The present invention is directed generally to servicing a contactor in a contact center and specifically to routing or directing contacts to appropriate contact center resources.
Contact centers, such as Automatic Call Distribution or ACD systems, are employed by many enterprises to service customer contacts. A typical contact center includes a switch and/or server to receive and route incoming packet-switched and/or circuit-switched contacts and one or more resources, such as human agents and automated resources (e.g., Interactive Voice Response (IVR) units), to service the incoming contacts. Contact centers distribute contacts, whether inbound or outbound, for servicing to any suitable resource according to predefined criteria. In many existing systems, the criteria for servicing the contact from the moment that the contact center becomes aware of the contact until the contact is connected to an agent are customer-specifiable (i.e., programmable by the operator of the contact center), via a capability called contact vectoring. Normally in present-day ACDs when the ACD system's controller detects that an agent has become available to handle a contact, the controller identifies all predefined contact-handling skills of the agent (usually in some order of priority) and delivers to the agent the highest-priority oldest contact that matches the agent's highest-priority skill. Generally, the only condition that results in a contact not being delivered to an available agent is that there are no contacts waiting to be handled.
Most present-day contact-distribution algorithms focus on being “fair” to callers and to agents. This fairness is reflected by the standard first-in, first-out contact to most-idle-agent assignment algorithm. Skills-based routing improves upon this basic algorithm in that it allows each agent to be slotted into a number of agent groups based on the agent's skill types and levels.
The primary objective of call-distribution algorithms is to ultimately maximize contact center performance and profitability. That may involve minimizing cost, maximizing contact throughput, and/or maximizing revenue, among others. For example, when a new contact arrives, the contact should be handled by an agent who either has the ability to produce the most revenue or can handle the contact in the shortest amount of time. Also, when an agent becomes available to handle a new contact, the agent should handle either the contact that has the possibility of generating the most revenue or the contact which the agent is most efficient in handling.
An important consideration in minimizing contact center operating costs and maximizing contact center revenue is servicing a customer's needs in as few contacts as possible. Whether the contact center is sales or services repeated contacts by a customer to accomplish one transaction causes the contact center's costs of serving that customer to rise and service wait times to increase, which lowers contact center profitability and increases customer dissatisfaction, thereby lowering revenue. The challenge to contact center administrators is tracking whether a current contact is related to a prior contact and therefore is not “one-and-done”. As a result of this challenge current contact centers do not measure the percentage of contacts that are “one-and-done”
Existing contact centers do allow for the tracking of “trouble” tickets (e.g., WebQ/QQ™ business application). These trouble ticket applications can retrieve open and closed trouble tickets and display them to agents. It may even be possible, through integration, to push the most recent trouble tickets to an agent upon delivering a contact. Existing contact centers, however, do not allow for the identification of a current contact that is associated with a prior contact by the same customer that was not “one-and-done” let alone making contact-handling decisions for the current contact based upon this identification to decrease the likelihood that the customer's needs will not be serviced in the current contact.
These and other needs are addressed by the various embodiments and configurations of the present invention. The present invention is directed generally to the tracking and use in contact center operations of instances of repetitive contacts by the same customer related to the same issue. As will be appreciated, the contacts can be inbound or outbound contacts or some combination thereof. For example, a second outbound/inbound contact can follow a first outbound/inbound contact or a second outbound/inbound contact can follow a first inbound/outbound contact.
In one embodiment, the present invention is directed to a contact center that includes:
(a) an input operable to receive a first contact from or initiate a first contact with a first customer;
(b) a selector operable (i) to determine whether the first contact is related to a previous contact with the first customer and (ii) when the first contact is related to another contact with the first customer, to service the contact differently than when the first contact is unrelated to another contact with the first customer; and/or
(c) a repeat contact determining agent operable (i) to track, for a set of the plurality of agents over a selected or specified time period, a number of contacts serviced by the set of agents that are or are not related to a previous and/or subsequent contact serviced by the set of agents and (ii) to maintain, for the set of agents, an indicator indicating one or more of (a) a number of contacts serviced by the set of agents during the selected time period, that are not related to a previous and/or subsequent contact serviced by the set of agents and (b) a number of contacts, serviced by the set of agents during the selected time period, that are related to a previous and/or subsequent contact serviced by the set of agents.
The “relatedness” of another contact to a present or current contact is generally assumed to be present when the two contacts are related to the same issue and/or customer purpose or need. There are numerous techniques that may be used to identify related contacts, including information provided by the customer to a contact center resource, the presence of matching subject matter indicators for the two contacts, the timing of the two contacts, information received by the agent(s) servicing the contacts, transaction identifier, reservation number, a common number (customer number, issue tracking number, order number, or ticket number), and the like.
The contact(s) may be real-time or non-real-time contact(s). A real-time contact refers to a contact in which the contacting entity or customer is present during the waiting (or queuing) period and can choose to abandon or disconnect the contact if the contact is not serviced within an acceptable period. Common examples include voice contacts, VoIP, text-chat, video contacts, and the like. A non-real-time contact refers to a contact in which the contacting entity or customer is unable to abandon or disconnect the contact. Common examples include e-mail, fax, electronic or paper documents, webform submissions, voice messages, and the like.
The set of agents can have one or more agent members. The membership of the set can be defined based on one or more suitable criteria, such as skill(s), expertise, experience, and the like.
The related first and second contacts can be received on the same channel/communication medium or on different channels/communication media. For example, the first contact can be in the form of email and the second contact in the form of a live voice communication. The first and second contacts can alternatively both be in the form of emails or live voice communications.
