Emitter package with angled or vertical LED

Abstract
The present invention is directed to LED packages and LED displays utilizing the LED packages, wherein the LED chips within the packages are arranged in unique orientations to provide the desired package or display FFP. One LED package according to the present invention comprises a reflective cup and an LED chip mounted in the reflective cup. The reflective cup has a first axis and a second axis orthogonal to the first axis, wherein the LED chip is rotated within the reflective cup so that the LED chip is out of alignment with said first axis. Some of the LED packages can comprise a rectangular LED chip having a chip longitudinal axis and an oval shaped reflective cup having a cup longitudinal axis. The LED chip is mounted within the reflective cup with the chip longitudinal axis angled from the cup longitudinal axis. LED displays according to the present invention comprise a plurality of LED packages, at least some of which have an LED chip mounted in a reflective cup at different angles to achieve the desired display FFP.
Description
BACKGROUND OF THE INVENTION

1. Field of the Invention


This invention relates to light emitting diode packages and displays utilizing light emitting diode packages as their light source.


2. Description of the Related Art


Light emitting diodes (LED or LEDs) are solid state devices that convert electric energy to light, and generally comprise one or more active layers of semiconductor material sandwiched between oppositely doped layers. When a bias is applied across the doped layers, holes and electrons are injected into the active layer where they recombine to generate light. Light is emitted from the active layer and from all surfaces of the LED.


Technological advances over the last decade or more has resulted in LEDs having a smaller footprint, increased emitting efficiency, and reduced cost. LEDs also have an increased operation lifetime compared to other emitters. For example, the operational lifetime of an LED can be over 50,000 hours, while the operational lifetime of incandescent bulb is approximately 2,000 hours. LEDs can also be more robust than other light sources and can consume less power. For these and other reasons, LEDs are becoming more popular and are now being used in more and more applications that have traditionally been the realm of incandescent, fluorescent, halogen and other emitters.


In order to use an LED chip in conventional applications it is known to enclose an LED chip in a package to provide environmental and/or mechanical protection, color selection, light focusing and the like. An LED package also includes electrical leads, contacts or traces for electrically connecting the LED package to an external circuit. In a typical two-pin LED package/component 10 illustrated in FIG. 1, a single LED chip 12 is mounted on a reflective cup 13 by means of a solder bond or conductive epoxy. One or more wire bonds 11 connect the ohmic contacts of the LED chip 12 to leads 15A and/or 15B, which may be attached to or integral with the reflective cup 13. The reflective cup 13 may be filled with an encapsulant material 16 and a wavelength conversion material, such as a phosphor, can be included over the LED chip or in the encapsulant. Light emitted by the LED at a first wavelength may be absorbed by the phosphor, which may responsively emit light at a second wavelength. The entire assembly can then be encapsulated in a clear protective resin 14, which may be molded in the shape of a lens to direct or shape the light emitted from the LED chip 12.



FIG. 2 shows a top view of a conventional LED package 20 similar to the package 10 shown in FIG. 1 and including an LED chip 22 mounted at the base of a reflective cup 24. Wire bonds 26a and 26b are included to connect to the ohmic contacts of the LED chip 22, and the reflective cup 24 is filed with an encapsulant material 28. In package 20, the reflective cup 24 is oval shaped and the LED chip 22 is rectangular shaped, with the LED chip 22 and reflective cup 24 being longitudinally aligned. That is, longer edges of the LED chip are aligned with the reflective cup axis running along the elongated direction of the reflective cup.


Different LEDs packages, such as those shown in FIGS. 1 and 2, can be used as the light source for displays, both big and small. Large screen LED based displays (often referred to as giant screens) are becoming more common in many indoor and outdoor locations, such as at sporting arenas, race tracks, concerts and in large public areas such as Times Square in New York City. With current technology, some of these displays or screens can be as large as 60 feet tall and 60 feet wide. As technology advances it is expected that larger screens will be developed.


These screens can comprise thousands of “pixels” or “pixel modules”, each of which can contain a plurality of LEDs. The pixel modules can use high efficiency and high brightness LEDs that allow the displays to be visible from relatively far away, even in the daytime when subject to sunlight. The pixel modules can have as few as three or four LEDs (one red, one green, and one blue) that allow the pixel to emit many different colors of light from combinations of red, green and/or blue light. In the largest jumbo screens, each pixel module can have dozens of LEDs. The pixel modules are arranged in a rectangular grid. In one type of display, the grid can be 640 modules wide and 480 modules high, with the size of the screen being dependent upon the actual size of the pixel modules.


Most conventional LED based displays are controlled by a computer system that accepts an incoming signal (e.g. TV signal) and based on the particular color needed at the pixel module to form the overall display image, the computer system determines which LED in each of the pixel modules is to emit light and how brightly. A power system can also be included that provides power to each of the pixel modules and the power to each of the LEDs can be modulated so that it emits at the desired brightness. Conductors are provided to apply the appropriate power signal to each of the LEDs in the pixel modules.


LED displays are rarely mounted at the viewer's eye level, and are more typically mounted at an elevation above eye level, such as on the side of a building or the top of the grandstands in a stadium. Referring now to FIG. 3, a conventional LED display 30 is shown mounted at an elevated point above the eye level of the viewer 32. The viewer 32 is typically positioned below the display 30 and looks up to the display such that the viewer's line of sight 34 to the display 30 is at an angle θ to the display's perpendicular emission direction 36. The LED display in FIG. 3 typically comprises a plurality of emitters 38 such as those shown in FIGS. 1 and 2 that exhibit a peak emission that is near the center of the horizontal and vertical axis.


Having a display comprising a plurality of LED packages 38 can result in display peak emission characteristics emitting in the perpendicular direction 36, as shown. The Iv and far field pattern (FFP) peak emission characteristics for the LED display 30 can be perpendicular to the display along the perpendicular axis 36. The viewer's line of sight 34 is below perpendicular when the display 30 is mounted at an elevated point; much of the light emitted by the display is not seen by the viewer and is wasted. This can be true for viewers below the display and the side of the display. One way to reduce the amount of light that is wasted is by mounting the display at an angle to better match the viewer's line of sight 34, but this can require complex and expensive mounting hardware that is difficult to use, particularly for very large displays mounted at high elevations.


Viewers are often not directly in front of an LED based display when it is viewed. Depending on where the viewer is located the horizontal viewing angle can be different. Furthermore, when a person is moving by an LED display, such as walking by, it is viewed at many different horizontal angles. Typical LED displays with peak emissions near the center can experience a drop-off in emission intensity at different horizontal angles. The far field pattern (FFP) for the different LED packages in each of the pixels can also be different such that the LED display can experience image quality variations when viewed from different angles.


Because of this, it can be important for the FFP emission characteristics of the red, green and blue LED packages used in LED displays pixels to be smooth, as wide as possible, and matched between the red, green, and blue colors. Standard geometry LED packages as shown in FIGS. 1 and 2 allow for the longest reflection surface of the reflector cup (wide viewing angle) to be parallel with the longest emission side of the chip (wide viewing angle). This geometry also allows the shortest reflection surface of the reflector cup (narrow emitting angle) to be parallel with the shortest emission side of the chip (narrow viewing angle). This geometry also minimizes bond wire length, which can help minimize the wire bond failure rate. The challenge with this arrangement is that it can require a near perfect match between the LED chip far-field pattern, the reflective cope and LED dome. Without this perfect match a large amount of diffuser can be necessary in the dome or encapsulant. Diffusers, however, can absorb light emitting from the packages, and thereby can reduce the emission brightness.


SUMMARY OF THE INVENTION

The present invention is directed to LED packages and LED displays utilizing the LED packages, wherein the LED chip or LED chips within the packages are arranged in unique orientations to provide the desired package or display FFP characteristics. One embodiment of an LED package according to the present invention comprises a reflective cup and an LED chip mounted in the reflective cup. The reflective cup has a first axis and a second axis that is orthogonal to the first axis, wherein the LED chip is rotated within the reflective cup so that the LED chip is out of alignment with the first axis.


Another embodiment of an LED package according to the present invention comprises a substrate and an LED chip mounted on the substrate. The substrate has a first longitudinal axis, and the LED chip is mounted on the substrate so that the LED chip is out of alignment with the first axis.


Another embodiment of an LED package according to the present invention comprises a rectangular LED chip having a chip longitudinal axis and an oval shaped reflective cup having a cup longitudinal axis. The LED chip is mounted within the reflective cup with the chip longitudinal axis angled from the cup longitudinal axis.


The LED packages according to the present invention can be arranged in LED displays to provide the desired display FFPs. These and other aspects and advantages of the invention will become apparent from the following detailed description and the accompanying drawings which illustrate by way of example the features of the invention.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a side view of a conventional light emitting diode package;



FIG. 2 is a top view of a conventional light emitting diode package;



FIG. 3 is a schematic showing a LED display and a typical viewing angle;



FIG. 4 is a top view of one embodiment of an LED package according to the present invention;



FIG. 5 is a graph showing the horizontal far-field pattern (FFP) for a conventional LED package;



FIG. 6 is a graph showing the vertical FFP for a conventional LED package;



FIG. 7 is a graph showing the horizontal FFP for one embodiment of an LED package according to the present invention;



FIG. 8 is a graph showing the vertical FFP for one embodiment of an LED package according to the present invention;



FIG. 9 is a graph showing the horizontal far-field pattern (FFP) for a conventional LED package;



FIG. 10 is a graph showing the vertical FFP for a conventional LED package;



FIG. 11 is a graph showing the horizontal FFP for one embodiment of an LED package according to the present invention;



FIG. 12 is a graph showing the vertical FFP for one embodiment of an LED package according to the present invention;



FIG. 13 is a side view of a reflector cup that can be used in LED packages according to the present invention;



FIG. 14 is a top view of the reflector cup shown in FIG. 13;



FIG. 15 is side view of the reflector cup shown in FIG. 13;



FIG. 16 is a side view of another reflector cup that can be used in LED packages according to the present invention;



FIG. 17 is a top view of the reflector cup shown in FIG. 16;



FIG. 18 is side view of the reflector cup shown in FIG. 16;



FIG. 19 is a graph showing the FFP for an LED display according to the present invention;



FIG. 20 is a graph showing the FFP for an LED display according to the present invention;



FIG. 21 is a top view of another embodiment of an LED package according to the present invention;



FIG. 22 is a perspective view of another embodiment of an LED package according to the present invention;



FIG. 23 is the top view of the LED package shown in FIG. 22;



FIG. 24 is a perspective view of another embodiment of an LED package according to the present invention;



FIG. 25 is top view of the LED package in FIG. 24;



FIG. 26 is a perspective view of still another embodiment of a LED package according to the present invention; and



FIG. 27 is a top view of the LED package in FIG. 26.





