Electrode structure for a non-volatile memory device and method

Information

  • Patent Grant
  • 9312483
  • Patent Number
    9,312,483
  • Date Filed
    Monday, September 24, 2012
    12 years ago
  • Date Issued
    Tuesday, April 12, 2016
    8 years ago
Abstract
A method of forming a resistive switching device includes forming a wiring structure over a first dielectric and substrate, forming a junction layer over the wiring structure, forming a resistive switching layer over the junction layer, forming an active metal over the resistive switching layer, forming a tungsten layer over the active metal, forming a barrier layer over the tungsten, depositing a mask over the barrier layer, etching the barrier layer to form a hard mask, etching the junction layer, the resistive switching layer, the active metal layer, and the adhesion layer using the hard mask to form a stack of material, while the adhesion layer maintains adhesion between the barrier layer and the active metal and while side walls of the stack of material have reduced contaminants and have reduced gap regions between the barrier layer and the resistive switching layer.
Description
BACKGROUND

The inventor of the present invention has recognized the success of semiconductor devices has been mainly driven by an intensive transistor down-scaling process. However, as field effect transistors (FETs) approach sizes less than 100 nm, physical problems such as short channel effect begin to hinder proper device operation. For transistor based memories, such as those commonly known as Flash memories, other performance degradations or problems may occur as device sizes shrink. With Flash memories, a high voltage is usually required for programming of such memories, however, as device sizes shrink, the high programming voltage can result in dielectric breakdown and other problems. Similar problems can occur with other types of non-volatile memory devices other than Flash memories.


The inventor of the present invention recognizes that many other types of non-volatile random access memory (RAM) devices have been explored as next generation memory devices, such as: ferroelectric RAM (Fe RAM); magneto-resistive RAM (MRAM); organic RAM (ORAM); phase change RAM (PCRAM); and others.


A common drawback with these memory devices include that they often require new materials that are incompatible with typical CMOS manufacturing. As an example of this, Organic RAM or ORAM requires organic chemicals that are currently incompatible with large volume silicon-based fabrication techniques and foundries. As another example of this, Fe-RAM and MRAM devices typically require materials using a high temperature anneal step, and thus such devices cannot be normally be incorporated with large volume silicon-based fabrication techniques.


Additional drawbacks with these devices include that such memory cells often lack one or more key attributes required of non-volatile memories. As an example of this, Fe-RAM and MRAM devices typically have fast switching (e.g. “0” to “1”) characteristics and good programming endurance, however, such memory cells are difficult to scale to small sizes. In another example of this, for ORAM devices reliability of such memories is often poor. As yet another example of this, switching of PCRAM devices typically includes Joules heating and undesirably require high power consumption.


From the above, improved semiconductor memory devices that can scale to smaller dimensions with reduced drawbacks are therefore desirable.


BRIEF SUMMARY OF THE PRESENT INVENTION

The present invention is directed to resistive switching device. More particularly, embodiments according to the present invention provide a device structure and a method to form a resistive switching device. The resistive switching device has been applied in non-volatile memory device. But it should be recognized that embodiment according to the present invention can have a much broader range of applicability


In a specific embodiment, a method of forming a non-volatile memory device is provided. The method includes providing a substrate having a surface region. A first dielectric material is formed overlying the surface region of the substrate and a first wiring structure is formed overlying the first dielectric material. The method includes forming a junction layer material overlying the first wiring structure and a resistive switching material is deposited overlying the junction layer material. In a specific embodiment, the resistive switching material comprises an amorphous silicon material. The method forms an active conductive material overlying the resistive switching material. For amorphous silicon material as the resistive switching material, the active conductive material can be silver in a specific embodiment. An adhesion material comprising a tungsten material is formed overlying the active conductive material and a diffusion barrier material is formed overlying the adhesion material. In a specific embodiment, the method includes depositing a masking material comprising a photoresist material overlying the diffusion barrier material and subjecting the diffusion barrier material to a first etching process to form a hard mask layer comprising the diffusion barrier material. The method subjects a stack of material comprising the junction material, the resistive switching material, the active conductive material, and the adhesion material to a second etching process to form a first structure using at least the masking layer and the hard mask layer as an etching mask. The first structure has reduced undercut between the adhesion material and the active conductive material and with reduced contaminants from the first etching process or the second etching process. A second wiring structure is formed overlying the stack of material including the diffusion barrier material.


In a specific embodiment, a method of forming a non-volatile memory device is provided. The method includes providing a substrate having a surface region. A first dielectric material is formed overlying the surface region of the substrate. A first wiring structure is formed overlying the first dielectric material. In a specific embodiment, a junction layer material comprising a silicon material having a p+ impurity characteristic is formed overlying the first wiring structure. The method forms a resistive switching material overlying the junction layer material. The resistive switching material includes a silicon material having an intrinsic semiconductor characteristic. In a specific embodiment, the silicon material having an intrinsic semiconductor characteristic includes an amorphous silicon material having an intrinsic semiconductor characteristic. The method includes forming an active conductive material overlying the resistive switching material. The active conductive material can be a silver metal material for amorphous silicon as the resistive switching material. In a specific embodiment, the method forms an adhesion material comprising a tungsten material overlying the active conductive material and forms a diffusion barrier material comprising a titanium nitride material overlying the adhesion material. A masking material overlying the diffusion barrier material and the diffusion barrier material is subjected to a first etching process to form a hard mask layer. The hard mask layer includes the diffusion barrier material in a specific embodiment. In a specific embodiment, the method subjects a stack of material comprising the junction material, the resistive switching material, the active conductive material, and the adhesion material to a second etching process to form a first structure. The second etching process uses at least the masking layer and the hard mask layer as an etching mask and the first structure is characterized at least by a side wall free from an undercut between the adhesion material and the active conductive material. The method further forms a second wiring structure overlying the stack of material including the diffusion barrier material


According to one aspect of the present invention, a method of forming a resistive switching device for a non-volatile memory device is disclosed. One technique includes providing a substrate having a surface region, forming a first dielectric layer overlying the surface region of the substrate, forming a first wiring structure overlying the first dielectric layer, and forming a junction layer overlying the first wiring structure. A process includes forming a resistive switching layer overlying the junction layer, forming an active metal layer overlying the resistive switching layer, forming an adhesion layer comprising a tungsten material overlying the active metal layer, and forming a diffusion barrier layer overlying the adhesion layer. A method includes depositing a masking layer overlying the diffusion barrier layer, subjecting the diffusion barrier layer to a first etching process to form a hard mask layer comprising the diffusion barrier layer, subjecting a stack of material comprising the junction layer, the resistive switching layer, the active metal layer, and the adhesion layer to a second etching process to form a first structure using at least the masking layer and the hard mask layer as an etching mask while the adhesion layer maintaining adhesion between the diffusion barrier layer and the active metal layer, the first structure being characterized by a side wall with reduced contaminants from the first etching process or the second etching process and with a reduced gap region between the diffusion barrier layer and the resistive switching layer, and forming a second wiring structure overlying the stack of material including the diffusion barrier layer.


According to another aspect of the invention, a resistive switching device for a non-volatile memory device is disclosed. One device includes a substrate having a surface region, a first dielectric layer overlying the surface region of the substrate, and a first wiring structure overlying the first dielectric layer. A memory includes a junction layer overlying the first wiring structure, a resistive switching layer overlying the junction layer, an active metal layer overlying the resistive switching layer, an adhesion layer comprising a tungsten material overlying the active metal layer, and a diffusion barrier layer overlying the adhesion layer. A device includes a stack of material comprising the junction layer, the resistive switching layer, the active metal layer, and the adhesion layer, wherein the first structure being characterized by a side wall with reduced contaminants from the first etching process or the second etching process and with a reduced gap region between the diffusion barrier layer and the resistive switching layer, and a second wiring structure overlying the stack of material including the diffusion barrier layer.


Many benefits can be achieved by ways of the present invention over conventional techniques. For example, the present method uses conventional semiconductor material and processing equipment without modification. Embodiments according to the present invention provide a method and a device structure for fabricating a resistive switching device structure free from defects or material incompatibility. Depending on the embodiment, one or more of the benefits may be achieved. One skilled in the art would recognize other variations, modifications, and alternatives.





