The present application is based on Japanese patent application No. 2012-169905 filed on Jul. 31, 2012, the entire contents of which are incorporated herein by reference.
1. Field of the Invention
This invention relates to a differential signal transmission cable, a multiwire differential signal transmission cable, a differential signal transmission cable producing method and apparatus.
2. Description of the Related Art
Conventionally, differential signal transmission cables with a pair of differential signal transmission conductors coated with an insulation have been known. Some differential signal transmission cables of this type are wrapped with an electrically conductive shield tape around an insulation. (Refer to U.S. Pat. No. 7,790,981, for example.)
The differential signal transmission cable disclosed by U.S. Pat. No. 7,790,981 has a pair of conductors coated with an insulation, and this insulation is wrapped with the shield tape therearound. Two tapes are spirally wound around the shield tape, and the two tapes are made of a polymer to hold the shield tape. The two tapes are wound so that circumferential spiral winding directions of the two tapes around a center axis of the shield tape are opposite each other.
Refer to U.S. Pat. No. 7,790,981, for example.
In the differential signal transmission cable thus configured, the occurrence of an unintended gap between the insulation and the shield tape causes a skew that is a signal propagation delay time difference between the pair of conductors, or rapid signal attenuation in a high frequency band (e.g. 10 Gbps or higher). No signal can normally be received in a receiving side. When the shield tape is longitudinally wrapped in such a manner that both ends in a width direction of the shield tape are overlapped together, a skew or rapid signal attenuation may also occur due to property variation caused by the occurrence of a gap in the overlapped portions between both the ends.
The inventors have found out that when the tapes are doubly wound around the shield tape, a gap is likely to occur between the insulation and the shield tape and/or in the overlapped portions of the shield tape, and have found that the occurrence of the gap can be suppressed by suppressing pivots of the conductors, the insulation, and the shield tape when the tapes are doubly wound therearound.
The present invention is based on this finding, and it is an object of the present invention to provide a differential signal transmission cable, a multiwire differential signal transmission cable, a differential signal transmission cable producing method, and a differential signal transmission cable producing apparatus that are capable of suppressing the occurrence of a gap between an insulation, which coats a pair of differential signal transmission conductors, and a shield tape conductor, and the occurrence of a gap in overlapped portions of the longitudinally wrapped shield tape conductor.
(1) According to a first feature of the invention, a differential signal transmission cable comprises:
an insulated wire comprising a pair of differential signal transmission conductors coated with an insulation;
a shield tape conductor made of a band-like member including an electrically conductive metal layer, the shield tape conductor wrapped along an outer surface of the insulated wire so that ends in a width direction of the shield tape conductor are overlapped together;
a first resin tape spirally wound along an outer surface of the shield tape conductor and around an outer side of the shield tape conductor; and
a second resin tape spirally wound along an outer surface of the first resin tape and around an outer side of the first resin tape,
in which the shield tape conductor, the first resin tape and the second resin tape are wound in a same circumferential direction around a center axis of the insulated wire.
In the first feature, the following modifications and changes can be made.
(i) The differential signal transmission cable may further comprise adhesive layers provided around the outer side of the first resin tape and an inner side of the second resin tape respectively,
in which the first resin tape and the second resin tape are joined together by the adhesive layers.
(ii) The first resin tape may be wrapped so that its portions in a width direction are overlapped together,
the second resin tape may be wrapped so that its overlapped portions are shifted in a center axis direction of the insulated wire relative to the overlapped portions by wrapping of the first resin tape,
(iii) The pair of differential signal transmission conductors in the insulated wire may be together coated with the insulation, and
the insulation may comprise a convex and continuous outer shape in cross section perpendicular to a longitudinal direction of the insulated wire.
(2) According to a second feature of the invention, a multiwire differential signal transmission cable comprises a plurality of the differential signal transmission cables specified in (1) above, the plurality of the differential signal transmission cables being shielded together,
(3) According to a third feature of the invention, a differential signal transmission cable producing method comprises:
wrapping a shield tape conductor made of a band-like member including an electrically conductive metal layer around an outer side of an insulated wire comprising a pair of differential signal transmission conductors coated with an insulation, in such a manner that both ends of the shield tape conductor in a width direction are overlapped together;
spirally winding a first resin tape along an outer surface of the shield tape conductor and around an outer side of the shield tape conductor; and
spirally winding a second resin tape along an outer surface of the first resin tape and around an outer side of the first resin tape,
in which circumferential winding directions around a center axis of the insulated wire of the shield tape conductor, the first resin tape and the second resin tape are the same.
