The field relates to electrical redundancy for bonded structures and, in particular, for structures that are directly bonded without an adhesive.
Multiple semiconductor elements (such as integrated device dies) may be stacked on top of one another in various applications, such as high bandwidth memory (HBM) devices or other devices that utilize vertical integration. The stacked elements can electrically communicate with one another through arrays of contact pads. It can be important to ensure that the electrical connections between contact pads on two stacked elements are reliable.
Specific implementations will now be described with reference to the following drawings, which are provided by way of example, and not limitation.
Two or more semiconductor elements (such as integrated device dies) may be stacked on or bonded to one another to form a bonded structure. Conductive contact pads of one element may be electrically connected to corresponding conductive contact pads of another element. Any suitable number of elements can be stacked in the bonded structure. In some embodiments, the elements are directly bonded to one another without an adhesive. In other embodiments, the elements may be bonded with a conductive adhesive, such as solder, etc.
In various embodiments, a dielectric field region of a first element (e.g., a first semiconductor device die with active circuitry) can be directly bonded (e.g., using dielectric-to-dielectric bonding techniques, such as the ZiBond® technique used by Xperi Corporation of San Jose, Calif.) to a corresponding dielectric field region of a second element (e.g., a second semiconductor device die with active circuitry) without an adhesive. For example, dielectric-to-dielectric bonds may be formed without an adhesive using the direct bonding techniques disclosed at least in U.S. Pat. Nos. 9,391,143 and 10,434,749, the entire contents of each of which are incorporated by reference herein in their entirety and for all purposes. Dielectrics that can be treated and activated for direct bonding include, for example, inorganic dielectrics, particularly those including silicon, such as silicon oxide (SiO), silicon nitride (SiN), silicon carbide (SiC), silicon oxynitride (SiON), silicon oxycarbide (SiOC), silicon carbonitride (SiCN), etc.
In various embodiments, the hybrid direct bonds can be formed without an intervening adhesive. For example, dielectric bonding surfaces can be polished to a high degree of smoothness. The bonding surfaces can be cleaned and exposed to a plasma and/or etchants to activate the surfaces. In some embodiments, the surfaces can be terminated with a species after activation or during activation (e.g., during the plasma and/or etch processes). Without being limited by theory, in some embodiments, the activation process can be performed to break chemical bonds at the bonding surface, and the termination process can provide additional chemical species at the bonding surface that improves the bonding energy during direct bonding. In some embodiments, the activation and termination are provided in the same step, e.g., a plasma or wet etchant to activate and terminate the surfaces. In other embodiments, the bonding surface can be terminated in a separate treatment to provide the additional species for direct bonding. In various embodiments, the terminating species can comprise nitrogen. Further, in some embodiments, the bonding surfaces can be exposed to fluorine. For example, there may be one or multiple fluorine peaks near layer and/or bonding interfaces. Thus, in the directly bonded structures, the bonding interface between two dielectric materials can comprise a very smooth interface with higher nitrogen content and/or fluorine peaks at the bonding interface. Additional examples of activation and/or termination treatments may be found throughout U.S. Pat. Nos. 9,564,414; 9,391,143; and 10,434,749, the entire contents of each of which are incorporated by reference herein in their entirety and for all purposes.
In various embodiments, conductive contact pads of the first element can be directly bonded to corresponding conductive contact pads of the second element. For example, a hybrid bonding technique can be used to provide conductor-to-conductor direct bonds along a bond interface that includes covalently direct bonded dielectric-to-dielectric surfaces, prepared as described above. In various embodiments, the conductor-to-conductor (e.g., contact pad to contact pad) direct bonds and the dielectric-to-dielectric bonds can be formed using the direct hybrid bonding techniques disclosed at least in U.S. Pat. Nos. 9,716,033 and 9,852,988, the entire contents of each of which are incorporated by reference herein in their entirety and for all purposes.
For example, dielectric bonding surfaces can be prepared and directly bonded to one another without an intervening adhesive. Conductive contact pads (which may be surrounded by nonconductive dielectric field regions) may also directly bond to one another without an intervening adhesive. In some embodiments, the respective contact pads can be recessed below the dielectric field regions, for example, recessed by less than 20 nm, less than 15 nm, or less than 10 nm, for example, recessed in a range of 2 nm to 20 nm, or in a range of 4 nm to 10 nm. With such slight recessing or corresponding protrusion, the contacts pads are still considered to be at the relevant element surface within the meaning of the present application. The dielectric field regions can be initially directly bonded to one another without an adhesive and without external pressure at room temperature in some embodiments and, subsequently, the bonded structure can be annealed. Upon annealing, the contact pads can expand and contact one another to form a metal-to-metal direct bond. Beneficially, the use of the hybrid bonding techniques known by the trade name Direct Bond Interconnect, or DBI®, can enable fine pixel pitches as explained above and/or high density of pads connected across the direct bond interface (e.g., small or fine pitches for regular arrays). In some embodiments, the pitch of the bonding pads may be less than 40 microns or less than 10 microns or even less than 2 microns. For some applications the ratio of the pitch of the bonding pads (a size of a pad plus a spacing between the pad to an adjacent pad) to one of the dimensions of the bonding pad (the size of the pad) is less than 5, or less than 3 and sometimes desirably less than 2. In various embodiments, the contact pads can comprise copper, although other metals may be suitable. In some embodiments, bonding pads can have two or more different pitches. For example, a pitch of the bonding pads may be about 40 microns in one area of the first and/or second element, and another pitch of the bonding pads may be 10 microns in another area of the first and/or second element.
