Deposition valve assembly and method of heating the same

Information

  • Patent Grant
  • 9096931
  • Patent Number
    9,096,931
  • Date Filed
    Tuesday, December 6, 2011
    12 years ago
  • Date Issued
    Tuesday, August 4, 2015
    8 years ago
Abstract
A valve assembly including a mounting block having a first surface, a plurality of valves connected to the mounting block first surface, at least one fluid line connecting the plurality of valves spaced apart from the mounting block first surface, a heating element spaced apart from the at least one fluid line and located within a first insulating layer, and wherein the first insulating layer extends less than completely around the at least one fluid line.
Description
INCORPORATION BY REFERENCE

This application claims priority to U.S. patent application Ser. No. 13/283,408 entitled “HEATER JACKET FOR A FLUID LINE” to Yednak III et al., filed on Oct. 27, 2011, the disclosure of which is hereby incorporated herein by reference in its entirety.


FIELD OF THE INVENTION

This disclosure relates generally to semiconductor processing, and more particularly to a valve assembly having an improved temperature control system for semiconductor processing fluid lines.


BACKGROUND

Semiconductor fabrication processes are typically conducted with the substrates supported within a chamber under controlled conditions. For many purposes, semiconductor substrates (e.g., wafers) are heated inside the process chamber. For example, substrates can be heated by direct physical contact with an internally heated wafer holder or “chuck.” “Susceptors” are wafer supports used in radiantly heated systems where the wafer and susceptors absorb radiant heat.


Some of the important controlled conditions include, but are not limited to, fluid flow rate into the chamber, temperature of the reaction chamber, temperature of the fluid flowing into the reaction chamber, and temperature of the fluid throughout the fluid line.


In order to obtain a consistent reaction environment, maintaining the correct flow rate of precursor at a correct temperature is among the key factors. However, the importance of maintaining the temperature of the precursors at a uniform temperature is not limited to just the reaction chamber. A number of precursors have a limited temperature range of gaseous phase composition. Thus, in order to maintain the correct flow rate, the precursor must be maintained within a slim temperature range from the source container, through the fluid line, and finally into the reaction chamber.


A number of heater jackets have been developed in an attempt to maintain consistent fluid temperatures during the transition from the temperature controlled source container to the reaction chamber. One common example is cloth heater jackets which surround the fluid line and include a cloth inner layer in contact with the fluid line. The cloth heater jacket may be generally flexible but wear easily. An alternative to heater jackets includes heat tape, which is inexpensive but time consuming to install on fluid lines. Further, when a section of the fluid line needs to be worked on or replaced, the heat tape must be removed, scraped, and a new section installed in its place.


Precursor valve assemblies also present a number of heating challenges due to their compact nature and exposed fluid line connections between each of the valve members or bodies.


SUMMARY

Various aspects and implementations are disclosed herein that relate to valve assembly designs and methods of heating a fluid line in a valve assembly. In one aspect, a valve assembly comprises a mounting block having a first surface, a plurality of valves connected to the mounting block first surface, at least one fluid line connecting the plurality of valves spaced apart from the mounting block first surface, a heating element spaced apart from the at least one fluid line and located within a first insulating layer, and wherein the first insulating layer extends less than completely around the at least one fluid line.


In an implementation, the heating element may be positioned adjacent the at least one fluid line. The valve assembly may further include a second insulating layer spaced apart from the heating element and between the at least one fluid line and the mounting block first surface. The first insulating layer and the second insulating layer may together surround the at least one fluid line. The heating element may radiantly heat the at least one fluid line. The first insulating layer may further include a recessed portion positioned at each of the at least one fluid lines.


The valve assembly may further include a second heating element separate from the heating element. The heating element may be encapsulated within a recessed portion of the first insulating layer. The recessed portion may be encapsulated with a silicone rubber. The first insulating layer may be positioned between the plurality of valves. The valve assembly may further include a secondary insulator positioned on the first insulating layer. The secondary insulator may include three separable layers. The secondary insulator may further include a plurality of apertures adapted to receive the plurality of valves. The first insulating layer may be composed of a high density foam. The first insulating layer may further include a first upper insulating layer and a second insulating layer. The first upper insulating layer may further include a first heating element and the second upper insulating layer may further include a second heating element. The first heating element and the second heating element may be configured to be separately controlled. The heating element may radiantly heat the at least one fluid line only within the recessed portion.


In another aspect, a method of heating a fluid line in a valve assembly comprises the steps of providing a first insulating layer having a heating element spaced apart and surrounding less than all of the at least one fluid line, surrounding the at least one fluid line between the first insulating layer and the valve block, and powering the heating element to radiantly heat an area between the first insulating layer and the valve block and the at least one fluid line.


In yet another aspect, a valve assembly includes a mounting block having a mounting surface, a plurality of valves connected to the mounting block mounting surface, at least one fluid line in fluid communication with the plurality of valves above the mounting block mounting surface, a heating element positioned above the at least one fluid line and located within an upper insulating layer, and wherein the upper insulating layer extends less than completely around the at least one fluid line.


This Summary is provided to introduce a selection of concepts in a simplified form that are further described below in the Detailed Description. This Summary is not intended to identify key features or essential features of the claimed subject matter, nor is it intended to be used to limit the scope of the claimed subject matter. Furthermore, the claimed subject matter is not limited to implementations that solve any or all disadvantages noted in any part of this disclosure.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a perspective view of a valve assembly mounted on a heated valve block.



FIG. 2 is a perspective view of a valve assembly according to an embodiment of the present disclosure.



FIG. 3 is a perspective view of a partially exploded valve assembly according to an embodiment of the present disclosure.



FIG. 4 is a perspective view of an exploded valve assembly secondary insulating layer according to an embodiment of the present disclosure.



FIG. 5 is a perspective view of a pair of first insulating layers removed from the valve assembly according to an embodiment of the present disclosure.



FIG. 6 is a perspective view of a partially exploded valve assembly first insulating layer of the valve assembly according to an embodiment of the present disclosure.



FIG. 7 is a cross-sectional view of the valve assembly according to an embodiment of the present disclosure taken generally about line 7-7 in FIG. 2.



FIG. 8 is a cross-sectional view of the valve assembly according to an embodiment of the present disclosure taken generally about line 8-8 in FIG. 7.





DETAILED DESCRIPTION

The present aspects and implementations may be described in terms of functional block components and various processing steps. Such functional blocks may be realized by any number of hardware or software components configured to perform the specified functions and achieve the various results. For example, the present aspects may employ various sensors, detectors, flow control devices, heaters, and the like, which may carry out a variety of functions. In addition, the present aspects and implementations may be practiced in conjunction with any number of processing methods, and the apparatus and systems described may employ any number of processing methods, and the apparatus and systems described are merely examples of applications of the invention.



FIG. 1 illustrates a deposition valve assembly 10 having a mounting block 12 resting on an isolation unit 14. Mounting block 12 may be a typical valve assembly mounting device with an integral heater (not shown) for maintaining a steady temperature in the various valves. Mounting block 12 also includes a first surface 16 for receiving one or more deposition valves 18. Deposition valves 18 may include an upper chamber 20 and a lower chamber 22. The upper chamber may include a pneumatically actuated spring-biased apparatus controlling a bypass valve within lower chamber 22 for controlling fluid flow through each valve and the valve assembly as a unit. The spring biased apparatus is controlled by air flow through air inlet 24.


