The present invention relates to the technical field of coated surfaces, for example interior surfaces of pharmaceutical packages or other vessels for storing or other contact with fluids. Examples of suitable fluids include foods or biologically active compounds or body fluids, for example blood. The present invention also relates to a pharmaceutical package or other vessel and to a method for coating an inner or interior surface of a pharmaceutical package or other vessel. The present invention also relates more generally to medical devices, including devices other than packages or vessels, for example catheters.
The present disclosure also relates to improved methods for processing pharmaceutical packages or other vessels, for example multiple identical pharmaceutical packages or other vessels used for pharmaceutical preparation storage and delivery, sample collection tubes (e.g. blood collection tubes for venipuncture) and other medical sample collection, and other purposes. Such pharmaceutical packages or other vessels are used in large numbers for these purposes, and must be relatively economical to manufacture and yet highly reliable in storage and use.
One important consideration in manufacturing pharmaceutical packages or other vessels for storing or other contact with fluids, for example vials and pre-filled syringes, is that the contents of the pharmaceutical package or other vessel desirably will have a substantial shelf life. During this shelf life, it can be important to isolate the material filling the pharmaceutical package or other vessel from the external environment as well as the vessel wall containing it, or from barrier coatings or layers or other functional layers applied to the pharmaceutical package or other vessel wall to avoid leaching material from the pharmaceutical package or other vessel wall, barrier coating or layer, or other functional layers into the prefilled contents or vice versa.
Since many of these pharmaceutical packages or other vessels are inexpensive and used in large quantities, for certain applications it will be useful to reliably obtain the necessary shelf life without increasing the manufacturing cost to a prohibitive level.
For decades, most parenteral therapeutics have been delivered to end users in Type I medical grade borosilicate glass vessels such as vials or pre-filled syringes. The relatively strong, impermeable and inert surface of borosilicate glass has performed adequately for most drug products. However, the recent advent of costly, complex and sensitive biologics as well as such advanced delivery systems as auto injectors has exposed the physical and chemical shortcomings of glass pharmaceutical packages or other vessels, including possible contamination from metals, flaking, delamination, and breakage, among other problems. Moreover, glass contains several components which can leach out during storage and cause damage to the stored material.
In more detail, borosilicate pharmaceutical packages or other vessels exhibit a number of drawbacks.
Glass is manufactured from sand containing a heterogeneous mixture of many elements (silicon, oxygen, boron, aluminum, sodium, calcium) with trace levels of other alkali and earth metals. Type I borosilicate glass consists of approximately 76% SiO2, 10.5% B2O3, 5% A12O3, 7% Na2O and 1.5% CaO and often contains trace metals such as iron, magnesium, zinc, copper and others. The heterogeneous nature of borosilicate glass creates a non-uniform surface chemistry at the molecular level. Glass forming processes used to create glass vessels expose some portions of the vessels to temperatures as great as 1200° C. Under such high temperatures alkali ions migrate to the local surface and form oxides. The presence of ions extracted from borosilicate glass devices may be involved in degradation, aggregation and denaturation of some biologics. Many proteins and other biologics must be lyophilized (freeze dried), because they are not sufficiently stable in solution in glass vials or syringes.
In glass syringes, silicone oil is typically used as a lubricant to allow the plunger tip, piston, stopper, or seal to slide in the barrel. Silicone oil has been implicated in the precipitation of protein solutions such as insulin and some other biologics. Additionally, the silicone oil coating or layer is often non-uniform, resulting in syringe failures in the market.
Glass pharmaceutical packages or other vessels are prone to breakage or degradation during manufacture, filling operations, shipping and use, which means that glass particulates may enter the drug. The presence of glass particles has led to many FDA Warning Letters and to product recalls.
Glass-forming processes do not yield the tight dimensional tolerances required for some of the newer auto-injectors and delivery systems.
As a result, some companies have turned to plastic pharmaceutical packages or other vessels, which provide tighter dimensional tolerances and less breakage than glass.
Although plastic is superior to glass with respect to breakage, dimensional tolerances and surface uniformity, its use for primary pharmaceutical packaging remains limited due to the following shortcomings:
Gas (oxygen) permeability: Plastic allows small molecule gases to permeate into (or out of) the device. The permeability of plastics to gases can be significantly greater than that of glass and, in many cases (as with oxygen-sensitive drugs such as epinephrine), plastics previously have been unacceptable for that reason.
Water vapor transmission: Plastics allow water vapor to pass through devices to a greater degree than glass. This can be detrimental to the shelf life of a solid (lyophilized) drug. Alternatively, a liquid product may lose water in an arid environment.
Leachables and extractables: Plastic pharmaceutical packages or other vessels contain organic compounds that can leach out or be extracted into the drug product. These compounds can contaminate the drug and/or negatively impact the drug's stability.
Clearly, while plastic and glass pharmaceutical packages or other vessels each offer certain advantages in pharmaceutical primary packaging, neither is optimal for all drugs, biologics or other therapeutics. Thus, there can be a desire for plastic pharmaceutical packages or other vessels, in particular plastic syringes, with gas and solute barrier properties which approach the properties of glass. Moreover, there can be a need for plastic syringes with sufficient lubricity and/or passivation or protective properties and a lubricity and/or passivation layer or pH protective coating which can be compatible with the syringe contents. There also can be a need for glass vessels with surfaces that do not tend to delaminate or dissolve or leach constituents when in contact with the vessel contents.
There are additional considerations to be taken into account when manufacturing a prefilled syringe. Prefilled syringes are commonly prepared and sold so the syringe does not need to be filled before use, and can be disposed of after use. The syringe can be prefilled with saline solution, a dye for injection, or a pharmaceutically active preparation, for some examples.
Commonly, the prefilled syringe can be capped at the distal end, as with a cap (or, if the hypodermic needle is preinstalled, a needle shield that can also be a cap), and can be closed at the proximal end by its drawn plunger tip, piston, stopper, or seal. The prefilled syringe can be wrapped in a sterile package before use. To use the prefilled syringe, the packaging and cap are removed, optionally a hypodermic needle or another delivery conduit can be attached to the distal end of the barrel, the delivery conduit or syringe can be moved to a use position (such as by inserting the hypodermic needle into a patient's blood vessel or into apparatus to be rinsed with the contents of the syringe), and the plunger tip, piston, stopper, or seal can be advanced in the barrel to inject the contents of the barrel.
An important consideration regarding medical syringes can be to ensure that the plunger tip, piston, stopper, or seal can move at a constant speed and with a constant force when it is pressed into the barrel. A similar consideration applies to vessels such as pharmaceutical vials which have to be closed by a stopper, and to the stopper itself, and more generally to any surface which is to provide smooth operation of moving parts and/or be passivated or protectively coated.
A non-exhaustive list of documents of possible relevance includes U.S. Pat. Nos. 5,824,198; 5,616,369; 5,468,520; and 5,364,666; and European Patent 0 375 778 B1. These documents are all incorporated by reference.
An aspect of the invention is a method of plasma modifying a workpiece, for example a syringe barrel or cartridge barrel, having a surface to be treated. “Plasma” in this sense refers to an energized state of matter similar to gas in which a certain portion of the particles of matter are ionized. To carry out the method, plasma is provided in or near the surface under conditions effective for plasma modification of the surface of the workpiece. At least part of the time while providing plasma, a magnetic field is provided in or near the plasma. The magnetic field has a position, orientation, and field strength effective to improve the uniformity, density, or both of plasma modification of the surface of the workpiece.
Still another aspect of the invention is apparatus for plasma modifying a workpiece supported on a workpiece support. The workpiece has a lumen surrounded by a wall, at least part of the wall defining a surface to be treated. The apparatus includes a workpiece support for holding a workpiece in the apparatus, a plasma generator, and a magnetic field generator.
The plasma generator provides plasma within the lumen of a workpiece supported on the workpiece support. The plasma is created or manipulated under conditions effective for plasma modification of the surface of the workpiece.
The magnetic field generator provides a magnetic field in at least a portion of the lumen of a workpiece supported on the workpiece support. The magnetic field has an orientation and field strength effective to improve the uniformity, density, or both of plasma modification of the interior surface of the generally cylindrical wall.
Yet another aspect of the invention is a pharmaceutical package of any type described in this specification, including a syringe barrel, cartridge barrel, or vial containing a pharmaceutical preparation, secured with a closure.
Other aspects of the invention are identified or apparent from the present specification and claims.
The following reference characters are used in the drawing figures:
In the context of the present invention, the following definitions and abbreviations are used:
“Plasma,” unless otherwise indicated, refers to an energized state of matter similar to gas in which a certain portion of the particles of matter are ionized. “Plasma” in another context in this specification can instead refer to the liquid component of blood, but only if the latter meaning is clear from the context of the disclosure.
RF is radio frequency.
The term “at least” in the context of the present invention means “equal or more” than the integer following the term. The word “comprising” does not exclude other elements or steps, and the indefinite article “a” or “an” does not exclude a plurality unless indicated otherwise. Whenever a parameter range is indicated, it is intended to disclose the parameter values given as limits of the range and all values of the parameter falling within said range.
“First” and “second” or similar references to, for example, processing stations or processing devices refer to the minimum number of processing stations or devices that are present, but do not necessarily represent the order or total number of processing stations and devices. These terms do not limit the number of processing stations or the particular processing carried out at the respective stations.
For purposes of the present invention, an “organosilicon precursor” is a compound having at least one of the linkages:
which is a tetravalent silicon atom connected to an oxygen or nitrogen atom and an organic carbon atom (an organic carbon atom being a carbon atom bonded to at least one hydrogen atom). A volatile organosilicon precursor, defined as such a precursor that can be supplied as a vapor in a PECVD apparatus, can be an optional organosilicon precursor. Optionally, the organosilicon precursor can be selected from the group consisting of a linear siloxane, a monocyclic siloxane, a polycyclic siloxane, a polysilsesquioxane, an alkyl trimethoxysilane, a linear silazane, a monocyclic silazane, a polycyclic silazane, a polysilsesquiazane, and a combination of any two or more of these precursors.
The feed amounts of PECVD precursors, gaseous reactant or process gases, and carrier gas are sometimes expressed in “standard volumes” in the specification and claims. The standard volume of a charge or other fixed amount of gas is the volume the fixed amount of the gas would occupy at a standard temperature and pressure (without regard to the actual temperature and pressure of delivery). Standard volumes can be measured using different units of volume, and still be within the scope of the present disclosure and claims. For example, the same fixed amount of gas could be expressed as the number of standard cubic centimeters, the number of standard cubic meters, or the number of standard cubic feet. Standard volumes can also be defined using different standard temperatures and pressures, and still be within the scope of the present disclosure and claims. For example, the standard temperature might be 0° C. and the standard pressure might be 760 Torr (as is conventional), or the standard temperature might be 20° C. and the standard pressure might be 1 Torr. But whatever standard is used in a given case, when comparing relative amounts of two or more different gases without specifying particular parameters, the same units of volume, standard temperature, and standard pressure are to be used relative to each gas, unless otherwise indicated.
The corresponding feed rates of PECVD precursors, gaseous reactant or process gases, and carrier gas are expressed in standard volumes per unit of time in the specification. For example, in the working examples the flow rates are expressed as standard cubic centimeters per minute, abbreviated as sccm. As with the other parameters, other units of time can be used, such as seconds or hours, but consistent parameters are to be used when comparing the flow rates of two or more gases, unless otherwise indicated.
A “vessel” in the context of the present invention can be any type of article with at least one opening and a wall defining an inner or interior surface. The substrate can be the inside wall of a vessel having a lumen. Though the invention is not necessarily limited to pharmaceutical packages or other vessels of a particular volume, pharmaceutical packages or other vessels are contemplated in which the lumen can have a void volume of from 0.5 to 50 mL, optionally from 1 to 10 mL, optionally from 0.5 to 5 mL, optionally from 1 to 3 mL. The substrate surface can be part or all of the inner or interior surface of a vessel having at least one opening and an inner or interior surface.
A vessel in the context of the present invention can have one or more openings. One or two openings, like the openings of a common type of blister package well, vial or sample tube (one opening) or a common type of syringe or cartridge barrel (two openings) are preferred. If the vessel has two openings, they can be the same size or different sizes. If there is more than one opening, one opening can be used for the gas inlet for a PECVD coating method according to the present invention, while the other openings are either capped or open. A vessel according to the present invention can be a sample tube, for example for collecting or storing biological fluids like blood or urine, a syringe (or a part thereof, for example a syringe barrel) for storing or delivering a biologically active compound or composition, for example a medicament or pharmaceutical composition, a vial for storing biological materials or biologically active compounds or compositions, a pipe, for example a catheter for transporting biological materials or biologically active compounds or compositions, or a cuvette for holding fluids, for example for holding biological materials or biologically active compounds or compositions.
The vessel can be provided with a reagent or preservative for sample collection (e.g. blood collection) or analysis. For example, a vessel for blood collection can have an inner or interior surface defining a lumen and an exterior surface, the passivation layer or pH protective coating can be on the inner or interior surface, and the vessel can contain a compound or composition in its lumen, for example citrate or a citrate containing composition.
A vessel can be of any shape, a vessel having a substantially cylindrical wall at or near at least one of its open ends being preferred. Generally, the interior wall of the vessel can be cylindrically shaped, like, for example in a sample tube or a syringe barrel. Sample tubes and syringes or their parts (for example syringe barrels) are contemplated.
A “hydrophobic layer” in the context of the present invention means that the coating or layer lowers the wetting tension of a surface coated with the coating or layer, compared to the corresponding uncoated surface. Hydrophobicity can be thus a function of both the uncoated substrate and the coating or layer. The same applies with appropriate alterations for other contexts wherein the term “hydrophobic” is used. The term “hydrophilic” means the opposite, i.e. that the wetting tension is increased compared to reference sample. The present hydrophobic layers are primarily defined by their hydrophobicity and the process conditions providing hydrophobicity. Suitable hydrophobic coatings or layers and their application, properties, and use are described in U.S. Pat. No. 7,985,188. Dual functional passivation layers or pH protective coatings that also have the properties of hydrophobic coatings or layers can be provided for any embodiment of the present invention.
The values of w, x, y, and z are applicable to the empirical composition SiwOxCyHz throughout this specification. The values of w, x, y, and z used throughout this specification should be understood as ratios or an empirical formula (for example for a coating or layer), rather than as a limit on the number or type of atoms in a molecule. For example, octamethylcyclotetrasiloxane, which has the molecular composition Si4O4C8H24, can be described by the following empirical formula, arrived at by dividing each of w, x, y, and z in the molecular formula by 4, the largest common factor: Si1O1C2H6. The values of w, x, y, and z are also not limited to integers. For example, (acyclic) octamethyltrisiloxane, molecular composition Si3O2C8H24, is reducible to Si1O0.67C2.67H8. Also, although SiOxCyHz can be described as equivalent to SiOxCy, it is not necessary to show the presence of hydrogen in any proportion to show the presence of SiOxCy.
“Wetting tension” is a specific measure for the hydrophobicity or hydrophilicity of a surface. An optional wetting tension measurement method in the context of the present invention is ASTM D 2578 or a modification of the method described in ASTM D 2578. This method uses standard wetting tension solutions (called dyne solutions) to determine the solution that comes nearest to wetting a plastic film surface for exactly two seconds. This is the film's wetting tension. The procedure utilized can be varied herein from ASTM D 2578 in that the substrates are not flat plastic films, but are tubes made according to the Protocol for Forming PET Tube and (except for controls) coated according to the Protocol for coating Tube Interior with Hydrophobic Coating or Layer (see Example 9 of EP2251671 A2).
A “lubricity coating or layer” according to the present invention is a coating or layer which has a lower frictional resistance than the uncoated surface.
A “passivation layer or pH protective coating” according to the present invention passivates or protects an underlying surface or layer from a fluid composition contacting the layer (as more extensively defined elsewhere in this specification).
“Frictional resistance” can be static frictional resistance and/or kinetic frictional resistance.
One of the optional embodiments of the present invention can be a syringe part, for example a syringe barrel or plunger tip, piston, stopper, or seal, coated with a lubricity and/or passivation layer or pH protective coating. In this contemplated embodiment, the relevant static frictional resistance in the context of the present invention is the breakout force as defined herein, and the relevant kinetic frictional resistance in the context of the present invention is the plunger sliding force as defined herein. For example, the plunger sliding force as defined and determined herein is suitable to determine the presence or absence and the lubricity and/or passivating or protective characteristics of a lubricity and/or passivation layer or pH protective coating in the context of the present invention whenever the coating or layer is applied to any syringe or syringe part, for example to the inner wall of a syringe barrel. The breakout force can be of particular relevance for evaluation of the coating or layer effect on a prefilled syringe, i.e. a syringe which can be filled after coating and can be stored for some time, for example several months or even years, before the plunger tip, piston, stopper, or seal is moved again (has to be “broken out”).
The “plunger sliding force” (synonym to “glide force,” “maintenance force”, or Fm, also used in this description) in the context of the present invention is the force required to maintain movement of a plunger tip, piston, stopper, or seal in a syringe barrel, for example during aspiration or dispense. It can advantageously be determined using the ISO 7886-1:1993 test described herein and known in the art. A synonym for “plunger sliding force” often used in the art is “plunger force” or “pushing force”.
The “plunger breakout force” (synonym to “breakout force”, “break loose force”, “initation force”, Fi, also used in this description) in the context of the present invention is the initial force required to move the plunger tip, piston, stopper, or seal in a syringe, for example in a prefilled syringe.
Both “plunger sliding force” and “plunger breakout force” and methods for their measurement are described in more detail in subsequent parts of this description. These two forces can be expressed in N, lbs or kg and all three units are used herein. These units correlate as follows: 1N=0.102 kg=0.2248 lbs (pounds).
Sliding force and breakout force are sometimes used herein to describe the forces required to advance a stopper or other closure into a pharmaceutical package or other vessel, such as a medical sample tube or a vial, to seat the stopper in a vessel to close the vessel. Its use can be analogous to use in the context of a syringe and its plunger tip, piston, stopper, or seal, and the measurement of these forces for a vessel and its closure are contemplated to be analogous to the measurement of these forces for a syringe, except that at least in most cases no liquid is ejected from a vessel when advancing the closure to a seated position.
“Slidably” means that the plunger tip, piston, stopper, or seal or other removable part can be permitted to slide in a syringe barrel or other vessel.
An “electron bottle” is a virtual container made up of magnetic and/or electrical fields that tend to confine within it the electrons having less energy than necessary to escape the bottle. The electron bottle should not be confused with a workpiece or chamber that has walls confining the contents. Positively and/or negatively charged ions in the plasma may also be confined by the electron bottle, and often can be more easily confined than electrons due to their lower energy, so an “electron bottle” is specially defined here to include a structure that tends to direct or confine ions.
It will be appreciated by those skilled in the field that if the plasma is formed inside the walls of a container (whether the workpiece or a separate chamber), part of the confinement function can be performed by the container itself, and the electron bottle optionally can merely supplement that function. It will also be appreciated that the electron bottle and any physical container can coincide in space or not, and the magnetic container “walls” can be within the physical container, outside the physical container, intersect with a wall of the physical container, or different portions of it can be in any two or more of these positions at once.
Except to the extent the container in which the plasma is formed is made in part of ferromagnetic or ferrimagnetic material (for example a hypodermic needle of a syringe assembly), the container and the electron bottle may not substantially interact with each other. Moreover, an electron bottle need not necessarily provide 360-degree confinement of electrons or ions, as the goal is not necessarily to confine electrons or ions per se, but can be to improve the treatment of the workpiece. For example, when a vial, syringe barrel, or cartridge barrel is used with an electron bottle, the “bottle” optionally can be just a single axial electron mirror adjacent to one end of the vial, or adjacent to both ends of the vial, without substantial radial confinement. Alternatively, the “bottle” optionally can provide radial confinement, as by using the quadrupoles of
The present invention will now be described more fully, with reference to the accompanying drawings, in which several embodiments are shown. This invention can, however, be embodied in many different forms and should not be construed as limited to the embodiments set forth here. Rather, these embodiments are examples of the invention, which has the full scope indicated by the language of the claims. Like numbers refer to like or corresponding elements throughout. The following disclosure relates to all embodiments unless specifically limited to a certain embodiment.
Coatings of SiOx are deposited by plasma enhanced chemical vapor deposition (PECVD) or other chemical vapor deposition processes on the vessel of a pharmaceutical package, in particular a thermoplastic package, to serve as a barrier coating or layer preventing oxygen, air, carbon dioxide, or other gases from entering the vessel and/or to prevent leaching of the pharmaceutical material into or through the package wall. The barrier coating or layer can be effective to reduce the ingress of atmospheric gas, for example oxygen, into the lumen compared to a vessel without a passivation layer or pH protective coating.
In any embodiment the vapor-deposited coating or layer optionally can also, or alternatively, be a solute barrier coating or layer. A concern of converting from glass to plastic syringes centers around the potential for leachable materials from plastics. With plasma coating technology, the coatings or layers derived from non-metal gaseous precursors, for example HMDSO or OMCTS or other organosilicon compounds, will contain no trace metals and function as a barrier coating or layer to inorganic, metals and organic solutes, preventing leaching of these species from the coated substrate into syringe fluids. In addition to leaching control of plastic syringes, the same plasma passivation layer or pH protective coating technology offers potential to provide a solute barrier to the plunger tip, piston, stopper, or seal, typically made of elastomeric plastic compositions containing even higher levels of leachable organic oligomers and catalysts.
Moreover, certain syringes prefilled with synthetic and biological pharmaceutical formulations are very oxygen and moisture sensitive. A critical factor in the conversion from glass to plastic syringe barrels will be the improvement of plastic oxygen and moisture barrier performance. The plasma passivation layer or pH protective coating technology can be suitable to maintain the SiOx barrier coating or layer or layer for protection against oxygen and moisture over an extended shelf life.
Examples of solutes in drugs usefully excluded by a barrier layer in any embodiment include antibacterial preservatives, antioxidants, chelating agents, pH buffers, and combinations of any of these. In any embodiment the vapor-deposited coating or layer optionally can be a solvent barrier coating or layer for a solvent comprising a co-solvent used to increase drug solubilization.
In any embodiment the vapor-deposited coating or layer optionally can be a barrier coating or layer for water, glycerin, propylene glycol, methanol, ethanol, n-propanol, isopropanol, acetone, benzyl alcohol, polyethylene glycol, cotton seed oil, benzene, dioxane, or combinations of any two or more of these.
In any embodiment the vapor-deposited coating or layer optionally can be a metal ion barrier coating or layer.
In any embodiment the vapor-deposited coating or layer optionally can be a barrel wall material barrier coating or layer, to prevent or reduce the leaching of barrel material such as any of the base barrel resins mentioned previously and any other ingredients in their respective compositions.
The inventors have found, however, that such barrier coatings or layers or coatings of SiOx are eroded or dissolved by some fluid compositions, for example aqueous compositions having a pH above about 5. Since coatings applied by chemical vapor deposition can be very thin tens to hundreds of nanometers thick even a relatively slow rate of erosion can remove or reduce the effectiveness of the barrier coating or layer in less time than the desired shelf life of a product package. This can be particularly a problem for fluid pharmaceutical compositions, since many of them have a pH of roughly 7, or more broadly in the range of 5 to 9, similar to the pH of blood and other human or animal fluids. The higher the pH of the pharmaceutical preparation, the more quickly it erodes or dissolves the SiOx coating.
The inventors have further found that without a protective coating borosilicate glass surfaces are eroded or dissolved by some fluid compositions, for example aqueous compositions having a pH above about 5. This can be particularly a problem for fluid pharmaceutical compositions, since many of them have a pH of roughly 7, or more broadly in the range of 5 to 9, similar to the pH of blood and other human or animal fluids. The higher the pH of the pharmaceutical preparation, the more quickly it erodes or dissolves the glass. Delamination of the glass can also result from such erosion or dissolution, as small particles of glass are undercut by the aqueous compositions having a pH above about 5.
The inventors have further found that certain passivation layers or pH protective coatings of SiOxCy or SiNxCy formed from cyclic polysiloxane precursors, which passivation layers or pH protective coatings have a substantial organic component, do not erode quickly when exposed to fluid compositions, and in fact erode or dissolve more slowly when the fluid compositions have higher pHs within the range of 5 to 9. For example, at pH 8, the dissolution rate of a passivation layer or pH protective coating made from the precursor octamethylcyclotetrasiloxane, or OMCTS, can be quite slow. These passivation layers or pH protective coatings of SiOxCy or SiNxCy can therefore be used to cover a barrier coating or layer of SiOx, retaining the benefits of the barrier coating or layer by passivating or protecting it from the fluid composition in the pharmaceutical package. These passivation layers or pH protective coatings of SiOxCy or SiNxCy also can be used to cover a glass surface, for example a borosilicate glass surface, preventing delamination, erosion and dissolution of the glass, by passivating or protecting it from the fluid composition in the pharmaceutical package.
Although the present invention does not depend upon the accuracy of the following theory, it is believed that the material properties of an effective SiOxCy passivation layer or pH protective coating and those of an effective lubricity layer as described in U.S. Pat. No. 7,985,188 and in International Application PCT/US11/36097 are similar in some instances, such that a coating having the characteristics of a lubricity layer as described in certain working examples of this specification, U.S. Pat. No. 7,985,188, or International Application PCT/US11/36097 will also in certain cases serve as well as a passivation layer or pH protective coating to passivate or protect the barrier coating or layer of the package and vice versa.
Although the present invention does not depend upon the accuracy of the following theory, it is further believed that the most effective lubricity and/or passivation layers or pH protective coatings are those made from cyclic siloxanes and silazanes as described in this disclosure. SiOxCy or SiNxCy coatings deposited from linear siloxane or linear silazane precursors, for example hexamethyldisiloxane (HMDSO), are believed to contain fragments of the original precursor to a large degree and low organic content. Such SiOxCy or SiNxCy coatings have a degree of water miscibility or swellability, allowing them to be attacked by aqueous solutions. SiOxCy or SiNxCy coatings deposited from cyclic siloxane or linear silazane precursors, for example octamethylcyclotetrasiloxane (OMCTS), however, are believed to include more intact cyclic siloxane rings and longer series of repeating units of the precursor structure. These coatings are believed to be nanoporous but structured and hydrophobic, and these properties are believed to contribute to their success as passivation layers or pH protective coatings. This is shown, for example, in U.S. Pat. No. 7,901,783.
PECVD Treated Pharmaceutical Packages or Other Vessels
A vessel with a barrier layer and preferably a passivation layer or pH protective coating as described herein and/or prepared according to a method described herein can be used for reception and/or storage and/or delivery of a compound or composition. The compound or composition can be sensitive, for example air-sensitive, oxygen-sensitive, sensitive to humidity and/or sensitive to mechanical influences. It can be a biologically active compound or composition, for example a pharmaceutical preparation or medicament like insulin or a composition comprising insulin. A prefilled syringe can be especially considered which contains injectable or other liquid drugs like insulin.
In another aspect, the compound or composition can be a biological fluid, optionally a bodily fluid, for example blood or a blood fraction. In certain aspects of the present invention, the compound or composition can be a product to be administrated to a subject in need thereof, for example a product to be injected, like blood (as in transfusion of blood from a donor to a recipient or reintroduction of blood from a patient back to the patient) or insulin.
A vessel with a passivation layer or pH protective coating as described herein and/or prepared according to a method described herein can further be used for protecting a compound or composition contained in its interior space against mechanical and/or chemical effects of the surface of the vessel material. For example, it can be used for preventing or reducing precipitation and/or clotting or platelet activation of the compound or a component of the composition, for example insulin precipitation or blood clotting or platelet activation.
It can further be used for protecting a compound or composition contained in its interior against the environment outside of the pharmaceutical package or other vessel, for example by preventing or reducing the entry of one or more compounds from the environment surrounding the vessel into the interior space of the vessel. Such environmental compound can be a gas or liquid, for example an atmospheric gas or liquid containing oxygen, air, and/or water vapor.
Referring to the Figures, an aspect of the invention can be a method in which a barrier coating or layer 30 and a passivation layer or pH protective coating 34 are applied directly or indirectly applied to at least a portion of the interior wall 16 of a vessel, such as any of the pharmaceutical packages 210 of
Vessel Wall Construction
Optionally for any of the embodiments of
Optionally for any of the embodiments of
As an optional feature of any of the foregoing embodiments the polymeric material can be a silicone elastomer or a thermoplastic polyurethane, as two examples, or any material suitable for contact with blood, or with insulin. For example, the use of a coated substrate according to any described embodiment is contemplated for storing insulin.
Optionally, as for the embodiments of
Optionally, the pharmaceutical package comprises a cartridge.
Optionally, as for the embodiments of
Optionally, the pharmaceutical package 210 comprises a blister package or ampoule.
Optionally, the pharmaceutical package comprises a medical sample tube of
Alternatively, the vessel can be a length of tubing from about 1 cm to about 200 cm, optionally from about 1 cm to about 150 cm, optionally from about 1 cm to about 120 cm, optionally from about 1 cm to about 100 cm, optionally from about 1 cm to about 80 cm, optionally from about 1 cm to about 60 cm, optionally from about 1 cm to about 40 cm, optionally from about 1 cm to about 30 cm long, and processing it with a probe electrode as described below. Particularly for the longer lengths in the above ranges, it is contemplated that relative motion between the PECVD or other chemical vapor deposition probe and the vessel can be useful during passivation layer or pH protective coating formation. This can be done, for example, by moving the vessel with respect to the probe or moving the probe with respect to the vessel.
In these embodiments, it is contemplated that the barrier coating or layer discussed below can be thinner or less complete than would be preferred to provide the high gas barrier integrity needed in an evacuated blood collection tube, while still providing the long shelf life needed to store a liquid material in contact with the barrier coating or layer for an extended period.
As an optional feature of any of the foregoing embodiments the vessel can have a central axis. As an optional feature of any of the foregoing embodiments the vessel wall can be sufficiently flexible to be flexed at least once at 20° C., without breaking the wall, over a range from at least substantially straight to a bending radius at the central axis of not more than 100 times as great as the outer diameter of the vessel.
As an optional feature of any of the foregoing embodiments the bending radius at the central axis can be, for example, not more than 90 times as great as, or not more than 80 times as great as, or not more than 70 times as great as, or not more than 60 times as great as, or not more than 50 times as great as, or not more than 40 times as great as, or not more than 30 times as great as, or not more than 20 times as great as, or not more than 10 times as great as, or not more than 9 times as great as, or not more than 8 times as great as, or not more than 7 times as great as, or not more than 6 times as great as, or not more than 5 times as great as, or not more than 4 times as great as, or not more than 3 times as great as, or not more than 2 times as great as, or not more than, the outer diameter of the vessel.
As an optional feature of any of the foregoing embodiments the vessel wall can be a fluid-contacting surface made of flexible material.
As an optional feature of any of the foregoing embodiments the vessel lumen can be the fluid flow passage of a pump.
As an optional feature of any of the foregoing embodiments the vessel can be a blood containing vessel. The passivation layer or pH protective coating can be effective to reduce the clotting or platelet activation of blood exposed to the inner or interior surface, compared to the same type of wall uncoated with a hydrophobic layer.