DETAILED DESCRIPTION OF THE INVENTION

The present invention is directed to LED packages and LED displays utilizing LED packages where the LED chips or chips within the packages can be angled or rotated in relation to the package (or other features as described below) to provide the desired emission characteristics. In some embodiments the desired characteristics can include wider horizontal and/or vertical FFP for the LED packages, while in other embodiments the desired characteristics can include placing of FFP asymmetries in the desired location in the FFP. These can provide improved picture intensity and quality when viewing the packages and/or displays at different viewing angles. Rotating the LED chip can also result in a smoother, more uniform FFP compared to LED packages with conventionally oriented LED chips. Rotating the chips also allow for a better match of the chip far-field emission with the reflector cup characteristics, to provide repeatable manufacturing of LED packages with similar desired emission characteristics. That is, an LED package can be provided with a more uniform FFP pattern, while at the same time allowing for more consistent package to package emission uniformity.


There are also a number of other advantages provided by the present invention. By rotating the LED chip in LED packages according to the present invention, the amount of diffuser necessary to optimize the FFP can also be reduced. This can result in an LED display having a more intense video screen oval because less LED light is absorbed by the diffuser. Rotating the LED chip and reducing the amount of diffuser can also provide an LED chip with a smooth viewing angle light emission pattern.


In one embodiment having an oval reflective cup and a rectangular LED chip as shown in FIG. 2, rotating the LED chip so that is vertical or orthogonal to the reflective cup's longitudinal axis allows the longest reflection surface of the reflective cup (wide viewing angle) to be parallel with the shorter emission side of the chip (narrow viewing angle). It also allows for the shortest reflection surface of the reflective cup (narrow viewing angle) to be parallel with the longer emission side of the chip (wide viewing angle). This can result in longer wire bonds, which can require closer fabrication focus to provide packages with good reliability. However, this package geometry can provide the advantage of relaxing the match criteria necessary for conventional LED packages between the LED chip far-field pattern, reflective cup and LED dome. It can also reduce the need for large amounts of diffusers. Some embodiments can comprise an oval shaped reflective cup and rectangular LED chip with the LED chip out of alignment with the longitudinal axis of the reflective cup.


Other embodiments of LED packages according to the present invention can have reflective cups that have different shapes, such as round, square, rectangular, or other polygon shapes. The LED chips used in different packages can have different shapes, such as square, circular, oval, rectangular or other polygon shapes. For example, in another embodiment according to the present invention, the reflective cup can be circular and the LED chips can be square, with the LED chip rotated and an angle to the axis of the reflective cup or the LED package. It is also understood that LED packages according to the present invention can be arranged without reflective cups with the LED chip mounted on a substrate or submount, and other LED packages can comprise LED chip arrays instead of a single LED chip.


The above embodiments can be described herein with reference to reflective cups with one axis that is longer than its orthogonal axis. The present invention however is equally applicable to embodiments having a package, substrate, submount or lens with one axis that is longer than its orthogonal axis. Stated differently, it is understood that the present invention is applicable to packages, substrates and submounts having a longer and a shorter orthogonal axis or a package having a lens, with the lens having a longer and shorter orthogonal axis. In these embodiments, the LED chip is rotated out of alignment with the longer axis or rotated such that it is out of alignment with both the longer and shorter axis.


The present invention is described herein with reference to certain embodiments, but it is understood that the invention can be embodied in many different forms and should not be construed as limited to the embodiments set forth herein. In particular many different LED, reflective cup and lead frame arrangements can be provided beyond those described above, and the encapsulant can provide further features to improve the reliability and emission characteristics from the LED packages and LED displays utilizing the LED packages. Although some of the embodiments are described herein with reference to a reflective cup, it is understood that the present invention is equally applicable to any embodiments having any type of reflective cavity, or no reflective cup. Although the different embodiments of LED packages discussed below are directed to use in LED displays, they can be used in many other applications either individually or with other LED packages having the same or different peak emission tilt.


It is also understood that when an element such as a layer, region or substrate is referred to as being “on” another element, it can be directly on the other element or intervening elements may also be present. Furthermore, relative terms such as “above” and “below”, and similar terms, may be used herein to describe a relationship of one layer or another region. It is understood that these terms are intended to encompass different orientations of the device in addition to the orientation depicted in the figures.


Although the terms first, second, etc. may be used herein to describe various elements, components, regions, layers and/or sections, these elements, components, regions, layers and/or sections should not be limited by these terms. These terms are only used to distinguish one element, component, region, layer or section from another region, layer or section. Thus, a first element, component, region, layer or section discussed below could be termed a second element, component, region, layer or section without departing from the teachings of the present invention.


Embodiments of the invention are described herein with reference to cross-sectional view illustrations that are schematic illustrations of embodiments of the invention. As such, the actual thickness of the layers can be different, and variations from the shapes of the illustrations as a result, for example, of manufacturing techniques and/or tolerances are expected. Embodiments of the invention should not be construed as limited to the particular shapes of the regions illustrated herein but are to include deviations in shapes that result, for example, from manufacturing. A region illustrated or described as square or rectangular will typically have rounded or curved features due to normal manufacturing tolerances. Thus, the regions illustrated in the figures are schematic in nature and their shapes are not intended to illustrate the precise shape of a region of a device and are not intended to limit the scope of the invention.



FIG. 4 shows one embodiment of LED package 50 according to the present invention that generally comprises a reflective cup 54, with an LED chip 56 mounted at the base of the reflective cup 54. In pin mounted embodiments, the LED package can comprise a two-pin lead frame (not shown but similar to those shown in FIG. 1) that can be made of conventional materials using known manufacturing methods. An electrical signal can be applied to the LED 56 through the two pins of the lead frame section, with wire bonds 58a, 58b providing an electrical path between the lead frame and the LED 56 to carry an electrical signal to the LED 56 that causes it to emit light.


Many different types of LEDs or LED chips (“LED chip” or “LED chips”) can be used in the package 50 and fabrication of conventional LED chips is generally known, and is only briefly discussed herein. LED chips can be fabricated using known processes with a suitable process being fabrication using metal organic chemical vapor deposition (MOCVD). The layers of the LED chips generally comprise an active layer/region sandwiched between first and second oppositely doped epitaxial layers all of which are formed successively on a growth substrate. LED chips can be formed on a wafer and then singulated for mounting in a package. It is understood that the growth substrate can remain as part of the final singulated LED chip or the growth substrate can be fully or partially removed.


It is also understood that additional layers and elements can also be included in LEDs 56, including but not limited to buffer, nucleation, contact and current spreading layers as well as light extraction layers and elements. The active region can comprise single quantum well (SQW), multiple quantum well (MQW), double heterostructure or super lattice structures. The active region and doped layers may be fabricated from different material systems, with preferred material systems being Group-III nitride based material systems. Group-III nitrides refer to those semiconductor compounds formed between nitrogen and the elements in the Group III of the periodic table, usually aluminum (Al), gallium (Ga), and indium (In). The term also refers to ternary and quaternary compounds such as aluminum gallium nitride (AlGaN) and aluminum indium gallium nitride (AlInGaN). In a preferred embodiment, the doped layers are gallium nitride (GaN) and the active region is InGaN. In alternative embodiments the doped layers may be AlGaN, aluminum gallium arsenide (AlGaAs) or aluminum gallium indium arsenide phosphide (AlGaInAsP).


The growth substrate can be made of many materials such as sapphire, silicon carbide, aluminum nitride (AlN), gallium nitride (GaN), with a suitable substrate being a 4H polytype of silicon carbide, although other silicon carbide polytypes can also be used including 3C, 6H and 15R polytypes. Silicon carbide has certain advantages, such as a closer crystal lattice match to Group III nitrides than sapphire and results in Group III nitride films of higher quality. Silicon carbide also has a very high thermal conductivity so that the total output power of Group-III nitride devices on silicon carbide is not limited by the thermal dissipation of the substrate (as may be the case with some devices formed on sapphire). SiC substrates are available from Cree Research, Inc., of Durham, N.C. and methods for producing them are set forth in the scientific literature as well as in a U.S. Pat. Nos. Re. 34,861; 4,946,547; and 5,200,022.


LED chips can also comprise a conductive current spreading structure and wire bond pads on the top surface, both of which are made of a conductive material that can be deposited using known methods. Some materials that can be used for these elements include Au, Cu, Ni, In, Al, Ag or combinations thereof and conducting oxides and transparent conducting oxides. The current spreading structure can comprise conductive fingers arranged in a grid on LEDs 56 with the fingers spaced to enhance current spreading from the pads into the LED chip's top surface. In operation, an electrical signal is applied to the pads through a wire bond as described below, and the electrical signal spreads through the fingers of the current spreading structure and the top surface into the LED chips. Current spreading structures are often used in LED chips where the top surface is p-type, but can also be used for n-type materials.


Some or all of the LED chips described herein can be coated with one or more phosphors with the phosphors absorbing at least some of the LED chip light and emitting a different wavelength of light such that the LED chip emits a combination of light from the LED chip and the phosphor. In one embodiment according to the present invention the white emitting LED chips have an LED chip that emits light in the blue wavelength spectrum and the phosphor absorbs some of the blue light and re-emits yellow. The LED chips emit a white light combination of blue and yellow light. In other embodiments, the LED chips emit a non-white light combination of blue and yellow light as described in U.S. Pat. No. 7,213,940. In some embodiments the phosphor comprises commercially available YAG:Ce, although a full range of broad yellow spectral emission is possible using conversion particles made of phosphors based on the (Gd,Y)3(Al,Ga)5O12:Ce system, such as the Y3Al5O12:Ce (YAG). Other yellow phosphors that can be used for white emitting LED chips include: Tb3−x,RExO12:Ce(TAG); RE=Y, Gd, La, Lu; or Sr2−x−yBaxCaySiO4:Eu.


