The disclosure relates generally to a static random access memory cell that may be used for computations.
An array of memory cells, such as dynamic random access memory (DRAM) cells, static random access memory (SRAM) cells, content addressable memory (CAM) cells or non-volatile memory cells, is a well-known mechanism used in various computer or processor based devices to store digital bits of data. The various computer and processor based devices may include computer systems, smartphone devices, consumer electronic products, televisions, internet switches and routers and the like. The array of memory cells are typically packaged in an integrated circuit or may be packaged within an integrated circuit that also has a processing device within the integrated circuit. The different types of typical memory cells have different capabilities and characteristics that distinguish each type of memory cell. For example, DRAM cells take longer to access, lose their data contents unless periodically refreshed, but are relatively cheap to manufacture due to the simple structure of each DRAM cell. SRAM cells, on the other hand, have faster access times, do not lose their data content unless power is removed from the SRAM cell and are relatively more expensive since each SRAM cell is more complicated than a DRAM cell. CAM cells have a unique function of being able to address content easily within the cells and are more expensive to manufacture since each CAM cell requires more circuitry to achieve the content addressing functionality.
Various computation devices that may be used to perform computations on digital, binary data are also well-known. The computation devices may include a microprocessor, a CPU, a microcontroller and the like. These computation devices are typically manufactured on an integrated circuit, but may also be manufactured on an integrated circuit that also has some amount of memory integrated onto the integrated circuit. In these known integrated circuits with a computation device and memory, the computation device performs the computation of the digital binary data bits while the memory is used to store various digital binary data including, for example, the instructions being executed by the computation device and the data being operated on by the computation device.
More recently, devices have been introduced that use memory arrays or storage cells to perform computation operations. In some of these devices, a processor array to perform computations may be formed from memory cells. These devices may be known as in-memory computational devices.
Big data operations are data processing operations in which a large amount of data must be processed. Machine learning uses artificial intelligence algorithms to analyze data and typically require a lot of data to perform. The big data operations and machine learning also are typically very computationally intensive applications that often encounter input/output issues due to a bandwidth bottleneck between the computational device and the memory that stores the data. The above in-memory computational devices may be used, for example, for these big data operations and machine learning applications since the in-memory computational devices perform the computations within the memory thereby eliminating the bandwidth bottleneck.
An SRAM cell can be configured to perform Boolean operations such as AND, OR, NAND and NOR, Exclusive OR and NOR. This SRAM cell can also support a Selective Write operation. However, the typical SRAM cell requires stronger writing transistors than the transistors in the storage latch to over write the storage data. A ratio of the transistor strengths of the write transistor and the storage transistor may be known as a write ratio. For a typical SRAM cell, the write ratio is 2 to 3 meaning that the writing transistor is 2 to 3 times of the strength of the storage transistor for the writing to be successful. Thus, it is desired to provide a computational memory cell, that may be an SRAM cell, with a write port to perform Boolean operations such as AND, OR, NAND, NOR, XOR (Exclusive OR) and XNOR (Exclusive NOR) that is able to do the writing ratioless.
The disclosure is particularly applicable to a CMOS implemented memory cell and processing array with a plurality of the memory cells that are capable to performing logic functions with a ratioless write port and it is in this context that the disclosure will be described. It will be appreciated, however, that the memory cell and processing array has greater utility and is not limited to the below disclosed implementations since the memory cell may be constructed using different processes and may have different circuit configurations than those disclosed below that perform the logic function and so are within the scope of this disclosure. For purposes of illustration, a dual port SRAM and 3-port cells are disclosed below and in the figures. However, it is understood that the SRAM computation cell and processing array may also be implemented with an SRAM cell having more ports and the disclosure is not limited to the SRAM cells disclosed below. It is also understood that the SRAM cells having more ports may be slightly differently constructed than the SRAM cells shown in the figures, but one skilled in the art would understand how to construct those SRAMs with more ports from the disclosure below.
Furthermore, although an SRAM cell is used in the examples below, it is understood that the disclosed memory cell for computation and the processing array using the memory cells may be implemented using various different types of memory cells including DRAMs, CAMs, non-volatile memory cells and non-volatile memory devices and these implementations using the various types of memory cells are within the scope of the disclosure.
A Write Word line carries a signal and is called WE (see
The circuit in
In operation, the dual port SRAM cell may read data stored in the latch using a signal on the read word line (RE) to address/activate the dual port SRAM cell and the read bit line (RBL) to read the data stored in the dual port SRAM cell. The dual port SRAM cell may write data into the dual port SRAM cell by addressing/activating the dual port SRAM cell using a signal on the write word line (WE) and then writing data into the dual port SRAM cell using the write bit lines (WBL, WBLb).
During reading, multiple cells (with only a single cell being shown in
The cell 10 may further be used for computation where RBL is also used to perform logic operation(s). If the Db signal of any or all of the cells activated is “1” then RBL is discharged to 0 since the gate of M12 is turned on and the RBL line is connected to ground. As a result, RBL=NOR (Db0, Db1, etc.) where Db0, Db1, etc. are the complementary data of the SRAM cells that have been turned on by the RE signal. Alternatively, RBL=NOR (Db0, Db1, etc.)=AND (D0, D1, etc.), where D0, D1, etc. are the true data of the cells that have been turned on by the RE signal.
