Device for optically scanning and measuring an environment

Information

  • Patent Grant
  • 9417056
  • Patent Number
    9,417,056
  • Date Filed
    Wednesday, December 12, 2012
    12 years ago
  • Date Issued
    Tuesday, August 16, 2016
    8 years ago
Abstract
A laser scanner device for optically scanning and measuring an environment includes a base, a measuring head which is rotatable relative to the base, and a mirror which is rotatably relative to the measuring head, wherein, in at least one operating mode, the laser scanner is mounted on a cart by a mounting device, the cart moves the base which is fixedly connected with the mounting device, the measuring head rests relative to the base, the mirror rotates, and the measuring head is locked with the mounting device by a locking mechanism.
Description
CROSS REFERENCE TO RELATED APPLICATIONS

The present patent application is a National Stage Patent Application of, and which claims priority to, PCT Patent Application No. PCT/EP2012/075178, filed on Dec. 12, 2012, which claims the benefit of U.S. Provisional Patent Application No. 61/592,024, filed on Jan. 30, 2012, and of German Patent Application No. 10 2012 100 609.1, filed on Jan. 25, 2012, and all of which are hereby incorporated by reference herein.


BACKGROUND OF THE INVENTION

The invention relates to a device for optically scanning and measuring an environment.


By a laser scanner device, such as is known for example from German Patent Application No. DE 20 2006 005 643, the environment of the laser scanner can be optically scanned and measured.


SUMMARY OF THE INVENTION

Embodiments of the present invention are based on the object of improving a device of the type mentioned hereinabove.


Different operating modes can be provided for the laser scanner. In at least one operating mode (e.g., a helix mode), the laser scanner as a whole is moved by a cart on which the base of the laser scanner is mounted by a mounting device. The measuring head of the laser scanner rests relative to the base, while the mirror of the laser scanner rotates about its horizontal axis relative to the measuring head. The term “cart” may include any vehicle suitable for transporting the operating laser scanner.


According to embodiments of the present invention, in addition to a fixed connection between the base and the mounting device, the measuring head is locked together with the mounting device through use of corresponding first and second locking mechanisms. A pivot bearing between the measuring head and the base is thus bridged and relieved. In particular, static strains caused by a non-uniform clamping of the measuring head when the base is mounted on the mounting device and dynamic loads caused by moments of inertia of the measuring head are avoided.


A mechanical connection of the base with the mounting device and/or the locking of the measuring head with the mounting device may take place without backlash, for example by providing conical elements or elements which taper in a wedge-shaped manner. An electrical connection between the base and the mounting device may be optional and can be replaced, for example, by a direct connection (e.g., a cable) between the laser scanner, (for example, the base of the laser scanner) and the cart.


In another operating mode (e.g., a sphere mode) of the laser scanner, the base is stationary, and the mirror and the measuring head rotate about their axes.


A “horizontal” arrangement of the axis of rotation of the mirror and the “vertical” arrangement of the axis of rotation of the measuring head refer to an ideal alignment of the laser scanner. In case of an alignment of the laser scanner which is inclined with respect to the ideal alignment, the terms “horizontal” and “vertical” are interpreted in a relatively broader sense.


The components of the laser scanner may be arranged in two parts of the measuring head and in a traverse of the carrying structure which connects the two parts together. The carrying structure may form a part of the housing of the laser scanner, for example a bottom part and/or a central part between the two parts of the measuring head. To reduce the weight of the laser scanner, a shell may be provided as part of the housing, for example one shell each for each of the two parts of the measuring head, the shells comprising a relatively light material, for example plastic, and covering the corresponding components of the laser scanner for protection. To protect the shell, a yoke may be provided, for example one yoke for each shell, the yoke partially covering the outside of the shell and comprising a relatively light material as well, for example aluminum. The yokes can be omitted in alternative embodiments, for example if the shells are configured in a more stable manner and connected with the carrying structure.


The carrying structure which, for reasons of weight, may comprise aluminum as well, and may be provided with walls which fix the components with the optics and with the rotating mirror. The walls can also close the semi-open shells. The yoke may extend along the outer edges and/or obliquely over the outer surfaces of the shell and is fixed to the carrying structure, for example at the ends thereof, and if required also in the center thereof, at one of the two walls. In addition to the protective function, further functions can be integrated in the yokes.


The first locking mechanism, for example fixed notches, may be configured on the yokes. Also, a second locking mechanism may be provided, for example movable pawls, locks or similar, which are supported on the mounting device. The movable second locking mechanism then engages in the fixed first locking mechanism. The assignment of the fixed and of the movable locking mechanisms to the measuring head and to the mounting device, respectively, may also be reversed.


The mechanical connection of the base with the mounting device and the first locking mechanism between the measuring head and the mounting device may be arranged crosswise, to obtain a relatively stable support of the laser scanner on the mounting device. The terminal for the electrical connection with the cart may be located adjacent to the first locking mechanism and thus outside the space angle which can be reached by the emission light beam.





BRIEF DESCRIPTION OF THE DRAWINGS

The invention is explained in more detail below on the basis of an exemplary embodiment illustrated in the drawing, in which



FIG. 1 is a schematic illustration of the laser scanner during operation, with a sketched cart;



FIG. 2 is a perspective illustration of the laser scanner;



FIG. 3 is a perspective illustration of the mounting device, and



FIG. 4 is an underside view of the laser scanner.





DETAILED DESCRIPTION OF THE INVENTION

Referring to FIGS. 1-4, a laser scanner 10 is provided as a device for optically scanning and measuring the environment of the laser scanner 10. The laser scanner 10 has a measuring head 12 and a base 14. The measuring head 12 is mounted on the base 14 as a unit that can be rotated about a vertical axis. The measuring head 12 has a rotary mirror 16, which can be rotated about a horizontal axis. The intersection point of the two axes of rotation is designated as the center C10 of the laser scanner 10.


The measuring head 12 is further provided with a light emitter 17 for emitting an emission light beam 18. The emission light beam 18 may be a laser beam in the range of approximately 300 to 1600 nm wave length, for example 790 nm, 905 nm or less than 400 nm; however, other electro-magnetic waves having, for example, a greater wave length can be used. The emission light beam 18 is amplitude-modulated, for example with a sinusoidal or with a rectangular-waveform modulation signal. The emission light beam 18 is emitted by the light emitter 17 onto the rotary mirror 16, where it is deflected and emitted to the environment. A reception light beam 20 which is reflected in the environment by an object O or scattered otherwise, is captured again by the rotary mirror 16, deflected and directed onto a light receiver 21. The direction of the emission light beam 18 and of the reception light beam 20 results from the angular positions of the rotary mirror 16 and the measuring head 12, which depend on the positions of their corresponding rotary drives which, in turn, are registered by one encoder each.


A control and evaluation unit 22 has a data connection to the light emitter 17 and to the light receiver 21 in the measuring head 12, whereby parts of the unit 22 can be arranged also outside the measuring head 12, for example a computer connected to the base 14. The control and evaluation unit 22 determines, for a multitude of measuring points X, the distance d between the laser scanner 10 and the illuminated point at object O, from the propagation time of the emission light beam 18 and the reception light beam 20. For this purpose, the phase shift between the two light beams 18 and 20 can, for example, be determined and evaluated.


Scanning takes place along a circle by means of the relatively quick rotation of the rotary mirror 16. By virtue of the relatively slow rotation of the measuring head 12 relative to the base 14, the entire space is scanned step by step, by way of circles. The entity of measuring points X of such a measurement is designated as a scan. For such a scan, the center C10 of the laser scanner 10 defines the origin of the local stationary reference system. The base 14 rests in this local stationary reference system.


In addition to the distance d to the center C10 of the laser scanner 10, each measuring point X comprises a brightness information value which is determined by the control and evaluation unit 22 as well. The brightness value is a gray-tone value which is determined, for example, by integration of the bandpass-filtered and amplified signal of the light receiver 21 over a measuring period which is attributed to the measuring point X. A color camera can optionally generate pictures, by means of which colors (R, G, B) can be assigned to the measuring points as values.


A display device 24 is connected to the control and evaluation unit 22. The display device 24 is integrated into the laser scanner 10, in the present case into the measuring head 12. The display device 24 shows a preview of the scan.


The laser scanner 10 has a carrying structure 30 which serves as a skeleton of the measuring head 12 and at which different components of the laser scanner 10 are fixed. In an exemplary embodiment, the metal carrying structure 30 is made of aluminum and in one piece. Above the base 14, the carrying structure 30 has a traverse 30a which is visible from the outside and which, at both ends, carries two walls 30b, which are parallel to one another and project upwards from the traverse 30a. Two shells 32 are configured as a housing which is open to one side. The shells 32 may comprise a plastic material. Each of the two shells 32 covers part of the components of the laser scanner 10 which are fixed to the carrying structure 30 and is assigned to one of the two walls 30b, to which it is fixed (e.g., sealed with a sealing material). The walls 30b and the shells 32 thus serve as a housing of the laser scanner 10.


On the outer side of each of the two shells 32 a yoke 34, which may comprise a metal material, is arranged, which partially covers and thus protects the corresponding shell 32. Each yoke 34 is fixed to the carrying structure 30, and more precisely on the bottom of the traverse 30a. In an exemplary embodiment, each yoke 34 is made of aluminum and is screwed to the traverse 30a at the side of the base 14. Each yoke 34 extends from its fixing point at the bottom of the traverse 30a obliquely to the next outer corner of the assigned shell 32, from where it extends along the outer edge of shell 32 to the outer corner of shell 32 which is above, on the upper side of shell 32 obliquely up to the wall 30b,a short distance along it, and then mirror-symmetrically to the described course on the upper side of shell 32, obliquely to the other outer corner, along the outer edge of shell 32 to the outer corner of shell 32 which is below and obliquely to the other fastening point at the bottom side of traverse 30a.


The two yokes 34 together circumscribe a convex space, within which the two shells 32 are completely arranged; i.e., the two yokes 34 together project over all outer edges and outer surfaces of the shells 32. On top and on the bottom the oblique sections of the yokes 34 project over the top and/or bottom of the shells 32, on the four other sides, two sections each extending along an outer edge of the shells 32. The shells 32 are thus protected extensively. Although each of the yokes 34 primarily has a protective function, particularly with respect to impacts which might damage the shells 32 and the components of the laser scanner 10 which are arranged below, further functions can be integrated in one or both of the yokes 34, for example a gripping possibility for carrying the laser scanner 10 and/or an illumination.


Further details of the design of the laser scanner 10 are described for example in German Patent Application No. DE 10 2009 055 988 B3,the relevant disclosure of which is expressly incorporated by reference herein.