The different LED chips can also comprise red, green and blue emitting LEDs can be made of structures and materials that permit emission of the desired light directly from the active region. For example, red light can emit directly from the active region in LEDs made of certain materials such as AlInGaP. Alternatively, in other embodiments the LED chips can be coated with the desired conversion material (e.g. phosphor) that provides the desired emission. For example, red emitting LED chips can comprise LED chips covered by a phosphor that absorbs the LED chip light and emits a red light. The LED chips can emit blue or UV light and some phosphors appropriate for these structures can comprise: Lu2O3:Eu3+; (Sr2−xLax)(Ce1−xEux) O4; Sr2−xEuxCeO4; SrTiO3:Pr3+,Ga3+; CaAlSiN3:Eu2+; and Sr2Si5N8:Eu2+.


The red, green and blue LED chips can be used in separate LED packages and used in LED display pixel as described above. Alternatively, the LED chips can be in packages having multiple of the red, green and blue LED chips. Some of these LED package embodiments can have all of the red, green and blue LED chips, each of which has its own intensity control to allow the package to emit many different color combinations of red, green and blue light.


Phosphor coated LED chips be coated using many different methods, with one suitable method being described in U.S. patent applications Ser. Nos. 11/656,759 and 11/899,790, both entitled “Wafer Level Phosphor Coating Method and Devices Fabricated Utilizing Method”, and both of which are incorporated herein by reference.


Alternatively the LEDs can be coated using other methods such as electrophoretic deposition (EPD), with a suitable EPD method described in U.S. patent application Ser. No. 11/473,089 entitled “Close Loop Electrophoretic Deposition of Semiconductor Devices”, which is also incorporated herein by reference. It is understood that LED packages according to the present invention can also have multiple LEDs of different colors, one or more of which may be white emitting.


In the embodiment shown, the reflective cup 54 is oval shaped. That is, when viewing the reflective cup 54 from above, it has a first or longitudinal axis 60 longer than the second axis 62 (i.e. its vertical axis). As discussed below, the reflective cups according to the present invention can have many different sizes and dimensions. In the embodiment shown, the LED chip 56 is rectangular shaped, and is not mounted in alignment with the first (longitudinal) axis 60 of the reflective cup 54, but is instead mounted in alignment with the second axis 62 of the reflective cup. In this arrangement, the longer sides 64 of the LED 56 are aligned with the shorter sides 66 of the reflective cup 54, and the shorter LED sides 68 are aligned with the longer sides 70 of the reflective cup 54.


This alignment can provide certain desirable LED package emission characteristics as discussed above and can relax the matching requirements of the LED package components as discussed above. That LED packages according to the present invention can be more tolerant to manufacturing variations that would, by comparison, result in a much greater negative impact on the FFP of conventional LED packages. Such manufacturing variations can include shape of the reflective cup and LED chip, placement of the LED chip in the reflective cup or placement of the wire bonds, and variation in the encapsulant.


Rotating the LED chip 56 in the reflective cup 54 as shown can also provide improved far field pattern emission characteristics compared to LED packages with horizontal oriented LED chips. FIGS. 5 and 6 show examples of the emission intensity characteristics for an LED package without lenses and having a conventionally oriented LED chip as shown in FIG. 2 above. FIG. 5 shows the horizontal far field pattern (FFP) 80 having a 50% emission intensity 82 at approximately 70 degrees horizontal radiation angle. FIG. 6 shows the vertical FFP 84 having a 50% emission intensity 86 at approximately 58 degrees vertical radiation pattern. By comparison, FIGS. 7 and 8 show examples of emission intensity characteristics for an LED package having a vertical oriented LED chip as shown in FIG. 4, and in the same reflective cup as the LED package providing the emission characteristics shown in FIGS. 5 and 6. FIG. 7 shows the horizontal FFP 88 having a 50% emission intensity 90 at approximately 76 degrees horizontal radiation angle. FIG. 8 shows the vertical FFP 92 having a 50% emission intensity 94 at approximately 65 degrees vertical emission intensity.


As illustrated by comparison of FIGS. 5 and 6 to FIGS. 7 and 8, the package with the vertical oriented LED chip has a wider viewing angle and 50% intensity in both horizontal and vertical radiation angles. The emission pattern also comprises fewer non-uniformities and has a smoother drop-off in radiation intensity through different emission angles. The differences can be attributed to different factors such as the longer emission surface of the LED chip emitting a greater integrated intensity in the horizontal direction. The increase in the vertical emission intensity can also be attributed to a number of factors, such as the edge of the LED chip being closer to the reflective surface in the vertical direction. It is noted that there can be other differences between the FFP emission for the rotated or vertical LED chip arrangement. One potential difference is that the peak emission intensity for the vertical chip LED packages can be narrower, but the radiation intensity drops off at less of an angle (more slowly at greater angles).



FIGS. 9 and 10 show examples of the emission intensity characteristics for a conventional LED package following tin soldering and encapsulation having a conventionally oriented LED chip as shown in FIG. 2 above. FIG. 9 shows the horizontal FFP 100 having a 50% emission intensity 102 at approximately 94 degrees horizontal radiation angle. FIG. 10 shows a vertical FFP 104 having a 50% emission intensity 106 at approximately 44 degrees vertical radiation pattern. These FFPs can be similar LEDs emitting different colors of light, with the FFPs 100 and 104 being for an LED package with a green emitting LED chip. For LED packages with a blue emitting LED chip in a similar reflective cup arrangement, the FFPs and 50% radiation emission intensities would be nearly the same at approximately 95 degrees horizontal and 43 degrees vertical.


By comparison, FIGS. 11 and 12 show examples of emission intensity characteristics for an LED package according to the present invention having a vertical oriented LED chip as shown in FIG. 4. The LED chip is arranged in the same or similar reflective cup as the LED package providing the emission characteristics shown in FIGS. 9 and 10. FIG. 11 shows the horizontal FFP 108 having a 50% emission intensity 110 at approximately 101 degrees horizontal radiation angle. FIG. 12 shows the vertical FFP 112 having a 50% emission intensity 114 at approximately 48 degrees vertical emission intensity. The emission pattern shown is for LED packages with green emitting LED chips. The emission patterns would be similar for LED packages having LED chips emitting other colors of light. For LED packages with blue emitting LED chip the FFP and 50% radiation emission intensities would be nearly the same at approximately 102 degrees horizontal and 48 degrees vertical.


By arranging different LED chips in different reflective cups, wider 50% viewing angle emission patterns can be achieved. In some embodiments of LED packages with red, green and blue emitting LED chips, the 50% horizontal emission intensity angle can be up to 120 degrees, while the 50% vertical emission intensity angle can be up to 70 degrees. In one embodiment of packages with green and blue LED chips, the 50% horizontal intensity angle is 115 degrees, and the 50% vertical angle is 65 degrees. In one embodiment of a package with a red LED chip the 50% horizontal intensity angle can be 108 degrees, and the 50% vertical intensity angle can 58 degrees. In different embodiment shown above, the increase in emission intensity angles can increase in the range of 0 to 5% compared to that of conventional LED packages having horizontal oriented LED chips. In other embodiments the increase can be in the range of 0 to 10%, while in other embodiments the increase can be in the range of 0 to 15%.


The present invention can be applicable to packages and LED chips having many different shapes and sizes. FIGS. 13 through 15 show one embodiment of an oval shaped reflective cup 120 that can be used in LED packages according to the present invention. Reflective cup 120 has a length and width of approximately 1.26 mm by 1.01 mm. The reflective cup 120 has a base 122 with a length of approximately 0.9 mm long and 0.65 mm wide, and an angled reflective surface 124 approximately 0.15 mm high with an approximate 100 degree opening. FIGS. 16 through 18 show another embodiment of a reflective cup 130 having a shape similar to reflective cup 120. Reflective cup 130 has a base 132 that is the same size of base 122 in reflective cup 120. The angled surface 134, however, has a height of approximately 0.25 mm and an approximate 80 degree opening. This results in a package the is 1.32 mm long and 1.07 mm wide. These are only two examples of the many different shapes and sizes of reflective cups that can be used in LED packages according to the present invention.


The LED packages can have LED chips with different shapes and sizes, with the rectangular shaped LED chips having a length greater that their width. In some embodiments, the length can be up to 1000 μm and the width can be up to 500 μm. In still other embodiments the length can be up to 500 μm and the width can be up to 300 μm. In one embodiment, the LED chip can have a length of approximately 480 μm and a width of approximately 260 μm.


The LED packages according to the present invention can be used to form LED displays with the LED displays having an improved far field pattern. The cumulative effect of multiple LEDs according to the present invention, with improved emission characteristics, along with the repeatable manufacturability of the LED packages, results in LED displays exhibiting the same improved emission.


LED displays can be provided according to the present invention with many different numbers of LED modules or pixels. In some embodiments the LED displays can have between 1 and 100,000 modules or pixels. In other embodiments the LED displays can have between 100,000 and 200,000 modules or pixels, while in other embodiments the LED displays can have between 200,000 and 300,000 modules or pixels. In still other embodiments, the LED displays can have more than 300,000 pixels or modules. The pixel or modules are arranged in a rectangular grid. For example, a grid can be 640 modules/pixels wide and 480 modules/pixels high, with the end size of the screen being dependent upon the actual size of the modules/pixels. The displays according to the present invention can be many different shapes and sizes with many of these displays being as large as 60 feet tall and 60 feet wide.



FIG. 19 shows emission intensity curve 140 for the horizontal FFP for one embodiment of an LED display utilizing LED packages according to the present invention. The screen exhibits substantially flat emission intensity characteristics through a range of up to 120 degrees of horizontal viewing angles. This provides improved viewing of the LED display at a greater range of angles, with the LED image having substantially the same intensity at the normal 0° viewing degree as at any viewing angle up to 60° on either side of normal. Accordingly, the image retains its quality at a larger range of angles compared to conventional LED based displays.



FIG. 20 shows a screen curve 150 for the vertical far field pattern for one embodiment of an LED display utilizing LED packages according to the present invention. The vertical pattern follows more of a Lambertian pattern than the LED packages described above and used in the display not having increased vertical emission angles. It is understood that in other embodiments, some or all of the LED packages can be arranged to have higher vertical viewing angles, with the vertical screen curve exhibiting a flat portion similar to that shown in FIG. 19.