As shown in
In a read cycle, the word line generator 24 may generate one or multiple RE signals in a cycle to turn on/activate one or more cells and the RBL lines of the cells activated by the RE signal form AND or NOR functions whose output is sent to a respective BL Read/Write Logic (26o, . . . , 26n). Each BL Read/Write Logic 26 processes the RBL result (the result of the AND or NOR operation) and sends the results back to its WBL/WBLb for use/writing back to the same BL, or to the neighboring BL Read/Write Logic 26 for use/writing back to the neighboring BL, or send it out of the processing array. Alternatively, the BL Read/Write logic 26 can store the RBL result from its own bit line or from the neighboring bit line in a latch within the BL Read/Write Logic so that, during a next or later cycle, the BL Read/Write logic 26 can perform logic with the latched data that is the RBL result.
In a write cycle, the word line generator 24 generates one or more WE signals for the cells into which data is to be written. The BL Read/Write Logic (26o, . . . , 26n) processes the write data, either from its own RBL, or from the neighboring RBL, or from out of the processing array 20. The ability of BL Read/Write Logic 26 to process the data from the neighboring bit line means that the data can be shifting from one bit line to the neighboring bit line and one or more or all bit lines in the processing array may be shifting concurrently. The BL Read/Write Logic 26 can also decide not to write for a Selective Write operation based on the RBL result. For example, the data on the WBL line can be written to a cell if RBL=1. If RBL=0, then the write operation is not performed.
The write operation for the circuit is now described in more detail with reference to
The circuit 40 in
In the cell 40 in
In
Similarly, when WE=1, WBLb=0 and WBL=1, transistors M44 and M46 are on and data Db is written from 1 to 0 without needing to overcome the pull up strength of series PMOS transistor M410 and M412 because transistor M412 is turned off with the gate tied to WBL. Similarly, in this write operation, there is no write ratio in the write operation as M44 and M46 operate without the need to overcome the storage PMOS pull up strength.
In this manner, write port transistor M43, M44, M45 and M46 may be the same minimum size of transistor as PMOS transistors M49, M410, M411 and M412. Thus, the cell 40 size can be reduced and the write port is not affected by the write ratio. Note that when WE=0, no write is performed, but M411 or M412 may be turned ON when WBLb or WBL is 1. This could leave D or Db as floating 1 which is acceptable because the write cycle is only for a short period of time and nodes D and Db have enough capacitance to hold the change to keep the value in the storage cell unchanged in this situation. In the normal operation when it is not a write cycle, both WBLb and WBL are low to keep the cross coupled transistors M47, M48, M49 and M410 operating as the cross coupled latch of the SRAM cell 40.
In the circuit 40 shown in
In summary, a ratioless write is performed with write bit line (WBL) or complementary write bit line (WBLb) to write the “0” node of the storage latch with its pull up transistor disabled and to write the “1” node of the storage latch with its pull up transistor enabled. The cell 40 in
During reading, multiple cells (with only a single cell being shown in
In a read cycle, the word line generator may generate one or multiple RE, REb signals in a cycle to turn on/activate one or more cells and the RBL, RBLb lines of the cells activated by the RE and REb signals form AND or NOR functions whose output is sent to the respective BL Read/Write Logic 64 for each bit line. Each BL Read/Write Logic 64 processes the RBL result (the result of the AND or NOR operation) and sends the results back to its WBL/WBLb for use/writing back to the same cell, or to the neighboring BL Read/Write Logic for use/writing back to the neighboring cell, or send it out of the processing array. Alternatively, the BL Read/Write logic 64 can store the RBL result from its own bit line or from the neighboring bit line in a latch within the BL Read/Write Logic so that, during a next or later cycle, the Read/Write logic can perform logic with the latched data that is the RBL result.
In a write cycle using the processing array in
SRAM Ultralow VDD Operation SRAM
The cells 40 and 50 described here are for computation memory applications, but these cells in
Isolated Storage Latch:
the read or write operation will not affect the stability of storage latch. The VDD operation level for storage is as low as the threshold voltage of NMOS and PMOS transistors for the cross coupled latch to be active.
Buffered Read:
the read bit line voltage level will not affect the stability of the storage node. The read bit line is pre-charged high and be discharged by the turning on of the read port access transistors. The VDD operation level is as low as the threshold voltage of read port NMOS transistors.
Ratioless Write:
The writing to the storage latch occurs by just turning on the NMOS or PMOS transistors of the write port without write ratio. The VDD operation level is as low as the threshold voltage of write port NMOS and PMOS transistors.
The foregoing description, for purpose of explanation, has been described with reference to specific embodiments. However, the illustrative discussions above are not intended to be exhaustive or to limit the disclosure to the precise forms disclosed. Many modifications and variations are possible in view of the above teachings. The embodiments were chosen and described in order to best explain the principles of the disclosure and its practical applications, to thereby enable others skilled in the art to best utilize the disclosure and various embodiments with various modifications as are suited to the particular use contemplated.
The system and method disclosed herein may be implemented via one or more components, systems, servers, appliances, other subcomponents, or distributed between such elements. When implemented as a system, such systems may include an/or involve, inter alia, components such as software modules, general-purpose CPU, RAM, etc. found in general-purpose computers. In implementations where the innovations reside on a server, such a server may include or involve components such as CPU, RAM, etc., such as those found in general-purpose computers.