In embodiments of the present invention, two different operating modes may be provided for the laser scanner 10.


In a sphere mode, the base 14 is arranged in the environment in a stationary manner, the mirror 16 rotates about its horizontal axis, and the measuring head 12 rotates about its vertical axis. The two rotations define a sphere, by which the laser scanner 10 scans its environment (e.g., completely).


In a helix mode, the base 14 moves relative to its environment along a line, the mirror 16 rotates about its horizontal axis, and the measuring head 12 rests relative to the base 14. The rotation and the movement along the line define a helix, by which the laser scanner 10 scans its environment (e.g., partially). On principle, the line can have any shape. However, the line may usually comprise straight and/or slightly curved sections.


For the helix mode, the laser scanner 10 is mounted on a cart W, for example on a motor vehicle. A mounting device 40 is provided for this purpose, which may be fixedly connected both mechanically and electrically with both the cart W and the laser scanner 10.


In the exemplary embodiment, the mounting device 40 has an approximately cylindrical body 40a,the diameter of which is slightly bigger than that of the base 14. Two pairs of fixing pins 40p (e.g., rotatable screws) protrude from the upper face of the body 40a of the mounting device 40. The fixing pins 40p interact with suitable fixing holes 14p configured on the underside of the base 14. A pre-positioning by the fixing pins 40p may likely be subject to backlash. This is why, from the upper face of the mounting device 40, two additional positioning pins 40f protrude which interact with suitable positioning holes 14f on the underside of the base 14. Each of the positioning pins 40f is arranged between the two fixing pins 40p of a pair. When the fixing pins 40p enter the assigned fixing holes 14p (i.e., are screwed in), the positioning pins 40f enter the assigned positioning holes 14f. The positioning pins 40f are configured to be fixed relative to the basic body 40a. At least one of the two positioning pins 40f may have a conical end, which, when entering the assigned positioning hole 14f, provides for an absence of backlash and a force closure. In addition to the mechanical fixing elements, electrical connecting elements are provided, in an exemplary embodiment on the upper face of the body 40a,an integrated contact bushing 40s with flat contacts and on the underside of the base 14, an integrated mating contact plug 14s with spring pins.


On the circumferential surface of the body 40a, the mounting device 40 has at least two screw-in holes 40u (or alternatively other fixation means) for the mechanical connection with the cart W and at least one terminal for the electrical connection with the cart W. The electric connecting elements 14s, 40s and 40v allow for transmission of both data and energy. The assignments of male and female electric connecting elements to the base 14 and to the mounting device 40 can also be exchanged. The same applies to the mechanical connecting elements 14f, 14p and 40f, 40p.


The mounting device 40 is connected mechanically to the laser scanner 10 by the above-described mechanical connecting elements 14f, 14p, 40f and 40p (i.e., a mechanical connecting mechanism) at the base 14 of the laser scanner 10. The mounting device 40 is also connected electrically to the laser scanner 10 by the electric connecting elements 14s and 40s (i.e., an electrical connecting mechanism). In the event of an agitated movement of the cart W during the helix mode, the measuring head 12 with its inertia may stress with changing moments its pivot bearing in the base 14. According to embodiments of the present invention, the mounting device 40 therefore is not only fixedly connected with the base 14, but it is also locked with the measuring head 12. For this purpose, the mounting device 40 interacts with the yokes 34, and consequently with the carrying structure 30.


Each of the two yokes 34 has, in the immediate vicinity of the fixation of the yoke 34 to the carrying structure 30 (i.e., in an embodiment the screw points at the traverse 30a), a first locking mechanism 34k. The two first locking mechanisms 34k are thus fixed to the carrying structure 30. Each first locking mechanism 34k is configured, in an embodiment, as a notch in the yoke 34 with flanks which taper in a wedge-shaped manner, wherein the yoke 34 opens radially outward with respect to the axis of rotation of the measuring head 12. The two first locking mechanisms 34k thereby open in opposite directions. The two first locking mechanisms 34k can also be formed on the carrying structure 30 (i.e., configured in one piece with the structure 30) or may be separate components which are fixed to the yokes 34 or to other parts of the carrying structure 30.


The mounting device 40 has, on its body 40a and offset to each of the pairs of fixing pins 40p and positioning pins 40f,a pillow block 40i. The pillow blocks 40i are curved in an arc-shaped manner with an almost square cross section. The pillow blocks 40i, which may be configured in one piece, have in their center a central area, as well as wing areas on the sides thereof. The wing areas serve for fixing the corresponding pillow block 40i, relatively more precisely for receiving fixing screws. The wing areas may be omitted if the pillow block 40i is fixed in another manner. The central area is elevated with respect to the wing areas, so that the wing areas of the pillow blocks 40i are spaced from the yokes 34, if the base 14 bears on the upper face of the basic body 40a. For a pre-positioning, however, the central area of each pillow block 40i can be dimensioned in such a way that it engages between the assigned yokes 34.


Each pillow block 40i pivotably mounts a second locking mechanism 40k which, in an embodiment, may be configured as a pin-shaped lock with a support which bears it. The two second locking mechanisms 40k can pivot from a radial initial position with respect to the body 40a into an axial final position and back. A pre-bias of each of the two second locking mechanisms 40k is provided in the initial position and in the final position, for example by a spring which has a dead point between an initial position and a final position. In a modified embodiment, a pre-bias is provided only for the final position. The two second locking mechanisms 40k may be pivoted manually. Regarded from above, the positioning pins 40f and the second locking mechanisms 40k are arranged crosswise, i.e., the connection lines intersect, in an embodiment, at an angle of 90°. Alternative arrangements are possible, however. The at least one electrical connecting element 40v for the electrical connection with the cart W may be located adjacent to the second locking mechanisms 40k, in an embodiment below the central area of one of the pillow blocks 40i and consequently outside the space angle which is reached by the emission light beam 18.


To connect the mounting device 40 with the laser scanner 10, the scanner 10 is placed with its base 14 on the body 40a and is positioned by the positioning pins 40f and the positioning holes 14f, without backlash in the final position. At the same time, the contact plug 14s is plugged into the contact bushing 40s. The fixing pins 40p then are moved, i.e., screwed into the fixing holes 14p, the base 14 thus being connected without backlash with the mounting device 40. Finally the two second locking mechanisms 40k are pivoted into their final position. Shortly before reaching the final position, they approach from the radial direction the corresponding one of the two first locking mechanisms 34k which are configured as notches and finally engage therein, if necessary by sliding along the flanks of the notches (e.g., the flanks being tapered in a wedge-shaped manner), until the measuring head 12 is locked without backlash with the mounting device 40.


A completely strain-free locking may be achieved by the measuring head 12 being aligned as precisely as possible with respect to its angle position relative to the base 14 at the latest before the two second locking mechanisms 40k are pivoted into their final position, so that, by both the two first locking mechanisms 34k and the two second locking mechanisms 40k, only the backlash of the rotary drive of the measuring head 12 needs to be eliminated or reduced. Since the angle position of the measuring head 12 is registered by an encoder, a calibration of the encoder may be advantageous. Alternatively, a smoothly running idle movement of the rotary drive or a relatively large backlash of the same can be provided, so that the two first and second locking mechanisms 34k and 40k themselves carry out the relatively precise alignment of the measuring head 12.

