The present invention relates to detecting devices for detecting single molecules, groups of similar molecules, trains of differing molecules, methods for detecting these using said detecting devices, and the use of such devices and methods to detect such molecules.
In prior art devices and methods such as matrix assisted laser ablation time of flight mass spectrometers (MALDI-TOF MS), for measuring the time of flight (TOF) of particles (such as single molecules, groups of similar molecules, trains of different molecules or the like), the particles are ablated from a matrix by a laser pulse and accelerated towards a timing detector by an electric field at one end of a vacuum flight tube. The timing detector is usually a micro channel plate detector, which is an electron multiplier and needs a certain number of particles to hit it before a count is registered The timing detector measures the time from the laser pulse to a number of particles (having substantially the same mass/charge ratio and sufficient in number to be registered) hitting the timing detector. A problem with these devices is that the limitations in sensitivity of the microchannel plate detectors means that they are not suitable for detecting single particles. Another difficulty is that larger mass particles, which are often important in biological measurements, produce lower signals at the detector and hence TOF MS is not suitable for their detection.
According to the present invention, at least some of the problems with the prior art are solved by means of devices having the features present in the characterising portions of claim 1 and claim 2, and by methods having the features mentioned in the characterising portion of claim 4. In particular, the devices of claims 1 and 2 can detect photons of light or other electromagnetic radiation scattered by a single particle or by a train of particles or groups of particles. Furthermore the present invention gives a high sensitivity for larger mass particles, which, due to their high mass but relatively slow velocity, are difficult to detect in prior art mass spectrometers but which, due to their large size, scatter many photons and are therefore relatively easy to detect using the present invention.
a) shows schematically a lateral view of a first embodiment of a device in accordance with the present invention;
b) shows schematically an enlarged section through line I—I of the device of
a) shows a schematically a second embodiment of a device in accordance with the present invention;
b) shows schematically an enlarged section through line II—II of the device of
a and 1b show schematically, and not to scale, a first embodiment of a mass spectrometer 1 in accordance with the present invention. Well-known features of the mass spectrometer 1 that are not relevant to the present invention have been omitted for the sake of clarity. Mass spectrometer 1 (e.g. Ettan Mass Spectrometer from Amersham Biosciences, Sweden) has at its proximal end 2 a sample chamber 3 in which a sample 5 to be analysed can be ionised, by ionising means such as a laser 6. The sample may be any substance of interest, for example a biological sample in the form of a piece of tissue or a sample of fluid or a smear or blot or the like, or a sample comprising one or more chemical compounds that need to be identified or a substance, the composition of which is being investigated, etc. Sample chamber 3 has an orifice 7 which leads into an elongated flight chamber 9. When the mass spectrometer 1 is being used, air may be evacuated from flight chamber 9 so that it contains a near vacuum. Optionally, the distal end 17 of flight chamber 9 may be provided with collecting means 10 for collecting ions so that the components of the sample 5 may be collected for further analysis.
As can be seen in
A source of electromagnetic radiation, e.g. light, detectable by photomultiplier tube 11, for example a laser 19 (e.g. a Coherent Inc., USA, INNOVA Argon Laser), is arranged to shine a beam 21 of radiation through a window 22a in the flight chamber 9 onto the nominal flight path FPnom in front of the photomultiplier input lens 13 but in such a way that the beam 21 does not shine directly into the input lens 13. The opposite side of the flight chamber to window 22a is provided with a window 22b that leads to a light dump 24 that absorbs the beam 21 and prevents any light from the beam 21 being reflected back into the flight chamber 9. In order to reduce the amount of unwanted light scattered from the beam 21 during its passage from laser to light dump 24, the windows 22a, 22b are preferably made as Brewster windows (from CVI Laser Corp, USA), i.e. they are angled at the Brewster angle to reduce reflection losses (and hence light scattered by reflection) to a minimum, and black light baffles 26 with small holes aligned with the laser beam 21 are arranged between the windows and the sample 15 to further reduce the amount of unwanted light entering the flight chamber 9. As can be seen in
Alternatively, a parabolic mirror 28 (shown by dashed lines in
In order to achieve the highest possible sensitivities, it is possible to cool the photomultiplier tube in order to reduce its background noise, referred to as background counts.
