The present disclosure relates generally to devices, systems and methods for monitoring indicators of electrolytes or pH in patients for which blood cleaning or fluid removal is indicated, such as patients suffering from kidney disease or heart failure.
Patients who undergo hemodialysis or other procedures that remove solutes and fluid from the blood often die of cardiac complications. Many factors may contribute to such death, including stress placed on the heart due to the increased blood fluid volume in these patients. Increased fluid concentrations and inability to remove waste products from the blood, in some cases, can also contribute to electrolyte and pH imbalance that can affect cardiac contractility and efficiency. Further, rapid changes in fluid volume or pH or electrolyte concentration of the blood during hemodialysis or other fluid removal processes may place additional stress on the heart and may contribute to the high rate of morbidity for patients who undergo blood fluid removal procedures.
When a patient reaches a point where routine blood fluid removal procedures are prescribed, the patient undergoes periodic examinations that allow a healthcare provider to set various parameters of the blood fluid removal procedures, such as the profile of fluid removal, the composition of dialysate or replacement fluid employed, and the like. These examinations typically occur once a month in accordance with current standards of care.
Hemodialysis or similar procedures may occur three to four times a week. Thus, the patient may undergo 10 to 15 or more blood fluid removal sessions before the prescription or parameters are changed. It is possible, for example, that a prescription with regard to a dialysate electrolyte and pH buffer composition will not be appropriate for a patient several days or weeks after the prescription is set. Accordingly, it may be desirable to more frequently determine whether the electrolyte or pH concentration of a fluid used in blood fluid removal sessions is appropriate. In addition, it may be desirable to adjust the concentration or composition of the fluid during a blood fluid removal session in a manner that may improve patient health and reduce morbidity.
This disclosure, among other things, describes devices, systems and methods for monitoring indicators of pH or electrolytes in patients for which blood fluid removal sessions are indicated. The monitoring may occur during a blood fluid removal session, and the concentration or composition of buffer or electrolytes may be adjusted based on monitored data acquired during the blood fluid removal session. By monitoring pH or electrolytes, the dialysate of replacement fluid may be adjusted during a session to enhance patient safety.
In various embodiments described herein, a method includes initiating a blood fluid removal procedure for a patient in need thereof. The procedure includes use of a fluid selected from a dialysate fluid or a replacement fluid. The fluid has an initial pH buffer composition or electrolyte composition. The method further includes monitoring an indicator of blood electrolyte concentration or blood pH of the patient during the blood fluid removal session, and adjusting the pH buffer composition or the electrolyte composition of the fluid based on a value of the monitored indicator. The monitoring may be of blood before or after the blood has passed through the blood fluid removal device, or may be of fluid removed from the blood. In some embodiments, data acquired from monitoring performed on blood before and after passing through the blood fluid removal device is compared to data acquired from fluid (e.g., dialysate) before and after passing through blood fluid removal media of the device, and based on the comparison, the pH buffer composition or the electrolyte composition of the fluid is adjusted.
In embodiments, a system includes a blood fluid removal device, which has (i) an inlet for receiving blood from a patient, (ii) an outlet for returning blood from the patient, (iii) a medium for removing fluid and contaminants from the blood, the medium being positioned between the inlet and the first outlet, and (iv) a fluid source for carrying a fluid, where the fluid is selected from dialysate and replacement fluid. If the fluid is dialysate, the fluid source carries the fluid to the medium. If the fluid is replacement fluid, the fluid source carries the fluid to the blood after the blood exits the medium. The system further includes (i) a concentrate source for housing a concentrate solution comprising concentrated electrolyte or pH buffer, (ii) a concentrate flow control element for controlling the rate that the concentrate solution enters the fluid source; (iii) a sensor for monitoring an indicator of blood pH or blood electrolyte concentration; and (iv) control electronics in operable communication with the sensor and the concentrate flow control element. The control electronics are configured, via the concentrate flow control element, to adjust the rate at which the concentrate solution enters the fluid source based on data obtained from the sensor.
In embodiments, a system includes (i) a medium housing defining a major chamber; (ii) a blood flow removal membrane disposed in the housing and sealingly dividing the major chamber into first and second minor chambers; (iii) a first inlet and a first outlet in fluid communication with the first minor chamber, wherein the system is configured such that blood enters the first minor chamber through the first inlet and exits the first minor chamber through the first outlet; (iv) a second inlet and a second outlet in fluid communication with the second minor chamber, wherein the system is configured such that dialysate enters the second minor chamber through the second inlet and exits the second minor chamber through the second outlet; (vi) a dialysate regeneration medium in fluid communication with and disposed in a dialysate flow path between the second inlet and the second outlet; (vii) a concentrate source for housing a concentrate solution comprising concentrated electrolyte or pH buffer; (viii) a concentrate flow control element for controlling the rate that the concentrate solution enters the dialysate flow path downstream of the dialysate regeneration medium and upstream of the second inlet; (ix) a sensor configured to monitor an indicator of electrolyte concentration or pH of dialysate in the dialysate flow path downstream of the dialysate regeneration medium and upstream of the second inlet; and (x) control electronics in operable communication with the sensor and the concentrate flow control element, wherein the control electronics are configured, via the concentrate flow control element, to adjust the rate at which the concentrate solution enters the dialysate flow path based on data obtained from the sensor.
In any embodiment, the system can comprise a blood fluid removal device comprising: (a) an inlet for receiving blood from a patient; (b) an outlet for returning blood from the patient; (c) a medium for removing fluid and contaminants from the blood, the medium being positioned between the inlet and the outlet, and (d) a fluid source for carrying fluid to the medium; and the system can further comprise a concentrate source for housing a concentrate solution comprising concentrated electrolyte or pH buffer; a concentrate flow control element for controlling the rate that the concentrate solution enters the fluid source; a first sensor configured to monitor an indicator of electrolyte concentration or pH in dialysate in the fluid source before the dialysate enters the medium; a second sensor configured to monitor an indicator of electrolyte concentration or pH in the dialysate in the fluid source after the dialysate exits the medium; and control electronics in operable communication with the first sensor and the concentrate flow control element, wherein the control electronics are configured, via the concentrate flow control element, to adjust the rate at which the concentrate solution enters the fluid source based on data obtained from the first sensor and the second sensor.
In any embodiment, the data obtained from the first sensor and the second sensor can be used to predict blood electrolyte concentration or blood pH.
In any embodiment, the control electronics can be configured, via the concentrate flow control element, to adjust the rate at which the concentrate solution enters the fluid source based on a comparison of the data received from the first sensor and the data received from the second sensor.
In any embodiment, the system can comprise a dialysate regeneration system, wherein the first sensor is configured to monitor the indicator of electrolyte concentration or pH in the dialysate in the fluid source after the dialysate exits the regeneration system, and wherein the second sensor is configured to monitor the indicator of electrolyte concentration or pH in the dialysate in the fluid source before the dialysate enters the regeneration system.
In any embodiment, the concentrate solution can enter the fluid source after the dialysate exits the dialysate regeneration system.
In any embodiment, the first sensor can be configured to monitor the indicator of electrolyte concentration or pH in the dialysate in the fluid source after the concentrate solution enters the fluid source.
In any embodiment, the system can comprise a third sensor configured to monitor the indicator in the blood after the blood exits the medium.
In any embodiment, the control electronics can be configured to adjust a rate at which dialysate enters the medium or the rate at which blood enters the medium based on data obtained from the first sensor and the second sensor.
