The present invention relates to manufacturing of master discs for optical media and particularly to controlling the quality of the master discs produced.
Master discs for optical media are nowadays generally produced in integrated mastering systems. Integrated mastering systems include in a single housing, the equipment for cleaning the substrate, coating a photoresist layer to the substrate, recording the information in the photoresist using a laser beam recorder, developing the recorded master disc and applying a metal layer, and further comprise transport means for moving the substrate to be processed from one of these treating stations to the next one. The treating stations may be arranged along a line, as disclosed, for example, in EP-A-0 594 255, or in a circular way as described, for example, in WO 1997/39449.
Instead of using a photosensitive layer, such as a photoresist, mastering may also be performed by using a phase transition mastering process as disclosed, for example, in WO 2006/072895. In this case, a dielectric layer is applied on the substrate by sputtering. By applying laser pulses, a heat-induced phase transition is caused in regions of the dielectric layer where pits are to be formed. The regions of the dielectric layer which experienced the phase transition may then be removed by an etching process. Typically, a ZnS—SiOx layer is used as the layer sensitive to phase transitions.
Monitoring the quality of the master discs produced in an integrated mastering system is decisive for the quality of the discs produced with the master disc. U.S. Pat. No. 4,469,424 describes a method and system for developing a photo-resist material used as a recording medium wherein the size of the pits formed during the developing process is precisely controlled and a deviation from one recording medium to another is reduced. To this end, a monitoring beam is applied on the recording medium during the developing process in order to monitor the advancement of the chemical reaction. The monitoring beam of a predetermined wavelength and at an angle of incidence greater or smaller than 90° is supplied on the sensitive layer covering the base being developed, and the intensity of a diffraction beam of the monitoring beam passing through the pits is detected. From the intensity of the diffraction beam, a diffraction intensity signal is produced and the supply of the developing solution is controlled in accordance with the diffraction intensity signal. JP-A-04-311 837 discloses a similar method using both the first and second diffracted orders. Further prior art is disclosed in US-A-2002/022192 and WO 94/23343.
An inspection system which measures all the physical parameters necessary to monitor, control and optimize the mastering system is available from various suppliers. This inspection system measures the average pitch or groove dimension of a master disc using a diffraction order measurement (DOM). This measurement is based on the fact that the information written on the master disc in the form of a regular pattern of grooves with a constant track pitch acts as a periodic grating which, when illuminated by a laser beam of a certain wavelength, splits the incident beam into a number of reflected or transmitted beams. The intensities of the first and second diffraction order beams depend on the groove dimension.
It is an object of the present invention to provide an improved integrated mastering system and a method for more efficiently producing master discs with a high quality.
This object is achieved with the features of the claims.
The integrated mastering system according to the present invention comprises means for determining the quality of the developed layer. This is done using a diffraction order measurement by directing a light beam to the developed layer and measuring the diffraction angle and/or the intensity of the light beam diffracted by the pattern recorded on the master disc. In an integrated mastering system, measurements from one station can be used for process optimization in other stations. In case of the present invention, the diffraction order measurement which is used as a measure for the quality of the developed layer, is used for optimizing recording of subsequent master discs by controlling, e.g., application of the material layer to the master disc or writing the information in the laser beam recorder.
Specifically, after development of the disc, the diffraction order measurement indicates if the recording process was successful and if the pits/bumps are homogeneously formed over the master disc. The two stations that strongly interact with the pit creation process are the means for applying a material layer and the laser beam recorder.
During recording, the intensity and the focus of the laser beam recorder is controlled in order to improve the quality of the master disc. Intensity control may be effectively performed by providing a diode, for example an EOE diode, which is illuminated by light being directed away from the principle light path, for example, using a beam splitter. In particular, in the constant linear velocity (CLV) mode, the intensity is unlikely to vary over the radius of the master disc since the linear velocity along the spiral to be recorded is constant and controlled by a servo system.
Controlling the focus is more difficult. Since, usually, the focus is controlled by measuring light reflected from the disc, erroneous focus offsets may occur when variations on the substrate are present. Therefore, controlling the focus can be greatly improved with the present invention by detecting focus offset variations using diffraction order measurements of a developed disc and accordingly control the laser beam recorder when subsequently recording another master disc. In order to further improve the determine the preferred focus setting, bands with a predetermined focus offset can be written in areas of the disc which are not used for recording information on the disc, that is, on the inside and outside of the disc away from VCI, program area and development band. From plots showing the intensity of a diffracted beam over the radius of the master disc which are produced using diffraction order measurements, focus offset deviations can automatically be detected and compensated. This detection and compensation enables stable focus and intensity behaviour over the complete disc and from disc to disc.
Variations in the structure of the developed layer may also arise from inhomogeneities of the material layer applied to the master disc. For example, when a photoresist is applied to the master disc by spin-coating, variations in the amount of material applied to the master disc or the rotation speed of the spin coater may influence the applied layer, e.g., by introducing variations in the thickness of the applied material layer. Depending on the diffraction order measurement, these parameters may be controlled during the step of applying the material layer.
The material layer may also be applied to the master disc using a sputtering unit. In particular, when mastering is performed by using a phase transition mastering process, the dielectric layer in which the phase transition is caused usually is sputtered to the master disc. The layer applied in a sputtering process may also be controlled depending on the quality determined in the diffraction order measurement. As described, for example, in EP-A-0 946 965, a sputtering unit may include a sputtering cathode which is arranged in a vacuum chamber and comprises pole shoes, a target and at least one magnet or ring magnet arranged concentrically with respect to the center axis of the sputtering cathode. A divided yoke is arranged axially symmetrically with respect to the center axis of the sputtering cathode. By using magnetic coils, which can, for example, be arranged under the target or at any other place, the magnetic field in the target space can be influence or varied purposefully, so that the plasma can be displaced radially from inside to outside. Using such a device, any variations determined by the diffraction order measurement may be compensated when sputtering the material layer of a subsequent master disc.
By determining the quality of the recording in an integrated mastering system continuously, the quality of the produced master discs can be improved and any drift of the system can be avoided.
The present invention will now be described in more detail with reference to the Figures, wherein
In.
a) schematically illustrates the result achieved with a master disc which has been recorded with the laser beam of the laser beam recorder correctly in focus on the material layer of the master disc. In the area 22 in which information has been recorded on the master disc, the intensity of the first order diffracted beam is substantially constant. Additional focus information has further been recorded in areas on the inside 21 and outside 21′ of the disc. In these areas, bands with a predetermined focus offset have been written. These bands have been written in such a way that the intensity measurement results in an predetermined profile of the measured intensity in certain predefined areas. Specifically, in the example illustrated in
b) illustrates the situation where the laser in the laser beam recorder was out of focus during illuminating the master disc. In the information area 22 only the absolute value of the intensity is shifted due to the erroneous focussing, while the shape of the intensity as a function of the distance r remains constant as it is the case for the laser beam of the laser beam recorder correctly in focus, as shown in
In
Other deviations as described above may be detected on the basis of the written focus bands which may then be used to optimize the mastering process.
Number | Date | Country | Kind |
---|---|---|---|
07103431.8 | Mar 2007 | EP | regional |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/EP2008/050925 | 1/28/2008 | WO | 00 | 12/17/2009 |