Electron beam induced resonance

Information

  • Patent Grant
  • 7626179
  • Patent Number
    7,626,179
  • Date Filed
    Wednesday, October 5, 2005
    18 years ago
  • Date Issued
    Tuesday, December 1, 2009
    14 years ago
Abstract
We describe an ultra-small structure that produces visible light of varying frequency, from a single metallic layer. In one example, a row of metallic posts are etched or plated on a substrate according to a particular geometry. When a charged particle beam passed close by the row of posts, the posts and cavities between them cooperate to resonate and produce radiation in the visible spectrum (or even higher). A plurality of such rows of different geometries can be etched or plated from a single metal layer such that the charged particle beam will yield different visible light frequencies (i.e., different colors) using different ones of the rows.
Description
COPYRIGHT NOTICE

A portion of the disclosure of this patent document contains material which is subject to copyright or mask work protection. The copyright or mask work owner has no objection to the facsimile reproduction by anyone of the patent document or the patent disclosure, as it appears in the Patent and Trademark Office patent file or records, but otherwise reserves all copyright or mask work rights whatsoever.


RELATED APPLICATIONS

This application is related to and claims priority from U.S. patent application Ser. No. 11/238,991, titled “Ultra-Small Resonating Charged Particle Beam Modulator,” and filed Sep. 30, 2005, the entire contents of which are incorporated herein by reference. This application is related to U.S. patent application Ser. No. 10/917,511, filed on Aug. 13, 2004, entitled “Patterning Thin Metal Film by Dry Reactive Ion Etching,” and to U.S. application Ser. No. 11/203,407, filed on Aug. 15, 2005, entitled “Method Of Patterning Ultra-Small Structures,” and to U.S. application Ser. No. 11/243,476, titled “Structures And Methods For Coupling Energy From An Electromagnetic Wave,” filed on even date herewith, all of which are commonly owned with the present application at the time of filing, and the entire contents of each of which are incorporated herein by reference.


FIELD OF INVENTION

This disclosure relates to resonance induced in ultra-small metal-layer structures by a charged particle beam.


INTRODUCTION AND BACKGROUND

Electromagnetic Radiation & Waves


Electromagnetic radiation is produced by the motion of electrically charged particles. Oscillating electrons produce electromagnetic radiation commensurate in frequency with the frequency of the oscillations. Electromagnetic radiation is essentially energy transmitted through space or through a material medium in the form of electromagnetic waves. The term can also refer to the emission and propagation of such energy. Whenever an electric charge oscillates or is accelerated, a disturbance characterized by the existence of electric and magnetic fields propagates outward from it. This disturbance is called an electromagnetic wave. Electromagnetic radiation falls into categories of wave types depending upon their frequency, and the frequency range of such waves is tremendous, as is shown by the electromagnetic spectrum in the following chart (which categorizes waves into types depending upon their frequency):
















Type
Approx. Frequency









Radio
Less than 3 Gigahertz



Microwave
3 Gigahertz-300 Gigahertz



Infrared
300 Gigahertz-400 Terahertz



Visible
400 Terahertz-750 Terahertz



UV
750 Terahertz-30 Petahertz



X-ray
30 Petahertz-30 Exahertz



Gamma-ray
Greater than 30 Exahertz










The ability to generate (or detect) electromagnetic radiation of a particular type (e.g., radio, microwave, etc.) depends upon the ability to create a structure suitable for electron oscillation or excitation at the frequency desired. Electromagnetic radiation at radio frequencies, for example, is relatively easy to generate using relatively large or even somewhat small structures.


Electromagnetic Wave Generation


There are many traditional ways to produce high-frequency radiation in ranges at and above the visible spectrum, for example, up to high hundreds of Terahertz. There are also many traditional and anticipated applications that use such high frequency radiation. As frequencies increase, however, the kinds of structures needed to create the electromagnetic radiation at a desired frequency become generally smaller and harder to manufacture. We have discovered ultra-small-scale devices that obtain multiple different frequencies of radiation from the same operative layer.


Resonant structures have been the basis for much of the presently known high frequency electronics. Devices like klystrons and magnetrons had electronics that moved frequencies of emission up to the megahertz range by the 1930s and 1940s. By around 1960, people were trying to reduce the size of resonant structures to get even higher frequencies, but had limited success because the Q of the devices went down due to the resistivity of the walls of the resonant structures. At about the same time, Smith and Purcell saw the first signs that free electrons could cause the emission of electromagnetic radiation in the visible range by running an electron beam past a diffraction grating. Since then, there has been much speculation as to what the physical basis for the Smith-Purcell radiation really is.


We have shown that some of the theory of resonant structures applies to certain nano structures that we have built. It is assumed that at high enough frequencies, plasmons conduct the energy as opposed to the bulk transport of electrons in the material, although our inventions are not dependent upon such an explanation. Under that theory, the electrical resistance decreases to the point where resonance can effectively occur again, and makes the devices efficient enough to be commercially viable.


Some of the more detailed background sections that follow provide background for the earlier technologies (some of which are introduced above), and provide a framework for understanding why the present inventions are so remarkable compared to the present state-of-the-art.


Microwaves


As previously introduced, microwaves were first generated in so-called “klystrons” in the 1930s by the Varian brothers. Klystrons are now well-known structures for oscillating electrons and creating electromagnetic radiation in the microwave frequency. The structure and operation of klystrons has been well-studied and documented and will be readily understood by the artisan. However, for the purpose of background, the operation of the klystron will be described at a high level, leaving the particularities of such devices to the artisan's present understanding.


Klystrons are a type of linear beam microwave tube. A basic structure of a. klystron is shown by way of example in FIG. 1(a). In the late 1930s, a klystron structure was described that involved a direct current stream of electrons within a vacuum cavity passing through an oscillating electric field. In the example of FIG. 1(a), a klystron 100 is shown as a high-vacuum device with a cathode 102 that emits a well-focused electron beam 104 past a number of cavities 106 that the beam traverses as it travels down a linear tube 108 to anode 103. The cavities are sized and designed to resonate at or near the operating frequency of the tube. The principle, in essence, involves conversion of the kinetic energy in the beam, imparted by a high accelerating voltage, to microwave energy. That conversion takes place as a result of the amplified RF (radio frequency) input signal causing the electrons in the beam to “bunch up” into so-called “bunches” (denoted 110) along the beam path as they pass the various cavities 106. These bunches then give up their energy to the high-level induced RF fields at the output cavity.


The electron bunches are formed when an oscillating electric field causes the electron stream to be velocity modulated so that some number of electrons increase in speed within the stream and some number of electrons decrease in speed within the stream. As the electrons travel through the drift tube of the vacuum cavity the bunches that are formed create a space-charge wave or charge-modulated electron beam. As the electron bunches pass the mouth of the output cavity, the bunches induce a large current, much larger than the input current. The induced current can then generate electromagnetic radiation.


Traveling Wave Tubes


Traveling wave tubes (TWT)—first described in 1942—are another well-known type of linear microwave tube. A TWT includes a source of electrons that travels the length of a microwave electronic tube, an attenuator, a helix delay line, radio frequency (RF) input and output, and an electron collector. In the TWT, an electrical current was sent along the helical delay line to interact with the electron stream.


Backwards Wave Devices


Backwards wave devices are also known and differ from TWTs in that they use a wave in which the power flow is opposite in direction from that of the electron beam. A backwards wave device uses the concept of a backward group velocity with a forward phase velocity. In this case, the RF power comes out at the cathode end of the device. Backward wave devices could be amplifiers or oscillators.