The present invention can have several advantages when compared to conventional systems. For example, the contact center of the present invention can determine whether a current contact is related to a prior contact and whether the contact had to be served by multiple servers (e.g., agents) in the same transaction. This in turn permits the contact center to determine the number or percentage of contacts, on a contact center, agent-by-agent, or skill-by-skill basis that are or are not “one-and-done”. This information can be important for at least two purposes. First, the information can be used to identify performance issues at the contact center or agent level. Agents taking longer to service contacts but having a higher one-and-done completion rate can now be recognized and suitably rewarded. In existing contact centers, such agents have been incorrectly viewed as being of less value to the contact center. The cause(s) of performance issues can also be identified using such information and appropriate actions taken to address the causes. Examples of possible causes of instances of repetitive related contacts include inadequate agent training, problem customers, product quality issues. Second, the information can be used to make a contact-handling decision for a current contact that is related to one or more previous contacts by the same customer. This ability can permit such repetitive contacts to receive different and/or better service than contacts unrelated to prior contacts, thereby decreasing rates of repetitive related contacts, increasing contact center performance efficiency and profitability, decreasing customer frustration dissatisfaction, and defection-leaving to take their business elsewhere, and increasing revenue from customer sales. In short, the present invention permits a contact center to measure itself and its resources against its one-and-done objectives and take appropriate action, on an agent or contact level, when the objective is not met.
The contact center can determine if a customer has a high rate of not one and done contacts and follow up with that customer to determine if there is an issue. The results can be used to identify not only one and done situations. For example, a customer may be contacting the contact center multiple times using the same purpose indicator when the customer is really dealing with different issues or the customer simply wants to “talk” to someone. The agents should not be negatively affected if the customer is “re-using” a purpose indicator or if the customer just needs someone to talk to. An example is the person who orders something everyday so that a UPS employee shows up every day; therefore, giving the person someone to talk to. The results of the inquiry could be used to help direct future contacts, such as directing the customer to lower cost agent resources (e.g., not human agents).
These and other advantages will be apparent from the disclosure of the invention(s) contained herein.
The above-described embodiments and configurations are neither complete nor exhaustive. As will be appreciated, other embodiments of the invention are possible utilizing, alone or in combination, one or more of the features set forth above or described in detail below.
The invention will be illustrated below in conjunction with an exemplary communication system. Although well suited for use with, e.g., a system having an ACD or other similar contact processing switch, the invention is not limited to use with any particular type of communication system switch or configuration of system elements. Those skilled in the art will recognize that the disclosed techniques may be used in any communication application in which it is desirable to provide improved contact processing.
The term “switch” or “.server” as used herein should be understood to include a PBX, an ACD, an enterprise switch, or other type of telecommunications system switch or server, as well as other types of processor-based communication control devices such as media servers, computers, adjuncts, etc.
Referring to
The switch 130 and/or server 110 can be any architecture for directing contacts to one or more telecommunication devices. Illustratively, the switch and/or server can be a modified form of the subscriber-premises equipment disclosed in U.S. Pat. Nos. 6,192,122; 6,173,053; 6,163,607; 5,982,873; 5,905,793; 5,828,747; and 5,206,903, all of which are incorporated herein by this reference; Avaya Inc.'s Definity™ Private-Branch Exchange (PBX)-based ACD system; MultiVantage™ PBX, CRM Central 2000 Server™, Communication Manager™, S8300™ media server, and/or Avaya Interaction Center™. Typically, the switch/server is a stored-program-controlled system that conventionally includes interfaces to external communication links, a communications switching fabric, service circuits (e.g., tone generators, announcement circuits, etc.), memory for storing control programs and data, and a processor (i.e., a computer) for executing the stored control programs to control the interfaces and the fabric and to provide automatic contact-distribution functionality. The switch and/or server typically include a network interface card (not shown) to provide services to the serviced telecommunication devices. Other types of known switches and servers are well known in the art and therefore not described in detail herein.
Referring to
Referring to
The first telecommunication devices 134-1, . . . 134-N are packet-switched and can include, for example, IP hardphones such as the Avaya Inc.'s, 4600 Series IP Phones™, IP softphones such as Avaya Inc.'s, IP Softphone™, Personal Digital Assistants or PDAs, Personal Computers or PCs, laptops, packet-based H.320 video phones and conferencing units, packet-based voice messaging and response units, any communication device, and packet-based traditional computer telephony adjuncts.
The second telecommunication devices 138-1, . . . 138-M are circuit-switched. Each of the telecommunication devices 138-1, . . . 138-M corresponds to one of a set of internal extensions Ext1, . . . ExtM, respectively. These extensions are referred to herein as “internal” in that they are extensions within the premises that are directly serviced by the switch. More particularly, these extensions correspond to conventional telecommunication device endpoints serviced by the switch/server, and the switch/server can direct incoming contacts to and receive outgoing contacts from these extensions in a conventional manner. The second telecommunication devices can include, for example, wired and wireless telephones, PDAs, H.320 video phones and conferencing units, voice messaging and response units, and traditional computer telephony adjuncts.
It should be noted that the invention does not require any particular type of information transport medium between switch or server and first and second telecommunication devices, i.e., the invention may be implemented with any desired type of transport medium as well as combinations of different types of transport medium.
The packet-switched network 162 can be any data and/or distributed processing network, such as the Internet. The network 162 typically includes proxies (not shown), registrars (not shown), and routers (not shown) for managing packet flows.
