The present disclosure relates to an electronic package and a method of manufacturing the same.
Wireless communication systems may require multiple-band antennas for transmitting and receiving radio frequency (RF) at different frequency bands to support, e.g., higher data rates, increased functionality, and more users. Therefore, it is desirable for an antenna to have multiple-band performance.
In some embodiments, the electronic package includes an antenna structure having a first antenna and a second antenna at least partially covered by the first antenna. The electronic package also includes a directing element covering the antenna structure. The directing element has a first portion configured to direct a first electromagnetic wave having a first frequency to transmit via the first antenna and a second portion configured to direct a second electromagnetic wave having a second frequency different from the first frequency to transmit via the second antenna.
In some embodiments, the electronic package includes an antenna structure having a first region and a second region. The electronic package also includes a directing element covering the first region of the antenna structure and exposing a part of the second region of the antenna structure. The directing element has a first portion configured to direct a first electromagnetic wave having a first frequency to transmit within the first portion and a second portion configured to direct a second electromagnetic wave having a second frequency different from the first frequency to transmit within the second portion.
In some embodiments, a method of manufacturing an electronic package includes providing a radiating structure having a first region and a second region. The method also includes disposing a directing element over the radiating structure to cover the first region of the radiating structure and to expose a part of the second region of the radiating structure. The directing element comprises a first portion configured to direct a first electromagnetic wave having a first frequency to transmit within the first portion and a second portion configured to direct a second electromagnetic wave having a second frequency different from the first frequency to transmit within the second portion.
Aspects of some embodiments of the present disclosure are best understood from the following detailed description when read with the accompanying figures. It is noted that various structures may not be drawn to scale, and dimensions of the various structures may be arbitrarily increased or reduced for clarity of discussion.
The following disclosure provides for many different embodiments, or examples, for implementing different features of the provided subject matter. Specific examples of components and arrangements are described below to explain certain aspects of the present disclosure. These are, of course, merely examples and are not intended to be limiting. For example, the formation of a first feature over or on a second feature in the description that follows may include embodiments in which the first and second features are formed or disposed in direct contact, and may also include embodiments in which additional features may be formed or disposed between the first and second features, such that the first and second features may not be in direct contact. In addition, the present disclosure may repeat reference numerals and/or letters in the various examples. This repetition is for the purpose of simplicity and clarity and does not in itself dictate a relationship between the various embodiments and/or configurations discussed.
Spatial descriptions, such as “above,” “below,” “up,” “left,” “right,” “down,” “top,” “bottom,” “vertical,” “horizontal,” “side,” “higher,” “lower,” “upper,” “over,” “under,” and so forth, are indicated with respect to the orientation shown in the figures unless otherwise specified. It should be understood that the spatial descriptions used herein are for purposes of illustration only, and that practical implementations of the structures described herein can be spatially arranged in any orientation or manner, provided that the merits of embodiments of this disclosure are not deviated from by such arrangement.
The following description involves an electronic package and a method of manufacturing an electronic package.
In some embodiments, the antenna 11 may be disposed over the antenna 10. In some embodiments, the antenna 10 and the antenna 11 may be physically separated by the dielectric layer 10a. In some embodiments, the antenna 10 may have a surface 101 facing the antenna 11 and the antenna 11 may have a surface 111 facing away from the antenna 10. In some embodiments, the surface 101 and the surface 111 may be substantially parallel. In some embodiments, the antenna 10 and the antenna 11 may be at least partially overlapped in a direction substantially perpendicular to the surface 101 and the surface 111. In some embodiments, the antenna 10 may be covered by the antenna 11 in a direction substantially perpendicular to the surface 101 and the surface 111. In some embodiments, the antenna 10 may be at least partially covered by the antenna 11 in a direction substantially perpendicular to the surface 101 and the surface 111. In some embodiments, the antenna 11 may be entirely disposed within the area of the antenna 10 in a direction substantially perpendicular to the surface 101 and the surface 111. In some embodiments, an end of the antenna 10 and an end of the antenna 11 may not be overlapped in a direction substantially perpendicular to the surface 101 and the surface 111. For example, the ends of the antenna 11 may be spaced apart from the ends of the antenna 10 in a direction substantially parallel to the surface 101 and the surface 111. For example, the ends of the antenna 11 may be disposed within the area of the antenna 10 in a direction substantially perpendicular to the surface 101 and the surface 111.