In any embodiment, the control electronics, or components thereof, can be housed within a housing of the blood fluid removal device.
In any embodiment, a method can comprise initiating a blood fluid removal procedure, wherein the procedure comprises use of a dialysate with an initial pH buffer composition or electrolyte composition; monitoring an indicator of pH or electrolyte concentration in the dialysate during the blood fluid removal session; and adjusting the pH buffer composition or the electrolyte composition of the dialysate based on a value of the monitored indicator.
In any embodiment, the indicator of pH or electrolyte concentration in the dialysate can be monitored after the dialysate exits a blood fluid removal medium and the indicator of pH or electrolyte concentration in the dialysate can be monitored before the dialysate enters the blood fluid removal medium.
In any embodiment, the pH buffer composition or electrolyte composition of the dialysate can be adjusted based on a comparison of the pH or electrolyte concentration before the dialysate enters the medium and after the dialysate exits the medium.
In any embodiment, adjusting the pH buffer composition or electrolyte composition can comprise adding a concentrate electrolyte solution or concentrated buffer solution to the dialysate.
In any embodiment, the method can comprise determining whether a value of the monitored indicator crosses a threshold; and providing an alert if the value of the monitored indicator crosses the threshold.
In any embodiment, the method can comprise deriving a blood electrolyte concentration or blood pH from the monitored indicator before the dialysate enters the medium and after the dialysate exits the medium.
In any embodiment, the method can comprise monitoring the indicator in blood after the blood exits the blood fluid removal medium.
In any embodiment, the method can comprise adjusting a rate at which dialysate enters the blood fluid removal medium or a rate at which blood enters the blood fluid removal medium based on the monitored indicator.
In any embodiment, the dialysate can be regenerated with a dialysate regeneration system, and the indicator of pH or electrolyte concentration in the dialysate can be monitored after the dialysate exits the blood fluid removal medium but before the dialysate enters the dialysate regeneration system; and the indicator of pH or electrolyte concentration in the dialysate can be monitored after the dialysate exits the dialysate regeneration system but before the dialysate enters the blood fluid removal medium.
In any embodiment, adjusting the pH buffer composition or electrolyte composition can comprise adding a concentrated electrolyte solution or concentrated buffer solution to the dialysate after the dialysate has been regenerated.
In any embodiment, the pH or electrolyte concentration in the dialysate can be monitored after the concentrated electrolyte solution or concentrated buffer solution has been added to the dialysate.
One or more embodiments of the systems, devices and methods described herein may provide one or more advantages over prior systems, devices and methods for blood fluid removal in patients. Such advantages will be apparent to those skilled in the art upon reading the following detailed description.
The accompanying drawings, which are incorporated into and form a part of the specification, illustrate several embodiments of the present disclosure and, together with the description, serve to explain the principles of the disclosure. The drawings are only for the purpose of illustrating embodiments of the disclosure and are not to be construed as limiting the disclosure.
The schematic drawings presented herein are not necessarily to scale. Like numbers used in the figures refer to like components, steps and the like. However, it will be understood that the use of a number to refer to a component in a given figure is not intended to limit the component in another figure labeled with the same number. In addition, the use of different numbers to refer to components is not intended to indicate that the different numbered components cannot be the same or similar.
In the following detailed description, reference is made to the accompanying drawings that form a part hereof, and in which are shown by way of illustration several embodiments of devices, systems and methods. It is to be understood that other embodiments are contemplated and may be made without departing from the scope or spirit of the present disclosure. The following detailed description, therefore, is not to be taken in a limiting sense.
All scientific and technical terms used herein have meanings commonly used in the art unless otherwise specified. The definitions provided herein are to facilitate understanding of certain terms used frequently herein and are not meant to limit the scope of the present disclosure.
As used in this specification and the appended claims, the singular forms “a”, “an”, and “the” encompass embodiments having plural referents, unless the content clearly dictates otherwise.
As used in this specification and the appended claims, the term “or” is generally employed in its sense including “and/or” unless the content clearly dictates otherwise.
As used herein, “have”, “having”, “include”, “including”, “comprise”, “comprising” or the like are used in their open ended sense, and generally mean “including, but not limited to.”
As used herein, a “patient for which a blood fluid removal session is indicated” is a patient that has undergone, is undergoing, or is likely to undergo at least one blood fluid removal session. In general, such patients are fluid overloaded patients, such as patients suffering from heart failure, chronic kidney disease, or acute kidney failure. Often such patients are stage 3 to stage 5 chronic kidney disease patients, are unresponsive or under-responsive to diuretics, or the like.
As used herein, a “blood fluid removal process,” or the like, refers to a process from which fluid is removed from blood of a patient and the blood is returned to the patient. In most cases, the blood is also cleaned; i.e., waste products are removed from the blood and cleaned blood is returned to the patient. Examples of blood fluid removal processes include ultrafiltration, hemofiltration, hemodialysis, hemodiafiltration, peritoneal dialysis, and the like. Any patient for which blood fluid removal is indicated may benefit from the devices, systems and methods described herein.
This disclosure relates to, among other things, systems and methods for monitoring indicators of pH or electrolyte concentrations in patients for which a blood fluid removal process is indicated. In embodiments, the sensors are configured and positioned to monitor pH or electrolytes in one or more of (i) blood of the patient before the blood enters a fluid removal or cleaning medium of the blood fluid removal device; (ii) blood of the patient before after blood exits the medium before being returned to the patient; (iii) fluid removed from the blood of the patient after passing through the medium; (iv) fluid, such as dialysate, before entering the medium; (v) fluid upstream or downstream of the addition of a concentrate for use in altering the composition of the fluid (e.g., dialysate or replacement fluid); (vi) or the like. Additional discussion with regard to sensor placement and use of such sensors will follow. First, however, a brief discussion of blood fluid removal devices or systems that may be used in accordance with the teachings presented herein is presented.
Any suitable device or system for removing fluid, or fluid and contaminants, from blood may be used in accordance with the teachings presented herein. The devices, or components thereof, may be traditional large counsel-type, wearable, or implantable.
Block diagrams of some example devices and systems are shown in
With some of such devices, replacement fluid may be introduced into the patient's blood if fluid is removed from the blood by the device 100 at too great of a rate or amount. The replacement fluid may be added to the original blood before fluid removal or may be added to the blood after initial fluid removal and prior to return to the patient's cardiovascular system. Preferably, the replacement fluid is added after initial fluid removal. The pH and electrolyte concentration of the replacement fluid may be set or adjusted, e.g. as described in more detail below, based on monitoring of pH or electrolytes of the patient.
As shown in the embodiment depicted in
Regardless of whether the dialysate is regenerated, systems and devices that operate in a manner shown in the embodiment of
As shown in
Regardless of the device or blood fluid removal process employed, it is important to ensure that the blood pH and electrolyte concentrations are within suitable ranges. If blood electrolyte concentrations are not within suitable ranges, problems with cardiac contractility, efficiency and the like may occur. If the pH is not within a suitable range, acidosis may result, which can result in disruption of cell membranes and denaturation of proteins. In either case, if ranges of blood electrolytes and pH are not properly controlled, the patient's health may be at risk. For example, sudden and cardiac death (including death from congestive heart failure, myocardial infarction, and sudden death) are common in hemodialysis patients. See Bleyer et al, “Sudden and cardiac death rated in hemodialysis patients,” Kidney International, (1999), 55:1552-1559.