Isolation unit 14 may include a rigid outer surface 26 composed of aluminum, stainless steel, or any other suitable material and an isolation sheet 28 composed of a high density foam or other suitable material. Isolation unit 14 is used to not only protect the valve assembly from damage due to shock or vibration, but also acts to thermally isolate the valve assembly and the remainder of the tool


As discussed above, mounting block 12 serves as a base unit for supporting the valve assembly while also providing heat to the valves. Valves 18 are oriented at a right angle with respect to first surface 16 (or top surface in FIG. 1) and secured to the first surface with bolts 30 through cradles 32. Cradles 32 may be composed of aluminum, stainless steel, or any other suitable material and are generally u-shaped to permit fluid lines 34 to pass through the u-shaped openings 36 in cradles 32 as well as locate seals (not shown) between the fluid line interconnection and the valves 18.


Valve assembly 10 may also include a manual adjustment valve 38 having an adjustment knob 40 which can be used as a needle valve to regulate flow throughout the valve assembly.


Valve assembly 10 may also include a pair of thermocouples 42 to measure the outer surface temperature of at least two valves. Thermocouples 42 are connected to the respective valves with clamps 44 secured around valves 18 with bolts 46. The thermocouples 42 are connected to clamps 44 through thermocouple mounts 48 and the clamps may include through holes (not shown) which permit the thermocouple probes to be positioned directly adjacent or in contact with the valve 18 outer surfaces for more accurate temperature readings and temperature control.


Referring still to FIG. 1, fluid lines 34 may be composed of stainless steel or any other suitable material which is process, temperature, and pressure resistant. At several points along the length of fluid lines 34 junction boxes 50 may be utilized to fluidly connect two, three, four, or more fluid lines.


A carrier or purge line inlet 52 is positioned upstream from a carrier or purge line outlet 54 and a precursor or processing fluid inlet 56. Further, a process vacuum inlet 58 may be located on the valve assembly. Carrier line inlet 52 is in fluid communication with the precursor fluid inlets and permits the appropriate mixing of the carrier fluid and the precursor fluids. In one non-limiting example, the carrier fluid may be a nitrogen gas or an argon gas. After proper mixing within the valve assembly, the fluid exits valve assembly 10 at reactor outlet 60 and is directed to the reaction chamber for a deposition or etch process, as appropriate.



FIG. 2 illustrates deposition valve assembly 10 having a fluid line heating assembly 64 and an insulator assembly 66 mounted to valve assembly 10. Fluid line heating assembly 64 is preferably installed adjacent mounting block 12 and is used to assist in maintaining a consistent fluid temperature throughout the valve assembly and particularly as the carrier fluids and precursor fluids pass through the fluid lines 34 between each of the deposition valves 18 within the deposition valve assembly 10. Insulator assembly 66 may be positioned on the opposite side of fluid line heating assembly 64 from mounting block 12 to also assist in maintaining a consistent temperature throughout valve assembly 10 and fluid lines 34. Specifically, insulator assembly 66 assists in maintaining a consistent temperature throughout deposition valve assembly by reducing heat loss radiating away from deposition valves 18 and fluid lines 34. Not only does insulator assembly 66 reduce heat loss within the valve assembly, the insulator assembly also reduces the load on the various heating elements within the deposition valve assembly.



FIG. 3 illustrates an exploded view of fluid line heating assembly 64 removed from deposition valve assembly 10. In one aspect, fluid line heating assembly 64 may include a first fluid line heating unit 68 and a second fluid line heating unit 70. Each of the first and second fluid line heating units may be oriented to cover one-half of the deposition valve assembly 10 or any other suitable combination of the valve assembly so long fluid lines 34 are each covered by a fluid line heating unit to maintain the temperature therein.


As can be further seen in FIG. 3, a top surface 72 of both first fluid line heating unit 68 and second fluid line heating unit 70 may be smooth or flat to receive insulator assembly 66 and evenly maintain the fluid line heating assembly 64 temperature. Further, each fluid line heating unit includes a heating element 74 extending inward that can each be separately controlled from a remote location. The fluid line heating units may also include a plurality of recessed portions 76 formed in a bottom surface 78. As will be discussed in greater detail below, each recessed portion 76 is aligned to surround and positioned adjacent a fluid line 34 which is exposed or outside of a cradle 32 and/or deposition valves 18. Throughout this detailed description, the term fluid line and fluid are used to encompass any liquid, gas, or solid and are not intended, nor should they be interpreted to limit the type, composition, or state of any liquid, solid, gas, or combination thereof that may be utilized within the spirit and scope of the disclosure and the claims.



FIG. 4 illustrates an enlarged exploded view of insulator assembly 66 (or secondary insulator) having a first secondary insulator layer 80, a second secondary insulator layer 82, and third secondary insulator layer 84. The insulator layers may be separable from one another or secured together with an adhesive or other suitable fastening method. A first side support 86 and a second side support 88 may be placed on opposing sidewalls of the insulator assembly 66 to assist with positioning and holding the insulator assembly in position. The first and second side supports 86, 88 may be composed of a metal, a sponge material (such as silicone foam), or any other suitable material known within the art as will be readily apparent.


First secondary layer 80 includes a plurality of apertures 90 strategically placed along a horizontal surface of the layer and extending throughout the full thickness of the first secondary layer. Similarly, second secondary layer 82 includes a plurality of apertures 92 extending throughout the thickness of the second secondary layer and the third secondary layer 84 includes a plurality of apertures 94 extending throughout the thickness of the third secondary layer. Advantageously, all three layers of the insulator assembly 66 are aligned with one another and with respect to deposition valves 18. The three secondary insulation layers 80, 82, and 84 are each aligned to permit the apertures to surround the lower chamber 22 of each deposition valve 18. Accordingly, this arrangement reduces heat loss to the surrounding environment.


Secondary insulation layers 80, 82, and 84 are each approximately ½″ thick sponge or high density material, such as silicone foam. While the particular material and dimensions utilized are provided purely for this exemplary non-limiting embodiment, one of ordinary skill in the art will immediately realize that any suitable material and dimensions may be utilized without departing from the spirit and scope of the disclosure.


Referring now to FIG. 3, a second insulating layer 96 is shown installed between deposition valves 18 and specifically below fluid lines 34. Second insulating layer 96 may be composed of a high density foam, such as silicone foam, or any other suitable material that can assist in retaining heat while simultaneously acting as a seal. In operation, second insulating layer 96 may be installed before deposition valves 18 and may be specially designed and oriented to the particular valve orientation located on mounting block 12. Thus it is seen that any orientation or arrangement of deposition valves 18 may be constructed and a similar second insulating layer 96 may be utilized. Further, although second insulating layer 96 is shown and described as a single piece, any number of layers may be incorporated, including multiple layers stacked atop one another or various single layers abutting one another on mounting block 12.


Still further, second insulating layer 96 is preferably dimensioned to fit below fluid lines 34 during operation. In many embodiments, second insulating layer 96 may be installed on mounting block 12 prior to cradles 32 and deposition valves 18. Nevertheless, the second insulating layer 96 may be installed after the cradles 32 and deposition valves 18 in other embodiments. Regardless of when installed, second insulating layer 96 is preferably positioned just below fluid lines 34 when fully installed so as to provide a small air gap between fluid lines 34 and the second insulating layer 96.