In some embodiments, the antenna 10 and the antenna 11 may each include a patch antenna, such as a planar inverted-F antenna (PIFA) or other feasible kinds of antennas. In some embodiments, the antenna 10 and the antenna 11 may each include a conductive material such as a metal or metal alloy. Examples of the conductive material include gold (Au), silver (Ag), aluminum (Al), copper (Cu), platinum (Pt), Palladium (Pd), other metal(s) or alloy(s), or a combination of two or more thereof.
In some embodiments, the antenna 10 and the antenna 11 may have different frequencies (or operating frequencies) or bandwidths (or operating bandwidths). For example, the antenna 10 and the antenna 11 may be configured to radiate electromagnetic waves having different frequencies or different wavelengths. For example, the antenna 11 (which can be referred to as a high-band antenna) may have an operating frequency higher than an operating of the antenna 10 (which can be referred to as a low-band antenna). For example, the antenna 10 may be operated in a frequency of about 28 GHz. For example, the antenna 10 may be configured to radiate or receive electromagnetic waves with a frequency of about 28 GHz. For example, the antenna 11 may be operated in a frequency of about 39 GHz. For example, the antenna 11 may be configured to radiate or receive electromagnetic waves with a frequency of about 39 GHz. By incorporating the antennas having different operating frequencies, the antenna module 1 may achieve multi-band (or multi-frequency) radiation.
In some embodiments, the antenna 10 and the antenna 11 may have different dimensions. For example, the antenna 10 may have a thickness 10t measured in a direction substantially perpendicular to the surface 101, and the antenna 11 may have a thickness 11t measured in a direction substantially perpendicular to the surface 111. The thickness 10t of the antenna 10 and the thickness 11t of the antenna 11 may be different. For example, the thickness 10t of the antenna 10 may be greater than the thickness 11t of the antenna 11. For example, the antenna 10 may have a width 10w measured in a direction substantially parallel to the surface 101, and the antenna 11 may have a width 11w measured in a direction substantially parallel to the surface 111. In some embodiments, the widths 10w and 11w may be measured between two lateral surfaces (or two ends) of the antennas 10 and 11 from a cross-sectional view as shown in
The patterns or sequences of the antennas may be different from the above descriptions, and the illustrations and the patterns or sequences of the antennas may not be limited thereto. In some embodiments, antennas of more than two different frequencies or bandwidths may be incorporated in the antenna module 1.
In some embodiments, the dielectric layer 10a may cover the antenna 10. In some embodiments, the dielectric layer 10a may encapsulate the antenna 10. In some embodiments, the dielectric layer 10a may contact the surface 101 of the antenna 10. In some embodiments, the dielectric layer 10a may contact the lateral surfaces (or ends) of the antenna 10. In some embodiments, a surface of the dielectric layer 10a may substantially be coplanar with a surface 102 the antenna 10 opposite to the surface 101.
In some embodiments, the dielectric layer 11a may be disposed on the dielectric layer 10a and cover the antenna 11. In some embodiments, the dielectric layer 11a may encapsulate the antenna 11. In some embodiments, the dielectric layer 11a may contact the surface 111 of the antenna 11. In some embodiments, the dielectric layer 11a may contact the lateral surfaces (or ends) of the antenna 11. In some embodiments, a surface of the dielectric layer 11a may substantially be coplanar with a surface 112 the antenna 11 opposite to the surface 111. In some embodiments, the surface 112 the antenna 11 may contact the dielectric layer 10a.
In some embodiments, a part of the dielectric layer 10a may be disposed between the antenna 10 and the antenna 11. In some embodiments, the antenna 11 may be disposed between the dielectric layer 10a and dielectric layer 11a.
In some embodiments, the dielectric layer 10a and the dielectric layer 11a may each include a solder resist or a solder mask. In some embodiments, the dielectric layer 10a and the dielectric layer 11a may each have a dielectric constant (Dk) between about 8 and about 12, such as about 10. In some embodiments, the dielectric layer 10a and the dielectric layer 11a may have the same material or the same Dk. In some embodiments, the dielectric layer 10a and the dielectric layer 11a may have different materials or different Dk.
In some embodiments, a thickness of the dielectric layer 11a measured in a direction substantially perpendicular to the surface 111 of the antenna 11 may be different from a thickness of the dielectric layer 10a measured in a direction substantially perpendicular to the surface 101 of the antenna 10. For example, the thickness of the dielectric layer 11a may be less than the thickness of the dielectric layer 10a. In some embodiments, electromagnetic waves radiated or received by the antenna 10 may pass through the dielectric layer 11a, and the thickness of the dielectric layer 11a may be designed to not change the resonant frequency point of the antenna 10 and to reduce the transmission losses of the electromagnetic waves thereof. For example, the thickness of the dielectric layer 11a measured in a direction substantially perpendicular to the surface 111 of the antenna 11 may be equal to or less than about 10 micrometers (μm).
