This invention relates to data communications in a computer system, and more particularly to a memory controller operable to issue variable length read and write commands.
Modern computer systems typically include a host processor coupled to a host bridge. The host bridge interfaces the processor to the rest of the computer system. The host bridge may include a memory controller that is coupled to a system memory, for example Dynamic Random Access Memory (DRAM). A single memory controller can support a plurality of memory channels, where each memory channel is an electrically independent interface with the memory channel's own data bus connecting the memory channel to the memory controller. The larger the number of memory channels, the larger the aggregate bandwidth (amount of information transferred per second between the DRAM and the memory controller). Increasing the number of memory channels also increases the aggregate storage capacity of the memory subsystem by allowing more memory modules/devices to be connected to a single controller.
Most memory controllers perform read and write commands in fixed size amounts of data. This amount of data is called a “line”. A line contains L bytes of data. For example, when the memory controller performs a read operation, the controller receives a single line of data (L bytes) for each read command issued. Likewise, when the memory controller performs a write operation, the memory controller transmits a line of data (L bytes) for each write command issued. In an n-channel implementation, each of the channels returns a line of data for each read command. The total amount of data returned to the controller is L*n bytes if all channels are populated. For write commands, the controller transmits L*n bytes, with L bytes being written to each usable memory channel.
Referring to
Like reference symbols in the various drawings indicate like elements.
Referring to
Host bridge 203 and main memory 201 both interface with an Input/Output (I/O) bridge 207 which provides an interconnection between various peripheral components within the system (e.g. a keyboard, disk drive, scanner, and/or a mouse (216)).
I/O bridge 207 includes a system management (SM) bus interface 210 for coupling to an SM bus 211. SM bus interface 210 may support the serial presence detect protocol to access predefined storage locations in main memory 201 to determine how many channels 206A–n have memory components which are populated with memory devices. The serial presence detect protocol is a standard set by the Joint Electron Device Engineering Council (JEDEC). The standard is referred to as JEDEC Standard 21-C, Configurations for Solid State Memories, published by JEDEC September 2000.
Buffers 212 are provided between I/O bridge 207 via expansion bus 213 and one or more components, such as a nonvolatile memory (NVRAM) 215. NVRAM 215 stores a basic input/output system (BIOS) routine, which is executed in the computer system 200 during initial start-up. In operation, the BIOS routine may be copied to main memory 201.
Referring to
Each memory component 300A–r and 301A–r includes an NVRAM 303A–r and 304A–r configured according to the serial presence detect protocol. The information stored in the NVRAM indicates the type of memory module used, e.g., memory data width, memory size, DDR or SDRAM. During start-up, a BIOS routine executed by processor 204 determines the total number of channels n 206A–n connected to memory controller 202. The BIOS routine may also program SMB interface 210 in I/O bridge 207, accessing predetermined locations in NVRAMs 303A–r and 304A–r to determine whether or not memory components 300A–r and 301A–r are populated with memory. Based on the accessed information, the number of populated channels m (the total number of channels 206A–n that contain memory components 300A–r and 301A–r populated with memory devices) is determined. The BIOS routine may also calculate an optimum burst length L based on n and m using the formula:
L=(n/m)*I,
where I is a minimum burst length required by the memory interface that is hard-coded into the initialization software and L is the optimum burst length. The optimum burst length L is the minimum burst length required to minimize the number of read or write commands. The lowest limit for the value of the minimum burst length can be the minimum burst length required by the memory devices and/or the memory controller.
Memory controller 202 may include a channel configuration register 351, and a populated channel configuration register 352, described in greater detail below, which are programmable by the BIOS routine to configure memory controller 202 to provide the correct read or write burst length L to memory components 300A–r and 301A–r that are populated with memory.
Referring to
Referring to
Referring to
Referring to
Because only one of the two channels is populated, memory controller 202 adjusts the burst length to accommodate all 8 bytes in one read operation. Because the 8 bytes cannot be distributed over two channels and read as two four-bit words, memory controller 202 calculates and uses a burst length of 8, allowing for the read operation to read one eight bit word. This burst length is considered the optimum burst length because it is the minimum burst length required to consolidate the read operation into one read command.