Referring now to FIGS. 5 and 6, first heating unit 68 and second heating unit 70 are shown removed from the deposition valve assembly 10. As can be better seen in these two views, the first and second heating units 68, 70 include a plurality of recessed portions 76 which directly expose an intermediate layer 98 which may be an encapsulated rubber, such as silicone rubber or any other suitable material known in the art. In one aspect, each heating unit may include a first substrate 100, a third substrate 104, and a second substrate 102 positioned between the first and third substrates. The substrates combined also include inner ends 106 which meet with respective inner ends from the other heating unit in this non-limiting example. In one non-limiting example, the first and third substrates 100 and 104 are each composed of a silicone or other high density foam, while the second substrate is a rubber, such as silicone rubber. In an alternative embodiment, the first and second heating units 68, 70 may be a single piece of high density foam with recessed portions 76 removed from the bottom surface 78 and heating element 74 exposed only at the top of the recessed portions, which may then be encapsulated with a silicone rubber or other suitable material. The proposed examples are purely for the purpose of explaining the scope and breadth of the disclosure and are in no way to be viewed as limiting the claims.


Further, the recessed portions 76 are oriented in both an X and Y plane as, in this particular non-limiting example; there are a plurality of fluid lines 34 which are exposed as they traverse both directions. Each labeled recessed portion 76 provides heating to a fluid line 34 which includes at least a portion that is not located within a cradle 32 or below a deposition valve 18. For the sake of clarity, each recessed portion provides direct radiant heat to a fluid line which would otherwise not be directly heated without the respective heating unit and heating element 74. Accordingly, while the particular orientation and arrangement of the recessed portions is applicable to this non-limiting example, any number and orientation of recessed portions may be utilized to provide radiant or convection heating to the exposed fluid lines. Further, the shape and positioning of each heating until 68, 70 may be modified or adapted based on the deposition valve orientation and positioning. For example, three or four different heating units may be utilized and may each include their own heating elements 74 disposed therein for heating the respective fluid lines 34. Further, a single heating unit may be utilized and include only a single heating element 74 or a plurality of heating elements disposed throughout the heating unit.



FIGS. 7 and 8 illustrate assembled views of the deposition valve assembly with the heating units and various insulation layers in place. As particularly seen in FIG. 7, junction boxes 50, as applicable, of the various fluid lines 34 may function to create gaps or spaces 108 around the remaining portions of fluid lines 34. In another implementation, junction boxes 50 may not be present and a generally rigid first and second heating units create the gaps or spaces 108 around fluid lines 34.


In one non-limiting example, recessed portions 76 of heating unit 68 and 70 are generally deep enough to create three sides (top side and two sidewalls) around each fluid line and extends less than completely around fluid lines 34. Further, because the heating units 68, 70 are resting adjacent and/or on second insulating layer 96, the bottom side is occupied by the second insulating layer 96. Accordingly, the recessed portions 76 of the heating units 68, 70 together with the second insulating layer 96 effectively together surround each of the fluid lines 34 when fully assembled. As can be seen in FIG. 8, heating element 74 is positioned within second substrate 102 and provides radiant or convection heating to the fluid lines 34 during operation to maintain the fluid lines at the desired temperature, which can range from as low as room temperature up to 200 degrees C. or beyond. Specifically, the air gaps between recessed portion 76 and second insulating layer 96 permit the mounting block 12 with heating element (not shown) and the heating element 74 within the second substrate to heat the space and/or air directly surrounding the fluid line 34 to reduce hot spots on the fluid line 34 and provide for a more consistent precursor fluid and carrier fluid within the valve assembly. Thus, the valve assembly can more efficiently and precisely transfer the precursor to the reaction chamber.


As discussed above, in one non-limiting example, a mounting block 12 is provided with a heating element therein and the second insulating layer 96 may be installed thereon. A plurality of deposition valves 18 and fluid lines 34 interconnecting the deposition valves 18 may be provided on mounting block 12. An insulator unit 64 may include installing a first heating unit 68 and potentially a second heating unit assembly 70, each having a heating element 74, over fluid lines 34 such that the heating units surround less than all of each of the fluid lines 34 with recessed portions 76. Once fully installed, the first and second heating units 68, 70 in combination with the second insulating layer 96 completely surround each fluid line 34 where recessed portions 76 are located. The heating elements 74 are each separately controlled (i.e. heating element within first heating unit 68 is separately controlled from heating element within second heating unit 70) in one aspect, or the heating elements may be actuated by a single controller, depending on the desired outcome. Still further, since at least one thermocouple 42 may be located within each zone covered by a heating unit, the controller for each heating unit 68, 70 heating element 74 may be programmed to control the temperature at each thermocouple. The above discussion is merely exemplary and a person of skill in the art will immediately recognize that a variety of modifications can be achieved without departing from the spirit and scope of the detailed description.


These and other embodiments for methods and apparatus for a valve assembly to maintain efficient heating may incorporate concepts, embodiments, and configurations as described with respect to embodiments of apparatus for valve assemblies described above. The particular implementations shown and described are illustrative of the invention and its best mode and are not intended to otherwise limit the scope of the aspects and implementations in any way. Indeed, for the sake of brevity, conventional manufacturing, connection, preparation, and other functional aspects of the system may not be described in detail. Furthermore, the connecting lines shown in the various figures are intended to represent exemplary functional relationships and/or physical couplings between the various elements. Many alternative or additional functional relationship or physical connections may be present in the practical system, and/or may be absent in some embodiments.


As used herein, the terms “comprises”, “comprising”, or any variation thereof, are intended to reference a non-exclusive inclusion, such that a process, method, article, composition or apparatus that comprises a list of elements does not include only those elements recited, but may also include other elements not expressly listed or inherent to such process, method, article, composition or apparatus. Other combinations and/or modifications of the above-described structures, arrangements, applications, proportions, elements, materials or components used in the practice of the present invention, in addition to those not specifically recited, may be varied or otherwise particularly adapted to specific environments, manufacturing specifications, design parameters or other operating requirements without departing from the general principles of the same.