Additionally, the system and method herein may be achieved via implementations with disparate or entirely different software, hardware and/or firmware components, beyond that set forth above. With regard to such other components (e.g., software, processing components, etc.) and/or computer-readable media associated with or embodying the present inventions, for example, aspects of the innovations herein may be implemented consistent with numerous general purpose or special purpose computing systems or configurations. Various exemplary computing systems, environments, and/or configurations that may be suitable for use with the innovations herein may include, but are not limited to: software or other components within or embodied on personal computers, servers or server computing devices such as routing/connectivity components, hand-held or laptop devices, multiprocessor systems, microprocessor-based systems, set top boxes, consumer electronic devices, network PCs, other existing computer platforms, distributed computing environments that include one or more of the above systems or devices, etc.
In some instances, aspects of the system and method may be achieved via or performed by logic and/or logic instructions including program modules, executed in association with such components or circuitry, for example. In general, program modules may include routines, programs, objects, components, data structures, etc. that perform particular tasks or implement particular instructions herein. The inventions may also be practiced in the context of distributed software, computer, or circuit settings where circuitry is connected via communication buses, circuitry or links. In distributed settings, control/instructions may occur from both local and remote computer storage media including memory storage devices.
The software, circuitry and components herein may also include and/or utilize one or more type of computer readable media. Computer readable media can be any available media that is resident on, associable with, or can be accessed by such circuits and/or computing components. By way of example, and not limitation, computer readable media may comprise computer storage media and communication media. Computer storage media includes volatile and nonvolatile, removable and non-removable media implemented in any method or technology for storage of information such as computer readable instructions, data structures, program modules or other data. Computer storage media includes, but is not limited to, RAM, ROM, EEPROM, flash memory or other memory technology, CD-ROM, digital versatile disks (DVD) or other optical storage, magnetic tape, magnetic disk storage or other magnetic storage devices, or any other medium which can be used to store the desired information and can accessed by computing component. Communication media may comprise computer readable instructions, data structures, program modules and/or other components. Further, communication media may include wired media such as a wired network or direct-wired connection, however no media of any such type herein includes transitory media. Combinations of the any of the above are also included within the scope of computer readable media.
In the present description, the terms component, module, device, etc. may refer to any type of logical or functional software elements, circuits, blocks and/or processes that may be implemented in a variety of ways. For example, the functions of various circuits and/or blocks can be combined with one another into any other number of modules. Each module may even be implemented as a software program stored on a tangible memory (e.g., random access memory, read only memory, CD-ROM memory, hard disk drive, etc.) to be read by a central processing unit to implement the functions of the innovations herein. Or, the modules can comprise programming instructions transmitted to a general purpose computer or to processing/graphics hardware via a transmission carrier wave. Also, the modules can be implemented as hardware logic circuitry implementing the functions encompassed by the innovations herein. Finally, the modules can be implemented using special purpose instructions (SIMD instructions), field programmable logic arrays or any mix thereof which provides the desired level performance and cost.
As disclosed herein, features consistent with the disclosure may be implemented via computer-hardware, software and/or firmware. For example, the systems and methods disclosed herein may be embodied in various forms including, for example, a data processor, such as a computer that also includes a database, digital electronic circuitry, firmware, software, or in combinations of them. Further, while some of the disclosed implementations describe specific hardware components, systems and methods consistent with the innovations herein may be implemented with any combination of hardware, software and/or firmware. Moreover, the above-noted features and other aspects and principles of the innovations herein may be implemented in various environments. Such environments and related applications may be specially constructed for performing the various routines, processes and/or operations according to the invention or they may include a general-purpose computer or computing platform selectively activated or reconfigured by code to provide the necessary functionality. The processes disclosed herein are not inherently related to any particular computer, network, architecture, environment, or other apparatus, and may be implemented by a suitable combination of hardware, software, and/or firmware. For example, various general-purpose machines may be used with programs written in accordance with teachings of the invention, or it may be more convenient to construct a specialized apparatus or system to perform the required methods and techniques.
Aspects of the method and system described herein, such as the logic, may also be implemented as functionality programmed into any of a variety of circuitry, including programmable logic devices (“PLDs”), such as field programmable gate arrays (“FPGAs”), programmable array logic (“PAL”) devices, electrically programmable logic and memory devices and standard cell-based devices, as well as application specific integrated circuits. Some other possibilities for implementing aspects include: memory devices, microcontrollers with memory (such as EEPROM), embedded microprocessors, firmware, software, etc. Furthermore, aspects may be embodied in microprocessors having software-based circuit emulation, discrete logic (sequential and combinatorial), custom devices, fuzzy (neural) logic, quantum devices, and hybrids of any of the above device types. The underlying device technologies may be provided in a variety of component types, e.g., metal-oxide semiconductor field-effect transistor (“MOSFET”) technologies like complementary metal-oxide semiconductor (“CMOS”), bipolar technologies like emitter-coupled logic (“ECL”), polymer technologies (e.g., silicon-conjugated polymer and metal-conjugated polymer-metal structures), mixed analog and digital, and so on.