Magnetrons


Magnetrons are another type of well-known resonance cavity structure developed in the 1920s to produce microwave radiation. While their external configurations can differ, each magnetron includes an anode, a cathode, a particular wave tube and a strong magnet. FIG. 1(b) shows an exemplary magnetron 112. In the example magnetron 112 of FIG. 1(b), the anode is shown as the (typically iron) external structure of the circular wave tube 114 and is interrupted by a number of cavities 116 interspersed around the tube 114. The cathode 118 is in the center of the magnetron, as shown. Absent a magnetic field, the cathode would send electrons directly outward toward the anode portions forming the tube 114. With a magnetic field present and in parallel to the cathode, electrons emitted from the cathode take a circular path 118 around the tube as they emerge from the cathode and move toward the anode. The magnetic field from the magnet (not shown) is thus used to cause the electrons of the electron beam to spiral around the cathode, passing the various cavities 116 as they travel around the tube. As with the linear klystron, if the cavities are tuned correctly, they cause the electrons to bunch as they pass by. The bunching and unbunching electrons set up a resonant oscillation within the tube and transfer their oscillating energy to an output cavity at a microwave frequency.


Reflex Klystron


Multiple cavities are not necessarily required to produce microwave radiation. In the reflex klystron, a single cavity, through which the electron beam is passed, can produce the required microwave frequency oscillations. An example reflex klystron 120 is shown in FIG. 1(c). There, the cathode 122 emits electrons toward the reflector plate 124 via an accelerator grid 126 and grids 128. The reflex klystron 120 has a single cavity 130. In this device, the electron beam is modulated (as in other klystrons) by passing by the cavity 130 on its way away from the cathode 122 to, the plate 124. Unlike other klystrons, however, the electron beam is not terminated at an output cavity, but instead is reflected by the reflector plate 124. The reflection provides the feedback necessary to maintain electron oscillations within the tube.


In each of the resonant cavity devices described above, the characteristic frequency of electron oscillation depends upon the size, structure, and tuning of the resonant cavities. To date, structures have been discovered that create relatively low frequency radiation (radio and microwave levels), up to, for example, GHz levels, using these resonant structures. Higher levels of radiation are generally thought to be prohibitive because resistance in the cavity walls will dominate with smaller sizes and will not allow oscillation. Also, using current techniques, aluminum and other metals cannot be machined down to sufficiently small sizes to form the cavities desired. Thus, for example, visible light radiation in the range of 400 Terahertz-750 Terahertz is not known to be created by klystron-type structures.


U.S. Pat. No. 6,373,194 to Small illustrates the difficulty in obtaining small, high-frequency radiation sources. Small suggests a method of fabricating a micro-magnetron. In a magnetron, the bunched electron beam passes the opening of the resonance cavity. But to realize an amplified signal, the bunches of electrons must pass the opening of the resonance cavity in less time than the desired output frequency. Thus at a frequency of around 500 THz, the electrons must travel at very high speed and still remain confined. There is no practical magnetic field strong enough to keep the electron spinning in that small of a diameter at those speeds. Small recognizes this issue but does not disclose a solution to it.


Surface plasmons can be excited at a metal dielectric interface by a monochromatic light beam. The energy of the light is bound to the surface and propagates as an electromagnetic wave. Surface plasmons can propagate on the surface of a metal as well as on the interface between a metal and dielectric material. Bulk plasmons can propagate beneath the surface, although they are typically not energetically favored.


Free electron lasers offer intense beams of any wavelength because the electrons are free of any atomic structure. In U.S. Pat. No. 4,740,973, Madey et al. disclose a free electron laser. The free electron laser includes a charged particle accelerator, a cavity with a straight-section and an undulator. The accelerator injects a relativistic electron or positron beam into said straight section past an undulator mounted coaxially along said straight section. The undulator periodically modulates in space the acceleration of the electrons passing through it inducing the electrons to produce a light beam that is practically collinear with the axis of undulator. An optical cavity is defined by two mirrors mounted facing each other on either side of the undulator to permit the circulation of light thus emitted. Laser amplification occurs when the period of said circulation of light coincides with the period of passage of the electron packets and the optical gain per passage exceeds the light losses that occur in the optical cavity.


Smith-Purcell


Smith-Purcell radiation occurs when a charged particle passes close to a periodically varying metallic surface, as depicted in FIG. 1(d).


Known Smith-Purcell devices produce visible light by passing an electron beam close to the surface of a diffraction grating. Using the Smith-Purcell diffraction grating, electrons are deflected by image charges in the grating at a frequency in the visible spectrum. In some cases, the effect may be a single electron event, but some devices can exhibit a change in slope of the output intensity versus current. In Smith-Purcell devices, only the energy of the electron beam and the period of the grating affect the frequency of the visible light emission. The beam current is generally, but not always, small. Vermont Photonics notice an increase in output with their devices above a certain current density limit. Because of the nature of diffraction physics, the period of the grating must exceed the wavelength of light.


Koops, et al., U.S. Pat. No. 6,909,104, published Nov. 30, 2000, (§ 102(e) date May 24, 2002) describe a miniaturized coherent terahertz free electron laser using a periodic grating for the undulator (sometimes referred to as the wiggler). Koops et al. describe a free electron laser using a periodic structure grating for the undulator (also referred to as the wiggler). Koops proposes using standard electronics to bunch the electrons before they enter the undulator. The apparent object of this is to create coherent terahertz radiation. In one instance, Koops, et al. describe a given standard electron beam source that produces up to approximately 20,000 volts accelerating voltage and an electron beam of 20 microns diameter over a grating of 100 to 300 microns period to achieve infrared radiation between 100 and 1000 microns in wavelength. For terahertz radiation, the diffraction grating has a length of approximately 1 mm to 1 cm, with grating periods of 0.5 to 10 microns, “depending on the wavelength of the terahertz radiation to be emitted.” Koops proposes using standard electronics to bunch the electrons before they enter the undulator.


Potylitsin, “Resonant Diffraction Radiation and Smith-Purcell Effect,” 13 Apr. 1998, described an emission of electrons moving close to a periodic structure treated as the resonant diffraction radiation. Potylitsin's grating had “perfectly conducting strips spaced by a vacuum gap.”


Smith-Purcell devices are inefficient. Their production of light is weak compared to their input power, and they cannot be optimized. Current Smith-Purcell devices are not suitable for true visible light applications due at least in part to their inefficiency and inability to effectively produce sufficient photon density to be detectible without specialized equipment.


We realized that the Smith-Purcell devices yielded poor light production efficiency. Rather than deflect the passing electron beam as Smith-Purcell devices do, we created devices that resonated at the frequency of light as the electron beam passes by. In this way, the device resonance matches the system resonance with resulting higher output. Our discovery has proven to produce visible light (or even higher or lower frequency radiation) at higher yields from optimized ultra-small physical structures.


Coupling Energy from Electromagnetic Waves


Coupling energy from electromagnetic waves in the terahertz range from 0.1 THz (about 3000 microns) to 700 THz (about 0.4 microns) is finding use in numerous new applications. These applications include improved detection of concealed weapons and explosives, improved medical imaging, finding biological terror materials, better characterization of semiconductors; and broadening the available bandwidth for wireless communications.


In solid materials the interaction between an electromagnetic wave and a charged particle, namely an electron, can occur via three basic processes: absorption, spontaneous emission and stimulated emission. The interaction can provide a transfer of energy between the electromagnetic wave and the electron. For example, photoconductor semiconductor devices use the absorption process to receive the electromagnetic wave and transfer energy to electron-hole pairs by band-to-band transitions. Electromagnetic waves having an energy level greater than a material's characteristic binding energy can create electrons that move when connected across a voltage source to provide a current. In addition, extrinsic photoconductor devices operate having transitions across forbidden-gap energy levels use the absorption process (S. M., Sze, “Semiconductor Devices Physics and Technology,” 2002).


