The above and other features and advantages of the present invention will become more apparent to those of ordinary skill in the art by describing in detail exemplary embodiments thereof with reference to the attached drawings, in which:
Korean Patent Application No. 10-2006-0089496, filed on Sep. 15, 2006, in the Korean Intellectual Property Office, and entitled: “Contact Structure Having Conductive Oxide Layer, Ferroelectric Random Access Memory Device Employing the Same and Methods of Fabricating the Same,” is incorporated by reference herein in its entirety.
The present invention will now be described more fully hereinafter with reference to the accompanying drawings, in which exemplary embodiments of the invention are illustrated. The invention may, however, be embodied in different forms and should not be construed as limited to the embodiments set forth herein. Rather, these embodiments are provided so that this disclosure will be thorough and complete, and will fully convey the scope of the invention to those skilled in the art.
In the drawing figures, the dimensions of layers and regions may be exaggerated for clarity of illustration. It will also be understood that when a layer or element is referred to as being “on” another layer or substrate, it can be directly on the other layer or substrate, or intervening layers may also be present. Further, it will be understood that when a layer is referred to as being “under” another layer, it can be directly under, and one or more intervening layers may also be present. In addition, it will also be understood that when a layer is referred to as being “between” two layers, it can be the only layer between the two layers, or one or more intervening layers may also be present. Like reference numerals refer to like elements throughout.
To prevent the hydrogen ions from penetrating into a ferroelectric capacitor, a technique of forming a hydrogen barrier layer covering the top surface of the ferroelectric capacitor may be widely employed. A ferroelectric capacitor may be formed on a semiconductor substrate, and an insulating layer and a hydrogen barrier layer covering the ferroelectric capacitor may be formed. As such, even when the hydrogen barrier layer covering the ferroelectric capacitor is formed, it may be difficult to prevent hydrogen ions generated by subsequent processes, e.g., a tungsten plug formation process in a peripheral region, from diffusing into the ferroelectric layer from the bottom of the ferroelectric capacitor.
Ferroelectric materials, e.g., PZT (Pb(Zr,Ti)O3), SBT (SrBi2Ta2O9), etc., may be frequently used as the ferroelectric layer of a ferroelectric capacitor. These ferroelectric materials may have a dielectric constant of about several hundred to about several thousand at room temperature, and have two stable remnant polarizations. These ferroelectric materials may accordingly become too thin to be used for a ferroelectric memory device. A ferroelectric memory device using a ferroelectric thin film may utilize hysteresis characteristics, which adjust a polarization direction toward the direction of an applied electric field to input a signal and store digital signals “1” and “0” by the direction of the remnant polarization when the electric field is removed.
Referring to
Referring to
The ferroelectric capacitor may 25 include concave regions in the upper region of the dishing region. In particular, the ferroelectric pattern 22 may be formed along the uneven surface of the lower electrode 20 to have parts A grown in a sloped direction. Accordingly, the polarization direction of the parts A grown in the sloped direction, when the polarization occurs in the direction of the applied electric field, may not be the same as other regions. As a result, the hysteresis characteristic may deteriorate due to the parts A grown in the sloped direction. When the hysteresis characteristic severely deteriorates, the characteristic of the ferroelectric capacitor may deteriorate.
Referring to
Subsequently, a chemical vapor deposition (CVD) TiN layer or an atomic layer deposition (ALD) TiN layer, which may have a good burial characteristic and have no seam, may be formed on the semiconductor substrate having the tungsten plug 52. The TiN layer may be planarized to form the TiN plug 54 on the tungsten plug 52. Accordingly, a contact plug 55 sequentially composed of the tungsten plug 52 and the TiN plug 54 may fill the contact hole.
Referring to
The ferroelectric pattern 65 may be formed without an uneven surface. However, high temperature processes, among processes after the formation of the lower electrode 61, may be performed on the pattern. A fine gap 75 may occur between the TiN plug 54 and the lower electrode 61 due to the change in heat generated during the subsequent processes. The TiN plug 54 may recrystallize and thus shrink due to the changes in heat generated from the subsequent high temperature processes at. As a result, a fine gap 75 may occur between the TiN plug 54 and the first conductive pattern 57. The fine gap 75 may occur between a contact plug formed of a metal material and a metal pattern having a plate shape covering the contact plug. In addition, as semiconductor devices become more highly integrated, the effect of the fine gap 75 on the electrical characteristics of the semiconductor device may further increase. That is, the fine gap 75 may deteriorate the ohmic contact characteristics between the TiN plug 54 and the first conductive pattern 57. Accordingly, the electrical characteristics of the ferroelectric memory device may deteriorate.