The packet-switched network 162 is in communication with an external first telecommunication device 174 via a gateway 178, and the circuit-switched network 154 with an external second telecommunication device 180. These telecommunication devices are referred to as “external” in that they are not directly supported as telecommunication device endpoints by the switch or server. The telecommunication devices 174 and 180 are an example of devices more generally referred to herein as “external endpoints.”
In a preferred configuration, the server 110, network 162, and first telecommunication devices 134 are Session Initiation Protocol or SIP compatible and can include interfaces for various other protocols such as the Lightweight Directory Access Protocol or LDAP, H.248, H.323, Simple Mail Transfer Protocol or SMTP, IMAP4, ISDN, E1/T1, and analog line or trunk.
It should be emphasized that the configuration of the switch, server, user telecommunication devices, and other elements as shown in
As will be appreciated, the central server 110 is notified via LAN 142 of an incoming contact by the telecommunications component (e.g., switch 130, fax server, email server, web server, and/or other server) receiving the incoming contact. The incoming contact is held by the receiving telecommunications component until the server 110 forwards instructions to the component to forward or route the contact to a specific contact center resource, such as the IVR unit 122, the voice mail server 118, and/or first or second telecommunication device 134, 138 associated with a selected agent. The server 110 distributes and connects these contacts to telecommunication devices of available agents based on the predetermined criteria noted above. When the central server 110 forwards a voice contact to an agent, the central server 110 also forwards customer-related information from databases 114 to the agent's computer work station for viewing (such as by a pop-up display) to permit the agent to better serve the customer. The agents process the contacts sent to them by the central server 110. This embodiment is particularly suited for a Customer Relationship Management (CRM) environment in which customers are permitted to use any media to contact a business. In a CRM environment, both real-time and non-real-time contacts must be handled and distributed with equal efficiency and effectiveness.
According to the invention, included among the programs executing on the server 110 are an agent and contact selector 220 and repeat contact determining agent 232. The selector 220 and agent 232 are stored either in the main memory or in a peripheral memory (e.g., disk, CD ROM, etc.) or some other computer-readable medium of the center 100. The selector and agent collectively effect an assignment between available contacts and available agents in a way that tends to maximize contact center efficiency. The selector 220 uses predefined criteria, particularly the relatedness of the current contact to other, typically prior, contacts, in selecting an appropriate agent to service the contact. The repeat contact determining agent 232 determines and identifies, either through automatic or manual techniques, current contacts that are not “one-and-done” or are related to at least one other contact by the same customer.
As will be appreciated, the definition of “other contacts” can refer to one of two possibilities. In one application, “other contacts” refer only to discrete contacts received at other times; in other words, “other contact” is contact dependent. Under this construction, other contacts would exclude resource-to-resource transfers during servicing of a work item. In another application, “other contacts” considers each resource/customer interaction as a separate contact; in other words “other contact” is agent dependent. Under this construction, “other contact” includes all of the contacts of the first application (when only serviced by one resource before termination) and each interaction of a resource and the customer. For example, if a work item is first serviced by an IVR, then by a first agent, and finally by a second agent before contact termination, the agent 232 would consider this to be three contacts. The first application is particularly applicable where the existence of related (other) contacts is used in work item or contact routing decisions, and the second application is particularly applicable to collecting one-and-done statistics to measure contact center performance and/or resource performance. In the second application, each instance of a related contact of a specific skill being serviced by an agent during a specified performance period is noted in the agent's corresponding profile for the skill. In more elaborate applications, the contact center would attempt to track who the prior agent(s) were that serviced the prior related contact(s). Each contact serviced by the agent during the selected performance period that is not related to a prior and/or subsequent contact can, in some applications, be assumed to be a one-and-done contact, which can be used as a performance metric for the agent.
The agent profiles are typically maintained and updated by a profile generator (not shown). Once the contact has been handled, the generator collects selected metrics for the contact. These metrics include (but are not inclusive of) the skill of the agent servicing the contact, the identifier of the agent, the duration of the contact, the transaction or contact type (e.g., catalog sale, information request, complaint, etc.), the time-of-day, and the result or disposition (e.g., the type of sale, units sold, information requested, revenue generated, service ticket closure or escalation, the information provided, etc.). The generator should also include the following ratings: a self-rating of the servicing agent, a supervisor's rating of the agent's proficiency in handling the contact, the customer's rating of the agent's proficiency in handling the contact, any third party rating services' comments on the agent's proficiency in handling the contact, and any other satisfaction and other survey ratings. These metrics and ratings are then stored in the database 114, such as CMS 228. The metrics over a selected period of time are typically stored under each profile. Thus, each profile typically includes metrics associated with a plurality of contacts serviced by the agent for each agent skill. The information can be weighted by age. Weighting favors data obtained from more recent contacts over data obtained from contacts in the more distant past. The generator can then use the collected information to generate a set of scores for a set of metrics, such as a proficiency score and an agent satisfaction score for each skill. Typically, there is a plurality of profiles for each agent, with each profile corresponding to a respective skill of the agent. In one configuration, each profile for a selected agent has a corresponding measure of the number or percentage of contacts of the corresponding skill serviced by the selected agent that are not one-and-done or are repeated related contacts from the same customer. This measure may be used in deciding which of two possible agents will be used to service a current contact; that is, the preferred agent would likely be the agent having the lower one-and-done measure.