Claims
  • 1. A laser scanner device for optically scanning and measuring an environment, the laser scanner comprising a base, a measuring head which is rotatable relative to the base, and a mirror which is rotatable relative to the measuring head, wherein the measuring head includes a carrying structure configured as a frame of the measuring head, wherein the laser scanner is mounted on a cart by a mounting device, the cart moves the base which is fixedly connected with the mounting device via a first mechanical connecting mechanism and a first electrical connecting mechanism provided on a bottom side of the base and via a second mechanical connecting mechanism and a second electrical connecting mechanism provided on an upper face of the mounting device, the measuring head rests relative to the base, and the mirror rotates, wherein the measuring head includes at least a first locking mechanism that is fixed to the carrying structure, wherein the mounting device supports at least a second locking mechanism, wherein the measuring head is locked with the mounting device by engagement of the first locking mechanism and the second locking mechanism.
  • 2. The device of claim 1, wherein as part of a housing of the laser scanner, at least one shell is provided on the measuring head, the outside of the shell being partly covered by at least one yoke configured to protect and being fixed to the carrying structure.
  • 3. The device of claim 2, wherein the at least one first locking mechanism is configured on the yoke in the form of a notch which, with respect to an axis of rotation of the measuring head, points radially outwards.
  • 4. The device of claim 1, wherein the mounting device has at least one pillow block, which pivotably supports the second locking mechanism.
  • 5. The device of claim 1, wherein the mounting device has a body on the face of which the base bears with its bottom side and on which the second mechanical and electrical connecting mechanisms are arranged.
  • 6. The device of claim 4, wherein the pillow block is arranged on an upper face of the body.
  • 7. The device of claim 1, wherein the measuring head includes a light emitter that emits an emission light beam which is deflected into the environment by the mirror, and a light receiver that receives a reception light beam which is reflected by an object in the environment or scattered otherwise, the device further comprising a control and evaluation unit that determines, for a multitude of measuring points each, at least the distance to the object.
Priority Claims (1)
Number Date Country Kind
10 2012 100 609 Jan 2012 DE national
PCT Information
Filing Document Filing Date Country Kind
PCT/EP2012/075178 12/12/2012 WO 00
Publishing Document Publishing Date Country Kind
WO2013/110402 8/1/2013 WO A
US Referenced Citations (769)
Number Name Date Kind
1535312 Hosking Apr 1925 A
1538758 Taylor May 1925 A
1918813 Kinzy Jul 1933 A
2316573 Egy Apr 1943 A
2333243 Glab Nov 1943 A
2702683 Green et al. Feb 1955 A
2748926 Leahy Jun 1956 A
2983367 Paramater et al. Jun 1958 A
2924495 Haines Sep 1958 A
2966257 Littlejohn Dec 1960 A
3066790 Armbruster Dec 1962 A
3447852 Barlow Jun 1969 A
3458167 Cooley, Jr. Jul 1969 A
3830567 Riegl Aug 1974 A
3899145 Stephenson Aug 1975 A
3945729 Rosen Mar 1976 A
4138045 Baker Feb 1979 A
4178515 Tarasevich Dec 1979 A
4340008 Mendelson Jul 1982 A
4379461 Nilsson et al. Apr 1983 A
4413907 Lane Nov 1983 A
4424899 Rosenberg Jan 1984 A
4430796 Nakagawa Feb 1984 A
4457625 Greenleaf et al. Jul 1984 A
4506448 Topping et al. Mar 1985 A
4537233 Vroonland et al. Aug 1985 A
4544236 Endo Oct 1985 A
4561776 Pryor Dec 1985 A
4606696 Slocum Aug 1986 A
4659280 Akeel Apr 1987 A
4663852 Guarini May 1987 A
4664588 Newell et al. May 1987 A
4667231 Pryor May 1987 A
4676002 Slocum Jun 1987 A
4714339 Lau et al. Dec 1987 A
4733961 Mooney Mar 1988 A
4736218 Kutman Apr 1988 A
4751950 Bock Jun 1988 A
4767257 Kato Aug 1988 A
4790651 Brown et al. Dec 1988 A
4816822 Vache et al. Mar 1989 A
4870274 Hebert et al. Sep 1989 A
4882806 Davis Nov 1989 A
4891509 Jones et al. Jan 1990 A
4954952 Ubhayakar et al. Sep 1990 A
4982841 Goedecke Jan 1991 A
4984881 Osada et al. Jan 1991 A
4996909 Vache et al. Mar 1991 A
4999491 Semler et al. Mar 1991 A
5021641 Swartz et al. Jun 1991 A
5025966 Potter Jun 1991 A
5027951 Johnson Jul 1991 A
5068971 Simon Dec 1991 A
5069524 Watanabe et al. Dec 1991 A
5155684 Burke et al. Oct 1992 A
5168532 Seppi et al. Dec 1992 A
5189797 Granger Mar 1993 A
5205111 Johnson Apr 1993 A
5211476 Coudroy May 1993 A
5212738 Chande et al. May 1993 A
5213240 Dietz et al. May 1993 A
5216479 Dotan et al. Jun 1993 A
5218427 Koch Jun 1993 A
5219423 Kamaya Jun 1993 A
5239855 Schleifer et al. Aug 1993 A
5289264 Steinbichler Feb 1994 A
5289265 Inoue et al. Feb 1994 A
5289855 Baker et al. Mar 1994 A
5313261 Leatham et al. May 1994 A
5319445 Fitts Jun 1994 A
5329347 Wallace et al. Jul 1994 A
5329467 Nagamune et al. Jul 1994 A
5332315 Baker et al. Jul 1994 A
5337149 Kozah et al. Aug 1994 A
5371347 Plesko Dec 1994 A
5372250 Johnson Dec 1994 A
5373346 Hocker Dec 1994 A
5402365 Kozikaro et al. Mar 1995 A
5402582 Raab Apr 1995 A
5412880 Raab May 1995 A
5416505 Eguchi et al. May 1995 A
5430384 Hocker Jul 1995 A
5446846 Lennartsson Aug 1995 A
5455670 Payne et al. Oct 1995 A
5455993 Link et al. Oct 1995 A
5510977 Raab Apr 1996 A
5517297 Stenton May 1996 A
5528354 Uwira Jun 1996 A
5528505 Granger et al. Jun 1996 A
5535524 Carrier et al. Jul 1996 A
5563655 Lathrop Oct 1996 A
5577130 Wu Nov 1996 A
5611147 Raab Mar 1997 A
5615489 Breyer et al. Apr 1997 A
5623416 Hocker, III Apr 1997 A
5629756 Kitajima May 1997 A
5668631 Norita et al. Sep 1997 A
5675326 Juds et al. Oct 1997 A
5677760 Mikami et al. Oct 1997 A
5682508 Hocker, III Oct 1997 A
5716036 Isobe et al. Feb 1998 A
5724264 Rosenberg et al. Mar 1998 A
5734417 Yamamoto et al. Mar 1998 A
5745050 Nakagawa Apr 1998 A
5745225 Watanabe et al. Apr 1998 A
5752112 Paddock et al. May 1998 A
5754449 Hoshal et al. May 1998 A
5768792 Raab Jun 1998 A
5793993 Broedner et al. Aug 1998 A
5804805 Koenck et al. Sep 1998 A
5825666 Freifeld Oct 1998 A
5829148 Eaton Nov 1998 A
5831719 Berg et al. Nov 1998 A
5832416 Anderson Nov 1998 A
5844591 Takamatsu et al. Dec 1998 A
5856874 Tachibana et al. Jan 1999 A
5887122 Terawaki et al. Mar 1999 A
5894123 Ohtomo et al. Apr 1999 A
5898484 Harris Apr 1999 A
5898490 Ohtomo et al. Apr 1999 A
5909939 Fugmann Jun 1999 A
5926782 Raab Jul 1999 A
5933267 Ishizuka Aug 1999 A
5936721 Ohtomo et al. Aug 1999 A
5940170 Berg et al. Aug 1999 A
5940181 Tsubono et al. Aug 1999 A
5949530 Wetteborn Sep 1999 A
5956661 Lefebvre et al. Sep 1999 A
5956857 Raab Sep 1999 A
5969321 Danielson et al. Oct 1999 A
5973788 Pettersen et al. Oct 1999 A
5978748 Raab Nov 1999 A
5983936 Schwieterman et al. Nov 1999 A
5988862 Kacyra et al. Nov 1999 A
5991011 Damm Nov 1999 A
5996790 Yamada et al. Dec 1999 A
5997779 Potter Dec 1999 A
6040898 Mrosik et al. Mar 2000 A
D423534 Raab et al. Apr 2000 S
6050615 Weinhold Apr 2000 A
6057915 Squire et al. May 2000 A
6060889 Hocker May 2000 A
6067116 Yamano et al. May 2000 A
6069700 Rudnick et al. May 2000 A
6077306 Metzger et al. Jun 2000 A
6112423 Sheehan Sep 2000 A
6115511 Sakai et al. Sep 2000 A
6125337 Rosenberg et al. Sep 2000 A
6131299 Raab et al. Oct 2000 A
6134507 Markey, Jr. et al. Oct 2000 A
6138915 Danielson et al. Oct 2000 A
6149112 Thieltges Nov 2000 A
6151789 Raab et al. Nov 2000 A
6163294 Talbot Dec 2000 A
6166504 Iida et al. Dec 2000 A
6166809 Pettersen et al. Dec 2000 A
6166811 Long et al. Dec 2000 A
6204651 Marcus et al. Mar 2001 B1
6204961 Anderson et al. Mar 2001 B1
6219928 Raab et al. Apr 2001 B1
D441632 Raab et al. May 2001 S
6240651 Schroeder et al. Jun 2001 B1
6253458 Raab et al. Jul 2001 B1
6282195 Miller et al. Aug 2001 B1
6285390 Blake Sep 2001 B1
6298569 Raab et al. Oct 2001 B1
6339410 Milner et al. Jan 2002 B1
6349249 Cunningham Feb 2002 B1
6366831 Raab Apr 2002 B1
6408252 De Smet Jun 2002 B1
6418774 Brogaardh et al. Jul 2002 B1
6438507 Imai Aug 2002 B1
6438856 Kaczynski Aug 2002 B1
