This disclosure relates to systems and methods related to focusing and dispersing of electromagnetic signals, specifically EHF radiation.
Advances in semiconductor manufacturing and circuit design technologies have enabled the development and production of ICs with increasingly higher operational frequencies. In turn, electronic products and systems incorporating such integrated circuits are able to provide much greater functionality than previous generations of products. This additional functionality has generally included the processing of increasingly larger amounts of data at increasingly higher speeds.
Many electronic systems include multiple printed circuit boards (PCBs) upon which these high-speed ICs are mounted, and through which various signals are routed to and from the ICs. In electronic system with at least two PCBs and the need to communicate information between those PCBs, a variety of connector and backplane architectures have been developed to facilitate information flow between the boards. Unfortunately, such connector and backplane architectures introduce a variety of impedance discontinuities into the signal path, resulting in a degradation of signal quality or integrity. Connecting to boards by conventional means, such as signal-carrying mechanical connectors, generally creates discontinuities, requiring expensive electronics to negotiate. Conventional mechanical connectors may also wear out over time, require precise alignment and manufacturing methods, and are susceptible to mechanical jostling.
These characteristics of conventional connectors can lead to degradation of signal integrity and instability of electronic systems needing to transfer data at very high rates, which in turn limits the utility of such products.
An embodiment of the present disclosure may provide a communication device for communicating using EHF electromagnetic radiation. The communication device may include an integrated circuit (IC) package including a transducer which may be configured to transmit and/or receive an EHF electromagnetic signal and convert between electrical signals and electromagnetic signals. The integrated circuit package may also include an integrated circuit including at least one of a transmitter circuit and a received circuit that is operatively coupled to the transducer. Further, the IC package may include an insulating material in which each of the integrated circuit and the transducer are at least partly embedded, such that the insulating material may maintain each of the transducer and the IC in a fixed location relative to the other. The communication device may include a dielectric lens configured to refract incident EHF electromagnetic radiation. The dielectric lens is disposed so as to enhance transmission or reception of the EHF electromagnetic signal by the transducer.
Another embodiment of the present disclosure provides an EHF communication system including a first device including a first integrated circuit package having a first transducer. The first device may be configured to transmit an electromagnetic signal in the EHF frequency range. The first device may also include a first dielectric lens disposed adjacent the first transducer such that at least a portion of the electromagnetic signal is refracted by the first dielectric lens. The EHF communication system may also include a second device including a second integrated circuit package having a second transducer and may be configured to receive the electromagnetic signal refracted by the first dielectric lens.
Having thus described the invention in general terms, reference will now be made to the accompanying drawings, which are not necessarily drawn to scale, and wherein:
Wireless communication may be used to provide signal communications between components on a device or may provide communication between devices. Wireless communication provides an interface that is not subject to mechanical and electrical degradation. Examples of systems employing wireless communication between chips are disclosed in U.S. Pat. No. 5,621,913 and U.S. Published Patent Application No. 2010/0159829, the disclosures of which are incorporated herein by reference in their entirety for all purposes.
In one example, tightly-coupled transmitter/receiver pairs may be deployed with a transmitter disposed at a terminal portion of a first conduction path and a receiver disposed at a terminal portion of a second conduction path. The transmitter and receiver may be disposed in close proximity to each other depending on the strength of the transmitted energy, and the first conduction path and the second conduction path may be discontiguous with respect to each other. In exemplary versions, the transmitter and receiver may be disposed on separate circuit carriers positioned with the antennas of the transmitter/receiver pair in close proximity.
As discussed below, a transmitter or receiver may be configured as an IC package, in which an antenna may be positioned adjacent to a die and held in place by a dielectric or insulating encapsulation or bond material. A transmitter or receiver may be configured as an IC package, in which an antenna may be positioned adjacent to a die and held in place by encapsulation material of the package and/or a lead frame substrate. Examples of EHF antennas embedded in IC packages are shown in the figures and described below.
The presently disclosed subject matter provides a communication device for communication using EHF electromagnetic radiation. The communication device may include an integrated circuit package including a transducer for receiving EHF electromagnetic signals and an integrated circuit (IC) including a transmitter circuit and/or a receiver circuit coupled to the transducer. The transducer and/or the IC may remain partly embedded in an insulating material such that the transducer and the IC are in a fixed location relative to each other. The communication device may also include a dielectric lens that can refract incident EHF electromagnetic radiation. The dielectric lens may be disposed so as to enhance transmission and/or reception of the EHF electromagnetic signal by the transducer. The IC and its components are described in detail with reference to
The die 12 may include any suitable structure configured as a miniaturized circuit on a suitable die substrate, and is functionally equivalent to a component also referred to as a “chip” or an “integrated circuit (IC).” A die substrate may be any suitable semiconductor material; such as, but not limited to, silicon. The die 12 may be mounted with further electrical conductors 16, such as a lead frame (not shown) for providing connection to external circuits. An impedance transformer 28, shown in dashed lines, may provide impedance matching between the circuit on the die 12 and the transducer 14.
The transducer 14 may be in the form of a folded dipole or loop antenna 30, and may be configured to operate at radio frequencies, such as in the EHF spectrum, and may be configured to transmit and/or receive electromagnetic signals. The antenna 30 may be separate from the die 12 but may remain operatively connected to the die 12 by any suitable conductors 16, and may be located adjacent to the die 12.
