Evolved Cas9 proteins for gene editing

Information

  • Patent Grant
  • 12043852
  • Patent Number
    12,043,852
  • Date Filed
    Saturday, October 22, 2016
    8 years ago
  • Date Issued
    Tuesday, July 23, 2024
    5 months ago
Abstract
Some aspects of this disclosure provide strategies, systems, reagents, methods, and kits that are useful for engineering Cas9 and Cas9 variants that have increased activity on target sequences that do not contain the canonical PAM sequence. In some embodiments, fusion proteins comprising such Cas9 variants and nucleic acid editing domains, e.g., deaminase domains, are provided.
Description
REFERENCE TO A SEQUENCE LISTING SUBMITTED AS A TEXT FILE VIA EFS-WEB

The present application contains a Sequence Listing which has been submitted in ASCII format via EFS-Web and is hereby incorporated by reference in its entirety. Said ASCII copy, created on Jun. 28, 2022, is named H082470224US02-SUBSEQ-EPG and is 3,977,840 bytes in size.


BACKGROUND OF THE INVENTION

Targeted editing of nucleic acid sequences, for example, the targeted cleavage or the targeted introduction of a specific modification into genomic DNA, is a highly promising approach for the study of gene function and also has the potential to provide new therapies for human genetic diseases.1 An ideal nucleic acid editing technology possesses three characteristics: (1) high efficiency of installing the desired modification; (2) minimal off-target activity; and (3) the ability to be programmed to edit precisely any site in a given nucleic acid, e.g., any site within the human genome.2 Current genome engineering tools, including engineered zinc finger nucleases (ZFNs),3 transcription activator like effector nucleases (TALENs),4 and most recently, the RNA-guided DNA endonuclease Cas9,5 effect sequence-specific DNA cleavage in a genome. This programmable cleavage can result in mutation of the DNA at the cleavage site via non-homologous end joining (NHEJ) or replacement of the DNA surrounding the cleavage site via homology-directed repair (HDR).6,7


One drawback of the current technologies is that both NHEJ and HDR are stochastic processes that typically result in modest gene editing efficiencies as well as unwanted gene alterations that can compete with the desired alteration.8 Since many genetic diseases in principle can be treated by effecting a specific nucleotide change at a specific location in the genome (for example, a C to T change in a specific codon of a gene associated with a disease),9 the development of a programmable way to achieve such precise gene editing would represent both a powerful new research tool, as well as a potential new approach to gene editing-based human therapeutics.


Another drawback of current genome engineering tools is that they are limited with respect to the DNA sequences that can be targeted. When using ZNFs or TALENS, a new protein must be generated for each individual target sequence. While Cas9 can be targeted to virtually any target sequence by providing a suitable guide RNA, Cas9 technology is still limited with respect to the sequences that can be targeted by a strict requirement for a protospacer-adjacent motif (PAM), typically of the nucleotide sequence 5′-NGG-3′, that must be present immediately adjacent to the 3′-end of the targeted DNA sequence in order for the Cas9 protein to bind and act upon the target sequence. The PAM requirement thus limits the sequences that can be efficiently targeted by Cas9 proteins.


SUMMARY OF THE INVENTION

Significantly, 80-90% of protein mutations responsible for human disease arise from the substitution, deletion, or insertion of only a single nucleotide.6 Most current strategies for single-base gene correction include engineered nucleases (which rely on the creation of double-strand breaks, DSBs, followed by stochastic, inefficient homology-directed repair, HDR), and DNA-RNA chimeric oligonucleotides.22 The latter strategy involves the design of a RNA/DNA sequence to base pair with a specific sequence in genomic DNA except at the nucleotide to be edited. The resulting mismatch is recognized by the cell's endogenous repair system and fixed, leading to a change in the sequence of either the chimera or the genome. Both of these strategies suffer from low gene editing efficiencies and unwanted gene alterations, as they are subject to both the stochasticity of HDR and the competition between HDR and non-homologous end-joining, NHEJ.23-25 HDR efficiencies vary according to the location of the target gene within the genome,26 the state of the cell cycle,27 and the type of cell/tissue.28 The development of a direct, programmable way to install a specific type of base modification at a precise location in genomic DNA with enzyme-like efficiency and no stochasticity therefore represents a powerful new approach to gene editing-based research tools and human therapeutics.


The clustered regularly interspaced short palindromic repeat (CRISPR) system is a recently discovered prokaryotic adaptive immune system10 that has been modified to enable robust and general genome engineering in a variety of organisms and cell lines.11 CRISPR-Cas (CRISPR-associated) systems are protein-RNA complexes that use an RNA molecule (sgRNA) as a guide to localize the complex to a target DNA sequence via base-pairing.12 In the natural systems, a Cas protein then acts as an endonuclease to cleave the targeted DNA sequence.13 The target DNA sequence must be both complementary to the sgRNA and also contain a “protospacer-adjacent motif” (PAM) at the 3′-end of the complementary region in order for the system to function.14 The requirement for a PAM sequence limits the use of Cas9 technology, since not all desired targeted sequences include a PAM sequence at the 3′-end and thus cannot efficiently be targeted by wild-type Cas9 proteins.


Provided herein are novel Cas9 variants that exhibit activity on target sequences that do not include the canonical PAM sequence (5′-NGG-3′, where N is any nucleotide) at the 3′-end. Such Cas9 variants are not restricted to target sequences that include the canonical PAM sequence at the 3′-end.


Among the known Cas proteins, Streptococcus pyogenes Cas9 has been mostly widely used as a tool for genome engineering.15 This Cas9 protein is a large, multi-domain protein containing two distinct nuclease domains. Point mutations can be introduced into Cas9 to abolish nuclease activity, resulting in a dead Cas9 (dCas9) that still retains its ability to bind DNA in a sgRNA-programmed manner.16In principle, such Cas9 variants, when fused to another protein or domain, can target that protein to virtually any DNA sequence simply by co-expression with an appropriate sgRNA. Thus, this disclosure also comtemplates fusion proteins comprising such Cas9 variants and a DNA modifying domain (e.g., a deaminase, a nuclease, a nickase, a recombinase, a methyltransferase, a methylase, an acetylase, an acetyltransferase, a transcriptional activator, or a transcriptional repressor domain), as well as the use of such fusion proteins in correcting mutations in a genome (e.g., the genome of a human subject) that are associated with disease, or generating mutations in a genome (e.g., the human genome) to decrease or prevent expression of a gene.


In some embodiments, any of the Cas9 proteins provided herein may be fused to a protein that has an enzymatic activity. In some embodiments, the enzymatic activity modifies a target DNA. In some embodiments, the enzymatic activity is nuclease activity, methyltransferase activity, demethylase activity, DNA repair activity, DNA damage activity, deamination activity, dismutase activity, alkylation activity, depurination activity, oxidation activity, pyrimidine dimer forming activity, integrase activity, transposase activity, recombinase activity, polymerase activity, ligase activity, helicase activity, photolyase activity or glycosylase activity. In some cases, the enzymatic activity is nuclease activity. In some cases, the nuclease activity introduces a double strand break in the target DNA. In some cases, the enzymatic activity modifies a target polypeptide associated with the target DNA. In some cases, the enzymatic activity is methyltransferase activity, demethylase activity, acetyltransferase activity, deacetylase activity, kinase activity, phosphatase activity, ubiquitin ligase activity, deubiquitinating activity, adenylation activity, deadenylation activity, SUMOylating activity, deSUMOylating activity, ribosylation activity, deribosylation activity, myristoylation activity or demyristoylation activity. In some cases, the target polypeptide is a histone and the enzymatic activity is methyltransferase activity, demethylase activity, acetyltransferase activity, deacetylase activity, kinase activity, phosphatase activity, ubiquitin ligase activity or deubiquitinating activity.


In some embodiments, any of the Cas9 proteins provided herein may be fused to a protein that has an enzymatic activity. In some embodiments, the enzymatic activity modifies a polypeptide associated with DNA (e.g. a histone). In some embodiments, the enzymatic activity is methyltransferase activity, demethylase activity, acetyltransferase activity, deacetylase activity, kinase activity, phosphatase activity, ubiquitin ligase activity (i.e., ubiquitination activity), deubiquitinating activity, adenylation activity, deadenylation activity, SUMOylating activity, deSUMOylating activity, ribosylation activity, deribosylation activity, myristoylation activity, demyristoylation activity glycosylation activity (e.g., from O-GlcNAc transferase) or deglycosylation activity. The enzymatic activities listed herein catalyze covalent modifications to proteins. Such modifications are known in the art to alter the stability or activity of the target protein (e.g., phosphorylation due to kinase activity can stimulate or silence protein activity depending on the target protein). Of particular interest as protein targets are histones. Histone proteins are known in the art to bind DNA and form complexes known as nucleosomes. Histones can be modified (e.g., by methylation, acetylation, ubuitination, phosphorylation) to elicit structural changes in the surrounding DNA, thus controlling the accessibility of potentially large portions of DNA to interacting factors such as transcription factors, polymerases and the like. A single histone can be modified in many different ways and in many different combinations (e.g., trimethylation of lysine 27 of histone 3, H3K27, is associated with DNA regions of repressed transcription while trimethylation of lysine 4 of histone 3, H3K4, is associated with DNA regions of active transcription). Thus, a site-directed modifying polypeptide with histone-modifying activity finds use in the site specific control of DNA structure and can be used to alter the histone modification pattern in a selected region of target DNA. Such methods find use in both research and clinical applications.


In some embodiments, the deaminase domain catalyzes the removal of an amine group from a molecule. In further embodiments, cytidine deaminase domains deaminate cytosine to yield uracil. In other embodiments, the nuclease domain has enzymatic activity and may cleave phosphodiester bonds between the nucleotide subunits of nucleic acids. In some embodiments, recombinase domains, which recombine specific sequences of DNA, may be used to manipulate the structure of genomes and to control gene expression. In further embodiments, methylase domains may be utilized to methylate their respective substrates, while acetylase domains may be used to acetylate their respective substrates. In other embodiments, acetyltransferase domains may be used to transfer an acetyl group. Examples of acetyltransferase molecules include, but are not limited to, histone acetyltransferases (e.g., CBP histone acetyltransferase), choline acetyltransferase, chloramphenicol acetytransferase, serotonic N-acetyltransferase, NatA acetyltransferase, and NatB acetyltransferase. The disclosure also contemplates transcriptional activator and transcriptional repressor domains. Transcriptional activator domains are regions of a transcription factor which may activate transcription from a promoter through an interaction or multiple interactions with a DNA binding domain, general transcription factors, and RNA polymerase. Transcriptional repressor domains are regions of a transcription factor which may repress transcription from a protomer through an interaction or multiple interactions with a DNA binding domain, general transcription factors, and RNA polymerase.


The potential of the Cas9 system for genome engineering is immense. Its unique ability to bring proteins to specific sites in a genome programmed by the sgRNA can be developed into a variety of site-specific genome engineering tools beyond nucleases, including transcriptional activators, transcriptional repressors, histone-modifying proteins, integrases, deaminases, and recombinases.11 Some of these potential applications have recently been implemented through dCas9 fusions with transcriptional activators to afford RNA-guided transcriptional activators,17,18 transcriptional repressors,16,19,20 and chromatin modification enzymes.21 Simple co-expression of these fusions with a variety of sgRNAs results in specific expression of the target genes. These seminal studies have paved the way for the design and construction of readily programmable sequence-specific effectors for the precise manipulation of genomes.


Some aspects of this disclosure provide strategies, systems, proteins, nucleic acids, compositions, cells, reagents, methods, and kits that are useful for the targeted binding, editing, and/or cleaving of nucleic acids, including editing a single site within a subject's genome, e.g., a human subject's genome. In some embodiments, recombinant Cas9 proteins are provided that comprise at least one, at least two, at least three, at least four, at least five, at least six, at least seven, at least eight, at least nine, or at least ten mutations as compared to a naturally occurring Cas9 protein, and that exhibit activity on target sequences that do not include the canonical PAM (5′-NGG-3′, where N is any nucleotide) at the 3′-end. Examples of such Cas9 protein mutations are given in Tables 3, 5, 8, and 9. In some embodiments, fusion proteins of Cas9 and nucleic acid editing enzymes or enzymatic domains, e.g., deaminase domains, are provided. In some embodiments, methods for targeted nucleic acid binding, editing, and/or cleaving are provided. In some embodiments, reagents and kits for the generation of targeted nucleic acid binding, editing, and/or cleaving proteins, e.g., fusion proteins of Cas9 variants and nucleic acid editing enzymes or domains, are provided.


Some aspects of this disclosure provide recombinant Cas9 proteins comprising an amino acid sequence that is at least 80%, at least 85%, at least 90%, at least 92%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, or at least 99.5% identical to the amino acid sequence of Cas9 as provided by any of the sequences set forth in SEQ ID NOs: 9-262, wherein the amino acid sequence of the Cas9 protein comprises at least one, at least two, at least three, at least four, at least five, at least six, or at least seven mutations in an amino acid residue selected from the group consisting of amino acid residues 122, 137, 182, 262, 294, 409, 480, 543, 660, 694, 1219, and 1329 of S. pyogenes Cas9 having the amino acid sequence provided in SEQ ID NO: 9, or in a corresponding amino acid residue in any of the amino acid sequences provided in SEQ ID NOs: 10-262. In some embodiments, the recombinant Cas9 protein comprises a RuvC and an HNH domain. In some embodiments, the amino acid sequence of the recombinant Cas9 protein is not identical to the amino acid sequence of a naturally occurring Cas9 protein. In some embodiments, the amino acid sequence of the Cas9 protein comprises at least one, at least two, at least three, at least four, at least five, at least six, or at least seven mutations selected from the group consisting of X262T, X294R, X409I, X480K, X543D, X694I, and X1219V of the amino acid sequence provided in SEQ ID NO: 9, or a corresponding mutation in any of the amino acid sequences provided in SEQ ID NOs: 10-262, wherein X represents any amino acid. In some embodiments, the amino acid sequence of the Cas9 protein comprises at least one, at least two, at least three, at least four, at least five, at least six, or at least seven mutations selected from the group consisting of A262T, K294R, S409I, E480K, E543D, M694I, and E1219V of the amino acid sequence provided in SEQ ID NO: 9, or a corresponding mutation in any of the amino acid sequences provided in SEQ ID NOs: 10-262.


Other aspects of this disclosure provide recombinant Cas9 proteins comprising an amino acid sequence that is at least 80%, at least 85%, at least 90%, at least 92%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, or at least 99.5% identical to the amino acid sequence of Cas9 as provided by any of the sequences set forth in SEQ ID NOs: 10-262, wherein the amino acid sequence of the Cas9 protein comprises at least one, at least two, at least three, at least four, at least five, at least six, or at least seven mutations in an amino acid residue selected from the group consisting of amino acid residues 262, 267, 294, 405, 409, 480, 543, 694, 1219, 1224, 1256, and 1362 of the amino acid sequence provided in SEQ ID NO: 9, or in a corresponding amino acid residue in any of the amino acid sequences provided in SEQ ID NOs: 10-262; and wherein the amino acid sequence of the recombinant Cas9 protein is not identical to the amino acid sequence of a naturally occurring Cas9 protein. In some embodiments, the Cas9 protein comprises a RuvC and an HNH domain. In some embodiments, the amino acid sequence of the Cas9 protein comprises at least one, at least two, at least three, at least four, at least five, at least six, or at least seven mutations selected from the group consisting of X262T, X267G, X294R, X405I, X409I, X480K, X543D, X694I, X1219V, X1224K, and X1256K of the amino acid sequence provided in SEQ ID NO: 9, or a corresponding mutation in any of the amino acid sequences provided in SEQ ID NOs: 10-262, wherein X represents any amino acid. In some embodiments, the amino acid sequence of the Cas9 protein comprises at least one, at least two, at least three, at least four, at least five, at least six, or at least seven mutations selected from the group consisting of A262T, S267G, K294R, F405I, S409I, E480K, E543D, M694I, E1219V, N1224K, and Q1256K of the amino acid sequence provided in SEQ ID NO: 9, or a corresponding mutation in any of the amino acid sequences provided in in SEQ ID NOs: 10-262.


It should be appreciated that any of the amino acid mutations described herein, (e.g., A262T) from a first amino acid residue (e.g., A) to a second amino acid residue (e.g., T) may also include mutations from the first amino acid residue to an amino acid residue that is similar to (e.g., conserved) the second amino acid residue. For example, a mutation of an alanine to a threonine (e.g., a A262T mutation) may also be a mutation from an alanine to an amino acid that is similar in size and chemical properties to a threonine, for example, serine. Additional similar amino acid pairs include, but are not limited to, the following: phenylalanine and tyrosine; asparagine and glutamine; methionine and cysteine; aspartic acid and glutamic acid; and arginine and lysine. The skilled artisan would recognize that such conservative amino acid substitutions will likely have minor effects on protein structure and are likely to be well tolerated without compromising function. In some embodiments, any of the amino acid mutations provided herein from one amino acid to a threonine may be an amino acid mutation to a serine. In some embodiments, any of the amino acid mutations provided herein from one amino acid to an arginine may be an amino acid mutation to a lysine. In some embodiments, any of the amino acid mutations provided herein from one amino acid to an isoleucine may be an amino acid mutation to an alanine, valine, methionine, or leucine. In some embodiments, any of the amino acid mutations provided herein from one amino acid to a lysine may be an amino acid mutation to an arginine. In some embodiments, any of the amino acid mutations provided herein from one amino acid to an aspartic acid may be an amino acid mutation to a glutamic acid or asparagine. In some embodiments, any of the amino acid mutations provided herein from one amino acid to a valine may be an amino acid mutation to an alanine, isoleucine, methionine, or leucine. In some embodiments, any of the amino acid mutations provided herein from one amino acid to a glycine may be an amino acid mutation to an alanine. It should be appreciated, however, that additional conserved amino acid residues would be recognized by the skilled artisan and any of the amino acid mutations to other conserved amino acid residues are also within the scope of this disclosure.


In some embodiments, the Cas9 protein is a Cas9 domain of a fusion protein. In some embodiments, the amino acid sequence of the Cas9 protein comprises an X1219V mutation of the amino acid sequence provided in SEQ ID NO: 9, or a corresponding mutation in any of the amino acid sequences provided in SEQ ID NOs: 10-262, wherein X represents any amino acid. In some embodiments, the mutation is X1219A, X1219I, X1219M, or X1219L.


In some embodiments, the amino acid sequence of the Cas9 protein comprises an E1219V mutation of the amino acid sequence provided in SEQ ID NO: 9, or a corresponding mutation in any of the amino acid sequences provided in SEQ ID NOs: 10-262. In some embodiments, the mutation is E1219A, E1219I, E1219M or E1219L.


In some embodiments, the amino acid sequence of the Cas9 protein comprises an X480K mutation of the amino acid sequence provided in SEQ ID NO: 9, or a corresponding mutation in any of the amino acid sequences provided in SEQ ID NOs: 10-262, wherein X represents any amino acid. In some embodiments, the mutation is X480R.


In some embodiments, the amino acid sequence of the Cas9 protein comprises an E480K mutation of the amino acid sequence provided in SEQ ID NO: 9, or a corresponding mutation in any of the amino acid sequences provided in SEQ ID NOs: 10-262. In some embodiments, the mutation is E480R.


In some embodiments, the amino acid sequence of the Cas9 protein comprises an X543D mutation of the amino acid sequence provided in SEQ ID NO: 9, or a corresponding mutation in any of the amino acid sequences provided in SEQ ID NOs: 10-262, wherein X represents any amino acid. In some embodiments, the mutation is X543N.


In some embodiments, the amino acid sequence of the Cas9 protein comprises an E543D mutation of the amino acid sequence provided in SEQ ID NO: 9, or a corresponding mutation in any of the amino acid sequences provided in SEQ ID NOs: 10-262. In some embodiments, the mutation is E543N.


In some embodiments, the amino acid sequence of the Cas9 protein comprises the mutations X480K, X543D, and X1219V of the amino acid sequence provided in SEQ ID NO: 9, or a corresponding mutation in any of the amino acid sequences provided in SEQ ID NOs: 10-262, wherein X represents any amino acid.


In some embodiments, the amino acid sequence of the Cas9 protein comprises the mutations X262T, X409I, X480K, X543D, X694I, and X1219V of the amino acid sequence provided in SEQ ID NO: 9, or a corresponding mutation in any of the amino acid sequences provided in SEQ ID NOs: 10-262, wherein X represents any amino acid.


In some embodiments, the amino acid sequence of the Cas9 protein comprises the mutations X294R, X480K, X543D, X1219V, X1256K, and X1362P of the amino acid sequence provided in SEQ ID NO: 9, or a corresponding mutation in any of the amino acid sequences provided in SEQ ID NOs: 10-262, wherein X represents any amino acid.


In some embodiments, the amino acid sequence of the Cas9 protein comprises the mutations X294R, X480K, X543D, X1219V, and X1256K of the amino acid sequence provided in SEQ ID NO: 9, or a corresponding mutation in any of the amino acid sequences provided in SEQ ID NOs: 10-262, wherein X represents any amino acid.


In some embodiments, the amino acid sequence of the Cas9 protein comprises the mutations X267G, X294R, X480K, X543D, X1219V, X1224K, and X1256K of the amino acid sequence provided in SEQ ID NO: 9, or a corresponding mutation in any of the amino acid sequences provided in SEQ ID NOs: 10-262, wherein X represents any amino acid.


In some embodiments, the amino acid sequence of the Cas9 protein comprises the mutations X262T, X405I, X409I, X480K, X543D, X694I, and X1219V of the amino acid sequence provided in SEQ ID NO: 9, or a corresponding mutation in any of the amino acid sequences provided in SEQ ID NOs: 10-262, wherein X represents any amino acid.


In some embodiments, the amino acid sequence of the Cas9 protein comprises the mutations E480K, E543D, and E1219V of the amino acid sequence provided in SEQ ID NO: 9, or a corresponding mutation in any of the amino acid sequences provided in SEQ ID NOs: 10-262.


In some embodiments, the amino acid sequence of the Cas9 protein comprises the mutations A262T, S409I, E480K, E543D, M694I, and E1219V of the amino acid sequence provided in SEQ ID NO: 9, or a corresponding mutation in any of the amino acid sequences provided in SEQ ID NOs: 10-262.


In some embodiments, the amino acid sequence of the Cas9 protein comprises the mutations K294R, E480K, E543D, E1219V, Q1256K, and L1362P of the amino acid sequence provided in SEQ ID NO: 9, or a corresponding mutation in any of the amino acid sequences provided in SEQ ID NOs: 10-262.


In some embodiments, the amino acid sequence of the Cas9 protein comprises the mutations K294R, E480K, E543D, E1219V, and Q1256K of the amino acid sequence provided in SEQ ID NO: 9, or a corresponding mutation in any of the amino acid sequences provided in SEQ ID NOs: 10-262.


In some embodiments, the amino acid sequence of the Cas9 protein comprises the mutations S267G, K294R, E480K, E543D, E1219V, N1224K, and Q1256K of the amino acid sequence provided in SEQ ID NO: 9, or a corresponding mutation in any of the amino acid sequences provided in SEQ ID NOs: 10-262.


In some embodiments, the amino acid sequence of the Cas9 protein comprises the mutations A262T, F405I, S409I, E480K, E543D, M694I, and E1219V of the amino acid sequence provided in SEQ ID NO: 9, or a corresponding mutation in any of the amino acid sequences provided in SEQ ID NOs: 10-262.


The HNH nuclease domain of Cas9 functions to cleave the DNA strand complementary to the guide RNA (gRNA). Its active site consists of a ββα-metal fold, and its histidine 840 activates a water molecule to attack the scissile phosphate, which is more electrophilic due to coordination with a magnesium ion, resulting in cleavage of the the 3′-5′ phosphate bond. In some embodiments, the amino acid sequence of the HNH domain is at least 80%, at least 85%, at least 90%, at least 92%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, or at least 99.5% identical to the amino acid sequence of the HNH domain of any of SEQ ID NOs: 9-262. In some embodiments, the amino acid sequence of the HNH domain is identical to the amino acid sequence of the HNH domain of any of SEQ ID NOs: 9-262.


The RuvC domain of Cas9 cleaves the non-target DNA strand. It is encoded by sequentially disparate sites which interact in the tertiary structure to form the RuvC cleavage domain and consists of an RNase H fold structure. In some embodiments, the amino acid sequence of the RuvC domain is at least 80%, at least 85%, at least 90%, at least 92%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, or at least 99.5% identical to the amino acid sequence of the RuvC domain of any of SEQ ID NOs: 9-262. In some embodiments, the amino acid sequence of the RuvC domain is identical to the amino acid sequence of the RuvC domain of any of SEQ ID NOs: 9-262.


In some embodiments, the Cas9 protein comprises one or more mutations that affects (e.g., inhibits) the ability of Cas9 to cleave one or both strands of a DNA duplex. In some embodiments, the Cas9 protein comprises a D10A and/or a H840A mutation of the amino acid sequence provided in SEQ ID NO: 9, or a corresponding mutation in any of the amino acid sequences provided in SEQ ID NOs: 10-262. In some embodiments, the Cas9 protein comprises a D10X1 and/or a H840X2 mutation of the amino acid sequence provided in SEQ ID NO: 9, or a corresponding mutation in any of the amino acid sequences provided in SEQ ID NOs: 10-262, wherein X1 is any amino acid except for D, and X2 is any amino acid except for H. In some embodiments, the Cas9 protein comprises an D10A mutation of the amino acid sequence provided in SEQ ID NO: 9, or a corresponding mutation in any of the amino acid sequences provided in SEQ ID NOs: 10-262. In some embodiments, the Cas9 protein comprises an H at amino acid residue 840 of the amino acid sequence provided in SEQ ID NO: 9, or a corresponding residue in any of the amino acid sequences provided in SEQ ID NOs: 10-262. In some embodiments, the Cas9 protein comprises an H840A mutation of the amino acid sequence provided in SEQ ID NO: 9, or a corresponding mutation in any of the amino acid sequences provided in SEQ ID NOs: 10-262. In some embodiments, the Cas9 protein comprises a D at amino acid residue 10 of the amino acid sequence provided in SEQ ID NO: 9, or a corresponding residue in any of the amino acid sequences provided in SEQ ID NOs: 10-262.


In some embodiments, the Cas9 protein of the present disclosure exhibits activity, for example, increased binding, on a target sequence that does not include the canonical PAM sequence (5′-NGG-3′) at its 3′-end as compared to Streptococcus pyogenes Cas9 as provided by SEQ ID NO: 9.


Some aspects of this disclosure provide recombinant Cas9 proteins comprising an amino acid sequence that is at least 90% identical to the amino acid sequence of Streptococcus pyogenes Cas9 as provided by SEQ ID NO: 9 wherein the amino acid sequence of the Cas9 protein comprises at least one, at least two, at least three, at least four, at least five, at least six, or at least seven mutations selected from the group consisting of amino acid residues 262, 267, 294, 405, 409, 480, 543, 694, 1219, 1224, 1256, and 1362 of the amino acid sequence provided in SEQ ID NO: 9, wherein the amino acid sequence of the recombinant Cas9 protein is not identical to the amino acid sequence of a naturally occurring Cas9 protein, and wherein the recombinant Cas9 protein exhibits increased activity on a target sequence that does not comprise the canonical PAM sequence (5′-NGG-3′) at its 3′ end as compared to Streptococcus pyogenes Cas9 as provided in SEQ ID NO: 9. In some embodiments, the Streptococcus pyogenes Cas9 comprises a RuvC and an HNH domain. In other embodiments, the Cas9 protein comprises at least one, at least two, at least three, at least four, at least five, at least six, or at least seven mutations selected from the group consisting of amino acid residues 122, 137, 182, 262, 294, 409, 480, 543, 660, 694, 1219, and 1329 of the amino acid sequence provided in SEQ ID NO: 9


As one example, the Cas9 protein may exhibit increased binding to the target sequence, may exhibit increased nuclease activity at the target sequence, or may exhibit an increase in other activities, depending on whether the Cas 9 protein is fused to an additional domain, such as an enzyme that has enzymatic activity. In some embodiments, the enzymatic activity modifies a target DNA. In some embodiments, the enzymatic activity is nuclease activity, methyltransferase activity, demethylase activity, DNA repair activity, DNA damage activity, deamination activity, dismutase activity, alkylation activity, depurination activity, oxidation activity, pyrimidine dimer forming activity, integrase activity, transposase activity, recombinase activity, polymerase activity, ligase activity, helicase activity, photolyase activity or glycosylase activity. In some cases, the enzymatic activity is nuclease activity. In some cases, the nuclease activity introduces a double strand break in the target DNA. In some cases, the enzymatic activity modifies a target polypeptide associated with the target DNA. In some cases, the enzymatic activity is methyltransferase activity, demethylase activity, acetyltransferase activity, deacetylase activity, kinase activity, phosphatase activity, ubiquitin ligase activity, deubiquitinating activity, adenylation activity, deadenylation activity, SUMOylating activity, deSUMOylating activity, ribosylation activity, deribosylation activity, myristoylation activity or demyristoylation activity. In some cases, the target polypeptide is a histone and the enzymatic activity is methyltransferase activity, demethylase activity, acetyltransferase activity, deacetylase activity, kinase activity, phosphatase activity, ubiquitin ligase activity or deubiquitinating activity.


In some embodiments, any of the Cas9 protein is fused to a protein that has an enzymatic activity. In some embodiments, the enzymatic activity modifies a polypeptide associated with DNA (e.g. a histone). In some embodiments, the enzymatic activity is methyltransferase activity, demethylase activity, acetyltransferase activity, deacetylase activity, kinase activity, phosphatase activity, ubiquitin ligase activity (i.e., ubiquitination activity), deubiquitinating activity, adenylation activity, deadenylation activity, SUMOylating activity, deSUMOylating activity, ribosylation activity, deribosylation activity, myristoylation activity, demyristoylation activity glycosylation activity (e.g., from O-GlcNAc transferase) or deglycosylation activity. The enzymatic activities listed herein catalyze covalent modifications to proteins. Such modifications are known in the art to alter the stability or activity of the target protein (e.g., phosphorylation due to kinase activity can stimulate or silence protein activity depending on the target protein). Of particular interest as protein targets are histones. Histone proteins are known in the art to bind DNA and form complexes known as nucleosomes. Histones can be modified (e.g., by methylation, acetylation, ubuitination, phosphorylation) to elicit structural changes in the surrounding DNA, thus controlling the accessibility of potentially large portions of DNA to interacting factors such as transcription factors, polymerases and the like. A single histone can be modified in many different ways and in many different combinations (e.g., trimethylation of lysine 27 of histone 3, H3K27, is associated with DNA regions of repressed transcription while trimethylation of lysine 4 of histone 3, H3K4, is associated with DNA regions of active transcription). Thus, a site-directed modifying polypeptide with histone-modifying activity finds use in the site specific control of DNA structure and can be used to alter the histone modification pattern in a selected region of target DNA. Such methods find use in both research and clinical applications.


In some embodiments, the Cas9 protein exhibits activity on a target sequence having a 3′ end that is not directly adjacent to, or does not have the canonical PAM sequence (5′-NGG-3′), that is at least 2-fold, at least 3-fold, at least 5-fold, at least 10-fold, at least 50-fold, at least 100-fold, at least 500-fold, at least 1,000-fold, at least 5,000-fold, at least 10,000-fold, at least 50,000-fold, at least 100,000-fold, at least 500,000-fold, or at least 1,000,000-fold increased as compared to the activity of Streptococcus pyogenes Cas9 as provided by SEQ ID NO: 9 on the same target sequence.


In some embodiments, the 3′-end of the target sequence is directly adjacent to an AGC, GAG, TTT, GTG, CAA CAC, GAT, TAA, ACG, CGA, or CGT sequence.


In some embodiments, the Cas9 protein activity is measured by a nuclease assay or a nucleic acid binding assay, which are known in the art and would be apparent to the skilled artisan. As provided herein, the Cas9 protein may be fused to one or more domains that confer an activity to the protein, such as a nucleic acid editing activity (e.g., deaminase activity or transcriptional activation activity), which may be measured (e.g., by a deaminase assay or transcriptional activation assay). In some embodiments, the Cas9 protein is fused to a deaminase domain and its activity may be measured using a deaminase assay. In some embodiments, the Cas9 protein is fused to a transcriptional activation domain and its activity may be measured using a transcriptional activation assay, for example, reporter activation assay where the reporter, e.g., GFP or luciferase, among others, is expressed in response to Cas9 binding to a target sequence.


In some embodiments, the amino acid sequence of the Cas9 protein comprises any of the mutations provided herein. For example, in some embodiments, the amino acid sequence of the Cas9 protein comprises at least one, at least two, at least three, at least four, at least five, at least six, or at least seven mutations selected from the group consisting of X262T, X267G, X294R, X405I, X409I, X480K, X543D, X694I, X1219V, X1224K, X1256K, and X1362P of the amino acid sequence provided in SEQ ID NO: 9, or a corresponding mutation in any of the amino acid sequences provided in SEQ ID NOs: 10-262, wherein X represents any amino acid. In other embodiments, the mutations may be A262T, S267G, K294R, F405I, S409I, E480K, E543D, M694I, E1219V, N1224K, Q1256K, and L1362P of the amino acid sequence provided in SEQ ID NO: 9, or a corresponding mutation in any of the amino acid sequences provided in SEQ ID NOs: 10-262.


In some embodiments, the amino acid sequence of the Cas9 protein comprises any of the mutations provided herein. For example, in some embodiments, the amino acid sequence of the Cas9 protein comprises at least one, at least two, at least three, at least four, at least five, at least six, or at least seven mutations selected from the group consisting of X262T, X294R, X409I, X480K, X543D, X694I, and X1219V of the amino acid sequence provided in SEQ ID NO: 9, or a corresponding mutation in any of the amino acid sequences provided in SEQ ID NOs: 10-262, wherein X represents any amino acid. In other embodiments, the mutations may be A262T, K294R, S409I, E480K, E543D, M694I, or E1219V of the amino acid sequence provided in SEQ ID NO: 9, or a corresponding mutation in any of the amino acid sequences provided in SEQ ID NOs: 10-262.


In some embodiments, the amino acid sequence of the Cas9 protein comprises an X1219V mutation or an E1219V mutation of the amino acid sequence provided in SEQ ID NO: 9, or a corresponding mutation in any of the amino acid sequences provided in SEQ ID NOs: 10-262, wherein X represents any amino acid.


In some embodiments, the amino acid sequence of the Cas9 protein comprises an X480K mutation or an E480K mutation of the amino acid sequence provided in SEQ ID NO: 9, or a corresponding mutation in any of the amino acid sequences provided in SEQ ID NOs: 10-262, wherein X represents any amino acid.


In some embodiments, the amino acid sequence of the Cas9 protein comprises an X543D mutation or a E543D mutation of the amino acid sequence provided in SEQ ID NO: 9, or a corresponding mutation in any of the amino acid sequences provided in SEQ ID NOs: 10-262, wherein X represents any amino acid.


In some embodiments, the amino acid sequence of the Cas9 comprises the mutations X480K, X543D, and X1219V; or the mutations E480K, E543D, and E1219V of the amino acid sequence provided in SEQ ID NO: 9, or a corresponding mutation in any of the amino acid sequences provided in SEQ ID NOs: 10-262, wherein X represents any amino acid.


In some embodiments, the amino acid sequence of the Cas9 comprises the mutations X262T, X409I, X480K, X543D, X694I, and X1219V; or the mutations A262T, S409I, E480K, E543D, M694I, and E1219V of the amino acid sequence provided in SEQ ID NO: 9, or a corresponding mutation in any of the amino acid sequences provided in SEQ ID NOs: 10-262, wherein X represents any amino acid.


In some embodiments, the amino acid sequence of the Cas9 protein comprises the mutations X294R, X480K, X543D, X1219V, X1256K, and X1362P; or the mutations K294R, E480K, E543D, E1219V, Q1256K, and L1362P of the amino acid sequence provided in SEQ ID NO: 9, or a corresponding mutation in any of the amino acid sequences provided in SEQ ID NOs: 10-262, wherein X represents any amino acid.


In some embodiments, the amino acid sequence of the Cas9 protein comprises the mutations X294R, X480K, X543D, X1219V, and X1256K, or mutations K294R, E480K, E543D, E1219V, and Q1256K of the amino acid sequence provided in SEQ ID NO: 9, or a corresponding mutation in any of the amino acid sequences provided in SEQ ID NOs: 10-262, wherein X represents any amino acid.


In some embodiments, the amino acid sequence of the Cas9 protein comprises the mutations X267G, X294R, X480K, X543D, X1219V, X1224K, and X1256K; or the mutations S267G, K294R, E480K, E543DE1219V, N1224K, and Q1256K of the amino acid sequence provided in SEQ ID NO: 9, or a corresponding mutation in any of the amino acid sequences provided in SEQ ID NOs: 10-262, wherein X represents any amino acid.


In some embodiments, the amino acid sequence of the Cas9 protein comprises the mutations X262T, X405I, X409I, X480K, X543D, X694I, and X1219V; or the mutations A262T, F405I, S409I, E480K, E543D, M694I, and E1219V of the amino acid sequence provided in SEQ ID NO: 9, or a corresponding mutation in any of the amino acid sequences provided in SEQ ID NOs: 10-262, wherein X represents any amino acid.


In some embodiments, the amino acid sequence of the HNH domain is at least 80%, at least 85%, at least 90%, at least 92%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, or at least 99.5% identical to the amino acid sequence of the HNH domain of any of SEQ ID NOs: 9-262. In some embodiments, the amino acid sequence of the HNH domain is identical to the amino acid sequence of any of the HNH domains of SEQ ID NOs: 9-262.


In some embodiments, the amino acid sequence of the RuvC domain is at least 80%, at least 85%, at least 90%, at least 92%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, or at least 99.5% identical to the amino acid sequence of the RuvC domain of any of SEQ ID NOs: 9-262. In some embodiments, the amino acid sequence of the RuvC domain is identical to the amino acid sequence of any of the RuvC domains of SEQ ID NOs: 9-262.


In some embodiments, the Cas9 protein comprises at D10A and/or a H840A mutation in the amino acid sequence provided in SEQ ID NO: 9, or a corresponding mutation in any of the amino acid sequences provided in SEQ ID NOs: 10-262. In some embodiments, the Cas9 protein comprises a D10X1 and/or a H840X2 mutation of the amino acid sequence provided in SEQ ID NO: 9, or a corresponding mutation in any of the amino acid sequences provided in SEQ ID NOs: 10-262, wherein X1 is any amino acid except for D, and wherein X2 is any amino acid except for H. In some embodiments, the Cas9 protein comprises an D10A mutation of the amino acid sequence provided in SEQ ID NO: 9, or a corresponding mutation in any of the amino acid sequences provided in SEQ ID NOs: 10-262. In some embodiments, the Cas9 protein comprises an H at amino acid residue 840 of the amino acid sequence provided in SEQ ID NO: 9, or a corresponding residue in any of the amino acid sequences provided in SEQ ID NOs: 10-262. In some embodiments, the Cas9 protein comprises an H840A mutation of the amino acid sequence provided in SEQ ID NO: 9, or a corresponding mutation in any of the amino acid sequences provided in SEQ ID NOs: 10-262. In some embodiments, the Cas9 protein comprises an D at amino acid residue 10 of the amino acid sequence provided in SEQ ID NO: 9, or a corresponding residue in any of the amino acid sequences provided in SEQ ID NOs: 10-262.


Some aspects of this disclosure provide fusion proteins comprising a Cas9 protein as provided herein that is fused to a second protein, thus forming a fusion protein. In some embodiments, the second protein is fused to the N-terminus of the Cas9 protein. In some embodiments, the second protein is fused to the C-terminus of the Cas9 protein. In some embodiments, the Cas9 domain and the effector domain are fused via a linker. The linker may be as simple as a covalent bond, or it may be a polymeric linker many atoms in length. In certain embodiments, the linker is a polypeptide or based on amino acids. In other embodiments, the linker is not peptide-like. In certain embodiments, the linker is a covalent bond (e.g., a carbon-carbon bond, disulfide bond, carbon-heteroatom bond, etc.). In certain embodiments, the linker is a carbon-nitrogen bond of an amide linkage. In certain embodiments, the linker is a cyclic or acyclic, substituted or unsubstituted, branched or unbranched aliphatic or heteroaliphatic linker. In certain embodiments, the linker is polymeric (e.g., polyethylene, polyethylene glycol, polyamide, polyester, etc.). In certain embodiments, the linker comprises a monomer, dimer, or polymer of aminoalkanoic acid. In certain embodiments, the linker comprises an aminoalkanoic acid (e.g., glycine, ethanoic acid, alanine, beta-alanine, 3-aminopropanoic acid, 4-aminobutanoic acid, 5-pentanoic acid, etc.). In certain embodiments, the linker comprises a monomer, dimer, or polymer of aminohexanoic acid (Ahx). In certain embodiments, the linker is based on a carbocyclic moiety (e.g., cyclopentane, cyclohexane). In other embodiments, the linker comprises a polyethylene glycol moiety (PEG). In other embodiments, the linker comprises amino acids. In certain embodiments, the linker comprises a peptide. In certain embodiments, the linker comprises an aryl or heteroaryl moiety. In certain embodiments, the linker is based on a phenyl ring. The linker may included functionalized moieties to facilitate attachment of a nucleophile (e.g., thiol, amino) from the peptide to the linker. Any electrophile may be used as part of the linker. Exemplary electrophiles include, but are not limited to, activated esters, activated amides, Michael acceptors, alkyl halides, aryl halides, acyl halides, and isothiocyanates.


In some embodiments, the linker comprises a chemical group or molecule linking two molecules or moieties, e.g., two domains of a fusion protein, such as, for example, a nuclease-inactive Cas9 domain and a effector domain (e.g., a deaminase domain). In some embodiments, the linker comprises one or more amino acid residues. For example, the linker may comprise at least 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 25, 30, 35, 40, 45, 50, or more amino acid residues. In some embodiments, the linker is 3, 9, 16, or 21 amino acids in length. In some embodiments, the linker comprises a (GGGGS)n (SEQ ID NO: 5), a (G)n(SEQ ID NO: 5087), an (EAAAK)n (SEQ ID NO: 6), a (GGS)n (SEQ ID NO: 5088), an SGSETPGTSESATPES (SEQ ID NO: 7) (also referred to as XTEN), or an (XP)n (SEQ ID NO: 5089) motif, or a combination of any of these, wherein n is independently an integer between 1 and 30. In some embodiments, wherein the linker comprises a (GGS)3 (SEQ ID NO: 5088) motif or a SGSETPGTSESATPES (SEQ ID NO: 7) (XTEN) motif.


Some aspects of this disclosure provide fusion proteins comprising a Cas9 protein as provided herein that is fused to a second protein, thus forming a fusion protein. In some embodiments, the second protein is fused to the N-terminus of the Cas9 protein. In some embodiments, the second protein is fused to the C-terminus of the Cas9 protein. In some embodiments, the Cas9 domain and the effector domain are fused via a nuclear localization sequence (NLS), for example a NLS comprising the amino acid sequence PKKKRKV (SEQ ID NO: 299), MDSLLMNRRKFLYQFKNVRWAKGRRETYLC (SEQ ID NO: 300), or SPKKKRKVEAS (SEQ ID NO: 284). In some embodiments, a NLS may be combined with any of the linkers listed above.


In some embodiments, the effector domain comprises an enzymatic domain. In some embodiments, the effector domain comprises a nuclease, a nickase, a recombinase, a deaminase, a methyltransferase, a methylase, an acetylase, an acetyltransferase, a transcriptional activator, or a transcriptional repressor domain, which may have nuclease activity, nickase activity, recombinase activity, deaminase activity, methyltransferase activity, methylase activity, acetylase activity, acetyltransferase activity transcriptional activation activity or transcriptional repression activity, respectively. In some embodiments, the effector domain is a effector domain. In some embodiments, the effector domain is a deaminase domain. In some embodiments, the deaminase is a cytosine deaminase or a cytidine deaminase. In some embodiments, the deaminase is an apolipoprotein B mRNA-editing complex (APOBEC) family deaminase. In some embodiments, the deaminase is an APOBEC1 deaminase. In some embodiments, the deaminase is an APOBEC2 deaminase. In some embodiments, the deaminase is an APOBEC3 deaminase. In some embodiments, the deaminase is an APOBEC3A deaminase. In some embodiments, the deaminase is an APOBEC3D deaminase. In some embodiments, the deaminase is an APOBEC3E deaminase. In some embodiments, the deaminase is an APOBEC3F deaminase. In some embodiments, the deaminase is an APOBEC3G deaminase. In some embodiments, the deaminase is an APOBEC3H deaminase. In some embodiments, the deaminase is an APOBEC4 deaminase. In some embodiments, the deaminase is an activation-induced deaminase (AID). In some embodiments, the effector domain is at least 80%, at least 85%, at least 90%, at least 92%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, or at least 99.5% identical to the deaminase domain of any one of SEQ ID NOs: 263-281. In some embodiments, the deaminase is a cytidine deaminase. In some embodiments, the deaminase is an apolipoprotein B mRNA-editing complex (APOBEC) family deaminase. In some embodiments, the deaminase is an APOBEC1 family deaminase. In some embodiments, the deaminase is an activation-induced cytidine deaminase (AID). In some embodiments, the deaminase is an ACF1/ASE deaminase. In some embodiments, the deaminase is an adenosine deaminase. In some embodiments, the deaminase is an ADAT family deaminase.


Some aspects of this disclosure provide fusion proteins comprising a Cas9 protein fused to a effector domain, e.g., a deaminase, and a uracil glycosylase inhibitor (UGI). Some aspects of this disclosure are based on the recognition that such fusion proteins may exhibit an increased nucleic acid editing efficiency as compared to fusion proteins not comprising an UGI domain. Domains such as the deaminase domains and UGI domains have been described and are within the scope of this disclosure. For example domains such as deaminase domains and UGI domains have been described in Provisional Application Nos.: 62/245,828, filed Oct. 23, 2015, 62/279,346 filed Jan. 15, 2016, 62/311,763 filed Mar. 22, 2016, 62/322,178 filed Apr. 13, 2016, 62/357,352 filed Jun. 30, 2016, 62/370,700 filed Aug. 3, 2016, 62/398,490 filed Sep. 22, 2016, and 62/408,686 filed Oct. 14, 2016; the entire contents of each is incorporated by reference herein. It should be appreciated that the deaminase domains and UGI domains described in the foregoing references are within the scope of this disclosure and may be fused with any of the Cas9 proteins provided herein.


In some embodiments, the effector domain of the fusion protein is a nuclease domain. In some embodiments, the nuclease domain is a FokI DNA cleavage domain. In some embodiments, the fusion protein dimerizes. In certain embodiments, the dimer of the fusion protein is active. For example, two Fok1 DNA cleavage domains may dimerize to cleave a nucleic acid.


In some embodiments, the Cas9 protein is fused to a second Cas9 protein. In some embodiments, the second Cas9 protein is the Cas9 protein of any one of claims 1-345. In some embodiments, the second Cas9 protein is fused to the N-terminus of the fusion protein. In some embodiments, the second Cas9 protein is fused to the C-terminus of the fusion protein. In some embodiments, the Cas9 protein and the second Cas9 protein are fused via a second linker. In some embodiments, the second linker comprises a (GGGGS)n (SEQ ID NO: 5), a (G)n (SEQ ID NO: 5087), an (EAAAK)n (SEQ ID NO: 6), a (GGS)n(SEQ ID NO: 5088), an SGSETPGTSESATPES (SEQ ID NO: 7), or an (XP)n (SEQ ID NO: 5089) motif, or a combination of any of these, wherein n is independently an integer between 1 and 30. In some embodiments, the second linker comprises a (GGS)3 (SEQ ID NO: 5088) motif.


Some aspects of this disclosure provide complexes comprising a Cas9 protein, or a Cas9 fusion protein as provided herein, and a guide RNA bound to the Cas9 protein, or the Cas9 fusion protein.


In some embodiments, the target sequence is a DNA sequence. In some embodiments, the target sequence is a sequence in the genome of a mammal. In some embodiments, the target sequence is a sequence in the genome of a human. In some embodiments, the 3′-end of the target sequence is not immediately adjacent to the canonical PAM sequence (5′-NGG-3′).


Some aspects of this disclosure provide methods of using the Cas9 proteins, fusion proteins, or complexes provided herein. For example, some aspects of this disclosure provide methods comprising contacting a DNA molecule (a) with a Cas9 protein or a fusion protein as provided herein and a guide RNA, wherein the guide RNA is about 15-100 nucleotides long and comprises a sequence of at least 10 contiguous nucleotides that is complementary to a target sequence; or (b) with a Cas9 protein, a Cas9 fusion protein, or a Cas9 protein or fusion protein complex with a gRNA as provided herein. In some embodiments, the 3′-end of the target sequence is not immediately adjacent to the canonical PAM sequence (5′-NGG-3′). In some embodiments, the 3′-end of the target sequence is immediately adjacent to an AGC, GAG, TTT, GTG, or CAA sequence. In some embodiments, the target DNA sequence comprises a sequence associated with a disease or disorder. In some embodiments, the target DNA sequence comprises a point mutation associated with a disease or disorder. In some embodiments, the activity of the Cas9 protein, the Cas9 fusion protein, or the complex results in correction of the point mutation. In some embodiments, the step of contacting is performed in vivo in a subject.


Some aspects of this disclosure provide kits comprising a nucleic acid construct, comprising (a) a nucleotide sequence encoding a Cas9 protein or a Cas9 fusion protein as provided herein; and (b) a heterologous promoter that drives expression of the sequence of (a). In some embodiments, the kit further comprises an expression construct encoding a guide RNA backbone, wherein the construct comprises a cloning site positioned to allow the cloning of a nucleic acid sequence identical or complementary to a target sequence into the guide RNA backbone.


Some aspects of this disclosure provide polynucleotides encoding any of the Cas9 proteins, Cas9 fusion proteins, or guide RNA bound to the Cas9 protein or Cas9 fusion protein provided herein. Some aspects of this disclosure provide vectors comprising such polynucleotides. In some embodiments, the vector comprises a heterologous promoter driving expression of the polynucleotide.


Some aspects of this disclosure provide cells comprising any of the Cas9 proteins, fusion proteins, nucleic acid molecules, and/or a vectors as provided herein.


The summary above is meant to illustrate, in a non-limiting manner, some of the embodiments, advantages, features, and uses of the technology disclosed herein. Other embodiments, advantages, features, and uses of the technology disclosed herein will be apparent from the Detailed Description, the Drawings, the Examples, and the Claims.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 shows the activity of wild-type Streptococcus pyogenes Cas9 on canonical PAM libraries and non-canonical PAM libraries.



FIG. 2 shows the activity of exemplary evolved Cas9 clones on a PAM library after directed evolution.



FIG. 3 shows a comparison of wild-type and evolved Cas9 in a mammalian GFP activation assay.



FIGS. 4A to 4B show the binding activity of Cas9 (pJH306) and evolved Cas9 proteins with an 5′-NGG-3′ PAM sequence using GFP as a readout. On 5′-NGG-3′ PAMs, many of the evolved Cas9 proteins showed increased Cas9 binding activity relative to wild-type Cas9 based on an increase in GFP fluorescence signal. FIG. 4A is a graph representing Cas9 binding activity as a function of % cells above the background fluorescence. FIG. 4B is a graph showing Cas9 binding activity as a function of mean fluorescence. Cas9 proteins used in these experiments were dCas9 proteins fused to a VPR transcriptional activator.



FIGS. 5A to 5B show the binding activity of wild type dCas9-VPR (pJH306) and evolved dCas9-VPR proteins with an NNN PAM sequence using GFP as a readout. On a library of NNN PAMs, many of the evolved Cas9 proteins showed increased Cas9 binding activity relative to wild-type Cas9 based on an increase in GFP fluorescence signal. FIG. 5A is a graph representing Cas9 binding activity as a function of % cells above background fluorescence. FIG. 5B is a graph showing Cas9 binding activity as a function of mean fluorescence. Cas9 proteins used in these experiments were dCas9 proteins fused to VPR.



FIG. 6 shows dCas9-VPR on all 64 PAM sequences as demonstrated by mean fluorescence on transfected cells gated by iRFP fluorescence. WT dCas9-VPR is pJH306.



FIG. 7 shows in vitro cutting assay. On the gel, WT is wild-type Cas9 (SEQ ID NO: 9), and 1 is Cas9 (SEQ ID NO: 9) with the E1219V mutation.



FIG. 8 shows a Cas9 fusion protein that can be used to modulate PAM specificity. One possible configuration for a linked Cas9-dCas9 system that could be used for increasing Cas9 targeting to non-canonical PAMs is shown. dCas9 binding to 5′-NGG-3′ or another PAM could localize Cas9 to an area close to target 2. This localization could help Cas9 cut a previously inaccessible PAM.



FIGS. 9A to 9B show dCas9-VPR binding activity on the NNNNN PAM Library. FIG. 9A is a graph representing dCas9-VPR binding activity on the NNNNN PAM library as a function of the % cells above background fluorescence. FIG. 9B is a graph representing dCas9-VPR binding activity on the NNNNN PAM library as a function of mean fluorescence.



FIG. 10 shows Cas9 cutting activity using % of cells with GFP loss as a readout. Cas9 proteins were tested with two sgRNAs, which either targeted the canonical 5′-NGG-3′ PAM or a GAT PAM within a GFP gene.



FIG. 11 illustrates double-stranded DNA substrate bound by Cas9:DNA editing enzyme:sgRNA complexes. The DNA editing enzyme may be, without limitation, a nuclease, nickase, recombinase, deaminase, methyltransferase, methylase, acetylase, or acetyltransferase.



FIG. 12 shows the results of the PAM depletion assay. pJH760 was tested in the PAM depletion assay on four new targets: re2, VEGF, CLTA, and CCR5D.



FIG. 13 shows GFP cutting in mammalian cells.



FIG. 14 shows the results of a PAM depletion assay to test pJH760 (xCas9 v1.0) on the re2 target.



FIG. 15 shows the results of a PAM depletion assay to test pJH760 (xCas9 v1.0) on the VEGF target.



FIG. 16 shows the results of a PAM depletion assay to test pJH760 (xCas9 v1.0) on the CLTA target.



FIG. 17 shows the results of a PAM depletion assay to test pJH760 (xCas9 v1.0) on the CCR5D target.



FIG. 18 shows the results of a PAM depletion assay to test four xCas9v3 mutants on the re2 target.



FIG. 19 shows the results of a PAM depletion assay to test four xCas9v3 mutants on the VEGF target.



FIG. 20 shows the results of a PAM depletion assay to test four xCas9v3 mutants on the CLTA target.





DEFINITIONS

As used herein and in the claims, the singular forms “a,” “an,” and “the” include the singular and the plural reference unless the context clearly indicates otherwise. Thus, for example, a reference to “an agent” includes a single agent and a plurality of such agents.


The term “Cas9” or “Cas9 nuclease” refers to an RNA-guided nuclease comprising a Cas9 protein, or a fragment thereof (e.g., a protein comprising an active or inactive DNA cleavage domain of Cas9, and/or the gRNA binding domain of Cas9). A Cas9 nuclease is also referred to sometimes as a casn1 nuclease or a CRISPR (clustered regularly interspaced short palindromic repeat)-associated nuclease. CRISPR is an adaptive immune system that provides protection against mobile genetic elements (viruses, transposable elements and conjugative plasmids). CRISPR clusters contain spacers, sequences complementary to antecedent mobile elements, and target invading nucleic acids. CRISPR clusters are transcribed and processed into CRISPR RNA (crRNA). In type II CRISPR systems correct processing of pre-crRNA requires a trans-encoded small RNA (tracrRNA), endogenous ribonuclease 3 (rnc) and a Cas9 protein. The tracrRNA serves as a guide for ribonuclease 3-aided processing of pre-crRNA. Subsequently, Cas9/crRNA/tracrRNA endonucleolytically cleaves linear or circular dsDNA target complementary to the spacer. The target strand not complementary to crRNA is first cut endonucleolytically, then trimmed 3′-5′ exonucleolytically. In nature, DNA-binding and cleavage typically requires protein and both RNAs. However, single guide RNAs (“sgRNA”, or simply “gNRA”) can be engineered so as to incorporate aspects of both the crRNA and tracrRNA into a single RNA species. See, e.g., Jinek M., Chylinski K., Fonfara I., Hauer M., Doudna J. A., Charpentier E. Science 337:816-821(2012), the entire contents of which are hereby incorporated by reference. Cas9 recognizes a short motif in the CRISPR repeat sequences (the PAM or protospacer adjacent motif) to help distinguish self versus non-self. Cas9 nuclease sequences and structures are well known to those of skill in the art (see, e.g., “Complete genome sequence of an M1 strain of Streptococcus pyogenes.” Ferretti et al., J. J., McShan W. M., Ajdic D. J., Savic D. J., Savic G., Lyon K., Primeaux C., Sezate S., Suvorov A. N., Kenton S., Lai H. S., Lin S. P., Qian Y., Jia H. G., Najar F. Z., Ren Q., Zhu H., Song L., White J., Yuan X., Clifton S. W., Roe B. A., McLaughlin R. E., Proc. Natl. Acad. Sci. U.S.A. 98:4658-4663(2001); “CRISPR RNA maturation by trans-encoded small RNA and host factor RNase III.” Deltcheva E., Chylinski K., Sharma C. M., Gonzales K., Chao Y., Pirzada Z. A., Eckert M. R., Vogel J., Charpentier E., Nature 471:602-607(2011); and “A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity.” Jinek M., Chylinski K., Fonfara I., Hauer M., Doudna J. A., Charpentier E. Science 337:816-821(2012), the entire contents of each of which are incorporated herein by reference). Cas9 orthologs have been described in various species, including, but not limited to, S. pyogenes and S. thermophilus. Additional suitable Cas9 nucleases and sequences will be apparent to those of skill in the art based on this disclosure, and such Cas9 nucleases and sequences include Cas9 sequences from the organisms and loci disclosed in Chylinski, Rhun, and Charpentier, “The tracrRNA and Cas9 families of type II CRISPR-Cas immunity systems” (2013) RNA Biology 10:5, 726-737; the entire contents of which are incorporated herein by reference. In some embodiments, a Cas9 nuclease has an inactive (e.g., an inactivated) DNA cleavage domain.


A nuclease-inactivated Cas9 protein may interchangeably be referred to as a “dCas9” protein (for nuclease-“dead” Cas9). Methods for generating a Cas9 having an inactive DNA cleavage domain are known (See, e.g., Jinek et al., Science. 337:816-821(2012); Qi et al., “Repurposing CRISPR as an RNA-Guided Platform for Sequence-Specific Control of Gene Expression” (2013) Cell. 28; 152(5):1173-83, the entire contents of each of which are incorporated herein by reference). For example, the DNA cleavage domain of Cas9 is known to include two subdomains, the HNH nuclease subdomain and the RuvC1 subdomain. The HNH subdomain cleaves the strand complementary to the gRNA, whereas the RuvC1 subdomain cleaves the non-complementary strand. Mutations within these subdomains can silence the nuclease activity of Cas9. For example, the mutations D10A and H840A completely inactivate the nuclease activity of S. pyogenes Cas9 (Jinek et al., Science. 337:816-821(2012); Qi et al., Cell. 28; 152(5):1173-83 (2013).


In some embodiments, proteins comprising fragments of Cas9 are provided. For example, in some embodiments, a protein comprises one of two Cas9 domains: (1) the gRNA binding domain of Cas9; or (2) the DNA cleavage domain of Cas9. In some embodiments, proteins comprising Cas9 or fragments thereof are referred to as “Cas9 variants.” A Cas9 variant shares homology to Cas9. For example a Cas9 variant is at least about 70% identical, at least about 80% identical, at least about 90% identical, at least about 95% identical, at least about 96% identical, at least about 97% identical, at least about 98% identical, at least about 99% identical, at least about 99.5% identical, or at least about 99.9% to wild type Cas9. In some embodiments, the Cas9 variant comprises a fragment of Cas9 (e.g., a gRNA binding domain or a DNA-cleavage domain), such that the fragment is at least about 70% identical, at least about 80% identical, at least about 90% identical, at least about 95% identical, at least about 96% identical, at least about 97% identical, at least about 98% identical, at least about 99% identical, at least about 99.5% identical, or at least about 99.9% to the corresponding fragment of wild type Cas9. In some embodiments, wild type Cas9 corresponds to Cas9 from Streptococcus pyogenes (NCBI Reference Sequence: NC_017053.1, SEQ ID NO:1 (nucleotide); SEQ ID NO:2 (amino acid)).