In the third feature, the following modifications and changes can be made.
(i) The first resin tape and the second resin tape may be spirally wound in such a manner that a displacement of the insulated wire due to a tension when the first resin tape is spirally wound is always suppressed by a tension when the second resin tape is spirally wound.
(ii) The first resin tape and the second resin tape may be spirally wound by inserting the insulated wire in a through hole provided in a ring member, guiding the first resin tape and the second resin tape with first and second guiding portions respectively fixed to the ring member, and rotating the ring member, in which the first and second guiding portions are fixed to locate the insulated wire therebetween.
(4) According to a fourth feature of the invention, a differential signal transmission cable producing apparatus for use in production of the differential signal transmission cable specified in (1) comprises:
means for tensioning and moving the insulated wire in a longitudinal direction of the insulated wire;
means for longitudinally wrapping the shield tape conductor in the longitudinal direction of the insulated wire; and
means for spirally winding the first resin tape and the second resin tape in the same direction,
in which the spirally winding means includes: a ring member provided with a through hole in a central portion for the insulated wire to be inserted therein; a first supporting portion for supporting a first reel wound with the first resin tape; a second supporting portion for pivotably supporting a second reel wound with the second resin tape; and a rotary drive mechanism for rotating the ring member around the insulated wire together with the first supporting portion and the second supporting portion.
In the fourth feature, the following modifications and changes can be made.
The spirally winding means further includes: a first guiding member for guiding the first resin tape to an outer side of the shield tape conductor; and a second guiding member for guiding the second resin tape to an outer side of the first resin tape, in which the first guiding member and the second guiding member are fixed to locate the insulated wire therebetween.
(Points of the Invention)
According to the invention, it is possible to suppress the occurrence of a gap between the insulation, which coats the pair of differential signal transmission conductors, and the shield tape conductor, and the occurrence of a gap in the overlapped portions of the longitudinally wrapped shield tape conductor.
The preferred embodiments according to the invention will be explained below referring to the drawings, wherein:
This multiwire differential signal transmission cable 100 is configured so that the plurality of differential signal transmission cables 10 (in the example shown in
Also, in the example shown in
(Configuration of the Differential Signal Transmission Cable 10)
The differential signal transmission cable 10 includes an insulated wire 2 comprising first and second differential signal transmission lead wires 21 and 22 coated with an insulation 20, a shield tape conductor 3 longitudinally wrapped along an outer surface of the insulated wire 2, a first resin tape 4 spirally wound along an outer surface of the shield tape conductor 3 and around an outer side of the shield tape conductor 3, and a second resin tape 5 spirally wound along an outer surface of the first resin tape 4 and around an outer side of the first resin tape 4.
In the insulated wire 2, the first lead wire 21 and the second lead wire 22 made of an electrically conductive metal such as copper or the like are disposed parallel to each other, and these first lead wire 21 and second lead wire 22 are together coated with the insulation 20. The insulation 20 has a convex and continuous outer shape in cross section perpendicular to a longitudinal direction of the insulated wire 2, and is shaped into an oval whose diameter in a first direction that is an alignment direction of the first lead wire 21 and the second lead wire 22 is greater than a diameter in a second direction perpendicular to the first direction. That is, the insulation 20 has the outer shape of an entire smooth continuous convex surface with no flat portion and hollow portion.
The insulation 20 has an elliptic outer edge in cross section perpendicular to the center axis of the insulated wire 2. As a material for the insulation 20, there can be used, for example a Teflon (registered trademark) based material such as polyethylene foam, foamed Teflon, tetrafluoroethylene-hexafluoropropylene copolymer (FEP), or the like.
The shield tape conductor 3 is made of a band-like member with an electrically conductive metal layer, and is wrapped along the outer surface of the insulation 20 in such a manner that its ends in a width direction are overlapped together. In
The first resin tape 4 is made of a band-like taping member made of a flexible resin, and is spirally wound so that its one end and the other end in a width direction are overlapped together. That is, the first resin tape 4 is wound so that the longitudinal direction of the first resin tape 4 is oblique to the overlapped portions 3a. In this embodiment, the first resin tape 4 is wrapped so that the dimensions of overlapped portions 4a in the width direction of the first resin tape 4 (the overlapped portions of one end and the other end in the width direction of the first resin tape 4) are one fourth to one half of the width dimension of the first resin tape 4.