In various embodiments, the contact pads can be formed in respective first and second arrays of pads on the first and second elements. If any debris or surface contaminant is present at the surface of the first or second elements, voids may be created at the bond interface, or debris may intervene between opposing contact pads. In addition, reactant byproducts generated during bonding and annealing, e.g. hydrogen and water vapor, may also form voids at the bond interface. These voids may effectively inhibit the joining of particular contact pads in the vicinity, creating openings or other failures in the bond. For example, any void larger than the pad diameter (or pitch) can potentially create an opening and hybrid bond failure.
Beneficially, various embodiments disclosed herein can provide electrical redundancy such that redundant contact pads (e.g., a pair of electrically redundant pads) are laterally separated by a spacing large enough to overcome typical void dimensions. In such embodiments, electrical connection can be made between two directly bonded elements even if one pair of corresponding contact pads are not directly connected due to a void at the bond interface, because a redundant pair for the same desired electrical connection are directly connected. The disclosed embodiments can accordingly improve device yield. In some cases, speed may be affected if, for example, the void occurs for a pad with a short connection. In various embodiments, redundancy may not be implemented for all the contact pads of an element, and instead may be implemented for only a subset of the connections desired across the bond interface. In other embodiments, however, each desired connection across the bond interface may be provided with one or more redundant contact pads on both sides of the bond interface (redundant bond pad pairs). In some embodiments, the electrical redundancy may be provided for only signal pads, and may not be provided for power and ground pads. In other embodiments, electrical redundancy may also be provided for power and/or ground pads.
As explained herein, two or more pads for the same element (the same side of a bond interface) can be provided with pad redundancy by electrically shorting the two or more pads together. In various embodiments, the pads can be shorted together by a wire or trace that does not include any active circuitry or switches. The two or more pads can be spaced or offset for redundancy by a spacing in a range of 1 micron to 10 microns for pads near one another, or by a spacing in a range of 50 microns to 100 microns for pads in different regions of the bonded structure. In some arrangements, pads offset by large dimensions, when implemented due to voids, may affect speed due to increases in impedance with lengthened current paths; however, such redundancy improves the probability of making an adequate electrical contact even if the openings or voids may not be completely eliminated. In large devices, the electrical redundancy may result in lateral trace routing designs more complicated than in other structures.
In some embodiments, the element can comprise active circuitry, a switch, and/or an electronic fuse that is coupled to the trace. The active circuitry, switch or electronic fuse can selectively connect a preferred electrical path. Some logic may also be implemented in the first or second element such that when one or more contact pads in the first preferred electrical path is detected to have a faulty connection, the switch or electronic fuse may be activated to disconnect the preferred path and make the electrical connection for another electrical path utilizing redundant pads.
In
In
In some embodiments, in which pads 20, 22 form part of a regular array or distribution of contact pads, the first and second pads 20a, 20b/22a, 22b can be spaced apart by a spacing that is at least a pitch p of the contact pads 20, 22, at least twice the pitch p of the contact pads 20, 22, at least three times the pitch p, or at least five times the pitch p. For purposes of this comparison, the pitch p can be associated with a minimum pitch of pads 20, 22 along the first or second elements 10, 12, in cases where the shorted pads 20, 22 may be parts of pad groups with different pitches. In some embodiments, the first and second pads 20a, 20b/22a, 22b can be spaced apart by a spacing that is in a range of two to 1000 times the minimum pitch p of the pads 20, 22, in a range of two to 500 times the pitch p, or in a range of two to fifty times the pitch p. In some embodiments, the first and second pads 20a, 20b/22a, 22b can be spaced apart such that at least one contact pad is disposed between the first and second pads 20a, 20b/22a, 22b. For example, the first and second pads 20a, 20b/22a, 22b can be spaced apart such that at least two contact pads, at least three contact pads, or at least four contact pads are disposed between the first and second pads. However, the skilled artisan will appreciate that even adjacent pads can be adequately spaced for achieving the desired redundancy, as shown in
As shown in
For example as shown in the top view of
In some embodiments, each of the redundant zones 36a′, 36a″, 36b′, 36b″, 36c′, 36c″, 36d′, 36d″ in the peripheral regions 34 can be spaced apart from the conductive via regions 32 by a distance d. In some embodiments, the distance d can be at least 10 microns. For example, the distance d can be in a range of 10 microns to 1000 microns, in a range of 50 microns to 1500 microns, or in a range of 100 microns to 1000 microns. In some embodiments, the distance d can be at least a pitch of the contact pads, or at least twice the pitch of the contact pads. For example, the distance d can be two to 1000 times the pitch, or two to 500 times the pitch. This distance d can be selected based upon experimentation to maximize the changes that no one given fault can interfere with both the primary and the redundant pad pairs.
