This invention relates to semiconductor devices and processes for their manufacture and more specifically relates to current sense MOSFETs of a trench type topology and processes of their manufacture for improved accuracy (reduced sense ratio variation) and improved electrostatic discharge (ESD) withstand capability.
A first feature of the present invention deals with the variation of the current sense ratio variation which is encountered in trench type current sense MOSFETs.
In a current sensing MOSFET, a small fraction of the total active area of a power MOSFET is employed to sense the current through an independent source terminal. The current sense ratio is the ratio of current conducted through the main FET and the sense die, which is basically determined by the ratio of effective current conduction areas. In many applications, a sense ratio as high as 5,000-15,000 is required, which needs a proportionally small active area for conducting the sense current. Compared to the small active area (e.g., 20 μm2) in a sense die, the peripheral region of the active area is relatively large (e.g., 40% of the active area). Because the amount of current conducted in the peripheral region is subject to variation due to a number of processing or manufacturing steps, it is difficult to produce current sense MOSFETs with low sense ratio variation. Moreover, reducing the cell pitch poses increased challenges in controlling sense ratio variation.
It would be very desirable to provide a trench structure and process that can reduce the variability in the current sense ratio in die of different wafers and even of die from a common wafer.
A second problem dealt with by the present invention is the reduced ability of the small current sense die (or die areas) to withstand electrostatic discharge (ESD) destruction.
Electrostatic discharge destruction of a MOSFET occurs when the voltage across two pins induced by static charge is high enough to damage the dielectric thin film of the device. For a certain amount of charge superimposed across a capacitor, the lower the capacitance value is, the higher the voltage across the capacitor will be. As the active area of a MOSFET decreases, the capacitance decreases, and the sensitivity of a MOSFET to ESD increases.
In a current sensing MOSFET, a small fraction of the total active area is employed to sense the current through an independent source terminal. In a high sense ratio current sensing MOSFET (e.g. sense ratio of 10,000 or more), the active area of a sense die is proportionally smaller than that of the main FET, and the gate-to-source sense pin capacitance of the sense die is also proportionally smaller (e.g. approximately 10,000 times smaller) than that of the main FET. (Note that the source of the sense die is the current sense pin.) The small gate-to-source (sense pin) capacitance makes a current sense die prone to ESD damage. The yield of a current sensing MOSFET wafers is often decreased due to ESD damage. ESD destruction of the device is also a reliability risk.
In order to protect a current sensing MOSFET from ESD destruction, a Zener diode across gate-to-source (sense pin) is often integrated in the die at the cost of increased processing steps.
It would be desirable to improve the ESD withstand capability of current sensing MOSFETs without added process costs.
In accordance with a first feature of the invention, and to reduce current sense ratio variation, current conduction through the periphery of the active area of the trench sense die is reduced.
In one embodiment of this invention the poly-silicon inside the trenches in the transition region surrounding the active area is set to source potential instead of gate potential by disconnecting these trenches from the poly gate bus and connecting them to the source metal. These peripheral trenches will never turn on as their “gates” are grounded to the source potential.
In a second embodiment of this invention, the trenches in the peripheral region surrounding the active area in a sense die are removed.
In a third embodiment of this invention a source mask is added to define the N+ source region exclusively within the active area of a sense die. The peripheral MOS trenches will not then turn-on due to the lack of a source layer.
Thus, sense ratio variation due to fabrication steps, especially in a trench MOSFET, and with low cell pitch devices, is reduced. Important benefits include reduced sense ratio variation in fabrication lots and over different gate voltages.
In a further embodiment of the invention, and in order to increase the ESD capability of the small current sense MOSFET die, the gate-to-source (between gate pin and sense pin) capacitance of the sense die is increased without increasing the active area of the sense die. Thus, in a current sensing MOSFET, the active area of the sense die is determined by the required sense ratio. In the periphery of the sense die, there is a P+ field region surrounding the active area. The P+ region is part of the termination that isolates the active area of the sense die from the active area of the main FET. The typical area of this P+ region is less than 2 times the active area of the sense die.
In accordance with the invention the P+ region is enlarged to greater than 5 times of the active area of a sense die. The enlarged P+ region then increases gate-to-source (sense pin) capacitance. In addition, adding trenches in the enlarged P+ region will further increase gate-to-source (sense pin) capacitance of the sense die.