The LED displays according to the present invention utilizing the LED packages according to the present invention can also exhibit improved emission intensity curve matching within a range of vertical viewing angles. To provide for more consistent image quality at these different viewing angles, the LED display according to the present invention provides for matching screen curves and far field patterns for the red, green and blue LEDs at these angles. Although the intensity of the light may be lower as the viewing angles increase, color quality of the picture is maintained by the emitters having the same emission curves.


The displays according to the present invention can also comprise different combinations of LED packages. That is, the LED packages in the different displays do not need to all have the same features to increase emission angles. The LED packages according to the present invention can also be used in many different lighting applications beyond LED displays, and in particular those using a small sized high output light sources requiring increased emission angles. Some of these include, but are not limited to, street lights, architectural lights, home and office lighting, display lighting and backlighting.


Beyond the increase in emission angles mentioned above, the present invention can also be utilized to compensate for certain undesirable emission characteristics. FFP non-uniformities or asymmetries can be caused by features of the LED package, such as the bond pad asymmetry, bond wire size and location, current spreading finger geometry, etc. An LED chip can also emit an asymmetric FFP. These FFP non-uniformities and asymmetries can be minimal and may be acceptable to the end user. In instances where these are not acceptable, rotation of the LED chip in a reflective cup can also allow for the control to place the imperfection in a most acceptable location in the FFP. End users many want the imperfections in the far-field to be placed in a certain position in the module or fixture to make them more or less apparent. In conventional LED packages, in order to achieve proper location of the far-field asymmetries the packages can comprise special optics, special solder boards, or attaching the package in a rotated orientation. The LED packages according to the present invention can also achieve this selective location of the far field asymmetries by rotating the LED chip in the reflective cup or package.


As mentioned above, the rectangular LED chip can also be rotated in reflective cups having different shapes other than oval shaped. The LED chips can take many different shapes beyond rectangular, and these differently shaped LEDs can be mounted in reflective cups having many different shapes. In all of these, rotation would result in the FFP asymmetries being in different locations.



FIG. 21 shows another embodiment of an LED package 200 according to the present invention that is a two pin type package similar to the embodiment shown in FIG. 4. It comprises an LED chip 202 mounted to the base of a reflective cup 204, with wire bonds 206a, 206b connected between the package pins and the LED chip for applying an electrical signal to the LED chip. In this embodiment, however, the LED chip 202 is square and the reflective cup 204 is circular. The reflective cup 204 comprising a first axis 210 that is generally aligned with package pins, and a second axis 212 that is orthogonal to the first axis 210. The LED chip 202 is mounted in the reflective cup 204 off alignment with the first and second axis 210, 212. That is, its lateral edges of the LED chip 202 are not aligned with the first or second axis 210, 212. Instead, the LED chip 202 is at an angle or rotated in relation to both the axis 210, 212. By angling or rotating the LED chip 202 in the reflective cup 204, the FFP asymmetries can be at a different location in the FFP compared to an package with the LED chip aligned with the axis.


It is understood that the LED chip 202 can be rotated at many different angles within the range of 0 to 90 degrees. In the embodiment shown, the LED chip 202 is rotated at an angle of approximately 45 degrees to the axis 210, 212.



FIGS. 22 and 23 show another embodiment of a surface mount LED package 220 according to the present invention comprising a substrate 222, a reflective cup 224 mounted to the substrate 222, and a square LED chip 226 (shown in FIG. 23) mounted to the substrate 222 within the reflective cup 224. As discussed above, the LED chip 226 can be many different shapes other than square. The LED package 220 further comprises a lens 227 over the reflective cup 224. The LED package 220 is arranged similar to LED packages available from Cree, Inc., in Durham, N.C. under the XLamp® XR-E and XLamp® XR-C model designators. The LED package 220 has a first axis 231 running between the package contacts 232a, 232b and a second axis 234 that is orthogonal to the first axis 231. Unlike the similar commercially available LED packages, the LED chip 226 is angled or rotated in the reflective cup so that its edges are not aligned with the first or second axis 231, 234. This can be done to change the location of the FFP asymmetries as discussed above. Like the LED package 200, the LED chip 226 can be arranged at many different angles to the axis 231, 234 in the range of 0 to 90 degrees. In the embodiment shown, the LED chip can be arranged with its edges at an 45 degree angle to the axis 231, 234.



FIGS. 24 and 25 show another embodiment of an LED package 240 according to the present invention comprising a substrate 242 with an LED chip 244 mounted to the substrate 242. A lens 246 can be molded on the substrate 242 in a hemispheric shape over the LED chip 244. The LED package 240 is arranged similar to LED packages available from Cree, Inc., in Durham, N.C. under the XLamp® XP-E and XLamp® XP-G model designators. The LED package 240 comprises a first axis 248 running between the package contacts 250a, 250b, and a second axis 252 orthogonal to the first axis 248. Like the packages above, the LED chip is angled or rotated with its edges out of alignment with the first and second axis 248, 252. The range or rotation can be 0 to 90 degrees, with the embodiment shown having an LED chip rotated approximately 45 degrees.


The LED package embodiments discussed above have a single LED chip mounted in reflective cup or mounted to a substrate. It is understood that other LED package embodiments can have more than one LED chip mounted within a reflective cup or on a substrate. All or some of the multiple LED chips in these embodiments can be rotated, and in other embodiment each of the LED chips can have the same angle of rotation or some can have different angles of rotation. The particular angle for each LED chip can be dictated by a number of factors, with one being the particular FFP asymmetries for the particular chip and the desired location for the FFP patter asymmetry.



FIGS. 26 and 27 show one embodiment of a multiple chip LED package 260 according to the present invention comprising a substrate 262 and a 4-chip LED array 264 (shown in FIG. 27) mounted to the substrate 262. A lens 266 is formed on the substrate 262 over the LED array 264. The LED package 260 is arranged similar to LED packages available from Cree, Inc., in Durham, N.C. under the XLamp® MC-E model designator. The LED package 260 comprises a first axis 268 running between the first contacts 270a on one side of the substrate 262 and the second contacts 270b on the opposite side. The package 260 also comprises a second axis 272 orthogonal to the first axis 268. In this embodiment, the LED array 264 comprises square LED chips arranged in a square array, but it is understood that the LED chips can have many different shapes and the array can also have many different shapes. The LED array 264 is angled or rotated on the substrate 262 so that the edges of the array is not aligned with either axis 268, 270. Like the rotated LED chips above, the LED array 264 can be rotated at any angle to the axis in the range of 0-90 degrees, with the array shown having an angle of approximately 45 degrees to the axis.


Although the present invention has been described in detail with reference to certain preferred configurations thereof, other versions are possible. Therefore, the spirit and scope of the invention should not be limited to the versions described above.

Claims
  • 1. A light emitting diode (LED) package, comprising: a reflective cup and an LED chip mounted in said reflective cup, wherein said reflective cup has a first axis and a second axis orthogonal to said first axis, wherein said LED chip is rotated within said reflective cup so that said LED chip is out of alignment with said first axis; anda substrate with said LED chip and said reflective cup mounted on said substrate;wherein said LED chip has a chip long axis, said chip long axis normal to said first axis.
  • 2. The LED package of claim 1, wherein said LED chip is out of alignment with said second axis.
  • 3. The LED package of claim 1, wherein said LED chip has edges, wherein said edges are out of alignment with said first and second axis.
  • 4. The LED package of claim 1, wherein said LED chip is aligned with said second axis.
  • 5. The LED package of claim 1, wherein said reflective cup is oval shaped.
  • 6. The LED package of claim 5, wherein said LED chip is rectangular shaped.
  • 7. The LED package of claim 5, wherein said first axis is said oval shaped reflector cup's longitudinal axis, said LED chip aligned with said second axis.
  • 8. The LED package of claim 1, wherein said reflective cup is circular.
  • 9. The LED package of claim 1, wherein said LED chip is out of alignment with said first axis at an angle between 0 and 90 degrees.
  • 10. The LED package of claim 1, wherein said LED chip is out of alignment with said first axis at an angle of approximately 45 degrees.
  • 11. The LED package of claim 1, wherein said LED chip is part of an array of LED chips.
  • 12. The LED package of claim 1, emitting a far-field pattern having a 50% emission intensity angle that is wider than the same LED package wherein said LED chip is aligned with said first axis.
  • 13. The LED package of claim 1, further comprising a lens over said LED chip.
  • 14. An light emitting diode (LED) package, comprising: a substrate and an LED chip mounted on said substrate, wherein said substrate has a first longitudinal axis, and wherein said LED chip is mounted on said substrate so that said LED chip is out of alignment with said first axis,further comprising a reflective cup on said substrate,wherein said LED package emits a far-field pattern having a 50% emission intensity angle that is wider than when said LED chip is aligned with said first axis.
  • 15. The LED package of claim 14, further comprising a lens over said LED chip.
  • 16. The LED package of claim 15, wherein said first axis runs between the contacts on said substrate.
  • 17. The LED package of claim 14, further comprising a second axis that is orthogonal to said first axis wherein said LED chip is out of alignment with said second axis.
  • 18. The LED package of claim 17, wherein said LED chip is aligned with said second axis.
  • 19. The LED package of claim 17, wherein said LED chip is out of alignment with said first axis at an angle between 0 and 90 degrees.
  • 20. The LED package of claim 17, wherein said LED chip is out of alignment with said first axis at an angle of approximately 45 degrees.
  • 21. The LED package of claim 17, wherein said LED chip is part of an array of LED chips.
  • 22. An light emitting diode (LED) package, comprising: a rectangular LED chip having a chip longitudinal axis;an oval shaped reflective cup having a cup longitudinal axis, said LED chip mounted within said reflective cup with said chip longitudinal axis normal to said cup longitudinal axis; anda substrate with said LED chip and said reflective cup mounted on said substrate.
  • 23. The LED package of claim 22, wherein said chip longitudinal axis is orthogonal to said cup longitudinal axis.
  • 24. The LED package of claim 22, wherein said LED chip is part of an array of LED chips.
  • 25. The LED package of claim 22, emitting a far-field pattern having a 50% emission intensity angle that is wider than the same LED package wherein said chip longitudinal axis is aligned with said cup longitudinal axis.
  • 26. The LED package of claim 22, further comprising a lens over said LED chip.
  • 27. A light emitting diode (LED) display, comprising: a plurality of LED packages, at least some of which have an LED chip mounted in a reflective cup, said package having a first axis that is orthogonal to a second axis, said LED chip mounted out of alignment with said first axis; anda substrate with said LED chip and said reflective cup mounted on said substrate;wherein each LED package emits a far-field pattern having a 50% emission intensity angle that is wider than when said LED chip is aligned with said first axis.
  • 28. The display of claim 27, wherein said LED chip is out of alignment with said second axis.
  • 29. The display of claim 27, wherein said LED chip has edges, wherein said edges are out of alignment with said first and second axis.
  • 30. The display of claim 27, wherein said LED chip is aligned with said second axis.
  • 31. The display of claim 27, wherein each said reflective cup is oval shaped.
  • 32. The display of claim 31, wherein each said LED chip is rectangular shaped.
  • 33. The display of claim 31, wherein said first axis is said oval shaped reflector cup's longitudinal axis, said LED chip aligned with said second axis.
  • 34. The display of claim 27, wherein said reflective cup is circular.
  • 35. The display of claim 27, wherein each said LED chip is out of alignment with said first axis at an angle between 0 and 90 degrees.
  • 36. The display of claim 27, wherein each said LED chip is out of alignment with said first axis at an angle of approximately 45 degrees.
  • 37. The display of claim 27, wherein each said each said LED chip is part of an array of LED chips.
  • 38. An emitter, comprising; an LED chip mounted within a package, wherein said LED chip has a chip tong axis and said package has a package long axis, wherein the said chip long axis is oriented differently than said package long axis;wherein said LED chip emits a far-field pattern having a 50% emission intensity angle that is wider than when said chip long axis is aligned with said package long axis.
  • 39. A light emitting diode (LED) package, comprising: an LED chip on a submount or a reflective cup; anda lens over said LED chip, wherein said lens has a first axis and a second axis orthogonal to said first axis, wherein said LED chip is on said submount or reflective with said LED chip out of alignment with said first axis;wherein said LED package emits a far-field pattern having a 50% emission intensity angle that is wider than when said LED chip is aligned with said first axis.
  • 40. The LED package of claim 39, wherein said LED chip is also out of alignment with said second axis.
Parent Case Info