Claims
  • 1. A valve assembly comprising: a mounting block having a first surface;a plurality of valves connected to the mounting block first surface;a plurality of fluid lines, wherein at least one fluid line couples two of the plurality of valves spaced apart from the mounting block first surface;a heating element located within a first insulating layer and overlying the plurality of fluid lines and the mounting block, wherein the plurality of fluid lines are between the mounting block and the heating element, anda second insulating layer adjacent the first insulating layer and between the at least one fluid line and the mounting block first surface,wherein the plurality of fluid lines are between the first insulating layer and the second insulating layer, andwherein the first insulating layer extends over a portion and less than completely around the at least one fluid line.
  • 2. The valve assembly of claim 1 wherein the heating element is positioned adjacent the at least one fluid line.
  • 3. The valve assembly of claim 1 further comprising an air gap between a recessed portion of the first insulating layer and the second insulating layer.
  • 4. The valve assembly of claim 1 wherein the first insulating layer and the second insulating layer together surround the at least one fluid line.
  • 5. The valve assembly of claim 1 wherein the heating element radiantly heats the at least one fluid line.
  • 6. The valve assembly of claim 1 wherein the first insulating layer further comprises a recessed portion positioned at each of the at least one fluid lines.
  • 7. The valve assembly of claim 1 further comprising a second heating element separate from the heating element.
  • 8. The valve assembly of claim 1 wherein the heating element is encapsulated within a recessed portion of the first insulating layer.
  • 9. The valve assembly of claim 8 wherein the recessed portion is encapsulated with a silicone rubber.
  • 10. The valve assembly of claim 1 wherein the first insulating layer is positioned between the plurality of valves.
  • 11. The valve assembly of claim 10 further comprising a secondary insulator positioned on the first insulating layer.
  • 12. The valve assembly of claim 11 wherein the secondary insulator comprises three separable layers.
  • 13. The valve assembly of claim 11 wherein the secondary insulator further comprises a plurality of apertures adapted to receive the plurality of valves.
  • 14. The valve assembly of claim 1 wherein the first insulating layer is composed of a high density foam.
  • 15. The valve assembly of claim 1 wherein the first insulating layer further comprises a first upper insulating layer and a second upper insulating layer.
  • 16. The valve assembly of claim 15 wherein the first upper insulating layer further comprises a first heating element and the second upper insulating layer further comprises a second heating element.
  • 17. The valve assembly of claim 16 wherein the first heating element and the second heating element are configured to be separately controlled.
  • 18. The valve assembly of claim 1 wherein the heating element directly radiantly heats the at least one fluid line within a recessed portion of the first insulating layer.
  • 19. A valve assembly comprising: a processing fluid inlet;a carrier line located upstream and in fluid communication with the processing fluid inlet to allow mixing of a carrier fluid and a precursor fluid within the valve assembly;a mounting block having a mounting surface;a plurality of valves connected to the mounting block mounting surface;a plurality of fluid lines, wherein at least one fluid line is in fluid communication with two of the plurality of valves above the mounting block mounting surface; anda heating element located within a first insulating layer and overlying the plurality of fluid lines and the mounting block,wherein the plurality of fluid lines are between the mounting block and the heating element;a second insulating layer adjacent the first insulating layer and between the at least one fluid line and the mounting block,wherein the plurality of fluid lines are between the first insulating layer and the second insulating layer, andwherein the first insulating layer extends over a portion and less than completely around the at least one fluid line.
US Referenced Citations (390)
Number Name Date Kind
2745640 Cushman May 1956 A
2990045 Root Sep 1959 A
3833492 Bollyky Sep 1974 A
3854443 Baerg Dec 1974 A
3862397 Anderson et al. Jan 1975 A
3887790 Ferguson Jun 1975 A
4058430 Suntola et al. Nov 1977 A
4176630 Elmer Dec 1979 A
4194536 Stine et al. Mar 1980 A
4389973 Suntola et al. Jun 1983 A
4393013 McMenamin Jul 1983 A
4436674 McMenamin Mar 1984 A
4570328 Price et al. Feb 1986 A
4653541 Oehlschlaeger et al. Mar 1987 A
4722298 Rubin et al. Feb 1988 A
4735259 Vincent Apr 1988 A
4753192 Goldsmith et al. Jun 1988 A
4789294 Sato et al. Dec 1988 A
4821674 deBoer et al. Apr 1989 A
4827430 Aid et al. May 1989 A
4882199 Sadoway et al. Nov 1989 A
4991614 Hammel Feb 1991 A
5062386 Christensen Nov 1991 A
5119760 McMillan et al. Jun 1992 A
5167716 Boitnott et al. Dec 1992 A
5199603 Prescott Apr 1993 A
5221556 Hawkins et al. Jun 1993 A
5242539 Kumihashi et al. Sep 1993 A
5243195 Nishi Sep 1993 A
5326427 Jerbic Jul 1994 A
5380367 Bertone Jan 1995 A
5595606 Fujikawa et al. Jan 1997 A
5632919 MacCracken et al. May 1997 A
5681779 Pasch et al. Oct 1997 A
5730801 Tepman et al. Mar 1998 A
5732744 Barr et al. Mar 1998 A
5736314 Hayes et al. Apr 1998 A
5796074 Edelstein et al. Aug 1998 A
5836483 Disel Nov 1998 A
5837320 Hampden-Smith et al. Nov 1998 A