A measure of the energy coupled from an electromagnetic wave for the material is referred to as an absorption coefficient. A point where the absorption coefficient decreases rapidly is called a cutoff wavelength. The absorption coefficient is dependant on the particular material used to make a device. For example, gallium arsenide (GaAs) absorbs electromagnetic wave energy from about 0.6 microns and has a cutoff wavelength of about 0.87 microns. In another example, silicon (Si) can absorb energy from about 0.4 microns and has a cutoff wavelength of about 1.1 microns. Thus, the ability to transfer energy to the electrons within the material for making the device is a function of the wavelength or frequency of the electromagnetic wave. This means the device can work to couple the electromagnetic wave's energy only over a particular segment of the terahertz range. At the very high end of the terahertz spectrum a Charge Coupled Device (CCD—an intrinsic photoconductor device—can successfully be employed. If there is a need to couple energy at the lower end of the terahertz spectrum certain extrinsic semiconductors devices can provide for coupling energy at increasing wavelengths by increasing the doping levels.


Surface Enhanced Raman Spectroscopy (SERS)


Raman spectroscopy is a well-known means to measure the characteristics of molecule vibrations using laser radiation as the excitation source. A molecule to be analyzed is illuminated with laser radiation and the resulting scattered frequencies are collected in a detector and analyzed.


Analysis of the scattered frequencies permits the chemical nature of the molecules to be explored. Fleischmann et al. (M. Fleischmann, P. J. Hendra and A. J. McQuillan, Chem. Phys. Lett., 1974, 26, 163) first reported the increased scattering intensities that result from Surface Enhanced Raman Spectroscopy (SERS), though without realizing the cause of the increased intensity.


In SERS, laser radiation is used to excite molecules adsorbed or deposited onto a roughened or porous metallic surface, or a surface having metallic nano-sized features or structures. The largest increase in scattering intensity is realized with surfaces with features that are 10-100 nm in size. Research into the mechanisms of SERS over the past 25 years suggests that both chemical and electromagnetic factors contribute to the enhancing the Raman effect. (See, e.g., A. Campion and P. Kambhampati, Chem. Soc. Rev., 1998, 27 241.)


The electromagnetic contribution occurs when the laser radiation excites plasmon resonances in the metallic surface structures. These plasmons induce local fields of electromagnetic radiation which extend and decay at the rate defined by the dipole decay rate. These local fields contribute to enhancement of the Raman scattering at an overall rate of E4.


Recent research has shown that changes in the shape and composition of nano-sized features of the substrate cause variation in the intensity and shape of the local fields created by the plasmons. Jackson and Halas (J. B. Jackson and N. J. Halas, PNAS, 2004, 101 17930) used nano-shells of gold to tune the plasmon resonance to different frequencies.


Variation in the local electric field strength provided by the induced plasmon is known in SERS-based devices. In U.S. Patent application 2004/0174521 A1, Drachev et al. describe a Raman imaging and sensing device employing nanoantennas. The antennas are metal structures deposited onto a surface. The structures are illuminated with laser radiation. The radiation excites a plasmon in the antennas that enhances the Raman scatter of the sample molecule.


The electric field intensity surrounding the antennas varies as a function of distance from the antennas, as well as the size of the antennas. The intensity of the local electric field increases as the distance between the antennas decreases.


Advantages & Benefits


Myriad benefits and advantages can be obtained by a ultra-small resonant structure that emits varying electromagnetic radiation at higher radiation frequencies such as infrared, visible, UV and X-ray. For example, if the varying electromagnetic radiation is in a visible light frequency, the micro resonant structure can be used for visible light applications that currently employ prior art semiconductor light emitters (such as LCDs, LEDs, and the like that employ electroluminescence or other light-emitting principals). If small enough, such micro-resonance structures can rival semiconductor devices in size, and provide more intense, variable, and efficient light sources. Such micro resonant structures can also be used in place of (or in some cases, in addition to) any application employing non-semiconductor illuminators (such as incandescent, fluorescent, or other light sources). Those applications can include displays for personal or commercial use, home or business illumination, illumination for private display such as on computers, televisions or other screens, and for public display such as on signs, street lights, or other indoor or outdoor illumination. Visible frequency radiation from ultra-small resonant structures also has application in fiber optic communication, chip-to-chip signal coupling, other electronic signal coupling, and any other light-using applications.


Applications can also be envisioned for ultra-small resonant structures that emit in frequencies other than in the visible spectrum, such as for high frequency data carriers. Ultra-small resonant structures that emit at frequencies such as a few tens of terahertz can penetrate walls, making them invisible to a transceiver, which is exceedingly valuable for security applications. The ability to penetrate walls can also be used for imaging objects beyond the walls, which is also useful in, for example, security applications. X-ray frequencies can also be produced for use in medicine, diagnostics, security, construction or any other application where X-ray sources are currently used. Terahertz radiation from ultra-small resonant structures can be used in many of the known applications which now utilize x-rays, with the added advantage that the resulting radiation can be coherent and is non-ionizing.


The use of radiation per se in each of the above applications is not new. But, obtaining that radiation from particular kinds of increasingly small ultra-small resonant structures revolutionizes the way electromagnetic radiation is used in electronic and other devices. For example, the smaller the radiation emitting structure is, the less “real estate” is required to employ it in a commercial device. Since such real estate on a semiconductor, for example, is expensive, an ultra-small resonant structure that provides the myriad application benefits of radiation emission without consuming excessive real estate is valuable. Second, with the kinds of ultra-small resonant structures that we describe, the frequency of the radiation can be high enough to produce visible light of any color and low enough to extend into the terahertz levels (and conceivably even petahertz or exahertz levels with additional advances). Thus, the devices may be tunable to obtain any kind of white light transmission or any frequency or combination of frequencies desired without changing or stacking “bulbs,” or other radiation emitters (visible or invisible).


Currently, LEDs and Solid State Lasers (SSLs) cannot be integrated onto silicon (although much effort has been spent trying). Further, even when LEDs and SSLs are mounted on a wafer, they produce only electromagnetic radiation at a single color. The present devices are easily integrated onto even an existing silicon microchip and can produce many frequencies of electromagnetic radiation at the same time.


There is thus a need for a device having a single layer basic construction that can couple energy from an electromagnetic wave over the full terahertz portion of the electromagnetic spectrum.


GLOSSARY

As used throughout this document:


The phrase “ultra-small resonant structure” shall mean any structure of any material, type or microscopic size that by its characteristics causes electrons to resonate at a frequency in excess of the microwave frequency.


The term “ultra-small” within the phrase “ultra-small resonant structure” shall mean microscopic structural dimensions and shall include so-called “micro” structures, “nano” structures, or any other very small structures that will produce resonance at frequencies in excess of microwave frequencies.





DESCRIPTION OF PRESENTLY PREFERRED EXAMPLES OF THE INVENTION


FIG. 1(
a) shows a prior art example klystron.



FIG. 1(
b) shows a prior art example magnetron.



FIG. 1(
c) shows a prior art example reflex klystron.



FIG. 1(
d) depicts aspects of the Smith-Purcell theory.



FIG. 2 is schematic representation of an example embodiment of the invention;



FIG. 3 is another schematic representation of certain parameters associated with light emission from exemplary embodiments of the present invention;



FIG. 4 is a microscopic photograph of an example light-emitting comb structure;



FIG. 5 is a microscopic photograph of a series of example light-emitting comb structures;



FIG. 6 is a microscopic photograph of a series of example light-emitting comb structures;



FIG. 7 is a microscopic photograph of a side view of example series of comb structures;



FIGS. 8 and 9 are closer version microscopic photographs of example light-emitting comb structures;



FIG. 10 is an example substrate pattern used for testing the effect of comb length variations;



FIG. 11 is a microscopic photograph of a side view of an example comb structure;



FIG. 12 is a microscopic photograph of a series of frequency sensitive comb structures;



FIG. 13 is a graph showing example intensity and wavelength versus finger length for some of the series of comb teeth of FIG. 10;



FIG. 14 is a graph showing intensity versus post length for the series of comb teeth of FIG. 10;



FIGS. 15 and 16 are microscopic photographs of dual rows of comb teeth;



FIG. 17 is an example substrate with example dual rows of comb teeth and single rows of comb teeth;



FIGS. 18-20 are further examples of dual rows of comb teeth; and



FIGS. 21-24 are further examples of dual rows of C-shaped structures.