6442419 Chu et al. Aug 2002 B1
6445446 Kumagai et al. Sep 2002 B1
6460004 Greer et al. Oct 2002 B2
6470584 Stoodley Oct 2002 B1
6477784 Schroeder et al. Nov 2002 B2
6480270 Studnicka et al. Nov 2002 B1
6483106 Ohtomo et al. Nov 2002 B1
6497394 Dunchock Dec 2002 B1
6504602 Hinderling Jan 2003 B1
6512575 Marchi Jan 2003 B1
6519860 Bieg et al. Feb 2003 B1
D472824 Raab et al. Apr 2003 S
6542249 Kofman et al. Apr 2003 B1
6547397 Kaufman et al. Apr 2003 B1
6598306 Eaton Jul 2003 B2
6611346 Granger Aug 2003 B2
6611617 Crampton Aug 2003 B1
D479544 Raab et al. Sep 2003 S
6612044 Raab et al. Sep 2003 B2
6621065 Fukumoto et al. Sep 2003 B1
6626339 Gates et al. Sep 2003 B2
6633051 Holloway et al. Oct 2003 B1
6649208 Rodgers Nov 2003 B2
6650402 Sullivan et al. Nov 2003 B2
6668466 Bieg et al. Dec 2003 B1
6675122 Markendorf et al. Jan 2004 B1
6681495 Masayuki et al. Jan 2004 B2
6710859 Shirai et al. Mar 2004 B2
D490831 Raab et al. Jun 2004 S
D491210 Raab et al. Jun 2004 S
6750873 Bernardini et al. Jun 2004 B1
6753876 Brooksby et al. Jun 2004 B2
6759649 Hipp Jul 2004 B2
6759979 Vashisth et al. Jul 2004 B2
6764185 Beardsley et al. Jul 2004 B1
6789327 Roth et al. Sep 2004 B2
6820346 Raab et al. Nov 2004 B2
6822749 Christoph Nov 2004 B1
6825923 Hamar et al. Nov 2004 B2
6826664 Hocker, III et al. Nov 2004 B2
6847436 Bridges Jan 2005 B2
6856381 Christoph Feb 2005 B2
6858836 Hartrumpf Feb 2005 B1
6859269 Ohtomo et al. Feb 2005 B2
6862097 Yanagisawa et al. Mar 2005 B2
6868359 Raab Mar 2005 B2
6879933 Steffey et al. Apr 2005 B2
6889903 Koenck May 2005 B1
6892465 Raab et al. May 2005 B2
6894767 Ishinabe et al. May 2005 B2
6895347 Dorny et al. May 2005 B2
6901673 Cobb et al. Jun 2005 B1
6904691 Raab et al. Jun 2005 B2
6914678 Ulrichsen et al. Jul 2005 B1
6917415 Gogolla et al. Jul 2005 B2
6920697 Raab et al. Jul 2005 B2
6922234 Hoffman et al. Jul 2005 B2
6922252 Harvill Jul 2005 B2
6925722 Raab et al. Aug 2005 B2
6931745 Granger Aug 2005 B2
6935036 Raab et al. Aug 2005 B2
6935748 Kaufman et al. Aug 2005 B2
6948255 Russell Sep 2005 B2
6957496 Raab et al. Oct 2005 B2
6965843 Raab et al. Nov 2005 B2
6973734 Raab et al. Dec 2005 B2
6988322 Raab et al. Jan 2006 B2
6989890 Riegl et al. Jan 2006 B2
7003892 Eaton et al. Feb 2006 B2
7006084 Buss et al. Feb 2006 B1
7024032 Kidd et al. Apr 2006 B2
7029126 Tang Apr 2006 B2
7032321 Raab et al. Apr 2006 B2
7040136 Forss et al. May 2006 B2
7051447 Kikuchi et al. May 2006 B2
7069124 Whittaker et al. Jun 2006 B1
7076420 Snyder et al. Jul 2006 B1
7106421 Matsuura et al. Sep 2006 B2
7117107 Dorny et al. Oct 2006 B2
7120092 Del Prado Pavon et al. Oct 2006 B2
7127822 Kumagai et al. Oct 2006 B2
7136153 Mori et al. Nov 2006 B2
7140213 Feucht et al. Nov 2006 B2
7142289 Ando et al. Nov 2006 B2
7145926 Vitruk et al. Dec 2006 B2
7152456 Eaton Dec 2006 B2
7174651 Raab et al. Feb 2007 B2
7180072 Persi et al. Feb 2007 B2
7184047 Crampton Feb 2007 B1
7190465 Froehlich et al. Mar 2007 B2
7191541 Weekers et al. Mar 2007 B1
7193690 Ossig et al. Mar 2007 B2
7196509 Teng Mar 2007 B2
7199872 Van Cranenbroeck Apr 2007 B2
7200246 Cofer et al. Apr 2007 B2
7202941 Munro Apr 2007 B2
7230689 Lau Jun 2007 B2
7242590 Yeap et al. Jul 2007 B1
7246030 Raab et al. Jul 2007 B2
7249421 MacManus et al. Jul 2007 B2
7256899 Faul et al. Aug 2007 B1
7269910 Raab et al. Sep 2007 B2
D551943 Hodjat et al. Oct 2007 S
7285793 Husted Oct 2007 B2
7296364 Seitz et al. Nov 2007 B2
7296955 Dreier Nov 2007 B2
7296979 Raab et al. Nov 2007 B2
7306339 Kaufman et al. Dec 2007 B2
7307701 Hoffman, II Dec 2007 B2
7312862 Zumbrunn et al. Dec 2007 B2
7313264 Crampton Dec 2007 B2
D559657 Wohlford et al. Jan 2008 S
7319512 Ohtomo et al. Jan 2008 B2
7330242 Reichert et al. Feb 2008 B2
7337344 Barman et al. Feb 2008 B2
7342650 Kern et al. Mar 2008 B2
7348822 Baer Mar 2008 B2
7352446 Bridges et al. Apr 2008 B2
7360648 Blaschke Apr 2008 B1
7372558 Kaufman et al. May 2008 B2
7372581 Raab et al. May 2008 B2
7383638 Granger Jun 2008 B2
7388654 Raab et al. Jun 2008 B2
7389870 Slappay Jun 2008 B2
7395606 Crampton Jul 2008 B2
7400384 Evans et al. Jul 2008 B1
7403268 England et al. Jul 2008 B2
7403269 Yamashita Jul 2008 B2
7430068 Becker et al. Sep 2008 B2
7430070 Soreide et al. Sep 2008 B2
7441341 Eaton Oct 2008 B2
7443555 Blug et al. Oct 2008 B2
7447931 Rischar et al. Nov 2008 B1
7449876 Pleasant et al. Nov 2008 B2
7454265 Marsh Nov 2008 B2
7463368 Morden et al. Dec 2008 B2
7477359 England Jan 2009 B2
7477360 England et al. Jan 2009 B2
7480037 Palmateer et al. Jan 2009 B2
2452033 Born Feb 2009 A1
7508496 Mettenleiter et al. Mar 2009 B2
7508971 Vaccaro et al. Mar 2009 B2
7515256 Ohtomo et al. Apr 2009 B2
7525276 Eaton Apr 2009 B2
7527205 Zhu et al. May 2009 B2
7528768 Wakayama et al. May 2009 B2
7541830 Fahrbach et al. Jun 2009 B2
7545517 Rueb et al. Jun 2009 B2
7546689 Ferrari et al. Jun 2009 B2
7551771 England, III Jun 2009 B2
7552644 Haase et al. Jun 2009 B2
7557824 Holliman Jul 2009 B2
7561598 Stratton et al. Jul 2009 B2
7564250 Hocker Jul 2009 B2
7568293 Ferrari Aug 2009 B2
7578069 Eaton Aug 2009 B2
D599226 Gerent et al. Sep 2009 S
7589595 Cutler Sep 2009 B2
7589825 Orchard et al. Sep 2009 B2
7591077 Pettersson Sep 2009 B2
7591078 Crampton Sep 2009 B2
7599106 Matsumoto et al. Oct 2009 B2
7600061 Honda Oct 2009 B2
7602873 Eidson Oct 2009 B2
7604207 Hasloecher et al. Oct 2009 B2
7610175 Eidson Oct 2009 B2
7614157 Granger Nov 2009 B2
7624510 Ferrari Dec 2009 B2
7625335 Deichmann et al. Dec 2009 B2
7626690 Kumagai et al. Dec 2009 B2
D607350 Cooduvalli et al. Jan 2010 S
7656751 Rischar et al. Feb 2010 B2
7659995 Knighton et al. Feb 2010 B2
D610926 Gerent et al. Mar 2010 S
7693325 Pulla et al. Apr 2010 B2
7697748 Dimsdale et al. Apr 2010 B2
7701592 Saint Clair et al. Apr 2010 B2
7712224 Hicks May 2010 B2
7721396 Fleischman May 2010 B2
7728833 Verma et al. Jun 2010 B2
7728963 Kirschner Jun 2010 B2
7733544 Becker et al. Jun 2010 B2
7735234 Briggs et al. Jun 2010 B2
7743524 Eaton et al. Jun 2010 B2
7752003 MacManus Jul 2010 B2
7756615 Barfoot et al. Jul 2010 B2
7765707 Tomelleri Aug 2010 B2
7769559 Reichert Aug 2010 B2
7774949 Ferrari Aug 2010 B2
7777761 England et al. Aug 2010 B2
7779548 Ferrari Aug 2010 B2
7779553 Jordil et al. Aug 2010 B2
7784194 Raab et al. Aug 2010 B2
7787670 Urushiya Aug 2010 B2
7793425 Bailey Sep 2010 B2
7798453 Maningo et al. Sep 2010 B2
7800758 Bridges et al. Sep 2010 B1
7804602 Raab Sep 2010 B2
7805851 Pettersson Oct 2010 B2
7805854 Eaton Oct 2010 B2
7809518 Zhu et al. Oct 2010 B2
7834985 Morcom Nov 2010 B2
7847922 Gittinger et al. Dec 2010 B2
RE42055 Raab Jan 2011 E
7869005 Ossig et al. Jan 2011 B2
RE42082 Raab et al. Feb 2011 E
7881896 Atwell et al. Feb 2011 B2
7889324 Yamamoto Feb 2011 B2
7891248 Hough et al. Feb 2011 B2
7900714 Milbourne et al. Mar 2011 B2
7903245 Miousset et al. Mar 2011 B2
7903261 Saint Clair et al. Mar 2011 B2
7908757 Ferrari Mar 2011 B2
7933055 Jensen et al. Apr 2011 B2
7935928 Serger et al. May 2011 B2
7965747 Kumano Jun 2011 B2
7982866 Vogel Jul 2011 B2
D643319 Ferrari et al. Aug 2011 S
7990397 Bukowski et al. Aug 2011 B2
7994465 Bamji et al. Aug 2011 B1
7995834 Knighton et al. Aug 2011 B1
8001697 Danielson et al. Aug 2011 B2
8020657 Allard et al. Sep 2011 B2
8022812 Beniyama et al. Sep 2011 B2
8028432 Bailey et al. Oct 2011 B2
8036775 Matsumoto et al. Oct 2011 B2
8045762 Otani et al. Oct 2011 B2
8051710 Van Dam et al. Nov 2011 B2
8052857 Townsend Nov 2011 B2
8064046 Ossig et al. Nov 2011 B2
8065861 Caputo Nov 2011 B2
8082673 Desforges et al. Dec 2011 B2
8099877 Champ Jan 2012 B2
8117668 Crampton et al. Feb 2012 B2
8123350 Cannell et al. Feb 2012 B2
8152071 Doherty et al. Apr 2012 B2
D659035 Ferrari et al. May 2012 S
8171650 York et al. May 2012 B2
8179936 Bueche et al. May 2012 B2
D662427 Bailey et al. Jun 2012 S
8218131 Otani et al. Jul 2012 B2
8224032 Fuchs et al. Jul 2012 B2
8260483 Barfoot et al. Sep 2012 B2
8269984 Hinderling et al. Sep 2012 B2
8276286 Bailey et al. Oct 2012 B2
8284407 Briggs et al. Oct 2012 B2
8310653 Ogawa et al. Nov 2012 B2
8321612 Hartwich et al. Nov 2012 B2
8346392 Walser et al. Jan 2013 B2
8346480 Trepagnier Jan 2013 B2