In various embodiments, redundant pads may be provided only for signal pads, such that the connecting lines comprise signal lines, and may not be provided for power and/or ground pads. In other embodiments, redundant pads may also be provided for power and/or ground pads. Any suitable number of zones may be provided. Each zone can have a plurality of pads. In some embodiments, redundancy can be provided on a per pad basis, such that each pad may include one or more corresponding redundant pads to which it is electrically shorted. Minor logic circuits can decide which zone is to be used. For example, logic circuits can be used to decide which redundant zone is to be used for unconnected pads.
In various embodiments, the first and second contact pads can be shorted within an element (e.g., in the first and/or second elements or dies), and can be separated by greater than 5 times a pitch of the pads. In some embodiments, first and second pads can be shorted in each of the first and second elements (e.g., upper and lower dies). In some embodiments, at least four contact pads can be disposed laterally between the first and second contact pads. In some embodiments, there is a void or delamination (e.g., debonding or lack of bonding) under one of the first and second contact pads. In some embodiments, two or more redundant contact pads can be shorted to at least one through substrate via (TSV). In some embodiments, two or more redundant contact pads can be shorted to two or more TSVs, which can provide the ability to shift signal traffic using redundancies based on openings, hot spots, etc.
Thus, in one embodiment, a bonded structure is disclosed. The bonded structure can include a first element having a first plurality of contact pads at a first surface, the first plurality of contact pads including a first contact pad and a second contact pad spaced apart from one another by at least 10 microns, the first and second contact pads electrically shorted to one another. The bonded structure can include a second element stacked on the first element, the second element having a second plurality of contact pads at a second surface, at least one of the second plurality of contact pads bonded and electrically connected to at least one of the first plurality of contact pads.
In some embodiments, the first and second contact pads can be spaced apart from one another by at least five times a first pitch of the first plurality of contact pads. The first and second contact pads can be spaced apart from one another by a spacing that is in a range of two to 1000 times the first pitch. The first and second contact pads can be spaced apart from one another by a spacing that is in a range of two to 500 times the pitch. The first and second contact pads can be spaced apart by at least 2 microns. The first and second contact pads can be spaced apart by a spacing in a range of 10 microns to 1000 microns. The first and second contact pads can be spaced apart by a spacing in a range of 50 microns to 1500 microns. The first and second contact pads can be spaced apart by a spacing in a range of 100 microns to 1000 microns. The at least one of the first plurality of contact pads can be directly bonded to the at least one of the second plurality of contact pads without an intervening adhesive. The bonded structure can include first and second dielectric field regions on the first and second elements, the first and second dielectric field regions directly bonded to one another without an adhesive. The first contact pad of the first element can be disposed opposite a third contact pad of the second element. The second contact pad of the first element can be disposed opposite a fourth contact pad of the second element. A void can be disposed between at least a portion of the first and third contact pads. The second and fourth contact pads can physically and electrically contact one another. The first and third contact pads may not be directly electrically connected to one another. The first contact pad of the first element can be disposed opposite a third contact pad of the second element. The second contact pad of the first element can be disposed opposite a fourth contact pad of the second element. At least a portion of the first and third contact pads can be located at a bonding fault along a bonding interface between the first and second elements. The second and fourth contact pads can physically and electrically contact one another.
In another embodiment, a bonded structure is disclosed. The bonded structure can include a first element having a first plurality of spaced contact pads having a first pitch at a first surface, the first plurality of contact pads including a first contact pad and a second contact pad of the first plurality spaced apart from one another, the first and second contact pads electrically shorted to one another. The bonded structure can include a second element stacked on the first element, the second element having a second plurality of spaced contact pads at a second surface, at least one of the second plurality of contact pads bonded and electrically connected to at least one of the first plurality of contact pads.