(SEQ ID NO: 1)


ATGGATAAGAAATACTCAATAGGCTTAGATATCGGCACAAATAGCGTCG





GATGGGCGGTGATCACTGATGATTATAAGGTTCCGTCTAAAAAGTTCAA





GGTTCTGGGAAATACAGACCGCCACAGTATCAAAAAAAATCTTATAGGG





GCTCTTTTATTTGGCAGTGGAGAGACAGCGGAAGCGACTCGTCTCAAAC





GGACAGCTCGTAGAAGGTATACACGTCGGAAGAATCGTATTTGTTATCT





ACAGGAGATTTTTTCAAATGAGATGGCGAAAGTAGATGATAGTTTCTTT





CATCGACTTGAAGAGTCTTTTTTGGTGGAAGAAGACAAGAAGCATGAAC





GTCATCCTATTTTTGGAAATATAGTAGATGAAGTTGCTTATCATGAGAA





ATATCCAACTATCTATCATCTGCGAAAAAAATTGGCAGATTCTACTGAT





AAAGCGGATTTGCGCTTAATCTATTTGGCCTTAGCGCATATGATTAAGT





TTCGTGGTCATTTTTTGATTGAGGGAGATTTAAATCCTGATAATAGTGA





TGTGGACAAACTATTTATCCAGTTGGTACAAATCTACAATCAATTATTT





GAAGAAAACCCTATTAACGCAAGTAGAGTAGATGCTAAAGCGATTCTTT





CTGCACGATTGAGTAAATCAAGACGATTAGAAAATCTCATTGCTCAGCT





CCCCGGTGAGAAGAGAAATGGCTTGTTTGGGAATCTCATTGCTTTGTCA





TTGGGATTGACCCCTAATTTTAAATCAAATTTTGATTTGGCAGAAGATG





CTAAATTACAGCTTTCAAAAGATACTTACGATGATGATTTAGATAATTT





ATTGGCGCAAATTGGAGATCAATATGCTGATTTGTTTTTGGCAGCTAAG





AATTTATCAGATGCTATTTTACTTTCAGATATCCTAAGAGTAAATAGTG





AAATAACTAAGGCTCCCCTATCAGCTTCAATGATTAAGCGCTACGATGA





ACATCATCAAGACTTGACTCTTTTAAAAGCTTTAGTTCGACAACAACTT





CCAGAAAAGTATAAAGAAATCTTTTTTGATCAATCAAAAAACGGATATG





CAGGTTATATTGATGGGGGAGCTAGCCAAGAAGAATTTTATAAATTTAT





CAAACCAATTTTAGAAAAAATGGATGGTACTGAGGAATTATTGGTGAAA





CTAAATCGTGAAGATTTGCTGCGCAAGCAACGGACCTTTGACAACGGCT





CTATTCCCCATCAAATTCACTTGGGTGAGCTGCATGCTATTTTGAGAAG





ACAAGAAGACTTTTATCCATTTTTAAAAGACAATCGTGAGAAGATTGAA





AAAATCTTGACTTTTCGAATTCCTTATTATGTTGGTCCATTGGCGCGTG





GCAATAGTCGTTTTGCATGGATGACTCGGAAGTCTGAAGAAACAATTAC





CCCATGGAATTTTGAAGAAGTTGTCGATAAAGGTGCTTCAGCTCAATCA





TTTATTGAACGCATGACAAACTTTGATAAAAATCTTCCAAATGAAAAAG





TACTACCAAAACATAGTTTGCTTTATGAGTATTTTACGGTTTATAACGA





ATTGACAAAGGTCAAATATGTTACTGAGGGAATGCGAAAACCAGCATTT





CTTTCAGGTGAACAGAAGAAAGCCATTGTTGATTTACTCTTCAAAACAA





ATCGAAAAGTAACCGTTAAGCAATTAAAAGAAGATTATTTCAAAAAAAT





AGAATGTTTTGATAGTGTTGAAATTTCAGGAGTTGAAGATAGATTTAAT





GCTTCATTAGGCGCCTACCATGATTTGCTAAAAATTATTAAAGATAAAG





ATTTTTTGGATAATGAAGAAAATGAAGATATCTTAGAGGATATTGTTTT





AACATTGACCTTATTTGAAGATAGGGGGATGATTGAGGAAAGACTTAAA





ACATATGCTCACCTCTTTGATGATAAGGTGATGAAACAGCTTAAACGTC





GCCGTTATACTGGTTGGGGACGTTTGTCTCGAAAATTGATTAATGGTAT





TAGGGATAAGCAATCTGGCAAAACAATATTAGATTTTTTGAAATCAGAT





GGTTTTGCCAATCGCAATTTTATGCAGCTGATCCATGATGATAGTTTGA





CATTTAAAGAAGATATTCAAAAAGCACAGGTGTCTGGACAAGGCCATAG





TTTACATGAACAGATTGCTAACTTAGCTGGCAGTCCTGCTATTAAAAAA





GGTATTTTACAGACTGTAAAAATTGTTGATGAACTGGTCAAAGTAATGG





GGCATAAGCCAGAAAATATCGTTATTGAAATGGCACGTGAAAATCAGAC





AACTCAAAAGGGCCAGAAAAATTCGCGAGAGCGTATGAAACGAATCGAA





GAAGGTATCAAAGAATTAGGAAGTCAGATTCTTAAAGAGCATCCTGTTG





AAAATACTCAATTGCAAAATGAAAAGCTCTATCTCTATTATCTACAAAA





TGGAAGAGACATGTATGTGGACCAAGAATTAGATATTAATCGTTTAAGT





GATTATGATGTCGATCACATTGTTCCACAAAGTTTCATTAAAGACGATT





CAATAGACAATAAGGTACTAACGCGTTCTGATAAAAATCGTGGTAAATC





GGATAACGTTCCAAGTGAAGAAGTAGTCAAAAAGATGAAAAACTATTGG





AGACAACTTCTAAACGCCAAGTTAATCACTCAACGTAAGTTTGATAATT





TAACGAAAGCTGAACGTGGAGGTTTGAGTGAACTTGATAAAGCTGGTTT





TATCAAACGCCAATTGGTTGAAACTCGCCAAATCACTAAGCATGTGGCA





CAAATTTTGGATAGTCGCATGAATACTAAATACGATGAAAATGATAAAC





TTATTCGAGAGGTTAAAGTGATTACCTTAAAATCTAAATTAGTTTCTGA





CTTCCGAAAAGATTTCCAATTCTATAAAGTACGTGAGATTAACAATTAC





CATCATGCCCATGATGCGTATCTAAATGCCGTCGTTGGAACTGCTTTGA





TTAAGAAATATCCAAAACTTGAATCGGAGTTTGTCTATGGTGATTATAA





AGTTTATGATGTTCGTAAAATGATTGCTAAGTCTGAGCAAGAAATAGGC





AAAGCAACCGCAAAATATTTCTTTTACTCTAATATCATGAACTTCTTCA





AAACAGAAATTACACTTGCAAATGGAGAGATTCGCAAACGCCCTCTAAT





CGAAACTAATGGGGAAACTGGAGAAATTGTCTGGGATAAAGGGCGAGAT





TTTGCCACAGTGCGCAAAGTATTGTCCATGCCCCAAGTCAATATTGTCA





AGAAAACAGAAGTACAGACAGGCGGATTCTCCAAGGAGTCAATTTTACC





AAAAAGAAATTCGGACAAGCTTATTGCTCGTAAAAAAGACTGGGATCCA





AAAAAATATGGTGGTTTTGATAGTCCAACGGTAGCTTATTCAGTCCTAG





TGGTTGCTAAGGTGGAAAAAGGGAAATCGAAGAAGTTAAAATCCGTTAA





AGAGTTACTAGGGATCACAATTATGGAAAGAAGTTCCTTTGAAAAAAAT





CCGATTGACTTTTTAGAAGCTAAAGGATATAAGGAAGTTAAAAAAGACT





TAATCATTAAACTACCTAAATATAGTCTTTTTGAGTTAGAAAACGGTCG





TAAACGGATGCTGGCTAGTGCCGGAGAATTACAAAAAGGAAATGAGCTG





GCTCTGCCAAGCAAATATGTGAATTTTTTATATTTAGCTAGTCATTATG





AAAAGTTGAAGGGTAGTCCAGAAGATAACGAACAAAAACAATTGTTTGT





GGAGCAGCATAAGCATTATTTAGATGAGATTATTGAGCAAATCAGTGAA





TTTTCTAAGCGTGTTATTTTAGCAGATGCCAATTTAGATAAAGTTCTTA





GTGCATATAACAAACATAGAGACAAACCAATACGTGAACAAGCAGAAAA





TATTATTCATTTATTTACGTTGACGAATCTTGGAGCTCCCGCTGCTTTT





AAATATTTTGATACAACAATTGATCGTAAACGATATACGTCTACAAAAG





AAGTTTTAGATGCCACTCTTATCCATCAATCCATCACTGGTCTTTATGA





AACACGCATTGATTTGAGTCAGCTAGGAGGTGACTGA





(SEQ ID NO: 2)


MDKKYSIGLDIGTNSVGWAVITDDYKVPSKKFKVLGNTDRHSIKKNLIG






ALLFGSGETAEATRLKRTARRRYTRRKNRICYLQEIFSNEMAKVDDSFF






HRLEESFLVEEDKKHERHPIFGNIVDEVAYHEKYPTIYHLRKKLADSTD





KADLRLIYLALAHMIKFRGHFLIEGDLNPDNSDVDKLFIQLVQIYNQLF





EENPINASRVDAKAILSARLSKSRRLENLIAQLPGEKRNGLFGNLIALS





LGLTPNFKSNFDLAEDAKLQLSKDTYDDDLDNLLAQIGDQYADLFLAAK





NLSDAILLSDILRVNSEITKAPLSASMIKRYDEHHQDLTLLKALVRQQL





PEKYKEIFFDQSKNGYAGYIDGGASQEEFYKFIKPILEKMDGTEELLVK





LNREDLLRKQRTFDNGSIPHQIHLGELHAILRRQEDFYPFLKDNREKIE





KILTFRIPYYVGPLARGNSRFAWMTRKSEETITPWNFEEVVDKGASAQS





FIERMTNFDKNLPNEKVLPKHSLLYEYFTVYNELTKVKYVTEGMRKPAF





LSGEQKKAIVDLLFKTNRKVTVKQLKEDYFKKIECFDSVEISGVEDRFN





ASLGAYHDLLKIIKDKDFLDNEENEDILEDIVLTLTLFEDRGMIEERLK





TYAHLFDDKVMKQLKRRRYTGWGRLSRKLINGIRDKQSGKTILDFLKSD





GFANRNFMQLIHDDSLTFKEDIQKAQVSGQGHSLHEQIANLAGSPAIKK






GILQTVKIVDELVKVMGHKPENIVIEMARENQTTQKGQKNSRERMKRIE







EGIKELGSQILKEHPVENTQLQNEKLYLYYLQNGRDMYVDQELDINRLS







DYDVDHIVPQSFIKDDSIDNKVLTRSDKNRGKSDNVPSEEVVKKMKNYW







RQLLNAKLITQRKFDNLTKAERGGLSELDKAGFIKRQLVETRQITKHVA







QILDSRMNTKYDENDKLIREVKVITLKSKLVSDERKDFQFYKVREINNY







HHAHDAYLNAVVGTALIKKYPKLESEFVYGDYKVYDVRKMIAKSEQEIG







KATAKYFFYSNIMNFEKTEITLANGEIRKRPLIETNGETGEIVWDKGRD







FATVRKVLSMPQVNIVKKTEVQTGGFSKESILPKRNSDKLIARKKDWDP






KKYGGFDSPTVAYSVLVVAKVEKGKSKKLKSVKELLGITIMERSSFEKN





PIDFLEAKGYKEVKKDLIIKLPKYSLFELENGRKRMLASAGELQKGNEL





ALPSKYVNFLYLASHYEKLKGSPEDNEQKQLFVEQHKHYLDEIIEQISE





FSKRVILADANLDKVLSAYNKHRDKPIREQAENIIHLFTLTNLGAPAAF





KYFDTTIDRKRYTSTKEVLDATLIHQSITGLYETRIDLSQLGGD





(single underline: HNH domain; double underline:


RuvC domain) 






In some embodiments, wild type Cas9 corresponds to, or comprises SEQ ID NO:3 (nucleotide) and/or SEQ ID NO: 4 (amino acid):









(SEQ ID NO: 3)


ATGGATAAAAAGTATTCTATTGGTTTAGACATCGGCACTAATTCCGTTG





GATGGGCTGTCATAACCGATGAATACAAAGTACCTTCAAAGAAATTTAA





GGTGTTGGGGAACACAGACCGTCATTCGATTAAAAAGAATCTTATCGGT





GCCCTCCTATTCGATAGTGGCGAAACGGCAGAGGCGACTCGCCTGAAAC





GAACCGCTCGGAGAAGGTATACACGTCGCAAGAACCGAATATGTTACTT





ACAAGAAATTTTTAGCAATGAGATGGCCAAAGTTGACGATTCTTTCTTT





CACCGTTTGGAAGAGTCCTTCCTTGTCGAAGAGGACAAGAAACATGAAC





GGCACCCCATCTTTGGAAACATAGTAGATGAGGTGGCATATCATGAAAA





GTACCCAACGATTTATCACCTCAGAAAAAAGCTAGTTGACTCAACTGAT





AAAGCGGACCTGAGGTTAATCTACTTGGCTCTTGCCCATATGATAAAGT





TCCGTGGGCACTTTCTCATTGAGGGTGATCTAAATCCGGACAACTCGGA





TGTCGACAAACTGTTCATCCAGTTAGTACAAACCTATAATCAGTTGTTT





GAAGAGAACCCTATAAATGCAAGTGGCGTGGATGCGAAGGCTATTCTTA





GCGCCCGCCTCTCTAAATCCCGACGGCTAGAAAACCTGATCGCACAATT





ACCCGGAGAGAAGAAAAATGGGTTGTTCGGTAACCTTATAGCGCTCTCA





CTAGGCCTGACACCAAATTTTAAGTCGAACTTCGACTTAGCTGAAGATG





CCAAATTGCAGCTTAGTAAGGACACGTACGATGACGATCTCGACAATCT





ACTGGCACAAATTGGAGATCAGTATGCGGACTTATTTTTGGCTGCCAAA





AACCTTAGCGATGCAATCCTCCTATCTGACATACTGAGAGTTAATACTG





AGATTACCAAGGCGCCGTTATCCGCTTCAATGATCAAAAGGTACGATGA





ACATCACCAAGACTTGACACTTCTCAAGGCCCTAGTCCGTCAGCAACTG





CCTGAGAAATATAAGGAAATATTCTTTGATCAGTCGAAAAACGGGTACG





CAGGTTATATTGACGGCGGAGCGAGTCAAGAGGAATTCTACAAGTTTAT





CAAACCCATATTAGAGAAGATGGATGGGACGGAAGAGTTGCTTGTAAAA





CTCAATCGCGAAGATCTACTGCGAAAGCAGCGGACTTTCGACAACGGTA





GCATTCCACATCAAATCCACTTAGGCGAATTGCATGCTATACTTAGAAG





GCAGGAGGATTTTTATCCGTTCCTCAAAGACAATCGTGAAAAGATTGAG





AAAATCCTAACCTTTCGCATACCTTACTATGTGGGACCCCTGGCCCGAG





GGAACTCTCGGTTCGCATGGATGACAAGAAAGTCCGAAGAAACGATTAC





TCCATGGAATTTTGAGGAAGTTGTCGATAAAGGTGCGTCAGCTCAATCG





TTCATCGAGAGGATGACCAACTTTGACAAGAATTTACCGAACGAAAAAG





TATTGCCTAAGCACAGTTTACTTTACGAGTATTTCACAGTGTACAATGA





ACTCACGAAAGTTAAGTATGTCACTGAGGGCATGCGTAAACCCGCCTTT





CTAAGCGGAGAACAGAAGAAAGCAATAGTAGATCTGTTATTCAAGACCA





ACCGCAAAGTGACAGTTAAGCAATTGAAAGAGGACTACTTTAAGAAAAT





TGAATGCTTCGATTCTGTCGAGATCTCCGGGGTAGAAGATCGATTTAAT





GCGTCACTTGGTACGTATCATGACCTCCTAAAGATAATTAAAGATAAGG





ACTTCCTGGATAACGAAGAGAATGAAGATATCTTAGAAGATATAGTGTT





GACTCTTACCCTCTTTGAAGATCGGGAAATGATTGAGGAAAGACTAAAA





ACATACGCTCACCTGTTCGACGATAAGGTTATGAAACAGTTAAAGAGGC





GTCGCTATACGGGCTGGGGACGATTGTCGCGGAAACTTATCAACGGGAT





AAGAGACAAGCAAAGTGGTAAAACTATTCTCGATTTTCTAAAGAGCGAC





GGCTTCGCCAATAGGAACTTTATGCAGCTGATCCATGATGACTCTTTAA





CCTTCAAAGAGGATATACAAAAGGCACAGGTTTCCGGACAAGGGGACTC





ATTGCACGAACATATTGCGAATCTTGCTGGTTCGCCAGCCATCAAAAAG





GGCATACTCCAGACAGTCAAAGTAGTGGATGAGCTAGTTAAGGTCATGG





GACGTCACAAACCGGAAAACATTGTAATCGAGATGGCACGCGAAAATCA





AACGACTCAGAAGGGGCAAAAAAACAGTCGAGAGCGGATGAAGAGAATA





GAAGAGGGTATTAAAGAACTGGGCAGCCAGATCTTAAAGGAGCATCCTG





TGGAAAATACCCAATTGCAGAACGAGAAACTTTACCTCTATTACCTACA





AAATGGAAGGGACATGTATGTTGATCAGGAACTGGACATAAACCGTTTA





TCTGATTACGACGTCGATCACATTGTACCCCAATCCTTTTTGAAGGACG





ATTCAATCGACAATAAAGTGCTTACACGCTCGGATAAGAACCGAGGGAA





AAGTGACAATGTTCCAAGCGAGGAAGTCGTAAAGAAAATGAAGAACTAT





TGGCGGCAGCTCCTAAATGCGAAACTGATAACGCAAAGAAAGTTCGATA





ACTTAACTAAAGCTGAGAGGGGTGGCTTGTCTGAACTTGACAAGGCCGG





ATTTATTAAACGTCAGCTCGTGGAAACCCGCCAAATCACAAAGCATGTT





GCACAGATACTAGATTCCCGAATGAATACGAAATACGACGAGAACGATA





AGCTGATTCGGGAAGTCAAAGTAATCACTTTAAAGTCAAAATTGGTGTC





GGACTTCAGAAAGGATTTTCAATTCTATAAAGTTAGGGAGATAAATAAC





TACCACCATGCGCACGACGCTTATCTTAATGCCGTCGTAGGGACCGCAC





TCATTAAGAAATACCCGAAGCTAGAAAGTGAGTTTGTGTATGGTGATTA





CAAAGTTTATGACGTCCGTAAGATGATCGCGAAAAGCGAACAGGAGATA





GGCAAGGCTACAGCCAAATACTTCTTTTATTCTAACATTATGAATTTCT





TTAAGACGGAAATCACTCTGGCAAACGGAGAGATACGCAAACGACCTTT





AATTGAAACCAATGGGGAGACAGGTGAAATCGTATGGGATAAGGGCCGG





GACTTCGCGACGGTGAGAAAAGTTTTGTCCATGCCCCAAGTCAACATAG





TAAAGAAAACTGAGGTGCAGACCGGAGGGTTTTCAAAGGAATCGATTCT





TCCAAAAAGGAATAGTGATAAGCTCATCGCTCGTAAAAAGGACTGGGAC





CCGAAAAAGTACGGTGGCTTCGATAGCCCTACAGTTGCCTATTCTGTCC





TAGTAGTGGCAAAAGTTGAGAAGGGAAAATCCAAGAAACTGAAGTCAGT





CAAAGAATTATTGGGGATAACGATTATGGAGCGCTCGTCTTTTGAAAAG





AACCCCATCGACTTCCTTGAGGCGAAAGGTTACAAGGAAGTAAAAAAGG





ATCTCATAATTAAACTACCAAAGTATAGTCTGTTTGAGTTAGAAAATGG





CCGAAAACGGATGTTGGCTAGCGCCGGAGAGCTTCAAAAGGGGAACGAA





CTCGCACTACCGTCTAAATACGTGAATTTCCTGTATTTAGCGTCCCATT





ACGAGAAGTTGAAAGGTTCACCTGAAGATAACGAACAGAAGCAACTTTT





TGTTGAGCAGCACAAACATTATCTCGACGAAATCATAGAGCAAATTTCG





GAATTCAGTAAGAGAGTCATCCTAGCTGATGCCAATCTGGACAAAGTAT





TAAGCGCATACAACAAGCACAGGGATAAACCCATACGTGAGCAGGCGGA





AAATATTATCCATTTGTTTACTCTTACCAACCTCGGCGCTCCAGCCGCA





TTCAAGTATTTTGACACAACGATAGATCGCAAACGATACACTTCTACCA





AGGAGGTGCTAGACGCGACACTGATTCACCAATCCATCACGGGATTATA





TGAAACTCGGATAGATTTGTCACAGCTTGGGGGTGACGGATCCCCCAAG





AAGAAGAGGAAAGTCTCGAGCGACTACAAAGACCATGACGGTGATTATA





AAGATCATGACATCGATTACAAGGATGACGATGACAAGGCTGCAGGA





(SEQ ID NO: 4)


MDKKYSIGLAIGTNSVGWAVITDEYKVPSKKFKVLGNTDRHSIKKNLIG






ALLFDSGETAEATRLKRTARRRYTRRKNRICYLQEIFSNEMAKVDDSFF






HRLEESFLVEEDKKHERHPIFGNIVDEVAYHEKYPTIYHLRKKLVDSTD





KADLRLIYLALAHMIKFRGHFLIEGDLNPDNSDVDKLFIQLVQTYNQLF





EENPINASGVDAKAILSARLSKSRRLENLIAQLPGEKKNGLFGNLIALS





LGLTPNFKSNFDLAEDAKLQLSKDTYDDDLDNLLAQIGDQYADLFLAAK





NLSDAILLSDILRVNTEITKAPLSASMIKRYDEHHQDLTLLKALVRQQL





PEKYKEIFFDQSKNGYAGYIDGGASQEEFYKFIKPILEKMDGTEELLVK





LNREDLLRKQRTFDNGSIPHQIHLGELHAILRRQEDFYPFLKDNREKIE





KILTFRIPYYVGPLARGNSRFAWMTRKSEETITPWNFEEVVDKGASAQS





FIERMTNFDKNLPNEKVLPKHSLLYEYFTVYNELTKVKYVTEGMRKPAF





LSGEQKKAIVDLLFKTNRKVTVKQLKEDYFKKIECFDSVEISGVEDRFN





ASLGTYHDLLKIIKDKDFLDNEENEDILEDIVLTLTLFEDREMIEERLK





TYAHLFDDKVMKQLKRRRYTGWGRLSRKLINGIRDKQSGKTILDFLKSD





GFANRNFMQLIHDDSLTFKEDIQKAQVSGQGDSLHEHIANLAGSPAIKK






GILQTVKVVDELVKVMGRHKPENIVIEMARENQTTQKGQKNSRERMKRI







EEGIKELGSQILKEHPVENTQLQNEKLYLYYLQNGRDMYVDQELDINRL







SDYDVDHIVPQSFLKDDSIDNKVLTRSDKNRGKSDNVPSEEVVKKMKNY







WRQLLNAKLITQRKFDNLTKAERGGLSELDKAGFIKRQLVETRQITKHV







AQILDSRMNTKYDENDKLIREVKVITLKSKLVSDFRKDFQFYKVREINN







YHHAHDAYLNAVVGTALIKKYPKLESEFVYGDYKVYDVRKMIAKSEQEI







GKATAKYFFYSNIMNFFKTEITLANGEIRKRPLIETNGETGEIVWDKGR







DFATVRKVLSMPQVNIVKKTEVQTGGFSKESILPKRNSDKLIARKKDWD






PKKYGGFDSPTVAYSVLVVAKVEKGKSKKLKSVKELLGITIMERSSFEK





NPIDFLEAKGYKEVKKDLIIKLPKYSLFELENGRKRMLASAGELQKGNE





LALPSKYVNFLYLASHYEKLKGSPEDNEQKQLFVEQHKHYLDEIIEQIS





EFSKRVILADANLDKVLSAYNKHRDKPIREQAENIIHLFTLTNLGAPAA





FKYFDTTIDRKRYTSTKEVLDATLIHQSITGLYETRIDLSQLGGD





(single underline: HNH domain; double underline:


RuvC domain)






In some embodiments, wild type Cas9 corresponds to Cas9 from Streptococcus pyogenes (NCBI Reference Sequence: NC_002737.2, SEQ ID NO: 282 (nucleotide); and Uniport Reference Sequence: Q99ZW2, SEQ ID NO: 9 (amino acid).









(SEQ ID NO: 282)


ATGGATAAGAAATACTCAATAGGCTTAGATATCGGCACAAATAGCGTCG





GATGGGCGGTGATCACTGATGAATATAAGGTTCCGTCTAAAAAGTTCAA





GGTTCTGGGAAATACAGACCGCCACAGTATCAAAAAAAATCTTATAGGG





GCTCTTTTATTTGACAGTGGAGAGACAGCGGAAGCGACTCGTCTCAAAC





GGACAGCTCGTAGAAGGTATACACGTCGGAAGAATCGTATTTGTTATCT





ACAGGAGATTTTTTCAAATGAGATGGCGAAAGTAGATGATAGTTTCTTT





CATCGACTTGAAGAGTCTTTTTTGGTGGAAGAAGACAAGAAGCATGAAC





GTCATCCTATTTTTGGAAATATAGTAGATGAAGTTGCTTATCATGAGAA





ATATCCAACTATCTATCATCTGCGAAAAAAATTGGTAGATTCTACTGAT





AAAGCGGATTTGCGCTTAATCTATTTGGCCTTAGCGCATATGATTAAGT





TTCGTGGTCATTTTTTGATTGAGGGAGATTTAAATCCTGATAATAGTGA





TGTGGACAAACTATTTATCCAGTTGGTACAAACCTACAATCAATTATTT





GAAGAAAACCCTATTAACGCAAGTGGAGTAGATGCTAAAGCGATTCTTT





CTGCACGATTGAGTAAATCAAGACGATTAGAAAATCTCATTGCTCAGCT





CCCCGGTGAGAAGAAAAATGGCTTATTTGGGAATCTCATTGCTTTGTCA





TTGGGTTTGACCCCTAATTTTAAATCAAATTTTGATTTGGCAGAAGATG





CTAAATTACAGCTTTCAAAAGATACTTACGATGATGATTTAGATAATTT





ATTGGCGCAAATTGGAGATCAATATGCTGATTTGTTTTTGGCAGCTAAG





AATTTATCAGATGCTATTTTACTTTCAGATATCCTAAGAGTAAATACTG





AAATAACTAAGGCTCCCCTATCAGCTTCAATGATTAAACGCTACGATGA





ACATCATCAAGACTTGACTCTTTTAAAAGCTTTAGTTCGACAACAACTT





CCAGAAAAGTATAAAGAAATCTTTTTTGATCAATCAAAAAACGGATATG





CAGGTTATATTGATGGGGGAGCTAGCCAAGAAGAATTTTATAAATTTAT





CAAACCAATTTTAGAAAAAATGGATGGTACTGAGGAATTATTGGTGAAA





CTAAATCGTGAAGATTTGCTGCGCAAGCAACGGACCTTTGACAACGGCT





CTATTCCCCATCAAATTCACTTGGGTGAGCTGCATGCTATTTTGAGAAG





ACAAGAAGACTTTTATCCATTTTTAAAAGACAATCGTGAGAAGATTGAA





AAAATCTTGACTTTTCGAATTCCTTATTATGTTGGTCCATTGGCGCGTG





GCAATAGTCGTTTTGCATGGATGACTCGGAAGTCTGAAGAAACAATTAC





CCCATGGAATTTTGAAGAAGTTGTCGATAAAGGTGCTTCAGCTCAATCA





TTTATTGAACGCATGACAAACTTTGATAAAAATCTTCCAAATGAAAAAG





TACTACCAAAACATAGTTTGCTTTATGAGTATTTTACGGTTTATAACGA





ATTGACAAAGGTCAAATATGTTACTGAAGGAATGCGAAAACCAGCATTT





CTTTCAGGTGAACAGAAGAAAGCCATTGTTGATTTACTCTTCAAAACAA





ATCGAAAAGTAACCGTTAAGCAATTAAAAGAAGATTATTTCAAAAAAAT





AGAATGTTTTGATAGTGTTGAAATTTCAGGAGTTGAAGATAGATTTAAT





GCTTCATTAGGTACCTACCATGATTTGCTAAAAATTATTAAAGATAAAG





ATTTTTTGGATAATGAAGAAAATGAAGATATCTTAGAGGATATTGTTTT





AACATTGACCTTATTTGAAGATAGGGAGATGATTGAGGAAAGACTTAAA





ACATATGCTCACCTCTTTGATGATAAGGTGATGAAACAGCTTAAACGTC





GCCGTTATACTGGTTGGGGACGTTTGTCTCGAAAATTGATTAATGGTAT





TAGGGATAAGCAATCTGGCAAAACAATATTAGATTTTTTGAAATCAGAT





GGTTTTGCCAATCGCAATTTTATGCAGCTGATCCATGATGATAGTTTGA





CATTTAAAGAAGACATTCAAAAAGCACAAGTGTCTGGACAAGGCGATAG





TTTACATGAACATATTGCAAATTTAGCTGGTAGCCCTGCTATTAAAAAA





GGTATTTTACAGACTGTAAAAGTTGTTGATGAATTGGTCAAAGTAATGG





GGCGGCATAAGCCAGAAAATATCGTTATTGAAATGGCACGTGAAAATCA





GACAACTCAAAAGGGCCAGAAAAATTCGCGAGAGCGTATGAAACGAATC





GAAGAAGGTATCAAAGAATTAGGAAGTCAGATTCTTAAAGAGCATCCTG





TTGAAAATACTCAATTGCAAAATGAAAAGCTCTATCTCTATTATCTCCA





AAATGGAAGAGACATGTATGTGGACCAAGAATTAGATATTAATCGTTTA





AGTGATTATGATGTCGATCACATTGTTCCACAAAGTTTCCTTAAAGACG





ATTCAATAGACAATAAGGTCTTAACGCGTTCTGATAAAAATCGTGGTAA





ATCGGATAACGTTCCAAGTGAAGAAGTAGTCAAAAAGATGAAAAACTAT





TGGAGACAACTTCTAAACGCCAAGTTAATCACTCAACGTAAGTTTGATA





ATTTAACGAAAGCTGAACGTGGAGGTTTGAGTGAACTTGATAAAGCTGG





TTTTATCAAACGCCAATTGGTTGAAACTCGCCAAATCACTAAGCATGTG





GCACAAATTTTGGATAGTCGCATGAATACTAAATACGATGAAAATGATA





AACTTATTCGAGAGGTTAAAGTGATTACCTTAAAATCTAAATTAGTTTC





TGACTTCCGAAAAGATTTCCAATTCTATAAAGTACGTGAGATTAACAAT





TACCATCATGCCCATGATGCGTATCTAAATGCCGTCGTTGGAACTGCTT





TGATTAAGAAATATCCAAAACTTGAATCGGAGTTTGTCTATGGTGATTA





TAAAGTTTATGATGTTCGTAAAATGATTGCTAAGTCTGAGCAAGAAATA





GGCAAAGCAACCGCAAAATATTTCTTTTACTCTAATATCATGAACTTCT





TCAAAACAGAAATTACACTTGCAAATGGAGAGATTCGCAAACGCCCTCT





AATCGAAACTAATGGGGAAACTGGAGAAATTGTCTGGGATAAAGGGCGA





GATTTTGCCACAGTGCGCAAAGTATTGTCCATGCCCCAAGTCAATATTG





TCAAGAAAACAGAAGTACAGACAGGCGGATTCTCCAAGGAGTCAATTTT





ACCAAAAAGAAATTCGGACAAGCTTATTGCTCGTAAAAAAGACTGGGAT





CCAAAAAAATATGGTGGTTTTGATAGTCCAACGGTAGCTTATTCAGTCC





TAGTGGTTGCTAAGGTGGAAAAAGGGAAATCGAAGAAGTTAAAATCCGT





TAAAGAGTTACTAGGGATCACAATTATGGAAAGAAGTTCCTTTGAAAAA





AATCCGATTGACTTTTTAGAAGCTAAAGGATATAAGGAAGTTAAAAAAG





ACTTAATCATTAAACTACCTAAATATAGTCTTTTTGAGTTAGAAAACGG





TCGTAAACGGATGCTGGCTAGTGCCGGAGAATTACAAAAAGGAAATGAG





CTGGCTCTGCCAAGCAAATATGTGAATTTTTTATATTTAGCTAGTCATT





ATGAAAAGTTGAAGGGTAGTCCAGAAGATAACGAACAAAAACAATTGTT





TGTGGAGCAGCATAAGCATTATTTAGATGAGATTATTGAGCAAATCAGT





GAATTTTCTAAGCGTGTTATTTTAGCAGATGCCAATTTAGATAAAGTTC





TTAGTGCATATAACAAACATAGAGACAAACCAATACGTGAACAAGCAGA





AAATATTATTCATTTATTTACGTTGACGAATCTTGGAGCTCCCGCTGCT





TTTAAATATTTTGATACAACAATTGATCGTAAACGATATACGTCTACAA





AAGAAGTTTTAGATGCCACTCTTATCCATCAATCCATCACTGGTCTTTA





TGAAACACGCATTGATTTGAGTCAGCTAGGAGGTGACTGA





(SEQ ID NO: 9)


MDKKYSIGLDIGTNSVGWAVITDEYKVPSKKFKVLGNTDRHSIKKNLIG






ALLFDSGETAEATRLKRTARRRYTRRKNRICYLQEIFSNEMAKVDDSFF






HRLEESFLVEEDKKHERHPIFGNIVDEVAYHEKYPTIYHLRKKLVDSTD





KADLRLIYLALAHMIKFRGHFLIEGDLNPDNSDVDKLFIQLVQTYNQLF





EENPINASGVDAKAILSARLSKSRRLENLIAQLPGEKKNGLFGNLIALS





LGLTPNFKSNFDLAEDAKLQLSKDTYDDDLDNLLAQIGDQYADLFLAAK





NLSDAILLSDILRVNTEITKAPLSASMIKRYDEHHQDLTLLKALVRQQL





PEKYKEIFFDQSKNGYAGYIDGGASQEEFYKFIKPILEKMDGTEELLVK





LNREDLLRKQRTFDNGSIPHQIHLGELHAILRRQEDFYPFLKDNREKIE





KILTFRIPYYVGPLARGNSRFAWMTRKSEETITPWNFEEVVDKGASAQS





FIERMTNFDKNLPNEKVLPKHSLLYEYFTVYNELTKVKYVTEGMRKPAF





LSGEQKKAIVDLLFKTNRKVTVKQLKEDYFKKIECFDSVEISGVEDRFN





ASLGTYHDLLKIIKDKDFLDNEENEDILEDIVLTLTLFEDREMIEERLK





TYAHLFDDKVMKQLKRRRYTGWGRLSRKLINGIRDKQSGKTILDFLKSD





GFANRNFMQLIHDDSLTFKEDIQKAQVSGQGDSLHEHIANLAGSPAIKK






GILQTVKVVDELVKVMGRHKPENIVIEMARENQTTQKGQKNSRERMKRI







EEGIKELGSQILKEHPVENTQLQNEKLYLYYLQNGRDMYVDQELDINRL







SDYDVDHIVPQSFLKDDSIDNKVLTRSDKNRGKSDNVPSEEVVKKMKNY







WRQLLNAKLITQRKFDNLTKAERGGLSELDKAGFIKRQLVETRQITKHV







AQILDSRMNTKYDENDKLIREVKVITLKSKLVSDERKDFQFYKVREINN







YHHAHDAYLNAVVGTALIKKYPKLESEFVYGDYKVYDVRKMIAKSEQEI







GKATAKYFFYSNIMNFFKTEITLANGEIRKRPLIEINGETGEIVWDKGR







DFATVRKVLSMPQVNIVKKTEVQTGGFSKESILPKRNSDKLIARKKDWD






PKKYGGFDSPTVAYSVLVVAKVEKGKSKKLKSVKELLGITIMERSSFEK





NPIDFLEAKGYKEVKKDLIIKLPKYSLFELENGRKRMLASAGELQKGNE





LALPSKYVNFLYLASHYEKLKGSPEDNEQKQLFVEQHKHYLDEIIEQIS





EFSKRVILADANLDKVLSAYNKHRDKPIREQAENIIHLFTLTNLGAPAA





FKYFDTTIDRKRYTSTKEVLDATLIHQSITGLYETRIDLSQLGGD





(single underline: HNH domain; double underline:


RuvC domain)






In some embodiments, Cas9 refers to Cas9 from: Corynebacterium ulcerans (NCBI Refs: NC_015683.1, NC_017317.1); Corynebacterium diphtheria (NCBI Refs: NC_016782.1, NC_016786.1); Spiroplasma syrphidicola (NCBI Ref: NC_021284.1); Prevotella intermedia (NCBI Ref: NC_017861.1); Spiroplasma taiwanense (NCBI Ref: NC_021846.1); Streptococcus iniae (NCBI Ref: NC_021314.1); Belliella baltica (NCBI Ref: NC_018010.1); Psychroflexus torquisl (NCBI Ref: NC_018721.1); Streptococcus thermophilus (NCBI Ref: YP_820832.1); Listeria innocua (NCBI Ref: NP_472073.1); Campylobacter jejuni (NCBI Ref: YP_002344900.1); or Neisseria. meningitidis (NCBI Ref: YP_002342100.1) or to a Cas9 from any of the organisms listed in Example 3.


In some embodiments, dCas9 corresponds to, or comprises in part or in whole, a Cas9 amino acid sequence having one or more mutations that inactivate the Cas9 nuclease activity. For example, in some embodiments, a dCas9 domain comprises D10A and/or H840A mutation.










dCas9 (D10A and H840A):



(SEQ ID NO: 8) 



MDKKYSIGLA*IGTNSVGWAVITDEYKVPSKKFKVLGNTDRHSIKKNLIGALLFDSGETAEATRLKRTARRRYTR






RKNRICYLQEIFSNEMAKVDDSFFHRLEESFLVEEDKKHERHPIFGNI*VDEVAYHEKYPTIYH*LRKKLVDSTD





KADLRLIYLALAHMIKFRGHFLIEGDLNPDNSDVD*KLFIQLVQTYNQLFEENPINASGVDAKAILSARLSKSRR





LENLIAQLPGEKKNGLFGNLIALSLGLTPNFKSNFDLAEDA*KLQLSKDTYDDDLDNLLAQIGDQYADLFLAAK*





NLSDAILLSDILRVNTEITKAPLSASMIKRYDEHHQDLTLLKALVRQQLPEKYKEIFFDQSKNGYAGYIDGGASQ





EEFYKFIKPILEKMDGTEELLVKLNREDLLRKQRTFDNGS*IPHQIHLGELHAILRRQEDFYPFLKDNREKIEKI





LTFRIPYYVGPLARGNSRFAWMTRKSEETITPWNFEE*VVDKGASAQSFIERMTNFDKNLPNEKVLPKHSLLYEY





FTVYNELTKVKYVTEGMRKPAFLSGE*QKKAIVDLLFKTNRKVTVKQLKEDYFKKIECFDSVEISGVEDRFNASL





GTYHDLLKIIKDKDFLDNEENEDILEDIVLTLTLFEDREMIEERLKTYAHLFDDKVMKQLKRRRYTGWG*RLSRK







embedded image









embedded image









LQNGRDMYVDQELDINRLSDYDVDAIVPQSFLKDDSIDNKVLTRSDKNRGKSDNVPSEEVVKKMKNYWRQLLNAK









embedded image









embedded image









embedded image







SDKLIARKKDWDPKKYGGFDSPTVAYSVLVVAKVEKGKSKKLKSVKELLGITIMERSSFEKNPIDFLEAKGYKEV





KKDLIIKLPKYSLFELENGRKRMLASAGELQKGNELALPSKYVNFLYLASHYEKLKGSPEDNEQKQLFVEQHKHY





LDEIIEQISEFSKRVILADANLDKVLSAYNKHRDKPIREQAENIIHLFTLINLGAPAAFKYFDTTIDRKRYTSTK





EVLDATLIHQSITGLYETRIDLSQLGGD


(single underline: HNH domain; double underline: RuvC domain)






In some embodiments, Cas9 corresponds to, or comprises in part or in whole, a Cas9 amino acid sequence having one or more mutations that alter Cas9's nuclease activity. In some embodiments, Cas9 may be a Cas9 nickase, which is a version of Cas9 that generates a single-stranded DNA break at a specific location based on a co-expressed gRNA-defined target sequence, rather than a double-strand DNA break. For example, in some embodiments, a Cas9 domain comprises D10A mutation (e.g., SEQ ID NO: 301) and/or an H840A mutation (e.g., SEQ ID NO: 302). Exemplary Cas9 nickases are shown below. However, it should be appreciated that additional Cas9 nickases that generate a single-stranded DNA break of a DNA duplex would be apparent to the skilled artisan and are within the scope of this disclosure.









Cas9 D10A nickase:


(SEQ ID NO: 301)


MDKKYSIGLAIGINSVGWAVITDEYKVPSKKEKVLGNTDRHSIKKNLIG






ALLFDSGETAEATRLKRTARRRYTRRKNRICYLQEIFSNEMAKVDDSFF






HRLEESFLVEEDKKHERHPIFGNIVDEVAYHEKYPTIYHLRKKLVDSTD





KADLRLIYLALAHMIKFRGHFLIEGDLNPDNSDVDKLFIQLVQTYNQLF





EENPINASGVDAKAILSARLSKSRRLENLIAQLPGEKKNGLFGNLIALS





LGLTPNFKSNFDLAEDAKLQLSKDTYDDDLDNLLAQIGDQYADLFLAAK





NLSDAILLSDILRVNTEITKAPLSASMIKRYDEHHQDLTLLKALVRQQL





PEKYKEIFFDQSKNGYAGYIDGGASQEEFYKFIKPILEKMDGTEELLVK





LNREDLLRKQRTFDNGSIPHQIHLGELHAILRRQEDFYPFLKDNREKIE





KILTFRIPYYVGPLARGNSRFAWMTRKSEETITPWNFEEVVDKGASAQS





FIERMTNFDKNLPNEKVLPKHSLLYEYFTVYNELTKVKYVTEGMRKPAF





LSGEQKKAIVDLLFKTNRKVTVKQLKEDYFKKIECFDSVEISGVEDRFN





ASLGTYHDLLKIIKDKDFLDNEENEDILEDIVLTLTLFEDREMIEERLK





TYAHLFDDKVMKQLKRRRYTGWGRLSRKLINGIRDKQSGKTILDFLKSD





GFANRNFMQLIHDDSLTFKEDIQKAQVSGQGDSLHEHIANLAGSPAIKK






GILQTVKVVDELVKVMGRHKPENIVIEMARENQTTQKGQKNSRERMKRI







EEGIKELGSQILKEHPVENTQLQNEKLYLYYLQNGRDMYVDQELDINRL







SDYDVDHIVPQSFLKDDSIDNKVLTRSDKNRGKSDNVPSEEVVKKMKNY







WRQLLNAKLITQRKFDNLTKAERGGLSELDKAGFIKRQLVETRQITKHV







AQILDSRMNTKYDENDKLIREVKVITLKSKLVSDFRKDFQFYKVREINN







YHHAHDAYLNAVVGTALIKKYPKLESEFVYGDYKVYDVRKMIAKSEQEI







GKATAKYFFYSNIMNFFKTEITLANGEIRKRPLIETNGETGEIVWDKGR







DFATVRKVLSMPQVNIVKKTEVQTGGFSKESILPKRNSDKLIARKKDWD






PKKYGGFDSPTVAYSVLVVAKVEKGKSKKLKSVKELLGITIMERSSFEK





NPIDFLEAKGYKEVKKDLIIKLPKYSLFELENGRKRMLASAGELQKGNE





LALPSKYVNFLYLASHYEKLKGSPEDNEQKQLFVEQHKHYLDEIIEQIS





EFSKRVILADANLDKVLSAYNKHRDKPIREQAENIIHLFTLTNLGAPAA





FKYFDTTIDRKRYTSTKEVLDATLIHQSITGLYETRIDLSQLGGD





(single underline: HNH domain; double underline:


RuvC domain)





Cas9 H840Anickase:


(SEQ ID NO: 302)


MDKKYSIGLDIGINSVGWAVITDEYKVPSKKEKVLGNTDRHSIKKNLIG






ALLFDSGETAEATRLKRTARRRYTRRKNRICYLQEIFSNEMAKVDDSFF






HRLEESFLVEEDKKHERHPIFGNIVDEVAYHEKYPTIYHLRKKLVDSTD





KADLRLIYLALAHMIKFRGHFLIEGDLNPDNSDVDKLFIQLVQTYNQLF





EENPINASGVDAKAILSARLSKSRRLENLIAQLPGEKKNGLFGNLIALS





LGLTPNFKSNEDLAEDAKLQLSKDTYDDDLDNLLAQIGDQYADLFLAAK





NLSDAILLSDILRVNTEITKAPLSASMIKRYDEHHQDLTLLKALVRQQL





PEKYKEIFFDQSKNGYAGYIDGGASQEEFYKFIKPILEKMDGTEELLVK





LNREDLLRKQRTFDNGSIPHQIHLGELHAILRRQEDFYPFLKDNREKIE





KILTFRIPYYVGPLARGNSRFAWMTRKSEETITPWNFEEVVDKGASAQS





FIERMTNEDKNLPNEKVLPKHSLLYEYFTVYNELTKVKYVTEGMRKPAE





LSGEQKKAIVDLLFKTNRKVTVKQLKEDYFKKIECFDSVEISGVEDRFN





ASLGTYHDLLKIIKDKDFLDNEENEDILEDIVLTLTLFEDREMIEERLK





TYAHLFDDKVMKQLKRRRYTGWGRLSRKLINGIRDKQSGKTILDFLKSD





GFANRNFMQLIHDDSLTFKEDIQKAQVSGQGDSLHEHIANLAGSPAIKK






GILQTVKVVDELVKVMGRHKPENIVIEMARENQTTQKGQKNSRERMKRI







EEGIKELGSQILKEHPVENTQLQNEKLYLYYLQNGRDMYVDQELDINRL







SDYDVDAIVPQSFLKDDSIDNKVLTRSDKNRGKSDNVPSEEVVKKMKNY







WRQLLNAKLITQRKFDNLTKAERGGLSELDKAGFIKRQLVETRQITKHV







AQILDSRMNTKYDENDKLIREVKVITLKSKLVSDERKDFQFYKVREINN







YHHAHDAYLNAVVGTALIKKYPKLESEFVYGDYKVYDVRKMIAKSEQEI







GKATAKYFFYSNIMNFFKTEITLANGEIRKRPLIEINGETGEIVWDKGR







DFATVRKVLSMPQVNIVKKTEVQTGGFSKESILPKRNSDKLIARKKDWD






PKKYGGFDSPTVAYSVLVVAKVEKGKSKKLKSVKELLGITIMERSSFEK





NPIDFLEAKGYKEVKKDLIIKLPKYSLFELENGRKRMLASAGELQKGNE





LALPSKYVNFLYLASHYEKLKGSPEDNEQKQLFVEQHKHYLDEIIEQIS





EFSKRVILADANLDKVLSAYNKHRDKPIREQAENIIHLFTLTNLGAPAA





FKYFDTTIDRKRYTSTKEVLDATLIHQSITGLYETRIDLSQLGGD





(single underline: HNH domain; double underline:


RuvC domain)






In other embodiments, dCas9 variants having mutations other than D10A and H840A are provided, which, e.g., result in nuclease-inactivated Cas9 (dCas9). Such mutations, by way of example, include other amino acid substitutions at D10 and H820, or other substitutions within the nuclease domains of Cas9 (e.g., substitutions in the HNH nuclease subdomain and/or the RuvC1 subdomain). In some embodiments, variants or homologues of dCas9 (e.g., variants of SEQ ID NO: 9) are provided which are at least about 70% identical, at least about 80% identical, at least about 90% identical, at least about 95% identical, at least about 98% identical, at least about 99% identical, at least about 99.5% identical, or at least about 99.9% identical to SEQ ID NO: 9. In some embodiments, variants of dCas9 (e.g., variants of SEQ ID NO: 9) are provided having amino acid sequences which are shorter, or longer than SEQ ID NO: 9, by about 5 amino acids, by about 10 amino acids, by about 15 amino acids, by about 20 amino acids, by about 25 amino acids, by about 30 amino acids, by about 40 amino acids, by about 50 amino acids, by about 75 amino acids, by about 100 amino acids, or more.


In some embodiments, Cas9 fusion proteins as provided herein comprise the full-length amino acid sequence of a Cas9 protein, e.g., one of the sequences provided above. In other embodiments, however, fusion proteins as provided herein do not comprise a full-length Cas9 sequence, but only a fragment thereof. For example, in some embodiments, a Cas9 fusion protein provided herein comprises a Cas9 fragment, wherein the fragment binds crRNA and tracrRNA or a sgRNA, but does not comprise a functional nuclease domain, e.g., it comprises only a truncated version of a nuclease domain or no nuclease domain at all. Exemplary amino acid sequences of suitable Cas9 domains and Cas9 fragments are provided herein, and additional suitable sequences of Cas9 domains and Cas9 fragments will be apparent to those of skill in the art. In some embodiments, a Cas9 fragment is at least 30%, at least 35%, at least 40%, at least 45%, at least 50%, at least 55%, at least 60%, at least 65%, at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 95% identical, at least 96%, at least 97%, at least 98%, at least 99%, or at least 99.5% of the amino acid length of a corresponding wild type Cas9 protein. In some embodiments, a Cas9 fragment comprises at least at least 100 amino acids in length. In some embodiments, the Cas9 fragment is at least 100, 150, 200, 250, 300, 350, 400, 450, 500, 550, 600, 650, 700, 750, 800, 850, 900, 950, 1000, 1050, 1100, 1150, 1200, 1250, 1300, 1350, 1400, 1450, 1500, 1550, or at least 1600 amino acids of a corresponding wild type Cas9 protein. In some embodiments, the Cas9 fragment comprises an amino acid sequence that has at least 10, at least 15, at least 20, at least 30, at least 40, at least 50, at least 60, at least 70, at least 80, at least 90, at least 100, at least 150, at least 200, at least 250, at least 300, at least 350, at least 400, at least 500, at least 600, at least 700, at least 800, at least 900, at least 1000, at least 1100, or at least 1200 identical contiguous amino acid residues of a corresponding wild type Cas9 protein.


Cas9. In some embodiments, Cas9 refers to Cas9 from: Corynebacterium ulcerans (NCBI Refs: NC_015683.1, NC_017317.1); Corynebacterium diphtheria (NCBI Refs: NC_016782.1, NC_016786.1); Spiroplasma syrphidicola (NCBI Ref: NC_021284.1); Prevotella intermedia (NCBI Ref: NC_017861.1); Spiroplasma taiwanense (NCBI Ref: NC_021846.1); Streptococcus iniae (NCBI Ref: NC_021314.1); Belliella baltica (NCBI Ref: NC_018010.1); Psychroflexus torquisl (NCBI Ref: NC_018721.1); Streptococcus thermophilus (NCBI Ref: YP_820832.1); Listeria innocua (NCBI Ref: NP_472073.1); Campylobacter jejuni (NCBI Ref: YP_002344900.1); or Neisseria. meningitidis (NCBI Ref: YP_002342100.1).


The term “deaminase” or “deaminase domain,” as used herein, refers to a protein or enzyme that catalyzes a deamination reaction. In some embodiments, the deaminase or deaminase domain is a cytidine deaminase, catalyzing the hydrolytic deamination of cytidine or deoxycytidine to uridine or deoxyuridine, respectively. In some embodiments, the deaminase or deaminase domain is a cytosine deaminase, catalyzing the hydrolytic deamination of cytosine to uracil. In some embodiments, the deaminase or deaminase domain is a naturally-occurring deaminase from an organism, such as a human, chimpanzee, gorilla, monkey, cow, dog, rat, or mouse. In some embodiments, the deaminase or deaminase domain is a variant of a naturally-occurring deaminase from an organism, that does not occur in nature. For example, in some embodiments, the deaminase or deaminase domain is at least 50%, at least 55%, at least 60%, at least 65%, at least 70%, at least 75% at least 80%, at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, or at least 99.5% identical to a naturally-occurring deaminase from an organism.


The term “effective amount,” as used herein, refers to an amount of a biologically active agent that is sufficient to elicit a desired biological response. For example, in some embodiments, an effective amount of a nuclease may refer to the amount of the nuclease that is sufficient to induce cleavage of a target site specifically bound and cleaved by the nuclease. In some embodiments, an effective amount of a fusion protein provided herein, e.g., of a fusion protein comprising a nuclease-inactive Cas9 domain and a effector domain (e.g., a deaminase domain) may refer to the amount of the fusion protein that is sufficient to induce editing of a target site specifically bound and edited by the fusion protein. As will be appreciated by the skilled artisan, the effective amount of an agent, e.g., a fusion protein, a nuclease, a deaminase, a recombinase, a hybrid protein, a protein dimer, a complex of a protein (or protein dimer) and a polynucleotide, or a polynucleotide, may vary depending on various factors such as, for example, on the desired biological response, e.g., on the specific allele, genome, or target site to be edited; on the cell or tissue being targeted; and on the agent being used.


The term “immediately adjacent” as used in the context of two nucleic acid sequences refers to two sequences that directly abut each other as part of the same nucleic acid molecule and are not separated by one or more nucleotides. Accordingly, sequences are immediately adjacent, when the nucleotide at the 3′-end of one of the sequences is directly connected to nucleotide at the 5′-end of the other sequence via a phosphodiester bond.


The term “linker,” as used herein, refers to a chemical group or a molecule linking two molecules or moieties, e.g., two domains of a fusion protein, such as, for example, a nuclease-inactive Cas9 domain and a effector domain (e.g., a deaminase domain). In some embodiments, a linker joins a gRNA binding domain of an RNA-programmable nuclease, including a Cas9 nuclease domain, and the catalytic domain of a nucleic-acid editing protein. In some embodiments, a linker joins a dCas9 and a nucleic-acid editing protein. Typically, the linker is positioned between, or flanked by, two groups, molecules, or other moieties and connected to each one via a covalent bond, thus connecting the two. In some embodiments, the linker is an amino acid or a plurality of amino acids (e.g., a peptide or protein). In some embodiments, the linker is an organic molecule, group, polymer, or chemical moiety. In some embodiments, the linker is 5-100 amino acids in length, for example, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 30-35, 35-40, 40-45, 45-50, 50-60, 60-70, 70-80, 80-90, 90-100, 100-150, or 150-200 amino acids in length. Longer or shorter linkers are also contemplated.


The term “mutation,” as used herein, refers to a substitution of a residue within a sequence, e.g., a nucleic acid or amino acid sequence, with another residue, or a deletion or insertion of one or more residues within a sequence. Mutations are typically described herein by identifying the original residue followed by the position of the residue within the sequence and by the identity of the newly substituted residue. Various methods for making the amino acid substitutions (mutations) provided herein are well known in the art, and are provided by, for example, Green and Sambrook, Molecular Cloning: A Laboratory Manual (4th ed., Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y. (2012)).


The terms “nucleic acid” and “nucleic acid molecule,” as used herein, refer to a compound comprising a nucleobase and an acidic moiety, e.g., a nucleoside, a nucleotide, or a polymer of nucleotides. Typically, polymeric nucleic acids, e.g., nucleic acid molecules comprising three or more nucleotides are linear molecules, in which adjacent nucleotides are linked to each other via a phosphodiester linkage. In some embodiments, “nucleic acid” refers to individual nucleic acid residues (e.g. nucleotides and/or nucleosides). In some embodiments, “nucleic acid” refers to an oligonucleotide chain comprising three or more individual nucleotide residues. As used herein, the terms “oligonucleotide” and “polynucleotide” can be used interchangeably to refer to a polymer of nucleotides (e.g., a string of at least three nucleotides). In some embodiments, “nucleic acid” encompasses RNA as well as single and/or double-stranded DNA. Nucleic acids may be naturally occurring, for example, in the context of a genome, a transcript, mRNA, tRNA, rRNA, siRNA, snRNA, a plasmid, cosmid, chromosome, chromatid, or other naturally occurring nucleic acid molecule. On the other hand, a nucleic acid molecule may be a non-naturally occurring molecule, e.g., a recombinant DNA or RNA, an artificial chromosome, an engineered genome, or fragment thereof, or a synthetic DNA, RNA, DNA/RNA hybrid, or including non-naturally occurring nucleotides or nucleosides. Furthermore, the terms “nucleic acid,” “DNA,” “RNA,” and/or similar terms include nucleic acid analogs, e.g., analogs having other than a phosphodiester backbone. Nucleic acids can be purified from natural sources, produced using recombinant expression systems and optionally purified, chemically synthesized, etc. Where appropriate, e.g., in the case of chemically synthesized molecules, nucleic acids can comprise nucleoside analogs such as analogs having chemically modified bases or sugars, and backbone modifications. A nucleic acid sequence is presented in the 5′ to 3′ direction unless otherwise indicated. In some embodiments, a nucleic acid is or comprises natural nucleosides (e.g. adenosine, thymidine, guanosine, cytidine, uridine, deoxyadenosine, deoxythymidine, deoxyguanosine, and deoxycytidine); nucleoside analogs (e.g., 2-aminoadenosine, 2-thiothymidine, inosine, pyrrolo-pyrimidine, 3-methyl adenosine, 5-methylcytidine, 2-aminoadenosine, C5-bromouridine, C5-fluorouridine, C5-iodouridine, C5-propynyl-uridine, C5-propynyl-cytidine, C5-methylcytidine, 2-aminoadenosine, 7-deazaadenosine, 7-deazaguanosine, 8-oxoadenosine, 8-oxoguanosine, 0(6)-methylguanine, and 2-thiocytidine); chemically modified bases; biologically modified bases (e.g., methylated bases); intercalated bases; modified sugars (e.g., 2′-fluororibose, ribose, 2′-deoxyribose, arabinose, and hexose); and/or modified phosphate groups (e.g., phosphorothioates and 5′-N-phosphoramidite linkages). In some embodiments, an RNA is an RNA associated with the Cas9 system. For example, the RNA may be a CRISPR RNA (crRNA), a trans-encoded small RNA (tracrRNA), a single guide RNA (sgRNA), or a guide RNA (gRNA).


The term “proliferative disease,” as used herein, refers to any disease in which cell or tissue homeostasis is disturbed in that a cell or cell population exhibits an abnormally elevated proliferation rate. Proliferative diseases include hyperproliferative diseases, such as pre-neoplastic hyperplastic conditions and neoplastic diseases. Neoplastic diseases are characterized by an abnormal proliferation of cells and include both benign and malignant neoplasias. Malignant neoplasia is also referred to as cancer.


The terms “protein,” “peptide,” and “polypeptide” are used interchangeably herein, and refer to a polymer of amino acid residues linked together by peptide (amide) bonds. The terms refer to a protein, peptide, or polypeptide of any size, structure, or function. Typically, a protein, peptide, or polypeptide will be at least three amino acids long. A protein, peptide, or polypeptide may refer to an individual protein or a collection of proteins. One or more of the amino acids in a protein, peptide, or polypeptide may be modified, for example, by the addition of a chemical entity such as a carbohydrate group, a hydroxyl group, a phosphate group, a farnesyl group, an isofarnesyl group, a fatty acid group, a linker for conjugation, functionalization, or other modification, etc. A protein, peptide, or polypeptide may also be a single molecule or may be a multi-molecular complex. A protein, peptide, or polypeptide may be just a fragment of a naturally occurring protein or peptide. A protein, peptide, or polypeptide may be naturally occurring, recombinant, or synthetic, or any combination thereof. The term “fusion protein” as used herein refers to a hybrid polypeptide which comprises protein domains from at least two different proteins. One protein may be located at the amino-terminal (N-terminal) portion of the fusion protein or at the carboxy-terminal (C-terminal) protein thus forming an “amino-terminal fusion protein” or a “carboxy-terminal fusion protein,” respectively. A protein may comprise different domains, for example, a nucleic acid binding domain (e.g., the gRNA binding domain of Cas9 that directs the binding of the protein to a target site) and a nucleic acid cleavage domain or a catalytic domain of a nucleic-acid editing protein. In some embodiments, a protein comprises a proteinaceous part, e.g., an amino acid sequence constituting a nucleic acid binding domain, and an organic compound, e.g., a compound that can act as a nucleic acid cleavage agent. In some embodiments, a protein is in a complex with, or is in association with, a nucleic acid, e.g., RNA. Any of the proteins provided herein may be produced by any method known in the art. For example, the proteins provided herein may be produced via recombinant protein expression and purification, which is especially suited for fusion proteins comprising a peptide linker. Methods for recombinant protein expression and purification are well known, and include those described by Green and Sambrook, Molecular Cloning: A Laboratory Manual (4th ed., Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y. (2012)), the entire contents of which are incorporated herein by reference.


The term “RNA-programmable nuclease,” and “RNA-guided nuclease” are used interchangeably herein and refer to a nuclease that forms a complex with (e.g., binds or associates with) one or more RNA that is not a target for cleavage. In some embodiments, an RNA-programmable nuclease, when in a complex with an RNA, may be referred to as a nuclease:RNA complex. Typically, the bound RNA(s) is referred to as a guide RNA (gRNA). gRNAs can exist as a complex of two or more RNAs, or as a single RNA molecule. gRNAs that exist as a single RNA molecule may be referred to as single-guide RNAs (sgRNAs), though “gRNA” is used interchangeably to refer to guide RNAs that exist as either single molecules or as a complex of two or more molecules. Typically, gRNAs that exist as single RNA species comprise two domains: (1) a domain that shares homology to a target nucleic acid (e.g., and directs binding of a Cas9 complex to the target); and (2) a domain that binds a Cas9 protein. In some embodiments, domain (2) corresponds to a sequence known as a tracrRNA, and comprises a stem-loop structure. For example, in some embodiments, domain (2) is identical or homologous to a tracrRNA as provided in Jinek et al., Science 337:816-821(2012), the entire contents of which is incorporated herein by reference. Other examples of gRNAs (e.g., those including domain 2) can be found in U.S. Provisional Patent Application, U.S. Ser. No. 61/874,682, filed Sep. 6, 2013, entitled “Switchable Cas9 Nucleases and Uses Thereof,” and U.S. Provisional Patent Application, U.S. Ser. No. 61/874,746, filed Sep. 6, 2013, entitled “Delivery System For Functional Nucleases,” the entire contents of each are hereby incorporated by reference in their entirety. In some embodiments, a gRNA comprises two or more of domains (1) and (2), and may be referred to as an “extended gRNA.” For example, an extended gRNA will, e.g., bind two or more Cas9 proteins and bind a target nucleic acid at two or more distinct regions, as described herein. The gRNA comprises a nucleotide sequence that complements a target site, which mediates binding of the nuclease/RNA complex to said target site, providing the sequence specificity of the nuclease:RNA complex. In some embodiments, the RNA-programmable nuclease is the (CRISPR-associated system) Cas9 endonuclease, for example Cas9 (Csn1) from Streptococcus pyogenes (see, e.g., “Complete genome sequence of an M1 strain of Streptococcus pyogenes.” Ferretti J. J., McShan W. M., Ajdic D. J., Savic D. J., Savic G., Lyon K., Primeaux C., Sezate S., Suvorov A. N., Kenton S., Lai H. S., Lin S. P., Qian Y., Jia H. G., Najar F. Z., Ren Q., Zhu H., Song L., White J., Yuan X., Clifton S. W., Roe B. A., McLaughlin R. E., Proc. Natl. Acad. Sci. U.S.A. 98:4658-4663 (2001); “CRISPR RNA maturation by trans-encoded small RNA and host factor RNase III.” Deltcheva E., Chylinski K., Sharma C. M., Gonzales K., Chao Y., Pirzada Z. A., Eckert M. R., Vogel J., Charpentier E., Nature 471:602-607 (2011); and “A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity.” Jinek M., Chylinski K., Fonfara I., Hauer M., Doudna J. A., Charpentier E. Science 337:816-821 (2012), the entire contents of each of which are incorporated herein by reference.


Because RNA-programmable nucleases (e.g., Cas9) use RNA:DNA hybridization to target DNA cleavage sites, these proteins are able to be targeted, in principle, to any sequence specified by the guide RNA. Methods of using RNA-programmable nucleases, such as Cas9, for site-specific cleavage (e.g., to modify a genome) are known in the art (see e.g., Cong, L. et al. Multiplex genome engineering using CRISPR/Cas systems. Science 339, 819-823 (2013); Mali, P. et al. RNA-guided human genome engineering via Cas9. Science 339, 823-826 (2013); Hwang, W. Y. et al. Efficient genome editing in zebrafish using a CRISPR-Cas system. Nature biotechnology 31, 227-229 (2013); Jinek, M. et al. RNA-programmed genome editing in human cells. eLife 2, e00471 (2013); Dicarlo, J. E. et al. Genome engineering in Saccharomyces cerevisiae using CRISPR-Cas systems. Nucleic acids research (2013); Jiang, W. et al. RNA-guided editing of bacterial genomes using CRISPR-Cas systems. Nature biotechnology 31, 233-239 (2013); the entire contents of each of which are incorporated herein by reference).


The term “subject,” as used herein, refers to an individual organism, for example, an individual mammal. In some embodiments, the subject is a human. In some embodiments, the subject is a non-human mammal. In some embodiments, the subject is a non-human primate. In some embodiments, the subject is a rodent. In some embodiments, the subject is a sheep, a goat, a cattle, a cat, or a dog. In some embodiments, the subject is a vertebrate, an amphibian, a reptile, a fish, an insect, a fly, or a nematode. In some embodiments, the subject is a research animal. In some embodiments, the subject is genetically engineered, e.g., a genetically engineered non-human subject. The subject may be of either sex, of any age, and at any stage of development.


The term “target site” refers to a sequence within a nucleic acid molecule that is deaminated by a deaminase or a fusion protein comprising a deaminase (e.g., a dCas9-deaminase fusion protein provided herein).


The terms “treatment,” “treat,” and “treating,” refer to a clinical intervention aimed to reverse, alleviate, delay the onset of, or inhibit the progress of a disease or disorder, or one or more symptoms thereof, as described herein. As used herein, the terms “treatment,” “treat,” and “treating” refer to a clinical intervention aimed to reverse, alleviate, delay the onset of, or inhibit the progress of a disease or disorder, or one or more symptoms thereof, as described herein. In some embodiments, treatment may be administered after one or more symptoms have developed and/or after a disease has been diagnosed. In other embodiments, treatment may be administered in the absence of symptoms, e.g., to prevent or delay onset of a symptom or inhibit onset or progression of a disease. For example, treatment may be administered to a susceptible individual prior to the onset of symptoms (e.g., in light of a history of symptoms and/or in light of genetic or other susceptibility factors). Treatment may also be continued after symptoms have resolved, for example, to prevent or delay their recurrence.


The term “recombinant” as used herein in the context of proteins or nucleic acids refers to proteins or nucleic acids that do not occur in nature, but are the product of human engineering. For example, in some embodiments, a recombinant protein or nucleic acid molecule comprises an amino acid or nucleotide sequence that comprises at least one, at least two, at least three, at least four, at least five, at least six, or at least seven mutations as compared to any naturally occurring sequence.


The term “nucleic acid editing enzyme” as used herein refers to proteins that are able to modify a nucleic acids or one or more nucleotide bases of a nucleic acid. For example, in some embodiments, a nucleic acid editing enzyme is a deaminase, which can catalyze C to T or G to A changes. Other suitable nucleic acid editing enzyme that may be used in accordance with this disclosure include, without limitation, a nuclease, nickase, recombinase, deaminase, methyltransferase, methylase, acetylase, or acetyltransferase.


DETAILED DESCRIPTION OF CERTAIN EMBODIMENTS OF THE INVENTION

Some aspects of this disclosure provide recombinant Cas9 proteins that efficiently target DNA sequences that do not comprise the canonical PAM sequence (5′-NGG-3′, where N is any nucleotide, for example A, T, G, or C) at their 3′-ends. In some embodiments, the Cas9 proteins provided herein comprise one or more mutations identified in directed evolution experiments using a target sequence library comprising randomized PAM sequences. The recombinant non-PAM restricted Cas9 proteins provided herein are useful for targeting DNA sequences that do not comprise the canonical PAM sequence at their 3′-end and thus greatly extend the usefulness of Cas9 technology for gene editing.


Some aspects of this disclosure provide fusion proteins that comprise a Cas9 protein and an effector domain, for example, a DNA-editing domain, such as, e.g., a deaminase domain. The deamination of a nucleobase by a deaminase can lead to a point mutation at the specific residue, which is referred to herein as nucleic acid editing. Fusion proteins comprising a Cas9 protein or variant thereof and a DNA-editing domain can thus be used for the targeted editing of nucleic acid sequences. Such fusion proteins are useful for targeted editing of DNA in vitro, e.g., for the generation of mutant cells or animals; for the introduction of targeted mutations, e.g., for the correction of genetic defects in cells ex vivo, e.g., in cells obtained from a subject that are subsequently re-introduced into the same or another subject; and for the introduction of targeted mutations, e.g., the correction of genetic defects or the introduction of deactivating mutations in disease-associated genes in a subject in vivo. Typically, the Cas9 protein of the fusion proteins described herein does not have any nuclease activity but instead is a Cas9 fragment or a dCas9 protein. Methods for the use of Cas9 fusion proteins as described herein are also provided.


Non-limiting, exemplary nuclease-inactive Cas9 proteins are provided herein. One exemplary suitable nuclease-inactive Cas9 protein is the D10A/H840A Cas9 protein mutant:









MDKKYSIGLAIGTNSVGWAVITDEYKVPSKKEKVLGNTDRHSIKKNLIGA





LLFDSGETAEATRLKRTARRRYTRRKNRICYLQEIFSNEMAKVDDSFFHR





LEESFLVEEDKKHERHPIFGNIVDEVAYHEKYPTIYHLRKKLVDSTDKAD





LRLIYLALAHMIKFRGHFLIEGDLNPDNSDVDKLFIQLVQTYNQLFEENP





INASGVDAKAILSARLSKSRRLENLIAQLPGEKKNGLFGNLIALSLGLIP





NFKSNFDLAEDAKLQLSKDTYDDDLDNLLAQIGDQYADLFLAAKNLSDAI





LLSDILRVNTEITKAPLSASMIKRYDEHHQDLTLLKALVRQQLPEKYKEI





FFDQSKNGYAGYIDGGASQEEFYKFIKPILEKMDGTEELLVKLNREDLLR





KQRTFDNGSIPHQIHLGELHAILRRQEDFYPFLKDNREKIEKILTFRIPY





YVGPLARGNSRFAWMTRKSEETITPWNFEEVVDKGASAQSFIERMTNFDK





NLPNEKVLPKHSLLYEYFTVYNELTKVKYVTEGMRKPAFLSGEQKKAIVD





LLFKTNRKVIVKQLKEDYFKKIECFDSVEISGVEDRFNASLGTYHDLLKI





IKDKDFLDNEENEDILEDIVLTLTLFEDREMIEERLKTYAHLFDDKVMKQ





LKRRRYTGWGRLSRKLINGIRDKQSGKTILDFLKSDGFANRNFMQLIHDD





SLTFKEDIQKAQVSGQGDSLHEHIANLAGSPAIKKGILQTVKVVDELVKV





MGRHKPENIVIEMARENQTTQKGQKNSRERMKRIEEGIKELGSQILKEHP





VENTQLQNEKLYLYYLQNGRDMYVDQELDINRLSDYDVDAIVPQSFLKDD





SIDNKVLTRSDKNRGKSDNVPSEEVVKKMKNYWRQLLNAKLITQRKFDNL





TKAERGGLSELDKAGFIKRQLVETRQITKHVAQILDSRMNTKYDENDKLI





REVKVITLKSKLVSDERKDFQFYKVREINNYHHAHDAYLNAVVGTALIKK





YPKLESEFVYGDYKVYDVRKMIAKSEQEIGKATAKYFFYSNIMNFFKTEI





TLANGEIRKRPLIEINGETGEIVWDKGRDFATVRKVLSMPQVNIVKKTEV





QTGGFSKESILPKRNSDKLIARKKDWDPKKYGGFDSPTVAYSVLVVAKVE





KGKSKKLKSVKELLGITIMERSSFEKNPIDFLEAKGYKEVKKDLIIKLPK





YSLFELENGRKRMLASAGELQKGNELALPSKYVNFLYLASHYEKLKGSPE





DNEQKQLFVEQHKHYLDEIIEQISEFSKRVILADANLDKVLSAYNKHRDK





PIREQAENIIHLFTLTNLGAPAAFKYFDTTIDRKRYTSTKEVLDATLIHQ





SITGLYETRIDLSQLGGD (SEQ ID NO: 262;







see, e.g., Qi et al., Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression. Cell. 2013; 152(5):1173-83, the entire contents of which are incorporated herein by reference).


Additional suitable nuclease-inactive Cas9 proteins will be apparent to those of skill in the art based on this disclosure. Such additional exemplary suitable nuclease-inactive Cas9 proteins include, but are not limited to, D10A, D839A, H840A, N863A, D10A/D839A, D10A/H840A, D10A/N863A, D839A/H840A, D839A/N863A, D10A/D839A/H840A, and D10A/D839A/H840A/N863A mutant proteins (See, e.g., Prashant et al., CAS9 transcriptional activators for target specificity screening and paired nickases for cooperative genome engineering. Nature Biotechnology. 2013; 31(9): 833-838, the entire contents of which are incorporated herein by reference).


Recombinant Cas9 Proteins


Some aspects of this disclosure provide recombinant Cas9 proteins comprising an amino acid sequence that is at least 80%, at least 85%, at least 90%, at least 92%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, or at least 99.5% identical to the amino acid sequence of Cas9 as provided by any of the sequences provided in SEQ ID NOs: 10-262, wherein the Cas9 protein comprises a RuvC and an HNH domain, wherein the amino acid sequence of the Cas9 protein comprises at least one, at least two, at least three, at least four, at least five, at least six, or at least seven mutations at an amino acid residue selected from the group consisting of amino acid residues 122, 137, 182, 262, 294, 409, 480, 543, 660, 694, 1219, and 1329 of the amino acid sequence provided in SEQ ID NO: 9, or in a corresponding amino acid residue in any of the amino acid sequences provided in SEQ ID NOs: 10-262, and wherein the amino acid sequence of the recombinant Cas9 protein is not identical to the amino acid sequence of a naturally occurring Cas9 protein.


In some embodiments, the amino acid sequence of the Cas9 protein comprises at least one, at least two, at least three, at least four, at least five, at least six, or at least seven mutations selected from the group consisting of X262T, X294R, X409I, X480K, X543D, X694I, and X1219V of the amino acid sequence provided in SEQ ID NO: 9, or a corresponding mutation in any of the amino acid sequences provided in SEQ ID NOs: 10-262, wherein X represents any amino acid at the corresponding position.


In some embodiments, the amino acid sequence of the Cas9 protein comprises at least one, at least two, at least three, at least four, at least five, at least six, or at least seven mutations selected from the group consisting of A262T, K294R, S409I, E480K, E543D, M694I, or E1219V of the amino acid sequence provided in SEQ ID NO: 9, or a corresponding mutation in any of the amino acid sequences provided in SEQ ID NOs: 10-262. In some embodiments, the amino acid sequence of the Cas9 protein comprises an X1219V mutation of the amino acid sequence provided in SEQ ID NO: 9, or a corresponding mutation in any of the amino acid sequences provided in SEQ ID NOs: 10-262. In some embodiments, the amino acid sequence of the Cas9 protein comprises an E1219V mutation of the amino acid sequence provided in SEQ ID NO: 9, or a corresponding mutation in any of the amino acid sequences provided in SEQ ID NOs: 10-262.


In some embodiments, the amino acid sequence of the HNH domain is at least 80%, at least 85%, at least 90%, at least 92%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, or at least 99.5% identical to the amino acid sequence of the HNH domain of SEQ ID NO: 9. In some embodiments, the amino acid sequence of the RuvC domain is at least 80%, at least 85%, at least 90%, at least 92%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, or at least 99.5% identical to the amino acid sequence of the RuvC domain of any of SEQ ID NOs: 10-262. In some embodiments, the amino acid sequence of the RuvC domain is at least 80%, at least 85%, at least 90%, at least 92%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, or at least 99.5% identical to the amino acid sequence of the RuvC domain of SEQ ID NO: 9. In some embodiments, the Cas9 protein comprises a D10A and/or a H840A mutation of the amino acid sequence provided in SEQ ID NO: 9, or a corresponding mutation in any of the amino acid sequences provided in SEQ ID NOs: 10-262.


Recombinant Cas9 Proteins with Activity on Non-Canonical PAMs


Some aspects of this disclosure provide recombinant Cas9 proteins comprising an amino acid sequence that is at least 90% identical to the amino acid sequence of Streptococcus pyogenes Cas9 as provided by SEQ ID NO: 9, comprising the RuvC and HNH domains of SEQ ID NO: 9, wherein the amino acid sequence of the Cas9 protein comprises at least one, at least two, at least three, at least four, at least five, at least six, or at least seven mutations in an amino acid residue selected from the group consisting of amino acid residues 122, 137, 182, 262, 294, 409, 480, 543, 660, 694, 1219, and 1329 of the amino acid sequence provided in SEQ ID NO: 9, wherein the amino acid sequence of the recombinant Cas9 protein is not identical to the amino acid sequence of a naturally occurring Cas9 protein, and wherein the recombinant Cas9 protein exhibits activity (e.g., increased activity) on a target sequence that does not comprise the canonical PAM (5′-NGG-3′) at its 3′-end as compared to Streptococcus pyogenes Cas9 as provided by SEQ ID NO: 9.


In some embodiments, the Cas9 protein exhibits activity on a target sequence having a 3′-end that is not directly adjacent to the canonical PAM sequence (5′-NGG-3′) that is at least 2-fold, at least 3-fold, at least 5-fold, at least 10-fold, at least 50-fold, at least 100-fold, at least 500-fold, at least 1,000-fold, at least 5,000-fold, at least 10,000-fold, at least 50,000-fold, at least 100,000-fold, at least 500,000-fold, or at least 1,000,000-fold increased as compared to the activity of Streptococcus pyogenes Cas9 as provided by SEQ ID NO: 9 on the same target sequence. In some embodiments, the 3′-end of the target sequence is directly adjacent to an AGC, GAG, TTT, GTG, or CAA sequence. In some embodiments, the Cas9 protein activity is measured by a nuclease assay, a deamination assay, or a transcriptional activation assay. In some embodiments, the transcriptional activation assay is a reporter activation assay, such as a GFP activation assay. Exemplary methods for measuring binding activity (e.g., of Cas9) using transcriptional activation assays are known in the art and would be apparent to the skilled artisan. For example, methods for measuring Cas9 activity using the tripartite activator VPR have been described in Chavez A., et al., “Highly efficient Cas9-mediated transcriptional programming.” Nature Methods 12, 326-328 (2015); the entire contents of which are incorporated by reference herein.


In some embodiments, the amino acid sequence of the Cas9 protein comprises at least one, at least two, at least three, at least four, at least five, at least six, or at least seven mutations selected from the group consisting of X262T, X294R, X409I, X480K, X543D, X694I, and X1219V of the amino acid sequence provided in SEQ ID NO: 9, or a corresponding mutation in any of the amino acid sequences provided in SEQ ID NOs: 10-262, wherein X represents any amino acid at the corresponding position.


In some embodiments, the amino acid sequence of the Cas9 protein comprises at least one, at least two, at least three, at least four, at least five, at least six, or at least seven mutations selected from the group consisting of A262T, K294R, S409I, E480K, E543D, M694I, or E1219V of the amino acid sequence provided in SEQ ID NO: 9, or a corresponding mutation in any of the amino acid sequences provided in SEQ ID NOs: 10-262. In some embodiments, the amino acid sequence of the Cas9 protein comprises an X1219V mutation of the amino acid sequence provided in SEQ ID NO: 9, or a corresponding mutation in any of the amino acid sequences provided in SEQ ID NOs: 10-262. In some embodiments, the amino acid sequence of the Cas9 comprises an X1219V mutation of the amino acid sequence provided in SEQ ID NO: 9, or a corresponding mutation in any of the amino acid sequences provided in SEQ ID NOs: 10-262.


In some embodiments, the amino acid sequence of the HNH domain is at least 80%, at least 85%, at least 90%, at least 92%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, or at least 99.5% identical to the amino acid sequence of the HNH domain of any of SEQ ID NOs: 2, 4, or 9. In some embodiments, the amino acid sequence of the RuvC domain is at least 80%, at least 85%, at least 90%, at least 92%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, or at least 99.5% identical to the amino acid sequence of the RuvC domain of any of SEQ ID NOs: 10-262. In some embodiments, the Cas9 protein comprises a D10A and/or a H840A mutation of the amino acid sequence provided in SEQ ID NO: 9, or a corresponding mutation in any of the amino acid sequences provided in SEQ ID NOs: 10-262.