It is contemplated that the incorporation of a hydrophobic layer will reduce the adhesion or clot forming tendency of the blood, as compared to its properties in contact with an unmodified polymeric or SiOx surface. This property is contemplated to reduce or potentially eliminate the need for treating the blood with heparin, as by reducing the necessary blood concentration of heparin in a patient undergoing surgery of a type requiring blood to be removed from the patient and then returned to the patient, as when using a heart-lung machine during cardiac surgery. It is contemplated that this will reduce the complications of surgery involving the passage of blood through such a pharmaceutical package or other vessel, by reducing the bleeding complications resulting from the use of heparin.
Another embodiment can be a vessel including a wall and having an inner or interior surface defining a lumen. The inner or interior surface can have an at least partial passivation layer or pH protective coating that presents a hydrophobic surface, the thickness of the passivation layer or pH protective coating being from monomolecular thickness to about 1000 nm thick on the inner or interior surface, the passivation layer or pH protective coating being effective to reduce the clotting or platelet activation of blood exposed to the inner or interior surface.
Several non-limiting examples of such a vessel are a blood transfusion bag, a blood sample collection tube (e.g. blood collection tube) or other vessel in which a sample has been collected, the tubing of a heart-lung machine, a flexible-walled blood collection bag, or tubing used to collect a patient's blood during surgery and reintroduce the blood into the patient's vasculature. If the vessel includes a pump for pumping blood, a particularly suitable pump can be a centrifugal pump or a peristaltic pump. The vessel can have a wall; the wall can have an inner or interior surface defining a lumen. The inner or interior surface of the wall can have an at least partial passivation layer or pH protective coating of a protective layer, which optionally also presents a hydrophobic surface. The passivation layer or pH protective coating can be as thin as monomolecular thickness or as thick as about 1000 nm. Optionally, the vessel can contain blood viable for return to the vascular system of a patient disposed within the lumen in contact with the hydrophobic layer.
An embodiment can be a blood containing vessel including a wall and having an inner or interior surface defining a lumen. The inner or interior surface can have an at least partial passivation layer or pH protective coating that optionally also presents a hydrophobic surface. The passivation layer or pH protective coating can also comprise or consist essentially of SiOxCy where x and y are as defined in this specification. The vessel contains blood viable for return to the vascular system of a patient disposed within the lumen in contact with the hydrophobic coating or layer.
An embodiment can be carried out under conditions effective to form a hydrophobic passivation layer or pH protective coating on the substrate. Optionally, the hydrophobic characteristics of the passivation layer or pH protective coating can be set by setting the ratio of the oxidizing gas to the organosilicon precursor in the gaseous reactant, and/or by setting the electric power used for generating the plasma. Optionally, the passivation layer or pH protective coating can have a lower wetting tension than the uncoated surface, optionally a wetting tension of from 20 to 72 dyne/cm, optionally from 30 to 60 dynes/cm, optionally from 30 to 40 dynes/cm, optionally 34 dyne/cm. Optionally, the passivation layer or pH protective coating can be more hydrophobic than the uncoated surface.
In an optional embodiment, the vessel can have an inner diameter of at least 2 mm, or at least 4 mm.
As an optional feature of any of the foregoing embodiments the vessel can be a tube.
As an optional feature of any of the foregoing embodiments the lumen can have at least two open ends.
Syringe
The vessel of
As one non-limiting way to make the syringe, a capped pre-assembly 12 can be provided comprising a barrel 14, a dispensing portion 20, and a shield 28. The capped pre-assembly 12 can be a complete article or it can be a portion of a complete article adapted to dispense fluid, such as a syringe, a cartridge, a catheter, or other article.
The barrel 14 can have an internal wall 16 defining a barrel lumen 18. Optionally in any embodiment, the barrel 14 can further include an opening 32 spaced from the dispensing portion 20 and communicating through the internal wall 16. Such an opening can be conventional, for example, in a syringe or cartridge, where a typical example can be the back opening 32 of a prefilled syringe barrel, through which the plunger tip, piston, stopper, or seal 36 can be inserted after the barrel lumen 18 is filled with a suitable pharmaceutical preparation or other fluid material 40 to be dispensed.
The barrel 14 can be formed, for example, by molding, although the manner of its formation is not critical and it can also be formed, for example, by machining a solid preform. Preferably, the barrel can be molded by injection molding thermoplastic material, although it can also be formed by blow molding or a combined method.
As one preferred example, the barrel 14 can be formed by placing a dispensing portion 20 as described below in an injection mold and injection molding thermoplastic material about the dispensing portion, thus forming the barrel and securing the dispensing portion to the barrel. Alternatively, the dispensing portion and the barrel can be molded or otherwise formed as a single piece, or can be formed separately and joined in other ways. The barrel of any embodiment can be made of any suitable material. Several barrel materials particularly contemplated are COC (cyclic olefin copolymer), COP (cyclic olefin polymer), PET (polyethylene terephthalate), and polypropylene.
The dispensing portion 20 of the capped pre-assembly 12 can be provided to serve as an outlet for fluid dispensed from the barrel lumen 18 of a completed article made from the capped pre-assembly 12. One example of a suitable dispensing portion illustrated in the Figures can be a hypodermic needle.
Alternatively, in any embodiment the dispensing portion 20 can instead be a needle-free dispenser. One example of a suitable needle-free dispenser can be a blunt or flexible dispensing portion intended to be received in a complementary coupling to transfer fluid material 40. Such blunt or flexible dispensing portions are well known for use in syringes, intravenous infusion systems, and other systems and equipment to dispense material while avoiding the hazard of working with a sharp needle that may accidentally stick a health professional or other person. Another example of a needle-free dispenser can be a fluid jet or spray injection system that injects a free jet or spray of fluid directly through a patient's skin, without the need for an intermediate needle. Any type of dispensing portion 20, whether a hypodermic needle or any form of needle-free dispenser, is contemplated for use according to any embodiment of the present invention.
The dispensing portion 20 is or can be secured to the barrel 14 and includes a proximal opening 22, a distal opening 24, and a dispensing portion lumen 26. The proximal opening 22 communicates with the barrel lumen 18. The distal opening 24 can be located outside the barrel 14. The dispensing portion lumen 26 communicates between the proximal and distal openings 22, 24 of the dispensing portion 20. In the illustrated embodiment, the distal opening 24 can be at the sharpened tip of a hypodermic needle 20.
The shield 28 can be secured to the barrel 14 and at least substantially isolates the distal opening 24 of the dispensing portion 20 from pressure conditions outside the shield 28. Optionally in any embodiment, the shield 28 sufficiently isolates portions of the assembly 12 to provide a sufficient bio-barrier to facilitate safe use of the capped pre-assembly 12 for transdermal injections.
The shield 28 can isolate the distal opening 24 in various ways. Effective isolation can be provided at least partially due to contact between the shield 28 and the distal opening 24, as shown in present
The shield 28 of any embodiment optionally can have a latching mechanism, best shown in
If the dispensing portion 20 is a hypodermic needle, the shield 28 can be a specially formed needle shield. The original use of a needle shield is to cover the hypodermic needle before use, preventing accidental needle sticks and preventing contamination of the needle before it is injected in a patient or an injection port. A comparable shield preferably is used, even if the dispensing portion 20 is a needle-free dispenser, to prevent contamination of the dispenser during handling.
The shield 28 can be formed in any suitable way. For example, the shield 28 can be formed by molding thermoplastic material. Optionally in any embodiment, the thermoplastic material can be elastomeric material or other material that can be suitable for forming a seal. One suitable category of elastomeric materials is known generically as thermoplastic elastomer (TPE). An example of a suitable thermoplastic elastomer for making a shield 28 is Stelmi® Formulation 4800 (flexible shield formulation). Any other material having suitable characteristics can instead be used in any embodiment.
As another optional feature in any embodiment the shield 28 can be sufficiently permeable to a sterilizing gas to sterilize the portions of the assembly 12 isolated by the shield. One example of a suitable sterilizing gas is ethylene oxide. Shields 28 are available that are sufficiently permeable to the sterilizing gas that parts isolated by the shield can nonetheless be sterilized. An example of a shield formulation sufficiently permeable to accommodate ethylene oxide gas sterilization can be Stelmi® Formulation 4800.
Coatings of SiOx are deposited by plasma enhanced chemical vapor deposition (PECVD) or other chemical vapor deposition processes on the vessel of a pharmaceutical package, in particular a thermoplastic package, to serve as a barrier coating or layer preventing oxygen, air, carbon dioxide, or other gases from entering the vessel and/or to prevent leaching of the pharmaceutical material into or through the package wall. The barrier coating or layer can be effective to reduce the ingress of atmospheric gas, for example oxygen, into the lumen compared to a vessel without a passivation layer or pH protective coating.
In any embodiment the vapor-deposited coating or layer optionally can also, or alternatively, be a solute barrier coating or layer. A concern of converting from glass to plastic syringes centers around the potential for leachable materials from plastics. With plasma coating technology, the coatings or layers derived from non-metal gaseous precursors, for example HMDSO or OMCTS or other organosilicon compounds, will contain no trace metals and function as a barrier coating or layer to inorganic (e.g. metal) and organic solutes, preventing leaching of these species from the coated substrate into syringe fluids. In addition to leaching control of plastic syringes, the same plasma passivation layer or pH protective coating technology offers potential to provide a solute barrier to the plunger tip, piston, stopper, or seal, typically made of elastomeric plastic compositions containing even higher levels of leachable organic oligomers and catalysts.
Moreover, certain syringes prefilled with synthetic and biological pharmaceutical formulations are very oxygen and moisture sensitive. A critical factor in the conversion from glass to plastic syringe barrels will be the improvement of plastic oxygen and moisture barrier performance. The plasma passivation layer or pH protective coating technology can be suitable to maintain the SiOx barrier coating or layer or layer for protection against oxygen and moisture over an extended shelf life.
Examples of solutes in drugs usefully excluded by a barrier layer in any embodiment include antibacterial preservatives, antioxidants, chelating agents, pH buffers, and combinations of any of these. In any embodiment the vapor-deposited coating or layer optionally can be a solvent barrier coating or layer for a solvent comprising a co-solvent used to increase drug solubilization.
In any embodiment the vapor-deposited coating or layer optionally can be a barrier coating or layer for water, glycerin, propylene glycol, methanol, ethanol, n-propanol, isopropanol, acetone, benzyl alcohol, polyethylene glycol, cotton seed oil, benzene, dioxane, or combinations of any two or more of these.
In any embodiment the vapor-deposited coating or layer optionally can be a metal ion barrier coating or layer.
In any embodiment the vapor-deposited coating or layer optionally can be a barrel wall material barrier coating or layer, to prevent or reduce the leaching of barrel material such as any of the base barrel resins mentioned previously and any other ingredients in their respective compositions.
The inventors have found, however, that such barrier coatings or layers or coatings of SiOx are eroded or dissolved by some fluid compositions, for example aqueous compositions having a pH above about 5. Since coatings applied by chemical vapor deposition can be very thin tens to hundreds of nanometers thick even a relatively slow rate of erosion can remove or reduce the effectiveness of the barrier coating or layer in less time than the desired shelf life of a product package. This can be particularly a problem for fluid pharmaceutical compositions, since many of them have a pH of roughly 7, or more broadly in the range of 5 to 9, similar to the pH of blood and other human or animal fluids. The higher the pH of the pharmaceutical preparation, the more quickly it erodes or dissolves the SiOx coating.
The inventors have further found that without a protective coating borosilicate glass surfaces are eroded or dissolved by some fluid compositions, for example aqueous compositions having a pH above about 5. This can be particularly a problem for fluid pharmaceutical compositions, since many of them have a pH of roughly 7, or more broadly in the range of 5 to 9, similar to the pH of blood and other human or animal fluids. The higher the pH of the pharmaceutical preparation, the more quickly it erodes or dissolves the glass. Delamination of the glass can also result from such erosion or dissolution, as small particles of glass are undercut by the aqueous compositions having a pH above about 5.
The inventors have further found that certain passivation layers or pH protective coatings of SiOxCy or SiNxCy formed from cyclic polysiloxane precursors, which passivation layers or pH protective coatings have a substantial organic component, do not erode quickly when exposed to fluid compositions, and in fact erode or dissolve more slowly when the fluid compositions have higher pHs within the range of 5 to 9. For example, at pH 8, the dissolution rate of a passivation layer or pH protective coating made from the precursor octamethylcyclotetrasiloxane, or OMCTS, can be quite slow. These passivation layers or pH protective coatings of SiOxCy or SiNxCy can therefore be used to cover a barrier coating or layer of SiOx, retaining the benefits of the barrier coating or layer by passivating or protecting it from the fluid composition in the pharmaceutical package. These passivation layers or pH protective coatings of SiOxCy or SiNxCy also can be used to cover a glass surface, for example a borosilicate glass surface, preventing delamination, erosion and dissolution of the glass, by passivating or protecting it from the fluid composition in the pharmaceutical package.
Although the present invention does not depend upon the accuracy of the following theory, it is believed that the material properties of an effective SiOxCy passivation layer or pH protective coating and those of an effective lubricity layer as described in U.S. Pat. No. 7,985,188 and in International Application PCT/US11/36097 are similar in some instances, such that a coating having the characteristics of a lubricity layer as described in certain working examples of this specification, U.S. Pat. No. 7,985,188, or International Application PCT/US11/36097 will also in certain cases serve as well as a passivation layer or pH protective coating to passivate or protect the barrier coating or layer of the package and vice versa.
Although the present invention does not depend upon the accuracy of the following theory, it is further believed that the most effective lubricity and/or passivation layers or pH protective coatings are those made from cyclic siloxanes and silazanes as described in this disclosure. SiOxCy or SiNxCy coatings deposited from linear siloxane or linear silazane precursors, for example hexamethyldisiloxane (HMDSO), are believed to contain fragments of the original precursor to a large degree and low organic content. Such SiOxCy or SiNxCy coatings have a degree of water miscibility or swellability, allowing them to be attacked by aqueous solutions. SiOxCy or SiNxCy coatings deposited from cyclic siloxane or linear silazane precursors, for example octamethylcyclotetrasiloxane (OMCTS), however, are believed to include more intact cyclic siloxane rings and longer series of repeating units of the precursor structure. These coatings are believed to be nanoporous but structured and hydrophobic, and these properties are believed to contribute to their success as passivation layers or pH protective coatings. This is shown, for example, in U.S. Pat. No. 7,901,783.
Three embodiments of the invention having many common features are those of
The pharmaceutical packages of
The internal wall 16 can have an interior surface 254 facing the lumen 18 and an outer surface 216.
The fluid composition 40 can be contained in the lumen 18 and can have a pH between 4 and 10, alternatively between 5 and 9.
Barrier Coating or Layer
In the filled pharmaceutical package or other vessel 210 the barrier coating or layer 30 can be located between the inner or interior surface of the thermoplastic internal wall 16 and the fluid material 40. The barrier coating or layer 286 of SiOx can be supported by the thermoplastic internal wall 16. The barrier coating or layer 286 can have the characteristic of being subject to being measurably diminished in barrier improvement factor in less than six months as a result of attack by the fluid material 40. The barrier coating or layer 286 as described elsewhere in this specification, or in U.S. Pat. No. 7,985,188, can be used in any embodiment.
The barrier coating or layer 30 can be effective to reduce the ingress of atmospheric gas into the lumen 18, compared to an uncoated container otherwise the same as the pharmaceutical package or other vessel 210. The barrier coating or layer for any embodiment defined in this specification (unless otherwise specified in a particular instance) is optionally applied by PECVD as indicated in U.S. Pat. No. 7,985,188.
The barrier improvement factor (BIF) of the barrier coating or layer can be determined by providing two groups of identical containers, adding a barrier coating or layer to one group of containers, testing a barrier property (such as the rate of outgassing in micrograms per minute or another suitable measure) on containers having a barrier coating or layer, doing the same test on containers lacking a barrier coating or layer, and taking a ratio of the properties of the materials with versus without a barrier coating or layer. For example, if the rate of outgassing through the barrier coating or layer is one-third the rate of outgassing without a barrier coating or layer, the barrier coating or layer has a BIF of 3.
The barrier coating or layer optionally can be characterized as an “SiOx” coating, and contains silicon, oxygen, and optionally other elements, in which x, the ratio of oxygen to silicon atoms, can be from about 1.5 to about 2.9, or 1.5 to about 2.6, or about 2. These alternative definitions of x apply to any use of the term SiOx in this specification. The barrier coating or layer can be applied, for example to the interior of a pharmaceutical package or other vessel, for example a sample collection tube (e.g. a blood collection tube), a syringe barrel, a vial, or another type of vessel.
The barrier coating or layer 30 comprises or consists essentially of SiOx, from 2 to 1000 nm thick, the barrier coating or layer 30 of SiOx having an interior surface facing the lumen 18 and an outer surface facing the internal wall 16. The barrier coating or layer 30 can be effective to reduce the ingress of atmospheric gas into the lumen 18 compared to an uncoated pharmaceutical package 210. One suitable barrier composition can be one where x is 2.3, for example.
For example, the barrier coating or layer such as 30 of any embodiment can be applied at a thickness of at least 2 nm, or at least 4 nm, or at least 7 nm, or at least 10 nm, or at least 20 nm, or at least 30 nm, or at least 40 nm, or at least 50 nm, or at least 100 nm, or at least 150 nm, or at least 200 nm, or at least 300 nm, or at least 400 nm, or at least 500 nm, or at least 600 nm, or at least 700 nm, or at least 800 nm, or at least 900 nm. The barrier coating or layer can be up to 1000 nm, or at most 900 nm, or at most 800 nm, or at most 700 nm, or at most 600 nm, or at most 500 nm, or at most 400 nm, or at most 300 nm, or at most 200 nm, or at most 100 nm, or at most 90 nm, or at most 80 nm, or at most 70 nm, or at most 60 nm, or at most 50 nm, or at most 40 nm, or at most 30 nm, or at most 20 nm, or at most 10 nm, or at most 5 nm thick. Specific thickness ranges composed of any one of the minimum thicknesses expressed above, plus any equal or greater one of the maximum thicknesses expressed above, are expressly contemplated. Another contemplated thickness range is 20-80 nm for the barrier coating or layer. The desired variation in thickness of the barrier coating or layer is +/−30% from the mean thickness, more preferably +/−15% from the mean thickness and most preferably, +/−5% from the mean thickness. The thickness of the SiOx or other barrier coating or layer can be measured, for example, by transmission electron microscopy (TEM), and its composition can be measured by X-ray photoelectron spectroscopy (XPS). The passivation layer or pH protective coating described herein can be applied to a variety of pharmaceutical packages or other vessels made from plastic or glass, for example to plastic tubes, vials, and syringes.
Passivation Layer or pH Protective Coating
A passivation layer or pH protective coating 34 of SiOxCy can be applied, for example, by PECVD directly or indirectly to the barrier coating or layer 30 so it can be located between the barrier coating or layer 30 and the fluid material 40 in the finished article. The passivation layer or pH protective coating 34 can have an interior surface facing the lumen 18 and an outer surface facing the interior surface of the barrier coating or layer 30. The passivation layer or pH protective coating 34 can be supported by the thermoplastic internal wall 16. The passivation layer or pH protective coating 34 can be effective to keep the barrier coating or layer 30 at least substantially undissolved as a result of attack by the fluid material 40 for a period of at least six months, in one non-limiting embodiment.
Optionally, the passivation layer or pH protective coating can be composed of SiwOxCyHz (or its equivalent SiOxCy) or SiwNxCyHz or its equivalent SiNxCy), each as defined in this specification. Taking into account the H atoms, the passivation layer or pH protective coating may thus in one aspect have the formula SiwOxCyHz, or its equivalent SiOxCy, for example where w is 1, x is from about 0.5 to about 2.4, y is from about 0.6 to about 3, and z (if defined) is from about 2 to about 9.
The atomic ratio can be determined by XPS (X-ray photoelectron spectroscopy). XPS does not detect hydrogen atoms, so it is customary, when determining the atomic ratio by XPS, to omit hydrogen from the stated formulation. The formulation thus can be typically expressed as SiwOxCy or SiOxCy, where w is 1, x is from about 0.5 to about 2.4, and y is from about 0.6 to about 3, with no limitation on z.
The atomic ratios of Si, O, and C in the “lubricity and/or passivation layer or pH protective coating” can be, as several options:
Si 100: O 50-150: C 90-200 (i.e. w=1, x=0.5 to 1.5, y=0.9 to 2);
Si 100: O 70-130: C 90-200 (i.e. w=1, x=0.7 to 1.3, y=0.9 to 2)
Si 100: O 80-120: C 90-150 (i.e. w=1, x=0.8 to 1.2, y=0.9 to 1.5)
Si 100: O 90-120: C 90-140 (i.e. w=1, x=0.9 to 1.2, y=0.9 to 1.4), or Si 100: O 92-107: C 116-133 (i.e. w=1, x=0.92 to 1.07, y=1.16 to 1.33)
Typically, such a coating or layer would contain 36% to 41% carbon normalized to 100% carbon plus oxygen plus silicon. Alternatively, the passivation layer or pH protective coating can have atomic concentrations normalized to 100% carbon, oxygen, and silicon, as determined by X-ray photoelectron spectroscopy (XPS) of less than 50% carbon and more than 25% silicon. Alternatively, the atomic concentrations can be from 25 to 45% carbon, 25 to 65% silicon, and 10 to 35% oxygen. Alternatively, the atomic concentrations can be from 30 to 40% carbon, 32 to 52% silicon, and 20 to 27% oxygen. Alternatively, the atomic concentrations can be from 33 to 37% carbon, 37 to 47% silicon, and 22 to 26% oxygen.
Optionally, the atomic concentration of carbon in the protective layer, normalized to 100% of carbon, oxygen, and silicon, as determined by X-ray photoelectron spectroscopy (XPS), can be greater than the atomic concentration of carbon in the atomic formula for the organosilicon precursor. For example, embodiments are contemplated in which the atomic concentration of carbon increases by from 1 to 80 atomic percent, alternatively from 10 to 70 atomic percent, alternatively from 20 to 60 atomic percent, alternatively from 30 to 50 atomic percent, alternatively from 35 to 45 atomic percent, alternatively from 37 to 41 atomic percent.
Optionally, the atomic ratio of carbon to oxygen in the passivation layer or pH protective coating can be increased in comparison to the organosilicon precursor, and/or the atomic ratio of oxygen to silicon can be decreased in comparison to the organosilicon precursor.
Optionally, the passivation layer or pH protective coating can have an atomic concentration of silicon, normalized to 100% of carbon, oxygen, and silicon, as determined by X-ray photoelectron spectroscopy (XPS), less than the atomic concentration of silicon in the atomic formula for the feed gas. For example, embodiments are contemplated in which the atomic concentration of silicon decreases by from 1 to 80 atomic percent, alternatively by from 10 to 70 atomic percent, alternatively by from 20 to 60 atomic percent, alternatively by from 30 to 55 atomic percent, alternatively by from 40 to 50 atomic percent, alternatively by from 42 to 46 atomic percent.
As another option, a passivation layer or pH protective coating is contemplated that can be characterized by a sum formula wherein the atomic ratio C:O can be increased and/or the atomic ratio Si:O can be decreased in comparison to the sum formula of the organosilicon precursor.
The passivation layer or pH protective coating can have a density between 1.25 and 1.65 g/cm3, alternatively between 1.35 and 1.55 g/cm3, alternatively between 1.4 and 1.5 g/cm3, alternatively between 1.4 and 1.5 g/cm3, alternatively between 1.44 and 1.48 g/cm3, as determined by X-ray reflectivity (XRR). Optionally, the organosilicon compound can be octamethylcyclotetrasiloxane and the passivation layer or pH protective coating can have a density which can be higher than the density of a passivation layer or pH protective coating made from HMDSO as the organosilicon compound under the same PECVD reaction conditions.
The passivation layer or pH protective coating optionally can have an RMS surface roughness value (measured by AFM) of from about 2 to about 9, optionally from about 6 to about 8, optionally from about 6.4 to about 7.8. The Ra surface roughness value of the passivation layer or pH protective coating, measured by AFM, can be from about 4 to about 6, optionally from about 4.6 to about 5.8. The Rmax surface roughness value of the passivation layer or pH protective coating, measured by AFM, can be from about 70 to about 160, optionally from about 84 to about 142, optionally from about 90 to about 130.
The rate of erosion, dissolution, or leaching (different names for related concepts) of the construction including a passivation layer or pH protective coating 34, if directly contacted by the fluid material 40, can be less than the rate of erosion, dissolution, or leaching of the barrier coating or layer 30, if directly contacted by the fluid material 40.
The passivation layer or pH protective coating 34 can be effective to isolate or protect the barrier coating or layer 30 from the fluid material 40 at least for sufficient time to allow the barrier coating or layer to act as a barrier during the shelf life of the pharmaceutical package or other vessel 210.
Optionally an FTIR absorbance spectrum of the passivation layer or pH protective coating 34 of any embodiment of
Optionally, in any embodiment of
Optionally, in any embodiment of
Optionally, in any embodiment of
Optionally, in any embodiment of
Optionally, in any embodiment of
Any minimum time stated here can be combined with any maximum time stated here, as an alternative embodiment of the invention of
O-Parameter or P-Parameters of Passivation Coating or Protective Layer
The passivation layer or pH protective coating 34 optionally can have an O-Parameter measured with attenuated total reflection (ATR) of less than 0.4, measured as:
The O-Parameter is defined in U.S. Pat. No. 8,067,070, which claims an O-parameter value of most broadly from 0.4 to 0.9. It can be measured from physical analysis of an FTIR amplitude versus wave number plot to find the numerator and denominator of the above expression, as shown in
U.S. Pat. No. 8,067,070 asserts that its claimed O-parameter range provides a superior passivation layer or pH protective coating, relying on experiments only with HMDSO and HMDSN, which are both non-cyclic siloxanes. Surprisingly, it has been found by the present inventors that if the PECVD precursor is a cyclic siloxane, for example OMCTS, O-parameters outside the ranges claimed in U.S. Pat. No. 8,067,070, using OMCTS, can provide better results than are obtained in U.S. Pat. No. 8,067,070 with HMDSO.
Alternatively in the embodiment of
Even another aspect of the invention can be a composite material as just described, exemplified in
The N-Parameter is also described in U.S. Pat. No. 8,067,070, and can be measured analogously to the O-Parameter except that intensities at two specific wave numbers are used—neither of these wave numbers is a range. U.S. Pat. No. 8,067,070 claims a passivation layer or pH protective coating with an N-Parameter of to 1.6. Again, the present inventors have made better coatings employing a passivation layer or pH protective coating 34 having an N-Parameter lower than 0.7, as described above. Alternatively, the N-parameter can have a value of 0.3 to lower than 0.7, or from 0.4 to 0.6, or from at least 0.53 to lower than 0.7.
Theory of Operation
The inventors offer the following theory of operation of the passivation layer or pH protective coating described here. The invention is not limited by the accuracy of this theory or to the embodiments predictable by use of this theory.
The dissolution rate of the SiOx barrier coating or layer, or of glass, is believed to be dependent on SiO bonding within the layer or glass. Oxygen bonding sites (silanols) are believed to increase the dissolution rate.
It is believed that the OMCTS-based passivation layer or pH protective coating bonds with the silanol sites on the SiOx barrier coating or layer, or glass, to “heal” or passivate the SiOx surface or glass and thus dramatically reduce the dissolution rate. In this hypothesis, the thickness of the OMCTS layer is not the primary means of protection the primary means can be passivation of the SiOx or glass surface. It is contemplated that a passivation layer or pH protective coating as described in this specification can be improved by increasing the crosslink density of the passivation layer or pH protective coating.
Optional Graded Composite Layers
The passivation layer or pH protective coating 34 and lubricity layers of any embodiment of
A graded composite can be separate layers of a lubricity and/or protective and/or barrier coating or layer or coating with a transition or interface of intermediate composition between them, or separate layers of a lubricity and/or protective and/or hydrophobic layer and SiOx with an intermediate distinct passivation layer or pH protective coating of intermediate composition between them, or a single coating or layer that changes continuously or in steps from a composition of a lubricity and/or protective and/or hydrophobic layer to a composition more like SiOx, going through the passivation layer or pH protective coating in a normal direction.
The grade in the graded composite can go in either direction. For example, the composition of SiOx can be applied directly to the substrate and graduate to a composition further from the surface of a passivation layer or pH protective coating, and optionally can further graduate to another type of coating or layer, such as a hydrophobic coating or layer or a lubricity coating or layer. Additionally, in any embodiment an adhesion coating or layer, for example SiwOxCy, or its equivalent SiOxCy, optionally can be applied directly to the substrate before applying the barrier coating or layer.
A graduated passivation layer or pH protective coating is particularly contemplated if a layer of one composition is better for adhering to the substrate than another, in which case the better-adhering composition can, for example, be applied directly to the substrate. It is contemplated that the more distant portions of the graded passivation layer or pH protective coating can be less compatible with the substrate than the adjacent portions of the graded passivation layer or pH protective coating, since at any point the passivation layer or pH protective coating can be changing gradually in properties, so adjacent portions at nearly the same depth of the passivation layer or pH protective coating have nearly identical composition, and more widely physically separated portions at substantially different depths can have more diverse properties. It is also contemplated that a passivation layer or pH protective coating portion that forms a better barrier against transfer of material to or from the substrate can be directly against the substrate, to prevent the more remote passivation layer or pH protective coating portion that forms a poorer barrier from being contaminated with the material intended to be barred or impeded by the barrier.
The applied coatings or layers, instead of being graded, optionally can have sharp transitions between one layer and the next, without a substantial gradient of composition. Such passivation layer or pH protective coating can be made, for example, by providing the gases to produce a layer as a steady state flow in a non-plasma state, then energizing the system with a brief plasma discharge to form a coating or layer on the substrate. If a subsequent passivation layer or pH protective coating is to be applied, the gases for the previous passivation layer or pH protective coating are cleared out and the gases for the next passivation layer or pH protective coating are applied in a steady-state fashion before energizing the plasma and again forming a distinct layer on the surface of the substrate or its outermost previous passivation layer or pH protective coating, with little if any gradual transition at the interface.
PECVD Apparatus
The present apparatus can be used for plasma modifying a workpiece 12 having a surface to be treated, for example a workpiece having a lumen 18 surrounded by a wall 16 defining a surface 16 to be treated. The present apparatus and method can also be used to treat other types of surfaces, such as the exterior surface of a plunger tip, stopper, piston, or stopper. The apparatus generally includes a plasma generator for providing plasma under conditions effective for plasma modification of the surface 16 of the workpiece 12. The apparatus also includes one or more magnetic field generators, further explained in a later section, (for example, any of 61-78, 86-91, 93, 95, 97, or 99) for providing a magnetic field in at least a portion of the lumen 18, or more broadly in or near the plasma. The magnetic field has a position, orientation, and field strength effective to improve the uniformity of plasma modification of the surface. Optionally, the magnitude of the radial component of the magnetic field is approximately 1000 Gauss as it exits the field with an essentially zero Gauss for the axial component.
The apparatus also includes a support for supporting a workpiece 12 in the apparatus in an operative position.