Accordingly, one goal of hemodialysis, ultrafiltration, and the like is to ensure that the patient's blood pH and electrolyte concentrations are within acceptable ranges. Typical ranges of pH and blood electrolyte concentration that are desired during or following a blood fluid removal session are provided in Table 1 below. As indicated in Table 1, concentrations of various acids or bases (or salts or hydrates thereof) are often important in determining the pH of blood. Accordingly, some typical target concentrations of such acids, bases are presented in Table 1.
However, it will be understood that the target for a particular patient may be different from the values presented in Table 1 for one or more electrolyte or pH. It will also be understood that buffers are typically employed to maintain proper blood pH.
Some suitable buffers that may be used in fluid, such as replacement fluid or dialysate, include bicarbonate, acetate, citrate, lactate, amino acid and protein buffers. The concentration and composition of the buffers and components thereof may be adjusted based on monitored pH of the patient's blood. Similarly, the concentration of electrolytes such as sodium, potassium, calcium, and chloride in replacement fluid or dialysate may be set or altered based the monitored levels of electrolytes.
Any suitable sensor may be employed to monitor pH or electrolytes. For example and referring to
Any suitable transducer may be employed to detect pH or electrolytes. In embodiments, the transducer is an ion selective electrode configured to detect H+ ions, K+ ions, Na+ ions, Ca2+ ions, Cl− ions, phosphate ions, magnesium ions, acetate ions, amino acids ions, or the like. Such electrodes, and components of sensors employing such electrodes, are known in the art and may be employed, or modified to be employed, for use in the monitoring described herein.
In some embodiments, one or more sensors are employed to detect one or more ions to gauge pH or electrolytes in the blood. In some embodiments, a sensor may have more than one transducer, even if leadless, that may monitor more than one ionic species. By measuring more than one ionic species, a more detailed understanding of the levels of various electrolytes or blood components may be had. For example, in some patients in some situations, one electrolyte may be at elevated levels while another may be at reduced levels. In some embodiments, more than one sensor for the same ion is employed for purposes of result confirmation and redundancy, which can improve reliability and accuracy. In some embodiments, sensors for the same ion may be configured to accurately detect different ranges of concentrations of the ion. In embodiments, more than one transducer is present in a single unit. This allows for convenient data collection and circuitry, as all the data may be collected in one place at the same time. Further, the multiple transducers may share the same fluid collection mechanism (e.g., a microdialyzer in the case of an implant), and if needed or desired, may share the same data processing and memory storage components.
A sensor (or transducer) may be placed at any suitable location for purposes of monitoring electrolytes or pH. For example, and with reference to
Data acquired from a sensor 200A upstream of the fluid delivery device 100 or blood fluid removal media provides an indication of the actual status of the patient 10. As a blood fluid cleaning session progresses, data acquired from a sensor 200A upstream of the fluid delivery device 100 or medium can be used to determine whether blood pH and electrolytes are approaching target ranges or to determine the rate at which pH and electrolytes are changing in the patient as a result of the blood fluid removal process. While not intending to be bound by theory, it is possible that too rapid of a change in pH or electrolyte concentrations can lead to patient hypotension or sudden death that is seen in patient populations that undergo blood fluid removal processes. By monitoring and controlling the rate of change of pH or electrolyte changes in the blood of a patient during the blood fluid removal session, perhaps the incidence of crashing or sudden death can be reduced.
In some embodiments, a sensor 200B is located external to the patient 10 and configured to monitor pH or electrolyte levels in the blood after the blood exits the blood fluid removal device 100 (or after exiting the blood fluid removal medium) and before being returned to the patient 10. For example, sensor 200B may be positioned such that a transducer is placed within a catheter carrying blood from the blood fluid removal device 100 (or medium) to the patient 10. Such a downstream sensor 200B may be used to ensure that pH and electrolyte levels of blood to be returned to the patient are not out of range. If the detected levels are out of range or are tending towards out of range, adjustments to pH and electrolyte concentrations can be made to fluid (dialysate or replacement fluid) to avoid introducing fluid into the patient 10 that may cause or exacerbate a cardiac problem associated with electrolyte or pH levels that are too high or too low.
In some embodiments, the system employs both an upstream sensor 200A and a downstream sensor 200B. With such systems, the pH or electrolyte levels detected upstream and downstream may be compared, and the compared data may be used to adjust the pH or electrolyte concentration or composition of fluid employed during a blood fluid removal session. The compared data may also be used to determine the rate of change of blood electrolyte concentration or pH. By way of example, prior to a blood fluid removal session or in the early parts of such a session, the patient is typically fluid over-loaded and the concentration of electrolytes may be low (due to the increased fluid volume). It may be appropriate to allow a slightly higher than target concentration electrolyte to be introduced back into the patient when the patient's electrolyte levels are low. However, as the patient's electrolyte levels (as measured by upstream sensor 200A) approach target levels, the electrolyte levels in the returned blood (as measured by downstream sensor 200B) should within target range. Monitoring both upstream and downstream will allow for adjustments and checks on progress that may not be attainable by monitoring only one or the other.
Referring now to
In embodiments, the system (e.g., the system depicted in
In embodiments, the system employs a sensor 200E to monitor pH or electrolytes removed from the blood of the patient after exiting the blood fluid removal device 100 or medium, and may include a sensor 200D configured and positioned to monitor pH or electrolytes of fluid (in the depicted case, dialysate) prior to entering the blood fluid device 100 or medium. By monitoring the pH or electrolytes in the fluid as it leaves the device 100 or medium (or the differential pH or electrolyte levels from before entering the device or medium and after exiting the device or medium), the pH or levels of electrolytes (or change in pH or electrolytes) exiting the device 100 or medium may be used to predict the blood pH and electrolyte levels without having to measure the levels in the blood directly. In cases where pH or electrolytes are detected in fluid other than blood and used to derive or predict pH or electrolyte levels or changes in blood, such detection serves as an “indicator” of blood pH or electrolytes. Of course, direct detection in blood also serves as an indicator of blood pH or electrolytes.
Regardless of which sensors 200A-E (see,
The pH and electrolyte concentration of the fluid (dialysate or replacement fluid) may be adjusted in any suitable manner. For example and with reference to
Referring now to
Any number of suitable concentrates may be used. For example, one concentrate may be sufficient with higher amounts being added when the electrolytes are determined to be low in the patient's blood, and smaller amounts being added when the electrolytes are determined to be high in the patient's blood. More than one concentrate may be used when it is desired to, for example, control pH and electrolyte concentration independently or to control concentration of different electrolytes independently. In embodiments, the number of concentrates is the same as the number of ion species (pH and electrolytes) monitored.
Control elements 415, 425, 435, as depicted in
Any suitable system may be configured as depicted in
Referring now to
The device 100 depicted in
In the device depicted in
Referring now to
In the embodiment depicted in
In the depicted embodiment, the concentrate 410 is stored in a reservoir 410, having an inlet 401 that allows the concentrate supply in the reservoir 410 to be replenished from time to time. The rate at which the concentrate is added to the regenerated dialysate is controlled by concentrate flow control element 415, which is operably coupled to control electronics 150, and is based on data received from sensor 200 that monitors pH or electrolyte concentrations (e.g., as described above).
The device 100 in
In the depicted embodiment, the device 100 also includes a negative pressure control element 190 in communication with the dialysate compartment of the medium component 130. The negative pressure control element 190, which may include a pump or the like, may be used to generate or change a pressure differential across the membrane to control the rate at which fluid is removed from blood that passes though the medium component 130.