SUMMARY OF THE DRAWINGS

In order to more fully understand the present invention, reference is made to the accompanying drawings. Understanding that these drawings are not to be considered limitations in the scope of the invention, the presently described embodiments and the presently understood best mode of the invention are described with additional detail through use of the accompanying drawings in which:



FIG. 1 is a simplified diagram illustrating a fabrication step according to various embodiments of the present invention;



FIG. 2 is a simplified diagram illustrating a fabrication step according to various embodiments of the present invention;



FIG. 3 is a simplified diagram illustrating a fabrication step according to various embodiments of the present invention;



FIG. 4 is a simplified diagram illustrating a fabrication step according to various embodiments of the present invention;



FIG. 5 is a simplified diagram illustrating a fabrication step according to various embodiments of the present invention;



FIG. 6 is a simplified diagram illustrating a fabrication step according to various embodiments of the present invention;



FIG. 7 is a simplified diagram illustrating a fabrication step according to various embodiments of the present invention;



FIG. 8 is a simplified diagram illustrating a fabrication step according to various embodiments of the present invention;



FIG. 9 is a simplified diagram illustrating a fabrication step according to various embodiments of the present invention;



FIG. 10 is a simplified diagram illustrating a fabrication step according to various embodiments of the present invention;



FIG. 11 is a simplified diagram illustrating a fabrication step according to various embodiments of the present invention;



FIG. 12 is a simplified diagram illustrating a fabrication step according to various embodiments of the present invention;



FIG. 13 is a simplified diagram illustrating a fabrication step according to various embodiments of the present invention;



FIG. 14 is a simplified diagram illustrating a fabrication step according to various embodiments of the present invention;



FIG. 15 is a simplified diagram illustrating a fabrication step according to various embodiments of the present invention;



FIG. 16 is a simplified diagram illustrating a fabrication step according to various embodiments of the present invention;



FIG. 17 is a simplified diagram illustrating a fabrication step according to various embodiments of the present invention; and



FIG. 18 is a simplified diagram illustrating a fabrication step according to various embodiments of the present invention.





DETAILED DESCRIPTION OF THE PRESENT INVENTION

Embodiments according to the present invention are direct to resistive switching devices. More particularly, embodiments according to the present invention provide a method and a device structure for fabricating a resistive switching device. The resistive switching device has been used in a non-volatile memory device, but it should be recognized that embodiments according to the present invention can have a much broader range of applicability.


Resistive switching device exploits a unique property of electrical resistance change upon application of an electric field of certain non-conductive materials. A resistive switching device using a silicon material as the resistive switching material has an advantage of complete compatibility with current CMOS processing techniques. To change the resistance of the resistive switching material, a conductive material is provided in direct contact with the resistive switching material. The conductive material is characterized by a suitable diffusivity in the resistive switching material upon application of an appropriate electric field. Diffusion due to thermal effect or mass transfer should be insignificant compared to diffusion due to the electrical effect. The electric filed can be provided by applying a voltage or a current to the resistive switching device. For resistive switching device using silicon material as the resistive switching material, metal material such as silver, gold, palladium, platinum, aluminum, and others may be used. Silver material has the desirable diffusivity characteristic in amorphous silicon resistive switching material in presence of an electric field. Due to high mobility and surface characteristic of silver, deposition of silver onto a semiconductor surface and to fill a small area of opening can be challenging. Additionally, resistive ion etching of silver may not be possible due to lack of volatile species derived from silver. Accordingly, embodiments of the present invention provide a method and a device structure for a resistive switching device using amorphous silicon material as the resistive switching material and a silver material as an active conductive material.


As shown in FIG. 1, a semiconductor substrate 102 having a surface region 104 is provided. Semiconductor substrate 102 can be a single crystal silicon wafer, a silicon germanium material, a silicon on insulator (commonly called SOI) depending on the embodiment. In certain embodiments, semiconductor substrate 102 can have one or more MOS devices formed thereon or therein. The one or more MOS devices can be controlling circuitry for the resistive switching device, or the like in some embodiments.


In various embodiments, a processor, or the like, may include resistive memory memories as described herein. Because the resistive state-change memories are relatively non-volatile, the states of devices, such as processors, or the like may be maintained while power is not supplied to the processors. To a user, such capability would greatly enhance the power-on power-off performance of devices including such processors. Additionally, such capability would greatly reduce the power consumption of devices including such processors. In particular, because such resistive memories are non-volatile, the processor need not draw power to refresh the memory states, as is common with CMOS type memories. Accordingly, embodiments of the present invention are directed towards processors or other logic incorporating these memory devices, as described herein, devices (e.g. smart phones, network devices) incorporating such memory devices, and the like.


As illustrated in FIG. 2, embodiments of the method include depositing a first dielectric material 202 overlying the semiconductor substrate 102. First dielectric material 202 can be silicon oxide, silicon nitride, a dielectric stack of alternating layers of silicon oxide and silicon nitride (for example, an ONO stack), a low K dielectric, a high K dielectric, or a combination, and others, depending on the application. First dielectric material 202 can be deposited using techniques such as chemical vapor deposition, including low pressure chemical vapor deposition, plasma enhanced chemical vapor deposition, high density plasma chemical vapor deposition, atomic layer deposition (ALD), physical vapor deposition, including any combination of these, and others.


Referring to FIG. 3, embodiments of the method include depositing a first wiring material 302 overlying the first dielectric material. First wiring material 302 can be a suitable metal material including alloy materials, or a semiconductor material having a suitable conductivity characteristic. In some embodiments, the metal material can be tungsten, aluminum, copper or silver, and others. In some embodiments, the first wiring material may be a combination of conductive materials. In various embodiments, these metal materials may be deposited using a physical vapor deposition process, chemical vapor deposition process, electroplating, or electrodeless deposition process, a combinations of these, and others. In some embodiments, the semiconductor material can be, for example, a p-type doped silicon material, a conductive polysilicon, or the like.


In certain embodiments, a first adhesion material 304 is first formed overlying the first dielectric material 302 before deposition of the first wiring material 302 to promote adhesion of the first wiring material 302 to the first dielectric material 202. A diffusion barrier material 306 may also be formed overlying the first wiring material 302 to prevent, for example, the conductive material, the metal material, gasses, oxygen, or the like to contaminate other portions of the device in a specific embodiment.


In FIG. 4, an embodiment of the method subjects the first wiring material (302, 304 and 306) to a first pattern and etching process to form a first wiring structure 402 in a specific embodiment. As shown in FIG. 4, the first wiring structure 402 includes a plurality of first elongated structures configured to extend in a first direction 404 (into and out of the page) in a specific embodiment. In a specific embodiment, the method deposits a second dielectric material 406 overlying the first wiring structure, as illustrated in FIG. 5. The second dielectric material 406 can be silicon oxide, silicon nitride, a dielectric stack of alternating layers of silicon oxide and silicon nitride (for example, an ONO stack), a low K dielectric, a high K dielectric, or a combination, and others, depending on the application.


As illustrated in FIG. 6, second dielectric material 406 can be subjected to a planarizing process to isolate the first wiring structures 402 in a specific embodiment. The planarizing process can be a chemical mechanical polishing process or an etch back process, a combination thereof, and others depending on the application. As shown in FIG. 6, a surface region 504 of the diffusion barrier material is exposed, and second dielectric material 406 remains in the spaces 502 between first wiring structure 402.


Referring to FIG. 7, embodiments of the present invention includes a step of depositing a junction material 602 overlying the first wiring structure 402 and exposed surface region 504 of the second dielectric material 306. In various embodiments, junction material 602 can be a conductive p-doped silicon containing material, polycrystalline silicon material having a p+ impurity characteristic or a polycrystalline silicon germanium material having a p+ impurity characteristic, or a combination thereof. Junction material 602 can be deposited using techniques such as a chemical vapor deposition process including low pressure chemical vapor deposition process, plasma-enhanced chemical vapor deposition process, using silicon precursor such as silane (SiH4), disilane (Si2H6), or a chlorosilane in a suitable reducing environment depending on the embodiment. Deposition temperature ranges from about 380 Degree Celsius to about 450 Degree Celsius and not greater than about 440 Degree Celsius depending on the application. Alternatively, junction material 602 can be deposited using a physical vapor deposition process from a suitable silicon target. In a specific embodiment, junction material 602 can be deposited using a low pressure chemical vapor deposition process using disilane at a deposition temperature ranging from about 400 Degree Celsius to about 460 Degree Celsius. In some embodiments, junction material 602 is configured to have the polycrystalline characteristic as deposited free from an anneal process.


Referring to FIG. 8, in some embodiments, the method deposits a resistive switching material 702 overlying junction material 602 (for example, the polycrystalline silicon having the p+ impurity characteristic). The resistive switching material 702 can include a suitable insulator material having a resistance that can be altered upon application of an electric field to the insulator material. In a specific embodiment, the resistive switching material 702 can include a silicon material. For example, the silicon material can be an amorphous silicon material, a microcrystalline silicon material, a macro crystalline silicon material, a silicon germanium material, a silicon oxide, and including any combination of these. In some embodiments, the silicon material includes an amorphous silicon material.