The dimensions of the antenna 30 may be suitable for operation in the EHF band of the electromagnetic frequency spectrum. In one example, a loop configuration of the antenna 30 may include a 0.1 mm band of material, laid out in a loop 1.4 mm long and 0.53 mm wide, with a gap of 0.1 mm at the mouth of the loop, and with the edge of the loop approximately 0.2 mm from the edge of die 12.
The encapsulating material 26 may be used to assist in holding the various components of the IC package 10 in fixed relative positions. The encapsulating material 26 may be any suitable material configured to provide electrical insulation and physical protection for the electrical and electronic components of the IC package 10. For example, the encapsulating material 26, also referred to as insulating material, may be a mold compound, glass, plastic, or ceramic. The encapsulating material 26 may be formed in any suitable shape. For example, the encapsulating material 26 may be in the form of a rectangular block, encapsulating all the components of the IC package 10 except the unconnected ends of the conductors 16 connecting the die 12 to external circuits. The external connections may be formed with other circuits or components.
It will be appreciated from the above, that a system for transmitting or receiving signals may include a transducer configured to convert between electrical signals and electromagnetic signals; an integrated circuit (IC) operatively coupled to the transducer, the IC containing at least one of a transmitter circuit that transforms a baseband signal into a radio-frequency signal and conducts the radio-frequency electrical signal to the transducer for transmission as an electromagnetic signal and a receiver circuit that receives from the transducer a radio-frequency electrical signal received as an electromagnetic signal by the transducer and transforms the electromagnetic signal into a baseband signal; and insulating material in which the IC and transducer are at least partly embedded, the insulating material holding the transducer and IC in fixed locations spaced relative to each other.
Such a system may further include a dielectric substrate supporting the transducer, IC and insulating material. The insulating material may completely cover the transducer.
The PCB 132 may further include a layer 150 spaced from the surface 146 made of conductive material forming a ground plane. The PCB ground plane may be any suitable structure configured to provide an electrical ground to circuits and components on the PCB 132. The Ground-plane layer 150 is spaced below the antenna 136 by a distance D. The distance D may be less than 1 mm depending on the configuration and dimensions of the IC package 130 and the PCB 132. For example, the PCB ground plane 150 may be located approximately 0.4 mm below mounting surface 146 of the PCB 132, and the antenna 136 may be mounted in a plane approximately 0.25 mm above mounting surface 146, resulting in a distance D of 0.65 mm between the plane of the antenna 136 and the plane of the ground plane.
The amplified and conditioned RF signal is input into a demodulator 206 that converts the received modulated RF signal into a baseband signal. The signal output from the demodulator 206 may then be fed into a further output comparator 208. The comparator 208 may also receive an input/output threshold level reference signal from a terminal 210. In this example, the baseband signal is a binary signal. The output from the comparator 208 is a logic 1 if the demodulated baseband signal is above the threshold, and is a logic 0 if the demodulated baseband signal is below the threshold.
One or more comparators may also compare an average level of a monitor signal to a predetermined minimum threshold level to determine if a received signal is strong enough to be considered valid. It may be necessary for the receiver antenna to be sufficiently close to a transmitter antenna to communicate a sufficiently strong signal. A predetermined minimum threshold level may be set to ensure the electromagnetic signal from a transmitter is considered valid and therefore processed by a receiver if the transmitter antenna and receiver antenna are within a desired physical communication range, such as 5 mm to 10 mm.
More specifically, the demodulated baseband signal output from self-mixer 206 may be input into a low-pass filter 212 in combination with the input-output reference provided on the terminal 210. The output of the filter is a monitor signal representative of the average strength of the received demodulated baseband signal, which in turn is representative of the average strength of the received RF signal. This average-strength monitor signal is input to a second comparator 214 along with a signal-detect threshold reference signal received on a terminal 216. The second comparator 214 thereby may monitor the monitor signal output from the filter 212 and may determine whether the received signal is a sufficiently strong signal.
The output from the second comparator 214, then, is a signal-detect control signal that may have one of two states. In a first state, the control signal indicates that the received signal has sufficient strength to be considered a valid signal. In the second state, the control signal indicates that the received signal does not have sufficient strength. The control signal from the second comparator 214 and the demodulated baseband signal from the comparator 208 can be an input into an AND gate 218. The AND gate 218 then may output the baseband signal when the control signal is in the first state, indicating that a sufficiently strong signal is being received. If the control signal is in the second state, the AND gate 218 is disabled, and no baseband signal is output from receiver interface circuit 182. The signal-detect signal output from the second comparator 214 may also be output to other circuits on the die or PCB on which the IC is mounted for other uses as appropriate.
The interface circuit 182 may also have an automatic gain control (AGC) circuit 219. The AGC circuit 219 may include a third comparator 220 that also receives the output from filter 212 as a signal representative of the average strength of the received signal. The third comparator 220 may receive as a reference signal an AGC target level signal on a terminal 222. The third comparator 220 then may produce an output AGC signal that is fed back to amplifier stages 188 and 192 to control the gain of those amplifiers. The AGC circuit 219 may maintain a received sufficiently strong signal at a desired level for output by the receiver interface circuit. It will be seen then that the baseband signal input into signal-detect comparator 214 is a conditioned received signal the level of which is modified by amplifier stages 188 and 192 in response to the AGC control signal. If the monitor signal is not sufficiently strong, even with automatic gain control, then AND gate 218 is disabled and no baseband signal is output.