Some aspects of this disclosure provide recombinant Cas9 proteins comprising an amino acid sequence that is at least 90% identical to the amino acid sequence of Streptococcus pyogenes Cas9 as provided by SEQ ID NO: 9, comprising the RuvC and HNH domains of SEQ ID NO: 9, wherein the amino acid sequence of the Cas9 protein comprises at least one, at least two, at least three, at least four, at least five, at least six, or at least seven mutations in an amino acid residue selected from the group consisting of amino acid residues 122, 137, 182, 262, 294, 409, 480, 543, 660, 694, 1219, and 1329 of the amino acid sequence provided in SEQ ID NO: 9, wherein the amino acid sequence of the recombinant Cas9 protein is not identical to the amino acid sequence of a naturally occurring Cas9 protein, and wherein the recombinant Cas9 protein exhibits an increased activity on a target sequence that does not comprise the canonical PAM (5′-NGG-3′) at its 3′-end as compared to Streptococcus pyogenes Cas9 as provided by SEQ ID NO: 9. In some embodiments, the amino acid sequence of the RuvC domain is at least 80%, at least 85%, at least 90%, at least 92%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, or at least 99.5% identical to the amino acid sequence of the RuvC domain of any of SEQ ID NOs: 2, 4, or 9. In some embodiments, the Cas9 protein comprises a D10A and a H840A mutation of the amino acid sequence provided in SEQ ID NO: 9, or a corresponding mutation in any of the amino acid sequences provided in SEQ ID NOs: 10-262.


Some aspects of this disclosure provide recombinant Cas9 proteins comprising an amino acid sequence that is at least 90% identical to the amino acid sequence of Streptococcus pyogenes Cas9 as provided by SEQ ID NO: 9, comprising the RuvC and HNH domains of SEQ ID NO: 9, wherein the amino acid sequence of the Cas9 protein comprises at least one, at least two, at least three, at least four, at least five, at least six, or at least seven mutations in an amino acid residue selected from the group consisting of amino acid residues 122, 137, 182, 262, 294, 409, 480, 543, 660, 694, 1219, and 1329 of the amino acid sequence provided in SEQ ID NO: 9, wherein the amino acid sequence of the recombinant Cas9 protein is not identical to the amino acid sequence of a naturally occurring Cas9 protein, and wherein the recombinant Cas9 protein exhibits an increased activity on a target sequence that does not comprise the canonical PAM (5′-NGG-3′) at its 3′-end as compared to Streptococcus pyogenes Cas9 as provided by SEQ ID NO: 9. In some embodiments, the amino acid sequence of the RuvC domain is at least 80%, at least 85%, at least 90%, at least 92%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, or at least 99.5% identical to the amino acid sequence of the RuvC domain of any of SEQ ID NOs: 2, 4, or 9. In some embodiments, the Cas9 protein comprises a D10A mutation of the amino acid sequence provided in SEQ ID NO: 9, or a corresponding mutation in any of the amino acid sequences provided in SEQ ID NOs: 10-262. In some embodiments, the Cas9 further comprises a histidine residue at position 840 as provided in SEQ ID NO: 9, or a corresponding histidine residue in any of the amino acid sequences provided in SEQ ID NOs: 10-262. Without wishing to be bound by any particular theory, the presence of the catalytic residue H840 allows Cas9 to cleave the non-targeted strand, i.e., the strand bound by the sgRNA. In some embodiments, a Cas9 having an amino acid residue other than histidine at position 840 of the amino acid sequence provided in SEQ ID NO: 9, or a corresponding amino acid sequence provided in SEQ ID NOs: 10-262 may be changed or reverted such that amino acid residue 840 of the amino acid sequence provided in SEQ ID NO: 9, or a corresponding amino acid sequence provided in SEQ ID NOs: 10-262 is histidine.


Some aspects of this disclosure provide recombinant Cas9 proteins comprising an amino acid sequence that is at least 90% identical to the amino acid sequence of Streptococcus pyogenes Cas9 as provided by SEQ ID NO: 9, comprising the RuvC and HNH domains of SEQ ID NO: 9; wherein the amino acid sequence of the Cas9 protein comprises at least one, at least two, at least three, at least four, at least five, at least six, or at least seven mutations in an amino acid residue selected from the group consisting of amino acid residues 262, 267, 294, 405, 409, 480, 543, 694, 1219, 1224, and 1256 of the amino acid sequence provided in SEQ ID NO: 9; wherein the amino acid sequence of the recombinant Cas9 protein is not identical to the amino acid sequence of a naturally occurring Cas9 protein; and wherein the recombinant Cas9 protein exhibits activity (e.g., increased activity) on a target sequence that does not comprise the canonical PAM (5′-NGG-3′) at its 3′-end as compared to Streptococcus pyogenes Cas9 as provided by SEQ ID NO: 9.


In some embodiments, the Cas9 protein exhibits an activity on a target sequence having a 3′-end that is not directly adjacent to the canonical PAM sequence (5′-NGG-3′) that is at least 2-fold, at least 3-fold, at least 5-fold, at least 10-fold, at least 50-fold, at least 100-fold, at least 500-fold, at least 1,000-fold, at least 5,000-fold, at least 10,000-fold, at least 50,000-fold, at least 100,000-fold, at least 500,000-fold, or at least 1,000,000-fold increased as compared to the activity of Streptococcus pyogenes Cas9 as provided by SEQ ID NO: 9 on the same target sequence. In some embodiments, the 3′-end of the target sequence is directly adjacent to an AAA, AAC, AAG, AAT, CAA, CAC, CAG, CAT, GAA, GAC, GAG, GAT, TAA, TAC, TAG, TAT, ACA, ACC, ACG, ACT, CCA, CCC, CCG, CCT, GCA, GCC, GCG, GCT, TCA, TCC, TCG, TCT, AGA, AGC, AGT, CGA, CGC, CGT, GGA, GGC, GGT, TGA, TGC, TGT, ATA, ATC, ATG, ATT, CTA, CTC, CTG, CTT, GTA, GTC, GTG, GTT, TTA, TTC, TTG, or TTT PAM sequence.


In some embodiments, the amino acid sequence of the Cas9 protein comprises at least one, at least two, at least three, at least four, at least five, at least six, or at least seven mutations selected from the group consisting of X262T, X267G, X294R, X405I, X409I, X480K, X543D, X694I, X1219V, X1224K, X1256K, and X1362P of the amino acid sequence provided in SEQ ID NO: 9, or a corresponding mutation in any of the amino acid sequences provided in SEQ ID NOs: 10-262, wherein X represents any amino acid at the corresponding position.


In some embodiments, the amino acid sequence of the Cas9 protein comprises at least one, at least two, at least three, at least four, at least five, at least six, or at least seven mutations selected from the group consisting of A262T, S267G, K294R, F405I, S409I, E480K, E543D, M694I, E1219V, N1224K, Q1256K, and L1362P of the amino acid sequence provided in SEQ ID NO: 9, or a corresponding mutation in any of the amino acid sequences provided in SEQ ID NOs: 10-262. In some embodiments, the amino acid sequence of the Cas9 protein comprises an X1219V mutation of the amino acid sequence provided in SEQ ID NO: 9, or a corresponding mutation in any of the amino acid sequences provided in SEQ ID NOs: 10-262. In some embodiments, the amino acid sequence of the Cas9 protein comprises an E1219V mutation of the amino acid sequence provided in SEQ ID NO: 9, or a corresponding mutation in any of the amino acid sequences provided in SEQ ID NOs: 10-262.


In some embodiments, the amino acid sequence of the Cas9 protein comprises an X480K mutation of the amino acid sequence provided in SEQ ID NO: 9, or a corresponding mutation in any of the amino acid sequences provided in SEQ ID NOs: 10-262. In some embodiments, the amino acid sequence of the Cas9 protein comprises an E480K mutation of the amino acid sequence provided in SEQ ID NO: 9, or a corresponding mutation in any of the amino acid sequences provided in SEQ ID NOs: 10-262.


In some embodiments, the amino acid sequence of the Cas9 protein comprises an X543D mutation of the amino acid sequence provided in SEQ ID NO: 9, or a corresponding mutation in any of the amino acid sequences provided in SEQ ID NOs: 10-262. In some embodiments, the amino acid sequence of the Cas9 protein comprises an E543D mutation of the amino acid sequence provided in SEQ ID NO: 9, or a corresponding mutation in any of the amino acid sequences provided in SEQ ID NOs: 10-262.


In some embodiments, the amino acid sequence of the Cas9 protein comprises the combination of mutations selected from the group consisting of (X480K, X543D, and X1219V); (X262T, X409I, X480K, X543D, X694I, and X1219V); (X294R, X480K, X543D, X1219V, X1256K, and X1362P); (X294R, X480K, X543D, X1219V, and X1256K); (X267G, X294R, X480K, X543D, X1219V, X1224K, and X1256K); and (X262T, X405I, X409I, X480K, X543D, X694I, and X1219V) of the amino acid sequence provided in SEQ ID NO: 9, or a corresponding mutation in any of the amino acid sequences provided in SEQ ID NOs: 10-262. In some embodiments, the amino acid sequence of the Cas9 protein comprises the combination of mutations selected from the group consisting of (E480K, E543D, and E1219V); (A262T, S409I, E480K, E543D, M694I, and E1219V); (K294R, E480K, E543D, E1219V, Q1256K, and L1362P); (K294R, E480K, E543D, E1219V, and Q1256K); (S267G, K294R, E480K, E543DE1219V, N1224K, and Q1256K); and (A262T, F405I, S409I, E480K, E543D, M694I, and E1219V) of the amino acid sequence provided in SEQ ID NO: 9, or a corresponding mutation in any of the amino acid sequences provided in SEQ ID NOs: 10-262.


In some embodiments, the amino acid sequence of the HNH domain is at least 80%, at least 85%, at least 90%, at least 92%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, or at least 99.5% identical to the amino acid sequence of the HNH domain of any of SEQ ID NOs: 2, 4, or 9. In some embodiments, the amino acid sequence of the RuvC domain is at least 80%, at least 85%, at least 90%, at least 92%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, or at least 99.5% identical to the amino acid sequence of the RuvC domain of any of SEQ ID NOs: 2, 4, or 9. In some embodiments, the Cas9 protein comprises a D10A and/or a H840A mutation of the amino acid sequence provided in SEQ ID NO: 9, or a corresponding mutation in any of the amino acid sequences provided in SEQ ID NOs: 10-262. In some embodiments, the Cas9 protein comprises a D10A and an H840A mutation of the amino acid sequence provided in SEQ ID NO: 9, or a corresponding mutation in any of the amino acid sequences provided in SEQ ID NOs: 10-262. In some embodiments, the Cas9 protein comprises a D10A mutation of the amino acid sequence provided in SEQ ID NO: 9, or a corresponding mutation in any of the amino acid sequences provided in SEQ ID NOs: 10-262. In some embodiments, the Cas9 protein comprises an H840A mutation of the amino acid sequence provided in SEQ ID NO: 9, or a corresponding mutation in any of the amino acid sequences provided in SEQ ID NOs: 10-262.


Some aspects of this disclosure provide recombinant Cas9 proteins comprising an amino acid sequence that is at least 90% identical to the amino acid sequence of Streptococcus pyogenes Cas9 as provided by SEQ ID NO: 9, comprising the RuvC and HNH domains of SEQ ID NO: 9, wherein the amino acid sequence of the Cas9 protein comprises at least one, at least two, at least three, at least four, at least five, at least six, or at least seven mutations in an amino acid residue selected from the group consisting of amino acid residues 262, 267, 294, 405, 409, 480, 543, 694, 1219, 1224, 1256, and 1362 of the amino acid sequence provided in SEQ ID NO: 9, wherein the amino acid sequence of the recombinant Cas9 protein is not identical to the amino acid sequence of a naturally occurring Cas9 protein, and wherein the recombinant Cas9 protein exhibits increased activity on a target sequence that does not include the canonical PAM (5′-NGG-3′) at its 3′-end as compared to Streptococcus pyogenes Cas9 as provided by SEQ ID NO: 9. In some embodiments, the amino acid sequence of the RuvC domain is at least 80%, at least 85%, at least 90%, at least 92%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, or at least 99.5% identical to the amino acid sequence of the RuvC domain of any of SEQ ID NOs: 2, 4, or 9. In some embodiments, the Cas9 protein comprises a D10A and a H840A mutation of the amino acid sequence provided in SEQ ID NO: 9, or a corresponding mutation in any of the amino acid sequences provided in SEQ ID NOs: 10-262.


Some aspects of this disclosure provide recombinant Cas9 proteins comprising an amino acid sequence that is at least 90% identical to the amino acid sequence of Streptococcus pyogenes Cas9 as provided by SEQ ID NO: 9, comprising the RuvC and HNH domains of SEQ ID NO: 9, wherein the amino acid sequence of the Cas9 protein comprises at least one, at least two, at least three, at least four, at least five, at least six, or at least seven mutations at an amino acid residue selected from the group consisting of amino acid residues 262, 267, 294, 405, 409, 480, 543, 694, 1219, 1224, 1256, and 1362 of the amino acid sequence provided in SEQ ID NO: 9, wherein the amino acid sequence of the recombinant Cas9 protein is not identical to the amino acid sequence of a naturally occurring Cas9 protein, and wherein the recombinant Cas9 protein exhibits increased activity on a target sequence that does not comprise the canonical PAM (5′-NGG-3′) at its 3′-end as compared to Streptococcus pyogenes Cas9 as provided by SEQ ID NO: 9. In some embodiments, the amino acid sequence of the RuvC domain is at least 80%, at least 85%, at least 90%, at least 92%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, or at least 99.5% identical to the amino acid sequence of the RuvC domain of any of SEQ ID NOs: 2, 4, or 9. In some embodiments, the Cas9 protein comprises a D10A mutation of the amino acid sequence provided in SEQ ID NO: 9, or a corresponding mutation in any of the amino acid sequences provided in SEQ ID NOs: 10-262. In some embodiments, the Cas9 further comprises a histidine residue at position 840 as provided in SEQ ID NO: 9, or a corresponding histidine residue in any of the amino acid sequences provided in SEQ ID NOs: 10-262. Without wishing to be bound by any particular theory, the presence of the catalytic residue H840 allows Cas9 to cleave the non-targeted strand, i.e., the strand bound by the sgRNA. In some embodiments, a Cas9 having an amino acid residue other than histidine at position 840 of the amino acid sequence provided in SEQ ID NO: 9, or a corresponding amino acid sequence provided in SEQ ID NOs: 10-262 may be changed or reverted such that amino acid residue 840 of the amino acid sequence provided in SEQ ID NO: 9, or a corresponding amino acid sequence provided in SEQ ID NOs: 10-262 is histidine.


Cas9 Fusion Proteins


Some aspects of this disclosure provide fusion proteins comprising a Cas9 protein as provided herein that is fused to a second protein, or a “fusion partner”, such as an effector domain, thus forming a fusion protein. In some embodiments, the effector domain is fused to the N-terminus of the Cas9 protein. In some embodiments, the effector domain is fused to the C-terminus of the Cas9 protein. In some embodiments, the Cas9 protein and the effector domain are fused to each other via a linker. Suitable strategies for generating fusion proteins according to aspects of this disclosure using linkers or without the use of linkers will also be apparent to those of skill in the art in view of the instant disclosure and the knowledge in the art. For example, Gilbert et al., CRISPR-mediated modular RNA-guided regulation of transcription in eukaryotes. Cell. 2013; 154(2):442-51, showed that C-terminal fusions of Cas9 with VP64 using 2 NLS's as a linker (SPKKKRKVEAS, SEQ ID NO: 284), can be employed for transcriptional activation. Mali et al., CAS9 transcriptional activators for target specificity screening and paired nickases for cooperative genome engineering. Nat Biotechnol. 2013; 31(9):833-8, reported that C-terminal fusions with VP64 without linker can be employed for transcriptional activation. And Maeder et al., CRISPR RNA-guided activation of endogenous human genes. Nat Methods. 2013; 10: 977-979, reported that C-terminal fusions with VP64 using a Gly4Ser (SEQ ID NO: 5) linker can be used as transcriptional activators. Recently, dCas9-FokI nuclease fusions have successfully been generated and exhibit improved enzymatic specificity as compared to the parental Cas9 enzyme (In Guilinger J P, Thompson D B, Liu D R. Fusion of catalytically inactive Cas9 to FokI nuclease improves the specificity of genome modification. Nat. Biotechnol. 2014; 32(6): 577-82, and in Tsai S Q, Wyvekens N, Khayter C, Foden J A, Thapar V, Reyon D, Goodwin M J, Aryee M J, Joung J K. Dimeric CRISPR RNA-guided FokI nucleases for highly specific genome editing. Nat Biotechnol. 2014; 32(6):569-76. PMID: 24770325 a SGSETPGTSESATPES (SEQ ID NO: 7) or a GGGGS. (SEQ ID NO: 5) linker was used in FokI-dCas9 fusion proteins, respectively). In some embodiments, the linker comprises a (GGGGS)n (SEQ ID NO: 5), a (G)n (SEQ ID NO: 5087), an (EAAAK)n (SEQ ID NO: 6), a (GGS)n(SEQ ID NO: 5088), an SGSETPGTSESATPES (SEQ ID NO: 7), or an (XP)n (SEQ ID NO: 5089) motif, or a combination of any of these, wherein n is independently an integer between 1 and 30. In some embodiments, the effector domain comprises an enzymatic domain. Suitable effector domains include, without limitation a nuclease, nickase, recombinase, deaminase, methyltransferase, methylase, acetylase, acetyltransferase, transcriptional activator, and transcriptional repressor.


The linker may be as simple as a covalent bond, or it may be a polymeric linker many atoms in length. In certain embodiments, the linker is a polypeptide or based on amino acids. In other embodiments, the linker is not peptide-like. In certain embodiments, the linker is a covalent bond (e.g., a carbon-carbon bond, disulfide bond, carbon-heteroatom bond, etc.). In certain embodiments, the linker is a carbon-nitrogen bond of an amide linkage. In certain embodiments, the linker is a cyclic or acyclic, substituted or unsubstituted, branched or unbranched aliphatic or heteroaliphatic linker. In certain embodiments, the linker is polymeric (e.g., polyethylene, polyethylene glycol, polyamide, polyester, etc.). In certain embodiments, the linker comprises a monomer, dimer, or polymer of aminoalkanoic acid. In certain embodiments, the linker comprises an aminoalkanoic acid (e.g., glycine, ethanoic acid, alanine, beta-alanine, 3-aminopropanoic acid, 4-aminobutanoic acid, 5-pentanoic acid, etc.). In certain embodiments, the linker comprises a monomer, dimer, or polymer of aminohexanoic acid (Ahx). In certain embodiments, the linker is based on a carbocyclic moiety (e.g., cyclopentane, cyclohexane). In other embodiments, the linker comprises a polyethylene glycol moiety (PEG). In other embodiments, the linker comprises amino acids. In certain embodiments, the linker comprises a peptide. In certain embodiments, the linker comprises an aryl or heteroaryl moiety. In certain embodiments, the linker is based on a phenyl ring. The linker may included functionalized moieties to facilitate attachment of a nucleophile (e.g., thiol, amino) from the peptide to the linker. Any electrophile may be used as part of the linker. Exemplary electrophiles include, but are not limited to, activated esters, activated amides, Michael acceptors, alkyl halides, aryl halides, acyl halides, and isothiocyanates.


In some embodiments, the effector domain comprises a effector enzyme. Suitable effector enzymes that may be used in accordance with this disclosure include nucleases, nickases, recombinases, and deaminases. However additional effector enzymes would be apparent to the skilled artisan and are within the scope of this disclosure. In other embodiments, the effector domain comprises a domain that modulates transcriptional activity. Such transcriptional modulating domains may be, without limitation, a transcriptional activator or transcriptional repressor domain.


In some embodiments, the effector domain is a effector domain. In some embodiments, the effector domain is a deaminase domain. In some embodiments, the deaminase is a cytosine deaminase or a cytidine deaminase. In some embodiments, the deaminase is an apolipoprotein B mRNA-editing complex (APOBEC) family deaminase. In some embodiments, the deaminase is an APOBEC1 deaminase. In some embodiments, the deaminase is an APOBEC2 deaminase. In some embodiments, the deaminase is an APOBEC3 deaminase. In some embodiments, the deaminase is an APOBEC3A deaminase. In some embodiments, the deaminase is an APOBEC3D deaminase. In some embodiments, the deaminase is an APOBEC3E deaminase. In some embodiments, the deaminase is an APOBEC3F deaminase. In some embodiments, the deaminase is an APOBEC3G deaminase. In some embodiments, the deaminase is an APOBEC3H deaminase. In some embodiments, the deaminase is an APOBEC4 deaminase. In some embodiments, the deaminase is an activation-induced deaminase (AID).


In some embodiments, the effector domain is at least 80%, at least 85%, at least 90%, at least 92%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, or at least 99.5% identical to the deaminase domain of any one of SEQ ID NOs: 263-281.


In some embodiments, the effector domain is a nuclease domain. In some embodiments, the nuclease domain is a FokI DNA cleavage domain. In some embodiments, this disclosure provides dimers of the fusion proteins provided herein, e.g., dimers of fusion proteins may include a trimerizing nuclease domain.


In some embodiments, the Cas9 protein comprises an amino acid sequence that is at least 80%, at least 85%, at least 90%, at least 92%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, or at least 99.5% identical to the amino acid sequence of Cas9 as provided by any of the sequences provided in SEQ ID NOs: 10-262, wherein the Cas9 protein comprises a RuvC and an HNH domain, wherein the amino acid sequence of the Cas9 protein comprises at least one, at least two, at least three, at least four, at least five, at least six, or at least seven mutations in an amino acid residue selected from the group consisting of amino acid residues 122, 137, 182, 262, 294, 409, 480, 543, 660, 694, 1219, and 1329 of the amino acid sequence provided in SEQ ID NO: 9, or in a corresponding amino acid residue in any of the amino acid sequences provided in SEQ ID NOs: 10-262, and wherein the amino acid sequence of the recombinant Cas9 protein is not identical to the amino acid sequence of a naturally occurring Cas9 protein. In some embodiments, the Cas9 protein comprises an amino acid sequence that is at least 90% identical to the amino acid sequence of Streptococcus pyogenes Cas9 as provided by SEQ ID NO: 9, comprising the RuvC and HNH domains of SEQ ID NO: 9, wherein the amino acid sequence of the Cas9 protein comprises at least one, at least two, at least three, at least four, at least five, at least six, or at least seven mutations in an amino acid residue selected from the group consisting of amino acid residues 122, 137, 182, 262, 294, 409, 480, 543, 660, 694, 1219, and 1329 of the amino acid sequence provided in SEQ ID NO: 9, wherein the amino acid sequence of the recombinant Cas9 protein is not identical to the amino acid sequence of a naturally occurring Cas9 protein, and wherein the recombinant Cas9 protein exhibits activity on a target sequence that does not comprise the canonical PAM (5′-NGG-3′) at its 3′-end as compared to Streptococcus pyogenes Cas9 as provided by SEQ ID NO: 9.


In some embodiments, the Cas9 protein comprises an amino acid sequence that is at least 80%, at least 85%, at least 90%, at least 92%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, or at least 99.5% identical to the amino acid sequence of Cas9 as provided by any of the sequences provided in SEQ ID NOs: 10-262, wherein the Cas9 protein comprises a RuvC and an HNH domain, wherein the amino acid sequence of the Cas9 protein comprises at least one, at least two, at least three, at least four, at least five, at least six, or at least seven mutations in an amino acid residue selected from the group consisting of amino acid residues 262, 267, 294, 405, 409, 480, 543, 694, 1219, 1224, 1256, and 1362 of the amino acid sequence provided in SEQ ID NO: 9, or in a corresponding amino acid residue in any of the amino acid sequences provided in SEQ ID NOs: 10-262, and wherein the amino acid sequence of the recombinant Cas9 protein is not identical to the amino acid sequence of a naturally occurring Cas9 protein. In some embodiments, the Cas9 protein comprises an amino acid sequence that is at least 90% identical to the amino acid sequence of Streptococcus pyogenes Cas9 as provided by SEQ ID NO: 9, comprising the RuvC and HNH domains of SEQ ID NO: 9, wherein the amino acid sequence of the Cas9 protein comprises at least one, at least two, at least three, at least four, at least five, at least six, or at least seven mutations in an amino acid residue selected from the group consisting of amino acid residues 262, 267, 294, 405, 409, 480, 543, 694, 1219, 1224, and 1256 of the amino acid sequence provided in SEQ ID NO: 9; wherein the amino acid sequence of the recombinant Cas9 protein is not identical to the amino acid sequence of a naturally occurring Cas9 protein; and wherein the recombinant Cas9 protein exhibits increased activity on a target sequence that does not include the canonical PAM (5′-NGG-3′) at its 3′-end, as compared to Streptococcus pyogenes Cas9 as provided by SEQ ID NO: 9.


Some aspects of this disclosure provide fusion proteins comprising (i) a nuclease-inactive Cas9 protein; and (ii) a effector domain. In some embodiments, the effector domain is a DNA-editing domain. In some embodiments, the effector domain possesses deaminase activity. In some embodiments, the effector domain comprises or is a deaminase domain. In some embodiments, the deaminase is a cytidine deaminase. In some embodiments, the deaminase is an apolipoprotein B mRNA-editing complex (APOBEC) family deaminase. In some embodiments, the deaminase is an APOBEC1 family deaminase. In some embodiments, the deaminase is an activation-induced cytidine deaminase (AID). Some nucleic-acid editing domains as well as Cas9 fusion proteins including such domains are described in detail herein. Additional suitable effector domains will be apparent to the skilled artisan based on this disclosure. In some embodiments, the nucleic-acid editing domain is a FokI nuclease domain.


The instant disclosure provides Cas9:effector domain fusion proteins of various configurations. In some embodiments, the effector domain is fused to the N-terminus of the Cas9 protein. In some embodiments, the effector domain is fused to the C-terminus of the Cas9 protein. In some embodiments, the Cas9 protein and the effector domain are fused via a linker. In some embodiments, the linker comprises (GGGGS)n (SEQ ID NO: 5), (G)n (SEQ ID NO: 5087), (EAAAK)n (SEQ ID NO: 6), (GGS)n(SEQ ID NO: 5088), or SGSETPGTSESATPES (SEQ ID NO: 7) motif (see, e.g., Guilinger J P, Thompson D B, Liu D R. Fusion of catalytically inactive Cas9 to FokI nuclease improves the specificity of genome modification. Nat. Biotechnol. 2014; 32(6): 577-82; the entire contents are incorporated herein by reference), or an (XP)n (SEQ ID NO: 5089) motif, or a combination of any of these, wherein n is independently an integer between 1 and 30. In some embodiments, n is independently 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, or 30, or, if more than one linker or more than one linker motif is present, any combination thereof. Additional suitable linker motifs and linker configurations will be apparent to those of skill in the art. In some embodiments, suitable linker motifs and configurations include those described in Chen et al., Fusion protein linkers: property, design and functionality. Adv Drug Deliv Rev. 2013; 65(10):1357-69, the entire contents of which are incorporated herein by reference. Additional suitable linker sequences will be apparent to those of skill in the art based on the instant disclosure and knowledge in the art.


In some embodiments, the general architecture of exemplary Cas9 fusion proteins provided herein comprises the structure:

    • [NH2]-[effector domain]-[Cas9]-[COOH] or
    • [NH2]-[Cas9]-[effector domain]-[COOH],


      wherein NH2 is the N-terminus of the fusion protein, and COOH is the C-terminus of the fusion protein. FIG. 11 provides a schematic representation of a Cas9 protein fused to an effector domain (e.g., rAPOBEC1) in complex with sgRNA and bound to the target nucleic acid sequence.


In some embodiments, any of the fusion proteins provided herein may comprise one or more nuclear localization sequence (NLS). As used herein, a nuclear localization sequence refers to an amino acid sequence that promotes importation of a protein, for example any of the fusion proteins provided herein having an NLS, into the cell nucleus (e.g., via nuclear transport). Typically, an NLS comprises one or more short amino acid sequences of positively charged lysines or arginines exposed on the protein surface. Nuclear localization sequences are known in the art and would be apparent to the skilled artisan. For example nuclear localization sequences have been described in Kalderon D., et al., “A short amino acid sequence able to specify nuclear location”. Cell (1984) 39 (3 Pt 2): 499-509; Dingwall C., et al., “The nucleoplasmin nuclear location sequence is larger and more complex than that of SV-40 large T antigen”. J Cell Biol. (1988) 107 (3): 841-9; Makkerh J. P., et al., “Comparative mutagenesis of nuclear localization signals reveals the importance of neutral and acidic amino acids”. Curr Biol. (1996) 6 (8): 1025-7; and Ray M., et al., “Quantitative tracking of protein trafficking to the nucleus using cytosolic protein delivery by nanoparticle-stabilized nanocapsules”. Bioconjug. Chem. (2015) 26 (6): 1004-7; the entire contents of each are incorporated by reference herein. Additional nuclear localization sequences are described, for example, in Plank et al., PCT/EP2000/011690, the entire contents are incorporated by reference herein. In some embodiments, a NLS comprises the amino acid sequence PKKKRKV (SEQ ID NO: 299) or MDSLLMNRRKFLYQFKNVRWAKGRRETYLC (SEQ ID NO: 300).


Exemplary features that may be present are localization sequences, such as nuclear localization sequences, cytoplasmic localization sequences, export sequences, such as nuclear export sequences, or other localization sequences, as well as sequence tags that are useful for solubilization, purification, or detection of the fusion proteins. Suitable localization signal sequences and sequences of protein tags are provided herein, and include, but are not limited to, biotin carboxylase carrier protein (BCCP) tags, myc-tags, calmodulin-tags, FLAG-tags, hemagglutinin (HA)-tags, polyhistidine tags, also referred to as histidine tags or His-tags, maltose binding protein (MBP)-tags, nus-tags, glutathione-S-transferase (GST)-tags, green fluorescent protein (GFP)-tags, thioredoxin-tags, S-tags, Softags (e.g., Softag 1, Softag 3), strep-tags, biotin ligase tags, FlAsH tags, V5 tags, and SBP-tags. Additional suitable sequences will be apparent to those of skill in the art and are within the scope of this disclosure.


Any of the nuclear localization sequences provided herein may be fused to the fusion protein in any suitable localization. For example, to promote translocation of the fusion protein into a cell nucleus without compromising function of the fusion protein. In some embodiments, the NLS is fused N-terminal to the Cas9 protein of the fusion protein. In some embodiments, the NLS is fused C-terminal to the Cas9 protein of the fusion protein. In some embodiments, the NLS is fused N-terminal to the effector domain of the fusion protein. In some embodiments, the NLS is fused C-terminal to the effector domain of the fusion protein.


In some embodiments, the effector domain is a deaminase. For example, in some embodiments, the general architecture of exemplary Cas9 fusion proteins with a deaminase domain comprises the structure:

    • [NH2]-[NLS]-[Cas9]-[deaminase]-[COOH],
    • [NH2]-[NLS]-[deaminase]-[Cas9]-[COOH],
    • [NH2]-[Cas9]-[NLS]-[deaminase]-[COOH],
    • [NH2]-[deaminase]-[NLS]-[Cas9]-[COOH],
    • [NH2]-[deaminase]-[Cas9]-[NLS]-[COOH], or
    • [NH2]-[Cas9]-[deaminase]-[NLS]-[COOH],


      wherein NLS is a nuclear localization signal, NH2 is the N-terminus of the fusion protein, and COOH is the C-terminus of the fusion protein. In some embodiments, a linker is inserted between the Cas9 protein and the deaminase domain. In some embodiments, any of the “]-[” may be one or more linkers. In some embodiments, the NLS is located C-terminal of the deaminase and/or the Cas9 domain. In some embodiments, the NLS is located between the deaminase and the Cas9 domain. Additional features, such as sequence tags, may also be present.


One exemplary suitable type of effector domain includes cytosine deaminases, for example, of the APOBEC family. The apolipoprotein B mRNA-editing complex (APOBEC) family of cytosine deaminase enzymes encompasses eleven proteins that serve to initiate mutagenesis in a controlled and beneficial manner.29 One family member, activation-induced cytidine deaminase (AID), is responsible for the maturation of antibodies by converting cytosines in ssDNA to uracils in a transcription-dependent, strand-biased fashion.30 The apolipoprotein B editing complex 3 (APOBEC3) enzyme provides protection to human cells against a certain HIV-1 strain via the deamination of cytosines in reverse-transcribed viral ssDNA.31 These proteins all require a Zn2+-coordinating motif (His-X-Glu-X23-26-Pro-Cys-X2-4-Cys; SEQ ID NO: 283) and bound water molecule for catalytic activity. The Glu residue acts to activate the water molecule to a zinc hydroxide for nucleophilic attack in the deamination reaction. Each family member preferentially deaminates at its own particular “hotspot,” ranging from WRC (W is A or T, R is A or G) for hAID, to TTC for hAPOBEC3F.32 A recent crystal structure of the catalytic domain of APOBEC3G revealed a secondary structure comprised of a five-stranded β-sheet core flanked by six α-helices, which is believed to be conserved across the entire family.33 The active center loops have been shown to be responsible for both ssDNA binding and in determining “hotspot” identity.34 Overexpression of these enzymes has been linked to genomic instability and cancer, thus highlighting the importance of sequence-specific targeting.


Some aspects of this disclosure provide a systematic series of fusions between Cas9 and deaminase domains, e.g., cytosine deaminase enzymes such as APOBEC enzymes, or adenosine deaminase enzymes such as ADAT enzymes, that has been generated in order to direct the enzymatic activities of these deaminases to a specific site in genomic DNA. The advantages of using Cas9 as the recognition agent are two-fold: (1) the sequence specificity of Cas9 can be easily altered by simply changing the sgRNA sequence; and (2) Cas9 binds to its target sequence by denaturing the dsDNA, resulting in a stretch of DNA that is single-stranded and therefore a viable substrate for the deaminase. It will be understood that other catalytic domains, or catalytic domains from other deaminases, can also be used to generate fusion proteins with Cas9, and that the disclosure is not limited in this regard.


Some aspects of this disclosure are based on the recognition that cas9:deaminase fusion proteins can efficiently deaminate nucleotides at positions 3-11 according to the numbering scheme in FIG. 11. It should be appreciated that a person of skill in the art will be able to design suitable guide RNAs to target the fusion proteins to a target sequence that comprises a nucleotide to be deaminated. Both PAM-dependent Cas9 proteins or Cas9 proteins that can target PAM-less target sequences as provided herein, can be employed for deamination of a target nucleotide.


Some exemplary suitable nucleic-acid editing domains, e.g., deaminases and deaminase domains, that can be fused to Cas9 domains according to aspects of this disclosure are provided below. Typically, deaminase require a Zn2+-coordinating motif (His-X-Glu-X23-26-Pro-Cys-X2-4-Cys; SEQ ID NO: 283) and bound water molecule for catalytic activity. The Glu residue acts to activate the water molecule to a zinc hydroxide for nucleophilic attack in the deamination reaction. It will be understood that, in some embodiments, the active domain of the respective sequence can be used, e.g., the domain without a localizing signal (nuclear localizing signal, without nuclear export signal, cytoplasmic localizing signal).









Human AID:


(SEQ ID NO: 263)



MDSLLMNRRKFLYQFKNVRWAKGRRETYLCYVVKRRDSATSFSLDFGYL






RNKNGCHVELLFLRYISDWDLDPGRCYRVTWFTSWSPCYDCARHVADFL





RGNPNLSLRIFTARLYFCEDRKAEPEGLRRLHRAGVQIAIMTFKDYFYC





WNTFVENHERTFKAWEGLHENSVRLSRQLRRILLPLYEVDDLRDAFRTL






GL






(underline: nuclear localization signal; double


underline: nuclear export signal) 





Mouse AID:


(SEQ ID NO: 264)



MDSLLMKQKKFLYHFKNVRWAKGRHETYLCYVVKRRDSATSCSLDFGHL






RNKSGCHVELLFLRYISDWDLDPGRCYRVTWFTSWSPCYDCARHVAEFL





RWNPNLSLRIFTARLYFCEDRKAEPEGLRRLHRAGVQIGIMTFKDYFYC





WNTFVENRERTFKAWEGLHENSVRLTRQLRRILLPLYEVDDLRDAFRML






GF






(underline: nuclear localization signal; double


underline: nuclear export signal)





Dog AID:


(SEQ ID NO: 265)



MDSLLMKQRKFLYHFKNVRWAKGRHETYLCYVVKRRDSATSFSLDFGHL






RNKSGCHVELLFLRYISDWDLDPGRCYRVTWFTSWSPCYDCARHVADFL





RGYPNLSLRIFAARLYFCEDRKAEPEGLRRLHRAGVQIAIMTFKDYFYC





WNTFVENREKTFKAWEGLHENSVRLSRQLRRILLPLYEVDDLRDAFRTL






GL






(underline: nuclear localization signal; double


underline: nuclear export signal)





Bovine AID:


(SEQ ID NO: 266)



MDSLLKKQRQFLYQFKNVRWAKGRHETYLCYVVKRRDSPTSFSLDFGHL






RNKAGCHVELLFLRYISDWDLDPGRCYRVTWFTSWSPCYDCARHVADFL





RGYPNLSLRIFTARLYFCDKERKAEPEGLRRLHRAGVQIAIMTFKDYFY





CWNTFVENHERTFKAWEGLHENSVRLSRQLRRILLPLYEVDDLRDAFRT






LGL






(underline: nuclear localization signal; double


underline: nuclear export signal)





Mouse APOBEC-3:


(SEQ ID NO: 267)


MGPFCLGCSHRKCYSPIRNLISQETFKFHFKNLGYAKGRKDTFLCYEVT





RKDCDSPVSLHHGVFKNKDNIHAEICFLYWFHDKVLKVLSPREEFKITW






YMSWSPCFECAEQIVRFLATHHNLSLDIFSSRLYNVQDPETQQNLCRLV






QEGAQVAAMDLYEFKKCWKKFVDNGGRRFRPWKRLLTNFRYQDSKLQEI





LRPCYIPVPSSSSSTLSNICLTKGLPETRFCVEGRRMDPLSEEEFYSQF





YNQRVKHLCYYHRMKPYLCYQLEQFNGQAPLKGCLLSEKGKQHAEILFL






DKIRSMELSQVTITCYLTWSPCPNCAWQLAAFKRDRPDLILHIYTSRLY






FHWKRPFQKGLCSLWQSGILVDVMDLPQFTDCWTNFVNPKRPFWPWKGL





EIISRRTQRRLRRIKESWGLQDLVNDFGNLQLGPPMS





(italic: nucleic acid editing domain)





Rat APOBEC-3:


(SEQ ID NO: 268)


MGPFCLGCSHRKCYSPIRNLISQETFKFHFKNLRYAIDRKDTFLCYEVT





RKDCDSPVSLHHGVFKNKDNIHAEICFLYWFHDKVLKVLSPREEFKITW






YMSWSPCFECAEQVLRFLATHHNLSLDIFSSRLYNIRDPENQQNLCRLV






QEGAQVAAMDLYEFKKCWKKFVDNGGRRFRPWKKLLTNFRYQDSKLQEI





LRPCYIPVPSSSSSTLSNICLTKGLPETRFCVERRRVHLLSEEEFYSQF





YNQRVKHLCYYHGVKPYLCYQLEQFNGQAPLKGCLLSEKGKQHAEILFL






DKIRSMELSQVIITCYLTWSPCPNCAWQLAAFKRDRPDLILHIYTSRLY






FHWKRPFQKGLCSLWQSGILVDVMDLPQFTDCWTNFVNPKRPFWPWKGL





EIISRRTQRRLHRIKESWGLQDLVNDFGNLQLGPPMS





(italic: nucleic acid editing domain)





Rhesus macaque APOBEC-3G:


(SEQ ID NO: 269)



MVEPMDPRTFVSNFNNRPILSGLNTVWLCCEVKTKDPSGPPLDAKIFQG







KVYSKAKYHPEM
RFLRWFHKWRQLHHDQEYKVTWYVSWSPCTRCANSVA






TFLAKDPKVTLTIFVARLYYFWKPDYQQALRILCQKRGGPHATMKIMNY





NEFQDCWNKFVDGRGKPFKPRNNLPKHYTLLQATLGELLRHLMDPGTFT





SNFNNKPWVSGQHETYLCYKVERLHNDTWVPLNQHRGFLRNQAPNIFIG





FPKGRHAELCFLDHPFWKLDGQQYRVTCFTSWSPCFSCAQEMAKFISNN





EHVSLCIFAARIYDDQGRYQEGLRALHRDGAKIAMMNYSEFEYCWDTFV





DRQGRPFQPWDGLDEHSQALSGRLRAI





(italic: nucleic acid editing domain; underline:


cytoplasmic localization signal)





Chimpanzee APOBEC-3G:


(SEQ ID NO: 270)



MKPHFRNPVERMYQDTFSDNFYNRPILSHRNTVWLCYEVKTKGPSRPPL







DAKIFRGQVYSKLKYHPEAIRFFHWFSKWRKLHRDQEYEVTWYISWSPC







TKCTRDVATFLAEDPKVTLTIFVARLYYFWDPDYQEALRSLCQKRDGPR






ATMKIMNYDEFQHCWSKFVYSQRELFEPWNNLPKYYILLHIMLGEILRH





SMDPPTFTSNFNNELWVRGRHETYLCYEVERLHNDTWVLLNQRRGFLCN





QAPHKHGFLEGRHAELCFLDVIPFWKLDLHQDYRVTCFTSWSPCFSCAQ





EMAKFISNNKHVSLCIFAARIYDDQGRCQEGLRTLAKAGAKISIMTYSE





FKHCWDTFVDHQGCPFQPWDGLEEHSQALSGRLRAILQNQGN





(italic: nucleic acid editing domain; underline:


cytoplasmic localization signal)





Green monkey APOBEC-3G:


(SEQ ID NO: 271)



MNPQIRNMVEQMEPDIFVYYFNNRPILSGRNTVWLCYEVKTKDPSGPPL







DANIFQGKLYPEAKDHPEMKFLHWFRKWRQLHRDQEYEVTWYVSWSPCT







RCANSVATFLAEDPKVTLTIFVARLYYFWKPDYQQALRILCQERGGPHA






TMKIMNYNEFQHCWNEFVDGQGKPFKPRKNLPKHYTLLHATLGELLRHV





MDPGTFTSNFNNKPWVSGQRETYLCYKVERSHNDTWVLLNQHRGFLRNQ





APDRHGFPKGRHAELCFLDHPFWKLDDQQYRVTCFTSWSPCFSCAQKMA





KFISNNKHVSLCIFAARIYDDQGRCQEGLRTLHRDGAKIAVMNYSEFEY





CWDTFVDRQGRPFQPWDGLDEHSQALSGRLRAI





(italic: nucleic acid editing domain; underline:


cytoplasmic localization signal)





Human APOBEC-3G:


(SEQ ID NO: 272)



MKPHFRNTVERMYRDTFSYNFYNRPILSRRNTVWLCYEVKTKGPSRPPL







DAKIFRGQVYSELKYHPEMRFFHWFSKWRKLHRDQEYEVTWYISWSPCT







KCTRDMATFLAEDPKVTLTIFVARLYYFWDPDYQEALRSLCQKRDGPRA






TMKIMNYDEFQHCWSKFVYSQRELFEPWNNLPKYYILLHIMLGEILRHS





MDPPTFTFNFNNEPWVRGRHETYLCYEVERMHNDTWVLLNQRRGFLCNQ





APHKHGFLEGRHAELCFLDVIPFWKLDLDQDYRVTCFTSWSPCFSCAQE





MAKFISKNKHVSLCIFTARIYDDQGRCQEGLRTLAEAGAKISIMTYSEF





KHCWDTFVDHQGCPFQPWDGLDEHSQDLSGRLRAILQNQEN





(italic: nucleic acid editing domain; underline:


cytoplasmic localization signal)





Human APOBEC-3F:


(SEQ ID NO: 273)


MKPHFRNTVERMYRDTFSYNFYNRPILSRRNTVWLCYEVKTKGPSRPRL





DAKIFRGQVYSQPEHHAEMCFLSWFCGNQLPAYKCFQITWFVSWTPCPD






CVAKLAEFLAEHPNVTLTISAARLYYYWERDYRRALCRLSQAGARVKIM






DDEEFAYCWENFVYSEGQPFMPWYKFDDNYAFLHRTLKEILRNPMEAMY





PHIFYFHFKNLRKAYGRNESWLCFTMEVVKHHSPVSWKRGVFRNQVDPE





THCHAERCFLSWFCDDILSPNTNYEVTWYTSWSPCPECAGEVAEFLARH





SNVNLTIFTARLYYFWDTDYQEGLRSLSQEGASVEIIVIGYKDFKYCWE





NFVYNDDEPFKPWKGLKYNFLFLDSKLQEILE





(italic: nucleic acid editing domain)





Human APOBEC-3B:


(SEQ ID NO: 274)


MNPQIRNPMERMYRDTFYDNFENEPILYGRSYTWLCYEVKIKRGRSNLL





WDTGVFRGQVYFKPQYHAEMCFLSWFCGNQLPAYKCFQITWFVSWTPCP






DCVAKLAEFLSEHPNVTLTISAARLYYYWERDYRRALCRLSQAGARVTI






MDYEEFAYCWENFVYNEGQQFMPWYKFDENYAFLHRTLKEILRYLMDPD





TFTFNFNNDPLVLRRRQTYLCYEVERLDNGTWVLMDQHMGFLCNEAKNL





LCGFYGRHAELRFLDLVPSLQLDPAQIYRVTWFISWSPCFSWGCAGEVR





AFLQENTHVRLRIFAARIYDYDPLYKEALQMLRDAGAQVSIIVITYDEF





EYCWDTFVYRQGCPFQPWDGLEEHSQALSGRLRAILQNQGN





(italic: nucleic acid editing domain)





Human APOBEC-3C:


(SEQ ID NO: 275)


MNPQIRNPMKAMYPGTFYFQFKNLWEANDRNETWLCFTVEGIKRRSVVS





WKTGVFRNQVDSETHCHAERCFLSWFCDDILSPNTKYQVTWYTSWSPCP






DCAGEVAEFLARHSNVNLTIFTARLYYFQYPCYQEGLRSLSQEGVAVEI






MDYEDFKYCWENFVYNDNEPFKPWKGLKTNFRLLKRRLRESLQ





(italic: nucleic acid editing domain)





Human APOBEC-3A:


(SEQ ID NO: 276)


MEASPASGPRHLMDPHIFTSNFNNGIGREIKTYLCYEVERLDNGTSVKM





DQHRGFLHNQAKNLLCGFYGRHAELRFLDLVPSLQLDPAQIYRVTWFIS






WSPCFSWGCAGEVRAFLENTHVRLRIFAARIYDYDPLYKEALQMLRDAG






AQVSIMTYDEFKHCWDTFVDHQGCPFQPWDGLDEHSQALSGRLRAILQN





QGN





(italic: nucleic acid editing domain)





Human APOBEC-3H:


(SEQ ID NO: 277)


MALLTAETFRLQFNNKRRLRRPYYPRKALLCYQLTPQNGSTPTRGYFEN





KKKCHAEICFINEIKSMGLDETQCYQVTCYLTWSPCSSCAWELVDFIKA





HDHLNLGIFASRLYYHWKPQQKGLRLLCGSQVPVEVMGFPKFADCWENF





VDHEKPLSFNPYKMLEELDKNSRAIKRRLERIKIPGVRAQGRYMDILCD





AEV





(italic: nucleic acid editing domain)





Human APOBEC-3D:


(SEQ ID NO: 278)


MNPQIRNPMERMYRDTFYDNFENEPILYGRSYTWLCYEVKIKRGRSNLL





WDTGVFRGPVLPKRQSNHRQEVYFRFENHAEMCFLSWFCGNRLPANRRF






QITWFVSWNPCLPCVVKVTKFLAEHPNVTLTISAARLYYYRDRDWRWVL






LRLHKAGARVKIMDYEDFAYCWENFVCNEGQPFMPWYKFDDNYASLHRT





LKEILRNPMEAMYPHIFYFHPKNLLKACGRNESWLCFTMEVTKHHSAVF





RKRGVFRNQVDPETHCHAERCFLSWFCDDILSPNTNYEVTWYTSWSPCP






ECAGEVAEFLARHSNVNLTIFTARLCYFWDTDYQEGLCSLSQEGASVKI






IVIGYKDFVSCWKNFVYSDDEPFKPWKGLQTNFRLLKRRLREILQ





(italic: nucleic acid editing domain)





Human APOBEC-1:


(SEQ ID NO: 279)


MTSEKGPSTGDPTLRRRIEPWEFDVFYDPRELRKEACLLYEIKWGMSRK





IWRSSGKNTTNHVEVNFIKKFTSERDFHPSMSCSITWFLSWSPCWECSQ





AIREFLSRHPGVTLVIYVARLFWHMDQQNRQGLRDLVNSGVTIQIMRAS





EYYHCWRNFVNYPPGDEAHWPQYPPLWM MLYALELHCIlLSLPPCLKI





SRRWQNHLTFFRLHLQNCHYQTIPPHILLATGLIHPSVAWR





Mouse APOBEC-1:


(SEQ ID NO: 280)


MSSETGPVAVDPTLRRRIEPHEFEVFFDPRELRKETCLLYEINWGGRHS





VWRHTSQNTSNHVEVNFLEKFTTERYFRPNTRCSITWFLSWSPCGECSR





AITEFLSRHPYVTLFIYIARLYHHTDQRNRQGLRDLISSGVTIQIIVIT





EQEYCYCWRNFVNYPPSNEAYWPRYPHLWVKLYVLELYCIILGLPPCLK





ILRRKQPQLTFFTITLQTCHYQRIPPHLLWATGLK





Rat APOBEC-1:


(SEQ ID NO: 281)


MSSETGPVAVDPTLRRRIEPHEFEVFFDPRELRKETCLLYEINWGGRHS





IWRHTSQNTNKHVEVNFIEKFTTERYFCPNTRCSITWFLSWSPCGECSR





AITEFLSRYPHVTLFIYIARLYHHADPRNRQGLRDLISSGVTIQIIVIT





EQESGYCWRNFVNYSPSNEAHWPRYPHLWVRLYVLELYCIILGLPPCLN





ILRRKQPQLTFFTIALQSCHYQRLPPHILWATGLK






In some embodiments, fusion proteins as provided herein comprise the full-length amino acid of a effector domain, e.g., one of the sequences provided above. In other embodiments, however, fusion proteins as provided herein do not comprise a full-length sequence of a effector domain, but only a fragment thereof. For example, in some embodiments, a fusion protein provided herein comprises a Cas9 protein and a fragment of a effector domain, e.g., wherein the fragment comprises a effector domain. Exemplary amino acid sequences of effector domains are shown in the sequences above as italicized letters, and additional suitable sequences of such domains will be apparent to those of skill in the art.


Additional suitable nucleic-acid editing domain, e.g., deaminase domain sequences, that can be used according to aspects of this disclosure, e.g., that can be fused to a nuclease-inactive Cas9 protein, will be apparent to those of skill in the art based on this disclosure. In some embodiments, such additional domain sequences include deaminase domain sequences that are at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99% similar to the sequences provided herein. Additional suitable Cas9 proteins, variants, and sequences will also be apparent to those of skill in the art. Examples of such additional suitable Cas9 proteins include, but are not limited to Cas9 proteins with the following mutations: D10A, D10A/D839A/H840A, and D10A/D839A/H840A/N863A (See, e.g., Prashant et al., CAS9 transcriptional activators for target specificity screening and paired nickases for cooperative genome engineering. Nature Biotechnology. 2013; 31(9): 833-838 the entire contents of which are incorporated herein by reference).


Additional suitable strategies for generating fusion proteins comprising a Cas9 protein and an effector domain, such as a DNA-editing domain, will be apparent to those of skill in the art based on this disclosure in combination with the general knowledge in the art. Suitable strategies for generating fusion proteins according to aspects of this disclosure using linkers or without the use of linkers will also be apparent to those of skill in the art in view of the instant disclosure and the knowledge in the art. For example, Gilbert et al., CRISPR-mediated modular RNA-guided regulation of transcription in eukaryotes. Cell. 2013; 154(2):442-51, showed that C-terminal fusions of Cas9 with VP64 using 2 NLS's as a linker (SPKKKRKVEAS, SEQ ID NO: 284), can be employed for transcriptional activation. Mali et al., Cas9 transcriptional activators for target specificity screening and paired nickases for cooperative genome engineering. Nat Biotechnol. 2013; 31(9):833-8, reported that C-terminal fusions with VP64 without linker can be employed for transcriptional activation. And Maeder et al., CRISPR RNA-guided activation of endogenous human genes. Nat Methods. 2013; 10: 977-979, reported that C-terminal fusions with VP64 using a Gly4Ser (SEQ ID NO: 5) linker can be used as transcriptional activators. Recently, dCas9-FokI nuclease fusions have successfully been generated and exhibit improved enzymatic specificity as compared to the parental Cas9 enzyme (In Guilinger J P, Thompson D B, Liu D R. Fusion of catalytically inactive Cas9 to FokI nuclease improves the specificity of genome modification. Nat. Biotechnol. 2014; 32(6):577-82, and in Tsai S Q, Wyvekens N, Khayter C, Foden J A, Thapar V, Reyon D, Goodwin M J, Aryee M J, Joung J K. Dimeric CRISPR RNA-guided FokI nucleases for highly specific genome editing. Nat. Biotechnol. 2014; 32(6):569-76. PMID: 24770325 a SGSETPGTSESATPES (SEQ ID NO: 7) or a GGGGS (SEQ ID NO: 5) linker was used in FokI-dCas9 fusion proteins, respectively).


In some embodiments, the Cas9 fusion protein comprises: (i) Cas9 protein; and (ii) a transcriptional activator domain. In some embodiments, the transcriptional activator domain comprises a VPR. VPR is a VP64-SV40-P65-RTA tripartite activator. In some embodiments, VPR comprises a VP64 amino acid sequence encoded by the nucleic acid sequence of SEQ ID NO: 292:









(SEQ ID NO: 292)


GAGGCCAGCGGTTCCGGACGGGCTGACGCATTGGACGATTTTGATCTGGA





TATGCTGGGAAGTGACGCCCTCGATGATTTTGACCTTGACATGCTTGGTT





CGGATGCCCTTGATGACTTTGACCTCGACATGCTCGGCAGTGACGCCCTT





GATGATTTCGACCTGGACATGCTGATTAACTCTAGATAG






In some embodiments, VPR comprises a VP64 amino acid sequence as set forth in SEQ ID NO: 293:









(SEQ ID NO: 293)


EASGSGRADALDDFDLDMLGSDALDDFDLDMLGSDALDDFDLDMLGSDAL





DDFDLDMLINSR






In some embodiments, VPR comprises a VP64-SV40-P65-RTA amino acid sequence encoded by the nucleic acid sequence of SEQ ID NO: 294:









(SEQ ID NO: 294)


TCGCCAGGGATCCGTCGACTTGACGCGTTGATATCAACAAGTTTGTACAA





AAAAGCAGGCTACAAAGAGGCCAGCGGTTCCGGACGGGCTGACGCATTGG





ACGATTTTGATCTGGATATGCTGGGAAGTGACGCCCTCGATGATTTTGAC





CTTGACATGCTTGGTTCGGATGCCCTTGATGACTTTGACCTCGACATGCT





CGGCAGTGACGCCCTTGATGATTTCGACCTGGACATGCTGATTAACTCTA





GAAGTTCCGGATCTCCGAAAAAGAAACGCAAAGTTGGTAGCCAGTACCTG





CCCGACACCGACGACCGGCACCGGATCGAGGAAAAGCGGAAGCGGACCTA





CGAGACATTCAAGAGCATCATGAAGAAGTCCCCCTTCAGCGGCCCCACCG





ACCCTAGACCTCCACCTAGAAGAATCGCCGTGCCCAGCAGATCCAGCGCC





AGCGTGCCAAAACCTGCCCCCCAGCCTTACCCCTTCACCAGCAGCCTGAG





CACCATCAACTACGACGAGTTCCCTACCATGGTGTTCCCCAGCGGCCAGA





TCTCTCAGGCCTCTGCTCTGGCTCCAGCCCCTCCTCAGGTGCTGCCTCAG





GCTCCTGCTCCTGCACCAGCTCCAGCCATGGTGTCTGCACTGGCTCAGGC





ACCAGCACCCGTGCCTGTGCTGGCTCCTGGACCTCCACAGGCTGTGGCTC





CACCAGCCCCTAAACCTACACAGGCCGGCGAGGGCACACTGTCTGAAGCT





CTGCTGCAGCTGCAGTTCGACGACGAGGATCTGGGAGCCCTGCTGGGAAA





CAGCACCGATCCTGCCGTGTTCACCGACCTGGCCAGCGTGGACAACAGCG





AGTTCCAGCAGCTGCTGAACCAGGGCATCCCTGTGGCCCCTCACACCACC





GAGCCCATGCTGATGGAATACCCCGAGGCCATCACCCGGCTCGTGACAGG





CGCTCAGAGGCCTCCTGATCCAGCTCCTGCCCCTCTGGGAGCACCAGGCC





TGCCTAATGGACTGCTGTCTGGCGACGAGGACTTCAGCTCTATCGCCGAT





ATGGATTTCTCAGCCTTGCTGGGCTCTGGCAGCGGCAGCCGGGATTCCAG





GGAAGGGATGTTTTTGCCGAAGCCTGAGGCCGGCTCCGCTATTAGTGACG





TGTTTGAGGGCCGCGAGGTGTGCCAGCCAAAACGAATCCGGCCATTTCAT





CCTCCAGGAAGTCCATGGGCCAACCGCCCACTCCCCGCCAGCCTCGCACC





AACACCAACCGGTCCAGTACATGAGCCAGTCGGGTCACTGACCCCGGCAC





CAGTCCCTCAGCCACTGGATCCAGCGCCCGCAGTGACTCCCGAGGCCAGT





CACCTGTTGGAGGATCCCGATGAAGAGACGAGCCAGGCTGTCAAAGCCCT





TCGGGAGATGGCCGATACTGTGATTCCCCAGAAGGAAGAGGCTGCAATCT





GTGGCCAAATGGACCTTTCCCATCCGCCCCCAAGGGGCCATCTGGATGAG





CTGACAACCACACTTGAGTCCATGACCGAGGATCTGAACCTGGACTCACC





CCTGACCCCGGAATTGAACGAGATTCTGGATACCTTCCTGAACGACGAGT





GCCTCTTGCATGCCATGCATATCAGCACAGGACTGTCCATCTTCGACACA





TCTCTGTTTTGA






In some embodiments, VPR comprises a VP64-SV40-P65-RTA amino acid sequence as set forth in SEQ ID NO: 295:









(SEQ ID NO: 295)


SPGIRRLDALISTSLYKKAGYKEASGSGRADALDDFDLDMLGSDALDDFD





LDMLGSDALDDFDLDMLGSDALDDFDLDMLINSRSSGSPKKKRKVGSQYL





PDTDDRHRIEEKRKRTYETFKSIMKKSPFSGPTDPRPPPRRIAVPSRSSA





SVPKPAPQPYPFTSSLSTINYDEFPTMVFPSGQISQASALAPAPPQVLPQ





APAPAPAPAMVSALAQAPAPVPVLAPGPPQAVAPPAPKPTQAGEGTLSEA





LLQLQFDDEDLGALLGNSTDPAVFTDLASVDNSEFQQLLNQGIPVAPHTT





EPMLMEYPEAITRLVTGAQRPPDPAPAPLGAPGLPNGLLSGDEDFSSIAD





MDFSALLGSGSGSRDSREGMFLPKPEAGSAISDVFEGREVCQPKRIRPFH





PPGSPWANRPLPASLAPTPTGPVHEPVGSLTPAPVPQPLDPAPAVTPEAS





HLLEDPDEETSQAVKALREMADTVIPQKEEAAICGQMDLSHPPPRGHLDE





LTTTLESMTEDLNLDSPLTPELNEILDTFLNDECLLHAMHISTGLSIFDT





SLF






Some aspects of this disclosure provide fusion proteins comprising a transcription activator. In some embodiments, the transcriptional activator is VPR. In some embodiments, the VPR comprises a wild type VPR or a VPR as set forth in SEQ ID NO: 293. In some embodiments, the VPR proteins provided herein include fragments of VPR and proteins homologous to a VPR or a VPR fragment. For example, in some embodiments, a VPR comprises a fragment of the amino acid sequence set forth in SEQ ID NO: 293. In some embodiments, a VPR comprises an amino acid sequence homologous to the amino acid sequence set forth in SEQ ID NO: 293 or an amino acid sequence homologous to a fragment of the amino acid sequence set forth in SEQ ID NO: 293. In some embodiments, proteins comprising VPR or fragments of VPR or homologs of VPR or VPR fragments are referred to as “VPR variants.” A VPR variant shares homology to VPR, or a fragment thereof. For example a VPR variant is at least about 70% identical, at least about 80% identical, at least about 90% identical, at least about 95% identical, at least about 96% identical, at least about 97% identical, at least about 98% identical, at least about 99% identical, at least about 99.5% identical, or at least about 99.9% to a wild type VPR or a VPR as set forth in SEQ ID NO: 293. In some embodiments, the VPR variant comprises a fragment of VPR, such that the fragment is at least about 70% identical, at least about 80% identical, at least about 90% identical, at least about 95% identical, at least about 96% identical, at least about 97% identical, at least about 98% identical, at least about 99% identical, at least about 99.5% identical, or at least about 99.9% to the corresponding fragment of wild type VPR or a VPR as set forth in SEQ ID NO: 293. In some embodiments, the VPR comprises the amino acid sequence set forth in SEQ ID NO: 293. In some embodiments, the VPR comprises an amino acid sequence encoded by the nucleotide sequence set forth in SEQ ID NO: 292.


In some embodiments, a VPR is a VP64-SV40-P65-RTA triple activator. In some embodiments, the VP64-SV40-P65-RTA comprises a VP64-SV40-P65-RTA as set forth in SEQ ID NO: 295. In some embodiments, the VP64-SV40-P65-RTA proteins provided herein include fragments of VP64-SV40-P65-RTA and proteins homologous to a VP64-SV40-P65-RTA or a VP64-SV40-P65-RTA fragment. For example, in some embodiments, a VP64-SV40-P65-RTA comprises a fragment of the amino acid sequence set forth in SEQ ID NO: 295. In some embodiments, a VP64-SV40-P65-RTA comprises an amino acid sequence homologous to the amino acid sequence set forth in SEQ ID NO: 295 or an amino acid sequence homologous to a fragment of the amino acid sequence set forth in SEQ ID NO: 295. In some embodiments, proteins comprising VP64-SV40-P65-RTA or fragments of VP64-SV40-P65-RTA or homologs of VP64-SV40-P65-RTA or VP64-SV40-P65-RTA fragments are referred to as “VP64-SV40-P65-RTA variants.” A VP64-SV40-P65-RTA variant shares homology to VP64-SV40-P65-RTA, or a fragment thereof. For example a VP64-SV40-P65-RTA variant is at least about 70% identical, at least about 80% identical, at least about 90% identical, at least about 95% identical, at least about 96% identical, at least about 97% identical, at least about 98% identical, at least about 99% identical, at least about 99.5% identical, or at least about 99.9% to a VP64-SV40-P65-RTA as set forth in SEQ ID NO: 295. In some embodiments, the VP64-SV40-P65-RTA variant comprises a fragment of VP64-SV40-P65-RTA, such that the fragment is at least about 70% identical, at least about 80% identical, at least about 90% identical, at least about 95% identical, at least about 96% identical, at least about 97% identical, at least about 98% identical, at least about 99% identical, at least about 99.5% identical, or at least about 99.9% to the corresponding fragment of a VP64-SV40-P65-RTA as set forth in SEQ ID NO: 295. In some embodiments, the VP64-SV40-P65-RTA comprises the amino acid sequence set forth in SEQ ID NO: 295. In some embodiments, the VP64-SV40-P65-RTA comprises an amino acid sequence encoded by the nucleotide sequence set forth in SEQ ID NO: 294.


Some aspects of this disclosure provide fusion proteins comprising (i) a Cas9 protein; and (ii) a effector domain. In some aspects, the fusion proteins provided herein further include (iii) a DNA-binding protein, for example, a zinc-finger domain, a TALE, or a second Cas9 protein. Without wishing to be bound by any particular theory, fusing a DNA-binding protein (e.g., a second Cas9 protein) to a fusion protein comprising (i) a protein; and (ii) a effector domain may be useful for improving specificity of the fusion protein to a target nucleic acid sequence, or for improving specificity or binding affinity of the fusion protein to bind a target nucleic acid sequence that does not contain the canonical PAM (5′-NGG-3′) sequence. In some embodiments, the second Cas9 protein is any of the Cas9 proteins provided herein. In some embodiments, the second Cas9 protein is fused to the fusion protein N-terminal to the Cas9 protein. In some embodiments, the second Cas9 protein is fused to the fusion protein C-terminal to the Cas9 protein. In some embodiments, the Cas9 protein and the second Cas9 protein are fused via a linker.


Further provided herein are complexes comprising any of the fusion proteins provided herein, a first guide RNA bound to the Cas9 protein of the fusion protein, and a second guide RNA bound to the second Cas9 protein of the fusion protein. In some embodiments, the first guide RNA is about 15-100 nucleotides long and comprises a sequence of at least 10 contiguous nucleotides that is complementary to a first target sequence and the second guide RNA is about 15-100 nucleotides long and comprises a sequence of at least 10 contiguous nucleotides that is complementary to a second target sequence. In some embodiments, the first guide RNA and/or the second guide RNA is 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, or 50 nucleotides long. In some embodiments, the first guide RNA and the second guide RNA are different. In some embodiments, the first guide RNA comprises a sequence of 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, or 40 contiguous nucleotides that is complementary to a first target sequence, and wherein the second guide RNA comprises a sequence of 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, or 40 contiguous nucleotides that is complementary to a second target sequence. In some embodiments, the first target sequence and the second target sequence are different. In some embodiments, the first target sequence and the second target sequence are DNA sequences. In some embodiments, the first target sequence and the second target sequence are in the genome of a mammal. In some embodiments, the first target sequence and the second target sequence are in the genome of a human. In some embodiments, the first target sequence is within 30 nucleotides of the second target sequence. In some embodiments, the 3′ end of the first target sequence is not immediately adjacent to the canonical PAM sequence (5′-NGG-3′). In some embodiments, the 3′ end of the second target sequence is not immediately adjacent to the canonical PAM sequence (5′-NGG-3′).


In some embodiments, the general architecture of exemplary Cas9 fusion proteins provided herein is of the structure:

    • [NH2]-[effector domain]-[Cas9]-[second Cas9 protein]-[COOH];
    • [NH2]-[second Cas9 protein]-[Cas9]-[effector domain]-[COOH];
    • [NH2]-[Cas9]-[effector domain]-[second Cas9 protein]-[COOH];
    • [NH2]-[second Cas9 protein]-[effector or domain]-[Cas9]-[COOH];
    • [NH2]-[UGI]-[effector domain]-[Cas9]-[second Cas9 protein]-[COOH];
    • [NH2]-[UGI]-[second Cas9 protein]-[Cas9]-[effector domain]-[COOH];
    • [NH2]-[UGI]-[Cas9]-[effector domain]-[second Cas9 protein]-[COOH];
    • [NH2]-[UGI]-[second Cas9 protein]-[effector domain]-[Cas9]-[COOH];
    • [NH2]-[effector domain]-[Cas9]-[second Cas9 protein]-[UGI]-[COOH];
    • [NH2]-[second Cas9 protein]-[Cas9]-[effector domain]-[UGI]-[COOH];
    • [NH2]-[Cas9]-[effector domain]-[second Cas9 protein]-[UGI]-[COOH]; or
    • [NH2]-[second Cas9 protein]-[effector domain]-[Cas9]-[UGI]-[COOH];


      wherein NH2 is the N-terminus of the fusion protein, and COOH is the C-terminus of the fusion protein. In some embodiments, the “]-[” used in the general architecture above indicates the presence of an optional linker sequence. In other examples, the general architecture of exemplary Cas9 fusion proteins provided herein is of the structure:
    • [NH2]-[effector domain]-[Cas9]-[second Cas9 protein]-[COOH];
    • [NH2]-[second Cas9 protein]-[Cas9]-[effector domain]-[COOH];
    • [NH2]-[Cas9]-[effector domain]-[second Cas9 protein]-[COOH];
    • [NH2]-[second Cas9 protein]-[effector domain]-[Cas9]-[COOH];
    • [NH2]-[UGI]-[effector domain]-[Cas9]-[second Cas9 protein]-[COOH],
    • [NH2]-[UGI]-[second Cas9 protein]-[Cas9]-[effector domain]-[COOH];
    • [NH2]-[UGI]-[Cas9]-[effector domain]-[second Cas9 protein]-[COOH];
    • [NH2]-[UGI]-[second Cas9 protein]-[effector domain]-[Cas9]-[COOH];
    • [NH2]-[effector domain]-[Cas9]-[second Cas9 protein]-[UGI]-[COOH];
    • [NH2]-[second Cas9 protein]-[Cas9]-[effector domain]-[UGI]-[COOH];
    • [NH2]-[Cas9]-[effector domain]-[second Cas9 protein]-[UGI]-[COOH]; or
    • [NH2]-[second Cas9 protein]-[effector domain]-[Cas9]-[UGI]-[COOH];


      wherein NH2 is the N-terminus of the fusion protein, and COOH is the C-terminus of the fusion protein. In some embodiments, the “-” used in the general architecture above indicates the presence of an optional linker sequence. In some embodiments, the second Cas9 is a dCas9 protein. In some examples, the general architecture of exemplary Cas9 fusion proteins provided herein comprises a structure as shown in FIG. 8. It should be appreciated that any of the proteins provided in any of the general architectures of exemplary Cas9 fusion proteins may be connected by one or more of the linkers provided herein. In some embodiments, the linkers are the same. In some embodiments, the linkers are different. In some embodiments, one or more of the proteins provided in any of the general architectures of exemplary Cas9 fusion proteins are not fused via a linker. In some embodiments, the fusion proteins further comprise a nuclear targeting sequence, for example a nuclear localization sequence. In some embodiments, fusion proteins provided herein further comprise a nuclear localization sequence (NLS). In some embodiments, the NLS is fused to the N-terminus of the fusion protein. In some embodiments, the NLS is fused to the C-terminus of the fusion protein. In some embodiments, the NLS is fused to the N-terminus of the second Cas9 protein. In some embodiments, the NLS is fused to the C-terminus of the second Cas9 protein. In some embodiments, the NLS is fused to the N-terminus of the Cas9 protein. In some embodiments, the NLS is fused to the C-terminus of the Cas9 protein. In some embodiments, the NLS is fused to the N-terminus of the effector domain. In some embodiments, the NLS is fused to the C-terminus of the effector domain. In some embodiments, the NLS is fused to the N-terminus of the UGI protein. In some embodiments, the NLS is fused to the C-terminus of the UGI protein. In some embodiments, the NLS is fused to the fusion protein via one or more linkers. In some embodiments, the NLS is fused to the fusion protein without a linker.