The low-pressure PECVD process described in U.S. Pat. No. 7,985,188, modified by any arrangement of magnets described or claimed in this specification, can be used to provide the barrier coating or layer, lubricity coating or layer, and/or passivation layer or pH protective coating described in this specification. A brief synopsis of that process follows, with reference to present
A PECVD apparatus or coating station 60 suitable for the present purpose includes a vessel support 50, an inner electrode defined by the probe 108, an outer electrode 160, and a power supply 162. The pre-assembly 12 seated on the vessel support 50 defines a plasma reaction chamber, which optionally can be a vacuum chamber. Optionally, a source of vacuum 98, a reactant gas source 144, a gas feed (probe 108) or a combination of two or more of these can be supplied.
The PECVD apparatus can be used for atmospheric-pressure PECVD, in which case the plasma reaction chamber defined by the pre-assembly 12 does not need to function as a vacuum chamber.
Referring to
Flow out of the PECVD gas or precursor source 144 can be controlled by a main reactant gas valve 584 regulating flow through the main reactant feed line 586. One component of the gas source 144 can be the organosilicon liquid reservoir 588, containing the precursor. The contents of the reservoir 588 can be drawn through the organosilicon capillary line 590, which optionally can be provided at a suitable length to provide the desired flow rate. Flow of organosilicon vapor can be controlled by the organosilicon shut-off valve 592. Pressure can be applied to the headspace 614 of the liquid reservoir 588, for example a pressure in the range of 0-15 psi (0 to 78 cm. Hg), from a pressure source 616 such as pressurized air connected to the headspace 614 by a pressure line 618 to establish repeatable organosilicon liquid delivery that is not dependent on atmospheric pressure (and the fluctuations therein). The reservoir 588 can be sealed and the capillary connection 620 can be at the bottom of the reservoir 588 to ensure that only neat organosilicon liquid (not the pressurized gas from the headspace 614) flows through the capillary tube 590. The organosilicon liquid optionally can be heated above ambient temperature, if necessary or desirable to cause the organosilicon liquid to evaporate, forming an organosilicon vapor. To accomplish this heating, the apparatus can advantageously include heated delivery lines from the exit of the precursor reservoir to as close as possible to the gas inlet into the syringe. Preheating can be useful, for example, when feeding OMCTS.
Oxidant gas can be provided from the oxidant gas tank 594 via an oxidant gas feed line 596 controlled by a mass flow controller 598 and provided with an oxidant shut-off valve 600.
Optionally in any embodiment, other precursor, oxidant, and/or carrier gas reservoirs such as 602 can be provided to supply additional materials if needed for a particular deposition process. Each such reservoir such as 602 can have an appropriate feed line 604 and shut-off valve 606.
Referring especially to
In the embodiment of
Optionally in any embodiment, the outer electrode (160) can be made of foraminous material, for example a metal wire mesh material. Alternatively, the outer electrode (160) can be made of continuous material (meaning not perforated, woven, knitted or felted, for example), such as a metal cylinder.
Optionally in any embodiment, the inner electrode (108) extends axially into the lumen (18).
Optionally in any embodiment, the plasma modification of the surface (16) of the workpiece (12) comprises chemical vapor deposition, optionally plasma enhanced chemical vapor deposition (PECVD).
As was previously indicated, the inner electrode (108) optionally can do double duty as a material supply tube (104) for providing gaseous material to the lumen (18). The material supply tube (104) optionally, in any embodiment, has a wall disposed within the lumen (18). Optionally in any embodiment, the wall has perforations (any of 122-142) to pass gaseous material to the lumen (18). See in particular
Optionally in any embodiment, the perforations (e.g. 122, 122a, 122b; 134, 134a, 134b, 134c, 134d; or 135, 135a, 135b) can be distributed axially along the generally cylindrical wall 16, as shown in
The perforations (any of 122-142) can be distributed as circumferentially spaced series of two or more perforations, the respective series spaced axially along the generally cylindrical wall 16, as shown in
As another option, combinations of these different patterns of perforations, or other patterns known or obvious to those skilled in the art, can be used in a single material supply tube 104.
Application of Barrier Coating or Layer
When carrying out the present method, a barrier coating or layer 30 can be applied directly or indirectly to at least a portion of the internal wall 16 of the barrel 14. In the illustrated embodiment, the barrier coating or layer 30 can be applied while the pre-assembly 12 is capped, though this is not a requirement. The barrier coating or layer 30 can be an SiOx barrier coating or layer applied by plasma enhanced chemical vapor deposition (PECVD), under conditions substantially as described in U.S. Pat. No. 7,985,188. The barrier coating or layer 30 can be applied under conditions effective to maintain communication between the barrel lumen 18 and the dispensing portion lumen 26 via the proximal opening 22 at the end of the applying step.
In any embodiment the barrier coating or layer 30 optionally can be applied through the opening 32.
In any embodiment the barrier coating or layer 30 optionally can be applied by introducing a vapor-phase precursor material through the opening and employing chemical vapor deposition to deposit a reaction product of the precursor material on the internal wall of the barrel.
In any embodiment the precursor material for forming the barrier coating optionally can be any of the precursors described in U.S. Pat. No. 7,985,188 or in this specification for formation of the passivating layer or pH protective coating.
In any embodiment the reactant vapor material optionally can be a precursor material mixture with one or more oxidant gases and a carrier gas in a partial vacuum through the opening and employing chemical vapor deposition to deposit a reaction product of the precursor material mixture on the internal wall of the barrel.
In any embodiment the reactant vapor material optionally can be passed through the opening at sub-atmospheric pressure.
In any embodiment plasma optionally can be generated in the barrel lumen 18 by placing an inner electrode into the barrel lumen 18 through the opening 32, placing an outer electrode outside the barrel 14 and using the electrodes to apply plasma-inducing electromagnetic energy which optionally can be radio frequency energy, in the barrel lumen 18. If a different arrangement is used, the plasma-inducing electromagnetic energy can be microwave energy or other forms of electromagnetic energy.
In any embodiment the electromagnetic energy optionally can be direct current.
In any embodiment the electromagnetic energy optionally can be alternating current. The alternating current optionally can be modulated at frequencies including audio, or microwave, or radio, or a combination of two or more of audio, microwave, or radio.
In any embodiment the electromagnetic energy optionally can be applied across the barrel lumen (18).
Application of Passivation Layer or pH Protective Coating
In any embodiment, in addition to applying a first coating or layer as described above, the method optionally can include applying second or further coating or layer of the same material or a different material. As one example useful in any embodiment, particularly contemplated if the first coating or layer is an SiOx barrier coating or layer, a further coating or layer can be placed directly or indirectly over the barrier coating or layer. One example of such a further coating or layer useful in any embodiment is a passivation layer or pH protective coating 34.
Precursors
The precursor for any of the processes for forming the barrier coating or layer, the passivation layer or pH protective coating, or a lubricity coating or layer can include any of the following precursors.
The precursor can be an organosilicon or related compound. The organosilicon precursor is broadly defined as an organometallic precursor. An organometallic precursor is defined in this specification as comprehending compounds of metal elements from Group III and/or Group IV of the Periodic Table having organic residues, for example hydrocarbon, aminocarbon or oxycarbon residues. Organometallic compounds as presently defined include any precursor having organic moieties bonded to silicon or other Group III/IV metal atoms directly, or optionally bonded through oxygen or nitrogen atoms. The relevant elements of Group III of the Periodic Table are Boron, Aluminum, Gallium, Indium, Thallium, Scandium, Yttrium, and Lanthanum, Aluminum and Boron being preferred. The relevant elements of Group IV of the Periodic Table are Silicon, Germanium, Tin, Lead, Titanium, Zirconium, Hafnium, and Thorium, with Silicon and Tin being preferred. Other volatile organic compounds can also be contemplated. However, organosilicon compounds are preferred for performing present invention.
An organosilicon precursor is contemplated, where an “organosilicon precursor” is defined throughout this specification most broadly as a compound having compound having at least one of the linkages:
which is a tetravalent silicon atom connected to an oxygen atom and an organic carbon atom (an organic carbon atom being a carbon atom bonded to at least one hydrogen atom). Another contemplated structure is a tetravalent silicon atom connected to an NH— linkage and an organic carbon atom (an organic carbon atom being a carbon atom bonded to at least one hydrogen atom).
Optionally, the organosilicon precursor can be selected from the group consisting of a linear siloxane, a monocyclic siloxane, a polycyclic siloxane, a polysilsesquioxane, a linear silazane, a monocyclic silazane, a polycyclic silazane, a polysilsesquiazane, and a combination of any two or more of these precursors. Also contemplated as a precursor, though not within the two formulas immediately above, can be an alkyl trimethoxysilane.
If an oxygen-containing precursor (for example a siloxane) is used, a representative predicted empirical composition resulting from PECVD under conditions forming a hydrophobic or lubricating passivation layer or pH protective coating would be SiwOxCyHz or its equivalent SiOxCy as defined in the Definition Section, while a representative predicted empirical composition resulting from PECVD under conditions forming a barrier coating or layer would be SiOx, where x in this formula is from about 1.5 to about 2.9. If a nitrogen-containing precursor (for example a silazane) is used, the predicted composition would be Siw*Nx*Cy*Hz*, i.e. in SiwOxCyHz or its equivalent SiOxCy as specified in the Definition Section, O is replaced by N and the indices for H are adapted to the higher valency of N as compared to O (3 instead of 2). The latter adaptation will generally follow the ratio of w, x, y and z in a siloxane to the corresponding indices in its silazane counterpart. In a particular aspect of the invention, Siw*Nx*Cy*Hz*(or its equivalent SiNx*Cy*) in which w*, x*, y*, and z* are defined the same as w, x, y, and z for the siloxane counterparts, but for an optional deviation in the number of hydrogen atoms.
One type of precursor starting material having the above empirical formula can be a linear siloxane, for example a material having the following formula:
in which each R can be independently selected from alkyl, for example methyl, ethyl, propyl, isopropyl, butyl, isobutyl, t-butyl, vinyl, alkyne, or others, and n can be 1, 2, 3, 4, or greater, optionally two or greater. Several examples of contemplated linear siloxanes are
hexamethyldisiloxane (HMDSO) (particularly for forming the barrier coating or layer 30 of a vessel),
octamethyltrisiloxane,
decamethyltetrasiloxane,
dodecamethylpentasiloxane,
or combinations of two or more of these. The analogous silazanes in which NH— can be substituted for the oxygen atom in the above structure are also useful for making analogous passivation layers or pH protective coatings or layers. Several examples of contemplated linear silazanes are octamethyltrisilazane, decamethyltetrasilazane, or combinations of two or more of these.
Another type of precursor starting material, among the preferred starting materials in the present context, can be a monocyclic siloxane, for example a material having the following structural formula:
in which R can be defined as for the linear structure and “a” can be from 3 to about 10, or the analogous monocyclic silazanes. Several examples of contemplated hetero-substituted and unsubstituted monocyclic siloxanes and silazanes include:
Another type of precursor starting material, among the preferred starting materials in the present context, can be a polycyclic siloxane, for example a material having one of the following structural formulas:
in which Y can be oxygen or nitrogen, E is silicon, and Z is a hydrogen atom or an organic substituent, for example alkyl such as methyl, ethyl, propyl, isopropyl, butyl, isobutyl, t-butyl, vinyl, alkyne, or others. When each Y is oxygen, the respective structures, from left to right, are a Silatrane, a Silquasilatrane, and a Silproatrane. When Y is nitrogen, the respective structures are an azasilatrane, an azasilquasiatrane, and an azasilproatrane.
Another type of polycyclic siloxane precursor starting material, among the preferred starting materials in the present context, can be a polysilsesquioxane, with the empirical formula RSiO1.5 and the structural formula:
in which each R is a hydrogen atom or an organic substituent, for example alkyl such as methyl, ethyl, propyl, isopropyl, butyl, isobutyl, t-butyl, vinyl, alkyne, or others. Two commercial materials of this sort are SST-eM01 poly(methylsilsesquioxane), in which each R can be methyl, and SST-3 MH1.1 poly(Methyl-Hydridosilsesquioxane), in which 90% of the R groups are methyl, 10% are hydrogen atoms. This material is available in a 10% solution in tetrahydrofuran, for example. Combinations of two or more of these are also contemplated. Other examples of a contemplated precursor are methylsilatrane, CAS No. 2288-13-3, in which each Y is oxygen and Z is methyl, methylazasilatrane, poly(methylsilsesquioxane) (for example SST-eM01 poly(methylsilsesquioxane)), in which each R optionally can be methyl, SST-3 MH1.1 poly(Methyl-Hydridosilsesquioxane) (for example SST-3 MH1.1 poly(Methyl-Hydridosilsesquioxane)), in which 90% of the R groups are methyl and 10% are hydrogen atoms, or a combination of any two or more of these.
The analogous polysilsesquiazanes in which —NH— can be substituted for the oxygen atom in the above structure are also useful for making analogous passivation layer or pH protective coating. Examples of contemplated polysilsesquiazanes are a poly(methylsilsesquiazane), in which each R can be methyl, and a poly(Methyl-Hydridosilsesquiazane, in which 90% of the R groups are methyl, 10% are hydrogen atoms. Combinations of two or more of these are also contemplated.
One particularly contemplated precursor for the barrier coating or layer according to the present invention can be a linear siloxane, for example hexamethyldisiloxane or HMDSO. One particularly contemplated precursor for the lubricity coating or layer and the passivation layer or pH protective coating according to the present invention can be a cyclic siloxane, for example octamethylcyclotetrasiloxane (OMCTS).
It is believed that the OMCTS or other cyclic siloxane molecule provides several advantages over other siloxane materials. First, its ring structure is believed to result in a less dense passivation layer or pH protective coating (as compared to passivation layer or pH protective coating prepared from HMDSO). The molecule also is believed to allow selective ionization so that the final structure and chemical composition of the passivation layer or pH protective coating can be directly controlled through the application of the plasma power. Other organosilicon molecules are readily ionized (fractured) so that it can be more difficult to retain the original structure of the molecule.
Another example of a suitable precursor is a fluorinated precursor for a fluorinated polymer layer.
The fluorinated polymer can be deposited directly or with intervening layers on the sliding surface of a plunger tip, piston, stopper, or seal 36, the internal wall 16, or both. The fluorinated polymer optionally is applied by chemically modifying a precursor, while on or in the vicinity of the fluid receiving interior surface.
Optionally, the precursor comprises:
The fluorinated polymer is:
The fluorinated polymer optionally can be applied by vapor deposition, for example chemical vapor deposition. Optionally, the fluorinated polymer can be applied by chemical vapor deposition of dimeric tetrafluoroparaxylylene. An example of a suitable fluorinated polymer is polytetrafluoroparaxylylene. Optionally, the fluorinated polymer consists essentially of polytetrafluoroparaxylylene.
Optionally in any embodiment, the fluorinated polymer coating or layer comprises polytetrafluoroethylene. Optionally in any embodiment, the fluorinated polymer coating or layer consists essentially of polytetrafluoroethylene.
For example, in any embodiment, the fluorinated polymer coating or layer can be applied by chemically modifying a precursor, while on or in the vicinity of the fluid receiving interior surface, to produce the fluorinated polymer coating or layer on the fluid receiving interior surface. Optionally in any embodiment, the fluorinated polymer coating or layer is applied by chemical vapor deposition. For one example, in any embodiment, the fluorinated polymer coating or layer can be applied by heated wire chemical vapor deposition (HWCVD). For another example, in any embodiment, the fluorinated polymer coating or layer can be applied by plasma enhanced chemical vapor deposition (PECVD). Mixed processes or other processes for applying a suitable coating are also contemplated, in any embodiment.
Another example of a suitable HWCVD process for applying the fluorinated polymer coating is the process described in Hilton G. Pryce Lewis, Neeta P. Bansal, Aleksandr J. White, Erik S. Handy, HWCVD of Polymers: Commercialization and Scale-up, THIN SOLID FILMS 517 (2009) 3551-3554; and US Publ. Appl. 2012/0003497 A1, published Jan. 5, 2012, which are incorporated here by reference in their entirety for their description of fluorinated polymer coatings and their application.
Optionally in any embodiment, the precursor comprises Parylene N or poly(paraxylylene); Parylene C or poly(2-chloroparaxylylene); Parylene D or poly(2,5-dichloropara-xylylene); Parylene HT® or poly(tetrafluoropara-xylylene), or their dimers, or a combination of two or more of these. Parylenes can be applied to a substrate as described by Specialty Coating Systems, Inc., discussed for example in Lonny Wolgemuth, Challenges With Prefilled Syringes: The Parylene Solution, www.ongrugdelivery.com, pp. 44-45 (Frederick Furness Publishing, 2012). The documents mentioned in this paragraph are incorporated by reference here.
In any of the PECVD methods according to the present invention, the applying step optionally can be carried out by vaporizing the precursor and providing it in the vicinity of the substrate. For example, OMCTS can be vaporized by heating it to about 50° C. before applying it to the PECVD apparatus.
The organosilicon precursor can be delivered at a rate of equal to or less than 10 sccm, optionally equal to or less than 6 sccm, optionally equal to or less than 2.5 sccm, optionally equal to or less than 1.5 sccm, optionally equal to or less than 1.25 sccm. Larger pharmaceutical packages or other vessels or other changes in conditions or scale may require more or less of the precursor.
Ratios of Components for Passivation Layer or pH Protective Coating
Generally, for a passivation layer or pH protective coating, O2 can be present in an amount (which can, for example be expressed by the flow rate in sccm) which can be less than one order of magnitude greater than the organosilicon amount. In contrast, in order to achieve a barrier coating or layer, the amount of O2 typically can be at least one order of magnitude higher than the amount of organosilicon precursor.
As some specific examples of suitable proportions of the respective constituents, the volume ratio (in sccm) of organosilicon precursor to O2 for a passivation layer or pH protective coating can be in the range from 0.1:1 to 10:1, optionally in the range from 0.3:1 to 8:1, optionally in the range from 0.5:1 to 5:1, optionally from 1:1 to 3:1. Some non-exhaustive alternative selections and suitable proportions of the precursor gas, oxygen, and a carrier gas are provided below.
The process gas can contain this ratio of gases for preparing a lubricity and/or passivation layer or pH protective coating:
from 1 to 80 standard volumes of a carrier gas,
Exemplary reaction conditions for preparing a passivation layer or pH protective coating according to the present invention in a 3 ml sample size syringe with a ⅛″ diameter tube (open at the end) are as follows:
Flow Rate Ranges:
OMCTS: 0.5-10 sccm
Oxygen: 0.1-10 sccm
Argon: 1.0-200 sccm
Power: 0.1-500 watts
In another contemplated embodiment the proportions of precursor, oxygen, and Argon can be, for example:
OMCTS: 0.5-5.0 sccm
Oxygen: 0.1-5.0 sccm
Argon: 1.0-20 sccm
In yet another contemplated embodiment the proportions of precursor, oxygen, and Argon and the power level can be, for example:
Specific Flow Rates:
OMCTS: 2.0 sccm
Oxygen: 0.7 sccm
Argon: 7.0 sccm
Power: 3.5 watts
The coatings can vary from the above proportions, however. For example, to provide a coating with lubricity which also serves as a passivation layer or pH protection coating, the following proportions of gases can be used:
(A) from 0.5 to 10 standard volumes, optionally from 1 to 6 standard volumes, optionally from 2 to 4 standard volumes, optionally equal to or less than 6 standard volumes, optionally equal to or less than 2.5 standard volumes, optionally equal to or less than 1.5 standard volumes, optionally equal to or less than 1.25 standard volumes of the precursor, for example OMCTS or one of the other precursors of any embodiment;
(B) from 0 to 100 standard volumes, optionally from 1 to 80 standard volumes, optionally from 5 to 100 standard volumes, optionally from 10 to 70 standard volumes, of a carrier gas of any embodiment;
(C) from 0.1 to 10 standard volumes, optionally from 0.1 to 2 standard volumes, optionally from 0.2 to 1.5 standard volumes, optionally from 0.2 to 1 standard volumes, optionally from 0.5 to 1.5 standard volumes, optionally from 0.8 to 1.2 standard volumes of an oxidizing agent.
The presence of the precursor and O2 in the volume ratios as given in the working examples can be specifically suitable to achieve a passivation layer or pH protective coating.
In one aspect of the invention, a diluent or carrier gas can be absent in the reaction mixture; in another aspect of the invention, it can be present. Suitable carrier gases include any noble gas, for example Argon, Helium, Neon, Xenon or combinations of two or more of these. When the carrier gas is present in the reaction mixture, it is typically present in a volume (in sccm) exceeding the volume of the organosilicon precursor. For example, the ratio of the organosilicon precursor to carrier gas can be from 1:1 to 1:50, optionally from 1:5 to 1:40, optionally from 1:10 to 1:30. One function of the carrier gas can be to dilute the reactants in the plasma, encouraging the formation of a coating on the substrate instead of powdered reaction products that do not adhere to the substrate and are largely removed with the exhaust gases.
The addition of Argon gas has been found to improve the performance of the passivation layer or pH protective coating 34. It is believed that additional ionization of the molecule in the presence of Argon contributes to this performance. The Si—O—Si bonds of the molecule have a high bond energy followed by the Si—C, with the C—H bonds being the weakest. Passivation or pH protection appear to be achieved when a portion of the C—H bonds are broken. This allows the connecting (cross-linking) of the structure as it grows. Addition of oxygen (with the Argon) is understood to enhance this process. A small amount of oxygen can also provide C—O bonding to which other molecules can bond. The combination of breaking C—H bonds and adding oxygen all at low pressure and power leads to a chemical structure that can be solid while providing passivation or pH protection.
In any of the disclosed embodiments, one preferred combination of process gases includes octamethylcyclotetrasiloxane (OMCTS) or another cyclic siloxane as the precursor; O2, nitrous oxide (N2O), ozone (03), water vapor (which can decompose in the plasma to yield oxygen) or another oxidizing gas, which means any other gas that oxidizes the precursor during PECVD at the conditions employed, preferably O2; and a carrier gas, for example a noble carrier gas, for example helium, argon, krypton, xenon, neon, or a combination of two or more of these. Helium and argon are particularly contemplated.
The gaseous reactant or process gas can be at least substantially free of nitrogen. This combination is contemplated to improve the resulting passivation layer or pH protective coating.
Application Method
A passivation layer or pH protective coating 34 optionally can be applied directly or indirectly over the barrier coating or layer 30, and optionally can be applied to a pre-assembly such as 12 while the pre-assembly is capped, under conditions effective to maintain communication between the barrel lumen 18 and the dispensing portion lumen 26 via the proximal opening 22 at the end of applying the passivation layer or pH protective coating 34.
Vessel Made of Glass
Optionally in any embodiment, the passivation layer or pH protective coating 34 can be applied as the first or sole vapor-deposited coating or layer 30, instead of or in addition to its application as a further layer. This expedient may be useful, for example, where the barrel is made of glass. The presently disclosed passivation layer or pH protective coating also can reduce the dissolution of glass by contents having the pH values indicated as attacking SiOx coatings or layers.
A pharmaceutical package 210 is contemplated as shown in any embodiment, for example
In this glass embodiment the barrier coating or layer or layer can be optional because a glass vessel wall in itself is an extremely good barrier coating or layer. It is contemplated to optionally provide a barrier coating or layer primarily to provide isolation: in other words, to prevent contact and interchange of material of any kind, such as ions of the glass or constituents of the pharmaceutical composition or preparation between the vessel wall and the contents of the vessel. The protective layer as defined in this specification can be contemplated to perform the isolation function independently, at least to a degree. This passivation coating or pH protection layer can be contemplated to provide a useful function on glass in contact with the pharmaceutical composition or preparation, as the present working examples show that borosilicate glass, commonly used today for pharmaceutical packaging, can be dissolved by a fluid composition having a pH exceeding 5. Particularly in applications where such dissolution can be disadvantageous or perceived to be disadvantageous, the present passivation layers or protective coatings or layers will find utility.
The vessel can be made, for example of glass of any type used in medical or laboratory applications, such as soda-lime glass, borosilicate glass, or other glass formulations. One function of a passivation layer or pH protective coating on a glass vessel can be to reduce the ingress of ions in the glass, either intentionally or as impurities, for example sodium, calcium, or others, from the glass to the contents of the pharmaceutical package or other vessel, such as a reagent or blood in an evacuated blood collection tube. Alternatively, a dual functional protective/lubricity coating or layer can be used on a glass vessel in whole or in part, such as selectively at surfaces contacted in sliding relation to other parts, to provide lubricity, for example to ease the insertion or removal of a stopper or passage of a sliding element such as a piston in a syringe, as well as to provide the isolation of a passivation layer or pH protective coating. Still another reason to coat a glass vessel, for example with a dual functional hydrophobic and passivation layer or pH protective coating, can be to prevent a reagent or intended sample for the pharmaceutical package or other vessel, such as blood, from sticking to the wall of the vessel or an increase in the rate of coagulation of the blood in contact with the wall of the vessel, as well as to provide the isolation of a passivation layer or pH protective coating.
A related embodiment can be a vessel as described in the previous paragraphs, in which the barrier coating or layer or layer can be made of soda lime glass, borosilicate glass, or another type of glass coating or layer on a substrate.
Plasma Conditions for Passivation Layer or pH Protective Coating
The precursor can be contacted with a plasma made by energizing the vicinity of the precursor with electrodes powered at radio frequency, optionally a frequency of 10 kHz to 2.45 GHz, optionally from 10 kHz to less than 300 MHz, optionally from 1 to 50 MHz, optionally from 10 to 15 MHz, alternatively from about 13 to about 14 MHz, optionally at or about 13.56 MHz. Typically, the plasma in the PECVD process can be generated at RF frequency, although microwave or other electromagnetic energy can also be used. For providing a protective layer on the interior of a vessel by a plasma reaction carried out within the vessel, the plasma of any embodiment can be generated with an electric power of from 0.1 to 500 W, optionally from 0.1 to 400 W, optionally from 0.1 to 300 W, optionally from 1 to 250 W, optionally from 1 to 200 W, even optionally from 10 to 150 W, optionally from 20 to 150 W, for example of 40 W, optionally from 40 to 150 W, even optionally from 60 to 150 W.
For any PECVD process in any embodiment herein, PECVD can be initiated by applying an initial higher power level within the stated range, followed by a subsequent lower power level within the stated range. The initial higher power level can be applied, for example, for from 1 to 3 seconds. The subsequent lower power level can be applied, for example, for the remainder of PECVD.
For forming a coating intended to provide lubricity in addition to passivation or pH protection, the precursor can be contacted with a plasma made by energizing the vicinity of the precursor with electrodes supplied with electric power at from 0.1 to 25 W, optionally from 1 to 22 W, optionally from 1 to 10 W, even optionally from 1 to 5 W, optionally from 2 to 4 W, for example of 3 W, optionally from 3 to 17 W, even optionally from 5 to 14 W, for example 6 or 7.5 W, optionally from 7 to 11 W, for example of 8 W.
The ratio of the electrode power to the plasma volume can be less than 100 W/ml, optionally can be from 0.1 to 100 W/mL, optionally can be from 5 W/ml to 75 W/ml, optionally can be from 6 W/ml to 60 W/ml, optionally can be from 10 W/ml to 50 W/ml, optionally from 20 W/ml to 40 W/ml. These power levels are suitable for applying passivation layers or protective coatings or layers to syringes and sample tubes and pharmaceutical packages or other vessels of similar geometry having a void volume of 5 mL in which PECVD plasma can be generated. It is contemplated that for larger or smaller objects the power applied, in Watts, should be increased or reduced accordingly to scale the process to the size of the substrate.
For forming a coating intended to provide lubricity in addition to passivation or pH protection, the precursor can be contacted with a plasma made by energizing the vicinity of the precursor with electrodes supplied with electric power density at less than 10 W/ml of plasma volume, alternatively from 6 W/ml to 0.1 W/ml of plasma volume, alternatively from 5 W/ml to 0.1 W/ml of plasma volume, alternatively from 4 W/ml to 0.1 W/ml of plasma volume, alternatively from 2 W/ml to 0.2 W/ml of plasma volume, alternatively from 10 W/ml to 50 W/ml, optionally from 20 W/ml to 40 W/ml.
Optionally, in any embodiment of
Optionally, in any embodiment of
For a PECVD process the deposition time can be from 1 to 30 sec, alternatively from 2 to 10 sec, alternatively from 3 to 9 sec. The purposes for optionally limiting deposition time can be to avoid overheating the substrate, to increase the rate of production, and to reduce the use of process gas and its constituents. The purposes for optionally extending deposition time can be to provide a thicker passivation layer or pH protective coating for particular deposition conditions.
Other methods can be used to apply the passivation layer or pH protective coating. For example, hexamethyl disilazane (HMDZ) can be used as the precursor. HMDZ has the advantage of containing no oxygen in its molecular structure. This passivation layer or pH protective coating treatment is contemplated to be a surface treatment of the SiOx barrier coating or layer with HMDZ. It is contemplated that HMDZ will react with the —OH sites that are present in the silicon dioxide coating, resulting in the evolution of NH3 and bonding of S—(CH3)3 to the silicon (it is contemplated that hydrogen atoms will be evolved and bond with nitrogen from the HMDZ to produce NH3).
It is contemplated that this HMDZ passivation layer or pH protective coating can be accomplished through several possible paths.
One contemplated path can be dehydration/vaporization of the HMDZ at ambient temperature. First, an SiOx surface can be deposited, for example using hexamethyl disiloxane (HMDSO). The as-coated silicon dioxide surface then can be reacted with HMDZ vapor. In an embodiment, as soon as the SiOx surface is deposited onto the article of interest, the vacuum can be maintained. The HMDSO and oxygen are pumped away and a base vacuum is achieved. Once base vacuum is achieved, HMDZ vapor can be flowed over the surface of the silicon dioxide (as coated on the part of interest) at pressures from the mTorr range to many Torr. The HMDZ then can be pumped away (with the resulting NH3 that is a by-product of the reaction). The amount of NH3 in the gas stream can be monitored (with a residual gas analyzer—RGA—as an example) and when there is no more NH3 detected, the reaction is complete. The part then can be vented to atmosphere (with a clean dry gas or nitrogen). The resulting surface then can be found to have been passivated or protected. It is contemplated that this method optionally can be accomplished without forming a plasma.
Alternatively, after formation of the SiOx barrier coating or layer, the vacuum can be broken before dehydration/vaporization of the HMDZ. Dehydration/vaporization of the HMDZ can then be carried out in either the same apparatus used for formation of the SiOx barrier coating or layer or different apparatus.
Dehydration/vaporization of HMDZ at an elevated temperature is also contemplated. The above process can alternatively be carried out at an elevated temperature exceeding room temperature up to about 150° C. The maximum temperature can be determined by the material from which the coated part is constructed. An upper temperature should be selected that will not distort or otherwise damage the part being coated.
Dehydration/vaporization of HMDZ with a plasma assist is also contemplated. After carrying out any of the above embodiments of dehydration/vaporization, once the HMDZ vapor is admitted into the part, plasma can be generated. The plasma power can range from a few watts to 100+ watts (similar powers as used to deposit the SiOx). The above is not limited to HMDZ and could be applicable to any molecule that will react with hydrogen, for example any of the nitrogen-containing precursors described in this specification.
Surprisingly, it has been found that the above stated coatings or layers can be applied to the capped pre-assembly 12 with substantially no deposition of the vapor-deposited coating 30 in the dispensing portion lumen 26.