The important benefit of this aspect of the invention is improved ESD withstand capability of a current sensing MOSFET without additional processing steps.
a is a top view of a prior art current sense chip.
b is a top view of the P+ mask pattern with an opening shown in cross-hatch for a P+ transition implant in the die of
c is a top view of the die active mask for the device of
d shows the spaced parallel gate trenches which extend across the transition and active area in
e shows the polysilicon gate runner for the MOSgates in the trenches of
a is a top view of a first embodiment of the invention in which selected trenches in a selected width of the transition area are connected to the source and are thereby disabled.
b shows the arrangement of parallel trenches for the embodiment of
c shows the polysilicon pattern for the embodiment of
a is a top view of a current sense die according to a second embodiment of the invention.
b shows a typical trench arrangement for
a is a top view of a current sensing die according to a third embodiment of the invention.
b is a top view of the sense die active mask and source mask for the device of
a, 9b and 9c are top views of a further embodiment of the invention for the reduction of ESD sensitivity of the current sense die.
a is a top view of a prior art sense die design 20. The sense die is shown as an N channel device, but it is to be understood that it can be a P channel device with all conductivity types reversed from those described. The active area 25 of the sense die 20 is isolated from the main FET by a P+ region 21 defined by the P+ mask 22 of
In the example shown in
At the transition region the doping concentration (as well as channel threshold voltage) is affected by P carrier diffusion, mask alignment tolerance, and etch bias of oxide in which opening 23 is formed. Such manufacturing variences in the transition area causes sense ratio variation within a given fabrication lot or within a given wafer, and at different gate voltages.
In
Trenches A, B, C and D are conventionally lined with gate oxide 42 and are conventionally filled with conductive polysilicon gates 43 which are connected (not shown) to the polysilicon runner formed by mask 30 of
A trench A in
The present invention minimizes the current conductef at the periphery of active area 25 of sense die. A number of methods can be used. These methods include connecting the poly gate 43 to source metal 41 for peripheral trenches; removing the peripheral trenches; and adding a source confinement mask for peripheral trenches. Other techniques can be used. As a result, sense ratio variation over different threshold voltages Vgs, and within a fabrication lot and from lot to lot is reduced.
a, 3b, 3c and 4 show a first preferred embodiment of the invention.
The trenches B and C (
a, 5b and 6 show another embodiment of this invention with the peripheral trenches B and C removed.
Current conduction, both perpendicular and parallel to the trenches and through the periphery of active area can be minimized with a source mask. This embodiment of the invention is shown in
In accordance with this aspect of the invention, and in the 3 embodiments described,
In a further aspect of the invention, the ESD withstand capability of a sense die is improved by increasing the gate-to-source (sense pin) capacitance of a sense die without increasing the active area. This is done by enlarging the P+ region at periphery of and surrounding the active area of a sense die. The enlarged P+ region forms a larger capacitor in parallel to the gate-to-source (sense pin) capacitance of the sense die. The greatly increased total gate-to-source (sense pin) capacitance of a sense die helps to improve ESD withstand capability of a current sensing MOSFET.
a, 9b 9c and 10 show one embodiment of this invention. The active area 25 of the sense die is isolated from the main FET through a P+ transition region 21 in the earlier
Another embodiment of this invention is to add multiple dummy trenches 110, 111 at the P+ region to further increase the parallel gate-to-source (sense pin) capacitance. A cross-sectional view of this embodiment is shown in
This invention of
The structure of
Although the present invention has been described in relation to particular embodiments thereof, many other variations and modifications and other uses will become apparent to those skilled in the art. It is preferred, therefore, that the present invention be limited not by the specific disclosure herein, but only by the appended claims.
This application claims the benefit of U.S. Provisional Application No. 60/540,747, filed Jan. 30, 2004 and U.S. Provisional Application No. 60/540,501, filed Jan. 30, 2004.
Number | Name | Date | Kind |
---|---|---|---|
6072214 | Herzer et al. | Jun 2000 | A |
6906355 | Kurosaki et al. | Jun 2005 | B2 |
20040222458 | Hsieh et al. | Nov 2004 | A1 |
20050035398 | Williams et al. | Feb 2005 | A1 |
Number | Date | Country | |
---|---|---|---|
20050174823 A1 | Aug 2005 | US |
Number | Date | Country | |
---|---|---|---|
60540747 | Jan 2004 | US | |
60540501 | Jan 2004 | US |