According to the present invention, a conductive protection pattern formed of a conductive oxide layer, which is thermally stable and is capable of preventing hydrogen diffusion, may be provided between a lower electrode and a contact plug. The conductive protection pattern may be interposed between the contact plug formed of a metal material and the lower electrode covering the contact plug. Since a thermally stable conductive protection pattern may be provided, a fine gap between the contact plug and the lower electrode may be prevented from occurring due to changes in heat generated while subsequent processes are carried out. The conductive protection pattern may cover the bottom of a ferroelectric capacitor. Further, an insulating protection layer may be provided to cover the top and sides of the ferroelectric capacitor. The conductive protection pattern and the insulating protection layer may entirely cover the ferroelectric capacitor, so that they can prevent external hydrogen ions from diffusing into the ferroelectric capacitor. Consequently, not only polarization characteristics of the ferroelectric capacitors, but also electrical characteristics of a ferroelectric memory device, may be prevented from deteriorating.
A ferroelectric memory device according to exemplary embodiments of the present invention will be first described with reference to
Referring to
A lower interlayer insulating layer 120 may be on the substrate having the switching device. A direct contact plug 123 may penetrate through the lower interlayer insulating layer 120 to electrically connect to one region of the impurity regions 115. A conductive line 125 may be on the lower interlayer insulating layer 120 to cover the direct contact plug 123.
An upper interlayer insulating layer 130 may be on the substrate having the conductive line 125. The upper interlayer insulating layer 130 and the lower interlayer insulating layer 120 may constitute an interlayer insulating layer 131. A contact plug 141 may penetrate the interlayer insulating layer 131. The contact plug 141 may electrically connect to one region of the impurity regions 115. The direct contact plug 123 may electrically connect to one region of the impurity regions 115, and the contact plug 141 may electrically connect to the other region of the impurity regions 115.
The contact plug 141 may be composed of a sequentially stacked metal plug 135 and buffer plug 140. The metal plug 135 may be composed of a material which has good electrical conductivity and a good burial characteristic. The metal plug 135 may be, e.g., a tungsten plug.
The buffer plug 140 may be composed of a material having a hardness higher than that of the metal plug 135. The buffer plug 140 may be, e.g., a metal nitride plug, a conductive oxide plug, etc. The metal nitride plug may be, e.g., a TiN plug, a TiAlN plug, etc. The conductive oxide plug may be, e.g., a SrRuO3 plug, a Y2(Ba,Cu)O5 plug, a (La,Sr)CoO3 plug, a LaNiO3 plug, a RuO2 plug, etc.
A conductive protection pattern 145a covering the contact plug 141 may be on the interlayer insulating layer 131. The conductive protection pattern 145a may be composed of a conductive oxide layer which is thermally stable and is capable of preventing hydrogen diffusion. The conductive protection pattern 145a may be formed of a conductive oxide layer including at least one of, e.g., a SrRuO3 layer, a Y2(Ba,Cu)O5 layer, a (La,Sr)CoO3 layer, a LaNiO3 layer, a RuO2 layer, etc.
A ferroelectric capacitor 160 composed of a sequentially stacked lower electrode 156a, a ferroelectric pattern 157a, and an upper electrode 159a, may be on the conductive protection pattern 145a. The lower electrode 156a may be composed of a sequentially stacked first conductive pattern 150a and a second conductive pattern 155a. The first conductive pattern 150a may include at least one of, e.g., a TiN layer, a TiSiN layer, a TaN layer, a TiAlN layer, a TaAlN layer, etc. The second conductive pattern 155a may include at least one of, e.g., a Pt layer, a Ru layer, an Ir layer, an IrO2 layer, etc. The first conductive pattern 150a may act as a barrier which may prevent the second conductive pattern 155a from being oxidized, may prevent elements constituting the second conductive pattern 155a from diffusing downward, and may prevent elements constituting the layers below the first conductive pattern from diffusing into the second conductive pattern 155a. The ferroelectric pattern 157a may include at least one of, e.g., PZT (Pb(Zr,Ti)O3), SBT (SrBi2Ta2O9), SBTN (SrxBiy(TaiNbj)2O9), BLT ((Bi4-x,Lax)Ti3O12), etc. The upper electrode 159a may include at least one of, e.g., Pt, Ru, Ir, IrO2, SrRuO3, etc.