The agent 232, when a contact is received, determines whether the contact is related to another contact by the same customer. Such information can be used to provide special service treatment to the contact (such as sending such contacts to an appropriate destination or recording the contact interaction), monitor contact center performance, identify product types that are frequently the subject of repeated contacts by the same customer, identify customers who initiate repeated contacts regarding the same subject matter and the frequency with such repeated contacts are received from the customer, monitor agent performance (with a higher incidence of repeated contacts being considered a metric of poorer agent performance), and the like. If the number of contacts received in a specified period of time, such as in the course of a working day, or by a specified resource that are related to another contact is known, then it may be reliably assumed that the remaining contacts received in the specified time period or by the specified resource were not related to other contacts from the same customer. Stated another way, if there are contacts from the same customer during a specified time period (e.g., working day, etc.) that are not related to one another then the contacts can each be reliably considered one-and-done. There are several techniques to identify related contacts. For example, a trouble ticket number, case number, claim number, invoice number, customer phone number, or other subject matter identifier associated with a prior contact may be received from the customer in the current contact. The number may be provided to a servicing agent or to an automated resource, such as an IVR, by the customer. In one configuration, after termination of the contact the last agent to service the contact inputs contact-related information into the respective customer's profile. The information includes a description of the subject matter of the contact and the result. The description may include a subject matter identifier defining a general class or type of purpose of the contact. For example, a first identifier may be associated with a first contact purpose and a second different identifier with a second different contact purpose. The customer, during the current contact, may be solicited by a human agent and/or an automated resource as to whether the current contact is related to a prior contact. A time interval can be used to distinguish between one-and-done contacts and non-one-and-done contacts. If a contact from a customer is received within a selected time period following a prior contact by the same customer, the second, later contact can be assumed to be related to the prior contact, and, if the contact is not received within a selected time period following a prior contact by the same customer, the second, later contact is assumed to be unrelated to a prior contact by the same customer. Contextual analysis could be performed on the customer's (and/or the servicing agent's) oral and/or written statements to a contact center resource to identify key words indicating that the contact is a repeat contact related to an earlier contact. The key words could be identified using voice recognition techniques to produce a transcript of the statement's followed by parsing by an algorithm that identifies key words, such as “earlier”, “again”, “called”, “contacted” and the like. The acoustic “fingerprint” or spectral content of one or more spoken words can be used to relate the contact to another contact by the same customer. The algorithm could also look for a reference to a product model number, serial number, type, and the like for which the customer had previously called. In the case of email, instant messaging, and other non-real-time contacts, digital text is already present in the communication and can be subjected to parsing by the algorithm. For example, the algorithm could examine the “regarding” or “subject” line on the email or instant message for contact-relatedness information. The algorithm could monitor the text appearing on the servicing agent's screen or monitor for contact-relatedness information. During or after servicing of the contact, the servicing agent could indicate whether the contact was or was not related to another contact by the same customer. In a non-real-time contact, the receipt of information from a cookie on the customer's computer can indicate relatedness to a prior contact. Also, the receipt of a completed form previously provided to the customer in an earlier contact can establish relatedness to the prior contact.
As will be appreciated, it can be important to remove certain types of “related contacts” from the number of related contact instances attributed to a selected agent. For example, the customer may contact the contact center by means of multiple channels, such as email and live voice, before receiving a response to obtain an answer to the same question. Although the contacts are technically related and discrete, they should not be tracked as not-one-and-done. In another example, a first agent handles a first contact of a first customer while a second agent handles a second related contact of the first customer. As a result of the second agent's participation, the first customer makes no later related contacts with the contact center. The first agent should be credited with the not-one-and-done contact while the second agent should be credited with a final disposition of the first customer's needs. In other words, the first agents' not-one-and-done indicator is incremented by one while the second agent's indicator remains the same.
The operation of the repeat contact determining agent 232 is provided in
The operation of the agent and contact selector 220 is shown in
Referring to
A number of variations and modifications of the invention can be used. It would be possible to provide for some features of the invention without providing others.
For example, the server and/or switch can be a software-controlled system including a processing unit (CPU), microprocessor, or other type of digital data processor executing software or an Application-Specific Integrated Circuit (ASIC) as well as various portions or combinations of such elements. The memory may be a random access memory (RAM), a read-only memory (ROM), or combinations of these and other types of electronic memory devices.
Any other suitable agent assignment algorithm may be employed for assigning an agent to service a contact. As will be appreciated, the algorithms of
The present invention may be implemented as software, hardware (such as a logic circuit), or a combination thereof.
The present invention, in various embodiments, includes components, methods, processes, systems and/or apparatus substantially as depicted and described herein, including various embodiments, subcombinations, and subsets thereof. Those of skill in the art will understand how to make and use the present invention after understanding the present disclosure. The present invention, in various embodiments, includes providing devices and processes in the absence of items not depicted and/or described herein or in various embodiments hereof, including in the absence of such items as may have been used in previous devices or processes, e.g. for improving performance, achieving ease and\or reducing cost of implementation.
Moreover though the description of the invention has included description of one or more embodiments and certain variations and modifications, other variations and modifications are within the scope of the invention, e.g. as may be within the skill and knowledge of those in the art, after understanding the present disclosure. It is intended to obtain rights which include alternative embodiments to the extent permitted, including alternate, interchangeable and/or equivalent structures, functions, ranges or steps to those claimed, whether or not such alternate, interchangeable and/or equivalent structures, functions, ranges or steps are disclosed herein, and without intending to publicly dedicate any patentable subject matter.