      Uracil Glycosylase Inhibitor Fusion Proteins


Some aspects of this disclosure provide fusion proteins comprising a Cas9 protein fused to a effector domain, e.g., a deaminase, and a uracil glycosylase inhibitor (UGI). In some embodiments, the fusion protein comprises the structure:

    • [deaminase]-[optional linker sequence]-[Cas9]-[optional linker sequence]-[UGI];
    • [deaminase]-[optional linker sequence]-[UGI]-[optional linker sequence]-[Cas9];
    • [UGI]-[optional linker sequence]-[deaminase]-[optional linker sequence]-[Cas9];
    • [UGI]-[optional linker sequence]-[Cas9]-[optional linker sequence]-[deaminase];
    • [Cas9]-[optional linker sequence]-[deaminase]-[optional linker sequence]-[UGI]; or
    • [Cas9]-[optional linker sequence]-[UGI]-[optional linker sequence]-[deaminase].


      In some embodiments, the fusion proteins do not comprise a linker sequence. In some embodiments, one or both of the optional linker sequences are present.


In some embodiments, the fusion protein further comprises a second Cas9 protein. For example, the second Cas9 protein may be any of the Cas9 proteins provided herein. In some embodiments, fusion protein comprises the structure:

    • [deaminase]-[Cas9]-[UGI]; [deaminase]-[UGI]-[Cas9];
    • [UGI]-[deaminase]-[Cas9];
    • [UGI]-[Cas9]-[deaminase];
    • [Cas9]-[deaminase]-[UGI];
    • [Cas9]-[UGI]-[deaminase];
    • [second Cas9]-[deaminase]-[Cas9]-[UGI];
    • [second Cas9]-[deaminase]-[UGI]-[Cas9];
    • [second Cas9]-[UGI]-[deaminase]-[Cas9];
    • [second Cas9]-[UGI]-[Cas9]-[deaminase];
    • [second Cas9]-[Cas9]-[deaminase]-[UGI];
    • [second Cas9]-[Cas9]-[UGI]-[deaminase];
    • [deaminase]-[second Cas9]-[Cas9]-[UGI];
    • [deaminase]-[second Cas9]-[UGI]-[Cas9];
    • [UGI]-[second Cas9]-[deaminase]-[Cas9];
    • [UGI]-[second Cas9]-[Cas9]-[deaminase];
    • [Cas9]-[second Cas9]-[deaminase]-[UGI];
    • [Cas9]-[second Cas9]-[UGI]-[deaminase]
    • [deaminase]-[Cas9]-[second Cas9]-[UGI];
    • [deaminase]-[UGI]-[second Cas9]-[Cas9];
    • [UGI]-[deaminase]-[second Cas9]-[Cas9];
    • [UGI]-[Cas9]-[second Cas9]-[deaminase];
    • [Cas9]-[deaminase]-[second Cas9]-[UGI];
    • [Cas9]-[UGI]-[second Cas9]-[deaminase];
    • [deaminase]-[Cas9]-[UGI]-[second Cas9];
    • [deaminase]-[UGI]-[Cas9]-[second Cas9];
    • [UGI]-[deaminase]-[Cas9]-[second Cas9];
    • [UGI]-[Cas9]-[deaminase]-[second Cas9];
    • [Cas9]-[deaminase]-[UGI]-[second Cas9]; or
    • [Cas9]-[UGI]-[deaminase]-[second Cas9].


      In some embodiments, the “-” used in the general architecture above indicates the presence of an optional linker sequence. In some embodiments, the fusion proteins comprising a UGI further comprise a nuclear targeting sequence, for example a nuclear localization sequence. In some embodiments, fusion proteins provided herein further comprise a nuclear localization sequence (NLS). In some embodiments, the NLS is fused to the N-terminus of the fusion protein. In some embodiments, the NLS is fused to the C-terminus of the fusion protein. In some embodiments, the NLS is fused to the N-terminus of the UGI protein. In some embodiments, the NLS is fused to the C-terminus of the UGI protein. In some embodiments, the NLS is fused to the N-terminus of the Cas9 protein. In some embodiments, the NLS is fused to the C-terminus of the Cas9 protein. In some embodiments, the NLS is fused to the N-terminus of the deaminase. In some embodiments, the NLS is fused to the C-terminus of the deaminase. In some embodiments, the NLS is fused to the N-terminus of the second Cas9. In some embodiments, the NLS is fused to the C-terminus of the second Cas9. In some embodiments, the NLS is fused to the fusion protein via one or more linkers. In some embodiments, the NLS is fused to the fusion protein without a linker.


In some embodiments, the UGI comprises a wild type UGI or a UGI as set forth in SEQ ID NO: 553. In some embodiments, the UGI proteins provided herein include fragments of UGI and proteins homologous to a UGI or a UGI fragment. For example, in some embodiments, a UGI comprises a fragment of the amino acid sequence set forth in SEQ ID NO: 553. In some embodiments, a UGI comprises an amino acid sequence homologous to the amino acid sequence set forth in SEQ ID NO: 553 or an amino acid sequence homologous to a fragment of the amino acid sequence set forth in SEQ ID NO: 553. In some embodiments, proteins comprising UGI or fragments of UGI or homologs of UGI or UGI fragments are referred to as “UGI variants.” A UGI variant shares homology to UGI, or a fragment thereof. For example a UGI variant is at least about 70% identical, at least about 80% identical, at least about 90% identical, at least about 95% identical, at least about 96% identical, at least about 97% identical, at least about 98% identical, at least about 99% identical, at least about 99.5% identical, or at least about 99.9% to a wild type UGI or a UGI as set forth in SEQ ID NO: 553. In some embodiments, the UGI variant comprises a fragment of UGI, such that the fragment is at least about 70% identical, at least about 80% identical, at least about 90% identical, at least about 95% identical, at least about 96% identical, at least about 97% identical, at least about 98% identical, at least about 99% identical, at least about 99.5% identical, or at least about 99.9% to the corresponding fragment of wild type UGI or a UGI as set forth in SEQ ID NO: 553. In some embodiments, the UGI comprises the following amino acid sequence: >sp|P14739|UNGI_BPPB2 Uracil-DNA glycosylase inhibitor MTNLSDIIEKETGKQLVIQESILMLPEEVEEVIGNKPESDILVHTAYDESTDENVMLLTSD APEYKPWALVIQDSNGENKIKML (SEQ ID NO: 553)


Suitable UGI protein and nucleotide sequences are provided herein and additional suitable UGI sequences are known to those in the art, and include, for example, those published in Wang et al., Uracil-DNA glycosylase inhibitor gene of bacteriophage PBS2 encodes a binding protein specific for uracil-DNA glycosylase. J. Biol. Chem. 264:1163-1171(1989); Lundquist et al., Site-directed mutagenesis and characterization of uracil-DNA glycosylase inhibitor protein. Role of specific carboxylic amino acids in complex formation with Escherichia coli uracil-DNA glycosylase. J. Biol. Chem. 272:21408-21419(1997); Ravishankar et al., X-ray analysis of a complex of Escherichia coli uracil DNA glycosylase (EcUDG) with a proteinaceous inhibitor. The structure elucidation of a prokaryotic UDG. Nucleic Acids Res. 26:4880-4887(1998); and Putnam et al., Protein mimicry of DNA from crystal structures of the uracil-DNA glycosylase inhibitor protein and its complex with Escherichia coli uracil-DNA glycosylase. J. Mol. Biol. 287:331-346(1999), the entire contents of each are incorporated herein by reference.


It should be appreciated that additional proteins may be uracil glycosylase inhibitors. For example, other proteins that are capable of inhibiting (e.g., sterically blocking) a uracil-DNA glycosylase base-excision repair enzyme are within the scope of this disclosure. In some embodiments, a uracil glycosylase inhibitor is a protein that binds DNA. In some embodiments, a uracil glycosylase inhibitor is a protein that binds single-stranded DNA. For example, a uracil glycosylase inhibitor may be a Erwinia tasmaniensis single-stranded binding protein. In some embodiments, the single-stranded binding protein comprises the amino acid sequence (SEQ ID NO: 303). In some embodiments, a uracil glycosylase inhibitor is a protein that binds uracil. In some embodiments, a uracil glycosylase inhibitor is a protein that binds uracil in DNA. In some embodiments, a uracil glycosylase inhibitor is a catalytically inactive uracil DNA-glycosylase protein. In some embodiments, a uracil glycosylase inhibitor is a catalytically inactive uracil DNA-glycosylase protein that does not excise uracil from the DNA. For example, a uracil glycosylase inhibitor is a UdgX. In some embodiments, the UdgX comprises the amino acid sequence (SEQ ID NO: 304). As another example, a uracil glycosylase inhibitor is a catalytically inactive UDG. In some embodiments, a catalytically inactive UDG comprises the amino acid sequence (SEQ ID NO: 305). It should be appreciated that other uracil glycosylase inhibitors would be apparent to the skilled artisan and are within the scope of this disclosure.










Erwinia tasmaniensis SSB (themostable single-



stranded DNA binding protein)


(SEQ ID NO: 303)


MASRGVNKVILVGNLGQDPEVRYMPNGGAVANITLATSESWRDKQTGETK





EKTEWHRVVLFGKLAEVAGEYLRKGSQVYIEGALQTRKWTDQAGVEKYTT





EVVVNVGGTMQMLGGRSQGGGASAGGQNGGSNNGWGQPQQPQGGNQFSGG





AQQQARPQQQPQQNNAPANNEPPIDFDDDIP





UdgX (binds to Uracil in DNA but does not excise)


(SEQ ID NO: 304)


MAGAQDFVPHTADLAELAAAAGECRGCGLYRDATQAVFGAGGRSARIMMI





GEQPGDKEDLAGLPFVGPAGRLLDRALEAADIDRDALYVTNAVKHFKFTR





AAGGKRRIHKTPSRTEVVACRPWLIAEMTSVEPDVVVLLGATAAKALLGN





DFRVTQHRGEVLHVDDVPGDPALVATVHPSSLLRGPKEERESAFAGLVDD





LRVAADVRP





UDG (catalytically inactive human UDG, binds to


Uracil in DNA but does not excise)


(SEQ ID NO: 305)


MIGQKTLYSFFSPSPARKRHAPSPEPAVQGTGVAGVPEESGDAAAIPAKK





APAGQEEPGTPPSSPLSAEQLDRIQRNKAAALLRLAARNVPVGFGESWKK





HLSGEFGKPYFIKLMGFVAEERKHYTVYPPPHQVFTWTQMCDIKDVKVVI





LGQEPYHGPNQAHGLCFSVQRPVPPPPSLENIYKELSTDIEDFVHPGHGD





LSGWAKQGVLLLNAVLTVRAHQANSHKERGWEQFTDAVVSWLNQNSNGLV





FLLWGSYAQKKGSAIDRKRHHVLQTAHPSPLSVYRGFFGCRHFSKTNELL





QKSGKKPIDWKEL







High Fidelity Cas9


Some aspects of the disclosure provide high fidelity Cas9 proteins. In some embodiments, high fidelity Cas9 proteins have decreased electrostatic interactions between the Cas9 protein and a sugar-phosphate backbone of a DNA, as compared to a wild-type Cas9 domain. In some embodiments, any of the Cas9 proteins provided herein comprise one or more mutations that decrease the association between the Cas9 protein and a sugar-phosphate backbone of a DNA. In some embodiments, any of the Cas9 proteins provided herein comprise one or more mutations that decrease the association between the Cas9 protein and a sugar-phosphate backbone of a DNA by at least 5%, at least 10%, at least 15%, at least 20%, at least 25%, at least 30%, at least 35%, at least 40%, at least 45%, at least 50%, at least 60%, at least 70%, at least 80%, at least 90%, or at least 95%. In some embodiments, any of the Cas9 proteins provided herein comprise one or more of a N497X, a R661X, a Q695X, and/or a Q926X mutation of the amino acid sequence provided in SEQ ID NO: 9, or a corresponding mutation in any of the amino acid sequences provided in SEQ ID NOs: 10-262, wherein X is any amino acid. In some embodiments, any of the Cas9 proteins provided herein comprise one or more of a N497A, a R661A, a Q695A, and/or a Q926A mutation of the amino acid sequence provided in SEQ ID NO: 9, or a corresponding mutation in any of the amino acid sequences provided in SEQ ID NOs: 10-262. In some embodiments, the Cas9 protein comprises a D10A mutation of the amino acid sequence provided in SEQ ID NO: 9, or a corresponding mutation in any of the amino acid sequences provided in SEQ ID NOs: 10-262. In some embodiments, the Cas9 protein comprises the amino acid sequence as set forth in SEQ ID NO: 306. High fidelity Cas9 proteins have been described in the art and would be apparent to the skilled artisan. For example, high fidelity Cas9 proteins have been described in Kleinstiver, B. P., et al. “High-fidelity CRISPR-Cas9 nucleases with no detectable genome-wide off-target effects.” Nature 529, 490-495 (2016); and Slaymaker, I. M., et al. “Rationally engineered Cas9 nucleases with improved specificity.” Science 351, 84-88 (2015); the entire contents of each are incorporated herein by reference. It should be appreciated that, based on the present disclosure and knowledge in the art, that mutations in any Cas9 protein may be generated to make high fidelity Cas9 proteins that have decreased electrostatic interactions between the Cas9 protein and a sugar-phosphate backbone of a DNA, as compared to a wild-type Cas9 domain.


Cas9 domain where mutations relative to Cas9 of SEQ ID NO: 9 are shown in bold and underlines.









(SEQ ID NO: 306)


MDKKYSIGLDIGTNSVGWAVITDEYKVPSKKFKVLGNTDRHSIKKNLIGA





LLFDSGETAEATRLKRTARRRYTRRKNRICYLQEIFSNEMAKVDDSFFHR





LEESFLVEEDKKHERHPIFGNIVDEVAYHEKYPTIYHLRKKLVDSTDKAD





LRLIYLALAHMIKFRGHFLIEGDLNPDNSDVDKLFIQLVQTYNQLFEENP





INASGVDAKAILSARLSKSRRLENLIAQLPGEKKNGLFGNLIALSLGLTP





NFKSNFDLAEDAKLQLSKDTYDDDLDNLLAQIGDQYADLFLAAKNLSDAI





LLSDILRVNTEITKAPLSASMIKRYDEHHQDLTLLKALVRQQLPEKYKEI





FFDQSKNGYAGYIDGGASQEEFYKFIKPILEKMDGTEELLVKLNREDLLR





KQRTFDNGSIPHQIHLGELHAILRRQEDFYPFLKDNREKIEKILTFRIPY





YVGPLARGNSRFAWMTRKSEETITPWNFEEVVDKGASAQSFIERMTAFDK





NLPNEKVLPKHSLLYEYFTVYNELTKVKYVTEGMRKPAFLSGEQKKAIVD





LLFKTNRKVTVKQLKEDYFKKIECFDSVEISGVEDRFNASLGTYHDLLKI





IKDKDFLDNEENEDILEDIVLTLTLFEDREMIEERLKTYAHLFDDKVMKQ





LKRRRYTGWGALSRKLINGIRDKQSGKTILDFLKSDGFANRNFMALIHDD





SLTFKEDIQKAQVSGQGDSLHEHIANLAGSPAIKKGILQTVKVVDELVKV





MGRHKPENIVIEMARENQTTQKGQKNSRERMKRIEEGIKELGSQILKEHP





VENTQLQNEKLYLYYLQNGRDMYVDQELDINRLSDYDVDHIVPQSFLKDD





SIDNKVLTRSDKNRGKSDNVPSEEVVKKMKNYWRQLLNAKLITQRKFDNL





TKAERGGLSELDKAGFIKRQLVETRAITKHVAQILDSRMNTKYDENDKLI





REVKVITLKSKLVSDFRKDFQFYKVREINNYHHAHDAYLNAVVGTALIKK





YPKLESEFVYGDYKVYDVRKMIAKSEQEIGKATAKYFFYSNIMNFFKTEI





TLANGEIRKRPLIETNGETGEIVWDKGRDFATVRKVLSMPQVNIVKKTEV





QTGGFSKESILPKRNSDKLIARKKDWDPKKYGGFDSPTVAYSVLVVAKVE





KGKSKKLKSVKELLGITIMERSSFEKNPIDFLEAKGYKEVKKDLIIKLPK





YSLFELENGRKRMLASAGELQKGNELALPSKYVNFLYLASHYEKLKGSPE





DNEQKQLFVEQHKHYLDEIIEQISEFSKRVILADANLDKVLSAYNKHRDK





PIREQAENIIHLFTLTNLGAPAAFKYFDTTIDRKRYTSTKEVLDATLIHQ





SITGLYETRIDLSQLGGD







Cas9 Proteins with Reduced PAM Exclusivity


Some aspects of the disclosure provide Cas9 proteins that have different PAM specificities. Typically, Cas9 proteins, such as Cas9 from S. pyogenes (spCas9), require a canonical NGG PAM sequence to bind a particular nucleic acid region. This may limit the ability to of the Cas9 protein to bind to a particular nucleotide sequence within a genome. Accordingly, in some embodiments, any of the Cas proteins provided herein may be capable of binding a nucleotide sequence that does not contain a canonical (e.g., NGG) PAM sequence. For example, Cas9 proteins that bind non-canonical PAM sequences have been described in Kleinstiver, B. P., et al., “Engineered CRISPR-Cas9 nucleases with altered PAM specificities” Nature 523, 481-485 (2015); and Kleinstiver, B. P., et al., “Broadening the targeting range of Staphylococcus aureus CRISPR-Cas9 by modifying PAM recognition” Nature Biotechnology 33, 1293-1298 (2015); the entire contents of each are hereby incorporated by reference.


In some embodiments, the Cas9 protein is a Cas9 protein from Staphylococcus aureus (SaCas9). In some embodiments, the SaCas9 protein is a nuclease active SaCas9, a nuclease inactive SaCas9 (SaCas9d), or a SaCas9 nickase (SaCas9n). In some embodiments, the SaCas9 comprises the amino acid sequence SEQ ID NO: 307. In some embodiments, the SaCas9 comprises a N579X mutation of SEQ ID NO: 307, or a corresponding mutation in any of the amino acid sequences provided in SEQ ID NOs: 9-262, wherein X is any amino acid except for N. In some embodiments, the SaCas9 comprises a N579A mutation of SEQ ID NO: 307, or a corresponding mutation in any of the amino acid sequences provided in SEQ ID NOs: 10-262. In some embodiments, the SaCas9 protein, the SaCas9d protein, or the SaCas9n protein can bind to a nucleic acid sequence having a non-canonical PAM. In some embodiments, the SaCas9 protein, the SaCas9d protein, or the SaCas9n protein can bind to a nucleic acid sequence having a NNGRRT PAM sequence. In some embodiments, the SaCas9 protein comprises one or more of a E781X, N967X, or R1014X mutation of SEQ ID NO: 307, or a corresponding mutation in any of the amino acid sequences provided in SEQ ID NOs: 10-262, wherein X is any amino acid. In some embodiments, the SaCas9 protein comprises one or more of a E781K, N967K, or R1014H mutation of SEQ ID NO: 307, or one or more corresponding mutation in any of the amino acid sequences provided in SEQ ID NOs: 10-262. In some embodiments, the SaCas9 protein comprises a E781K, a N967K, and a R1014H mutation of SEQ ID NO: 307, or corresponding mutations in any of the amino acid sequences provided in SEQ ID NOs: 10-262. It should be appreciated that these mutations may be combined with any of the other mutations provided herein


In some embodiments, the Cas9 protein of any of the fusion proteins provided herein comprises an amino acid sequence that is at least 60%, at least 65%, at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, or at least 99.5% identical to any one of SEQ ID NOs: 307-309. In some embodiments, the Cas9 protein of any of the fusion proteins provided herein comprises the amino acid sequence of any one of SEQ ID NOs: 307-309. In some embodiments, the Cas9 protein of any of the fusion proteins provided herein consists of the amino acid sequence of any one of SEQ ID NOs: 307-309.









Exemplary SaCas9 sequence


(SEQ ID NO: 307)


KRNYILGLDIGITSVGYGIIDYETRDVIDAGVRLFKEANVENNEGRRSKR





GARRLKRRRRHRIQRVKKLLFDYNLLTDHSELSGINPYEARVKGLSQKLS





EEEFSAALLHLAKRRGVHNVNEVEEDTGNELSTKEQISRNSKALEEKYVA





ELQLERLKKDGEVRGSINRFKTSDYVKEAKQLLKVQKAYHQLDQSFIDTY





IDLLETRRTYYEGPGEGSPFGWKDIKEWYEMLMGHCTYFPEELRSVKYAY





NADLYNALNDLNNLVITRDENEKLEYYEKFQIIENVFKQKKKPTLKQIAK





EILVNEEDIKGYRVTSTGKPEFTNLKVYHDIKDITARKEIIENAELLDQI





AKILTIYQSSEDIQEELTNLNSELTQEEIEQISNLKGYTGTHNLSLKAIN





LILDELWHTNDNQIAIFNRLKLVPKKVDLSQQKEIPTTLVDDFILSPVVK





RSFIQSIKVINAIIKKYGLPNDIIIELAREKNSKDAQKMINEMQKRNRQT





NERIEEIIRTTGKENAKYLIEKIKLHDMQEGKCLYSLEAIPLEDLLNNPF





NYEVDHIIPRSVSFDNSFNNKVLVKQEENSKKGNRTPFQYLSSSDSKISY





ETFKKHILNLAKGKGRISKTKKEYLLEERDINRFSVQKDFINRNLVDTRY





ATRGLMNLLRSYFRVNNLDVKVKSINGGFTSFLRRKWKFKKERNKGYKHH





AEDALIIANADFIFKEWKKLDKAKKVMENQMFEEKQAESMPEIETEQEYK





EIFITPHQIKHIKDFKDYKYSHRVDKKPNRELINDTLYSTRKDDKGNTLI





VNNLNGLYDKDNDKLKKLINKSPEKLLMYHHDPQTYQKLKLIMEQYGDEK





NPLYKYYEETGNYLTKYSKKDNGPVIKKIKYYGNKLNAHLDITDDYPNSR





NKVVKLSLKPYRFDVYLDNGVYKFVTVKNLDVIKKENYYEVNSKCYEEAK





KLKKISNQAEFIASFYNNDLIKINGELYRVIGVNNDLLNRIEVNMIDITY





REYLENMNDKRPPRIIKTIASKTQSIKKYSTDILGNLYEVKSKKHPQIIK





KG







Residue N579 of SEQ ID NO: 307, which is underlined and in bold, may be mutated (e.g., to a A579) to yield a SaCas9 nickase.









Exemplary SaCas9n sequence


(SEQ ID NO: 308)


KRNYILGLDIGITSVGYGIIDYETRDVIDAGVRLFKEANVENNEGRRSKR





GARRLKRRRRHRIQRVKKLLFDYNLLTDHSELSGINPYEARVKGLSQKLS





EEEFSAALLHLAKRRGVHNVNEVEEDTGNELSTKEQISRNSKALEEKYVA





ELQLERLKKDGEVRGSINRFKTSDYVKEAKQLLKVQKAYHQLDQSFIDTY





IDLLETRRTYYEGPGEGSPFGWKDIKEWYEMLMGHCTYFPEELRSVKYAY





NADLYNALNDLNNLVITRDENEKLEYYEKFQIIENVFKQKKKPTLKQIAK





EILVNEEDIKGYRVTSTGKPEFTNLKVYHDIKDITARKEIIENAELLDQI





AKILTIYQSSEDIQEELTNLNSELTQEEIEQISNLKGYTGTHNLSLKAIN





LILDELWHTNDNQIAIFNRLKLVPKKVDLSQQKEIPTTLVDDFILSPVVK





RSFIQSIKVINAIIKKYGLPNDIIIELAREKNSKDAQKMINEMQKRNRQT





NERIEEIIRTTGKENAKYLIEKIKLHDMQEGKCLYSLEAIPLEDLLNNPF





NYEVDHIIPRSVSFDNSFNNKVLVKQEEASKKGNRTPFQYLSSSDSKISY





ETFKKHILNLAKGKGRISKTKKEYLLEERDINRFSVQKDFINRNLVDTRY





ATRGLMNLLRSYFRVNNLDVKVKSINGGFTSFLRRKWKFKKERNKGYKHH





AEDALIIANADFIFKEWKKLDKAKKVMENQMFEEKQAESMPEIETEQEYK





EIFITPHQIKHIKDFKDYKYSHRVDKKPNRELINDTLYSTRKDDKGNTLI





VNNLNGLYDKDNDKLKKLINKSPEKLLMYHHDPQTYQKLKLIMEQYGDEK





NPLYKYYEETGNYLTKYSKKDNGPVIKKIKYYGNKLNAHLDITDDYPNSR





NKVVKLSLKPYRFDVYLDNGVYKFVTVKNLDVIKKENYYEVNSKCYEEAK





KLKKISNQAEFIASFYNNDLIKINGELYRVIGVNNDLLNRIEVNMIDITY





REYLENMNDKRPPRIIKTIASKTQSIKKYSTDILGNLYEVKSKKHPQIIK





KG.







Residue A579 of SEQ ID NO: 308, which can be mutated from N579 of SEQ ID NO: 307 to yield a SaCas9 nickase, is underlined and in bold.









Exemplary SaKKH Cas9


(SEQ ID NO: 309)


KRNYILGLDIGITSVGYGIIDYETRDVIDAGVRLFKEANVENNEGRRSKR





GARRLKRRRRHRIQRVKKLLFDYNLLTDHSELSGINPYEARVKGLSQKLS





EEEFSAALLHLAKRRGVHNVNEVEEDTGNELSTKEQISRNSKALEEKYVA





ELQLERLKKDGEVRGSINRFKTSDYVKEAKQLLKVQKAYHQLDQSFIDTY





IDLLETRRTYYEGPGEGSPFGWKDIKEWYEMLMGHCTYFPEELRSVKYAY





NADLYNALNDLNNLVITRDENEKLEYYEKFQIIENVFKQKKKPTLKQIAK





EILVNEEDIKGYRVTSTGKPEFTNLKVYHDIKDITARKEIIENAELLDQI





AKILTIYQSSEDIQEELTNLNSELTQEEIEQISNLKGYTGTHNLSLKAIN





LILDELWHTNDNQIAIFNRLKLVPKKVDLSQQKEIPTTLVDDFILSPVVK





RSFIQSIKVINAIIKKYGLPNDIIIELAREKNSKDAQKMINEMQKRNRQT





NERIEEIIRTTGKENAKYLIEKIKLHDMQEGKCLYSLEAIPLEDLLNNPF





NYEVDHIIPRSVSFDNSFNNKVLVKQEEASKKGNRTPFQYLSSSDSKISY





ETFKKHILNLAKGKGRISKTKKEYLLEERDINRFSVQKDFINRNLVDTRY





ATRGLMNLLRSYFRVNNLDVKVKSINGGFTSFLRRKWKFKKERNKGYKHH





AEDALIIANADFIFKEWKKLDKAKKVMENQMFEEKQAESMPEIETEQEYK





EIFITPHQIKHIKDFKDYKYSHRVDKKPNRKLINDTLYSTRKDDKGNTLI





VNNLNGLYDKDNDKLKKLINKSPEKLLMYHHDPQTYQKLKLIMEQYGDEK





NPLYKYYEETGNYLTKYSKKDNGPVIKKIKYYGNKLNAHLDITDDYPNSR





NKVVKLSLKPYRFDVYLDNGVYKFVTVKNLDVIKKENYYEVNSKCYEEAK





KLKKISNQAEFIASFYKNDLIKINGELYRVIGVNNDLLNRIEVNMIDITY





REYLENMNDKRPPHIIKTIASKTQSIKKYSTDILGNLYEVKSKKHPQIIK





KG.







Residue A579 of SEQ ID NO: 309, which can be mutated from N579 of SEQ ID NO: 307 to yield a SaCas9 nickase, is underlined and in bold. Residues K781, K967, and H1014 of SEQ ID NO: 309, which can be mutated from E781, N967, and R1014 of SEQ ID NO: 307 to yield a SaKKH Cas9 are underlined and in italics.


In some embodiments, the Cas9 protein is a Cas9 protein from Streptococcus pyogenes (SpCas9). In some embodiments, the SpCas9 protein is a nuclease active SpCas9, a nuclease inactive SpCas9 (SpCas9d), or a SpCas9 nickase (SpCas9n). In some embodiments, the SpCas9 comprises the amino acid sequence SEQ ID NO: 9. In some embodiments, the SpCas9 comprises a D10X mutation of SEQ ID NO: 9, or a corresponding mutation in any of the amino acid sequences provided in SEQ ID NOs: 10-262, wherein X is any amino acid except for D. In some embodiments, the SpCas9 comprises a D10A mutation of SEQ ID NO: 9, or a corresponding mutation in any of the amino acid sequences provided in SEQ ID NOs: 10-262. In some embodiments, the SpCas9 protein, the SpCas9d protein, or the SpCas9n protein can bind to a nucleic acid sequence having a non-canonical PAM. In some embodiments, the SpCas9 protein, the SpCas9d protein, or the SpCas9n protein can bind to a nucleic acid sequence having a NGG, a NGA, or a NGCG PAM sequence. In some embodiments, the SpCas9 protein comprises one or more of a D1135X, R1335X, and T1337X mutation of SEQ ID NO: 9, or a corresponding mutation in any of the amino acid sequences provided in SEQ ID NOs: 10-262, wherein X is any amino acid. In some embodiments, the SpCas9 protein comprises one or more of a D1135E, R1335Q, and T1337R mutation of SEQ ID NO: 9, or a corresponding mutation in any of the amino acid sequences provided in SEQ ID NOs: 10-262. In some embodiments, the SpCas9 protein comprises a D1135E, a R1335Q, and a T1335R mutation of SEQ ID NO: 9, or corresponding mutations in any of the amino acid sequences provided in SEQ ID NOs: 10-262. In some embodiments, the SpCas9 protein comprises one or more of a D1135X, R1335X, and T1337X mutation of SEQ ID NO: 9, or a corresponding mutation in any of the amino acid sequences provided in SEQ ID NOs: 10-262, wherein X is any amino acid. In some embodiments, the SpCas9 protein comprises one or more of a D1135V, R1335Q, and T1337R mutation of SEQ ID NO: 9, or a corresponding mutation in any of the amino acid sequences provided in SEQ ID NOs: 10-262. In some embodiments, the SpCas9 protein comprises a D1135V, a R1335Q, and a T1337R mutation of SEQ ID NO: 9, or corresponding mutations in any of the amino acid sequences provided in SEQ ID NOs: 10-262. In some embodiments, the SpCas9 protein comprises one or more of a D1135X, G1218X, R1335X, and T1337X mutation of SEQ ID NO: 9, or a corresponding mutation in any of the amino acid sequences provided in SEQ ID NOs: 10-262, wherein X is any amino acid. In some embodiments, the SpCas9 protein comprises one or more of a D1135V, G1218R, R1335Q, and T1337R mutation of SEQ ID NO: 9, or a corresponding mutation in any of the amino acid sequences provided in SEQ ID NOs: 10-262. In some embodiments, the SpCas9 protein comprises a D1135V, a G1218R, a R1335Q, and a T1337R mutation of SEQ ID NO: 9, or corresponding mutations in any of the amino acid sequences provided in SEQ ID NOs: 10-262. It should be appreciated that these mutations may be combined with any of the other mutations provided herein


In some embodiments, the Cas9 protein of any of the fusion proteins provided herein comprises an amino acid sequence that is at least 60%, at least 65%, at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, or at least 99.5% identical to any one of SEQ ID NOs: 9, 310-313. In some embodiments, the Cas9 domain of any of the fusion proteins provided herein comprises the amino acid sequence of any one of SEQ ID NOs: 9, 310-313. In some embodiments, the Cas9 domain of any of the fusion proteins provided herein consists of the amino acid sequence of any one of SEQ ID NOs: 9, 310-313.









Exemplary SpCas9


(SEQ ID NO: 9)


MDKKYSIGLDIGTNSVGWAVITDEYKVPSKKFKVLGNTDRHSIKKNLIGA





LLFDSGETAEATRLKRTARRRYTRRKNRICYLQEIFSNEMAKVDDSFFHR





LEESFLVEEDKKHERHPIFGNIVDEVAYHEKYPTIYHLRKKLVDSTDKAD





LRLIYLALAHMIKFRGHFLIEGDLNPDNSDVDKLFIQLVQTYNQLFEENP





INASGVDAKAILSARLSKSRRLENLIAQLPGEKKNGLFGNLIALSLGLTP





NFKSNFDLAEDAKLQLSKDTYDDDLDNLLAQIGDQYADLFLAAKNLSDAI





LLSDILRVNTEITKAPLSASMIKRYDEHHQDLTLLKALVRQQLPEKYKEI





FFDQSKNGYAGYIDGGASQEEFYKFIKPILEKMDGTEELLVKLNREDLLR





KQRTFDNGSIPHQIHLGELHAILRRQEDFYPFLKDNREKIEKILTFRIPY





YVGPLARGNSRFAWMTRKSEETITPWNFEEVVDKGASAQSFIERMTNFDK





NLPNEKVLPKHSLLYEYFTVYNELTKVKYVTEGMRKPAFLSGEQKKAIVD





LLFKTNRKVTVKQLKEDYFKKIECFDSVEISGVEDRFNASLGTYHDLLKI





IKDKDFLDNEENEDILEDIVLTLTLFEDREMIEERLKTYAHLFDDKVMKQ





LKRRRYTGWGRLSRKLINGIRDKQSGKTILDFLKSDGFANRNFMQLIHDD





SLTFKEDIQKAQVSGQGDSLHEHIANLAGSPAIKKGILQTVKVVDELVKV





MGRHKPENIVIEMARENQTTQKGQKNSRERMKRIEEGIKELGSQILKEHP





VENTQLQNEKLYLYYLQNGRDMYVDQELDINRLSDYDVDHIVPQSFLKDD





SIDNKVLTRSDKNRGKSDNVPSEEVVKKMKNYWRQLLNAKLITQRKFDNL





TKAERGGLSELDKAGFIKRQLVETRQITKHVAQILDSRMNTKYDENDKLI





REVKVITLKSKLVSDFRKDFQFYKVREINNYHHAHDAYLNAVVGTALIKK





YPKLESEFVYGDYKVYDVRKMIAKSEQEIGKATAKYFFYSNIMNFFKTEI





TLANGEIRKRPLIETNGETGEIVWDKGRDFATVRKVLSMPQVNIVKKTEV





QTGGFSKESILPKRNSDKLIARKKDWDPKKYGGFDSPTVAYSVLVVAKVE





KGKSKKLKSVKELLGITIMERSSFEKNPIDFLEAKGYKEVKKDLIIKLPK





YSLFELENGRKRMLASAGELQKGNELALPSKYVNFLYLASHYEKLKGSPE





DNEQKQLFVEQHKHYLDEIIEQISEFSKRVILADANLDKVLSAYNKHRDK





PIREQAENIIHLFTLTNLGAPAAFKYFDTTIDRKRYTSTKEVLDATLIHQ





SITGLYETRIDLSQLGGD





Exemplary SpCas9n


(SEQ ID NO: 310)


DKKYSIGLAIGTNSVGWAVITDEYKVPSKKFKVLGNTDRHSIKKNLIGAL





LFDSGETAEATRLKRTARRRYTRRKNRICYLQEIFSNEMAKVDDSFFHRL





EESFLVEEDKKHERHPIFGNIVDEVAYHEKYPTIYHLRKKLVDSTDKADL





RLIYLALAHMIKFRGHFLIEGDLNPDNSDVDKLFIQLVQTYNQLFEENPI





NASGVDAKAILSARLSKSRRLENLIAQLPGEKKNGLFGNLIALSLGLTPN





FKSNFDLAEDAKLQLSKDTYDDDLDNLLAQIGDQYADLFLAAKNLSDAIL





LSDILRVNTEITKAPLSASMIKRYDEHHQDLTLLKALVRQQLPEKYKEIF





FDQSKNGYAGYIDGGASQEEFYKFIKPILEKMDGTEELLVKLNREDLLRK





QRTFDNGSIPHQIHLGELHAILRRQEDFYPFLKDNREKIEKILTFRIPYY





VGPLARGNSRFAWMTRKSEETITPWNFEEVVDKGASAQSFIERMTNFDKN





LPNEKVLPKHSLLYEYFTVYNELTKVKYVTEGMRKPAFLSGEQKKAIVDL





LFKTNRKVTVKQLKEDYFKKIECFDSVEISGVEDRFNASLGTYHDLLKII





KDKDFLDNEENEDILEDIVLTLTLFEDREMIEERLKTYAHLFDDKVMKQL





KRRRYTGWGRLSRKLINGIRDKQSGKTILDFLKSDGFANRNFMQLIHDDS





LTFKEDIQKAQVSGQGDSLHEHIANLAGSPAIKKGILQTVKVVDELVKVM





GRHKPENIVIEMARENQTTQKGQKNSRERMKRIEEGIKELGSQILKEHPV





ENTQLQNEKLYLYYLQNGRDMYVDQELDINRLSDYDVDHIVPQSFLKDDS





IDNKVLTRSDKNRGKSDNVPSEEVVKKMKNYWRQLLNAKLITQRKFDNLT





KAERGGLSELDKAGFIKRQLVETRQITKHVAQILDSRMNTKYDENDKLIR





EVKVITLKSKLVSDFRKDFQFYKVREINNYHHAHDAYLNAVVGTALIKKY





PKLESEFVYGDYKVYDVRKMIAKSEQEIGKATAKYFFYSNIMNFFKTEIT





LANGEIRKRPLIETNGETGEIVWDKGRDFATVRKVLSMPQVNIVKKTEVQ





TGGFSKESILPKRNSDKLIARKKDWDPKKYGGFDSPTVAYSVLVVAKVEK





GKSKKLKSVKELLGITIMERSSFEKNPIDFLEAKGYKEVKKDLIIKLPKY





SLFELENGRKRMLASAGELQKGNELALPSKYVNFLYLASHYEKLKGSPED





NEQKQLFVEQHKHYLDEIIEQISEFSKRVILADANLDKVLSAYNKHRDKP





IREQAENIIHLFTLTNLGAPAAFKYFDTTIDRKRYTSTKEVLDATLIHQS





ITGLYETRIDLSQLGGD





Exemplary SpEQR Cas9


(SEQ ID NO: 311)


DKKYSIGLAIGTNSVGWAVITDEYKVPSKKFKVLGNTDRHSIKKNLIGAL





LFDSGETAEATRLKRTARRRYTRRKNRICYLQEIFSNEMAKVDDSFFHRL





EESFLVEEDKKHERHPIFGNIVDEVAYHEKYPTIYHLRKKLVDSTDKADL





RLIYLALAHMIKFRGHFLIEGDLNPDNSDVDKLFIQLVQTYNQLFEENPI





NASGVDAKAILSARLSKSRRLENLIAQLPGEKKNGLFGNLIALSLGLTPN





FKSNFDLAEDAKLQLSKDTYDDDLDNLLAQIGDQYADLFLAAKNLSDAIL





LSDILRVNTEITKAPLSASMIKRYDEHHQDLTLLKALVRQQLPEKYKEIF





FDQSKNGYAGYIDGGASQEEFYKFIKPILEKMDGTEELLVKLNREDLLRK





QRTFDNGSIPHQIHLGELHAILRRQEDFYPFLKDNREKIEKILTFRIPYY





VGPLARGNSRFAWMTRKSEETITPWNFEEVVDKGASAQSFIERMTNFDKN





LPNEKVLPKHSLLYEYFTVYNELTKVKYVTEGMRKPAFLSGEQKKAIVDL





LFKTNRKVTVKQLKEDYFKKIECFDSVEISGVEDRFNASLGTYHDLLKII





KDKDFLDNEENEDILEDIVLTLTLFEDREMIEERLKTYAHLFDDKVMKQL





KRRRYTGWGRLSRKLINGIRDKQSGKTILDFLKSDGFANRNFMQLIHDDS





LTFKEDIQKAQVSGQGDSLHEHIANLAGSPAIKKGILQTVKVVDELVKVM





GRHKPENIVIEMARENQTTQKGQKNSRERMKRIEEGIKELGSQILKEHPV





ENTQLQNEKLYLYYLQNGRDMYVDQELDINRLSDYDVDHIVPQSFLKDDS





IDNKVLTRSDKNRGKSDNVPSEEVVKKMKNYWRQLLNAKLITQRKEDNLT





KAERGGLSELDKAGFIKRQLVETRQITKHVAQILDSRMNTKYDENDKLIR





EVKVITLKSKLVSDFRKDFQFYKVREINNYHHAHDAYLNAVVGTALIKKY





PKLESEFVYGDYKVYDVRKMIAKSEQEIGKATAKYFFYSNIMNFFKTEIT





LANGEIRKRPLIETNGETGEIVWDKGRDFATVRKVLSMPQVNIVKKTEVQ





TGGFSKESILPKRNSDKLIARKKDWDPKKYGGFESPTVAYSVLVVAKVEK





GKSKKLKSVKELLGITIMERSSFEKNPIDFLEAKGYKEVKKDLIIKLPKY





SLFELENGRKRMLASAGELQKGNELALPSKYVNFLYLASHYEKLKGSPED





NEQKQLFVEQHKHYLDEIIEQISEFSKRVILADANLDKVLSAYNKHRDKP





IREQAENIIHLFTLTNLGAPAAFKYFDTTIDRKQYRSTKEVLDATLIHQS





ITGLYETRIDLSQLGGD







Residues E1134, Q1334, and R1336 of SEQ ID NO: 311, which can be mutated from D1134, R1334, and T1336 of SEQ ID NO: 9 to yield a SpEQR Cas9, are underlined and in bold.









Exemplary SpVQR Cas9


(SEQ ID NO: 312)


DKKYSIGLAIGTNSVGWAVITDEYKVPSKKFKVLGNTDRHSIKKNLIGAL





LFDSGETAEATRLKRTARRRYTRRKNRICYLQEIFSNEMAKVDDSFFHRL





EESFLVEEDKKHERHPIFGNIVDEVAYHEKYPTIYHLRKKLVDSTDKADL





RLIYLALAHMIKFRGHFLIEGDLNPDNSDVDKLFIQLVQTYNQLFEENPI





NASGVDAKAILSARLSKSRRLENLIAQLPGEKKNGLFGNLIALSLGLTPN





FKSNFDLAEDAKLQLSKDTYDDDLDNLLAQIGDQYADLFLAAKNLSDAIL





LSDILRVNTEITKAPLSASMIKRYDEHHQDLTLLKALVRQQLPEKYKEIF





FDQSKNGYAGYIDGGASQEEFYKFIKPILEKMDGTEELLVKLNREDLLRK





QRTFDNGSIPHQIHLGELHAILRRQEDFYPFLKDNREKIEKILTFRIPYY





VGPLARGNSRFAWMTRKSEETITPWNFEEVVDKGASAQSFIERMTNFDKN





LPNEKVLPKHSLLYEYFTVYNELTKVKYVTEGMRKPAFLSGEQKKAIVDL





LFKTNRKVTVKQLKEDYFKKIECFDSVEISGVEDRFNASLGTYHDLLKII





KDKDFLDNEENEDILEDIVLTLTLFEDREMIEERLKTYAHLFDDKVMKQL





KRRRYTGWGRLSRKLINGIRDKQSGKTILDFLKSDGFANRNFMQLIHDDS





LTFKEDIQKAQVSGQGDSLHEHIANLAGSPAIKKGILQTVKVVDELVKVM





GRHKPENIVIEMARENQTTQKGQKNSRERMKRIEEGIKELGSQILKEHPV





ENTQLQNEKLYLYYLQNGRDMYVDQELDINRLSDYDVDHIVPQSFLKDDS





IDNKVLTRSDKNRGKSDNVPSEEVVKKMKNYWRQLLNAKLITQRKFDNLT





KAERGGLSELDKAGFIKRQLVETRQITKHVAQILDSRMNTKYDENDKLIR





EVKVITLKSKLVSDFRKDFQFYKVREINNYHHAHDAYLNAVVGTALIKKY





PKLESEFVYGDYKVYDVRKMIAKSEQEIGKATAKYFFYSNIMNFFKTEIT





LANGEIRKRPLIETNGETGEIVWDKGRDFATVRKVLSMPQVNIVKKTEVQ





TGGFSKESILPKRNSDKLIARKKDWDPKKYGGFVSPTVAYSVLVVAKVEK





GKSKKLKSVKELLGITIMERSSFEKNPIDFLEAKGYKEVKKDLIIKLPKY





SLFELENGRKRMLASAGELQKGNELALPSKYVNFLYLASHYEKLKGSPED





NEQKQLFVEQHKHYLDEIIEQISEFSKRVILADANLDKVLSAYNKHRDKP





IREQAENIIHLFTLTNLGAPAAFKYFDTTIDRKQYRSTKEVLDATLIHQS





ITGLYETRIDLSQLGGD







Residues V1134, Q1334, and R1336 of SEQ ID NO: 312, which can be mutated from D1134, R1334, and T1336 of SEQ ID NO: 9 to yield a SpVQR Cas9, are underlined and in bold.









Exemplary SpVRER Cas9


(SEQ ID NO: 313)


DKKYSIGLAIGTNSVGWAVITDEYKVPSKKFKVLGNTDRHSIKKNLIGAL





LFDSGETAEATRLKRTARRRYTRRKNRICYLQEIFSNEMAKVDDSFFHRL





EESFLVEEDKKHERHPIFGNIVDEVAYHEKYPTIYHLRKKLVDSTDKADL





RLIYLALAHMIKFRGHFLIEGDLNPDNSDVDKLFIQLVQTYNQLFEENPI





NASGVDAKAILSARLSKSRRLENLIAQLPGEKKNGLFGNLIALSLGLTPN





FKSNFDLAEDAKLQLSKDTYDDDLDNLLAQIGDQYADLFLAAKNLSDAIL





LSDILRVNTEITKAPLSASMIKRYDEHHQDLTLLKALVRQQLPEKYKEIF





FDQSKNGYAGYIDGGASQEEFYKFIKPILEKMDGTEELLVKLNREDLLRK





QRTFDNGSIPHQIHLGELHAILRRQEDFYPFLKDNREKIEKILTFRIPYY





VGPLARGNSRFAWMTRKSEETITPWNFEEVVDKGASAQSFIERMTNFDKN





LPNEKVLPKHSLLYEYFTVYNELTKVKYVTEGMRKPAFLSGEQKKAIVDL





LFKTNRKVTVKQLKEDYFKKIECFDSVEISGVEDRFNASLGTYHDLLKII





KDKDFLDNEENEDILEDIVLTLTLFEDREMIEERLKTYAHLFDDKVMKQL





KRRRYTGWGRLSRKLINGIRDKQSGKTILDFLKSDGFANRNFMQLIHDDS





LTFKEDIQKAQVSGQGDSLHEHIANLAGSPAIKKGILQTVKVVDELVKVM





GRHKPENIVIEMARENQTTQKGQKNSRERMKRIEEGIKELGSQILKEHPV





ENTQLQNEKLYLYYLQNGRDMYVDQELDINRLSDYDVDHIVPQSFLKDDS





IDNKVLTRSDKNRGKSDNVPSEEVVKKMKNYWRQLLNAKLITQRKFDNLT





KAERGGLSELDKAGFIKRQLVETRQITKHVAQILDSRMNTKYDENDKLIR





EVKVITLKSKLVSDFRKDFQFYKVREINNYHHAHDAYLNAVVGTALIKKY





PKLESEFVYGDYKVYDVRKMIAKSEQEIGKATAKYFFYSNIMNFFKTEIT





LANGEIRKRPLIETNGETGEIVWDKGRDFATVRKVLSMPQVNIVKKTEVQ





TGGFSKESILPKRNSDKLIARKKDWDPKKYGGFVSPTVAYSVLVVAKVEK





GKSKKLKSVKELLGITIMIERSSFEKNPIDFLEAKGYKEVKKDLIIKLPK





YSLFELENGRKRMLASARELQKGNELALPSKYVNFLYLASHYEKLKGSPE





DNEQKQLFVEQHKHYLDEIIEQISEFSKRVILADANLDKVLSAYNKHRDK





PIREQAENIIHLFTLTNLGAPAAFKYFDTTIDRKEYRSTKEVLDATLIHQ





SITGLYETRIDLSQLGGD






Residues V1134, R1217, Q1334, and R1336 of SEQ ID NO: 313, which can be mutated from D1134, G1217, R1334, and T1336 of SEQ ID NO: 9 to yield a SpVRER Cas9, are underlined and in bold.


Cas9 Complexes with Guide RNAs


Some aspects of this disclosure provide complexes comprising a Cas9 protein or a Cas9 fusion protein as provided herein, and a guide RNA bound to the Cas9 protein or the Cas9 fusion protein. In some embodiments, the guide RNA is about 15-100 nucleotides long and comprises a sequence of at least 10 contiguous nucleotides that is complementary to a target sequence. In some embodiments, the guide RNA is 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, or 50 nucleotides long. In some embodiments, the guide RNA comprises a sequence of 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, or 40 contiguous nucleotides that is complementary to a target sequence. In some embodiments, the target sequence is a DNA sequence. In some embodiments, the target sequence is a sequence in the genome of a mammal. In some embodiments, the target sequence is a sequence in the genome of a human. In some embodiments, the 3′ end of the target sequence is not immediately adjacent to the canonical PAM sequence (5′-NGG-3′).


Some aspects of the disclosure provide complexes comprising a first guide RNA bound to a Cas9 protein of a fusion protein, and a second guide RNA bound to a second Cas9 protein of the fusion protein. In some embodiments, the first guide RNA is about 15-100 nucleotides long and comprises a sequence of at least 10 contiguous nucleotides that is complementary to a first target sequence and the second guide RNA is about 15-100 nucleotides long and comprises a sequence of at least 10 contiguous nucleotides that is complementary to a second target sequence. In some embodiments, the first guide RNA and/or the second guide RNA is 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, or 50 nucleotides long. In some embodiments, the first guide RNA and the second guide RNA are different. In some embodiments, the first guide RNA comprises a sequence of 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, or 40 contiguous nucleotides that is complementary to a first target sequence and wherein the second guide RNA comprises a sequence of 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, or 40 contiguous nucleotides that is complementary to a second target sequence.


In some embodiments, first target sequence and the second target sequence are different. In some embodiments, the first target sequence and the second target sequence are DNA sequences. In some embodiments, the first target sequence and the second target sequence are in the genome of a mammal. In some embodiments, the first target sequence and the second target sequence are in the genome of a human. In some embodiments, the first target sequence is within at least 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 60, 70, 80, 90, 100, 150, or 200 nucleotides of the second target sequence. In some embodiments, the 3′-end of the first target sequence is not immediately adjacent to the canonical PAM sequence (5′-NGG-3′). In some embodiments, the 3′-end of the second target sequence is not immediately adjacent to the canonical PAM sequence (5′-NGG-3′).


Methods of Using Cas9 Fusion Proteins


Some aspects of this disclosure provide methods of using the Cas9 proteins, fusion proteins, or complexes provided herein. For example, some aspects of this disclosure provide methods comprising contacting a DNA molecule (a) with any of the the Cas9 proteins or fusion proteins provided herein, and with at least one guide RNA, wherein the guide RNA is about 15-100 nucleotides long and comprises a sequence of at least 10 contiguous nucleotides that is complementary to a target sequence; or (b) with a Cas9 protein, a Cas9 fusion protein, or a Cas9 protein or fusion protein complex with at least one gRNA as provided herein. In some embodiments, the 3′ end of the target sequence is not immediately adjacent to the canonical PAM sequence (5′-NGG-3′). In some embodiments, the 3′ end of the target sequence is immediately adjacent to an AGC, GAG, TTT, GTG, or CAA sequence.


In some embodiments, the target DNA sequence comprises a sequence associated with a disease or disorder. In some embodiments, the target DNA sequence comprises a point mutation associated with a disease or disorder. In some embodiments, the activity of the Cas9 protein, the Cas9 fusion protein, or the complex results in a correction of the point mutation. In some embodiments, the target DNA sequence comprises a T→C point mutation associated with a disease or disorder, and wherein the deamination of the mutant C base results in a sequence that is not associated with a disease or disorder. In some embodiments, the target DNA sequence encodes a protein and wherein the point mutation is in a codon and results in a change in the amino acid encoded by the mutant codon as compared to the wild-type codon. In some embodiments, the deamination of the mutant C results in a change of the amino acid encoded by the mutant codon. In some embodiments, the deamination of the mutant C results in the codon encoding the wild-type amino acid. In some embodiments, the contacting is in vivo in a subject. In some embodiments, the subject has or has been diagnosed with a disease or disorder. In some embodiments, the disease or disorder is cystic fibrosis, phenylketonuria, epidermolytic hyperkeratosis (EHK), Charcot-Marie-Toot disease type 4J, neuroblastoma (NB), von Willebrand disease (vWD), myotonia congenital, hereditary renal amyloidosis, dilated cardiomyopathy (DCM), hereditary lymphedema, familial Alzheimer's disease, HIV, Prion disease, chronic infantile neurologic cutaneous articular syndrome (CINCA), desmin-related myopathy (DRM), a neoplastic disease associated with a mutant PI3KCA protein, a mutant CTNNB1 protein, a mutant HRAS protein, or a mutant p53 protein.


Some embodiments provide methods for using the Cas9 DNA editing fusion proteins provided herein. In some embodiments, the fusion protein is used to introduce a point mutation into a nucleic acid by deaminating a target nucleobase, e.g., a C residue. In some embodiments, the deamination of the target nucleobase results in the correction of a genetic defect, e.g., in the correction of a point mutation that leads to a loss of function in a gene product. In some embodiments, the genetic defect is associated with a disease or disorder, e.g., a lysosomal storage disorder or a metabolic disease, such as, for example, type I diabetes. In some embodiments, the methods provided herein are used to introduce a deactivating point mutation into a gene or allele that encodes a gene product that is associated with a disease or disorder. For example, in some embodiments, methods are provided herein that employ a Cas9 DNA editing fusion protein to introduce a deactivating point mutation into an oncogene (e.g., in the treatment of a proliferative disease). A deactivating mutation may, in some embodiments, generate a premature stop codon in a coding sequence, which results in the expression of a truncated gene product, e.g., a truncated protein lacking the function of the full-length protein.


In some embodiments, the purpose of the methods provide herein is to restore the function of a dysfunctional gene via genome editing. The Cas9 deaminase fusion proteins provided herein can be validated for gene editing-based human therapeutics in vitro, e.g., by correcting a disease-associated mutation in human cell culture. It will be understood by the skilled artisan that the fusion proteins provided herein, e.g., the fusion proteins comprising a Cas9 domain and a nucleic acid deaminase domain can be used to correct any single point T→C or A→G mutation. In the first case, deamination of the mutant C back to U corrects the mutation, and in the latter case, deamination of the C that is base-paired with the mutant G, followed by a round of replication, corrects the mutation.


An exemplary disease-relevant mutation that can be corrected by the provided fusion proteins in vitro or in vivo is the H1047R (A3140G) polymorphism in the PI3KCA protein. The phosphoinositide-3-kinase, catalytic alpha subunit (PI3KCA) protein acts to phosphorylate the 3-OH group of the inositol ring of phosphatidylinositol. The PI3KCA gene has been found to be mutated in many different carcinomas, and thus it is considered to be a potent oncogene.50 In fact, the A3140G mutation is present in several NCI-60 cancer cell lines, such as, for example, the HCT116, SKOV3, and T47D cell lines, which are readily available from the American Type Culture Collection (ATCC).51


In some embodiments, a cell carrying a mutation to be corrected, e.g., a cell carrying a point mutation, e.g., an A3140G point mutation in exon 20 of the PI3KCA gene, resulting in a H1047R substitution in the PI3KCA protein, is contacted with an expression construct encoding a Cas9 deaminase fusion protein and an appropriately designed sgRNA targeting the fusion protein to the respective mutation site in the encoding PI3KCA gene. Control experiments can be performed where the sgRNAs are designed to target the fusion enzymes to non-C residues that are within the PI3KCA gene. Genomic DNA of the treated cells can be extracted, and the relevant sequence of the PI3KCA genes PCR amplified and sequenced to assess the activities of the fusion proteins in human cell culture.


It will be understood that the example of correcting point mutations in PI3KCA is provided for illustration purposes and is not meant to limit the instant disclosure. The skilled artisan will understand that the instantly disclosed DNA-editing fusion proteins can be used to correct other point mutations and mutations associated with other cancers and with diseases other than cancer including other proliferative diseases.


The successful correction of point mutations in disease-associated genes and alleles opens up new strategies for gene correction with applications in therapeutics and basic research. Site-specific single-base modification systems like the disclosed fusions of Cas9 and deaminase enzymes or domains also have applications in “reverse” gene therapy, where certain gene functions are purposely suppressed or abolished. In these cases, site-specifically mutating Trp (TGG), Gln (CAA and CAG), or Arg (CGA) residues to premature stop codons (TAA, TAG, TGA) can be used to abolish protein function in vitro, ex vivo, or in vivo.


The instant disclosure provides methods for the treatment of a subject diagnosed with a disease associated with or caused by a point mutation that can be corrected by a Cas9 DNA editing fusion protein provided herein. For example, in some embodiments, a method is provided that comprises administering to a subject having such a disease, e.g., a cancer associated with a PI3KCA point mutation as described above, an effective amount of a Cas9 deaminase fusion protein that corrects the point mutation or introduces a deactivating mutation into the disease-associated gene. In some embodiments, the disease is a proliferative disease. In some embodiments, the disease is a genetic disease. In some embodiments, the disease is a neoplastic disease. In some embodiments, the disease is a metabolic disease. In some embodiments, the disease is a lysosomal storage disease. Other diseases that can be treated by correcting a point mutation or introducing a deactivating mutation into a disease-associated gene will be known to those of skill in the art, and the disclosure is not limited in this respect.


The instant disclosure provides methods for the treatment of additional diseases or disorders, e.g., diseases or disorders that are associated or caused by a point mutation that can be corrected by deaminase-mediated gene editing. Some such diseases are described herein, and additional suitable diseases that can be treated with the strategies and fusion proteins provided herein will be apparent to those of skill in the art based on the instant disclosure. Exemplary suitable diseases and disorders are listed below. It will be understood that the numbering of the specific positions or residues in the respective sequences depends on the particular protein and numbering scheme used. Numbering might be different, e.g., in precursors of a mature protein and the mature protein itself, and differences in sequences from species to species may affect numbering. One of skill in the art will be able to identify the respective residue in any homologous protein and in the respective encoding nucleic acid by methods well known in the art, e.g., by sequence alignment and determination of homologous residues. Exemplary suitable diseases and disorders include, without limitation, cystic fibrosis (see, e.g., Schwank et al., Functional repair of CFTR by CRISPR/Cas9 in intestinal stem cell organoids of cystic fibrosis patients. Cell stem cell. 2013; 13: 653-658; and Wu et. al., Correction of a genetic disease in mouse via use of CRISPR-Cas9. Cell stem cell. 2013; 13: 659-662, neither of which uses a deaminase fusion protein to correct the genetic defect); phenylketonuria—e.g., phenylalanine to serine mutation at position 835 (mouse) or 240 (human) or a homologous residue in phenylalanine hydroxylase gene (T>C mutation)—see, e.g., McDonald et al., Genomics. 1997; 39:402-405; Bernard-Soulier syndrome (BSS)—e.g., phenylalanine to serine mutation at position 55 or a homologous residue, or cysteine to arginine at residue 24 or a homologous residue in the platelet membrane glycoprotein IX (T>C mutation)—see, e.g., Noris et al., British Journal of Haematology. 1997; 97: 312-320, and Ali et al., Hematol. 2014; 93: 381-384; epidermolytic hyperkeratosis (EHK)—e.g., leucine to proline mutation at position 160 or 161 (if counting the initiator methionine) or a homologous residue in keratin 1 (T>C mutation)—see, e.g., Chipev et al., Cell. 1992; 70: 821-828, see also accession number P04264 in the UNIPROT database at www[dot]uniprot[dot]org; chronic obstructive pulmonary disease (COPD)—e.g., leucine to proline mutation at position 54 or 55 (if counting the initiator methionine) or a homologous residue in the processed form of α1-antitrypsin or residue 78 in the unprocessed form or a homologous residue (T>C mutation)—see, e.g., Poller et al., Genomics. 1993; 17: 740-743, see also accession number P01011 in the UNIPROT database; Charcot-Marie-Toot disease type 4J—e.g., isoleucine to threonine mutation at position 41 or a homologous residue in FIG. 4 (T>C mutation)—see, e.g., Lenk et al., PLoS Genetics. 2011; 7: e1002104; neuroblastoma (NB)—e.g., leucine to proline mutation at position 197 or a homologous residue in Caspase-9 (T>C mutation)—see, e.g., Kundu et al., 3 Biotech. 2013, 3:225-234; von Willebrand disease (vWD)—e.g., cysteine to arginine mutation at position 509 or a homologous residue in the processed form of von Willebrand factor, or at position 1272 or a homologous residue in the unprocessed form of von Willebrand factor (T>C mutation)—see, e.g., Lavergne et al., Br. J. Haematol. 1992, see also accession number P04275 in the UNIPROT database; 82: 66-72; myotonia congenital—e.g., cysteine to arginine mutation at position 277 or a homologous residue in the muscle chloride channel gene CLCN1 (T>C mutation)—see, e.g., Weinberger et al., The J. of Physiology. 2012; 590: 3449-3464; hereditary renal amyloidosis—e.g., stop codon to arginine mutation at position 78 or a homologous residue in the processed form of apolipoprotein All or at position 101 or a homologous residue in the unprocessed form (T>C mutation)—see, e.g., Yazaki et al., Kidney Int. 2003; 64: 11-16; dilated cardiomyopathy (DCM)—e.g., tryptophan to Arginine mutation at position 148 or a homologous residue in the FOXD4 gene (T>C mutation), see, e.g., Minoretti et. al., Int. J. of Mol. Med. 2007; 19: 369-372; hereditary lymphedema—e.g., histidine to arginine mutation at position 1035 or a homologous residue in VEGFR3 tyrosine kinase (A>G mutation), see, e.g., Irrthum et al., Am. J. Hum. Genet. 2000; 67: 295-301; familial Alzheimer's disease—e.g., isoleucine to valine mutation at position 143 or a homologous residue in presenilin1 (A>G mutation), see, e.g., Gallo et. al., J. Alzheimer's disease. 2011; 25: 425-431; Prion disease—e.g., methionine to valine mutation at position 129 or a homologous residue in prion protein (A>G mutation)—see, e.g., Lewis et. al., J. of General Virology. 2006; 87: 2443-2449; chronic infantile neurologic cutaneous articular syndrome (CINCA)—e.g., Tyrosine to Cysteine mutation at position 570 or a homologous residue in cryopyrin (A>G mutation)—see, e.g., Fujisawa et. al. Blood. 2007; 109: 2903-2911; and desmin-related myopathy (DRM)—e.g., arginine to glycine mutation at position 120 or a homologous residue in αB crystallin (A>G mutation)—see, e.g., Kumar et al., J. Biol. Chem. 1999; 274: 24137-24141. The entire contents of all references and database entries is incorporated herein by reference.


The instant disclosure provides lists of genes comprising pathogenic T>C or A>G mutations, which may be corrected using any of the Cas9 fusion proteins provided herein. Provided herein, are the names of these genes, their respective SEQ ID NOs, their gene IDs, and sequences flanking the mutation site. See Tables 4 and 5. Without wishing to be bound by any particular theory, the mutations provided in Tables 4 and 5 may be corrected using the Cas9 fusions provided herein, which are able to bind to target sequences lacking the canonical PAM sequence. In some embodiments, a Cas9-deaminase fusion protein demonstrates activity on non-canonical PAMs and therefore can correct all the pathogenic T>C or A>G mutations listed in Tables 4 and 5 (SEQ ID NOs: 674-2539 and 3144-5083), respectively. In some embodiments, a Cas9-deaminase fusion protein recognizes canonical PAMs and therefore can correct the pathogenic T>C or A>G mutations with canonical PAMs, e.g., 5′-NGG-3′. It should be appreciated that a skilled artisan would understand how to design an RNA (e.g., a gRNA) to target any of the Cas9 proteins or fusion proteins provided herein to any target sequence in order to correct any of the mutations provided herein, for example, the mutations provided in Tables 4 and 5. It will be apparent to those of skill in the art that in order to target a Cas9:effector domain fusion protein as disclosed herein to a target site, e.g., a site comprising a point mutation to be edited, it is typically necessary to co-express the Cas9:effector domain fusion protein together with a guide RNA, e.g., an sgRNA. As explained in more detail elsewhere herein, a guide RNA typically comprises a tracrRNA framework allowing for Cas9 binding, and a guide sequence, which confers sequence specificity to the Cas9:effector domain fusion protein. In some embodiments, the guide RNA comprises a structure 5′-[guide sequence]-guuuuagagcuagaaauagcaaguuaaaauaaaggcuaguccguuaucaacuugaaaaaguggcaccgagucggugcuuuuu-3′ (SEQ ID NO: 285), wherein the guide sequence comprises a sequence that is complementary to the target sequence. The guide sequence is typically 20 nucleotides long. The sequences of suitable guide RNAs for targeting Cas9:effector domain fusion proteins to specific genomic target sites will be apparent to those of skill in the art based on the instant disclosure. Such suitable guide RNA sequences typically comprise guide sequences that are complementary to a nucleic sequence within 50 nucleotides upstream or downstream of the target nucleotide to be edited.


Kits, Vectors, Cells


Some aspects of this disclosure provide kits comprising a nucleic acid construct, comprising (a) a nucleotide sequence encoding a Cas9 protein or a Cas9 fusion protein as provided herein; and (b) a heterologous promoter that drives expression of the sequence of (a). In some embodiments, the kit further comprises an expression construct encoding a guide RNA backbone, wherein the construct comprises a cloning site positioned to allow the cloning of a nucleic acid sequence identical or complementary to a target sequence into the guide RNA backbone.


Some aspects of this disclosure provide polynucleotides encoding a Cas9 protein of a fusion protein as provided herein. Some aspects of this disclosure provide vectors comprising such polynucleotides. In some embodiments, the vector comprises a heterologous promoter driving expression of polynucleotide.


Some aspects of this disclosure provide cells comprising a Cas9 protein, a fusion protein, a nucleic acid molecule, and/or a vector as provided herein.


The description of exemplary embodiments of the reporter systems herein is provided for illustration purposes only and not meant to be limiting. Additional reporter systems, e.g., variations of the exemplary systems described in detail above, are also embraced by this disclosure.


EXAMPLES
Example 1: PACE Evolution of a Cas9 without PAM Sequence Restriction

Building PAM Libraries. Four different protospacer target sequences were synthesized: Doench 1-5′-AAGAGAGACAGTACATGCCC-3′(SEQ ID NO: 286);


Doench 2-5′-GGAGCCCACCGAGTACCTGG-3′(SEQ ID NO: 287); G7′-5′-AGTCTCCTCAGCAAAACGAA-3′(SEQ ID NO: 288); and VEGF Target 2-5′-GACCCCCTCCACCCCGCCTC-3′ (SEQ ID NO: 289). For each protospacer target sequence, a 3′-NNN PAM library was built. While the canonical PAM sequence is 5′-NGG-3′, (e.g., an exemplary [Doench 1]-[canonical PAM] target sequence could be 5′-[AAGAGAGACAGTACATGCCC]-[NGG]-3′ (SEQ ID NO: 291)), the 3′NNN PAM libraries for each protospacer target sequence contained a fully random PAM sequence, e.g., for Doench1 5′-AAGAGAGACAGTACATGCCCNNN-3′ (SEQ ID NO: 290), wherein N represents any nucleotide. The NNN PAM libraries thus included every possible combination of PAM sequences at the 3′ end of the respective protospacer target sequence.


Testing the Activity of Cas9 on PAM Libraries in a ω-dCas9 luciferase assay. Cas9 activity was tested using a bacterial luciferase activation assay in which a fusion protein of the ω subunit of Escherichia coli RNA polymerase (rpoZ) to dCas9 (see, e.g., Bikard et al., Nucleic Acids Res. 2013 August; 41(15): 7429-7437) drives the production of luciferase encoded by a nucleic acid under the control of a weak promoter comprising a sequence targeted by an sgRNA. Each PAM library was cloned into a plasmid comprising such a weak promoter, where the [target sequence]-[PAM library] nucleic acid sequences served as the sequence targeted by an sgRNA. A PAM library was cloned into the promoter for The w-dCas9 assay was run on all four protospacer targets for both the canonical PAM and the random PAM library. FIG. 1 shows the activity of wild-type S. pyogenes Cas9 on PAM Libraries.


Evolution of Cas9 on PAM Libraries. S. pyogenes dCas9 was fused to the ω unit of RNA polymerase. The resulting ω-dCas9 fusion protein was cloned into an M13 phage-based selection phagemid (SP), comprising the entire M13 phage genome except for a functional version of the gene encoding pIII, a gene essential for the generation of infectious phage particles. The phage gene encoding pIII was provided on a separate plasmid (accessory plasmid, AP), under the control of a promoter that is transcriptionally activated by ω-dCas9. The PAM library was cloned into the promoter region of the accessory plasmid. Host cells used for the directed evolution of Cas9 proteins without PAM restriction were provided that harbored the accessory plasmid. Upon infection with a selection phage, the amount of infectious phage particles produced by a given host cell thus depends on the activity of the ω-dCas9 fusion protein encoded by the selection phage on the promoter of the accessory plasmid, which is required for the production of pIII protein. The accessory plasmid thus confers a selective advantage to those selection phages encoding ω-dCas9 fusion protein variants with an increased activity on different non-canonical PAM sequences.


A lagoon was provided and a flow of host cells comprising the accessory plasmid was generated through the lagoon. The host cells were contacted with the selection phagemid, resulting in a population of selection phage propagating in the flow of host cells in the lagoon. Phage-infected host cells were removed from the lagoon and fresh, uninfected host cells were fed into the lagoon at a rate resulting in the average time a host cell remained in the lagoon being shorter than the average time between cell division of the host cells, but longer than the average M13 phage life cycle time.