From the above, it will be apparent that in some examples, a system may include a first transducer configured to convert electromagnetic signals into electrical signals; and a first IC operatively coupled to the transducer, the IC including a receiver circuit for receiving from the transducer a first radio-frequency electrical signal and transforming the first radio-frequency electrical signal into a first baseband signal, and outputting the first baseband signal when a control signal has a first state and not when the control signal has a second state different than the first state, and a signal-detector circuit responsive to a monitor signal representative of the received first radio-frequency electrical signal for generating the control signal with the first state when the monitor signal indicates the received first radio-frequency electrical signal is an acceptable signal and with the second state when the monitor signal indicates the received first radio-frequency electrical signal is not an acceptable signal.
The signal-detector circuit may include a comparator for comparing a characteristic of the monitor signal to a reference, the comparator generating an output signal indicating how the characteristic of the monitor signal compares to the reference, the signal-detector circuit generating the control signal in response to the output signal. The characteristic of the monitor signal may be representative of strength of the received first radio-frequency signal, and the reference is representative of a threshold signal strength below which reception is disabled and above which reception is enabled. The characteristic of the monitor signal may be representative of average signal strength.
In some examples, such a system may further include a second transducer configured to convert electrical signals into electromagnetic signals, the second transducer being disposed sufficiently close to the first transducer for the first transducer to receive electromagnetic signals produced by the second transducer; and a second IC operatively coupled to the second transducer, the second IC containing a transmitter circuit for receiving a second baseband signal and transforming the second baseband signal into a second radio-frequency electrical signal and conducting the second radio-frequency electrical signal to the second transducer.
In some examples, a method may include receiving by a first transducer a first radio-frequency electromagnetic signal; converting by the first transducer the first radio-frequency electromagnetic signal into a first radio-frequency electrical signal; receiving from the transducer by a receiver circuit of an integrated circuit (IC) the first radio-frequency electrical signal; generating a monitor signal representative of the received first radio-frequency electrical signal; monitoring by a signal-detector circuit the monitor signal; determining whether the monitor signal indicates the received first radio-frequency electrical signal is an acceptable signal; generating a control signal with a first state when the monitor signal indicates the received first radio-frequency electrical signal is an acceptable signal and with a second state different than the first state when the monitor signal indicates the received first radio-frequency electrical signal is not an acceptable signal; transforming by the receiver circuit the first radio-frequency electrical signal into a first baseband signal when the control signal has the first state; and not transforming by the receiver circuit the first radio-frequency electrical signal into a first baseband signal when the control signal has the second state.
Determining whether the monitor signal indicates the received first radio-frequency electrical signal is an acceptable signal may include comparing a characteristic of the monitor signal to a reference; generating an output signal indicating how the characteristic of the monitor signal compares to the reference; and generating the control signal includes generating the control signal in response to the output signal. The characteristic of the monitor signal may be representative of strength of the received first radio-frequency signal, and the reference may be representative of a threshold signal strength below which reception is disabled and above which reception is enabled. The characteristic of the monitor signal may be representative of average signal strength
In some examples, such a method may further include receiving by a second IC containing a transmitter circuit a second baseband signal; transforming the second baseband signal into a second radio-frequency electrical signal; conducting the second radio-frequency electrical signal to a second transducer; positioning the second transducer sufficiently close to the first transducer for the first transducer to receive electromagnetic signals produced by the second transducer; and converting by the second transducer the second radio-frequency electrical signal into the first radio-frequency electromagnetic signal.
The leads 248 may be embedded or fixed in a lead frame substrate 250, shown in phantom lines, corresponding to package substrate 34 shown in
In another example, the die 238 may be inverted and the conductive connectors 242 may include bumps, or die solder balls, as described previously, which may be configured to electrically connect points on a circuit of the die 238 directly to correspond the leads 248 in what is commonly known as a “flip chip” arrangement.
The lead frame 240 may be configured to create what may be considered a radiation shaper 266 forming effectively a wire mesh backstop for radiation transmitted by the antenna 244 or radiation received from an external antenna. Other circuit connectors may also contribute to the radiation reflector, including the conductive connectors 242, various combinations of the external conductors 234 and 236. The conductors 234-236 may conduct active signals or be circuit grounds because electromagnetic signals of sufficiently high frequencies that both types of conductors 234-236 contribute to the reflections or shaping of the radiation. The shaping effect applies to received as well as transmitted radiation. Additionally, various shaping effects are possible, and it may be desirable in some embodiments to have reduced or insubstantial directional shaping effect, essentially creating an electromagnetic signal with omni-directional or hemispherical qualities.