A second embodiment of the present invention is shown schematically, and not to scale, in
In order to ensure that the photomultiplier tubes identify the same particle, it is preferable that the intensities of the radiation beams where they intersect the nominal flight path FPnom are substantially identical and that the photomultiplier tubes 11, 31 have substantially the same specification. This can be achieved by using two sources 19, 39 adjusted to produce the same power and focused to the same spot size on the nominal flight path FPnom or by providing one source which has its beam split into two paths, one at the distal end of the flight tube and one at the proximal end, each focused to the same spot size onto the nominal flight path FPnom. It is also possible to have the laser source 19 routed past the detection point 13 to the other detection point 33 with the use of mirrors, optical fibres, prisms or the like. If the beams have substantially identical intensities then the number of photons scattered by a particle will be substantially the same at the proximal and distal ends of the flight chamber. It will therefore be possible to recognise a particle that has passed the proximal photomultiplier tube 31 when it passes the distal photomultiplier tube 31 as the number of photons detected by the two photomultiplier tubes 11, 31 will be substantially the same.
It is also conceivable to use a single detector and to route the scattered light from a number of scatter points along the nominal flight path of the molecule(s), by means of lenses, fibre optics, mirrors, etc. to the single detector.
Note that the number of particles scattered by a particle is given by:
where
Thus the number of photons scattered by a particle is dependent, amongst others, on the fourth power of the radius of the particle. If λ=500 nm, n=1.6, N=2.5 E+18, t=1.0 E−8 and 1=1.0 E+8 nm, then a particle or molecule with a diameter of 20 nm would scatter about 18000 photons in 1 ns using a 1 W laser. A particle with a diameter of 30 nm would scatter about 460000 photons with a 1 W laser. Typically a photo multiplier works at a 5-10% efficiency i.e. it only registers a hit when being struck by 10-20 photons and in order to avoid registering artefacts as molecules or particles a threshold could be set such that a hit is only registered if, say 3 or 5 photons are detected in 1 ns. This means that using only a 1 W laser it is possible to reliably detect the light scattered by a 20 nm diameter particle. Smaller particles are reliably detectable by using a more powerful laser. This can be achieved by pulsing the laser so that it fires short duration pulses that have much higher energy levels, e.g. of the order of kW, and which are timed to intersect the nominal flight path when particles are expected to be passing though the detection point(s). It could also be achieved by constructing the device so that the nominal flight path passes through the laser cavity of a laser where the laser intensity is at its most intense.
In order to prevent the particles, etc being deflected by the beam(s) of electromagnetic radiation, it is conceivable to provide two counter-propagating beams of substantially equal strength that are focused on the same volume on the nominal flight path, i.e. to provide two beams that are arranged with a 180° angle between their axes so that their effects on the particles cancel out
It is also conceivable to use a plurality of detecting devices to detect the scattered radiation from each beam in order to increase the number of signals received for each particle or the like. This would give a plurality of signals for each detected particle or the like and would make the correlation between the signals detected at different positions on the nominal flight path more accurate.
The above mentioned embodiments are intended to illustrate the present invention and are not intended to limit the scope of protection claimed by the following claims.
Number | Date | Country | Kind |
---|---|---|---|
0109883 | Apr 2001 | GB | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCTGB02/01753 | 4/19/2002 | WO | 00 | 10/17/2003 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO0208694 | 10/31/2002 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
4383171 | Sinha et al. | May 1983 | A |
5998215 | Prather et al. | Dec 1999 | A |
Number | Date | Country | |
---|---|---|---|
20040129875 A1 | Jul 2004 | US |