8352212 Fetter et al. Jan 2013 B2
8353059 Crampton et al. Jan 2013 B2
D676341 Bailey et al. Feb 2013 S
8379191 Braunecker et al. Feb 2013 B2
8381704 Debelak et al. Feb 2013 B2
8384914 Becker et al. Feb 2013 B2
D678085 Bailey et al. Mar 2013 S
8391565 Purcell et al. Mar 2013 B2
8402669 Ferrari et al. Mar 2013 B2
8422035 Hinderling et al. Apr 2013 B2
8497901 Pettersson Jul 2013 B2
8533967 Bailey et al. Sep 2013 B2
8537374 Briggs et al. Sep 2013 B2
8619265 Steffey Dec 2013 B2
8645022 Yoshimura et al. Feb 2014 B2
8659748 Dakin et al. Feb 2014 B2
8659752 Cramer et al. Feb 2014 B2
8661700 Briggs et al. Mar 2014 B2
8677643 Bridges et al. Mar 2014 B2
8683709 York Apr 2014 B2
8699007 Becker et al. Apr 2014 B2
8705012 Greiner et al. Apr 2014 B2
8705016 Schumann et al. Apr 2014 B2
8718837 Wang et al. May 2014 B2
8784425 Ritchey et al. Jul 2014 B2
8797552 Suzuki et al. Aug 2014 B2
8830485 Woloschyn Sep 2014 B2
9001312 Matsubara Apr 2015 B2
20010004269 Shibata et al. Jun 2001 A1
20020032541 Raab et al. Mar 2002 A1
20020059042 Kacyra et al. May 2002 A1
20020087233 Raab Jul 2002 A1
20020128790 Woodmansee Sep 2002 A1
20020143506 D'Aligny et al. Oct 2002 A1
20020149694 Seo Oct 2002 A1
20020170192 Steffey et al. Nov 2002 A1
20020176097 Rodgers Nov 2002 A1
20030002055 Kilthau et al. Jan 2003 A1
20030033104 Gooche Feb 2003 A1
20030043386 Froehlich et al. Mar 2003 A1
20030053037 Blaesing-Bangert et al. Mar 2003 A1
20030066954 Hipp Apr 2003 A1
20030090646 Riegl et al. May 2003 A1
20030125901 Steffey et al. Jul 2003 A1
20030137449 Vashisth et al. Jul 2003 A1
20030142631 Silvester Jul 2003 A1
20030167647 Raab et al. Sep 2003 A1
20030172536 Raab et al. Sep 2003 A1
20030172537 Raab et al. Sep 2003 A1
20030179361 Ohtomo et al. Sep 2003 A1
20030208919 Raab et al. Nov 2003 A1
20030221326 Raab et al. Dec 2003 A1
20040004727 Yanagisawa et al. Jan 2004 A1
20040022416 Lemelson et al. Feb 2004 A1
20040027554 Ishinabe et al. Feb 2004 A1
20040040166 Raab et al. Mar 2004 A1
20040103547 Raab et al. Jun 2004 A1
20040111908 Raab et al. Jun 2004 A1
20040119020 Bodkin Jun 2004 A1
20040135990 Ohtomo et al. Jul 2004 A1
20040139265 Hocker, III et al. Jul 2004 A1
20040158355 Holmqvist et al. Aug 2004 A1
20040162700 Rosenberg et al. Aug 2004 A1
20040179570 Vitruk et al. Sep 2004 A1
20040221790 Sinclair et al. Nov 2004 A1
20040246462 Kaneko et al. Dec 2004 A1
20040246589 Kim et al. Dec 2004 A1
20040259533 Nixon et al. Dec 2004 A1
20050016008 Raab et al. Jan 2005 A1
20050024625 Mori et al. Feb 2005 A1
20050028393 Raab et al. Feb 2005 A1
20050046823 Ando et al. Mar 2005 A1
20050058332 Kaufman et al. Mar 2005 A1
20050082262 Rueb et al. Apr 2005 A1
20050085940 Griggs et al. Apr 2005 A1
20050111514 Matsumoto et al. May 2005 A1
20050115092 Raab et al. Jun 2005 A1
20050141052 Becker et al. Jun 2005 A1
20050144799 Raab et al. Jul 2005 A1
20050150123 Eaton Jul 2005 A1
20050151963 Pulla et al. Jul 2005 A1
20050166413 Crampton Aug 2005 A1
20050172503 Kumagai et al. Aug 2005 A1
20050188557 Raab et al. Sep 2005 A1
20050190384 Persi et al. Sep 2005 A1
20050259271 Christoph Nov 2005 A1
20050276466 Vaccaro et al. Dec 2005 A1
20050283989 Pettersson Dec 2005 A1
20060016086 Raab et al. Jan 2006 A1
20060017720 Li Jan 2006 A1
20060026851 Raab et al. Feb 2006 A1
20060028203 Kawashima et al. Feb 2006 A1
20060053647 Raab et al. Mar 2006 A1
20060056459 Stratton et al. Mar 2006 A1
20060056559 Pleasant et al. Mar 2006 A1
20060059270 Pleasant et al. Mar 2006 A1
20060061566 Verma et al. Mar 2006 A1
20060066836 Bridges et al. Mar 2006 A1
20060088044 Hammerl et al. Apr 2006 A1
20060096108 Raab et al. May 2006 A1
20060103853 Palmateer May 2006 A1
20060109536 Mettenleiter et al. May 2006 A1
20060123649 Muller Jun 2006 A1
20060129349 Raab et al. Jun 2006 A1
20060132803 Clair et al. Jun 2006 A1
20060145703 Steinbichler et al. Jul 2006 A1
20060169050 Kobayashi et al. Aug 2006 A1
20060169608 Carnevali et al. Aug 2006 A1
20060170870 Kaufman et al. Aug 2006 A1
20060182314 England et al. Aug 2006 A1
20060186301 Dozier et al. Aug 2006 A1
20060193521 England, III et al. Aug 2006 A1
20060241791 Pokorny et al. Oct 2006 A1
20060244746 England et al. Nov 2006 A1
20060245717 Ossig et al. Nov 2006 A1
20060279246 Hashimoto et al. Dec 2006 A1
20060282574 Zotov et al. Dec 2006 A1
20060287769 Yanagita et al. Dec 2006 A1
20060291970 Granger Dec 2006 A1
20070019212 Gatsios et al. Jan 2007 A1
20070030841 Lee et al. Feb 2007 A1
20070043526 De Jonge et al. Feb 2007 A1
20070050774 Eldson et al. Mar 2007 A1
20070055806 Stratton et al. Mar 2007 A1
20070058154 Reichert et al. Mar 2007 A1
20070058162 Granger Mar 2007 A1
20070064976 England, III Mar 2007 A1
20070097382 Granger May 2007 A1
20070100498 Matsumoto et al. May 2007 A1
20070105238 Mandl et al. May 2007 A1
20070118269 Gibson et al. May 2007 A1
20070122250 Mullner May 2007 A1
20070142970 Burbank et al. Jun 2007 A1
20070147265 Eidson et al. Jun 2007 A1
20070147435 Hamilton et al. Jun 2007 A1
20070147562 Eidson Jun 2007 A1
20070150111 Wu et al. Jun 2007 A1
20070151390 Blumenkranz et al. Jul 2007 A1
20070153297 Lau Jul 2007 A1
20070163134 Eaton Jul 2007 A1
20070163136 Eaton et al. Jul 2007 A1
20070171394 Steiner et al. Jul 2007 A1
20070176648 Baer Aug 2007 A1
20070177016 Wu Aug 2007 A1
20070181685 Zhu et al. Aug 2007 A1
20070183459 Eidson Aug 2007 A1
20070185682 Eidson Aug 2007 A1
20070217169 Yeap et al. Sep 2007 A1
20070217170 Yeap et al. Sep 2007 A1
20070221522 Yamada et al. Sep 2007 A1
20070223477 Eidson Sep 2007 A1
20070229801 Tearney et al. Oct 2007 A1
20070229929 Soreide et al. Oct 2007 A1
20070247615 Bridges et al. Oct 2007 A1
20070248122 Hamilton Oct 2007 A1
20070256311 Ferrari Nov 2007 A1
20070257660 Pleasant et al. Nov 2007 A1
20070258378 Hamilton Nov 2007 A1
20070282564 Sprague et al. Dec 2007 A1
20070294045 Atwell et al. Dec 2007 A1
20080046221 Stathis Feb 2008 A1
20080052808 Leick et al. Mar 2008 A1
20080052936 Briggs et al. Mar 2008 A1
20080066583 Lott et al. Mar 2008 A1
20080068103 Cutler Mar 2008 A1
20080075325 Otani et al. Mar 2008 A1
20080075326 Otani Mar 2008 A1
20080080562 Burch et al. Apr 2008 A1
20080096108 Sumiyama et al. Apr 2008 A1
20080098272 Fairbanks et al. Apr 2008 A1
20080148585 Raab et al. Jun 2008 A1
20080154538 Stathis Jun 2008 A1
20080179206 Feinstein et al. Jul 2008 A1
20080183065 Goldbach Jul 2008 A1
20080196260 Pettersson Aug 2008 A1
20080204699 Benz et al. Aug 2008 A1
20080216552 Ibach et al. Sep 2008 A1
20080218728 Kirschner Sep 2008 A1
20080228331 McNerney et al. Sep 2008 A1
20080232269 Tatman et al. Sep 2008 A1
20080235969 Jordil et al. Oct 2008 A1
20080235970 Crampton Oct 2008 A1
20080240321 Narus et al. Oct 2008 A1
20080245452 Law et al. Oct 2008 A1
20080246943 Kaufman et al. Oct 2008 A1
20080252671 Cannell et al. Oct 2008 A1
20080256814 Pettersson Oct 2008 A1
20080257023 Jordil et al. Oct 2008 A1
20080263411 Baney et al. Oct 2008 A1
20080271332 Jordil et al. Nov 2008 A1
20080273758 Fuchs et al. Nov 2008 A1
20080282564 Pettersson Nov 2008 A1
20080295349 Uhl et al. Dec 2008 A1
20080298254 Eidson Dec 2008 A1
20080302200 Tobey Dec 2008 A1
20080309460 Jefferson et al. Dec 2008 A1
20080309546 Wakayama et al. Dec 2008 A1
20090000136 Crampton Jan 2009 A1
20090010740 Ferrari et al. Jan 2009 A1
20090013548 Ferrari Jan 2009 A1
20090016475 Rischar et al. Jan 2009 A1
20090021351 Beniyama et al. Jan 2009 A1
20090031575 Tomelleri Feb 2009 A1
20090046140 Lashmet et al. Feb 2009 A1
20090046752 Bueche et al. Feb 2009 A1
20090046895 Pettersson et al. Feb 2009 A1
20090049704 Styles et al. Feb 2009 A1
20090051938 Miousset et al. Feb 2009 A1
20090083985 Ferrari Apr 2009 A1
20090089004 Vook et al. Apr 2009 A1
20090089078 Bursey Apr 2009 A1
20090089233 Gach et al. Apr 2009 A1
20090089623 Neering et al. Apr 2009 A1
20090095047 Patel et al. Apr 2009 A1
20090100949 Shirai et al. Apr 2009 A1
20090109797 Eidson Apr 2009 A1
20090113183 Barford et al. Apr 2009 A1
20090113229 Cataldo et al. Apr 2009 A1
20090122805 Epps et al. May 2009 A1
20090125196 Velazquez et al. May 2009 A1
20090133276 Bailey et al. May 2009 A1
20090133494 Van Dam et al. May 2009 A1