In some embodiments, the directing element (including the portion 12 and the portion 13) of the antenna module 1 may be disposed on the dielectric layer 11a. In some embodiments, the antenna 11 may be disposed between the antenna 10 and the directing element of the antenna module 1.
In some embodiments, the portion 12 may surround the portion 13. In some embodiments, the portion 12 may be around the portion 13. In some embodiments, the portion 12 may encircle the portion 13. In some embodiments, the portion 12 may border the portion 13. In some embodiments, the portion 12 may contact the portion 13. In some embodiments, the portion 12 may be adjacent to the portion 13. In some embodiments, the portion 13 may be inside of the portion 12. In some embodiments, the portion 13 may be at the center of the portion 12. In some embodiments, the portion 12 may have a surface 121 facing away from the radiating structure of the antenna module 1. In some embodiments, the portion 13 may have a surface 131 facing away from the radiating structure of the antenna module 1. In some embodiments, the surface 121 and the surface 131 may be substantially coplanar. In some embodiments, the surface 121 and the surface 131 may be substantially aligned.
In some embodiments, the portion 12 and the portion 13 may each include pre-impregnated composite fibers (e.g., pre-preg), Borophosphosilicate Glass (BPSG), silicon oxide, silicon nitride, silicon oxynitride, Undoped Silicate Glass (USG), any combination of two or more thereof, or the like. In some embodiments, the portion 12 and the portion 13 may each include a dielectric ceramic such as Al2O3, Mg2SiO4, MgAl2O4, CoAl2O4, or other feasible dielectric ceramics that have a standard Q-value. In some embodiments, the portion 12 and the portion 13 may have the same material or the same Dk. In some embodiments, the portion 12 and the portion 13 may have different materials or different Dk.
For example, a Dk of the portion 12 (which can be referred to as a low-Dk dielectric layer) may be lower than a Dk of the portion 13 (which can be referred to as a high-Dk dielectric layer). For example, the portion 12 may have a Dk between about 17 and about 21, such as about 19. For example, the portion 13 may have a Dk between about 36 and about 40, such as about 38. In some embodiments, a Dk of the portion 12 may be higher than a Dk of the dielectric layer 10a and/or a Dk of the dielectric layer 11a. In some embodiments, a Dk of the portion 13 may be higher than a Dk of the dielectric layer 10a and/or a Dk of the dielectric layer 11a.
In some embodiments, the portion 12 and the portion 13 may be configured to direct electromagnetic waves having different frequencies or different wavelengths. In some embodiments, the portion 12 may be configured to direct the electromagnetic waves radiated or received by the antenna 10. For example, the electromagnetic waves radiated or received by the antenna 10 may be transmitted within the portion 12.
For example, the portion 12 may be configured to guide the electromagnetic waves radiated by the antenna 10 to the outside of the antenna module 1. For example, the portion 12 may be configured to guide the electromagnetic waves (on which the antenna 10 can be operated) from the outside of the antenna module 1 to the antenna 10. For example, the portion 12 may be configured to guide the electromagnetic waves (on which the antenna 10 can be operated) to transmit via the antenna 10. In some embodiments, the electromagnetic waves radiated or received by the antenna 11 may not be transmitted within the portion 12. For example, the electromagnetic waves radiated or received by the antenna 11 may be free from being transmitted within the portion 12.
In some embodiments, the portion 13 may be configured to direct electromagnetic waves radiated or received by the antenna 11. For example, the electromagnetic waves radiated or received by the antenna 11 may be transmitted within the portion 13.
For example, the portion 13 may be configured to guide the electromagnetic waves radiated by the antenna 11 to the outside of the antenna module 1. For example, the portion 13 may be configured to guide the electromagnetic waves (on which the antenna 11 can be operated) from the outside of the antenna module 1 to the antenna 11. For example, the portion 13 may be configured to guide the electromagnetic waves (on which the antenna 11 can be operated) to transmit via the antenna 11. In some embodiments, the electromagnetic waves radiated or received by the antenna 10 may not be transmitted within the portion 13. For example, the electromagnetic waves radiated or received by the antenna 10 may be free from being transmitted within the portion 13.
