1 to about 7-fold, about 1.1 to about 8-fold, about 1.1 to about 9-fold, about 2 to about 5-fold, about 2 to about 6-fold, about 2 to about 7-fold, about 2 to about 8-fold, about 2 to about 9-fold, about 3 to about 6-fold, about 3 to about 7-fold, about 3 to about 8-fold, about 3 to about 9-fold, about 4 to about 7-fold, about 4 to about 8-fold, about 4 to about 9-fold, at least about 1.1-fold, at least about 1.5-fold, at least about 2-fold, at least about 2.5-fold, at least about 3-fold, at least about 3.5-fold, at least about 4-fold, at least about 5-fold, or at least about 10-fold, compared to a level of the target protein produced in a control cell.


In some embodiments, the disease or condition is induced by a loss-of-function mutation in the target protein.


In some embodiments, the disease or condition is associated with haploinsufficiency of a gene encoding the target protein, and wherein the subject has a first allele encoding a functional target protein, and a second allele from which the target protein is not produced or produced at a reduced level, or a second allele encoding a nonfunctional target protein or a partially functional target protein.


In some embodiments, the disease or condition is selected from the group consisting of: polycystic kidney disease with or without polycystic liver disease, autosomal dominant polycystic kidney disease, and intracranial aneurysm.


In some embodiments, the disease or condition is associated with an autosomal recessive mutation of a gene encoding the target protein, wherein the subject has a first allele encoding from which: (i) the target protein is not produced or produced at a reduced level compared to a wild-type allele; or (ii) the target protein produced is nonfunctional or partially functional compared to a wild-type allele, and a second allele from which: (iii) the target protein is produced at a reduced level compared to a wild-type allele and the target protein produced is at least partially functional compared to a wild-type allele; or (iv) the target protein produced is partially functional compared to a wild-type allele.


In some embodiments, the disease or condition is selected from the group consisting of: polycystic kidney disease with or without polycystic liver disease, autosomal dominant polycystic kidney disease, and intracranial aneurysm.


In some embodiments, the agent promotes exclusion of the NMD exon from the pre-mRNA and increases the expression of the target protein in the cell.


In some embodiments, the agent inhibits exclusion of the NMD exon from the pre-mRNA encoding the target protein.


In some embodiments, the exclusion of the NMD exon from the pre-mRNA in the cell contacted with the agent is decreased by about 1.1 to about 10-fold, about 1.5 to about 10-fold, about 2 to about 10-fold, about 3 to about 10-fold, about 4 to about 10-fold, about 1.1 to about 5-fold, about 1.1 to about 6-fold, about 1.1 to about 7-fold, about 1.1 to about 8-fold, about 1.1 to about 9-fold, about 2 to about 5-fold, about 2 to about 6-fold, about 2 to about 7-fold, about 2 to about 8-fold, about 2 to about 9-fold, about 3 to about 6-fold, about 3 to about 7-fold, about 3 to about 8-fold, about 3 to about 9-fold, about 4 to about 7-fold, about 4 to about 8-fold, about 4 to about 9-fold, at least about 1.1-fold, at least about 1.5-fold, at least about 2-fold, at least about 2.5-fold, at least about 3-fold, at least about 3.5-fold, at least about 4-fold, at least about 5-fold, or at least about 10-fold, compared to exclusion of the NMD exon from the pre-mRNA in a control cell.


In some embodiments, the agent decreases the level of the processed mRNA in the cell.


In some embodiments, the level of the processed mRNA in the cell contacted with the agent is decreased by about 1.1 to about 10-fold, about 1.5 to about 10-fold, about 2 to about 10-fold, about 3 to about 10-fold, about 4 to about 10-fold, about 1.1 to about 5-fold, about 1.1 to about 6-fold, about 1.1 to about 7-fold, about 1.1 to about 8-fold, about 1.1 to about 9-fold, about 2 to about 5-fold, about 2 to about 6-fold, about 2 to about 7-fold, about 2 to about 8-fold, about 2 to about 9-fold, about 3 to about 6-fold, about 3 to about 7-fold, about 3 to about 8-fold, about 3 to about 9-fold, about 4 to about 7-fold, about 4 to about 8-fold, about 4 to about 9-fold, at least about 1.1-fold, at least about 1.5-fold, at least about 2-fold, at least about 2.5-fold, at least about 3-fold, at least about 3.5-fold, at least about 4-fold, at least about 5-fold, or at least about 10-fold, compared to a level of the processed mRNA in a control cell.


In some embodiments, the agent decreases the expression of the target protein in the cell.


In some embodiments, a level of the target protein expressed from the pre-mRNA in the cell contacted with the agent is decreased by about 1.1 to about 10-fold, about 1.5 to about 10-fold, about 2 to about 10-fold, about 3 to about 10-fold, about 4 to about 10-fold, about 1.1 to about 5-fold, about 1.1 to about 6-fold, about 1.1 to about 7-fold, about 1.1 to about 8-fold, about 1.1 to about 9-fold, about 2 to about 5-fold, about 2 to about 6-fold, about 2 to about 7-fold, about 2 to about 8-fold, about 2 to about 9-fold, about 3 to about 6-fold, about 3 to about 7-fold, about 3 to about 8-fold, about 3 to about 9-fold, about 4 to about 7-fold, about 4 to about 8-fold, about 4 to about 9-fold, at least about 1.1-fold, at least about 1.5-fold, at least about 2-fold, at least about 2.5-fold, at least about 3-fold, at least about 3.5-fold, at least about 4-fold, at least about 5-fold, or at least about 10-fold, compared to a level of the target protein expressed in a control cell.


In some embodiments, the disease or condition is induced by a gain-of-function mutation in the target protein.


In some embodiments, the subject has an allele from which the target protein is produced at an increased level, or an allele encoding a mutant target protein that exhibits increased activity in the cell.


In some embodiments, the agent inhibits exclusion of the NMD exon from the pre-mRNA encoding the target protein and decreases the expression of the target protein in the cell.


In some embodiments, the agent is an antisense oligomer (ASO) and wherein the antisense oligomer comprises a backbone modification comprising a phosphorothioate linkage or a phosphorodiamidate linkage.


In some embodiments, the agent is an antisense oligomer (ASO) and wherein the antisense oligomer comprises a phosphorodiamidate morpholino, a locked nucleic acid, a peptide nucleic acid, a 2′-O-methyl, a 2′-Fluoro, or a 2′-O-methoxyethyl moiety.


In some embodiments, the agent is an antisense oligomer (ASO) and wherein the antisense oligomer comprises at least one modified sugar moiety.


In some embodiments, each sugar moiety is a modified sugar moiety.


In some embodiments, the agent is an antisense oligomer (ASO) and wherein the antisense oligomer consists of from 8 to 50 nucleobases, 8 to 40 nucleobases, 8 to 35 nucleobases, 8 to 30 nucleobases, 8 to 25 nucleobases, 8 to 20 nucleobases, 8 to 15 nucleobases, 9 to 50 nucleobases, 9 to 40 nucleobases, 9 to 35 nucleobases, 9 to 30 nucleobases, 9 to 25 nucleobases, 9 to 20 nucleobases, 9 to 15 nucleobases, 10 to 50 nucleobases, 10 to 40 nucleobases, 10 to 35 nucleobases, 10 to 30 nucleobases, 10 to 25 nucleobases, 10 to 20 nucleobases, 10 to 15 nucleobases, 11 to 50 nucleobases, 11 to 40 nucleobases, 11 to 35 nucleobases, 11 to 30 nucleobases, 11 to 25 nucleobases, 11 to 20 nucleobases, 11 to 15 nucleobases, 12 to 50 nucleobases, 12 to 40 nucleobases, 12 to 35 nucleobases, 12 to 30 nucleobases, 12 to 25 nucleobases, 12 to 20 nucleobases, or 12 to 15 nucleobases.


In some embodiments, the agent is an antisense oligomer (ASO) and wherein the antisense oligomer is at least 80%, at least 85%, at least 90%, at least 95%, at least 98%, at least 99%, or 100%, complementary to the targeted portion of the pre-mRNA.


In some embodiments, the method further comprises assessing mRNA level or expression level of the target protein.


In some embodiments, the subject is a human.


In some embodiments, the subject is a non-human animal.


In some embodiments, the subject is a fetus, an embryo, or a child.


In some embodiments, the cells are ex vivo.


In some embodiments, the agent is administered by intrathecal injection, intracerebroventricular injection, intraperitoneal injection, intramuscular injection, subcutaneous injection, intravitreal, or intravenous injection of the subject.


In some embodiments, the method further comprises administering a second therapeutic agent to the subject.


In some embodiments, the second therapeutic agent is a small molecule.


In some embodiments, the second therapeutic agent is an antisense oligomer.


In some embodiments, the second therapeutic agent corrects intron retention.


In some embodiments, the method treats the disease or condition.


Described herein, in certain embodiments, is a composition comprising a non-sense mediated RNA decay exon (NSE)-modulating agent that interacts with a target motif within a pre-mRNA to modulate exclusion of an NSE from a processed mRNA transcript and to modulate inclusion of a canonical exon in the processed mRNA transcript, wherein the target motif is located: (i) in an intronic region between two canonical exons, (ii) in one of the two canonical exons, or (iii) in a region spanning both an intron and canonical exon; wherein the NSE comprises: (a) only a portion of a canonical exon, or (b) a canonical exon and at least a portion of an intron adjacent to the canonical exon; and wherein the NSE-modulating agent modulates exclusion of an NSE from the pre-mRNA transcript and modulates inclusion of a canonical exon in the processed mRNA transcript.


In some embodiments, the NSE-modulating agent promotes exclusion of an NSE from the pre-mRNA transcript and promotes inclusion of a canonical exon in the processed mRNA transcript.


In some embodiments, the processed mRNA transcript encodes a target protein and the NSE-modulating agent increases expression of a target protein in a cell containing the pre-mRNA.


In some embodiments, the target protein is polycystin 2.