As shown in FIG. 2, a single layer of metal, such as silver or other thin metal, is produced with the desired pattern or otherwise processed to create a number of individual resonant elements. Although sometimes referred to herein as a “layer” of metal, the metal need not be a contiguous layer, but can be a series of elements individually present on a substrate. The metal with the individual elements can be produced by a variety of methods, such as by pulse plating, depositing or etching. Preferred methods for doing so are described in co-pending U.S. application Ser. No. 10/917,571, filed on Aug. 13, 2004, entitled “Patterning Thin Metal Film by Dry Reactive Ion Etching,” and in co-pending U.S. application Ser. No. 11/203,407, filed on Aug. 15, 2005, entitled “Method of Patterning Ultra-small Structures.”


The etching does not need to remove the metal between posts all the way down to the substrate level, nor does the plating have to place the metal posts directly on the substrate (they can be on a silver layer on top of the substrate, for example). That is, the posts may be etched or plated in a manner so a small layer of conductor remains beneath, between and connecting the posts. Alternatively, the posts can be conductively isolated from each other by removing the entire metal layer between the posts. In one embodiment, the metal can be silver, although other metal conductors and even dielectrics are envisioned as well.


A charged particle beam, such as an electron beam 12 produced by an electron microscope, cathode, or any other electron source 10 and passing closely by a series of appropriately-sized structures, causes the electrons in the structures to resonate and produce visible light. In FIG. 2, resonance occurs within the metal posts 14 and in the spaces between the metal posts 14 on a substrate and with the passing electron beam. The metal posts 14 include individual post members 15a, 15b, . . . 15n. The number of post members 15a . . . 15n can be as few as one and as many as the available real estate permits. We note that theoretically the present resonance effect can occur in as few as only a single post, but from our practically laboratory experience, we have not measured radiation from either a one post or two post structure. That is, more than two posts have been used to create measurable radiation using current instrumentation.


The spaces between the post members 15a, 15b, . . . 15n (FIG. 2) create individual cavities. The post members and/or cavities resonate when the electron beam 12 passes by them. By choosing different geometries of the posts and resonant cavities, and the energy (velocity) of the electron beam, one can produce visible light (or non-visible EMR) of a variety of different frequencies (for example, a variety of different colors in the case of visible emissions) from just a single patterned metal layer.


That resonance is occurring can be seen in FIG. 14. There, the average results of a set of experiments in which the photon radiation from an example of the present invention was plotted (in the y-axis, labeled “counts” of photons, and measured by a photo multiplier tube as detected current pulses) versus the length of the length of the posts 14 that are resonating (in the x-axis, labeled as “finger length”). The intensity versus finger length average plot shows two peaks (and in some experimental results, a third peak was perhaps, though not conclusively, present) of radiation intensity at particular finger lengths. We conclude that certain finger lengths produce more intensity at certain multiple lengths due to the resonance effect occurring within the post 14 itself.


For completeness, the substrate used in the above finger length resonance tests is shown in FIG. 10. There, the lines of posts in the vertical direction correspond to posts of different length from “0” length to 700 nm length. As described in more detail below, the experiment is conducted by passing an electron beam near the rows of posts and generally perpendicular to them (that is, the electron beam passes vertically with respect to FIG. 10). The specifications for the experiment were: a period between posts of 156 nm, a 15 kV beam energy from an electron microscope at 90 degrees to the length of the posts. In that test, a continuous conductive silver substrate layer was beneath the posts. When we repeated the tests, we found that there was some variation in terms of actual intensities seen by the different finger lengths, which we attribute to slight variations in the proximity of the electron beam to the post runs, but the resonance effect was generally apparent in each case.


Notably, the resonance effect described in FIG. 14 appears to occur in the individual posts themselves. That is, it appears that we are recording an effect that occurs from oscillations that are on the surface (including perhaps within) the posts themselves. That resonance is supplementing system resonance, namely the resonance that occurs between adjacent posts. Although these theories do not limit our inventions, we believe that the supplemental resonance occurring within the posts is amplifying the system resonance such that new, substantial levels of intensity are being recognized. As the electron beam passes by the posts, charged particles in the posts begin to resonate between adjacent posts. That resonance produces electromagnetic radiation and is predominantly responsible for the first peak in FIG. 14. What we have now seen is that we can, by choosing finger length, demonstrate further resonance within the fingers themselves (as opposed to between adjacent fingers) that is predominantly responsible for the second peak and is also responsible for amplifying the intensity of the system resonance. We have seen, for example, that without system resonance, then the electron beam cannot be made intense enough to excite the in-post resonance to a detectible level. But, with the system resonance, both the system resonance and the in-post resonance excite the others to further excitation.


We have also detected with angle periodic structures that running the beam one way over the angled teeth produces an effective output while running the beam the other way decreases the output dramatically.


We have also detected that, unlike the general theory on Smith-Purcell, which states that frequency is only dependant on period and electron beam characteristics (such as beam intensity), some of the frequencies of our detected beam change with the finger length. Thus, as shown in FIG. 13, the frequency of the electromagnetic wave produced by the system on a row of 220 nm fingers (posts) has a recorded intensity and wavelength greater than at the lesser shown finger lengths. With Smith-Purcell, the frequency is related to the period of the grating (recalling that Smith-Purcell is produced by a diffraction grating) and beam intensity according to:






λ
=


L


n



·

(


1
β

-

sin





θ


)







where λ is the frequency of the resonance, L is the period of the grating, n is a constant, β is related to the speed of the electron beam, and θ is the angle of diffraction of the electron.


It is reasonable to suggest, that if the other modes are aligned to the operating frequency, the Q of the device will be improved. A sweep of the duty cycle of the space width s (shown in FIG. 3) and post width (l−s) indicates that the space width s and period length l have relevance to the center frequency of the resultant radiation. By sweeping the geometries d, l, and s of FIG. 3 and the length of the posts (shown in FIG. 2 and variously at FIG. 10), at given electron velocity v and current density, while evaluating the characteristic harmonics during each sweep, one can ascertain a predictable design model and equation set for a particular metal layer type and construction. With such, a series of posts can be constructed that output substantial EMR in the visible spectrum (or higher) and which can be optimized based on alterations of the geometry, electron velocity and density, and metal type.


Using the above-described sweeps, one can also find the point of maximum Q for given posts 14 as shown in FIG. 14. Additional options also exist to widen the bandwidth or even have multiple frequency points on a single device. Such options include irregularly shaped posts and spacing, series arrays of non-uniform periods, asymmetrical post orientation, multiple beam configurations, etc.


Some example geometries are described herein and are shown in the associated figures. Those geometries do not limit the present inventions, but are described in order to provide illustrative examples of geometries that work for the intended purpose. In FIG. 3, an example representation of our posts is shown with dimensional variables labeled for clarity. As described above, in our devices, for example, as the post length d was swept in length, the intensity of the radiation was oscillatory in nature, aligning very near to the second and third harmonic lengths.


In FIG. 4, a microscopic photograph depicts a set of actual single metal-layer posts, of the kind generally referred to in FIG. 3. In the FIG. 4 example, the metal layer is silver. The metal is pulse plated to provide the posts 14 shown. The posts may be constructed according to the techniques described in the applications identified above under “Related Applications.”