In certain embodiments, the generation of uniform plasma throughout the portion of the vessel to be coated is contemplated, as it has been found in certain instances to generate a better passivation layer or pH protective coating. Uniform plasma means regular plasma that does not include a substantial amount of hollow cathode plasma (which has higher emission intensity than regular plasma and can be manifested as a localized area of higher intensity interrupting the more uniform intensity of the regular plasma).
It is further contemplated that any embodiment of the passivation layer or pH protective coating processes described in this specification can also be carried out without using the article to be coated to contain the plasma. For example, external surfaces of medical devices, for example catheters, surgical instruments, closures, and others can be passivated or protected.
Non-Organosilicon Passivation Layer or pH Protective Coating
Another way of applying the passivation layer or pH protective coating can be to apply as the passivation layer or pH protective coating an amorphous carbon or fluorinated polymer coating, or a combination of the two.
Amorphous carbon coatings can be formed by PECVD using a saturated hydrocarbon, (e.g. methane, ethane, ethylene or propane), or an unsaturated hydrocarbon (e.g. ethylene, acetylene), or a combination of two or more of these as a precursor for plasma polymerization.
Fluorinated polymer coatings can be applied by chemically modifying a precursor, while on or in the vicinity of the fluid receiving interior surface.
Optionally, the precursor comprises:
The Fluorinated Polymer is:
The fluorinated polymer optionally can be applied by vapor deposition, for example chemical vapor deposition. Optionally, the fluorinated polymer can be applied by chemical vapor deposition of dimeric tetrafluoroparaxylylene. An example of a suitable fluorinated polymer can be polytetrafluoroparaxylylene. Optionally, the fluorinated polymer consists essentially of polytetrafluoroparaxylylene.
Optionally in any embodiment, the fluorinated polymer coating or layer comprises polytetrafluoroethylene. Optionally in any embodiment, the fluorinated polymer coating or layer consists essentially of polytetrafluoroethylene.
For example, in any embodiment, the fluorinated polymer coating or layer can be applied by chemically modifying a precursor, while on or in the vicinity of the fluid receiving interior surface, to produce the fluorinated polymer coating or layer on the fluid receiving interior surface. Optionally in any embodiment, the fluorinated polymer coating or layer can be applied by chemical vapor deposition. For one example, in any embodiment, the fluorinated polymer coating or layer can be applied by heated wire chemical vapor deposition (HWCVD). For another example, in any embodiment, the fluorinated polymer coating or layer can be applied by plasma enhanced chemical vapor deposition (PECVD). Mixed processes or other processes for applying a suitable coating are also contemplated, in any embodiment.
Another example of a suitable HWCVD process for applying the fluorinated polymer coating can be the process described in Hilton G. Pryce Lewis, Neeta P. Bansal, Aleksandr J. White, Erik S. Handy, HWCVD of Polymers: Commercialization and Scale-up, THIN SOLID FILMS 517 2009) 3551-3554; US Publ. Appl. 2012/0003497 A1, published Jan. 5, 2012; and US Publ. Appl. 2011/0186537, published Aug. 4, 2011, which are incorporated here by reference in their entirety for their description of fluorinated polymer coatings and their application.
It is contemplated that that amorphous carbon and/or fluorinated polymer coatings will provide better passivation or protection of an SiOx barrier coating or layer than a siloxane coating since an amorphous carbon and/or fluorinated polymer coating will not contain silanol bonds.
It is further contemplated that fluorosilicon precursors can be used to provide a passivation layer or pH protective coating over an SiOx barrier coating or layer. This can be carried out by using as a precursor a fluorinated silane precursor such as hexafluorosilane and a PECVD process. The resulting coating would also be expected to be a non-wetting coating.
Liquid-Applied Passivation Layer or pH Protective Coating
Another example of a suitable barrier or other type of passivation layer or pH protective coating, usable in conjunction with the PECVD-applied passivation layer or pH protective coating or other PECVD treatment as disclosed here, can be a liquid barrier, lubricant, surface energy tailoring, or passivation layer or pH protective coating 90 applied to the inner or interior surface of a pharmaceutical package or other vessel, either directly or with one or more intervening PECVD-applied coatings or layers described in this specification, for example SiOx, a lubricity coating or layer and/or a passivation layer or pH protective coating, or both.
A suitable liquid barrier, lubricity, or passivation layer or pH protective coating 90 also optionally can be applied, for example, by applying a liquid monomer or other polymerizable or curable material to the inner or interior surface of the vessel 80 and curing, polymerizing, or crosslinking the liquid monomer to form a solid polymer, or by applying a solvent-dispersed polymer to the surface 88 and removing the solvent.
Any of the above methods can include as a step forming a passivation layer or pH protective coating on the interior of a vessel via the vessel port at a processing station or device. One example can be applying a liquid passivation layer or pH protective coating, for example of a curable monomer, prepolymer, or polymer dispersion, to the inner or interior surface of a vessel and curing it to form a film that physically isolates the contents of the vessel from its inner or interior surface 88. The prior art describes polymer passivation layer or pH protective coating technology as suitable for treating plastic blood collection tubes. For example, the acrylic and polyvinylidene chloride (PVdC) passivation layer or pH protective coating materials and methods described in U.S. Pat. No. 6,165,566, which is hereby incorporated by reference, optionally can be used.
Any of the above methods can also include as a step forming a coating or layer on the exterior outer wall of a vessel 80. The exterior coating or layer optionally can be a barrier coating or layer or layer, optionally an oxygen barrier coating or layer or layer, or optionally a water barrier coating or layer or layer. The exterior coating or layer can also be an armor layer that protects the outer wall of a vessel 80. One example of a suitable exterior coating or layer can be polyvinylidene chloride, which functions both as a water barrier and an oxygen barrier. Optionally, the exterior coating or layer can be applied as a water-based coating or layer. The exterior coating or layer optionally can be applied by dipping the vessel in it, spraying it on the pharmaceutical package or other vessel, or other expedients.
Yet another coating modality contemplated for protecting or passivating an SiOx barrier coating or layer can be coating the barrier coating or layer using a polyamidoamine epichlorohydrin resin. For example, the barrier coating or layer can be applied by dip coating in a fluid polyamidoamine epichlorohydrin resin melt, solution or dispersion and cured by autoclaving or other heating at a temperature between 60 and 100° C.
It is contemplated that a coating of polyamidoamine epichlorohydrin resin can be preferentially used in aqueous environments between pH 5-8, as such resins are known to provide high wet strength in paper in that pH range. Wet strength is the ability to maintain mechanical strength of paper subjected to complete water soaking for extended periods of time, so it is contemplated that a coating of polyamidoamine epichlorohydrin resin on an SiOx barrier coating or layer will have similar resistance to dissolution in aqueous media. It is also contemplated that, because polyamidoamine epichlorohydrin resin imparts a lubricity improvement to paper, it will also provide lubricity in the form of a coating on a thermoplastic surface made of, for example, COC or COP.
Magnetic Treatment During PECVD
The apparatus described and illustrated in this specification, as in
Plasma can be provided in or near the surface 16 of the workpiece 12, specific examples of which are a syringe or cartridge barrel 14 or a vial 10, under conditions effective for plasma modification of the surface 16. Various types of modifications can be contemplated, individually or carried out successively or together, including but not limited to those described previously. For example, the modification can be an etching or ablating process in which the substrate can be eroded, a coating process in which a coating of material can be applied to the substrate, a chemical modification in which the surface 16 can be changed in composition, which optionally can be done without either adding or etching away bulk material. Optionally in any embodiment, the plasma modification of the surface 16 of the workpiece 12 can be chemical vapor deposition. Optionally in any embodiment, the plasma modification of the surface 16 of the workpiece 12 can be plasma enhanced chemical vapor deposition (PECVD).
At least part of the time while providing plasma, a magnetic field can be provided in or near the plasma. The magnetic field can have a position, orientation, and field strength effective to improve the uniformity, density, or both of plasma modification of the surface 16 of the workpiece 12.
Optionally in any embodiment, the surface 16 can be on a generally cylindrical interior wall defining at least a portion of a lumen 18. For example, the surface 16 optionally can be disposed on a vial 10, a syringe barrel or cartridge barrel 14, a sample collection tube, e.g. blood collection tube 268, a rigid or flexible tube, or a flexible sample bag, to provide several examples. The present invention can be also useful for non-cylindrical surfaces. For example, the local magnetic field strength, the material supply, the plasma-forming energy or any combination of these can be varied in different parts of a non-cylindrical container to provide the coating profile, whether uniform or varied, useful in a particular embodiment.
Where a uniform coating profile is desired, as for the barrier coating or layer or the pH protective coating or layer, the desired thickness uniformity range, is +/−30% from the mean thickness, more preferably +/−15% from the mean thickness and most preferably, +/−5% from the mean thickness of the particular coating or layer. A less uniform coating dictates the use of measures, such as magnetic confinement, to increase the coating uniformity.
Optionally in any embodiment, providing the magnetic field improves the uniformity, density, or both of plasma distribution in at least a portion of the lumen. As one non-limiting example, providing the magnetic field can improve the axial uniformity, density, or both of plasma distribution along at least a portion of the surface 16.
Optionally in any embodiment, the plasma can be plasma electrons and the magnetic field can be effective to improve confinement of the plasma electrons in the lumen, as by employing an electronic bottle as described in this specification. The inventors theorize, without intending to be bound by the accuracy or limits of this theory, that this confinement of electrons can be at least partially responsible for more uniformly distributing the plasma and for providing more intense yet uniform ionization of the precursor and other material in the plasma, and thus avoiding hot spots (where many or more energetic electrons collide with the vessel wall) and cool spots (where fewer or less energetic electrons collide) representing areas of differential treatment. Hot spots, for example, can cause areas of the substrate to become distorted or over-treated in the process of providing adequate treatment of the cool spots.
Optionally in any embodiment, the magnetic field can be provided by providing a magnetic field generator (any of 61-78, 86-91, 93, 95, 97, or 99), alternatively at least two magnetic field generators, optionally at least three magnetic field generators, optionally at least four magnetic field generators, optionally at least five magnetic field generators, optionally at least six magnetic field generators, optionally at least seven magnetic field generators, optionally at least eight magnetic field generators, and optionally any desired number of magnetic field generators near the surface 16, each magnetic field generator having a north pole and a south pole defining a polar axis. Optionally in any embodiment, some or all of the magnetic field generators can be placed outside the lumen (18). The principle types of magnetic field generators in common use can be permanent magnets and coils, although the invention is not limited to these types of magnetic field generators. Optionally in any embodiment, at least one magnetic field generator can be a permanent magnet (any of 61-78 or 86-91, 93, 95, 97, or 99) or a coil (for example any of 86-91, 93, 95, 97, or 99) or a combination of at least one permanent magnet and at least one coil. Either coils or permanent magnets can be used analogously to generate similar magnetic fields in various orientations.
Optionally in any embodiment, at least one permanent magnet (any of 61-72), alternatively at least two permanent magnets, alternatively at least three permanent magnets, alternatively at least four permanent magnets, alternatively at least five permanent magnets, alternatively at least six permanent magnets, alternatively at least seven permanent magnets, alternatively at least eight permanent magnets, alternatively all of the permanent magnets are bar magnets. These embodiments are illustrated by
Optionally in any embodiment, at least one permanent magnet (73-78), alternatively at least two permanent magnets, alternatively at least three permanent magnets, alternatively at least four permanent magnets, alternatively at least five permanent magnets, alternatively at least six permanent magnets, alternatively at least seven permanent magnets, alternatively at least eight permanent magnets, alternatively all of the permanent magnets are ring magnets. Ring magnets are shown, for example, in
Optionally in any embodiment, the polar axis (79) of at least one of the ring magnets (e.g. 73 or 74) can be circumferential about the ring as shown in
Optionally in any embodiment, at least part of the time while providing the magnetic field, the magnetic field generator can be provided by positioning at least one coil (any of 86-91, 93, 95, 97, or 99) near the surface and conducting an electrical current through the coil.
Optionally in any embodiment, at least one coil can be a solenoid 86. The solenoid optionally can be oriented with its axis 79 at least generally parallel to the axis 80 of the surface, alternatively with its axis 79 at least generally collinear with the axis 80 of the surface. Optionally in any embodiment, the surface can be located entirely within the solenoid coil (86).
Optionally in any embodiment, at least one coil can be, or include, a generally toroidal coil 88 or 90 having a central opening and a geometric axis 79 passing through its central opening, as illustrated in
Optionally in any embodiment, illustrated in
A coil can have a full length core, a partial length core, a solid core, a hollow core, or no core, and the core can be a permanent magnet that generates a magnetic field in itself, a temporarily magnetizable material that generates a magnetic field when energized by the coil, or a magnetically inactive form for winding the coil. A conventional magnetizable core material is an iron or ferrite body.
Optionally in any embodiment, the coil can be energized with DC or AC energy. It is contemplated that a coil energized with AC energy, for example 60 Hz alternating current, will periodically reverse poles, which is contemplated to improve the uniformity of deposition or other surface treatment, much like the moving quadrupole array described below functions.
Optionally in any embodiment, two or more magnetic field generators can be spaced to define a recess 81 between them, within which at least a portion of the surface 16 of the workpiece can be positioned.
Various orientations of the magnetic fields have been found to be useful in improving the uniformity or other results of PECVD treatment. As one example, at least part of the time while providing the magnetic field, a magnetic field generator (any of 61-78 or 86-91, 93, 95, 97, or 99), alternatively at least two of the magnetic field generators, alternatively at least three of the magnetic field generators, alternatively at least four of the magnetic field generators, alternatively at least five of the magnetic field generators, alternatively at least six of the magnetic field generators, alternatively at least seven of the magnetic field generators, alternatively at least eight of the magnetic field generators, alternatively all of the magnetic field generators, can have their polar axes 78 generally parallel to the axis 80 of the surface 16. Examples of this orientation are found in
As another example, at least part of the time while providing the magnetic field, at least two of the magnetic field generators (any of 61-78 or 86-91, 93, 95, 97, or 99), alternatively at least three of the magnetic field generators, alternatively at least four of the magnetic field generators, alternatively at least five of the magnetic field generators, alternatively at least six of the magnetic field generators, alternatively at least seven of the magnetic field generators, alternatively at least eight of the magnetic field generators, alternatively all of the magnetic field generators, can be circumferentially distributed around the surface 16 when the workpiece and magnetic field generators are in the operative position for plasma treatment, as illustrated in
Optionally in any embodiment, an even number of at least four magnetic field generators (for example, the magnets 61-64 or 61a-64a of
Optionally in any embodiment, at least part of the time while providing the magnetic field, at least two of the magnetic field generators, alternatively at least three of the magnetic field generators, alternatively at least four of the magnetic field generators, alternatively at least five of the magnetic field generators, alternatively at least six of the magnetic field generators, alternatively at least seven of the magnetic field generators, alternatively at least eight of the magnetic field generators, alternatively all of the magnetic field generators, can be substantially circumferentially equidistant from the adjacent magnetic field generators when the workpiece and magnetic field generators are in the operative position. This is illustrated in
Optionally in any embodiment, at least part of the time while providing the magnetic field, at least two of the magnetic field generators (any of 61-78 or 86-91, 93, 95, 97, or 99), alternatively at least three of the magnetic field generators, alternatively at least four of the magnetic field generators, alternatively at least five of the magnetic field generators, alternatively at least six of the magnetic field generators, alternatively at least seven of the magnetic field generators, alternatively at least eight of the magnetic field generators, alternatively all of the magnetic field generators, can be axially stacked with respect to the generally cylindrical surface, as illustrated for example in
Optionally in any embodiment, at least part of the time while providing the magnetic field, at least two of the axially stacked magnetic field generators (any of 61-78 or 86-91, 93, 95, 97, or 99), alternatively at least three of the axially stacked magnetic field generators, alternatively at least four of the axially stacked magnetic field generators, alternatively at least five of the axially stacked magnetic field generators, alternatively at least six of the axially stacked magnetic field generators, alternatively at least seven of the axially stacked magnetic field generators, alternatively at least eight of the axially stacked magnetic field generators, alternatively all of the axially stacked magnetic field generators, can be axially spaced from each other. This orientation is illustrated, for example, in
Optionally in any embodiment, at least part of the time while providing the magnetic field, at least two of the axially stacked magnetic field generators (any of 61-78 or 86-91, 93, 95, 97, or 99), alternatively at least three of the axially stacked magnetic field generators, alternatively at least four of the axially stacked magnetic field generators, alternatively at least five of the axially stacked magnetic field generators, alternatively at least six of the axially stacked magnetic field generators, alternatively at least seven of the axially stacked magnetic field generators, alternatively at least eight of the axially stacked magnetic field generators, alternatively all of the axially stacked magnetic field generators, axially abut each other.
Optionally in any embodiment, at least part of the time while providing the magnetic field, at least one magnetic field generator can be oriented with its polar axis 79 at least generally parallel to the axis 80 of the surface. Alternatively or in addition, at least part of the time while providing the magnetic field, at least one magnetic field generator can be oriented with its polar axis 79 at least generally collinear with the axis 80 of the surface. These orientations are illustrated by
Optionally in any embodiment, at least part of the time while providing the magnetic field, the magnetic field generator can have a passage extending along its polar axis and the surface can be located entirely within the passage. These orientations are illustrated by
Optionally in any embodiment, the magnetic field generator can be a Helmholtz coil, which, as illustrated in
Optionally in any embodiment, at least part of the time while providing the magnetic field, the magnetic field generator can provide a field strength that varies along the workpiece surface 16. This varying field strength can be provided in various ways. Optionally in any embodiment, at least part of the time while providing the magnetic field, the distance between at least one magnetic field generator and the workpiece surface can vary along the workpiece surface 16, as illustrated in
Optionally in any embodiment, at least part of the time while providing the plasma and not providing the magnetic field, the plasma modification of the surface 16 of the workpiece 12 varies along the workpiece surface to define a profile of varying plasma modification. In other words, without applying the magnetic field, the degree or kind of plasma modification at various points on the workpiece surface might not be uniform for given apparatus operated under given conditions. This variation might be desirable or undesirable. If undesirable in a particular embodiment, at least part of the time while providing the magnetic field, the magnetic field generators can be configured and operated under conditions such that variations in the profile of magnetic field strength tend to counteract variations of plasma modification. By counteracting variations in the plasma process with magnetic variations, the uniformity, density, or both of plasma modification of the surface 16 of the workpiece 12 can be made more uniform.
Optionally in any embodiment, at least part of the time while providing the magnetic field, at least a portion of the plasma can be at least partially confined to the vicinity of the workpiece in an “electron bottle.” Electron bottles can be created in various ways.
One example of an electron bottle is shown in
The ends of the electron bottle can be defined in
An alternative to
Moreover, the individual features of any of the embodiments of
Thus, optionally in any syringe embodiment of the invention, for example one in which the workpiece is a syringe or cartridge barrel 14 or syringe body and needle assembly 12, any of which have a needle end (whether or not the needle is present at the time), a back end opposite the needle end, and a body portion between the needle end and back end, the electron bottle can be defined by structure providing a stronger magnetic field at or near the needle end than at or near at least part of the body portion.
Optionally in any syringe embodiment of the invention, the electron bottle can be defined by structure providing a stronger magnetic field at or near the back end than at or near at least part of the body portion, illustrated in
For embodiments in which the workpiece is a vial 10 having an open end, a closed end, and a body portion between the ends, the electron bottle can be defined by structure providing a stronger magnetic field at or near the closed end of the vial than at or near at least part of the body portion of the vial as in the Figures mentioned in connection with syringe treatment or vial treatment above. The electron bottle can be defined by structure providing a stronger magnetic field at or near the open end of the vial than at or near at least part of the body portion of the vial. The electron bottle can be defined by structure providing stronger magnetic fields at or near the closed end and the open end of the vial than at or near at least part of the body portion of the vial. The electron bottle can be defined by structure providing an electron mirror at or near the closed end of the vial. The electron bottle can be further defined by structure providing an electron mirror at or near the open end of the vial.
Optionally in any embodiment, the structure providing an electron mirror can be at least a portion of a magnetic field generator, as in
Optionally in any embodiment, at least one magnetic field generator 73-78, alternatively at least two magnetic field generators, alternatively at least three magnetic field generators, alternatively at least four magnetic field generators, alternatively at least five magnetic field generators, alternatively at least six magnetic field generators, alternatively at least seven magnetic field generators, alternatively at least eight magnetic field generators, alternatively all of the magnetic field generators can be ring magnets having central apertures sized to receive the workpiece surface 16, as shown in any of
Optionally in any embodiment, the north and south poles of at least one of the ring magnets 75-78 can be its opposed annular faces as shown in any of
Optionally in any embodiment, one or more additional magnets can be positioned between a cap magnet and the stack of interior ring magnets illustrated, for example, in
Optionally in any embodiment, at least part of the time while providing the magnetic field, an even number of at least four magnetic field generators 61-64 or 61a-64a can be arranged about an axis to provide a quadrupole or analogous structure, as shown in
Optionally in any embodiment, at least part of the time while providing the magnetic field, the quadrupole can be effective to at least partially confine the plasma at or near at least a portion of the workpiece surface. Optionally in any embodiment, at least part of the time while providing the magnetic field, a magnetic field generator having an axial polar axis can be positioned at or near at least one of the axially spaced ends. Optionally in any embodiment, at least part of the time while providing the magnetic field, magnetic field generators having axial polar axes can be positioned at or near both of the axially spaced ends.
Optionally in any embodiment, at least one of the magnetic field generators having axial polar axes can be a ring magnet. Optionally in any embodiment, at least one of the magnetic field generators having axial polar axes can be a cap magnet. Optionally in any embodiment, at least one of the magnetic field generators having axial polar axes can be a bar magnet.
Optionally in any embodiment, at least part of the time while providing the magnetic field, a magnetic field generator (any of 61-78 or 86-91, 93, 95, 97, or 99), alternatively at least two of the magnetic field generators, alternatively at least three of the magnetic field generators, alternatively at least four of the magnetic field generators, alternatively at least five of the magnetic field generators, alternatively at least six of the magnetic field generators, alternatively at least seven of the magnetic field generators, alternatively at least eight of the magnetic field generators, alternatively all of the magnetic field generators, can be rotated about the surface 16, or the surface can rotate with respect to one, more than one, or all of the magnetic field generators, or both, during at least a portion of the plasma treatment. This is illustrated in or usable with the embodiments of
Referring in particular to
Optionally in any embodiment, at least one magnetic field generator, the workpiece surface, or both, can be rotated at a rate effective to improve the uniformity, density, or both of the average magnetic field strength, or to improve the uniformity, reduce the intensity, or both of workpiece heating about a circumference of the workpiece surface, as illustrated in the working examples. Optionally in any embodiment, the rotation can be concentric or eccentric. Concentric rotation or closely circumferentially spaced magnetic field generators or uniform magnetic field strength generated by the various generators, or any combination of two or more of these, can be contemplated to provide more uniform treatment of the whole surface at the same time, while eccentric rotation or more widely circumferentially spaced magnetic field generators or variations in the magnetic strength of the magnetic field generators, or any combination of two or more of these, can be contemplated to periodically increase and decrease the magnetic field strength and heating at any particular point around the circumference of the treated surface, allowing a particular point around the circumference some cooling time between more intense applications of magnetic energy.
Instead or in addition to rotation of the magnetic field generators, the workpiece surface can rotate with respect to one, more than one, or all of the magnetic field generators, or both, during at least a portion of the plasma treatment. This is illustrated in or usable with the embodiments of
Optionally in any embodiment, at least part of the time while providing the magnetic field, at least one of the magnetic field generators can be translated (moved in a straight line), for example axially, along the workpiece surface, or the workpiece surface can be translated with respect to the magnetic field generator, or both, at a rate effective to improve the uniformity of workpiece heating along the axis of the workpiece surface. The embodiments of
Optionally in any embodiment, an array of coils employed as magnetic field generators can be energized in a way causing the magnetic field about the workpiece to move, without physical motion of the coils or workpiece. For example, a series of eight solenoids arranged to form a quadrupole about a center, with their axes oriented radially, can be energized with alternating current with the phase of each coil 45 degrees ahead of the coil to its left and 45 degrees behind the coil to its right. As the phases change, the effect is similar to that provided by rotating the same quadrupole about its center, with its adjacent magnets energized with constant DC currents of opposite direction.
Optionally in any embodiment the PECVD parameters are controlled such that the distance between the inlet tube and the wall of the syringe barrel or other part undergoing PECVD is:
The Debye Length is defined by the following equation:
in which λD is the Debye length,
ε0 is the permittivity of free space,
kB is the Boltzmann constant,
qe is the charge of an electron,
Te and Ti are the temperatures of the electrons and ions, respectively,
ne is the density of electrons,
nij is the density of atomic species i, with positive ionic charge jqe
Optionally in any embodiment, the uniformity of plasma modification can be expressed as a ratio of:
one standard deviation of coating thickness:mean coating thickness and the ratio can be less than 0.69, alternatively from 0.69 to 0.01, alternatively from 0.69 to 0.05, alternatively from 0.66 to 0.1, alternatively from 0.66 to 0.2, alternatively from 0.66 to 0.21, alternatively less than 0.6, alternatively from 0.6 to 0.01, alternatively from 0.6 to 0.05, alternatively from 0.6 to 0.1, alternatively from 0.6 to 0.2, alternatively from 0.6 to 0.21, alternatively less than 0.5, alternatively from 0.5 to 0.01, alternatively from 0.5 to 0.05, alternatively from 0.5 to 0.1, alternatively from 0.5 to 0.2, alternatively from 0.5 to 0.21, alternatively less than 0.4, alternatively from 0.4 to 0.01, alternatively from 0.4 to 0.05, alternatively from 0.4 to 0.1, alternatively from 0.4 to 0.2, alternatively from 0.4 to 0.21, alternatively less than 0.3, alternatively from 0.3 to 0.01, alternatively from 0.3 to 0.05, alternatively from 0.3 to 0.1, alternatively from 0.3 to 0.2, alternatively from 0.3 to 0.21.
Optionally in any embodiment, the plasma modification can be application of a coating having a mean thickness between 1 and 1000 nm and a standard deviation of less than 190 nm, alternatively from 190 to 10 nm, alternatively from 190 to 20 nm, alternatively from 190 to 30 nm, alternatively from 190 to 40 nm, alternatively from 190 to 50 nm, alternatively from 190 to 60 nm, alternatively from 190 to 70 nm, alternatively from 190 to 80 nm, alternatively less than 161 nm, alternatively from 160 to 10 nm, alternatively from 160 to 20 nm, alternatively from 160 to 30 nm, alternatively from 160 to 40 nm, alternatively from 160 to 50 nm, alternatively from 160 to 60 nm, alternatively from 160 to 70 nm, alternatively from 160 to 80 nm, alternatively less than 140 nm, alternatively from 140 to 10 nm, alternatively from 140 to 20 nm, alternatively from 140 to 30 nm, alternatively from 140 to 40 nm, alternatively from 140 to 50 nm, alternatively from 140 to 60 nm, alternatively from 140 to 70 nm, alternatively from 140 to 80 nm, alternatively less than 122 nm, alternatively from 120 to 10 nm, alternatively from 120 to 20 nm, alternatively from 120 to 30 nm, alternatively from 120 to 40 nm, alternatively from 120 to 50 nm, alternatively from 120 to 60 nm, alternatively from 120 to 70 nm, alternatively from 120 to 80 nm, alternatively less than 100 nm, alternatively from 100 to 10 nm, alternatively from 100 to 20 nm, alternatively from 100 to 30 nm, alternatively from 100 to 40 nm, alternatively from 100 to 50 nm, alternatively from 100 to 60 nm, alternatively from 100 to 70 nm, alternatively from 100 to 80 nm, alternatively less than 80 nm, alternatively from 80 to 10 nm, alternatively from 80 to 20 nm, alternatively from 80 to 30 nm, alternatively from 80 to 40 nm, alternatively from 80 to 50 nm, alternatively from 80 to 60 nm, alternatively from 80 to 70 nm.
Magnetic Treatment Apparatus
Additional details of apparatus usable in any embodiment for plasma modifying a workpiece 12 supported on a workpiece support 114 in the presence of a magnetic field are illustrated for example in
The workpiece 12 used in any embodiment optionally has a lumen 18 surrounded by a wall 16. At least part of the wall 16, here, substantially the entire interior surface, can define a surface to be treated.
The plasma generator can be used for providing plasma within the lumen 18 of a workpiece 12 supported on the workpiece support 114 under conditions effective for plasma modification of the surface 16 of the workpiece 12.
The magnetic field generator can be used for providing a magnetic field in at least a portion of the lumen 18 of a workpiece 12 supported on the workpiece support 114. The resulting magnetic field can have an orientation and field strength effective to improve the uniformity, density, or both of plasma modification of the interior surface of the generally cylindrical wall 16.
Optionally in any embodiment, at least one magnetic field generator, alternatively at least two magnetic field generators, optionally at least three magnetic field generators, optionally at least four magnetic field generators, optionally at least five magnetic field generators, optionally at least six magnetic field generators, optionally at least seven magnetic field generators, optionally at least eight magnetic field generators can be located outside a workpiece 12 in their operative position.
Optionally in any embodiment, the interior portion 81 of the solenoid 86 can be an interior winding 89. At least one of the end portions 86 or 87 providing a stronger magnetic field when energized can be a separate exterior winding 97 or 99. For example, the interior winding 89 can be provided with lower amperage than the separate exterior winding 97 or 99 when the windings can be energized, or the interior winding 89 can have fewer total turns per cm of the axis than the exterior winding 97 or 99.
As a more specific, non-limiting example, the solenoid can have a single winding extending along the interior portion 81 and the first and second opposed end portions 86 and 87, the winding having more turns per cm along the axis at or near the first and second opposed end portions 86 and 87 than along the interior portion 81.
Optionally in any embodiment, magnetic field generators can be arranged to provide the following capabilities, individually or in combination: The material supply tube 104 can rotate with respect to the magnetic field provided by the magnetic field generators (any of 61-78 or 86-91, 93, 95, 97, or 99) and the workpiece support 114. The magnetic field provided by the magnetic field generators can rotate with respect to the material supply tube and the workpiece support. The workpiece support can rotate with respect to the material supply tube and the magnetic field provided by the magnetic field generators. The material supply tube and the magnetic field provided by the magnetic field generators can rotate at the same or different rotation rates and directions with respect to the workpiece support. The magnetic field provided by the magnetic field generators and the workpiece support can rotate at the same or different rotation rates and directions with respect to the material supply tube. The material supply tube and the workpiece support can rotate at the same or different rotation rates and directions with respect to the magnetic field provided by the magnetic field generators.
Optionally in any embodiment, apparatus can be provided for measuring plasma characteristics. As one example, an optical detector 350, for example a camera, can be provided and configured to show whether the plasma in a container includes streamers of non-uniform plasma versus a complete fill of the exposed portions of the container with uniform plasma. As another example, an optical emissions spectrometer can be provided to determine the uniformity of the plasma spectrum. As still another example, a Rogowski Coil 352 disposed about the inner electrode or its power supply conductor to determine the uniformity of the current supplied to the plasma. As even another example, a Langmuir probe 354 can be provided to measure the electron temperature of the plasma. The probe 354 can either be mounted on the internal electrode 108 or provided as a separate part or system.