Described herein, in certain embodiments, is a composition comprising a non-sense mediated RNA decay alternative 5′ or 3′ splice site (NSASS)-modulating agent that interacts with a target motif within a pre-mRNA to modulate splicing at an alternative 5′ or 3′ splice site of a pre-mRNA and to modulate inclusion of a canonical exon in a processed mRNA transcript that is processed from the pre-mRNA, wherein the target motif is located: (i) in an intronic region between two canonical exons, (ii) in one of the two canonical exons, or (iii) in a region spanning both an intron and canonical exon; wherein modulating splicing at the alternative 5′ or 3′ splice site of the pre-mRNA modulates exclusion of an exon from the pre-mRNA transcript, wherein the exon comprises: (a) only a portion of a canonical exon, or (b) a canonical exon and at least a portion of an intron adjacent to the canonical exon; and wherein the NSASS-modulating agent modulates exclusion of the exon from the pre-mRNA transcript and modulates inclusion of a canonical exon in the processed mRNA transcript.


In some embodiments, the NSASS-modulating agent promotes exclusion of the exon resulting from splicing at the alternative 5′ or 3′ splice site from the pre-mRNA transcript and promotes inclusion of a canonical exon in the processed mRNA transcript.


In some embodiments, the processed mRNA transcript encodes a target protein and the NSASS-modulating agent increases expression of a target protein in a cell containing the pre-mRNA.


In some embodiments, the target protein is selected from the group consisting of, PKD2.


Described herein, in certain embodiments, is a composition comprising a non-sense mediated RNA decay exon (NSE)-modulating agent that modulates expression of a target protein in a cell comprising a pre-mRNA that encodes the target protein, wherein the pre-mRNA comprises: an alternative nonsense mediated RNA decay-inducing (NMD) exon comprising an alternative 5′ splice site upstream of the canonical 5′ splice site in reference to an intron following a canonical exon and within the canonical exon, or downstream of the canonical 5′ splice site in reference to an intron following the canonical exon and within the intron; wherein the NSE-modulating agent modulates processing of an mRNA transcript from the pre-mRNA by modulating splicing of the pre-mRNA at the alternative 5′ splice site, wherein the splicing of the pre-mRNA at the alternative 5′ splice site modulates the expression of the target protein in a cell.


In some embodiments, the target protein is PKD2.


In some embodiments, the splicing of the pre-mRNA at the alternative 5′ splice site increases the expression of the target protein in a cell.


In some embodiments, the alternative nonsense mediated RNA decay-inducing (NMD) exon comprises an alternative 5′ splice site upstream of the canonical 5′ splice site in reference to an intron following a canonical exon and within the canonical exon.


In some embodiments, the alternative nonsense mediated RNA decay-inducing (NMD) exon comprises an alternative 5′ splice site downstream of the canonical 5′ splice site in reference to an intron following the canonical exon and within the intron.


Described herein, in certain embodiments, is a composition comprising a non-sense mediated RNA decay alternative 5′ or 3′ splice site (NSASS)-modulating agent that modulates expression of a target protein in a cell comprising a pre-mRNA that encodes the target protein, wherein the pre-mRNA comprises: an exon comprising an alternative 5′ splice site upstream of the canonical 5′ splice site in reference to an intron following a canonical exon and within the canonical exon, or downstream of the canonical 5′ splice site in reference to an intron following the canonical exon and within the intron; wherein the NSASS-modulating agent modulates processing of an mRNA transcript from the pre-mRNA by modulating splicing of the pre-mRNA at the alternative 5′ splice site, wherein the splicing of the pre-mRNA at the alternative 5′ splice site modulates the expression of the target protein in a cell.


In some embodiments, the target protein is polycystin 2.


In some embodiments, the splicing of the pre-mRNA at the alternative 5′ splice site increases the expression of the target protein in a cell.


In some embodiments, the pre-mRNA comprises an exon comprising an alternative 5′ splice site upstream of the canonical 5′ splice site in reference to an intron following a canonical exon and within the canonical exon.


In some embodiments, the pre-mRNA comprises an exon comprising an alternative 5′ splice site downstream of the canonical 5′ splice site in reference to an intron following the canonical exon and within the intron.


Described herein, in certain embodiments, is a composition comprising a non-sense mediated RNA decay exon (NSE)-modulating agent that modulates expression of a target protein in a cell comprising a pre-mRNA that encodes the target protein, wherein the pre-mRNA comprises an alternative nonsense mediated RNA decay-inducing (NMD) exon comprising an alternative 3′ splice site downstream of the canonical 3′ splice site in reference to an intron preceding a canonical exon and within the canonical exon, or upstream of the canonical 3′ splice site in reference to an intron preceding the canonical exon and within the intron, wherein the NSE-modulating agent modulates processing of an mRNA transcript from the pre-mRNA by modulating splicing of the pre-mRNA at the alternative 3′ splice site, and wherein the splicing of the pre-mRNA at the alternative 3′ splice site modulates the expression of the target protein in a cell.


In some embodiments, the target protein is polycystin 2.


In some embodiments, the splicing of the pre-mRNA at the alternative 3′ splice site increases the expression of the target protein in a cell.


In some embodiments, the alternative nonsense mediated RNA decay-inducing (NMD) exon comprises an alternative 3′ splice site downstream of the canonical 3′ splice site in reference to an intron preceding a canonical exon and within the canonical exon.


In some embodiments, the alternative nonsense mediated RNA decay-inducing (NMD) exon comprises an alternative 3′ splice site upstream of the canonical 3′ splice site in reference to an intron preceding the canonical exon and within the intron.


Described herein, in certain embodiments, is a composition comprising a non-sense mediated RNA decay alternative 5′ or 3′ splice site (NSASS)-modulating agent that modulates expression of a target protein in a cell comprising a pre-mRNA that encodes the target protein, wherein the pre-mRNA comprises an exon comprising an alternative 3′ splice site downstream of the canonical 3′ splice site in reference to an intron preceding a canonical exon and within the canonical exon, or upstream of the canonical 3′ splice site in reference to an intron preceding the canonical exon and within the intron, wherein the NSASS-modulating agent modulates processing of an mRNA transcript from the pre-mRNA by modulating splicing of the pre-mRNA at the alternative 3′ splice site, and wherein the splicing of the pre-mRNA at the alternative 3′ splice site modulates the expression of the target protein in a cell.


In some embodiments, the target protein is polycystin 2.


In some embodiments, the splicing of the pre-mRNA at the alternative 3′ splice site increases the expression of the target protein in a cell.


In some embodiments, the pre-mRNA comprises an exon comprising an alternative 3′ splice site downstream of the canonical 3′ splice site in reference to an intron preceding a canonical exon and within the canonical exon.


In some embodiments, the pre-mRNA comprises an exon comprising an alternative 3′ splice site upstream of the canonical 3′ splice site in reference to an intron preceding the canonical exon and within the intron.


In some embodiments, the agent is a small molecule.


In some embodiments, the agent is a polypeptide.


In some embodiments, the polypeptide is a nucleic acid binding protein.


In some embodiments, the nucleic acid binding protein contains a TAL-effector or zinc finger binding domain.


In some embodiments, the nucleic acid binding protein is a Cas family protein.


In some embodiments, the polypeptide is accompanied by or complexed with one or more nucleic acid molecules.


In some embodiments, the agent is an antisense oligomer (ASO) complementary to the targeted region of the pre-mRNA.


In some embodiments, the agent is at least 75%, at least 80%, at least 85%, at least 90%, at least 95%, at least 98%, at least 99%, or 100%, complementary to the targeted region of the pre-mRNA encoding the target protein.


In some embodiments, the agent comprises a backbone modification comprising a phosphorothioate linkage or a phosphorodiamidate linkage.


In some embodiments, the agent comprises a phosphorodiamidate morpholino.


In some embodiments, the agent comprises a locked nucleic acid.


In some embodiments, the agent comprises a peptide nucleic acid.


In some embodiments, the agent comprises a 2′-O-methyl.


In some embodiments, the agent comprises a 2′-Fluoro, or a 2′-O-methoxyethyl moiety.


In some embodiments, the agent comprises at least one modified sugar moiety.


In some embodiments, each sugar moiety is a modified sugar moiety.


In some embodiments, the agent is an antisense oligomer, and wherein the agent consists of from 8 to 50 nucleobases, 8 to 40 nucleobases, 8 to 35 nucleobases, 8 to 30 nucleobases, 8 to 25 nucleobases, 8 to 20 nucleobases, 8 to 15 nucleobases, 9 to 50 nucleobases, 9 to 40 nucleobases, 9 to 35 nucleobases, 9 to 30 nucleobases, 9 to 25 nucleobases, 9 to 20 nucleobases, 9 to 15 nucleobases, 10 to 50 nucleobases, 10 to 40 nucleobases, 10 to 35 nucleobases, 10 to 30 nucleobases, 10 to 25 nucleobases, 10 to 20 nucleobases, 10 to 15 nucleobases, 11 to 50 nucleobases, 11 to 40 nucleobases, 11 to 35 nucleobases, 11 to 30 nucleobases, 11 to 25 nucleobases, 11 to 20 nucleobases, 11 to 15 nucleobases, 12 to 50 nucleobases, 12 to 40 nucleobases, 12 to 35 nucleobases, 12 to 30 nucleobases, 12 to 25 nucleobases, 12 to 20 nucleobases, or 12 to 15 nucleobases.


Described herein, in certain embodiments, is a composition comprising a nucleic acid molecule that encodes for the agent according to the composition as provided herein.


In some embodiments, the nucleic acid molecule is incorporated into a viral delivery system.


In some embodiments, the viral delivery system is an adenovirus-associated vector.


Described herein, in certain embodiments, is a method of modulating protein expression, comprising: contacting a non-sense mediated RNA decay exon (NSE)-modulating agent to a target motif within a pre-mRNA, wherein the NSE comprises (i) only a portion of a canonical exon, or (ii) a canonical exon and at least a portion of an intron adjacent to the canonical exon; wherein the pre-mRNA is processed to form a processed mRNA transcript, wherein the NSE-modulating agent modulates exclusion of an NSE from the pre-mRNA transcript and modulates inclusion of the canonical exon in the processed mRNA transcript; and wherein the processed mRNA transcript is translated, wherein the exclusion of the NSE and inclusion of the canonical exon modulates target protein expression relative to the target protein expression of an equivalent mRNA transcript comprising the NSE instead of the canonical exon.