The control electronics 150, which may include a processor, memory, etc., are operably coupled to, and configured to control, the blood flow control element 120, the dialysis flow control element 170, and the negative pressure control element 190. By controlling these elements in a coordinated manner, the rate at which fluid is removed from blood may be controlled. It will be understood that a device 100 need not have all of the controllable elements (120, 170, 190) depicted in
Any suitable control element may be used for the various control elements (120, 150, 170, 195, 415) depicted in
While
While
It will be understood that the blood fluid removal devices and systems, and components thereof, described herein are presented for purposes of illustration and not limitation. Components, devices and systems other than those described herein, or derivations of the components, devices and systems described herein, may be employed. Further, components of the devices depicted and discussed above may be interchanged, substituted or added to components of alternative embodiments, as appropriate. Further, it will be understood that, while many of the blood fluid removal devices depicted in a variety of the figures, such as
The devices and systems described above, or components thereof, may be used to carry out the methods depicted in
Referring now to
As shown in
Referring now to
Referring now to
The methods described herein, including the methods depicted in
A variety of aspects of methods, systems, devices, computer-readable media and the like are disclosure herein. A summary of some of the aspects is provided below.
In a first aspect, a system comprises: (a) a blood fluid removal device comprising (i) an inlet for receiving blood from a patient, (ii) an outlet for returning blood from the patient, (iii) a medium for removing fluid and contaminants from the blood, the medium being positioned between the inlet and the first outlet, and (iv) a fluid source for carrying a fluid, the fluid selected from dialysate and replacement fluid, wherein if the fluid is dialysate the fluid source carries the fluid to the medium, and wherein if the fluid is replacement fluid the fluid source carries the fluid to the blood after the blood exits the medium; (b) a concentrate source for housing a concentrate solution comprising concentrated electrolyte or pH buffer; (c) a concentrate flow control element for controlling the rate that the concentrate solution enters the fluid source; (d) a first sensor configured to monitor an indicator of blood electrolyte concentration or blood pH; and (e) control electronics in operable communication with the sensor and the concentrate flow control element, wherein the control electronics are configured, via the concentrate flow control element, to adjust the rate at which the concentrate solution enters the fluid source based on data obtained from the sensor.
A second aspect is a system of the first aspect, wherein the first sensor is configured to monitor blood before the blood enters the medium.
A third aspect is a system of the second aspect, further comprising a second sensor configured to monitor an indicator of blood electrolyte concentration or blood pH, the second sensor being configured to monitor blood after the blood exits the medium.
A fourth aspect is a system of the third aspect, wherein the control electronics are in operable communication with the second sensor and are configured to compare data acquired from the first sensor to data acquired from the second sensor, and wherein the control electronics are configured to adjust the rate at which the concentrate solution enters the fluid source based on the comparison of the data acquired from the first sensor and the second sensor.
A fifth aspect is a system of aspect 1, wherein the first sensor is configured to monitor the indicator in fluid removed from the blood after the fluid removed from the blood exits the medium
A sixth aspect is a system of aspect 5, wherein the control electronics are configured to derive the blood pH or blood electrolyte concentration based on data acquired from the first sensor.
A seventh aspect is a system of aspect 5, further comprising a second sensor configured to monitor the indicator in dialysate in the fluid source before the dialysate enters the medium, wherein the control electronics are control electronics are in operable communication with the second sensor and are configured to compare data acquired from the first sensor to data acquired from the second sensor, and wherein the control electronics are configured to adjust the rate at which the concentrate solution enters the fluid source based on the comparison of the data acquired from the first sensor and the second sensor.
An eighth aspect is a system of the first aspect, wherein the first sensor is configured to monitor the indicator in the blood after the blood exits the medium and before replacement fluid is added to the blood.
A ninth aspect is a system of aspect 8, further comprising a second sensor configured to monitor the indicator in the blood after the replacement fluid has been added to the blood.
A tenth aspect is a system of any of aspects 1-9, wherein the control electronics, or components thereof, are housed within a housing of the blood fluid removal device.
An eleventh aspect is a system of any of aspects 1-10, further comprising a computer readable medium, wherein the computer readable medium comprises instructions that cause the control electronics to control the concentrate flow control element to adjust the rate at which the concentrate solution enters the fluid source based on data obtained from the sensor.
A twelfth aspect is a method carried out by a blood fluid removal device or system, comprising: (i) initiating blood fluid removal procedure for a patient in need thereof, wherein the procedure comprise use of a fluid selected from a dialysate fluid or a replacement fluid, and wherein the fluid has an initial pH buffer composition or electrolyte composition; (ii) monitoring an indicator of blood electrolyte concentration or blood pH of the patient during the blood fluid removal session; and (iii) adjusting the pH buffer composition or the electrolyte composition of the fluid based on a value of the monitored indicator.
A thirteenth aspect is method of aspect 12, wherein monitoring the indicator comprises monitoring the indicator in blood before passing the blood through a blood fluid removal medium and after passing the blood through the blood fluid removal medium
A fourteenth aspect is a method of aspect 13, further comprising comparing a value of the indicator monitored before the blood is passed through the medium to a value of the indicator monitored after passing the blood through the medium, wherein adjusting the pH buffer composition or the electrolyte composition comprises adjusting the composition based on the comparison.
A fifteenth aspect is a method of any of aspects 12-14, wherein adjusting the composition comprises adding a concentrated electrolyte solution or buffer solution to the fluid.
A sixteenth aspect is a method of any of aspects 12-15, further comprising (i) determining whether a value of the monitored indicator crosses a threshold; and (ii) providing an alert if the value of the monitored indicator is determined to cross the threshold.
A seventeenth aspect is a method of aspect 12, wherein monitoring the indicator comprises monitoring the indicator in fluid removed from the blood.
An eighteenth aspect is a method of aspect 17, further comprising determining a blood electrolyte concentration or pH from a value of the monitored indicator of the fluid removed from the blood.
A nineteenth aspect is a method of aspect 17 or aspect 18, wherein the fluid for use in the blood fluid removal procedure is dialysate, and wherein monitoring the indicator further comprises monitoring the indicator in the dialysate prior to the dialysate entering a blood fluid removal medium, and wherein the method further comprises comparing a value of the monitored indicator in fluid removed from the blood to a value of the monitored indicator in the dialysate prior to entering the blood fluid removal medium.
A twentieth aspect is a method of aspect 12, wherein the fluid for use in the blood fluid removal procedure is replacement fluid, and wherein monitoring the indicator comprises monitoring the indicator in blood downstream of a blood fluid removal medium and upstream of addition of the replacement fluid to the blood.
A twenty-first aspect is a method of aspect 20, wherein monitoring the indicator further comprises monitoring the indicator in the blood downstream of the addition of the replacement fluid, wherein the method further comprises comparing a value of the monitored indicator obtained upstream of the addition of replacement fluid to a value of the monitored indicator obtained downstream of the addition of replacement fluid.