It should also be noted that the various logic and/or functions disclosed herein may be enabled using any number of combinations of hardware, firmware, and/or as data and/or instructions embodied in various machine-readable or computer-readable media, in terms of their behavioral, register transfer, logic component, and/or other characteristics. Computer-readable media in which such formatted data and/or instructions may be embodied include, but are not limited to, non-volatile storage media in various forms (e.g., optical, magnetic or semiconductor storage media) though again does not include transitory media. Unless the context clearly requires otherwise, throughout the description, the words “comprise,” “comprising,” and the like are to be construed in an inclusive sense as opposed to an exclusive or exhaustive sense; that is to say, in a sense of “including, but not limited to.” Words using the singular or plural number also include the plural or singular number respectively. Additionally, the words “herein,” “hereunder,” “above,” “below,” and words of similar import refer to this application as a whole and not to any particular portions of this application. When the word “or” is used in reference to a list of two or more items, that word covers all of the following interpretations of the word: any of the items in the list, all of the items in the list and any combination of the items in the list.
Although certain presently preferred implementations of the invention have been specifically described herein, it will be apparent to those skilled in the art to which the invention pertains that variations and modifications of the various implementations shown and described herein may be made without departing from the spirit and scope of the invention. Accordingly, it is intended that the invention be limited only to the extent required by the applicable rules of law.
While the foregoing has been with reference to a particular embodiment of the disclosure, it will be appreciated by those skilled in the art that changes in this embodiment may be made without departing from the principles and spirit of the disclosure, the scope of which is defined by the appended claims
This application is a continuation in part of U.S. application Ser. No. 15/709,401 filed Sep. 19, 2017 (now issued as U.S. Pat. No. 10,249,362 on Apr. 2, 2019) and Ser. No. 15/709,399 filed Sep. 19, 2017, both of which claim the benefit under 35 USC 119(e) of U.S. Provisional Application No. 62/430,767 filed Dec. 6, 2016 and entitled “Computational Dual Port SRAM Cell And Processing Array Device Using The Dual Port SRAM Cells For Xor And Xnor Computations”, the entirety of all of which are incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
3451694 | Hass | Jun 1969 | A |
3747952 | Graebe | Jul 1973 | A |
3795412 | John | Mar 1974 | A |
4227717 | Bouvier | Oct 1980 | A |
4308505 | Messerschmitt | Dec 1981 | A |
4587496 | Wolaver | May 1986 | A |
4594564 | Yarborough, Jr. | Jun 1986 | A |
4677394 | Vollmer | Jun 1987 | A |
4716322 | D'Arrigo et al. | Dec 1987 | A |
4741006 | Yamaguchi et al. | Apr 1988 | A |
4856035 | Lewis | Aug 1989 | A |
5008636 | Markinson | Apr 1991 | A |
5302916 | Pritchett | Apr 1994 | A |
5375089 | Lo | Dec 1994 | A |
5382922 | Gersbach et al. | Jan 1995 | A |
5400274 | Jones et al. | Mar 1995 | A |
5473574 | Clemen et al. | Dec 1995 | A |
5530383 | May | Jun 1996 | A |
5535159 | Nii | Jul 1996 | A |
5563834 | Longway et al. | Oct 1996 | A |
5587672 | Ranganathan et al. | Dec 1996 | A |
5608354 | Hori | Mar 1997 | A |
5661419 | Bhagwan | Aug 1997 | A |
5696468 | Nise | Dec 1997 | A |
5736872 | Sharma et al. | Apr 1998 | A |
5744979 | Goetting | Apr 1998 | A |