In some embodiments, the target motif is located in an intronic region between two canonical exons.


In some embodiments, the target motif is located in one of the two canonical exons.


In some embodiments, the target motif is located in a region spanning both an intron and a canonical exon.


In some embodiments, the target protein is polycystin 2.


Described herein, in certain embodiments, is a method of modulating expression of a target protein by a cell having a pre-mRNA that encodes the target protein, wherein the pre-mRNA comprises: an alternative nonsense mediated RNA decay-inducing (NMD) exon comprising an alternative 3′ splice site downstream of the canonical 3′ splice site in reference to an intron preceding a canonical exon and within the canonical exon, or upstream of the 3′ splice site in reference to an intron preceding the canonical exon and within the intron, the method comprising contacting a non-sense mediated RNA decay exon (NSE)-modulating agent to the cell, wherein the non-sense mediated RNA decay exon (NSE)-modulating agent t modulates processing of an mRNA transcript from the pre-mRNA by modulating splicing of the pre-mRNA at the alternative 3′ splice site, and wherein the splicing of the pre-mRNA at the alternative 3′ splice site modulates the expression of the target protein.


In some embodiments, the target protein is polycystin 2.


Described herein, in certain embodiments, is a method of modulating expression of a target protein by a cell having a pre-mRNA that encodes the target protein, wherein the pre-mRNA comprises: an alternative nonsense mediated RNA decay-inducing (NMD) exon comprising an alternative 5′ splice site upstream of the canonical 5′ splice site in reference to an intron following a canonical exon and within the canonical exon, or downstream of the canonical 5′ splice site in reference to an intron following the canonical exon and within the intron, the method comprising contacting a non-sense mediated RNA decay exon (NSE)-modulating agent to the cell, wherein the non-sense mediated RNA decay exon (NSE)-modulating agent modulates processing of an mRNA transcript from the pre-mRNA by modulating splicing of the pre-mRNA at the alternative 5′ splice site, and wherein the splicing of the pre-mRNA at the alternative 5′ splice site modulates the expression of the target protein.


In some embodiments, the target protein is polycystin 2.


In some embodiments, the non-sense mediated RNA decay exon (NSE)-modulating agent binds to a targeted portion of the pre-mRNA.


In some embodiments, the wherein the non-sense mediated RNA decay exon (NSE)-modulating agent binds to a factor involved in splicing of the NSE or NMD exon.


In some embodiments, the wherein the non-sense mediated RNA decay exon (NSE)-modulating agent inhibits activity of a factor involved in splicing of the NMD exon.


In some embodiments, the non-sense mediated RNA decay exon (NSE)-modulating agent interferes with binding of a factor involved in splicing of the NMD exon to a region of the targeted portion of the pre-mRNA.


In some embodiments, modulation of splicing of the pre-mRNA increases the expression of the target protein.


In some embodiments, the level the target protein in the cell is increased about 1.1 to about 10-fold, about 1.5 to about 10-fold, about 2 to about 10-fold, about 3 to about 10-fold, about 4 to about 10-fold, about 1.1 to about 5-fold, about 1.1 to about 6-fold, about 1.1 to about 7-fold, about 1.1 to about 8-fold, about 1.1 to about 9-fold, about 2 to about 5-fold, about 2 to about 6-fold, about 2 to about 7-fold, about 2 to about 8-fold, about 2 to about 9-fold, about 3 to about 6-fold, about 3 to about 7-fold, about 3 to about 8-fold, about 3 to about 9-fold, about 4 to about 7-fold, about 4 to about 8-fold, about 4 to about 9-fold, at least about 1.1-fold, at least about 1.5-fold, at least about 2-fold, at least about 2.5-fold, at least about 3-fold, at least about 3.5-fold, at least about 4-fold, at least about 5-fold, or at least about 10-fold, compared to the level of processed mRNA encoding the target protein in a control cell.


In some embodiments, modulation of splicing of the pre-mRNA in-creases production of the processed mRNA encoding the target protein.


In some embodiments, the level of processed mRNA encoding the target protein in the cell contacted with the therapeutic agent is increased about 1.1 to about 10-fold, about 1.5 to about 10-fold, about 2 to about 10-fold, about 3 to about 10-fold, about 4 to about 10-fold, about 1.1 to about 5-fold, about 1.1 to about 6-fold, about 1.1 to about 7-fold, about 1.1 to about 8-fold, about 1.1 to about 9-fold, about 2 to about 5-fold, about 2 to about 6-fold, about 2 to about 7-fold, about 2 to about 8-fold, about 2 to about 9-fold, about 3 to about 6-fold, about 3 to about 7-fold, about 3 to about 8-fold, about 3 to about 9-fold, about 4 to about 7-fold, about 4 to about 8-fold, about 4 to about 9-fold, at least about 1.1-fold, at least about 1.5-fold, at least about 2-fold, at least about 2.5-fold, at least about 3-fold, at least about 3.5-fold, at least about 4-fold, at least about 5-fold, or at least about 10-fold, compared to the level of processed mRNA encoding the target protein in a control cell.


In some embodiments, the target protein is the canonical isoform of the protein.


In some embodiments, the target protein is polycystin 2.


In some embodiments, the non-sense mediated RNA decay exon (NSE)-modulating agent is the composition as provided herein.


Described herein, in certain embodiments, is a pharmaceutical composition comprising a therapeutic agent comprising the composition as provided herein; and a pharmaceutically acceptable excipient and/or a delivery vehicle.


Described herein, in certain embodiments, is a method of treating or reducing the likelihood of developing a disease or condition in a subject in need thereof, the method comprising: administering to the subject a pharmaceutical composition as provided herein to a subject in need thereof.


Described herein, in certain embodiments, is a method of treating or reducing the likelihood of developing a disease or condition in a subject in need thereof, the method comprising: administering to the subject a pharmaceutical composition comprising: (a) a non-sense mediated RNA decay exon (NSE)-modulating agent that interacts with a target motif within a pre-mRNA to modulate exclusion of an NSE from a processed mRNA transcript and to modulate inclusion of a canonical exon in the processed mRNA transcript,

    • wherein the NSE comprises (i) only a portion of a canonical exon, or (ii) a canonical exon and at least a portion of an intron adjacent to the canonical exon; and (b) a pharmaceutically acceptable excipient and/or a delivery vehicle, wherein the disease or condition is treated or prevented in the subject by the administration of the NSE-modulating agent by a modulation in expression of a target protein translated from the processed mRNA transcript.


In some embodiments, the target protein is polycystin 2.


Described herein, in certain embodiments, is a method of treating or reducing the likelihood of developing a disease or condition in a subject in need thereof by modulating expression of a target protein in a cell of the subject, wherein the cell of the subject has a pre-mRNA that encodes the target protein, wherein the pre-mRNA comprises: (a) a canonical exon preceded by a canonical intron flanking a 5′ end of the canonical exon; and (b) an alternative nonsense mediated RNA decay-inducing (NMD) exon comprising an alternative 3′ splice site downstream of the canonical 3′ splice site in reference to the intron preceding the canonical exon and within the canonical exon, or upstream of the canonical 3′ splice site in reference to the intron preceding the canonical exon and within the canonical intron, the method comprising contacting a therapeutic agent to the cell, wherein the therapeutic agent modulates processing of an mRNA transcript from the pre-mRNA by modulating splicing of the pre-mRNA at the alternative 3′ splice site, and wherein the splicing of the pre-mRNA at the alternative 3′ splice site modulates the expression of the target protein in the cell of the subject.


In some embodiments, the target protein is polycystin 2.


Described herein, in certain embodiments, is a method of treating or reducing the likelihood of developing a disease or condition in a subject in need thereof by modulating expression of a target protein in a cell of the subject, wherein the cell of the subject has a pre-mRNA that encodes the target protein, wherein the pre-mRNA comprises: (a) a canonical exon followed by a canonical intron flanking a 3′ end of the canonical exon; and (b) an alternative nonsense mediated RNA decay-inducing (NMD) exon comprising an alternative 5′ splice site upstream of the canonical 5′ splice site in reference to the intron following the canonical exon and within the canonical exon, or downstream of the canonical 5′ splice site in reference to the intron following the canonical exon and within the canonical intron, the method comprising contacting a therapeutic agent to the cell, wherein the therapeutic agent modulates processing of an mRNA transcript from the pre-mRNA by modulating splicing of the pre-mRNA at the alternative 5′ splice site, and wherein the splicing of the pre-mRNA at the alternative 5′ splice site modulates the expression of the target protein in the cell of the subject.


In some embodiments, the target protein is polycystin 2.


In some embodiments, the disease is polycystic kidney disease with or without polycystic liver disease, autosomal dominant polycystic kidney disease, or intracranial aneurysm.


In some embodiments, the disease or the condition is caused by a deficient amount or activity of the target protein.


In some embodiments, the therapeutic agent increases the level of the processed mRNA encoding the target protein in the cell.


In some embodiments, the therapeutic agent increases the expression of the target protein in the cell.


In some embodiments, the level of processed mRNA encoding the target protein in the cell contacted with the therapeutic agent is increased about 1.1 to about 10-fold, about 1.5 to about 10-fold, about 2 to about 10-fold, about 3 to about 10-fold, about 4 to about 10-fold, about 1.1 to about 5-fold, about 1.1 to about 6-fold, about 1.1 to about 7-fold, about 1.1 to about 8-fold, about 1.1 to about 9-fold, about 2 to about 5-fold, about 2 to about 6-fold, about 2 to about 7-fold, about 2 to about 8-fold, about 2 to about 9-fold, about 3 to about 6-fold, about 3 to about 7-fold, about 3 to about 8-fold, about 3 to about 9-fold, about 4 to about 7-fold, about 4 to about 8-fold, about 4 to about 9-fold, at least about 1.1-fold, at least about 1.5-fold, at least about 2-fold, at least about 2.5-fold, at least about 3-fold, at least about 3.5-fold, at least about 4-fold, at least about 5-fold, or at least about 10-fold, compared to the level of processed mRNA encoding the target protein in a control cell.