Further or alternative shaping of the electromagnetic signal may be accomplished by the configuration of a ground plane 150 in a PCB 132 of a communication device as described with reference to
In the configuration shown in
The communication device 500 may include an IC package 502, the general position of which is indicated in
The example shown in
Each of the spherical caps 406A-406B may also have a height 412 defined as the orthogonal distance from the center of the planar base 408 to the outer surface of the cap 406A or 406B. The heights 412 for the respective caps 406A-406B are labeled as d1 and d2 in the example of
The dielectric lens 400 may be constructed with various characteristics to alter performance of the lens, such as altering the focal point of the lens. For example, lens 400 may be constructed such that the first height d1 is substantially equivalent to the second height d2, in which case the lens 400 would be a sphere. In other examples, such as the one depicted in
A cross section of lens 400 as shown in
It may be appreciated that a spherical cap having a radius of curvature equivalent to its height would constitute a hemisphere. In the example of lens 400, the spherical cap 406A may be such a hemisphere, while the spherical cap 406B may have a height substantially less than its radius of curvature. Other configurations are possible, such as a lens where each spherical cap is a hemisphere, thus forming a spherical lens. In other examples, combinations of spherical caps having various heights may be used, including heights greater or less than respective radii of curvature. In the examples shown, base radii 410 of the caps are substantially equivalent. In other examples, the base radius of cap 406A may be different than the base radius of cap 4068.
One result of the particular configuration of spherical caps 406A-406B can be based on varying focal length of the lens 400 based on the first height d1 and the second height d2. An EHF signal passing from one medium to another may be refracted. For example, a signal may be refracted when passing from air to a dielectric material and when passing from a dielectric material back into the air. The signal may thus be focused on a particular point known as the focal point 416, as shown in
Some benefit from the lens 400 is still possible in this configuration, by placing an antenna near or in contact with the lens 400. However, an antenna should be substantially co-located with the focal point 416 in order to fully benefit from the focusing properties of the lens 400. Various solutions may be possible, such as embedding the antenna inside the lens 400. While embedding is an option taught by this disclosure, in the example shown in the drawings, the focal point 416 is relocated outside the lens 400 by reducing height d1. This facilitates placement of an antenna at the focal point 416 without embedding or contacting the lens 400. A gap between the lens 400 and the IC package may facilitate shock resistance of the communication device 500 by providing space for components to move relative to one another without propagating damage.
The dielectric lenses 390 such as the lens 400 may be constructed at least in part of any suitable dielectric material having a dielectric constant that is higher than that of the material surrounding it. For example, where the dielectric lens is surrounded by air, the dielectric lens may be constructed from any dielectric material having a dielectric constant higher than that of the air around it. For example, acrylonitrile butadiene styrene (ABS) plastic may be used. Additionally, dielectric lenses may be constructed by any suitable method and may include a substantially homogeneous material. For example, a rapid prototyping machine, also known as a 3-D printer, may be used to create lenses 390 of ABS plastic. This method of manufacture also typically allows a manufacturer to choose from a plurality of densities. The dielectric lens 400 may further include a dielectric material, such as ABS, having an index of refraction between 1.2 and 2.0. A lens having an index of refraction of about 1.47 as measured at 60 GHz may be particularly useful.
Additionally, using ABS plastic with an index of refraction of 1.47, the lens 400 may have radii of curvature 414 where a ratio of r1 to r2 is approximately 9.0:9.2. For example, a lens 400 may have r1=9.0 mm, r2=9.2 mm, d1=9.0 mm, d2=7.3 mm, d=16.3 mm, and focal length of 7.5 mm. Accordingly, the focal point 416 may be located at a point that is focal length (7.5 mm) minus d2 (7.3 mm), or 0.2 mm from the surface of the lens 400.
It is noted that the inventors have achieved significant increases in the range of a transmitted EHF signal using examples of dielectric lens 400. It is also noted that the lens 400 may provide benefits when installed on a transmitter, a receiver, or both. Use of the lens 400 on both a transmitter and a receiver may result in increases from approximately a 2 cm communication range to approximately a 1 m communication range.
As shown in
The biconcave dielectric lens 430 may be constructed of a dielectric material and may include a first concave spherical surface 432 formed in spherical cap 433 and a second concave spherical surface 434 opposite surface 432 formed in spherical cap 435. Each of the concave surfaces 432 and 434 may have a radius of curvature, and the radii of curvature may be different from each other in order to ensure a focal point is conveniently located for the corresponding IC package to achieve proper antenna placement. In this example, the concave surfaces have edges disposed on respective base planes represented by the left and right edges of lens 430 as shown in
The biconvex dielectric lens 400 or the biconcave dielectric lens 430 may include at least one surface configured to function as a Fresnel lens 440 with respect to an incident EHF electromagnetic signal. The Fresnel lens surface may have a number of Fresnel zones. In yet another example of a dielectric lens 390 suitable for EHF communication using IC packages, the Fresnel lens 440 such as the one shown in
As before, the lens 390 may include two portions, with bases of two Fresnel lenses 444A and 444B being joined or operatively connected to form a single bi-Fresnel lens 446. The Fresnel lens portion 444A may have different characteristics from Fresnel lens portion 444B to facilitate a desired focal point.
One benefit of using a Fresnel lens is a reduced overall lens thickness, mass, and volume. In one example, the inventors have created a Fresnel lens 440 having a 9 mm radius of curvature that resulted in an overall lens thickness of only 4 mm, but still increased transmission distance by 27%. This reduced thickness also facilitates incorporating the lens into a device enclosure, case, or mounting structure without unsightly or undesirable form factor changes.
In yet another embodiment of the invention, the dielectric lens structure may have the form of a spherical convex cap fused to or otherwise integral with an enclosure or mounting structure. As discussed above for dielectric lens structures that incorporate two spherical caps, the single spherical cap may have a radius of curvature equivalent to its height, thereby constituting a hemisphere. Alternatively, the spherical cap may have a height greater than, or less than, its radius of curvature, depending on the nature and quality of the desired refraction of incident EHF electromagnetic radiation.