5744991 | Jefferson et al. | Apr 1998 | A |
5748044 | Xue | May 1998 | A |
5768559 | Iino et al. | Jun 1998 | A |
5805912 | Johnson et al. | Sep 1998 | A |
5883853 | Zheng et al. | Mar 1999 | A |
5937204 | Schinnerer | Aug 1999 | A |
5942949 | Wilson et al. | Aug 1999 | A |
5963059 | Partovi et al. | Oct 1999 | A |
5969576 | Trodden | Oct 1999 | A |
5969986 | Wong | Oct 1999 | A |
5977801 | Boerstler | Nov 1999 | A |
5999458 | Nishimura et al. | Dec 1999 | A |
6058063 | Jang | May 2000 | A |
6100721 | Durec et al. | Aug 2000 | A |
6100736 | Wu et al. | Aug 2000 | A |
6114920 | Moon et al. | Sep 2000 | A |
6115320 | Mick et al. | Sep 2000 | A |
6133770 | Hasegawa | Oct 2000 | A |
6167487 | Camacho | Dec 2000 | A |
6175282 | Yasuda | Jan 2001 | B1 |
6262937 | Arcoleo et al. | Jul 2001 | B1 |
6263452 | Jewett et al. | Jul 2001 | B1 |
6265902 | Klemmer et al. | Jul 2001 | B1 |
6286077 | Choi et al. | Sep 2001 | B1 |
6310880 | Waller | Oct 2001 | B1 |
6366524 | Abedifard | Apr 2002 | B1 |
6377127 | Fukaishi et al. | Apr 2002 | B1 |
6381684 | Hronik et al. | Apr 2002 | B1 |
6385122 | Chang | May 2002 | B1 |
6407642 | Dosho et al. | Jun 2002 | B2 |
6418077 | Naven | Jul 2002 | B1 |
6441691 | Jones et al. | Aug 2002 | B1 |
6448757 | Hill | Sep 2002 | B2 |
6473334 | Bailey et al. | Oct 2002 | B1 |
6483361 | Chiu | Nov 2002 | B1 |
6504417 | Cecchi et al. | Jan 2003 | B1 |
6538475 | Johansen et al. | Mar 2003 | B1 |
6567338 | Mick | May 2003 | B1 |
6594194 | Gold | Jul 2003 | B2 |
6642747 | Chiu | Nov 2003 | B1 |
6661267 | Walker et al. | Dec 2003 | B2 |
6665222 | Wright et al. | Dec 2003 | B2 |
6683502 | Groen et al. | Jan 2004 | B1 |
6683930 | Dalmia | Jan 2004 | B1 |
6732247 | Berg et al. | May 2004 | B2 |
6744277 | Chang et al. | Jun 2004 | B1 |
6757854 | Zhao et al. | Jun 2004 | B1 |
6789209 | Suzuki et al. | Sep 2004 | B1 |
6816019 | Delbo' et al. | Nov 2004 | B2 |
6836419 | Loughmiller | Dec 2004 | B2 |
6838951 | Nieri et al. | Jan 2005 | B1 |
6842396 | Kono | Jan 2005 | B2 |
6853696 | Moser et al. | Feb 2005 | B1 |
6854059 | Gardner | Feb 2005 | B2 |
6856202 | Lesso | Feb 2005 | B2 |
6859107 | Moon et al. | Feb 2005 | B1 |
6882237 | Singh et al. | Apr 2005 | B2 |
6897696 | Chang et al. | May 2005 | B2 |
6933789 | Molnar et al. | Aug 2005 | B2 |
6938142 | Pawlowski | Aug 2005 | B2 |
6940328 | Lin | Sep 2005 | B2 |
6954091 | Wurzer | Oct 2005 | B2 |
6998922 | Jensen et al. | Feb 2006 | B2 |
7002404 | Gaggl et al. | Feb 2006 | B2 |
7002416 | Pettersen et al. | Feb 2006 | B2 |
7003065 | Homol et al. | Feb 2006 | B2 |
7017090 | Endou et al. | Mar 2006 | B2 |
7019569 | Fan-Jiang | Mar 2006 | B2 |
7042271 | Chung et al. | May 2006 | B2 |
7042792 | Lee et al. | May 2006 | B2 |
7042793 | Masuo | May 2006 | B2 |
7046093 | McDonagh et al. | May 2006 | B1 |
7047146 | Chuang et al. | May 2006 | B2 |
7053666 | Tak et al. | May 2006 | B2 |
7095287 | Maxim et al. | Aug 2006 | B2 |
7099643 | Lin | Aug 2006 | B2 |
7141961 | Hirayama et al. | Nov 2006 | B2 |
7142477 | Tran et al. | Nov 2006 | B1 |
7152009 | Bokui et al. | Dec 2006 | B2 |
7180816 | Park | Feb 2007 | B2 |
7200713 | Cabot et al. | Apr 2007 | B2 |
7218157 | Van De Beek et al. | May 2007 | B2 |
7233214 | Kim et al. | Jun 2007 | B2 |
7246215 | Lu et al. | Jul 2007 | B2 |
7263152 | Miller et al. | Aug 2007 | B2 |
7269402 | Uozumi et al. | Sep 2007 | B2 |
7282999 | Da Dalt et al. | Oct 2007 | B2 |
7312629 | Chuang et al. | Dec 2007 | B2 |
7313040 | Chuang et al. | Dec 2007 | B2 |
7330080 | Stoiber et al. | Feb 2008 | B1 |
7340577 | Van Dyke et al. | Mar 2008 | B1 |
7349515 | Chew et al. | Mar 2008 | B1 |
7352249 | Balboni et al. | Apr 2008 | B2 |
7355482 | Meltzer | Apr 2008 | B2 |
7355907 | Chen et al. | Apr 2008 | B2 |
7369000 | Wu et al. | May 2008 | B2 |