Number | Name | Date | Kind |
---|---|---|---|
4163124 | Jolissaint | Jul 1979 | A |
4510351 | Costello et al. | Apr 1985 | A |
4567323 | Lottes et al. | Jan 1986 | A |
4737983 | Frauenthal et al. | Apr 1988 | A |
4797911 | Szlam et al. | Jan 1989 | A |
4894857 | Szlam et al. | Jan 1990 | A |
5001710 | Gawrys et al. | Mar 1991 | A |
5097528 | Gursahaney et al. | Mar 1992 | A |
5101425 | Darland | Mar 1992 | A |
5155761 | Hammond | Oct 1992 | A |
5164981 | Mitchell et al. | Nov 1992 | A |
5164983 | Brown et al. | Nov 1992 | A |
5167010 | Elm et al. | Nov 1992 | A |
5185780 | Leggett | Feb 1993 | A |
5206903 | Kohler et al. | Apr 1993 | A |
5210789 | Jeffus et al. | May 1993 | A |
5274700 | Gechter et al. | Dec 1993 | A |
5278898 | Cambray et al. | Jan 1994 | A |
5289368 | Jordan et al. | Feb 1994 | A |
5291550 | Levy et al. | Mar 1994 | A |
5299260 | Shaio | Mar 1994 | A |
5309513 | Rose | May 1994 | A |
5325292 | Crockett | Jun 1994 | A |
5335268 | Kelly, Jr. et al. | Aug 1994 | A |
5335269 | Steinlicht | Aug 1994 | A |
5390243 | Casselman et al. | Feb 1995 | A |
5436965 | Grossman et al. | Jul 1995 | A |
5444774 | Friedes | Aug 1995 | A |
5467391 | Donaghue, Jr. et al. | Nov 1995 | A |
5469503 | Butensky et al. | Nov 1995 | A |
5469504 | Blaha | Nov 1995 | A |
5473773 | Aman et al. | Dec 1995 | A |
5479497 | Kovarik | Dec 1995 | A |
5499291 | Kepley | Mar 1996 | A |
5500795 | Powers et al. | Mar 1996 | A |
5504894 | Ferguson et al. | Apr 1996 | A |
5506898 | Costantini et al. | Apr 1996 | A |
5530744 | Charalambous et al. | Jun 1996 | A |
5537470 | Lee | Jul 1996 | A |
5537542 | Eilert et al. | Jul 1996 | A |
5544232 | Baker et al. | Aug 1996 | A |
5546452 | Andrews et al. | Aug 1996 | A |
5555299 | Maloney et al. | Sep 1996 | A |
5577169 | Prezioso | Nov 1996 | A |
5592378 | Cameron et al. | Jan 1997 | A |
5592542 | Honda et al. | Jan 1997 | A |
5594726 | Thompson et al. | Jan 1997 | A |
5603029 | Aman et al. | Feb 1997 | A |
5604892 | Nuttall et al. | Feb 1997 | A |
5606361 | Davidsohn et al. | Feb 1997 | A |
5611076 | Durflinger et al. | Mar 1997 | A |
5627884 | Williams et al. | May 1997 | A |
5642515 | Jones et al. | Jun 1997 | A |
5684872 | Flockhart et al. | Nov 1997 | A |
5684874 | Flockhart et al. | Nov 1997 | A |
5684964 | Powers et al. | Nov 1997 | A |
5689698 | Jones et al. | Nov 1997 | A |
5703943 | Otto | Dec 1997 | A |
5713014 | Durflinger et al. | Jan 1998 | A |
5721770 | Kohler | Feb 1998 | A |
5724092 | Davidsohn et al. | Mar 1998 | A |
5740238 | Flockhart et al. | Apr 1998 | A |
5742675 | Kilander et al. | Apr 1998 | A |
5742763 | Jones | Apr 1998 | A |
5748468 | Notenboom et al. | May 1998 | A |
5749079 | Yong et al. | May 1998 | A |
5751707 | Voit et al. | May 1998 | A |
5752027 | Familiar | May 1998 | A |
5754639 | Flockhart et al. | May 1998 | A |
5754776 | Hales et al. | May 1998 | A |
5754841 | Carino, Jr. | May 1998 | A |
5757904 | Anderson | May 1998 | A |
5784452 | Carney | Jul 1998 | A |
5790642 | Taylor et al. | Aug 1998 | A |
5790650 | Dunn et al. | Aug 1998 | A |
5790677 | Fox et al. | Aug 1998 | A |
5794250 | Carino, Jr. et al. | Aug 1998 | A |
5796393 | MacNaughton et al. | Aug 1998 | A |
5802282 | Hales et al. | Sep 1998 | A |
5802510 | Jones | Sep 1998 | A |
5818907 | Maloney et al. | Oct 1998 | A |
5819084 | Shapiro et al. | Oct 1998 | A |
5825869 | Brooks et al. | Oct 1998 | A |
5826039 | Jones | Oct 1998 | A |
5828747 | Fisher et al. | Oct 1998 | A |
5836011 | Hambrick et al. | Nov 1998 | A |
5838968 | Culbert | Nov 1998 | A |
5839117 | Cameron et al. | Nov 1998 | A |
5864874 | Shapiro | Jan 1999 | A |
5875437 | Atkins | Feb 1999 | A |
5880720 | Iwafune et al. | Mar 1999 | A |
5881238 | Aman et al. | Mar 1999 | A |
5884032 | Bateman et al. | Mar 1999 | A |