In some embodiments, the first and second contact pads can be spaced apart from one another by at least five times the first pitch. The first and second contact pads can be spaced apart from one another by a spacing that is in a range of two to 1000 times the first pitch. The first and second contact pads can be spaced apart from one another by a spacing that is in a range of two to 500 times the pitch. The first and second contact pads can be spaced apart from one another by at least 10 microns. The first and second contact pads can be spaced apart by a spacing in a range of 10 microns to 1000 microns. The first and second contact pads can be spaced apart by a spacing in a range of 50 microns to 1500 microns. The first and second contact pads can be spaced apart by a spacing in a range of 100 microns to 1000 microns. The at least one of the first plurality of contact pads can be directly bonded to the at least one of the second plurality of contact pads without an intervening adhesive. The bonded structure can include first and second dielectric field regions on the first and second elements, the first and second dielectric field regions directly bonded to one another without an adhesive. The first contact pad of the first element can be disposed opposite a third contact pad of the second element. The second contact pad of the first element can be disposed opposite a fourth contact pad of the second element. A void can be disposed between at least a portion of the first and third contact pads. The second and fourth contact pads can physically and electrically contact one another. The first and third contact pads may not be directly electrically connected to one another. The first contact pad of the first element can be disposed opposite a third contact pad of the second element. The second contact pad of the first element can be disposed opposite a fourth contact pad of the second element. At least a portion of the first and third contact pads can be located at a bonding fault along a bonding interface between the first and second elements. The second and fourth contact pads can physically and electrically contact one another.
In one embodiment, the first contact pad and the second contact pad are spaced apart from one another by at least twice the first pitch.
In one aspect, a first element that is configured to directly bond to a second element without an intervening adhesive is disclosed. The first element can include a first plurality of contact pads that are positioned at a first surface of the first element. The first plurality of contact pads include a first contact pad and a second contact pad that are spaced apart from one another by at least 10 microns. The first plurality of contact pads are prepared for direct bonding. The first element can also include a conductive line that electrically connects the first and second contact pads. The first and second contact pads are electrically connected to one another through the conductive line. The first element can further include a first dielectric field region positioned at the first surface of the first element. The first dielectric field region are disposed at least partially between the first and second contact pads. The first dielectric field region is prepared for direct bonding.
In one embodiment, the first and second contact pads are spaced apart from one another by at least five times a first pitch of the first plurality of contact pads. The first and second contact pads are spaced apart from one another by a spacing that is in a range of two to 1000 times the first pitch.
In one embodiment, the first and second contact pads are spaced apart by a spacing in a range of 10 microns to 1000 microns.
In one embodiment, each of the first plurality of contact pads is prepared to directly bond to each of a second plurality of contact pads of the second element without an intervening adhesive. The first dielectric field region on the first element is prepared to directly bond to a second dielectric field region of the second element without an adhesive.
In one embodiment, the first element further include a circuitry that is coupled to the first contact pad and the second contact pad along the conductive line. The circuitry can be configured to selectively enable shorting the first contact pad to the second contact pad. The circuitry comprises a switch or an electronic fuse.
In one aspect, a bonded structure is disclosed. The bonded structure can include a first element that has a first plurality of contact pads at a first surface. The first plurality of contact pads includes a first contact pad and a second contact pad that are spaced apart from one another. The first and second contact pads are electrically connected to one another. The bonded structure can also include a second element that is stacked on the first element. The second element has a second plurality of contact pads at a second surface corresponding to the first plurality of contact pads of the first element. At least one of the second plurality of contact pads is bonded and electrically connected to at least one of the first plurality of contact pads.
In one embodiment, the first contact pad and the second contact pad are spaced apart from one another according to a first pitch across the first plurality of contact pads.
In one embodiment, the first contact pad and the second contact pad are spaced apart from one another by at least twice the first pitch.
In one embodiment, the first and second contact pads are spaced apart from one another by at least five times the first pitch.
In one embodiment, the first and second contact pads are spaced apart from one another by a spacing that is in a range of two to 1000 times the first pitch.
In one embodiment, the first and second contact pads are spaced apart from one another by a spacing that is in a range of two to 500 times the pitch.
In one embodiment, the first and second contact pads are spaced apart from one another by at least 2 microns.
In one embodiment, the first and second contact pads are spaced apart from one another by at least 10 microns.
The first and second contact pads can be spaced apart by a spacing in a range of 10 microns to 1000 microns.
In one embodiment, the at least one of the first plurality of contact pads is directly bonded to the at least one of the second plurality of contact pads without an intervening adhesive. The bonded structure can further include first and second dielectric field regions on the first and second elements. The first and second dielectric field regions can be directly bonded to one another without an adhesive.
In one embodiment, the first contact pad of the first element is disposed opposite a third contact pad of the second element. The second contact pad of the first element can be disposed opposite a fourth contact pad of the second element. A void can be disposed between at least a portion of the first and third contact pads. The second and fourth contact pads can be physically and electrically contact one another. The first and third contact pads may not directly connected to one another.
In one embodiment, the first contact pad of the first element is disposed opposite a third contact pad of the second element. The second contact pad of the first element can be disposed opposite a fourth contact pad of the second element. At least a portion of the first and third contact pads can be located at a bonding fault along a bonding interface between the first and second elements. The second and fourth contact pads physically and electrically contact one another.
In one embodiment, the first contact pad and the second contact pad are electrically connected to one another by way of circuitry configured to selectively short the first contact pad to the second contact pad.