A twenty-second aspect is a system comprising: (i) a medium housing defining a major chamber; (ii) a blood flow removal membrane disposed in the housing and sealingly dividing the major chamber into first and second minor chambers; (iii) a first inlet and a first outlet in fluid communication with the first minor chamber, wherein the system is configured such that blood enters the first minor chamber through the first inlet and exits the first minor chamber through the first outlet; (iv) a second inlet and a second outlet in fluid communication with the second minor chamber, wherein the system is configured such that dialysate enters the second minor chamber through the second inlet and exits the second minor chamber through the second outlet; (v) a dialysate regeneration medium in fluid communication with and disposed in a dialysate flow path between the second inlet and the second outlet; (vi) a concentrate source for housing a concentrate solution comprising concentrated electrolyte or pH buffer; (vii) a concentrate flow control element for controlling the rate that the concentrate solution enters the dialysate flow path downstream of the dialysate regeneration medium and upstream of the second inlet; (viii) a sensor configured to monitor an indicator of electrolyte concentration or pH of dialysate in the dialysate flow path downstream of the dialysate regeneration medium and upstream of the second inlet; and (ix) control electronics in operable communication with the sensor and the concentrate flow control element, wherein the control electronics are configured, via the concentrate flow control element, to adjust the rate at which the concentrate solution enters the dialysate flow path based on data obtained from the sensor.
A twenty-third aspect is a method carried out by a blood fluid removal device or system, comprising: (i) initiating blood fluid removal procedure for a patient in need thereof, wherein the procedure comprises use of a dialysate fluid and a dialysate membrane, as at least a part of a blood fluid removal medium, across which electrolytes may be exchanged between blood and the dialysate fluid; (ii) monitoring an indicator of blood electrolyte concentration or blood pH during the blood fluid removal session; and (iii) adjusting the flow rate of the dialysate fluid or blood based on a value of the monitored indicator.
A twenty-fourth aspect is a method of aspect 23, wherein monitoring the indicator comprises monitoring the indicator in blood before passing the blood through the blood fluid removal medium and after passing the blood through the blood fluid removal medium.
A twenty-fifth aspect is a method of aspect 23, further comprising comparing a value of the indicator monitored before the blood is passed through the medium to a value of the indicator monitored after passing the blood through the medium, wherein adjusting the flow rate of the dialysate fluid or the blood comprises adjusting the composition based on the comparison.
A twenty-sixth aspect is a method of any of aspects 23-25, wherein monitoring the indicator comprises monitoring the indicator in fluid removed from the blood.
A twenty-seventh aspect is a method of aspect 23, further comprising determining a blood electrolyte concentration or pH from a value of the monitored indicator of the fluid removed from the blood.
Thus, systems, devices and methods for ELECTROLYTE AND pH MONITORING FOR FLUID REMOVAL PROCESSES are described. Those skilled in the art will recognize that the preferred embodiments described herein may be altered or amended without departing from the true spirit and scope of the disclosure, as defined in the accompanying claims.
In the claims that follow, the designators “first”, “second”, “third” and the like are used for purposes of distinguishing between elements and not for purposes of enumerating the elements or for defining a sequence of the elements. For example, a “third” sensor does not necessarily imply that there are three sensors but rather that the “third” sensor is distinct from the “first” sensor. By way of further example, a “third” sensor does not necessarily come later in time than a “first” sensor.
This application claims priority as a continuation application to U.S. application Ser. No. 13/424,479, filed on Mar. 20, 2012, which in turn claims priority to U.S. Provisional Application No. 61/480,539, U.S. Provisional Application No. 61/480,544, U.S. Provisional Application No. 61/480,541, U.S. Provisional Application No. 61/480,535, U.S. Provisional Application No. 61/480,532, U.S. Provisional Application No. 61/480,530, and U.S. Provisional Application No. 61/480,528, wherein each provisional application was filed Apr. 29, 2011, and wherein each provisional application is hereby incorporated by reference in its entirety to the extent that it does not conflict with the disclosure presented herein.
Number | Name | Date | Kind |
---|---|---|---|
3608729 | Haselden | Sep 1971 | A |
3669878 | Marantz | Jun 1972 | A |
3669880 | Marantz | Jun 1972 | A |
3850835 | Marantz | Nov 1974 | A |
3884808 | Scott | May 1975 | A |
3989622 | Marantz | Nov 1976 | A |
4060485 | Eaton | Nov 1977 | A |
4371385 | Johnson | Feb 1983 | A |
4374382 | Markowitz | Feb 1983 | A |
4381999 | Boucher | May 1983 | A |
4460555 | Thompson | Jul 1984 | A |
4556063 | Thompson | Dec 1985 | A |
4562751 | Nason | Jan 1986 | A |
4581141 | Ash | Apr 1986 | A |
4650587 | Polak | Mar 1987 | A |
4678408 | Mason | Jul 1987 | A |
4685903 | Cable | Aug 1987 | A |
4750494 | King | Jun 1988 | A |
4826663 | Alberti | May 1989 | A |
4828693 | Lindsay | May 1989 | A |
5080653 | Voss | Jan 1992 | A |
5092886 | Dobos-Hardy | Mar 1992 | A |
5097122 | Coiman | Mar 1992 | A |
5127404 | Wyborny | Jul 1992 | A |
5284470 | Beltz | Feb 1994 | A |
5302288 | Meidl | Apr 1994 | A |