5889956 | Hauser et al. | Mar 1999 | A |
5897622 | Blinn et al. | Apr 1999 | A |
5903641 | Tonisson | May 1999 | A |
5903877 | Berkowitz et al. | May 1999 | A |
5905793 | Flockhart et al. | May 1999 | A |
5909669 | Havens | Jun 1999 | A |
5911134 | Castonguay et al. | Jun 1999 | A |
5914951 | Bentley et al. | Jun 1999 | A |
5915012 | Miloslavsky | Jun 1999 | A |
5923745 | Hurd | Jul 1999 | A |
5926538 | Deryugin et al. | Jul 1999 | A |
5930786 | Carino, Jr. et al. | Jul 1999 | A |
5937051 | Hurd et al. | Aug 1999 | A |
5937402 | Pandit | Aug 1999 | A |
5940496 | Gisby et al. | Aug 1999 | A |
5943416 | Gisby | Aug 1999 | A |
5948065 | Eilert et al. | Sep 1999 | A |
5960073 | Kikinis et al. | Sep 1999 | A |
5963635 | Szlam et al. | Oct 1999 | A |
5963911 | Walker et al. | Oct 1999 | A |
5970132 | Brady | Oct 1999 | A |
5974135 | Breneman et al. | Oct 1999 | A |
5974462 | Aman et al. | Oct 1999 | A |
5982873 | Flockhart et al. | Nov 1999 | A |
5987117 | McNeil et al. | Nov 1999 | A |
5991392 | Miloslavsky | Nov 1999 | A |
5996013 | Delp et al. | Nov 1999 | A |
5999963 | Bruno et al. | Dec 1999 | A |
6000832 | Franklin et al. | Dec 1999 | A |
6011844 | Uppaluru et al. | Jan 2000 | A |
6014437 | Acker et al. | Jan 2000 | A |
6031896 | Gardell et al. | Feb 2000 | A |
6038293 | McNerney et al. | Mar 2000 | A |
6038296 | Brunson et al. | Mar 2000 | A |
6044144 | Becker et al. | Mar 2000 | A |
6044205 | Reed et al. | Mar 2000 | A |
6044355 | Crockett et al. | Mar 2000 | A |
6049547 | Fisher et al. | Apr 2000 | A |
6049779 | Berkson | Apr 2000 | A |
6052723 | Ginn | Apr 2000 | A |
6055308 | Miloslavsky et al. | Apr 2000 | A |
6064730 | Ginsberg | May 2000 | A |
6064731 | Flockhart et al. | May 2000 | A |
6084954 | Harless et al. | Jul 2000 | A |
6088441 | Flockhart et al. | Jul 2000 | A |
6108670 | Weida et al. | Aug 2000 | A |
6115462 | Servi et al. | Sep 2000 | A |
6128304 | Gardell et al. | Oct 2000 | A |
6151571 | Pertrushin | Nov 2000 | A |
6154769 | Cherkasova et al. | Nov 2000 | A |
6163607 | Bogart et al. | Dec 2000 | A |
6173053 | Bogart et al. | Jan 2001 | B1 |
6175564 | Miloslavsky et al. | Jan 2001 | B1 |
6178441 | Elnozahy | Jan 2001 | B1 |
6185292 | Miloslavsky | Feb 2001 | B1 |
6185603 | Henderson et al. | Feb 2001 | B1 |
6192122 | Flockhart et al. | Feb 2001 | B1 |
6215865 | McCalmont | Apr 2001 | B1 |
6226377 | Donaghue, Jr. | May 2001 | B1 |
6229819 | Darland et al. | May 2001 | B1 |
6230183 | Yocom et al. | May 2001 | B1 |
6233333 | Dezonmo | May 2001 | B1 |
6240417 | Eastwick | May 2001 | B1 |
6259969 | Tackett et al. | Jul 2001 | B1 |
6263359 | Fong et al. | Jul 2001 | B1 |
6272544 | Mullen | Aug 2001 | B1 |
6275806 | Pertrushin | Aug 2001 | B1 |
6275812 | Haq et al. | Aug 2001 | B1 |
6275991 | Erlin | Aug 2001 | B1 |
6278777 | Morley et al. | Aug 2001 | B1 |
6292550 | Burritt | Sep 2001 | B1 |
6295353 | Flockhart et al. | Sep 2001 | B1 |
6298062 | Gardell et al. | Oct 2001 | B1 |
6307931 | Vaudreuil | Oct 2001 | B1 |
6324282 | McIllwaine et al. | Nov 2001 | B1 |
6332081 | Do | Dec 2001 | B1 |
6339754 | Flanagan et al. | Jan 2002 | B1 |
6353810 | Petrushin | Mar 2002 | B1 |
6356632 | Foster et al. | Mar 2002 | B1 |
6360222 | Quinn | Mar 2002 | B1 |
6366666 | Bengtson et al. | Apr 2002 | B2 |
6366668 | Borst et al. | Apr 2002 | B1 |
6389028 | Bondarenko et al. | May 2002 | B1 |
6389132 | Price et al. | May 2002 | B1 |
6389400 | Bushey et al. | May 2002 | B1 |
6411682 | Fuller et al. | Jun 2002 | B1 |
6424709 | Doyle et al. | Jul 2002 | B1 |
6426950 | Mistry | Jul 2002 | B1 |
6427137 | Petrushin | Jul 2002 | B2 |
6430282 | Bannister et al. | Aug 2002 | B1 |
6434230 | Gabriel | Aug 2002 | B1 |
6446092 | Sutter | Sep 2002 | B1 |
6449356 | Dezonno | Sep 2002 | B1 |
6449358 | Anisimov et al. | Sep 2002 | B1 |