All of these embodiments are intended to be within the scope of this disclosure. These and other embodiments will become readily apparent to those skilled in the art from the following detailed description of the embodiments having reference to the attached figures, the claims not being limited to any particular embodiment(s) disclosed. Although this certain embodiments and examples have been disclosed herein, it will be understood by those skilled in the art that the disclosed implementations extend beyond the specifically disclosed embodiments to other alternative embodiments and/or uses and obvious modifications and equivalents thereof. In addition, while several variations have been shown and described in detail, other modifications will be readily apparent to those of skill in the art based upon this disclosure. It is also contemplated that various combinations or sub-combinations of the specific features and aspects of the embodiments may be made and still fall within the scope. It should be understood that various features and aspects of the disclosed embodiments can be combined with, or substituted for, one another in order to form varying modes of the disclosed implementations. Thus, it is intended that the scope of the subject matter herein disclosed should not be limited by the particular disclosed embodiments described above, but should be determined only by a fair reading of the claims that follow.
This application claims priority to U.S. Provisional Patent Application No. 62/953,046, filed Dec. 23, 2019, the entire contents of which are hereby incorporated by reference herein in their entirety and for all purposes.
Number | Name | Date | Kind |
---|---|---|---|
5753536 | Sugiyama et al. | May 1998 | A |
5771555 | Eda et al. | Jun 1998 | A |
6080640 | Gardner et al. | Jun 2000 | A |
6255899 | Bertin et al. | Jul 2001 | B1 |
6423640 | Lee et al. | Jul 2002 | B1 |
6465892 | Suga | Oct 2002 | B1 |
6887769 | Kellar et al. | May 2005 | B2 |
6908027 | Tolchinsky et al. | Jun 2005 | B2 |
7045453 | Canaperi et al. | May 2006 | B2 |
7105980 | Abbott et al. | Sep 2006 | B2 |
7193423 | Dalton et al. | Mar 2007 | B1 |
7385283 | Wu et al. | Jun 2008 | B2 |
7750488 | Patti et al. | Jul 2010 | B2 |
7803693 | Trezza | Sep 2010 | B2 |
8183127 | Patti et al. | May 2012 | B2 |
8259461 | Hollis | Sep 2012 | B2 |
8349635 | Gan et al. | Jan 2013 | B1 |
8377798 | Peng et al. | Feb 2013 | B2 |
8441131 | Ryan | May 2013 | B2 |
8476165 | Trickett et al. | Jul 2013 | B2 |
8482132 | Yang et al. | Jul 2013 | B2 |
8501537 | Sadaka et al. | Aug 2013 | B2 |
8524533 | Tong et al. | Sep 2013 | B2 |
8620164 | Heck et al. | Dec 2013 | B2 |
8647987 | Yang et al. | Feb 2014 | B2 |
8697493 | Sadaka | Apr 2014 | B2 |
8716105 | Sadaka et al. | May 2014 | B2 |
8802538 | Liu | Aug 2014 | B1 |
8809123 | Liu et al. | Aug 2014 | B2 |
8841002 | Tong | Sep 2014 | B2 |
9064862 | Hwang et al. | Jun 2015 | B2 |
9093350 | Endo et al. | Jul 2015 | B2 |
9142517 | Liu et al. | Sep 2015 | B2 |
9171756 | Enquist et al. | Oct 2015 | B2 |
9184125 | Enquist et al. | Nov 2015 | B2 |
9224704 | Landru | Dec 2015 | B2 |
9230941 | Chen et al. | Jan 2016 | B2 |
9257399 | Kuang et al. | Feb 2016 | B2 |
9299736 | Chen et al. | Mar 2016 | B2 |
9312229 | Chen et al. | Apr 2016 | B2 |
9331149 | Tong et al. | May 2016 | B2 |
9337235 | Chen et al. | May 2016 | B2 |
9385024 | Tong et al. | Jul 2016 | B2 |
9394161 | Cheng et al. | Jul 2016 | B2 |
9431368 | Enquist et al. | Aug 2016 | B2 |
9437572 | Chen et al. | Sep 2016 | B2 |
9443796 | Chou et al. | Sep 2016 | B2 |
9461007 | Chun et al. | Oct 2016 | B2 |
9496239 | Edelstein et al. | Nov 2016 | B1 |
9536848 | England et al. | Jan 2017 | B2 |