5305745 | Zacouto | Apr 1994 | A |
5318750 | Lascombes | Jun 1994 | A |
5468388 | Goddard | Nov 1995 | A |
5507723 | Keshaviah | Apr 1996 | A |
5651893 | Kenley | Jul 1997 | A |
5683432 | Goedeke | Nov 1997 | A |
5744031 | Bene | Apr 1998 | A |
5762782 | Kenley | Jun 1998 | A |
5902336 | Mishkin | May 1999 | A |
5944684 | Roberts | Aug 1999 | A |
6048732 | Anslyn | Apr 2000 | A |
6052622 | Holmstrom | Apr 2000 | A |
6058331 | King | May 2000 | A |
6156002 | Polaschegg | Dec 2000 | A |
6230059 | Duffin | May 2001 | B1 |
6248093 | Moberg | Jun 2001 | B1 |
6254567 | Treu | Jul 2001 | B1 |
6321101 | Holmstrom | Nov 2001 | B1 |
6362591 | Moberg | Mar 2002 | B1 |
6363279 | Ben-Haim | Mar 2002 | B1 |
6505075 | Weiner | Jan 2003 | B1 |
6554798 | Mann | Apr 2003 | B1 |
6555986 | Moberg | Apr 2003 | B2 |
6589229 | Connelly | Jul 2003 | B1 |
6602399 | Fromherz | Aug 2003 | B1 |
6627164 | Wong | Sep 2003 | B1 |
6676608 | Keren | Jan 2004 | B1 |
6689083 | Gelfand | Feb 2004 | B1 |
6706007 | Gelfand | Mar 2004 | B2 |
6711439 | Bradley | Mar 2004 | B1 |
6726647 | Sternby | Apr 2004 | B1 |
6780322 | Bissler | Aug 2004 | B1 |
6818196 | Wong | Nov 2004 | B2 |
6878283 | Thompson | Apr 2005 | B2 |
6887214 | Levin | May 2005 | B1 |
6890315 | Levin | May 2005 | B1 |
6960179 | Gura | Nov 2005 | B2 |
7074332 | Summerton | Jul 2006 | B2 |
7077819 | Goldau | Jul 2006 | B1 |
7131956 | Pirazzoli | Nov 2006 | B1 |
7175809 | Gelfand | Feb 2007 | B2 |
7208092 | Micheli | Apr 2007 | B2 |
7276042 | Polaschegg | Oct 2007 | B2 |
7399289 | Gelfand | Jul 2008 | B2 |
7500958 | Asbrink | Mar 2009 | B2 |
7575564 | Childers | Aug 2009 | B2 |
7674231 | McCombie | Mar 2010 | B2 |
7704361 | Garde | Apr 2010 | B2 |
7736507 | Wong | Jun 2010 | B2 |
7744553 | Kelly | Jun 2010 | B2 |
7754852 | Burnett | Jul 2010 | B2 |
7756572 | Fard | Jul 2010 | B1 |
7775983 | Zhang | Aug 2010 | B2 |
7776210 | Rosenbaum | Aug 2010 | B2 |
7785463 | Bissler | Aug 2010 | B2 |
7794141 | Perry | Sep 2010 | B2 |
7850635 | Polaschegg | Dec 2010 | B2 |
7857976 | Bissler | Dec 2010 | B2 |
7867214 | Childers | Jan 2011 | B2 |
7896831 | Sternby | Mar 2011 | B2 |
7922686 | Childers | Apr 2011 | B2 |
7922911 | Micheli | Apr 2011 | B2 |
7947179 | Rosenbaum | May 2011 | B2 |
7955291 | Sternby | Jun 2011 | B2 |
7967022 | Grant | Jun 2011 | B2 |
7981082 | Wang | Jul 2011 | B2 |
8000000 | Greenberg | Aug 2011 | B2 |
8034161 | Gura | Oct 2011 | B2 |
8070709 | Childers | Dec 2011 | B2 |
8096969 | Roberts | Jan 2012 | B2 |
8105260 | Tonelli | Jan 2012 | B2 |
8183046 | Lu | May 2012 | B2 |
8187250 | Roberts | May 2012 | B2 |
8197439 | Wang | Jun 2012 | B2 |
8202241 | Karakama | Jun 2012 | B2 |
8246826 | Wilt | Aug 2012 | B2 |
8273049 | Demers | Sep 2012 | B2 |
8282828 | Wallenas | Oct 2012 | B2 |
8292594 | Tracey | Oct 2012 | B2 |
8313642 | Yu | Nov 2012 | B2 |
8317492 | Demers | Nov 2012 | B2 |
8357113 | Childers | Jan 2013 | B2 |
8366316 | Kamen | Feb 2013 | B2 |
8366655 | Kamen | Feb 2013 | B2 |
1383728 | Pudil | Mar 2013 | A1 |
8404091 | Ding | Mar 2013 | B2 |
8409441 | Wilt | Apr 2013 | B2 |
8496809 | Roger | Jul 2013 | B2 |
8499780 | Wilt | Aug 2013 | B2 |
8500676 | Jansson | Aug 2013 | B2 |
8512271 | Moissl | Aug 2013 | B2 |
8518260 | Raimann | Aug 2013 | B2 |
8521482 | Akonur | Aug 2013 | B2 |
8535525 | Heyes | Sep 2013 | B2 |
8560510 | Brueggerhoff | Oct 2013 | B2 |
8580112 | Updyke | Nov 2013 | B2 |
8597227 | Childers | Dec 2013 | B2 |
8696626 | Kirsch | Apr 2014 | B2 |
8903492 | Soykan | Dec 2014 | B2 |
8926542 | Gerber | Jan 2015 | B2 |
20020042561 | Schulman | Apr 2002 | A1 |
20020112609 | Wong | Aug 2002 | A1 |
20030080059 | Peterson | May 2003 | A1 |
20030097086 | Gura | May 2003 | A1 |
20030105435 | Taylor | Jun 2003 | A1 |
20030114787 | Gura | Jun 2003 | A1 |
20040019312 | Childers | Jan 2004 | A1 |
20040068219 | Summerton | Apr 2004 | A1 |
20040099593 | DePaolis | May 2004 | A1 |
20040147900 | Polaschegg | Jul 2004 | A1 |
20040168969 | Sternby | Sep 2004 | A1 |
20040215090 | Erkkila | Oct 2004 | A1 |
20050065760 | Murtfeldt | Mar 2005 | A1 |
20050113796 | Taylor | May 2005 | A1 |
20050126961 | Bissler | Jun 2005 | A1 |
20050131331 | Kelly | Jun 2005 | A1 |
20050126998 | Childers | Jul 2005 | A1 |
20050150832 | Tsukamoto | Jul 2005 | A1 |
20050234381 | Niemetz | Oct 2005 | A1 |
20050236330 | Nier | Oct 2005 | A1 |
20050274658 | Rosenbaum | Dec 2005 | A1 |
20060025661 | Sweeney | Feb 2006 | A1 |
20060217771 | Soykan | Feb 2006 | A1 |
20060058731 | Burnett | Mar 2006 | A1 |
20060195064 | Plahey | Aug 2006 | A1 |
20060226079 | Mori | Oct 2006 | A1 |
20060241709 | Soykan | Oct 2006 | A1 |
20060264894 | Moberg | Nov 2006 | A1 |
20070007208 | Brugger | Jan 2007 | A1 |
20070066928 | Lannoy | Mar 2007 | A1 |
20070138011 | Hofmann | Jun 2007 | A1 |
20070175827 | Wariar | Aug 2007 | A1 |
20070179431 | Roberts | Aug 2007 | A1 |
20070213653 | Childers | Sep 2007 | A1 |
20070215545 | Bissler | Sep 2007 | A1 |
20070255250 | Moberg | Nov 2007 | A1 |
20080006570 | Gura | Jan 2008 | A1 |
20080021337 | Li | Jan 2008 | A1 |
20080053905 | Brugger | Mar 2008 | A9 |
20080067132 | Ross | Mar 2008 | A1 |
20080093276 | Roger | Apr 2008 | A1 |
20080215247 | Tonelli | Sep 2008 | A1 |
20080253427 | Kamen | Oct 2008 | A1 |
20090020471 | Tsukamoto | Jan 2009 | A1 |
20090101577 | Fulkerson | Apr 2009 | A1 |
20090124963 | Hogard | May 2009 | A1 |
20090127193 | Updyke | May 2009 | A1 |
20090171261 | Sternby | Jul 2009 | A1 |
20090264776 | Vardy | Oct 2009 | A1 |
20090275849 | Stewart | Nov 2009 | A1 |
20090275883 | Chapman | Nov 2009 | A1 |
20090281484 | Childers | Nov 2009 | A1 |
20090282980 | Gura | Nov 2009 | A1 |
20090314063 | Sternby | Dec 2009 | A1 |
20100004588 | Yeh | Jan 2010 | A1 |
20100010429 | Childers | Jan 2010 | A1 |
20100042035 | Moissl | Feb 2010 | A1 |
20100076398 | Scheurer | Mar 2010 | A1 |
20100078381 | Merchant | Apr 2010 | A1 |