The conductive protection pattern 145a may enhance an adhesive characteristic between the contact plug 141 and the lower electrode 156a. The conductive protection pattern 145a may be formed of a conductive oxide layer which is thermally stable and has a good adhesive strength with the contact plug 141 and the lower electrode 156a. A bonding strength between the conductive protection pattern 145a and the contact plug 141 may be higher than that between a general contact plug and a metal pattern in contact with the general contact plug. Accordingly, the conductive protection pattern 145a may be disposed between the contact plug 141 and the lower electrode 156a so that a fine gap between the contact plug 141 and the lower electrode 156a may be prevented from occurring.
The buffer plug 140 and the conductive protection pattern 145a may be formed of the same material by one process. The buffer plug 140 and the conductive protection pattern 145a may be formed of the same material including at least one of, e.g., a SrRuO3 layer, a Y2(Ba,Cu)O5 layer, a (La,Sr)CoO3 layer, a LaNiO3 layer, a RuO2 layer, etc.
According to the present invention, a micro-lifting phenomenon occurring between heterogeneous metal patterns, due to stress caused by a change in heat during subsequent processes at high temperature, may be prevented. A conductive oxide layer may be interposed between metal patterns formed by different processes, so that a fine gap between metal patterns due to a change in heat during subsequent processes may be prevented from occurring. The contact plug 141 and the lower electrode 156a may be formed by different processes in the present invention, and the conductive protection pattern 145a may be interposed between the contact plug 141 and the lower electrode 156a so that any micro-lifting phenomena may be prevented.
A contact structure of the this embodiment of the present invention may include the contact plug 141, composed of the sequentially stacked metal plug 135 and the buffer plug 140, the lower electrode 156a covering the contact plug 141, and the conductive protection pattern 145a interposed between the contact plug 141 and the lower electrode 156a. The contact structure may have other forms. For example, the contact structure may be used for various semiconductor devices provided with other metal patterns instead of the lower electrode 156a of the present invention. A contact structure may be provided to include the contact plug 141 and the conductive protection pattern 145a being in common, and the contact structure may include metal patterns formed of the same material as the lower electrode 156a or different materials, e.g., tungsten, copper, etc., than the lower electrode 156a.
An insulating protection layer 165 may be on the substrate having the ferroelectric capacitor 160. The insulating protection layer 165 may cover the ferroelectric capacitor 160. The insulating protection layer 165 may include at least one of, e.g., an Al2O3 layer, a SiON layer, a SiN layer, etc. The insulating protection layer 165 and the conductive protection pattern 145a may prevent external hydrogen from diffusing into the ferroelectric capacitor 160. The insulating protection layer 165 and the conductive protection pattern 145a may entirely cover the ferroelectric capacitor 160, so that external hydrogen may be prevented from diffusing into the ferroelectric capacitor 160.
Hereinafter, methods of fabricating a ferroelectric memory device according to exemplary embodiments of the present invention will be described.
A method of fabricating a ferroelectric memory device according to an exemplary embodiment of the present invention will be first described with reference to
Referring to
A gate spacer 113 may be formed on at least one sidewall of the gate pattern 110. Impurity regions 115 may be formed in the active region 105a at both sides of the gate pattern 110. The impurity regions 115 may be defined as source and drain regions.
A lower interlayer insulating layer 120 may be formed on the substrate having the impurity regions 115. A direct contact plug 123 may be formed to penetrate the lower interlayer insulating layer 120, and the direct contact plug 123 may be electrically connected to a selected one region of the impurity regions 115. A conductive line 125 covering the direct contact plug 123 may be formed on the lower interlayer insulating layer 120.
An upper interlayer insulating layer 130 may be formed on the substrate having the conductive line 125. The upper interlayer insulating layer 130 and the lower interlayer insulating layer 120 may constitute an interlayer insulating layer 131. The interlayer insulating layer 131 may be patterned to form a contact hole 131a exposing one region of the impurity regions 115. A region of the impurity regions 115 which is not electrically connected to the direct contact plug 123 may be exposed by the contact hole 131a.