This application is a continuation in part of U.S. patent application Ser. No. 12/635,818, (now Pat. No. 8,362,512), filed on Dec. 11, 2009, entitled “Side View Surface Mount White LED”, which is a continuation of U.S. patent application Ser. No. 11/739,307, filed on Apr. 24, 2007 (now Pat. No. 7,649,209), also entitled “Side View Surface Mount White LED”, which claims the benefit of U.S. Provisional Application No. 60/745,478, filed on Apr. 24, 2006.

US Referenced Citations (190)
Number Name Date Kind
3760237 Jaffe Sep 1973 A
4307297 Groff Dec 1981 A
4322735 Sadamasa et al. Mar 1982 A
4511425 Boyd Apr 1985 A
4946547 Palmour et al. Aug 1990 A
5040868 Waitl Aug 1991 A
5042048 Meyer Aug 1991 A
5122943 Pugh Jun 1992 A
5130761 Tanaka Jul 1992 A
5167556 Stein Dec 1992 A
5200022 Kong et al. Apr 1993 A
5351106 Lesko et al. Sep 1994 A
RE34861 Davis et al. Feb 1995 E
5703401 Van De Water Dec 1997 A
5706177 Nather Jan 1998 A
5790298 Tonar Aug 1998 A
5813753 Vriens et al. Sep 1998 A
5907151 Gramann May 1999 A
5942770 Ishinaga et al. Aug 1999 A
5959316 Lowery Sep 1999 A
6061160 Maruyama May 2000 A
6066861 Hohn et al. May 2000 A
6183100 Suckow et al. Feb 2001 B1
6224216 Parker et al. May 2001 B1
6259608 Berardinelli et al. Jul 2001 B1
6274924 Carey et al. Aug 2001 B1
6296367 Parsons et al. Oct 2001 B1
6359236 DiStefano et al. Mar 2002 B1
6376902 Arndt Apr 2002 B1
6447124 Fletcher et al. Sep 2002 B1
6454437 Kelly Sep 2002 B1
6469321 Arndt Oct 2002 B2
6480389 Shie et al. Nov 2002 B1
6517218 Hochstein Feb 2003 B2
6536913 Yajima et al. Mar 2003 B1
6573580 Arndt Jun 2003 B2
6610563 Waitl Aug 2003 B1
6614058 Lin et al. Sep 2003 B2
6621210 Kato et al. Sep 2003 B2
6624491 Waitl et al. Sep 2003 B2
6680490 Yasukawa et al. Jan 2004 B2
6686609 Sung Feb 2004 B1
6700136 Guida Mar 2004 B2
6707069 Song et al. Mar 2004 B2
6710373 Wang Mar 2004 B2
6717353 Mueller et al. Apr 2004 B1
6759733 Arndt Jul 2004 B2
6765235 Taninaka et al. Jul 2004 B2
6770498 Hsu Aug 2004 B2
6774401 Nakada et al. Aug 2004 B2
6791259 Stokes Sep 2004 B1
6858879 Waitl Feb 2005 B2
6872585 Matsumura et al. Mar 2005 B2
6876149 Miyashita Apr 2005 B2
6900511 Ruhnau et al. May 2005 B2
6911678 Fujisawa et al. Jun 2005 B2
6914268 Shei Jul 2005 B2
6919586 Fujii Jul 2005 B2
6940704 Stalions Sep 2005 B2
6946714 Waitl Sep 2005 B2
6964877 Chen et al. Nov 2005 B2
6975011 Arndt Dec 2005 B2
6995510 Murakami et al. Feb 2006 B2
D517025 Asakawa Mar 2006 S
7009627 Abe et al. Mar 2006 B2
7021797 Minano et al. Apr 2006 B2
7064907 Kaneko Jun 2006 B2
7066626 Omata Jun 2006 B2
7102213 Sorg Sep 2006 B2
7119422 Chin Oct 2006 B2
7161189 Wu Jan 2007 B2
7187009 Fukasawa et al. Mar 2007 B2
7213940 Van De Ven et al. May 2007 B1
7224000 Aanegola et al. May 2007 B2
7244965 Andrews et al. Jul 2007 B2
7282740 Chikugawa et al. Oct 2007 B2
7285802 Ouderkirk et al. Oct 2007 B2
7303315 Ouderkirk et al. Dec 2007 B2
D572210 Lee Jul 2008 S
D572670 Ono et al. Jul 2008 S
D576574 Kobayakawa Sep 2008 S
7429757 Oyama et al. Sep 2008 B2
D591697 Andrews et al. May 2009 S
D593224 Hanley May 2009 S
D598579 Hanley Aug 2009 S
7579628 Inoguchi Aug 2009 B2
7622795 Chiang Nov 2009 B2
7635915 Xie et al. Dec 2009 B2
7692206 Loh Apr 2010 B2
7777412 Pang Aug 2010 B2
7800124 Urano et al. Sep 2010 B2
7875899 Yasuda Jan 2011 B2
8217414 Hayashi Jul 2012 B2
20020021085 Ng Feb 2002 A1
20020030194 Camras et al. Mar 2002 A1
20020061174 Hurt et al. May 2002 A1
20020066905 Wang Jun 2002 A1
20020123163 Fujii Sep 2002 A1
20020163001 Shaddock Nov 2002 A1
20020171911 Maegawa Nov 2002 A1
20020195935 Jager Dec 2002 A1
20030116769 Song et al. Jun 2003 A1
20030160256 Durocher et al. Aug 2003 A1
20030183852 Takenaka Oct 2003 A1
20040016938 Baretz et al. Jan 2004 A1
20040037076 Katoh et al. Feb 2004 A1
20040041222 Loh Mar 2004 A1
20040047151 Bogner et al. Mar 2004 A1
20040079957 Andrews et al. Apr 2004 A1
20040080939 Braddell et al. Apr 2004 A1
20040126913 Loh Jul 2004 A1
20040217364 Tarsa Nov 2004 A1
20040227149 Ibbetson Nov 2004 A1
20040232435 Hofer Nov 2004 A1
20040238930 Arndt Dec 2004 A1
20040256706 Nakashima Dec 2004 A1
20050023548 Bhat Feb 2005 A1
20050072981 Suenaga Apr 2005 A1
20050077535 Li Apr 2005 A1
20050093005 Ruhnau May 2005 A1
20050110033 Heremans et al. May 2005 A1
20050117320 Leu et al. Jun 2005 A1
20050127377 Arndt Jun 2005 A1
20050135105 Teixeira et al. Jun 2005 A1
20050152127 Kamiya et al. Jul 2005 A1
20050156187 Isokawa et al. Jul 2005 A1
20050179041 Harbers et al. Aug 2005 A1
20050179376 Fung et al. Aug 2005 A1
20050199899 Lin et al. Sep 2005 A1
20050231983 Dahm Oct 2005 A1
20050253130 Tsutsumi et al. Nov 2005 A1
20060022212 Waitl Feb 2006 A1
20060049477 Arndt Mar 2006 A1
20060060867 Suehiro Mar 2006 A1
20060091406 Kaneko et al. May 2006 A1
20060102917 Oyama et al. May 2006 A1
20060108594 Iwasaki et al. May 2006 A1
20060131591 Sumitani Jun 2006 A1
20060133044 Kim et al. Jun 2006 A1
20060151809 Isokawa Jul 2006 A1
20060157828 Sorg Jul 2006 A1
20060220046 Yu et al. Oct 2006 A1
20060267042 Izuno et al. Nov 2006 A1
20060278882 Leung et al. Dec 2006 A1
20060291185 Atsushi Dec 2006 A1
20070046176 Bukesov et al. Mar 2007 A1
20070096139 Schultz May 2007 A1
20070109779 Sekiguchi May 2007 A1
20070145401 Ikehara Jun 2007 A1
20070170449 Anandian Jul 2007 A1
20070241357 Yan Oct 2007 A1
20070262328 Bando Nov 2007 A1
20070262339 Hussell et al. Nov 2007 A1
20070269586 Leatherdale Nov 2007 A1
20070295975 Omae Dec 2007 A1
20080013319 Pei et al. Jan 2008 A1
20080026498 Tarsa et al. Jan 2008 A1
20080074032 Yano et al. Mar 2008 A1
20080093606 Pan et al. Apr 2008 A1
20080121921 Loh et al. May 2008 A1
20080149960 Amo et al. Jun 2008 A1
20080170391 Norfidathul et al. Jul 2008 A1
20080186702 Camras et al. Aug 2008 A1
20080191232 Lee et al. Aug 2008 A1
20080198594 Lee Aug 2008 A1
20080230790 Seko et al. Sep 2008 A1
20080258156 Hata Oct 2008 A1
20080296590 Ng Dec 2008 A1
20080303052 Lee et al. Dec 2008 A1
20080308825 Chakraborty Dec 2008 A1
20090050908 Yuan et al. Feb 2009 A1
20090050911 Chakraborty Feb 2009 A1
20090057699 Basin Mar 2009 A1
20090057708 Abdul Karim et al. Mar 2009 A1
20090072251 Chan et al. Mar 2009 A1
20090095966 Keller et al. Apr 2009 A1
20090129085 Aizar et al. May 2009 A1
20090189178 Kim et al. Jul 2009 A1
20090283781 Chan et al. Nov 2009 A1
20100044735 Oyamada Feb 2010 A1
20100103660 Van de Ven et al. Apr 2010 A1
20100193822 Inobe et al. Aug 2010 A1
20110049545 Basin et al. Mar 2011 A1
20110108874 Chu et al. May 2011 A1
20110121345 Andrews et al. May 2011 A1
20110186880 Kohler et al. Aug 2011 A1
20110193118 Oshima et al. Aug 2011 A1
20110278617 Lee Nov 2011 A1
20120235199 Andrews et al. Sep 2012 A1
20120257386 Harbers et al. Oct 2012 A1
Foreign Referenced Citations (132)
Number Date Country
1274906 Nov 2000 CN
2498694 Jul 2002 CN
2617039 May 2004 CN
2646873 Oct 2004 CN
1581527 Feb 2005 CN
1591924 Mar 2005 CN
1679168 Oct 2005 CN
1720608 Jan 2006 CN
1744335 Mar 2006 CN
1801498 Jul 2006 CN
1874011 Dec 2006 CN
1913135 Feb 2007 CN
1977399 Jun 2007 CN
101005109 Jul 2007 CN
101013689 Aug 2007 CN
101061590 Oct 2007 CN
101360368 Feb 2009 CN
202007012162 Apr 2008 DE
1005085 May 2000 EP
1187226 Mar 2002 EP
1187227 Mar 2002 EP
1187228 Mar 2002 EP
1 418 630 May 2004 EP
1521313 Apr 2005 EP
1 538 680 Jun 2005 EP
1653254 May 2006 EP
1864780 Dec 2007 EP
1 953 834 Aug 2008 EP
2420221 Dec 2004 GB
2420221 May 2006 GB
2 458 972 Oct 2009 GB
2466633 Jul 2010 GB