In some embodiments, the level the target protein in the cell is increased about 1.1 to about 10-fold, about 1.5 to about 10-fold, about 2 to about 10-fold, about 3 to about 10-fold, about 4 to about 10-fold, about 1.1 to about 5-fold, about 1.1 to about 6-fold, about 1.1 to about 7-fold, about 1.1 to about 8-fold, about 1.1 to about 9-fold, about 2 to about 5-fold, about 2 to about 6-fold, about 2 to about 7-fold, about 2 to about 8-fold, about 2 to about 9-fold, about 3 to about 6-fold, about 3 to about 7-fold, about 3 to about 8-fold, about 3 to about 9-fold, about 4 to about 7-fold, about 4 to about 8-fold, about 4 to about 9-fold, at least about 1.1-fold, at least about 1.5-fold, at least about 2-fold, at least about 2.5-fold, at least about 3-fold, at least about 3.5-fold, at least about 4-fold, at least about 5-fold, or at least about 10-fold, compared to the level of processed mRNA encoding the target protein in a control cell.


In some embodiments, the method further comprises assessing mRNA levels or expression levels of the target protein.


In some embodiments, the method further comprises assessing the subject's genome for at least one genetic mutation associated with the disease.


In some embodiments, at least one genetic mutation is within a locus of a gene associated with the disease.


In some embodiments, at least one genetic mutation is within a locus associated with expression of a gene associated with the disease.


In some embodiments, at least one genetic mutation is within the PKD2 gene locus.


In some embodiments, at least one genetic mutation is within a locus associated with PKD2 gene expression.


In some embodiments, the subject is a human.


In some embodiments, the subject is a non-human animal.


In some embodiments, the subject is a fetus, an embryo, or a child.


In some embodiments, the cell or the cells is ex vivo, or in a tissue, or organ ex vivo.


In some embodiments, the therapeutic agent is administered to the subject by intracerebroventricular injection, intraperitoneal injection, intramuscular injection, intrathecal injection, subcutaneous injection, oral administration, synovial injection, intravitreal administration, subretinal injection, topical application, implantation, or intravenous injection.


In some embodiments, the method treats the disease or condition.


Described herein, in certain embodiments, is a therapeutic agent for use in the method as provided herein.


Described herein, in certain embodiments, is a pharmaceutical composition comprising the therapeutic agent of as provided herein, and a pharmaceutically acceptable excipient.


Described herein, in certain embodiments, is a method of treating or reducing the likelihood of developing a disease or condition in a subject in need thereof, comprising administering the pharmaceutical composition as provided herein by intracerebroventricular injection, intraperitoneal injection, intramuscular injection, intrathecal injection, subcutaneous injection, oral administration, synovial injection, intravitreal administration, subretinal injection, topical application, implantation, or intravenous injection to the subject.


In some embodiments, the method treats the subject.


Described herein, in certain embodiments, is a composition comprising a non-sense mediated RNA decay exon (NSE)-modulating agent or a viral vector encoding the agent that interacts with a target motif within a pre-mRNA that is transcribed from a target gene to modulate exclusion of an NSAE from a processed mRNA transcript and to modulate inclusion of a canonical exon in the processed mRNA transcript, wherein the target motif is located: (i) in an intronic region between two canonical exons, (ii) in one of the two canonical exons, or (iii) in a region spanning both an intron and canonical exon; wherein the NSAE comprises: (a) only a portion of a canonical exon, or (b) a canonical exon and at least a portion of an intron adjacent to the canonical exon; wherein the NSAE-modulating agent modulates exclusion of an NSAE from the processed mRNA transcript and modulates inclusion of a canonical exon in the processed mRNA transcript; and wherein the target gene is a PKD2 gene.


In some embodiments, the NSAE-modulating agent promotes exclusion of an NSAE from the processed mRNA transcript and promotes inclusion of a canonical exon in the processed mRNA transcript.


In some embodiments, the processed mRNA transcript encodes a target protein and the NSAE-modulating agent increases expression of the target protein in a cell containing the pre-mRNA, and wherein the target protein is PKD2.


Exemplary Embodiments II

Described herein, in certain embodiments, is a method of modulating expression of a target protein in a cell having a pre-mRNA that is transcribed from a target gene and that comprises a non-sense mediated RNA decay-inducing exon (NMD exon), the method comprising: contacting an agent or a vector encoding the agent to the cell, whereby the agent modulates splicing of the NMD exon from the pre-mRNA, thereby modulating the level of a processed mRNA that is processed from the pre-mRNA, and modulating the expression of the target protein in the cell, wherein the target protein is encoded by a PKD2 gene.


Described herein, in certain embodiments, is a method of treating or reducing the likelihood of developing a disease or condition in a subject in need thereof by modulating expression of a target protein in a cell of the subject, comprising: contacting an agent or a vector encoding the agent to the cell of the subject, whereby the agent modulates splicing of a non-sense mediated mRNA decay-inducing exon (NMD exon) from a pre-mRNA that is transcribed from a target gene and that comprises the NMD exon, thereby modulating the level of a processed mRNA that is processed from the pre-mRNA, and modulating the expression of the target protein in the cell of the subject, wherein the target protein encoded by a PKD2 gene.


In some embodiments, the target protein is polycystin 2. In some embodiments, the disease or condition is a disease or condition associated with a deficiency in amount or activity of polycystin 2. In some embodiments, the disease or condition is a disease or condition associated with a deficiency in amount or activity of polycystin 1. In some embodiments, the disease or condition is a disease or condition associated with a deficiency in amount or activity of a protein that polycystin 2 functionally augments, compensates for, replaces, or functionally interacts with.


In some embodiments, the agent: (a) binds to a targeted portion of the pre-mRNA; (b) modulates binding of a factor involved in splicing of the NMD exon; or (c) a combination of (a) and (b). In some embodiments, the agent interferes with binding of the factor involved in splicing of the NMD exon.


In some embodiments, the targeted portion of the pre-mRNA is proximal to the NMD exon. In some embodiments, the targeted portion of the pre-mRNA is at most about 1500 nucleotides, about 1000 nucleotides, about 800 nucleotides, about 700 nucleotides, about 600 nucleotides, about 500 nucleotides, about 400 nucleotides, about 300 nucleotides, about 200 nucleotides, about 100 nucleotides, about 80 nucleotides, about 70 nucleotides, about 60 nucleotides, about 50 nucleotides upstream of the 5′ end of the NMD exon. In some embodiments, the targeted portion of the pre-mRNA is at least about 1500 nucleotides, about 1000 nucleotides, about 800 nucleotides, about 700 nucleotides, about 600 nucleotides, about 500 nucleotides, about 400 nucleotides, about 300 nucleotides, about 200 nucleotides, about 100 nucleotides, about 80 nucleotides, about 70 nucleotides, about 60 nucleotides, about 50 nucleotides, about 40 nucleotides, about 30 nucleotides, about 20 nucleotides, about 10 nucleotides, about 5 nucleotides, about 4 nucleotides, about 2 nucleotides, about 1 nucleotides upstream of the 5′ end of the NMD exon. In some embodiments, the targeted portion of the pre-mRNA is at most about 1500 nucleotides, about 1000 nucleotides, about 800 nucleotides, about 700 nucleotides, about 600 nucleotides, about 500 nucleotides, about 400 nucleotides, about 300 nucleotides, about 200 nucleotides, about 100 nucleotides, about 80 nucleotides, about 70 nucleotides, about 60 nucleotides, about 50 nucleotides downstream of the 3′ end of the NMD exon. In some embodiments, the targeted portion of the pre-mRNA is at least about 1500 nucleotides, about 1000 nucleotides, about 800 nucleotides, about 700 nucleotides, about 600 nucleotides, about 500 nucleotides, about 400 nucleotides, about 300 nucleotides, about 200 nucleotides, about 100 nucleotides, about 80 nucleotides, about 70 nucleotides, about 60 nucleotides, about 50 nucleotides, about 40 nucleotides, about 30 nucleotides, about 20 nucleotides, about 10 nucleotides, about 5 nucleotides, about 4 nucleotides, about 2 nucleotides, about 1 nucleotides downstream of the 3′ end of the NMD exon.


In some embodiments, the targeted portion of the pre-mRNA is at most about 1500 nucleotides, about 1000 nucleotides, about 800 nucleotides, about 700 nucleotides, about 600 nucleotides, about 500 nucleotides, about 400 nucleotides, about 300 nucleotides, about 200 nucleotides, about 100 nucleotides, about 80 nucleotides, about 70 nucleotides, about 60 nucleotides, about 50 nucleotides upstream of genomic site of GRCh38/hg38: chr4:88031085. In some embodiments, the targeted portion of the pre-mRNA is at least about 1500 nucleotides, about 1000 nucleotides, about 800 nucleotides, about 700 nucleotides, about 600 nucleotides, about 500 nucleotides, about 400 nucleotides, about 300 nucleotides, about 200 nucleotides, about 100 nucleotides, about 80 nucleotides, about 70 nucleotides, about 60 nucleotides, about 50 nucleotides upstream of genomic site of GRCh38/hg38: chr4:88031085. In some embodiments, the targeted portion of the pre-mRNA is at most about 1500 nucleotides, about 1000 nucleotides, about 800 nucleotides, about 700 nucleotides, about 600 nucleotides, about 500 nucleotides, about 400 nucleotides, about 300 nucleotides, about 200 nucleotides, about 100 nucleotides, about 80 nucleotides, about 70 nucleotides, about 60 nucleotides, about 50 nucleotides downstream of genomic site of GRCh38/hg38: chr4:88031140. In some embodiments, the targeted portion of the pre-mRNA is at least about 1500 nucleotides, about 1000 nucleotides, about 800 nucleotides, about 700 nucleotides, about 600 nucleotides, about 500 nucleotides, about 400 nucleotides, about 300 nucleotides, about 200 nucleotides, about 100 nucleotides, about 80 nucleotides, about 70 nucleotides, about 60 nucleotides, about 50 nucleotides downstream of genomic site of GRCh38/hg38: chr4:88031140.