Referring to
The metal plug 135 may be formed of a metal material which has a good electrical conductivity and a good burial characteristic. The metal plug 135 may be formed of, e.g., tungsten. Forming the metal plug 135 may include forming a metal layer, e.g., a tungsten layer, on the substrate having the contact hole 131a, planarizing the metal layer using a CMP process until the interlayer insulating layer 131 is exposed, and etching-back the planarized metal layer to form a recess region in the contact hole 131a. Subsequently, the buffer plug 140 filling the remaining portion of the contact hole 131a may be formed. The buffer plug 140 may be formed of a conductive material layer having a hardness higher than that of the metal plug 135. The buffer plug 140 may be formed of, e.g., metal nitride, conductive oxide, etc. The metal nitride plug may include, e.g., a titanium nitride layer, a titanium aluminum nitride layer, etc. The conductive oxide plug may include at least one of, e.g., a SrRuO3 layer, a Y2(Ba,Cu)O5 layer, a (La,Sr)CoO3 layer, a LaNiO3 layer, a RuO2 layer, etc.
Referring to
Referring to
The conductive protection pattern 145a may prevent hydrogen atoms from diffusing into the ferroelectric pattern 157a through the bottom of the ferroelectric capacitor 160. That is, the conductive protection pattern 145a may cover the bottom of the ferroelectric capacitor 160, so that external hydrogen atoms may be prevented from diffusing into the ferroelectric pattern 157 through the bottom of the ferroelectric capacitor 160. The conductive protection pattern 145a may also prevent a fine gap between the lower electrode 156a and the contact plug 141 from occurring. That is, there may be no fine gap between the lower electrode 156a and the contact plug 141.
An insulating protection layer 165 may be formed on the substrate having the ferroelectric capacitor 160. The insulating protection layer 165 may be formed of, e.g., an insulating oxide layer. For example, the insulating protection layer 165 may include at least one of, e.g., an Al2O3 layer, a SiON layer, a SiN layer, etc. The SiN layer may also be a SiNx layer. The insulating protection layer 165 may prevent external hydrogen atoms from diffusing into the ferroelectric capacitor 160, in particular, the ferroelectric pattern 157a.
The insulating protection layer 165 and the conductive protection pattern 145a may entirely cover, i.e., enclose, the ferroelectric capacitor 160, so that they may effectively prevent external hydrogen atoms from diffusing into the ferroelectric capacitor 160. The conductive protection pattern 145a may be formed between the lower electrode 156a and the contact plug 141, so that the conductive protection pattern 145a may prevent a fine gap between the lower electrode 156a and the contact plug 141 from occurring.
A method of fabricating a ferroelectric memory device according to another exemplary embodiment of the present invention will be described with reference to
Referring to
A preliminary conductive protection layer 240 filling the residual portion of the contact hole 131a may be formed on the interlayer insulating layer 131. The preliminary conductive protection layer 240 may be formed of, e.g., a conductive oxide layer. For example, the preliminary conductive protection layer 240 may include at least one of, e.g., a SrRuO3 layer, a Y2(Ba,Cu)O5 layer, a (La,Sr)CoO3 layer, a LaNiO3 layer, a RuO2 layer, etc.
Referring to
Referring to
The conductive protection pattern 245a, and the lower extension extending downward from the conductive protection pattern 245a, i.e., the buffer plug 240b, may prevent hydrogen atoms from penetrating into the ferroelectric pattern 257a through the bottom of the ferroelectric capacitor 260. That is, the conductive protection pattern 245a may cover the bottom of the ferroelectric capacitor 260, so that the conductive protection pattern 245a may prevent external hydrogen atoms from penetrating into the ferroelectric pattern 257a through the bottom of the ferroelectric capacitor 260.
An insulating protection layer 265 may be formed on the substrate having the ferroelectric capacitor 260. The insulating protection layer 265 may be formed of, e.g., an insulating oxide layer. The insulating protection layer 265 may include at least one of, e.g., an Al2O3 layer, a SiON layer, a SiN layer, etc. The SiN layer may be a SiNx layer. The insulating protection layer 265 may prevent external hydrogen atoms from diffusing into the ferroelectric capacitor 260, in particular, the ferroelectric pattern 257a. That is, the insulating protection layer 265 and the conductive protection pattern 245a may entirely cover, i.e., enclose, the ferroelectric capacitor 260, so that they may effectively prevent external hydrogen atoms from diffusing into the ferroelectric capacitor 260.
Exemplary embodiments of the present invention have been disclosed herein and, although specific terms are employed, they are used and are to be interpreted in a generic and descriptive sense only and not for purpose of limitation. Accordingly, it will be understood by those of ordinary skill in the art that various changes in form and details may be made without departing from the spirit and scope of the present invention as set forth in the following claims.
| Number | Date | Country | Kind |
|---|---|---|---|
| 10-2006-0089496 | Sep 2006 | KR | national |