53-118019 Oct 1978 JP
S53118019 Oct 1978 JP
S53126570 Oct 1978 JP
59-27559 Feb 1984 JP
59027559 Feb 1984 JP
61-48951 Mar 1986 JP
6148951 Mar 1986 JP
61048951 Mar 1986 JP
S62160564 Mar 1986 JP
62047156 Feb 1987 JP
62140758 Sep 1987 JP
11054802 Feb 1990 JP
038459 Jan 1991 JP
03-171780 Jul 1991 JP
06-177424 Jun 1994 JP
7-202271 Aug 1995 JP
07202271 Aug 1995 JP
08032120 Feb 1996 JP
61048951 Mar 1996 JP
8139257 May 1996 JP
10321909 Dec 1998 JP
11008405 Jan 1999 JP
11-054802 Feb 1999 JP
11150306 Jun 1999 JP
11167805 Jun 1999 JP
11261113 Sep 1999 JP
2000-188358 Jul 2000 JP
2000-223751 Aug 2000 JP
2000223752 Aug 2000 JP
2000261041 Sep 2000 JP
2001044506 Feb 2001 JP
200160072 Mar 2001 JP
2001-168400 Jun 2001 JP
2001237463 Aug 2001 JP
2001518692 Oct 2001 JP
2002009217 Jan 2002 JP
2002-223005 Aug 2002 JP
2002374005 Dec 2002 JP
2003-197974 Jul 2003 JP
2003-264267 Sep 2003 JP
2003318449 Nov 2003 JP
2003324214 Nov 2003 JP
2004022862 Jan 2004 JP
2004056075 Feb 2004 JP
2004103775 Feb 2004 JP
2004507114 Mar 2004 JP
2004-111937 Apr 2004 JP
2004146815 May 2004 JP
2004-200236 Jul 2004 JP
2004228387 Aug 2004 JP
2004335740 Nov 2004 JP
2004335880 Nov 2004 JP
2005-19838 Jan 2005 JP
2005019838 Jan 2005 JP
2005-079167 Mar 2005 JP
2005150624 Jun 2005 JP
2005-310935 Nov 2005 JP
2005347401 Dec 2005 JP
2005539386 Dec 2005 JP
2006019557 Jan 2006 JP
2006508537 Mar 2006 JP
2006509372 Mar 2006 JP
2006108517 Apr 2006 JP
2006-119357 May 2006 JP
2006-324331 Nov 2006 JP
2006344692 Dec 2006 JP
2007-094088 Apr 2007 JP
2007509505 Apr 2007 JP
2007-165029 Jun 2007 JP
2007165840 Jun 2007 JP
2007184542 Jul 2007 JP
2007243226 Sep 2007 JP
2007-273763 Oct 2007 JP
2007-287981 Nov 2007 JP
2007-299905 Nov 2007 JP
2007317896 Dec 2007 JP
2007329516 Dec 2007 JP
2008521236 Jun 2008 JP
WO9931737 Jun 1999 WO
WO0217405 Feb 2002 WO
WO03049204 Jun 2003 WO
2004003660 Apr 2004 WO
WO2004027882 Apr 2004 WO
WO2004044877 May 2004 WO
WO 2004053933 Jun 2004 WO
WO2005043627 May 2005 WO
WO2005104247 Nov 2005 WO
WO2006016398 Feb 2006 WO
WO2006054228 May 2006 WO
WO2006054228 Jun 2006 WO
2006135502 Dec 2006 WO
WO 2007083408 Jul 2007 WO
2007121486 Oct 2007 WO
WO2007127029 Nov 2007 WO
WO2007122516 Nov 2007 WO
WO2008081794 Jul 2008 WO
WO2008082098 Jul 2008 WO
WO 2009074919 Jun 2009 WO
WO2010005294 Jan 2010 WO
2012099145 Jul 2012 WO
Non-Patent Literature Citations (240)
Entry
Office Action in related U.S. Appl. No. 12/002,410, dated: Apr. 26, 2011.
Office Action in related U.S. Appl. No. 12/002,410, dated: May 25, 2010.
Office Action in related U.S. Appl. No. 12/002,410, dated: Dec. 13, 2010.
Office Action in related U.S. Appl. No. 11/149,998, dated: May 11, 2011.
Office Action in related U.S. Appl. No. 11/149,998, dated: Aug. 27, 2010.
Office Action in related U.S. Appl. No. 11/149,998, dated: Jan. 24, 2011.
Office Action in related U.S. Appl. No. 11/149,998, dated: Nov. 20, 2009.
Response to OA in related U.S. Appl. No. 11/149,998, dated: Nov. 20, 2009, Response filed: Feb. 22, 2010.
Office Action in related U.S. Appl. No. 11/149,998, dated: May 18, 2010.
Office Action in related U.S. Appl. No. 12/291,293, dated: May 27, 2010.
Office Action in related U.S. Appl. No. 12/291,293, dated: Sep. 3, 2010.
Office Action in related U.S. Appl. No. 12/291,293, dated: Mar. 1, 2011.
Office Action in related U.S. Appl. No. 11/496,922, dated: Jun. 10, 2010.
Office Action in related U.S. Appl. No. 11/496,922, dated: Dec. 15, 2010.
Office Action in related U.S. Appl. No. 12/152,766, dated: Oct. 7, 2010.
Office Action in related U.S. Appl. No. 12/152,766, dated: Apr. 1, 2011.
Office Action in related U.S. Appl. No. 12/152,766, dated: Mar. 12, 2010.
Office Action in related U.S. Appl. No. 11/465,120, dated: Sep. 8, 2010.
Office Action in related U.S. Appl. No. 11/465,120, dated: Dec. 13, 2010.
Office Action in related U.S. Appl. No. 11/465,120, dated: Mar. 9, 2010.
Office Action in related U.S. Appl. No. 12/635,818, dated: Oct. 14, 2010.
Office Action in related U.S. Appl. No. 12/695,978, dated: Dec. 20, 2010.
Office Action in related U.S. Appl. No. 12/695,978, dated: May 10, 2011.
Office Action in related U.S. Appl. No. 12/069,827, dated: Oct. 29, 2010.
Office Action in related U.S. Appl. No. 12/069,827, dated: Apr. 20, 2010.
Office Action in related U.S. Appl. No. 12/069,827, dated: Jan. 27, 2011.
Office Action in related U.S. Appl. No. 12/154,691, dated: Dec. 17, 2009.
Response to OA in related U.S. Appl. No. 12/154,691, dated: Dec. 17, 2009, Response filed: May 17, 2010.
Office Action in related U.S. Appl. No. 12/321,059, dated: May 17, 2010.
Notice of Reasons for Rejection from Japanese Patent Application No. 2009-507195, dated May 8, 2012.
First Office Action for Chinese Patent Application No. 200980153995.2 , dated May 4, 2012.
First Office Action for Chinese Patent Application No. 200910145412.3, dated Apr. 28, 2012.
Appeal Decision in Japanese Design Patent Application No. 2009-002857 (Appeal No. 2010-002154) mailed Aug. 20, 2010.
Office Action from U.S. Appl. No. 12/291,293, dated: Jul. 19, 2011.
Response to Office Action from U.S. Appl. No. 12/291,293, OA dated: Jul. 19, 2011, Resp. dated: Oct. 19, 2011.
Office Action from U.S. Appl. No. 11/465,120, dated: Jun. 14, 2011.
Office Action from U.S. Appl. No. 12/069,827, dated: Jun. 16, 2011.
Response to Office Action from U.S. Appl. No. 12/069,827, OA dated: Jul. 16, 2011, Resp. dated: Aug. 3, 2011.
Office Action from U.S. Appl. No. 12/321,059, dated: Jun. 22, 2011.
Response to Office Action from U.S. Appl. No. 12/321,059, OA dated: Jun. 22, 2011, Resp. dated: Aug. 22, 2011.
Office Action from U.S. Appl. No. 12/321,059, dated: Aug. 26, 2011.
Response to Office Action from U.S. Appl. No. 12/321,059, OA dated: Jun. 22, 2011, Resp. dated: Sep. 20, 2011.
Office Action from U.S. Appl. No. 11/496,922, dated: Jul. 5, 2011.
Office Action from U.S. Appl. No. 12/695,978, dated: Sep. 14, 2011.
Office Action from U.S. Appl. No. 11/149,998, dated: Sep. 21, 2011.
Office Action from U.S. Appl. No. 12/321,059, dated: Oct. 4, 2011.
Office Action from U.S. Appl. No. 12/069,827, dated: Oct. 26, 2011.
Notification of First Office Action in application CN 200880009255.7 mailed Sep. 26, 2010.
International Search Report and Written Opinion from PCT/CN2010/001009 mailed Oct. 21, 2010.
International Search Report and Written Opinion from PCT/US2010/001852 mailed Nov. 11, 2010.
Decision of Rejection for Japanese Patent Application No. 2007-211901, dated: Jan. 30, 2012.
Notification of the First Office Action from Chinese Patent Application No. 201010167346.2. dated Feb. 29, 2012.
First Office Action for Chinese Patent Application No. 201110039138.9, dated Jun. 4, 2012.
Decision of Rejection from Japanese Patent Application No. 2008-515699, dated Jul. 17, 2012.
Office Action from U.S. Appl. No. 11/465,120, mailed Dec. 9, 2011.
Office Action from U.S. Appl. No. 12/002,410, mailed Mar. 28, 2012.
Office Action from U.S. Appl. No. 12/002,410, mailed Dec. 21, 2011.
Response to Office Action for U.S. Appl. No. 12/002,410, filed Mar. 8, 2012.
Office Action from U.S. Appl. No. 12/757,179, mailed Jan. 19, 2012.
Office Action from U.S. Appl. No. 11/496,922, mailed Feb. 9, 2012.
Response to Office Action for U.S. Appl. No. 11/496,922, filed Apr. 6, 2012.
Advisory Action for U.S. Appl. No. 11/496,922, mailed Apr. 18, 2012.
Office Action from U.S. Appl. No. 12/321,059, mailed Feb. 10, 2012.