Fluid Material
Optionally for any of the embodiments of
Optionally for any of the embodiments of
Optionally for any of the embodiments of
Optionally for any of the embodiments of
Inhalation Anesthetics
Fragmin
Fuzeon (enfuvirtide)
GA101
Nystatin (oral) (Nystatin Oral Suspension)
Anti-Smooth Muscle antibody
As several examples, the fluid material 40 can be an inhalation anesthetic, a drug, or a diagnostic test material. Any of these fluid materials 40 can be an injectable material, a volatile material capable of being inhaled, or otherwise capable of being introduced into a subject.
Other Uses of the Passivation Layer or pH Protective Coating
A vessel with a passivation layer or pH protective coating as described herein can also be evacuated and stored in an evacuated state. For example, the passivation layer or pH protective coating allows better maintenance of the vacuum in comparison to a corresponding vessel without a passivation layer or pH protective coating. In one aspect of this embodiment, the vessel with a passivation layer or pH protective coating can be a blood collection tube. The tube can also contain an agent for preventing blood clotting or platelet activation, for example EDTA or heparin.
Even another embodiment can be a medical or diagnostic kit including a vessel having a passivation layer or pH protective coating as defined in any embodiment herein on a substrate as defined in any embodiment herein. Optionally, the kit additionally includes a medicament or diagnostic agent as defined in any embodiment herein which is contained in the vessel with a passivation layer or pH protective coating in contact with the coating or layer; and/or a hypodermic needle, double-ended needle, or other delivery conduit; and/or an instruction sheet.
Use of the passivation layer or pH protective coating according to any described embodiment is contemplated for preventing or reducing precipitation and/or clotting or platelet activation of a compound or a component of the composition in contact with the coating or layer.
The use of a coated substrate according to any described embodiment is contemplated for storing insulin. As one option, precipitation of the insulin can be prevented or reduced by providing vessel to contain the insulin having a contact surface including a passivation layer or pH protective coating.
As another option, the compound or a component of the composition can be blood or a blood fraction, and blood clotting or platelet activation can be prevented or reduced by storing the blood in the blood collection tube in contact with a passivation layer or pH protective coating. Optionally, the blood collection tube can contain an agent for preventing blood clotting or platelet activation, for example ethylenediamineteetraacetic acid (EDTA), a sodium salt thereof, or heparin. The blood collection tube can include a passivation layer or pH protective coating for preventing the agent from attacking an SiOx barrier coating or layer in the vessel. The use of a coated substrate according to any described embodiment is contemplated for storing blood. Optionally, the stored blood can be viable for return to the vascular system of a patient.
Use of a coating or layer according to any described embodiment can be contemplated as (i) a lubricity coating having a lower frictional resistance than the uncoated surface; and/or (ii) a passivation layer or pH protective coating preventing dissolution of the barrier coating or layer in contact with a fluid, and/or (iii) a hydrophobic layer that can be more hydrophobic than the uncoated surface.
Measurement of Coating Thickness
The thickness of a PECVD coating or layer such as the passivation layer or pH protective coating, the barrier coating or layer, the lubricity coating or layer, and/or a composite of any two or more of these layers can be measured, for example, by transmission electron microscopy (TEM).
The TEM can be carried out, for example, as follows. Samples can be prepared for Focused Ion Beam (FIB) cross-sectioning in two ways. Either the samples can be first coated with a thin layer of carbon (50-100 nm thick) and then coated with a sputtered coating or layer of platinum (50-100 nm thick) using a K575X Emitech passivation layer or pH protective coating system, or the samples can be coated directly with the protective sputtered Pt layer. The coated samples can be placed in an FEI FIB200 FIB system. An additional coating or layer of platinum can be FIB-deposited by injection of an organometallic gas while rastering the 30 kV gallium ion beam over the area of interest. The area of interest for each sample can be chosen to be a location half way down the length of the syringe barrel. Thin cross sections measuring approximately 15 μm (“micrometers”) long, 2 μm wide and 15 μm deep can be extracted from the die surface using an in-situ FIB lift-out technique. The cross sections can be attached to a 200 mesh copper TEM grid using FIB-deposited platinum. One or two windows in each section, measuring about 8 μm wide, can be thinned to electron transparency using the gallium ion beam of the FEI FIB.
Cross-sectional image analysis of the prepared samples can be performed utilizing either a Transmission Electron Microscope (TEM), or a Scanning Transmission Electron Microscope (STEM), or both. All imaging data can be recorded digitally. For STEM imaging, the grid with the thinned foils can be transferred to a Hitachi HD2300 dedicated STEM. Scanning transmitted electron images can be acquired at appropriate magnifications in atomic number contrast mode (ZC) and transmitted electron mode (TE). The following instrument settings can be used.
For TEM analysis the sample grids can be transferred to a Hitachi HF2000 transmission electron microscope. Transmitted electron images can be acquired at appropriate magnifications. The relevant instrument settings used during image acquisition can be those given below.
Basic Protocols for Forming and Coating Syringe Barrels
The pharmaceutical packages or other vessels tested in the subsequent working examples were formed and coated according to the following exemplary protocols, except as otherwise indicated in individual examples. Particular parameter values given in the following basic protocols, for example the electric power and gaseous reactant or process gas flow, are typical values. When parameter values were changed in comparison to these typical values, this will be indicated in the subsequent working examples. The same applies to the type and composition of the gaseous reactant or process gas.
In some instances, the reference characters and Figures mentioned in the following protocols and additional details can be found in U.S. Pat. No. 7,985,188.
Protocol for Coating Syringe Barrel Interior with SiOx
The apparatus and protocol generally as found in U.S. Pat. No. 7,985,188 were used for coating syringe barrel interiors with an SiOx barrier coating or layer, in some cases with minor variations. A similar apparatus and protocol were used for coating vials with an SiOx barrier coating or layer, in some cases with minor variations.
Protocol for Coating Syringe Barrel Interior with OMCTS Passivation Layer or pH Protective Coating
Syringe barrels already interior coated with a barrier coating or layer of SiOx, as previously identified, are further interior coated with a passivation layer or pH protective coating as previously identified, generally following the protocols of U.S. Pat. No. 7,985,188 for applying the lubricity coating or layer, except with modified conditions in certain instances as noted in the working examples. The conditions given here are for a COC syringe barrel, and can be modified as appropriate for syringe barrels made of other materials. The apparatus as generally shown in
The syringe barrel is carefully moved into the sealing position over the extended probe or counter electrode 108 and pushed against a plasma screen. The plasma screen is fit snugly around the probe or counter electrode 108 insuring good electrical contact. The probe or counter electrode 108 is grounded to the casing of the RF matching network.
The gas delivery port 110 is connected to a manual ball valve or similar apparatus for venting, a thermocouple pressure gauge and a bypass valve connected to the vacuum pumping line. In addition, the gas system is connected to the gas delivery port 110 allowing the gaseous reactant or process gas, octamethylcyclotetrasiloxane (OMCTS) (or the specific gaseous reactant or process gas reported for a particular example) to be flowed through the gas delivery port 110 (under process pressures) into the interior of the syringe barrel.
The gas system is comprised of a commercially available heated mass flow vaporization system that heats the OMCTS to about 100° C. The heated mass flow vaporization system is connected to liquid octamethylcyclotetrasiloxane (Alfa Aesar® Part Number A12540, 98%). The OMCTS flow rate is set to the specific organosilicon precursor flow reported for a particular example. To ensure no condensation of the vaporized OMCTS flow past this point, the gas stream is diverted to the pumping line when it is not flowing into the interior of the COC syringe barrel for processing.
Once the syringe barrel is installed, the vacuum pump valve is opened to the vessel support 50 and the interior of the COC syringe barrel. A vacuum pump and blower comprise the vacuum pump system. The pumping system allows the interior of the COC syringe barrel to be reduced to pressure(s) of less than 100 mTorr while the gaseous reactant or process gases is flowing at the indicated rates.
Once the base vacuum level is achieved, the vessel support 50 assembly is moved into the electrode 160 assembly. The gas stream (OMCTS vapor) is flowed into the gas delivery port 110 (by adjusting the 3-way valve from the pumping line to the gas delivery port 110. The plasma for PECVD, if used, can be generated at reduced pressure and the reduced pressure can be less than 300 mTorr, optionally less than 200 mTorr, even optionally less than 100 mTorr. Pressure inside the COC syringe barrel can be, as one example, approximately 140 mTorr as measured by a capacitance manometer (MKS) installed on the pumping line near the valve that controls the vacuum. In addition to the COC syringe barrel pressure, the pressure inside the gas delivery port 110 and gas system is also measured with the thermocouple vacuum gauge that is connected to the gas system. This pressure is typically less than 6 Torr.
Once the gas is flowing to the interior of the COC syringe barrel, the RF power supply is turned on to its fixed power level or as otherwise indicated in a specific example or description. The physical and chemical properties of the passivation layer or pH protective coating can be set by setting the ratio of oxidizing gas to the organosilicon precursor in the gaseous reactant, and/or by setting the electric power used for generating the plasma. A 600 Watt RF power supply is used (at 13.56 MHz) at a fixed power level or as otherwise indicated in a specific example or description. The RF power supply is connected to an auto match which matches the complex impedance of the plasma (to be created in the vessel) to the output impedance of the RF power supply. The forward power is as stated and the reflected power is 0 Watts so that the stated power is delivered to the interior of the vessel. The RF power supply is controlled by a laboratory timer and the power on time set to 10 seconds (or a different time stated in a given example).
Upon initiation of the RF power, uniform plasma is established inside the interior of the vessel. The plasma is maintained for the entire passivation layer or pH protective coating time, until the RF power is terminated by the timer. The plasma produces a passivation layer or pH protective coating on the interior of the vessel.
After applying the passivation layer or pH protective coating, the gas flow is diverted back to the vacuum line and the vacuum valve is closed. The vent valve is then opened, returning the interior of the COC syringe barrel to atmospheric pressure (approximately 760 Torr). The treated vessel is then carefully removed from the vessel support 50 assembly (after moving the vessel support 50 assembly out of the electrode 160 assembly).
A similar protocol is used, except using apparatus generally like that of
Protocol for Total Silicon Measurement
This protocol is used to determine the total amount of silicon coatings present on the entire vessel wall. A supply of 0.1 N potassium hydroxide (KOH) aqueous solution is prepared, taking care to avoid contact between the solution or ingredients and glass. The water used is purified water, 18 mo quality. A Perkin Elmer Optima Model 7300DV ICP-OES instrument is used for the measurement except as otherwise indicated.
Each device (vial, syringe, tube, or the like) to be tested and its cap and crimp (in the case of a vial) or other closure are weighed empty to 0.001 g, then filled completely with the KOH solution (with no headspace), capped, crimped, and reweighed to 0.001 g. In a digestion step, each vial is placed in a sonicating water bath at 40° C. for a minimum of 8-10 hours. The digestion step is carried out to quantitatively remove the silicon coatings from the vessel wall into the KOH solution. After this digestion step, the vials are removed from the sonicating water bath and allowed to cool to room temperature. The contents of the vials are transferred into 15 ml ICP tubes. The total Si concentration is run on each solution by ICP/OES following the operating procedure for the ICP/OES.
The total Si concentration is reported as parts per billion of Si in the KOH solution. This concentration represents the total amount of silicon coatings that were on the vessel wall before the digestion step was used to remove it.
The total Si concentration can also be determined for fewer than all the silicon layers on the vessel, as when an SiOx barrier coating or layer is applied, an SiOxCy second layer (for example, a lubricity layer or a passivation layer or pH protective coating) is then applied, and it is desired to know the total silicon concentration of just the SiOxCy layer. This determination is made by preparing two sets of vessels, one set to which only the SiOx layer is applied and the other set to which the same SiOx layer is applied, followed by the SiOxCy layer or other layers of interest. The total Si concentration for each set of vessels is determined in the same manner as described above. The difference between the two Si concentrations is the total Si concentration of the SiOxCy second layer.
Protocol for Measuring Dissolved Silicon in a Vessel
In some of the working examples, the amount of silicon dissolved from the wall of the vessel by a test solution is determined, in parts per billion (ppb), for example to evaluate the dissolution rate of the test solution. This determination of dissolved silicon is made by storing the test solution in a vessel provided with an SiOx and/or SiOxCy coating or layer under test conditions, then removing a sample of the solution from the vessel and testing the Si concentration of the sample. The test is done in the same manner as the Protocol for Total Silicon Measurement, except that the digestion step of that protocol is replaced by storage of the test solution in the vessel as described in this protocol. The total Si concentration is reported as parts per billion of Si in the test solution
Protocol for Determining Average Dissolution Rate
The average dissolution rates reported in the working examples are determined as follows. A series of test vessels having a known total silicon measurement are filled with the desired test solution analogous to the manner of filling the vials with the KOH solution in the Protocol for Total Silicon Measurement. (The test solution can be a physiologically inactive test solution as employed in the present working examples or a physiologically active pharmaceutical preparation intended to be stored in the vessels to form a pharmaceutical package). The test solution is stored in respective vessels for several different amounts of time, then analyzed for the Si concentration in parts per billion in the test solution for each storage time. The respective storage times and Si concentrations are then plotted. The plots are studied to find a series of substantially linear points having the steepest slope.
The plot of dissolution amount (ppb Si) versus days decreases in slope with time. It is believed that the dissolution rate is not flattening out because the Si layer has been fully digested by the test solution.
For the PC194 test data in Table 10 below, linear plots of dissolution versus time data are prepared by using a least squares linear regression program to find a linear plot corresponding to the first five data points of each of the experimental plots. The slope of each linear plot is then determined and reported as representing the average dissolution rate applicable to the test, measured in parts per billion of Si dissolved in the test solution per unit of time.
Protocol for Determining Calculated Shelf Life
The calculated shelf life values reported in the working examples below are determined by extrapolation of the total silicon measurements and average dissolution rates, respectively determined as described in the Protocol for Total Silicon Measurement and the Protocol for Determining Average Dissolution Rate. The assumption is made that under the indicated storage conditions the SiOxCy passivation layer or pH protective coating will be removed at the average dissolution rate until the coating is entirely removed. Thus, the total silicon measurement for the vessel, divided by the dissolution rate, gives the period of time required for the test solution to totally dissolve the SiOxCy coating. This period of time is reported as the calculated shelf life. Unlike commercial shelf life calculations, no safety factor is calculated. Instead, the calculated shelf life is the calculated time to failure.
It should be understood that because the plot of ppb Si versus hours decreases in slope with time, an extrapolation from relatively short measurement times to relatively long calculated shelf lives is believed to be a “worst case” test that tends to underestimate the calculated shelf life actually obtainable.
SEM Procedure
SEM Sample Preparation: Each syringe sample was cut in half along its length (to expose the inner or interior surface). The top of the syringe (Luer end) was cut off to make the sample smaller.
The sample was mounted onto the sample support with conductive graphite adhesive, then put into a Denton Desk IV SEM Sample Preparation System, and a thin (approximately 50 Å) gold passivation layer or pH protective coating was sputtered onto the inner or interior surface of the syringe. The gold passivation layer or pH protective coating is required to eliminate charging of the surface during measurement.
The sample was removed from the sputter system and mounted onto the sample stage of a Jeol JSM 6390 SEM (Scanning Electron Microscope). The sample was pumped down to at least 1×10−6 Torr in the sample compartment. Once the sample reached the required vacuum level, the slit valve was opened and the sample was moved into the analysis station.
The sample was imaged at a coarse resolution first, then higher magnification images were accumulated. The SEM images provided in the Figures are 5 μm edge-to-edge (horizontal and vertical).
AFM (Atomic Force Microscopy) Procedure.
AFM images were collected using a NanoScope III Dimension 3000 machine (Digital Instruments, Santa Barbara, Calif., USA). The instrument was calibrated against a NIST traceable standard. Etched silicon scanning probe microscopy (SPM) tips were used. Image processing procedures involving auto-flattening, plane fitting or convolution were employed. One 10 μm×10 μm area was imaged. Roughness analyses were performed and were expressed in: (1) Root-Mean-Square Roughness, RMS; 2 Mean Roughness, Ra; and (3) Maximum Height (Peak-to-Valley), Rmax, all measured in nm (see Table 5). For the roughness analyses, each sample was imaged over the 10 μm×10 μm area, followed by three cross sections selected by the analyst to cut through features in the 10 μm×10 μm images. The vertical depth of the features was measures using the cross section tool. For each cross section, a Root-Mean-Square Roughness (RMS) in nanometers was reported. These RMS values along with the average of the three cross sections for each sample are listed in Table 5.
Additional analysis of the 10 μm×10 μm images represented by Examples Q, T and V was carried out. For this analysis three cross sections were extracted from each image. The locations of the cross sections were selected by the analyst to cut through features in the images. The vertical depth of the features was measured using the cross section tool.
The Digital Instruments Nanoscope III AFM/STM acquires and stores 3-dimensional representations of surfaces in a digital format. These surfaces can be analyzed in a variety of ways.
The Nanoscope III software can perform a roughness analysis of any AFM or S™ image. The product of this analysis is a single page reproducing the selected image in top view. To the upper right of the image is the “Image Statistics” box, which lists the calculated characteristics of the whole image minus any areas excluded by a stopband (a box with an X through it). Similar additional statistics can be calculated for a selected portion of the image and these are listed in the “Box Statistics” in the lower right portion of the page. What follows is a description and explanation of these statistics.
Image Statistics:
Z Range (Rp): The difference between the highest and lowest points in the image. The value is not corrected for tilt in the plane of the image; therefore, plane fitting or flattening the data will change the value.
Mean: The average of all of the Z values in the imaged area. This value is not corrected for the tilt in the plane of the image; therefore, plane fitting or flattening the data will change this value.
RMS (Rq): This is the standard deviation of the Z values (or RMS roughness) in the image. It is calculated according to the formula:
Rq={Σ(Z1−Zavg)2/N}
where Zavg is the average Z value within the image; Z1 is the current value of Z; and N is the number of points in the image. This value is not corrected for tilt in the plane of the image; therefore, plane fitting or flattening the data will change this value.
Mean roughness (Ra): This is the mean value of the surface relative to the Center Plane and is calculated using the formula:
Ra=[1/(L×Ly)]∫oLy∫oLx{fx,y)}dxdy
where f(x,y) is the surface relative to the Center plane, and Lx and Ly are the dimensions of the surface.
Max height (Rmax): This is the difference in height between the highest and lowest points of the surface relative to the Mean Plane.
Surface area: (Optical calculation): This is the area of the 3-dimensional surface of the imaged area. It is calculated by taking the sum of the areas of the triangles formed by 3 adjacent data points throughout the image.
Surface area diff: (Optional calculation) This is the amount that the Surface area is in excess of the imaged area. It is expressed as a percentage and is calculated according to the formula:
Surface area diff=100[(Surface area/S12−1]
where S1 is the length (and width) of the scanned area minus any areas excluded by stopbands.
Center Plane: A flat plane that is parallel to the Mean Plane. The volumes enclosed by the image surface above and below the center plane are equal.
Mean Plane: The image data has a minimum variance about this flat plane. It results from a first order least squares fit on the Z data.
A pH protective coating (e.g. 34) was applied to the surface (16) of the wall of a syringe. The gas inlet used was provided with the 90-degree perforation pattern shown in
The shelf life or rate of dissolution of the pH protective coating in 0.1 M KOH was measured, and found to be 127 days for the complete coating. A plot of the coating thickness as a function of the position on a cylindrical portion of the syringe barrel is provided as
The above tables show that the standard deviation of thickness was 306 nm, the mean thickness was 385 nm, and the ratio of (one) standard deviation to the mean thickness was 0.79. This high standard deviation and high ratio is indicative of a non-uniform coating, relative to the examples according to the present invention.
A pH protective coating (e.g. 34) was applied to the surface (16) of the wall of a syringe. The gas inlet used was provided with the 120-degree or triangular perforation pattern shown in
The shelf life or rate of dissolution of the pH protective coating in 0.1 M KOH was measured. The coating did not dissolve in standard 0.1 M KOH. A plot of the coating thickness as a function of the position on a cylindrical portion of the syringe barrel is provided as
The above tables show that the standard deviation of thickness was 161 nm, the mean thickness was 369 nm (similar to Example 1), and the ratio of (one) standard deviation to the mean thickness was 0.44. This much lower standard deviation and ratio is indicative of a much more uniform coating, relative to Example 1.
A pH protective coating (e.g. 34) was applied to the surface (16) of the wall of a syringe. The gas inlet used was provided with the 45-degree or spiral perforation pattern shown in
A plot of the coating thickness as a function of the position on a cylindrical portion of the syringe barrel is provided as
The above tables show that the standard deviation of thickness was 233 nm, the mean thickness was much thicker than previous examples, at 559 nm, and the ratio of (one) standard deviation to the mean thickness was 0.42. This standard deviation ratio was similar to Example 2.
A pH protective coating (e.g. 34) was applied to the surface (16) of the wall of a syringe. The gas inlet used was provided with the 45-degree or spiral perforation pattern shown in
A plot of the coating thickness as a function of the position on a cylindrical portion of the syringe barrel is provided as
The above tables show that the standard deviation of thickness was 79 nm, the mean thickness was 367 nm, and the ratio of (one) standard deviation to the mean thickness was 0.22. This standard deviation ratio was much smaller, showing a much more uniform coating, than Examples 1-3.
A pH protective coating (e.g. 34) was applied to the surface (16) of the wall of a syringe. The gas inlet used was provided with the 45-degree or spiral perforation pattern shown in
A plot of the coating thickness as a function of the position on a cylindrical portion of the syringe barrel is provided as
The above tables show that the standard deviation of thickness was 122 nm, the mean thickness was 200 nm, and the ratio of (one) standard deviation to the mean thickness was 0.61. The results appear to be skewed by a spot of zero measured deposition at minimal height and an angle of 0 to 50 degrees.
A SiOx barrier coating or layer (e.g. 30) was applied to the surface (16) of the wall of a syringe. The gas inlet used was provided with the 45-degree or spiral perforation pattern shown in
A plot of the coating thickness as a function of the position on a cylindrical portion of the syringe barrel is provided as
The above tables show that the standard deviation of thickness was 123 nm, the mean thickness was 297 nm, and the ratio of (one) standard deviation to the mean thickness was 0.41. The barrier improvement factor of the coating was found to be 4.5, indicating value of the coating as a barrier layer.
The priority of the following U.S. Provisional patent applications is claimed: Ser. No. 61/800,660, filed Mar. 15, 2013; Ser. No. 61/747,584, filed Dec. 31, 2012; Ser. No. 61/732,180, filed Nov. 30, 2012. These priority applications are all incorporated here by reference in their entirety to provide continuity of disclosure. Patent application Ser. No. 12/779,007, filed May 12, 2010, now U.S. Pat. No. 7,985,188; PCT/US11/36097, filed May 11, 2011; PCT/US12/64489, filed Nov. 9, 2012; 61/558,885, filed Nov. 11, 2011; 61/636,377, filed Apr. 20, 2012; 61/645,003, filed May 9, 2012; 61/713,435, filed Oct. 12, 2012; 61/716,381, filed Oct. 19, 2012; and 61/732,180, filed Nov. 30, 2012, are all incorporated here by reference in their entirety.