20100078387 | Wong | Apr 2010 | A1 |
20100084330 | Wong | Apr 2010 | A1 |
20100087771 | Karakama | Apr 2010 | A1 |
20100094158 | Solem | Apr 2010 | A1 |
20100113891 | Barrett | May 2010 | A1 |
20100114012 | Sandford | May 2010 | A1 |
20100137693 | Porras | Jun 2010 | A1 |
20100137782 | Jansson | Jun 2010 | A1 |
20100168546 | Kamath | Jul 2010 | A1 |
20100217180 | Akonur | Aug 2010 | A1 |
20100217181 | Roberts | Aug 2010 | A1 |
20100224492 | Ding | Sep 2010 | A1 |
20100234795 | Wallenas | Sep 2010 | A1 |
20100241045 | Kelly | Sep 2010 | A1 |
20100264086 | Noack | Oct 2010 | A1 |
20110017665 | Updyke | Jan 2011 | A1 |
20110048949 | Ding et al. | Mar 2011 | A1 |
20110066043 | Banet | Mar 2011 | A1 |
20110071465 | Wang | Mar 2011 | A1 |
20110077574 | Sigg | Mar 2011 | A1 |
20110079558 | Raimann | Apr 2011 | A1 |
20110087187 | Beck | Apr 2011 | A1 |
20110100909 | Stange | May 2011 | A1 |
20110106003 | Childers | May 2011 | A1 |
20110130666 | Dong | Jun 2011 | A1 |
20110144570 | Childers | Jun 2011 | A1 |
20110184340 | Tan | Jul 2011 | A1 |
20110208105 | Brandl | Aug 2011 | A1 |
20110272337 | Palmer | Nov 2011 | A1 |
20110301447 | Park | Dec 2011 | A1 |
20120016228 | Kroh | Jan 2012 | A1 |
20120083729 | Childers | Apr 2012 | A1 |
20120085707 | Beiriger | Apr 2012 | A1 |
20120115248 | Ansyln | May 2012 | A1 |
20120220528 | VanAntwerp | Aug 2012 | A1 |
20120258546 | Marran | Oct 2012 | A1 |
20120259276 | Childers | Oct 2012 | A1 |
20120273415 | Gerber | Nov 2012 | A1 |
20120273420 | Gerber | Nov 2012 | A1 |
20120277546 | Soykan | Nov 2012 | A1 |
20120277551 | Gerber | Nov 2012 | A1 |
20120277552 | Gerber | Nov 2012 | A1 |
20120277604 | Gerber | Nov 2012 | A1 |
20120277650 | Gerber | Nov 2012 | A1 |
20120277655 | Gerber | Nov 2012 | A1 |
20120277722 | Gerber | Nov 2012 | A1 |
20130037465 | Heyes | Feb 2013 | A1 |
20130062265 | Balschat | Mar 2013 | A1 |
20130193073 | Hogard | Aug 2013 | A1 |
20130199998 | Kelly | Aug 2013 | A1 |
20130211730 | Wolff | Aug 2013 | A1 |
20130213890 | Kelly | Aug 2013 | A1 |
20130228517 | Roger | Sep 2013 | A1 |
20130231607 | Roger | Sep 2013 | A1 |
20130248426 | Pouchoulin | Sep 2013 | A1 |
20130274642 | Soykan | Oct 2013 | A1 |
20130324915 | (Krensky)Britton | Dec 2013 | A1 |
20130330208 | Ly | Dec 2013 | A1 |
20130331774 | Farrell | Dec 2013 | A1 |
20140018728 | Plahey | Jan 2014 | A1 |
20140042092 | Akonur | Feb 2014 | A1 |
20140088442 | Soykan | Mar 2014 | A1 |
20140110340 | White | Apr 2014 | A1 |
20140110341 | White | Apr 2014 | A1 |
20140158538 | Collier | Jun 2014 | A1 |
20140158588 | Pudil | Jun 2014 | A1 |
20140158623 | Pudil | Jun 2014 | A1 |
20140190876 | Meyer | Jul 2014 | A1 |
20140217029 | Meyer | Aug 2014 | A1 |
20140220699 | Pudil | Aug 2014 | A1 |
20150032023 | Soykan | Jan 2015 | A1 |
20150080682 | Gerber | Mar 2015 | A1 |
20150088047 | Gerber | Mar 2015 | A1 |
20150250427 | Soykan | Sep 2015 | A1 |
20150352269 | Gerber | Dec 2015 | A1 |
20150367054 | Gerber | Dec 2015 | A1 |
20160206801 | Gerber | Jul 2016 | A1 |
20160331884 | Sigg | Nov 2016 | A1 |
Number | Date | Country |
---|---|---|
0101193667 | Jun 2008 | CN |
103037917 | Apr 2013 | CN |
266795 | Nov 1987 | EP |
0272414 | Oct 1991 | EP |
0330892 | Jul 1994 | EP |
1124599 | May 2000 | EP |
1175238 | Nov 2000 | EP |
2308526 | Oct 2003 | EP |
1364666 | Nov 2003 | EP |
1523347 | Jan 2004 | EP |
1523350 | Jan 2004 | EP |
0906768 | Feb 2004 | EP |
1691863 | Apr 2005 | EP |
2116269 | Feb 2008 | EP |
1450879 | Oct 2008 | EP |
1514562 | Apr 2009 | EP |
2219703 | May 2009 | EP |
1592494 | Jun 2009 | EP |
2100553 | Sep 2009 | EP |
2398529 | Nov 2010 | EP |
2575827 | Dec 2010 | EP |
2576453 | Dec 2011 | EP |
2701580 | Nov 2012 | EP |
2701595 | Nov 2012 | EP |
1345856 | Mar 2013 | EP |
2344220 | Apr 2013 | EP |
1351756 | Jul 2013 | EP |
2190498 | Jul 2013 | EP |
2701596 | Mar 2014 | EP |
1582226 | Jan 2016 | EP |
S63-143077 | Nov 1987 | JP |
2002533170 | Oct 2002 | JP |
2002542900 | Dec 2002 | JP |
2003235965 | Aug 2003 | JP |
2005-533573 | Nov 2005 | JP |
5099464 | Oct 2012 | JP |
1995003839 | Feb 1995 | WO |
9937342 | Jul 1999 | WO |
0057935 | Oct 2000 | WO |
2000066197 | Nov 2000 | WO |
2001085295 | Sep 2001 | WO |
0185295 | Nov 2001 | WO |
1085295 | Nov 2001 | WO |
200066197 | Nov 2001 | WO |
2002013691 | Feb 2002 | WO |
2003043677 | May 2003 | WO |
2003043680 | May 2003 | WO |
2003051422 | Jun 2003 | WO |
2004008826 | Jan 2004 | WO |
2004009156 | Jan 2004 | WO |
2004009158 | Jan 2004 | WO |
200170307 | Apr 2004 | WO |
2004030716 | Apr 2004 | WO |
2004030717 | Apr 2004 | WO |
2004064616 | Aug 2004 | WO |
2005061026 | Jul 2005 | WO |
2005123230 | Dec 2005 | WO |
2006011009 | Feb 2006 | WO |
2006017446 | Feb 2006 | WO |
2007038347 | Apr 2007 | WO |
2007089855 | Aug 2007 | WO |
2008037410 | Apr 2008 | WO |
2009026603 | Dec 2008 | WO |
2009024566 | Feb 2009 | WO |
2009026603 | Mar 2009 | WO |
2009061608 | May 2009 | WO |
2009094184 | Jul 2009 | WO |
2009157877 | Dec 2009 | WO |
2009157878 | Dec 2009 | WO |
0210028860 | Mar 2010 | WO |
2010024963 | Mar 2010 | WO |
2010028860 | Mar 2010 | WO |
2010033314 | Mar 2010 | WO |
2010033699 | Mar 2010 | WO |
2010077851 | Jul 2010 | WO |
2010096659 | Oct 2010 | WO |
2010121820 | Oct 2010 | WO |
2011025705 | Mar 2011 | WO |
2011026645 | Mar 2011 | WO |
2011137693 | Nov 2011 | WO |
2012042323 | Apr 2012 | WO |
2012050781 | Apr 2012 | WO |
2012051996 | Apr 2012 | WO |
2012073420 | Jul 2012 | WO |
12148786 | Nov 2012 | WO |
12148789 | Nov 2012 | WO |
2012148781 | Nov 2012 | WO |
2012148787 | Nov 2012 | WO |
2012148789 | Nov 2012 | WO |
2012162515 | Nov 2012 | WO |
2012172398 | Dec 2012 | WO |
2013019179 | Feb 2013 | WO |
2013019994 | Feb 2013 | WO |
2013025844 | Feb 2013 | WO |
2013028809 | Feb 2013 | WO |
2013101292 | Jul 2013 | WO |
2013103607 | Jul 2013 | WO |
2013103906 | Jul 2013 | WO |
2013110906 | Aug 2013 | WO |