7375593 | Self | May 2008 | B2 |
7389457 | Chen et al. | Jun 2008 | B2 |
7439816 | Lombaard | Oct 2008 | B1 |
7463101 | Tung | Dec 2008 | B2 |
7464282 | Abdollahi-Alibeik et al. | Dec 2008 | B1 |
7487315 | Hur et al. | Feb 2009 | B2 |
7489164 | Madurawe | Feb 2009 | B2 |
7512033 | Hur et al. | Mar 2009 | B2 |
7516385 | Chen et al. | Apr 2009 | B2 |
7538623 | Jensen et al. | May 2009 | B2 |
7545223 | Watanabe | Jun 2009 | B2 |
7565480 | Ware et al. | Jul 2009 | B2 |
7577225 | Azadet et al. | Aug 2009 | B2 |
7592847 | Liu et al. | Sep 2009 | B2 |
7595657 | Chuang et al. | Sep 2009 | B2 |
7622996 | Liu | Nov 2009 | B2 |
7630230 | Wong | Dec 2009 | B2 |
7633322 | Zhuang et al. | Dec 2009 | B1 |
7635988 | Madurawe | Dec 2009 | B2 |
7646215 | Chuang et al. | Jan 2010 | B2 |
7646648 | Arsovski | Jan 2010 | B2 |
7659783 | Tai | Feb 2010 | B2 |
7660149 | Liaw | Feb 2010 | B2 |
7663415 | Chatterjee et al. | Feb 2010 | B2 |
7667678 | Guttag | Feb 2010 | B2 |
7675331 | Jung et al. | Mar 2010 | B2 |
7689941 | Ooi | Mar 2010 | B1 |
7719329 | Smith et al. | May 2010 | B1 |
7719330 | Lin et al. | May 2010 | B2 |
7728675 | Kennedy et al. | Jun 2010 | B1 |
7737743 | Gao et al. | Jun 2010 | B1 |
7746181 | Moyal | Jun 2010 | B1 |
7746182 | Ramaswamy et al. | Jun 2010 | B2 |
7750683 | Huang et al. | Jul 2010 | B2 |
7760032 | Ardehali | Jul 2010 | B2 |
7760040 | Zhang et al. | Jul 2010 | B2 |
7760532 | Shirley et al. | Jul 2010 | B2 |
7782655 | Shau | Aug 2010 | B2 |
7812644 | Cha et al. | Oct 2010 | B2 |
7830212 | Lee et al. | Nov 2010 | B2 |
7839177 | Soh | Nov 2010 | B1 |
7843239 | Sohn et al. | Nov 2010 | B2 |
7843721 | Chou et al. | Nov 2010 | B1 |
7848725 | Zolfaghari et al. | Dec 2010 | B2 |
7859919 | De La Cruz, II et al. | Dec 2010 | B2 |
7876163 | Hachigo | Jan 2011 | B2 |
7916554 | Pawlowski | Mar 2011 | B2 |
7920409 | Clark et al. | Apr 2011 | B1 |
7920665 | Lombaard | Apr 2011 | B1 |
7924599 | Evans, Jr. et al. | Apr 2011 | B1 |
7940088 | Sampath et al. | May 2011 | B1 |
7944256 | Masuda | May 2011 | B2 |
7956695 | Ding et al. | Jun 2011 | B1 |
7965108 | Liu et al. | Jun 2011 | B2 |
8004920 | Ito et al. | Aug 2011 | B2 |
8008956 | Shin et al. | Aug 2011 | B1 |
8044724 | Rao et al. | Oct 2011 | B2 |
8063707 | Wang | Nov 2011 | B2 |
8087690 | Kim | Jan 2012 | B2 |
8089819 | Noda et al. | Jan 2012 | B2 |
8117567 | Arsovski | Feb 2012 | B2 |
8174332 | Lombaard et al. | May 2012 | B1 |
8218707 | Mai | Jul 2012 | B2 |
8242820 | Kim | Aug 2012 | B2 |
8258831 | Banai et al. | Sep 2012 | B1 |
8284593 | Russell et al. | Oct 2012 | B2 |
8294502 | Lewis et al. | Oct 2012 | B2 |
8400200 | Shu et al. | Mar 2013 | B1 |
8488408 | Shu et al. | Jul 2013 | B1 |
8493774 | Kung et al. | Jul 2013 | B2 |
8526256 | Gosh et al. | Sep 2013 | B2 |
8542050 | Chuang et al. | Sep 2013 | B2 |
8575982 | Shu et al. | Nov 2013 | B1 |
8593860 | Shu et al. | Nov 2013 | B2 |
8625334 | Liaw | Jan 2014 | B2 |
8643418 | Ma et al. | Feb 2014 | B2 |
8692621 | Snowden et al. | Apr 2014 | B2 |
8693236 | Shu et al. | Apr 2014 | B2 |
8817550 | Oh | Aug 2014 | B1 |
8837207 | Jou et al. | Sep 2014 | B1 |
8885439 | Shu et al. | Nov 2014 | B1 |
8971096 | Jung et al. | Mar 2015 | B2 |
8995162 | Sang et al. | Mar 2015 | B2 |
9018992 | Shu et al. | Apr 2015 | B1 |
9030893 | Jung et al. | May 2015 | B2 |
9053768 | Shu et al. | Jun 2015 | B2 |
9059691 | Lin | Jun 2015 | B2 |
9070477 | Clark | Jun 2015 | B1 |
9083356 | Cheng | Jul 2015 | B1 |
9093135 | Khailany et al. | Jul 2015 | B2 |
9094025 | Cheng | Jul 2015 | B1 |
9135986 | Shu et al. | Sep 2015 | B2 |
9142285 | Hwang et al. | Sep 2015 | B2 |
9159391 | Shu et al. | Oct 2015 | B1 |
9171634 | Zheng et al. | Oct 2015 | B2 |
9177646 | Arsovski | Nov 2015 | B2 |