In some embodiments, a width 12w of the portion 12 may be greater than the width 10w of the antenna 10 and the width 11w of the antenna 11. In some embodiments, a width 13w of the portion 13 may be less than the width 10w of the antenna 10 and greater than the width 11w of the antenna 11. In some embodiments, the lateral surface of the directing element (i.e., the lateral surface of portion 12) may be misaligned with the lateral surface of the dielectric layer 10a and/or the lateral surface of dielectric layer 11a. For example, the lateral surface of the directing element (i.e., the lateral surface of portion 12) may be non-coplanar with the lateral surface of the dielectric layer 10a and/or the lateral surface of dielectric layer 11a. However, in some other embodiments, the lateral surface of the directing element (i.e., the lateral surface of portion 12) may be aligned with the lateral surface of the dielectric layer 10a and/or the lateral surface of dielectric layer 11a. For example, the width 12w of the portion 12 may be substantially equal to a width of the dielectric layer 10a and/or a width of dielectric layer 11a.
In some embodiments, the portion 12 and the portion 13 may have a thickness 12t. In some embodiments, the thickness 12t may be designed to enhance the efficiency of the antenna module 1. In some embodiments, the thickness 12t may be ten times greater, twenty times greater, or thirty times greater than the thickness of the dielectric layer 11a. For example, the thickness 12t may be equal to or greater than about 350 μm.
As shown in
In some embodiments, the area of the portion 13 is larger than the area of the antenna 11. In some embodiments, the area of the portion 13 is smaller than the area of the antenna 10. In some embodiments, a projection of the portion 13 is completely within a projection of the antenna 10. In some embodiments, the area of the portion 13 is smaller than the area of the portion 12. In some embodiments, a projection of the portion 13 is completely within a projection of the portion 12.
In some embodiments, the area of the antenna 10 is larger than the area of the antenna 11. In some embodiments, the area of the antenna 10 is larger than the area of the portion 13. In some embodiments, the area of the antenna 10 is smaller than the area of the portion 12. In some embodiments, a projection of the antenna 10 is completely within a projection of the portion 12.
In some embodiments, the area of the portion 12 is larger than the area of the antenna 11. In some embodiments, the area of the portion 12 is larger than the area of the portion 13. In some embodiments, the area of the portion 12 is larger than the area of the antenna 10. In some embodiments, a width of a projection of the directing element (i.e., the portions 12 and 13) on the antenna 10 may be substantially equal to a width of the antenna 10.
In some embodiments, by stacking or overlapping the high-band antenna (e.g., the antenna 11) and the low-band antenna (e.g., the antenna 10), the interference between the high-band antenna and the low-band antenna may be reduced, and the package size (e.g., the package size of the antenna module 1) may be reduced. In addition, by incorporating the high-Dk dielectric layer (e.g., the portion 13) into the low-Dk dielectric layer (e.g., the portion 12), the package size (e.g., the package size of the antenna module 1) may be reduced without compromising the antenna performance.
For example, the portion 12 may be configured to direct the electromagnetic waves radiated or received by the antenna 10, and the portion 13 may be configured to direct electromagnetic waves radiated or received by the antenna 11. Since the electrical characteristics (i.e., permittivity (c) and permeability (μ)) of the electromagnetic waves radiated or received by the antenna 10 and the antenna 11 of the radiating structure of the antenna module 1 are different, the transmission losses of the electromagnetic waves propagating through the portion 12 and the portion 13 of the directing element of the antenna module 1 are different (i.e., according to the Friis transmission equation).
In some embodiments, the portion 12 and the portion 13 of the directing element of the antenna module 1 may be adjusted to improve the performance of the antenna 10 and the antenna 11, respectively, of the radiating structure of the antenna module 1. For example, by proper adjustment of the dimensions, the compositions, the particle sizes, and/or the sintering temperatures of the portion 12 and the portion 13, the bandwidths of the electromagnetic waves may be increased, and the side lobes of the electromagnetic waves may be reduced. For example, the portion 12 and the portion 13 may help to separately compensate for phase shifts of the electromagnetic waves radiated or received by the antenna 10 and the antenna 11. Therefore, the directivity of the antenna module 1 may be enhanced and the gain of the antenna module 1 may be increased. For example, in comparison with an antenna module without a directing element, the loss in decibel (−dB) of an antenna module having a directing element may be improved by more than 5.00 dB. For example, by adjusting the directing element to match the radiating structure, the loss in decibel (−dB) may be improved by more than 10.00 dB. For example, the loss in decibel (−dB) of the antenna 11 between 37.00 GHz and 40.00 GHz may be improved by more than 15.00 dB.