Number | Name | Date | Kind |
---|---|---|---|
3274267 | Chow | Sep 1966 | A |
3297465 | Connell | Jan 1967 | A |
3355947 | Karlby | Dec 1967 | A |
3442686 | Jones | May 1969 | A |
3448614 | Muger | Jun 1969 | A |
3590634 | Pasternak | Jul 1971 | A |
3838598 | Tompkins | Oct 1974 | A |
3957653 | Blecher | May 1976 | A |
4111326 | Percarpio | Sep 1978 | A |
4118972 | Goeppner | Oct 1978 | A |
4134832 | Heimreid | Jan 1979 | A |
4136794 | Percarpio | Jan 1979 | A |
4162528 | Maldonado | Jul 1979 | A |
4168330 | Kaganowicz | Sep 1979 | A |
4186840 | Percarpio | Feb 1980 | A |
4187952 | Percarpio | Feb 1980 | A |
4226333 | Percarpio | Oct 1980 | A |
4289726 | Potoczky | Sep 1981 | A |
4290534 | Percarpio | Sep 1981 | A |
4293078 | Percarpio | Oct 1981 | A |
4338764 | Percarpio | Jul 1982 | A |
4391128 | McWorter | Jul 1983 | A |
4392218 | Plunkett, Jr. | Jul 1983 | A |
4422896 | Class | Dec 1983 | A |
4452679 | Dunn | Jun 1984 | A |
4478873 | Masso | Oct 1984 | A |
4481229 | Suzuki | Nov 1984 | A |
4483737 | Mantei | Nov 1984 | A |
4484479 | Eckhardt | Nov 1984 | A |
4486378 | Hirata | Dec 1984 | A |
4522510 | Rosencwaig | Jun 1985 | A |
4524089 | Haque | Jun 1985 | A |
4524616 | Drexel | Jun 1985 | A |
4552791 | Hahn | Nov 1985 | A |
4576204 | Smallborn | Mar 1986 | A |
4609428 | Fujimura | Sep 1986 | A |
4610770 | Saito | Sep 1986 | A |
4648107 | Latter | Mar 1987 | A |
4648281 | Morita | Mar 1987 | A |
4652429 | Konrad | Mar 1987 | A |
4664279 | Obrist | May 1987 | A |
4667620 | White | May 1987 | A |
4668365 | Foster | May 1987 | A |
4683838 | Kimura | Aug 1987 | A |
4697717 | Grippi | Oct 1987 | A |
4703187 | Hofling | Oct 1987 | A |
4716491 | Ohno | Dec 1987 | A |
4721553 | Saito | Jan 1988 | A |
4725481 | Ostapchenko | Feb 1988 | A |
4741446 | Miller | May 1988 | A |
4756964 | Kincaid | Jul 1988 | A |
4767414 | Williams | Aug 1988 | A |
4778721 | Sliemers | Oct 1988 | A |
4799246 | Fischer | Jan 1989 | A |
4808453 | Romberg | Feb 1989 | A |
4809876 | Tomaswick | Mar 1989 | A |
4810752 | Bayan | Mar 1989 | A |
4824444 | Nomura | Apr 1989 | A |
4841776 | Kawachi | Jun 1989 | A |
4842704 | Collins | Jun 1989 | A |
4844986 | Karakelle | Jul 1989 | A |
4846101 | Montgomery | Jul 1989 | A |
4853102 | Tateishi | Aug 1989 | A |
4869203 | Pinkhasov | Sep 1989 | A |
4872758 | Miyazaki | Oct 1989 | A |
4874497 | Matsuoka | Oct 1989 | A |
4880675 | Mehta | Nov 1989 | A |
4883686 | Doehler | Nov 1989 | A |
4886086 | Etchells | Dec 1989 | A |
4894256 | Gartner | Jan 1990 | A |
4894510 | Nakanishi | Jan 1990 | A |
4897285 | Wilhelm | Jan 1990 | A |
4926791 | Hirose | May 1990 | A |
4948628 | Montgomery | Aug 1990 | A |
4973504 | Romberg | Nov 1990 | A |
4978714 | Bayan | Dec 1990 | A |
4991104 | Miller | Feb 1991 | A |
4999014 | Gold | Mar 1991 | A |
5000994 | Romberg | Mar 1991 | A |
5009646 | Sudo | Apr 1991 | A |
5016564 | Nakamura | May 1991 | A |
5021114 | Saito | Jun 1991 | A |
5028566 | Lagendijk | Jul 1991 | A |
5030475 | Ackermann | Jul 1991 | A |
5032202 | Tsai | Jul 1991 | A |
5039548 | Hirose | Aug 1991 | A |
5041303 | Wertheimer | Aug 1991 | A |
5042951 | Gold | Aug 1991 | A |
5044199 | Drexel | Sep 1991 | A |
5064083 | Alexander | Nov 1991 | A |
5067491 | Taylor | Nov 1991 | A |
5079481 | Moslehi | Jan 1992 | A |
5082542 | Moslehi | Jan 1992 | A |
5084356 | Deak | Jan 1992 | A |
5085904 | Deak | Feb 1992 | A |
5099881 | Nakajima | Mar 1992 | A |
5113790 | Geisler | May 1992 | A |
5120966 | Kondo | Jun 1992 | A |
5131752 | Yu | Jul 1992 | A |
5144196 | Gegenwart | Sep 1992 | A |
5147678 | Foerch | Sep 1992 | A |
5154943 | Etzkorn | Oct 1992 | A |
5189446 | Barnes | Feb 1993 | A |
5192849 | Moslehi | Mar 1993 | A |
5198725 | Chen | Mar 1993 | A |
5203959 | Hirose | Apr 1993 | A |
5204141 | Roberts | Apr 1993 | A |
5209882 | Hattori | May 1993 | A |
5216329 | Pelleteir | Jun 1993 | A |
5224441 | Felts | Jul 1993 | A |
5225024 | Hanley | Jul 1993 | A |
5232111 | Burns | Aug 1993 | A |
5252178 | Moslehi | Oct 1993 | A |
5260095 | Affinito | Nov 1993 | A |
5266398 | Hioki | Nov 1993 | A |
5271274 | Khuri-Yakub | Dec 1993 | A |
5272417 | Ohmi | Dec 1993 | A |
5272735 | Bryan | Dec 1993 | A |
5275299 | Konrad | Jan 1994 | A |
5286297 | Moslehi | Feb 1994 | A |
5288560 | Sudo | Feb 1994 | A |
5292370 | Tsai | Mar 1994 | A |
5294011 | Konrad | Mar 1994 | A |
5294464 | Geisler | Mar 1994 | A |
5297561 | Hulon | Mar 1994 | A |
5298587 | Hu | Mar 1994 | A |
5300901 | Krummel | Apr 1994 | A |
5302266 | Grabarz | Apr 1994 | A |
5308649 | Babacz | May 1994 | A |
5314561 | Komiya | May 1994 | A |
5320875 | Hu | Jun 1994 | A |
5321634 | Obata | Jun 1994 | A |
5330578 | Sakama | Jul 1994 | A |
5333049 | Ledger | Jul 1994 | A |
5338579 | Ogawa et al. | Aug 1994 | A |
5346579 | Cook | Sep 1994 | A |
5354286 | Mesa | Oct 1994 | A |
5356029 | Hogan | Oct 1994 | A |
5361921 | Burns | Nov 1994 | A |
5364665 | Felts | Nov 1994 | A |
5364666 | Williams | Nov 1994 | A |
5372851 | Ogawa et al. | Dec 1994 | A |
5374314 | Babacz | Dec 1994 | A |
5378510 | Thomas | Jan 1995 | A |
5381228 | Brace | Jan 1995 | A |
5395644 | Affinito | Mar 1995 | A |
5396080 | Hannotiau | Mar 1995 | A |
5397956 | Araki | Mar 1995 | A |
5413813 | Cruse | May 1995 | A |
5423915 | Murata | Jun 1995 | A |
5429070 | Campbell | Jul 1995 | A |
5433786 | Hu | Jul 1995 | A |
5434008 | Felts | Jul 1995 | A |
5439736 | Nomura | Aug 1995 | A |
5440446 | Shaw | Aug 1995 | A |
5443645 | Otoshi | Aug 1995 | A |
5444207 | Sekine | Aug 1995 | A |
5449432 | Hanawa | Sep 1995 | A |
5452082 | Sanger | Sep 1995 | A |
5468520 | Williams | Nov 1995 | A |
5470388 | Goedicke | Nov 1995 | A |
5472660 | Fortin | Dec 1995 | A |
5485091 | Verkuil | Jan 1996 | A |
5486701 | Norton | Jan 1996 | A |
5494170 | Burns | Feb 1996 | A |
5494712 | Hu | Feb 1996 | A |
5495958 | Konrad | Mar 1996 | A |
5508075 | Roulin | Apr 1996 | A |
5510155 | Williams | Apr 1996 | A |
5513515 | Mayer | May 1996 | A |
5514276 | Babcock | May 1996 | A |
5521351 | Mahoney | May 1996 | A |
5522518 | Konrad | Jun 1996 | A |
5531060 | Fayet | Jul 1996 | A |
5531683 | Kriesel | Jul 1996 | A |
5536253 | Haber | Jul 1996 | A |
5543919 | Mumola | Aug 1996 | A |
5545375 | Tropsha | Aug 1996 | A |
5547508 | Affinito | Aug 1996 | A |
5547723 | Williams | Aug 1996 | A |
5554223 | Imahashi | Sep 1996 | A |
5555471 | Xu | Sep 1996 | A |
5565248 | Plester | Oct 1996 | A |
5569810 | Tsuji | Oct 1996 | A |
5571366 | Ishii | Nov 1996 | A |
5578103 | Araujo | Nov 1996 | A |
5591898 | Mayer | Jan 1997 | A |
5593550 | Stewart | Jan 1997 | A |
5597456 | Maruyama | Jan 1997 | A |
5616369 | Williams | Apr 1997 | A |
5620523 | Maeda | Apr 1997 | A |
5632396 | Burns | May 1997 | A |
5633711 | Nelson | May 1997 | A |
5643638 | Otto | Jul 1997 | A |
5652030 | Delperier | Jul 1997 | A |
5654054 | Tropsha | Aug 1997 | A |
5656141 | Betz | Aug 1997 | A |
5658438 | Givens | Aug 1997 | A |
5665280 | Tropsha | Sep 1997 | A |
5667840 | Tingey | Sep 1997 | A |
5674321 | Pu | Oct 1997 | A |
5677010 | Esser | Oct 1997 | A |
5679412 | Kuehnle | Oct 1997 | A |
5679413 | Petrmichl | Oct 1997 | A |
5683771 | Tropsha | Nov 1997 | A |
5686157 | Harvey | Nov 1997 | A |
5690745 | Grunwald | Nov 1997 | A |
5691007 | Montgomery | Nov 1997 | A |
5693196 | Stewart | Dec 1997 | A |
5699923 | Burns | Dec 1997 | A |
5702770 | Martin | Dec 1997 | A |
5704983 | Thomas | Jan 1998 | A |
5716683 | Harvey | Feb 1998 | A |
5718967 | Hu | Feb 1998 | A |
5725909 | Shaw | Mar 1998 | A |
5733405 | Taki | Mar 1998 | A |
5736207 | Walther | Apr 1998 | A |
5737179 | Shaw | Apr 1998 | A |
5738233 | Burns | Apr 1998 | A |
5738920 | Knors | Apr 1998 | A |
5744360 | Hu | Apr 1998 | A |
5750892 | Huang | May 1998 | A |
5763033 | Tropsha | Jun 1998 | A |
5766362 | Montgomery | Jun 1998 | A |
5769273 | Sasaki | Jun 1998 | A |
5779074 | Burns | Jul 1998 | A |
5779716 | Cano | Jul 1998 | A |
5779802 | Borghs | Jul 1998 | A |
5779849 | Blalock | Jul 1998 | A |
5788670 | Reinhard | Aug 1998 | A |
5792550 | Phillips | Aug 1998 | A |
5792940 | Ghandhi | Aug 1998 | A |
5798027 | Lefebvre | Aug 1998 | A |
5800880 | Laurent | Sep 1998 | A |
5807343 | Tucker | Sep 1998 | A |
5807605 | Tingey | Sep 1998 | A |
5812261 | Nelson | Sep 1998 | A |
5814257 | Kawata | Sep 1998 | A |
5814738 | Pinkerton | Sep 1998 | A |
5820603 | Tucker | Oct 1998 | A |
5823373 | Sudo | Oct 1998 | A |
5824198 | Williams | Oct 1998 | A |
5824607 | Trow | Oct 1998 | A |
5833752 | Martin | Nov 1998 | A |
5837888 | Mayer | Nov 1998 | A |
5837903 | Weigand | Nov 1998 | A |
5840167 | Kim | Nov 1998 | A |
5849368 | Hostettler | Dec 1998 | A |
5853833 | Sudo | Dec 1998 | A |
5855686 | Rust | Jan 1999 | A |
5861546 | Sagi | Jan 1999 | A |
5871700 | Konrad | Feb 1999 | A |
5877895 | Shaw | Mar 1999 | A |
5880034 | Keller | Mar 1999 | A |
5888414 | Collins | Mar 1999 | A |
5888591 | Gleason | Mar 1999 | A |
5897508 | Konrad | Apr 1999 | A |
5900284 | Hu | May 1999 | A |
5900285 | Walther | May 1999 | A |
5902461 | Xu | May 1999 | A |
5904952 | Lopata | May 1999 | A |
5913140 | Roche | Jun 1999 | A |
5914189 | Hasz | Jun 1999 | A |
5919328 | Tropsha | Jul 1999 | A |
5919420 | Niermann | Jul 1999 | A |
5935391 | Nakahigashi | Aug 1999 | A |
5945187 | Buch-Rasmussen | Aug 1999 | A |
5951527 | Sudo | Sep 1999 | A |
5952069 | Tropsha | Sep 1999 | A |
5955161 | Tropsha | Sep 1999 | A |
5961911 | Hwang | Oct 1999 | A |
5968620 | Harvey | Oct 1999 | A |
5972297 | Niermann | Oct 1999 | A |
5972436 | Walther | Oct 1999 | A |
5985103 | Givens | Nov 1999 | A |
6001429 | Martin | Dec 1999 | A |
6009743 | Mayer | Jan 2000 | A |
6013337 | Knors | Jan 2000 | A |
6017317 | Newby | Jan 2000 | A |
6018987 | Mayer | Feb 2000 | A |
6020196 | Hu | Feb 2000 | A |
6027619 | Cathey | Feb 2000 | A |
6032813 | Niermann | Mar 2000 | A |
6035717 | Carodiskey | Mar 2000 | A |
6050400 | Taskis | Apr 2000 | A |
6051151 | Keller | Apr 2000 | A |
6054016 | Tuda | Apr 2000 | A |
6054188 | Tropsha | Apr 2000 | A |
6068884 | Rose | May 2000 | A |
6077403 | Kobayashi | Jun 2000 | A |
6081330 | Nelson | Jun 2000 | A |
6082295 | Lee | Jul 2000 | A |
6083313 | Venkatraman et al. | Jul 2000 | A |
6085927 | Kusz | Jul 2000 | A |
6090081 | Sudo | Jul 2000 | A |
6093175 | Gyure | Jul 2000 | A |
6106678 | Shufflebotham | Aug 2000 | A |
6110395 | Gibson, Jr. | Aug 2000 | A |
6110544 | Yang | Aug 2000 | A |
6112695 | Felts | Sep 2000 | A |
6116081 | Ghandhi | Sep 2000 | A |
6117243 | Walther | Sep 2000 | A |
6118844 | Fischer | Sep 2000 | A |
6124212 | Fan | Sep 2000 | A |
6125687 | McClelland | Oct 2000 | A |
6126640 | Tucker | Oct 2000 | A |
6129712 | Sudo | Oct 2000 | A |
6129956 | Morra | Oct 2000 | A |
6136275 | Niermann | Oct 2000 | A |
6139802 | Niermann | Oct 2000 | A |
6143140 | Wang | Nov 2000 | A |
6149982 | Plester | Nov 2000 | A |
6153269 | Gleason | Nov 2000 | A |
6156152 | Ogino | Dec 2000 | A |
6156399 | Spallek | Dec 2000 | A |
6156435 | Gleason | Dec 2000 | A |
6160350 | Sakemi | Dec 2000 | A |
6161712 | Savitz | Dec 2000 | A |
6163006 | Doughty | Dec 2000 | A |
6165138 | Miller | Dec 2000 | A |
6165542 | Jaworowski | Dec 2000 | A |
6165566 | Tropsha | Dec 2000 | A |
6171670 | Sudo | Jan 2001 | B1 |
6175612 | Sato | Jan 2001 | B1 |
6177142 | Felts | Jan 2001 | B1 |
6180185 | Felts | Jan 2001 | B1 |
6180191 | Felts | Jan 2001 | B1 |
6188079 | Juvinall | Feb 2001 | B1 |
6189484 | Yin | Feb 2001 | B1 |
6190992 | Sandhu | Feb 2001 | B1 |
6193853 | Yumshtyk | Feb 2001 | B1 |
6196155 | Setoyama | Mar 2001 | B1 |
6197166 | Moslehi | Mar 2001 | B1 |
6200658 | Walther | Mar 2001 | B1 |
6200675 | Neerinck | Mar 2001 | B1 |
6204922 | Chalmers | Mar 2001 | B1 |
6210791 | Skoog | Apr 2001 | B1 |
6214422 | Yializis | Apr 2001 | B1 |
6217716 | Fai Lai | Apr 2001 | B1 |
6223683 | Plester | May 2001 | B1 |
6236459 | Negahdaripour | May 2001 | B1 |
6245190 | Masuda | Jun 2001 | B1 |
6248219 | Wellerdieck | Jun 2001 | B1 |
6248397 | Ye | Jun 2001 | B1 |
6251792 | Collins | Jun 2001 | B1 |
6254983 | Namiki | Jul 2001 | B1 |
6261643 | Hasz | Jul 2001 | B1 |
6263249 | Stewart | Jul 2001 | B1 |
6271047 | Ushio | Aug 2001 | B1 |
6276296 | Plester | Aug 2001 | B1 |
6277331 | Konrad | Aug 2001 | B1 |
6279505 | Plester | Aug 2001 | B1 |
6284986 | Dietze | Sep 2001 | B1 |
6306132 | Moorman | Oct 2001 | B1 |
6308556 | Sagi | Oct 2001 | B1 |
6322661 | Bailey, III | Nov 2001 | B1 |
6331174 | Reinhard et al. | Dec 2001 | B1 |
6344034 | Sudo | Feb 2002 | B1 |
6346596 | Mallen | Feb 2002 | B1 |
6348967 | Nelson | Feb 2002 | B1 |
6350415 | Niermann | Feb 2002 | B1 |
6351075 | Barankova | Feb 2002 | B1 |
6352629 | Wang | Mar 2002 | B1 |
6354452 | DeSalvo | Mar 2002 | B1 |
6355033 | Moorman | Mar 2002 | B1 |
6365013 | Beele | Apr 2002 | B1 |
6375022 | Zurcher | Apr 2002 | B1 |
6376028 | Laurent | Apr 2002 | B1 |
6379757 | Iacovangelo | Apr 2002 | B1 |
6382441 | Carano | May 2002 | B1 |
6394979 | Sharp | May 2002 | B1 |
6396024 | Doughty | May 2002 | B1 |
6399944 | Vasilyev | Jun 2002 | B1 |
6402885 | Loewenhardt | Jun 2002 | B2 |
6410926 | Munro | Jun 2002 | B1 |
6413645 | Graff | Jul 2002 | B1 |
6432494 | Yang | Aug 2002 | B1 |
6432510 | Kim | Aug 2002 | B1 |
6470650 | Lohwasser | Oct 2002 | B1 |
6471822 | Yin | Oct 2002 | B1 |
6475622 | Namiki | Nov 2002 | B2 |
6482509 | Buch-Rasmussen et al. | Nov 2002 | B2 |
6486081 | Ishikawa | Nov 2002 | B1 |
6500500 | Okamura | Dec 2002 | B1 |
6503579 | Murakami | Jan 2003 | B1 |
6518195 | Collins | Feb 2003 | B1 |
6524282 | Sudo | Feb 2003 | B1 |
6524448 | Brinkmann | Feb 2003 | B2 |
6539890 | Felts | Apr 2003 | B1 |
6544610 | Minami | Apr 2003 | B1 |
6551267 | Cohen | Apr 2003 | B1 |
6558679 | Flament-Garcia et al. | May 2003 | B2 |
6562010 | Gyure | May 2003 | B1 |
6562189 | Quiles | May 2003 | B1 |
6565791 | Laurent | May 2003 | B1 |
6582426 | Moorman | Jun 2003 | B2 |
6582823 | Sakhrani et al. | Jun 2003 | B1 |
6584828 | Sagi | Jul 2003 | B2 |
6595961 | Hetzler | Jul 2003 | B2 |
6597193 | Lagowski | Jul 2003 | B2 |
6599569 | Humele | Jul 2003 | B1 |
6599594 | Walther | Jul 2003 | B1 |
6602206 | Niermann | Aug 2003 | B1 |
6616632 | Sharp | Sep 2003 | B2 |
6620139 | Plicchi | Sep 2003 | B1 |
6620334 | Kanno | Sep 2003 | B2 |
6623861 | Martin | Sep 2003 | B2 |
6638403 | Inaba | Oct 2003 | B1 |
6638876 | Levy | Oct 2003 | B2 |
6645354 | Gorokhovsky | Nov 2003 | B1 |
6645635 | Muraki | Nov 2003 | B2 |
6651835 | Iskra | Nov 2003 | B2 |
6652520 | Moorman | Nov 2003 | B2 |
6656540 | Sakamoto | Dec 2003 | B2 |
6658919 | Chatard | Dec 2003 | B2 |
6662957 | Zurcher | Dec 2003 | B2 |
6663601 | Hetzler | Dec 2003 | B2 |
6663603 | Gyure | Dec 2003 | B1 |
6670200 | Ushio | Dec 2003 | B2 |
6673199 | Yamartino | Jan 2004 | B1 |
6680091 | Buch-Rasmussen et al. | Jan 2004 | B2 |
6680621 | Savtchouk | Jan 2004 | B2 |
6683308 | Itagaki | Jan 2004 | B2 |
6684683 | Potyrailo | Feb 2004 | B2 |
6702898 | Hosoi | Mar 2004 | B2 |
6706412 | Yializis | Mar 2004 | B2 |
6746430 | Lubrecht | Jun 2004 | B2 |
6749078 | Iskra | Jun 2004 | B2 |
6752899 | Singh | Jun 2004 | B1 |
6753972 | Hirose | Jun 2004 | B1 |
6757056 | Kudinar | Jun 2004 | B1 |
6764714 | Wei | Jul 2004 | B2 |
6765466 | Miyata | Jul 2004 | B2 |
6766682 | Engle | Jul 2004 | B2 |
6774018 | Mikhael | Aug 2004 | B2 |
6796780 | Chatard | Sep 2004 | B1 |
6800852 | Larson | Oct 2004 | B2 |
6808753 | Rule | Oct 2004 | B2 |
6810106 | Sato | Oct 2004 | B2 |
6815014 | Gabelnick | Nov 2004 | B2 |
6818310 | Namiki | Nov 2004 | B2 |
6822015 | Muraki | Nov 2004 | B2 |
6837954 | Carano | Jan 2005 | B2 |
6844075 | Saak | Jan 2005 | B1 |
6853141 | Hoffman | Feb 2005 | B2 |
6858259 | Affinito | Feb 2005 | B2 |
6863731 | Elsayed-Ali | Mar 2005 | B2 |
6864773 | Perrin | Mar 2005 | B2 |
6866656 | Tingey | Mar 2005 | B2 |
6872428 | Yang | Mar 2005 | B2 |
6876154 | Appleyard | Apr 2005 | B2 |
6885727 | Tamura | Apr 2005 | B2 |
6887578 | Gleason | May 2005 | B2 |
6891158 | Larson | May 2005 | B2 |
6892567 | Morrow | May 2005 | B1 |
6899054 | Bardos | May 2005 | B1 |
6905769 | Komada | Jun 2005 | B2 |
6910597 | Iskra | Jun 2005 | B2 |
6911779 | Madocks | Jun 2005 | B2 |
6919107 | Schwarzenbach | Jul 2005 | B2 |
6919114 | Darras | Jul 2005 | B1 |
6933460 | Vanden Brande | Aug 2005 | B2 |
6946164 | Huang | Sep 2005 | B2 |
6952949 | Moore | Oct 2005 | B2 |
6960393 | Yializis | Nov 2005 | B2 |
6962671 | Martin | Nov 2005 | B2 |
6965221 | Lipcsei | Nov 2005 | B2 |
6981403 | Ascheman | Jan 2006 | B2 |
6989675 | Kesil | Jan 2006 | B2 |
6995377 | Darr | Feb 2006 | B2 |
7029755 | Terry | Apr 2006 | B2 |
7029803 | Becker | Apr 2006 | B2 |
7039158 | Janik | May 2006 | B1 |
7052736 | Wei | May 2006 | B2 |
7052920 | Ushio | May 2006 | B2 |
7059268 | Russell | Jun 2006 | B2 |
7067034 | Bailey, III | Jun 2006 | B2 |
7074501 | Czeremuszkin | Jul 2006 | B2 |
7098453 | Ando | Aug 2006 | B2 |
7109070 | Behle | Sep 2006 | B2 |
7112352 | Schaepkens | Sep 2006 | B2 |
7112541 | Xia | Sep 2006 | B2 |
7115310 | Jaccoud | Oct 2006 | B2 |
7118538 | Konrad | Oct 2006 | B2 |
7119908 | Nomoto | Oct 2006 | B2 |
7121135 | Moore | Oct 2006 | B2 |
7130373 | Omote | Oct 2006 | B2 |
7150299 | Hertzler | Dec 2006 | B2 |
7160292 | Moorman | Jan 2007 | B2 |
7183197 | Won | Feb 2007 | B2 |
7186242 | Gyure | Mar 2007 | B2 |
7188734 | Konrad | Mar 2007 | B2 |
7189290 | Hama | Mar 2007 | B2 |
7193724 | Isei | Mar 2007 | B2 |
7198685 | Hetzler | Apr 2007 | B2 |
7206074 | Fujimoto | Apr 2007 | B2 |
7214214 | Sudo | May 2007 | B2 |
7244381 | Chatard | Jul 2007 | B2 |
7253892 | Semersky | Aug 2007 | B2 |
7286242 | Kim | Oct 2007 | B2 |
7288293 | Koulik | Oct 2007 | B2 |
7297216 | Hetzler | Nov 2007 | B2 |
7297640 | Xie | Nov 2007 | B2 |
7300684 | Boardman | Nov 2007 | B2 |
7303789 | Saito | Dec 2007 | B2 |
7303790 | Delaunay | Dec 2007 | B2 |
7306852 | Komada | Dec 2007 | B2 |
7332227 | Hardman | Feb 2008 | B2 |
7338576 | Ono | Mar 2008 | B2 |
7339682 | Aiyer | Mar 2008 | B2 |
7344766 | Sorensen | Mar 2008 | B1 |
7348055 | Chappa | Mar 2008 | B2 |
7348192 | Mikami | Mar 2008 | B2 |
7362425 | Meeks | Apr 2008 | B2 |
7381469 | Moelle | Jun 2008 | B2 |
7390573 | Korevaar | Jun 2008 | B2 |
7399500 | Bicker | Jul 2008 | B2 |
7405008 | Domine | Jul 2008 | B2 |
7409313 | Ringermacher | Aug 2008 | B2 |
7411685 | Takashima | Aug 2008 | B2 |
RE40531 | Graff | Oct 2008 | E |
7431989 | Sakhrani | Oct 2008 | B2 |
7438783 | Miyata | Oct 2008 | B2 |
7444955 | Boardman | Nov 2008 | B2 |
7455892 | Goodwin | Nov 2008 | B2 |
7480363 | Lasiuk | Jan 2009 | B2 |
7488683 | Kobayashi | Feb 2009 | B2 |
7494941 | Kasahara | Feb 2009 | B2 |
7507378 | Reichenbach | Mar 2009 | B2 |
7513953 | Felts | Apr 2009 | B1 |
7520965 | Wei | Apr 2009 | B2 |
7521022 | Konrad | Apr 2009 | B2 |
7534615 | Havens | May 2009 | B2 |
7534733 | Bookbinder | May 2009 | B2 |
RE40787 | Martin | Jun 2009 | E |
7541069 | Tudhope | Jun 2009 | B2 |
7547297 | Brinkhues | Jun 2009 | B2 |
7552620 | DeRoos | Jun 2009 | B2 |
7553529 | Sakhrani | Jun 2009 | B2 |
7555934 | DeRoos | Jul 2009 | B2 |
7569035 | Wilmot | Aug 2009 | B1 |
7579056 | Brown | Aug 2009 | B2 |
7582868 | Jiang | Sep 2009 | B2 |
7595097 | Iacovangelo | Sep 2009 | B2 |
7608151 | Tudhope | Oct 2009 | B2 |
7618686 | Colpo | Nov 2009 | B2 |
7624622 | Mayer | Dec 2009 | B1 |
7625494 | Honda | Dec 2009 | B2 |
7645696 | Dulkin | Jan 2010 | B1 |
7648481 | Geiger | Jan 2010 | B2 |
7682816 | Kim | Mar 2010 | B2 |
7691308 | Brinkhues | Apr 2010 | B2 |
7694403 | Moulton | Apr 2010 | B2 |
7704683 | Wittenberg | Apr 2010 | B2 |
7713638 | Moelle | May 2010 | B2 |
7736689 | Chappa | Jun 2010 | B2 |
7740610 | Moh | Jun 2010 | B2 |
7744567 | Glowacki | Jun 2010 | B2 |
7744790 | Behle | Jun 2010 | B2 |
7745228 | Schwind | Jun 2010 | B2 |
7745547 | Auerbach | Jun 2010 | B1 |
7749202 | Miller | Jul 2010 | B2 |
7749914 | Honda | Jul 2010 | B2 |
7754302 | Yamaski | Jul 2010 | B2 |
7766882 | Sudo | Aug 2010 | B2 |
7780866 | Miller | Aug 2010 | B2 |
7785862 | Kim | Aug 2010 | B2 |
7790475 | Galbraith | Sep 2010 | B2 |
7798993 | Lim | Sep 2010 | B2 |
7803305 | Ahern | Sep 2010 | B2 |
7807242 | Soerensen | Oct 2010 | B2 |
7815922 | Chaney | Oct 2010 | B2 |
7846293 | Iwasaki | Dec 2010 | B2 |
7854889 | Perot | Dec 2010 | B2 |
7867366 | McFarland | Jan 2011 | B1 |
7905866 | Haider | Mar 2011 | B2 |
7922880 | Pradhan | Apr 2011 | B1 |
7922958 | D'Arrigo | Apr 2011 | B2 |
7927315 | Sudo | Apr 2011 | B2 |
7931955 | Behle | Apr 2011 | B2 |
7932678 | Madocks | Apr 2011 | B2 |
7934613 | Sudo | May 2011 | B2 |
7943205 | Schaepkens | May 2011 | B2 |
7947337 | Kuepper | May 2011 | B2 |
7955986 | Hoffman | Jun 2011 | B2 |
7960043 | Harris | Jun 2011 | B2 |
7964438 | Roca I Cabarrocas | Jun 2011 | B2 |
7967945 | Glukhoy | Jun 2011 | B2 |
7975646 | Rius | Jul 2011 | B2 |
7985188 | Felts | Jul 2011 | B2 |
8002754 | Kawamura | Aug 2011 | B2 |
8025915 | Haines | Sep 2011 | B2 |
8038858 | Bures | Oct 2011 | B1 |
8039524 | Chappa | Oct 2011 | B2 |
8056719 | Porret | Nov 2011 | B2 |
8062266 | McKinnon | Nov 2011 | B2 |
8066663 | Sudo | Nov 2011 | B2 |
8066854 | Storey | Nov 2011 | B2 |
8070917 | Tsukamoto | Dec 2011 | B2 |
8075995 | Zhao | Dec 2011 | B2 |
8092605 | Shannon | Jan 2012 | B2 |
8101246 | Fayet | Jan 2012 | B2 |
8101674 | Kawauchi | Jan 2012 | B2 |
8105294 | Araki | Jan 2012 | B2 |
8197452 | Harding | Jun 2012 | B2 |
8227025 | Lewis | Jul 2012 | B2 |
8258486 | Avnery | Sep 2012 | B2 |
8268410 | Moelle | Sep 2012 | B2 |
8273222 | Wei | Sep 2012 | B2 |
8277025 | Nakazawa et al. | Oct 2012 | B2 |
8313455 | DiGregorio | Nov 2012 | B2 |
8323166 | Haines | Dec 2012 | B2 |
8389958 | Vo-Dinh | Mar 2013 | B2 |
8397667 | Behle | Mar 2013 | B2 |
8409441 | Wilt | Apr 2013 | B2 |
8418650 | Goto | Apr 2013 | B2 |
8435605 | Aitken et al. | May 2013 | B2 |
8475886 | Chen et al. | Jul 2013 | B2 |
8512796 | Felts | Aug 2013 | B2 |
8524331 | Honda | Sep 2013 | B2 |
8592015 | Bicker | Nov 2013 | B2 |
8603638 | Liu | Dec 2013 | B2 |
8618509 | Vo-Dinh | Dec 2013 | B2 |
8623324 | Diwu | Jan 2014 | B2 |
8633034 | Trotter | Jan 2014 | B2 |
8747962 | Bicker | Jun 2014 | B2 |
8802603 | D'Souza | Aug 2014 | B2 |
8816022 | Zhao | Aug 2014 | B2 |
9068565 | Alarcon | Jun 2015 | B2 |
20010000279 | Daniels | Apr 2001 | A1 |
20010021356 | Konrad | Sep 2001 | A1 |
20010038894 | Komada | Nov 2001 | A1 |
20010042510 | Plester | Nov 2001 | A1 |
20010043997 | Uddin | Nov 2001 | A1 |
20020006487 | O'Connor | Jan 2002 | A1 |
20020007796 | Gorokhovsky | Jan 2002 | A1 |
20020070647 | Ginovker | Jun 2002 | A1 |
20020117114 | Ikenaga | Aug 2002 | A1 |
20020125900 | Savtchouk | Sep 2002 | A1 |
20020130674 | Lagowski | Sep 2002 | A1 |
20020141477 | Akahori | Oct 2002 | A1 |
20020153103 | Madocks | Oct 2002 | A1 |
20020155218 | Meyer | Oct 2002 | A1 |
20020170495 | Nakamura | Nov 2002 | A1 |
20020176947 | Darras | Nov 2002 | A1 |
20020182101 | Koulik | Dec 2002 | A1 |
20020185226 | Lea | Dec 2002 | A1 |
20020190207 | Levy | Dec 2002 | A1 |
20030010454 | Bailey, III | Jan 2003 | A1 |
20030013818 | Hakuta | Jan 2003 | A1 |
20030029837 | Trow | Feb 2003 | A1 |
20030031806 | Jinks | Feb 2003 | A1 |
20030046982 | Chartard | Mar 2003 | A1 |
20003119193 | Hess | Jun 2003 | |
20030102087 | Ito | Jun 2003 | A1 |
20030159654 | Arnold | Aug 2003 | A1 |
20030215652 | O'Connor | Nov 2003 | A1 |
20030219547 | Arnold | Nov 2003 | A1 |
20030232150 | Arnold | Dec 2003 | A1 |
20040024371 | Plicchi | Feb 2004 | A1 |
20040039401 | Chow | Feb 2004 | A1 |
20040040372 | Plester | Mar 2004 | A1 |
20040045811 | Wang | Mar 2004 | A1 |
20040050744 | Hama | Mar 2004 | A1 |
20040055538 | Gorokhovsky | Mar 2004 | A1 |
20040071960 | Weber | Apr 2004 | A1 |
20040082917 | Hetzler | Apr 2004 | A1 |
20040084151 | Kim | May 2004 | A1 |
20040125913 | Larson | Jul 2004 | A1 |
20040135081 | Larson | Jul 2004 | A1 |
20040149225 | Weikart | Aug 2004 | A1 |
20040175961 | Olsen | Sep 2004 | A1 |
20040177676 | Moore | Sep 2004 | A1 |
20040195960 | Czeremuszkin | Oct 2004 | A1 |
20040206309 | Bera | Oct 2004 | A1 |
20040217081 | Konrad | Nov 2004 | A1 |
20040247948 | Behle | Dec 2004 | A1 |
20040267194 | Sano | Dec 2004 | A1 |
20050000962 | Crawford | Jan 2005 | A1 |
20050010175 | Beedon | Jan 2005 | A1 |
20050019503 | Komada | Jan 2005 | A1 |
20050037165 | Ahern | Feb 2005 | A1 |
20050039854 | Matsuyama | Feb 2005 | A1 |
20050045472 | Nagata | Mar 2005 | A1 |
20050057754 | Smith | Mar 2005 | A1 |
20050073323 | Kohno | Apr 2005 | A1 |
20050075611 | Heltzer | Apr 2005 | A1 |
20050075612 | Lee | Apr 2005 | A1 |
20050161149 | Yokota | Jul 2005 | A1 |
20050169803 | Betz | Aug 2005 | A1 |
20050190450 | Becker | Sep 2005 | A1 |
20050196629 | Bariatinsky | Sep 2005 | A1 |
20050199571 | Geisler | Sep 2005 | A1 |
20050206907 | Fujimoto | Sep 2005 | A1 |
20050211383 | Miyata | Sep 2005 | A1 |
20050223988 | Behle | Oct 2005 | A1 |
20050227002 | Lizenberg | Oct 2005 | A1 |
20050227022 | Domine | Oct 2005 | A1 |
20050229850 | Behle | Oct 2005 | A1 |
20050233077 | Lizenberg | Oct 2005 | A1 |
20050233091 | Kumar | Oct 2005 | A1 |
20050236346 | Whitney | Oct 2005 | A1 |
20050260504 | Becker | Nov 2005 | A1 |
20050284550 | Bicker | Dec 2005 | A1 |
20060005608 | Kitzhoffer | Jan 2006 | A1 |
20060013997 | Kuepper | Jan 2006 | A1 |
20060014309 | Sachdev | Jan 2006 | A1 |
20060024849 | Zhu | Feb 2006 | A1 |
20060042755 | Holmberg | Mar 2006 | A1 |
20060046006 | Bastion | Mar 2006 | A1 |
20060051252 | Yuan | Mar 2006 | A1 |
20060051520 | Behle | Mar 2006 | A1 |
20060076231 | Wei | Apr 2006 | A1 |
20060086320 | Lizenberg | Apr 2006 | A1 |