As with the first resin tape 4, the second resin tape 5 is made of a band-like taping member made of a flexible resin, and is spirally wound so that its one end and the other end in a width direction are overlapped together. In this embodiment, the second resin tape 5 is wrapped so that the dimensions of overlapped portions 5a in the width direction of the second resin tape 5 (the overlapped portion of one end and the other end in the width direction of the second resin tape 5) are one fourth to one half of the width dimension of the second resin tape 5. Incidentally, in
The shield tape conductor 3 and the first and second resin tapes 4 and 5 are wound in the same circumferential direction around the center axis of the insulated wire 2. That is, the first resin tape 4 is wound from one lower end face indicated by broken lines in
The shield tape conductor 3 is configured in such a manner that for example, a resin layer 30 made of a flexible insulating resin such as PET (polyethylene terephthalate) or the like, and a metal layer 31 made of an electrically conductive metal such as copper, aluminum or the like to be provided over one surface of the resin layer 30 are stacked. The resin layer 30 is disposed on the insulated wire 2 side relative to the metal layer 31, and a surface 30a of the resin layer 30 is contacted with an outer surface 20a of the insulation 20. The thickness of the resin layer 30 is, for example, 10 to 15 μm, and the thickness of the metal layer 31 is e.g. 6 to 12 μm.
The first resin tape 4 is configured to include, for example, a resin layer 40 made of a flexible insulating resin such as PET or the like, and an adhesive layer 41 including an adhesive stacked and formed over the resin layer 40. The adhesive layer 41 is disposed around an outer side of the differential signal transmission cable 10 relative to the resin layer 40. A surface 40a of the resin layer 40 is contacted with a surface 31a of the metal layer 31 of the shield tape conductor 3. In the overlapped portions 4a of the first resin tape 4, the adhesive layer 41 around the lower side (the shield tape conductor 3 side) at one end of the first resin tape 4 joins together the resin layer 40 at that one end, and the resin layer 40 around the upper side (the second resin tape 5 side) at the other end of the first resin tape 4.
As with the first resin tape 4, the second resin tape 5 is configured to include e.g. a resin layer 50 made of a flexible insulating resin such as PET or the like, and an adhesive layer 51 including an adhesive stacked and formed over the resin layer 50. The adhesive layer 51 is disposed around an inner side of the differential signal transmission cable 10 relative to the resin layer 50. A surface 51a of the adhesive layer 51 is partially contacted with a surface 41a of the adhesive layer 41 of the first resin tape 4, to join the surface 51a and the surface 41a together. That is, the first resin tape 4 and the second resin tape 5 are joined together by the adhesive layers 41 and 51 provided around the outer side of the first resin tape 4 and the inner side of the second resin tape 5 respectively.
In the overlapped portions 5a of the second resin tape 5, the adhesive layer 51 around the upper side (the outer side of the differential signal transmission cable 10) at one end of the second resin tape 5 joins together the resin layer 50 at that one end, and the resin layer 50 around the lower side (the first resin tape 4 side) at the other end of the second resin tape 5.
In this embodiment, the width dimension and the thickness of the first resin tape 4 and the second resin tape 5 are the same. That is, the first resin tape 4 and the second resin tape 5 are configured according to the same specifications, except that the adhesive layers 41 and 51 are located opposite relative to the resin layers 40 and 50. The thicknesses of the resin layers 40 and 50 are e.g. 10 to 15 μm, and the thicknesses of the adhesive layers 41 and 51 are e.g. 2 to 5 μm.
As shown in
Also, the ends of the second resin tape 5 on the respective lower sides of the two adjacent overlapped portions 5a along the center axis C of the insulated wire 2 are joined to the first resin tape 4 on the upper side of one overlapped portion 4a, in B2 portion and B3 portion shown in
The differential signal transmission cable 10 configured in the above manner transmits differential signals with the first and the second lead wires 21 and 22. That is, in communications using the differential signal transmission cable 10, the transmitting side outputs signals with mutually opposite phases to the first lead wire 21 and the second lead wire 22, while the receiving side receives (decodes) the signals transmitted based on a potential difference between the first lead wire 21 and the second lead wire 22. With this communications method, for example, when noise is superposed on the first lead wire 21, similar noise is superposed on the second lead wire 22. Therefore, effects on the signal potential difference in the receiving side are suppressed, and high noise resistant communications are possible.