In some embodiments, the targeted portion of the pre-mRNA is located in an intronic region between two canonical exonic regions of the pre-mRNA, and wherein the intronic region contains the NMD exon. In some embodiments, the targeted portion of the pre-mRNA at least partially overlaps with the NMD exon. In some embodiments, the targeted portion of the pre-mRNA at least partially overlaps with an intron upstream or downstream of the NMD exon. In some embodiments, the targeted portion of the pre-mRNA comprises 5′ NMD exon-intron junction or 3′ NMD exon-intron junction. In some embodiments, the targeted portion of the pre-mRNA is within the NMD exon. In some embodiments, the targeted portion of the pre-mRNA comprises about 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, or more consecutive nucleotides of the NMD exon.


In some embodiments, the NMD exon comprises a sequence with at least 80%, at least 90%, or 100% sequence identity to a sequence selected from the group consisting of the sequences listed in Table 2. In some embodiments, the NMD exon comprises a sequence selected from the group consisting of the sequences listed in Table 2. In some embodiments, the pre-mRNA comprises a sequence with at least about 80%, 85%, 90%, 95%, 97%, or 100% sequence identity to a sequence selected from the group consisting of the sequences listed in Table 2 or Table 3. In some embodiments, the pre-mRNA is encoded by a genetic sequence with at least about 80%, 85%, 90%, 95%, 97%, or 100% sequence identity to a sequence selected from the group consisting of the sequences listed in Table 2 or Table 3. In some embodiments, the targeted portion of the pre-mRNA comprises a sequence with at least 80%, 85%, 90%, 95%, 97%, or 100% sequence identity to a region comprising at least 8 contiguous nucleic acids of a sequence selected from the group consisting of the sequences listed in Table 2 or Table 3. In some embodiments, the agent is an antisense oligomer (ASO) and wherein the ASO comprises a sequence that is at least about 80%, 85%, 90%, 95%, 97%, or 100% sequence identity to at least 8, 9, 10, 11, 12, 13, 14, 15, 16, 17 or 18 contiguous nucleic acids of a sequence selected from the group consisting of the sequences listed in Table 4. In some embodiments, the targeted portion of the pre-mRNA is within the non-sense mediated RNA decay-inducing exon GRCh38/hg38: chr4:88031085-88031140. In some embodiments, the targeted portion of the pre-mRNA is upstream or downstream of the non-sense mediated RNA decay-inducing exon GRCh38/hg38: chr4:88031085-88031140. In some embodiments, the targeted portion of the pre-mRNA comprises an exon-intron junction of the non-sense mediated RNA decay-inducing exon GRCh38/hg38: chr4:88031085 88031140.


In some embodiments, the polycystin 2 expressed from the processed mRNA is full-length polycystin 2 or wild-type polycystin 2. In some embodiments, the polycystin 2 expressed from the processed mRNA is at least partially functional as compared to wild-type polycystin 2. In some embodiments, the polycystin 2 expressed from the processed mRNA is at least partially functional as compared to full-length wild-type polycystin 2.


In some embodiments, the agent modulates splicing of the NMD exon from the pre-mRNA and promotes exclusion of the NMD exon from the pre-mRNA, thereby modulating the level of a processed mRNA that is processed from the pre-mRNA and that lacks the NMD exon. In some embodiments, the exclusion of the NMD exon from the pre-mRNA in the cell contacted with the agent is increased by about 1.1 to about 10-fold, about 1.5 to about 10-fold, about 2 to about 10-fold, about 3 to about 10-fold, about 4 to about 10-fold, about 1.1 to about 5-fold, about 1.1 to about 6-fold, about 1.1 to about 7-fold, about 1.1 to about 8-fold, about 1.1 to about 9-fold, about 2 to about 5-fold, about 2 to about 6-fold, about 2 to about 7-fold, about 2 to about 8-fold, about 2 to about 9-fold, about 3 to about 6-fold, about 3 to about 7-fold, about 3 to about 8-fold, about 3 to about 9-fold, about 4 to about 7-fold, about 4 to about 8-fold, about 4 to about 9-fold, at least about 1.1-fold, at least about 1.5-fold, at least about 2-fold, at least about 2.5-fold, at least about 3-fold, at least about 3.5-fold, at least about 4-fold, at least about 5-fold, or at least about 10-fold, compared to exclusion of the NMD exon from the pre-mRNA in a control cell. In some embodiments, the method results in an increase in the level of the processed mRNA in the cell. In some embodiments, the level of the processed mRNA in the cell contacted with the agent is increased by about 1.1 to about 10-fold, about 1.5 to about 10-fold, about 2 to about 10-fold, about 3 to about 10-fold, about 4 to about 10-fold, about 1.1 to about 5-fold, about 1.1 to about 6-fold, about 1.1 to about 7-fold, about 1.1 to about 8-fold, about 1.1 to about 9-fold, about 2 to about 5-fold, about 2 to about 6-fold, about 2 to about 7-fold, about 2 to about 8-fold, about 2 to about 9-fold, about 3 to about 6-fold, about 3 to about 7-fold, about 3 to about 8-fold, about 3 to about 9-fold, about 4 to about 7-fold, about 4 to about 8-fold, about 4 to about 9-fold, at least about 1.1-fold, at least about 1.5-fold, at least about 2-fold, at least about 2.5-fold, at least about 3-fold, at least about 3.5-fold, at least about 4-fold, at least about 5-fold, or at least about 10-fold, compared to a level of the processed mRNA in a control cell. In some embodiments, the agent increases the expression of the target protein in the cell. In some embodiments, a level of the target protein is increased by about 1.1 to about 10-fold, about 1.5 to about 10-fold, about 2 to about 10-fold, about 3 to about 10-fold, about 4 to about 10-fold, about 1.1 to about 5-fold, about 1.1 to about 6-fold, about 1.1 to about 7-fold, about 1.1 to about 8-fold, about 1.1 to about 9-fold, about 2 to about 5-fold, about 2 to about 6-fold, about 2 to about 7-fold, about 2 to about 8-fold, about 2 to about 9-fold, about 3 to about 6-fold, about 3 to about 7-fold, about 3 to about 8-fold, about 3 to about 9-fold, about 4 to about 7-fold, about 4 to about 8-fold, about 4 to about 9-fold, at least about 1.1-fold, at least about 1.5-fold, at least about 2-fold, at least about 2.5-fold, at least about 3-fold, at least about 3.5-fold, at least about 4-fold, at least about 5-fold, or at least about 10-fold, compared to a level of the target protein produced in a control cell.


In some embodiments, the NMD exon comprises a premature termination codon (PTC). In some embodiments, the disease or condition is associated with a loss-of-function mutation in the target gene or the target protein. In some embodiments, the disease or condition is associated with haploinsufficiency of the target gene, and wherein the subject has a first allele encoding functional polycystin 2, and a second allele from which polycystin 2 is not produced or produced at a reduced level, or a second allele encoding nonfunctional polycystin 2 or partially functional polycystin 2. In some embodiments, one or both alleles are hypomorphs or partially functional. In some embodiments, the disease or condition is selected from the group consisting of: polycystic kidney disease with or without polycystic liver disease, autosomal dominant polycystic kidney disease, and intracranial aneurysm. In some embodiments, the disease or condition is associated with a mutation of a PKD1 or PKD2 gene, wherein the subject has a first allele encoding from which: (i) the target protein is not produced or produced at a reduced level compared to a wild-type allele; or (ii) the target protein produced is nonfunctional or partially functional compared to a wild-type allele, and a second allele from which: (iii) the target protein is produced at a reduced level compared to a wild-type allele and the target protein produced is at least partially functional compared to a wild-type allele; or (iv) the target protein produced is partially functional compared to a wild-type allele.


In some embodiments, the disease or condition is selected from the group consisting of: polycystic kidney disease with or without polycystic liver disease, autosomal dominant polycystic kidney disease, and intracranial aneurysm. In some embodiments, the mutation is a hypomorphic mutation. In some embodiments, the disease or condition is associated with a mutation of a PKD2 gene. In some embodiments, the disease or condition is associated with a mutation of a PKD1 gene. In some embodiments, the mutation in PKD1 comprises a mutation in a region of polycystin 1 that interacts with polycystin 2. In some embodiments, the mutation in PKD1 comprises a mutation that interferes the interaction between Polycystin 1 and Polycystin 2. In some embodiments, the mutation in PKD1 comprises a mutation that weakens the interaction between Polycystin 1 and Polycystin 2. In some embodiments, the mutation in PKD1 comprises a mutation that reduces the interaction between Polycystin 1 and Polycystin 2. In some embodiments, the mutation in PKD1 comprises a mutation that blocks the interaction between Polycystin 1 and Polycystin 2. In some embodiments, the mutation in PKD1 is a mutation in a region of polycystin 1 that interacts with polycystin 2. In some embodiments, the mutation in PKD1 is a mutation that interferes the interaction between Polycystin 1 and Polycystin 2. In some embodiments, the mutation in PKD1 is a mutation that weakens the interaction between Polycystin 1 and Polycystin 2. In some embodiments, the mutation in PKD1 is a mutation that reduces the interaction between Polycystin 1 and Polycystin 2. In some embodiments, the mutation in PKD1 is a mutation that blocks the interaction between Polycystin 1 and Polycystin 2.


In some embodiments, the agent promotes exclusion of the NMD exon from the pre-mRNA, thereby modulating the level of a processed mRNA that is processed from the pre-mRNA and that lacks the NMD exon and increases the expression of the target protein in the cell. In some embodiments, the agent is an antisense oligomer (ASO) and wherein the antisense oligomer comprises a backbone modification comprising a phosphorothioate linkage or a phosphorodiamidate linkage. In some embodiments, the agent is an antisense oligomer (ASO) and wherein the antisense oligomer comprises a phosphorodiamidate morpholino, a locked nucleic acid, a peptide nucleic acid, a 2′-O-methyl, a 2′-Fluoro, or a 2′-O-methoxyethyl moiety. In some embodiments, the agent is an antisense oligomer (ASO) and wherein the antisense oligomer comprises at least one modified sugar moiety. In some embodiments, each sugar moiety is a modified sugar moiety. In some embodiments, the agent is an antisense oligomer (ASO) and wherein the antisense oligomer consists of from 8 to 50 nucleobases, 8 to 40 nucleobases, 8 to 35 nucleobases, 8 to 30 nucleobases, 8 to 25 nucleobases, 8 to 20 nucleobases, 8 to 15 nucleobases, 9 to 50 nucleobases, 9 to 40 nucleobases, 9 to 35 nucleobases, 9 to 30 nucleobases, 9 to 25 nucleobases, 9 to 20 nucleobases, 9 to 15 nucleobases, 10 to 50 nucleobases, 10 to 40 nucleobases, 10 to 35 nucleobases, 10 to 30 nucleobases, 10 to 25 nucleobases, 10 to 20 nucleobases, 10 to 15 nucleobases, 11 to 50 nucleobases, 11 to 40 nucleobases, 11 to 35 nucleobases, 11 to 30 nucleobases, 11 to 25 nucleobases, 11 to 20 nucleobases, 11 to 15 nucleobases, 12 to 50 nucleobases, 12 to 40 nucleobases, 12 to 35 nucleobases, 12 to 30 nucleobases, 12 to 25 nucleobases, 12 to 20 nucleobases, or 12 to 15 nucleobases. In some embodiments, the agent is an antisense oligomer (ASO) and wherein the antisense oligomer is at least 80%, at least 85%, at least 90%, at least 95%, at least 98%, at least 99%, or 100%, complementary to the targeted portion of the pre-mRNA.