9559081 | Lai et al. | Jan 2017 | B1 |
9620481 | Edelstein et al. | Apr 2017 | B2 |
9656852 | Cheng et al. | May 2017 | B2 |
9723716 | Meinhold | Aug 2017 | B2 |
9728521 | Tsai et al. | Aug 2017 | B2 |
9741620 | Uzoh et al. | Aug 2017 | B2 |
9799587 | Fujii et al. | Oct 2017 | B2 |
9852988 | Enquist et al. | Dec 2017 | B2 |
9893004 | Yazdani | Feb 2018 | B2 |
9899442 | Katka | Feb 2018 | B2 |
9929050 | Lin | Mar 2018 | B2 |
9941241 | Edelstein et al. | Apr 2018 | B2 |
9941243 | Kim et al. | Apr 2018 | B2 |
9953941 | Enquist | Apr 2018 | B2 |
9960142 | Chen et al. | May 2018 | B2 |
10002844 | Wang et al. | Jun 2018 | B1 |
10026605 | Doub et al. | Jul 2018 | B2 |
10075657 | Fahim et al. | Sep 2018 | B2 |
10204893 | Uzoh et al. | Feb 2019 | B2 |
10269756 | Uzoh | Apr 2019 | B2 |
10276619 | Kao et al. | Apr 2019 | B2 |
10276909 | Huang et al. | Apr 2019 | B2 |
10418277 | Cheng et al. | Sep 2019 | B2 |
10446456 | Shen et al. | Oct 2019 | B2 |
10446487 | Huang et al. | Oct 2019 | B2 |
10446532 | Uzoh et al. | Oct 2019 | B2 |
10508030 | Katkar et al. | Dec 2019 | B2 |
10522499 | Enquist et al. | Dec 2019 | B2 |
10707087 | Uzoh et al. | Jul 2020 | B2 |
10727219 | Uzoh et al. | Jul 2020 | B2 |
10784191 | Huang et al. | Sep 2020 | B2 |
10790262 | Uzoh et al. | Sep 2020 | B2 |
10804255 | Agarwal | Oct 2020 | B1 |
10840135 | Uzoh | Nov 2020 | B2 |
10840205 | Fountain, Jr. et al. | Nov 2020 | B2 |
10854578 | Morein | Dec 2020 | B2 |
10879212 | Uzoh et al. | Dec 2020 | B2 |
10886177 | DeLaCruz et al. | Jan 2021 | B2 |
10892246 | Uzoh | Jan 2021 | B2 |
10923408 | Huang et al. | Feb 2021 | B2 |
10923413 | DeLaCruz | Feb 2021 | B2 |
10950547 | Mohammed et al. | Mar 2021 | B2 |
10964664 | Mandalapu et al. | Mar 2021 | B2 |
10985133 | Uzoh | Apr 2021 | B2 |
10991804 | DeLaCruz et al. | Apr 2021 | B2 |
10998292 | Lee et al. | May 2021 | B2 |
11004757 | Katkar et al. | May 2021 | B2 |
11011494 | Gao et al. | May 2021 | B2 |
11011503 | Wang et al. | May 2021 | B2 |
11031285 | Katkar et al. | Jun 2021 | B2 |
11056348 | Theil | Jul 2021 | B2 |
11088099 | Katkar et al. | Aug 2021 | B2 |
11127738 | DeLaCruz et al. | Sep 2021 | B2 |
11158606 | Gao et al. | Oct 2021 | B2 |
11171117 | Gao et al. | Nov 2021 | B2 |
11176450 | Teig et al. | Nov 2021 | B2 |
11256004 | Haba et al. | Feb 2022 | B2 |
11264357 | DeLaCruz et al. | Mar 2022 | B1 |
11276676 | Enquist et al. | Mar 2022 | B2 |
11296044 | Gao et al. | Apr 2022 | B2 |
11329034 | Tao et al. | May 2022 | B2 |
11348898 | DeLaCruz et al. | May 2022 | B2 |
11355443 | Huang et al. | Jun 2022 | B2 |
11367652 | Uzoh et al. | Jun 2022 | B2 |
20040084414 | Sakai et al. | May 2004 | A1 |
20050184398 | Zhou et al. | Aug 2005 | A1 |
20060057945 | Hsu et al. | Mar 2006 | A1 |
20070111386 | Kim et al. | May 2007 | A1 |
20110292708 | Kang et al. | Dec 2011 | A1 |
20110316572 | Rahman | Dec 2011 | A1 |
20140175655 | Chen et al. | Jun 2014 | A1 |
20150064498 | Tong | Mar 2015 | A1 |
20150085195 | Pereira et al. | Mar 2015 | A1 |
20150206824 | Ramachandra et al. | Jul 2015 | A1 |
20150243611 | Liu et al. | Aug 2015 | A1 |
20150346279 | Douskey | Dec 2015 | A1 |
20150380341 | Chiou et al. | Dec 2015 | A1 |
20160181228 | Higuchi et al. | Jun 2016 | A1 |
20160343682 | Kawasaki | Nov 2016 | A1 |
20170069593 | Chou et al. | Mar 2017 | A1 |
20170125383 | Liu | May 2017 | A1 |
20170250160 | Wu et al. | Aug 2017 | A1 |
20180175012 | Wu et al. | Jun 2018 | A1 |
20180182639 | Uzoh et al. | Jun 2018 | A1 |
20180182666 | Uzoh et al. | Jun 2018 | A1 |
20180190580 | Haba et al. | Jul 2018 | A1 |
20180190583 | DeLaCruz et al. | Jul 2018 | A1 |
20180219038 | Gambino et al. | Aug 2018 | A1 |