6449646 | Sikora et al. | Sep 2002 | B1 |
6453038 | McFarlane et al. | Sep 2002 | B1 |
6463148 | Brady | Oct 2002 | B1 |
6463346 | Flockhart et al. | Oct 2002 | B1 |
6463415 | St. John | Oct 2002 | B2 |
6463471 | Dreke et al. | Oct 2002 | B1 |
6480826 | Pertrushin | Nov 2002 | B2 |
6490350 | McDuff et al. | Dec 2002 | B2 |
6535600 | Fisher et al. | Mar 2003 | B1 |
6535601 | Flockhart et al. | Mar 2003 | B1 |
6553114 | Fisher et al. | Apr 2003 | B1 |
6556974 | D'Alessandro | Apr 2003 | B1 |
6560330 | Gabriel | May 2003 | B2 |
6560649 | Mullen et al. | May 2003 | B1 |
6560707 | Curtis et al. | May 2003 | B2 |
6563920 | Flockhart et al. | May 2003 | B1 |
6571285 | Groath et al. | May 2003 | B1 |
6574599 | Lim et al. | Jun 2003 | B1 |
6574605 | Sanders et al. | Jun 2003 | B1 |
6597685 | Miloslavsky et al. | Jul 2003 | B2 |
6603854 | Judkins et al. | Aug 2003 | B1 |
6604084 | Powers et al. | Aug 2003 | B1 |
6614903 | Flockhart et al. | Sep 2003 | B1 |
6650748 | Edwards et al. | Nov 2003 | B1 |
6668167 | McDowell et al. | Dec 2003 | B2 |
6675168 | Shapiro et al. | Jan 2004 | B2 |
6700967 | Kleinoder et al. | Mar 2004 | B2 |
6704409 | Dilip et al. | Mar 2004 | B1 |
6707903 | Burok et al. | Mar 2004 | B2 |
6711253 | Prabhaker | Mar 2004 | B1 |
6735299 | Krimstock et al. | May 2004 | B2 |
6735593 | Williams | May 2004 | B1 |
6738462 | Brunson | May 2004 | B1 |
6744877 | Edwards | Jun 2004 | B1 |
6754333 | Flockhart et al. | Jun 2004 | B1 |
6757362 | Cooper et al. | Jun 2004 | B1 |
6766326 | Cena | Jul 2004 | B1 |
6775377 | McIllwaine et al. | Aug 2004 | B2 |
6785666 | Nareddy et al. | Aug 2004 | B1 |
6822945 | Petrovykh | Nov 2004 | B2 |
6829348 | Schroeder et al. | Dec 2004 | B1 |
6839735 | Wong et al. | Jan 2005 | B2 |
6842503 | Wildfeuer | Jan 2005 | B1 |
6847973 | Griffin et al. | Jan 2005 | B2 |
6898190 | Shtivelman et al. | May 2005 | B2 |
6915305 | Subramanian et al. | Jul 2005 | B2 |
6947988 | Saleh | Sep 2005 | B1 |
6968052 | Wullert, II | Nov 2005 | B2 |
6981061 | Sakakura | Dec 2005 | B1 |
6985901 | Sachse et al. | Jan 2006 | B1 |
6988126 | Wilcock et al. | Jan 2006 | B2 |
7010542 | Trappen et al. | Mar 2006 | B2 |
7020254 | Phillips | Mar 2006 | B2 |
7035808 | Ford | Apr 2006 | B1 |
7035927 | Flockhart et al. | Apr 2006 | B2 |
7039176 | Borodow et al. | May 2006 | B2 |
7062031 | Becerra et al. | Jun 2006 | B2 |
7076051 | Brown et al. | Jul 2006 | B2 |
7100200 | Pope et al. | Aug 2006 | B2 |
7110525 | Heller et al. | Sep 2006 | B1 |
7117193 | Basko et al. | Oct 2006 | B1 |
7136873 | Smith et al. | Nov 2006 | B2 |
7149733 | Lin et al. | Dec 2006 | B2 |
7155612 | Licis | Dec 2006 | B2 |
7162469 | Anonsen et al. | Jan 2007 | B2 |
7165075 | Harter et al. | Jan 2007 | B2 |
7170976 | Keagy | Jan 2007 | B1 |
7170992 | Knott et al. | Jan 2007 | B2 |
7177401 | Mundra et al. | Feb 2007 | B2 |
7200219 | Edwards et al. | Apr 2007 | B1 |
7203655 | Herbert et al. | Apr 2007 | B2 |
7212625 | McKenna et al. | May 2007 | B1 |
7215744 | Scherer | May 2007 | B2 |
7246371 | Diacakis et al. | Jul 2007 | B2 |
7257597 | Pryce et al. | Aug 2007 | B1 |
7266508 | Owen et al. | Sep 2007 | B1 |
7283805 | Agrawal | Oct 2007 | B2 |
7299259 | Petrovykh | Nov 2007 | B2 |
7376127 | Hepworth et al. | May 2008 | B2 |
7392402 | Suzuki | Jun 2008 | B2 |
7409423 | Horvitz et al. | Aug 2008 | B2 |
7418093 | Knott et al. | Aug 2008 | B2 |
20010056349 | St. John | Dec 2001 | A1 |
20020002460 | Pertrushin | Jan 2002 | A1 |
20020002464 | Petrushin | Jan 2002 | A1 |
20020010587 | Pertrushin | Jan 2002 | A1 |
20020019829 | Shapiro | Feb 2002 | A1 |
20020021307 | Glenn et al. | Feb 2002 | A1 |
20020035605 | McDowell et al. | Mar 2002 | A1 |
20020038422 | Suwamoto et al. | Mar 2002 | A1 |
20020065894 | Dalal et al. | May 2002 | A1 |
20020076010 | Sahai | Jun 2002 | A1 |