In some embodiments, the method further comprises assessing processed mRNA level or expression level of the target protein. In some embodiments, the subject is a human. In some embodiments, the subject is a non-human animal. In some embodiments, the subject is a fetus, an embryo, or a child. In some embodiments, the cells are ex vivo. In some embodiments, the agent is administered by intrathecal injection, intracerebroventricular injection, intraperitoneal injection, intramuscular injection, subcutaneous injection, intravitreal, or intravenous injection of the subject. In some embodiments, the method further comprises administering a second therapeutic agent to the subject. In some embodiments, the second therapeutic agent is a small molecule. In some embodiments, the second therapeutic agent is an antisense oligomer. In some embodiments, the second therapeutic agent corrects intron retention. In some embodiments, the method treats the disease or condition.


Described herein, in certain embodiments, is a composition comprising an agent or a vector encoding the agent that modulates splicing of a non-sense mediated RNA decay-inducing exon (NMD exon) from a pre-mRNA that is transcribed from a target gene and that comprises the NMD exon, thereby modulating the level of a processed mRNA that is processed from the pre-mRNA, and modulating expression of a target protein in a cell having the pre-mRNA, wherein the target protein is encoded by a PKD2 gene. Described herein, in certain embodiments, is a composition comprising an agent or a vector encoding the agent that modulates splicing of a non-sense mediated mRNA decay-inducing exon (NMD exon) from a pre-mRNA that is transcribed from a target gene and that comprises the NMD exon, thereby treating a disease or condition in a subject in need thereof by modulating the level of a processed mRNA that is processed from the pre-mRNA, and modulating expression of a target protein in a cell of the subject, wherein the target protein is encoded by a PKD2 gene. Described herein, in certain embodiments, is a pharmaceutical composition comprising the composition as described herein; and a pharmaceutically acceptable excipient and/or a delivery vehicle. Described herein, in certain embodiments, is a composition comprising a non-sense mediated RNA decay alternative splice site (NSASS) modulating agent or a viral vector encoding the agent, wherein the agent modulates expression of a target protein in a cell comprising a pre-mRNA that is transcribed from a target gene and encodes the target protein, wherein the pre-mRNA comprises an alternative 5′ splice-site downstream of a canonical 5′ splice-site, wherein a processed mRNA that is produced by splicing of the pre-mRNA at the alternative 5′ splice-site undergoes non-sense mediated RNA decay, wherein the agent modulates processing of the pre-mRNA by modulating splicing at the alternative 5′ splice-site; and wherein the target gene is PKD2.


In some embodiments, the agent modulates processing of the pre-mRNA by preventing or decreasing splicing at the alternative 5′ splice-site. In some embodiments, the agent modulates processing of the pre-mRNA by promoting or increasing splicing at the canonical 5′ splice-site. In some embodiments, modulating the splicing of the pre-mRNA at the alternative 5′ splice-site increases the expression of the target protein in the cell. In some embodiments, the processed mRNA that is produced by splicing of the pre-mRNA at the alternative 5′ splice-site comprises a premature termination codon (PTC).


In some embodiments, the agent is a small molecule. In some embodiments, the agent is a polypeptide. In some embodiments, the polypeptide is a nucleic acid binding protein. In some embodiments, the nucleic acid binding protein contains a TAL-effector or zinc finger binding domain. In some embodiments, the nucleic acid binding protein is a Cas family protein. In some embodiments, the polypeptide is accompanied by or complexed with one or more nucleic acid molecules. In some embodiments, the agent is an antisense oligomer (ASO) complementary to the targeted region of the pre-mRNA. In some embodiments, the agent is at least 75%, at least 80%, at least 85%, at least 90%, at least 95%, at least 98%, at least 99%, or 100%, complementary to the targeted region of the pre-mRNA encoding the target protein. In some embodiments, the agent comprises a backbone modification comprising a phosphorothioate linkage or a phosphorodiamidate linkage. In some embodiments, the agent comprises a phosphorodiamidate morpholino. In some embodiments, the agent comprises a locked nucleic acid. In some embodiments, the agent comprises a peptide nucleic acid. In some embodiments, the agent comprises a 2′-O-methyl. In some embodiments, the agent comprises a 2′-Fluoro, or a 2′-O-methoxyethyl moiety. In some embodiments, the agent comprises at least one modified sugar moiety. In some embodiments, each sugar moiety is a modified sugar moiety. In some embodiments, the agent is an antisense oligomer, and wherein the agent consists of from 8 to 50 nucleobases, 8 to 40 nucleobases, 8 to 35 nucleobases, 8 to 30 nucleobases, 8 to 25 nucleobases, 8 to 20 nucleobases, 8 to 15 nucleobases, 9 to 50 nucleobases, 9 to 40 nucleobases, 9 to 35 nucleobases, 9 to 30 nucleobases, 9 to 25 nucleobases, 9 to 20 nucleobases, 9 to 15 nucleobases, 10 to 50 nucleobases, 10 to 40 nucleobases, 10 to 35 nucleobases, 10 to 30 nucleobases, 10 to 25 nucleobases, 10 to 20 nucleobases, 10 to 15 nucleobases, 11 to 50 nucleobases, 11 to 40 nucleobases, 11 to 35 nucleobases, 11 to 30 nucleobases, 11 to 25 nucleobases, 11 to 20 nucleobases, 11 to 15 nucleobases, 12 to 50 nucleobases, 12 to 40 nucleobases, 12 to 35 nucleobases, 12 to 30 nucleobases, 12 to 25 nucleobases, 12 to 20 nucleobases, or 12 to 15 nucleobases.


Described herein, in certain embodiments, is a composition comprising a nucleic acid molecule that encodes for the agent according to the composition as described herein. In some embodiments, the nucleic acid molecule is incorporated into a viral delivery system. In some embodiments, the viral delivery system is an adenovirus-associated vector. In some embodiments, the viral vector is an adenovirus-associated viral vector.


Described herein, in certain embodiments, is a method of modulating expression of a target protein in a cell comprising a pre-mRNA that is transcribed from a target gene and encodes the target protein, the method comprising: contacting a non-sense mediated RNA decay alternative splice site (NSASS) modulating agent or a viral vector encoding the agent to the cell, wherein the pre-mRNA comprises an alternative 5′ splice-site downstream of a canonical 5′ splice-site, wherein a processed mRNA that is produced by splicing of the pre-mRNA at the alternative 5′ splice-site undergoes non-sense mediated RNA decay, wherein the agent modulates processing of the pre-mRNA by modulating splicing at the alternative 5′ splice-site, thereby modulating expression of the target protein; and wherein the target gene is PKD2.


In some embodiments, the agent: (a) binds to a targeted portion of the pre-mRNA; (b) modulates binding of a factor involved in splicing at the alternative 5′ splice-site; or (c) a combination of (a) and (b). In some embodiments, the agent interferes with binding of the factor involved in splicing at the alternative 5′ splice-site to a region of the targeted portion.


In some embodiments, the targeted portion of the pre-mRNA is proximal to the alternative 5′ splice-site. In some embodiments, the targeted portion of the pre-mRNA is at most about 1500 nucleotides, about 1000 nucleotides, about 800 nucleotides, about 700 nucleotides, about 600 nucleotides, about 500 nucleotides, about 400 nucleotides, about 300 nucleotides, about 200 nucleotides, about 100 nucleotides, about 80 nucleotides, about 70 nucleotides, about 60 nucleotides, about 50 nucleotides upstream of the alternative 5′ splice-site. In some embodiments, the targeted portion of the pre-mRNA is at least about 1500 nucleotides, about 1000 nucleotides, about 800 nucleotides, about 700 nucleotides, about 600 nucleotides, about 500 nucleotides, about 400 nucleotides, about 300 nucleotides, about 200 nucleotides, about 100 nucleotides, about 80 nucleotides, about 70 nucleotides, about 60 nucleotides, about 50 nucleotides, about 40 nucleotides, about 30 nucleotides, about 20 nucleotides, about 10 nucleotides, about 5 nucleotides, about 4 nucleotides, about 2 nucleotides, about 1 nucleotides upstream of the alternative 5′ splice-site. In some embodiments, the targeted portion of the pre-mRNA is at most about 1500 nucleotides, about 1000 nucleotides, about 800 nucleotides, about 700 nucleotides, about 600 nucleotides, about 500 nucleotides, about 400 nucleotides, about 300 nucleotides, about 200 nucleotides, about 100 nucleotides, about 80 nucleotides, about 70 nucleotides, about 60 nucleotides, about 50 nucleotides downstream of the alternative 5′ splice-site. In some embodiments, the targeted portion of the pre-mRNA is at least about 1500 nucleotides, about 1000 nucleotides, about 800 nucleotides, about 700 nucleotides, about 600 nucleotides, about 500 nucleotides, about 400 nucleotides, about 300 nucleotides, about 200 nucleotides, about 100 nucleotides, about 80 nucleotides, about 70 nucleotides, about 60 nucleotides, about 50 nucleotides, about 40 nucleotides, about 30 nucleotides, about 20 nucleotides, about 10 nucleotides, about 5 nucleotides, about 4 nucleotides, about 2 nucleotides, about 1 nucleotides downstream of the alternative 5′ splice-site.