20060099340 | Behle | May 2006 | A1 |
20060121222 | Audrich | Jun 2006 | A1 |
20060121613 | Havens | Jun 2006 | A1 |
20060121623 | He | Jun 2006 | A1 |
20060127699 | Moelle | Jun 2006 | A1 |
20060135945 | Bankiewicz | Jun 2006 | A1 |
20060138326 | Jiang | Jun 2006 | A1 |
20060147719 | Rubinsztajn | Jul 2006 | A1 |
20060150909 | Behle | Jul 2006 | A1 |
20060169026 | Kage | Aug 2006 | A1 |
20060178627 | Geiger | Aug 2006 | A1 |
20060183345 | Nguyen | Aug 2006 | A1 |
20060192973 | Aiyer | Aug 2006 | A1 |
20060196419 | Tudhope | Sep 2006 | A1 |
20060198903 | Storey | Sep 2006 | A1 |
20060198965 | Tudhope | Sep 2006 | A1 |
20060200078 | Konrad | Sep 2006 | A1 |
20060200084 | Ito | Sep 2006 | A1 |
20060210425 | Mirkarimi | Sep 2006 | A1 |
20060228497 | Kumar | Oct 2006 | A1 |
20060260360 | Dick | Nov 2006 | A1 |
20070003441 | Wohleb | Jan 2007 | A1 |
20070009673 | Fukazawa et al. | Jan 2007 | A1 |
20070017870 | Belov | Jan 2007 | A1 |
20070048456 | Keshner | Mar 2007 | A1 |
20070049048 | Rauf | Mar 2007 | A1 |
20070051629 | Dolnik | Mar 2007 | A1 |
20070065680 | Schultheis | Mar 2007 | A1 |
20070076833 | Becker | Apr 2007 | A1 |
20070102344 | Konrad | May 2007 | A1 |
20070123920 | Inokuti | May 2007 | A1 |
20070148326 | Hastings | Jun 2007 | A1 |
20070166187 | Song | Jul 2007 | A1 |
20070184657 | Iijima | Aug 2007 | A1 |
20070187229 | Aksenov | Aug 2007 | A1 |
20070187280 | Haines | Aug 2007 | A1 |
20070205096 | Nagashima | Sep 2007 | A1 |
20070215009 | Shimazu | Sep 2007 | A1 |
20070215046 | Lupke et al. | Sep 2007 | A1 |
20070218265 | Harris | Sep 2007 | A1 |
20070224236 | Boden | Sep 2007 | A1 |
20070231655 | Ha | Oct 2007 | A1 |
20070232066 | Bicker | Oct 2007 | A1 |
20070235890 | Lewis | Oct 2007 | A1 |
20070243618 | Hatchett | Oct 2007 | A1 |
20070251458 | Mund | Nov 2007 | A1 |
20070258894 | Melker et al. | Nov 2007 | A1 |
20070259184 | Martin | Nov 2007 | A1 |
20070281108 | Weikart | Dec 2007 | A1 |
20070281117 | Kaplan | Dec 2007 | A1 |
20070287950 | Kjeken | Dec 2007 | A1 |
20070287954 | Zhao | Dec 2007 | A1 |
20070298189 | Straemke | Dec 2007 | A1 |
20080011232 | Rius | Jan 2008 | A1 |
20080017113 | Goto | Jan 2008 | A1 |
20080023414 | Konrad | Jan 2008 | A1 |
20080027400 | Harding | Jan 2008 | A1 |
20080045880 | Kjeken | Feb 2008 | A1 |
20080050567 | Kawashima | Feb 2008 | A1 |
20080050932 | Lakshmanan | Feb 2008 | A1 |
20080069970 | Wu | Mar 2008 | A1 |
20080071228 | Wu | Mar 2008 | A1 |
20080081184 | Kubo | Apr 2008 | A1 |
20080090039 | Klein | Apr 2008 | A1 |
20080093245 | Periasamy | Apr 2008 | A1 |
20080102206 | Wagner | May 2008 | A1 |
20080109017 | Herweck | May 2008 | A1 |
20080110852 | Kuroda | May 2008 | A1 |
20080113109 | Moelle | May 2008 | A1 |
20080118734 | Goodwin | May 2008 | A1 |
20080131628 | Abensour | Jun 2008 | A1 |
20080131638 | Hutton | Jun 2008 | A1 |
20080139003 | Pirzada | Jun 2008 | A1 |
20080145271 | Kidambi | Jun 2008 | A1 |
20080187681 | Hofrichter | Aug 2008 | A1 |
20080188013 | Cho | Aug 2008 | A1 |
20080195059 | Sudo | Aug 2008 | A1 |
20080202414 | Yan | Aug 2008 | A1 |
20080206477 | Rius | Aug 2008 | A1 |
20080210550 | Walther et al. | Sep 2008 | A1 |
20080220164 | Bauch | Sep 2008 | A1 |
20080223815 | Konrad | Sep 2008 | A1 |
20080233355 | Henze | Sep 2008 | A1 |
20080260966 | Hanawa | Oct 2008 | A1 |
20080268252 | Garces | Oct 2008 | A1 |
20080277332 | Liu | Nov 2008 | A1 |
20080289957 | Takigawa | Nov 2008 | A1 |
20080292806 | Wei | Nov 2008 | A1 |
20080295772 | Park | Dec 2008 | A1 |
20080303131 | Mcelrea | Dec 2008 | A1 |
20080312607 | Delmotte | Dec 2008 | A1 |
20080314318 | Han | Dec 2008 | A1 |
20090004091 | Kang | Jan 2009 | A1 |
20090004363 | Keshner | Jan 2009 | A1 |
20090017217 | Hass | Jan 2009 | A1 |
20090022981 | Yoshida | Jan 2009 | A1 |
20090029402 | Papkovsky | Jan 2009 | A1 |
20090031953 | Ingle | Feb 2009 | A1 |
20090032393 | Madocks | Feb 2009 | A1 |
20090039240 | Van Nijnatten | Feb 2009 | A1 |
20090053491 | Loboda | Feb 2009 | A1 |
20090061237 | Gates | Mar 2009 | A1 |
20090065485 | O'Neill | Mar 2009 | A1 |
20090069790 | Yokley | Mar 2009 | A1 |
20090081797 | Fadeev | Mar 2009 | A1 |
20090099512 | Digregorio | Apr 2009 | A1 |
20090104392 | Takada | Apr 2009 | A1 |
20090117268 | Lewis | May 2009 | A1 |
20090117389 | Amberg-Schwab | May 2009 | A1 |
20090122832 | Feist | May 2009 | A1 |
20090134884 | Bosselmann | May 2009 | A1 |
20090137966 | Rueckert | May 2009 | A1 |
20090142227 | Fuchs | Jun 2009 | A1 |
20090142514 | O'Neill | Jun 2009 | A1 |
20090149816 | Hetzler | Jun 2009 | A1 |
20090155490 | Bicker | Jun 2009 | A1 |
20090162571 | Haines | Jun 2009 | A1 |
20090166312 | Giraud | Jul 2009 | A1 |
20090176031 | Armellin | Jul 2009 | A1 |
20090214801 | Higashi | Aug 2009 | A1 |
20090220948 | Oviso et al. | Sep 2009 | A1 |
20090263668 | David | Oct 2009 | A1 |
20090274851 | Goudar | Nov 2009 | A1 |
20090280268 | Glukhoy | Nov 2009 | A1 |
20090297730 | Glukhoy | Dec 2009 | A1 |
20090306595 | Shih | Dec 2009 | A1 |
20090326517 | Bork | Dec 2009 | A1 |
20100021998 | Sanyal | Jan 2010 | A1 |
20100028238 | Maschwitz | Feb 2010 | A1 |
20100034985 | Krueger | Feb 2010 | A1 |
20100042055 | Sudo | Feb 2010 | A1 |
20100075077 | Bicker | Mar 2010 | A1 |
20100086808 | Nagata | Apr 2010 | A1 |
20100089097 | Brack | Apr 2010 | A1 |
20100104770 | Goudar | Apr 2010 | A1 |
20100105208 | Winniczek | Apr 2010 | A1 |
20100132762 | Graham, Jr. | Jun 2010 | A1 |
20100145284 | Togashi | Jun 2010 | A1 |
20100174239 | Yodfat | Jul 2010 | A1 |
20100174245 | Halverson | Jul 2010 | A1 |
20100178490 | Cerny | Jul 2010 | A1 |
20100185157 | Kawamura | Jul 2010 | A1 |
20100186740 | Lewis | Jul 2010 | A1 |
20100190036 | Komvopoulos | Jul 2010 | A1 |
20100193461 | Boutroy | Aug 2010 | A1 |
20100198554 | Skliar | Aug 2010 | A1 |
20100204648 | Stout | Aug 2010 | A1 |
20100230281 | Park | Sep 2010 | A1 |
20100231194 | Bauch | Sep 2010 | A1 |
20100237545 | Haury | Sep 2010 | A1 |
20100264139 | Kawachi | Oct 2010 | A1 |
20100273261 | Chen | Oct 2010 | A1 |
20100275847 | Yamasaki | Nov 2010 | A1 |
20100279397 | Crawford | Nov 2010 | A1 |
20100298738 | Felts | Nov 2010 | A1 |
20100298779 | Hetzler | Nov 2010 | A1 |
20110037159 | Mcelrea | Feb 2011 | A1 |
20110046570 | Stout | Feb 2011 | A1 |
20110056912 | Magsuyama | Mar 2011 | A1 |
20110062047 | Haines | Mar 2011 | A1 |
20110065798 | Hoang | Mar 2011 | A1 |
20110079582 | Yonesu | Apr 2011 | A1 |
20110093056 | Kaplan | Apr 2011 | A1 |
20110111132 | Wei | May 2011 | A1 |
20110117202 | Bourke, Jr. | May 2011 | A1 |
20110117288 | Honda | May 2011 | A1 |
20110137263 | Ashmead | Jun 2011 | A1 |
20110152820 | Chattaraj | Jun 2011 | A1 |
20110159101 | Kurdyumov et al. | Jun 2011 | A1 |
20110160662 | Stout | Jun 2011 | A1 |
20110160663 | Stout | Jun 2011 | A1 |
20110174220 | Laure | Jul 2011 | A1 |
20110186537 | Rodriguez San Juan | Aug 2011 | A1 |
20110220490 | Wei | Sep 2011 | A1 |
20110252899 | Felts | Oct 2011 | A1 |
20110253674 | Chung | Oct 2011 | A1 |
20110313363 | D'Souza | Dec 2011 | A1 |
20110319758 | Wang | Dec 2011 | A1 |
20110319813 | Kamen | Dec 2011 | A1 |
20120003497 | Handy | Jan 2012 | A1 |
20120004339 | Chappa | Jan 2012 | A1 |
20120021136 | Dzengeleski | Jan 2012 | A1 |
20120031070 | Slough | Feb 2012 | A1 |
20120035543 | Kamen | Feb 2012 | A1 |
20120052123 | Kurdyumov et al. | Mar 2012 | A9 |
20120053530 | Zhao | Mar 2012 | A1 |
20120058351 | Zhao | Mar 2012 | A1 |
20120065612 | Stout | Mar 2012 | A1 |
20120097527 | Kodaira | Apr 2012 | A1 |
20120097870 | Leray | Apr 2012 | A1 |
20120108058 | Ha | May 2012 | A1 |
20120109076 | Kawamura | May 2012 | A1 |
20120123345 | Felts | May 2012 | A1 |
20120141913 | Lee | Jun 2012 | A1 |
20120143148 | Zhao | Jun 2012 | A1 |
20120149871 | Saxena | Jun 2012 | A1 |
20120171386 | Bicker | Jul 2012 | A1 |
20120174239 | Anderson | Jul 2012 | A1 |
20120175384 | Greter | Jul 2012 | A1 |
20120183954 | Diwu | Jul 2012 | A1 |
20120205374 | Klumpen | Aug 2012 | A1 |
20120231182 | Stevens | Sep 2012 | A1 |
20120234720 | Digregorio | Sep 2012 | A1 |
20120252709 | Felts | Oct 2012 | A1 |
20130041241 | Felts | Feb 2013 | A1 |
20130046375 | Chen | Feb 2013 | A1 |
20130057677 | Weil | Mar 2013 | A1 |
20130072025 | Singh | Mar 2013 | A1 |
20130081953 | Bruna et al. | Apr 2013 | A1 |
20130190695 | Wu | Jul 2013 | A1 |
20130209704 | Krueger | Aug 2013 | A1 |
29139264393 | Andersen | Oct 2013 | |
20130296235 | Alarcon | Nov 2013 | A1 |
20140010969 | Bicker | Jan 2014 | A1 |
20140052076 | Zhao | Feb 2014 | A1 |
20140054803 | Chen | Feb 2014 | A1 |
20140099455 | Stanley | Apr 2014 | A1 |
20140110297 | Trotter | Apr 2014 | A1 |
20140135708 | Lewis | May 2014 | A1 |
20140147654 | Walther | May 2014 | A1 |
20140151320 | Chang | Jun 2014 | A1 |
20140151370 | Chang | Jun 2014 | A1 |
20140187666 | Aizenberg | Jul 2014 | A1 |
20140190846 | Belt | Jul 2014 | A1 |
20140221934 | Janvier | Aug 2014 | A1 |
20140251856 | Larsson | Sep 2014 | A1 |
20140251859 | Weikart | Sep 2014 | A1 |
20140305830 | Bicker | Oct 2014 | A1 |
20150165125 | Foucher | Jun 2015 | A1 |
20150224263 | Dugand | Aug 2015 | A1 |
Number | Date | Country |
---|---|---|
414209 | Oct 2006 | AT |
504533 | Jun 2008 | AT |
2002354470 | May 2007 | AU |
2085805 | Dec 1992 | CA |
2277679 | Jul 1997 | CA |
2355681 | Jul 2000 | CA |
2571380 | Jul 2006 | CA |
2718253 | Sep 2009 | CA |
2268719 | Aug 2010 | CA |
2546041 | Apr 2003 | CN |
1711310 | Dec 2005 | CN |
2766863 | Mar 2006 | CN |
1898172 | Jan 2007 | CN |
201002786 | Jan 2008 | CN |
101147813 | Mar 2008 | CN |
201056331 | May 2008 | CN |
102581274 | Jul 2012 | CN |
1147836 | Apr 1969 | DE |
1147838 | Apr 1969 | DE |
3632748 | Apr 1988 | DE |
3908418 | Sep 1990 | DE |
4214401 | Mar 1993 | DE |
4204082 | Aug 1993 | DE |
4316349 | Nov 1994 | DE |
4438359 | May 1996 | DE |
19707645 | Aug 1998 | DE |
19830794 | Jan 2000 | DE |
19912737 | Jun 2000 | DE |
10010831 | Sep 2001 | DE |
10154404 | Jun 2003 | DE |
10201110 | Oct 2003 | DE |
10242698 | Mar 2004 | DE |
10246181 | Apr 2004 | DE |
10353540 | May 2004 | DE |
102004017236 | Oct 2005 | DE |
102006061585 | Feb 2008 | DE |
102008023027 | Nov 2009 | DE |
0121340 | Oct 1984 | EP |
0251812 | Jan 1988 | EP |
0275965 | Jul 1988 | EP |
0284867 | Oct 1988 | EP |
0306307 | Mar 1989 | EP |
0329041 | Aug 1989 | EP |
0343017 | Nov 1989 | EP |
0396919 | Nov 1990 | EP |
0482613 | Oct 1991 | EP |
0484746 | Oct 1991 | EP |
0495447 | Jul 1992 | EP |
0520519 | Dec 1992 | EP |
0535810 | Apr 1993 | EP |
0375778 | Sep 1993 | EP |
0571116 | Nov 1993 | EP |
0580094 | Jan 1994 | EP |
0603717 | Jun 1994 | EP |
0619178 | Oct 1994 | EP |
0645470 | Mar 1995 | EP |
0697378 | Feb 1996 | EP |
0709485 | May 1996 | EP |
0719877 | Jul 1996 | EP |
0728676 | Aug 1996 | EP |
0787824 | Aug 1997 | EP |
0787828 | Aug 1997 | EP |
0814114 | Dec 1997 | EP |
0833366 | Apr 1998 | EP |
0879611 | Nov 1998 | EP |
0940183 | Sep 1999 | EP |
0962229 | Dec 1999 | EP |
0992610 | Apr 2000 | EP |
1119034 | Jul 2001 | EP |
0954272 | Mar 2002 | EP |
1245694 | Oct 2002 | EP |
1388594 | Jan 2003 | EP |
1317937 | Jun 2003 | EP |
1365043 | Nov 2003 | EP |
1367145 | Dec 2003 | EP |
1388593 | Feb 2004 | EP |
1439241 | Jul 2004 | EP |
1447459 | Aug 2004 | EP |
1990639 | Feb 2005 | EP |
1510595 | Mar 2005 | EP |
1522403 | Apr 2005 | EP |
1901067 | Aug 2005 | EP |
1507894 | Dec 2005 | EP |
1507723 | Mar 2006 | EP |
1653192 | May 2006 | EP |
1810758 | Jul 2007 | EP |
1356260 | Dec 2007 | EP |
1870117 | Dec 2007 | EP |
1881088 | Jan 2008 | EP |
1507887 | Jul 2008 | EP |
1415018 | Oct 2008 | EP |
2199264 | Nov 2009 | EP |
1388594 | Jan 2010 | EP |
2178109 | Apr 2010 | EP |
1507895 | Jul 2010 | EP |
2218465 | Aug 2010 | EP |
2243751 | Oct 2010 | EP |
2251671 | Nov 2010 | EP |
2261185 | Dec 2010 | EP |
2369038 | Sep 2011 | EP |
1960279 | Oct 2011 | EP |
2602354 | Jun 2013 | EP |
2639330 | Sep 2013 | EP |
891892 | Nov 1942 | FR |
752822 | Jul 1956 | GB |
1363762 | Aug 1974 | GB |
1513426 | Jun 1978 | GB |
1566251 | Apr 1980 | GB |
2210826 | Jun 1989 | GB |
2231197 | Nov 1990 | GB |
2246794 | Feb 1992 | GB |
2246795 | Feb 1992 | GB |
2387964 | Oct 2003 | GB |
56027330 | Mar 1981 | JP |
58154602 | Sep 1983 | JP |
59087307 | May 1984 | JP |
59154029 | Sep 1984 | JP |
S61183462 | Aug 1986 | JP |
S62180069 | Aug 1987 | JP |
S62290866 | Dec 1987 | JP |
63124521 | May 1988 | JP |
1023105 | Jan 1989 | JP |
H01225775 | Sep 1989 | JP |
1279745 | Nov 1989 | JP |
2501490 | May 1990 | JP |
3183759 | Aug 1991 | JP |
H03260065 | Nov 1991 | JP |
H03271374 | Dec 1991 | JP |
4000373 | Jan 1992 | JP |
4000374 | Jan 1992 | JP |
4000375 | Jan 1992 | JP |
4014440 | Jan 1992 | JP |
H04124273 | Apr 1992 | JP |
H0578844 | Mar 1993 | JP |
05-006688 | Apr 1993 | JP |
H05263223 | Oct 1993 | JP |
6010132 | Jan 1994 | JP |
6289401 | Oct 1994 | JP |
7041579 | Feb 1995 | JP |
7068614 | Mar 1995 | JP |
7126419 | May 1995 | JP |
7-304127 | Nov 1995 | JP |
8025244 | Jan 1996 | JP |
8084773 | Apr 1996 | JP |
H08296038 | Nov 1996 | JP |
9005038 | Jan 1997 | JP |
10008254 | Jan 1998 | JP |
10-130844 | May 1998 | JP |
11-108833 | Apr 1999 | JP |
11106920 | Apr 1999 | JP |
H11256331 | Sep 1999 | JP |
11344316 | Dec 1999 | JP |
2000064040 | Feb 2000 | JP |
2000109076 | Apr 2000 | JP |
2001033398 | Feb 2001 | JP |
2001231841 | Aug 2001 | JP |
2002177364 | Jun 2002 | JP |
2002206167 | Jul 2002 | JP |
2002371364 | Dec 2002 | JP |
2003171771 | Jun 2003 | JP |
2003-268550 | Sep 2003 | JP |
2003294431 | Oct 2003 | JP |
2003305121 | Oct 2003 | JP |
2004002928 | Jan 2004 | JP |
2004008509 | Jan 2004 | JP |
2004043789 | Feb 2004 | JP |
2004100036 | Apr 2004 | JP |
2004156444 | Jun 2004 | JP |
2004168359 | Jun 2004 | JP |
2004169087 | Jun 2004 | JP |
2004203682 | Jul 2004 | JP |
2004-253683 | Sep 2004 | JP |
2004307935 | Nov 2004 | JP |
2005035597 | Feb 2005 | JP |
2005043285 | Feb 2005 | JP |
2005132416 | May 2005 | JP |
2005160888 | Jun 2005 | JP |
2005-200044 | Jul 2005 | JP |
2005200044 | Jul 2005 | JP |
2005-241524 | Sep 2005 | JP |
2005-290560 | Oct 2005 | JP |
2005271997 | Oct 2005 | JP |
2005290561 | Oct 2005 | JP |
2006-064416 | Mar 2006 | JP |
2006111967 | Apr 2006 | JP |
2006160268 | Jun 2006 | JP |
2006-224992 | Aug 2006 | JP |
2006249577 | Sep 2006 | JP |
2007050898 | Mar 2007 | JP |
2007231386 | Sep 2007 | JP |
2007246974 | Sep 2007 | JP |
2008-132766 | Jun 2008 | JP |
2008174793 | Jul 2008 | JP |
2009-062620 | Mar 2009 | JP |
2009062620 | Mar 2009 | JP |
2009079298 | Apr 2009 | JP |
2009084203 | Apr 2009 | JP |
2009185330 | Aug 2009 | JP |
2010155134 | Jul 2010 | JP |
2012210315 | Nov 2012 | JP |
5362941 | Dec 2013 | JP |
10-2005-0100367 | Oct 2005 | KR |
10-2006-0029694 | Apr 2006 | KR |
10-0685594 | Feb 2007 | KR |
1530913 | Dec 1989 | SU |
200703536 | Jan 2007 | TW |
WO9324243 | Dec 1993 | WO |
WO9400247 | Jan 1994 | WO |
WO9426497 | Nov 1994 | WO |
WO9624392 | Aug 1995 | WO |
WO9524275 | Sep 1995 | WO |
WO9711482 | Mar 1997 | WO |
WO9713802 | Apr 1997 | WO |
WO98-27926 | Jul 1998 | WO |
WO9845871 | Oct 1998 | WO |
WO9917334 | Apr 1999 | WO |
WO9941425 | Aug 1999 | WO |
WO9950471 | Oct 1999 | WO |
WO0038566 | Jul 2000 | WO |
WO0104668 | Jan 2001 | WO |
WO0125788 | Apr 2001 | WO |
WO0154816 | Aug 2001 | WO |
WO0156706 | Aug 2001 | WO |
WO0170403 | Sep 2001 | WO |
WO0243116 | May 2002 | WO |
WO0249925 | Jun 2002 | WO |
WO02056333 | Jul 2002 | WO |
WO02072914 | Sep 2002 | WO |
WO02076709 | Oct 2002 | WO |
WO03014415 | Feb 2003 | WO |
WO03033426 | Apr 2003 | WO |
WO03038143 | May 2003 | WO |
WO03040649 | May 2003 | WO |
WO03044240 | May 2003 | WO |
WO2005035147 | Apr 2005 | WO |
WO2005052555 | Jun 2005 | WO |
WO2005051525 | Jun 2005 | WO |
WO2005103605 | Nov 2005 | WO |
WO2006012881 | Feb 2006 | WO |
WO2006027568 | Mar 2006 | WO |
WO2006029743 | Mar 2006 | WO |
WO2006044254 | Apr 2006 | WO |
WO2006048650 | May 2006 | WO |
WO2006048276 | May 2006 | WO |
WO2006048277 | May 2006 | WO |
WO2006069774 | Jul 2006 | WO |
WO2006135755 | Dec 2006 | WO |
WO2007028061 | Mar 2007 | WO |
WO2007035741 | Mar 2007 | WO |
WO2007036544 | Apr 2007 | WO |
WO2007081814 | Jul 2007 | WO |
WO2007089216 | Aug 2007 | WO |
WO2007112328 | Oct 2007 | WO |
WO2007120507 | Oct 2007 | WO |
WO2007133378 | Nov 2007 | WO |
WO2007134347 | Nov 2007 | WO |
WO2008014438 | Jan 2008 | WO |
WO2008024566 | Feb 2008 | WO |
WO2008040531 | Apr 2008 | WO |
WO2008047541 | Apr 2008 | WO |
WO2008067574 | Jun 2008 | WO |
WO2008071458 | Jun 2008 | WO |
WO2008093335 | Aug 2008 | WO |
2008121478 | Oct 2008 | WO |
WO2009015862 | Feb 2009 | WO |
WO2009020550 | Feb 2009 | WO |
WO2009021257 | Feb 2009 | WO |
WO2009030974 | Mar 2009 | WO |
WO2009030975 | Mar 2009 | WO |
WO2009030976 | Mar 2009 | WO |
WO2009031838 | Mar 2009 | WO |
WO2009040109 | Apr 2009 | WO |
WO2009053947 | Apr 2009 | WO |
WO2009112053 | Sep 2009 | WO |
WO2009117032 | Sep 2009 | WO |
WO2009118361 | Oct 2009 | WO |
WO2009158613 | Dec 2009 | WO |
WO2010047825 | Apr 2010 | WO |
WO2010095011 | Aug 2010 | WO |
WO2010132579 | Nov 2010 | WO |
WO2010132581 | Nov 2010 | WO |
WO2010132584 | Nov 2010 | WO |
WO2010132585 | Nov 2010 | WO |
WO2010132589 | Nov 2010 | WO |
WO2010132591 | Nov 2010 | WO |
WO2010034004 | Nov 2010 | WO |
WO2010132579 | Nov 2010 | WO |
WO2011029628 | Mar 2011 | WO |
WO2011007055 | Jun 2011 | WO |
WO2011080543 | Jul 2011 | WO |
WO2011082296 | Jul 2011 | WO |
WO2011090717 | Jul 2011 | WO |
WO2011143329 | Nov 2011 | WO |
WO2011143509 | Nov 2011 | WO |
WO2011143509 | Nov 2011 | WO |
WO2011137437 | Nov 2011 | WO |
WO2011143329 | Nov 2011 | WO |
WO2011159975 | Dec 2011 | WO |
WO2012003221 | Jan 2012 | WO |
WO2012009653 | Jan 2012 | WO |
WO2013045671 | Apr 2013 | WO |
WO2013071138 | May 2013 | WO |
WO2013071138 | May 2013 | WO |
WO2013170044 | Nov 2013 | WO |
WO2013170052 | Nov 2013 | WO |
WO2014008138 | Jan 2014 | WO |
WO2014059012 | Apr 2014 | WO |
WO2014071061 | May 2014 | WO |
WO2014078666 | May 2014 | WO |
WO2014085346 | Jun 2014 | WO |
WO2014085348 | Jun 2014 | WO |
WO2014134577 | Sep 2014 | WO |
WO2014144926 | Sep 2014 | WO |
WO2014164928 | Oct 2014 | WO |
Entry |
---|
US 5,645,643, 07/1997, Thomas (withdrawn) |
Patent Cooperation Treaty, International Preliminary Examining Authority, Notification of Transmittal of International Preliminary Report on Patentability, in international application No. PCT/US2010/034571, dated Jun. 13, 2011. |
Patent Cooperation Treaty, International Preliminary Examining Authority, Written Opinion of the International Preliminary Examining Authority, in international application No. PCT/US2010/034586, dated Aug. 23, 2011. |
Patent Cooperation Treaty, International Preliminary Examining Authority, Written Opinion of the International Preliminary Examining Authority, in international application No. PCT/US2010/034568, dated May 30, 2011. |
Patent Cooperation Treaty, Notification of Transmittal of International Preliminary Report on Patentability, in Application No. PCT/US2010/034576, dated Sep. 14, 2011. |
Patent Cooperation Treaty, Notification of Transmittal of International Preliminary Report on Patentability, in Application No. PCT/US2010/034568, dated Sep. 14, 2011. |
Patent Cooperation Treaty, International Search Report and Written Opinion, in Application No. PCT/US2011/036358, dated Sep. 9, 2011. |
Patent Cooperation Treaty, International Search Report and Written Opinion, in Application No. PCT/US2011/036340, dated Aug. 1, 2011. |
MacDonald, Gareth, “West and Daikyo Seiko Launch Ready Pack”, http://www.in-pharmatechnologist.com/Packaging/West-and-Daikyo-Seiko-launch-Ready-Pack, 2 pages, retrieved from the internet Sep. 22, 2011. |
Kumer, Vijai, “Development of Terminal Sterilization Cycle for Pre-Filled Cyclic Olefin Polymer (COP) Syringes”, http://abstracts.aapspharmaceutica.com/ExpoAAPS09/CC/forms/attendee/index.aspx?content=sessionInfo&sessionId=401, 1 page, retrieved from the internet Sep. 22, 2011. |
Quinn, F.J., “Biotech Lights Up the Glass Packaging Picture”, http://www.pharmaceuticalcommerce.com/frontEnd/main.php?idSeccion=840, 4 pages, retrieved from the internet Sep. 21, 2011. |
Wen, Zai-Qing et al., Distribution of Silicone Oil in Prefilled Glass Syringes Probed with Optical and Spectroscopic Methods, PDA Journal of Pharmaceutical Science and Technology 2009, 63, pp. 149-158. |
ZebraSci—Intelligent Inspection Products, webpage, http://zebrasci.com/index.html, retrieved from the internet Sep. 30, 2011. |
Google search re “cyclic olefin polymer resin” syringe OR vial, http://www.google.com/search?sclient=psy-ab&hl=en&lr=&source=hp&q=%22cyclic+olefin+polymer+resin+%22+syringe+OR+vial&btnG=Search&pbx=1&oq=%22cyclic+olefin+polymer+resin%22+syringe+OR+vial&aq, 1 page, retrieved from the internet Sep. 22, 2011. |
Taylor, Nick, “West to Add CZ Vials as Glass QC Issues Drive Interest”, ttp://twitter.com/WestPharma/status/98804071674281986, 2 pages, retrieved from the internet Sep. 22, 2011. |
Coating Syringes, http://www.triboglide.com/syringes.htm, printed Aug. 31, 2009. |
Coating/Production Process, http://www.triboglide.com/process.htm, printed Aug. 31, 2009. |
Munich Exp, Materialica 2005: Fundierte Einblicke in den Werkstofsektor, Seite 1, von 4, ME095-6. |
Schott Developing Syringe Production in United States, Apr. 14, 2009, http://www.schott.com/pharmaceutical—packaging, printed Aug. 31, 2009. |
Sterile Prefillable Glass and Polymer Syringes, Schott forma vitrum, http://www.schott.com/pharmaceutical—packaging. |
Transparent and recyclingfähig, neue verpackung, Dec. 2002, pp. 54-57. |
European Patent Office, Communication with European Search Report, in Application No. 10162758.6, dated Aug. 19, 2010. |
Griesser, Hans J., et al., Elimination of Stick-Slip of Elastomeric Sutures by Radiofrequency Glow Discharge Deposited Coatings, Biomed Mater. Res. Appl Biomater, 2000, vol. 53, 235-243, John Wiley & Sons, Inc. |
European Patent Office, Communication with extended Search Report, in Application No. EP 10162761.0, dated Feb. 10, 2011. |
European Patent Office, Communication with partial Search Report, in Application No. EP 10162758.6, dated Aug. 19, 2010. |
European Patent Office, Communication with extended Search Report, in Application No. EP 10162758.6, dated Dec. 21, 2010. |
Yang, et al., Microstructure and tribological properties of SiOx/DLC films grown by PECVD, Surface and Coatings Technology, vol. 194 (2005), Apr. 20, 2005, pp. 128-135. |
European Patent Office, Communication with extended European search report, in Application No. EP10162756.0, dated Nov. 17, 2010. |
Prasad, G.R. et al., “Biocompatible Coatings with Silicon and Titanium Oxides Deposited by PECVD”, 3rd Mikkeli International Industrial Coating Seminar, Mikkeli, Finland, Mar. 16-18, 2006. |
European Patent Office, Communication with extended European search report, in Application No. EP10162757.8, dated Nov. 10, 2010. |
Patent Cooperation Treaty, Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority, in PCT/US2010/034568, dated Jan. 21, 2011. |
Patent Cooperation Treaty, Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority, in PCT/US2010/034571, dated Jan. 26, 2011. |
Patent Cooperation Treaty, Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority, in PCT/US2010/034576, dated Jan. 25, 2011. |
Patent Cooperation Treaty, Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority, in PCT/US2010/034577, dated Jan. 21, 2011. |
Patent Cooperation Treaty, Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority, in PCT/US2010/034582, dated Jan. 24, 2011. |
European Patent Office, Communication with Extended Search Report, in Application No. EP 10162755.2, dated Nov. 9, 2010. |
European Patent Office, Communication with Extended Search Report, in Application No. EP 10162760.2, dated Nov. 12, 2010. |
PCT, Written Opinion of the International Searching Authority with International Search Report in Application No. PCT/US2010/034586, dated Mar. 15, 2011. |
Shimojima, Atsushi et al., Structure and Properties of Multilayered Siloxane-Organic Hybrid Films Prepared Using Long-Chain Organotrialkoxysilanes Containing C=C Double Bonds, Journal of Materials Chemistry, 2007, vol. 17, pp. 658-663, ©The Royal Society of Chemistry, 2007. |
Sone, Hayato et al., Picogram Mass Sensor Using Resonance Frequency Shift of Cantilever, Japanese Journal of Applied Physics, vol. 43, No. 6A, 2004, pp. 3648-3651, © The Japan Society of Applied Physics. |
Sone, Hayato et al., Femtogram Mass Sensor Using Self-Sensing Cantilever for Allergy Check, Japanese Journal of Applied Physics, vol. 45, No. 3B, 2006, pp. 2301-2304, ©The Japan Society of Applied Physics. |
Mallikarjunan, Anupama et al, The Effect of Interfacial Chemistry on Metal Ion Penetration into Polymeric Films, Mat. Res. Soc. Symp. Proc. vol. 734, 2003, © Materials Research Society. |
Schonher, H., et al., Friction and Surface Dynamics of Polymers on the Nanoscale by AFM, STM and AFM Studies on (Bio)molecular Systems: Unravelling the Nanoworld. Topics in Current Chemistry, 2008, vol. 285, pp. 103-156, ©Springer-Verlag Berlin Heidelberg. |
Lang, H.P., Gerber, C., Microcantilever Sensors, STM and AFM Studies on (Bio)molecular Systems: Unravelling the Nanoworld. Topics in Current Chemistry, 2008, vol. 285, pp. 1-28, © Springer-Verlag Berlin Heidelberg. |
Allison, H.L., The Real Markets for Transparent Barrier Films, 37th Annual Technical Conference Proceedings, 1994, ISBN 1-878068-13-X, pp. 458. |