The resistive switching material 702 is characterized by a state, for example, a resistance state dependent on an electric field in the switching material. In a specific embodiment, the switching material 702 is an amorphous silicon material and/or a silicon oxide. The amorphous silicon material and/or silicon oxide has essentially intrinsic semiconductor characteristic and is not intentionally doped in a specific embodiment. In various embodiments, the amorphous silicon is also referred to as non-crystalline silicon (nc-Si). nc-Si non-volatile resistive switching devices may be fabricated using existing CMOS technologies. In an exemplary process, a mixture of silane (SiH4) (45 sccm) and Helium (He) (500 sccm) is used to form an a-Si layer with a deposition rate of 80 nm per minute (T=260° C., P=600 mTorr) during PECVD. In another exemplary process, a mixture of silane (SiH4) (190 sccm) and Helium (He) (100 sccm) is used to form an a-Si layer with a deposition rate of 2.8 A per second (T=380° C., P=2.2 Torr) during PECVD. In another exemplary process, silane (SiH4 80 sccm) or disilane is used to form an a-Si layer with a deposition rate of 2.8 nm per minute (T=585° C., P=100 mTorr) during LPCVD. Portions of poly-silicon grains may form during the LPCVD process and result in an amorphous-poly silicon film. In various embodiments, no p-type, n-type, or metallic impurities are intentionally added to the deposition chamber while forming the amorphous silicon material. Accordingly, when deposited, the amorphous silicon material and/or silicon oxide is substantially free of any p-type, n-type or metallic dopants, i.e. the amorphous silicon material is undoped.


In another embodiment, the resistive switching material/amorphous silicon material 702 may be formed from an upper region of a p+ polycrystalline silicon or p+ silicon germanium bearing layer (e.g. 602) using an Argon, Silicon, Oxygen plasma etch, or the like. For instance, a plasma etch may use a bias power within a range of approximately 30 watts to approximately 120 watts to convert an upper region of the polysilicon or silicon germanium material 602 into a non-conductive amorphous silicon 702 and/or a silicon oxide layer (in some embodiments having p-type impurities from the original polycrystalline silicon or silicon geranium bearing layer 602). In some embodiments, resistive switching material 702 may be on the order of about 2 nm to about 5 nm.


In the embodiment illustrated in FIG. 9, the method includes forming an active metal material layer 802 overlying the resistive switching material 702. The active metal material is characterized by a suitable diffusivity in the resistive switching material 702 under an influence of an electric field. The electric filed may be provided by applying a voltage or a current depending on the application. Taking a silicon-bearing material (for example, an amorphous silicon material and/or silicon oxide material) as the resistive switching material 702, the active metal material 802 can be silver, gold, palladium, platinum, aluminum, chromium, or an alloy material derived from one or more of these metal materials, and others.


In some specific embodiments, the active metal material 802 is a silver material deposited using a physical vapor deposition process (for example, sputtering, or evaporation), a chemical vapor deposition process, an electrochemical deposition process (for example, a electroplating), an electroless deposition process, or a combination, and others. In certain embodiments, the amorphous silicon material may have a silicon oxide material formed overlying the surface region.


In various embodiments, an interposing additional layer(s) may be disposed between resistive switching material 602 and active metal material 802. The additional layer may include a material that has non-noble metal properties, e.g. the material oxidizes in the presence of oxygen. In some examples, the additional layer may be titanium, titanium nitride, tungsten, tungsten nitride, or the like. In various embodiments, the additional layer may serve as an adhesion and/or barrier layer between resistive switching material 602 and active metal material 802. In various embodiments, additional layer(s) may be thin, e.g. 3 to 5 nm and may enhance retention.


In the embodiments shown in FIG. 10, an adhesion material 902 is deposited overlying active metal material 802. Adhesion material 902 can be titanium, titanium nitride, tungsten, titanium tungsten, or a combination, and others. In a specific embodiment, adhesion material 902 is a tungsten material deposited using a physical vapor process such as a sputtering process from a suitable tungsten target material. Other suitable deposition process for adhesion material 902 may also be used. These deposition processes can include chemical vapor deposition electrochemical deposition (for example, electroplating), electroless deposition, or a combination, and others.


In some embodiments, the physical vapor deposition process is performed at room temperature free from application of an external heat. The deposited tungsten material is characterized by a thickness ranging from about 30 Angstroms to about 120 Angstrom. In other embodiments, the deposited tungsten material can have a thickness ranging from about 40 Angstrom to about 70 Angstrom. In some examples, tungsten material has certain advantages over other adhesion material, for example, resistance to acids and bases or solvents used in post etch cleaning. Additionally, tungsten alloys easily with a silver material to provide good electrical contact.


In various embodiments, the adhesion material 902 is formed a short period of time after active conductive material 802 is formed. As examples, the short period of time may be less than 10 minutes, 20 minutes, 1 hour, or the like. In some examples, the short period of time is defined as less than or equal to about 4 hours, 6 hours, 8 hours, or the like. By specifying a short period of time, atmospheric oxygen is inhibited from being absorbed into active conductive material 802 and/or transported to resistive switching material 702, or interface between active conductive material 802 and resistive switching material 702, or the like.


In other embodiments, to reduce the amount of oxygen absorbed or contained within resistive switching material 702 or in active conductive material 802, the partially completed device is placed in an oxygen-reduced environment (e.g. substantially oxygen-free) a short time after active conductive material 802 is deposited. In some embodiments, the short period of time may be less than 15 minutes, 30 minutes, 2 hours, 4 hours, or the like. In some examples, the short period of time is defined as less than or equal to about 8 hours. In various embodiments, the partially completed device is kept in the oxygen-reduced environment until the adhesion material 902 is deposited. In other embodiments, adhesion material 902 is formed in situ, after active conductive material 802 is formed.


In the embodiment illustrated in FIG. 11, the method deposits a diffusion barrier material 1002 overlying adhesion material 902. Diffusion barrier material 1002 can be titanium, titanium nitride, titanium tungsten, or a combination (e.g Ti/TiN), and others depending on the application.


Next, in a specific embodiment, the method includes foil ling a masking material 1102 overlying diffusion material 1002 and patterning it, as shown in FIG. 12. Masking material is a suitable photoresist material in a specific embodiment.


Next, in various embodiments, as shown in FIG. 13, patterned masking material 1102 is used to etch diffusion barrier material 1002 to form a hard mask 1202. In various embodiments, the pattern may be an array of squares, circles, polygons, or substantially similar thereto, e.g. trapezoidal, ovals, polygonal with rounded edges, or the like.


In various embodiments of the invention, the method then subjects a stack of material comprising at least adhesion material 902, active metal material 802, resistive switching material 702, and junction material 602 to an etching using at least photoresist masking layer 1102, and hard mask 1202 as a mask. Depending on the application, the etching process can be an ion milling process using an inert gas such as argon in a specific embodiment. The etching process forms a first structure 1302 as shown in FIG. 14.


In the present example, first structure 1302 comprises adhesion material 902, active metal material 802, resistive switching material 702, and junction material 602, as shown. First structure 1302 is characterized by a resistive material side wall and a junction material side wall with reduced contaminants that may cause undesirable electrical connections between parts of the resistive switching device. Further, adhesion material 902 maintains physical contact with active conductive material 802 and diffusion barrier material 1002 thus with reduced undercut region or a gap region or a void region between diffusion barrier material 1002 and active metal material 802. In various embodiments, first structure 1302 may be an array of pillars having a cross-sectional shape, as discussed above, or the like.


In the embodiments illustrated in FIG. 15, the method includes forming a third dielectric material 1402 overlying the first structure 1302 and filling the gaps between each of the first structures 1302. Third dielectric material 1402 can be silicon oxide, silicon nitride, a dielectric stack of alternating layers of silicon oxide and silicon nitride (for example, an ONO stack), a low K dielectric, a high K dielectric, or a combination, and others, depending on the application. In some embodiments, a thin layer of non-conductive titanium/titanium oxide, or the like is deposited prior to forming the third dielectric material 1402.


As shown in FIG. 16, the method subjects third dielectric material 1402 to a planarizing process. The planarizing process can be a chemical mechanical polishing process or an etch back process or a combination, depending on the application. The planarizing process exposes a top surface region 1502 of the first structure 1302 comprising a top surface region of the diffusion barrier material 1002 and isolate the first structure, as shown.


Next, in various embodiments, as illustrated in FIG. 17, the method forms an adhesion material 1602 overlying the exposed surface region 1502 of diffusion barrier material 1202 and an exposed surface region of the fourth dielectric material. In some embodiments, adhesion material 1602 can be titanium, titanium nitride, titanium tungsten, and others. In a specific embodiment, adhesion material can be titanium nitride, deposited using techniques such as chemical vapor deposition process, physical vapor deposition process, atomic layer deposition (ALD), a combination, and others.


As shown in FIG. 18, in various embodiments, the method includes forming a second wiring material 1702 overlying adhesion material 1602. The second wiring material can be a suitable metal material including alloy materials, or a semiconductor material having a suitable conductivity characteristic. The metal material can be tungsten, aluminum, copper or silver, and others. These metal materials may be deposited using a physical vapor deposition process, chemical vapor deposition process, electroplating, or electroless deposition process, including any combinations of these, and others. The semiconductor material can be, for example, a suitably doped silicon material in certain embodiments.


In various embodiments, second wiring material 1702 together with adhesion material 1602 are subjected to a patterning and etching process to form one or more second wiring structures. The one or more second wiring structures are configured to spatially extend in a second direction 110 at an angle to the first direction 220 of the first wiring structure 402. In a specific embodiment, the first wiring structure and the second wiring structure are configured to be orthogonal to each other and at least the resistive switching material 802 is sandwiched in an intersection region of the first wiring structure 402 and the second wiring structure 1702. The method can further include forming passivation layers and global interconnects for the memory device, among others to complete the device.