In FIG. 4, the post length is about 698 nm. The space width, s, is about 51.5 nm. The post and space width, l, is about 155 nm. The electron beam runs perpendicular to the length of the posts and spaces, as shown in FIG. 2. Unlike a Smith-Purcell device, the resultant radiation from a structure such as shown in FIG. 4 is actually intense enough to be visible to the human eye without the use of a relativistic electron beam. Another example set of the structures of FIG. 4 in which the post length was altered to determine the effect on harmonic lengths is shown in FIG. 5. There, four different example post lengths are shown, 303 nm, 349 nm, 373 nm, and 396 nm. The example of FIG. 5 realizes harmonic oscillation aligning near the second and third harmonic lengths


As described previously, by altering the combined length, period 1, spaces s, and post members 15a . . . 15n, the center frequency of the radiation changes. It is thus valuable to size a row of posts 14 such that a desired frequency of visible light is emitted when the charged particle beam is passed near it. FIG. 6 illustrates an alternative example embodiment in which we produce a variety of frequencies by modifying the post lengths in multiple rows of differently configured posts. By etching, plating or otherwise producing multiple rows of posts, each of which is tuned to a produce a different frequency, multiple colors of visible light can be produced by directing an injected charged particle beam parallel and close to appropriate ones of the rows.


Indeed, we can envision a row of posts having varying lengths within the row itself, such that different frequencies of radiation are excited by different ones or combinations of posts. The result could be a mixed, multiple wavelength light.


Different frequency outputs can also be obtained by directing multiple charged particle beams at different rows of posts etched from or plated on the same metal layer. Thus, one can obtain any color of visible light from a single layer metal nano- or micro-structure. Because the rows are only about a few micrometers or less apart, directing multiple electron beams simultaneously at different ones of the rows could also mix the visible light to yield to the human eye essentially any color frequency in the visible spectrum. The breadth and sensitivity of color options available in such a system is limited only by the number and geometries of the rows, and the number of electron beam sources available to stimulate the rows into resonance.



FIG. 7 illustrates a side view of a set of rows of posts. As shown, each row has a different geometry to produce a different radiation. Various period, space distances, and depths are shown. The lengths of the posts, a dimension clearly shown in the example of FIG. 6, are not clearly identifiable in FIG. 7. In FIG. 7, the period of the second row is 210 nm while the period of the third row is 175 nm. The space of the first row is 123 nm, while the space of the fourth row is 57 nm. Depths and lengths can also be varied. Each of the rows can exhibit different post geometries (although there may be reasons for including some or all rows of duplicate geometries).


As shown in FIG. 6, the post elements 14 do not necessarily have to have the backbone portion connecting the posts, as shown in FIG. 4. The posts on the substrate can resemble a comb with a backbone connecting all of the teeth, as in FIG. 4, or can resemble be just the teeth without the comb backbone, as in FIG. 6. Each post can also be freestanding and physically unconnected to adjacent posts except by the portion of metal layer remaining beneath the posts or by the substrate if the metal layer is completely removed from around the posts. Alternatively, the posts can be connected by remaining metal layer in the form of the backbone shown in FIG. 3 or by a top layer shown in FIG. 11, or by a connecting conductive substrate beneath the posts. In FIG. 11, the posts have period length l of 213 nm, a post width (l−s) of 67.6 nm and a height (d) of 184 nm. The posts are covered by a layer of silver, which can provide advantageous—though not necessary—coupling between the posts (such coupling can also or alternatively be provided by contiguous metal layer left beneath the posts).



FIGS. 8 and 9 illustrate still further example geometries of non-backboned posts 14 are shown. In each case, just two rows are shown, although any number of rows can be employed, from one to any. The number of rows is limited by available real estate on the substrate, except that multiple substrates can also be employed proximate (side-by-side or atop) each other. The specific dimensions shown in FIGS. 8 and 9, like the other examples described herein are just illustrative and not limiting. Sizes and geometries of the posts, numbers of the posts, sequences of the posts, and arrangements of the posts can also be changed and remain within the concepts of the present inventions.


When the backbone is removed, for certain wavelengths, radiation can emit from both sides of the device. Depending on the spacing and the XY-dimensions of the post members, it may be possible that there is a blocking mode that negates the photon emission from that side. The emissions are thus altered by the presence/absence of the backbone, but the existence of resonance remains.


The direction of the radiation can also be adjusted. We have noted that radiation has been detected outwardly from the row (essentially parallel to the long dimension of the posts and spaces), as well as upwardly (relative, for example, to the plane of FIG. 6). It thus appears that some directionality can be advantageously employed for the radiation's initial direction.


Given that plasmon velocity is material dependent, it can be advantageous to build devices using conductive materials other than silver. We expect that less conductive materials would have a lower emission wavelength due to the slower plasmon velocity. Similarly, more conductive material would have higher emission wavelengths. Thus, metal or other conductive layers of different types can be employed. As described above, we envision single metal or alloy layers of different row geometries producing different frequencies. We also envision different metal layer types with the same or different row geometries to produce different frequencies.



FIG. 12 illustrates anther set of post rows (similar to FIG. 10). The rows in FIG. 12 have no backbones on the posts. As can be seen, the different rows are formed of a common metal layer and have different lengths so as to produce different frequencies and intensities of radiation when a charge particle beam passes close to (and generally parallel to) a selected row.



FIGS. 15-17 are still further example configurations of the rows of posts 14. In FIGS. 15 and 16, two rows are provided in proximity, so an electron beam 12 can be passed between the two rows, exciting resonance in each row simultaneously. Each row can have posts of the same geometry or each row can have posts of different geometries. Further, as between the two rows, the geometries of the posts can be entirely the same, some different, or entirely different. If the rows have uniform posts within the row and different posts as between the two rows, then the different rows produce different wavelengths of radiation from a common electron beam.


With the two row embodiments of FIGS. 15-16, detectable light output was increased at least 20% (the increase is likely much more than 20% due to the inability to detect light going in undetected directions from the two rows.



FIG. 17 is a substrate with some two row embodiments, as in FIGS. 15 and 16, with other single row and multiple row example embodiments. In FIG. 17, the dual row embodiments on the left side produced light of two different colors. FIGS. 18-20 show some additional details of the dual row embodiments. It is worth noting that simultaneous dual frequency outputs from two rows, like those shown in FIGS. 18-20, are not realized with devices operating according to diffraction theory, such as Smith-Purcell devices.


As should be understood from these descriptions, there is a wide variety of geometries of posts, geometries of rows, orientations of posts and rows, kinds of posts, kinds of metal, kinds of substrates, backbones, electron beam characteristics and other criteria that we envision within the framework of our inventions. We envision within our inventions deviations from the above criteria, whether or not specifically described herein. For example, FIGS. 21-24 show still further example resonant structures by which an electron beam can pass to induce resonance in and between. In FIG. 21, the structures are not in the form of straight posts (as in FIG. 1), but are instead C-shaped cavities which can form a type of waveguide. The electron beam passes down the middle of the facing C's, perpendicular to the arms of the Cs. As in FIG. 1, the electron beam induces resonance in the structures, both within the structures (including surface resonance) and among the structures (system resonance) to produce electromagnetic radiation at superior intensities and optimizable wavelengths.



