This invention relates to semiconductor devices and more specifically relates to an enhancement mode GaN FET and to an assembly of such device with depletion mode devices on a common chip or die.
III Nitride semiconductor devices, specifically GaN based switching devices, are well known. Such devices are normally depletion mode devices in which a normally conducting electron gas or 2Deg layer is formed, for example, between a GaN layer and an AlGaN layer atop the GaN layer. A gate structure atop the AlGaN layer is operable to interrupt the normally conducting 2Deg layer to turn off the normally conducting 2Deg or electron gas layer.
It would be very desirable to employ the characteristics of III Nitride devices in a normally off enhancement mode FET or in a power device with a plurality of enhancement mode and depletion mode devices.
In accordance with the invention, a multilayer GaN substrate is fabricated using convention methods. A portion of the strain layer (such as an AlGaN layer atop a GaN layer) is removed, as by etching, in a gate region, to remove the strain in that region, and hence suppress the electron gas under the etched region, thus interrupting the lateral conduction path through the 2Deg layer. A piezoelectric film is then deposited into the etched region and is patterned. Conventional metallizing and patterning processes are used to form the necessary source and drain electrodes and a gating electrode on the piezoelectric film. The application of gate voltage to the piezoelectric gate will cause it to deflect and apply a strain to the previously unstrained area of the 2Deg layer to permit the flow of current through the 2Deg layer.
The result is an enhancement mode PE (piezoelectric)-FET for switching power applications.
A termination region formed by etching away the AlGaN layer or strain layer which lies along the sides of the enhancement mode device (or surrounds the device) is provided to prevent current flow through a parallel 2Deg layer.
A plurality of gates, including either or both enhancement mode and conventional depletion mode GaN devices can be formed in a common substrate to provide a wider channel per unit area; and/or assemblages of depletion mode and enhancement mode devices in pairs to form logic circuits and the like.
Referring to
The device is built on a substrate 10 which may be silicon, SiC, or any other of the well known substrate materials. A conventional buffer layer 11 may be formed on the substrate and a GaN layer 12 is conventionally deposited atop the buffer layer 11. An AlGaN strain layer 13 is then deposited atop GaN layer 12, forming a normally “on” 2Deg conduction layer 15 at the interface between layers 12 and 13. All of the above processes are well known.
In accordance with the invention, the strain layer 13 is etched with a window 20 which may extend either partially through, or fully through layer 13. A piezoelectric gate film 21 which may be P2T is then formed into window 20 using deposition and patterning processes which are well known. Further, layer 13 is formed in strips as shown in
Electrodes (30 and 31) are then deposited and patterned to form drain and source contacts and conductive gate electrodes 32 and 33 are deposited on piezoelectric film 21.
The removal of the AlGaN strain layer in window 20 or a portion thereof removes or relieves the strain which otherwise forms the electron gas or 2Deg conduction layer at the interface between layers 12 and 13.
When no gate signal is applied to gate 32-33, the film 21 is unstressed and applies no stress to 2Deg layer 15. Thus, the electron gas layer or 2Deg layer is suppressed in the area of window 20 so the circuit between the source electrode 31 and drain electrode 30 is open. However, when a gate voltage is applied to the piezoelectric gate 32, the film 21 deflects to create a strain field at the bottom of window 20, pressing against the bottom of window 20, creating the 2Deg electron gas in the gate area and establishing a conductive path between source and drain.
Although the present invention has been described in relation to particular embodiments thereof, many other variations and modifications and other uses will become apparent to those skilled in the art. It is preferred, therefore, that the present invention be limited not by the specific disclosure herein.
This application claims the benefit of U.S. Provisional Application No. 60/807,838, filed Jul. 20, 2006, the entire disclosure of which is incorporated by reference herein.
Number | Name | Date | Kind |
---|---|---|---|
5322808 | Brown et al. | Jun 1994 | A |
20020139995 | Inoue et al. | Oct 2002 | A1 |
20050145883 | Beach et al. | Jul 2005 | A1 |
20060060871 | Beach | Mar 2006 | A1 |
20070057290 | Ishida et al. | Mar 2007 | A1 |
Number | Date | Country | |
---|---|---|---|
20080017867 A1 | Jan 2008 | US |
Number | Date | Country | |
---|---|---|---|
60807838 | Jul 2006 | US |