9196324 | Haig et al. | Nov 2015 | B2 |
9240229 | Oh et al. | Jan 2016 | B1 |
9311971 | Oh | Apr 2016 | B1 |
9318174 | Chuang et al. | Apr 2016 | B1 |
9356611 | Shu et al. | May 2016 | B1 |
9384822 | Shu et al. | Jul 2016 | B2 |
9385032 | Shu | Jul 2016 | B2 |
9396790 | Chhabra et al. | Jul 2016 | B1 |
9396795 | Jeloka et al. | Jul 2016 | B1 |
9401200 | Chan et al. | Jul 2016 | B1 |
9412440 | Shu et al. | Aug 2016 | B1 |
9413295 | Chang | Aug 2016 | B1 |
9431079 | Shu et al. | Aug 2016 | B1 |
9443575 | Yabuuchi | Sep 2016 | B2 |
9484076 | Shu et al. | Nov 2016 | B1 |
9494647 | Chuang et al. | Nov 2016 | B1 |
9552872 | Jung et al. | Jan 2017 | B2 |
9608651 | Cheng | Mar 2017 | B1 |
9613670 | Chuang et al. | Apr 2017 | B2 |
9613684 | Shu et al. | Apr 2017 | B2 |
9640540 | Liaw | May 2017 | B1 |
9679631 | Haig et al. | Jun 2017 | B2 |
9692429 | Chang et al. | Jun 2017 | B1 |
9697890 | Wang | Jul 2017 | B1 |
9722618 | Cheng | Aug 2017 | B1 |
9729159 | Cheng | Aug 2017 | B1 |
9789840 | Farooq et al. | Oct 2017 | B2 |
9804856 | Oh et al. | Oct 2017 | B2 |
9847111 | Shu et al. | Dec 2017 | B2 |
9853633 | Cheng et al. | Dec 2017 | B1 |
9853634 | Chang | Dec 2017 | B2 |
9859902 | Chang | Jan 2018 | B2 |
9916889 | Duong | Mar 2018 | B1 |
9935635 | Chuang et al. | Apr 2018 | B2 |
9966118 | Shu et al. | May 2018 | B2 |
10065594 | Fukawatase et al. | Sep 2018 | B2 |
10153042 | Ehrman et al. | Dec 2018 | B2 |
10192592 | Shu et al. | Jan 2019 | B2 |
10249312 | Kim et al. | Apr 2019 | B2 |
10249362 | Shu et al. | Apr 2019 | B2 |
10425070 | Cheng et al. | Sep 2019 | B2 |
10521229 | Shu et al. | Dec 2019 | B2 |
10535381 | Shu et al. | Jan 2020 | B2 |
10673440 | Camarota | Jun 2020 | B1 |
10770133 | Haig et al. | Sep 2020 | B1 |
10777262 | Haig et al. | Sep 2020 | B1 |
20010052822 | Kim et al. | Dec 2001 | A1 |
20020006072 | Kunikiyo | Jan 2002 | A1 |
20020060938 | Song et al. | May 2002 | A1 |
20020136074 | Hanzawa et al. | Sep 2002 | A1 |
20020154565 | Noh et al. | Oct 2002 | A1 |
20020168935 | Han | Nov 2002 | A1 |
20030016689 | Hoof | Jan 2003 | A1 |
20030107913 | Nii | Jun 2003 | A1 |
20030185329 | Dickmann | Oct 2003 | A1 |
20040052152 | Kono | Mar 2004 | A1 |
20040053510 | Little et al. | Mar 2004 | A1 |
20040062138 | Partsch et al. | Apr 2004 | A1 |
20040090413 | Yoo | May 2004 | A1 |
20040160250 | Kim et al. | Aug 2004 | A1 |
20040169565 | Gaggl et al. | Sep 2004 | A1 |
20040199803 | Suzuki et al. | Oct 2004 | A1 |
20040240301 | Rao | Dec 2004 | A1 |
20040264279 | Wordeman et al. | Dec 2004 | A1 |
20040264286 | Ware et al. | Dec 2004 | A1 |
20050024912 | Chen et al. | Feb 2005 | A1 |
20050026329 | Kim et al. | Feb 2005 | A1 |
20050036394 | Shiraishi | Feb 2005 | A1 |
20050186930 | Rofougaran et al. | Aug 2005 | A1 |
20050226079 | Zhu et al. | Oct 2005 | A1 |
20050226357 | Yoshimura | Oct 2005 | A1 |
20050253658 | Maeda et al. | Nov 2005 | A1 |
20050285862 | Noda et al. | Dec 2005 | A1 |
20060039227 | Lai et al. | Feb 2006 | A1 |
20060055434 | Tak et al. | Mar 2006 | A1 |
20060119443 | Azam et al. | Jun 2006 | A1 |
20060139105 | Maxim et al. | Jun 2006 | A1 |
20060143428 | Noda et al. | Jun 2006 | A1 |
20060248305 | Fang | Nov 2006 | A1 |
20070001721 | Chen et al. | Jan 2007 | A1 |
20070047283 | Miyanishi | Mar 2007 | A1 |
20070058407 | Dosaka et al. | Mar 2007 | A1 |
20070109030 | Park | May 2007 | A1 |
20070115739 | Huang | May 2007 | A1 |
20070139997 | Suzuki et al. | Jun 2007 | A1 |
20070171713 | Hunter et al. | Jul 2007 | A1 |
20070189101 | Lambrache et al. | Aug 2007 | A1 |
20070229129 | Nakagawa | Oct 2007 | A1 |
20080010429 | Rao | Jan 2008 | A1 |
20080068096 | Feng et al. | Mar 2008 | A1 |
20080079467 | Hou et al. | Apr 2008 | A1 |
20080080230 | Liaw | Apr 2008 | A1 |