Referring to
State 1 (IDLE) corresponds to the idle state of memory controller state machine 401. When in IDLE state, memory controller 202 is not performing a read or write command. Memory controller state machine 401 transitions to state 2 (RD0) when a read or write cycle is initiated by processor 204. Memory controller state machine 401 then transitions through the next three states 3–5, or (RD1), (RD2), and (RD3). By the time memory controller state machine 401 transitions to state 5 (RD3), memory controller 202 has accumulated 4 bytes of data. If the optimum burst length L stored in bytes [1:0] 402 of command length control register 400 is 4, then memory controller state machine 401 transitions back to the IDLE state 1. If the optimum burst length L stored in command length control register 400 is 8, then memory controller state machine 401 transitions to state 7 (RD4) and through the next three states 8–10, or (RD5), (RD6), and (RD7). Once in state 10 (RD7), memory controller 202, which has accumulated 8 bytes of data corresponding to the optimum burst length of 8, transitions back to the IDLE state 1.
In the present invention, memory controller state machine 401, using information in command length control register 400, can adjust the length of a read or write command depending on the calculated optimum burst length L. Therefore, the present invention minimizes the number of read and write commands that have to be executed by processor 204, enhancing the performance of the memory interface.
Referring to
Although the present invention has been described herein with reference to a specific preferred embodiment, many modifications and variations therein will be readily occur to those skilled in the art. Accordingly, all such variations and modifications are included within the intended scope of the present invention as defined by the following claims.
Under 35 U.S.C. § 120, this application is a continuation application of and claims priority to U.S. patent application Ser. No. 10/041,679, filed Jan. 7, 2002, now U.S. Pat. No. 6,766,385, the entire contents of which are incorporated by reference herein.
Number | Name | Date | Kind |
---|---|---|---|
4484303 | Provanzano et al. | Nov 1984 | A |
5179663 | Iimura | Jan 1993 | A |
5608686 | Takai | Mar 1997 | A |
5781918 | Lieberman et al. | Jul 1998 | A |
5809338 | Klein | Sep 1998 | A |
5854942 | Penokie | Dec 1998 | A |
5893927 | Hovis | Apr 1999 | A |
5896551 | Williams et al. | Apr 1999 | A |
5901298 | Cummins et al. | May 1999 | A |
5991867 | Fosmark | Nov 1999 | A |
6003120 | Hardin | Dec 1999 | A |
6108723 | Simms et al. | Aug 2000 | A |
6148380 | Dodd et al. | Nov 2000 | A |
6154419 | Shakkarwar | Nov 2000 | A |
6185637 | Strongin et al. | Feb 2001 | B1 |
6298420 | Chittor et al. | Oct 2001 | B1 |
6304947 | Killig et al. | Oct 2001 | B1 |
6393500 | Thekkath | May 2002 | B1 |
6412048 | Chauvel et al. | Jun 2002 | B1 |
6457075 | Koutsoures | Sep 2002 | B1 |
6470409 | Ridgeway | Oct 2002 | B1 |
6473814 | Lyons et al. | Oct 2002 | B1 |
6523085 | Hodges et al. | Feb 2003 | B1 |
6609163 | Nguyen et al. | Aug 2003 | B1 |
6615308 | Fanning | Sep 2003 | B1 |
6658503 | Agarwala et al. | Dec 2003 | B1 |
6708254 | Lee et al. | Mar 2004 | B2 |
6766385 | Dodd et al. | Jul 2004 | B2 |
6795899 | Dodd et al. | Sep 2004 | B2 |
20020007435 | Banks et al. | Jan 2002 | A1 |
20030182513 | Dodd et al. | Sep 2003 | A1 |
Number | Date | Country | |
---|---|---|---|
Parent | 10041679 | Jan 2002 | US |
Child | 10877387 | US |