It should be noted, however, that, in the event a gap opens between the outer surface 20a of the insulation 20 and the shield tape conductor 3, or a gap opens between one end and the other end in the width direction of the shield tape conductor 3 in the overlapped portions 3a, there arises a difference between a signal propagation delay time difference in the first lead wire 21 and a signal propagation delay time difference in the second lead wire 22, and no signal can normally be received in the receiving side, depending on the size of those gaps. In this embodiment, however, a producing method shown below suppresses the occurrence of the gap between the outer surface 20a of the insulation 20 and the shield tape conductor 3, and between one end and the other end in the width direction of the shield tape conductor 3 in the overlapped portions 3a.
(Differential Signal Transmission Cable 10 Producing Method and Apparatus)
A differential signal transmission cable 10 producing method and apparatus are described with reference to
The differential signal transmission cable 10 producing method includes the first step of longitudinally wrapping the shield tape conductor 3 around the outer side of the insulated wire 2 in such a manner that both its ends in the width direction are overlapped together; the second step of spirally winding the first resin tape 4 along the outer surface of the shield tape conductor 3 and around the outer side of the shield tape conductor 3; and the third step of spirally winding the second resin tape 5 along the outer surface of the first resin tape 4 and around the outer side of the first resin tape 4. In this embodiment, the longitudinal wrapping of the shield tape conductor 3, the spiral winding of the first resin tape 4 and the spiral winding of the second resin tape 5 are performed substantially concurrently. That is, the first to the third steps are performed substantially concurrently.
In the example shown in
Also, in the producing method in this embodiment, the first resin tape 4 to be wound around the outer side of the shield tape conductor 3, and the second resin tape 5 to be wound around the outer side of the first resin tape 4 are wound by applying tension thereto so that the first resin tape 4 and the second resin tape 5 are parallel to each other and in opposite directions to each other around the differential signal transmission cable 10.
The producing apparatus 6 comprises a base 61, a pair of pillars 62 and one reel supporting pillar 63 erected on the base 61. The pair of pillars 62 support a pivoting mechanism 60 which serves as a spirally winding means to spirally wrap the first resin tape 4 and the second resin tape 5 in the same direction.
The pivoting mechanism 60 includes a disc shaped ring member 600 pivotably supported to the pair of pillars 62 by a bearing not shown; first and second supporting portions 601 and 602 fixed to one plane of a pair of planes of the ring member 600; a first guiding member 603 for guiding the first resin tape 4; and a second guiding member 604 for guiding the second resin tape 5.
The first supporting portion 601 pivotably supports a reel 400 wound with the first resin tape 4, while the second supporting portion 602 pivotably supports a reel 500 wound with the second resin tape 5. The first resin tape 4 is drawn out from the reel 400, and guided by the first guiding member 603 to the outer side of the shield tape conductor 3. The second resin tape 5 is drawn out from the reel 500, and guided by the second guiding member 604 to the outer side of the first resin tape 4.
Also, the first supporting portion 601 is configured to apply a rotational resistive force to the reel 400, when the reel 400 rotates. Likewise, the second supporting portion 602 is configured to apply rotational resistive force to the reel 500, when the reel 500 rotates.
The first guiding member 603 and the second guiding member 604 are fixed to the plane to which the first and the second supporting portions 601 and 602 in the ring member 600 are fixed. The first guiding member 603 and the second guiding member 604 are fixed to the ring member 600 with the insulated wire 2 therebetween inserted in a through hole 600a. That is, the insulated wire 2 inserted in the through hole 600a is located between the first guiding member 603 and the second guiding member 604.