20090139105 Granger Jun 2009 A1
20090157419 Bursey Jun 2009 A1
20090161091 Yamamoto Jun 2009 A1
20090165317 Little Jul 2009 A1
20090177435 Heininen Jul 2009 A1
20090177438 Raab Jul 2009 A1
20090185741 Nahari et al. Jul 2009 A1
20090187373 Atwell Jul 2009 A1
20090241360 Tait et al. Oct 2009 A1
20090249634 Pettersson Oct 2009 A1
20090265946 Jordil et al. Oct 2009 A1
20090273771 Gittinger et al. Nov 2009 A1
20090299689 Stubben et al. Dec 2009 A1
20090322859 Shelton et al. Dec 2009 A1
20090323121 Valkenburg et al. Dec 2009 A1
20090323742 Kumano Dec 2009 A1
20100030421 Yoshimura et al. Feb 2010 A1
20100040742 Dijkhuis et al. Feb 2010 A1
20100049891 Hartwich et al. Feb 2010 A1
20100057392 York Mar 2010 A1
20100078866 Pettersson Apr 2010 A1
20100095542 Ferrari Apr 2010 A1
20100122920 Butter et al. May 2010 A1
20100123892 Miller et al. May 2010 A1
20100134596 Becker Jun 2010 A1
20100135534 Weston et al. Jun 2010 A1
20100148013 Bhotika et al. Jun 2010 A1
20100195086 Ossig et al. Aug 2010 A1
20100207938 Yau et al. Aug 2010 A1
20100208062 Pettersson Aug 2010 A1
20100208318 Jensen et al. Aug 2010 A1
20100245851 Teodorescu Sep 2010 A1
20100277747 Rueb et al. Nov 2010 A1
20100281705 Verdi et al. Nov 2010 A1
20100286941 Merlot Nov 2010 A1
20100312524 Siercks et al. Dec 2010 A1
20100318319 Maierhofer Dec 2010 A1
20100321152 Argudyaev et al. Dec 2010 A1
20100325907 Tait Dec 2010 A1
20110000095 Carlson Jan 2011 A1
20110001958 Bridges et al. Jan 2011 A1
20110007305 Bridges et al. Jan 2011 A1
20110007326 Daxauer et al. Jan 2011 A1
20110013199 Siercks et al. Jan 2011 A1
20110019155 Daniel et al. Jan 2011 A1
20110023578 Grasser Feb 2011 A1
20110025905 Tanaka Feb 2011 A1
20110043515 Stathis Feb 2011 A1
20110066781 Debelak et al. Mar 2011 A1
20110094908 Trieu et al. Apr 2011 A1
20110107611 Desforges et al. May 2011 A1
20110107612 Ferrari et al. May 2011 A1
20110107613 Tait May 2011 A1
20110107614 Champ May 2011 A1
20110111849 Sprague et al. May 2011 A1
20110112786 Desforges et al. May 2011 A1
20110119025 Fetter et al. May 2011 A1
20110123097 Van Coppenolle et al. May 2011 A1
20110164114 Kobayashi et al. Jul 2011 A1
20110166824 Haisty et al. Jul 2011 A1
20110169924 Haisty et al. Jul 2011 A1
20110173823 Bailey et al. Jul 2011 A1
20110173827 Bailey et al. Jul 2011 A1
20110173828 York Jul 2011 A1
20110178755 York Jul 2011 A1
20110178758 Atwell et al. Jul 2011 A1
20110178762 York Jul 2011 A1
20110178764 York Jul 2011 A1
20110178765 Atwell et al. Jul 2011 A1
20110192043 Ferrari et al. Aug 2011 A1
20110273568 Lagassey et al. Nov 2011 A1
20110282622 Canter et al. Nov 2011 A1
20110288684 Farlow et al. Nov 2011 A1
20120019806 Becker et al. Jan 2012 A1
20120033069 Becker et al. Feb 2012 A1
20120035788 Trepagnier et al. Feb 2012 A1
20120035798 Barfoot et al. Feb 2012 A1
20120044476 Earhart et al. Feb 2012 A1
20120046820 Allard et al. Feb 2012 A1
20120069325 Schumann et al. Mar 2012 A1
20120069352 Ossig et al. Mar 2012 A1
20120070077 Ossig et al. Mar 2012 A1
20120113913 Tiirola et al. May 2012 A1
20120140083 Schultz et al. Jun 2012 A1
20120140244 Gittinger et al. Jun 2012 A1
20120154786 Gosch et al. Jun 2012 A1
20120155744 Kennedy et al. Jun 2012 A1
20120169876 Reichert et al. Jul 2012 A1
20120181194 McEwan et al. Jul 2012 A1
20120197439 Wang et al. Aug 2012 A1
20120210678 Alcouloumre et al. Aug 2012 A1
20120217357 Franke Aug 2012 A1
20120229788 Schumann et al. Sep 2012 A1
20120260512 Kretschmer et al. Oct 2012 A1
20120260611 Jones et al. Oct 2012 A1
20120262700 Schumann et al. Oct 2012 A1
20120287265 Schumann et al. Nov 2012 A1
20130010307 Greiner et al. Jan 2013 A1
20130025143 Bailey et al. Jan 2013 A1
20130025144 Briggs et al. Jan 2013 A1
20130027515 Vinther et al. Jan 2013 A1
20130062243 Chang et al. Mar 2013 A1
20130070250 Ditte et al. Mar 2013 A1
20130094024 Ruhland et al. Apr 2013 A1
20130097882 Bridges et al. Apr 2013 A1
20130125408 Atwell et al. May 2013 A1
20130162472 Najim et al. Jun 2013 A1
20130176453 Mate et al. Jul 2013 A1
20130201487 Ossig et al. Aug 2013 A1
20130205606 Briggs et al. Aug 2013 A1
20130212889 Bridges et al. Aug 2013 A9
20130222816 Briggs et al. Aug 2013 A1
20130300740 Snyder et al. Nov 2013 A1
20140002608 Atwell et al. Jan 2014 A1
20140049784 Woloschyn et al. Feb 2014 A1
20140063489 Steffey et al. Mar 2014 A1
20140078519 Steffey et al. Mar 2014 A1
20140226190 Bridges et al. Aug 2014 A1
20140240690 Newman et al. Aug 2014 A1
20140300906 Becker et al. Oct 2014 A1
20140362424 Bridges et al. Dec 2014 A1
20150085068 Becker et al. Mar 2015 A1
20150085301 Becker et al. Mar 2015 A1
20150160342 Zweigle et al. Jun 2015 A1
Foreign Referenced Citations (294)
Number Date Country
508635 Mar 2011 AT
2005200937 Sep 2006 AU
2236119 Sep 1996 CN
1307241 Aug 2001 CN
2508896 Sep 2002 CN
2665668 Dec 2004 CN
1630804 Jun 2005 CN
1630805 Jun 2005 CN
1688867 Oct 2005 CN
1735789 Feb 2006 CN
1812868 Aug 2006 CN
1818537 Aug 2006 CN
1838102 Sep 2006 CN
1839293 Sep 2006 CN
1853084 Oct 2006 CN
1926400 Mar 2007 CN
101024286 Aug 2007 CN
101156043 Apr 2008 CN
101163939 Apr 2008 CN
101371099 Feb 2009 CN
101416024 Apr 2009 CN
101484828 Jul 2009 CN
201266071 Jul 2009 CN
101506684 Aug 2009 CN
101511529 Aug 2009 CN
2216765 Apr 1972 DE
3227980 May 1983 DE
3245060 Jul 1983 DE
3340317 Aug 1984 DE
4027990 Feb 1992 DE
4222642 Jan 1994 DE
4340756 Jun 1994 DE
4303804 Aug 1994 DE
4445464 Jul 1995 DE
4410775 Oct 1995 DE
4412044 Oct 1995 DE
29622033 Feb 1997 DE
19543763 May 1997 DE
19601875 Jul 1997 DE
19607345 Aug 1997 DE
19720049 Nov 1998 DE
19811550 Sep 1999 DE
19820307 Nov 1999 DE
19850118 May 2000 DE
19928958 Nov 2000 DE
10026357 Jan 2002 DE
20208077 May 2002 DE
10137241 Sep 2002 DE
10155488 May 2003 DE
10219054 Nov 2003 DE
10232028 Feb 2004 DE
10336458 Feb 2004 DE
10244643 Apr 2004 DE
20320216 Apr 2004 DE
10304188 Aug 2004 DE
10326848 Jan 2005 DE
202005000983 Mar 2005 DE
10361870 Jul 2005 DE
102004015668 Sep 2005 DE
102004015111 Oct 2005 DE
102004028090 Dec 2005 DE
10114126 Aug 2006 DE
202006005643 Aug 2006 DE
102004010083 Nov 2006 DE
102005043931 Mar 2007 DE
102005056265 May 2007 DE
102006053611 May 2007 DE
102005060967 Jun 2007 DE
102006023902 Nov 2007 DE
102006024534 Nov 2007 DE
102006035292 Jan 2008 DE
202006020299 May 2008 DE
102007037162 Feb 2009 DE
102008014274 Aug 2009 DE
102008039838 Mar 2010 DE
102005036929 Jun 2010 DE
102008062763 Jul 2010 DE
102009001894 Sep 2010 DE
102009035336 Nov 2010 DE
102009055988 Mar 2011 DE
102010032723 Nov 2011 DE
102010032726 Nov 2011 DE
102010033561 Dec 2011 DE
102010032725 Jan 2012 DE
202011051975 Feb 2013 DE
102012107544 May 2013 DE
102012109481 Apr 2014 DE
0546784 Jun 1993 EP
0667549 Aug 1995 EP
0727642 Aug 1996 EP
0730210 Sep 1996 EP
0614517 Mar 1997 EP
0838696 Apr 1998 EP
0949524 Oct 1999 EP
1160539 Dec 2001 EP
1189124 Mar 2002 EP
0767357 May 2002 EP
1310764 May 2003 EP
1342989 Sep 2003 EP
1347267 Sep 2003 EP
1361414 Nov 2003 EP
1452279 Sep 2004 EP
1468791 Oct 2004 EP
1056987 Apr 2005 EP
1528410 May 2005 EP
1669713 Jun 2006 EP
1734425 Dec 2006 EP
1429109 Apr 2007 EP
1764579 Dec 2007 EP
1878543 Jan 2008 EP
1967930 Sep 2008 EP
2003419 Dec 2008 EP
2023077 Feb 2009 EP
2042905 Apr 2009 EP
2060530 May 2009 EP
2068067 Jun 2009 EP
2068114 Jun 2009 EP
2108917 Oct 2009 EP
2177868 Apr 2010 EP
2259013 Dec 2010 EP
2400261 Dec 2011 EP
2603228 Mar 1988 FR
2935043 Feb 2010 FR
894320 Apr 1962 GB
1112941 May 1968 GB
2222695 Mar 1990 GB
2255648 Nov 1992 GB
2336493 Oct 1999 GB
2341203 Mar 2000 GB
2388661 Nov 2003 GB
2420241 May 2006 GB
2447258 Sep 2008 GB
2452033 Feb 2009 GB
5581525 Jun 1955 JP
575584 Jan 1982 JP
58171291 Jan 1983 JP
5827264 Feb 1983 JP
S58-171291 Oct 1983 JP
59133890 Aug 1984 JP
61062885 Mar 1986 JP
S61-157095 Jul 1986 JP
63135814 Jun 1988 JP
0357911 Mar 1991 JP
04115108 Apr 1992 JP
04225188 Aug 1992 JP
04267214 Sep 1992 JP
0572477 Mar 1993 JP
06313710 Nov 1994 JP
1994313710 Nov 1994 JP
06331733 Dec 1994 JP
06341838 Dec 1994 JP
074950 Jan 1995 JP
07128051 May 1995 JP
7210586 Aug 1995 JP
07229963 Aug 1995 JP
0815413 Jan 1996 JP
0821714 Jan 1996 JP
08129145 May 1996 JP
08136849 May 1996 JP
08262140 Oct 1996 JP
09021868 Jan 1997 JP