FIG. 21 also illustrates a device that exhibits higher order of harmonics by alternating “half-stubs” between the full stubs. The same kind of idea in which half-stubs are alternated with full stubs can be incorporated into any of the other embodiments (such as the several post embodiments) described earlier in this document. In the case of FIG. 21, the half-stubs are actually half-Cs nestled into the full-Cs, with the electron beam passing near and perpendicular to the arms of each. Resonance occurs within each C, between the nestled and nestling Cs, and between adjacent large Cs. As in previously described embodiments, the period of the repeating Cs is less than the wavelength of light, so the light is not being diffracted because the period spacing is so small that the arms of the Cs (or in the case of the posts, the ends of the posts) appear essentially as a solid “surface” to the wave. In the case of FIG. 21, the period of the respective arms of the Cs is 117 nm. The distance from the end of one arm of a big-C to the other arm of the same big-C is about 797 nm (i.e., it can be greater than the wavelength of light) The length of each big-C arm is about 515 nm.



FIG. 22 illustrates a double rowed, single-C embodiment in which offset, facing Cs are provided with the electron beam running between them. As shown, the period of the repeating arms is about 427 nm. The space within which the electron beam runs is about 40 nm. The width of the C is about 122 nm. The entire length of two facing Cs and the space between is 802 nm.



FIG. 23 illustrates a number of example light-producing embodiments, including nestled-C embodiments and post embodiments. FIG. 24 is a hybrid of the Cs and posts, in which a post is nestled into each C. The posts and C-arms have a period of about 225 nm, with a spacing between the arms of adjacent Cs of about 83 nm. Again, the electron runs down the middle slit to induce resonance in the proximate posts and ends of the C-arms.


All of the structures described operate under vacuum conditions. Our invention does not require any particular kind of evacuation structure. Many known hermetic sealing techniques can be employed to ensure the vacuum condition remains during a reasonable lifespan of operation. We anticipate that the devices can be operated in a pressure up to atmospheric pressure if the mean free path of the electrons is longer than the device length at the operating pressure.


The conductive structures described herein are preferably comprised of silver, but may be any conductive metal or may be any non-metallic conductor such as an ionic conductor. Dielectrics are also envisioned as layer materials in the alternative to conductive layers, or in combination with them.


We have thus described electron beam induced resonance that can be used to produce visible light of optimized frequencies from a single metal layer. Such devices have application in such fields as ultra high-speed data communications and in any light producing application.


The various devices and their components described herein may be manufactured using the methods and systems described in related U.S. patent application Ser. No. 10/917,511, filed on Aug. 13, 2004, entitled “Patterning Thin Metal Film by Dry Reactive Ion Etching,” and U.S. Application Ser. No. 11/203,407, filed on Aug. 15, 2005, entitled “Method Of Patterning Ultra-Small Structures,” both of which are commonly owned with the present application at the time of filing, and the entire contents of each of have been incorporated herein by reference.


Thus are described electron beam induced resonance and methods and devices for making and using same. While the invention has been described in connection with what is presently considered to be the most practical and preferred embodiment, it is to be understood that the invention is not to be limited to the disclosed embodiment, but on the contrary, is intended to cover various modifications and equivalent arrangements included within the spirit and scope of the appended claims.