Bailey, R. et al., Thin-Film Multilayer Capacitors Using Pyrolytically Deposited Silicon Dioxide, IEEE Transactions on Parts, Hybrids, and Packaging, vol. PHP-12, No. 4, Dec. 1976, pp. 361-364. |
Banks, B.A., et al., Fluoropolymer Filled SiO2 Coatings; Properties and Potential Applications, Society of Vacuum Coaters, 35th Annual Technical Conference Proceedings, 1992, ISBN 1-878068-11-3, pp. 89-93. |
Baouchi, W., X-Ray Photoelectron Spectroscopy Study of Sodium Ion Migration through Thin Films of SiO2 Deposited on Sodalime Glass, 37th Annual Technical Conference Proceedings, 1994, ISBN 1-878068-13-X, pp. 419-422. |
Boebel, F. et al., Simultaneous in Situ Measurement of Film Thickness and Temperature by Using Multiple Wavelengths Pyrometric Interferometry (MWPI), IEEE Transaction on Semiconductor Manufacturing, vol. 6, No. 2, May 1993, , pp. 112-118. |
Bush, V. et al., The Evolution of Evacuated Blood Collection Tubes, BD Diagnostics—Preanalytical Systems Newsletter, vol. 19, No. 1, 2009. |
Chahroudi, D., Deposition Technology for Glass Barriers, 33rd Annual Technical Conference Proceedings, 1990, ISBN 1-878068-09-1, pp. 212-220. |
Chahroudi, D., et al., Transparent Glass Barrier Coatings for Flexible Film Packaging, Society of Vacuum Coaters, 34th Annual Technical Conference Proceedings, 1991, ISBN 1-878068-10-5, pp. 130-133. |
Chahroudi, D., Glassy Barriers from Electron Beam Web Coaters, 32nd Annual Technical Conference Proceedings, 1989, pp. 29-39. |
Czeremuszkin, G. et al., Ultrathin Silicon-Compound Barrier Coatings for Polymeric Packaging Materials: An Industrial Perspective, Plasmas and Polymers, vol. 6, Nos. 1/2, Jun. 2001, pp. 107-120. |
Ebihara, K. et al., Application of the Dielectric Barrier Discharge to Detect Defects in a Teflon Coated Metal Surface, 2003 J. Phys. D: Appl. Phys. 36 2883-2886, doi: 10.1088/0022-3727/36/23/003, IOP Electronic Journals, http://www.iop.org/EJ/abstract/0022-3727/36/23/003, printed Jul. 14, 2009. |
Egitto, F.D., et al., Plasma Modification of Polymer Surfaces, Society of Vacuum Coaters, 36th Annual Technical Conference Proceedings, 1993, ISBN 1-878068-12-1, pp. 10-21. |
Erlat, A.G. et al., SIOx Gas Barrier Coatings on Polymer Substrates: Morphology and Gas Transport Considerations, ACS Publications, Journal of Physical Chemistry, published Jul. 2, 1999, http://pubs.acs.org/doi/abs/10.1021/jp990737e, printed Jul. 14, 2009. |
Fayet, P., et al., Commercialism of Plasma Deposited Barrier Coatings for Liquid Food Packaging, 37th Annual Technical Conference Proceedings, 1995, ISBN 1-878068-13-X, pp. 15-16. |
Felts, J., Hollow Cathode Based Multi-Component Depositions, Vacuum Technology & Coating, Mar. 2004, pp. 48-55. |
Felts, J.T., Thickness Effects on Thin Film Gas Barriers: Silicon-Based Coatings, Society of Vacuum Coaters, 34th Annual Technical Conference Proceedings, 1991, ISBN 1-878068-10-5, pp. 99-104. |
Felts, J.T., Transparent Barrier Coatings Update: Flexible Substrates, Society of Vacuum Coaters, 36th Annual Technical Conference Proceedings, 1993, ISBN 1-878068-12-1, pp. 324-331. |
Felts, J.T., Transparent Gas Barrier Technologies, 33rd Annual Technical Conference Proceedings, 1990, ISBN 1-878068-09-1, pp. 184-193. |
Finson, E., et al., Transparent SiO2 Barrier Coatings: Conversion and Production Status, 37th Annual Technical Conference Proceedings, 1994, ISBN 1-878068-13-X, pp. 139-143. |
Flaherty, T. et al., Application of Spectral Reflectivity to the Measurement of Thin-Film Thickness, Opto-Ireland 2002: Optics and Photonics Technologies and Applications, Proceedings of SPIE vol. 4876, 2003, pp. 976-983. |
Hora, R., et al., Plasma Polymerization: A New Technology for Functional Coatings on Plastics, 36th Annual Technical Conference Proceedings, 1993, ISBN 1-878068-12-1, pp. 51-55. |
Izu, M., et al., High Performance Clear CoatTM Barrier Film, 36th Annual Technical Conference Proceedings, 1993, ISBN 1-878068-12-1, pp. 333-340. |
Jost, S., Plasma Polymerized Organosilicon Thin Films on Reflective Coatings, 33rd Annual Technical Conference Proceedings, 1990, ISBN 1-878068-09-1, pp. 344-346. |
Kaganowicz, G., et al., Plasma-Deposited Coatings—Properties and Applications, 23rd Annual Technical Conference Proceedings, 1980, pp. 24-30. |
Kamineni, V. et al., Thickness Measurement of Thin Metal Films by Optical Metrology, College of Nanoscale Science and Engineering, University of Albany, Albany, NY. |
Klemberg-Sapieha, J.E., et al., Transparent Gas Barrier Coatings Produced by Dual Frequency PECVD, 36th Annual Technical Conference Proceedings, 1993, ISBN 1-878068-12-1, pp. 445-449. |
Krug, T., et al., New Developments in Transparent Barrier Coatings, 36th Annual Technical Conference Proceedings, 1993, ISBN 1-878068-12-1, pp. 302-305. |
Kuhr, M. et al., Multifunktionsbeschichtungen für innovative Applikationen von Kunststoff-Substraten, HiCotec Smart Coating Solutions. |
Kulshreshtha, D.S., Specifications of a Spectroscopic Ellipsometer, Department of Physics & Astrophysics, University of Delhi, Delhi-110007, Jan. 16, 2009. |
Krug, T.G., Transparent Barriers for Food Packaging, 33rd Annual Technical Conference Proceedings, 1990, ISBN 1-878068-09-1, pp. 163-169. |
Lee, K. et al., The Ellipsometric Measurements of a Curved Surface, Japanese Journal of Applied Physics, vol. 44, No. 32, 2005, pp. L1015-L1018. |
Lelait, L. et al., Microstructural Investigations of EBPVD Thermal Barrier Coatings, Journal De Physique IV, Colloque C9, supplément au Journal de Physique III, vol. 3, Dec. 1993, pp. 645-654. |
Masso, J.D., Evaluation of Scratch Resistant and Antireflective Coatings for Plastic Lenses, 32nd Annual Technical Conference Proceedings, 1989, p. 237-240. |
Misiano, C., et al., New Colourless Barrier Coatings (Oxygen & Water Vapor Transmission Rate) on Plastic Substrates, 35th Annual Technical Conference Proceedings, 1992, ISBN 1-878068-11-3, pp. 28-40. |
Misiano, C., et al., Silicon Oxide Barrier Improvements on Plastic Substrate, Society of Vacuum Coaters, 34th Annual Technical Conference Proceedings, 1991, ISBN 1-878068-10-5, pp. 105-112. |
Mount, E., Measuring Pinhole Resistance of Packaging, Corotec Corporation website, http://www.convertingmagazine.com, printed Jul. 13, 2009. |
Murray, L. et al., The Impact of Foil Pinholes and Flex Cracks on the Moisture and Oxygen Barrier of Flexible Packaging. |
Nelson, R.J., et al., Double-Sided OLF® Coatings for Gas Barriers, Society of Vacuum Coaters, 34th Annual Technical Conference Proceedings, 1991, ISBN 1-878068-10-5, pp. 113-117. |
Nelson, R.J., Scale-Up of Plasma Deposited SiOx Gas Diffusion Barrier Coatings, 35th Annual Technical Conference Proceedings, 1992, ISBN 1-878068-11-3, pp. 75-78. |
Novotny, V. J., Ultrafast Ellipsometric Mapping of Thin Films, IBM Technical Disclosure Bulletin, vol. 37, No. 02A, Feb. 1994, pp. 187-188. |
Rüger, M., Die Pulse Sind das Plus, PICVD-Beschichtungsverfahren. |
Schultz, A. et al., Detection and Identification of Pinholes in Plasma-Polymerised Thin Film Barrier Coatings on Metal Foils, Surface & Coatings Technology 200, 2005, pp. 213-217. |
Stchakovsky, M. et al., Characterization of Barrier Layers by Spectroscopic Ellipsometry for Packaging Applications, Horiba Jobin Yvon, Application Note, Spectroscopic Ellipsometry, SE 14, Nov. 2005. |
Teboul, E., Thi-Film Metrology: Spectroscopic Ellipsometer Becomes Industrial Thin-Film Tool, LaserFocusWorld, http://www.laserfocusworld.com/display—article, printed Jul. 14, 2009. |
Teyssedre, G. et al., Temperature Dependence of the Photoluminescence in Poly(Ethylene Terephthalate) Films, Polymer 42, 2001, pp. 8207-8216. |
Tsung, L. et al., Development of Fast CCD Cameras for In-Situ Electron Microscopy, Microsc Microanal 14(Supp 2), 2008. |
Wood, L. et al., A Comparison of SiO2 Barrier Coated Polypropylene to Other Coated Flexible Substrates, 35th Annual Technical Conference Proceedings, 1992, ISBN 1-878068-11-3, pp. 59-62. |
Yang, et al., Microstructure and tribological properties of SiOx/DLC films grown by PECVD, Surface and Coatings Technology, vol. 194, Issue 1, Apr. 20, 2005, pp. 128-135. |
An 451, Accurate Thin Film Measurements by High-Resoluiton Transmission Electron Microscopy (HRTEM), Evans Alalytical Group, Version 1.0, Jun. 12, 2008, pp. 1-2. |
Benefits of TriboGlide, TriboGlide Silicone-Free Lubrication Systems, http://www.triboglide.com/benfits.htm, printed Aug. 31, 2009. |
State Intellectual Property Office of the People's Republic of China, Notification of the Fourth Office Action in Application No. 201080029199.0, dated Mar. 18, 2015 (15 pages). |
Hlobik, Plastic Pre-Fillable Syringe Systems (http://www.healthcarepackaging.com/package-type/Containers/plastic-prefillablesyringe-systems, Jun. 8, 2010). |
PCT, Written Opinion of the International Preliminary Examining Authority, International application No. PCT/SU2013/071752, dated May 6, 2015. |
Hopwood J ED—CRC Press: “Plasma-assisted deposition”, Aug. 17, 1997 (Aug. 17, 1997), Handbook of Nanophase Materials, Chapter 6, pp. 141-197, XP008107730, ISBN: 978-0-8247-9469-9. |
Bose, Sagarika and Constable, Kevin, Advanced Delivery Devices, Design & Evaluation of a Polymer-Based Prefillable Syringe for Biopharmaceuticals With Improved Functionality & Performance, JR Automation Technologies, May 2015. |
Silicone Oil Layer, Contract Testing, webpage, http://www.siliconization.com/downloads/siliconeoillayercontracttesting.pdf, retrieved from the internet Oct. 28, 2011. |
Patent Cooperation Treaty, Notification of Transmittal of International Preliminary Report on Patentability, in PCT/US2010/034577, dated Nov. 24, 2011. |
Patent Cooperation Treaty, Notification of Transmittal of International Preliminary Report on Patentability, in PCT/US2010/034582, dated Nov. 24, 2011. |
Patent Cooperation Treaty, Notification of Transmittal of International Preliminary Report on Patentability, in PCT/US2010/034586, dated Dec. 20, 2011. |
Patent Cooperation Treaty, Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority, in PCT/US2011/036097, dated Dec. 29, 2011. |
“Oxford instruments plasmalab 80plus”, XP55015205, retrieved from the Internet on Dec. 20, 2011, URL:http://www.oxfordplasma.de/pdf—inst/plas—80.pdf. |
Patent Cooperation Treaty, Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority, in PCT/US2011/044215, dated Dec. 29, 2011. |
European Patent Office, Communication pursuant to Article 94(3) EPC, in Application No. 10 162 758.6-1234, dated May 8, 2012 (6 pages). |
Australian Government, IP Australia, Patent Examination Report No. 1, in Application No. 2012318242, dated Apr. 30, 2014. (6 pages). |
State Intellectual Property Office of the People's Republic of China, Notification of the First Office Action, in Application No. 201180023461.5, dated May 21, 2014. (25 pages). |
European Patent Office, Communication pursuant to Article 94(3) EPC, in Application No. 10162758.6 dated May 27, 2014. (7 pages). |
Australian Government, IP Australia, Patent Examination Report No. 1, in Application No. 2011252925, dated Sep. 6, 2013 (3 pages). |
PCT, Written Opinion of the International Preliminary Examining Authority, in International application No. PCT/USUS13/048709, dated Sep. 30, 2014 (4 pages). |
PCT, Notification of Transmittal of the International Preliminary Report on Patentability, in International application No. PCT/USUS13/048709, dated Oct. 15, 2014 (7 pages). |
PCT, Written Opinion of the International Preliminary Examining Authority, in International application No. PCT/USUS13/064121, dated Nov. 19, 2014 (8 pages). |
PCT, Written Opinion of the International Preliminary Examining Authority, in International application No. PCT/USUS13/064121, dated Nov. 21, 2014 (7 pages). |
Intellectual Property Corporation of Malaysia, Substantive Examintion Adverse Report (section 30(1)/30(2)), in Application No. PI 2011005486, dated Oct. 31, 2014 (3 pages). |
Patent Office of the Russian Federation, Official Action, in Application No. 2011150499, dated Sep. 25, 2014 (4 pages). |
Instituto Mexicano de la Propiedad Indutrial, Official Action, in Appilcation No. MX/a/2012/013129, dated Sep. 22, 2014 (5 pages). |
PCT, Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority, or the Declaration, in International application No. PCT/US2013/064121, dated Mar. 24, 2014. (8 pages). |
PCT, Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority, or the Declaration, in International application No. PCT/US2013/070325, dated Mar. 24, 2014. (16 pages). |
Japanese Patent Office, Notice of Reason(s) for Rejection in Patent application No. 2012-510983, dated Jan. 7, 2014. (6 pages). |
Chinese Patent Office, Notification of the Second Office Action in Application No. 201080029190.0, dated Jan. 6, 2014. (26 pages). |
Chinese Patent Office, Notification of the First Office Action in Application No. 201180023474.2, dated Dec. 23, 2013. (18 pages). |
PCT, Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority, or the Declaration, in International application No. PCT/US2013/067852, dated Jan. 22, 2014. (9 pages). |
Sahagian, Khoren; Larner, Mikki; Kaplan, Stephen L., “Altering Biological Interfaces with Gas Plasma: Example Applications”, Plasma Technology Systems, Belmont, CA, In SurFACTS in Biomaterials, Surfaces in Biomaterials Foundation, Summer 2013, 18(3), p. 1-5. |
Daikyo Crystal Zenith Insert Needle Syringe System, West Delivering Innovative Services, West Pharmaceutical Services, Inc., 2010. |
Daikyo Crystal Zenigh Syringes, West Pharmaceutical Services, Inc., www. WestPFSsolutions.com, #5659, 2011. |
Zhang, Yongchao and Heller, Adam, Reduction of the Nonspecific Binding of a Target Antibody and of Its Enzyme-Labeled Detection Probe Enabling Electrochemical Immunoassay of Antibody through the 7pg/mL-100 ng/mL (40 fM-400pM) Range, Department of Chemical Engineering and Texas Materials Institute, University of Texas at Austin, Anal. Chem. 2005, 7, 7758-7762. (6 pages). |
Principles and Applications of Liquid Scintillation Counting, LSC Concepts—Fundamentals of Liquid Scintillation Counting, National Diagnostics, 2004, pp. 1-15. |
Chikkaveeraiah, Bhaskara V. and Rusling, Dr. James, Non Specific Binding (NSB) in Antigen-Antibody Assays, University of Connecticut, Spring 2007. (13 pages). |
Sahagian, Khoren; Larner, Mikki; Kaplan, Stephen L., “Cold Gas Plasma in Surface Modification of Medical Plastics”, Plasma Technology Systems, Belmont, CA, Publication pending. Presented at SPE Antec Medical Plastics Division, Apr. 23, 2013, Ohio. |
Lipman, Melissa, “Jury Orders Becton to Pay $114M in Syringe Antitrust Case”, © 2003-2013, Portfolio Media, Inc., Law360, New York (Sep. 20, 2013, 2:53 PM ET), http://www.law360.com/articles/474334/print?section=ip, [retrieved Sep. 23, 2013]. |
Wikipedia, the free encyclopedia, http://en.wikipedia.org/wiki/Birefringence, page last modified Sep. 18, 2013 at 11:39. [retrieved on Oct. 8, 2013]. (5 pages). |
Wikipedia, the free encyclopedia, http://en.wikipedia.org/wiki/Confocal—microscopy, page last modified Aug. 28, 2013 at 11:12. [retrieved on Oct. 8, 2013]. (4 pages). |
Wang, Jun et al., “Fluorocarbon thin film with superhydrophobic property prepared by pyrolysis of hexafluoropropylene oxide”, Applied Surface Science, vol. 258, 2012, pp. 9782-9784 (4 pages). |
Wang, Hong et al., “Ozone-Initiated Secondary Emission Rates of Aldehydes from Indoor surfaces in Four Homes”, American Chemical Society, Environmental Science & Technology, vol. 40, No. 17, 2006, pp. 5263-5268 (6 pages). |
Lewis, Hilton G. Pryce, et al., “HWCVD of Polymers: Commercialization and Scale-Up”, Thin Solid Films 517, 2009, pp. 3551-3554. |
Wolgemuth, Lonny, “Challenges With Prefilled Syringes: The Parylene Solution”, Frederick Furness Publishing, www.ongrugdelivery.com, 2012, pp. 44-45. |
History of Parylene (12 pages). |
SCS Parylene HTX brochure, Stratamet Thin Film Corporation, Fremont, CA, 2012, retrieved from the Internet Feb. 13, 2013, http://www.stratametthinfilm.com/parylenes/htx. (2 pages). |
SCS Parylene Properties, Specialty Coating Systems, Inc., Indianapolis, IN, 2011. (12 pages). |
Werthheimer, M.R., Studies of the earliest stages of plasma-enhanced chemical vapor deposition of SiO2 on polymeric substrates, Thin Solid Films 382 (2001) 1-3, and references therein, United States Pharmacopeia 34. In General Chapters <1>, 2001. |
Gibbins, Bruce and Warner, Lenna, The Role of Antimicrobial Silver Nanotechnology, Medical Device & Diagnostic Industry, Aug. 205, pp. 2-6. |
MTI CVD Tube Furnace w Gas Delivery & Vacuum Pump, http://mtixtl.com/MiniCVDTubeFurnace2ChannelsGasVacuum-OTF-1200X-S50-2F.aspx (2 pages). |
Lab-Built HFPO CVD Coater, HFPO Decomp to Give Thin Fluorocarbon Films, Applied Surface Science 2012 258 (24) 9782. |
Technical Report No. 10, Journal of Parenteral Science and Technology, 42, Supplement 1988, Parenteral Formulation of Proteins and Peptides: Stability and Stabilizers, Parenteral Drug Association, 1988. |
Technical Report No. 12, Journal of Parenteral Science and Technology, 42, Supplement 1988, Siliconization of Parenteral Drug Packaging Components, Parenteral Drug Association, 1988. |
European Patent Office, Communication under Rule 71(3) EPC, in Application No. 10 162 760.2-1353, dated Oct. 25, 2013. (366 pages). |
Wikipedia, the free encyclopedia, http://en.wikipedia.org/wiki/Difluorocarbene, page last modified Feb. 20, 2012 at 14:41. [retrieved on Sep. 7, 2012]. (4 pages). |
O'Shaughnessy, W.S., et al., “Initiated Chemical Vapor Deposition of a Siloxane Coating for Insulation of Neutral Probes”, Thin Solid Films 517 (2008) 3612-3614. (3 pages). |
Denler, et al., Investigations of SiOx-polymer “interphases” by glancing angle RBS with Li+ and Be+ ions, Nuclear Instruments and Methods in Physical Research B 208 (2003) 176-180, United States Pharmacopeia 34. In General Chapters <1>, 2003. |
PCT, Invitation to Pay Additional Fees and Annex to Form PCT/ISA/206 Communication relating to the results of the partial international search in International application No. PCT/US2013/071750, dated Feb. 14, 2014. (6 pages). |
PCT, Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority, or the Declaration, in International application No. PCT/US2013/62247, dated Dec. 20, 2013. (13 pages). |
PCT, Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority, or the Declaration, in International application No. PCT/US2013/043642, dated Dec. 5, 2013. (21 pages). |
Patent Cooperation Treaty, Written Opinion of the International Searching Authority with International Search Report in Application No. PCT/US2012/064489, dated Jan. 25, 2013. |
Danish Patent and Trademark Office, Singapore Written Opinion, in Application No. 201108308-6, dated Dec. 6, 2012. |
Danish Patent and Trademark Office, Singapore Search Report, in Application No. 201108308-6, dated Dec. 12, 2012. |
Arganguren, Mirta I., Macosko, Christopher W., Thakkar, Bimal, and Tirrel, Matthew, “Interfacial Interactions in Silica Reinforced Silicones,” Materials Research Society Symposium Proceedings, vol. 170, 1990, pp. 303-308. |
Patent Cooperation Treaty, International Preliminary Examining Authority, Notification of Transmittal of International Preliminary Report on Patentability, in international application No. PCT/US2011/036097, dated Nov. 13, 2012. |
PCT, Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority, or the Declaration, in International application No. PCT/US2013/040380, dated Sep. 3, 2013. (13 pages). |
PCT, Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority, or the Declaration, in International application No. PCT/US2013/040368, dated Oct. 21, 2013. (21 pages). |
PCT, Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority, or the Declaration, in International application No. PCT/US2013/048709, dated Oct. 2, 2013. (7 pages). |
Coclite A.M. et al., “On the relationship between the structure and the barrier performance of plasma deposited silicon dioxide-like films”, Surface and Coatings Technology, Elsevier, Amsterdam, NL, vol. 204, No. 24, Sep. 15, 2010 (Sep. 15, 2010), pp. 4012-4017, XPO27113381, ISSN: 0257-8972 [retrieved on Jun. 16, 2010] abstract, p. 4014, right-hand col.—p. 4015, figures 2, 3. |
Brunet-Bruneau A. et al., “Microstructural characterization of ion assisted Sio2 thin films by visible and infrared ellipsometry”, Journal of Vacuum Science and Technology: Part A, AVS/AIP, Melville, NY, US, vol. 16, No. 4, Jul. 1, 1998 (Jul. 1, 1998), pp. 2281-2286, XPO12004127, ISSN: 0734-2101, DOI: 10.1116/1.581341, p. 2283, right-hand col.—p. 2284, left-hand column, figures 2, 4. |
State Intellectual Property Office of the People's Republic of China, Notification of the Third Office Action, in Application No. 201080029201.4, dated Jul. 7, 2014 (15 pages). |
PCT, Written Opinion of the International Preliminary Examining Authority, in International application No. PCT/US2013/071750, dated Jan. 20, 2015 (9 pages). |
PCT, Written Opinion of the International Preliminary Examining Authority, in International application No. PCT/US2013/064121, dated Nov. 21, 2014 (7 pages). |
Japanese Patent Office, Decision of Rejection in Application No. 2012-510983, dated Jan. 20, 2015 (4 pages). |
Australian Government, IP Australia, Patent Examination Report No. 1, in Application No. 2010249033, dated Dec. 19, 2014 (7 pages). |
Australian Government, IP Australia, Patent Examination Report No. 1, in Application No. 2011252925, dated Dec. 2, 2014 (3 pages). |
Reh, et al., Evaluation of stationary phases for 2-dimensional HPLC of Proteins—Validation of commercial RP-columns, Published by Elsevier B.V., 2000. |
Australian Government, Patent Examination Report No. 2 in Application No. 2010249031 dated Apr. 21, 2015. |
Japanese Patent Office, Notice of Reasons for Refusal in application No. 2013-510276, dated Mar. 31, 2015. |
Schonknecht, T., Potential Interactions between Pre-filled Syringes and Injection Devices. The Universe of Pre-Filled Syringes and Injection Devices. Bethesda, MD: Parenteral Drug Association, 2006. |
PCT, Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority, or the Declaration, in International application No. PCT/US2014/029531, dated Jun. 20, 2014 (12 pages). |
State Intellectual Property Office of the People's Republic of China, Notification of the Third Office Action, with translation, in Application No. 201080029199.0, dated Jun. 27, 2014 (19 pages). |
Intellectual Property Office of Singapore, Invitation to Respond to Written Opinion, in Application No. 2012083077, dated Jun. 30, 2014 (12 pages). |
PCT, Notification of Transmittal of International Preliminary Report on Patentability, in International application No. PCT/US13/40368, dated Jul. 16, 2014 (6 pages). |
Tao, Ran et al., Condensationand Polymerization of Supersaturated Monomer Vapor, ACS Publications, 2012 American Chemical Society, ex.doi.org/10.1021/la303462q/Langmuir 2012, 28, 16580-16587. |
State Intellectual Property Office of teh People's Republic of China, Notification of First Office Action in Application No. 201080029201.4, dated Mar. 37, 2013. (15 pages). |
Hanlon, Adriene Lepiane, Pak, Chung K., Pawlikowski, Beverly A., Decision on Appeal, Appeal No. 2005-1693, U.S. Appl. No. 10/192,333, dated Sep. 30, 2005. |
Australian Government, IP Australia, Patent Examination Report No. 1, in Application No. 2010249031, dated Mar. 13, 2014. (4 pages). |
Australian Government, IP Australia, Patent Examination Report No. 1, in Application No. 2013202893, dated Mar. 13, 2014. (4 pages). |
European Patent Office, Communication pursuant to Article 93(3) EPC, in Application No. 11 731 554.9 dated Apr. 15, 2014. (7 pages). |
PCT, Notification Concerning Transmittal of International Preliminary Report on Patentability, in International application No. PCT/US2012/064489, dated May 22, 2014. (10 pages). |
PCT, Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority, or the Declaration, in International application No. PCT/US2013/071750, dated Apr. 4, 2014. (13 pages). |
PCT, Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority, or the Declaration, in International application No. PCT/US2014/019684, dated May 23, 2014. (16 pages). |
PCT, Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority, or the Declaration, in International application No. PCT/US2014/023813, dated May 22, 2014. (11 pages). |
European Patent Office, Communication pursuant to Article 94(3) EPC, in Application No. 11 736 511.4, dated Mar. 28, 2014. |
PCT, Notification Concerning Transmittal of International Preliminary Report on Patentability, in International application No. PCT/US2011/042387, dated Jan. 17, 2013. (7 pages). |
State Intellectual Property Office of the People's Republic of China, Notification of the First Office Action, in Application No. 201180032145.4, dated Jan. 30, 2014. (16 pages). |
PCT, Notification Concerning Transmittal of International Preliminary Report on Patentability, in International application No. PCT/US2011/044215, dated Jan. 31, 2013. (14 pages). |
Japanese Patent Office, Notice of Reasons for Refusal, Patent Application No. 2013-510276, dated Mar. 8, 2016 (15 pages). |
European Patent Office, Communication pursuant to Article 94(3) EPC, in Application No. 13 726 337.2, dated Dec. 2, 2016 (6 pages). |
Number | Date | Country | |
---|---|---|---|
20140154399 A1 | Jun 2014 | US |
Number | Date | Country | |
---|---|---|---|
61732180 | Nov 2012 | US | |
61747584 | Dec 2012 | US | |
61800660 | Mar 2013 | US |