5855680 Soininen et al. Jan 1999 A
5920798 Higuchi et al. Jul 1999 A
5979506 Aarseth Nov 1999 A
6013553 Wallace Jan 2000 A
6015465 Kholodenko et al. Jan 2000 A
6035101 Sajoto et al. Mar 2000 A
6060691 Minami et al. May 2000 A
6074443 Venkatesh Jun 2000 A
6083321 Lei et al. Jul 2000 A
6086677 Umotoy et al. Jul 2000 A
6122036 Yamasaki et al. Sep 2000 A
6125789 Gupta et al. Oct 2000 A
6129044 Zhao et al. Oct 2000 A
6148761 Majewski et al. Nov 2000 A
6161500 Kopacz et al. Dec 2000 A
6201999 Jevtic Mar 2001 B1
6274878 Li et al. Aug 2001 B1
6287965 Kang et al. Sep 2001 B1
6302964 Umotoy et al. Oct 2001 B1
6312525 Bright et al. Nov 2001 B1
6326597 Lubomirsky et al. Dec 2001 B1
6342427 Choi et al. Jan 2002 B1
6367410 Leahey et al. Apr 2002 B1
6368987 Kopacz et al. Apr 2002 B1
6372583 Tyagi Apr 2002 B1
6383566 Zagdoun May 2002 B1
6410459 Blalock et al. Jun 2002 B2
6420279 Ono et al. Jul 2002 B1
6454860 Metzner et al. Sep 2002 B2
6478872 Chae et al. Nov 2002 B1
6482331 Lu et al. Nov 2002 B2
6483989 Okada et al. Nov 2002 B1
6511539 Raaijmakers Jan 2003 B1
6521295 Remington Feb 2003 B1
6534395 Werkhoven et al. Mar 2003 B2
6569239 Arai et al. May 2003 B2
6579833 McNallan et al. Jun 2003 B1
6590251 Kang et al. Jul 2003 B2
6594550 Okrah Jul 2003 B1
6598559 Vellore et al. Jul 2003 B1
6627503 Ma et al. Sep 2003 B2
6633364 Hayashi Oct 2003 B2
6648974 Ogliari et al. Nov 2003 B1
6673196 Oyabu Jan 2004 B1
6682973 Paton et al. Jan 2004 B1
6709989 Ramdani et al. Mar 2004 B2
6710364 Guldi et al. Mar 2004 B2
6734090 Agarwala et al. May 2004 B2
6820570 Kilpela et al. Nov 2004 B2
6821910 Adomaitis et al. Nov 2004 B2
6824665 Shelnut et al. Nov 2004 B2
6847014 Benjamin et al. Jan 2005 B1
6858524 Haukka et al. Feb 2005 B2
6858547 Metzner Feb 2005 B2
6863019 Shamouilian Mar 2005 B2
6874480 Ismailov Apr 2005 B1
6875677 Conley, Jr. et al. Apr 2005 B1
6884066 Nguyen et al. Apr 2005 B2
6889864 Lindfors et al. May 2005 B2
6909839 Wang et al. Jun 2005 B2
6930059 Conley, Jr. et al. Aug 2005 B2
6935269 Lee et al. Aug 2005 B2
6955836 Kumagai et al. Oct 2005 B2
6972478 Waite et al. Dec 2005 B1
7045430 Ahn et al. May 2006 B2
7053009 Conley, Jr. et al. May 2006 B2
7071051 Jeon et al. Jul 2006 B1
7115838 Kurara et al. Oct 2006 B2
7122085 Shero et al. Oct 2006 B2
7129165 Basol et al. Oct 2006 B2
7132360 Schaeffer et al. Nov 2006 B2
7135421 Ahn et al. Nov 2006 B2
7147766 Uzoh et al. Dec 2006 B2
7172497 Basol et al. Feb 2007 B2
7192824 Ahn et al. Mar 2007 B2
7192892 Ahn et al. Mar 2007 B2
7195693 Cowans Mar 2007 B2
7204887 Kawamura et al. Apr 2007 B2
7205247 Lee et al. Apr 2007 B2
7235501 Ahn et al. Jun 2007 B2
7298009 Yan et al. Nov 2007 B2
7312494 Ahn et al. Dec 2007 B2
7329947 Adachi et al. Feb 2008 B2
7357138 Ji et al. Apr 2008 B2
7393736 Ahn et al. Jul 2008 B2
7402534 Mahajani Jul 2008 B2
7405166 Liang et al. Jul 2008 B2
7405454 Ahn et al. Jul 2008 B2
7414281 Fastow Aug 2008 B1
7437060 Wang et al. Oct 2008 B2
7442275 Cowans Oct 2008 B2
7489389 Shibazaki et al. Feb 2009 B2
7547363 Tomiyasu et al. Jun 2009 B2
7575968 Sadaka et al. Aug 2009 B2
7601223 Lindfors et al. Oct 2009 B2
7601225 Tuominen et al. Oct 2009 B2
7640142 Tachikawa et al. Dec 2009 B2
7651583 Kent et al. Jan 2010 B2
D614153 Fondurulia et al. Apr 2010 S
7720560 Menser et al. May 2010 B2
7723648 Tsukamoto et al. May 2010 B2
7740705 Li Jun 2010 B2
7780440 Shibagaki et al. Aug 2010 B2
7833353 Furukawahara et al. Nov 2010 B2
7851019 Tuominen et al. Dec 2010 B2
7884918 Hattori Feb 2011 B2
8041197 Kasai et al. Oct 2011 B2
8055378 Numakura Nov 2011 B2
8071451 Berry Dec 2011 B2
8071452 Raisanen Dec 2011 B2
8072578 Yasuda et al. Dec 2011 B2
8076230 Wei Dec 2011 B2
8076237 Uzoh Dec 2011 B2
8082946 Laverdiere et al. Dec 2011 B2
8092604 Tomiyasu et al. Jan 2012 B2
8137462 Fondurulia et al. Mar 2012 B2
8147242 Shibagaki et al. Apr 2012 B2
8216380 White et al. Jul 2012 B2
8278176 Bauer et al. Oct 2012 B2
8282769 Iizuka Oct 2012 B2
8287648 Reed et al. Oct 2012 B2
8293016 Bahng et al. Oct 2012 B2
8309173 Tuominen et al. Nov 2012 B2
8367528 Bauer et al. Feb 2013 B2
8444120 Gregg et al. May 2013 B2
8506713 Takagi Aug 2013 B2
8608885 Goto et al. Dec 2013 B2
8683943 Onodera et al. Apr 2014 B2
8711338 Liu et al. Apr 2014 B2
8726837 Patalay et al. May 2014 B2
8728832 Raisanen et al. May 2014 B2
8802201 Raisanen et al. Aug 2014 B2
8877655 Shero et al. Nov 2014 B2
8883270 Shero et al. Nov 2014 B2
8986456 Fondurulia et al. Mar 2015 B2
8993054 Jung et al. Mar 2015 B2
9005539 Halpin et al. Apr 2015 B2
20010017103 Takeshita et al. Aug 2001 A1
20010046765 Cappellani et al. Nov 2001 A1
20020001974 Chan Jan 2002 A1
20020011210 Satoh et al. Jan 2002 A1
20020064592 Datta et al. May 2002 A1
20020098627 Pomarede et al. Jul 2002 A1
20020108670 Baker et al. Aug 2002 A1
20020115252 Haukka et al. Aug 2002 A1
20020172768 Endo et al. Nov 2002 A1
20020187650 Blalock et al. Dec 2002 A1
20030019580 Strang Jan 2003 A1
20030025146 Narwankar et al. Feb 2003 A1
20030040158 Saitoh Feb 2003 A1
20030042419 Katsumata et al. Mar 2003 A1
20030066826 Lee et al. Apr 2003 A1
20030075925 Lindfors et al. Apr 2003 A1
20030094133 Yoshidome et al. May 2003 A1
20030111963 Tolmachev et al. Jun 2003 A1
20030141820 White et al. Jul 2003 A1
20030228772 Cowans Dec 2003 A1
20030232138 Tuominen et al. Dec 2003 A1
20040013577 Ganguli et al. Jan 2004 A1
20040023516 Londergan et al. Feb 2004 A1
20040036129 Forbes et al. Feb 2004 A1
20040077182 Lim et al. Apr 2004 A1
20040106249 Huotari Jun 2004 A1
20040144980 Ahn et al. Jul 2004 A1
20040168627 Conley et al. Sep 2004 A1
20040169032 Murayama et al. Sep 2004 A1
20040198069 Metzner et al. Oct 2004 A1
20040200499 Harvey et al. Oct 2004 A1