Response to Office Action for U.S. Appl. No. 12/321,059, filed Apr. 9, 2012.
Advisory Action from U.S. Appl. No. 12/321,059, mailed Apr. 20, 2012.
Office Action from U.S. Appl. No. 12/695,978, mailed Mar. 14, 2012.
Office Action from U.S. Appl. No. 11/982,275, mailed Mar. 23, 2012.
Office Action from U.S. Appl. No. 12/614,989, mailed Mar. 12, 2012.
Office Action from U.S. Appl. No. 12/069,827, mailed Apr. 3, 2012.
Notice of Reasons for Rejection for Japanese Patent Application No. JP 2008-515699 dated May 19, 2011.
Notice of Reasons for Rejection for Japanese Patent Application No. JP 2009-507195 dated Jun. 10, 2011.
Notice of Reasons for Rejection for Japanese Patent Application No. JP 2008-281533 dated Jun. 24, 2011.
First Office Action for Chinese Patent Application No. 200780019643.9, dated: Mar. 29, 2010.
International Search Report for PCT/CN2009/074800, mailed Feb. 25, 2010.
Office Action from related China Application No. 200710142310.7, dated: Dec. 11, 2009.
Declaration of Gerald Negley under 37 C.F.R. § 1.132, dated: Aug. 20, 2009.
Declaration of Charles Swoboda under 37 C.F.R. § 1.132, dated: Aug. 19, 2009.
Nichia Corp. White LED Part No. NSPW300BS, Specification for Nichia White LED , Model NSPW300BS., Jan. 14, 2004.
Nicha Corp., White LED Part No. NSPW312BS, Specification for Nichia White LED, Model NSPW312BS. Jan. 14, 2004.
Kim J.K et al. “Strongly Enhanced Phosphor Efficiency in GaInN White Light-Emitting Diodes Using Remote Phosphor Configuration and Diffuse Reflector Cup” Japanese Journal of Applied Physics, Japan Society of Applied Physics, Tokyo, JP, vol. 44, No. 20-23, Jan. 1, 2005 XP-001236966, pp. 649-651.
Preliminary Notice of Reasons for Refusal re related Japanese Application No. 2009-002857, dated: Jul. 24, 2009.
U.S. Appl. No. 11/473,089, filed Jun. 21, 2006, “Electronic Deposition of Semiconductor Devices”.
Official Notice of Decision for Refusal regarding related Japanese Design Application No. 2009-002857, dated Oct. 30, 2009.
U.S. Appl. No. 11/656,759, filed Jan. 22, 2007, to Chitnis et al. “Wafer Level Phosphor Coating Method and Devices Fabricated Utilizing Method”.
U.S. Appl. No. 11/899,790, filed Sep. 7, 2007, to Chitnis at al. “Wafer Level Phosphor Coating Method and Devices Fabricated Utilizing Method”.
Cree XLamp® XR-E LEDS data page, retrieved at http://www.cree.com/products/xlamp7090—xre.asp on Sep. 15, 2010, pp. 1-3.
Cree XLamp® XR-C LEDs data page, retrieved at http://www.cree.com/products/xlamp—xrc.asp on Sep. 15, 2010, pp. 1-3.
Cree XLamp® XP-E LED data page, retrieved at http://www.cree.com/products/xlamp—xpe.asp on Sep. 15, 2010, pp. 1-4.
Cree XLamp® XP-G LED data page retrieved at http://www.cree.com/products/xlamp—xpg.asp on Sep. 15, 2010, pp. 1-3.
Cree XLamp® MC-E LED data page retrieved at http://www.cree.com/products/xlamp—mce.asp on Sep. 15, 2010, pp. 1-3.
Office Action from U.S. Appl. No. 12/321,059, dated: May 17, 2010.
Response to Office Action from U.S. Appl. No. 12/321,059 dated: May 17, 2010.
Office Action from U.S. Appl. No. 12/321,059, dated: Sep. 24, 2010.
Response to Office Action from U.S. Appl. No. 12/321,059 dated: Nov. 23, 2010.
Response to Office Action from U.S. Appl. No. 12/321,059 dated: Dec. 22, 2010.
Office Action from U.S. Appl. No. 12/154,691, dated: Dec. 17, 2009.
Response to Office Action from U.S. Appl. No. 12/154,691, dated: May 17, 2009.
Notice of Allowance for U.S. Appl. No. 12/154,691, dated: Jun. 17, 2010.
Office Action from U.S. Appl. No. 11/465,120, dated: Aug. 21, 2008.
Response to Office Action from U.S. Appl. No. 11/465,120, dated: Nov. 21, 2008.
Office Action from U.S. Appl. No. 11/465,120, dated: Feb. 20, 2009.
Response to Office Action from U.S. Appl. No. 11/465,120, dated: Apr. 20, 2009.
Office Action from U.S. Appl. No. 11/465,120, dated: May 4, 2009.
Response to Office Action from U.S. Appl. No. 11/465,120, dated: Jun. 22, 2009.
Office Action from U.S. Appl. No. 11/465,120, dated: Jul. 21, 2009.
Response to Office Action from U.S. Appl. No. 11/465,120, dated: Oct. 21, 2009.
Response to Office Action from U.S. Appl. No. 11/465,120, dated: Dec. 1, 2009.
Office Action from U.S. Appl. No. 11/465,120, dated: Mar. 9, 2010.
Response to Office Action from U.S. Appl. No. 11/465,120, dated: Jun. 9, 2010.
Office Action from U.S. Appl. No. 11/465,120, dated: Sep. 8, 2010.
Response to Office Action from U.S. Appl. No. 11/465,120, dated: Nov. 8, 2010.
Office Action from U.S. Appl. No. 11/465,120, dated: Nov. 16, 2010.
Response to Office Action from U.S. Appl. No. 11/465,120, dated: Dec. 1, 2010.
Office Action from U.S. Appl. No. 11/465,120, dated: Dec. 13, 2010.
Office Action from U.S. Appl. No. 11/149,998, dated: Jan. 8, 2007.
Response to Office Action from U.S. Appl. No. 11/149,998, dated: Jun. 8, 2007.
Office Action from U.S. Appl. No. 11/149,998, dated: Aug. 17, 2007.
Response to Office Action from U.S. Appl. No. 11/149,998, dated: Dec. 17, 2007.
Office Action from U.S. Appl. No. 11/149,998, dated: Feb. 5, 2008.
Response to Office Action from U.S. Appl. No. 11/149,998, dated: May 5, 2008.
Office Action from U.S. Appl. No. 11/149,998, dated: Jul. 21, 2008.
Response to Office Action from U.S. Appl. No. 11/149,998, dated: Oct. 21, 2008.
Office Action from U.S. Appl. No. 11/149,998, dated: Jan. 5, 2009.
Response to Office Action from U.S. Appl. No. 11/149,998, dated: Apr. 3, 2009.
Office Action from U.S. Appl. No. 11/149,998, dated: Jul. 14, 2009.
Response to Office Action from U.S. Appl. No. 11/149,998, dated: Oct. 14, 2009.
Office Action from U.S. Appl. No. 11/149,998, dated: Nov. 20, 2009.
Response to Office Action from U.S. Appl. No. 11/149,998, dated: Feb. 22, 2010.
Office Action from U.S. Appl. No. 11/149,998, dated: May 18, 2010.
Response to Office Action from U.S. Appl. No. 11/149,998, dated: Aug. 2, 2010.
Office Action from U.S. Appl. No. 11/149,998, dated; Aug. 27, 2010.
Response to Office Action from U.S. Appl. No. 11/149,998, dated: Nov. 19, 2010.
Office Action from U.S. Appl. No. 12/069,827, dated: Apr. 20, 2010.
Response to Office Action from U.S. Appl. No. 12/069,827, dated: Sep. 20, 2010.
Office Action from U.S. Appl. No. 12/069,827, dated: Oct. 29, 2010.
Office Action from U.S. Appl. No. 29/293,900, dated: Apr. 5, 2010.
Office Action from U.S. Appl. No. 29/293,900, dated: Sep. 24, 2010.
Notice of Allowance from U.S. Appl. No. 29/293,900, dated: Jul. 21, 2010.
Office Action from U.S. Appl. No. 12/152,766, dated: Mar. 12, 2010.
Response to Office Action from U.S. Appl. No. 12/152,766, dated: Sep. 13, 2010.
Office Action from U.S. Appl. No. 12/152,766, dated: Oct. 7, 2010.
Notice of Reasons for Rejection for Japanese Patent Application No. 2007-211901 dated Apr. 14, 2011.
International Preliminary Report on Patentability for PCT/CN2010/070073 mailed Apr. 28, 2011.
International Search Report and Written Opinion for PCT/CN2010/001865 mailed Jun. 9, 2011.
First Office Action for Chinese Patent Application No. CN 200710152109.7 issued Jul. 29, 2011.
Extended Supplementary European Search Report for EP Application No. EP 07789665.2 dated Nov. 7, 2011.
Second Office Action for Chinese Patent Application No. CN200880009255.7 mailed Oct. 13, 2011.
International Search Report and Written Opinion for counterpart PCT Application No. PCT/US2011/001457 mailed Dec. 13, 2011.
Interrogation from Japanese Patent Application No. 2207-211901. dated Aug. 21, 2012.