In a specific embodiment, the active conductive material 902 forms a conductive material region in a portion of the resistive witching material 802 when a first voltage greater than about a threshold voltage is applied to the first wiring structure or the second wiring structure. The conductive material region causes a change in resistance of the resistive switching material. As merely an example, for amorphous silicon as the switching material and silver as the active conductive material, a positive bias greater than a threshold voltage applied to the second wiring structure causes a silver region to form in a portion of the amorphous silicon material and causes a change in resistance of the amorphous silicon material. The switching device is now in a low resistance state or an off state. In a specific embodiment, the silver region further includes a filament structure that extends or retracts depending on an operating voltage. That is, when a positive bias greater than a first voltage is applied to the second wiring structure of an off state device, the filament extends and the device in is at an on state. A negative bias applied to the second wiring structure of an on state device causes the device to be at the off state again. Of course one skilled in the art would recognize other modifications, variations, and alternatives.


Depending on the application, there can be other variations. For example, the active conductive material (for example, the silver material) may be provided in a via structure to control a contact area of the active conductive material with the resistive switching material in certain embodiments. The size of the via structure can control the filament structure and device performance in certain embodiments.


In a specific embodiment, a resistive switching device structure for a non-volatile memory device is provided. The resistive switching device includes a substrate having a surface region. The substrate can be a single crystal silicon wafer, a silicon germanium material, a silicon on insulator (commonly called SOI) depending on the embodiment. In certain embodiments, the semiconductor substrate can have one or more MOS devices formed thereon. The one or more MOS devices can be controlling circuitry for the resistive switching device in a specific embodiment. The resistive switching device includes a first electrode, a second electrode, and a resistive switching material configured in an intersecting region of the first electrode and the second electrode. In a specific embodiment, the resistive switching material can be a silicon material having an intrinsic semiconductor characteristic. The silicon material can be a single crystal silicon, polycrystalline silicon, polycrystalline silicon germanium material, and others, each of which having an intrinsic semiconductor characteristic.


In a specific embodiment, the silicon material is an amorphous silicon material and/or silicon oxide having an intrinsic semiconductor characteristic, or not intentionally doped in a specific embodiment. The first electrode includes a junction material in physical and electrical contact with a first surface region of the resistive switching material. The second electrode includes an active metal material in physical contact with a second surface region opposite to the first surface region of the resistive switching material. The active metal material can be a silver material for amorphous silicon switching material.


Depending on the application, the resistive switching device can include a first wiring structure coupled to the first electrode and a second wiring structure coupled to the second electrode to provide connections to the controlling circuitry on the substrate in a specific embodiment. Again depending on the embodiment, the first wiring structure and the second wiring structure can each include one or more adhesion material or diffusion barrier material to improve adhesion or reduce contamination of the resistive switching device. In a specific embodiment, a tungsten material is provided interposing the second wiring structure and the active metal material for electrical contact as well as adhesion of the second wiring structure to the silver active metal material. In certain embodiments, the first wiring structure and the second wiring structure are arranged perpendicular to each other for a high density vertically integrated device.


Though the present invention has been exemplified in various embodiments, it is to be understood that the examples and embodiment described herein are for illustrative purpose only purposes only and that various modifications or alternatives in light thereof will be suggested to persons skilled in the art and are to be included within the spirit and purview of this application and scope of the appended claims.