20040219793 Hishiya et al. Nov 2004 A1
20040221807 Verghese et al. Nov 2004 A1
20040266011 Lee et al. Dec 2004 A1
20050008799 Tomiyasu et al. Jan 2005 A1
20050019026 Wang et al. Jan 2005 A1
20050020071 Sonobe et al. Jan 2005 A1
20050023624 Ahn et al. Feb 2005 A1
20050054228 March Mar 2005 A1
20050066893 Soininen Mar 2005 A1
20050070123 Hirano Mar 2005 A1
20050072357 Shero et al. Apr 2005 A1
20050092249 Kilpela et al. May 2005 A1
20050100669 Kools et al. May 2005 A1
20050106893 Wilk May 2005 A1
20050110069 Kil et al. May 2005 A1
20050173003 Laverdiere et al. Aug 2005 A1
20050187647 Wang et al. Aug 2005 A1
20050212119 Shero Sep 2005 A1
20050214457 Schmitt et al. Sep 2005 A1
20050214458 Meiere Sep 2005 A1
20050218462 Ahn et al. Oct 2005 A1
20050229972 Hoshi et al. Oct 2005 A1
20050241176 Shero et al. Nov 2005 A1
20050263075 Wang et al. Dec 2005 A1
20050271813 Kher et al. Dec 2005 A1
20050282101 Adachi Dec 2005 A1
20060013946 Park et al. Jan 2006 A1
20060014384 Lee et al. Jan 2006 A1
20060019033 Muthukrishnan et al. Jan 2006 A1
20060024439 Tuominen et al. Feb 2006 A2
20060046518 Hill et al. Mar 2006 A1
20060051925 Ahn et al. Mar 2006 A1
20060060930 Metz et al. Mar 2006 A1
20060062910 Meiere Mar 2006 A1
20060063346 Lee et al. Mar 2006 A1
20060068125 Radhakrishnan Mar 2006 A1
20060110934 Fukuchi May 2006 A1
20060113675 Chang et al. Jun 2006 A1
20060128168 Ahn et al. Jun 2006 A1
20060148180 Ahn et al. Jul 2006 A1
20060193979 Meiere et al. Aug 2006 A1
20060208215 Metzner et al. Sep 2006 A1
20060213439 Ishizaka Sep 2006 A1
20060223301 Vanhaelemeersch et al. Oct 2006 A1
20060226117 Bertram et al. Oct 2006 A1
20060228888 Lee et al. Oct 2006 A1
20060240574 Yoshie Oct 2006 A1
20060257563 Doh et al. Nov 2006 A1
20060258078 Lee et al. Nov 2006 A1
20060266289 Verghese et al. Nov 2006 A1
20070010072 Bailey et al. Jan 2007 A1
20070020953 Tsai et al. Jan 2007 A1
20070022954 Iizuka et al. Feb 2007 A1
20070028842 Inagawa et al. Feb 2007 A1
20070031598 Okuyama et al. Feb 2007 A1
20070031599 Gschwandtner et al. Feb 2007 A1
20070037412 Dip et al. Feb 2007 A1
20070042117 Kupurao et al. Feb 2007 A1
20070049053 Mahajani Mar 2007 A1
20070054405 Jacobs et al. Mar 2007 A1
20070059948 Metzner et al. Mar 2007 A1
20070065578 McDougall Mar 2007 A1
20070066010 Ando Mar 2007 A1
20070077355 Chacin et al. Apr 2007 A1
20070116873 Li et al. May 2007 A1
20070134942 Ahn et al. Jun 2007 A1
20070146621 Yeom Jun 2007 A1
20070155138 Tomasini et al. Jul 2007 A1
20070166457 Yamoto et al. Jul 2007 A1
20070175397 Tomiyasu et al. Aug 2007 A1
20070209590 Li Sep 2007 A1
20070232501 Tonomura Oct 2007 A1
20070249131 Allen et al. Oct 2007 A1
20070252244 Srividya et al. Nov 2007 A1
20070264807 Leone et al. Nov 2007 A1
20080006208 Ueno et al. Jan 2008 A1
20080029790 Ahn et al. Feb 2008 A1
20080054332 Kim et al. Mar 2008 A1
20080057659 Forbes et al. Mar 2008 A1
20080075881 Won et al. Mar 2008 A1
20080085226 Fondurulia et al. Apr 2008 A1
20080113096 Mahajani May 2008 A1
20080113097 Mahajani et al. May 2008 A1
20080124908 Forbes et al. May 2008 A1
20080149031 Chu et al. Jun 2008 A1
20080176375 Erben et al. Jul 2008 A1
20080216077 Emani et al. Sep 2008 A1
20080224240 Ahn et al. Sep 2008 A1
20080233288 Clark Sep 2008 A1
20080248310 Kim et al. Oct 2008 A1
20080261413 Mahajani Oct 2008 A1
20080282970 Heys et al. Nov 2008 A1
20080315292 Ji et al. Dec 2008 A1
20090000550 Tran et al. Jan 2009 A1
20090011608 Nabatame Jan 2009 A1
20090020072 Mizunaga et al. Jan 2009 A1
20090029564 Yamashita et al. Jan 2009 A1
20090035947 Horii Feb 2009 A1
20090061644 Chiang et al. Mar 2009 A1
20090085156 Dewey et al. Apr 2009 A1
20090093094 Ye et al. Apr 2009 A1
20090095221 Tam et al. Apr 2009 A1
20090107404 Ogliari et al. Apr 2009 A1
20090136668 Gregg et al. May 2009 A1
20090139657 Lee et al. Jun 2009 A1
20090211523 Kuppurao et al. Aug 2009 A1
20090211525 Sarigiannis et al. Aug 2009 A1
20090239386 Suzaki et al. Sep 2009 A1
20090242957 Ma et al. Oct 2009 A1
20090246374 Vukovic Oct 2009 A1
20090261331 Yang et al. Oct 2009 A1
20090277510 Shikata Nov 2009 A1
20090283041 Tomiyasu et al. Nov 2009 A1
20090289300 Sasaki et al. Nov 2009 A1
20100024727 Kim et al. Feb 2010 A1
20100025796 Dabiran Feb 2010 A1
20100055312 Kato et al. Mar 2010 A1
20100075507 Chang et al. Mar 2010 A1
20100102417 Ganguli et al. Apr 2010 A1
20100124610 Aikawa et al. May 2010 A1
20100130017 Luo et al. May 2010 A1
20100170441 Won et al. Jul 2010 A1
20100193501 Zucker et al. Aug 2010 A1
20100230051 Iizuka Sep 2010 A1
20100255198 Cleary et al. Oct 2010 A1
20100275846 Kitagawa Nov 2010 A1
20100294199 Tran et al. Nov 2010 A1
20100307415 Shero et al. Dec 2010 A1
20100322604 Fondurulia et al. Dec 2010 A1
20110000619 Suh Jan 2011 A1
20110061810 Ganguly et al. Mar 2011 A1
20110070380 Shero et al. Mar 2011 A1
20110097901 Banna et al. Apr 2011 A1
20110108194 Yoshioka et al. May 2011 A1
20110236600 Fox et al. Sep 2011 A1
20110239936 Suzaki et al. Oct 2011 A1
20110256734 Hausmann et al. Oct 2011 A1
20110275166 Shero et al. Nov 2011 A1
20110308460 Hong et al. Dec 2011 A1
20120024479 Palagashvili et al. Feb 2012 A1
20120070136 Koelmel et al. Mar 2012 A1
20120070997 Larson Mar 2012 A1
20120090704 Laverdiere et al. Apr 2012 A1
20120098107 Raisanen et al. Apr 2012 A1
20120114877 Lee May 2012 A1
20120156108 Fondurulia et al. Jun 2012 A1
20120160172 Wamura et al. Jun 2012 A1
20120240858 Taniyama et al. Sep 2012 A1
20120270393 Pore et al. Oct 2012 A1
20120289053 Holland et al. Nov 2012 A1
20120295427 Bauer Nov 2012 A1
20120304935 Oosterlaken et al. Dec 2012 A1
20130023129 Reed Jan 2013 A1
20130104988 Yednak et al. May 2013 A1
20130115383 Lu et al. May 2013 A1
20130129577 Halpin et al. May 2013 A1