Examination Report from European Patent Application No. 07789665.2, dated Aug. 20, 2012.
Decision of Rejection from Chinese Patent Application No. 200880009255.7, dated Sep. 5, 2012.
First Office Action from Chinese Patent Application No. 201080001658.4, dated Sep. 24, 2012.
Notice of Reasons for Rejection from Japanese Patent Application No. 2007-211901, dated Apr. 9, 2013.
Decision of Rejection from Japanese Patent Application No. 2011-545616, dated Apr. 26, 2013.
Extended Search Report for European Patent Application No. 09824413.0-1551, dated Feb, 11. 2013.
Second Office Action from Chinese Patent Appl. No. 201110039138.9, dated Jan. 31, 2013.
International Search Report and Written Opinion from PCT application No. PCT/US2012/065060, dated Feb. 20, 2013.
Third Office Action from Chinese Patent Application No. 200710152109.7, dated: Mar. 5, 2013.
Interrogation from Japanese Patent Application No. 2008-515699, dated Feb. 19. 2013.
Communication from European Patent Appl. No. 09824413.0-1551, dated Feb. 28, 2013.
European Search Report from European Patent Appl. No. 09824413.0-1551, dated Feb. 11, 2013.
Notice of Reasons for Rejection from Japanese Patent Appl. No. 2011-534993, dated Mar. 12, 2013.
Notification of the Second Office Action from Chinese Patent Application No. 201010167346.2, dated Feb. 17, 2013.
Decision of Rejection from Japanese Patent Application No. 2009-507195, dated May 21, 2013.
Notice of Reasons for Rejection from Japanese Patent Appl. No. 2011-259253, dated May 28, 2013.
Decision of Rejection from Japanese Patent Appl. No. 2008-281533, dated May 28, 2013.
Decision of Rejection from Chinese Patent Appl. No. 201080001658.4, dated Jun. 20, 2013.
Office Action from U.S. Appl. No. 12/875,873, dated Jul. 3, 2013.
Office Action from U.S. Appl. No. 11/496,922, dated Jun. 26, 2013.
Office Action from U.S. Appl. No. 12/757,891, dated Jun. 18, 2013.
Office Action from U.S. Appl. No. 11/982,275, dated May 9, 2013.
Office Action from U.S. Appl. No. 12/069,827, dated Mar. 5, 2013.
Response to OA from U.S. Appl. No. 12/069,827, filed Jun. 5, 2013.
Office Action from U.S. Appl. No. 11/149,998, filed Apr. 3, 2013.
Response to OA from U.S. Appl. No. 11/149,998, filed Jun. 25, 2013.
Office Action from U.S. Appl. No. 11/982,275, dated Sep. 18, 2012.
Response to OA from U.S. Appl. No. 11/982,275, filed Sep. 27, 2012.
Office Action from U.S. Appl. No. 12/002,410, dated Sep. 25, 2012.
Response to OA from U.S. Appl. No. 12/002,410, filed Dec. 18, 2012.
Office Action from U.S. Appl. No. 12/069,827, dated Aug. 9, 2012.
Response to OA from U.S. Appl. No. 12/069,827, filed Nov. 9, 2012.
Office Action from U.S. Appl. No. 11/465,120, dated Aug. 21, 2012.
Response to OA from U.S. Appl. No. 11/465,120, filed Aug. 24, 2012.
Office Action from U.S. Appl. No. 12/875,873, dated Aug. 22, 2012.
Response to OA from U.S. Appl. No. 12/875,873, filed Nov. 19, 2012.
Office Action from U.S. Appl. No. 11/465,120, dated Jun. 19, 2012.
Response to OA from U.S. Appl. No. 11/465,120, filed Aug. 15, 2012.
Office Action from U.S. Appl. No. 11/982,275, dated Jul. 9, 2012.
Response to OA from U.S. Appl. No. 11/982,275, filed Sep. 18, 2012.
Office Action from U.S. Appl. No. 12/757,179, dated Jul. 16, 2012.
Response to OA from U.S. Appl. No. 12/757,179, filed Sep. 25, 2012.
Office Action from U.S. Appl. No. 12/069,827, dated Dec. 6, 2012.
Response to OA from U.S. Appl. No. 12/069,827, filed Jan. 29, 2013.
Office Action from U.S. Appl. No. 11/982,275, dated Nov. 28, 2012.
Response to OA from U.S. Appl. No. 11/982,275, filed Mar. 21, 2013.
Office Action from U.S. Appl. No. 11/496,922, dated Nov. 23, 2012.
Response to OA from U.S. Appl. No. 11/496,922, filed Apr. 23, 2013.
Office Action from U.S. Appl. No. 12/757,891, dated Nov. 28, 2012.
Response to OA from U.S. Appl. No. 12/757,891, filed Jan. 28, 2013.
Office Action from U.S. Appl. No. 13/306,589, dated Feb. 20, 2013.
Response to OA from U.S. Appl. No. 13/306,589, filed May 16, 2013.
Office Action from U.S. Appl. No. 12/002,410, dated Jan. 29, 2013.
Response to OA from U.S. Appl. No. 12/002,410, filed Apr. 18, 2013.
Office Action from U.S. Appl. No. 12/875,873, dated Feb. 21, 2013.
Response to OA from U.S. Appl. No. 12/875,873, filed Apr. 19, 2013.
Office Action from U.S. Appl. No. 12/291,293, dated Feb. 28, 2013.
Response to OA from U.S. Appl. No. 12/291,293, filed Jun. 5, 2013.
Office Action from U.S. Appl. No. 12/695,978, dated Apr. 18, 2013.
Response to OA from U.S. Appl. No. 12/695,978, filed Jul. 10, 2013.
CREE® XLAMP® MC-E LEDS Product Info Sheets, pp. 1-3, 2008.
Nichia Corporation LEDS, Models NSSM016G, NSSM227, NESM026X, NSSM026BB, NESM005A, 9 Pages, 2010.
Appeal Decision from Japanese Patent Appl. No. 2008-515699, dated Sep. 20, 2013.
Decision of Rejection from Chinese Patent Appl. No. 201001067346.2, dated Aug. 30, 2013.
Office Action from Japanese Patent Appl. No. 2012-288000, dated Oct. 8, 2013.
Decision of Rejection from Chinese Patent Appl. No. 201110039138.9 dated Sep. 25, 2013.
Office Action from U.S. Appl. No. 12/695,978, dated Sep. 17, 2013.
Office Action from U.S. Appl. No. 13/652,241, dated Sep. 11, 2013.
Office Action from U.S. Appl. No. 12/002,410, dated Sep. 10, 2013.
Fourth Office Action from Chinese Patent Appl. No. 200710152109.7, dated Jun. 28, 2013.
Office Action from U.S. Appl. No. 11/149,998, dated Jul. 26, 2013.
Office Action from U.S. Appl. No. 11/982,275, dated Aug. 8, 2013.
Office Action from U.S. Appl. No. 12/069,827, dated Jul. 3, 2013.
Office Action from U.S. Appl. No. 12/291,293, dated Aug. 20, 2013.
Notice of Reasons for Rejection from Japanese Patent Appl. No. 2007-211901, dated Oct. 8, 2013.
Notification of Loss of Rights from European Patent Appl. No. 09824413.0, dated Oct. 17, 2013.
Appeal board's Questioning from Japanese Patent Appl. No. 2011-545616, dated Nov. 12, 2013.
Office Action from U.S. Appl. No. 12/069,827, dated Oct. 25, 2013.
Office Action from U.S. Appl. No. 11/496,922, dated Oct. 9, 2013.
Office Action from U.S. Appl. No. 12/875,873, dated Oct. 18, 2013.
Interrogation from Japanese Patent Appl. No. 2009-507195. dated Jan. 28, 2014.
Notification of Designation of the Appeal Examiner from Japanese Patent Appl. No. 2009-507195, dated Jan. 22. 2014.
Interrogation from Japanese Patent Appl. No. 2008-281533, dated Jan. 21, 2014.
International Search Report and Written Opinion from PCT/US2013/073921, dated Feb. 18. 2014.
Decision of Registration from Japanese Design Appl. No. 2012-030304, dated Jan. 21, 2014.
Office Action from U.S. Appl. No. 11/982,275. dated Jan. 7, 2014.
Office Action from U.S. Appl. No. 12/291,293. dated Dec. 31, 2013.
Fifth Office Action from Chinese Patent Appl. No. 2007/10152109.7, dated Jan, 6. 2014.
Supplemental European Search Report from European Patent Appl. No. 10731037,7, dated Jan. 9, 2014.
Search Report for European Patent Appl. No. 10731037.7, dated Dec. 11, 2013.
Notice of Reasons for Rejection from Japanese Patent Appl. No. 2011-534993, dated Nov. 12, 2013.
Related Publications (1)
Number Date Country
20110042698 A1 Feb 2011 US
Provisional Applications (1)
Number Date Country
60745478 Apr 2006 US
Continuations (1)
Number Date Country
Parent 11739307 Apr 2007 US
Child 12635818 US
Continuation in Parts (1)
Number Date Country
Parent 12635818 Dec 2009 US
Child 12868567 US