In order to generate Cas9 variants during a directed evolution experiment, the host cells in the lagoon were incubated under conditions resulting in an increased mutation rate. The host cells were harboring a mutagenesis plasmid (MP), which increased the mutagenesis rate, thus introducing mutations in the ω-dCas9 fusion protein encoded by the selection phagemid during the phage life cycle. Because the flow rate of host cells through the lagoon results in the average time a host cell remains in the lagoon being shorter than the average time between host cell divisions, the host cells in the lagoon cannot accumulate mutations resulting from the increased mutation rate conferred by the mutagenesis plasmid in their genome or on the accessory plasmid. The selection phage, however, replicate in the lagoon in the flow of host cells and thus accumulate mutations over time, resulting in the generation of new, evolved ω-dCas9 fusion protein variants.


If any of these evolved ω-dCas9 fusion protein variants includes a mutation that confers an increased activity on the accessory plasmid comprising the PAM library, this will directly translate into the generation of more pIII by a host cell infected with a selection phage encoding the respective ω-dCas9 fusion protein variant. The production of more pIII will, in turn, result in the generation of more infectious selection phage particles, which, over time, results in a competitive advantage of the mutant selection phage harboring such beneficial mutations over selection phage not harboring such mutations. After a period of time, the selective pressure exerted by the accessory plasmid will, therefore, result in selection phage having acquired beneficial mutations being the predominant species replicating in the flow of host cells, while selection phage with no mutations or with detrimental mutations will be washed out of the lagoon.


Because the ω-dCas9 fusion protein activity on the PAM library was very low at the beginning of the experiment, multiple rounds of overnight propagation of the selection phagemid in host cells harboring an accessory plasmid containing the PAM library were carried out to evolve Cas9 variants that show increased activity on noncanonical PAM sequences. At the end of a directed evolution experiment, the evolved population of selection phage was isolated from the lagoon, and a representative number of clones was analyzed to detect Cas9 variants having beneficial mutations. While all mutations observed confer a beneficial phenotype, mutations shared by more than one clone, or by all clones, are of particular interest.


Mutations from Cas9 PACE. A number of selection phage clones was isolated from a directed evolution experiment using a PAM library accessory plasmid as described above. The mutations identified in the Cas9 amino acid sequence of some exemplary clones is provided below in Table 1(residue numbering according to SEQ ID NO: 9):









TABLE 1







Cas9 mutations identified in PACE (residue numbering according to


SEQ ID NO: 9.










Clone
Mutations

















1


D182

E1219V



2

H137
D182

E1219V



3


D182
G660
E1219V



4
I122

D182

E1219V









Clones 1-4 were tested in the ω-dCas9 luciferase activation assay described above. When tested on the PAM library as a whole, the different clones showed an improvement in luciferase expression (FIG. 2—Cas9 activity of exemplary evolved clones on PAM library after directed evolution).


Improvement of Cas9 activity on non-canonical PAM sequences. The activity of evolved Cas9 proteins on target sequences with noncanonical PAMs was evaluated in more detail. The relative activity of Clone 4, harboring 1122, D182, and E1219V mutations, for various [Doench 2 (5′-GGAGCCCACCGAGTACCTGG-3′ (SEQ ID NO: 287))]-[PAM] target sequences was tested in the ω-dCas9 luciferase activation assay and compared to the activity of wild-type dCas9.


Improvement of Cas9 activity on non-canonical PAM sequences. The activity of evolved Cas9 proteins on target sequences with noncanonical PAMs was evaluated in more detail. The relative activity of Clone 4, harboring 1122, D182, and E1219V mutations, for various [Doench 2 (5′-GGAGCCCACCGAGTACCTGG-3′(SEQ ID NO: 287))]-[PAM] target sequences was tested in the ω-dCas9 luciferase activation assay and compared to the activity of wild-type dCas9. The data are shown in Table 2.









TABLE 2







Relative activity of clone 4 on various PAM sequences.










Clone 4 dCas9
Wild-type dCas9


PAM
Luciferase Activity
Luciferase Activity












GTC
44.84
4.07


AGC
25.01
4.42


GAG
186.22
73.60


TTT
36.49
3.96


GTG
119.53
6.86


AGG
238.29
244.27


CAA
13.90
5.28









Example 2: PACE Evolution of a Cas9 without any PAM Sequence Restriction

Because the activity of the ω-dCas9 fusion protein on the NNN-PAM libraries was very low, a second round of PACE experiments was performed, in which an initial phase of diversification of the ω-dCas9 fusion protein population was carried out in the absence of selective pressure by providing a source of pIII that did not depend on w-dCas9 fusion protein activity. The initial diversification stage allows mutations to develop that may not be accessible in a PACE experiment where selective pressure is applied throughout the experiment.


Selection phage harboring a w-dCas9 fusion protein with a dCas9 sequence provided as SEQ ID NO: 8 with D10A and H840A mutations was propagated overnight in 1030 host cells together with MP6 mutagenesis plasmid in the presence of arabinose in order to create a library of mutated selection phage encoding a library of ω-dCas9 fusion protein variants. PIII was expressed from a separate plasmid in the host cells during this initial diversification stage. After overnight (12 h) diversification, 1030 host cells harboring an accessory plasmid comprising an NNN PAM library cloned into a weak promoter as the guide RNA target sequence and a mutagenesis plasmid were grown to log phase, and used as the source of host cells to create a flow of host cells through a lagoon. The cells in the lagoon were infected with the diversified selection phage from the overnight incubation. The host cells in the lagoon were contacted with arabinose in order to maintain a high level of expression of the mutagenic genes from the mutagenesis plasmid.


The initial phage titers were about 108 pfu/mL. A PACE experiment was performed for each of the four NNN-PAM libraries ([Doench 1]-[NNN-PAM], [Doench 2]-[NNN-PAM], [G7]-[NNN-PAM], and [VEGF target]-[NNN-PAM] cloned into an accessory plasmid driving pIII expression from a weak promoter as described above. The phage titers were monitored during the PACE experiments. A slow drop in phage titers to 104 pfu/mL was observed. The phage population was isolated from the lagoon at that point, and grown on 2208 host cells containing a separate source of pIII (psp-driven pIII). After this low-stringency propagation period, a 1:100 dilution of the supernatant was added to fresh host cells harboring the accessory plasmid as the only source of pIII in a new lagoon, and the PACE experiments were continued. No drop in phage titers was observed after this low-stringency incubation in 2208 cells.


One exemplary PACE experiment that was run for 72 hours. After that period of time, 24 surviving clones were isolated from the lagoon, sequenced, and characterized. The mutations identified included A262T, K294R, S409I, M694I, E480K, E543D, and E1219V (amino acid numbering according to SEQ ID NO: 9). In another exemplary experiment, surviving clones were isolated after 15 days of incubation. Activity of the identified dVas9 mutants was characterized in a ω-dCas9 luciferase assay. Clones with the best ω-dCas9 fusion protein activity on noncanonical PAM target sequences had the following mutations: E480K, E543D, E1219V, and T1329.


Cas9 Mammalian GFP Activation. Both wild-type dCas9 (SEQ ID NO: 9) and the evolved Cas9 clones were tested in a dCas9-GFP assay in Hek293T cells. The cells were contacted with a reporter construct in which a GFP-encoding sequence was driven from a weak promoter that includes a [gRNA target sequence]-[PAM] sequence. Fusion proteins of dCas9 (wild-type and PACE variants) attached to the transcriptional activator VP64-p65-Rta (VPR) were generated, and the various dCas9-VPR variants were tested for their capacity to activate the GFP reporter in HEK293 cells.


Hek293T were transfected with four separate plasmids: a dCas9-VPR expression plasmid; a plasmid expressing the sgRNA targeting the gRNA target sequence of the GFP reporter plasmid; the GFP reporter plasmid; and an iRFP transfection control. In one experiment, the HEK293 cells were contacted with a GFP reporter included a TAA PAM, and in another experiment, the HEK293 cells were contacted with a population of reporter plasmids containing an NNN PAM library. Cells were harvested 48 hours after transfection and GFP expressing cells were quantified using a BD LSR-FORTESSA cell analyzer.



FIG. 3—Cas9 Mammalian GFP Activation. Compared with WT Cas9, the evolved Cas9s showed much higher activity on both the TAA PAM (21.08% vs. 0.60% of cells above negative control) and a library of NNN PAM (22.76% vs. 3.38% of cells above negative control).


Evolved Cas9 Cutting Activity on Target Sequences with noncanonical PAM. In order to demonstrate that the PACE mutations universally confer Cas9 activity without PAM restriction, nuclease-active Cas9 proteins were generated based on the sequence provided in, i.e., without the D10A and H840A mutations, but harboring the various PACE mutations. The evolved Cas9 variants were tested in a Cas9 GFP assay, assessing the capacity of the evolved Cas9 protein variants to target and inactivate an emGFP gene integrated into the genome of HEK293 cells using a guide RNA targeting a sequence with a noncanonical PAM. It was observed that 6.45% of cells showed loss of GFP expression when contacted with a wild-type nuclease-active Cas9 (SEQ ID NO: 9), while 54.55% of cells contacted with the evolved Cas9 (E480K, E543D, E1219V, and T1329) showed a loss of GFP expression.


Example 3: Cas9 Variants without PAM Restrictions

The beneficial mutations conferring Cas9 activity on noncanonical PAM sequences were mapped to a S. pyogenes wild-type sequence. Below is an exemplary Cas9 sequence (S. pyogenes Cas9 with D10 and H840 residues marked with an asterisk following the respective amino acid residues, SEQ ID NO: 9). The D10 and H840 residues of SEQ ID NO: 9 may be mutated to generate a nuclease inactive Cas9 (e.g., to D10A and H840A) or to generate a nickase Cas9 (e.g., to D10A with H840; or to D10 with H840A). The HNH domain (bold and underlined) and the RuvC domain (boxed) are identified. The residues found mutated in the clones isolated from the various PACE experiments, amino acid residues 122, 137, 182, 262, 294, 409, 480, 543, 660, 694, 1219, and 1329 are identified with an asterisk following the respective amino acid residue.










(SEQ ID NO: 9)



MDKKYSIGLD*IGTNSVGWAVITDEYKVPSKKFKVLGNTDRHSIKKNLIGALLFDSGETAEATRLKRTARRRYTR






RKNRICYLQEIFSNEMAKVDDSFFHRLEESFLVEEDKKHERHPIFGNI*VDEVAYHEKYPTIYH*LRKKLVDSTD





KADLRLIYLALAHMIKFRGHFLIEGDLNPDNSDVD*KLFIQLVQTYNQLFEENPINASGVDAKAILSARLSKSRR





LENLIAQLPGEKKNGLFGNLIALSLGLTPNFKSNFDLAEDA*KLQLSKDTYDDDLDNLLAQIGDQYADLFLAAK*





NLSDAILLSDILRVNTEITKAPLSASMIKRYDEHHQDLTLLKALVRQQLPEKYKEIFFDQSKNGYAGYIDGGASQ





EEFYKFIKPILEKMDGTEELLVKLNREDLLRKQRTEDNGS*IPHQIHLGELHAILRRQEDFYPFLKDNREKIEKI





LTFRIPYYVGPLARGNSRFAWMTRKSEETITPWNFEE*VVDKGASAQSFIERMTNFDKNLPNEKVLPKHSLLYEY





FTVYNELTKVKYVTEGMRKPAFLSGE*QKKAIVDLLFKTNRKVTVKQLKEDYFKKIECEDSVEISGVEDRFNASL





GTYHDLLKIIKDKDFLDNEENEDILEDIVLTLTLFEDREMIEERLKTYAHLFDDKVMKQLKRRRYTGWG*RLSRK







embedded image









embedded image









YLQNGRDMYVDQELDINRLSDYDVDH*IVPQSFLKDDSIDNKVLTRSDKNRGKSDNVPSEEVVKKMKNYWRQLLN









embedded image









embedded image









embedded image







RNSDKLIARKKDWDPKKYGGFDSPTVAYSVLVVAKVEKGKSKKLKSVKELLGITIMERSSFEKNPIDFLEAKGYK





EVKKDLIIKLPKYSLFELENGRKRMLASAGE*LQKGNELALPSKYVNFLYLASHYEKLKGSPEDNEQKQLFVEQH





KHYLDEIIEQISEFSKRVILADANLDKVLSAYNKHRDKPIREQAENIIHLFTLTNLGAPAAFKYFDT*TIDRKRY





TSTKEVLDATLIHQSITGLYETRIDLSQLGGD






The beneficial mutations conferring Cas9 activity on noncanonical PAM sequences were mapped to additional exemplary wild-type Cas9 sequences. The HNH domain (bold and underlined) and the RuvC domain (boxed) are identified. The residues homologous to the residues found mutated in SEQ ID NO: 9, amino acid residues 122, 137, 182, 262, 294, 409, 480, 543, 660, 694, 1219, and 1329 are identified with an asterisk following the respective amino acid residue. In addition, amino acid residues 10 and 840, which are mutated in dCas9 protein variants, are also identified by an asterisk.










(SEQ ID NO: 297)



MDKKYSIGLD*IGTNSVGWAVITDDYKVPSKKFKVLGNTDRHSIKKNLIGALLFGSGETAEATRLKRTARRRYTR






RKNRICYLQEIFSNEMAKVDDSFEHRLEESFLVEEDKKHERHPIEGNI*VDEVAYHEKYPTIYH*LRKKLADSTD





KADLRLIYLALAHMIKFRGHFLIEGDLNPDNSDVD*KLFIQLVQIYNQLFEENPINASRVDAKAILSARLSKSRR





LENLIAQLPGEKRNGLEGNLIALSLGLIPNFKSNFDLAEDA*KLQLSKDTYDDDLDNLLAQIGDQYADLFLAAK*





NLSDAILLSDILRVNSEITKAPLSASMIKRYDEHHQDLTLLKALVRQQLPEKYKEIFFDQSKNGYAGYIDGGASQ





EEFYKFIKPILEKMDGTEELLVKLNREDLLRKQRTFDNGS*IPHQIHLGELHAILRRQEDFYPFLKDNREKIEKI





LTFRIPYYVGPLARGNSRFAWMTRKSEETITPWNFEE*VVDKGASAQSFIERMTNFDKNLPNEKVLPKHSLLYEY





FTVYNELTKVKYVTEGMRKPAFLSGE*QKKAIVDLLFKTNRKVTVKQLKEDYFKKIECEDSVEISGVEDRFNASL





GAYHDLLKIIKDKDFLDNEENEDILEDIVLTLTLFEDRGMIEERLKTYAHLFDDKVMKQLKRRRYTGWG*RLSRK







embedded image









embedded image









LQNGRDMYVDQELDINRLSDYDVDH*IVPQSFIKDDSIDNKVLTRSDKNRGKSDNVPSEEVVKKMKNYWRQLLNA









embedded image









embedded image









embedded image







NSDKLIARKKDWDPKKYGGFDSPIVAYSVLVVAKVEKGKSKKLKSVKELLGITIMERSSFEKNPIDFLEAKGYKE





VKKDLIIKLPKYSLFELENGRKRMLASAGE*LQKGNELALPSKYVNFLYLASHYEKLKGSPEDNEQKQLFVEQHK





HYLDEIIEQISEFSKRVILADANLDKVLSAYNKHRDKPIREQAENIIHLFTLINLGAPAAFKYFDT*TIDRKRYT





STKEVLDATLIHQSITGLYETRIDLSQLGGD





(SEQ ID NO: 298)



MDKKYSIGLA*IGTNSVGWAVITDEYKVPSKKFKVLGNTDRHSIKKNLIGALLFDSGETAEATRLKRTARRRYTR






RKNRICYLQEIFSNEMAKVDDSFFHRLEESELVEEDKKHERHPIFGNI*VDEVAYHEKYPTIYH*LRKKLVDSTD





KADLRLIYLALAHMIKFRGHFLIEGDLNPDNSDVD*KLFIQLVQTYNQLFEENPINASGVDAKAILSARLSKSRR





LENLIAQLPGEKKNGLFGNLIALSLGLIPNFKSNFDLAEDA*KLQLSKDTYDDDLDNLLAQIGDQYADLFLAAK*





NLSDAILLSDILRVNTEITKAPLSASMIKRYDEHHQDLTLLKALVRQQLPEKYKEIFFDQSKNGYAGYIDGGASQ





EEFYKFIKPILEKMDGTEELLVKLNREDLLRKQRTEDNGS*IPHQIHLGELHAILRRQEDFYPFLKDNREKIEKI





LTFRIPYYVGPLARGNSRFAWMTRKSEETITPWNFEE*VVDKGASAQSFIERMTNFDKNLPNEKVLPKHSLLYEY





FTVYNELTKVKYVTEGMRKPAFLSGE*QKKAIVDLLFKTNRKVTVKQLKEDYFKKIECFDSVEISGVEDRFNASL





GTYHDLLKIIKDKDFLDNEENEDILEDIVLILTLFEDREMIEERLKTYAHLFDDKVMKQLKRRRYTGWG*RLSRK







embedded image









embedded image









YLQNGRDMYVDQELDINRLSDYDVDH*IVPQSFLKDDSIDNKVLTRSDKNRGKSDNVPSEEVVKKMKNYWRQLLN









embedded image









embedded image









embedded image







RNSDKLIARKKDWDPKKYGGFDSPTVAYSVLVVAKVEKGKSKKLKSVKELLGITIMERSSFEKNPIDFLEAKGYK





EVKKDLIIKLPKYSLFELENGRKRMLASAGE*LQKGNELALPSKYVNFLYLASHYEKLKGSPEDNEQKQLFVEQH





KHYLDEIIEQISEFSKRVILADANLDKVLSAYNKHRDKPIREQAENIIHLFTLINLGAPAAFKYFDT*TIDRKRY





TSTKEVLDATLIHQSITGLYETRIDLSQLGGD





>gi|504540549|ref|WP_014727651.1| type II CRISPR RNA-guided endonuclease


Cas9 [Streptococcus thermophilus]


(SEQ ID NO: 260)



MTKPYSIGLD*IGTNSVGWAVITDNYKVPSKKMKVLGNTSKKYIKKNLLGVLLFDSGITAEGRRLKRTARRRYTR






RRNRILYLQEIFSTEMATLDDAFFQRLDDSFLVPDDKRDSKYPIFGNL*VEEKAYHDEEPTIYH*LRKYLADSTK





KADLRLVYLALAHMIKYRGHFLIEGEFNSKNNDIQ*KNFQDFLDTYNAIFESDLSLENSKQLEEIVKDKISKLEK





KDRILKLFPGEKNSGIFSEFLKLIVGNQADFRKCFNLDEKA*SLHFSKESYDEDLETLLGYIGDDYSDVFLKAK*





KLYDAILLSGFLTVTDNETEAPLSSAMIKRYNEHKEDLALLKEYIRNISLKTYNEVFKDDTKNGYAGYIDGKTNQ





EDFYVYLKNLLAEFEGADYFLEKIDREDFLRKQRTEDNGS*IPYQIHLQEMRAILDKQAKFYPFLAKNKERIEKI





LTFRIPYYVGPLARGNSDFAWSIRKRNEKITPWNFED*VIDKESSAEAFINRMTSFDLYLPEEKVLPKHSLLYET





FNVYNELTKVRFIAESMRDYQFLDSK*QKKDIVRLYFKDKRKVTDKDIIEYLHAIYGYDGIELKGIEKQFNSSLS





TYHDLLNIINDKEFLDDSSNEAIIEEIIHTLTIFEDREMIKQRLSKFENIFDKSVLKKLSRRHYTGWG*KLSAKL







embedded image









embedded image









NDRLYLYYLQNGKDMYTGDDLDIDRLSNYDIDH*IIPQAFLKDNSIDNKVLVSSASNRGKSDDFPSLEVVKKRKT









embedded image









embedded image









embedded image







FNANLSSKPKPNSNENLVGAKEYLDPKKYGGYAGISNSFAVLVKGTIEKGAKKKITNVLEFQGISILDRINYRKD





KLNFLLEKGYKDIELIIELPKYSLFELSDGSRRMLASILSTNNKRGE*IHKGNQIFLSQKFVKLLYHAKRISNTI





NENHRKYVENHKKEFEELFYYILEFNENYVGAKKNGKLLNSAFQSWQNHSIDELCSSFIGPTGSERKGLFELTSR





GSAADFEFLGV*KIPRYRDYTPSSLLKDATLIHQSVTGLYETRIDLAKLGEG





>gi 924443546 | Staphylococcus Aureus Cas9


(SEQ ID NO: 261)



GSHMKRNYILGLD*IGITSVGYGIIDYETRDVIDAGVRLFKEANVENNEGRRSKRGARRLKRRRRHRIQRVKKLL






FDYNLLTDHSELSGINP*YEARVKGLSQKLSEEEFSAALLHLAKRRGVHNVNEVEEDTGNELST*KEQISRNSKA





LEEKYVAELQLERLKKDGEVRGSINRFKTSDYVKEAKQLLKVQKAYHQLDQSFIDTYIDLLETRRTYYEGPGEGS





PFGWKDIKEWYEMLMGHCTYFPEELRSVKYAYNADLYNALNDLNNLVITRDENEKLEYY*EKFQIIENVEKQKKK





PTLKQIAKEILVNEEDIKGYRVTSTGKPEFTNLKVYHDIKDITARKEIIENAELLDQIAKILTIYQSSEDIQEEL







embedded image









embedded image









AKYLIEKIKLHDMQEGKCLYSLEAIPLEDLLNNPFNYEVDH*IIPRSVSFDNSFNNKVLVKQEEASKKGNRTPFQ









embedded image









embedded image









embedded image







LKKLINKSPEKLLMYHHDPQTYQKLKLIMEQYGDEKNPLYKYYEETGNYLTKYSKKDNGPVIKKIKYYGNKLNAH





LDITDDYPNS*RNKVVKLSLKPYRFDVYLDNGVYKFVTVKNLDVIKKENYYEVNSKAYEEAKKLKKISNQAEFIA





SFYNNDLIKINGELYRVIGVNNDLLNRIEVNMIDITYREYLEN*MNDKRPPRIIKTIASKTQSIKKYSTDILGNL





YEVKSKKHPQIIKKG






This disclosure provides Cas9 variants in which one or more of the amino acid residues identified by an asterisk are mutated as described herein. In some embodiments, the D10 and H840 residues are mutated, e.g., to an alanine residue, and the Cas9 variants provided include one or more additional mutations of the amino acid residues identified by an asterisk as provided herein. In some embodiments, the D10 residue is mutated, e.g., to an alanine residue, and the Cas9 variants provided include one or more additional mutations of the amino acid residues identified by an asterisk as provided herein.


A number of Cas9 sequences from various species were aligned to determine whether corresponding homologous amino acid residues can be identified in other Cas9 proteins, allowing the generation of Cas9 variants with corresponding mutations of the homologous amino acid residues. The alignment was carried out using the NCBI Constraint-based Multiple Alignment Tool (COBALT(accessible at st-va.ncbi.nlm.nih.gov/tools/cobalt), with the following parameters. Alignment parameters: Gap penalties −11,−1; End-Gap penalties −5,−1. CDD Parameters: Use RPS BLAST on; Blast E-value 0.003; Find Conserved columns and Recompute on. Query Clustering Parameters: Use query clusters on; Word Size 4; Max cluster distance 0.8; Alphabet Regular.


An exemplary alignment of four Cas9 sequences is provided below. The Cas9 sequences in the alignment are: Sequence 1 (S1): SEQ ID NO: 10|WP_0109222511 gi 4992247111 type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus pyogenes]; Sequence 2 (S2): SEQ ID NO: 11|WP_039695303|gi 746743737|type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus gallolyticus]; Sequence 3 (S3): SEQ ID NO: 12|WP_045635197|gi 782887988|type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus mitis]; Sequence 4 (S4): SEQ ID NO: 13|5AXW_A|gi 924443546|Staphylococcus Aureus Cas9. The HNH domain (bold and underlined) and the RuvC domain (boxed) are identified for each of the four sequences. Amino acid residues 10, 122, 137, 182, 262, 294, 409, 480, 543, 660, 694, 840, 1219, and 1329 in S1 and the homologous amino acids in the aligned sequences are identified with an asterisk following the respective amino acid residue.













S1
1
--MDKK-YSIGLD*IGTNSVGWAVITDEYKVPSKKFKVLGNTDRHSIKKNLI--GALLFDSG--ETAEATRLKRTARRRYT
73






S2
1
--MTKKNYSIGLD*IGTNSVGWAVITDDYKVPAKKMKVLGNTDKKYIKKNLL--GALLFDSG--ETAEATRLKRTARRRYT
74





S3
1
--M-KKGYSIGLD*IGTNSVGFAVITDDYKVPSKKMKVLGNTDKRFIKKNLI--GALLFDEG--TTAEARRLKRTARRRYT
73





S4
1
GSHMKRNYILGLD*IGITSVGYGII--DYET-----------------RDVIDAGVRLFKEANVENNEGRRSKRGARRLKR
61





S1
74
RRKNRICYLQEIFSNEMAKVDDSFFHRLEESELVEEDKKHERHPIFGNI*VDEVAYHEKYPTIYH*LRKKLVDSTDKADLRL
153





S2
75
RRKNRLRYLQEIFANEIAKVDESFFQRLDESFLTDDDKTFDSHPIFGNK*AEEDAYHQKFPTIYH*LRKHLADSSEKADLRL
154





S3
74
RRKNRLRYLQEIFSEEMSKVDSSFFHRLDDSFLIPEDKRESKYPIFATL*TEEKEYHKQFPTIYH*LRKQLADSKEKTDLRL
153





S4
62
RRRHRIQRVKKLL--------------FDYNLLTD---------------------HSELSGINP*YEARVKGLSQKLSEEE
107





S1
154
IYLALAHMIKFRGHFLIEGDLNPDNSDVD*KLFIQLVQTYNQLFEENPINASGVDAKAILSARLSKSRRLENLIAQLPGEK
233





S2
155
VYLALAHMIKFRGHFLIEGELNAENTDVQ*KIFADFVGVYNRTFDDSHLSEITVDVASILTEKISKSRRLENLIKYYPTEK
234





S3
154
IYLALAHMIKYRGHFLYEEAFDIKNNDIQ*KIFNEFISIYDNTFEGSSLSGQNAQVEAIFTDKISKSAKRERVLKLFPDEK
233





S4
108
FSAALLHLAKRRG-----------------------VHNVNEVEEDT----------------------------------
131





S1
234
KNGLFGNLIALSLGLTPNFKSNFDLAEDA*KLQLSKDTYDDDLDNLLAQIGDQYADLFLAAK*NLSDAILLSDILRVNTEIT
313





S2
235
KNTLFGNLIALALGLQPNFKTNFKLSEDA*KLQFSKDTYEEDLEELLGKIGDDYADLFTSAK*NLYDAILLSGILTVDDNST
314





S3
234
STGLFSEFLKLIVGNQADFKKHFDLEDKA*PLQFSKDTYDEDLENLLGQIGDDFTDLFVSAK*KLYDAILLSGILTVTDPST
313





S4
132
-----GNELS------------------T*KEQISRN---------------------------------------------
144





S1
314
KAPLSASMIKRYDEHHQDLTLLKALVRQQLPEKYKEIFFDQSKNGYAGYIDGGASQEEFYKFIKPILEKM--DGTEELLV
391





S2
315
KAPLSASMIKRYVEHHEDLEKLKEFIKANKSELYHDIFKDKNKNGYAGYIENGVKQDEFYKYLKNILSKIKIDGSDYFLD
394





S3
314
KAPLSASMIERYENHQNDLAALKQFIKNNLPEKYDEVFSDQSKDGYAGYIDGKTTQETFYKYIKNLLSKF--EGTDYFLD
391





S4
145
----SKALEEKYVAELQ-------------------------------------------------LERLKKDG------
165





S1
392
KLNREDLLRKQRTFDNGS*IPHQIHLGELHAILRRQEDFYPFLKDNREKIEKILTFRIPYYVGPLARGNSRFAWMTRKSEE
471





S2
395
KIEREDFLRKQRTFDNGS*IPHQIHLQEMHAILRRQGDYYPFLKEKQDRIEKILTFRIPYYVGPLVRKDSRFAWAEYRSDE
474





S3
392
KIEREDFLRKQRTFDNGS*IPHQIHLQEMNAILRRQGEYYPFLKDNKEKIEKILTFRIPYYVGPLARGNRDFAWLTRNSDE
471





S4
166
--EVRGSINRFKTSD---------YVKEAKQLLKVQKAYHQLDQSFIDTYIDLLETRRTYYEGP--GEGSPFGW------K
227





S1
472
TITPWNFEE*VVDKGASAQSFIERMTNEDKNLPNEKVLPKHSLLYEYFTVYNELTKVKYVTEGMRKPAFLSGE*QKKAIVDL
551





S2
475
KITPWNFDK*VIDKEKSAEKFITRMTLNDLYLPEEKVLPKHSHVYETYAVYNELTKIKYVNEQGKE-SFFDSN*MKQEIFDH
553





S3
472
AIRPWNFEE*IVDKASSAEDFINKMTNYDLYLPEEKVLPKHSLLYETFAVYNELTKVKFIAEGLRDYQFLDSG*QKKQIVNQ
551





S4
228
DIKEW----------------YEMLMGHCTYFPEELRSVKYAYNADLYNALNDLNNLVITRDENEK---LEYY*EKFQIIEN
289





S1
552
LFKTNRKVTVKQLKEDYFKKIECFDSVEISGVEDR---FNASLGTYHDLLKIIKDKDFLDNEENEDILEDIVLTLTLFED
628





S2
554
VFKENRKVTKEKLLNYLNKEFPEYRIKDLIGLDKENKSFNASLGTYHDLKKIL-DKAFLDDKVNEEVIEDIIKTLTLFED
632





S3
552
LFKENRKVTEKDIIHYLHN-VDGYDGIELKGIEKQ---FNASLSTYHDLLKIIKDKEFMDDAKNEAILENIVHTLTIFED
627





S4
290
VFKQKKKPTLKQIAKEILVNEEDIKGYRVTSTGKPEF---TNLKVYHDIKDITARKEII---ENAELLDQIAKILTIYQS
363





S1
629
REMIEERLKTYAHLFDDKVMKQLKR-RRYTGWG*RLSRKLINGIRDKQSGKTILDFLKSDGFANRNFM*QLIHDDSLTEKED
707





S2
633
KDMIHERLQKYSDIFTANQLKKLER-RHYTGWG*RLSYKLINGIRNKENNKTILDYLIDDGSANRNFM*QLINDDTLPFKQI
711





S3
628
REMIKQRLAQYDSLFDEKVIKALTR-RHYTGWG*KLSAKLINGICDKQTGNTILDYLIDDGKINRNFM*QLINDDGLSFKEI
706





S4
364
SEDIQEELTNLNSELTQEEIEQISNLKGYTGTH*NLSLKAINLILDE------LWHTNDNQIAIFNRL*KLVP---------
428





S1
708


embedded image


781





S2
712


embedded image


784





S3
707


embedded image


779





S4
429


embedded image


505





S1
782


KRIEEGIKELGSQIL-------KEHPVENTQLQNEKLYLYYLQNGRDMYVDQELDINRLSD----YDVDH*IVPQSFLKDD


850





S2
785


KKLQNSLKELGSNILNEEKPSYIEDKVENSHLQNDQLFLYYIQNGKDMYTGDELDIDHLSD----YDIDH*IIPQAFIKDD


860





S3
780


KRIEDSLKILASGL---DSNILKENPTDNNQLQNDRLFLYYLQNGKDMYTGEALDINQLSS----YDIDH*IIPQAFIKDD


852





S4
506


ERIEEIIRTTGK---------------ENAKYLIEKIKLHDMQEGKCLYSLEAIPLEDLLNNPFNYEVDH*IIPRSVSFDN


570





S1
851


embedded image


922





S2
861


embedded image


932





S3
853


embedded image


924





S4
571


embedded image


650





S1
923


embedded image


1002





S2
933


embedded image


1012





S3
925


embedded image


1004





S4
651


embedded image


712





S1
1003


embedded image


1077





S2
1013 


embedded image


1083






S3
1005 


embedded image


1081





S4
713


embedded image


764






S1
1078


embedded image


1149





S2
1084


embedded image


1158





S3
1082


embedded image


1156





S4
765


embedded image


835





S1
1150
EKGKSKKLKSVKELLGITIMERSSFEKNPI-DFLEAKG-----YKEVKKDLIIKLPKYSLFELENGRKRMLASAGE*LQKG
1223





S2
1159
EKGKAKKLKTVKELVGISIMERSFFEENPV-EFLENKG-----YHNIREDKLIKLPKYSLFEFEGGRRRLLASASE*LQKG
1232





S3
1157
EKGKAKKLKTVKTLVGITIMEKAAFEENPI-TFLENKG-----YHNVRKENILCLPKYSLFELENGRRRLLASAKE*LQKG
1230





S4
836
DPQTYQKLK--------LIMEQYGDEKNPLYKYYEETGNYLTKYSKKDNGPVIKKIKYYGNKLNAHLDITDDYPNS*RNKV
907





S1
1224
NELALPSKYVNFLYLASHYEKLKGSPEDNEQKQLFVEQHKHYLDEIIEQISEFSKRVILADANLDKVLSAYNKH------
1297





S2
1233
NEMVLPGYLVELLYHAHRADNF-----NSTEYLNYVSEHKKEFEKVLSCVEDFANLYVDVEKNLSKIRAVADSM------
1301





S3
1231
NEIVLPVYLTTLLYHSKNVHKL-----DEPGHLEYIQKHRNEFKDLLNLVSEFSQKYVLADANLEKIKSLYADN------
1299





S4
908
VKLSLKPYRFD-VYLDNGVYKFV-----TVKNLDVIK--KENYYEVNSKAYEEAKKLKKISNQAEFIASFYNNDLIKING
979





S1
1298
RDKPIREQAENIIHLFTLTNLGAPAAFKYFDT*TIDRKRYTSTKEVLDATLIHQSIT--------GLYETRI----DLSQL
1365





S2
1302
DNFSIEEISNSFINLLTLTALGAPADFNFLGE*KIPRKRYTSTKECLNATLIHQSIT--------GLYETRI----DLSKL
1369





S3
1300
EQADIEILANSFINLLTFTALGAPAAFKFFGK*DIDRKRYTTVSEILNATLIHQSIT--------GLYETWI----DLSKL
1367





S4
980
ELYRVIGVNNDLLNRIEVNMIDITYR-EYLEN*MNDKRPPRIIKTIASKT---QSIKKYSTDILGNLYEVKSKKHPQIIKK
1055





S1
1366
GGD
1368





S2
1370
GEE
1372





S3
1368
GED
1370





S4
1056
G--
1056






The alignment demonstrates that amino acid sequences and amino acid residues that are homologous to a reference Cas9 amino acid sequence or amino acid residue can be identified across Cas9 sequence variants, including, but not limited to Cas9 sequences from different species, by identifying the amino acid sequence or residue that aligns with the reference sequence or the reference residue using alignment programs and algorithms known in the art. This disclosure provides Cas9 variants in which one or more of the amino acid residues identified by an asterisk in SEQ ID NO: 9 are mutated as described herein. The residues in Cas9 sequences other than SEQ ID NO: 9 that correspond to the residues identified in SEQ ID NO: 9 by an asterisk are referred to herein as “homologous” or “corresponding” residues. Such homologous residues can be identified by sequence alignment, e.g., as described above, and by identifying the sequence or residue that aligns with the reference sequence or residue. Similarly, mutations in Cas9 sequences other than SEQ ID NO: 9 that correspond to mutations identified in SEQ ID NO: 9 herein, e.g., mutations of residues 10, 122, 137, 182, 262, 294, 409, 480, 543, 660, 694, 840, 1219, and 1329 in SEQ ID NO: 9, are referred to herein as “homologous” or “corresponding” mutations. For example, the mutations corresponding to the D10A mutation in S1 for the four aligned sequences above are D10A for S2, D9A for S3, and D13A for S4; the corresponding mutations for H840A in S1 are H850A for S2, H842A for S3, and H560 for S4; the corresponding mutation for X1219V in S1 are X1228V for S2, X1226 for S3, and X903V for S4, and so on.


A total of 250 Cas9 sequences (SEQ ID NOs: 10-262) from different species were aligned using the same algorithm and alignment parameters outlined above. Amino acid residues homologous to residues 10, 122, 137, 182, 262, 294, 409, 480, 543, 660, 694, 840, 1219, and 1329 were identified in the same manner as outlined above. The alignments are provided below. The HNH domain (bold and underlined) and the RuvC domain (boxed) are identified for each of the four sequences. Residues corresponding to amino acid residues 10, 122, 137, 182, 262, 294, 409, 480, 543, 660, 694, 840, 1219, and 1329 in SEQ ID NO: 9 are boxed in SEQ ID NO: 10 in the alignments, allowing for the identification of the corresponding amino acid residues in the aligned sequences.


Cas9 variants with one or more mutations in amino acid residues homologous to amino acid residues 122, 137, 182, 262, 294, 409, 480, 543, 660, 694, 1219, and 1329 of SEQ ID NO: 9 are provided herein. In some embodiments, the Cas9 variants provided herein comprise mutations corresponding to the D10A and the H840A mutations in SEQ ID NO: 9, resulting in a nuclease-inactive dCas9, and at least one, at least two, at least three, at least four, at least five, at least six, or at least seven mutations of amino acid residues homologous to amino acid residues 122, 137, 182, 262, 294, 409, 480, 543, 660, 694, 1219, and 1329 of SEQ ID NO: 9.


Cas9 variants with one or more mutations in amino acid residues homologous to amino acid residues 122, 137, 182, 262, 294, 409, 480, 543, 660, 694, 1219, and 1329 of SEQ ID NO: 9 are provided herein. In some embodiments, the Cas9 variants provided herein comprise mutations corresponding to the D10A mutations in SEQ ID NO: 9, resulting in a partially nuclease-inactive dCas9, wherein the Cas9 can nick the non-target strand but not the targeted strand, and at least one, at least two, at least three, at least four, at least five, at least six, or at least seven mutations of amino acid residues homologous to amino acid residues 122, 137, 182, 262, 294, 409, 480, 543, 660, 694, 1219, and 1329 of SEQ ID NO: 9.
















WP_010922251.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus pyogenes]
SEQ ID NO: 10


WP_039695303.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus gallolyticus]
SEQ ID NO: 11


WP_045635197.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus mitis]
SEQ ID NO: 12


5AXW_A
Cas9, Chain A, Crystal Structure [Staphylococcus aureus]
SEQ ID NO: 13


WP_009880683.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus pyogenes]
SEQ ID NO: 14


WP_010922251.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus pyogenes]
SEQ ID NO: 15


WP_011054416.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus pyogenes]
SEQ ID NO: 16


WP_011284745.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus pyogenes]
SEQ ID NO: 17


WP_011285506.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus pyogenes]
SEQ ID NO: 18


WP_011527619.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus pyogenes]
SEQ ID NO: 19


WP_012560673.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus pyogenes]
SEQ ID NO: 20


WP_014407541.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus pyogenes]
SEQ ID NO: 21


WP_020905136.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus pyogenes]
SEQ ID NO: 22


WP_023080005.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus pyogenes]
SEQ ID NO: 23


WP_023610282.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus pyogenes]
SEQ ID NO: 24


WP_030125963.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus pyogenes]
SEQ ID NO: 25


WP_030126706.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus pyogenes]
SEQ ID NO: 26


WP_031488318.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus pyogenes]
SEQ ID NO: 27


WP_032460140.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus pyogenes]
SEQ ID NO: 28


WP_032461047.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus pyogenes]
SEQ ID NO: 29


WP_032462016.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus pyogenes]
SEQ ID NO: 30


WP_032462936.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus pyogenes]
SEQ ID NO: 31


WP_032464890.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus pyogenes]
SEQ ID NO: 32


WP_033888930.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus pyogenes]
SEQ ID NO: 33


WP_038431314.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus pyogenes]
SEQ ID NO: 34


WP_038432938.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus pyogenes]
SEQ ID NO: 35


WP_038434062.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus pyogenes]
SEQ ID NO: 36


BAQ51233.1
CRISPR-associated protein, Csn1 family [Streptococcus pyogenes]
SEQ ID NO: 37


KGE60162.1
hypothetical protein MGA52111_0903 [Streptococcus pyogenes MGAS2111]
SEQ ID NO: 38


KGE60856.1
CRISPR-associated endonuclease protein [Streptococcus pyogenes SS1447]
SEQ ID NO: 39


WP_002989955.1
MULTISPECIES: type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus]
SEQ ID NO: 40


WP_003030002.1
MULTISPECIES: type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus]
SEQ ID NO: 41


WP_003065552.1
MULTISPECIES: type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus]
SEQ ID NO: 42


WP_001040076.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus agalactiae]
SEQ ID NO: 43


WP_001040078.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus agalactiae]
SEQ ID NO: 44


WP_001040080.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus agalactiae]
SEQ ID NO: 45


WP_001040081.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus agalactiae]
SEQ ID NO: 46


WP_001040083.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus agalactiae]
SEQ ID NO: 47


WP_001040085.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus agalactiae]
SEQ ID NO: 48


WP_001040087.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus agalactiae]
SEQ ID NO: 49


WP_001040088.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus agalactiae]
SEQ ID NO: 50


WP_001040089.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus agalactiae]
SEQ ID NO: 51


WP_001040090.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus agalactiae]
SEQ ID NO: 52


WP_001040091.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus agalactiae]
SEQ ID NO: 53


WP_001040092.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus agalactiae]
SEQ ID NO: 54


WP_001040094.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus agalactiae]
SEQ ID NO: 55


WP_001040095.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus agalactiae]
SEQ ID NO: 56


WP_001040096.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus agalactiae]
SEQ ID NO: 57


WP_001040097.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus agalactiae]
SEQ ID NO: 58


WP_001040098.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus agalactiae]
SEQ ID NO: 59


WP_001040099.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus agalactiae]
SEQ ID NO: 60


WP_001040100.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus agalactiae]
SEQ ID NO: 61


WP_001040104.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus agalactiae]
SEQ ID NO: 62


WP_001040105.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus agalactiae]
SEQ ID NO: 63


WP_001040106.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus agalactiae]
SEQ ID NO: 64


WP_001040107.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus agalactiae]
SEQ ID NO: 65


WP_001040108.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus agalactiae]
SEQ ID NO: 66


WP_001040109.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus agalactiae]
SEQ ID NO: 67


WP_001040110.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus agalactiae]
SEQ ID NO: 68


WP_015058523.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus agalactiae]
SEQ ID NO: 69


WP_017643650.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus agalactiae]
SEQ ID NO: 70


WP_017647151.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus agalactiae]
SEQ ID NO: 71


WP_017648376.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus agalactiae]
SEQ ID NO: 72


WP_017649527.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus agalactiae]
SEQ ID NO: 73


WP_017771611.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus agalactiae]
SEQ ID NO: 74


WP_017771984.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus agalactiae]
SEQ ID NO: 75


CFQ25032.1
CRISPR-associated protein [Streptococcus agalactiae]
SEQ ID NO: 76


CFV16040.1
CRISPR-associated protein [Streptococcus agalactiae]
SEQ ID NO: 77


KLJ37842.1
CRISPR-associated protein Csn1 [Streptococcus agalactiae]
SEQ ID NO: 78


KLJ72361.1
CRISPR-associated protein Csn1 [Streptococcus agalactiae]
SEQ ID NO: 79


KLL20707.1
CRISPR-associated protein Csn1 [Streptococcus agalactiae]
SEQ ID NO: 80


KLL42645.1
CRISPR-associated protein Csn1 [Streptococcus agalactiae]
SEQ ID NO: 81


WP_047207273.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus agalactiae]
SEQ ID NO: 82


WP_047209694.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus agalactiae]
SEQ ID NO: 83


WP_050198062.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus agalactiae]
SEQ ID NO: 84


WP_050201642.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus agalactiae]
SEQ ID NO: 85


WP_050204027.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus agalactiae]
SEQ ID NO: 86


WP_050881965.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus agalactiae]
SEQ ID NO: 87


WP_050886065.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus agalactiae]
SEQ ID NO: 88


AHN30376.1
CRISPR-associated protein Csn1 [Streptococcus agalactiae 138P]
SEQ ID NO: 89


EAO78426.1
reticulocyte binding protein [Streptococcus agalactiae H36B]
SEQ ID NO: 90


CCW42055.1
CRISPR-associated protein, SAG0894 family [Streptococcus agalactiae ILRI112]
SEQ ID NO: 91


WP_003041502.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus anginosus]
SEQ ID NO: 92


WP_037593752.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus anginosus]
SEQ ID NO: 93


WP_049516684.1
CRISPR-associated protein Csn1 [Streptococcus anginosus]
SEQ ID NO: 94


GAD46167.1
hypothetical protein ANG6_0662 [Streptococcus anginosus T5]
SEQ ID NO: 95


WP_018363470.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus caballi]
SEQ ID NO: 96


WP_003043819.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus canis]
SEQ ID NO: 97


WP_006269658.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus constellatus]
SEQ ID NO: 98


WP_048800889.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus constellatus]
SEQ ID NO: 99


WP_012767106.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus dysgalactiae]
SEQ ID NO: 100


WP_014612333.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus dysgalactiae]
SEQ ID NO: 101


WP_015017095.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus dysgalactiae]
SEQ ID NO: 102


WP_015057649.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus dysgalactiae]
SEQ ID NO: 103


WP_048327215.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus dysgalactiae]
SEQ ID NO: 104


WP_049519324.1
CRISPR-associated protein Csn1 [Streptococcus dysgalactiae]
SEQ ID NO: 105


WP_012515931.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus equi]
SEQ ID NO: 106


WP_021320964.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus equi]
SEQ ID NO: 107


WP_037581760.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus equi]
SEQ ID NO: 108


WP_004232481.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus equinus]
SEQ ID NO: 109


WP_009854540.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus gallolyticus]
SEQ ID NO: 110


WP_012962174.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus gallolyticus]
SEQ ID NO: 111


WP_039695303.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus gallolyticus]
SEQ ID NO: 112


WP_014334983.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus infantarius]
SEQ ID NO: 113


WP_003099269.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus iniae]
SEQ ID NO: 114


AHY15608.1
CRISPR-associated protein Csn1 [Streptococcus iniae]
SEQ ID NO: 115


AHY17476.1
CRISPR-associated protein Csn1 [Streptococcus iniae]
SEQ ID NO: 116


ESR09100.1
hypothetical protein IUSA1_08595 [Streptococcus iniae IUSA1]
SEQ ID NO: 117


AGM98575.1
CRISPR-associated protein Cas9/Csn1, subtype II/NMEMI [Streptococcus iniae SF1]
SEQ ID NO: 118


ALF27331.1
CRISPR-associated protein Csn1 [Streptococcus intermedius]
SEQ ID NO: 119


WP_018372492.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus massiliensis]
SEQ ID NO: 120


WP_045618028.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus mitis]
SEQ ID NO: 121


WP_045635197.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus mitis]
SEQ ID NO: 122


WP_002263549.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus mutans]
SEQ ID NO: 123


WP_002263887.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus mutans]
SEQ ID NO: 124


WP_002264920.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus mutans]
SEQ ID NO: 125


WP_002269043.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus mutans]
SEQ ID NO: 126


WP_002269448.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus mutans]
SEQ ID NO: 127


WP_002271977.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus mutans]
SEQ ID NO: 128


WP_002272766.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus mutans]
SEQ ID NO: 129


WP_002273241.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus mutans]
SEQ ID NO: 130


WP_002275430.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus mutans]
SEQ ID NO: 131


WP_002276448.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus mutans]
SEQ ID NO: 132


WP_002277050.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus mutans]
SEQ ID NO: 133


WP_002277364.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus mutans]
SEQ ID NO: 134


WP_002279025.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus mutans]
SEQ ID NO: 135


WP_002279859.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus mutans]
SEQ ID NO: 136


WP_002280230.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus mutans]
SEQ ID NO: 137


WP_002281696.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus mutans]
SEQ ID NO: 138


WP_002282247.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus mutans]
SEQ ID NO: 139


WP_002282906.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus mutans]
SEQ ID NO: 140


WP_002283846.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus mutans]
SEQ ID NO: 141


WP_002287255.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus mutans]
SEQ ID NO: 142


WP_002288990.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus mutans]
SEQ ID NO: 143


WP_002289641.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus mutans]
SEQ ID NO: 144


WP_002290427.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus mutans]
SEQ ID NO: 145


WP_002295753.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus mutans]
SEQ ID NO: 146


WP_002296423.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus mutans]
SEQ ID NO: 147


WP_002304487.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus mutans]
SEQ ID NO: 148


WP_002305844.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus mutans]
SEQ ID NO: 149


WP_002307203.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus mutans]
SEQ ID NO: 150


WP_002310390.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus mutans]
SEQ ID NO: 151


WP_002352408.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus mutans]
SEQ ID NO: 152


WP_012997688.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus mutans]
SEQ ID NO: 153


WP_014677909.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus mutans]
SEQ ID NO: 154


WP_019312892.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus mutans]
SEQ ID NO: 155


WP_019313659.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus mutans]
SEQ ID NO: 156


WP_019314093.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus mutans]
SEQ ID NO: 157


WP_019315370.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus mutans]
SEQ ID NO: 158


WP_019803776.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus mutans]
SEQ ID NO: 159


WP_019805234.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus mutans]
SEQ ID NO: 160


WP_024783594.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus mutans]
SEQ ID NO: 161


WP_024784288.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus mutans]
SEQ ID NO: 162


WP_024784666.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus mutans]
SEQ ID NO: 163


WP_024784894.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus mutans]
SEQ ID NO: 164


WP_024786433.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus mutans]
SEQ ID NO: 165


WP_049473442.1
CRISPR-associated protein Csn1 [Streptococcus mutans]
SEQ ID NO: 166


WP_049474547.1
CRISPR-associated protein Csn1 [Streptococcus mutans]
SEQ ID NO: 167


EMC03581.1
hypothetical protein SMU69_09359 [Streptococcus mutans NLML4]
SEQ ID NO: 168


WP_000428612.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus oralis]
SEQ ID NO: 169


WP_000428613.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus oralis]
SEQ ID NO: 170


WP_049523028.1
CRISPR-associated protein Csn1 [Streptococcus parasanguinis]
SEQ ID NO: 171


WP_003107102.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus parauberis]
SEQ ID NO: 172


WP_054279288.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus phocae]
SEQ ID NO: 173


WP_049531101.1
CRISPR-associated protein Csn1 [Streptococcus pseudopneumoniae]
SEQ ID NO: 174


WP_049538452.1
CRISPR-associated protein Csn1 [Streptococcus pseudopneumoniae]
SEQ ID NO: 175


WP_049549711.1
CRISPR-associated protein Csn1 [Streptococcus pseudopneumoniae]
SEQ ID NO: 176


WP_007896501.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus pseudoporcinus]
SEQ ID NO: 177


EFR44625.1
CRISPR-associated protein, Csn1 family [Streptococcus pseudoporcinus SPIN 20026]
SEQ ID NO: 178


WP_002897477.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus sanguinis]
SEQ ID NO: 179


WP_002906454.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus sanguinis]
SEQ ID NO: 180


WP_009729476.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus sp. F0441]
SEQ ID NO: 181


CQR24647.1
CRISPR-associated protein [Streptococcus sp. FF10]
SEQ ID NO: 182


WP_000066813.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus sp. M334]
SEQ ID NO: 183


WP_009754323.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus sp. taxon 056]
SEQ ID NO: 184


WP_044674937.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus suis]
SEQ ID NO: 185


WP_044676715.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus suis]
SEQ ID NO: 186


WP_044680361.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus suis]
SEQ ID NO: 187


WP_044681799.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus suis]
SEQ ID NO: 188


WP_049533112.1
CRISPR-associated protein Csn1 [Streptococcus suis]
SEQ ID NO: 189


WP_029090905.1
type II CRISPR RNA-guided endonuclease Cas9 [Brochothrix thermosphacta]
SEQ ID NO: 190


WP_006506696.1
type II CRISPR RNA-guided endonuclease Cas9 [Catenibacterium mitsuokai]
SEQ ID NO: 191


AIT42264.1
Cas9hc:NLS:HA [Cloning vector pYB196]
SEQ ID NO: 192


WP_034440723.1
type II CRISPR endonuclease Cas9 [Clostridiales bacterium S5-A11]
SEQ ID NO: 193


AKQ21048.1
Cas9 [CRISPR-mediated gene targeting vector p(bh5p68-Cas9)]
SEQ ID NO: 194


WP_004636532.1
type II CRISPR RNA-guided endonuclease Cas9 [Dolosigranulum pigrum]
SEQ ID NO: 195


WP_002364836.1
MULTISPECIES: type II CRISPR RNA-guided endonuclease Cas9 [Enterococcus]
SEQ ID NO: 196


WP_016631044.1
MULTISPECIES: type II CRISPR RNA-guided endonuclease Cas9 [Enterococcus]
SEQ ID NO: 197


EM575795.1
hypothetical protein H318_06676 [Enterococcus durans IPLA 655]
SEQ ID NO: 198


WP_002373311.1
type II CRISPR RNA-guided endonuclease Cas9 [Enterococcus faecalis]
SEQ ID NO: 199


WP_002378009.1
type II CRISPR RNA-guided endonuclease Cas9 [Enterococcus faecalis]
SEQ ID NO: 200


WP_002407324.1
type II CRISPR RNA-guided endonuclease Cas9 [Enterococcus faecalis]
SEQ ID NO: 201


WP_002413717.1
type II CRISPR RNA-guided endonuclease Cas9 [Enterococcus faecalis]
SEQ ID NO: 202


WP_010775580.1
type II CRISPR RNA-guided endonuclease Cas9 [Enterococcus faecalis]
SEQ ID NO: 203


WP_010818269.1
type II CRISPR RNA-guided endonuclease Cas9 [Enterococcus faecalis]
SEQ ID NO: 204


WP_010824395.1
type II CRISPR RNA-guided endonuclease Cas9 [Enterococcus faecalis]
SEQ ID NO: 205


WP_016622645.1
type II CRISPR RNA-guided endonuclease Cas9 [Enterococcus faecalis]
SEQ ID NO: 206


WP_033624816.1
type II CRISPR RNA-guided endonuclease Cas9 [Enterococcus faecalis]
SEQ ID NO: 207


WP_033625576.1
type II CRISPR RNA-guided endonuclease Cas9 [Enterococcus faecalis]
SEQ ID NO: 208


WP_033789179.1
type II CRISPR RNA-guided endonuclease Cas9 [Enterococcus faecalis]
SEQ ID NO: 209


WP_002310644.1
type II CRISPR RNA-guided endonuclease Cas9 [Enterococcus faecium]
SEQ ID NO: 210


WP_002312694.1
type II CRISPR RNA-guided endonuclease Cas9 [Enterococcus faecium]
SEQ ID NO: 211


WP_002314015.1
type II CRISPR RNA-guided endonuclease Cas9 [Enterococcus faecium]
SEQ ID NO: 212


WP_002320716.1
type II CRISPR RNA-guided endonuclease Cas9 [Enterococcus faecium]
SEQ ID NO: 213


WP_002330729.1
type II CRISPR RNA-guided endonuclease Cas9 [Enterococcus faecium]
SEQ ID NO: 214


WP_002335161.1
type II CRISPR RNA-guided endonuclease Cas9 [Enterococcus faecium]
SEQ ID NO: 215


WP_002345439.1
type II CRISPR RNA-guided endonuclease Cas9 [Enterococcus faecium]
SEQ ID NO: 216


WP_034867970.1
type II CRISPR RNA-guided endonuclease Cas9 [Enterococcus faecium]
SEQ ID NO: 217


WP_047937432.1
type II CRISPR RNA-guided endonuclease Cas9 [Enterococcus faecium]
SEQ ID NO: 218


WP_010720994.1
type II CRISPR RNA-guided endonuclease Cas9 [Enterococcus hirae]
SEQ ID NO: 219


WP_010737004.1
type II CRISPR RNA-guided endonuclease Cas9 [Enterococcus hirae]
SEQ ID NO: 220


WP_034700478.1
type II CRISPR RNA-guided endonuclease Cas9 [Enterococcus hirae]
SEQ ID NO: 221


WP_007209003.1
type II CRISPR RNA-guided endonuclease Cas9 [Enterococcus italicus]
SEQ ID NO: 222


WP_023519017.1
type II CRISPR RNA-guided endonuclease Cas9 [Enterococcus mundtii]
SEQ ID NO: 223


WP_010770040.1
type II CRISPR RNA-guided endonuclease Cas9 [Enterococcus phoeniculicola]
SEQ ID NO: 224


WP_048604708.1
type II CRISPR RNA-guided endonuclease Cas9 [Enterococcus sp. AM1]
SEQ ID NO: 225


WP_010750235.1
type II CRISPR RNA-guided endonuclease Cas9 [Enterococcus villorum]
SEQ ID NO: 226


AII16583.1
Cas9 endonuclease [Expression vector pCas9]
SEQ ID NO: 227


WP_029073316.1
type II CRISPR RNA-guided endonuclease Cas9 [Kandleria vitulina]
SEQ ID NO: 228


WP_031589969.1
type II CRISPR RNA-guided endonuclease Cas9 [Kandleria vitulina]
SEQ ID NO: 229


KDA45870.1
CRISPR-associated protein Cas9/Csn1, subtype II/NMEMI [Lactobacillus animalis]
SEQ ID NO: 230


WP_039099354.1
type II CRISPR RNA-guided endonuclease Cas9 [Lactobacillus curvatus]
SEQ ID NO: 231


AKP02966.1
hypothetical protein ABB45 04605 [Lactobacillus farciminis]
SEQ ID NO: 232


WP_010991369.1
type II CRISPR RNA-guided endonuclease Cas9 [Listeria innocua]
SEQ ID NO: 233


WP_033838504.1
type II CRISPR RNA-guided endonuclease Cas9 [Listeria innocua]
SEQ ID NO: 234


EHN60060.1
CRISPR-associated protein, Csn1 family [Listeria innocua ATCC 33091]
SEQ ID NO: 235


EFR89594.1
crispr-associated protein, Csn1 family [Listeria innocua FSL S4-378]
SEQ ID NO: 236


WP_038409211.1
type II CRISPR RNA-guided endonuclease Cas9 [Listeria ivanovii]
SEQ ID NO: 237


EFR95520.1
crispr-associated protein Csn1 [Listeria ivanovii FSL F6-596]
SEQ ID NO: 238


WP_003723650.1
type II CRISPR RNA-guided endonuclease Cas9 [Listeria monocytogenes]
SEQ ID NO: 239


WP_003727705.1
type II CRISPR RNA-guided endonuclease Cas9 [Listeria monocytogenes]
SEQ ID NO: 240


WP_003730785.1
type II CRISPR RNA-guided endonuclease Cas9 [Listeria monocytogenes]
SEQ ID NO: 241


WP_003733029.1
type II CRISPR RNA-guided endonuclease Cas9 [Listeria monocytogenes]
SEQ ID NO: 242


WP_003739838.1
type II CRISPR RNA-guided endonuclease Cas9 [Listeria monocytogenes]
SEQ ID NO: 243


WP_014601172.1
type II CRISPR RNA-guided endonuclease Cas9 [Listeria monocytogenes]
SEQ ID NO: 244


WP_023548323.1
type II CRISPR RNA-guided endonuclease Cas9 [Listeria monocytogenes]
SEQ ID NO: 245


WP_031665337.1
type II CRISPR RNA-guided endonuclease Cas9 [Listeria monocytogenes]
SEQ ID NO: 246


WP_031669209.1
type II CRISPR RNA-guided endonuclease Cas9 [Listeria monocytogenes]
SEQ ID NO: 247


WP_033920898.1
type II CRISPR RNA-guided endonuclease Cas9 [Listeria monocytogenes]
SEQ ID NO: 248


AKI42028.1
CRISPR-associated protein [Listeria monocytogenes]
SEQ ID NO: 249


AKI50529.1
CRISPR-associated protein [Listeria monocytogenes]
SEQ ID NO: 250


EFR83390.1
crispr-associated protein Csn1 [Listeria monocytogenes FSL F2-208]
SEQ ID NO: 251


WP_046323366.1
type II CRISPR RNA-guided endonuclease Cas9 [Listeria seeligeri]
SEQ ID NO: 252


AKE81011.1
Cas9 [Plant multiplex genome editing vector pYLCRISPR/Cas9Pubi-H]
SEQ ID NO: 253


CUO82355.1
Uncharacterized protein conserved in bacteria [Roseburia hominis]
SEQ ID NO: 254


WP_033162887.1
type II CRISPR RNA-guided endonuclease Cas9 [Sharpea azabuensis]
SEQ ID NO: 255