10213661 Aug 1998 JP
1123993 Jan 1999 JP
2001056275 Aug 1999 JP
2000121724 Apr 2000 JP
2000249546 Sep 2000 JP
2000339468 Dec 2000 JP
2001013001 Jan 2001 JP
2001021303 Jan 2001 JP
2011066211 Mar 2001 JP
2001337278 Dec 2001 JP
2003050128 Feb 2003 JP
2003156330 May 2003 JP
2003156562 May 2003 JP
2003194526 Jul 2003 JP
2003202215 Jul 2003 JP
2003216255 Jul 2003 JP
2003308205 Oct 2003 JP
2004109106 Apr 2004 JP
2004245832 Sep 2004 JP
2004257927 Sep 2004 JP
2004333398 Nov 2004 JP
2004348575 Dec 2004 JP
2005030937 Feb 2005 JP
2005055226 Mar 2005 JP
2005069700 Mar 2005 JP
2005174887 Jun 2005 JP
2005517908 Jun 2005 JP
2005215917 Aug 2005 JP
2005221336 Aug 2005 JP
2005257510 Sep 2005 JP
2006038683 Feb 2006 JP
2006102176 Apr 2006 JP
2006203404 Aug 2006 JP
2006226948 Aug 2006 JP
2006241833 Sep 2006 JP
2006266821 Oct 2006 JP
2006301991 Nov 2006 JP
2007514943 Jun 2007 JP
2007178943 Jul 2007 JP
2008076303 Apr 2008 JP
2008082707 Apr 2008 JP
2008096123 Apr 2008 JP
2008107286 May 2008 JP
2008304220 Dec 2008 JP
2009063339 Mar 2009 JP
2009524057 Jun 2009 JP
2009531674 Sep 2009 JP
2009229255 Oct 2009 JP
2009541758 Nov 2009 JP
2010169405 Aug 2010 JP
2013516928 May 2013 JP
2013517508 May 2013 JP
2013117417 Jun 2013 JP
2013543970 Dec 2013 JP
8801924 Mar 1988 WO
8905512 Jun 1989 WO
9208568 May 1992 WO
9711399 Mar 1997 WO
9808050 Feb 1998 WO
9910706 Mar 1999 WO
0014474 Mar 2000 WO
0020880 Apr 2000 WO
0026612 May 2000 WO
0033149 Jun 2000 WO
0034733 Jun 2000 WO
0063645 Oct 2000 WO
0063681 Oct 2000 WO
0177613 Oct 2001 WO
02084327 Oct 2002 WO
02101323 Dec 2002 WO
2004096502 Nov 2004 WO
2005008271 Jan 2005 WO
2005059473 Jun 2005 WO
2005072917 Aug 2005 WO
2005075875 Aug 2005 WO
2005100908 Oct 2005 WO
2006000552 Jan 2006 WO
2006014445 Feb 2006 WO
2006051264 May 2006 WO
2006053837 May 2006 WO
2007002319 Jan 2007 WO
2007012198 Feb 2007 WO
2007028941 Mar 2007 WO
2007051972 May 2007 WO
2007087198 Aug 2007 WO
2007118478 Oct 2007 WO
2007125081 Nov 2007 WO
2007144906 Dec 2007 WO
2008019856 Feb 2008 WO
2008027588 Mar 2008 WO
2008047171 Apr 2008 WO
2008048424 Apr 2008 WO
2008052348 May 2008 WO
2008064276 May 2008 WO
2008066896 Jun 2008 WO
2008068791 Jun 2008 WO
2008075170 Jun 2008 WO
2008121073 Oct 2008 WO
2008157061 Dec 2008 WO
2009001165 Dec 2008 WO
2009016185 Feb 2009 WO
2009053085 Apr 2009 WO
2009083452 Jul 2009 WO
2009095384 Aug 2009 WO
2009123278 Oct 2009 WO
2009127526 Oct 2009 WO
2009130169 Oct 2009 WO
2009149740 Dec 2009 WO
2010040742 Apr 2010 WO
2010092131 Aug 2010 WO
2010108089 Sep 2010 WO
2010108644 Sep 2010 WO
2010148525 Dec 2010 WO
2011000435 Jan 2011 WO
2011000955 Jan 2011 WO
2011021103 Feb 2011 WO
2011029140 Mar 2011 WO
2011057130 May 2011 WO
2011060899 May 2011 WO
2011002908 Jun 2011 WO
2011090829 Jul 2011 WO
2011090895 Jul 2011 WO
2012037157 Mar 2012 WO
2012038446 Mar 2012 WO
2012061122 May 2012 WO
2012013525 Aug 2012 WO
2012103525 Aug 2012 WO
2012112683 Aug 2012 WO
2012125671 Sep 2012 WO
2013112455 Aug 2013 WO
2013188026 Dec 2013 WO
2013190031 Dec 2013 WO
2014128498 Aug 2014 WO
Non-Patent Literature Citations (75)
Entry
Laser Reverse Engineering with Microscribe, [online], [retrieved Nov. 29, 2011], http://www.youtube.com/watch?v=8VRz—2aEJ4E&feature=PlayList&p=F63ABF74F30DC81B&playnext=1&playnext—from=PL&index=1.
Leica TPS800 Performance Series—Equipment List, 2004.
Merriam-Webster (m-w.com), “Traverse”. 2012. http://www.merriam-webster.com/dictionary/traverse.
MG Lee; “Compact 3D LIDAR based on optically coupled horizontal and vertical Scanning mechanism for the autonomous navigation of robots” (13 pages) vol. 8037; downloaded from http://proceedings.spiedigitallibrary.org/ on Jul. 2, 2013.
MicroScan 3D User Guide, RSI GmbH, 3D Systems & Software, Oberursel, Germany, email: info@rsi-gmbh.de, Copyright RSI Roland Seifert Imaging GmbH 2008.
MOOG Components Group; “Fiber Optic Rotary Joints; Product Guide” (4 pages) Dec. 2010; MOOG, Inc. 2010.
P Ben-Tzvi, et al “Extraction of 3D Images Using Pitch-Actuated 2D Laser Range Finder for Robotic Vision” (6 pages) BNSDOCID <XP 31840390A—1—>.
Provision of the minutes in accordance with Rule 124(4) EPC dated Aug. 14, 2013, filed in Opposition re Application No. 07 785 873.6/Patent No. 2 062 069, Proprietor: Faro Technologies, Inc., filed by Leica Geosystem AG on Feb. 5, 2013.
Romer “Romer Absolute Arm Maximum Performance Portable Measurement” (Printed 2010); Hexagon Metrology, Inc., http://us:Romer.com; 2010.
Romer “Romer Absolute Arm Product Brochure” (2010); Hexagon Metrology; www.hexagonmetrology.com; Hexagon AB 2010.
RW Boyd “Radiometry and the Detection of Otpical Radiation” (pp. 20-23) 1983 Jon wiley & Sons, Inc.
Sauter, et al., Towards New Hybrid Networks for Industrial Automation, IEEE, 2009.
Se, et al., “Instant Scene Modeler for Crime Scene Reconstruction”, MDA, Space Missions, Ontario, Canada, Copyright 2005, IEEE.
Surman et al. “An autonomous mobile robot with a 3D laser range finder for 3D exploration and digitalization of indoor enviornments.” Robotics and Autonomous Systems vol. 45 No. 3-4, Dec. 31, 2003, pp. 181-198. Amsterdamn, Netherlands.
The Scene, Journal of the Association for Crime Scene Reconstruction, Apr.-Jun. 2006, vol. 12, Issue 2.
Umeda, K., et al., Registration of Range and Color Images Using Gradient Constraints and Ran Intensity Images, Proceedings of the 17th International Conference onPatern Recognition (ICPR'04), Copyright 2010 IEEE. [Retrieved online Jan. 28, 2010—IEEE.
Williams, J.A., et al., Evaluation of a Novel Multiple Point Set Registration Algorithm, Copyright 2000, [Retrieved on Jan. 18, 2010 at 04:10 from IEEE Xplore].
Yk Cho, et al. “Light-weight 3D LADAR System for Construction Robotic Operations” (pp. 237-244); 26th International Symposium on Automation and Robotics in Construction (ISARC 2009).
Davidson, A. et al., “MonoSLAM: Real-Time Single Camera SLAM”, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 29, No. 6, Jun. 1, 2007, pp. 1052-1067, XP011179664.
Gebre, Biruk A., et al., “Remotely Operated and Autonomous Mapping System (ROAMS)”, Technologies for Practical Robot Applications, TEPRA 2009, IEEE International Conference on Nov. 9, 2009, pp. 173-178, XP031570394.
Harrison A. et al., “High Quality 3D Laser Ranging Under General Vehicle Motion”, 2008 IEEE International Conference on Robotics and Automation, May 19-23, 2008, pp. 7-12, XP031340123.
May, S. et al, “Robust 3D-Mapping with Time-of-Flight Cameras”, Intelligent Robots and Systems, IROS 2009, IEEE/RSJ International Conference on Oct. 10, 2009, pp. 1673-1678, XP031581042.
Ohno, K. et al., “Real-Time Robot Trajectory Estimation and 3D Map Construction Using 3D Camera”, Intelligent Robots and Systems, 2006 IEEE/RSJ International Conference on Oct. 1, 2006, pp. 5279-5285, XP031006974.
Surmann, H. et al., “An Autonomous Mobile Robot with a 3D Laser Range Finder for 3D Exploration and Digitalization of Indoor Environments”, Robotics and Autonomous Systems, Elsevier Science Publishers, vol. 45, No. 3-4, Dec. 31, 2003, pp. 181-198.
Yan, R., et al, “3D Point Cloud Map Construction Based on Line Segments with Two Mutually Perpendicular Laser Sensors”, 2013 13th International Conference on Control, Automation and Systems (ICCAS 2013), IEEE, Oct. 20, 2013, pp. 1114-1116.
Ye, C. et al., “Characterization of a 2-D Laser Scanner for Mobile Robot Obstacle Negotiation” Proceedings / 2002 IEEE International Conference on Robotics and Automation, May 11-15, 2002, Washington, D.C., May 1, 2002, pp. 2512-2518, XP009169742.
Chinese Office Action for Application No. 201280048465.3 dated Jul. 16, 2015; 10 pgs.
“Scanner Basis Configuration for Riegl VQ-250”, Riegl Company Webpage, Feb. 16, 2011 [retrieved on Apr. 19, 2013]. Retrieved from the internet:, (see URL below).
14th International Forensic Science Symposium, Interpol—Lyon, France, Oct. 19-22, 2004, Review Papers, Edited by Dr. Niamh Nic Daeid, Forensic Science Unit, University of Strathclyde, Glasgow, UK.
ABB Flexible Automation AB: “Product Manual IRB 6400R M99, On-line Manual”; Sep. 13, 2006; XP00002657684; Retrieved from the Internet: URL: http://pergatory.mit.edu/kinematiccouplings/case—studies/ABB—Robotics/general/6400R%20Product%20Manual.pdf.