The through hole 600a for the insulated wire 2 to be inserted therein is formed in a central portion of the ring member 600. One pillar of the pair of pillars 62 supports a motor 70 for generating driving force to rotate the ring member 600. To a rotary shaft 701 of the motor 70 is relatively unrotatably fixed a pinion gear 71. The pinion gear 71 is configured to be meshed with gear teeth 600b formed in an outer surface of the ring member 600, so that the ring member 600 is rotated by rotation of the rotary shaft 701 of the motor 70. The motor 70, the pinion gear 71, and the gear teeth 600b of the ring member 600 constitute a rotary drive mechanism for rotating the ring member 600 around the insulated wire 2 together with the first and the second supporting portions 601 and 602 and the first and the second guiding members 603 and 604.
Also, the producing apparatus 6 includes first to fourth wheels 641 to 644 which serve as moving means for tensioning and moving the insulated wire 2 in a longitudinal direction of the insulated wire 2. The first and the second wheels 641 and 642 are disposed in such a manner as to face the plane provided with the first and the second supporting portions 601 and 602 of the ring member 600 thereon, and sandwich therebetween the insulated wire 2 wrapped with the shield tape conductor 3 and the first and the second resin tapes 4 and 5. The third and the fourth wheels 643 and 644 are disposed to face the opposite plane to the plane provided with the first and the second supporting portions 601 and 602 of the ring member 600, and sandwich the insulated wire 2 therebetween.
The first and the second wheels 641 and 642 are rotationally driven by a drive mechanism not shown, to draw the insulated wire 2 out from the through hole 600a and move the insulated wire 2. The third and the fourth wheels 643 and 644 are acted on by rotational resistive force of, for example a braking mechanism not shown, and are pivotably supported with that rotational resistive force acting thereon.
To the reel supporting pillar 63 is fixed a supporting portion 631 for pivotably supporting the reel 300 wound with the shield tape conductor 3. Also, above the supporting portion 631 of the reel supporting pillar 63, there is fixed a third guiding member 632 for guiding the shield tape conductor 3 drawn out from the reel 300 to the outer side of the insulated wire 2.
The shield tape conductor 3 is guided to the third guiding member 632, and is sandwiched between the outer surface 20a of the insulation 20 of the insulated wire 2 and the first resin tape 4 (the surface 40a of the resin layer 40), and is thereby longitudinally wrapped along the outer surface of the insulated wire 2. That is, in this embodiment, the pivoting mechanism 60 and the third guiding member 632 serve as a longitudinally wrapping mechanism for longitudinally wrapping the shield tape conductor 3 in the longitudinal direction of the insulated wire 2.
A reel 400 is acted on by rotational resistive force in rotation in the first supporting portion 601, so that when the first resin tape 4 is wrapped, the first resin tape 4 is acted on by tension T1 in its longitudinal direction. Also, a reel 500 is acted on by rotational resistive force in rotation in the second supporting portion 602, so that when the second resin tape 5 is wrapped, the second resin tape 5 is acted on by tension T2 in its longitudinal direction.
The insulation 20 of the insulated wire 2 is acted on by first pressing force P1 due to the tension T1 of the first resin tape 4. Also, the insulation 20 of the insulated wire 2 is acted on by second pressing force P2 due to the tension T2 of the second resin tape 5. As shown in
In other words, the displacement of the insulated wire 2 due to the tension T1 when the first resin tape 4 is spirally wound is always suppressed by the tension T2 when the second resin tape 5 is spirally wound. For example, in the state as shown in
Next, a differential signal transmission cable 10A is described as a comparative example, by reference to
In the state as shown in
(Functions and Advantages of the Embodiment)
This embodiment has functions and advantages described below.
(1) The circumferential winding direction of the shield tape conductor 3 and the circumferential winding direction of the first resin tape 4 around the center axis C of the insulated wire 2 are the same. When spirally winding the first resin tape 4, it is therefore possible to suppress misalignment of both the ends in the width direction of the shield tape conductor 3 in the overlapped portions 3a of the shield tape conductor 3. That is, since in the overlapped portions 3a wrapping is performed from one upper end toward the other lower end, this one end is pressed against the other end, thereby allowing suppression of the occurrence of an air gap in the overlapped portions 3a. This allows suppression of signal skew in the first lead wire 21 and the second lead wire 22, and suppression of the occurrence of rapid signal attenuation in a high frequency band (e.g. 10 Gbps or higher).