Claims
  • 1. A series of one or more structures arranged in a continuum on a single substrate to emit electromagnetic radiation at an output wavelength, the series having a period between the structures less than the wavelength of the emitted electromagnetic radiation, the series emitting said electromagnetic radiation when a charged particle beam is directed generally along and proximate but not touching the series of structures.
  • 2. A series according to claim 1, wherein the structures have a length to induce resonance on the surface of, or within, the structures as the charged particle beam passes the structures to emit said electromagnetic radiation.
  • 3. A series according to claim 2, wherein the structures have the length to induce resonance among the respective structures as the charged particle beam passes the structures to emit said electromagnetic radiation.
  • 4. A series of structures according to claim 1, wherein the series is a first series, and further including: a second series of structures geometrically different from the first series and arranged near the first series to emit electromagnetic radiation when said charged particle beam is directed generally along and proximate the second series of structures but at a different frequency than the first series.
  • 5. A series of structures according to claim 1, wherein the series is a first series, and further including: a plurality of series of one or more structures geometrically different from the first series and arranged on the single substrate in respective and different continuums to emit electromagnetic radiation at one or more different frequencies than the first series when said charged particle beam is directed generally along and proximate the plurality any of the series of structures.
  • 6. A series according to claim 5, wherein each one of the plurality of additional series of structures is geometrically different from every other series of one or more structures.
  • 7. A series according to claim 6, wherein each of the plurality of additional series of one or more structures emits electromagnetic radiation at a frequency different from every other series of one or more structures.
  • 8. A series according to claim 1, wherein the structures are posts.
  • 9. A series according to claim 1, wherein the structures are arms of C-shaped structures.
  • 10. A series according to claim 1, wherein the structures are arms of nested C-shaped structures.
  • 11. A series according to claim 1, wherein the structures are arms of C-shaped structures and nested posts.
  • 12. A series according to claim 1, wherein the structures are composed of metals.
  • 13. A series according to claim 1, wherein the structures are composed of alloys.
  • 14. A series according to claim 1, wherein the structures are composed of non-metallic conductors.
  • 15. A series according to claim 1, wherein the structures are composed of dielectrics.
  • 16. Periodic structures arranged in rows on a single substrate, the periodic structures having at least two different structure geometries inducing electromagnetic radiation in at least two different frequencies corresponding at least in part to the two different structure geometries when a charged particle beam is directed generally along the structures and each of the periodic structures having a respective period between the periodic structures less than the corresponding wavelength of the respectively induced electromagnetic radiation of said each of the periodic structures.
  • 17. Periodic structures according to claim 16, wherein two of the rows having the at least two different structure geometries are proximate to one another such that the charged particle beam simultaneously induces the electromagnetic radiation from both rows.
  • 18. Periodic structures according to claim 17, wherein the structures are offset, facing C-shaped structures.
  • 19. Periodic structures according to claim 18, wherein the C-shaped structures are nested.
  • 20. Periodic structures according to claim 16, wherein the electromagnetic radiation is in the visible light spectrum.
  • 21. Periodic structures according to claim 16, wherein a periodicity of each of the periodic structures is less than the wavelength of the electromagnetic radiation induced thereby.
  • 22. Periodic structures according to claim 16, wherein the structures are posts arranged on a substrate.
  • 23. Periodic structures according to claim 16, wherein the structures in a given row are conductively connected to one another.
  • 24. Periodic structures according to claim 16, wherein the structures are composed of one from the group of: metals, alloys, non-metallic conductors and dielectrics.
  • 25. A method of producing electromagnetic radiation, comprising the steps of: providing a set of periodic structures on a substrate, the structures in the set of structures having an arm length greater than an arm width and in a direction generally parallel to the plane of the substrate;directing a beam of charged particles near and perpendicular to the arm length of said structures so as to induce resonance in the structures and thereby cause the structures to emit electromagnetic radiation at a particular frequency greater than microwave frequencies.
  • 26. A method according to claim 25, wherein a periodicity of the periodic structures is shorter than a wavelength of the emitted electromagnetic radiation and the arm length is greater than the periodicity.
  • 27. A method according to claim 25, wherein a periodicity of the periodic structures is longer than the wavelength of the emitted electromagnetic radiation and the arm length is shorter than the periodicity.
US Referenced Citations (308)
Number Name Date Kind
1948384 Lawrence Feb 1934 A
2307086 Varian et al. Jan 1943 A
2431396 Hansell Nov 1947 A
2473477 Smith Jun 1949 A
2634372 Salisbury Apr 1953 A
2932798 Kerst et al. Apr 1960 A
2944183 Drexler Jul 1960 A
2966611 Sandstrom Dec 1960 A
3231779 White Jan 1966 A
3297905 Rockwell et al. Jan 1967 A
3315117 Udelson Apr 1967 A
3387169 Farney Jun 1968 A
3543147 Kovarik Nov 1970 A
3546524 Stark Dec 1970 A
3560694 White Feb 1971 A
3571642 Westcott Mar 1971 A
3586899 Fleisher Jun 1971 A
3761828 Pollard et al. Sep 1973 A
3886399 Symons May 1975 A
3923568 Bersin Dec 1975 A
3989347 Eschler Nov 1976 A
4053845 Gould Oct 1977 A
4282436 Kapetanakos Aug 1981 A
4450554 Steensma et al. May 1984 A
4453108 Freeman, Jr. Jun 1984 A
4482779 Anderson Nov 1984 A
4528659 Jones, Jr. Jul 1985 A
4589107 Middleton et al. May 1986 A
4598397 Nelson et al. Jul 1986 A
4630262 Callens et al. Dec 1986 A
4652703 Lu et al. Mar 1987 A
4661783 Gover et al. Apr 1987 A
4704583 Gould Nov 1987 A
4712042 Hamm Dec 1987 A
4713581 Haimson Dec 1987 A
4727550 Chang et al. Feb 1988 A
4740963 Eckley Apr 1988 A
4740973 Madey Apr 1988 A
4746201 Gould May 1988 A
4761059 Yeh et al. Aug 1988 A
4782485 Gollub Nov 1988 A
4789945 Niijima Dec 1988 A
4806859 Hetrick Feb 1989 A
4809271 Kondo et al. Feb 1989 A
4813040 Futato Mar 1989 A
4819228 Baran et al. Apr 1989 A
4829527 Wortman et al. May 1989 A
4838021 Beattie Jun 1989 A
4841538 Yanabu et al. Jun 1989 A
4864131 Rich et al. Sep 1989 A
4866704 Bergman Sep 1989 A
4866732 Carey et al. Sep 1989 A
4873715 Shibata Oct 1989 A
4887265 Felix Dec 1989 A
4890282 Lambert et al. Dec 1989 A
4898022 Yumoto et al. Feb 1990 A
4912705 Paneth et al. Mar 1990 A
4932022 Keeney et al. Jun 1990 A
4981371 Gurak et al. Jan 1991 A
5023563 Harvey et al. Jun 1991 A
5036513 Greenblatt Jul 1991 A
5065425 Lecomte et al. Nov 1991 A
5113141 Swenson May 1992 A
5121385 Tominaga et al. Jun 1992 A
5127001 Steagall et al. Jun 1992 A
5128729 Alonas et al. Jul 1992 A
5130985 Kondo et al. Jul 1992 A
5150410 Bertrand Sep 1992 A
5155726 Spinney et al. Oct 1992 A
5157000 Elkind et al. Oct 1992 A
5163118 Lorenzo et al. Nov 1992 A
5185073 Bindra Feb 1993 A
5187591 Guy et al. Feb 1993 A
5199918 Kumar Apr 1993 A
5214650 Renner et al. May 1993 A
5233623 Chang Aug 1993 A
5235248 Clark et al. Aug 1993 A
5262656 Blondeau et al. Nov 1993 A
5263043 Walsh Nov 1993 A
5268693 Walsh Dec 1993 A
5268788 Fox et al. Dec 1993 A
5282197 Kreitzer Jan 1994 A