Claims
  • 1. A resistive switching device for a non-volatile memory device, comprising: a substrate having a surface region;a first dielectric layer overlying the surface region of the substrate;a first wiring structure overlying the first dielectric layer;a junction layer overlying the first wiring structure;a resistive switching layer overlying the junction layer;an active metal layer overlying the resistive switching layer;an adhesion layer comprising a tungsten material overlying and in contact with the active metal layer;a diffusion barrier layer overlying and in contact with the adhesion layer, the diffusion barrier layer not including tungsten;a stack of material comprising the junction layer, the resistive switching layer, the active metal layer, and the adhesion layer, wherein the stack of material is characterized by a side wall with a reduced gap region between the diffusion barrier layer and the resistive switching layer; anda second wiring structure overlying the stack of material including the diffusion barrier layer.
  • 2. The resistive switching device of claim 1 wherein the substrate comprises one or more transistor devices formed thereon, the one or more transistor devices provides for controlling circuitry for the resistive switching device.
  • 3. The resistive switching device of claim 1 wherein the junction layer is selected from a group consisting of: a silicon-containing material having a p+ impurity characteristic, a single crystal silicon material, a p-doped polycrystalline silicon material, and a p-doped silicon germanium material.
  • 4. The resistive switching device of claim 1 wherein the resistive switching layer is selected from a group consisting of: an amorphous silicon material having an intrinsic semiconductor characteristic, a polycrystalline silicon material having an intrinsic semiconductor characteristic, a polycrystalline silicon germanium material having an intrinsic semiconductor characteristic, and a silicon oxide.
  • 5. The resistive switching device of claim 1 wherein the active metal layer is selected from a group consisting of: silver, gold, platinum, palladium, nickel, zinc, aluminum, copper, and an alloy of two or more of the foregoing members of the group.
  • 6. The resistive switching device of claim 1 wherein the adhesion layer comprises tungsten having a thickness within a range of about 30 Angstroms to about 120 Angstroms.
  • 7. The resistive switching device of claim 1 wherein the active metal layer comprises silver material; and wherein the tungsten material is formed directly upon the silver material.
  • 8. The resistive switching device of claim 7 wherein the tungsten material is formed in situ.
  • 9. The resistive switching device of claim 1 wherein the stack of material comprises a cross-sectional shape selected from a group consisting of: approximately circular, approximately square, and approximately polygonal.
  • 10. The resistive switching device of claim 1 wherein the diffusion barrier layer comprises a nitride.
  • 11. The resistive switching device of claim 1 wherein the diffusion barrier layer comprises titanium.
  • 12. The resistive switching device of claim 10 wherein the diffusion barrier layer comprises nitrogen.
  • 13. The resistive switching device of claim 12 wherein the diffusion barrier layer comprises Ti/TiN.
US Referenced Citations (278)
Number Name Date Kind
680652 Elden Aug 1901 A
4433468 Kawamata Feb 1984 A
4684972 Owen et al. Aug 1987 A
4741601 Saito May 1988 A
5139911 Yagi et al. Aug 1992 A
5242855 Oguro Sep 1993 A
5278085 Maddox, III et al. Jan 1994 A
5315131 Kishimoto et al. May 1994 A
5335219 Ovshinsky et al. Aug 1994 A
5360981 Owen et al. Nov 1994 A
5457649 Eichman et al. Oct 1995 A
5538564 Kaschmitter Jul 1996 A
5541869 Rose et al. Jul 1996 A
5594363 Freeman et al. Jan 1997 A
5614756 Forouhi et al. Mar 1997 A
5645628 Endo et al. Jul 1997 A
5707487 Hori et al. Jan 1998 A
5714416 Eichman et al. Feb 1998 A
5751012 Wolstenholme et al. May 1998 A
5840608 Chang Nov 1998 A
5970332 Pruijmboom et al. Oct 1999 A
5973335 Shannon Oct 1999 A
5998244 Wolstenholme et al. Dec 1999 A
6122318 Yamaguchi et al. Sep 2000 A
6128214 Kuekes et al. Oct 2000 A
6143642 Sur, Jr. et al. Nov 2000 A
6180998 Crafts Jan 2001 B1
6259116 Shannon Jul 2001 B1
6288435 Mei et al. Sep 2001 B1
6291836 Kramer et al. Sep 2001 B1
6436765 Liou et al. Aug 2002 B1
6436818 Hu et al. Aug 2002 B1
6492694 Noble et al. Dec 2002 B2
6627530 Li et al. Sep 2003 B2
6762474 Mills, Jr. Jul 2004 B1
6768157 Krieger et al. Jul 2004 B2
6815286 Krieger et al. Nov 2004 B2
6821879 Wong Nov 2004 B2
6838720 Krieger et al. Jan 2005 B2
6848012 LeBlanc et al. Jan 2005 B2
6858481 Krieger et al. Feb 2005 B2
6858482 Gilton Feb 2005 B2
6864127 Yamazaki et al. Mar 2005 B2
6864522 Krieger et al. Mar 2005 B2
6881994 Lee et al. Apr 2005 B2
6927430 Hsu Aug 2005 B2
6939787 Ohtake et al. Sep 2005 B2
6946719 Petti et al. Sep 2005 B2
7020006 Chevallier et al. Mar 2006 B2
7023093 Canaperi et al. Apr 2006 B2
7026702 Krieger et al. Apr 2006 B2
7102150 Harshfield et al. Sep 2006 B2
7122853 Gaun et al. Oct 2006 B1
7187577 Wang et al. Mar 2007 B1
7221599 Gaun et al. May 2007 B1
7238607 Dunton et al. Jul 2007 B2
7254053 Krieger et al. Aug 2007 B2
7289353 Spitzer et al. Oct 2007 B2
7324363 Kerns et al. Jan 2008 B2
7365411 Campbell Apr 2008 B2
7405418 Happ et al. Jul 2008 B2
7426128 Scheuerlein Sep 2008 B2
7433253 Gogl et al. Oct 2008 B2
7474000 Scheuerlein et al. Jan 2009 B2
7479650 Gilton Jan 2009 B2
7499355 Scheuerlein et al. Mar 2009 B2
7521705 Liu Apr 2009 B2
7534625 Karpov et al. May 2009 B2
7541252 Eun et al. Jun 2009 B2
7550380 Elkins et al. Jun 2009 B2
7566643 Czubatyi et al. Jul 2009 B2
7606059 Toda Oct 2009 B2
7615439 Schricker et al. Nov 2009 B1
7629198 Kumar et al. Dec 2009 B2
7719001 Nomura et al. May 2010 B2
7728318 Raghuram et al. Jun 2010 B2
7729158 Toda et al. Jun 2010 B2
7749805 Pinnow et al. Jul 2010 B2
7772581 Lung Aug 2010 B2
7778063 Brubaker et al. Aug 2010 B2
7786464 Nirschl et al. Aug 2010 B2
7786589 Matsunaga et al. Aug 2010 B2
7824956 Schricker et al. Nov 2010 B2
7829875 Scheuerlein Nov 2010 B2
7835170 Bertin et al. Nov 2010 B2
7858468 Liu et al. Dec 2010 B2
7859884 Scheuerlein Dec 2010 B2
7875871 Kumar et al. Jan 2011 B2
7881097 Hosomi et al. Feb 2011 B2
7883964 Goda et al. Feb 2011 B2
7897953 Liu Mar 2011 B2
7898838 Chen et al. Mar 2011 B2
7920412 Hosotani et al. Apr 2011 B2
7924138 Kinoshita et al. Apr 2011 B2
7968419 Li et al. Jun 2011 B2
7972897 Kumar et al. Jul 2011 B2
7984776 Sastry et al. Jul 2011 B2
8004882 Katti et al. Aug 2011 B2
8018760 Muraoka et al. Sep 2011 B2
8021897 Sills et al. Sep 2011 B2
8045364 Schloss et al. Oct 2011 B2
8054674 Tamai et al. Nov 2011 B2
8067815 Chien et al. Nov 2011 B2
8071972 Lu et al. Dec 2011 B2
8084830 Kanno et al. Dec 2011 B2
8088688 Herner Jan 2012 B1
8097874 Venkatasamy et al. Jan 2012 B2
8102698 Scheuerlein Jan 2012 B2
8143092 Kumar et al. Mar 2012 B2
8144498 Kumar et al. Mar 2012 B2
8164948 Katti et al. Apr 2012 B2
8168506 Herner May 2012 B2
8183553 Phatak et al. May 2012 B2
8187945 Herner May 2012 B2
8198144 Herner Jun 2012 B2
8207064 Bandyopadhyay et al. Jun 2012 B2
8227787 Kumar et al. Jul 2012 B2
8231998 Sastry et al. Jul 2012 B2
8233308 Schricker et al. Jul 2012 B2
8237146 Kreupl et al. Aug 2012 B2
8258020 Herner Sep 2012 B2
8265136 Hong et al. Sep 2012 B2
8274812 Nazarian et al. Sep 2012 B2
8315079 Kuo et al. Nov 2012 B2
8320160 Nazarian Nov 2012 B2
8374018 Lu Feb 2013 B2
8385100 Kau et al. Feb 2013 B2
8389971 Chen et al. Mar 2013 B2
8394670 Herner Mar 2013 B2
8399307 Herner Mar 2013 B2
8441835 Jo et al. May 2013 B2
8467227 Jo Jun 2013 B1
8587989 Manning et al. Nov 2013 B2
8658476 Sun et al. Feb 2014 B1
8659003 Herner et al. Feb 2014 B2
20030052330 Klein Mar 2003 A1
20030141565 Hirose et al. Jul 2003 A1
20030174574 Perner et al. Sep 2003 A1
20030206659 Hamanaka Nov 2003 A1
20040026682 Jiang Feb 2004 A1
20040071034 Vyvoda et al. Apr 2004 A1
20040170040 Rinerson et al. Sep 2004 A1
20040192006 Campbell et al. Sep 2004 A1