20180323177 | Yu et al. | Nov 2018 | A1 |
20180323227 | Zhang et al. | Nov 2018 | A1 |
20180323952 | Chang et al. | Nov 2018 | A1 |
20180331066 | Uzoh et al. | Nov 2018 | A1 |
20190096741 | Uzoh et al. | Mar 2019 | A1 |
20190115277 | Yu et al. | Apr 2019 | A1 |
20190131277 | Yang et al. | May 2019 | A1 |
20190198409 | Katkar et al. | Jun 2019 | A1 |
20190265411 | Huang et al. | Aug 2019 | A1 |
20190333550 | Fisch | Oct 2019 | A1 |
20190385935 | Gao et al. | Dec 2019 | A1 |
20190385966 | Gao et al. | Dec 2019 | A1 |
20190385982 | Lee | Dec 2019 | A1 |
20200013637 | Haba | Jan 2020 | A1 |
20200013765 | Fountain, Jr. et al. | Jan 2020 | A1 |
20200035641 | Fountain, Jr. et al. | Jan 2020 | A1 |
20200035643 | Hirata et al. | Jan 2020 | A1 |
20200075534 | Gao et al. | Mar 2020 | A1 |
20200075553 | DeLaCruz et al. | Mar 2020 | A1 |
20200118973 | Wang et al. | Apr 2020 | A1 |
20200126906 | Uzoh et al. | Apr 2020 | A1 |
20200194396 | Uzoh | Jun 2020 | A1 |
20200227367 | Haba et al. | Jul 2020 | A1 |
20200279821 | Haba et al. | Sep 2020 | A1 |
20200286875 | Nishida et al. | Sep 2020 | A1 |
20200294908 | Haba et al. | Sep 2020 | A1 |
20200328162 | Haba et al. | Oct 2020 | A1 |
20200328164 | DeLaCruz et al. | Oct 2020 | A1 |
20200328165 | DeLaCruz et al. | Oct 2020 | A1 |
20200335408 | Gao et al. | Oct 2020 | A1 |
20200371154 | DeLaCruz et al. | Nov 2020 | A1 |
20200395321 | Katkar et al. | Dec 2020 | A1 |
20200402959 | Eom et al. | Dec 2020 | A1 |
20200411483 | Uzoh et al. | Dec 2020 | A1 |
20210020601 | Chen et al. | Jan 2021 | A1 |
20210082865 | Baraskar et al. | Mar 2021 | A1 |
20210098412 | Haba et al. | Apr 2021 | A1 |
20210118864 | DeLaCruz et al. | Apr 2021 | A1 |
20210143125 | DeLaCruz et al. | May 2021 | A1 |
20210143921 | Nasrullah et al. | May 2021 | A1 |
20210181510 | Katkar et al. | Jun 2021 | A1 |
20210193603 | DeLACruz | Jun 2021 | A1 |
20210193624 | DeLaCruz et al. | Jun 2021 | A1 |
20210242152 | Fountain, Jr. | Aug 2021 | A1 |
20210296282 | Gao et al. | Sep 2021 | A1 |
20210305202 | Uzoh et al. | Sep 2021 | A1 |
20210366820 | Uzoh | Nov 2021 | A1 |
20210407941 | Haba | Dec 2021 | A1 |
20220077063 | Haba | Mar 2022 | A1 |
20220077087 | Haba | Mar 2022 | A1 |
20220139867 | Uzoh | May 2022 | A1 |
20220139869 | Gao et al. | May 2022 | A1 |
20220208650 | Gao et al. | Jun 2022 | A1 |
20220208702 | Uzoh | Jun 2022 | A1 |
20220208723 | Katkar et al. | Jun 2022 | A1 |
20220246497 | Fountain, Jr. et al. | Aug 2022 | A1 |
20220285303 | Mirkarimi et al. | Sep 2022 | A1 |
20220319901 | Suwito et al. | Oct 2022 | A1 |
20220320035 | Uzoh et al. | Oct 2022 | A1 |
20220320036 | Gao et al. | Oct 2022 | A1 |
20230005850 | Fountain, Jr. | Jan 2023 | A1 |
20230019869 | Mirkarimi et al. | Jan 2023 | A1 |
20230036441 | Haba et al. | Feb 2023 | A1 |
20230067677 | Lee et al. | Mar 2023 | A1 |
20230069183 | Haba | Mar 2023 | A1 |
20230100032 | Haba et al. | Mar 2023 | A1 |
20230115122 | Uzoh et al. | Apr 2023 | A1 |
20230122531 | Uzoh | Apr 2023 | A1 |
20230123423 | Gao et al. | Apr 2023 | A1 |
20230125395 | Gao et al. | Apr 2023 | A1 |
20230130259 | Haba et al. | Apr 2023 | A1 |
20230132632 | Katkar et al. | May 2023 | A1 |
20230140107 | Uzoh et al. | May 2023 | A1 |
20230142680 | Guevara et al. | May 2023 | A1 |
20230154816 | Haba et al. | May 2023 | A1 |
20230154828 | Haba et al. | May 2023 | A1 |
20230187264 | Uzoh et al. | Jun 2023 | A1 |
20230187317 | Uzoh | Jun 2023 | A1 |
20230187412 | Gao et al. | Jun 2023 | A1 |
20230197453 | Fountain, Jr. et al. | Jun 2023 | A1 |
20230197496 | Theil | Jun 2023 | A1 |
20230197559 | Haba et al. | Jun 2023 | A1 |
20230197560 | Katkar et al. | Jun 2023 | A1 |
20230197655 | Theil et al. | Jun 2023 | A1 |