5283819 Glick et al. Feb 1994 A
5293175 Hemmie et al. Mar 1994 A
5302240 Hori et al. Apr 1994 A
5305312 Fornek et al. Apr 1994 A
5341374 Lewen et al. Aug 1994 A
5354709 Lorenzo et al. Oct 1994 A
5446814 Kuo et al. Aug 1995 A
5504341 Glavish Apr 1996 A
5578909 Billen Nov 1996 A
5604352 Schuetz Feb 1997 A
5608263 Drayton et al. Mar 1997 A
5663971 Carlsten Sep 1997 A
5666020 Takemura Sep 1997 A
5668368 Sakai et al. Sep 1997 A
5705443 Stauf et al. Jan 1998 A
5737458 Wojnarowski et al. Apr 1998 A
5744919 Mishin et al. Apr 1998 A
5757009 Walstrom May 1998 A
5767013 Park Jun 1998 A
5780970 Singh et al. Jul 1998 A
5790585 Walsh Aug 1998 A
5811943 Mishin et al. Sep 1998 A
5821836 Katehi et al. Oct 1998 A
5821902 Keen Oct 1998 A
5825140 Fujisawa Oct 1998 A
5831270 Nakasuji Nov 1998 A
5847745 Shimizu et al. Dec 1998 A
5889449 Fiedziuszko Mar 1999 A
5889797 Nguyen Mar 1999 A
5902489 Yasuda et al. May 1999 A
5963857 Greywall Oct 1999 A
5972193 Chou et al. Oct 1999 A
6005347 Lee Dec 1999 A
6008496 Winefordner et al. Dec 1999 A
6040625 Ip Mar 2000 A
6060833 Velazco May 2000 A
6080529 Ye et al. Jun 2000 A
6117784 Uzoh Sep 2000 A
6139760 Shim et al. Oct 2000 A
6180415 Schultz et al. Jan 2001 B1
6195199 Yamada Feb 2001 B1
6222866 Seko Apr 2001 B1
6278239 Caporaso et al. Aug 2001 B1
6281769 Fiedziuszko Aug 2001 B1
6297511 Syllaios et al. Oct 2001 B1
6301041 Yamada Oct 2001 B1
6309528 Taylor et al. Oct 2001 B1
6316876 Tanabe Nov 2001 B1
6338968 Hefti Jan 2002 B1
6370306 Sato et al. Apr 2002 B1
6373194 Small Apr 2002 B1
6376258 Hefti Apr 2002 B2
6407516 Victor Jun 2002 B1
6441298 Thio Aug 2002 B1
6448850 Yamada Sep 2002 B1
6453087 Frish et al. Sep 2002 B2
6470198 Kintaka et al. Oct 2002 B1
6504303 Small Jan 2003 B2
6525477 Small Feb 2003 B2
6534766 Abe et al. Mar 2003 B2
6545425 Victor Apr 2003 B2
6552320 Pan Apr 2003 B1
6577040 Nguyen Jun 2003 B2
6580075 Kametani et al. Jun 2003 B2
6603781 Stinson et al. Aug 2003 B1
6603915 Glebov et al. Aug 2003 B2
6624916 Green et al. Sep 2003 B1
6636185 Spitzer et al. Oct 2003 B1
6636534 Madey et al. Oct 2003 B2
6636653 Miracky et al. Oct 2003 B2
6640023 Miller et al. Oct 2003 B2
6642907 Hamada et al. Nov 2003 B2
6687034 Wine et al. Feb 2004 B2
6700748 Cowles et al. Mar 2004 B1
6724486 Shull et al. Apr 2004 B1
6738176 Rabinowitz et al. May 2004 B2
6741781 Furuyama May 2004 B2
6777244 Pepper et al. Aug 2004 B2
6782205 Trisnadi et al. Aug 2004 B2
6791438 Takahashi et al. Sep 2004 B2
6800877 Victor et al. Oct 2004 B2
6801002 Victor et al. Oct 2004 B2
6819432 Pepper et al. Nov 2004 B2
6829286 Guilfoyle et al. Dec 2004 B1
6834152 Gunn et al. Dec 2004 B2
6870438 Shino et al. Mar 2005 B1
6871025 Maleki et al. Mar 2005 B2
6885262 Nishimura et al. Apr 2005 B2
6900447 Gerlach et al. May 2005 B2
6909092 Nagahama Jun 2005 B2
6909104 Koops et al. Jun 2005 B1
6924920 Zhilkov Aug 2005 B2
6936981 Gesley Aug 2005 B2
6943650 Ramprasad et al. Sep 2005 B2
6952492 Tanaka et al. Oct 2005 B2
6953291 Liu Oct 2005 B2
6954515 Bjorkholm et al. Oct 2005 B2
6944369 Deliwala Nov 2005 B2
6965284 Maekawa et al. Nov 2005 B2
6965625 Mross et al. Nov 2005 B2
6972439 Kim et al. Dec 2005 B1
6995406 Tojo et al. Feb 2006 B2
7010183 Estes et al. Mar 2006 B2
7064500 Victor et al. Jun 2006 B2
7068948 Wei et al. Jun 2006 B2
7092588 Kondo Aug 2006 B2
7092603 Glebov et al. Aug 2006 B2
7122978 Nakanishi et al. Oct 2006 B2
7130102 Rabinowitz Oct 2006 B2
7177515 Estes et al. Feb 2007 B2
7230201 Miley et al. Jun 2007 B1
7253426 Gorrell et al. Aug 2007 B2
7267459 Matheson Sep 2007 B2
7267461 Kan et al. Sep 2007 B2
7309953 Tiberi et al. Dec 2007 B2
7342441 Gorrell et al. Mar 2008 B2
7362972 Yavor et al. Apr 2008 B2
7375631 Moskowitz et al. May 2008 B2
7436177 Gorrell et al. Oct 2008 B2
7442940 Gorrell et al. Oct 2008 B2
7443358 Gorrell et al. Oct 2008 B2
7470920 Gorrell et al. Dec 2008 B2
7473917 Singh Jan 2009 B2
20010025925 Abe et al. Oct 2001 A1
20020009723 Hefti Jan 2002 A1
20020027481 Fiedziuszko Mar 2002 A1
20020036121 Ball et al. Mar 2002 A1
20020036264 Nakasuji et al. Mar 2002 A1
20020053638 Winkler et al. May 2002 A1
20020068018 Pepper et al. Jun 2002 A1
20020070671 Small Jun 2002 A1
20020071457 Hogan Jun 2002 A1
20020122531 Whitham Sep 2002 A1
20020135665 Gardner Sep 2002 A1
20020139961 Kinoshita et al. Oct 2002 A1
20020158295 Armgarth et al. Oct 2002 A1
20020191650 Madey et al. Dec 2002 A1
20030010979 Pardo Jan 2003 A1
20030012925 Gorrell Jan 2003 A1
20030016412 Small Jan 2003 A1
20030016421 Small Jan 2003 A1
20030034535 Barenburu et al. Feb 2003 A1
20030103150 Catrysse et al. Jun 2003 A1
20030106998 Colbert et al. Jun 2003 A1
20030155521 Feuerbaum Aug 2003 A1
20030158474 Scherer et al. Aug 2003 A1
20030164947 Vaupel Sep 2003 A1
20030179974 Estes et al. Sep 2003 A1
20030206708 Estes et al. Nov 2003 A1
20030214695 Abramson et al. Nov 2003 A1
20040061053 Taniguchi et al. Apr 2004 A1
20040080285 Victor et al. Apr 2004 A1
20040085159 Kubena et al. May 2004 A1
20040092104 Gunn, III et al. May 2004 A1
20040108471 Luo et al. Jun 2004 A1
20040108473 Melnychuk et al. Jun 2004 A1
20040108823 Amaldi et al. Jun 2004 A1
20040136715 Kondo Jul 2004 A1
20040150991 Ouderkirk et al. Aug 2004 A1
20040171272 Jin et al. Sep 2004 A1
20040180244 Tour et al. Sep 2004 A1
20040184270 Halter Sep 2004 A1
20040213375 Bjorkholm et al. Oct 2004 A1
20040217297 Moses et al. Nov 2004 A1
20040218651 Iwasaki et al. Nov 2004 A1
20040231996 Webb Nov 2004 A1
20040240035 Zhilkov Dec 2004 A1
20040264867 Kondo Dec 2004 A1
20050023145 Cohen et al. Feb 2005 A1
20050045821 Noji et al. Mar 2005 A1
20050045832 Kelly et al. Mar 2005 A1
20050054151 Lowther et al. Mar 2005 A1
20050067286 Ahn et al. Mar 2005 A1
20050082469 Carlo Apr 2005 A1
20050092929 Schneiker May 2005 A1
20050104684 Wojcik May 2005 A1
20050105690 Pau et al. May 2005 A1
20050145882 Taylor et al. Jul 2005 A1
20050152635 Paddon et al. Jul 2005 A1
20050162104 Victor et al. Jul 2005 A1
20050190637 Ichimura et al. Sep 2005 A1
20050194258 Cohen et al. Sep 2005 A1
20050201707 Glebov et al. Sep 2005 A1
20050201717 Matsumura et al. Sep 2005 A1
20050212503 Deibele Sep 2005 A1
20050231138 Nakanishi et al. Oct 2005 A1
20050249451 Baehr-Jones et al. Nov 2005 A1
20050285541 LeChevalier Dec 2005 A1
20060007730 Nakamura et al. Jan 2006 A1
20060018619 Helffrich et al. Jan 2006 A1
20060035173 Davidson et al. Feb 2006 A1
20060045418 Cho et al. Mar 2006 A1
20060050269 Brownell Mar 2006 A1
20060060782 Khursheed Mar 2006 A1
20060062258 Brau et al. Mar 2006 A1
20060131176 Hsu Jun 2006 A1
20060131695 Kuekes et al. Jun 2006 A1
20060159131 Liu et al. Jul 2006 A1
20060164496 Tokutake et al. Jul 2006 A1
20060187794 Harvey et al. Aug 2006 A1
20060208667 Lys et al. Sep 2006 A1
20060216940 Gorrell et al. Sep 2006 A1
20060243925 Barker et al. Nov 2006 A1
20060274922 Ragsdale Dec 2006 A1
20070003781 de Rochemont Jan 2007 A1
20070013765 Hudson et al. Jan 2007 A1
20070075263 Gorrell et al. Apr 2007 A1
20070075264 Gorrell et al. Apr 2007 A1
20070085039 Gorrell et al. Apr 2007 A1
20070086915 LeBoeuf et al. Apr 2007 A1
20070116420 Estes et al. May 2007 A1
20070146704 Schmidt et al. Jun 2007 A1
20070152176 Gorrell et al. Jul 2007 A1
20070154846 Gorrell et al. Jul 2007 A1
20070194357 Oohashi et al. Aug 2007 A1
20070200940 Gruhlke et al. Aug 2007 A1
20070252983 Tong et al. Nov 2007 A1
20070258492 Gorrell Nov 2007 A1
20070258689 Gorrell et al. Nov 2007 A1
20070258690 Gorrell et al. Nov 2007 A1
20070259641 Gorrell Nov 2007 A1
20070264023 Gorrell et al. Nov 2007 A1
20070264030 Gorrell et al. Nov 2007 A1
20070284527 Zani et al. Dec 2007 A1
20080069509 Gorrell et al. Mar 2008 A1
20080302963 Nakasuji et al. Dec 2008 A1
Foreign Referenced Citations (14)
Number Date Country
0237559 Dec 1991 EP
2004-32323 Jan 2004 JP
WO 8701873 Mar 1987 WO
WO 9321663 Oct 1993 WO
WO 0072413 Nov 2000 WO
WO 0225785 Mar 2002 WO
WO 02077607 Oct 2002 WO
WO 2004086560 Oct 2004 WO
WO 2005015143 Feb 2005 WO
WO 2005098966 Oct 2005 WO
WO 2006042239 Apr 2006 WO
WO 2007081389 Jul 2007 WO
WO 2007081390 Jul 2007 WO
WO 2007081391 Jul 2007 WO
Related Publications (1)
Number Date Country
20070075264 A1 Apr 2007 US
Continuation in Parts (1)
Number Date Country
Parent 11238991 Sep 2005 US
Child 11243477 US