In an alternative aspect of the invention, the dielectric lens includes a single concave or convex spherical cap that is fused to or otherwise integral with a mounting structure, and the opposite surface of the mounting structure is substantially lacking features. For example, the surface opposite the dielectric lens may be substantially planar as indicated in
In another aspect of the invention, the dielectric lens includes a single concave spherical cap that is set into a mounting structure, where the opposite surface of the mounting structure from the concave spherical cap may be substantially planar. A concave spherical cap may be used where it may be desirable to disperse and/or diverge an EHF electromagnetic signal, rather than focusing or converging the signal.
Alternatively, or in addition, the dielectric lens having a single spherical cap may be combined with one or more additional lenses also having single spherical caps. The multiple lenses may have the same or differing heights, may be convex or concave, and may be configured to refract incident EHF electromagnetic radiation towards or away from the same or different transducer.
An exemplary dielectric lensing structure 500 is depicted in
As shown in
It will thus be appreciated that locating an antenna or other transducer off-chip may result in effective antenna impedance matching, independent antenna design, increased transmission power, and selective directional shaping of a resulting radiation pattern. The radiation may thus be directed in a direction where a receiving antenna may be positioned. Locating an antenna within the package may also provide a customer with a more complete assembly that incorporates characteristics of the assembly to satisfy specifications and tailored operating characteristics, besides protecting an incorporated antenna from damage.
It will also be appreciated that radiation patterns may be refracted into a convergent, more collimated, or divergent pattern as desired, by adding dielectric lenses having various configurations and properties. These lenses may be incorporated in a device enclosure or in the IC package itself.
The present disclosure also provides a communication device including an IC package for communicating an electromagnetic signal at an EHF frequency. The communication device may also include a dielectric lens (e.g. 400) configured to refract the electromagnetic signal. The dielectric lens may be mounted at a fixed distance from the IC package at least partially in a path of the electromagnetic signal. The IC package may include an antenna configured to convert between electrical signals and electromagnetic signals and an integrated circuit (IC) operatively coupled to the antenna. The IC may contain at least one of a transmitter circuit and a receiver circuit. The IC package may include an insulating material in which the IC and antenna are at least partly embedded. The insulating material may hold the antenna and IC in fixed locations spaced relative to each other.
Further, the dielectric lens may have a focal point, and the antenna of the IC package may be located substantially at the focal point. The dielectric lens may also include a solid lens having a first spherical cap having a first planar base and a second spherical cap may have a second planar base operatively connected to the first planar base. The first spherical cap may have a first radius of curvature, and the second spherical cap may have a second radius of curvature. The first spherical cap may have a first height substantially equivalent to the first radius of curvature. The first spherical cap may substantially define a first hemisphere. The second spherical cap may have a second height substantially less than the second radius of curvature.
In an embodiment, a ratio of the first radius of curvature to the second radius of curvature is approximately 9 to approximately 9.2. The second spherical cap may have a second height which can be substantially equivalent to the second radius of curvature and the second spherical cap may substantially define a second hemisphere. Further, the first and second spherical caps may be directly and continuously connected. In addition, the first planar base may have a first base radius and the second planar base may have a second base radius and the first base radius can be substantially equal to the second base radius.
The present disclosure may also provide a system including a first device including a first IC package having a first antenna and configured to transmit an electromagnetic signal in the EHF frequency range, and a first dielectric lens disposed adjacent the first antenna such that at least a portion of the electromagnetic signal is refracted by the first dielectric lens. The communication device may also include a second device spaced at a distance from the first device, the second device including a second IC package having a second antenna and configured to receive the electromagnetic signal transmitted by the first IC package and refracted by the first dielectric lens. The system may also include a second dielectric lens disposed adjacent to the second antenna. The dielectric lens may include a solid lens having a first spherical cap with a first planar base and a second spherical cap with a second planar base operatively connected to the first planar base. The first spherical cap may have a first radius of curvature, and the second spherical cap may have a second radius of curvature.
It is believed that the disclosure set forth herein encompasses multiple distinct inventions with independent utility. While each of these inventions has been disclosed in its preferred form, the specific embodiments thereof as disclosed and illustrated herein are not to be considered in a limiting sense as numerous variations are possible. Each example defines an embodiment disclosed in the foregoing disclosure, but any one example does not necessarily encompass all features or combinations that may be eventually claimed. Where the description recites “a” or “a first” element or the equivalent thereof, such description includes one or more such elements, neither requiring nor excluding two or more such elements. Further, ordinal indicators, such as first, second or third, for identified elements are used to distinguish between the elements, and do not indicate a required or limited number of such elements, and do not indicate a particular position or order of such elements unless otherwise specifically stated.
This application claims the benefit of U.S. Provisional Patent Application No. 61/625,575 filed Apr. 17, 2012, which application is incorporated herein by reference for all purposes.