20040194340 Kobayashi Oct 2004 A1
20040202041 Hidenori Oct 2004 A1
20050020510 Benedict Jan 2005 A1
20050029587 Harshfield Feb 2005 A1
20050041498 Resta et al. Feb 2005 A1
20050052915 Herner et al. Mar 2005 A1
20050062045 Bhattacharyya Mar 2005 A1
20050073881 Tran et al. Apr 2005 A1
20050101081 Goda et al. May 2005 A1
20050175099 Sarkijarvi et al. Aug 2005 A1
20060017488 Hsu Jan 2006 A1
20060134837 Subramanian et al. Jun 2006 A1
20060246606 Hsu et al. Nov 2006 A1
20060250836 Herner et al. Nov 2006 A1
20060281244 Ichige et al. Dec 2006 A1
20070008773 Scheuerlein Jan 2007 A1
20070015348 Hsu et al. Jan 2007 A1
20070045615 Cho et al. Mar 2007 A1
20070087508 Herner Apr 2007 A1
20070090425 Kumar et al. Apr 2007 A1
20070091685 Guterman et al. Apr 2007 A1
20070105284 Herner May 2007 A1
20070105390 Oh May 2007 A1
20070205510 Lavoie et al. Sep 2007 A1
20070228414 Kumar et al. Oct 2007 A1
20070284575 Li et al. Dec 2007 A1
20070290186 Bourim et al. Dec 2007 A1
20070291527 Tsushima et al. Dec 2007 A1
20070295950 Cho et al. Dec 2007 A1
20070297501 Hussain et al. Dec 2007 A1
20080002481 Gogl et al. Jan 2008 A1
20080006907 Lee et al. Jan 2008 A1
20080048164 Odagawa Feb 2008 A1
20080089110 Robinett et al. Apr 2008 A1
20080090337 Williams Apr 2008 A1
20080106925 Paz De Araujo et al. May 2008 A1
20080106926 Brubaker et al. May 2008 A1
20080185567 Kumar et al. Aug 2008 A1
20080198934 Hong et al. Aug 2008 A1
20080205179 Markert et al. Aug 2008 A1
20080206931 Breuil et al. Aug 2008 A1
20080220601 Kumar et al. Sep 2008 A1
20080232160 Gopalakrishnan Sep 2008 A1
20080278990 Kumar et al. Nov 2008 A1
20080304312 Ho et al. Dec 2008 A1
20080311722 Petti et al. Dec 2008 A1
20090001345 Schricker et al. Jan 2009 A1
20090003717 Sekiguchi et al. Jan 2009 A1
20090014707 Lu et al. Jan 2009 A1
20090052226 Lee et al. Feb 2009 A1
20090095951 Kostylev et al. Apr 2009 A1
20090152737 Harshfield Jun 2009 A1
20090168486 Kumar Jul 2009 A1
20090231910 Liu et al. Sep 2009 A1
20090250787 Kutsunai Oct 2009 A1
20090251940 Ito Oct 2009 A1
20090256130 Schricker Oct 2009 A1
20090257265 Chen et al. Oct 2009 A1
20090267047 Sasago et al. Oct 2009 A1
20090298224 Lowrey Dec 2009 A1
20090321789 Wang et al. Dec 2009 A1
20100007937 Widjaja et al. Jan 2010 A1
20100012914 Xu et al. Jan 2010 A1
20100019221 Lung et al. Jan 2010 A1
20100019310 Sakamoto Jan 2010 A1
20100032637 Kinoshita et al. Feb 2010 A1
20100032638 Xu Feb 2010 A1
20100032640 Xu Feb 2010 A1
20100034518 Iwamoto et al. Feb 2010 A1
20100044708 Lin et al. Feb 2010 A1
20100046622 Doser et al. Feb 2010 A1
20100084625 Wicker et al. Apr 2010 A1
20100085798 Lu et al. Apr 2010 A1
20100090192 Goux et al. Apr 2010 A1
20100101290 Bertolotto Apr 2010 A1
20100102290 Lu et al. Apr 2010 A1
20100157651 Kumar et al. Jun 2010 A1
20100157710 Lambertson et al. Jun 2010 A1
20100163828 Tu Jul 2010 A1
20100176368 Ko et al. Jul 2010 A1
20100219510 Scheuerlein et al. Sep 2010 A1
20100221868 Sandoval Sep 2010 A1
20100321095 Mikawa et al. Dec 2010 A1
20110006275 Roelofs et al. Jan 2011 A1
20110089391 Mihnea et al. Apr 2011 A1
20110128779 Redaelli et al. Jun 2011 A1
20110133149 Sonehara Jun 2011 A1
20110136327 Han et al. Jun 2011 A1
20110155991 Chen Jun 2011 A1
20110194329 Ohba et al. Aug 2011 A1
20110198557 Rajendran et al. Aug 2011 A1
20110204312 Phatak Aug 2011 A1
20110205782 Costa et al. Aug 2011 A1
20110212616 Seidel et al. Sep 2011 A1
20110227028 Sekar et al. Sep 2011 A1
20110284814 Zhang Nov 2011 A1
20110299324 Li et al. Dec 2011 A1
20110305064 Jo et al. Dec 2011 A1
20110312151 Herner Dec 2011 A1
20110317470 Lu et al. Dec 2011 A1
20120001145 Magistretti et al. Jan 2012 A1
20120001146 Lu et al. Jan 2012 A1
20120007035 Jo et al. Jan 2012 A1
20120008366 Lu Jan 2012 A1
20120012806 Herner Jan 2012 A1
20120012808 Herner Jan 2012 A1
20120015506 Jo et al. Jan 2012 A1
20120025161 Rathor et al. Feb 2012 A1
20120033479 Delucca et al. Feb 2012 A1
20120043519 Jo et al. Feb 2012 A1
20120043520 Herner et al. Feb 2012 A1
20120043621 Herner Feb 2012 A1
20120043654 Lu et al. Feb 2012 A1
20120074374 Jo Mar 2012 A1
20120074507 Jo Mar 2012 A1
20120076203 Sugimoto et al. Mar 2012 A1
20120080798 Harshfield Apr 2012 A1
20120104351 Wei et al. May 2012 A1
20120108030 Herner May 2012 A1
20120140816 Franche et al. Jun 2012 A1
20120142163 Herner Jun 2012 A1
20120145984 Rabkin et al. Jun 2012 A1
20120155146 Ueda et al. Jun 2012 A1
20120205606 Lee et al. Aug 2012 A1
20120220100 Herner Aug 2012 A1
20120235112 Huo et al. Sep 2012 A1
20120236625 Ohba et al. Sep 2012 A1
20120250183 Tamaoka et al. Oct 2012 A1
20120252183 Herner Oct 2012 A1
20120269275 Hannuksela Oct 2012 A1
20120305874 Herner Dec 2012 A1
20120326265 Lai et al. Dec 2012 A1
20130020548 Clark et al. Jan 2013 A1
20130026440 Yang et al. Jan 2013 A1
20140070160 Ishikawa et al. Mar 2014 A1
Foreign Referenced Citations (11)
Number Date Country
2405441 Jan 2012 EP
2408035 Jan 2012 EP
2005-506703 Mar 2005 JP
2006-032951 Feb 2006 JP
2007-067408 Mar 2007 JP
2007-281208 Oct 2007 JP
2007-328857 Dec 2007 JP
1020110014248 Feb 2011 KR
WO 03034498 Apr 2003 WO
WO 2009005699 Jan 2009 WO
WO 2011133138 Oct 2011 WO
Non-Patent Literature Citations (174)
Entry
Notice of Allowance for U.S. Appl. No. 12/814,410 dated Jan. 8, 2013.
Corrected Notice of Allowance for U.S. Appl. No. 12/861,666 dated Jan. 11, 2013.
Supplemental Notice of Allowance for U.S. Appl. No. 12/894,087 dated Jan. 11, 2013.
Notice of Allowance for U.S. Appl. No. 13/314,513 dated Jan. 24, 2013.
Notice of Allowance for U.S. Appl. No. 13/118,258, dated Feb. 6, 2013.
International Search Report and Written Opinion for PCT/US2012/040242, filed May 31, 2012.
Office Action for U.S. Appl. No. 13/174,264 dated Mar. 6, 2013.
Office Action for U.S. Appl. No. 13/679,976, dated Mar. 6, 2013.
Notice of Allowance for U.S. Appl. No. 12/894,098, dated Mar. 15, 2013.
Office Action for U.S. Appl. No. 13/465,188, dated Mar. 19, 2013.
Office Action for U.S. Appl. No. 12/861,432 dated Mar. 29, 2013.
Notice of Allowance for U.S. Appl. No. 13/748,490, dated Apr. 9, 2013.
Office Action for U.S. Appl. No. 13/725,331, dated May 20, 2013.
International Search Report and Written Opinion for PCT/US2012/045312 filed on Jul. 2, 2012.
Office Action for U.S. Appl. No. 13/466,008, dated Jul. 29, 2013.
Russo, U. et al, “Self-Accelerated Thermal Dissolution Model for Reset Programming in Unipolar Resistive-Switching Memory (RRAM) Devices”, IEEE Transactions on Electron Devices, Feb. 2009, pp. 193-200, vol. 56, Issue 2.
Cagli, C. et al, “Evidence for threshold switching in the set process of NiO-based RRAM and physical modeling for set, reset, retention and disturb prediction”, 2008 IEEE International Electron Devices Meeting (IEDM), Dec. 15-17, 2008, pp. 1-4, San Francisco, CA, USA.
Office Action for U.S. Appl. No. 13/077,941, dated Aug. 12, 2013.
Office Action of U.S. Appl. No. 13/436,714 dated Aug. 27, 2013.
Notice of Allowance for U.S. Appl. No. 13/679,976, dated Sep. 17, 2013.
Office Action for U.S. Appl. No. 13/189,401 dated Sep. 30, 2013.
Office Action for U.S. Appl. No. 13/462,653 dated Sep. 30, 2013.
Corrected Notice of Allowability for U.S. Appl. No. 13/733,828, dated Oct. 1, 2013.
Notice of Allowance for U.S. Appl. No. 13/733,828, dated Aug. 8, 2013.
Office Action for U.S. Appl. No. 13/594,665 dated Aug. 2, 2013.
Notice of Allowance for U.S. Appl. No. 13/769,152, dated Oct. 8, 2013.
Notice of Allowance for U.S. Appl. No. 13/905,074 , dated Oct. 8, 2013.
Notice of Allowability for U.S. Appl. No. 13/452,657, dated Oct. 10, 2013.
Notice of Allowance for U.S. Appl. No. 13/174,264, dated Oct. 16, 2013.
Notice of Allowability for U.S. Appl. No. 13/417,135, dated Oct. 23, 2013.
Office Action of U.S. Appl. No. 13/436,714 dated Dec. 7, 2012.
Jian Hu et al., “Area-Dependent Switching in Thin Film-Silicon Devices”, Materials Research Society, Mal. Res. Soc. Symp Proc., 2003, pp. A18.3.1-A18.3.6, vol. 762.
André Dehon, “Array-Based Architecture for FET-Based, Nanoscale Electronics”, IEEE Transactions on Nanotechnology, Mar. 2003, pp. 23-32, vol. 2, No. 1, IEEE.