(2) The circumferential wrapping direction of the first resin tape 4 and the circumferential wrapping direction of the second resin tape 5 around the center axis C of the insulated wire 2 are the same. For example, as shown in
(3) Since the first resin tape 4 and the second resin tape 5 are wound in such a manner that their respective adhesive layers 41 and 51 face each other, the first resin tape 4 and the second resin tape 5 are firmly joined together. This allows suppression of loosening of the shield tape conductor 3, thereby allowing suppression of signal skew.
(4) The overlapped portions 4a of the first resin tape 4 and the overlapped portions 5a of the second resin tape 5 are wrapped so as to be shifted in the center axis C direction of the insulated wire 2. For example, as shown in
(5) Since the insulation 20 has the convex outer edge in cross section perpendicular to the longitudinal direction of the insulated wire 2, the overlapped portions 3a of both the ends in the width direction of the shield tape conductor 3 are sandwiched between the insulation 20 and the first resin tape 4, and one end and the other end of the shield tape conductor 3 are pressed against each other. Therefore, both those ends are securely surface contacted and electrically connected together, and the occurrence of signal skew or rapid signal attenuation is securely suppressed.
(6) The first and the second supporting portions 601 and 602 and the first and the second guiding members 603 and 604 are fixed to the ring member 600. The integral rotation thereof allows the concurrent wrapping of the first resin tape 4 and the second resin tape 5. This allows efficient production of the differential signal transmission cable 10, for example, in comparison to when the wrapping of the first resin tape 4 over the entire length of the insulated conductor 2 is followed by the wrapping of the second resin tape 5.
(7) Since the first guiding member 603 and the second guiding member 604 are disposed to locate the insulated wire 2 therebetween, the displacement direction of the insulated wire 2 due to the tension T1 of the first resin tape 4 and the displacement direction of the insulated wire 2 due to the tension T2 of the second resin tape 5 are opposite each other, thereby suppressing pivot of the insulated wire 2.
(8) Since the second resin tape 5 is spirally wound in the same direction as the first resin tape 4 with the tension T1 acting thereon, the second resin tape 5 tends to be closely contacted with and along the uneven overlapped portions 4a of the first resin tape 4.
Although the embodiment of the invention has been described above, the embodiment described above should not be construed to limit the claimed invention. Also, it should be noted that not all the combinations of the features described in the above embodiment are essential to the means for solving the problems of the invention.
Also, the invention may be appropriately modified and practiced without departing from the spirit thereof. For example, although in the above described embodiment it has been described that the first lead wire 21 and the second lead wire 22 are together coated with the insulation 20, the insulation for coating the first lead wire 21 and the insulation for coating the second lead wire 22 are not limited thereto, but may separately be provided. Also, the number of differential signal transmission cables contained in the multiwire differential signal transmission cable 100 is not particularly restricted.
Although the invention has been described with respect to the specific embodiments for complete and clear disclosure, the appended claims are not to be thus limited but are to be construed as embodying all modifications and alternative constructions that may occur to one skilled in the art which fairly fall within the basic teaching herein set forth.
Number | Date | Country | Kind |
---|---|---|---|
2012-169905 | Jul 2012 | JP | national |
Number | Name | Date | Kind |
---|---|---|---|
4096346 | Stine et al. | Jun 1978 | A |
4150249 | Pedersen | Apr 1979 | A |
4327246 | Kincaid | Apr 1982 | A |
5142100 | Vaupotic | Aug 1992 | A |
5956445 | Deitz et al. | Sep 1999 | A |
6010788 | Kebabjian et al. | Jan 2000 | A |
6255594 | Hudson | Jul 2001 | B1 |
6403887 | Kebabjian et al. | Jun 2002 | B1 |
6566606 | Hazy et al. | May 2003 | B1 |
6677534 | Yamamoto et al. | Jan 2004 | B2 |
6740808 | Chang | May 2004 | B1 |
7790981 | Vaupotic et al. | Sep 2010 | B2 |
8575488 | Sugiyama et al. | Nov 2013 | B2 |
8704088 | Frey | Apr 2014 | B2 |
20120186850 | Sugiyama et al. | Jul 2012 | A1 |
Number | Date | Country |
---|---|---|
H 07-320571 | Dec 1995 | JP |
2008-181755 | Aug 2008 | JP |
WO2006031633 | Mar 2006 | WO |
Entry |
---|
Japanese Office Action dated Jun. 16, 2015 with English translation. |
Number | Date | Country | |
---|---|---|---|
20140034352 A1 | Feb 2014 | US |