20080117707 | Manickavasakam et al. | May 2008 | A1 |
20080129402 | Han et al. | Jun 2008 | A1 |
20080155362 | Chang et al. | Jun 2008 | A1 |
20080175039 | Thomas et al. | Jul 2008 | A1 |
20080181029 | Joshi et al. | Jul 2008 | A1 |
20080265957 | Luong et al. | Oct 2008 | A1 |
20080273361 | Dudeck et al. | Nov 2008 | A1 |
20090027947 | Takeda | Jan 2009 | A1 |
20090089646 | Hirose et al. | Apr 2009 | A1 |
20090141566 | Arsovski | Jun 2009 | A1 |
20090154257 | Fukaishi et al. | Jun 2009 | A1 |
20090161468 | Fujioka | Jun 2009 | A1 |
20090231943 | Kunce et al. | Sep 2009 | A1 |
20090256642 | Lesso | Oct 2009 | A1 |
20090296869 | Chao et al. | Dec 2009 | A1 |
20090319871 | Shirai et al. | Dec 2009 | A1 |
20100085086 | Nedovic et al. | Apr 2010 | A1 |
20100157715 | Pyeon | Jun 2010 | A1 |
20100169675 | Kajihara | Jul 2010 | A1 |
20100172190 | Lavi et al. | Jul 2010 | A1 |
20100177571 | Shori et al. | Jul 2010 | A1 |
20100214815 | Tam et al. | Aug 2010 | A1 |
20100232202 | Lu et al. | Sep 2010 | A1 |
20100260001 | Kasprak et al. | Oct 2010 | A1 |
20100271138 | Thakur et al. | Oct 2010 | A1 |
20100322022 | Shinozaki et al. | Dec 2010 | A1 |
20110018597 | Lee et al. | Jan 2011 | A1 |
20110063898 | Ong | Mar 2011 | A1 |
20110153932 | Ware et al. | Jun 2011 | A1 |
20110267914 | Ishikura et al. | Nov 2011 | A1 |
20110280307 | Macinnis et al. | Nov 2011 | A1 |
20110292743 | Zimmerman | Dec 2011 | A1 |
20110299353 | Ito et al. | Dec 2011 | A1 |
20120049911 | Ura | Mar 2012 | A1 |
20120133114 | Choi et al. | May 2012 | A1 |
20120153999 | Kim | Jun 2012 | A1 |
20120242382 | Tsuchiya et al. | Sep 2012 | A1 |
20120243347 | Sampigethaya et al. | Sep 2012 | A1 |
20120281459 | Teman et al. | Nov 2012 | A1 |
20120327704 | Chan et al. | Dec 2012 | A1 |
20130039131 | Haig et al. | Feb 2013 | A1 |
20130083591 | Wuu et al. | Apr 2013 | A1 |
20140056093 | Tran et al. | Feb 2014 | A1 |
20140125390 | Ma | May 2014 | A1 |
20140136778 | Khailany et al. | May 2014 | A1 |
20140185366 | Chandwani et al. | Jul 2014 | A1 |
20140269019 | Kolar et al. | Sep 2014 | A1 |
20150003148 | Iyer et al. | Jan 2015 | A1 |
20150029782 | Jung et al. | Jan 2015 | A1 |
20150063052 | Manning | Mar 2015 | A1 |
20150187763 | Kim et al. | Jul 2015 | A1 |
20150213858 | Tao et al. | Jul 2015 | A1 |
20150248927 | Fujiwara et al. | Sep 2015 | A1 |
20150279453 | Fujiwara et al. | Oct 2015 | A1 |
20150302917 | Grover et al. | Oct 2015 | A1 |
20150310901 | Jung et al. | Oct 2015 | A1 |
20150357028 | Huang et al. | Dec 2015 | A1 |
20160005458 | Shu et al. | Jan 2016 | A1 |
20160064068 | Mojumder et al. | Mar 2016 | A1 |
20160141023 | Jung et al. | May 2016 | A1 |
20160225436 | Wang et al. | Aug 2016 | A1 |
20160225437 | Kumar et al. | Aug 2016 | A1 |
20160247559 | Atallah et al. | Aug 2016 | A1 |
20160284392 | Block et al. | Sep 2016 | A1 |
20160329092 | Akerib | Nov 2016 | A1 |
20170194046 | Yeung, Jr. et al. | Jul 2017 | A1 |
20170345505 | Noel et al. | Nov 2017 | A1 |
20180122456 | Li et al. | May 2018 | A1 |
20180123603 | Chang | May 2018 | A1 |
20180157621 | Shu et al. | Jun 2018 | A1 |
20180158517 | Shu et al. | Jun 2018 | A1 |
20180158518 | Shu | Jun 2018 | A1 |
20180158519 | Shu et al. | Jun 2018 | A1 |
20180158520 | Shu et al. | Jun 2018 | A1 |
20200160905 | Charles et al. | May 2020 | A1 |
20200301707 | Shu et al. | Sep 2020 | A1 |
Number | Date | Country |
---|---|---|
104752431 | Jul 2015 | CN |
10133281 | Jan 2002 | DE |
2005-346922 | Dec 2005 | JP |
Entry |
---|
US 10,564,982 B1, 02/2020, Oh et al. (withdrawn) |
Number | Date | Country | |
---|---|---|---|
62430767 | Dec 2016 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 15709399 | Sep 2017 | US |
Child | 16785141 | US | |
Parent | 15709401 | Sep 2017 | US |
Child | 15709399 | US |