AKCA, Devrim, Full Automatic Registration of Laser Scanner Point Clouds, Optical 3D Measurement Techniques, vol. VI, 2003, XP002590305, ETH, Swiss Federal Institute of Technology, Zurich, Institute of Geodesy and Photogrammetry, DOI:10.3929/ethz-a-004656.
Anonymous : So wird's gemacht: Mit T-DSL und Windows XP Home Edition gemeinsam ins Internet (Teil 3) Internet Citation, Jul. 2003, XP002364586, Retrieved from Internet: URL:http://support.microsfot.com/kb/814538/DE/ [retrieved on Jan. 26, 2006]eh.
Bornaz, L., et al., “Multiple Scan Registration in Lidar Close-Range Applications,” The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, vol. XXXIV, Part 5/W12, Jul. 2003, pp. 72-77, XP002590306.
Bouvet, D., et al., “Precise 3-D Localization by Automatic Laser Theodolite and Odometer for Civil-Engineering Machines”, Proceedings of the 2001 IEEE International Conference on Robotics and Automation. ICRA 2001. Seoul, Korea, May 21-26, 2001; IEEE, US.
Brenneke, C., et al., “Using 3D Laser Range Data for Slam in Outdoor Environments”, Proceedings of the 2003 IEEE/RSJ International Conference on Intelligent Robots and Systems. (IROS 2003); Las Vegas, NV, Oct. 27-31, 2003; IEEE/RSJ International Confer.
Cho, et al., Implementation of a Precision Time Protocol over Low Rate Wireless Personal Area Networks, IEEE, 2008.
Cooklev, et al., An Implementation of IEEE 1588 Over IEEE 802.11b for Syncrhonization of Wireless Local Area Network Nodes, IEEE Transactions on Instrumentation and Measurement, vol. 56, No. 5, Oct. 2007.
Dylan, Craig R., High Precision Makes the Massive Bay Bridge Project Work. Suspended in MidAir—Cover Story—Point of Beginning, Jan. 1, 2010, [online] http://www.pobonline.com/Articles/Cover—Story/BNP—GUID—9-5-2006—A—10000000000 . . . [Retreived Jan. 25, 2002.
Electro-Optical Information Systems, “The Handy Handheld Digitizer” [online], [retrieved on Nov. 29, 2011], http://vidibotics.com/htm/handy.htm.
Elstrom, M.D., Stereo-Based Registration of LADAR and Color Imagery, Part of SPIE Conference on Intelligent Robots and Computer Vision XVII: Algorithms, Techniques, and Active Vision, Boston, MA, Nov. 1998, SPIE vol. 3522, 0277-786X/98; Retrieved on.
EO Edmund Optics “Silicon Detectors” (5 pages) 2013 Edmund Optics, Inc. http://www.edmundoptics.com/electro-optics/detector-components/silicon-detectors/1305[Oct. 15, 2013 10:14:53 AM].
FARO Laser Scanner LS, Recording Reality's Digital Fingerprint, the Measure of Success, Rev. Aug 22, 2005, 16 pages.
FARO Laserscanner LS, Presentation Forensic Package, Policeschool of Hessen, Wiesbaden, Germany, Dec. 14, 2005; FARO Technologies, Copyright 2008, 17 pages.
FARO Product Catalog; Faro Arm; 68 pages; Faro Technologies Inc. 2009; printed Aug. 3, 2009.
Franklin, Paul F., What IEEE 1588 Means for Your Next T&M System Design, Keithley Instruments, Inc., [on-line] Oct. 19, 2010, http://www.eetimes.com/General/DisplayPrintViewContent?contentItemId=4209746, [Retreived Oct. 21, 2010].
Gebre, et al. “Remotely Operated and Autonomous Mapping System (ROAMS).” Technologies for Practical Robot Applications, 2009. Tepra 2009. IEEE International Conference on IEEE, Piscataway, NJ, USA. Nov. 9, 2009, pp. 173-178.
GHOST 3D Systems, Authorized MicroScribe Solutions, FAQs—MicroScribe 3D Laser, MicroScan Tools, & related info, [online], [retrieved Nov. 29, 2011], http://microscribe.ghost3d.com/gt—microscan-3d—faqs.htm.
Godin, G., et al., A Method for the Registration of Attributed Range Images, Copyright 2001, [Retrieved on Jan. 18, 2010 at 03:29 from IEEE Xplore].
GoMeasure3D—Your source for all things measurement, Baces 3D 100 Series Portable CMM from GoMeasure3D, [online], [retrieved Nov. 29, 2011], http://www.gomeasure3d.com/baces100.html.
Haag, et al., “Technical Overview and Application of 3D Laser Scanning for Shooting Reconstruction and Crime Scene Investigations”, Presented at the American Academy of Forensic Sciences Scientific Meeting, Washington, D.C., Feb. 21, 2008.
Hart, A., “Kinematic Coupling Interchangeability”, Precision Engineering, vol. 28, No. 1, Jan. 1, 2004, pp. 1-15, XP55005507, ISSN: 0141-6359, DOI: 10.1016/S0141-6359(03)00071-0.
Horn, B.K.P., Closed-Form Solution of Absolute Orientation Using Unit Quaternions, J. Opt. Soc. Am. A., vol. 4., No. 4, Apr. 1987, pp. 629-642, ISSN 0740-3232.
Howard, et al., “Virtual Environments for Scene of Crime Reconstruction and Analysis”, Advanced Interfaces Group, Department of Computer Science, University of Manchester, Manchester, UK, Feb. 28, 2000.
Huebner, S.F., “Sniper Shooting Tecnhique”, “Scharfschutzen Schiebtechnik”, Copyright by C.A. Civil Arms Verlag GmbH, Lichtenwald 1989, Alle Rechte vorbehalten, pp. 11-17.
HYDROpro Navigation, Hydropgraphic Survey Software, Trimble, www.trimble.com, Copyright 1997-2003.
Information onElectro-Optical Information Systems; EOIS 3D Mini-Moire C.M.M. Sensor for Non-Contact Measuring & Surface Mapping; Direct Dimensions, Jun. 1995.
Ingensand, H., Dr., “Introduction to Geodetic Metrology”, “Einfuhrung in die Geodatische Messtechnik”, Federal Institute of Technology Zurich, 2004, with English translation.
iQsun Laserscanner Brochure, 2 Pages, Apr. 2005.
It is Alive in the Lab, Autodesk University, Fun with the Immersion MicroScribe Laser Scanner, [online], [retrieved Nov. 29, 2011], http://labs.blogs.com/its—alive—in—the—lab/2007/11/fun-with-the-im.html.
J.Geng “Structured-Light 3D Surface Imaging: A Tutorial,” Advances in Optics and Photonics 3; Mar. 31, 2011, pp. 128-160; IEEE Intelligent Transportation System Society; 2011 Optical Society of America.
Jasiobedzki, Piotr, “Laser Eye—A New 3D Sensor for Active Vision”, SPIE—Sensor Fusion VI, vol. 2059, Sep. 7, 1993, pp. 316-321, XP00262856, Boston, U.S.A., Retrieved from the Internet: URL:http:.//scitation.aip.org/getpdf/servlet/Ge.
Jasperneite, et al., Enhancements to the Time Synchronization Standard IEEE-1588 for a System of Cascaded Bridges, IEEE, 2004.
JGENG “DLP-Based Structured Light 3D Imaging Technologies and Applications” (15 pages) Emerging Digital Micromirror Device Based Systems and Application III; edited by Michael R. Douglass, Patrick I. Oden, Proc. of SPIE, vol. 7932, 79320B; (2011) SPIE.
Kreon Laser Scanners, Getting the Best in Cutting Edge 3D Digitizing Technology, B3-D MCAD Consulting/Sales [online], [retrieved Nov. 29, 2011], http://www.b3-d.com/Kreon.html.
Langford, et al., “Practical Skills in Forensic Science”, Pearson Education Limited, Essex, England, First Published 2005, Forensic Chemistry.
Leica Geosystems TruStory Forensic Analysis by Albuquerque Police Department, 2006.
Leica Geosystems, FBI Crime Scene Case Study, Tony Grissim, Feb. 2006.
Leica Geosystems: “Leica Rugby 55 Designed for Interior Built for Construction”, Jan. 1, 2009, XP002660558, Retrieved from the Internet: URL:http://www.leica-geosystems.com/downloads123/zz/lasers/Rugby%2055/brochures/Leica—Rugby—55—brochure—en.pdf [re.
Merriam-Webster (m-w.com), “Interface”. 2012. http://www.merriam-webster.com/dictionary/interface.
Merriam-Webster (m-w.com), “Parts”. 2012. http://www.merriam-webster.com/dictionary/parts.
Moog Components Group “Technical Brief; Fiber Optic Rotary Joints” Document No. 303 (6 pages) Mar. 2008; MOOG, Inc. 2008 Canada; FOCAL Technologies.
Patrick Willoughby; “Elastically Averaged Precision Alignment”; In: “Doctoral Thesis” ; Jun. 1, 2005; Massachusetts Institute of Technology; XP55005620; Abstract 1.1 Motivation; Chapter 3, Chapter 6.
Romer Measuring Arms; Portable CMMs for the shop floor; 20 pages; Hexagon Metrology, Inc. (2009) http//us.ROMER.com.
Spada, et al., IEEE 1588 Lowers Integration Costs in Continuous Flow Automated Production Lines, XP-002498255, ARC Insights, Insight # 2003-33MD&H, Aug. 20, 2003.
Trimble—Trimble SPS630, SPS730 and SPS930 Universal Total Stations, [on-line] http://www.trimble.com/sps630—730—930.shtml (1 of 4), [Retreived Jan. 26, 2010 8:50:29AM].
Related Publications (1)
Number Date Country
20150029516 A1 Jan 2015 US