The antenna module 1′ of
The antenna module 2 of
The antenna module 3 of
The antenna module 4 of
In some embodiments, a central axis 10c of the antenna 10 may not be aligned with a central axis 12c of the portion 12. In some embodiments, the central axis 10c of the antenna 10 may be spaced apart from the central axis 12c of the portion 12. In some embodiments, a distance between the central axis 10c of the antenna 10 and the central axis 12c of the portion 12 may be less than the wavelengths of the electromagnetic waves radiated or received by the antenna 10.
In some embodiments, since the portion 12 can cover the antenna 10 and direct the electromagnetic waves radiated or received by the antenna 10, an offset tolerance for the portion 12 is accepted, and a better manufacturing rate can be obtained.
In some embodiments, a central axis 11c of the antenna 11 may not be aligned with a central axis 13c of the portion 13. In some embodiments, the central axis 11c of the antenna 11 may be spaced apart from the central axis 13c of the portion 13. In some embodiments, a distance between the central axis 11c of the antenna 11 and the central axis 13c of the portion 13 may be less than the wavelengths of the electromagnetic waves radiated or received by the antenna 11.
In some embodiments, since the portion 13 can cover the antenna 11 and direct the electromagnetic waves radiated or received by the antenna 11, an offset tolerance for the portion 13 is accepted, and a better manufacturing rate can be obtained.
As shown in
In some embodiments, the antenna 11 is covered by the portion 13. The antenna 11 is closer to a side of the portion 13, and distal from an opposite side of the portion 13. For example, a gap g3 is defined between a side of the antenna 11 and a side of the portion 13. A gap g4 is defined between an opposite side of the antenna 11 and an opposite side of the portion 13. The gap g3 may be greater than the gap g4.
As shown in
In some embodiments, the antenna 11 is covered by the portion 13. The antenna 11 is rotated with respect to the portion 13. The portion 13 is rotated with respect to the antenna 11. For example, a side of the antenna 11 and a side of the portion 13 may be not parallel. For example, an angle θ2 is defined between a side of the antenna 11 and a side of the portion 13. The angle θ2 may be greater than zero.
As shown in
The carrier 80 has a surface 801 and a surface 802 opposite the surface 801. The carrier 80 may be, for example, a printed circuit board, such as a paper-based copper foil laminate, a composite copper foil laminate, or a polymer-impregnated glass-fiber-based copper foil laminate. In some embodiments, the carrier 80 may include an interconnection structure, such as a redistribution later (RDL), a grounding layer, and a feeding line. In some embodiments, the carrier 80 may include one or more conductive pads 80a in proximity to, adjacent to, or embedded in and exposed at the surface 802 of the carrier 80. The carrier 80 may include solder resists (or solder mask) (not illustrated in the figures) on the surface 802 of the carrier 80 to fully expose or to expose at least a portion of the conductive pads 80a for electrical connections.
The antenna module 81 may be disposed on the surface 801 of the carrier 80. The antenna module 81 may be one of the antenna module 1, the antenna module 1′, the antenna module 2, the antenna module 3, and the antenna module 4.
The electronic component 82 and the electronic component 83 may be disposed on the surface 802 of the carrier 80. The electronic components 82 and 83 may each be a chip or a die including a semiconductor substrate, one or more integrated circuit devices and one or more overlying interconnection structures therein. The integrated circuit devices may include active devices such as transistors and/or passive devices such as resistors, capacitors, inductors, or a combination thereof. In some embodiments, the electronic components 82 and 83 may each be a transmitter, a receiver, or a transceiver. In some embodiments, the electronic components 82 and 83 may each include an RF IC. In some embodiments, there may be any number of electronic components depending on design requirements. The electronic components 82 and 83 may each be electrically connected to one or more of other electrical components and to the carrier 80, and the electrical connections may be attained by way of flip-chip or wire-bond techniques.
The electronic components 82 and 83 may each be electrically connected to the antenna module 81. In some embodiments, the signal transmission path between each of the electronic components 82 and 83 and the antenna module 81 may be attained by a feeding line in the carrier 80. In some embodiments, the feeding line may include, but is not limited to, a metal pillar, a bonding wire or stacked vias. In some embodiments, the feeding line may include Au, Ag, Al, Cu, or an alloy thereof.