20020085701 | Parsons et al. | Jul 2002 | A1 |
20020087630 | Wu | Jul 2002 | A1 |
20020012186 | Ford et al. | Aug 2002 | A1 |
20020112186 | Ford et al. | Aug 2002 | A1 |
20020116336 | Diacakis et al. | Aug 2002 | A1 |
20020116461 | Diacakis et al. | Aug 2002 | A1 |
20020118816 | Flockhart et al. | Aug 2002 | A1 |
20020181692 | Flockhart et al. | Dec 2002 | A1 |
20020194002 | Petrushin | Dec 2002 | A1 |
20030028621 | Furlong et al. | Feb 2003 | A1 |
20030073440 | Mukherjee et al. | Apr 2003 | A1 |
20030093465 | Banerjee et al. | May 2003 | A1 |
20030108186 | Brown et al. | Jun 2003 | A1 |
20030123642 | Alvarado et al. | Jul 2003 | A1 |
20030144900 | Whitmer | Jul 2003 | A1 |
20030144959 | Makita | Jul 2003 | A1 |
20030152212 | Burok et al. | Aug 2003 | A1 |
20030174830 | Boyer et al. | Sep 2003 | A1 |
20030177017 | Boyer et al. | Sep 2003 | A1 |
20030231757 | Harkreader et al. | Dec 2003 | A1 |
20040008828 | Coles et al. | Jan 2004 | A1 |
20040015496 | Anonsen | Jan 2004 | A1 |
20040015506 | Anonsen et al. | Jan 2004 | A1 |
20040054743 | McPartlan et al. | Mar 2004 | A1 |
20040057569 | Busey et al. | Mar 2004 | A1 |
20040103324 | Band | May 2004 | A1 |
20040109555 | Williams | Jun 2004 | A1 |
20040138944 | Whitacre et al. | Jul 2004 | A1 |
20040162998 | Tuomi et al. | Aug 2004 | A1 |
20040202309 | Baggenstoss et al. | Oct 2004 | A1 |
20040203878 | Thomson | Oct 2004 | A1 |
20040210475 | Starnes et al. | Oct 2004 | A1 |
20040260706 | Anonsen et al. | Dec 2004 | A1 |
20050021529 | Hodson et al. | Jan 2005 | A1 |
20050027612 | Walker et al. | Feb 2005 | A1 |
20050043986 | McConnell et al. | Feb 2005 | A1 |
20050044375 | Paatero et al. | Feb 2005 | A1 |
20050071211 | Flockhart et al. | Mar 2005 | A1 |
20050071212 | Flockhart et al. | Mar 2005 | A1 |
20050071241 | Flockhart et al. | Mar 2005 | A1 |
20050071844 | Flockhart et al. | Mar 2005 | A1 |
20050091071 | Lee | Apr 2005 | A1 |
20050125432 | Lin et al. | Jun 2005 | A1 |
20050125458 | Sutherland et al. | Jun 2005 | A1 |
20050138064 | Trappen et al. | Jun 2005 | A1 |
20050154708 | Sun | Jul 2005 | A1 |
20050182784 | Trappen et al. | Aug 2005 | A1 |
20050289446 | Moncsko et al. | Dec 2005 | A1 |
20060004686 | Molnar et al. | Jan 2006 | A1 |
20060007916 | Jones et al. | Jan 2006 | A1 |
20060015388 | Flockhart et al. | Jan 2006 | A1 |
20060056598 | Brandt et al. | Mar 2006 | A1 |
20060135058 | Karabinis | Jun 2006 | A1 |
20060178994 | Stolfo et al. | Aug 2006 | A1 |
20060242160 | Kanchwalla et al. | Oct 2006 | A1 |
20060256957 | Fain et al. | Nov 2006 | A1 |
20060271418 | Hackbarth et al. | Nov 2006 | A1 |
20070038632 | Engstrom | Feb 2007 | A1 |
20070064912 | Kagan et al. | Mar 2007 | A1 |
20070083572 | Bland et al. | Apr 2007 | A1 |
20070112953 | Barnett | May 2007 | A1 |
20070127643 | Keagy | Jun 2007 | A1 |
20070192414 | Chen et al. | Aug 2007 | A1 |
20070201311 | Olson | Aug 2007 | A1 |
20070201674 | Annadata et al. | Aug 2007 | A1 |
20070230681 | Boyer et al. | Oct 2007 | A1 |
20080056165 | Petrovykh | Mar 2008 | A1 |
20090193050 | Olson | Jul 2009 | A1 |
Number | Date | Country |
---|---|---|
2143198 | Jan 1995 | CA |
2174762 | Jun 1995 | CA |
0 501 189 | Sep 1992 | EP |
0 740 450 | Oct 1996 | EP |
0 772 335 | May 1997 | EP |
0770967 | May 1997 | EP |
0 829 996 | Mar 1998 | EP |
0 855 826 | Jul 1998 | EP |
0 863 651 | Sep 1998 | EP |
0 866 407 | Sep 1998 | EP |
899673 | Mar 1999 | EP |
998108 | May 2000 | EP |
1035718 | Sep 2000 | EP |
1091307 | Apr 2001 | EP |
1150236 | Oct 2001 | EP |
2 273 418 | Jun 1994 | GB |
2 290 192 | Dec 1995 | GB |
2001-053843 | Feb 2001 | JP |
2006-054864 | Feb 2006 | JP |
WO 9607141 | Mar 1996 | WO |
WO 9728635 | Aug 1997 | WO |
WO 9856207 | Dec 1998 | WO |
WO 9917522 | Apr 1999 | WO |
WO 0180094 | Oct 2001 | WO |
WO 02099640 | Dec 2002 | WO |