In some embodiments, the targeted portion of the pre-mRNA is at most about 1500 nucleotides, about 1000 nucleotides, about 800 nucleotides, about 700 nucleotides, about 600 nucleotides, about 500 nucleotides, about 400 nucleotides, about 300 nucleotides, about 200 nucleotides, about 100 nucleotides, about 80 nucleotides, about 70 nucleotides, about 60 nucleotides, about 50 nucleotides upstream of genomic site of GRCh38/hg38: chr4 88036480. In some embodiments, the targeted portion of the pre-mRNA is at least about 1500 nucleotides, about 1000 nucleotides, about 800 nucleotides, about 700 nucleotides, about 600 nucleotides, about 500 nucleotides, about 400 nucleotides, about 300 nucleotides, about 200 nucleotides, about 100 nucleotides, about 80 nucleotides, about 70 nucleotides, about 60 nucleotides, about 50 nucleotides, about 40 nucleotides, about 30 nucleotides, about 20 nucleotides, about 10 nucleotides, about 5 nucleotides, about 4 nucleotides, about 2 nucleotides, about 1 nucleotides upstream of genomic site of GRCh38/hg38: chr4:88036480. In some embodiments, the targeted portion of the pre-mRNA is at most about 1500 nucleotides, about 1000 nucleotides, about 800 nucleotides, about 700 nucleotides, about 600 nucleotides, about 500 nucleotides, about 400 nucleotides, about 300 nucleotides, about 200 nucleotides, about 100 nucleotides, about 80 nucleotides, about 70 nucleotides, about 60 nucleotides, about 50 nucleotides downstream of genomic site of GRCh38/hg38: chr4:88036480. In some embodiments, the targeted portion of the pre-mRNA is at least about 1500 nucleotides, about 1000 nucleotides, about 800 nucleotides, about 700 nucleotides, about 600 nucleotides, about 500 nucleotides, about 400 nucleotides, about 300 nucleotides, about 200 nucleotides, about 100 nucleotides, about 80 nucleotides, about 70 nucleotides, about 60 nucleotides, about 50 nucleotides, about 40 nucleotides, about 30 nucleotides, about 20 nucleotides, about 10 nucleotides, about 5 nucleotides, about 4 nucleotides, about 2 nucleotides, about 1 nucleotides downstream of genomic site of GRCh38/hg38: chr4:88036480.


In some embodiments, the targeted portion of the pre-mRNA is located in a region between the canonical 5′ splice-site and the alternative 5′ splice-site. In some embodiments, the targeted portion of the pre-mRNA is located in an exon region extended by the splicing at the alternative 5′ splice-site. In some embodiments, the targeted portion of the pre-mRNA at least partially overlaps with the alternative 5′ splice-site. In some embodiments, the targeted portion of the pre-mRNA at least partially overlaps with a region upstream or downstream of the alternative 5′ splice-site. In some embodiments, the targeted portion of the pre-mRNA is within an exon region extended by the splicing at the alternative 5′ splice-site. In some embodiments, the targeted portion of the pre-mRNA comprises about 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, or more consecutive nucleotides of an exon region extended by the splicing at the alternative 5′ splice-site. In some embodiments, the targeted portion of the pre-mRNA is located in an intronic region between two canonical exons. In some embodiments, the targeted portion of the pre-mRNA is located in one of the two canonical exons. In some embodiments, the targeted portion of the pre-mRNA is located in a region spanning both an intron and a canonical exon.


In some embodiments, the level the target protein in the cell is increased about 1.1 to about 10-fold, about 1.5 to about 10-fold, about 2 to about 10-fold, about 3 to about 10-fold, about 4 to about 10-fold, about 1.1 to about 5-fold, about 1.1 to about 6-fold, about 1.1 to about 7-fold, about 1.1 to about 8-fold, about 1.1 to about 9-fold, about 2 to about 5-fold, about 2 to about 6-fold, about 2 to about 7-fold, about 2 to about 8-fold, about 2 to about 9-fold, about 3 to about 6-fold, about 3 to about 7-fold, about 3 to about 8-fold, about 3 to about 9-fold, about 4 to about 7-fold, about 4 to about 8-fold, about 4 to about 9-fold, at least about 1.1-fold, at least about 1.5-fold, at least about 2-fold, at least about 2.5-fold, at least about 3-fold, at least about 3.5-fold, at least about 4-fold, at least about 5-fold, or at least about 10-fold, compared to the level of processed mRNA encoding the target protein in a control cell. In some embodiments, modulation of splicing of the pre-mRNA increases production of the processed mRNA encoding the target protein. In some embodiments, the level of processed mRNA encoding the target protein in the cell contacted with the agent is increased about 1.1 to about 10-fold, about 1.5 to about 10-fold, about 2 to about 10-fold, about 3 to about 10-fold, about 4 to about 10-fold, about 1.1 to about 5-fold, about 1.1 to about 6-fold, about 1.1 to about 7-fold, about 1.1 to about 8-fold, about 1.1 to about 9-fold, about 2 to about 5-fold, about 2 to about 6-fold, about 2 to about 7-fold, about 2 to about 8-fold, about 2 to about 9-fold, about 3 to about 6-fold, about 3 to about 7-fold, about 3 to about 8-fold, about 3 to about 9-fold, about 4 to about 7-fold, about 4 to about 8-fold, about 4 to about 9-fold, at least about 1.1-fold, at least about 1.5-fold, at least about 2-fold, at least about 2.5-fold, at least about 3-fold, at least about 3.5-fold, at least about 4-fold, at least about 5-fold, or at least about 10-fold, compared to the level of processed mRNA encoding the target protein in a control cell.


In some embodiments, the target protein is the canonical isoform of the protein. In some embodiments, the processed mRNA that is produced by splicing of the pre-mRNA at the alternative 5′ splice-site comprises a premature termination codon (PTC). In some embodiments, the NSASS modulating agent is the composition as described herein.


Described herein, in certain embodiments, is a pharmaceutical composition comprising the composition as described herein; and a pharmaceutically acceptable excipient and/or a delivery vehicle.


Described herein, in certain embodiments, is a method of treating or reducing the likelihood of developing a disease or condition in a subject in need thereof, the method comprising: administering to the subject a pharmaceutical composition to a subject in need thereof, wherein the pharmaceutical composition comprises a composition comprising a non-sense mediated RNA decay alternative splice site (NSASS) modulating agent or a viral vector encoding the agent, wherein the agent modulates expression of a target protein in a cell comprising a pre-mRNA that is transcribed from a target gene and encodes the target protein, wherein the pre-mRNA comprises an alternative 5′ splice-site downstream of a canonical 5′ splice-site, wherein splicing of the pre-mRNA at the alternative 5′ splice-site leads to non-sense mediated RNA decay of the alternatively spliced mRNA, wherein the agent modulates processing of the pre-mRNA by modulating splicing at the alternative 5′ splice-sites; and wherein the target gene is PKD2 and a pharmaceutically acceptable excipient. Described herein, in certain embodiments, is a method of treating or reducing the likelihood of developing a disease or condition in a subject in need thereof, the method comprising: administering to the subject the pharmaceutical composition as described herein.


In some embodiments, the disease is polycystic kidney disease with or without polycystic liver disease, autosomal dominant polycystic kidney disease, or intracranial aneurysm. In some embodiments, the disease or condition is a disease or condition associated with a deficiency in amount or activity of polycystin 2. In some embodiments, the disease or condition is a disease or condition associated with a deficiency in amount or activity of polycystin 1. In some embodiments, the disease or condition is a disease or condition associated with a deficiency in amount or activity of a protein that polycystin 2 functionally augments, compensates for, replaces, or functionally interacts with. In some embodiments, the disease or the condition is caused by a deficient amount or activity of the target protein.


In some embodiments, the agent increases the level of the processed mRNA encoding the target protein in the cell. In some embodiments, the level of processed mRNA encoding the target protein in the cell contacted with the agent is increased about 1.1 to about 10-fold, about 1.5 to about 10-fold, about 2 to about 10-fold, about 3 to about 10-fold, about 4 to about 10-fold, about 1.1 to about 5-fold, about 1.1 to about 6-fold, about 1.1 to about 7-fold, about 1.1 to about 8-fold, about 1.1 to about 9-fold, about 2 to about 5-fold, about 2 to about 6-fold, about 2 to about 7-fold, about 2 to about 8-fold, about 2 to about 9-fold, about 3 to about 6-fold, about 3 to about 7-fold, about 3 to about 8-fold, about 3 to about 9-fold, about 4 to about 7-fold, about 4 to about 8-fold, about 4 to about 9-fold, at least about 1.1-fold, at least about 1.5-fold, at least about 2-fold, at least about 2.5-fold, at least about 3-fold, at least about 3.5-fold, at least about 4-fold, at least about 5-fold, or at least about 10-fold, compared to the level of processed mRNA encoding the target protein in a control cell. In some embodiments, the agent increases the expression of the target protein in the cell. In some embodiments, the level the target protein in the cell is increased about 1.1 to about 10-fold, about 1.5 to about 10-fold, about 2 to about 10-fold, about 3 to about 10-fold, about 4 to about 10-fold, about 1.1 to about 5-fold, about 1.1 to about 6-fold, about 1.1 to about 7-fold, about 1.1 to about 8-fold, about 1.1 to about 9-fold, about 2 to about 5-fold, about 2 to about 6-fold, about 2 to about 7-fold, about 2 to about 8-fold, about 2 to about 9-fold, about 3 to about 6-fold, about 3 to about 7-fold, about 3 to about 8-fold, about 3 to about 9-fold, about 4 to about 7-fold, about 4 to about 8-fold, about 4 to about 9-fold, at least about 1.1-fold, at least about 1.5-fold, at least about 2-fold, at least about 2.5-fold, at least about 3-fold, at least about 3.5-fold, at least about 4-fold, at least about 5-fold, or at least about 10-fold, compared to the level of processed mRNA encoding the target protein in a control cell.