AGZ01981.1
Cas9 endonuclease [synthetic construct]
SEQ ID NO: 256


AKA60242.1
nuclease deficient Cas9 [synthetic construct]
SEQ ID NO: 257


AK540380.1
Cas9 [Synthetic plasmid pFC330]
SEQ ID NO: 258


4UN5_B
Cas9, Chain B, Crystal Structure
SEQ ID NO: 259










WP_010922251
1


embedded image


73


WP_039695303
1
MTKKnYSIGLDIGTNSVGWAVITDDYKVPAKKMKVLGNTDKKYIKKNLLGALLFDSGETA--EATRLKRTARRRYT
74


WP_045635197
1
K-KG-YSIGLDIGTNSVGFAVITDDYKVPSKKMKVLGNTDKRFIKKNLIGALLFDEGTTA--EARRLKRTARRRYT
73


5AXW_A
1
MKRN-YILGLDIGITSVGYGII--DYET------------RDVIDA---GVRLFKEANVEnnEGRRSKRGARRLKR
61


WP_009880683

----------------------------------------------------------------------------



WP_010922251
1
MDKK-YSIGLDIGINSVGWAVITDEYKVPSKKFKVLGNIDRHSIKKNLIGALLFDSGETA--EATRLKRTARRRYT
73


WP_011054416
1
MDKK-YSIGLDIGINSVGWAVITDDYKVPSKKLKGLGNIDRHGIKKNLIGALLFDSGETA--EATRLKRTARRRYT
73


WP_011284745
1
MDKK-YSIGLDIGINSVGWAVITDDYKVPSKKFKVLGNIDRHSIKKNLIGALLFDSGETA--EATRLKRTARRRYT
73


WP_011285506
1
MDKK-YSIGLDIGINSVGWAVITDDYKVPSKKFKVLGNIDRHSIKKNLIGALLFDSGETA--EATRLKRTARRRYT
73


WP_011527619
1
MDKK-YSIGLDIGINSVGWAVITDDYKVPSKKFKVLGNIDRHSIKKNLIGALLFDSGEIA--EATRLKRTARRRYT
73


WP_012560673
1
MDKK-YSIGLDIGINSVGWAVITDDYKVPSKKFKVLGNIDRHSIKKNLIGALLFDSGETA--EATRLKRTARRRYT
73


WP_014407541
1
MDKK-YSIGLDIGINSVGWAVITDDYKVPSKKFKVLGNIDRHSIKKNLIGALLFGSGETA--EATRLKRTARRRYT
73


WP_020905136
1
MDKK-YSIGLDIGINSVGWAVITDDYKVPSKKFKVLGNIDRHSIKKNLIGALLFDSGETA--EATRLKRTARRRYT
73


WP_023080005
1
MDKK-YSIGLDIGINSVGWAVITDDYKVPSKKLKVLGNIDRHGIKKNLIGALLFDSGETA--EATRLKRTARRRYT
73


WP_023610282
1
MDKK-YSIGLDIGINSVGWAVITDDYKVPSKKLKVLGNIDRHGIKKNLIGALLFDSGETA--EATRLKRTARRRYT
73


WP_030125963
1
MDKK-YSIGLDIGINSVGWAVITDDYKVPSKKFKVLGNIDRHSIKKNLIGALLFDSGETA--EATRLKRTARRRYT
73


WP_030126706
1
MDKK-YSIGLDIGINSVGWAVITDDYKVPSKKFKVLGNIDRHGIKKNLIGALLFDSGETA--EATRLKRTARRRYT
73


WP_031488318
1
MDKK-YSIGLDIGINSVGWAVITDDYKVPSKKFKVLGNIDRHSIKKNLIGALLFDSGETA--EATRLKRTARRRYT
73


WP_032460140
1
MDKK-YSIGLDIGINSVGWAVITDDYKVPSKKFKVLGNIDRHSIKKNLIGALLFDSGETA--EATRLKRTARRRYT
73


WP_032461047
1
MDKK-YSIGLDIGINSVGWAVITDDYKVPSKKFKVLGNIDRHSIKKNLIGALLFDSGETA--EATRLKRTARRRYT
73


WP_032462016
1
MDKK-YSIGLDIGINSVGWAVITDDYKVPSKKFKVLGNIDRHSIKKNLIGALLFDSGETA--EATRLKRTARRRYT
73


WP_032462936
1
MDKK-YSIGLDIGINSVGWAVITDDYKVPSKKFKVLGNIDRHSIKKNLIGALLFDSGETA--EATRLKRTARRRYT
73


WP_032464890
1
MDKK-YSIGLDIGTNSVGWAVITDDYKVPSKKFKVLGNTDRHSIKKNLIGALLFDSGEIA--EATRLKRTARRRYT
73


WP_033888930

----------------------------------------------------------------------------



WP_038431314
1
MDKK-YSIGLDIGTNSVGWAVITDDYKVPSKKFKVLGNTDRHSIKKNLIGALLFDSGETA--EATRLKRTARRRYT
73


WP_038432938
1
MDKK-YSIGLDIGTNSVGWAVITDDYKVPSKKFKVLGNTDRHSIKKNLIGALLFDSGETA--EATRLKRTARRRYT
73


WP_038434062
1
MDKK-YSIGLDIGTNSVGWAVITDDYKVPSKKFKVLGNTDRHSIKKNLIGALLFDSGETA--EATRLKRTARRRYT
73


BAQ51233

----------------------------------------------------------------------------



KGE60162

----------------------------------------------------------------------------



KGE60856

----------------------------------------------------------------------------



WP_002989955
1
MDKK-YSIGLDIGTNSVGWAVITDDYKVPSKKFKVLGNTDRHSIKKNLIGALLFDSGEIA--EATRLKRTARRRYT
73


WP_003030002
1
MDQK-YSIGLDIGTNSVGWAVVTDDYKVPAKKMKVLGNTDKQSIKKNLLGALLFDSGETA--EATRLKRTARRRYT
73


WP_003065552
1
MTKKnYSIGLDIGTNSVGWAVITDDYKVPAKKMKVLGNTDKKYIKKNLLGALLFDSGETA--EATRLKRTARRRYT
74


WP_001040076
1
MNKP-YSIGLDIGTNSVGWSIITDDYKVPAKKIRVLGNTDKEYIKKNLIGALLFDGGNTA--ADRRLKRTARRRYT
73


WP_001040078
1
MNKP-YSIGLDIGTNSVGWSIITDDYKVPAKKMRVLGNTDKEYIKKNLIGALLFDGGNTA--ADRRLKRTARRRYT
73


WP_001040080
1
MNKP-YSIGLDIGTNSVGWSIITDDYKVPAKKMRVLGNTDKEYIKKNLIGALLFDGGNTA--ADRRLKRTARRRYT
73


WP_001040081
1
MNKP-YSIGLDIGTNSVGWSIITDDYKVPAKKMRVLGNTDKEYIKKNLIGALLFDGGNTA--ADRRLKRTARRRYT
73


WP_001040083
1
MNKP-YSIGLDIGTNSVGWSIITDDYKVPAKKMRVLGNTDKEYIKKNLIGALLFDGGNTA--ADRRLKRTARRRYT
73


WP_001040085
1
MNKP-YSIGLDIGTNSVGWSIITDDYKVPAKKMRVLGNTDKEYIKKNLIGALLFDGGNTA--ADRRLKRTARRRYT
73


WP_001040087
1
MNKP-YSIGLDIGTNSVGWSIITDDYKVPAKKMRVLGNTDKEYIKKNLIGALLFDGGNTA--ADRRLKRTARRRYT
73


WP_001040088
1
MNKP-YSIGLDIGTNSVGWSIITDDYKVPAKKMRVLGNTDKEYIKKNLIGALLFDGGNTA--ADRRLKRTARRRYT
73


WP_001040089
1
MNKP-YSIGLDIGTNSVGWSIITDDYKVPAKKMRVLGNTDKEYIKKNLIGALLFDGGNTA--ADRRLKRTARRRYT
73


WP_001040090
1
MNKP-YSIGLDIGTNSVGWSIITDDYKVPAKKMRVLGNTDKEYIKKNLIGALLFDGGNTA--ADRRLKRTARRRYT
73


WP_001040091
1
MNKP-YSIGLDIGTNSVGWSIITDDYKVPAKKMRVLGNTDKEYIKKNLIGALLFDGGNTA--ADRRLKRTARRRYT
73


WP_001040092
1
MNKP-YSIGLDIGTNSVGWSIITDDYKVPAKKMRVLGNTDKEYIKKNLIGALLFDGGNTA--ADRRLKRTARRRYT
73


WP_001040094
1
MNKP-YSIGLDIGTNSVGWSIITDDYKVPAKKMRVLGNTDKEYIKKNLIGALLFDGGNTA--ADRRLKRTARRRYT
73


WP_001040095
1
MNKP-YSIGLDIGTNSVGWSIITDDYKVPAKKMRVLGNTDKEYIKKNLIGALLFDGGNTA--ADRRLKRTARRRYT
73


WP_001040096
1
MNKP-YSIGLDIGTNSVGWSIITDDYKVPAKKMRVLGNTDKEYIKKNLIGALLFDGGNTA--ADRRLKRTARRRYT
73


WP_001040097
1
MNKP-YSIGLDIGTNSVGWSIITDDYKVPAKKMRVLGNTDKEYIKKNLIGALLFDGGNTA--ADRRLKRTARRRYT
73


WP_001040098
1
MNKP-YSIGLDIGTNSVGWSIITDDYKVPAKKMRVLGNTDKEYIKKNLIGALLFDGGNTA--ADRRLKRTARRRYT
73


WP_001040099
1
MNKP-YSIGLDIGTNSVGWSIITDDYKVPAKKMRVLGNTDKEYIKKNLIGALLFDGGNTA--ADRRLKRTARRRYT
73


WP_001040100
1
MNKP-YSIGLDIGTNSVGWSIITDDYKVPAKKMRVLGNTDKEYIKKNLIGALLFDGGNTA--ADRRLKRTARRRYT
73


WP_001040104
1
MNKP-YSIGLDIGTNSVGWSIITDDYKVPAKKMRVLGNTDKEYIKKNLIGALLFDGGNTA--ADRRLKRTARRRYT
73


WP_001040105
1
MNKP-YSIGLDIGTNSVGWSIITDDYKVPAKKMRVLGNTDKEYIKKNLIGALLFDGGNTA--ADRRLKRTSRRRYT
73


WP_001040106
1
MNKP-YSIGLDIGTNSVGYSVVTDDYKVPAKKMRVLGNTDKEYIKKNLIGALLEDGGNTA--SDRRLKRTARRRYT
73


WP_001040107
1
MNKP-YSIGLDIGTNSVGYSVVTDDYKVPAKKMRVLGNTDKEYIKKNLIGALLEDGGNTA--SDRRLKRTARRRYT
73


WP_001040108
1
MNKP-YSIGLDIGTNSVGYSVVTDDYKVPAKKMRVLGNTDKEYIKKNLIGALLEDGGNTA--SDRRLKRTARRRYT
73


WP_001040109
1
MNKP-YSIGLDIGTNSVGYSVVTDDYKVPAKKMRVLGNTDKEYIKKNLIGALLEDGGNTA--SDRRLKRTARRRYT
73


WP_001040110
1
MNKP-YSIGLDIGTNSVGYSVVTDDYKVPAKKMRVLGNTDKEYIKKNLIGALLEDGGNTA--SDRRLKRTARRRYT
73


WP_015058523
1
MNKP-YSIGLDIGTNSVGWSIITDDYKVPAKKMRVLGNTDKEYIKKNLIGALLFDGGNTA--ADRRLKRTARRRYT
73


WP_017643650
1
MNKP-YSIGLDIGTNSVGWSIITDDYKVPAKKMRVLGNTDKEYIKKNLIGALLFDGGNTA--ADRRLKRTARRRYT
73


WP_017647151
1
MNKP-YSIGLDIGTNSVGWSIITDDYKVPAKKMRVLGNTDKEYIKKNLIGALLFDGGNTA--SDRRLKRTARRRYT
73


WP_017648376
1
MNKP-YSIGLDIGTNSVGWSIITDDYKVPAKKMRVLGNTDKEYIKKNLIGALLFDGGNTA--SDRRLKRTARRRYT
73


WP_017649527
1
MNKP-YSIGLDIGTNSVGWSIITDDYKVPAKKMRVLGNTDKEYIKKNLIGALLFDGGNTA--ADRRLKRTARRRYT
73


WP_017771611
1
MNKP-YSIGLDIGTNSVGYSVVTDDYKVPAKKMRVLGNTDKEYIKKNLIGALLFDGGNTA--SDRRLKRTARRRYT
73


WP_017771984
1
MNKP-YSIGLDIGTNSVGWSIITDDYKVPAKKMRVLGNTDKEYIKKNLIGALLFDGGNTA--ADRRLKRTARRRYT
73


CFQ25032
1
MNKP-YSIGLDIGTNSVGWSIITDDYKVPAKKMRVLGNTDKEYIKKNLIGALLFDGGNTA--ADRRLKRTARRRYT
73


CFV16040
1
MNKP-YSIGLDIGTNSVGWSIITDDYKVPAKKMRVLGNTDKEYIKKNLIGALLFDGGNTA--ADRRLKRTARRRYT
73


KLJ37842
1
MNKP-YSIGLDIGTNSVGWSIITDDYKVPAKKMRVLGNTDKEYIKKNLIGALLFDGGNTA--ADRRLKRTARRRYT
73


KLJ72361
1
MNKP-YSIGLDIGTNSVGWSIITDDYKVPAKKMRVLGNTDKEYIKKNLIGALLFDGGNTA--ADRRLKRTARRRYT
73


KLL20707
1
MNKP-YSIGLDIGTNSVGWSIITDDYKVPAKKMRVLGNTDKEYIKKNLIGALLFDGGNTA--ADRRLKRTARRRYT
73


KLL42645
1
MNKP-YSIGLDIGTNSVGYSVVTDDYKVPAKKMRVLGNTDKEYIKKNLIGALLFDGGNTA--SDRRLKRTARRRYT
73


WP_047207273
1
MNKP-YSIGLDIGTNSVGWSIITDDYKVPAKKMRVLGNTDKEYIKKNLIGALLFDGRNTA--ADRRLKRTARRRYT
73


WP_047209694
1
MNKP-YSIGLDIGTNSVGWSIITDDYKVPAKKMRVLGNTDKEYIKKNLIGALLFDGGNTA--ADRRLKRTARRRYT
73


WP_050198062
1
MNKP-YSIGLDIGTNSVGWSIITDDYKVPAKKMRVLGNTDKEYIKKNLIGALLFDGGNTA--ADRRLKRTARRRYT
73


WP_050201642
1
MNKP-YSIGLDIGTNSVGWSIITDDYKVPAKKMRVLGNTDKEYIKKNLIGALLFDGGNTA--ADRRLKRTARRRYT
73


WP_050204027
1
MNKP-YSIGLDIGTNSVGYSVVTDDYKVPAKKMRVLGNTDKEYIKKNLIGALLFDGGNTA--SDRRLKRTARRRYT
73


WP_050881965
1
MNKP-YSIGLDIGTNSVGWSIITDDYKVPAKKMRVLGNTDKEYIKKNLIGALLFDGGNTA--ADRRLKRTARRRYT
73


WP_050886065
1
MNKP-YSIGLDIGTNSVGWSIITDDYKVPAKKMRVLGNTDKEYIKKNLIGALLFDGGNTA--ADRRLKRTARRRYT
73


AHN30376
1
MNKP-YSIGLDIGTNSVGWSIITDDYKVPAKKMRVLGNTDKEYIKKNLIGALLFDGGNTA--ADRRLKRTARRRYT
73


EAO78426
1
MNKP-YSIGXDIGTNSVGWSIITDDYKVPAKKMRVLGNTDKEYIKKNLIGALLFDGGNTA--ADRRLKRTARRRYT
73


CCW42055
1
MNKP-YSIGLDIGTNSVGWSIITDDYKVPAKKMRVLGNTDKEYIKKNLIGALLFDGGNTA--ADRRLKRIARRRYT
73


WP_003041502
1
MNQK-YSIGLDIGTNSVGWAVITDDYKVPAKKMKVLGNTDKQSIKKNLLGALLFDSGETA--EATRLKRTARRRYT
73


WP_037593752
1
MKKE-YSIGLDIGTNSVGWAVITDDYKVPAKKMKVLGNTDKQSIKKNLLGALLFDSGETA--EATRLKRTARRRYT
74


WP_049516684
1
MKKE-YSIGLDIGTNSVGWAVITDDYKVPAKKMKVLGNTDKQSIKKNLLGALLFDSGETA--EATRLKRTARRRYT
74


GAD46167
1
MKKE-YSIGLDIGTNSVGWAVITDDYKVPAKKMKVLGNTDKQSIKKNLLGALLFDSGETA--EATRLKRTARRRYT
73


WP_018363470
1
MTKKnYSIGLDIGTNSVGWAVITDDYKVPAKKMKVLGNTDKKYIKKNLLGALLFDSGETA--EATRLKRTARRRYT
74


WP_003043819
1
MEKK-YSIGLDIGTNSVGWAVITDDYKVPSKKFKVLGNTNRKSIKKNLMGALLFDSGETA--EATRLKRTARRRYT
73


WP_006269658
1
MGKP-YSIGLDIGTNSVGWAVVTDDYKVPAKKMKVLGNTDKQSIKKNLLGALLFDSGETA--EATRLKRTARRRYT
73


WP_048800889
1
MTQK-YSIGLDIGTNSVGWAIVTDDYKVPAKKMKILGNTNKQYIKKNLLGALLFDSGETA--KATRLKRTARRRYT
73


WP_012767106
1
MDKK-YSIGLDIGTNSVGWAVITDDYKVPSKKFKVLGNTDRHSIKKNLIGALLFDSGETA--EATRLKRTARRRYT
73


WP_014612333
1
MDKK-YSIGLDIGTNSVGWAVITDDYKVPSKKFKVLGNTDRHSIKKNLIGALLFDSGETA--EATRLKRTARRRYT
73


WP_015017095
1
MDKK-YSIGLDIGTNSVGWAVITDDYKVPSKKFKVLGNTDRHSIKKNLIGALLFDSGETA--EATRLKRTARRRYT
73


WP_015057649
1
MDKK-YSIGLDIGTNSVGWAVITDDYKVPSKKFKVLGNTDRHSIKKNLIGALLFDSGETA--EATRLKRTARRRYT
73


WP_048327215
1
MDKK-YSIGLDIGTNSVGWAVITDDYKVPSKKFKVLGNTDRHSIKKNLIGALLFDSGETA--EATRLKRTARRRYT
73


WP_049519324
1
MDKK-YSIGLDIGTNSVGWAVITDDYKVPSKKFKVLGNTDRHSIKKNLIGALLFDSGETA--EATRLKRTARRRYT
73


WP_012515931
1
MKKP-YTIALDIGTNSVGWVVVTDDYRVPTKKMKVLGNTERKTIKKNLIGALLFDSGDTA--EGTRLKRTARRRYT
73


WP_021320964
1
MKKP-YTIALDIGTNSVGWVVVTDDYRVPTKKMKVLGNTERKTIKKNLIGALLFDSGDTA--EGTRLKRTARRRYT
73


WP_037581760
1
MKKP-YTIALDIGTNSVGWVVVTDDYRVPTKKMKVLGNTERKTIKKNLIGALLFDSGDTA--EGTRLKRTARPRYT
73


WP_004232481
1
M-EKtYSIGLDIGTNSVGWAVITDDYKVPAKKMKVLGNTDKKYIKKNLLGALLFDSGETA--EATRLKRAARRRYT
73


WP_009854540
1
MTKKnYSIGLDIGTNSVGWAVITDDYKVPAKKMKVLGNTDKKYIKKNLLGALLFDSGETA--EATRLKRTARRRYT
74


WP_012962174
1
MTEKnYSIGLDIGTNSVGWAVITDDYKVPAKKMKVLGNTDKKYIKKNLLGALLFDNGETA--EATRLKRTARRRYT
74


WP_039695303
1
MTKKnYSIGLDIGTNSVGWAVITDDYKVPAKKMKVLGNTDKKYIKKNLLGALLFDSGETA--EATRLKRTARRRYT
74


WP_014334983
1
M-EKsYSIGLDIGTNSVGWAVITDDYKVPAKKMKVLGNTDKKYIKKNLLGALLFDSGETA--EVTRLKRTARRRYT
73


WP_003099269
1
MRKP-YSIGLDIGTNSVGWAVITDDYKVPSKKMRIQGTTDRTSIKKNLIGALLFDNGETA--EATRLKRTTRRRYT
73


AHY15608
1
MRKP-YSIGLDIGTNSVGWAVITDDYKVPSKKMRIQGTTDRTSIKKNLIGALLFDNGETA--EATRLKRTTRRRYT
73


AHY17476
1
MRKP-YSIGLDIGTNSVGWAVITDDYKVPSKKMRIQGTTDRTSIKKNLIGALLFDNGETA--EATRLKRTTRRRYT
73


ESR09100

----------------------------------------------------------------------------



AGM98575
1
MRKP-YSIGLDIGTNSVGWAVITDDYKVPSKKMRIQGTTDRTSIKKNLIGALLFDNGETA--EATRLKRTTRRRYT
73


ALF27331
1
MKKP-YSIGLDIGTNSVGWAVVTDDYKVPAKKMKVLGNTDKSHIKKNLLGALLFDSGNTA--EDRRLKRTARRRYT
73


WP_018372492
1
MKKP-YSIGLDIGTNSVGWAVVMEDYKVPSKKMKVLGNTDKQSIKKNLIGALLFDSGETAv--ERRLNRTTSRRYD
73


WP_045618028
1
NNKP-YSIGLDIGTNSVGWAVITDDYKVPSKKMKVLGNTDKHFIKKNLLGALLFDEGTTA--EDRRLKRTARRRYT
74


WP_045635197
1
K-KG-YSIGLDIGTNSVGFAVITDDYKVPSKKMKVLGNTDKRFIKKNLIGALLFDEGTTA--EARRLKRTARRRYT
73


WP_002263549
1
MKKP-YSIGLDIGTNSVGWAVVTDDYKVPAKKMKVLGNTDKSHIEKNLLGALLFDSGNTA--EDRRLKRTARRRYT
73


WP_002263887
1
MKKP-YSIGLDIGTNSVGWAVVTDDYKVPAKKMKVLGNTDKSHIEKNLLGALLFDSGNTA--EDRRLKRTARRRYT
73


WP_002264920
1
MKKP-YSIGLDIGTNSVGWAVVTDDYKVPAKKMKVLGNTDKSHIKKNLLGALLFDSGNTA--EDRRLKRTARRRYT
73


WP_002269043
1
MKKP-YSIGLDIGTNSVGWAVVTDDYKVPAKKMKVLGNTDKSHIKKNLLGALLFDSGNTA--EDRRLKRTARRRYT
73


WP_002269448
1
MKKP-YSIGLDIGTNSVGWAVVTDDYKVPAKKMKVLGNTDKSHIKKNLLGALLFDSGNTA--EDRRLKRTARRRYT
73


WP_002271977
1
MKKP-YSIGLDIGTNSVGWAVVTDDYKVPAKKMKVLGNTDKSHIKKNLLGALLFDSGNTA--EDRRLKRTARRRYT
73


WP_002272766
1
MKKP-YSIGLDIGTNSVGWAVVTDDYKVPAKKMKVLGNTDKSHIKKNLLGALLFDSGNTA--EDRRLKRTARRRYT
73


WP_002273241
1
MKKP-YSIGLDIGTNSVGWAVVTDDYKVPAKKMKVLGNTDKSHIKKNLLGALLFDSGNTA--EDRRLKRTARRRYT
73


WP_002275430
1
MKKP-YSIGLDIGTNSVGWAVVTDDYKVPAKKMKVLGNTDKSHIKKNLLGALLFDSGNTA--ADRRLKRTARRRYT
73


WP_002276448
1
MKKP-YSIGLDIGTNSVGWAVVTDDYKVPAKKMKVLGNTDKSHIKKNLLGALLFDSGNTA--EDRRLKRTARRRYT
73


WP_002277050
1
MKKS-YSIGLDIGTNSVGWAVVTDDYKVPAKKMKVLGNTDKSHIKKNLLGALLFDSGNTA--EDRRLKRTARRRYT
73


WP_002277364
1
MKKP-YSIGLDIGTNSVGWAVVTDDYKVPAKKMKVLGNTDKSHIKKNLLGALLFDSGNTA--ADRRLKRTARRRYT
73


WP_002279025
1
MKKP-YSIGLDIGTNSVGWAVVTDDYKVPAKKMKVLGNTDKSHIEKNLLGALLFDSGNTA--EDRRLKRTARRRYT
73


WP_002279859
1
MKKP-YSIGLDIGTNSVGWAVVTDDYKVPAKKMKVLGNTDKSHIKKNLLGALLFDSGNTA--EDRRLKRTARRRYT
73


WP_002280230
1
MKKP-YSIGLDIGTNSVGWAVVTDDYKVPAKKMKVLGNTDKSHIKKNLLGALLFDSGNTA--ADRRLKRTARRRYT
73


WP_002281696
1
MKKP-YSIGLDIGTNSVGWAVVTDDYKVPAKKMKVLGNTDKSHIKKNLLGALLFDSGNTA--ADRRLKRTARRRYT
73


WP_002282247
1
MKKP-YSIGLDIGTNSVGWAVVTDDYKVPAKKMKVLGNTDKSHIKKNLLGALLFDSGNTA--EDRRLKRTARRRYT
73


WP_002282906
1
MKKP-YSIGLDIGTNSVGWSVVTDDYKVPAKKMKVLGNTDKSHIEKNLLGALLFDSGNTA--EDRRLKRTARRRYT
73


WP_002283846
1
MKKP-YSIGLDIGTNSVGWAVVTDDYKVPAKKMKVLGNTDKSHIKKNLLGALLFDSGNTA--EDRRLKRTARRRYT
73


WP_002287255
1
MKKP-YSIGLDIGTNSVGWAVVTDDYKVSAKKMKVLGNTDKSHIKKNLLGALLFDSGNTA--EDRRLKRTARRRYT
73


WP_002288990
1
MKKP-YSIGLDIGTNSVGWAVVTDDYKVPAKKMKVLGNTDKSHIKKNLLGALLFDSGNTA--EDRRLKRTARRRYT
73


WP_002289641
1
MKKP-YSIGLDIGTNSVGWAVVTDDYKVPAKKMKVLGNTDKSHIKKNLLGALLFDSGNTA--EDRRLKRTTRRRYT
73


WP_002290427
1
MKKP-YSIGLDIGTNSVGWAVVTDDYKVPAKKMKVLGNTDKSHIKKNLLGALLFDSGNTA--EDRRLKRTARRRYT
73


WP_002295753
1
MKKP-YSIGLDIGTNSVGWAVVTDDYKVPAKKMKVLGNTDKSHIKKNLLGALLFDSGNTA--EDRRLKRTARRRYT
73


WP_002296423
1
MKKP-YSIGLDIGTNSVGWAVVTDDYKVPAKKMKVLGNTDKSHIKKNLLGALLFDSGNTA--EDRRLKRTARRRYT
73


WP_002304487
1
MKKP-YSIGLDIGTNSVGWAVVTDDYKVPAKKMKVLGNTDKSHIKKNLLGALLFDSGNTA--EDRRLKRTARRRYT
73


WP_002305844
1
MKKP-YSIGLDIGTNSVGWAVVTDDYKVPAKKMKVLGNTDKSHIKKNLLGALLFDSGNTA--EDRRLKRTARRRYT
73


WP_002307203
1
MKKP-YSIGLDIGTNSVGWAVVTDDYKVPAKKMKVLGNTDKSHIKKNLLGALLFDSGNTA--EDRRLKRTARRRYT
73


WP_002310390
1
MKKP-YSIGLDIGTNSVGWAVVTDDYKVPAKKMKVLGNTDKSHIKKNLLGALLFDSGNTA--EDRRLKRTARRRYT
73


WP_002352408
1
MKKP-YSIGLDIGTNSVGWAVVTDDYKVPAKKMKVLGNTDKSHIKKNLLGALLFDSGNTA--EDRRLKRTARRRYT
73


WP_012997688
1
MKKP-YSIGLDIGTNSVGWAVVTDDYKVPAKKMKVLGNTDKSHIKKNLLGALLFDSGNTA--ADRRLKRTARRRYT
73


WP_014677909
1
MKKP-YSIGLDIGTNSVGWAVVTDDYKVPDKKMKVLGNTDKSHIKKNLLGALLFDSGNTA--EDRRLKRTARRRYT
73


WP_019312892
1
MKKP-YSIGLDIGTNSVGWAVVTDDYKVPAKKMKVLGNTDKSHIKKNLLGALLFDSGNTA--ADRRLKRTARRRYT
73


WP_019313659
1
MKKP-YSIGLDIGTNSVGWAVVTDDYKVPAKKMKVLGNTDKSHIEKNLLGALLFDSGNTA--EDRRLKRTARRRYT
73


WP_019314093
1
MKKP-YSIGLDIGTNSVGWAVVTDDYKVPAKKMKVLGNTDKSHIKKNLLGALLFDSGNTA--EDRRLKRTARRRYT
73


WP_019315370
1
MKKP-YSIGLDIGTNSVGWAVVTDDYKVPAKKMKVLGNTDKSHIKKNLLGALLFDSGNTA--EDRRLKRTARRRYT
73


WP_019803776
1
MKKP-YSIGLDIGTNSVGWAVVTDDYKVPAKKMKVLGNTDKSHIEKNLLGALLFDSGNTA--EDRRLKRTARRRYT
73


WP_019805234
1
MKKP-YSIGLDIGTNSVGWAVVTDDYKVPAKKMKVLGNTDKSHIKKNLLGALLFDSGNTA--EDRRLKRTARRRYT
73


WP_024783594
1
MKKP-YSIGLDIGTNSVGWAVVTDDYKVPAKKMKVLGNTDKSHIEKNLLGALLFDSGNTA--EDRRLKRTARRRYT
73


WP_024784288
1
MKKP-YSIGLDIGTNSVGWAVVTDDYKVPAKKMKVLGNTDKSHIKKNLLGALLFDSGNTA--EDRRLKRTARRRYT
73


WP_024784666
1
MKKP-YSIGLDIGTNSVGWAVVTDDYKVPAKKMKVLGNTDKSHIKKNLLGALLFDSGNTA--ADRRLKRTARRRYT
73


WP_024784894
1
MKKP-YSIGLDIGTNSVGWAVVTDDYKVPAKKMKVLGNTDKSHIKKNLLGALLFDSGNTA--EDRRLKRTTRRRYT
73


WP_024786433
1
MKKP-YSIGLDIGTNSVGWAVVTDDYKVPAKKMKVLGNTDKSHIKKNLLGALLFDSGNTA--ADRRLKRTARRRYT
73


WP_049473442
1
MKKP-YSIGLDIGTNSVGWAVVTDDYKVPAKKMKVLGNTDKSHIKKNLLGALLFDSGNTA--ADRRLKRTARRRYT
73


WP_049474547
1
MKKP-YSIGLDIGTNSVGWAVVTDDYKVPAKKMKVLGNTDKSHIKKNLLGALLFDSGNTA--EDRRLKRTTRRRYT
73


EMC03581
1
MDL--------IGTNSVGWAVVTDDYKVPAKKMKVLGNTDKSHIKKNLLGALLFDSGNTA--ADRRLKRTARRRYT
66


WP_000428612
1
ENKN-YSIGLDIGTNSVGWAVITDDYKVPSKKMKVLGNTDKRFIKKNLIGALLFDEGTTA--EARRLKRTARRRYT
74


WP_000428613
1
ENKN-YSIGLDIGTNSVGWSVITDDYKVPSKKMKVLGNTDKRFIKKNLIGALLFDEGTTA--EARRLKRTARRRYT
74


WP_049523028
1
K-KP-YSIGLDIGTNSVGWAVITDDYKVPAKKMKVLGNTNKESIKKNLIGALLFDAGNTA--ADRRLKRTARRRYT
73


WP_003107102
1
--------------------------------MKVLGNTDRQTVKKNMIGTLLFDSGETA--EARRLKRTARRRYT
42


WP_054279288
1
-KKS-YSIGLDIGTNSVGWAVITDDYKVPAKKMKVLGNTSRQSIKKNMIGALLFDEGGPA--ASTRVKRTTRRRYT
75


WP_049531101
1
SNKP-YSIGLDIGTNSVGWAVITDDYKVPSKKMKVLGNTDKHFIKKNLIGALLFDEGTTA--EDRRLKRTARRRYT
74


WP_049538452
1
SNKP-YSIGLDIGTNSVGWVIITDDYKVPSKKMKVLGNTDKHFIKKNLIGALLFDEGTTA--EDRRLKRTARRRYT
74


WP_049549711
1
SNKP-YSIGLDIGTNSVGWAVITDDYKVPSKKMTVLGNTDKHFIKKNLIGALLFDEGTTA--EDRRLKRTARRRYT
74


WP_007896501
1
--YS-YSIGLDIGTNSVGWAVINEDYKVPAKKMTVFGNTDRKTIKKNLLGTVLFDSGETA--QARRLKRTNRRRYT
75


EFR44625
1
-----------------------------------------------MLGTVLFDSGETA--QARRLKRTNRRRYT
27


WP_002897477
1
K-KP-YSIGLDIGTNSVGWAVVTDDYKVPAKKMRVFGDTDRSHIKKNLLGTLLFDDGNTA--ESRRLKRTARRRYT
73


WP_002906454
1
K-KP-YSIGLDIGTNSVGWAVITDDYKVPSKKMKVLGNTDKHFIKKNLIGALLFDEGTTA--EDRRLKRTSRRRYT
73


WP_009729476
1
ENKN-YSIGLDIGTNSVGWSVITDDYKVPSKKMKVLGNTDKHFIKKNLIGALLFDEGTTA--EARRLKRTARRRYT
74


CQR24647
1
MKKP-YSIGLDIGTNSVGWSVVTDDYKVPAKKMKVLGNTDKEYIKKNLIGALLFDSGETA--EATRMKRTARRRYT
73


WP_000066813
1
SNKS-YSIGLDIGTNSVGWAVITDDYKVPSKKMKVLGNTDKHFIKKNLIGALLFDEGTTA--EDRRLKRTARRRYT
74


WP_009754323
1
NNNN-YSIGLDIGTNSVGWAVITDDYKVPSKKMRVLGNTDKRFIKKNLIGALLFDEGTTA--EDRRLKRTARRRYT
74


WP_044674937
1
MKKK-YAIGIDIGTNSVGWSVVTDDYKVPSKKMKVFGNTEKRYIKKNLLGTLLFDEGNTA--ENRRLKRTARRRYT
73


WP_044676715
1
MKKK-YAIGIDIGTNSVGWSVVTDDYKVPSKKMKVFGNTEKRYIKKNLLGTLLFDEGNTA--ENRRLKRTARRRYT
73


WP_044680361
1
MKKK-YAIGIDIGTNSVGWSVVTDDYKVPSKKMKVFGNTEKRYIKKNLLGTLLFDEGNTA--ENRRLKRTARRRYT
73


WP_044681799
1
MKKK-YAIGIDIGTNSVGWSVVTDDYKVPSKKMKVFGNTEKRYIKKNLLGTLLFDEGNTA--ENRRLKRTARRRYT
73


WP_049533112
1
MDQK-YSIGLDIGTNSVGWAVVTDDYKVPAKKMKVLGNTDKQSIKKNLLGALLFDSGETA--EATRLKRTARRRYT
73


WP_029090905
1
-----------------------------------------------MWGVSLFEAGKTA--AERRGYRSTRRRLN
27


WP_006506696
1
I-VD-YCIGLDLGTGSVGWAVVDMNHRLMKRN------------GKHLWGSRLFSNAETA--ANRRASRSIRRRYN
60


AIT42264
1
MDKK-YSIGLDIGTNSVGWAVITDEYKVPSKKFKVLGNTDRHSIKKNLIGALLFDSGETA--EATRLKRTARRRYT
73


WP_034440723
1
-MKN-YTIGLDIGTNSVGWAVIKDDLTLVRKKIKISGNTDKKEVKKNLWGSFLFEQGDTA--QDTRVKRIARRRYE
72


AKQ21048
1
MDKK-YSIGLDIGTNSVGWAVITDEYKVPSKKFKVLGNTDRHSIKKNLIGALLFDSGETA--EATRLKRTARRRYT
73


WP_004636532
1
MQKN-YTIGLDIGTNSVGWAVMKDDYTLIRKRMKVLGNTDIKKIKKNFWGVRLFDEGETA--KETRLKRGTRRRYQ
73


WP_002364836
1
MKKD-YVIGLDIGTNSVGWAVMTEDYQLVKKKMPIYGNTEKKKIKKNFWGVRLFEEGHTA--EDRRLKRTARRRIS
73


WP_016631044
1
--------------------------------------------------MRLFEEGHTA--EDRRLKRTARRRIS
24


EMS75795

----------------------------------------------------------------------------



WP_002373311
1
MKKD-YVIGLDIGTNSVGWAVMTEDYQLVKKKMPIYGNTEKKKIKKNFWGVRLFEEGHTA--EDRRLKRTARRRIS
73


WP_002378009
1
MKKD-YVIGLDIGTNSVGWAVMTEDYQLVKKKMPIYGNTEKKKIKKNFWGVRLFEEGHTA--EDRRLKRTARRRIS
73


WP_002407324
1
MKKD-YVIGLDIGTNSVGWAVMTEDYQLVKKKMPIYGNTEKKKIKKNFWGVRLFEEGHTA--EDRRLKRTARRRIS
73


WP_002413717
1
MKKD-YVIGLDIGTNSVGWAVMTEDYQLVKKKMPIYGNTEKKKIKKNFWGVRLFEEGHTA--EDRRLKRTARRRIS
73


WP_010775580
1
MKKD-YVIGLDIGTNSVGWAVMTEDYQLVKKKMPIYGNTEKKKIKKNFWGVRLFEEGHTA--EDRRLKRTARRRIS
73


WP_010818269
1
MKKD-YVIGLDIGTNSVGWAVMTEDYQLVKKKMPIYGNTEKKKIKKNFWGVRLFEEGHTA--EDRRLKRTARRRIS
73


WP_010824395
1
MKKD-YVIGLDIGSNSVGWAVMTEDYQLVKKKMPIYGNTEKKKIKKNFWGVRLFEEGHTA--EDRRLKRTARRRIS
73


WP_016622645
1
MKKD-YVIGLDIGTNSVGWAVMTEDYQLVKKKMPIYGNTEKKKIKKNFWGVRLFEEGHTA--EDRRLKRTARRRIS
73


WP_033624816
1
MKKD-YVIGLDIGTNSVGWAVMTEDYQLVKKKMPIYGNTEKKKIKKNFWGVRLFEEGHTA--EDRRLKRTARRRIS
73


WP_033625576
1
MKKD-YVIGLDIGTNSVGWAVMTEDYQLVKKKMPIYGNTEKKKIKKNFWGVRLFEEGHTA--EDRRLKRTARRRIS
73


WP_033789179
1
MKKD-YVIGLDIGTNSVGWAVMTEDYQLVKKKMPIYGNTEKKKIKKNFWGVRLFEEGHTA--EDRRLKRTARRRIS
73


WP_002310644
1
MKKE-YTIGLDIGTNSVGWSVLTDDYRLVSKKMKVAGNTEKSSTKKNFWGVRLFDEGQTA--EARRSKRTARRRLA
73


WP_002312694
1
MKKE-YTIGLDIGTNSVGWSVLTDDYRLVSKKMKVAGNTEKSSTKKNFWGVRLFDEGQTA--EARRSKRTARRRLA
73


WP_002314015
1
MKKE-YTIGLDIGTNSVGWSVLTDDYRLVSKKMKVAGNTEKSSTKKNFWGVRLFDEGQTA--EARRSKRTARRRLA
73


WP_002320716
1
MKKE-YTIGLDIGTNSVGWSVLTDDYRLVSKKMKVAGNTEKSSTKKNFWGVRLFDEGQTA--EARRSKRTARRRLA
73


WP_002330729
1
MKKE-YTIGLDIGTNSVGWSVLTDDYRLVSKKMKVAGNTEKSSTKKNFWGVRLFDEGQTA--EARRSKRTARRRLA
73


WP_002335161
1
MKKE-YTIGLDIGTNSVGWSVLTDDYRLVSKKMKVAGNTEKSSTKKNFWGVRLFDEGQTA--EARRSKRTARRRLA
73


WP_002345439
1
MKKE-YTIGLDIGTNSVGWSVLTDDYRLVSKKMKVAGNTEKSSTKKNFWGVRLFDEGQTA--EARRSKRTARRRLA
73


WP_034867970
1
MTKD-YTIGLDIGTNSVGWAVLTDDYQLMKRKMSVHGNTEKKKIKKNFWGARLFDEGQTA--EFRRTKRTNRRRLA
73


WP_047937432
1
MKKE-YTIGLDIGTNSVGWSVLTDDYRLVSKKMKVAGNTEKSSTKKNFWGVRLFDEGQTA--EARRSKRTARRRLA
73


WP_010720994
1
MTKD-YTIGLDIGTNSVGWAVLTDDYQLMKRKMSVHGNTEKKKIKKNFWGARLFDEGQTA--EFRRTKRTNRRRLA
73


WP_010737004
1
MTKD-YTIGLDIGTNSVGWAVLTDDYQLMKRKMSVHGNTEKKKIKKNFWGARLFDEGQTA--EFRRTKRTNRRRLA
73


WP_034700478
1
MTKD-YTIGLDIGTNSVGWAVLTDDYQLMKRKMSVHGNTEKKKIKKNFWGARLFDEGQTA--EFRRTKRTNRRRLA
73


WP_007209003
1
MKND-YTIGLDIGTNSVGYSVVTDDYKVISKKMNVFGNTEKKSIKKNFWGVRLFESGQTA--QEARMKRTSRRRIA
73


WP_023519017
1
MEKE-YTIGLDIGTNSVGWAVLTDDYRLVARKMSIQGDSNRKKIKKNFWGARLFEEGKTA--QFRRIKRTNRRRIA
73


WP_010770040
1
MKKE-YTIGLDIGTNSVGWAVLTENYDLVKKKMKVYGNTETKYLKKNLWGVRLFDEGETA--ADRRLKRTTRRRYS
73


WP_048604708
1
MGKE-YTIGLDIGTNSVGWAVLQEDLDLVRRKMKVYGNTEKNYLKKNFWGVDLFDEGMTA--KDTRLKRTTRRRYF
73


WP_010750235
1
MNKA-YTLGLDIGTNSVGWAVVTDDYRLMAKKMPVHSKMEKKKIKKNFWGARLFDEGQTA--EERRNKRATRRRLR
73


AII16583
1
ADKK-YSIGLDIGTNSVGWAVITDEYKVPSKKFKVLGNTDRHSIKKNLIGALLFDSGETA--EATRLKRTARRRYT
112


WP_029073316
1
NNKI-YNIGLDIGDASVGWAVVDEHYNLLKRH------------GKHMWGSRLFTQANTA--VERRSSRSTRRRYN
65


WP_031589969
1
NNKI-YNIGLDIGDASVGWAVVDEHYNLLKRH------------GKHMWGSRLFTQANTA--VERRSSRSTRRRYN
65


KDA45870
1
LKKD-YSIGLDIGTNSVGHAVVTDDYKVPTKKMKVFGDTSKKTIKKNMLGVLLFNEGQTA--ADTRLKRGARRRYT
74


WP_039099354
1
MSRP-YNIGLDIGTSSIGWSVVDDQSKLVSVR------------GKYGYGVRLYDEGQTA--AERRSFRTTRRRLK
61


AKP02966
1
KEQP-YNIGLDIGTGSVGWAVTNDNYDLLNIK------------KKNLWGVRLFEGAQTA--KETRLNRSTRRRYR
64


WP_010991369
1
MKKP-YTIGLDIGTNSVGWAVLTDQYDLVKRKMKIAGDSEKKQIKKNFWGVRLFDEGQTA--ADRRMARTARRRIE
73


WP_033838504
1
MKKP-YTIGLDIGTNSVGWAVLTDQYDLVKRKMKIAGDSEKKQIKKNFWGVRLFDEGQTA--ADRRMARTARRRIE
73


EHN60060
1
MKKP-YTIGLDIGTNSVGWAVLTDQYDLVKRKMKIAGDSEKKQIKKNFWGVRLFDEGQTA--ADRRMARTARRRIE
76


EFR89594

----------------------------------------------------------------------------



WP_038409211
1
MRKP-YTIGLDIGTNSVGWAVLTDQYNLVKRKMKVAGSAEKKQIKKNFWGVRLFDEGEVA--AGRRMNRTTRRRIE
73


EFR95520

----------------------------------------------------------------------------



WP_003723650
1
MKNP-YTIGLDIGTNSVGWAVLTNQYDLVKRKMKVAGNSDKKQIKKNFWGVRLFDDGQTA--VDRRMNRTARRRIE
73


WP_003727705
1
MKNP-YTIGLDIGTNSVGWAVLTDQYDLVKRKMKVAGNSDKKQIKKNFWGVRLFDDGQTA--VDRRMNRTARRRIE
73


WP_003730785
1
MKNP-YTIGLDIGTNSVGWAVLTDQYDLVKRKMKVAGNSDKKQIKKNFWGVRLFDDGQTA--VDRRMNRTARRRIE
73


WP_003733029
1
MKKP-YTIGLDIGTNSVGWAVLTDQYDLVKRKMKISGDSEKKQIKKNFWGVRLFEKGETA--AKRRMSRTARRRIE
73


WP_003739838
1
MKNP-YTIGLDIGTNSVGWAVLTDQYDLVKRKMKVAGNSDKKQIKKNFWGVRLFDEGETA--ADRRMNRTARRRIE
73


WP_014601172
1
MKNP-YTIGLDIGTNSVGWAVLTNQYDLVKRKMKVAGNSDKKQIKKNFWGVRLFDDGQTA--VDRRMNRTARRRIE
73


WP_023548323
1
MKNP-YTIGLDIGTNSVGWAVLTNQYDLVKRKMKVAGNSDKKQIKKNFWGVRLFDDGQTA--VDRRMNRTARRRIE
73


WP_031665337
1
MKNP-YTIGLDIGTNSVGWAVLTDQYDLVKRKMKVAGNSDKKQIKKNFWGVRLFDDGQTA--VDRRMNRTARRRIE
73


WP_031669209
1
MKKP-YTIGLDIGTNSVGWAVLTDQYDLVKRKMKISGDSEKKQIKKNFWGVRLFEKGETA--AKRRMSRTARRRIE
73


WP_033920898
1
MKNP-YTIGLDIGTNSVGWAVLTNQYDLVKRKMKVAGNSDKKQIKKNFWGVRLFDDGQTA--VDRRMNRTARRRIE
73


AKI42028
1
MKNP-YTIGLDIGTNSVGWAVLTNQYDLVKRKMKVAGNSDKKQIKKNFWGVRLFDDGQTA--VDRRMNRTARRRIE
76


AKI50529
1
MKNP-YTIGLDIGTNSVGWAVLTNQYDLVKRKMKVAGNSDKKQIKKNFWGVRLFDDGQTA--VDRRMNRTARRRIE
76


EFR83390

----------------------------------------------------------------------------



WP_046323366
1
MKKP-YTIGLDIGTNSVGWAALTDQYDLVKRKMKVAGNSEKKQIKKNLWGVRLVDEGKTA--AHRRVNRTTRRRIE
73


AKE81011
1
ADKK-YSIGLDIGTNSVGWAVITDEYKVPSKKFKVLGNTDRHSIKKNLIGALLFDSGETA--EATRLKRTARRRYT
89


CUO82355
1
I-VD-YCIGLDLGTGSVGWAVVDMNHRLMKRN------------GKHLWGSRLFSNAETA--ATRRSSRSIRRRYN
64


WP_033162887
1
KDIR-YSIGLDIGTNSVGWAVMDEHYELLKKG------------NHHMWGSRLFDAAEPA--ATRRASRSIRRRYN
65


AGZ01981
1
ADKK-YSIGLDIGTNSVGWAVITDEYKVPSKKFKVLGNTDRHSIKKNLIGALLFDSGETA--EATRLKRTARRRYT
106


AKA60242
1
MDKK-YSIGLAIGTNSVGWAVITDEYKVPSKKFKVLGNTDRHSIKKNLIGALLFDSGETA--EATRLKRTARRRYT
73


AKS40380
1
MDKK-YSIGLDIGTNSVGWAVITDEYKVPSKKFKVLGNTDRHSIKKNLIGALLFDSGETA--EATRLKRTARRRYT
73


4UN5_B
1
MDKK-YSIGLAIGTNSVGWAVITDEYKVPSKKFKVLGNTDRHSIKKNLIGALLFDSGETA--EATRLKRTARRRYT
77


WP_010922251
74


embedded image


143


WP_039695303
75
RRKNRLRYLQEIFANEIAKVDESFFQRLDE-SFLT--DDDKT---F DSHPIEGNKA-EEDAYHQKEPTIYHLRKHLA
144


WP_045635197
74
RRKNRLRYLQEIFSEEMSKVDSSFFHRLDD-SFLI--PEDKR---E SKYPIFATLT-EEKEYHKQFPTIYHLRKQLA
143


5AXW_A
62
RRRHRIQRVKKLLFD---------YNLLTDhSELS----------G --NPYEARVK--------------GLSQKLS
104


WP_009880683

---------------------------------------------- -------------------------------



WP_010922251
74
RRKNRICYLQEIFSNEMAKVDDSFFHRLEE-SFLV--EEDKK---H ERHPIFGNIV-DEVAYHEKYPTIYHLRKKLV
143


WP_011054416
74
RRKNRICYLQEIFSNEMAKVDDSFFHRLEE-SFLV--EEDKK---H ERHPIFGNIV-DEVAYHEKYPTIYHLRKKLA
143


WP_011284745
74
RRKNRICYLQEIFSNEMAKVDDSFFHRLEE-SFLV--EEDKK---H ERHPIFGNIV-DEVAYHEKYPTIYHLRKKLV
143


WP_011285506
74
RRKNRICYLQEIFSNEMAKVDDSFFHRLEE-SFLV--EEDKK---H ERHPIFGNIV-DEVAYHEKYPTIYHLRKKLV
143


WP_011527619
74
RRKNRICYLQEIFSNEMAKVDDSFFHRLEE-SFLV--EEDKK---H ERHPIFGNIV-DEVAYHEKYPTIYHLRKKLV
143


WP_012560673
74
RRKNRICYLQEIFSNEIAKVDDSFFHRLEE-SFLV--EEDKK---H ERHPIFGNIV-DEVAYHEKYPTIYHLRKKLA
143


WP_014407541
74
RRKNRICYLQEIFSNEMAKVDDSFFHRLEE-SFLV--EEDKK---H ERHPIFGNIV-DEVAYHEKYPTIYHLRKKLA
143


WP_020905136
74
RRKNRICYLQEIFSNEMAKVDDSFFHRLEE-SFLV--EEDKK---H ERHPIFGNIV-DEVAYHEKYPTIYHLRKKLV
143


WP_023080005
74
RRKNRICYLQEIFSNEMAKVDDSFFHRLEE-SFLV--EEDKK---H ERHPIFGNIV-DEVAYHEKYPTIYHLRKKLA
143


WP_023610282
74
RRKNRICYLQEIFSNEMAKVDDSFFHRLEE-SFLV--EEDKK---H ERHPIFGNIV-DEVAYHEKYPTIYHLRKKLA
143


WP_030125963
74
RRKNRICYLQEIFSNEMAKVDDSFFHRLEE-SFLV--EEDKK---H ERHPIFGNIV-DEVAYHEKYPTIYHLRKKLV
143


WP_030126706
74
RRKNRICYLQEIFSNEMAKVDDSFFHRLEE-SFLV--EEDKK---H ERHPIFGNIV-DEVAYHEKYPTIYHLRKKLA
143


WP_031488318
74
RRKNRICYLQEIFSNEMAKVDDSFFHRLEE-SFLV--EEDKK---H ERHPIFGNIV-DEVAYHEKYPTIYHLRKKLA
143


WP_032460140
74
RRKNRICYLQEIFSNEIAKVDDSFFHRLEE-SFLV--EEDKK---H ERHPIFGNIV-DEVAYHEKYPTIYHLRKKLA
143


WP_032461047
74
RRKNRICYLQEIFSNEIAKVDDSFFHRLEE-SFLV--EEDKK---H ERHPIFGNIV-DEVAYHEKYPTIYHLRKKLA
143


WP_032462016
74
RRKNRICYLQEIFSNEMAKVDDSFFHRLEE-SFLV--EEDKK---H ERHPIFGNIV-DEVAYHEKYPTIYHLRKKLV
143


WP_032462936
74
RRKNRICYLQEIFSNEMAKVDDSFFHRLEE-SFLV--EEDKK---H ERHPIFGNIV-DEVAYHEKYPTIYHLRKKLA
143


WP_032464890
74
RRKNRICYLQEIFSNEMAKVDDSFFHRLEE-SFLV--EEDKK---H ERHPIFGNIV-DEVAYHEKYPTIYHLRKKLV
143


WP_033888930

---------------------------------------------- -------------------------------



WP_038431314
74
RRKNRICYLQEIFSNEMAKVDDSFFHRLEE-SFLV--EEDKK---H ERHPIFGNIV-DEVAYHEKYPTIYHLRKKLA
143


WP_038432938
74
RRKNRICYLQEIFSNEMAKVDDSFFHRLEE-SFLV--EEDKK---H ERHPIFGNIV-DEVAYHEKYPTIYHLRKKLA
143


WP_038434062
74
RRKNRICYLQEIFSNEMAKVDDSFFHRLEE-SFLV--EEDKK---H ERHPIFGNIV-DEVAYHEKYPTIYHLRKKLA
143


BAQ51233
1
----------------MAKVDDSFFHRLEE-SFLV--EEDKK---H ERHPIFGNIV-DEVAYHEKYPTIYHLRKKLV
54


KGE60162

---------------------------------------------- -------------------------------



KGE60856

---------------------------------------------- -------------------------------



WP_002989955
74
RRKNRICYLQEIFSNEMAKVDDSFFHRLEE-SFLV--EEDKK---H ERHPIFGNIV-DEVAYHEKYPTIYHLRKKLV
143


WP_003030002
74
RRRNRLRYLQEIFAEEMNKVDENFFQRLDD-SFLV--DEDKR---G ERHPIFGNIA-AEVKYHDDFPTIYHLRKHLA
143


WP_003065552
75
RRKNRLRYLQEIFAEEMTKVDESFFQRLDE-SFLRwdDDNKK---L GRYPIEGNKA-DVVKYHQEEPTIYHLRKHLA
146


WP_001040076
74
RRRNRILYLQEIFAEEMSKVDDSFFHRLED-SFLV--EEDKR---G SKYPIFATLQ-EEKYYHEKFPTIYHLRKELA
143


WP_001040078
74
RRRNRILYLQEIFAEEMSKVDDSFFHRLED-SFLV--EEDKR---G SKYPIFATLQ-EEKDYHEKFPTIYHLRKELA
143


WP_001040080
74
RRRNRILYLQEIFAEEMSKVDDSFFHRLED-SFLV--EEDKR---G SKYPIFATLQ-EEKDYHEKFSTIYHLRKELA
143


WP_001040081
74
RRRNRILYLQEIFAEEMSKVDDSFFHRLED-SFLV--EEDKR---G SKYPIFATLQ-EEKDYHEKFSTIYHLRKELA
143


WP_001040083
74
RRRNRILYLQEIFAEEMSKVDDSFFHRLED-SFLV--EEDKR---G SKYPIFATLQ-EEKDYHEKFSTIYHLRKELA
143


WP_001040085
74
RRRNRILYLQEIFAEEMSKVDDSFFHRLED-SFLV--EEDKR---G SKYPIFATLQ-EEKDYHEKFSTIYHLRKELA
143


WP_001040087
74
RRRNRILYLQEIFAEEMSKVDDSFFHRLED-SFLV--EEDKR---G SKYPIFATLQ-EEKDYHEKFSTIYHLRKELA
143


WP_001040088
74
RRRNRILYLQEIFAEEMSKVDDSFFHRLED-SFLV--EEDKR---G SKYPIFATLQ-EEKDYHEKFSTIYHLRKELA
143


WP_001040089
74
RRRNRILYLQEIFAEEMSKVDDSFFHRLED-SFLV--EEDKR---G SKYPIFATLQ-EEKDYHEKFSTIYHLRKELA
143


WP_001040090
74
RRRNRILYLQEIFAEEMSKVDDSFFHRLED-SFLV--EEDKR---G SKYPIFATLQ-EEKDYHEKFSTIYHLRKELA
143


WP_001040091
74
RRRNRILYLQEIFAEEMSKVDDSFFHRLED-SFLV--EEDKR---G SKYPIFATLQ-EEKDYHEKFSTIYHLRKELA
143


WP_001040092
74
RRRNRILYLQEIFAEEMSKVDDSFFHRLED-SFLV--EEDKR---G SKYPIFATMQ-EEKDYHEKFPTIYHLRKELA
143


WP_001040094
74
RRRNRILYLQEIFAEEMSKVDDSFFHRLED-SFLV--EEDKR---G SKYPIFATMQ-EEKYYHEKFPTIYHLRKELA
143


WP_001040095
74
RRRNRILYLQEIFAEEMSKVDDSFFHRLED-SFLV--EEDKR---G SKYPIFATMQ-EEKYYHEKFPTIYHLRKELA
143


WP_001040096
74
RRRNRILYLQEIFAEEMSKVDDSFFHRLED-SFLV--EEDKR---G SKYPIFATMQ-EEKYYHEKFPTIYHLRKELA
143


WP_001040097
74
RRRNRILYLQEIFAEEMSKVDDSFFHRLED-SFLV--EEDKR---G SKYPIFATMQ-EEKYYHEKFPTIYHLRKELA
143


WP_001040098
74
RRRNRILYLQEIFAEEMSKVDDSFFHRLED-SFLV--EEDKR---G SKYPIFATMQ-EEKYYHEKFPTIYHLRKELA
143


WP_001040099
74
RRRNRILYLQEIFAEEMSKVDDSFFHRLED-SFLV--EEDKR---G SKYPIFATMQ-EEKYYHEKFPTIYHLRKELA
143


WP_001040100
74
RRRNRILYLQEIFAEEMSKVDDSFFHRLED-SFLV--EEDKR---G SKYPIFATMQ-EEKYYHEKFPTIYHLRKELA
143


WP_001040104
74
RRRNRILYLQEIFAEEMSKVDDSFFHRLED-SFLV--EEDKR---G SKYXIFATLQ-EEKDYHEKFSTIYHLRKELA
143


WP_001040105
74
RRRNRILYLQEIFAEEMSKVDDSFFHRLED-SFLV--EEDKR---G SKYPIFATLQ-EEKDYHEKFSTIYHLRKELA
143


WP_001040106
74
CRRNRILYLQEIFAEEMSKVDDSFFHRLED-SFLV--EDDKR---G SKYPIFATMQ-EEKDYHEKFPTIYHLRKELA
143


WP_001040107
74
RRRNRILYLQEIFAEEMSKVDDSFFHRLED-SFLV--EDDKR---G SKYPIFATMQ-EEKDYHEKFPTIYHLRKELA
143


WP_001040108
74
RRRNRILYLQEIFAEEMSKVDDSFFHRLED-SFLV--EDDKR---G SKYPIFATMQ-EEKDYHEKFPTIYHLRKELA
143


WP_001040109
74
RRRNRILYLQEIFAEEMSKVDDSFFHRLED-SFLV--EDDKR---G SKYPIFATMQ-EEKDYHEKFPTIYHLRKELA
143


WP_001040110
74
RRRNRILYLQEIFAEEMSKVDDSFFHRLED-SFLV--EDDKR---G SKYPIFATMQ-EEKDYHEKFPTIYHLRKELA
143


WP_015058523
74
RRRNRILYLQEIFAEEMSKVDDSFFHRLED-SFLV--EEDKR---G SKYPIFATMQ-EEKDYHEKFPTIYHLRKELA
143


WP_017643650
74
RRRNRILYLQEIFAEEMSKVDDSFFHRLED-SFLV--EEDKR---G SKYPIFATMQ-EEKYYHEKFPTIYHLRKELA
143


WP_017647151
74
RRRNRILYLQEIFAEEMSKVDDSFFHRLED-SFLV--EDDKR---G SKYPIFATMQ-EEKDYHEKFPTIYHLRKELA
143


WP_017648376
74
RRRNRILYLQEIFAEEMSKVDDSFFHRLED-SFLV--EDDKR---G SKYPIFATMQ-EEKDYHEKFPTIYHLRKELA
143


WP_017649527
74
RRRNRILYLQEIFAEEMSKVDDSFFHRLED-SFLV--EEDKR---G SKYPIFATLQ-EEKDYHEKFPTIYHLRKELA
143


WP_017771611
74
RRRNRILYLQEIFAEEMSKVDDSFFHRLED-SFLV--EDDKR---G SKYPIFATMQ-EEKDYHEKFPTIYHLRKELA
143


WP_017771984
74
RRRNRILYLQEIFAEEMSKVDDSFFHRLED-SFLV--EEDKR---G SKYPIFATLQ-EEKDYHEKFSTIYHLRKELA
143


CFQ25032
74
RRRNRILYLQEIFAEEMSKVDDSFFHRLED-SFLV--EEDKR---G SKYPIFATLQ-EEKDYHEKFSTIYHLRKELA
143


CFV16040
74
RRRNRILYLQEIFAEEMSKVDDSFFHRLED-SFLV--EEDKR---G SKYPIFATLQ-EEKDYHEKFSTIYHLRKELA
143


KLJ37842
74
RRRNRILYLQEIFAEEMSKVDDSFFHRLED-SFLV--EEDKR---G SKYPIFATLQ-EEKDYHEKFSTIYHLRKELA
143


KLJ72361
74
RRRNRILYLQEIFAEEMSKVDDSFFHRLED-SFLV--EEDKR---G SKYPIFATLQ-EEKDYHEKFSTIYHLRKELA
143


KLL20707
74
RRRNRILYLQEIFAEEMSKVDDSFFHRLED-SFLV--EEDKR---G SKYPIFATLQ-EEKDYHEKFSTIYHLRKELA
143


KLL42645
74
RRRNRILYLQEIFAEEMSKVDDSFFHRLED-SFLV--EDDKR---G SKYPIFATMQ-EEKDYHEKFPTIYHLRKELA
143


WP_047207273
74
RRRNRILYLQEIFAEEMSKVDDSFFHRLED-SFLV--EEDKR---G SKYPIFATLQ-EEKDYHEKFSTIYHLRKELA
143


WP_047209694
74
RRRNRILYLQEIFAEEMSKVDDSFFHRLED-SFLV--EEDKR---G SKYPIFATMQ-EEKYYHEKFPTIYHLRKELA
143


WP_050198062
74
RRRNRILYLQEIFAEEMSKVDDSFFHRLED-SFLV--EEDKR---G SKYPIFATLQ-EEKDYHEKFSTIYHLRKELA
143


WP_050201642
74
RRRNRILYLQEIFAEEMSKVDDSFFHRLED-SFLV--EEDKR---G SKYPIFATLQ-EEKDYHEKFSTIYHLRKELA
143


WP_050204027
74
RRRNRILYLQEIFAEEMSKVDDSFFHRLED-SFLV--EDDKR---G SKYPIFATMQ-EEKDYHEKFPTIYHLRKELA
143


WP_050881965
74
RRRNRILYLQEIFAEEMSKVDDSFFHRLED-SFLV--EEDKR---G SKYPIFATLQ-EEKDYHEKFSTIYHLRKELA
143


WP_050886065
74
RRRNRILYLQEIFAEEMSKVDDSFFHRLED-SFLV--EEDKR---G SKYPIFATLQ-EEKDYHEKFSTIYHLRKELA
143


AHN30376
74
RRRNRILYLQEIFAEEMSKVDDSFFHRLED-SFLV--EEDKR---G SKYPIFATMQ-EEKDYHEKEPTIYHLRKELA
143


EAO78426
74
RRRNRILYLQEIFAEEMSKVDDSFFHRLED-SFLV--EEDKR---G SKYPIFATLQ-EEKDYHEKFSTIYHLRKELA
143


CCW42055
74
RRRNRILYLQEIFAEKMSKVDDSFFHRLED-SFLV--EEDKR---G SKYPIFATLQ-EEKDYHEKEPTIYHLRKELA
143


WP_003041502
74
RRRNRLRYLQEIFAEEMMQVDESFFQRLDD-SFLV--DEDKR---G ERHPIEGNIA-AEVKYHDEEPTIYHLRKHLA
143


WP_037593752
75
RRKNRLRYLQEIFTEEMNKVDENFFQRLDD-SFLV--EEDKQ---G SKYPIEGILK-EEKEYHKKEKTIYHLREELA
144


WP_049516684
75
RRRNRLRYLQEIFAEEMMQVDESFFQRLDD-SFLV--EEDKR---G SRYPIEGNIA-AEVKYHDDEPTIYHLRKHLV
144


GAD46167
74
RRKNRLRYLQEIFTEEMNKVDENFFQRLDD-SFLV--EEDKQ---G SKYPIEGILK-EEKEYHKKEKTIYHLREELA
143


WP_018363470
75
RRKNRLRYLQDIFTEEMAKVDDSFFQRLDE-SELT--DNDKN---F DSHPIEGNKA-EEDAYHQKEPTIYHLRKHLA
144


WP_003043819
74
RRKNRIRYLQEIFANEMAKLDDSFFQRLEE-SFLV--EEDKK---N ERHPIFGNLA-DEVAYHRNYPTIYHLRKKLA
143


WP_006269658
74
RRKNRLRYLQEIFTGEMNKVDENFFQRLDD-SFLV--DEDKR---G EHHPIEGNIA-AEVKYHDDEPTIYHLRRHLA
143


WP_048800889
74
RRKNRLRYLQEIFIEEMNKVDENFFQRLDD-SFLV--TEDKR---G SKYPIEGILK-EEKEYYKEFETIYHLRKRLA
143


WP_012767106
74
RRKNRIRYLQEIFSSEMSKVDDSFFHRLEE-SFLV--EEDKK---H ERHPIFGNIV-DEVAYHEKYPTIYHLRKKLA
143


WP_014612333
74
RRKNRIRYLQEIFSSEMSKVDDSFFHRLEE-SFLV--EEDKK---H ERHPIFGNIV-DEVAYHEKYPTIYHLRKKLA
143


WP_015017095
74
RRKNRIRYLQEIFSSEMSKVDDSFFHRLEE-SFLV--EEDKK---H ERHPIFGNIV-DEVAYHEKYPTIYHLRKKLA
143


WP_015057649
74
RRKNRIRYLQEIFSSEMSKVDDSFFHRLEE-SFLV--EEDKK---H ERHPIFGNIV-DEVAYHEKYPTIYHLRKKLA
143


WP_048327215
74
RRKNRIRYLQEIFSSEMSKVDDSFFHRLEE-SFLV--EEDKK---H ERHPIFGNIV-DEVAYHEKYPTIYHLRKKLA
143


WP_049519324
74
RRKNRIRYLQEIFSSEMSKVDDSFFHRLEE-SFLV--EEDKK---H ERHPIFGNIV-DEVAYHEKYPTIYHLRKKLA
143


WP_012515931
74
RRKNRLRYLKEIFTEEMAKVDDGFFQRLED-SFYV--LEDKE---G NKHPIFANLA-DEVAYHKKYPTIYHLRKELV
143


WP_021320964
74
RRKNRLRYLKEIFTEEMAKVDDGFFQRLED-SFYV--LEDKE---G NKHPIFANLA-DEVAYHKKYPTIYHLRKELV
143


WP_037581760
74
RRKNRLRFLKEIFTEEMAKVDDGFFQRLED-SFYV--LEDKE---G NKHPIFANLA-DEVAYHKKYPTIYHLRKELV
143


WP_004232481
74
RRKNRLRYLQEIFAKEMAKVDESFFQRLEE-SELT--DDDKT---F DSHPIEGNKA-EEDTYHQEFPTIYHLRKHLA
143


WP_009854540
75
RRKNRLRYLQEIFAEEMTKVDESFFYRLDE-SELT--TDEKD---F ERHPIEGNKA-EEDAYHQKEPTIYHLRNYLA
144


WP_012962174
75
RRKNRLRYLQEIFAEEMAKVDESFFYRLDE-SELT--TDDKD---F ERHPIFGNKA-DEIKYHQEFPTIYHLRKHLA
144


WP_039695303
75
RRKNRLRYLQEIFANEIAKVDESFFQRLDE-SELT--DDDKT---F DSHPIEGNKA-EEDAYHQKEPTIYHLRKHLA
144


WP_014334983
74
RRKNRLRYLQEIFAKEMTKVDESFFQRLEE-SELT--DDDKT---F DSHPIEGNKA-EEDAYHQKEPTIYHLRKYLA
143


WP_003099269
74
RRKYRIKELQKIFSSEMNELDIAFFPRLSE-SFLV--SDDKE---F ENHPIFGNLK-DEITYHNDYPTIYHLRQTLA
143


AHY15608
74
RRKYRIKELQKIFSSEMNELDIAFFPRLSE-SFLV--SDDKE---F ENHPIFGNLK-DEITYHNDYPTIYHLRQTLA
143


AHY17476
74
RRKYRIKELQKIFSSEMNELDIAFFPRLSE-SFLV--SDDKE---F ENHPIFGNLK-DEITYHNDYPTIYHLRQTLA
143


ESR09100

---------------------------------------------- -------------------------------



AGM98575
74
RRKYRIKELQKIFSSEMNELDIAFFPRLSE-SFLV--SDDKE---F ENHPIFGNLK-DEITYHNDYPTIYHLRQTLA
143


ALF27331
74
RRRNRILYLQEIFSEEMGKVDDSFFHRLED-SFLV--TEDKR---G ERHPIEGNLE-EEVKYHENEPTIYHLRQYLA
143


WP_018372492
74
RRRNRIRYLQHIFAEEMNRADENFFHRLKE-SFFV--EEDKT---Y SKYPIFGTLE-EEKNYHKNYPTIYHLRKTLA
143


WP_045618028
75
RRKNRLRYLQEIFTEEMSKVDISFFHRLDD-SFLV--PEDKR---G SKYPIFATLE-EEKEYHKNFPTIYHLRKHLA
144


WP_045635197
74
RRKNRLRYLQEIFSEEMSKVDSSFEHRLDD-SFLI--PEDKR---E SKYPIFATLT-EEKEYHKQFPTIYHLRKQLA
143


WP_002263549
74
RRRNRILYLQEIFSEEMGKVDDSFFHRLED-SFLV--TEDKR---G ERHPIEGNLE-EEVKYHENEPTIYHLRQYLA
143


WP_002263887
74
RRRNRILYLQEIFSEEMGKVDDSFFHRLED-SFLV--TEDKR---G ERHPIEGNLE-EEVKYHENEPTIYHLRQYLA
143


WP_002264920
74
RRRNRILYLQEIFSEEMGKVDDSFFHRLDE-SELT--DDDKN---F DSYPIEGNKA-EEDAYHQKEPTIYHLRKHLA
143


WP_002269043
74
RRRNRILYLQEIFSEEMGKVDDSFFHRLED-SFLV--TEDKR---G ERHPIEGNLE-EEVKYHENEPTIYHLRQYLA
143


WP_002269448
74
RRRNRILYLQEIFSEEMGKVDDSFEHRLED-SELV--TEDKR---G ERHPIEGNLE-EEVKYHENEPTIYHLRQYLA
143


WP_002271977
74
RRRNRILYLQEIFSEEMGKVDDSFEHRLED-SELV--TEDKR---G ERHPIEGNLE-EEVKYHENEPTIYHLRQYLA
143


WP_002272766
74
RRRNRILYLQEIFSEEMGKVDDSFEHRLED-SELV--TEDKR---G ERHPIEGNLE-EEVKYHENEPTIYHLRQYLA
143


WP_002273241
74
RRRNRILYLQEIFSEEMGKVDDSFEHRLED-SELV--TEDKR---G ERHPIEGNLE-EEVKYHENEPTIYHLRQYLA
143


WP_002275430
74
RRRNRILYLQEIFAEEMSKVDDSFEHRLED-SELV--TEDKR---G ERHPIEGNLE-EEVKYHENEPTIYHLRQYLA
143


WP_002276448
74
RRRNRILYLQEIFSEEMGKVDDSFEHRLED-SELV--TEDKR---G ERHPIEGNLE-EEVKYHENEPTIYHLRQYLA
143


WP_002277050
74
RRRNRILYLQEIFSEEMGKVDDSFEHRLDE-SFLT--DDDKN---F DSHPIEGNKA-EEDAYHQKEPTIYHLRKHLA
143


WP_002277364
74
RRRNRILYLQEIFAEEMSKVDDSFEHRLED-SELV--TEDKR---G ERHPIEGNLE-EEVKYHENEPTIYHLRQYLA
143


WP_002279025
74
RRRNRILYLQEIFSEEMGKVDDSFEHRLED-FELV--TEDKR---G ERHPIEGNLE-EEVKYHENEPTIYHLRQYLA
143


WP_002279859
74
RRRNRILYLQEIFSEEMGKVDDSFEHRLDE-SFLT--DDDKN---F DSHPIEGNKA-EEDAYHQKEPTIYHLRKHLA
143


WP_002280230
74
RRRNRILYLQEIFAEEMSKVDDSFEHRLED-SELV--TEDKR---G ERHPIEGNLE-EEVKYHENEPTIYHLRQYLA
143


WP_002281696
74
RRRNRILYLQEIFAEEMSKVDDSFEHRLED-SELV--TEDKR---G ERHPIEGNLE-EEVKYHENEPTIYHLRQYLA
143


WP_002282247
74
RRRNRILYLQEIFAEEMSKVDDSFEHRLDE-SFLT--DDDKN---F DSHPIEGNKA-EEDAYHQKEPTIYHLRKHLA
143


WP_002282906
74
RRRNRILYLQEIFSEEMGKVDDSFEHRLED-SELV--TEDKR---G ERHPIEGNLE-EEVKYHENEPTIYHLRQYLA
143


WP_002283846
74
RRRNRILYLQEIFSEEMGKVDDSFEHRLED-SELV--TEDKR---G ERHPIEGNLE-EEVKYHENEPTIYHLRQYLA
143


WP_002287255
74
RRRNRILYLQEIFAEEMSKVDDSFEHRLED-SELV--TEDKR---G ERHPIEGNLE-EEVKYHENEPTIYHLRQYLA
143


WP_002288990
74
RRRNRILYLQEIFSEEMGKVDDSFEHRLED-SELV--TEDKR---G ERHPIEGNLE-EEVKYHENEPTIYHLRQYLA
143


WP_002289641
74
RRRNRILYLQEIFSEEMGKVDDSFEHRLED-SELV--TEDKR---G ERHPIEGNLE-EEVKYHENEPTIYHLRQYLA
143


WP_002290427
74
RRRNRILYLQEIFSEEMGKVDDSFEHRLED-SELV--TEDKR---G ERHPIEGNLE-EEVKYHENEPTIYHLRQYLA
143


WP_002295753
74
RRRNRILYLQEIFSEEMGKVNDSFEHRLED-SELV--TEDKR---G ERHPIEGNLE-EEVKYHENEPTIYHLRQYLA
143


WP_002296423
74
RRRNRILYLQEIFSEEMGKVDDSFEHRLED-SELV--TEDKR---G ERHPIEGNLE-EEVKYHENEPTIYHLRQYLA