Number | Name | Date | Kind |
---|---|---|---|
3796831 | Bauer | Mar 1974 | A |
4239340 | Ogino | Dec 1980 | A |
4485312 | Kusakabe et al. | Nov 1984 | A |
4497068 | Fischer | Jan 1985 | A |
4694504 | Porter et al. | Sep 1987 | A |
4895075 | Munzel | Jan 1990 | A |
5543808 | Feigenbaum et al. | Aug 1996 | A |
5621913 | Tuttle et al. | Apr 1997 | A |
5754948 | Metze | May 1998 | A |
5773878 | Lim et al. | Jun 1998 | A |
5861782 | Saitoh | Jan 1999 | A |
5956626 | Kaschke et al. | Sep 1999 | A |
6351237 | Martek et al. | Feb 2002 | B1 |
6490443 | Freeny, Jr. | Dec 2002 | B1 |
6492973 | Kuroki et al. | Dec 2002 | B1 |
6534784 | Eliasson et al. | Mar 2003 | B2 |
6542720 | Tandy | Apr 2003 | B1 |
6590544 | Filipovic | Jul 2003 | B1 |
6607136 | Atsmon et al. | Aug 2003 | B1 |
6718163 | Tandy | Apr 2004 | B2 |
6915529 | Suematsu et al. | Jul 2005 | B1 |
6967347 | Estes et al. | Nov 2005 | B2 |
7107019 | Tandy | Sep 2006 | B2 |
7213766 | Ryan et al. | May 2007 | B2 |
7311526 | Rohrbach et al. | Dec 2007 | B2 |
7512395 | Beukema et al. | Mar 2009 | B2 |
7517222 | Rohrbach et al. | Apr 2009 | B2 |
7593708 | Tandy | Sep 2009 | B2 |
7598923 | Hardacker et al. | Oct 2009 | B2 |
7599427 | Bik | Oct 2009 | B2 |
7612630 | Miller | Nov 2009 | B2 |
7617342 | Rofougaran | Nov 2009 | B2 |
7645143 | Rohrbach et al. | Jan 2010 | B2 |
7656205 | Chen et al. | Feb 2010 | B2 |
7664461 | Rofougaran et al. | Feb 2010 | B2 |
7760045 | Kawasaki | Jul 2010 | B2 |
7761092 | Desch et al. | Jul 2010 | B2 |
7768457 | Pettus et al. | Aug 2010 | B2 |
7769347 | Louberg et al. | Aug 2010 | B2 |
7778621 | Tandy | Aug 2010 | B2 |
7791167 | Rofougaran | Sep 2010 | B1 |
7820990 | Schroeder et al. | Oct 2010 | B2 |
7889022 | Miller | Feb 2011 | B2 |
7907924 | Kawasaki | Mar 2011 | B2 |
7929474 | Pettus et al. | Apr 2011 | B2 |
8014416 | Ho et al. | Sep 2011 | B2 |
8036629 | Tandy | Oct 2011 | B2 |
8041227 | Holcombe et al. | Oct 2011 | B2 |
8063769 | Rofougaran | Nov 2011 | B2 |
8081699 | Siwiak et al. | Dec 2011 | B2 |
8087939 | Rohrbach et al. | Jan 2012 | B2 |
8121542 | Zack et al. | Feb 2012 | B2 |
8183935 | Milano et al. | May 2012 | B2 |
8244179 | Dua | Aug 2012 | B2 |
8279611 | Wong et al. | Oct 2012 | B2 |
8339258 | Rofougaran | Dec 2012 | B2 |
20020008665 | Takenoshita | Jan 2002 | A1 |
20020118083 | Pergande | Aug 2002 | A1 |
20030137371 | Saitoh et al. | Jul 2003 | A1 |
20040214621 | Ponce De Leon et al. | Oct 2004 | A1 |
20050140436 | Ichitsubo et al. | Jun 2005 | A1 |
20060038168 | Estes et al. | Feb 2006 | A1 |
20060139206 | Nagasaku | Jun 2006 | A1 |
20060159158 | Moore et al. | Jul 2006 | A1 |
20070024504 | Matsunaga | Feb 2007 | A1 |
20070063056 | Gaucher et al. | Mar 2007 | A1 |
20070115164 | Wu | May 2007 | A1 |
20070229270 | Rofougaran | Oct 2007 | A1 |
20070278632 | Zhao et al. | Dec 2007 | A1 |
20080089667 | Grady et al. | Apr 2008 | A1 |
20080112101 | McElwee et al. | May 2008 | A1 |
20080150799 | Hemmi et al. | Jun 2008 | A1 |
20080150821 | Koch et al. | Jun 2008 | A1 |
20080159243 | Rofougaran | Jul 2008 | A1 |
20080192726 | Mahesh et al. | Aug 2008 | A1 |
20080195788 | Tamir et al. | Aug 2008 | A1 |
20080290959 | Ali et al. | Nov 2008 | A1 |
20080293446 | Rofougaran | Nov 2008 | A1 |
20090006677 | Rofougaran | Jan 2009 | A1 |
20090009337 | Rofougaran | Jan 2009 | A1 |
20090037628 | Rofougaran | Feb 2009 | A1 |
20090075688 | Rofougaran | Mar 2009 | A1 |
20090094506 | Lakkis | Apr 2009 | A1 |
20090096912 | Bloch | Apr 2009 | A1 |
20090175323 | Chung | Jul 2009 | A1 |
20090218407 | Rofougaran | Sep 2009 | A1 |
20090218701 | Rofougaran | Sep 2009 | A1 |
20090236701 | Sun et al. | Sep 2009 | A1 |
20090239392 | Sumitomo et al. | Sep 2009 | A1 |
20090239483 | Rofougaran | Sep 2009 | A1 |
20090245808 | Rofougaran | Oct 2009 | A1 |
20090280765 | Rofougaran et al. | Nov 2009 | A1 |
20100127804 | Vouloumanos | May 2010 | A1 |
20100159829 | McCormack | Jun 2010 | A1 |
20100202499 | Lee et al. | Aug 2010 | A1 |
20100231452 | Babakhani et al. | Sep 2010 | A1 |
20100254025 | Yoshida | Oct 2010 | A1 |
20100277394 | Haustein et al. | Nov 2010 | A1 |
20100283700 | Rajanish | Nov 2010 | A1 |
20100285634 | Rofougaran | Nov 2010 | A1 |
20100297954 | Rofougaran et al. | Nov 2010 | A1 |
20110047588 | Takeuchi et al. | Feb 2011 | A1 |