Herb Goronkin et al., “High-Performance Emerging Solid-State Memory Technologies”, MRS Bulletin, www.mrs.org/publications/bulletin, Nov. 2004, pp. 805-813.
Gerhard Müller et al., “Status and Outlook of Emerging Nonvolatile Memory Technologies”, IEEE, 2004, pp. 567-570.
A.E. Owen et al., “Memory Switching in Amorphous Silicon Devices”, Journal of Non-Crystalline Solids 59 & 60,1983, pp. 1273-1280, North Holland Publishing Company/Physical Society of Japan.
J. Campbell Scott, “Is There an Immortal Memory?”, www.sciencemag.org, Apr. 2, 2004, pp. 62-63, vol. 304 No. 5667, American Association for the Advancement of Science.
S.H. Lee et al., “Full Integration and Cell Characteristics for 64Mb Nonvolatile PRAM”, 2004 Symposium on VLSI Technology Digest of Technical Papers, IEEE, 2004, pp. 20-21.
Stephen Y. Chou et al., “Imprint Lithography With 25-Nanometer Resolution”, Science, Apr. 5, 1996, pp. 85-87, vol. 272, American Association for the Advancement of Science.
S. Zankovych et al., “Nanoimprint Lithography: challenges and prospects”, Nanotechnology, 2001, pp. 91-95, vol. 12, Institute of Physics Publishing.
A. Avila et al., “Switching in coplanar amorphous hydrogenated silicon devices”, Solid-State Electronics, 2000, pp. 17-27, vol. 44, Elsevier Science Ltd.
Jian Hu et al., “Switching and filament formation in hot-wire CVD p-type a-Si:H devices”, Thin Solid Films, Science Direct, www.sciencedirect.com, 2003, pp. 249-252, vol. 430, Elsevier Science B.V.
S. Hudgens et al., “Overview of Phase-Change Chalcogenide Nonvolatile Memory Technology”, MRS Bulletin, www.mrs.org/publications/bulletin, Nov. 2004, pp. 829-832.
K. Terabe et al., “Quantized conductance atomic switch”, Nature, www.nature.com/nature, Jan. 6, 2005, pp. 47-50, vol. 433, Nature Publishing Group.
Michael Kund et al., “Conductive bridging RAM (CBRAM): An emerging non-volatile memory technology scalable to sub 20nm”, IEEE, 2005.
W. Den Boer, “Threshold switching in hydrogenated amorphous silicon”, Appl. Phys. Letter, 1982, pp. 812-813, vol. 40, American Institute of Physics.
P.G. Lecomber et al., “The Switching Mechanism in Amorphous Silicon Junctions”, Journal of Non-Crystalline Solids,1985, pp. 1373-1382, vol. 77 & 78, Elsevier Science Publishers B.V., North Holland Physics Publishing Division, North-Holland, Amsterdam.
A. E. Owen et al., “Switching in amorphous devices”, Int. J. Electronics, 1992, pp. 897-906, vol. 73, No. 5, Taylor and Francis Ltd.
M. Jafar et al., “Switching in amorphous-silicon devices”, Physical Review B, May 15, 1994, pp. 611-615, vol. 49, No. 19, The American Physical Society.
Alexandra Stikeman, “Polymer Memory—The plastic path to better data storage”, Technology Review, www.technologyreview.com, Sep. 2002, pp. 31.
Yong Chen et al., “Nanoscale molecular-switch crossbar circuits”, Nanotechnology, 2003, pp. 462-468, vol. 14, Institute of Physics Publishing Ltd.
C. P. Collier et al., “Electronically Configurable Molecular-Based Logic Gates”, Science Jul. 16, 1999, pp. 391-395, vol. 285, No. 5426, American Association for the Advancement of Science.
Office Action for U.S. Appl. No. 11/875,541 dated Jul. 22, 2010.
Office Action for U.S. Appl. No. 11/875,541 dated Mar. 30, 2011.
Office Action for U.S. Appl. No. 11/875,541 dated Oct. 5, 2011.
Office Action for U.S. Appl. No. 11/875,541 dated Jun. 8, 2012.
Jang Wook Choi, “Bistable [2]Rotaxane Based Molecular Electronics: Fundamentals and Applications”, Dissertation, Chapter 3, <http://resolver.caltech.edu/CaltechETD:etd-05242007-194737> 2007, pp. 79-120, California Institute of Technology, Pasadena.
Sung-Hyun Jo et al., “A Silicon-Based Crossbar Ultra-High-Density Non-Volatile Memory”, SSEL Annual Report 2007.
International Search Report for PCT/US2009/060023 filed on Oct. 8, 2009.
Rainer Waser et al., “Nanoionics-based resistive switching memories”, Nature Materials, Nov. 2007, pp. 833-835, vol. 6, Nature Publishing Group.
Written Opinion of the International Searching Authority for PCT/US2009/060023 filed on Oct. 8, 2009.
Ex parte Quayle Action for U.S. Appl. No. 12/826,653 dated May 8, 2012.
International Search Report for PCT/US2011/040090 filed on Jun. 10, 2011.
Written Opinion of the International Searching Authority for PCT/US2011/040090 filed on Jun. 10, 2011.
Notice of Allowance for U.S. Appl. No. 13/158,231 dated Apr. 17, 2012.
Office Action for U.S. Appl. No. 12/835,704 dated Sep. 21, 2011.
Office Action for U.S. Appl. No. 12/835,704 dated Mar. 1, 2012.
Advisory Action for U.S. Appl. No. 12/835,704 dated Jun. 8, 2012.
International Search Report and Written Opinion for PCT/US2011/046035 filed on Jul. 29, 2011.
Office Action for U.S. Appl. No. 12/861,650 dated Jan. 25, 2012.
Notice of Allowance for U.S. Appl. No. 12/861,650 dated Jun. 19, 2012.
Sung Hyun Jo et al., “Programmable Resistance Switching in Nanoscale Two-Terminal Devices,” Supporting Information, Dec. 29, 2008, pp. 1-4, vol. 9., No. 1, Department of Electrical Engineering and Computer Science, The University of Michigan, Ann Arbor, Michigan.
Kuk-Hwan Kim et al., “Nanoscale resistive memory with intrinsic diode characteristics and long endurance,” Applied Physics Letters, 2010, pp. 053106-1-053106-3, vol. 96, American Institute of Physics.
Sung Hyun Jo et al., “Si-Based Two-Terminal Resistive Switching Nonvolatile Memory”, IEEE, 2008.
Sung Hyun Jo et al., “Nanoscale Memristor Device as Synapse in Neuromorphic Systems”, Nano Letters, 10, 1297-1301, 2010, pubs.acs.org/NanoLett, A-E, American Chemical Society Publications.
Wei Lu et al., “Nanoelectronics from the bottom up”, Nature Materials, www.nature.com/naturematerials, Nov. 2007, pp. 841-850, vol. 6, Nature Publishing Group.
Sung Hyun Jo et al., “Ag/a-Si:H/c-Si Resistive Switching Nonvolatile Memory Devices”, Nanotechnology Materials and Devices Conference, IEEE, 2006, pp. 116-117, vol. 1.
Sung Hyun Jo et al., “Experimental, Modeling and Simulation Studies of Nanoscale Resistance Switching Devices”, 9th Conference on Nanotechnology, IEEE, 2009, pp. 493-495.
Sung Hyun Jo et al., “Nonvolatile Resistive Switching Devices Based on Nanoscale Metal/Amorphous Silicon/Crystalline Silicon Junctions”, Mater. Res. Soc. Symp. Proc., 2007, vol. 997, Materials Research Society.
Sung Hyun Jo et al., “Si Memristive Devices Applied to Memory and Neuromorphic Circuits”, Proceedings of 2010 IEEE International Symposium on Circuits and Systems, 2010, pp. 13-16.
Wei Lu et al., “Supporting Information”, 2008.
Sung Hyun Jo et al., “High-Density Crossbar Arrays Based on a Si Memristive System”, Nano Letters, 2009, pp. 870-874, vol. 9 No. 2, American Chemical Society Publications.
Sung Hyun Jo et al., “High-Density Crossbar Arrays Based on a Si Memristive System”, Supporting Information, 2009, pp. 1-4.
Sung Hyun Jo et al., “Programmable Resistance Switching in Nanoscale Two-Terminal Devices”, Nano Letters, 2009, pp. 496-500, vol. 9 No. 1, American Chemical Society Publications.
Shubhra Gangopadhyay et al., “Memory Switching in Sputtered Hydrogenated Amorphous Silicon (a-Si:H)”, Japanese Journal of Applied Physics, Short Notes, 1985, pp. 1363-1364, vol. 24 No. 10.
S. K. Dey, “Electrothermal model of switching in amorphous silicon films”, J. Vac. Sci. Technol., Jan./Feb. 1980, pp. 445-448, vol. 17, No. 1, American Vacuum Society.
J. Hajto et al., “The Programmability of Amorphous Silicon Analogue Memory Elements”, Mat. Res. Soc. Symp. Proc., 1990, pp. 405-410, vol. 192, Materials Research Society.
M. J. Rose et al., “Amorphous Silicon Analogue Memory Devices”, Journal of Non-Crystalline Solids, 1989, pp. 168-170, vol. 115, Elsevier Science Publishers B.V., North-Holland.
A. Moopenn et al., “Programmable Synaptic Devices for Electronic Neural Nets”, Control and Computers, 1990, pp. 37-41, vol. 18 No. 2.
P.G. Le Comber, “Present and Future Applications of Amorphous Silicon and Its Alloys”, Journal of Non-Crystalline Solids, 1989, pp. 1-13, vol. 115, Elsevier Science Publishers B.V., North-Holland.