20130230814 Dunn et al. Sep 2013 A1
20130264659 Jung Oct 2013 A1
20130292676 Milligan et al. Nov 2013 A1
20130292807 Raisanen et al. Nov 2013 A1
20140000843 Dunn et al. Jan 2014 A1
20140014644 Akiba et al. Jan 2014 A1
20140027884 Fang et al. Jan 2014 A1
20140036274 Marquardt et al. Feb 2014 A1
20140060147 Sarin et al. Mar 2014 A1
20140067110 Lawson et al. Mar 2014 A1
20140073143 Alokozai et al. Mar 2014 A1
20140084341 Weeks Mar 2014 A1
20140103145 White et al. Apr 2014 A1
20140120487 Kaneko May 2014 A1
20140159170 Raisanen et al. Jun 2014 A1
20140175054 Carlson et al. Jun 2014 A1
20140217065 Winkler et al. Aug 2014 A1
20140220247 Haukka et al. Aug 2014 A1
20140251953 Winkler et al. Sep 2014 A1
20140251954 Winkler et al. Sep 2014 A1
20140346650 Raisanen et al. Nov 2014 A1
20150004316 Thompson et al. Jan 2015 A1
20150024609 Milligan et al. Jan 2015 A1
20150048485 Tolle Feb 2015 A1
20150091057 Xie et al. Apr 2015 A1
20150096973 Dunn et al. Apr 2015 A1
Foreign Referenced Citations (21)
Number Date Country
1563483 Dec 2006 CN
101330015 Dec 2008 CN
101522943 Sep 2009 CN
101423937 Sep 2011 CN
07283149 Oct 1995 JP
08335558 Dec 1996 JP
2001342570 Dec 2001 JP
2004014952 Jan 2004 JP
2004091848 Mar 2004 JP
2004538374 Dec 2004 JP
2005507030 Mar 2005 JP
2006186271 Jul 2006 JP
2008527748 Jul 2008 JP
I226380 Jan 2005 TW
200701301 Jan 2007 TW
2006056091 Jun 2006 WO
2006078666 Jul 2006 WO
2010118051 Oct 2010 WO
2011019950 Feb 2011 WO
2013078065 May 2013 WO
2013078066 May 2013 WO
Non-Patent Literature Citations (109)
Entry
USPTO; Office Action dated Aug. 27, 2010 in U.S. Appl. No. 12/118,596.
USPTO; Office Action dated Feb. 15, 2011 in U.S. Appl. No. 12/118,596.
USPTO; Notice of Allowance dated Aug. 4, 2011 in U.S. Appl. No. 12/118,596.
USPTO; Notice of Allowance dated Jun. 16, 2011 in U.S. Appl. No. 12/430,751.
USPTO; Notice of Allowance dated Jul. 27, 2011 in U.S. Appl. No. 12/430,751.
PCT; International Search report and Written Opinion dated Nov. 12, 2010 in Application No. PCT/US2010/030126.
PCT; International Preliminary Report on Patentability dated Oct. 20, 2011 in Application No. PCT/US2010/030126.
PCT; International Search report and Written Opinion dated Jan. 12, 2011 in Application No. PCT/US2010/045368.
Chang et al. Small-Subthreshold-Swing and Low-Voltage Flexible Organic Thin-Film Transistors Which Use HfLaO as the Gate Dielectric; IEEE Electron Device Letters; Feb. 2009; 133-135; vol. 30, No. 2; IEEE Electron Device Society.
Maeng et al. Electrical properties of atomic layer disposition Hf02 and Hf0xNy on Si substrates with various crystal orientations, Journal of the Electrochemical Society, Apr. 2008, p. H267-H271, vol. 155, No. 4, Department of Materials Science and Engineering, Pohang University of Science and Technology, Pohang, Korea.
USPTO; Office Action dated Jan. 15, 2013 in U.S. Appl. No. 12/754,223.
USPTO; Office Action dated Feb. 26, 2013 in U.S. Appl. No. 12/754,223.
PCT; International Search report and Written Opinion dated Feb. 6, 2013 in Application No. PCT/US2012/065343.
PCT; International Search report and Written Opinion dated Feb. 13, 2013 in Application No. PCT/US2012/065347.
USPTO; Office Action dated Dec. 6, 2012 in U.S. Appl. No. 12/854,818.
USPTO; Office Action dated Jan. 10, 2013 in U.S. Appl. No. 13/339,609.
USPTO; Office Action dated Feb. 11, 2013 in U.S. Appl. No. 13/339,609.
Chinese Patent Office; Office Action dated Jan. 10, 2013 is Serial No. 201080015699.9.
Novaro et al. Theoretical Study on a Reaction Pathway of Ziegler-Natta-Type Catalysis, J. Chem. Phys. 68(5), Mar. 1, 1978 p. 2337-2351.
USPTO; Final Office Action dated Jun. 28, 2013 in U.S. Appl. No. 12/754,223.
USPTO; Office Action dated Feb. 25, 2014 in U.S. Appl. No. 12/754,223.
USPTO; Final Office Action dated Jul. 14, 2014 in U.S. Appl. No. 12/754,223.
USPTO; Office Action dated Apr. 23, 2013 in U.S. Appl. No. 12/763,037.
USPTO; Final Office Action dated Oct. 21, 2013 in U.S. Appl. No. 12/763,037.
USPTO; Restriction Requirement dated Sep. 25, 2012 in U.S. Appl. No. 12/854,818.
USPTO; Final Office Action dated Mar. 13, 2013 in U.S. Appl. No. 12/854,818.
USPTO; Office Action dated Aug. 30, 2013 in U.S. Appl. No. 12/854,818.
USPTO; Final Office Action dated Mar. 26, 2014 in U.S. Appl. No. 12/854,818.
USPTO; Office Action dated Jun. 3, 2014 in U.S. Appl. No. 12/854,818.
USPTO; Restriction Requirement dated May 8, 2013 in U.S. Appl. No. 13/102,980.
USPTO; Office Action dated Oct. 7, 2013 in U.S. Appl. No. 13/102,980.
USPTO; Final Office Action dated Mar. 25, 2014 in U.S. Appl. No. 13/102,980.
USPTO; Notice of Allowance dated Jul. 3, 2014 in U.S. Appl. No. 13/102,980.
USPTO; Non-Final Office Action dated Jul. 2, 2014 in U.S. Appl. No. 13/283,408.
USPTO; Restriction Requirement dated Dec. 16, 2013 in U.S. Appl. No. 13/284,642.
USPTO; Restriction Requirement dated Apr. 21, 2014 in U.S. Appl. No. 13/284,642.
USPTO; Office Action dated Jul. 30, 2014 in U.S. Appl. No. 13/284,642.
USPTO; Final Office Action dated May 17, 2013 in U.S. Appl. No. 13/339,609.
USPTO; Office Action dated Aug. 29, 2013 in U.S. Appl. No. 13/339,609.
USPTO; Final Office Action dated Dec. 18, 2013 in U.S. Appl. No. 13/339,609.
USPTO; Notice of Allowance dated Apr. 7, 2014 in U.S. Appl. No. 13/339,609.
USPTO; Office Action dated Feb. 13, 2014 in U.S. Appl. No. 13/411,271.
USPTO; Office Action dated Jul. 31, 2014 in U.S. Appl. No. 13/411,271.
USPTO; Restriction Requirment dated Oct. 29, 2013 in U.S. Appl. No. 13/439,528.
USPTO; Office Action dated Feb. 4, 2014 in U.S. Appl. No. 13/439,528.
USPTO Final Office Action dated Jul. 8, 2014 in U.S. Appl. No. 13/439,528.
USPTO; Office Action dated May 23, 2013 in U.S. Appl. No. 13/465,340.