20110084398 | Pilard et al. | Apr 2011 | A1 |
20110181484 | Pettus et al. | Jul 2011 | A1 |
20110207425 | Juntunen et al. | Aug 2011 | A1 |
20110285606 | De Graauw et al. | Nov 2011 | A1 |
20110286703 | Kishima et al. | Nov 2011 | A1 |
20110311231 | Ridgway et al. | Dec 2011 | A1 |
20120013499 | Hayata | Jan 2012 | A1 |
20120028582 | Tandy | Feb 2012 | A1 |
20120038813 | Jung | Feb 2012 | A1 |
20120064664 | Yamazaki et al. | Mar 2012 | A1 |
20120069772 | Byrne et al. | Mar 2012 | A1 |
20120083137 | Rohrbach et al. | Apr 2012 | A1 |
20120263244 | Kyles et al. | Oct 2012 | A1 |
20120286049 | McCormack et al. | Nov 2012 | A1 |
20120290760 | McCormack et al. | Nov 2012 | A1 |
20120295539 | McCormack et al. | Nov 2012 | A1 |
20120307932 | McCormack et al. | Dec 2012 | A1 |
20120319496 | McCormack et al. | Dec 2012 | A1 |
20120319890 | McCormack et al. | Dec 2012 | A1 |
20130070817 | McCormack et al. | Mar 2013 | A1 |
20130106673 | McCormack et al. | May 2013 | A1 |
20130109303 | McCormack et al. | May 2013 | A1 |
20130157477 | McCormack | Jun 2013 | A1 |
20130183903 | McCormack et al. | Jul 2013 | A1 |
Number | Date | Country |
---|---|---|
0 515 187 | Nov 1992 | EP |
0789421 | Aug 1997 | EP |
0884799 | Dec 1998 | EP |
0896380 | Feb 1999 | EP |
0996189 | Apr 2000 | EP |
1041666 | Oct 2000 | EP |
1 298 809 | Apr 2003 | EP |
1357395 | Oct 2003 | EP |
2 309 608 | Apr 2011 | EP |
2328226 | Jun 2011 | EP |
2 360 923 | Aug 2011 | EP |
2217114 | Oct 1989 | GB |
2001326506 | Nov 2001 | JP |
2002261514 | Sep 2002 | JP |
2002265729 | Sep 2002 | JP |
2008252566 | Oct 2008 | JP |
2011114737 | Sep 2011 | WO |
2011114738 | Sep 2011 | WO |
2012129426 | Sep 2012 | WO |
2012155135 | Nov 2012 | WO |
2012166922 | Dec 2012 | WO |
2012174350 | Dec 2012 | WO |
2013006641 | Jan 2013 | WO |
2013040396 | Mar 2013 | WO |
2013059801 | Apr 2013 | WO |
2013059802 | Apr 2013 | WO |
2013090625 | Jun 2013 | WO |
Entry |
---|
Chinese First Office Action, Chinese Application No. 201380026884.1, dated Aug. 28, 2015, 19 pages. |
Eric A. Juntunen, “60 GHz CMOS Pico-Joule/Bit Oook Receiver Design for Multi-Gigabit Per Second Wireless Communications” thesis paper, Aug. 2008, 52 pages. |
Murcia Martinez, J., Authorized Officer, European Patent Office, “International Search Report” in connection with related Application Serial No. PCT/US2012/040214, dated Aug. 21, 2012, 3 pages. |
Murcia Martinez, J., Authorized Officer, European Patent Office, “Written Opinion of the International Searching Authority” in connection with related Application Serial No. PCT/US2012/040214, dated Aug. 21, 2012, 8 pages. |
Ablerga, Vito, Authorized Officer, European Patent Office, “International Search Report” in connection with related Application Serial No. PCT/US2012/042616,, dated Oct. 1, 2012, 4 pages. |
Ablerga, Vito, Authorized Officer, European Patent Office, “Written Opinion of the International Searching Authority” in connection with related Application Serial No. PCT/US2012/042616,, dated Oct. 1, 2012, 10 pages. |
Cortes Rosa, Joao, Authorized Officer, European Patent Office, “International Search Report” in connection with related Application No. PCT/US2012/030166, dated Oct. 31, 2010, 6 pages. |
Cortes Rosa, Joao, Authorized Officer, European Patent Office, “Written Opinion of the International Searching Authority” in connection with related Application No. PCT/US2012/030166, dated Oct. 31, 2010, 9 pages. |
Helms, Jochen, Authorized Officer, European Patent Office, “International Search Report” in connection with related Application No. PCT/US2012/055488, dated Dec. 13, 2012, 4 pages. |
Helms, Jochen, Authorized Officer, European Patent Office, “Written Opinion of the International Searching Authority” in connection with related Application No. PCT/US2012/055488, dated Dec. 13, 2012, 8 pages. |
Helms, Jochen, Authorized Officer, European Patent Office, “International Search Report” in connection with related Application No. PCT/US2012/045444, dated Jan. 21, 2013, 7 pages. |
Helms, Jochen, Authorized Officer, European Patent Office, “Written Opinion of the International Searching Authority” in connection with related Application No. PCT/US2012/045444, dated Jan. 21, 2013, 9 pages. |