In some embodiments, the method further comprises assessing mRNA levels or expression levels of the target protein. In some embodiments, the method further comprises assessing the subject's genome for at least one genetic mutation associated with the disease. In some embodiments, at least one genetic mutation is within a locus of a gene associated with the disease. In some embodiments, at least one genetic mutation is within a locus associated with expression of a gene associated with the disease. In some embodiments, at least one genetic mutation is within the PKD2 gene locus. In some embodiments, at least one genetic mutation is within the PKD1 gene locus. In some embodiments, at least one genetic mutation is within a locus associated with PKD2 gene expression. In some embodiments, the mutation in PKD1 comprises a mutation in a region of polycystin 1 that interacts with polycystin 2. In some embodiments, the mutation in PKD1 comprises a mutation that interferes the interaction between Polycystin 1 and Polycystin 2. In some embodiments, the mutation in PKD1 comprises a mutation that weakens the interaction between Polycystin 1 and Polycystin 2. In some embodiments, the mutation in PKD1 comprises a mutation that reduces the interaction between Polycystin 1 and Polycystin 2. In some embodiments, the mutation in PKD1 comprises a mutation that blocks the interaction between Polycystin 1 and Polycystin 2. In some embodiments, the mutation in PKD1 is a mutation in a region of polycystin 1 that interacts with polycystin 2. In some embodiments, the mutation in PKD1 is a mutation that interferes the interaction between Polycystin 1 and Polycystin 2. In some embodiments, the mutation in PKD1 is a mutation that weakens the interaction between Polycystin 1 and Polycystin 2. In some embodiments, the mutation in PKD1 is a mutation that reduces the interaction between Polycystin 1 and Polycystin 2. In some embodiments, the mutation in PKD1 is a mutation that blocks the interaction between Polycystin 1 and Polycystin 2.


In some embodiments, the subject is a human. In some embodiments, the subject is a non-human animal. In some embodiments, the subject is a fetus, an embryo, or a child. In some embodiments, the cell or the cells is ex vivo, or in a tissue, or organ ex vivo. In some embodiments, the agent is administered to the subject by intracerebroventricular injection, intraperitoneal injection, intramuscular injection, intrathecal injection, subcutaneous injection, oral administration, synovial injection, intravitreal administration, subretinal injection, topical application, implantation, or intravenous injection. In some embodiments, the method treats the disease or condition.


Described herein, in certain embodiments, is a therapeutic agent for use in the method as described herein. Described herein, in certain embodiments, is a pharmaceutical composition comprising the therapeutic agent as described herein and a pharmaceutically acceptable excipient. Described herein, in certain embodiments, is a method of treating or reducing the likelihood of developing a disease or condition in a subject in need thereof, comprising administering the pharmaceutical composition as described herein by intracerebroventricular injection, intraperitoneal injection, intramuscular injection, intrathecal injection, subcutaneous injection, oral administration, synovial injection, intravitreal administration, subretinal injection, topical application, implantation, or intravenous injection to the subject. In some embodiments, the method treats the subject.

Claims
  • 1-77. (canceled)
  • 78. A composition comprising an agent or a vector encoding the agent that (a) binds to a target sequence of a pre-mRNA that is transcribed from a target gene and that comprises a non-sense mediated RNA decay-inducing exon (NMD exon), and (b) modulates splicing of the NMD exon from the pre-mRNA, thereby modulating the level of a processed mRNA that is processed from the pre-mRNA, and modulating expression of a target protein in a cell having the pre-mRNA, wherein the target protein is encoded by a PKD2 gene.
  • 79-184. (canceled)
  • 185. The composition of claim 78, wherein the target sequence of the pre-mRNA comprises a sequence with 8 contiguous nucleic acids of a sequence selected from the group consisting of premrna ENST00000237596.7, premrna ENST00000502363.1, premrna ENST00000506367.1, premrna ENST00000506727.1, premrna ENST00000508588.5, premrna ENST00000511337.5, premrna ENST00000512858.1, transcript ENST00000237596.7, transcript ENST00000502363.1, transcript ENST00000506367.1, transcript ENST00000506727.1, transcript ENST00000508588.5, transcript ENST00000511337.5, transcript ENST00000512858.1, and PKD2 5′ UTR sequence (ENST00000237596.7).
  • 186. The composition of claim 78, wherein the target sequence of the pre-mRNA is within the NMD exon.
  • 187. The composition of claim 78, wherein the target sequence of the pre-mRNA is located in an intronic region between two canonical exonic regions of the pre-mRNA, and wherein the intronic region contains the NMD exon.
  • 188. The composition of claim 187, wherein the NMD exon is defined by genomic sites GRCh38/hg38: chr4:88031085-88031140.
  • 189. The composition of claim 188, wherein the target sequence of the pre-mRNA is closer than 1500 nucleotides, 1000 nucleotides, 800 nucleotides, 700 nucleotides, 600 nucleotides, 500 nucleotides, 400 nucleotides, 300 nucleotides, 200 nucleotides, 100 nucleotides, 80 nucleotides, 70 nucleotides, 60 nucleotides, 50 nucleotides upstream of genomic site of GRCh38/hg38: chr4:88031085.
  • 190. The composition of claim 188, wherein the target sequence of the pre-mRNA is closer than 1500 nucleotides, 1000 nucleotides, 800 nucleotides, 700 nucleotides, 600 nucleotides, 500 nucleotides, 400 nucleotides, 300 nucleotides, 200 nucleotides, 100 nucleotides, 80 nucleotides, 70 nucleotides, 60 nucleotides, 50 nucleotides downstream of genomic site of GRCh38/hg38: chr4:88031085.
  • 191. The composition of claim 188, wherein the target sequence of the pre-mRNA is closer than 1500 nucleotides, 1000 nucleotides, 800 nucleotides, 700 nucleotides, 600 nucleotides, 500 nucleotides, 400 nucleotides, 300 nucleotides, 200 nucleotides, 100 nucleotides, 80 nucleotides, 70 nucleotides, 60 nucleotides, 50 nucleotides upstream of genomic site of GRCh38/hg38: chr4:88031140.
  • 192. The composition of claim 188, wherein the target sequence of the pre-mRNA is closer than 1500 nucleotides, 1000 nucleotides, 800 nucleotides, 700 nucleotides, 600 nucleotides, 500 nucleotides, 400 nucleotides, 300 nucleotides, 200 nucleotides, 100 nucleotides, 80 nucleotides, 70 nucleotides, 60 nucleotides, 50 nucleotides downstream of genomic site of GRCh38/hg38: chr4:88031140.
  • 193. The composition of claim 78, wherein the agent is a non-sense mediated RNA decay alternative splice site (NSASS) modulating agent and the NMD exon is defined by genomic sites GRCh38/hg38: chr4:88036354 88036480.
  • 194. The composition of claim 193, wherein the target sequence of the pre-mRNA is closer than 1500 nucleotides, 1000 nucleotides, 800 nucleotides, 700 nucleotides, 600 nucleotides, 500 nucleotides, 400 nucleotides, 300 nucleotides, 200 nucleotides, 100 nucleotides, 80 nucleotides, 70 nucleotides, 60 nucleotides, 50 nucleotides upstream of genomic site of GRCh38/hg38: chr4 88036480.
  • 195. The composition of claim 193, wherein the target sequence of the pre-mRNA is closer than 1500 nucleotides, 1000 nucleotides, 800 nucleotides, 700 nucleotides, 600 nucleotides, 500 nucleotides, 400 nucleotides, 300 nucleotides, 200 nucleotides, 100 nucleotides, 80 nucleotides, 70 nucleotides, about 60 nucleotides, about 50 nucleotides downstream of genomic site of GRCh38/hg38: chr4:88036480.
  • 196. The composition of claim 78, wherein the composition comprises the agent, and wherein the agent is an antisense oligomer (ASO).
  • 197. The composition of claim 196, wherein the ASO comprises 8, 9, 10, 11, 12, 13, 14, 15, 16, 17 or 18 contiguous nucleic acids of a sequence selected from the group consisting of SEQ ID NOs: 1-226.
  • 198. The composition of claim 196, wherein the ASO comprises a backbone modification comprising a phosphorothioate linkage or a phosphorodiamidate linkage.
  • 199. The composition of claim 196, wherein the ASO comprises a phosphorodiamidate morpholino, a locked nucleic acid, a peptide nucleic acid, a 2′-O-methyl, a 2′-Fluoro, or a 2′-O-methoxyethyl moiety.
  • 200. The composition of claim 78, wherein the composition comprises the vector encoding the agent, and wherein the vector is a viral vector.
  • 201. A pharmaceutical composition comprising the composition of claim 78; and a pharmaceutically acceptable excipient and/or a delivery vehicle.
  • 202. A method of modulating expression of a target protein in a cell having a pre-mRNA that is transcribed from a target gene and that comprises a non-sense mediated RNA decay-inducing exon (NMD exon), the method comprising contacting an agent or a vector encoding the agent to the cell, whereby the agent modulates splicing of the NMD exon from the pre-mRNA, thereby modulating the level of a processed mRNA that is processed from the pre-mRNA, and modulating the expression of the target protein in the cell, wherein the agent binds to a target sequence of the pre-mRNA, and wherein the target protein is encoded by a PKD2 gene.
  • 203. A method of treating or reducing the likelihood of developing a disease or condition in a subject in need thereof by modulating expression of a target protein in a cell of the subject, comprising: contacting an agent or a vector encoding the agent to the cell of the subject, whereby the agent modulates splicing of a non-sense mediated mRNA decay-inducing exon (NMD exon) from a pre-mRNA that is transcribed from a target gene and that comprises the NMD exon, thereby modulating the level of a processed mRNA that is processed from the pre-mRNA, and modulating the expression of the target protein in the cell of the subject, wherein the agent binds to a target sequence of the pre-mRNA, and wherein the target protein encoded by a PKD2 gene.
CROSS-REFERENCE

This application is a continuation of international patent application no. PCT/US2022/015074, filed Feb. 3, 2022, which claims the benefit of U.S. Provisional Application No. 63/145,288, filed Feb. 3, 2021, each of which is incorporated herein by reference in its entirety.

Provisional Applications (1)
Number Date Country
63145288 Feb 2021 US
Continuations (1)
Number Date Country
Parent PCT/US2022/015074 Feb 2022 US
Child 18364244 US