20230207402 | Fountain, Jr. et al. | Jun 2023 | A1 |
20230207437 | Haba | Jun 2023 | A1 |
20230207474 | Uzoh et al. | Jun 2023 | A1 |
20230207514 | Gao et al. | Jun 2023 | A1 |
20230215836 | Haba et al. | Jul 2023 | A1 |
20230245950 | Haba et al. | Aug 2023 | A1 |
Number | Date | Country |
---|---|---|
2013-033786 | Feb 2013 | JP |
2018-160519 | Oct 2018 | JP |
WO 2005043584 | May 2005 | WO |
WO 2021133671 | Jul 2021 | WO |
Entry |
---|
Calderoni, Alessandro, “Memory Devices and Selectors for High-Density Memory Technology,” International Electron Devices Meeting, Short Course 2: Technologies for Memory-Centric Computing, Dec. 8, 2019, 330 pages. |
Derbyshire, Katherine, “The Darker Side of Hybrid Bonding,” Semiconductor Engineering, Dec. 17, 2020, 6 pages. |
Ker, Ming-Dou et al., “Fully process-compatible layout design on bond pad to improve wire bond reliability in CMOS Ics,” IEEE Transactions on Components and Packaging Technologies, Jun. 2002, vol. 25, No. 2, pp. 309-316. |
Moriceau, H. et al., “Overview of recent direct wafer bonding advances and applications,” Advances in Natural Sciences—Nanoscience and Nanotechnology, 2010, 11 pages. |
Nakanishi, H. et al., “Studies on SiO2-SiO2 bonding with hydrofluoric acid. Room temperature and low stress bonding technique for MEMS,” Sensors and Actuators, 2000, vol. 79, pp. 237-244. |
Oberhammer, J. et al., “Sealing of adhesive bonded devices on wafer level,” Sensors and Actuators A, 2004, vol. 110, No. 1-3, pp. 407-412, see pp. 407-412, and Figures 1(a)-1(l), 6 pages. |
Plobi, A. et al., “Wafer direct bonding: tailoring adhesion between brittle materials,” Materials Science and Engineering Review Journal, 1999, R25, 88 pages. |
International Search Report and Written Opinion dated Apr. 22, 2021, International Application No. PCT/US2020/066467, 12 pages. |
Peters, Laura, “The Path To Known Good Interconnects,” semiengineering.com/the-path-to-known-good-interconnects, Jan. 19, 2023, 13 pages (printed Jan. 24, 2023). |
Morrison, Jim et al., “Samsung Galaxy S7 Edge Teardown,” Tech Insights (posted Apr. 24, 2016), includes description of hybrid bonded Sony IMX260 dual-pixel sensor, https://www.techinsights.com/blog/samsung-galaxy-s7-edge-teardown, downloaded Jul. 11, 2023, 9 pages. |
Sony IMX260 image, cross section of Sony dual-pixel sensor product labeled IMX260, showing peripheral probe and wire bond pads in a bonded structure. The part in the image was shipped in Apr. 2016. Applicant makes no representation that the part in the image is identical to the part identified in the separately submitted reference Morrison et al. (Tech Insights article dated Apr. 24, 2016), describing and showing a similar sensor product within the Samsung Galaxy S7; however the imaged part and the part shown in the Morrison et al. article share the part name “Sony IMX260.”. |
Image of cross-section of onsemi's AR0820 CMOS Image Sensor. The product in the image was shipped on Sep. 16, 2021. Applicant makes no representation that the product in the image is identical to the product identified in the Bush, Nov. 8, 2018, ElectronicsWeekly.com article (“Bush article”); however, they share a product number. |
Bush, Steve, “Electronica: Automotive power modules from On Semi,” ElectronicsWeekly.com, indicating AR0820 product was to be demonstrated at a Nov. 2018 trade show, https://www.electronicsweekly.com/news/products/power-supplies/electronica-automotive-power-modules-semi:2018-11/ (published Nov. 8, 2018; downloaded Jul. 26, 2023) (“Bush article”). |
Number | Date | Country | |
---|---|---|---|
20210193625 A1 | Jun 2021 | US |
Number | Date | Country | |
---|---|---|---|
62953046 | Dec 2019 | US |