Helms, Jochen, Authorized Officer, European Patent Office, “International Search Report” in connection with related Application No. PCT/US2012/037795, dated Jan. 21, 2013, 7 pages. |
Helms, Jochen, Authorized Officer, European Patent Office, “Written Opinion of the International Searching Authority” in connection with related Application No. PCT/US2012/037795, dated Jan. 21, 2013, 12 pages. |
Helms, Jochen, Authorized Officer, European Patent Office, “International Search Report” in connection with related Application No. PCT/US2012/061345, dated Jan. 24, 2013, 4 pages. |
Helms, Jochen, Authorized Officer, European Patent Office, “Written Opinion of the International Searching Authority” in connection with related Application No. PCT/US2012/061345, dated Jan. 24, 2013, 7 pages. |
Franz, Volker, Authorized Officer, European Patent Office, “International Search Report” in connection with related Application No. PCT/US2012/061346, dated Jan. 24, 2013, 5 pages. |
Franz, Volker, Authorized Officer, European Patent Office, “Witten Opinion of the International Searching Authority” in connection with related Application No. PCT/US2012/061346, dated Jan. 24, 2013, 9 pages. |
Bouhana, Emmanuel, Authorized Officer, European Patent Office, “International Search Report” in connection with related Application No. PCT/US2012/069576, dated May 2, 2013, 3 pages. |
Bouhana, Emmanuel, Authorized Officer, European Patent Office, “Written Opinion of the International Searching Authority” in connection with related Application No. PCT/US2012/069576, dated May 2, 2013, 13 pages. |
Office of Engineering and Technology Federal Communications Commission, “Understanding the FCC Regulations for Low-Power, Non-Licensed Transmitters”, OET Bulletin No. 63, Oct. 1993, 34 pages. |
Vahle Electrification Systems, “CPS Contactless Power System”, Catalog No. 9d/E, 2004, 12 pages. |
Future Technology Devices International Limited (FTDI), “Technical Note TN_113 Simplified Description of USB Device Enumeration”, Doc. Ref. No. FT_000180, Version 1.0, dated Oct. 28, 2009, 19 pages. |
Lee W. Young, Authorized Officer, U.S. Patent and Trademark Office, “International Search Report” in connection with related PCT Patent App. No. PCT/US2013/027835, dated May 3, 2013, 4 pages. |
Lee W. Young, Authorized Officer, U.S. Patent and Trademark Office, “Written Opinion of the International Searching Authority” in connection with related PCT Patent App. No. PCT/US2013/027835, dated May 3, 2013, 8 pages. |
Márquez, T. López, Authorized Officer, European Patent Office, “International Search Report” in connection with related PCT Patent App. No. PCT/US2013/029469, dated Jun. 6, 2013, 5 pages. |
Márquez, T. López, Authorized Officer, European Patent Office, “Written Opinion of the International Searching Authority” in connection with related PCT Patent App. No. PCT/US2013/029469, dated Jun. 6, 2013, 5 pages. |
Jochen Helms, Authorized Officer, European Patent Office, “International Search Report” in connection with related PCT Patent App. No. PCT/US2013/023665, dated Jun. 20, 2013, 5 pages. |
Jochen Helms, Authorized Officer, European Patent Office, “Written Opinion of the International Searching Authority” in connection with related PCT Patent App. No. PCT/US2013/023665, dated Jun. 20, 2013, 10 pages. |
J Marot-Lassauzaie, Authorized Officer, European Patent Office, “International Search Report” in connection with related PCT Patent Application No. PCT/US2013/037012, dated Aug. 7, 2013, 6 pages. |
J Marot-Lassauzaie, Authorized Officer, European Patent Office, “Written Opinion of the International Searching Authority” in connection with related PCT Patent Application No. PCT/US2013/037012, dated Aug. 7, 2013, 7 pages. |
Chinese Second Office Action, Chinese Application No. 2013800268841, dated Apr. 19, 2016, 20 pages. |
Chinese Third Office Action, Chinese Application No. 2013800268841, dated Nov. 8, 2016, 20 pages. |
Chinese Fourth Office Action, Chinese Application No. 201380026884.1, dated Jun. 5, 2017, 17 pages. |
Chinese Rejection Decision, Chinese Application No. 201380026884.1, dated Oct. 26, 2017, 16 pages. |
Number | Date | Country | |
---|---|---|---|
20130271331 A1 | Oct 2013 | US |
Number | Date | Country | |
---|---|---|---|
61625575 | Apr 2012 | US |