USPTO; Final Office Action dated Oct. 30, 2013 in U.S. Appl. No. 13/465,340.
USPTO; Notice of Allowance dated Feb. 12, 2014 in U.S. Appl. No. 13/465,340.
USPTO; Office Action dated Dec. 20, 2013 in U.S. Appl. No. 13/535,214.
USPTO; Final Office Action dated Jun. 18, 2014 in U.S. Appl. No. 13/535,214.
USPTO; Non-Final Office Action dated Aug. 8, 2014 in U.S. Appl. No. 13/563,066.
USPTO; Office Action dated Nov. 15, 2013 in U.S. Appl. No. 13/612,538.
USPTO; Office Action dated Jul. 10, 2014 in U.S. Appl. No. 13/612,538.
USPTO; Office Action dated Jun. 2, 2014 in U.S. Appl. No. 13/677,151.
USPTO; Office Action dated Apr. 24, 2014 in U.S. Appl. No. 13/784,362.
USPTO; Notice of Allowance dated Aug. 13, 2014 in U.S. Appl. No. 13/784,362.
USPTO; Restriction Requirement dated Jun. 26, 2014 in U.S. Appl. No. 13/874,708.
USPTO; Restriction Requirement dated May 8, 2014 in U.S. Appl. No. 13/791,246.
USPTO; Office Action dated May 29, 2014 in U.S. Appl. No. 14/183,187.
Chinese Patent Office; Notice on the First Office Action dated May 24, 2013 in Application No. 201080036764.6.
Chinese Patent Office; Notice on the Second Office Action dated Jan. 2, 2014 in Application No. 201080036764.6.
Chinese Patent Office; Notice on the Third Office Action dated Jul. 1, 2014 in Application No. 201080036764.6.
Chinese Patent Office; Notice on the First Office Action dated Feb. 8, 2014 in Application No. 201110155056.
Japanese Patent Office; Office Action dated Jan. 25, 2014 in Application No. 2012-504786.
Taiwan Patent Office; Office Action dated Jul. 4, 2014 in Application No. 099110511.
USPTO; Notice of Allowance dated Jan. 27, 2015 in U.S. Appl. No. 12/763,037.
USPTO; Final Office Action dated Jan. 29, 2015 in U.S. Appl. No. 13/283,408.
USPTO; Notice of Allowance dated Feb. 11, 2015 in U.S. Appl. No. 13/284,642.
USPTO; Final Office Action dated Jan. 16, 2015 in U.S. Appl. No. 13/411,271.
USPTO; Final Office Action dated Feb. 12, 2015 in U.S. Appl. No. 13/563,066.
USPTO; Non-Final Office Action dated Feb. 12, 2015 in U.S. Appl. No. 13/597,108.
USPTO; Notice of Allowance dated Feb. 26, 2015 in U.S. Appl. No. 13/677,151.
USPTO; Notice of Allowance dated Jan. 20, 2015 in U.S. Appl. No. 13/941,134.
USPTO; Non-Final Office Action dated Feb. 12, 2015 in U.S. Appl. No. 14/457,058.
USPTO; Non-Final Office Action dated Jan. 16, 2015 in U.S. Appl. No. 14/563,044.
Chinese Patent Office; Office Action dated Jan. 12, 2015 in Application No. 201080015699.9.
Chinese Patent Office; Notice on the Third Office Action dated Feb. 9, 2015 in Application No. 201110155056.
Japanese Patent Office; Office Action dated Dec. 1, 2014 in Application No. 2012-504786.
Taiwan Patent Office; Office Action dated Dec. 30, 2014 in Application No. 099114330.
Taiwan Patent Office; Office Action dated Dec. 19, 2014 in Application No. 099127063.
USPTO; Office Action dated Oct. 8, 2014 in U.S. Appl. No. 12/763,037.
USPTO; Non-Final Office Action dated Sep. 17, 2014 in U.S. Appl. No. 13/187,300.
USPTO; Non-Final Office Action dated Nov. 26, 2014 in U.S. Appl. No. 13/312,591.
UPPTO; Notice of Allowance dated Oct. 21, 2014 in U.S. Appl. No. 13/439,528.
USPTO; Notice of Allowance dated Oct. 23, 2014 in U.S. Appl. No. 13/535,214.
USPTO; Non-Final Office Action dated Oct. 15, 2014 in U.S. Appl. No. 13/597,043.
USPTO; Final Office Action dated Nov. 14, 2014 in U.S. Appl. No. 13/677,151.
USPTO; Non-Final Office Action dated Oct. 9, 2014 in U.S. Appl. No. 13/874,708.
USPTO; Non-Final Office Action dated Sep. 19, 2014 in U.S. Appl. No. 13/791,246.
USPTO; Non-Final Office Action dated Sep. 12, 2014 in U.S. Appl. No. 13/941,134.
USPTO; Restriction Requirement dated Sep. 16, 2014 in U.S. Appl. No. 13/948,055.
USPTO; Non-Final Office Action dated Oct. 30, 2014 in U.S. Appl. No. 13/948,055.
USPTO; Final Office Action dated Nov. 7, 2014 in U.S. Appl. No. 14/183,187.
Chinese Patent Office; Notice on the Second Office Action dated Sep. 16, 2014 in Application No. 201110155056.
Koutsokeras et al. Texture and Microstructure Evolution in Single-Phase TixTa1-xN Alloys of Rocksalt Structure. Journal of Applied Physics, 110, pp. 043535-1-043535-6, (2011).
USPTO; Final Office Action dated Apr. 15, 2015 in U.S. Appl. No. 13/187,300.
USPTO; Final Office Action dated Mar. 13, 2015 in U.S. Appl. No. 13/597,043.
USPTO; Non-Final Office Action dated Apr. 3, 2015 in U.S. Appl. No. 13/677,133.
USPTO; Notice of Allowance dated Mar. 10, 2015 in U.S. Appl. No. 13/874,708.
USPTO; Final Office Action dated Mar. 25, 2015 in U.S. Appl. No. 13/791,246.
USPTO; Non-Final Office Action dated Apr. 7, 2015 in U.S. Appl. No. 14/018,345.
USPTO; Non-Final Office Action dated Apr. 28, 2015 in U.S. Appl. No. 14/040,196.
USPTO; Non-Fina. Office Action dated Mar. 19, 2015 in U.S. Appl. No. 14/079,302.
USPTO; Non-Final Office Action dated Mar. 19, 2015 in U.S. Appl. No. 14/166,462.
USPTO; Non-Final Office Action dated Mar. 16, 2015 in U.S. Appl. No. 14/183,187.
Bearzotti, et al., “Fast Humidity Response of a Metal Halide-Doped Novel Polymer,” Sensors and Actuators B, 7, pp. 451-454, (1992).
Crowell, “Chemical methods of thin film deposition: Chemical vapor deposition, atomic layer deposition, and related technologies,” Journal of Vacuum Science & Technology a 21.5, (2003): S88-S95.
Varma, et al., “Effect of Mtal Halides on Thermal, Mechanical, and Electrical Properties of Polypyromelitimide Films,” Journal of Applied Polymer Science, vol. 32, pp. 3987-4000, (1986).
Related Publications (1)
Number Date Country
20130104992 A1 May 2013 US
Continuation in Parts (1)
Number Date Country
Parent 13283408 Oct 2011 US
Child 13312591 US