2013110919 | Aug 2013 | WO |
2013114063 | Aug 2013 | WO |
2013121162 | Aug 2013 | WO |
2013140346 | Sep 2013 | WO |
2013141896 | Sep 2013 | WO |
2013101292 | Oct 2013 | WO |
14066254 | May 2014 | WO |
14066255 | May 2014 | WO |
14077082 | May 2014 | WO |
2014121162 | Aug 2014 | WO |
2014121163 | Aug 2014 | WO |
2014121167 | Aug 2014 | WO |
2014121169 | Aug 2014 | WO |
Entry |
---|
PCT/US2012/034335, International Preliminary Report on Patentability, dated Nov. 7, 2013. |
PCT/US2012/034329, International Preliminary Report on Patentability, dated Oct. 29, 2013. |
U.S. Appl. No. 13/837,287, filed Mar. 15, 2013. |
Bleyer, et. al., Sudden and cardiac death rated in hemodialysis patients, Kidney International. 1999, 1553-1559: 55. |
U.S. Appl. No. 13/424,517, IDS filed Dec. 2, 2013. |
PCT/US2012/034327, International Preliminary Report on Patentability, dated Oct. 29, 2013. |
Zoccali, Pulmonary Congestion Predicts Cardiac Events and Mortality in ESRD, Clinical Epidemiology, J. Am Soc Nephrol 24:639-646, 2013. |
Velasco, Optimal Fluid Control can Normalize Cardiovascular Risk Markers and Limit Left Ventricular Hypertrophy in Thrice Weekly Dialysis Patients, Hemodialysis Intenational, 16:465-472, 2012. |
Whitman, CKD and Sudden Cardiac Death: Epidemiology, Mechanisms, and Therapeutic Approaches, J Am Soc Nephrol, 23:1929-1939, 2012. |
Hall, Hospitalization for Congestive Heart Failure: United States, 2000-2010, NCHS Data Brief, No. 108, Oct. 2012. |
Albert, Fluid Management Strategies in Heart Failure, Critical Care Nurse, 32:20-32, 2012. |
PCT/US2014/065201 International Search Report dated May 26, 2015. |
John Wm Agar: “Review: Understanding sorbent dialysis systems,” Nephrology, vol. 15, No. 4, Jun. 1, 2010, pp. 406-411. |
Office Action in Chinese Application No. 201510511657.9 dated Dec. 28, 2016. |
Office Action in Chinese Application No. 201280020932.1 dated Jan. 7, 2015. |
Office Action in Chinese Application No. 201280020932.1 dated Apr. 3, 2015. |
PCT/US2012/034330, International Search Report and Written Opinion dated Aug. 28, 2012. |
Office Action in Chinese Application No. 201510593695.3 dated Jul. 12, 2017. |
Office Action in Chinese Application No. 201510511657.9 dated May 10, 2017. |
Office Action in European Application No. EP 12717021.5 dated Feb. 3, 2017. |
Bleyer, et. al., Sudden and cardiac death rates in hemodialysis patients, Kidney International, 1999, 1553-1559 : 55. |
ISA Invitation to Pay Additional Fees, PCT/US2012/034323 dated Aug. 2, 2012. |
MacLean, et, al., Effects of hindlimb contraction on pressor and muscle interstitial metabolite responses in the cat, J. App. Physiol., 1998, 1583-1592, 85(4). |
PCT/US2012/034330, International Search Report, dated Aug. 28, 2012. |
PCT/US2012/034332, International Search Report, dated Jul. 5, 2012. |
Roberts M, The regenerative dialysis (REDY) sorbent system. Nephrology, 1998, 275-278:4. |
Ronco, et. al., “Cardiorenal Syndrome”, J. Am. Coll. Cardiol., 2008, 1527-1539: 52. |
Wang, Fundamentals of intrathoracic impedance monitoring in heart failure, Am. J. Cardiology, 2007, 3G-10G : Suppl. |
Weiner, et. al., Article: Cardiac Function and Cardiovascular Disease in Chronic Kidney Disease, Book: Primer on Kidney Diseases (Author: Greenberg, et al), 2009,499-505, 5th Ed., Saunders Elsevier, Philadelphia, PA. |
Wang, Fundamentals of intrathoracic impedance monitoring in heart failure, Am. J. Cardiology, 2007, 3G-310: Suppl. |
Brynda, et. al., The detection of toman 2-microglcbuiin by grating coupler immunosensor with three dimensional antibody networks. Biosensors & Bioelectronics, 1999, 363-368, 14(4). |
Hemametrics, Crit-Line Hematocrit Accuracy, 2003, 1-5, vol. 1, Tech Note No. 11 (Rev. D). |
Nedelkov, et. al., Design of buffer exchange surfaces and sensor chips for biosensor chip mass spectrometry, Proteomics, 2002, 441-446, 2(4). |
PCT/US/2012/034327, International Search Report, dated Aug. 13, 2013. |
PCT/US/2012/034329, International Search Report, dated Dec. 3, 2012. |
PCT/US2012/034331, International Search Report, dated Jul. 9, 2012. |
PCT/US2012/034334, International Search Report, dated Jul. 6, 2012. |
PCT/US2012/034335, International Search Report, dated Sep. 5, 2012. |
Rogoza, et. al., Validation of A&D UA-767 device for the self-measurement of blood pressure, Blood Pressure Monitoring, 2000, 227-231, 5(4). |
Secemsky, et. al, High prevalence of cardiac autonomic dysfunction and T-wave alternans in dialysis patients. Heart Rhythm, Apr. 2011, 592-598 : vol. 8, No. 4. |
Wei, et. al., Fullerene-cryptand coated piezoelectric crystal urea sensor based on urease, Analytica Chimica Acta, 2001,77-85:437. |
Zhong, et. al., Miniature urea sensor based on H(+)-ion sensitive field effect transistor and its application in clinical analysis, Chin. J. Biotechnol., 1992, 57-65. 8(1). |
The FHN Trial Group. In-Center. Hemodialysis Six Times per Week versus Three Times per Week, New England Journal of Medicine, 2010. |
Coast, et al. 1990, An approach to Cardiac Arrhythmia analysis Using Hidden Markov Models, IEEE Transactions on Biomedical Engineering. 1990, 37 (9):826-835. |
PCT/US2012/034330, International Preliminary Report on Patentability, dated Oct. 29, 2013. |
PCT Application, PCT/US20013/020404, filed Jan. 4, 2013. |
PCT/US2012/034333, International Preliminary Report on Patentability, dated Oct. 29, 2013. |
PCT/US2012/034333, International Search Report, dated Aug. 29, 2013. |
Number | Date | Country | |
---|---|---|---|
20150352269 A1 | Dec 2015 | US |
Number | Date | Country | |
---|---|---|---|
61480539 | Apr 2011 | US | |
61480544 | Apr 2011 | US | |
61480541 | Apr 2011 | US | |
61480535 | Apr 2011 | US | |
61480532 | Apr 2011 | US | |
61480530 | Apr 2011 | US | |
61480528 | Apr 2011 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 13424479 | Mar 2012 | US |
Child | 14828979 | US |