J. Hu, et al., “AC Characteristics of Cr/p+a-Si:H/V Analog Switching Devices”, IEEE Transactions on Electron Devices, Sep. 2000, pp. 1751-1757, vol. 47 No. 9, IEEE.
A.E. Owen et al., “New amorphous-silicon electrically programmable nonvolatile switching device”, Solid-State and Electron Devices, IEEE Proceedings, Apr. 1982, pp. 51-54, vol. 129, Pt. I., No. 2.
J. Hajto et al., “Amorphous & Microcrystalline Semiconductor Devices: Volume 2, Materials and Device Physics”, Mar. 1, 2004, pp. 640-700, Artech House Publishers.
J. Hajto et al., “Analogue memory and ballistic electron effects in metal-amorphous silicon structures”, Philosophical Magazine B, 1991, pp. 349-369, vol. 63 No. 1, Taylor & Francis Ltd.
A. J. Holmes et al., “Design of Analogue Synapse Circuits using Non-Volatile a-Si:H Memory Devices”, Proceedings of ISCAS, 1994, pp. 351-354.
Yajie Dong et al., “Si/a-Si Core/Shell Nanowires as Nonvolatile Crossbar Switches”, Nano Letters, Jan. 2008, pp. 386-391, vol. 8 No. 2, American Chemical Society.
European Search Report for Application No. EP 09 81 9890.6 of Mar. 27, 2012.
D. A. Muller et al., “The Electronic structure at the atomic scale of ultrathin gate oxides”, Nature, Jun. 24, 1999, pp. 758-761, vol. 399.
J. Suñé et al., “Nondestructive multiple breakdown events in very thin SiO2 films”, Applied Physics Letters, 1989, pp. 128-130, vol. 55.
Herve Marand et al., MESc. 5025 lecture notes: Chapter 7. Diffusion, University of Vermont, http://www.files.chem.vt.edu/chem-dept/marand/MEScchap6-1c.pdf.
A. E. Owen et al., “Electronic Switching in Amorphous Silicon Devices: Properties of the Conducting Filament”, Proceedings of 5th International Conference on Solid-State and Integrated Circuit Technology, IEEE, 1998, pp. 830-833.
Sung Hyun Jo, “Nanoscale Memristive Devices for Memory and Logic Applications”, Ph. D dissertation, University of Michigan, 2010.
Office Action for U.S. Appl. No. 12/894,098 dated Aug. 1, 2012.
Sung Hyun Jo et al., “CMOS Compatible Nanoscale Nonvolatile Resistance Switching Memory”, Nano Letters, 2008, pp. 392-397, vol. 8, No. 2.
Office Action for U.S. Appl. No. 12/582,086 dated Apr. 19, 2011.
Office Action for U.S. Appl. No. 12/582,086 dated Sep. 6, 2011.
Notice of Allowance for U.S. Appl. No. 12/582,086 dated Oct. 21, 2011.
International Search Report for PCT/US2009/061249 filed on Oct. 20, 2009.
Written Opinion of the International Searching Authority for PCT/US2009/061249 filed on Oct. 20, 2009.
Office Action for U.S. Appl. No. 12/861,650 dated Oct 16, 2012.
Notice of Allowance for U.S. Appl. No. 12/894,087 dated Oct. 25, 2012.
Notice of Allowance for U.S. Appl. No. 13/149,807 dated Oct. 29, 2012.
Notice of Allowance for U.S. Appl. No. 12/861,666 dated Nov. 14, 2012.
Office Action for U.S. Appl. No. 13/156,232, dated Nov. 26, 2012.
Notice of Allowance for U.S. Appl. No. 13/290,024 dated Nov. 28, 2012.
Office Action for U.S. Appl. No. 12/814,410 dated Apr. 17, 2012.
Office Action for U.S. Appl. No. 12/835,699 dated Aug. 24, 2011.
Notice of Allowance for U.S. Appl. No. 12/835,699 dated Feb. 6, 2012.
Office Action for U.S. Appl. No. 12/833,898 dated Apr. 5, 2012.
European Search Report for Application No. EP 1100 5207.3 of Oct. 12, 2011.
Notice of Allowance for U.S. Appl. No. 12/833,898 dated May 30, 2012.
Notice of Allowance for U.S. Appl. No. 12/939,824 dated May 11, 2012.
Notice of Allowance for U.S. Appl. No. 12/940,920 dated Oct. 5, 2011.
Office Action for U.S. Appl. No. 13/314,513 dated Mar. 27, 2012.
Shong Yin, “Solution Processed Silver Sulfide Thin Films for Filament Memory Applications”, Technical Report No. UCB/EECS-2010-166, http://www.eecs.berkeley.edu/Pubs/TechRpts/2010/EECS-2010-166.html, Dec. 17, 2010, Electrical Engineering and Computer Sciences, University of California at Berkeley.
Office Action for U.S. Appl. No. 13/149,653 dated Apr. 25, 2012.
International Search Report for PCT/US2011/045124 filed on Jul. 22, 2011.
Written Opinion of the International Searching Authority for PCT/US2011/045124 filed on Jul. 22, 2011.
Peng-Heng Chang et al., “Aluminum spiking at contact windows in Al/Ti—W/Si”, Appl. Phys. Lett., Jan. 25, 1988, pp. 272-274, vol. 52 No. 4, American Institute of Physics.
J. Del Alamo et al., “Operating Limits of Al-Alloyed High-Low Junctions for BSF Solar Cells”, Solid-State Electronics, 1981, pp. 415-420, vol. 24, Pergamon Press Ltd., Great Britain.
Hao-Chih Yuan et al., “Silicon Solar Cells with Front Hetero-Contact and Aluminum Alloy Back Junction”, NREL Conference Paper CP-520-42566, 33rd IEEE Photovoltaic Specialists Conference, May 11-16, 2008, National Renewable Energy Laboratory, San Diego, California.
Notice of Allowance for U.S. Appl. No. 12/939,824 dated Jul. 24, 2012.
Office Action for Application No. EP 1100 5207.3 dated Aug. 8, 2012.
Office Action for U.S. Appl. No. 13/417,135 dated Oct. 9, 2012.
Notice of Allowance for U.S. Appl. No. 13/532,019 dated Nov. 14, 2012.
Office Action for U.S. Appl. No. 13/149,653 dated Nov. 20, 2012.
Notice of Allowance for U.S. Appl. No. 13/725,331, dated Jan. 17, 2014.
Office Action for U.S. Appl. No. 13/739,283, dated Jan. 16, 2014.
Office Action for U.S. Appl. No. 13/920,021, dated Jan. 10, 2014.
Office Action for U.S. Appl. No. 12/861,432, dated Jan. 8, 2014.
Office Action for U.S. Appl. No. 13/586,815, dated Jan. 29, 2014.
International Search Report and Written Opinion for PCT/US2013/061244, filed on Sep. 23, 2013.
Office Action for U.S. Appl. No. 13/434,567, dated Feb. 6, 2014.
Office Action for U.S. Appl. No. 13/620,012, dated Feb. 11, 2014.
Notice of Allowance for U.S. Appl. No. 13/468,201, dated Feb. 20, 2014.
Office Action for U.S. Appl. No. 12/835,704, dated Mar. 14, 2014.
Office Action for U.S. Appl. No. 13/870,919, Dated Apr. 3, 2014.
Office Action for U.S. Appl. No. 13/167,920, dated Mar. 12, 2014.
International Search Report and Written Opinion for PCT/US2013/077628, filed on Dec. 23, 2013.
Office Action for U.S. Appl. No. 13/705,082, dated Sep. 2, 2014.
Office Action for U.S. Appl. No. 13/739,283, dated Sep. 11, 2014.
Office Action for U.S. Appl. No. 13/756,498, dated Sep. 12, 2014.
Notice of Allowance for U.S. Appl. No. 13/462,653 dated Sep. 17, 2014.
Notice of Allowance for U.S. Appl. No. 13/586,815, dated Sep. 18, 2014.
Notice of Allowance for U.S. Appl. No. 13/920,021, dated Sep. 18, 2014.
Office Action for U.S. Appl. No. 13/189,401, dated Sep. 22, 2013.
Notice of Allowance for U.S. Appl. No. 13/594,665 dated Sep. 26, 2014.
Notice of Allowance for U.S. Appl. No. 13/077,941, dated Oct. 8, 2014.
Notice of Allowance for U.S. Appl. No. 13/077,941, dated Aug. 27, 2014.
Office Action for U.S. Appl. No. 13/625,817 dated Feb. 28, 2014, 11 pages.
Office Action for U.S. Appl. No. 12/913,719 dated Feb. 17, 2011, 11 pages.
Office Action for U.S. Appl. No. 12/913,719 dated Jul. 22, 2011, 12 pages.
Notice of Allowance for U.S. Appl. No. 12/913,719 dated Mar. 12, 2012, 5 pages.
Notice of Allowance for U.S. Appl. No. 13/532,019 dated Nov. 14, 2012, 8 pages.
Office Action for U.S. Appl. No. 13/564,639 dated Mar. 19, 2013, 14 pages.
Suehle et al., “Temperature Dependence of Soft Breakdown and Wear-Out in Sub-3 nm SiO2 Films”, 38th Annual International Reliability Physics Symposium, 2000, pp. 33-39, IEEE, San Jose, California, 7 pages.
Shin et al., “Effect of Native Oxide on Polycrystalline Silicon CMP”, Journal of the Korean Physical Society, Mar. 2009, pp. 1077-1081, vol. 54, No. 3, 5 pages.
Office Action for U.S. Appl. No. 13/447,036 dated Jul. 9, 2013, 16 pages.
Office Action for U.S. Appl. No. 13/764,698 dated Jul. 11, 2013, 8 pages.
Office Action for U.S. Appl. No. 13/481,600 dated Sep. 20, 2013, 16 pages.
Office Action for U.S. Appl. No. 14/072,657 dated Jun. 17, 2014, 6 pages.
Office Action for U.S. Appl. No. 14/310,111 dated Jul. 7, 2015, 11 pages.
Jamaa et al., “Fabrication of Memristors with Poly-Crystalline Silicon Nanowires”, 9th IEEE Conference on Nanotechnology, 2009, pp. 152-154, IEEE, 3 pages.
Office Action for U.S. Appl. No. 13/564,639 dated Dec. 6, 2013, 15 pages.
Related Publications (1)
Number Date Country
20140084233 A1 Mar 2014 US