143


WP_002304487
74
RRRNRILYLQEIFAEEMMQVDESFFQRLDD-SFLV--EEDKR---G SRYPIEGILK-EEKKYHKEEKTIYHLREKLA
143


WP_002305844
74
RRRNRILYLQEIFSEEMDKVDDSFEHRLED-SELV--TEDKR---G ERHPIEGNLE-EEVKYHENEPTIYHLRQYLA
143


WP_002307203
74
RRRNRILYLQEIFSEEMGKVDDSFEHRLED-SELV--TEDKR---G ERHPIEGNLE-EEVKYHENEPTIYHLRQYLA
143


WP_002310390
74
RRRNRILYLQEIFSEEMGKVDDSFEHRLED-SELV--TEDKR---G ERHPIEGNLE-EEVKYHENEPTIYHLRQYLA
143


WP_002352408
74
RRRNRILYLQEIFSEEMGKVDDSFEHRLED-SELV--TEDKR---G ERHPIEGNLE-EEVKYHENEPTIYHLRQYLA
143


WP_012997688
74
RRRNRILYLQEIFAEEMSKVDDSFEHRLED-SELV--TEDKR---G ERHPIEGNLE-EEVKYHENEPTIYHLRQYLA
143


WP_014677909
74
RRRNRILYLQEIFSEEMGKVDDSFEHRLED-SELV--TEDKR---G ERHPIEGNLE-EEVKYHENEPTIYHLRQYLA
143


WP_019312892
74
RRRNRILYLQEIFAEEMSKVDDSFEHRLED-SELV--TEDKR---G ERHPIEGNLE-EEVKYHENEPTIYHLRQYLA
143


WP_019313659
74
RRRNRILYLQEIFSEEMGKVDDSFEHRLED-SELV--TEDKR---G ERHPIEGNLE-EEVKYHENEPTIYHLRQYLA
143


WP_019314093
74
RRRNRILYLQEIFSEEMGKVDDSFEHRLED-SELV--TEDKR---G ERHPIEGNLE-EEVKYHENEPTIYHLRQYLA
143


WP_019315370
74
RRRNRILYLQEIFSEEMGKVDDSFEHRLED-SELV--TEDKR---G ECHPIEGNLE-EEVKYHENEPTIYHLRQYLA
143


WP_019803776
74
RRRNRILYLQEIFSEEMGKVDDSFEHRLED-SELV--TEDKR---G ERHPIEGNLE-EEVKYHENEPTIYHLRQYLA
143


WP_019805234
74
RRRNRILYLQEIFSEEMGKVDDSFEHRLED-SELV--TEDKR---G ERHPIEGNLE-EEVKYHENEPTIYHLRQYLA
143


WP_024783594
74
RRRNRILYLQEIFSEEMGKVDDSFEHRLED-SELV--TEDKR---G ERHPIEGNLE-EEVKYHENEPTIYHLRQYLA
143


WP_024784288
74
RRRNRILYLQEIFAEEMSKVDDSFEHRLDE-SFLT--DDDKN---F DSHPIEGNKA-EEDAYHQKEPTIYHLRKHLA
143


WP_024784666
74
RRRNRILYLQEIFAEEMSKVDDSFEHRLED-SELV--TEDKR---G ERHPIEGNLE-EEVKYHENEPTIYHLRQYLA
143


WP_024784894
74
RRRNRILYLQEIFSEEMGKVDDSFEHRLED-SELV--TEDKR---G ERHPIEGNLE-EEVKYHENEPTIYHLRQYLA
143


WP_024786433
74
RRRNRILYLQEIFAEEMNKVDDSFEHRLDE-SFLT--DDDKN---F DSHPIEGNKA-EEDAYHQKEPTIYHLRKHLA
143


WP_049473442
74
RRRNRILYLQEIFAEEMSKVDDSFFHRLED-SFLV--TEDKR---G ERHPIFGNLE-EEVKYYENFPTIYHLRQYLA
143


WP_049474547
74
RRRNRILYLQEIFSEEMGKVDDSFFHRLED-SFLV--TEDKR---G ERHPIFGNLE-EEVKYHENFPTIYHLRQYLA
143


EMC03581
67
RRRNRILYLQEIFAEEMSKVDDSFFHRLED-SFLV--TEDKR---G ERHPIFGNLE-EEVKYHENFPTIYHLRQYLA
136


WP_000428612
75
RRKNRLRYLQEIFAEEMSKVDSSFFHRLDD-SFLI--PEDKK---G SKYPIFATLI-EEKEYHKQFPTIYHLRKQLA
144


WP_000428613
75
RRKNRLRYLQEIFAEEMSKVDSSFFHRLDD-SFLI--PEDKR---G SKYPIFATLA-EEKEYHKQFPTIYHLRKQLA
144


WP_049523028
74
RRRNRILYLQEIFAAEMNKVDESFFHRLDD-SFLV--PEDKR---G SKYPIFGTLE-EEKEYHKQFPTIYYLRKILA
143


WP_003107102
43
RRINRIKYLQSIFDDEMSKIDSAFFQRIKD-SFLV--PDDKN---D DRHPIFGNIK-DEVDYHKNYPTIYHLRKKLA
112


WP_054279288
76
RRKNRLCYLRDIFESEMHTIDKHFFLRLED-SFLH--KSDKR---Y EAHPIEGTLQ-EEKAYHDNYPTIYHLRKALA
145


WP_049531101
75
RRKNRLRYLQEIFSEEISKVDNSFFHRLDD-SFLV--PEDKR---G SKYPIFATLT-EEKEYYKQFPTIYHLRKQLA
144


WP_049538452
75
RRKNRLRYLQEIFAEEMNKVDSSFFHRLDD-SFLV--PEDKR---G SKYPIFATLA-EEKEYHKNFPTIYHLRKQLA
144


WP_049549711
75
RRKNRLRYLQEIFSGEMSKVDSSFFHRLDD-SFLV--PEDKR---G SKYPIFATLV-EEKEYHKQFPTIYHLRKQLA
144


WP_007896501
76
RRRYRLCQLQNIFATEMVKVDDIFFQRLSE-SFFY--YQDKA---F DKHPIFGNSK-EERAYHKTYPTIYHLRKDLA
145


EFR44625
28
RRRYRLCQLQNIFATEMVKVDDIFFQRLSE-SFFY--YQDKA---F DKHPIFGNSK-EERAYHKTYPTIYHLRKDLA
97


WP_002897477
74
RRRNRILYLQEIFTESMNEIDESFFHRLDD-SFLV--PEDKR---G SKYPIFATLQ-EEKEYHKQFPTIYHLRKQLA
143


WP_002906454
74
RRKNRLRYLQEIFSEEISKLDSSFFHRLDD-SFLV--PEDKR---G SKYPIFATLE-EEKEYHKKFPTIYHLRKHLA
143


WP_009729476
75
RRKNRLRYLQEIFSEEIGKVDSSFFHRLDD-SFLI--PEDKR---G SKYPIFATLA-EEKKYHKQFPTIYHLRKQLA
144


CQR24647
74
RRRNRILYLQDIFSPELNQVDESFLHRLDD-SFLVa--EDKR---G ERHVIFGNIA-DEVKYHKEFPTIYHLRKHLA
143


WP_000066813
75
RRKNRLRYLQEIFSQEISKVDSSFFHRLDD-FFLV--PEDKR---G SKYPIFATLV-EEKEYHKKEPTIYHLRKHLA
144


WP_009754323
75
RRKNRLRYLQEIFAEEMSKVDSSFFHRLDD-SFLV--PEDKS---G SKYPIFATLA-EEKEYHKKFPTIYHLRKHLA
144


WP_044674937
74
RRRNRILYLQEIFAEEINKIDDSFFQRLDD-SFLIv--EDKQ---G SKHPIFGTLQ-EEKKYHKQFPTIYHLRKQLA
143


WP_044676715
74
RRRNRILYLQEIFAEEINKIDDSFFQRLDD-SFLIv--EDKQ---G SKHPIFGTLQ-EEKEYHKQFPTIYHLRKQLA
143


WP_044680361
74
RRRNRILYLQEIFAEEINKIDDSFFQRLDD-SFLIv--EDKQ---G SKHPIFGTLQ-EEKEYHKQFPTIYHLRKQLA
143


WP_044681799
74
RRRNRILYLQEIFAEEINKIDDSFFQRLDD-SFLIv--EDKQ---G SKHPIFGTLQ-EEKKYHKQFPTIYHLRKQLA
143


WP_049533112
74
RRRNRLRYLQEIFAEEMNKVDENFFQRLDD-SFLV--DEDKR---G ERHPIFGNIA-AEVKYHDDFPTIYHLRKHLA
143


WP_029090905
28
HRKFRLRLLEDMFEKEILSKDPSFFIRLKE-AFLSpkDEQKQ---F ----LFNDKDyTDADYYEQYKTIYHLRYDLI
100


WP_006506696
61
KRRERIRLLRAILQDMVLEKDPTFFIRLEHtSFLD--EEDKAkylG DNYNLFIDEDfNDYTYYHKYPTIYHLRKALC
139


AIT42264
74
RRKNRICYLQEIFSNEMAKVDDSFFHRLEE-SFLV--EEDKK---H ERHPIFGNIV-DEVAYHEKYPTIYHLRKKLV
143


WP_034440723
73
RRRFRIRELQKIFDKSMGEVDSNFFHRLDE-SFLV--EEDKE---Y SKYPIFSNEK-EDKNYYDKYPTIYHLRKDLA
142


AKQ21048
74
RRKNRICYLQEIFSNEMAKVDDSFFHRLEE-SFLV--EEDKK---H ERHPIFGNIV-DEVAYHEKYPTIYHLRKKLV
143


WP_004636532
74
RRRNRLIYLQDIFQQPMLAIDENFFHRLDD-SFFV--PDDKS---Y DRHPIFGSLE-EEVAYHNTYPTIYHLRKHLA
143


WP_002364836
74
RRRNRLRYLQAFFEEAMIDLDENFFARLQE-SFLV--PEDKK---W HRHPIFAKLE-DEVAYHETYPTIYHLRKKLA
143


WP_016631044
25
RRRNRLRYLQAFFEEAMIDLDENFFARLQE-SFLV--PEDKK---W HRHPIFAKLE-DEVAYHETYPTIYHLRKKLA
94


EMS75795

---------------------------------------------- -------------------------------



WP_002373311
74
RRRNRLRYLQAFFEEAMIDLDENFFARLQE-SFLV--PEDKK---W HRHPIFAKLE-DEVAYHETYPTIYHLRKKLA
143


WP_002378009
74
RRRNRLRYLQAFFEEAMTALDENFFARLQE-SFLV--PEDKK---W HRHPIFAKLE-DEVAYHETYPTIYHLRKKLA
143


WP_002407324
74
RRRNRLRYLQAFFEEAMTALDENFFARLQE-SFLV--PEDKK---W HRHPIFAKLE-DEVAYHETYPTIYHLRKKLA
143


WP_002413717
74
RRRNRLRYLQAFFEEAMIDLDENFFARLQE-SFLV--PEDKK---W HRHPIFAKLE-DEVAYHETYPTIYHLRKKLA
143


WP_010775580
74
RRRNRLRYLQAFFEEAMTALDENFFARLQE-SFLV--PEDKK---W HRHPIFAKLE-DEVAYHETYPTIYHLRKKLA
143


WP_010818269
74
RRRNRLRYLQAFFEEAMTALDENFFARLQE-SFLV--PEDKK---W HRHPIFAKLE-DEVAYHETYPTIYHLRKKLA
143


WP_010824395
74
RRRNRLRYLQAFFEEAMTDLDENFFARLQE-SFLV--PEDKK---W HRHPIFAKLE-DEVAYHETYPTIYHLRKKLA
143


WP_016622645
74
RRRNRLRYLQAFFEEAMTALDENFFARLQE-SFLV--PEDKK---W HRHPIFAKLE-DEVAYHETYPTIYHLRKKLA
143


WP_033624816
74
RRRNRLRYLQAFFEEAMTALDENFFARLQE-SFLV--PEDKK---W HRHPIFAKLE-DEVAYHETYPTIYHLRKKLA
143


WP_033625576
74
RRRNRLRYLQAFFEEAMTALDENFFARLQE-SFLV--PEDKK---W HRHPIFAKLE-DEVAYHETYPTIYHLRKKLA
143


WP_033789179
74
RRRNRLRYLQAFFEEAMTALDENFFARLQE-SFLV--PEDKK---W HRHPIFAKLE-DEVAYHETYPTIYHLRKKLA
143


WP_002310644
74
RRRQRILELQKIFAPEILKIDEHFFARLNE-SFLV--LDEKK---Q SRHPVFATIK-QEKSYHQTYPTIYHLRQALA
143


WP_002312694
74
RRRQRILELQKIFAPEILKIDEHFFARLNE-SFLV--PDEKK---Q SRHPVFATIK-QEKSYHQTYPTIYHLRQALA
143


WP_002314015
74
RRRQRILELQKIFAPEILKIDEHFFARLNE-SFLV--LDEKK---Q SRHPVFATIK-QEKSYHQTYPTIYHLRQALA
143


WP_002320716
74
RRRQRILELQKIFAPEILKIDEHFFARLNE-SFLV--LDEKK---Q SRHPVFATIK-QEKSYHQTYPTIYHLRQALA
143


WP_002330729
74
RRRQRILELQKIFAPEILKIDEHFFARLNE-SFLV--LDEKK---Q SRHPVFATIK-QEKSYHQTYPTIYHLRQALA
143


WP_002335161
74
RRRQRILELQKIFAPEILKIDEHFFARLNE-SFLV--LDEKK---Q SRHPVFATIK-QEKSYHQTYPTIYHLRQALA
143


WP_002345439
74
RRRQRILELQKIFAPEILKIDEHFFARLNE-SFLV--LDEKK---Q SRHPVFATIK-QEKSYHQTYPTIYHLRQALA
143


WP_034867970
74
RRKYRLSKLQDLFAEELCKQDDCFFVRLEE-SFLV--PEEKQ---Y KPASIFPTLE-EEKEYYQKYPTIYHLRQKLV
143


WP_047937432
74
RRRQRILELQKIFAPEILKIDEHFFARLNE-SFLV--LDEKK---Q SRHPVFATIK-QEKSYHQTYPTIYHLRQALA
143


WP_010720994
74
RRKYRLSKLQDLFAEELCKQDDCFFVRLEE-SFLV--PEEKQ---Y KPASIFPTLE-EEKEYYQKYPTIYHLRQKLV
143


WP_010737004
74
RRKYRLSKLQDLFAEELCKQDDCFFVRLEE-SFLV--PEEKQ---Y KPASIFPTLE-EEKEYYQKYPTIYHLRQKLV
143


WP_034700478
74
RRKYRLSKLQDLFAEELCKQDDCFFVRLEE-SFLV--PEEKQ---Y KPASIFPTLE-EEKEYYQKYPTIYHLRQKLV
143


WP_007209003
74
RRKNRICYLQEIFQPEMNHLDNNFFYRLNE-SFLVa--DDAK---Y DKHPIFGILD-EEIHFHEQFPTIYHLRKYLA
143


WP_023519017
74
RRRQRVLALQDIFAEEIHKKDPNFFARLEE-GDRV--EADKR---F AKFFVFAILS-EEKNYHRQYPTIYHLRHDLA
143


WP_010770040
74
RRRNRICRLQDLFTEEMNQVDANFFHRLQE-SFLV--PDEKE---F ERHAIFGKME-EEVSYYREFPTIYHLRKHLA
143


WP_048604708
74
RRRQRISYLQIFFQEEMNRIDPNFFNRLDE-SFLI--EEDKL---S ERHPIFGTIE-EEVAYHKNYATIYHLRKELA
143


WP_010750235
74
RRKYRILELQKIFSEEILKKDSHFFARLDE-SFLI--PEDKQ---Y ARFPIFPILL-EEKAYYQNYPTIYHLRQKLA
143


AII16583
113
RRKNRICYLQEIFSNEMAKVDDSFFHRLEE-SFLV--EEDKK---H ERHPIFGNIV-DEVAYHEKYPTIYHLRKKLV
182


WP_029073316
66
KRRERIRLLRGIMEDMVLDVDPIFFIRLANvSFLD--QEDKKdylK SNYNLFIDKDfNDKTYYDKYPTIYHLRKHLC
144


WP_031589969
66
KRRERIRLLREIMEDMVLDVDPIFFIRLANvSFLD--QEDKKdylK SNYNLFIDKDfNDKTYYDKYPTIYHLRKHLC
144


KDA45870
75
RRKNRLRYLQEIFAPALAKVDPNFFYRLEE-SSLVa--EDKK---Y DVYPIFGKRE-EELLYHDTHKTIYHLRSELA
144


WP_039099354
62
RRKWRLGLLREIFEPYITPVDDIFFLRKKQ-SNLS--PKDQR---K -QTSLENDRT--DRAFYDDYPTIYHLRYKLM
132


AKP02966
65
RRKNRINWLNEIFSEELANTDPSFLIRLQN-SWVSkkDPDRK---R DKYNLFIDNPyTDKEYYREFPTIFHLRKELI
137


WP_010991369
74
RRRNRISYLQGIFAEEMSKTDANFFCRLSD-SFYV--DNEKR---N SRHPFFATIE-EEVEYHKNYPTIYHLREELV
143


WP_033838504
74
RRRNRISYLQGIFAEEMSKTDANFFCRLSD-SFYV--DNEKR---N SRHPFFATIE-EEVEYHKNYPTIYHLREELV
143


EHN60060
77
RRRNRISYLQGIFAEEMSKTDANFFCRLSD-SFYV--DNEKR---N SRHPFFATIE-EEVEYHKNYPTIYHLREELV
146


EFR89594

---------------------------------------------- -------------------------------



WP_038409211
74
RRRNRIAYLQEIFAAEMAEVDANFFYRLED-SFYI--ESEKR---H SRHPFFATIE-EEVAYHEEYKTIYHLREKLV
143


EFR95520

---------------------------------------------- -------------------------------



WP_003723650
74
RRRNRISYLQEIFAVEMANIDANFFCRLND-SFYV--DSEKR---N SRHPFFATIE-EEVAYHDNYRTIYHLREKLV
143


WP_003727705
74
RRRNRISYLQEIFAVEMANIDANFFCRLND-SFYV--DSEKR---N SRHPFFATIE-EEVAYHKNYRTIYHLREELV
143


WP_003730785
74
RRRNRISYLQEIFAVEMANIDANFFCRLND-SFYV--DSEKR---N SRHPFFATIE-EEVAYHKNYRTIYHLREELV
143


WP_003733029
74
RRRNRISYLQEIFAIQMNEVDDNFFNRLKE-SFYA--ESDKK---Y NRHPFFGTVE-EEVAYYKDFPTIYHLRKELI
143


WP_003739838
74
RRRNRISYLQEIFALEMANIDANFFCRLND-SFYV--DSEKR---N SRHPFFATIE-EEVAYHKNYRTIYHLREELV
143


WP_014601172
74
RRRNRISYLQEIFAVEMANIDANFFCRLND-SFYV--DSEKR---N SRHPFEATIE-EEVAYHKNYRTIYHLREELV
143


WP_023548323
74
RRRNRISYLQEIFAVEMANIDANFFCRLND-SFYV--DSEKR---N SRHPFEATIE-EEVAYHKNYRTIYHLREELV
143


WP_031665337
74
RRRNRISYLQEIFAVEMANIDANFFCRLND-SFYV--DSEKR---N SRHPFEATIE-EEVAYHKNYRTIYHLREELV
143


WP_031669209
74
RRRNRISYLQEIFAIQMNEVDDNFFNRLKE-SFYA--ESDKK---Y NRHPFEGTVE-EEVAYYKDEPTIYHLRKELI
143


WP_033920898
74
RRRNRISYLQEIFAVEMANIDANFFCRLND-SFYV--DSEKR---N SRHPFEATIE-EEVAYHKNYRTIYHLREELV
143


AKI42028
77
RRRNRISYLQEIFAVEMANIDANFFCRLND-SFYV--DSEKR---N SRHPFEATIE-EEVAYHKNYRTIYHLREELV
146


AKI50529
77
RRRNRISYLQEIFAVEMANIDANFFCRLND-SFYV--DSEKR---N SRHPFEATIE-EEVAYHKNYRTIYHLREELV
146


EFR83390

---------------------------------------------- -------------------------------



WP_046323366
74
RRRNRISYLQEIFTAEMFEVDANFFYRLED-SFYI--ESEKR---Q SRHPFEATIE-EEVAYHENYRTIYHLREKLV
143


AKE81011
90
RRKNRICYLQEIFSNEMAKVDDSFFHRLEE-SFLV--EEDKK---H ERHPIFGNIV-DEVAYHEKYPTIYHLRKKLV
159


CUO82355
65
KRRERIRLLRAILQDMVLEKDPTFFIRLEHtSFLD--EEDKAkylG DNYNLFIDEDfNDYTYYHKYPTIYHLRKALC
143


WP_033162887
66
KRRERIRLLRDLLGDMVMEVDPIFFIRLLNvSFLD--EEDKQknlG DNYNLFIEKDfNDKTYYDKYPTIYHLRKELC
144


AGZ01981
107
RRKNRICYLQEIFSNEMAKVDDSFFHRLEE-SFLV--EEDKK---H ERHPIFGNIV-DEVAYHEKYPTIYHLRKKLV
176


AKA60242
74
RRKNRICYLQEIFSNEMAKVDDSFFHRLEE-SFLV--EEDKK---H ERHPIFGNIV-DEVAYHEKYPTIYHLRKKLV
143


AKS40380
74
RRKNRICYLQEIFSNEMAKVDDSFFHRLEE-SFLV--EEDKK---H ERHPIFGNIV-DEVAYHEKYPTIYHLRKKLV
143


4UN5_B
78
RRKNRICYLQEIFSNEMAKVDDSFFHRLEE-SFLV--EEDKK---H ERHPIFGNIV-DEVAYHEKYPTIYHLRKKLV
147


WP_010922251
144


embedded image


211


WP_039695303
145
DSSEKADLRLVYLALAHMIKFRGHFLIEGE-LNAENTDVQKI--FADFVGVYNRT--FDDS-H LSEITVDVA---SI
212


WP_045635197
144
DSKEKTDLRLIYLALAHMIKYRGHFLYEEA-FDIKNNDIQKI--FNEFISIYDNT--FEGS-S LSGQNAQVE---AI
211


5AXW_A
105
EEEFSA-------ALLHLAKRRG---VHNV------NEVE------------EDT----GN-- --------E-----
134


WP_009880683

--------------------------------------------------------------- --------------



WP_010922251
144
DSTDKADLRLIYLALAHMIKFRGHFLIEGD-LNPDNSDVDKL--FIQLVQTYNQL--FEEN-- INASGVDAK---AI
211


WP_011054416
144
DSTDKVDLRLIYLALAHMIKFRGHFLIEGD-LNPDNSDVDKL--FIQLVQTYNQL--FEEN-- INASRVDAK---AI
211


WP_011284745
144
DSTDKADLRLIYLALAHMIKFRGHFLIEGD-LNPDNSDVDKL--FIQLVQTYNQL--FEEN-- INASGVDAK---AI
211


WP_011285506
144
DSTDKADLRLIYLALAHMIKFRGHFLIEGD-LNPDNSDVDKL--FIQLVQTYNQL--FEEN-- INASGVDAK---AI
211


WP_011527619
144
DSTDKADLRLIYLALAHMIKFRGHFLIEGD-LNPDNSDVDKL--FIQLVQTYNQL--FEEN-- INASGVDAK---AI
211


WP_012560673
144
DSTDKADLRLIYLALAHMIKFRGHFLIEGD-LNPDNSDVDKL--FIQLVQTYNQL--FEEN-- INASRVDAK---AI
211


WP_014407541
144
DSTDKADLRLIYLALAHMIKFRGHFLIEGD-LNPDNSDVDKL--FIQLVQIYNQL--FEEN-- INASRVDAK---AI
211


WP_020905136
144
DSTDKADLRLIYLALAHMIKFRGHFLIEGD-LNPDNSDVDKL--FIQLVQTYNQL--FEEN-- INASGVDAK---AI
211


WP_023080005
144
DSTDKVDLRLIYLALAHMIKFRGHFLIEGD-LNPDNSDVDKL--FIQLVQTYNQL--FEEN-- INASRVDAK---AI
211


WP_023610282
144
DSTDKVDLRLIYLALAHMIKFRGHFLIEGD-LNPDNSDVDKL--FIQLVQTYNQL--FEEN-- INASRVDAK---AI
211


WP_030125963
144
DSTDKADLRLIYLALAHMIKFRGHFLIEGD-LNPDNSDVDKL--FIQLVQTYNQL--FEEN-- INASGVDAK---AI
211


WP_030126706
144
DSTDKVDLRLIYLALAHMIKFRGHFLIEGD-LNPDNSDVDKL--FIQLVQTYNQL--FEEN-- INASRVDAK---AI
211


WP_031488318
144
DSTDKADLRLIYLALAHMIKFRGHFLIEGD-LNPDNSDVDKL--FIQLVQTYNQL--FEEN-- INASRVDAK---AI
211


WP_032460140
144
DSTDKADLRLIYLALAHMIKFRGHFLIEGD-LNPDNSDVDKL--FIQLVQTYNQL--FEEN-- INASRVDAK---AI
211


WP_032461047
144
DSTDKADLRLIYLALAHMIKFRGHFLIEGG-LNPDNSDVDKL--FIQLVQTYNQL--FEEN-- INASRVDAK---AI
211


WP_032462016
144
DSTDKADLRLIYLALAHMIKFRGHFLIEGD-LNPDNSDVDKL--FIQLVQTYNQL--FEEN-- INANGVDAK---AI
211


WP_032462936
144
DSTDKADLRLIYLALAHMIKFRGHFLIEGD-LNPDNSDVDKL--FIQLVQTYNQL--FEEN-- INASRVDAK---AI
211


WP_032464890
144
DSTDKADLRLIYLALAHMIKFRGHFLIEGD-LNPDNSDVDKL--FIQLVQTYNQL--FEEN-- INASGVDAK---AI
211


WP_033888930
1
---------------------------------PDNSDVDKL--FIQLVQTYNQL--FEEN-- INASGVDAK---AI
36


WP_038431314
144
DSTDKADLRLIYLALAHMIKFRGHFLIEGD-LNPDNSDVDKL--FIQLVQTYNQL--FEEN-- INASRVDAK---AI
211


WP_038432938
144
DSTDKVDLRLIYLALAHMIKFRGHFLIEGD-LNPDNSDVDKL--FIQLVQTYNQL--FEEN-- INASRVDAK---AI
211


WP_038434062
144
DSTDKADLRLIYLALAHMIKFRGHFLIEGD-LNPDNSDVDKL--FIQLVQTYNQL--FEEN-- INASRVDAK---AI
211


BAQ51233
55
DSTDKADLRLIYLALAHMIKFRGHFLIEGD-LNPDNSDVDKL--FIQLVQTYNQL--FEEN-- INASGVDAK---AI
122


KGE60162

--------------------------------------------------------------- --------------



KGE60856

--------------------------------------------------------------- --------------



WP_002989955
144
DSTDKADLRLIYLALAHMIKFRGHFLIEGD-LNPDNSDVDKL--FIQLVQTYNQL--FEEN-- INASGVDAK---AI
211


WP_003030002
144
DISQKADLRLVYLALAHMIKFRGHFLIEGQ-LKAENTNVQAL--FKDFVEVYDKT--VEES-H LSEMTVDAL---SI
211


WP_003065552
147
DSSEKADLRLVYLALAHMIKFRGHFLIEGE-LNAENTDVQKI--FADFVGVYDRT--FDDS-H LSEITVDAA---SI
214


WP_001040076
144
DKKEKADLRLVYLALAHIIKFRGHFLIEDDrFDVRNIDIQKQ--YQAFLEIFDTT--FENN-D LLSQDVDVE---AI
212


WP_001040078
144
DKQEKADLRLIYLALAHIIKFRGHFLIEDDrFDVRNIDIQKQ--YQAFLEIFDTT--FENN-H LLSQNVDVE---AI
212


WP_001040080
144
DKKEKADLRLIYIALAHIIKFRGHFLIEDDsFDVRNIDISKQ--YQDFLEIFNIT--FENN-D LLSQNVDVE---AI
212


WP_001040081
144
DKKEKADLRLIYIALAHIIKFRGHFLIEDDsFDVRNIDISKQ--YQDFLEIFNTI--FENN-D LLSQNVDVE---AI
212


WP_001040083
144
DKKEKADLRLIYIALAHIIKFRGHFLIEDDsFDVRNIDISKQ--YQDFLEIFNIT--FENN-D LLSQNVDVE---AI
212


WP_001040085
144
DKKEKADLRLIYIALAHIIKFRGHFLIEDDsFDVRNIDISKQ--YQDFLEIFNIT--FENN-D LLSQNVDVE---AI
212


WP_001040087
144
DKKEKADLRLIYIALAHIIKFRGHFLIEDDsFDVRNIDISKQ--YQDFLEIFNIT--FENN-D LLSQNVDVE---AI
212


WP_001040088
144
DKKEKADLRLIYIALAHIIKFRGHFLIEDDsFDVRNIDISKQ--YQDFLEIFNIT--FENN-D LLSQNVDVE---AI
212


WP_001040089
144
DKKEKADLRLIYIALAHIIKFRGHFLIEDDsFDVRNIDISKQ--YQDFLEIFNIT--FENN-D LLSQNVDVE---AI
212


WP_001040090
144
DKKEKADLRLIYIALAHIIKFRGHFLIEDDsFDVRNIDISKQ--YQDFLEIFNIT--FENN-D LLSQNVDVE---AI
212


WP_001040091
144
DKKEKADLRLIYIALAHIIKFRGHFLIEDDsFDVRNIDISKQ--YQDFLEIFNIT--FENN-D LLSQNVDVE---AI
212


WP_001040092
144
DKKEKADLRLVYLALAHIIKFRGHFLIEDDrFDVRNIDIQKQ--YQAFLEIFDTS--FENN-H LLSQNVDVE---AI
212


WP_001040094
144
DKKEKADLRLIYLALAHIIKFRGHFLIEDDrFDVRNIDIQKQ--YQAFLEIFDTT--FENN-D LLSQNVDVE---AI
212


WP_001040095
144
DKKEKADLRLIYLALAHIIKFRGHFLIEDDrFDVRNIDIQKQ--YQAFLEIFDTT--FENN-D LLSQNVDVE---AI
212


WP_001040096
144
DKKEKADLRLIYLALAHIIKFRGHFLIEDDrFDVRNIDIQKQ--YQAFLEIFDTT--FENN-D LLSQNVDVE---AI
212


WP_001040097
144
DKKEKADLRLIYLALAHIIKFRGHFLIEDDrFDVRNIDIQKQ--YQAFLEIFDTT--FENN-D LLSQNVDVE---AI
212


WP_001040098
144
DKKEKADLRLIYLALAHIIKFRGHFLIEDDrFDVRNIDIQKQ--YQAFLEIFDTT--FENN-D LLSQNVDVE---AI
212


WP_001040099
144
DKKEKADLRLIYLALAHIIKFRGHFLIEDDrFDVRNIDIQKQ--YQAFLEIFDTT--FENN-D LLSQNVDVE---AI
212


WP_001040100
144
DKKEKADLRLIYLALAHIIKFRGHFLIEDDrFDVRNIDIQKQ--YQAFLEIFDTT--FENN-D LLSQNVDVE---AI
212


WP_001040104
144
DKKEKADLRLIYIALAHIIKFRGHFLIEDDsFDVRNIDISKQ--YQDFLEIFNIT--FENN-D LLSQNVDVE---AI
212


WP_001040105
144
DKKEKADLRLIYIALAHIIKFRGHFLIEDDsFDVRNIDISKQ--YQDFLEIFNIT--FENN-D LLSQNVDVE---AI
212


WP_001040106
144
DKKEKANLRLVYLALAHIIKFRGHFLIEDDsFDVRNIDIQRQ--YQAFLEIFDTT--FENN-H LLSQNIDVE---GI
212


WP_001040107
144
DKKEKADLRLVYLALAHIIKFRGHFLIEDDsFDVRNIDIQRQ--YQAFLEIFDTT--FENN-H LLSQNIDVE---GI
212


WP_001040108
144
DKKEKADLRLVYLALAHIIKFRGHFLIEDDsFDVRNIDIQRQ--YQAFLEIFDTT--FENN-H LLSQNIDVE---GI
212


WP_001040109
144
DKKEKANLRLVYLALAHIIKFRGHFLIEDDsFDVRNIDIQRQ--YQAFLEIFDTT--FENN-H LLSQNIDVE---GI
212


WP_001040110
144
DKKEKANLRLVYLALAHIIKFRGHFLIEDDsFDVRNIDIQRQ--YQAFLEIFDTT--FENN-H LLSQNIDVE---GI
212


WP_015058523
144
DKKEKADLRLVYLALAHIIKFRGHFLIEDDrFDVRNIDIQKQ--YQAFLEIFDTS--FENN-H LLSQNVDVE---AI
212


WP_017643650
144
DKKEKADLRLIYLALAHIIKFRGHFLIEDDrFDVRNIDIQKQ--YQAFLEIFDTT--FENN-D LLSQNVDVE---AI
212


WP_017647151
144
DKKEKADLRLFYLALAHIIKFRGHFLIEDDsFDVRNIDIQRQ--YQAFLEIFDTT--FENN-H LLSQNIDIE---GI
212


WP_017648376
144
DKKEKADLRLFYLALAHIIKFRGHFLIEDDsFDVRNIDIQRQ--YQAFLEIFDTT--FENN-H LLSQNIDVE---GI
212


WP_017649527
144
DKKEKADLRLIYIALAHIIKFRGHFLIEDDsFDVRNIDISKQ--YQDFLEIFNIT--FENN-D LLSQNVDVE---AI
212


WP_017771611
144
DKKEKADLRLVYLALAHIIKFRGHFLIEDDsFDVRNIDIQRQ--YQAFLEIFDTT--FENN-H LLSQNIDVE---GI
212


WP_017771984
144
DKKEKADLRLIYIALAHIIKFRGHFLIEDDsFDVRNIDISKQ--YQDFLEIFNIT--FENN-D LLSQNVDVE---AI
212


CFQ25032
144
DKKEKADLRLIYIALAHIIKFRGHFLIEDDsFDVRNIDISKQ--YQDFLEIFNIT--FENN-D LLSQNVDVE---AI
212


CFV16040
144
DKKEKADLRLIYIALAHIIKFRGHFLIEDDsFDVRNIDISKQ--YQDFLEIFNIT--FENN-D LLSQNVDVE---AI
212


KLJ37842
144
DKKEKADLRLIYIALAHIIKFRGHFLIEDDsFDVRNIDISKQ--YQDFLEIFNIT--FENN-D LLSQNVDVE---AI
212


KLJ72361
144
DKKEKADLRLIYIALAHIIKFRGHFLIEDDsFDVRNIDISKQ--YQDFLEIFNIT--FENN-D LLSQNVDVE---AI
212


KLL20707
144
DKKEKADLRLIYIALAHIIKFRGHFLIEDDsFDVRNIDISKQ--YQDFLEIFNIT--FENN-D LLSQNVDVE---AI
212


KLL42645
144
DKKEKANLRLVYLALAHIIKFRGHFLIEDDsFDVRNIDIQRQ--YQAFLEIFDTT--FENN-H LLSQNIDVE---GI
212


WP_047207273
144
DKKEKADLRLIYIALAHIIKFRGHFLIEDDsFDVRNIDISKQ--YQDFLEIFNIT--FENN-D LLSQNVDVE---AI
212


WP_047209694
144
DKKEKADLRLIYLALAHIIKFRGHFLIEDDsFDVRNIDIQKQ--YQAFLEIFDTT--FENN-D LLSQNVDVE---AI
212


WP_050198062
144
DKKEKADLRLIYIALAHIIKFRGHFLIEDDsFDVRNIDISKQ--YQDFLEIFNIT--FENN-D LLSQNVDVE---AI
212


WP_050201642
144
DKKEKADLRLIYIALAHIIKFRGHFLIEDDsFDVRNIDISKQ--YQDFLEIFNIT--FENN-D LLSQNVDVE---AI
212


WP_050204027
144
DKKEKANLRLVYLALAHIIKFRGHFLIEDDsFDVRNIDIQRQ--YQAFLEIFDTT--FENN-H LLSQNIDVE---GI
212


WP_050881965
144
DKKEKADLRLIYIALAHIIKFRGHFLIEDDsFDVRNIDISKQ--YQDFLEIFNIT--FENN-D LLSQNVDVE---AI
212


WP_050886065
144
DKKEKADLRLIYIALAHIIKFRGHFLIEDDsFDVRNTDISKQ--YQDFLEIENTT--FENN-D LLSQNVDVE---AI
212


AHN30376
144
DKKEKADLRLVYLALAHIIKFRGHFLIEDDrEDVRNTDIQKQ--YQAFLEIEDTS--FENN-H LLSQNVDVE---AI
212


EAO78426
144
DKKEKADLRLIYIALAHIIKFRGHFLIEDDsFDVRNTDISKQ--YQDFLEIENTT--FENN-D LLSQNVDVE---AI
212


CCW42055
144
DKKEKADLRLVYLALAHIIKFRGHFLIEDDrEDVRNTDIQKQ--YQAFLEIFDTT--FENN-H LLSQNVDVE---AI
212


WP_003041502
144
DISQKADLRLVYLALAHMIKFRGHFLIEGQ-LKAENTNVQAL--FKDFVEVYDKT--VEES-H LSEITVDAL---SI
211


WP_037593752
145
NSKEKADLRLVYLALAHMIKFRGHFLYEGD-LKAENTDVQAL--FKDFVEEYDKT--IEES-H LSEITVDAL---SI
212


WP_049516684
145
DISQKADLRLVYLALAHMIKFRGHFLIEGQ-LKAENTNVQAL--FKDFVEVYDKT--VEES-H LSEMTVDAL---SI
212


GAD46167
144
NSKEKADLRLVYLALAHMIKFRGHFLYEGD-LKAENTDVQAL--FKDFVEEYDKT--IEES-H LSEITVDAL---SI
211


WP_018363470
145
DSTEKADLRLVYLALAHMIKERGHFLIEGE-LNAENTDVQKL--FTDEVGVYDRT--FDDS-H LSEITVDAA---SI
212


WP_003043819
144
DSPEKADLRLIYLALAHIIKFRGHFLIEGK-LNAENSDVAKL--FYQLIQTYNQL--FEES-- LDEIEVDAK---GI
211


WP_006269658
144
DTSKKADLRLVYLALAHMIKFRGHFLYEGD-LKAENTDVQAL--FKDFVEEYDKT--IEES-H LSEITVDAL---SI
211


WP_048800889
144
DSTGKVDLRLVYLALAHMIKFRGHFLIEGQ-LKAENTDVQTL--ENDEVEVYDKT--IEES-H LAEITVDAL---SI
211


WP_012767106
144
DSTDKADLRLIYLALAHMIKFRGHFLIEGD-LNPDNSDMDKL--FIQLVQTYNQL--FEEN-- INASRVDAK---AI
211


WP_014612333
144
DSTDKADLRLIYLALAHMIKFRGHFLIEGD-LNPDNSDVDKL--FIQLVQTYNQL--FEEK-- INASGVDAK---AI
211


WP_015017095
144
DSTDKADLRLIYLALAHMIKFRGHFLIEGD-LNPDNSDMDKL--FIQLVQTYNQL--FEEN-- INASRVDAK---AI
211


WP_015057649
144
DSTDKADLRLIYLALAHMIKFRGHFLIEGD-LNPDNSDMDKL--FIQLVQTYNQL--FEEN-- INASRVDAK---AI
211


WP_048327215
144
DSTDKADLRLIYLALAHMIKFRGHFLIEGD-LNPDNSDMDKL--FIQLVQTYNQL--FEEN-- INASRVDAK---AI
211


WP_049519324
144
DSTDKADLRLIYLALAHMIKFRGHFLIEGD-LNPDNSDVDKL--FIQLVQTYNQL--FEEN-- INASRVDAK---AI
211


WP_012515931
144
DNPQKADLRLIYLAVAHIIKFRGHFLIEGT-LSSKNNNLQKS--FDHLVDTYNLL--FEEQ-- LLTEGINAK---EL
211


WP_021320964
144
DNPQKADLRLIYLAVAHIIKFRGHFLIEGT-LSSKNNNLQKS--FDHLVDTYNLL--FEEQ-- LLTEGINAK---EL
211


WP_037581760
144
DNPQKADLRLIYLAVAHIIKFRGHFLIEGT-LSSKNNNLQKS--FDHLVDTYNLL--FEEQ-- LLTEGINAK---EL
211


WP_004232481
144
DSPEKVDLRLVYLALAHMIKFRGHFLIEGQ-LNAENTDVQKI--FADFVGVYDRT--FDDS-H LSEITVDAA---SI
211


WP_009854540
145
DSSEKADLRLVYLALAHMIKYRGHFLIEGK-LNAENTDVQKL--FTDEVGVYDRT--FDDS-H LSEITVDVA---ST
212


WP_012962174
145
DSHEKADLRLIYLALAHMIKFRGHFLIEGE-LNAENTDVQKL--FEAFVEVYDRT--FDDS-N LSEITVDAS---SI
212


WP_039695303
145
DSSEKADLRLVYLALAHMIKFRGHFLIEGE-LNAENTDVQKI--FADFVGVYNRT--FDDS-H LSEITVDVA---SI
212


WP_014334983
144
DSQEKADLRLVYLALAHMIKYRGHFLIEGE-LNAENTDVQKL--ENVEVETYDKI--VDES-H LSEIEVDAS---SI
211


WP_003099269
144
DSDQKADLRLIYLALAHIIKFRGHFLIEGN-LDSENTDVHVL--FLNLVNIYNNL--FEED-- VETASIDAE---KI
211


AHY15608
144
DSDQKADLRLIYLALAHIIKFRGHFLIEGN-LDSENTDVHVL--FLNLVNIYNNL--FEED-- VETASIDAE---KI
211


AHY17476
144
DSDQKADLRLIYLALAHIIKFRGHFLIEGN-LDSENTDVHVL--FLNLVNIYNNL--FEED-- VETASIDAE---KI
211


ESR09100

--------------------------------------------------------------- --------------



AGM98575
144
DSDQKADLRLIYLALAHIIKFRGHFLIEGN-LDSENTDVHVL--FLNLVNIYNNL--FEED-- VETASIDAE---KI
211


ALF27331
144
DNPEKTDLRLVYLALAHIIKFRGHFLIEGK-FDTRNNDVQRL--FQEFLAVYDNT--FENS-S LQEQNVQVE---EI
211


WP_018372492
144
DTPDKMDIRLIYLALAHIIKYRGHFLIEGD-LDIENIGIQDS--FKSFIEEYNTQ--FGTK-- -LDSTTKVE---AI
209


WP_045618028
145
DSKEKADFRLIYLALAHIIKYRGHFLYEES-FDIKNNDIQKI--FNEFISIYDNT--EEGS-S LNGQNAQVE---AI
212


WP_045635197
144
DSKEKTDLRLIYLALAHMIKYRGHFLYEEA-FDIKNNDIQKI--FNEFISIYDNT--EEGS-S LSGQNAQVE---AI
211


WP_002263549
144
DNPEKVDLRLVYLALAHIIKFRGHFLIEGK-FDTRNNDVQRL--FQEFLAVYDNT--FENS-S LQEQNVQVE---EI
211


WP_002263887
144
DNPEKVDLRLVYLALAHIIKFRGHFLIEGK-FDTRNNDVQRL--FQEFLAVYDNT--FENS-S LQEQNVQVE---EI
211


WP_002264920
144
DSTEKADLRLVYLALAHMIKFRGHFLIEGE-LNAENTDVQKL--FADFVGVYDRT--FDDS-H LSEITVDAS---SI
211


WP_002269043
144
DNPEKTDLRLVYLALAHIIKFRGHFLIEGK-FDTRNNDVQRL--FQEFLAVYDNT--FENS-S LQEQNVQVE---EI
211


WP_002269448
144
DNPEKVDLRLVYLALAHIIKFRGHFLIEGK-FDTRNNDVQRL--FQEFLAVYDNT--FENS-S LQEQNVQVE---EI
211


WP_002271977
144
DNPEKVDLRLVYLALAHIIKFRGHFLIEGK-FDTRNNDVQRL--FQEFLAVYDNT--FENS-S LQEQNVQVE---EI
211


WP_002272766
144
DNPEKVDLRLVYLALAHIIKFRGHFLIEGK-FDTRNNDVQRL--FQEFLAVYDNT--FENS-S LQEQNVQVE---EI
211


WP_002273241
144
DNPEKVDLRLVYLALAHIIKFRGHFLIEGK-FDTRNNDVQRL--FQEFLAVYDNT--FENS-S LQEQNVQVE---EI
211


WP_002275430
144
DNPEKVDLRLVYLALAHIIKFRGHFLIEGK-FDTRNNDVQRL--FQEFLAVYDNT--FENS-S LQEQNVQVE---EI
211


WP_002276448
144
DNPEKVDLRLVYLALAHIIKFRGHFLIEGK-FDTRNNDVQRL--FQEFLAVYDNT--FENS-S LQEQNVQVE---EI
211


WP_002277050
144
DSTEKADLRLVYLALAHMIKFRGHFLIEGE-LNAENTDVQKL--FADFVGVYDRT--FDDS-H LSEITVDAS---SI
211


WP_002277364
144
DNPEKVDLRLVYLALAHIIKFRGHFLIEGK-FDTRNNDVQRL--FQEFLAVYDNT--FENS-S LQEQNVQVE---EI
211


WP_002279025
144
DNPEKVDLRLVYLALAHIIKFRGHFLIEGK-FDTRNNDVQRL--FQEFLAVYDNT--FENS-S LQEQNVQVE---EI
211


WP_002279859
144
DSTEKADLRLVYLALAHMIKFRGHFLIEGE-LNAENTDVQKL--FADFVGVYDRT--FDDS-H LSEITVDAS---SI
211


WP_002280230
144
DNPEKVDLRLVYLALAHIIKFRGHFLIEGK-FDTRNNDVQRL--FQEFLAVYDNT--FENS-S LQEQNVQVE---EI
211


WP_002281696
144
DNPEKVDLRLVYLALAHIIKFRGHFLIEGK-FDTRNNDVQRL--FQEFLAVYDNT--FENS-S LQEQNVQVE---EI
211


WP_002282247
144
DSTEKADLRLVYLALAHMIKFRGHFLIEGE-LNAENTDVQKL--FADFVGVYDRT--FDDS-H LSEITVDAS---SI
211


WP_002282906
144
DNPEKVDLRLVYLALAHIIKFRGHFLIEGK-FDTRNNDVQRL--FQEFLAVYDNT--FENS-S LQEQNVQVE---EI
211


WP_002283846
144
DNPEKTDLRLVYLALAHIIKFRGHFLIEGK-FDTRNNDVQRL--FQEFLAVYDNT--FENS-S LQEQNVQVE---EI
211


WP_002287255
144
DNPEKVDLRLVYLALAHIIKFRGHFLIEGK-FDTRNNDVQRL--FQEFLAVYDNT--FENS-S LQEQNVQVE---EI
211


WP_002288990
144
DNPEKTDLRLVYLALAHIIKFRGHFLIEGK-FDTRNNDVQRL--FQEFLAVYDNT--FENS-S LQEQNVQVE---EI
211


WP_002289641
144
DNPEKTDLRLVYLALAHIIKFRGHFLIEGK-FDTRNNDVQRL--FQEFLAVYDNT--FENS-S LQEQNVQVE---EI
211


WP_002290427
144
DNPEKTDLRLVYLALAHIIKFRGHFLIEGK-FDTRNNDVQRL--FQEFLAVYDNT--FENS-S LQEQNVQVE---EI
211


WP_002295753
144
DNPEKVDLRLVYLALAHIIKFRGHFLIEGK-FDTRNNDVQRL--FQEFLAVYDNT--FENS-S LQEQNVQVE---EI
211


WP_002296423
144
DNPEKTDLRLVYLALAHIIKFGGHFLIEGK-FDTRNNDVQRL--FQEFLAVYDNT--FENS-S LQEQNVQVE---EI
211


WP_002304487
144
NSTEKADLRLVYLSLAHMIKFRGHFLIEGQ-LKAENTNVQAL--FKDFVEVYDKT--VEES-H LSEMTVDAL---SI
211


WP_002305844
144
DNPEKVDLRLVYLALAHIIKFRGHFLIEGK-FDTRNNDVQRL--FQEFLAVYDNT--FENS-S LQEQNVQVE---EI
211


WP_002307203
144
DNPEKVDLRLVYLALAHIIKFRGHFLIEGK-FDTRNNDVQKL--FQEFLAVYDNT--FENS-S LQEQNVQVE---EI
211


WP_002310390
144
DNPEKTDLRLVYLALAHIIKFRGHFLIEGK-FDTRNNDVQRL--FQEFLAVYDNT--FENS-S LQEQNVQVE---EI
211


WP_002352408
144
DNPEKTDLRLVYLALAHIIKFRGHFLIEGK-FDTRNNDVQRL--FQEFLAVYDNT--FENS-S LQEQNVQVE---EI
211


WP_012997688
144
DNPEKVDLRLVYLALAHIIKFRGHFLIEGK-FDTRNNDVQRL--FQEFLAVYDNT--FENS-S LQEQNVQVE---EI
211


WP_014677909
144
DNPEKTDLRLVYLALAHIIKFRGHFLIEGK-FDTRNNDVQRL--FQEFLAVYDNT--FENS-S LQEQNVQVE---EI
211


WP_019312892
144
DNPEKVDLRLVYLALAHIIKFRGHFLIEGK-FDTRNNDVQRL--FQEFLAVYDNT--FENS-S LQEQNVQVE---EI
211


WP_019313659
144
DNPEKVDLRLVYLALAHIIKFRGHFLIEGK-FDTRNNDVQRL--FQEFLAVYDNT--FENS-S LQEQNVQVE---EI
211


WP_019314093
144
DNPEKVDLRLVYLALAHIIKFRGHFLIEGK-FDTRNNDVQKL--FQEFLAVYDNT--FENS-S LQEQNVQVE---EI
211


WP_019315370
144
DNPEKTDLRLVYLALAHIIKFRGHFLIEGK-FDTRNNDVQRL--FQEFLAVYDNT--FENS-S LQEQNVQVE---EI
211


WP_019803776
144
DNPEKVDLRLVYLALAHIIKFRGHFLIEGK-FDTRNNDVQRL--FQEFLAVYDNT--FENS-S LQEQNVQVE---EI
211


WP_019805234
144
DNPEKTDLRLVYLALAHIIKFRGHFLIEGK-FDTRNNDVQRL--FQEFLAVYDNT--FENS-S LQEQNVQVE---EI
211


WP_024783594
144
DNPEKVDLRLVYLALAHIIKFRGHFLIEGK-FDTRNNDVQRL--FQEFLAVYDNT--FENS-S LQEQNVQVE---EI
211


WP_024784288
144
DSTEKADLRLVYLALAHMIKFRGHFLIEGE-LNAENTDVQKL--FADFVGVYDRT--FDDS-H LSEITVDAS---SI
211


WP_024784666
144
DNPEKVDLRLVYLALAHIIKFRGHFLIEGK-FDTRNNDVQRL--FQEFLAVYDNT--FENS-S LQEQNVQVE---EI
211


WP_024784894
144
DNPEKTDLRLVYLALAHIIKFRGHFLIEGK-FDTRNNDVQRL--FQEFLAVYDNT--FENS-S LQEQNVQVE---EI
211


WP_024786433
144
DSTEKADLRLVYLALAHMIKFRGHFLIEGE-LNAENTDVQKL--FADFVGVYDRT--FDDS-H LSEITVDAS---SI
211


WP_049473442
144
DNPEKVDLRLVYLALAHIIKFRGHFLIEGK-FDTRNNDVQRL--FQEFLAVYDNT--FENS-S LQEQNVQVE---EI
211


WP_049474547
144
DNPEKTDLRLVYLALAHIIKFRGHFLIEGK-FDTRNNDVQRL--FQEFLAVYDNT--FENS-S LQEQNVQVE---EI
211


EMC03581
137
DNPEKVDLRLVYLALAHIIKFRGHFLIEGK-FDTRNNDVQRL--FQEFLAVYDNT--FENS-S LQEQNVQVE---EI
204


WP_000428612
145
DSKEKTDLRLIYLALAHMIKYRGHFLYEDT-FDIKNNDIQKI--FNEFISIYNNT--FEGN-S LSGQNVQVE---AI
212


WP_000428613
145
DSKEKTDLRLIYLALAHMIKYRGHFLYEDT-FDIKNNDIQKI--FSEFISIYDNT--FEGS-S LSGQNAQVE---AI
212


WP_049523028
144
DSKEKVDLRLIYLALAHIIKYRGHFLYEDS-FDIKNNDIQKI--FNEFTILYDNT--FEES-S LSKGNAQVE---EI
211


WP_003107102
113
DSDEKADLRLIYLALAHIIKERGHFLIEGD-LDSQNTDVNAL--FLKLVDTYNLM--FEDD-- IDTQTIDAT---VI
180


WP_054279288
146
DNTEKADLRLIYLALAHIIKFRGHFLIEGA-LSANNTDVQQL--VHALVDAYNIM--FEED-- LDIEAIDVK---AI
213


WP_049531101
145
DSKEKADLRLIYLTLAHMIKYRGHFLYEES-FDIKNNDIQKI--FNEFISIYDNT--FEGS-S LSGQNAQVE---AI
212


WP_049538452
145
DSKEKADLRLIYLALAHMIKYRGHFLYEEA-FDIKNNDIQKI--FNEFINIYDNT--FEGS-S LSGQNEQVE---AI
212


WP_049549711
145
DSKEKADLRLIYLVLAHMIKYRGHFLYEEA-FDIKNNDIQKI--FNEFISIYDNT--FEGS-S LSGQNAQVE---TI
212


WP_007896501
146
DRDQKADLRLIYLALSHIIKFRGHFLIEGK-LNSENTDVQKL--FIALVIVYNLL--FEEE-- IAGETCDAK---AL
213


EFR44625
98
DRDQKADLRLIYLALSHIIKFRGHFLIEGK-LNSENTDVQKL--FIALVIVYNLL--FEEE-- IAGETCDAK---AL
165


WP_002897477
144
DSKEKSDVRLIYLALAHMIKYRGHFLYEET-FDIKNNDIQKI--FNEFINIYDNT--FEGS-S LSGQNAQVE---AI
211


WP_002906454
144
DSKEKTDLRLIYLALAHMIKYRGHFLYEES-FDIKNNDIQKI--FNEFISIYDNT--FEGS-S LSGQNAQVE---AI
211


WP_009729476
145
DSKEKTDLRLIYLALAHMIKYRGHFLYEEA-FDIKNNDIQKI--FNEFISIYNNT--FEGN-S LSGQNVQVE---AI
212


CQR24647
144
DSSEKADLRLVYLALAHIIKYRGHFLIDEP-IDIRNMNSQNL--FKEFLLAFDGI--QVDC-Y LASKHTDIS---GI
211


WP_000066813
145
DSKEKTDLRLIYLALAHMIKYRGHFLYEES-FDIKNNDIQKI--FSEFISIYDNT--FEGK-S LSGQNAQVE---AI
212


WP_009754323
145
DSKEKADLRLIYLALAHITKYRGHFLYEEA-FDIKNNDIQKI--FNEFINIYDNT--FEGS-S LSGQNAQVE---AI
212


WP_044674937
144
DSSQKADIRLIYLALAHIIKYRGHFLFEGD-LKSENKDVQHL--FNDFVEMFDKT--VEGS-Y LSENLPNVA---DV
211


WP_044676715
144
DSSQKADIRLIYLALAHIIKYRGHFLFEGD-LKSENKDVQHL--FNDFVEMFDKT--VEGS-Y LSENLPNVA---DV
211


WP_044680361
144
DSSQKADIRLIYLALAHIIKYRGHFLFEGD-LKSENKDVQHL--FNDFVEMFDKT--VEGS-Y LSENLPNVA---DV
211


WP_044681799
144
DSSQKADIRLIYLALAHIIKYRGHFLFEGD-LKSENKDVQHL--FNDFVEMFDKT--VEGS-Y LSENLPNVA---DV
211


WP_049533112
144
DISQKADLRLVYLALAHMIKFRGHFLIEGQ-LKAENTNVQAL--FKDFVEVYDKT--VEES-H LSEMTVDAL---SI
211


WP_029090905
101
SQHRQFDIREVYLAIHHLIKYRGHFIYEDQtFTIDGNQLQHH--IKAIITMINSTl---NR-- IIPETIDINvfeKI
171


WP_006506696
140
ESTEKADPRLIYLALHHIVKYRGNFLYEGQkFNMDASNIEDK--LSDIFTQFTSFnnIPYEdD --KKNLEIL---EI
210


AIT42264
144
DSTDKADLRLIYLALAHMIKFRGHFLIEGD-LNPDNSDVDKL--FIQLVQTYNQL--FEEN-- INASGVDAK---AI
211


WP_034440723
143
DSNQKADLRLIYLALAHMIKYRGHFLIEGD-LKMDGISISES--FQEFIDSYNEVcaLEDE-N NDELLTQIE---NI
217


AKQ21048
144
DSTDKADLRLIYLALAHMIKFRGHFLIEGD-LNPDNSDVDKL--FIQLVQTYNQL--FEEN-- INASGVDAK---AI
211


WP_004636532
144
DNPEKADLRLVYTALAHIVKYRGHFLIEGE-LNTENTSISET--FEQFLDTYSDI--FKEQ-- LVGDISKVE---EI
210


WP_002364836
144
DSSEQADLRLIYLALAHIVKYRGHFLIEGK-LSTENISVKEQ--FQQFMIIYNQT--FVNGeS PLPESVLIE---EE
217


WP_016631044
95
DSSEQADLRLIYLALAHIVKYRGHFLIEGK-LSTENTSVKDQ--FQQFMVIYNQT--FVNGeS PLPESVLIE---EE
168


EMS75795

--------------------------------------------------------------- --------------



WP_002373311
144
DSSEQADLRLIYLALAHIVKYRGHFLIEGK-LSTENTSVKEQ--FQQFMVIYNQT--FVNGeS PLPESVLIE---EE
217


WP_002378009
144
DSSEQADLRLIYLALAHIVKYRGHFLIEGK-LSTENISVKEQ--FQQFMIIYNQT--FVNGeS PLPESVLIE---EE
217


WP_002407324
144
DSSEQADLRLIYLALAHIVKYRGHFLIEGK-LSTENISVKEQ--FQQFMIIYNQT--FVNGeS PLPESVLIE---EE
217


WP_002413717
144
DSSEQADLRLIYLALAHIVKYRGHFLIEGK-LSTENISVKEQ--FQQFMIIYNQT--FVNGeS PLPESVLIE---EE
217


WP_010775580
144
DSSEQADLRLIYLALAHIVKYRGHFLIEGK-LSTENISVKEQ--FQQFMIIYNQT--FVNGeS PLPESVLIE---EE
217


WP_010818269
144
DSSEQADLRLIYLALAHIVKYRGHFLIEGK-LSTENISVKEQ--FQQFMIIYNQT--FVNGeS PLPESVLIE---EE
217


WP_010824395
144
DSSEQADLRLIYLALAHIVKYRGHFLIEGK-LSTENTSVKDQ--FQQFMVIYNQT--FVNGeS PLPESVLIE---EE
217


WP_016622645
144
DSSEQADLRLIYLALAHIVKYRGHFLIEGK-LSTENISVKEK--FQQFMIIYNQT--FVNGeG PLPESVLIE---EE
217


WP_033624816
144
DSSEQADLRLIYLALAHIVKYRGHFLIEGK-LSTENISVKDQ--FQQFMVIYNQT--FVNGeS PLPESVLIE---EE
217


WP_033625576
144
DSSEQADLRLIYLALAHIVKYRGHFLIEGK-LSTENISVKEQ--FQQFMIIYNQT--FVNGeS PLPESVLIE---EE
217


WP_033789179
144
DSSEQADLRLIYLALAHIVKYRGHFLIEGK-LSTENISVKEQ--FQQFMIIYNQT--FVNGeS PLPESVLIE---EE
217


WP_002310644
144
DSSEKADIRLVYLAMAHLLKYRGHFLIEGE-LNTENSSVIET--FRQFLSTYNQQ--FSEA-D KLDEAVDCS---FV
216


WP_002312694
144
DSSEKADIRLVYLAMAHLLKYRGHFLIEGE-LNTENSSVIET--FRQFLSTYNQQ--FSEA-G KLDEAVDCS---FV
216


WP_002314015
144
DSSEKADIRLVYLAMAHLLKYRGHFLIEGE-LNTENSSVIET--FRQFLSTYNQQ--FSEA-D KLDEAVDCS---FV
216


WP_002320716
144
DSSEKADIRLVYLAMAHLLKYRGHFLIEGE-LNTENSSVIET--FRQFLSTYNQQ--FSEA-D KLDEAVDCS---FV
216


WP_002330729
144
DSSEKADIRLVYLAMAHLLKYRGHFLIEGE-LNTENSSVIET--FRQFLSTYNQQ--FSEA-D KLDEAVDCS---FV
216


WP_002335161
144
DSSEKADIRLVYLAMAHLLKYRGHFLIEGE-LNTENSSVIET--FRQFLSTYNQQ--FSEA-D KLDEAVDCS---FV
216


WP_002345439
144
DSSEKADIRLVYLAMAHLLKYRGHFLIEGE-LNTENSSVIET--FRQFLSTYNQQ--FSEA-D KLDEAVDCS---FV
216


WP_034867970
144
DSTEKEDLRLVYLALAHLLKYRGHFLFEGD-LDTENTSIEES--FRVFLEQYSKQ--SDQP-- -LIVHQPVL---TI
209


WP_047937432
144
DSSEKADIRLVYLAMAHLLKYRGHFLIEGE-LNTENSSVIET--FRQFLSTYNQQ--FSEA-D KLDEAVDCS---FV
216


WP_010720994
144
DSTEKGDLRLVYLALAHLLKYRGHFLFEGD-LDTENTSIEES--FRVFLEQYGKQ--SDQP-- -LIVHQPVL---TI
209


WP_010737004
144
DSTEKEDLRLVYLALAHLLKYRGHFLFEGD-LDTENTSIEES--FRVFLEQYSKQ--SDQP-- -LIVHQPVL---TI
209


WP_034700478
144
DSTEKEDLRLVYLALAHLLKYRGHFLFEGD-LDTENTSIEES--FRVFLEQYGKQ--SDQP-- -LIVHQPVL---TI
209


WP_007209003
144
DGDEKADLRLVYLAIAHIIKFRGNFLIEGE-LNTENNSVIELs--KVFVQLYNQTl-SELE-- FIDESIDFS---EV
214


WP_023519017
144
NSKEQADIRLVYLAIAHCLKYRGHFLFEGE-LDTENTSVIEN--YQQFLQAYQQF--FPEP-- -IGDLDDAV---PI
209


WP_010770040
144
DISEQADLRLVYLALAHIVKYRGHFLIEGE-LNTENSSVSET--FRIFIQVYNQI--FRENe- PLAVPDNIE---EL
212


WP_048604708
144
DAEEKADLRLVYLALAHIIKYRGHFLIEGR-LSTENTSTEET--FKTFLQKYNQT--FN---- PVDETISIG---SI
208


WP_010750235
144
DSTEKADIRLVYLALAHMIKYRGHFLFEGE-LDTENTSVEET--FKEFIDIYNEQ--FEEG-- -IIFYKDIP---LI
209


AII16583
183
DSTDKADLRLIYLALAHMIKFRGHFLIEGD-LNPDNSDVDKL--FIQLVQTYNQL--FEEN-- INASGVDAK---AI
250


WP_029073316
145
ESKEKEDPRLIYLALHHIVKYRGNFLYEGQkFSMDVSNIEDK--MIDVLRQFNEInlFEYVeD --KKIDEVL---NV
215


WP_031589969
145
ESKEKEDPRLIYLALHHIVKYRGNFLYEGQkFSMDVSNIEDK--MIDVLRQFNEInlFEYVeD --KKIDEVL---NV
215


KDA45870
145
NNDRPADLRLVYLALAHIIKYRGNELLEGE-IDLRITDINKV--FAEFSETLNEN--SDENlG ----KLDVA---DI
209


WP_039099354
133
TEKRQFDIREIYLAMHHIVKYRGHFLNEAPvSSEKSSEINLVahFDRLNTIFADL--FSESgF -TDKLAEVK---AL
206


AKP02966
138
INKNKADIRLVYLALHNILKYRGNFTYEHQkFNISTLNSNLS---KELIELNQQLikYDIS-- -FPDNCDWNhisDI
208


WP_010991369
144
NSSEKADLRLVYLALAHIIKYRGNFLIEGA-LDTQNTSVDGI--YKQFIQTYNQV--FASGiE KLEDNKDVA---KI
217


WP_033838504
144
NSSEKADLRLVYLALAHIIKYRGNFLIEGA-LDTQNTSVDGI--YKQFIQTYNQV--FASGiE KLEDNKDVA---KI
217


EHN60060
147
NSSEKADLRLVYLALAHIIKYRGNFLIEGA-LDTQNTSVDGI--YKQFIQTYNQV--FASGiE KLEDNKDVA---KI
220


EFR89594

--------------------------------------------------------------- --------------



WP_038409211
144
NSSDKADLRLVYLALAHIIKYRGNFLIEGM-LDTKNTSVDEV--FKQFIQTYNQI--FASDiE RLEENKEVA---EI
217


EFR95520

--------------------------------------------------------------- --------------



WP_003723650
144
NSSEKADLRLVYLALAHIIKYRGNFLIEGA-LDTKNTSVDEV--YKQFIETYNQV--FMSNiE KVEENIEVA---NI
217


WP_003727705
144
NSSEKADLRLVYLALAHIIKYRGNFLIEGA-LDTKNTSVDEV--YKQFIQTYNQV--FMSNiE KVEENTEVA---SI
217


WP_003730785
144
NSSEKADLRLVYLALAHIIKYRGNFLIEGA-LDTKNTSVDEV--YKQFIQTYNQV--FMSNiE KVEENTEVA---SI
217


WP_003733029
144
DSQKKADLRLVYLALAHIIKYRGHFLIEGA-LDTKNISIDEM--FKQFLQIYNQV--FANDiE KTEKNQEVA---QI
217


WP_003739838
144
NSSEKADLRLVYLALAHIIKYRGNFLIEGA-LDTKNTSVDGV--YKQFIQTYNQV--FISNiE KMEENTTVA---DI
217


WP_014601172
144
NSSEKADLRLVYLALAHIIKYRGNFLIEGA-LDTKNTSVDGV--YEQFIQTYNQV--FMSNiE KVEENIEVA---NI
217


WP_023548323
144
NSSEKADLRLVYLALAHIIKYRGNFLIEGA-LDTKNTSVDGV--YEQFILTYNQV--FMSNiE KVEENIEVA---NI
217


WP_031665337
144
NSSEKADLRLVYLALAHIIKYRGNFLIEGA-LDTKNTSVDGV--YEQFIQTYNQV--FMSNiE KVEENIEVA---NI
217


WP_031669209
144
DSQKKADLRLVYLALAHIIKYRGHFLIEGA-LDTKNISIDEM--FKQFLQIYNQV--FANDiE KTEKNQEVA---QI
217


WP_033920898
144
NSSEKADLRLVYLALAHIIKYRGNFLIEGA-LDTKNTSVDGV--YEQFIQTYNQV--FMSNiE KVEENIEVA---NI
217


AKI42028
147
NSSEKADLRLVYLALAHIIKYRGNFLIEGA-LDTKNTSVDGV--YEQFIQTYNQV--FMSNiE KVEENIEVA---NI
220


AKI50529
147
NSSEKADLRLVYLALAHIIKYRGNFLIEGA-LDTKNTSVDGV--YEQFIQTYNQV--FMSNiE KVEENIEVA---NI
220


EFR83390

--------------------------------------------------------------- --------------



WP_046323366
144
NSSDKADLRLVYLALAHIIKYRGNFLIEGK-LDTKNTSVDEV--FKQFIKTYNQV--FASDiE RIEENNEVA---KI
217


AKE81011
160
DSTDKADLRLIYLALAHMIKFRGHFLIEGD-LNPDNSDVDKL--FIQLVQTYNQL--FEEN-- INASGVDAK---AI
227


CUO82355
144
ESTEKADPRLIYLALHHIVKYRGNFLYEGQkFNMDASNIEDK--LSDVFTQFADFnnIPYEdD --KKNLEIL---EI
214


WP_033162887
145
ENKEKADPRLIYLALHHIVKYRGNFLYEGQsFTMDNSDIEER--LNSAIEKFMSIneFDNRiV --SDINSMI---AV
215


AGZ01981
177
DSTDKADLRLIYLALAHMIKFRGHFLIEGD-LNPDNSDVDKL--FIQLVQTYNQL--FEEN-- INASGVDAK---AI
244


AKA60242
144
DSTDKADLRLIYLALAHMIKFRGHFLIEGD-LNPDNSDVDKL--FIQLVQTYNQL--FEEN-- INASGVDAK---AI
211


AKS40380
144
DSTDKADLRLIYLALAHMIKFRGHFLIEGD-LNPDNSDVDKL--FIQLVQTYNQL--FEEN-- INASGVDAK---AI
211


4UN5_B
148
DSTDKADLRLIYLALAHMIKFRGHFLIEGD-LNPDNSDVDKL--FIQLVQTYNQL--FEEN-- INASGVDAK---AI
215


WP_010922251
212


embedded image


277


WP_039695303
213
LTEK-ISKSRRLENLIKY-Y-PT EKKNTLEGNLIALALGLQPNEKTNE--KLSED-A---KLQ--FSKDTYEEDLEE
278


WP_045635197
212
FTDK-ISKSAKRERVLKL-F-PD EKSTGLFSEFLKLIVGNQADFKKHF--DLEDK-A---PLQ--FSKDTYDEDLEN
277


5AXW_A
135
LSTK--------EQISRN-S--K ----------------------------LEEKyVa--ELQ--------------
157


WP_009880683

----------------------- ------------------------------------------------------



WP_010922251
212
LSAR-LSKSRRLENLIAQ-L-PG EKKNGLEGNLIALSLGLIPNEKSNF--DLAED-A---KLQ--LSKDTYDDDLDN
277


WP_011054416
212
LSAR-LSKSRRLENLIAQ-L-PG EKKNGLEGNLIALSLGLIPNEKSNF--DLAED-A---KLQ--LSKDTYDDDLDN
277


WP_011284745
212
LSAR-LSKSRRLENLIAQ-L-PG EKKNGLEGNLIALSLGLIPNEKSNF--DLAED-A---KLQ--LSKDTYDDDLDN
277


WP_011285506
212
LSAR-LSKSRRLENLIAQ-L-PG EKKNGLEGNLIALSLGLIPNEKSNF--DLAED-A---KLQ--LSKDTYDDDLDN
277


WP_011527619
212
LSAR-LSKSRRLENLIAQ-L-PG EKKNGLEGNLIALSLGLIPNEKSNF--DLAED-A---KLQ--LSKDTYDDDLDN
277


WP_012560673
212
LSAR-LSKSRRLENLIAQ-L-PG EKRNGLEGNLIALSLGLIPNEKSNF--DLAED-A---KLQ--LSKDTYDDDLDN
277


WP_014407541
212
LSAR-LSKSRRLENLIAQ-L-PG EKRNGLEGNLIALSLGLIPNEKSNF--DLAED-A---KLQ--LSKDTYDDDLDN
277


WP_020905136
212
LSAR-LSKSRRLENLIAQ-L-PG EKKNGLEGNLIALSLGLIPNEKSNF--DLAED-A---KLQ--LSKDTYDDDLDN
277


WP_023080005
212
LSAR-LSKSRRLENLIAQ-L-PG EKKNGLEGNLIALSLGLIPNEKSNF--DLAED-A---KLQ--LSKDTYDDDLDN
277


WP_023610282
212
LSAR-LSKSRRLENLIAQ-L-PG EKKNGLEGNLIALSLGLIPNEKSNF--DLAED-A---KLQ--LSKDTYDDDLDN
277


WP_030125963
212
LSAR-LSKSRRLENLIAQ-L-PG EKKNGLEGNLIALSLGLIPNEKSNF--DLAED-A---KLQ--LSKDTYDDDLDN