The electrical contact 84 is disposed on the surface 802 of the carrier 80 and can provide electrical connections between the semiconductor package device 8 and external components (e.g., external circuits or circuit boards). In some embodiments, the electrical contact 84 may include a connector. In some embodiments, the electrical contact 84 may include a solder ball, such as a controlled collapse chip connection (C4) bump, a ball grid array (BGA) or a land grid array (LGA).
Referring to
Referring to
Referring to
Referring to
Referring to
Referring to
Referring to
As used herein, the singular terms “a,” “an,” and “the” may include a plurality of referents unless the context clearly dictates otherwise.
As used herein, the terms “conductive,” “electrically conductive” and “electrical conductivity” refer to an ability to transport an electric current. Electrically conductive materials typically indicate those materials that exhibit little or no opposition to the flow of an electric current. One measure of electrical conductivity is Siemens per meter (S/m). Typically, an electrically conductive material is one having a conductivity greater than approximately 104 S/m, such as at least 105 S/m or at least 106 S/m. The electrical conductivity of a material can sometimes vary with temperature. Unless otherwise specified, the electrical conductivity of a material is measured at room temperature.
As used herein, the terms “approximately,” “substantially,” “substantial” and “about” are used to describe and account for small variations. When used in conjunction with an event or circumstance, the terms can refer to instances in which the event or circumstance occurs precisely as well as instances in which the event or circumstance occurs to a close approximation. For example, when used in conjunction with a numerical value, the terms can refer to a range of variation of less than or equal to ±10% of that numerical value, such as less than or equal to ±5%, less than or equal to ±4%, less than or equal to ±3%, less than or equal to ±2%, less than or equal to ±1%, less than or equal to ±0.5%, less than or equal to ±0.1%, or less than or equal to ±0.05%. For example, two numerical values can be deemed to be “substantially” the same or equal if a difference between the values is less than or equal to ±10% of an average of the values, such as less than or equal to ±5%, less than or equal to ±4%, less than or equal to ±3%, less than or equal to ±2%, less than or equal to ±1%, less than or equal to ±0.5%, less than or equal to ±0.1%, or less than or equal to ±0.05%. For example, “substantially” parallel can refer to a range of angular variation relative to 0° that is less than or equal to ±10°, such as less than or equal to ±5°, less than or equal to ±4°, less than or equal to ±3°, less than or equal to ±2°, less than or equal to ±1°, less than or equal to ±0.5°, less than or equal to ±0.1°, or less than or equal to ±0.05°. For example, “substantially” perpendicular can refer to a range of angular variation relative to 90° that is less than or equal to ±10°, such as less than or equal to ±5°, less than or equal to ±4°, less than or equal to ±3°, less than or equal to ±2°, less than or equal to ±1°, less than or equal to ±0.5°, less than or equal to ±0.1°, or less than or equal to ±0.05°.
Additionally, amounts, ratios, and other numerical values are sometimes presented herein in a range format. It is to be understood that such range format is used for convenience and brevity and should be understood flexibly to include numerical values explicitly specified as limits of a range, but also to include all individual numerical values or sub-ranges encompassed within that range as if each numerical value and sub-range is explicitly specified.
While the present disclosure has been described and illustrated with reference to specific embodiments thereof, these descriptions and illustrations do not limit the present disclosure. It should be understood by those skilled in the art that various changes may be made and equivalents may be substituted without departing from the true spirit and scope of the present disclosure as defined by the appended claims. The illustrations may not be necessarily drawn to scale. There may be distinctions between the artistic renditions in the present disclosure and the actual apparatus due to manufacturing processes and tolerances. There may be other embodiments of the present disclosure which are not specifically illustrated. The specification and drawings are to be regarded as illustrative rather than restrictive. Modifications may be made to adapt a particular situation, material, composition of matter, method, or process to the objective, spirit and scope of the present disclosure. All such modifications are intended to be within the scope of the claims appended hereto. While the methods disclosed herein have been described with reference to particular operations performed in a particular order, it will be understood that these operations may be combined, sub-divided, or re-ordered to form an equivalent method without departing from the teachings of the present disclosure. Accordingly, unless specifically indicated herein, the order and grouping of the operations are not limitations of the present disclosure.
Number | Name | Date | Kind |
---|---|---|---|
20200328530 | Park | Oct 2020 | A1 |
20220263225 | Jia | Aug 2022 | A1 |
Number | Date | Country | |
---|---|---|---|
20230037915 A1 | Feb 2023 | US |