277


WP_030126706
212
LSAR-LSKSRRLENLIAQ-L-PG EKKNGLEGNLIALSLGLIPNEKSNF--DLAED-A---KLQ--LSKDTYDDDLDN
277


WP_031488318
212
LSAR-LSKSRRLENLIAQ-L-PG EKRNGLEGNLIALSLGLIPNEKSNF--DLAED-A---KLQ--LSKDTYDDDLDN
277


WP_032460140
212
LSAR-LSKSRRLENLIAQ-L-PG EKRNGLEGNLIALSLGLIPNEKSNF--DLAED-A---KLQ--LSKDTYDDDLDN
277


WP_032461047
212
LSAR-LSKSRRLENLIAQ-L-PG EKRNGLEGNLIALSLGLIPNEKSNF--DLAED-A---KLQ--LSKDTYDDDLDN
277


WP_032462016
212
LSAR-LSKSRRLENLIAQ-L-PG EKKNGLEGNLIALSLGLIPNEKSNF--DLAED-A---KLQ--LSKDTYDDDLDN
277


WP_032462936
212
LSAR-LSKSRRLENLIAQ-L-PG EKKNGLEGNLIALLLGLIPNEKSNF--DLAED-A---KLQ--LSKDTYDDDLDN
277


WP_032464890
212
LSAR-LSKSRRLENLIAQ-L-PG EKKNGLEGNLIALSLGLIPNEKSNF--DLAED-A---KLQ--LSKDTYDDDLDN
277


WP_033888930
37
LSAR-LSKSRRLENLIAQ-L-PG EKKNGLEGNLIALSLGLIPNEKSNF--DLAED-A---KLQ--LSKDTYDDDLDN
102


WP_038431314
212
LSAR-LSKSRRLENLIAQ-L-PG EKKNGLEGNLIALSLGLIPNEKSNF--DLAED-A---KLQ--LSKDTYDDDLDN
277


WP_038432938
212
LSAR-LSKSRRLENLIAQ-L-PG EKKNGLEGNLIALSLGLIPNEKSNF--DLAED-T---KLQ--LSKDTYDDDLDN
277


WP_038434062
212
LSAR-LSKSRRLENLIAQ-L-PG EKRNGLEGNLIALSLGLIPNEKSNF--DLAED-A---KLQ--LSKDTYDDDLDN
277


BAQ51233
123
LSAR-LSKSRRLENLIAQ-L-PG EKKNGLEGNLIALSLGLIPNEKSNF--DLAED-A---KLQ--LSKDTYDDDLDN
188


KGE60162

----------------------- ------------------------------------------------------



KGE60856

----------------------- ------------------------------------------------------



WP_002989955
212
LSAR-LSKSRRLENLIAQ-L-PG EKKNGLEGNLIALSLGLIPNEKSNF--DLAED-A---KLQ--LSKDTYDDDLDN
277


WP_003030002
212
LTEK-VSKSRRLENLIAH-Y-PA EKKNTLEGNLIALSLGLQPNEKTNE--QLSED-A---KLQ--FSKDTYEEDLEG
277


WP_003065552
215
LTEK-ISKSRRLENLIKY-Y-PT EKKNTLEGNLIALALGLQPNEKMNF--KLSED-A---KLQ--FSKDSYEEDLGE
280


WP_001040076
213
LTDK-ISKSAKKDRILAQ-Y-PN QKSTGIFAEFLKLIVGNQADFKKHF--NLEDK-T---PLQ--FAKDSYDEDLEN
278


WP_001040078
213
LTDK-ISKSAKKDRILAQ-Y-PN QKSTGIFAEFLKLIVGNQADFKKHF--NLEDK-T---PLQ--FAKDSYDEDLEN
278


WP_001040080
213
LTDK-ISKSAKKDRILAQ-Y-PN QKSTGIFAEFLKLIVGNQADFKKYF--NLEDK-T---PLQ--FAKDSYDEDLEN
278


WP_001040081
213
LTDK-ISKSAKKDRILAQ-Y-PN QKSTGIFAEFLKLIVGNQADFKKYF--NLEDK-T---PLQ--FAKDSYDEDLEN
278


WP_001040083
213
LTDK-ISKSAKKDRILAQ-Y-PN QKSTGIFAEFLKLIVGNQADFKKYF--NLEDK-T---PLQ--FAKDSYDEDLEN
278


WP_001040085
213
LTDK-ISKSAKKDRILAQ-Y-PN QKSTGIFAEFLKLIVGNQADFKKYF--NLEDK-T---PLQ--FAKDSYDEDLEN
278


WP_001040087
213
LTDK-ISKSAKKDRILAQ-Y-PN QKSTGIFAEFLKLIVGNQADFKKYF--NLEDK-T---PLQ--FAKDSYDEDLEN
278


WP_001040088
213
LTDK-ISKSAKKDRILAQ-Y-PN QKSTGIFAEFLKLIVGNQADFKKYF--NLEDK-T---PLQ--FAKDSYDEDLEN
278


WP_001040089
213
LTDK-ISKSAKKDRILAQ-Y-PN QKSTGIFAEFLKLIVGNQADFKKYF--NLEDK-T---PLQ--FAKDSYDEDLEN
278


WP_001040090
213
LTDK-ISKSAKKDRILAQ-Y-PN QKSTGIFAEFLKLIVGNQADFKKYF--NLEDK-T---PLQ--FAKDSYDEDLEN
278


WP_001040091
213
LTDK-ISKSAKKDRILAQ-Y-PN QKSTGIFAEFLKLIVGNQADFKKYF--NLEDK-T---PLQ--FAKDSYDEDLEN
278


WP_001040092
213
LTDK-ISKSAKKDRILAQ-Y-PN QKSTGIFAEFLKLIVGNQADFKKHF--NLEDK-T---PLQ--FAKDSYDEDLEN
278


WP_001040094
213
LTDK-ISKSAKKDRILAR-Y-PN QKSTGIFAEFLKLIVGNQADFKKHF--NLEDK-T---PLQ--FAKDSYDEDLEN
278


WP_001040095
213
LTDK-ISKSAKKDRILAR-Y-PN QKSTGIFAEFLKLIVGNQADFKKHF--NLEDK-T---PLQ--FAKDSYDEDLEN
278


WP_001040096
213
LTDK-ISKSAKKDRILAR-Y-PN QKSTGIFAEFLKLIVGNQADFKKHF--NLEDK-T---PLQ--FAKDSYDEDLEN
278


WP_001040097
213
LTDK-ISKSAKKDRILAR-Y-PN QKSTGIFAEFLKLIVGNQADFKKHF--NLEDK-T---PLQ--FAKDSYDEDLEN
278


WP_001040098
213
LTDK-ISKSAKKDRILAR-Y-PN QKSTGIFAEFLKLIVGNQADFKKHF--NLEDK-T---PLQ--FAKDSYDEDLEN
278


WP_001040099
213
LTDK-ISKSAKKDRILAR-Y-PN QKSTGIFAEFLKLIVGNQADFKKHF--NLEDK-T---PLQ--FAKDSYDEDLEN
278


WP_001040100
213
LTDK-ISKSAKKDRILAR-Y-PN QKSTGIFAEFLKLIVGNQADFKKHF--NLEDK-T---PLQ--FAKDSYDEDLEN
278


WP_001040104
213
LTDK-ISKSAKKDRILAQ-Y-PN QKSTGIFAEFLKLIVGNQADFKKYF--NLEDK-T---PLQ--FAKDSYDEDLEN
278


WP_001040105
213
LTDK-ISKSAKKDRILAQ-Y-PN QKSTGIFAEFLKLIVGNQADFKKYF--NLEDK-T---PLQ--FAKDSYDEDLEN
278


WP_001040106
213
LTDK-ISKSAKKDRILAQ-Y-PN QKSTGIFAEFLKLIVGNQADFKKHF--NLEDK-T---PLQ--FAKDSYDEDLEN
278


WP_001040107
213
LTDK-ISKSAKKDRILAQ-Y-PN QKSTGIFAEFLKLIVGNQADFKKHF--NLEDK-T---PLQ--FAKDSYDEDLEN
278


WP_001040108
213
LTDK-ISKSAKKDRILAQ-Y-PN QKSTGIFAEFLKLIVGNQADFKKHF--NLEDK-T---PLQ--FAKDSYDEDLEN
278


WP_001040109
213
LTDK-ISKSAKKDRILAQ-Y-PN QKSTGIFAEFLKLIVGNQADFKKHF--NLEDK-T---PLQ--FAKDSYDEDLEN
278


WP_001040110
213
LTDK-ISKSAKKDRILAQ-Y-PN QKSTGIFAEFLKLIVGNQADFKKHF--NLEDK-T---PLQ--FAKDSYDEDLEN
278


WP_015058523
213
LTDK-ISKSAKKDRILAQ-Y-PN QKSTGIFAEFLKLIVGNQADFKKHF--NLEDK-T---PLQ--FAKDSYDEDLEN
278


WP_017643650
213
LTDK-ISKSAKKDRILAR-Y-PN QKSTGIFAEFLKLIVGNQADFKKHF--NLEDK-T---PLQ--FAKDSYDEDLEN
278


WP_017647151
213
LTDK-ISKSAKKDRILAQ-Y-PN QKSTGIFAEFLKLIVGNQADFKKHF--NLEDK-T---PLQ--FAKDSYDEDLEN
278


WP_017648376
213
LTDK-ISKSAKKDRILAQ-Y-PN QKSTGIFAEFLKLIVGNQADFKKHF--NLEDK-T---PLQ--FAKDSYDEDLEN
278


WP_017649527
213
LTDK-ISKSAKKDRILAQ-Y-PN QKSTGIFAEFLKLIVGNQADFKKYF--NLEDK-T---PLQ--FAKDSYDEDLEN
278


WP_017771611
213
LTDK-ISKSAKKDRILAQ-Y-PN QKSTGIFAEFLKLIVGNQADFKKHF--NLEDK-T---PLQ--FAKDSYDEDLEN
278


WP_017771984
213
LTDK-ISKSAKKDRILAQ-Y-PN QKSTGIFAEFLKLIVGNQADFKKYF--NLEDK-T---PLQ--FAKDSYDEDLEN
278


CFQ25032
213
LTDK-ISKSAKKDRILAQ-Y-PN QKSTGIFAEFLKLIVGNQADFKKYF--NLEDK-T---PLQ--FAKDSYDEDLEN
278


CFV16040
213
LTDK-ISKSAKKDRILAQ-Y-PN QKSTGIFAEFLKLIVGNQADFKKYF--NLEDK-T---PLQ--FAKDSYDEDLEN
278


KLJ37842
213
LTDK-ISKSAKKDRILAQ-Y-PN QKSTGIFAEFLKLIVGNQADFKKYF--NLEDK-T---PLQ--FAKDSYDEDLEN
278


KLJ72361
213
LTDK-ISKSAKKDRILAQ-Y-PN QKSTGIFAEFLKLIVGNQADFKKYF--NLEDK-T---PLQ--FAKDSYDEDLEN
278


KLL20707
213
LTDK-ISKSAKKDRILAQ-Y-PN QKSTGIFAEFLKLIVGNQADFKKYF--NLEDK-T---PLQ--FAKDSYDEDLEN
278


KLL42645
213
LTDK-ISKSAKKDRILAQ-Y-PN QKSTGIFAEFLKLIVGNQADFKKHF--NLEDK-T---PLQ--FAKDSYDEDLEN
278


WP_047207273
213
LTDK-ISKSAKKDRILAQ-Y-PN QKSTGIFAEFLKLIVGNQADFKKYF--NLEDK-T---PLQ--FAKDSYDEDLEN
278


WP_047209694
213
LTDK-ISKSAKKDRILAR-Y-PN QKSTGIFAEFLKLIVGNQADFKKHF--NLEDK-T---PLQ--FAKDSYDEDLEN
278


WP_050198062
213
LTDK-ISKSAKKDRILAQ-Y-PN QKSTGIFAEFLKLIVGNQADFKKYF--NLEDK-T---PLQ--FAKDSYDEDLEN
278


WP_050201642
213
LTDK-ISKSAKKDRILAQ-Y-PN QKSTGIFAEFLKLIVGNQADFKKYF--NLEDK-T---PLQ--FAKDSYDEDLEN
278


WP_050204027
213
LTDK-ISKSAKKDRILAQ-Y-PN QKSTGIFAEFLKLIVGNQADFKKHF--NLEDK-T---PLQ--FAKDSYDEDLEN
278


WP_050881965
213
LTDK-ISKSAKKDRILAQ-Y-PN QKSTGIFAEFLKLIVGNQADFKKYF--NLEDK-T---PLQ--FAKDSYDEDLEN
278


WP_050886065
213
LTDK-ISKSAKKDRILAQ-Y-PN QKSTGIFAEFLKLIVGNQADFKKYF--NLEDK-T---PLQ--FAKDSYDEDLEN
278


AHN30376
213
LTDK-ISKSAKKDRILAQ-Y-PN QKSTGIFAEFLKLIVGNQADFKKHF--NLEDK-T---PLQ--FAKDSYDEDLEN
278


EAO78426
213
LTDK-ISKSAKKDRILAQ-Y-PN QKSTGIFAEFLKLIVGNQADFKKYF--NLEDK-T---PLQ--FAKDSYDEDLEN
278


CCW42055
213
LTDK-ISKSAKKDRILAQ-Y-PD QKSTGIFAEFLKLIVGNQADFKKHF--NLEDK-T---PLQ--FAKDSYDEDLEN
278


WP_003041502
212
LTEK-VSKSRRLENLIAH-Y-PA EKKNTLEGNLIALFLGLQPNEKTNE--QLSED-A---KLQ--FSKDTYEEDLEG
277


WP_037593752
213
LTEK-VSKSSRLENLIAH-Y-PT EKKNTLEGNLIALSLGLQPNEKTNE--QLSED-A---KLQ--FSKDTYEEDLEE
278


WP_049516684
213
LTEK-VSKSRRLENLVEC-Y-PT EKKNTLEGNLIALSLGLQPNEKTNE--QLSED-A---KLQ--FSKDTYEEDLEG
278


GAD46167
212
LTEK-VSKSSRLENLIAH-Y-PT EKKNTLEGNLIALSLGLQPNEKTNE--QLSED-A---KLQ--FSKDTYEEDLEE
277


WP_018363470
213
LTEK-ISKSRRLENLINN-Y-PK EKKNTLEGNLIALALGLQPNEKTNE--KLSED-A---KLQ--FSKDTYEEDLEE
278


WP_003043819
212
LSAR-LSKSKRLEKLIAV-F-PN EKKNGLFGNIIALALGLTPNEKSNF--DLTED-A---KLQ--LSKDTYDDDLDE
277


WP_006269658
212
LTEK-VSKSSRLENLIAH-Y-PT EKKNTLEGNLIALSLDLHPNEKTNE--QLSED-A---KLQ--FSKDTYEEDLEG
277


WP_048800889
212
LTEK-VSKSRRLENLVKC-Y-PT EKKNTLEGNLIALSLGLQPNEKTNE--QLSED-A---KLQ--FSKDTYEEDLEE
277


WP_012767106
212
LSAR-LSKSRRLENLIAQ-L-PG EKRNGLEGNLIALSLGLTPNEKSNF--DLAED-A---KLQ--LSKDTYDDDLDN
277


WP_014612333
212
LSAR-LSKSKRLENLIAQ-L-PG EKKNGLEGNLIALSLGLTPNEKSNF--DLAED-A---KLQ--LSKDTYDDDLDN
277


WP_015017095
212
LSAR-LSKSRRLENLIAQ-L-PG EKRNGLEGNLIALSLGLTPNEKSNF--DLAED-A---KLQ--LSKDTYDDDLDN
277


WP_015057649
212
LSAR-LSKSRRLENLIAQ-L-PG EKRNGLEGNLIALSLGLTPNEKSNF--DLAED-A---KLQ--LSKDTYDDDLDN
277


WP_048327215
212
LSAR-LSKSRRLENLIAQ-L-PG EKRNGLEGNLIALSLGLTPNEKSNF--DLAED-A---KLQ--LSKDTYDDDLDN
277


WP_049519324
212
LSAR-LSKSRRLENLIAQ-L-PG EKRNGLEGNLIALSLGLTPNEKSNF--DLAED-A---KLQ--LSKDTYDDDLDN
277


WP_012515931
212
LSAA-LSKSKRLENLISL-I-PG QKKTGIFGNIIALSLGLTPNEKANF--GLSKD-V---KLQ--LAKDTYADDLDS
277


WP_021320964
212
LSAA-LSKSKRLENLISL-I-PG QKKTGIFGNIIALSLGLTPNEKANF--GLSKD-V---KLQ--LAKDTYADDLDS
277


WP_037581760
212
LSAA-LSKSKRLENLISL-I-PG QKKTGIFGNIIALSLGLTPNEKANF--GLSKD-V---KLQ--LAKDTYADDLDS
277


WP_004232481
212
LTEK-ISKSRRLENLIKQ-Y-PT EKKNTLFGNLVALALGLQPNFKTNF--KLSED-A---KLQ--FSKDTYDEDLEE
277


WP_009854540
213
LTEK-ISKSRRLENLIKY-Y-PT EKKNTLEGNLIALALGLQPNEKMNF--KLSED-A---KLQ--FSKDTYEEDLEE
278


WP_012962174
213
LTEK-FSKSRRLENLIKH-Y-PT EKKNTLFGNLVALALGLQPNFKTSF--KLSED-A---KLQ--FSKDTYEEDLEE
278


WP_039695303
213
LTEK-ISKSRRLENLIKY-Y-PT EKKNTLEGNLIALALGLQPNEKTNE--KLSED-A---KLQ--FSKDTYEEDLEE
278


WP_014334983
212
LTEK-VSKSRRLENLIKQ-Y-PT EKKNTLEGNLIALALGLQPNEKTNE--KLSED-A---KLQ--FSKDTYEEDLEE
277


WP_003099269
212
LTSK-TSKSRRLENLIAE-I-PN QKRNMLFGNLVSLALGLTPNFKTNF--ELLED-A---KLQ--ISKDSYEEDLDN
277


AHY15608
212
LTSK-TSKSRRLENLIAE-I-PN QKRNMLFGNLVSLALGLTPNFKTNF--ELLED-A---KLQ--ISKDSYEEDLDN
277


AHY17476
212
LTSK-TSKSRRLENLIAE-I-PN QKRNMLFGNLVSLALGLTPNFKTNF--ELLED-A---KLQ--ISKDSYEEDLDN
277


ESR09100

----------------------- ------------------------------------------------------



AGM98575
212
LTSK-TSKSRRLENLIAE-I-PN QKRNMLFGNLVSLALGLTPNFKTNF--ELLED-A---KLQ--ISKDSYEEDLDN
277


ALF27331
212
LTDK-ISKSAKKDRVLKL-F-PN EKSNGRFAEFLKLIVGNQADFKKHF--ELEEK-A---PLQ--FSKDTYEEELEV
277


WP_018372492
210
FTEN-SSKAKRVETILGL-F-PD ETAAGNLDKFLKLMLGNQADFKKVF--DLEEK----iTLQ--FSKDSYEEDLEL
275


WP_045618028
213
FTDK-ISKSAKRERVLKL-F-PD EKSTGLFSEFLKLIVGNQADFKKHF--DLEEK-A---PLQ--FSKDTYDEDLEN
278


WP_045635197
212
FTDK-ISKSAKRERVLKL-F-PD EKSTGLFSEFLKLIVGNQADFKKHF--DLEDK-A---PLQ--FSKDTYDEDLEN
277


WP_002263549
212
LTDK-ISKSAKKDRVLKL-F-PN EKSNGRFAEFLKLIVGNQADFKKHF--ELEEK-A---PLQ--FSKDTYEEELEV
277


WP_002263887
212
LTDK-ISKSAKKDRVLKL-F-PN EKSNGRFAEFLKLIVGNQADFKKHF--ELEEK-A---PLQ--FSKDTYEEELEV
277


WP_002264920
212
LTEK-ISKSRRLEKLINN-Y-PK EKKNTLFRNLVALSLGLQPNFKTNF--KLSED-A---KLQ--FSKDTYEEDLEE
277


WP_002269043
212
LTDK-ISKSAKKDRVLKL-F-PN EKSNGRFAEFLKLIVGNQADFKKHF--ELEEK-A---PLQ--FSKDIYEEELEV
277


WP_002269448
212
LTDK-ISKSAKKDRVLKL-F-PN EKSNGRFAEFLKLIVGNQADFKKHF--ELEEK-A---PLQ--FSKDTYEEELEV
277


WP_002271977
212
LTDK-ISKSAKKDRVLKL-F-PN EKSNGRFAEFLKLIVGNQADFKKHF--ELEEK-A---PLQ--FSKDTYEEDLEE
277


WP_002272766
212
LTDK-ISKSAKKDRVLKL-F-PN EKSNGRFAEFLKLIVGNQADFKKHF--ELEEK-A---PLQ--FSKDTYEEDLEE
277


WP_002273241
212
LTDK-ISKSAKKDRVLKL-F-PN EKSNGRFAEFLKLIVGNQADFKKHF--ELEEK-A---PLQ--FSKDTYEEELEV
277


WP_002275430
212
LTDK-ISKSAKKDRVLKL-F-PN EKSNGRFAEFLKLIVGNQADFKKHF--ELEEK-A---PLQ--FSKDTYEEELEV
277


WP_002276448
212
LTDK-ISKSAKKDRVLKL-F-PN EKSNGRFAEFLKLIVGNQADFKKHF--ELEEK-A---PLQ--FSKDTYEEELEV
277


WP_002277050
212
LTEK-ISKSRRLEKLINN-Y-PK EKKNTLEGNLIALSLGLQPNEKTNE--KLSED-A---KLQ--FSKDTYEEDLEE
277


WP_002277364
212
LTDK-ISKSAKKDRVLKL-F-PN EKSNGRFAEFLKLIVGNQADFKKHF--ELEEK-A---PLQ--FSKDTYEEELEV
277


WP_002279025
212
LTDK-ISKSAKKDRVLKL-F-PN EKSNGRFAEFLKLIVGNQADFKKHF--ELEEK-A---PLQ--FSKDTYEEELEV
277


WP_002279859
212
LTEK-ISKSRRLEKLINN-Y-PK EKKNTLEGNLIALSLGLQPNEKTNE--KLSED-A---KLQ--FSKDTYEEELEV
277


WP_002280230
212
LTDK-ISKSAKKDRVLKL-F-PN EKSNGRFAEFLKLIVGNQADFKKHF--ELEEK-A---PLQ--FSKDTYEEELEV
277


WP_002281696
212
LTDK-ISKSAKKDRVLKL-F-PN EKSNGRFAEFLKLIVGNQADFKKHF--ELEEK-A---PLQ--FSKDTYEEELEV
277


WP_002282247
212
LTEK-ISKSRRLEKLINN-Y-PK EKKNTLEGNLIALSLGLQPNEKTNE--KLSED-A---KLQ--FSKDTYEEDLEE
277


WP_002282906
212
LTDK-ISKSAKKDRVLKL-F-PN EKSNGRFAEFLKLIVGNQADFKKHF--ELEEK-A---PLQ--FSKDTYEEELEV
277


WP_002283846
212
LTDK-ISKSAKKDRVLKL-F-PN EKSNGRFAEFLKLIVGNQADFKKHF--ELEEK-A---PLQ--FSKDIYEEELEV
277


WP_002287255
212
LTDK-ISKSAKKDRVLKL-F-PN EKSNGRFAEFLKLIVGNQADFKKHF--ELEEK-A---PLQ--FSKDTYEEELEV
277


WP_002288990
212
LTDK-ISKSAKKDRVLKL-F-PN EKSNGRFAEFLKLIVGNQADFKKHF--ELEEK-A---PLQ--FSKDIYEEELEV
277


WP_002289641
212
LTDK-ISKSAKKDRVLKL-F-PN EKSNGCFAEFLKLIVGNQADFKKHF--ELEEK-A---PLQ--FSKDTYEEELEV
277


WP_002290427
212
LTDK-ISKSAKKDRVLKL-F-PN EKSNGRFAEFLKLIVGNQADFKKHF--ELEEK-A---PLQ--FSKDIYEEELEV
277


WP_002295753
212
LTDK-ISKSAKKDRVLKL-F-PN EKSNGRFAEFLKLIVGNQADFKKHF--ELEEK-A---PLQ--FSKDTYEEELEV
277


WP_002296423
212
LTDK-ISKSAKKDRVLKL-F-PN EKSNGRFAEFLKLIVGNQADFKKHF--ELEEK-A---PLQ--FSKDIYEEELEV
277


WP_002304487
212
LTEK-VSKSRRLENLVEC-Y-PT EKKNTLEGNLIALSLGLQPNEKTNE--QLSED-A---KLQ--FSKDTYEEDLEG
277


WP_002305844
212
LTDK-ISKSAKKDRVLKL-F-PN EKSNGRFAEFLKLIVGNQADFKKHF--ELEEK-A---PLQ--FSKDTYEEELEV
277


WP_002307203
212
LTDK-ISKSAKKDRVLKL-F-PN EKSNGRFAEFLKLIVGNQADFKKHF--ELEEK-A---PLQ--LSKDTYEEELEV
277


WP_002310390
212
LTDK-ISKSAKKDRVLKL-F-PN EKSNGRFAEFLKLIVGNQADFKKHF--ELEEK-A---PLQ--FSKDIYEEELEV
277


WP_002352408
212
LTDK-ISKSAKKDRVLKL-F-PN EKSNGRFAEFLKLIVGNQADFKKHF--ELEEK-A---PLQ--FSKDIYEEELEV
277


WP_012997688
212
LTDK-ISKSAKKDRVLKL-F-PN EKSNGRFAEFLKLIVGNQADFKKHF--ELEEK-A---PLQ--FSKDTYEEELEV
277


WP_014677909
212
LTDK-ISKSAKKDRVLKL-F-PN EKSNGRFAEFLKLIVGNQADFKKHF--ELEEK-A---PLQ--FSKDIYEEELEV
277


WP_019312892
212
LTDK-ISKSAKKDRVLKL-F-PN EKSNGRFAEFLKLIVGNQADFKKHF--ELEEK-A---PLQ--FSKDTYEEELEV
277


WP_019313659
212
LTDK-ISKSAKKDRVLKL-F-PN EKSNGRFAEFLKLIIGNQADFKKHF--ELEEK-A---PLQ--FSKDTYEEELEV
277


WP_019314093
212
LTDK-ISKSAKKDRVLKL-F-PN EKSNGRFAEFLKLIVGNQADFKKHF--ELEEK-A---PLQ--LSKDTYEEELEV
277


WP_019315370
212
LTDK-ISKSAKKDRVLKL-F-PN EKSNGRFAEFLKLIVGNQADFKKHF--ELEEK-A---PLQ--FSKDTYEEELEV
277


WP_019803776
212
LTDK-ISKSAKKDRVLKL-F-PN EKSNGRFAEFLKLIVGNQADFKKHF--ELEEK-V---PLQ--FSKDTYEEELEV
277


WP_019805234
212
LTDK-ISKSAKKDRVLKL-F-PN EKSNGRFAEFLKLIVGNQADFKKHF--ELEEK-A---PLQ--FSKDIYEEELEV
277


WP_024783594
212
LTDK-ISKSAKKDRVLKL-F-PN EKSNGRFAEFLKLIVGNQADFKKHF--ELEEK-A---PLQ--FSKDTYEEELEV
277


WP_024784288
212
LTEK-ISKSRRLEKLINN-Y-PK EKKNTLEGNLIALSLGLQPNEKTNE--KLSED-A---KLQ--FSKDTYEEDLEE
277


WP_024784666
212
LTDK-ISKSAKKDRVLKL-F-PN EKSNGRFAEFLKLIVGNQADFKKHF--ELEEK-A---PLQ--FSKDTYEEELEV
277


WP_024784894
212
LTDK-ISKSAKKDRVLKL-F-PN EKSNGRFAEFLKLIVGNQADFKKHF--ELEEK-A---PLQ--FSKDTYEEELEV
277


WP_024786433
212
LTEK-ISKSRRLEKLINN-Y-PK EKKNTLEGNLIALSLGLQPNEKTNE--KLSED-A---KLQ--FSKDTYEEDLEE
277


WP_049473442
212
LTDK-ISKSAKKDRVLKL-F-PN EKSNGRFAEFLKLIVGNQADFKKHF--ELEEK-A---PLQ--FSKDTYEEDLEE
277


WP_049474547
212
LTDK-ISKSAKKDRVLKL-F-PN EKSNGRFAEFLKLIVGNQADFKKHF--ELEEK-A---PLQ--FSKDTYEEELEV
277


EMC03581
205
LTDK-ISKSAKKDRVLKL-F-PN EKSNGRFAEFLKLIVGNQADFKKHF--ELEEK-A---PLQ--FSKDTYEEELEV
270


WP_000428612
213
FTDK-ISKSAKRERVLKL-F-PD EKSTGLFSEFLKLIVGNQADFKKHF--DLEEK-A---PLQ--FSRDTYDEDLEN
278


WP_000428613
213
FTDK-ISKSAKRERVLKL-F-PD EKSTGLFSEFLKLIVGNQADFKKHF--DLGEK-A---PLQ--FSKDTYDEDLEN
278


WP_049523028
212
FTDK-ISKSAKRDRVLKL-F-PD EKSTGLFSEFLKLIVGNQADFKKHF--DLEEK-A---PLQ--FSKDTYEEDLES
277


WP_003107102
181
LTEK-MSKSRRLENLIAK-I-PN QKKNTLEGNLISLSLGLTPNFKANF--ELSED-A---KLQ--ISKESFEEDLDN
246


WP_054279288
214
LTEK-ISKTRRLENLISN-I-PG QKKNGLFGNLIALSLGLTPNEKSHF--NLPED-A---KLQ--LAKDTYDEELNN
279


WP_049531101
213
FTDK-ISKSTKRERVLKL-F-PD QKSTGLFSEFLKLIVGNQADFKKHF--DLEEK-A---PLQ--FSKDTYDEDLEN
278


WP_049538452
213
FSDK-ISKSAKRERVLKL-F-PD EKSTGLFSEFLKLIVGNQADFKKHF--DLEEK-A---PLQ--FSKDTYDEDLEN
278


WP_049549711
213
FTDK-ISKSAKRERVLKL-F-PD EKSTGLFSEFLKLIVGNQADFKKHF--DLGEK-A---PLQ--FSKDTYDEDLEN
278


WP_007896501
214
LTAK-TSKSKRLESLISE-F-PG QKKNGLFGNLLALALGLRPNFKSNF--GLSED-A---KLQ--ITKDTYEEELDN
279


EFR44625
166
LTAK-TSKSKRLESLISE-F-PG QKKNGLFGNLLALALGLRPNFKSNF--GLSED-A---KLQ--ITKDTYEEELDN
231


WP_002897477
212
FTDK-ISKSAKRERVLKL-F-PD EKSTGLFSEFLKLIVGNQADFKKHF--DLEEK-A---PLQ--FSKDTYDEELEN
277


WP_002906454
212
FTDK-ISKSTKRERVLKL-F-SD EKSTGLFSEFLKLIVGNQADFKKHF--DLEEK-A---PLQ--FSKDTYDEDLEN
277


WP_009729476
213
FTDK-ISKSAKRERVLKL-F-PD EKSTGLFSEFLKLIVGNQADFKKHF--DLEEK-A---PLQ--FSRDTYDEDLEN
278


CQR24647
212
ITAK-ISKSRKVEAVLEQ-F-PD QKKNSFEGNMVSLVEGLMPNEKSNF--ELDED-A---KLQ--FSRDSYDEDLEN
277


WP_000066813
213
FTDK-ISKSTKRERVLKL-F-PD EKSTGLFSEFLKLIVGNQADFKKHF--DLEEK-A---PLQ--FSKDTYDEDLEN
278


WP_009754323
213
FTGK-ISKSVKREHVLKL-F-PD EKSTGLFSEFLKLIVGNQADFKKHF--DLEEK-A---SLQ--FSKDTYDEDLEN
278


WP_044674937
212
LVEK-VSKSRRLENILHY-F-PN EKKNGLFGNFLALALGLQPNFKTNF--ELAED-A---KIQ--FSKETYEEDLEE
277


WP_044676715
212
LVEK-VSKSRRLENILHY-F-PN EKKNGLFGNFLTLALGLQPNFKTNF--ELAED-A---KIQ--FSKETYEEDLEE
277


WP_044680361
212
LVEK-VSKSRRLENILHY-F-PN EKKNGLFGNFLALALGLQPNFKTNF--ELAED-A---KIQ--FSKETYEEDLEE
277


WP_044681799
212
LVEK-VSKSRRLENILHY-F-PN EKKNGLFGNFLALALGLQPNFKTNF--ELAED-A---KIQ--FSKETYEEDLEE
277


WP_049533112
212
LTEK-VSKSRRLENLIAH-Y-PA EKKNTLFGNLIALSLGLQPNEKTNF--QLSED-A---KLQ--FSKDTYEEDLEG
277


WP_029090905
172
LLDRmMNRSSKVKFLIEL---TG KQDKPLLKELFNLIVGLKAKPASIFe---QENlAtivETM-nMSTEQVQLDLLT
243


WP_006506696
211
LKKP-LSKKAKVDEVMTL-IaPE KDYKSAFKELVTGIAGNKMNVTKMI1cEPIKQ-Gds-EIK1kFSDSNYDDQFSE
283


AIT42264
212
LSAR-LSKSRRLENLIAQ-L-PG EKKNGLFGNLIALSLGLTPNEKSNF--DLAED-A---KLQ--LSKDTYDDDLDN
277


WP_034440723
218
FKQD-ISRSKKLDQAIAL-F-QG -KRQSLFGIFLTLIVGNKANFQKIF--NLEDD----iKLD--LKEEDYDENLEE
283


AKQ21048
212
LSAR-LSKSRRLENLIAQ-L-PG EKKNGLFGNLIALSLGLTPNEKSNF--DLAED-A---KLQ--LSKDTYDDDLDN
277


WP_004636532
211
LSSK-QSRSRKHEQIMAL-F-PN ENKLGNFGRFMMLIVGNTSNFKPVF--DLDDE-Y---KLK--LSDETYEEDLDT
276


WP_002364836
218
LTEK-ASRTKKSEKVLQQ-F-PQ EKANGLFGQFLKLMVGNKADFKKVF--GLEEE-A---KI--tYASESYEEDLEG
283


WP_016631044
169
LTEK-ASRTKKSEKVLQQ-F-PQ EKANGLFGQFLKLMVGNKADFKKVF--GLEEE-A---KI--tYASESYEEDLEG
234


EMS75795
1
----------------------- ----------------------------MDEE-A---KIQ--LSKESYEEELES
20


WP_002373311
218
LTEK-ASRTKKSEKVLQQ-F-PQ EKANGLFGQFLKLMVGNKADFKKVF--GLEEE-A---KI--tYASESYEEDLEG
283


WP_002378009
218
LTEK-ASRTKKSEKVLQQ-F-PQ EKANGLFGQFLKLMVGNKADFKKVF--GLEEE-A---KI--tYASESYEEDLEG
283


WP_002407324
218
LTEK-ASRTKKSEKVLQQ-F-PQ EKANGLFGQFLKLMVGNKADFKKVF--GLEEE-A---KI--tYASESYEEDLEG
283


WP_002413717
218
LTEK-ASRTKKSEKVLQQ-F-PQ EKANGLFGQFLKLMVGNKADFKKVF--GLEEE-A---KI--tYASESYEEDLEG
283


WP_010775580
218
LTEK-ASRTKKSEKVLQQ-F-PQ EKANGLFGQFLKLMVGNKADFKKVF--GLEEE-A---KIKitYASESYEEDLEG
285


WP_010818269
218
LTEK-ASRTKKSEKVLQQ-F-PQ EKANGLFGQFLKLMVGNKADFKKVF--GLEEE-A---KI--tYASESYEEDLEG
283


WP_010824395
218
LTEK-ASRTKKSEKVLQQ-F-PQ EKANGLFGQFLKLMVGNKADFKKVF--GLEEE-A---KI--tYASESYEEDLEG
283


WP_016622645
218
LTEK-ASRTKKSEKVLQQ-F-PQ EKANGLFGQFLKLMVGNKADFKKVF--GLEEE-A---KI--tYASESYEEDLEG
283


WP_033624816
218
LTEK-ASRTKKSEKVLQQ-F-PQ EKANGLFGQFLKLMVGNKADFKKVF--GLEEE-A---KI--tYASESYEEDLEG
283


WP_033625576
218
LTEK-ASRTKKSEKVLQQ-F-PQ EKANGLFGQFLKLMVGNKADFKKVF--GLEEE-A---KI--tYASESYEEDLEG
283


WP_033789179
218
LTEK-ASRTKKSEKVLQQ-F-PQ EKANGLFGQFLKLMVGNKADFKKVF--GLEEE-A---KI--tYASESYEEDLEG
283


WP_002310644
217
FTEK-MSKIKKAEILLKY-F-PH EKSNGYLSQFIKLMVGNQGNFKNVF--GL-EE-A---KLQ--FSKETYEEDLEE
281


WP_002312694
217
FTEK-MSKIKKAEILLKY-F-PH EKSNGYLSQFIKLMVGNQGNFKNVF--GL-EEeA---KLQ--FSKETYEEDLEE
282


WP_002314015
217
FTEK-MSKIKKAEILLKY-F-PH EKSNGYLSQFIKLMVGNQGNFKNVF--GL-EEeA---KLQ--FSKETYEEDLEE
282


WP_002320716
217
FTEK-MSKIKKAEILLKY-F-PH EKSNGYLSQFIKLMVGNQGNFKNVF--GL-EEeA---KLQ--FSKETYEEDLEE
282


WP_002330729
217
FTEK-MSKIKKAEILLKY-F-PH EKSNGYLSQFIKLMVGNQGNFKNVF--GL-EE-A---KLQ--FSKETYEEDLEE
281


WP_002335161
217
FTEK-MSKIKKAEILLKY-F-PH EKSNGYLSQFIKLMVGNQGNFKNVF--GL-EEeA---KLQ--FSKETYEEDLEE
282


WP_002345439
217
FTEK-MSKIKKAEILLKY-F-PH EKSNGYLSQFIKLMVGNQGNFKNVF--GL-EEeA---KLQ--FSKETYEEDLEE
282


WP_034867970
210
LTDK-LSKIKKVEEILKY-Y-PT EKINSFFAQCLKLIVGNQANFKRIF--DLEAE-V---KLQ--FSKETYEEDLES
275


WP_047937432
217
FTEK-MSKIKKAEILLKY-F-PH EKSNGYLSQFIKLMVGNQGNFKNVF--GL-EEeA---KLQ--FSKETYEEDLEE
282


WP_010720994
210
LTDK-LSKIKKVEEILKY-Y-PT EKINSFFAQCLKLIVGNQANFKRIF--DLEAE-V---KLQ--FSKETYEEDLES
275


WP_010737004
210
LTDK-LSKIKKVEEILKY-Y-PT EKINSFFAQCLKLIVGNQANFKRIF--DLEAE-V---KLQ--FSKETYEEDLES
275


WP_034700478
210
LTDK-LSKIKKVEEILKY-Y-PT EKINSFFAQCLKLIVGNQANFKRIF--DLEAE-V---KLQ--FSKETYEEDLES
275


WP_007209003
215
LTQQ-LSKSERADNVLKL-F-PD EKGIGIFAQFIKLIVGNQGNFKKVF--QLEED----qKLQ--LSTDDYEENIEN
280


WP_023519017
210
LTER-LSKAKRVEKVLAY-Y-PS EKSTGNFAQFLKLMVGNQANFKKTF--DLEEE-M---KLN--FTRDCYEEDLNE
275


WP_010770040
213
FSEK-VSRARKVEAILSV-Y-SE EKSTGTLAQFLKLMVGNQGRFKKTF--DLEED-G---IIQ--IPKEEYEEELET
278


WP_048604708
209
FADK-VSRAKKAEGVLAL-F-PD EKRNGTFDQFLKMIVGNQGNFKKTF--ELEED-A---KLQ--FSKEEYDESLEA
274


WP_010750235
210
LTDK-LSKSKKVEKILQY-Y-PK EKTIGCLAQFLKLIVGNQGNFKQAF--HLDEE-V---KIQ--ISKETYEEDLEK
275


AII16583
251
LSAR-LSKSRRLENLIAQ-L-PG EKKNGLFGNLIALSLGLIPNEKSNF--DLAED-A---KLQ--LSKDTYDDDLDN
316


WP_029073316
216
LKEP-LSKKHKADKAFAL-FdTT KDNKAAYKELCAALAGNKENVIKMLkeAELHD-EdekDISfkFSDATFDDAFVE
289


WP_031589969
216
LKEP-LSKKHKAEKAFAL-FdTT KDNKAAYKELCAALAGNKENVIKMLkeAELHD-EdekDISfkFSDATFDDAFVE
289


KDA45870
210
FKDNtFSKTKKSEELLKL---SG -KKNQLAHQLFKMMVGNMGSFKKVL--GTDEE----hKLS--FGKDTYEDDLND
275


WP_039099354
207
LLDNhQSASNRQRQALLLiYtPS KQNKAIATELLKAILGLKAKFNVLT--GIEAEdVktwTLT--FNAENFDEEMVK
285


AKP02966
209
LIGR-GNATQKSSNILNN-F--T KETKKLLKEVINLILGNVAHLNTIFktSLIKDeE---KLS--FSGKDIESKLDD
278


WP_010991369
218
LVEK-VTRKEKLERILKL-Y-PG EKSAGMFAQFISLIVGSKGNFQKPF--DLIEK-S---DIE--CAKDSYEEDLES
283


WP_033838504
218
LVEK-VTRKEKLERILKL-Y-PG EKSAGMFAQFISLIVGSKGNFQKPF--DLIEK-S---DIE--CAKDSYEEDLES
283


EHN60060
221
LVEK-VTRKEKLERILKL-Y-PG EKSAGMFAQFISLIVGSKGNFQKPF--DLIEK-S---DIE--CAKDSYEEDLES
286


EFR89594
1
---------------LKL-Y-PG EKSTGMFAQFISLIVGSKGNFQKPF--DLIEK-S---DIE--CAKDSYEEDLES
52


WP_038409211
218
LSEK-LTRREKLDKILKL-Y-TG EKSIGMFARFINLIIGSKGDFKKVF--DLDEK-A---EIE--CAKDIYEEDLEA
283


EFR95520

----------------------- ------------------------------------------------------



WP_003723650
218
LAGK-FTRREKFERILQL-Y-PG EKSIGMFAQFISLIVGSKGNFQKVF--DLIEK-T---DIE--CAKDSYEEDLET
283


WP_003727705
218
LAGK-FTRREKFERILRL-Y-PG EKSIGMFAQFISLIVGNKGNFQKVF--NLVEK-T---DIE--CAKDSYEEDLEA
283


WP_003730785
218
LAGK-FTRREKFERILRL-Y-PG EKSIGMFAQFISLIVGNKGNFQKVF--NLVEK-T---DIE--CAKDSYEEDLEA
283


WP_003733029
218
LAEK-FTRKDKLDKILSL-Y-PG EKTIGVFAQFVNIIVGSTGKEKKHF--NLHEK-K---DIN--CAEDTYDIDLES
283


WP_003739838
218
LAGK-FTRKEKLERILQL-Y-PG EKSIGMFAQFISLIVGSKGNFQKVF--DLVEK-T---DIE--CAKDSYEEDLEA
283


WP_014601172
218
LAGK-FTRREKFERILQL-Y-PG EKSTGMFAQFISLIVGSKGNFQKVF--DLIEK-T---DIE--CAKDSYEEDLEA
283


WP_023548323
218
LAGK-FTRREKFERILQL-Y-PG EKSTGMFAQFISLIVGSKGNFQKVF--DLIEK-T---DIE--CAKDSYEEDLET
283


WP_031665337
218
LAGK-FTRREKFERILQL-Y-PG EKSTGMFAQFISLIVGSKGNFQKVF--DLIEK-T---DIE--CAKDSYEEDLET
283


WP_031669209
218
LAEK-FTRKDKLDKILSL-Y-PG EKTTGVFAQFVNIIVGSTGKEKKHF--NLHEK-K---DIN--CAEDTYDIDLES
283


WP_033920898
218
LARK-FTRREKFERILQL-Y-PG EKSTGMFAQFISLIVGSKGNFQKVF--DLIEK-T---DIE--CAKDSYEEDLET
283


AKI42028
221
LAGK-FTRREKFERILQL-Y-PG EKSTGMFAQFISLIVGSKGNFQKVF--DLIEK-T---DIE--CAKDSYEEDLEA
286


AKI50529
221
LARK-FTRREKFERILQL-Y-PG EKSTGMFAQFISLIVGSKGNFQKVF--DLIEK-T---DIE--CAKDSYEEDLET
286


EFR83390

----------------------- ------------------------------------------------------



WP_046323366
218
FSEK-LTKREKLDKILNL-Y-PN EKSTDLFAQFISLIIGSKGNEKKFF--NLTEK-T---DIE--CAKDSYEEDLEV
283


AKE81011
228
LSAR-LSKSRRLENLIAQ-L-PG EKKNGLEGNLIALSLGLIPNEKSNF--DLAED-A---KLQ--LSKDTYDDDLDN
293


CUO82355
215
LKKP-LSKKAKVDEVMAL-IsPE KEEKSAYKELVTGIAGNKMNVTKMIlcESIKQ-Gds-EIKlkFSDSNYDDQFSE
287


WP_033162887
216
LSKI-YQRSKKADDLLKI-MnPT KEEKAAYKEFTKALVGLKENISKMIlaQEVKK-Gdt-DIVleFSNANYDSTIDE
288


AGZ01981
245
LSAR-LSKSRRLENLIAQ-L-PG EKKNGLEGNLIALSLGLIPNEKSNF--DLAED-A---KLQ--LSKDTYDDDLDN
310


AKA60242
212
LSAR-LSKSRRLENLIAQ-L-PG EKKNGLEGNLIALSLGLIPNEKSNF--DLAED-A---KLQ--LSKDTYDDDLDN
277


AKS40380
212
LSAR-LSKSRRLENLIAQ-L-PG EKKNGLEGNLIALSLGLIPNEKSNF--DLAED-A---KLQ--LSKDTYDDDLDN
277


4UN5_B
216
LSAR-LSKSRRLENLIAQ-L-PG EKKNGLEGNLIALSLGLIPNEKSNF--DLAED-A---KLQ--LSKDTYDDDLDN
281


WP_010922251
278


embedded image


356


WP_039695303
279
LLGKIGDDYADLFTSAKNLYDAILLSGILTVDDNSTKAPLSASMIKRYVEHHEDLEKLKEFIKAN-KSELYHDIFKDKNK
357


WP_045635197
278
LLGQIGDDFIDLFVSAKKLYDAILLSGILTVIDPSTKAPLSASMIERYENHQNDLAALKQFIKNN-LPEKYDEVFSDQSK
356


5AXW_A
158
---------------------------------------------------------LERLKKDG-------EVR-----
168


WP_009880683
1
---------------------------------------LSASMIKRYDEHHQDLTLLKALVRQQ-LPEKYKEIFFDQSK
40


WP_010922251
278
LLAQIGDQYADLFLAAKNLSDAILLSDILRVNTEITKAPLSASMIKRYDEHHQDLILLKALVRQQ-LPEKYKEIFFDQSK
356


WP_011054416
278
LLAQIGDQYADLFLAAKNLSDAILLSDILRVNSEITKAPLSASMIKRYDEHHQDLILLKALVRQQ-LPEKYKEIFFDQSK
356


WP_011284745
278
LLAQIGDQYADLFLAAKNLSDAILLSDILRLNSEITKAPLSASMIKRYDEHHQDLILLKALVRQQ-LPEKYKEIFFDQSK
356


WP_011285506
278
LLAQIGDQYADLFLAAKNLSDAILLSDILRVNTEITKAPLSASMIKRYDEHHQDLILLKALVRQQ-LPEKYKEIFFDQSK
356


WP_011527619
278
LLAQIGDQYADLFLAAKNLSDAILLSDILRLNSEITKAPLSASMIKRYDEHHQDLILLKALVRQQ-LPEKYKEIFFDQSK
356


WP_012560673
278
LLAQIGDQYADLFLAAKNLSDAILLSDILRVNTEITKAPLSASMIKRYDEHHQDLILLKALVRQQ-LPEKYKEIFFDQSK
356


WP_014407541
278
LLAQIGDQYADLFLAAKNLSDAILLSDILRVNSEITKAPLSASMIKRYDEHHQDLILLKALVRQQ-LPEKYKEIFFDQSK
356


WP_020905136
278
LLAQIGDQYADLFLAAKNLSDAILLSDILRLNSEITKAPLSASMIKRYDEHHQDLILLKALVRQQ-LPEKYKEIFFDQSK
356


WP_023080005
278
LLAQIGDQYADLFLAAKNLSDAILLSDILRVNSEITKAPLSASMIKRYDEHHQDLILLKALVRQQ-LPEKYKEIFFDQSK
356


WP_023610282
278
LLAQIGDQYADLFLAAKNLSDAILLSDILRVNSEITKAPLSASMIKRYDEHHQDLILLKALVRQQ-LPEKYKEIFFDQSK
356


WP_030125963
278
LLAQIGDQYADLFLAAKNLSDAILLSDILRVNTEITKASLSASMIKRYDEHHQDLILLKALVRQQ-LPEKYKEIFFDQSK
356


WP_030126706
278
LLAQIGDQYADLFLAAKNLSDAILLSDILRVNSEITKAPLSASMIKRYDEHHQDLILLKALVRQQ-LPEKYKEIFFDQSK
356


WP_031488318
278
LLAQIGDQYADLFLAAKNLSDAILLSDILRVNSEITKAPLSASMIKRYDEHHQDLILLKALVRQQ-LPEKYKEIFFDQSK
356


WP_032460140
278
LLAQIGDQYADLFLAAKNLSDAILLSDILRVNTEITKAPLSASMIKRYDEHHQDLILLKALVRQQ-LPEKYKEIFFDQSK
356


WP_032461047
278
LLAQIGDQYADLFLAAKNLSDAILLSDILRVNTEITKAPLSASMIKRYDEHHQDLILLKALVRQQ-LPEKYKEIFFDQSK
356


WP_032462016
278
LLAQIGDQYADLFLAAKNLSDAILLSDILRVNTEITKAPLSASMIKRYDEHHQDLILLKALVRQQ-LPEKYKEIFFDQSK
356


WP_032462936
278
LLAQIGDQYADLFLAAKNLSDAILLSDILRVNSEITKAPLSASMIKRYDEHHQDLILLKALVRQQ-LPEKYKEIFFDQSK
356


WP_032464890
278
LLAQIGDQYADLFLAAKNLSDAILLSDILRLNSEITKAPLSASMIKRYDEHHQDLILLKALVRQQ-LPEKYKEIFFDQSK
356


WP_033888930
103
LLAQIGDQYADLFLAAKNLSDAILLSDILRVNTEITKAPLSASMIKRYDEHHQDLILLKALVRQQ-LPEKYKEIFFDQSK
181


WP_038431314
278
LLAQIGDQYADLFLAAKNLSDAILLSDILRVNSEITKAPLSASMIKRYDEHHQDLILLKALVRQQ-LPEKYKEIFFDQSK
356


WP_038432938
278
LLAQIGDQYADLFLAAKNLSDAILLSDILRVNSEITKAPLSASMIKRYDEHHQDLILLKALVRQQ-LPEKYKEIFFDQSK
356


WP_038434062
278
LLAQIGDQYADLFLAAKNLSDAILLSDILRVNSEITKAPLSASMIKRYDEHHQDLILLKALVRQQ-LPEKYKEIFFDQSK
356


BAQ51233
189
LLAQIGDQYADLFLAAKNLSDAILLSDILRVNTEITKAPLSASMIKRYDEHHQDLILLKALVRQQ-LPEKYKEIFFDQSK
267


KGE60162

--------------------------------------------------------------------------------



KGE60856

--------------------------------------------------------------------------------



WP_002989955
278
LLAQIGDQYADLFLAAKNLSDAILLSDILRLNSEITKAPLSASMIKRYDEHHQDLILLKALVRQQ-LPEKYKEIFFDQSK
356


WP_003030002
278
LLGEIGDEYADLFASAKNLYDAILLSGILTVDDNSTKAPLSASMVKRYEEHQKDLKKLKDFIKVN-APDQYNAIFKDKNK
356


WP_003065552
281
LLGKIGDDYADLFTSAKNLYDAILLSGILIVDDNSTKAPLSASMIKRYVEHQEDLEKLKEFIKAN-KSELYHDIFKDKNK
359


WP_001040076
279
LLGQIGDEFADLFSAAKKLYDSVLLSGILTVIDLSTKAPLSASMIQRYDEHREDLKQLKQFVKAS-LPEKYQEIVADSSK
357


WP_001040078
279
LLGQIGDEFADLFSAAKKLYDSVLLSGILTVIDLSTKAPLSASMIQRYDEHREDLKQLKQFVKAS-LPEKYQEIFADSSK
357


WP_001040080
279
LLGQIGDEFADLFSAAKKLYDSVLLSGILTVIDLSTKAPLSASMIQRYDEHREDLKQLKQFVKAS-LPEKYQEIFADSSK
357


WP_001040081
279
LLGQIGDEFADLFSAAKKLYDSVLLSGILTVIDLSTKAPLSASMIQRYDEHREDLKQLKQFVKAS-LPEKYQEIFADSSK
357


WP_001040083
279
LLGQIGDEFADLFSAAKKLYDSVLLSGILTVIDLSTKAPLSASMIQRYDEHREDLKQLKQFVKAS-LPEKYQEIFADSSK
357


WP_001040085
279
LLGQIGDEFADLFSAAKKLYDSVLLSGILTVIDLSTKAPLSASMIQRYDEHREDLKQLKQFVKAS-LPEKYQEIFADSSK
357


WP_001040087
279
LLGQIGDEFADLFSAAKKLYDSVLLSGILTVIDLSTKAPLSASMIQRYDEHREDLKQLKQFVKAS-LPEKYQEIFADSSK
357


WP_001040088
279
LLGQIGDEFADLFSAAKKLYDSVLLSGILTVIDLSTKAPLSASMIQRYDEHREDLKQLKQFVKAS-LPEKYQEIFADSSK
357


WP_001040089
279
LLGQIGDEFADLFSAAKKLYDSVLLSGILTVIDLSTKAPLSASMIQRYDEHREDLKQLKQFVKAS-LPEKYQEIFADSSK
357


WP_001040090
279
LLGQIGDEFADLFSAAKKLYDSVLLSGILTVIDLSTKAPLSASMIQRYDEHREDLKQLKQFVKAS-LPEKYQEIFADSSK
357


WP_001040091
279
LLRQIGDEFADLFSAAKKLYDSVLLSGILTVIDLSTKAPLSASMIQRYDEHREDLKQLKQFVKAS-LPEKYQEIFADSSK
357


WP_001040092
279
LLGQIGDEFADLFSAAKKLYDSVLLSGILTVIDLSTKAPLSAYMIQRYDEHREDLKQLKQFVKAS-LPEKYQEIFADSSK
357


WP_001040094
279
LLGQIGDEFADLFSAAKKLYDSVLLSGILTVIDLSTKAPLSASMIQHYDEHREDLKQLKQFVKAS-LPEKYQEIFADSSK
357


WP_001040095
279
LLGQIGDEFADLFSAAKKLYDSVLLSGILTVIDLSTKAPLSASMIQRYDEHREDLKQLKQFVKAS-LPEKYQEIFADSSK
357


WP_001040096
279
LLGQIGDEFADLFSAAKKLYDSVLLSGILTVIDLSTKAPLSASMIQRYDEHREDLKQLKQFVKAS-LPEKYQEIFADSSK
357


WP_001040097
279
LLGQIGDEFADLFSAAKKLYDSVLLSGILTVIDLSTKAPLSASMIQRYDEHREDLKQLKQFVKAS-LPEKYQEIFADSSK
357


WP_001040098
279
LLGQIGDEFADLFSAAKKLYDSVLLSGILTVIDLSTKAPLSASMIQRYDEHREDLKQLKQFVKAS-LPEKYQEIFADSSK
357


WP_001040099
279
LLGQIGDEFADLFSAAKKLYDSVLLSGILTVIDLSTKAPLSASMIQRYDEHREDLKQLKQFVKAS-LPEKYQEIFADSSK
357


WP_001040100
279
LLGQIGDEFADLFSAAKKLYDSVLLSGILTVIDLSTKAPLSASMIQRYDEHREDLKQLKQFVKAS-LPEKYQEIFADSSK
357


WP_001040104
279
LLGQIGDEFADLFSAAKKLYDSVLLSGILTVIDLSTKAPLSASMIQRYDEHREDLKQLKQFVKAS-LPEKYQEIFADSSK
357


WP_001040105
279
LLGQIGDEFADLFSAAKKLYDSVLLSGILTVIDLSTKAPLSASMIQRYDEHREDLKQLKQFVKAS-LPEKYQEIFADSSK
357


WP_001040106
279
LLGQIGDEFADLFSVAKKLYDSVLLSGILTVIDLSTKAPLSASMIQRYDEHREDLKQLKQFVKAS-LPEKYQEIFTDSSK
357


WP_001040107
279
LLGQIGDEFADLFSVAKKLYDSVLLSGILTVIDLSTKAPLSASMIQRYDEHREDLKQLKQFVKAS-LPEKYQEIFTDSSK
357


WP_001040108
279
LLGQIGDEFADLFSVAKKLYDSVLLSGILTVIDLSTKAPLSASMIQRYDEHREDLKQLKQFVKAS-LPEKYQEIFTDSSK
357


WP_001040109
279
LLGQIGDEFADLFSVAKKLYDSVLLSGILTVIDLSTKAPLSASMIQRYDEHREDLKQLKQFVKAS-LPEKYQEIFTDSSK
357


WP_001040110
279
LLGQIGDEFADLFSVAKKLYDSVLLSGILTVIDLSTKAPLSASMIQRYDEHREDLKQLKQFVKAS-LPEKYQEIFTDSSK
357


WP_015058523
279
LLGQIGDEFADLFSAAKKLYDSVLLSGILTVIDLSTKAPLSASMIQRYDEHREDLKQLKQFVKAS-LPEKYQEIFADSSK
357


WP_017643650
279
LLGQIGDEFADLFSAAKKLYDSVLLSGILTVIDLSTKAPLSASMIQRYDEHREDLKQLKQFVKAS-LPEKYQEIFADSSK
357


WP_017647151
279
LLGQIGDEFADLFSVAKKLYDSVLLSGILTVIDLSTKAPLSASMIQRYDEHREDLKQLKQFVKAS-LPEKYQEIFTDSSK
357


WP_017648376
279
LLGQIGDEFADLFSVAKKLYDSVLLSGILTVIDLSTKAPLSASMIQRYDEHREDLKQLKQFVKAS-LPEKYQEIFTDSSK
357


WP_017649527
279
LLGQIGDEFADLFSAAKKLYDSVLLSGILTVIDLSTKAPLSASMIQRYDEHREDLKQLKQFVKAS-LPEKYQEIFADSSK
357


WP_017771611
279
LLGQIGDEFADLFSVAKKLYDSVLLSGILTVTALSTKAPLSASMIQRYDEHREDLKQLKQFVKAS-LPEKYQEIFTDSSK
357


WP_017771984
279
LLGQIGDEFADLFSAAKKLYDSVLLSGILTVIDLSTKAPLSASMIQRYDEHREDLKQLKQFVKAS-LPEKYQEIFADSSK
357


CFQ25032
279
LLGQIGDEFADLFSAAKKLYDSVLLSGILTVIDLSTKASLSDSMIQRYDEHREDLKQLKQFVKAS-LPEKYQEIFADSSK
357


CFV16040
279
LLGQIGDEFADLFSAAKKLYDSVLLSGILTVIDLSTKAPLSASMIQRYDEHREDLKQLKQFVKAS-LPEKYQEIFADSSK
357


KLJ37842
279
LLGQIGDEFADLFSAAKKLYDSVLLSGILTVIDLSTKAPLSASMIQRYDEHREDLKQLKQFVKAS-LPEKYQEIFADSSK
357


KLJ72361
279
LLGQIGDEFADLFSAAKKLYDSVLLSGILTVIDLSTKAPLSASMIQRYDEHREDLKQLKQFVKAS-LPEKYQEIFADSSK
357


KLL20707
279
LLGQIGDEFADLFSAAKKLYDSVLLSGILTVIDLSTKAPLSASMIQRYDEHREDLKQLKQFVKAS-LPEKYQEIFADSSK
357


KLL42645
279
LLGQIGDEFADLFSVAKKLYDSVLLSGILTVIDLSTKAPLSASMIQRYDEHREDLKQLKQFVKAS-LPEKYQEIFTDSSK
357


WP_047207273
279
LLGQIGDEFADLFSAAKKLYDSVLLSGILTVIDLSTKAPLSASMIQRYDEHREDLKQLKQFVKAS-LPEKYQEIFADSSK
357


WP_047209694
279
LLGQIGDEFADLFSAAKKLYDSVLLSGILTVIDLSTKAPLSASMIQRYDEHREDLKQLKQFVKAS-LPEKYQEIFADSSK
357


WP_050198062
279
LLGQIGDEFADLFSAAKKLYDSVLLSGILTVIDLSTKAPLSASMIQRYDEHREDLKQLKQFVKAS-LPEKYQEIFADSSK
357


WP_050201642
279
LLGQIGDEFADLFSAAKKLYDSVLLSGILTVIDLSTKAPLSASMIQRYDEHREDLKQLKQFVKAS-LPEKYQEIFADSSK
357


WP_050204027
279
LLGQIGDEFADLFSVAKKLYDSVLLSGILTVIDLSTKAPLSASMIQRYDEHREDLKQLKQFVKAS-LPEKYQEIFTDSSK
357


WP_050881965
279
LLGQIGDEFADLFSAAKKLYDSVLLSGILTVIDLSTKAPLSASMIQRYDEHREDLKQLKQFVKAS-LPEKYQEIFADSSK
357


WP_050886065
279
LLGQIGDEFADLFSAAKKLYDSVLLSGILTVIDLSTKAPLSASMIQRYDEHREDLKQLKQFVKAS-LPEKYQEIFADSSK
357


AHN30376
279
LLGQIGDEFADLFSAAKKLYDSVLLSGILTVIDLSTKAPLSASMIQRYDEHREDLKQLKQFVKAS-LPEKYQEIFADSSK
357


EAO78426
279
LLGQIGDEFADLFSAAKKLYDSVLLSGILTVIDLSTKAPLSASMIQRYDEHREDLKQLKQFVKAS-LPEKYQEIFADSSK
357


CCW42055
279
LLGQIGDEFADLFSAAKKLYDSVLLSGILTVIDLSTKAPLSASMIQRYDEHREDLKQLKQFVKAS-LPEKYQEIFADSSK
357


WP_003041502
278
LLGEVGDEYADLFASAKNLYDAILLSGILTVDDNSTKAPLSASMVKRYEEHQKDLKKFEDFIKVN-ALDQYNAIFKDKNK
356


WP_037593752
279
LLGEIGDEYADLFASAKNLYDAILLSGILAVDDNITKAPLSASMVKRYEEHQKDLKKLKDFIKVN-APDQYNAIFKDKNK
357


WP_049516684
279
LLGEIGDEYADLFASAKNLYDAILLSGILAVDDNITKAPLSASMVKRYEEHQKDLKKLKDFIKVN-APAQYDDIFKDETK
357


GAD46167
278
LLGEIGDEYADLFASAKNLYDAILLSGILAVDDNITKAPLSASMVKRYEEHQKDLKKLKDFIKVN-APDQYNAIFKDKNK
356


WP_018363470
279
LLGKIGDDYADLFTSSKNLYDAILLSGILTVDDNSTKAPLSASMIKRYVEHHEDLEKLKEFIKAN-KSELYHDIFKDKTQ
357


WP_003043819
278
LLGQIGDQYADLFSAAKNLSDAILLSDILRSNSEVTKAPLSASMVKRYDEHHQDLALLKTLVRQQ-FPEKYAEIFKDDTK
356


WP_006269658
278
FLGEVGDEYADLFASAKNLYDAILLSGILTVDDNSTKAPLSASMVKRYEEHQKDLKKLKDFIKVN-APDQYNAIFKDKNK
356


WP_048800889
278
LLGKIGDDYADLFTSAKNLYDTILLSGILAVDDNSTKALLSASMIKRYEEHQKDLKKLKDFIKVN-APAQYDDIFKDETK
356


WP_012767106
278
LLAQIGDQYADLFLAAKNLSDAILLSDILRVNSEITKAPLSASMIKRYDEHHQDLILLKALVRQQ-LPEKYKEIFFDQSK
356


WP_014612333
278
LLAQIGNQYADLFLAAKNLSDAILLSDILRVNSEITKAPLSASMIKRYDEHHQDLILLKALVRQQ-LPEKYKEIFFDQSK
356


WP_015017095
278
LLAQIGDQYADLFLAAKNLSDAILLSDILRVNSEITKAPLSASMIKRYDEHHQDLILLKALVRQQ-LPEKYKEIFFDQSK
356


WP_015057649
278
LLAQIGDQYADLFLAAKNLSDAILLSDILRVNSEITKAPLSASMIKRYDEHHQDLILLKALVRQQ-LPEKYKEIFFDQSK
356


WP_048327215
278
LLAQIGDQYADLFLAAKNLSDAILLSDILRVNSEITKAPLSASMIKRYDEHHQDLILLKALVRQQ-LPEKYKEIFFDQSK
356


WP_049519324
278
LLAQIGDQYADLFLAAKNLSDAILLSDILRVNSEITKAPLSASMIKRYDEHHQDLILLKALVRQQ-LPEKYKEIFFDQSK
356


WP_012515931
278
LLAQIGDQYADLFLAAKNLSDAILLSDILTESDEITRAPLSASMVKRYREHHKDLVTLKTLIKDQ-LPEKYQEIFLDKTK
356


WP_021320964
278
LLAQIGDQYADLFLAAKNLSDAILLSDILTESDEITRAPLSASMVKRYREHHKDLVTLKTLIKDQ-LPEKYQEIFLDKTK
356


WP_037581760
278
LLAQIGDQYADLFLAAKNLSDAILLSDILTESDEITRAPLSASMVKRYREHHKDLVTLKTLIKDQ-LPEKYQEIFLDKTK
356


WP_004232481
278
LLGKIGDDYADLETAAKNLYDAILLSGILTVDDNSTKAPLSASMIKRYEEHHEDLEKLKTFIKVN-NEDKYHEIFKDKSK
356


WP_009854540
279
LLGKIGDDYADLFTSAKNLYDAILLSGILTVDDNSTKAPLSASMIKRYVEHHEDLEKLKEFIKAN-KSELYHDIFKDKNK
357


WP_012962174
279
LIGKIGDEYADLFTSAKNLYDAILLSGILTVADNITKAPLSASMIKRYNEHQVDLKKLKEFIKNN-ASDKYDEIFNDKDK
357


WP_039695303
279
LLGKIGDDYADLFTSAKNLYDAILLSGILTVDDNSTKAPLSASMIKRYVEHHEDLEKLKEFIKAN-KSELYHDIFKDKNK
357


WP_014334983
278
LLGKVGDDYADLFISAKNLYDAILLSGILTVDDNSTKAPLSASMIKRYVEHHEDLEKLKEFIKIN-KLKLYHDIFKDKIK
356


WP_003099269
278
LLAQIGDQYADLFIAAKKLSDAILLSDIITVKGASTKAPLSASMVQRYEEHQQDLALLKNLVKKQ-IPEKYKEIFDNKEK
356


AHY15608
278
LLAQIGDQYADLFIAAKKLSDAILLSDIITVKGASTKAPLSASMVQRYEEHQQDLALLKNLVKKQ-IPEKYKEIFDNKEK
356


AHY17476
278
LLAQIGDQYADLFIAAKKLSDAILLSDIITVKGASTKAPLSASMVQRYEEHQQDLALLKNLVKKQ-IPEKYKEIFDNKEK
356


ESR09100

--------------------------------------------------------------------------------



AGM98575
278
LLAQIGDQYADLFIAAKKLSDAILLSDIITVKGASTKAPLSASMVQRYEEHQQDLALLKNLVKKQ-IPEKYKEIFDNKEK
356


ALF27331
278
LLAQIEDNYAELFLSAKKLYDSILLSGILTVTDVSTKAPLSASMIQRYNEHQMDLAQLKQFIRQK-LSDKYNEVFSDVSK
356


WP_018372492
276
LLSKIDEEYAALFDLAKKVYDAVLLSNILTVKEKNTKAPLSASMIKRYEEHKDDLKAFKRFFRER-LPEKYETMEKDLTK
354


WP_045618028
279
LLVQIGDDFADLELVAKKLYDAILLSGILTVTDPSTKAPLSASMIDRYENHQKDLAALKQFIKTN-LPEKYDEVESDQSK
357


WP_045635197
278
LLGQIGDDFIDLEVSAKKLYDAILLSGILTVTDPSTKAPLSASMIERYENHQNDLAALKQFIKNN-LPEKYDEVESDQSK
356


WP_002263549
278
LLAQIGDNYAELFLSAKKLYDSILLSGILTVTDVGTKAPLSASMIQRYNEHQMDLAQLKQFIRQK-LSDKYNEVFSDVSK
356


WP_002263887
278
LLAQIGDNYAELFLSAKKLYDSILLSGILTVTDVGTKAPLSASMIQRYNEHQMDLAQLKQFIRQK-LSDKYNEVFSDVSK
356


WP_002264920
278
LLGKIGDDYADLFTLAKNLYDAILLSGILTADDSSTKAPLSASMIKRYAEHHEDLEKLKEFIKAN-KPELYHDIFKDETK
356


WP_002269043
278
LLAQIGDNYAELFLSAKKLYDSILLSGILTVTDVSTKAPLSASMIQRYNEHQMDLAQLKQFIRQK-LSDKYNEVFSDVSK
356


WP_002269448
278
LLAQIGDNYAELFLSAKKLYDSILLSGILTVTDVSTKAPLSASMIQRYNEHQMDLAQLKQFIRQK-LSDKYNEVFSDVSK
356


WP_002271977
278
LLGKIGDDYADLFTLAKNLYDAILLSGILTADDSSTKAPLSASMIQRYNEHQMDLAQLKQFIRQK-LSDKYNEVESDVSK
356


WP_002272766
278
LLGKIGDDYADLFTLAKNLYDAILLSGILTADDSSTKAPLSASMIQRYNEHQMDLAQLKQFIRQK-LSDKYNEVESDVSK
356


WP_002273241
278
LLAQIGDNYAELFLSAKKLYDSILLSGILTVTDVSTKAPLSASMIQRYNEHQMDLAQLKQFIRQK-LSDKYNEVFSDVSK
356


WP_002275430
278
LLTQIGDNYAELFLSAKKLYDSILLSGILTVTDVSTKAPLSASMIQRYNEHQMDLAQLKQFIRQK-LSDKYNEVFSDVSK
356


WP_002276448
278
LLAQIGDNYAELFLSAKKLYDSILLSGILTVTDVSTKAPLSASMIQRYNEHQMDLAQLKQFIRQK-LSDKYNEVFSDVSK
356


WP_002277050
278
LLGKIGDDYADLFTLAKNLYDAILLSGILTADDSSTKAPLSASMIKRYAEHHEDLEKLKEFIKAN-KPELYHDIFKDETK
356


WP_002277364
278
LLAQIGDNYAELFLSAKKLYDSILLSGILTVTDVSTKAPLSASMIQRYNEHQMDLAQLKQFIRQK-LSDKYNEVFSDVSK
356


WP_002279025
278
LLAQIGDNYAELFLSAKKLYDSILLSGILTADDSSTKAPLSASMIQRYNEHQMDLAQLKQFIRQK-LSDKYNEVFSDVSK
356


WP_002279859
278
LLAQIGDNYAELFLSAKKLYDSILLSGILTVTDVSTKAPLSASMIQRYNEHQMDLAQLKQFIRQK-LSDKYNEVFSDVSK
356


WP_002280230
278
LLAQIGDNYAELFLSAKKLYDSILLSGILTVTDVSTKAPLSASMIQRYNEHQMDLAQLKQFIRQK-LSDKYNEVFSDVSK
356


WP_002281696
278
LLAQIGDNYAELFLSAKKLYDSILLSGILTVTDVSTKAPLSASMIQRYNEHQMDLAQLKQFIRQK-LSDKYNEVFSDVSK
356


WP_002282247
278
LLGKIGDDYADLFTLAKNLYDAILLSGILTADDSSTKAPLSASMIKRYAEHHEDLEKLKEFIKAN-KPELYHDIFKDETK
356


WP_002282906
278
LLAQIGDNYAELFLSAKKLYDSILLSGILTVTDVGTKAPLSASMIQRYNEHQMDLAQLKQFIRQK-LSDKYNEVFSDVSK
356


WP_002283846
278
LLAQIGDNYAELFLSAKKLYDSILLSGILTVTDVSTKAPLSASMIQRYNEHQMDLAQLKQFIRQK-LSDKYNEVFSDVSK
356


WP_002287255
278
LLAQIGDNYAELFLSAKKLYDSILLSGILTVTDVSTKAPLSASMIQRYNEHQMDLAQLKQFIRQK-LSDKYNEVFSDVSK
356


WP_002288990
278
LLAQIGDNYAELFLSAKKLYDSILLSGILTVTDVSTKAPLSASMIQRYNEHQMDLAQLKQFIRQK-LSDKYNEVFSDVSK
356


WP_002289641
278
LLAQIGDNYAELFLSAKKLYDSILLSGILTVTDVSTKAPLSASMIQRYNEHQMDLTQLKQFIRQK-LSDKYNEVFSDVSK
356


WP_002290427
278
LLAQIGDNYAELFLSAKKLYDSILLSGILTVTDVSTKAPLSASMIQRYNEHQMDLAQLKQFIRQK-LSDKYNEVFSDVSK
356


WP_002295753
278
LLAQIGDNYAELFLSAKKLYDSILLSGILTVTDVSTKAPLSASMIQRYNEHQMDLAQLKQFIRQK-LSDKYNEVFSDVSK
356


WP_002296423
278
LLAQIGDNYAELFLSAKKLYDSILLSGILTVTDVSTKAPLSASMIQRYNEHQMDLAQLKQFIRQK-LSDKYNEVFSDVSK
356


WP_002304487
278
LLGEIGDEYADLFASAKNLYDAILLSGILAVDDNITKAPLSASMVKRYKEHKEELAAFKRFIKEK-LPKKYEEIFKDDTK
356


WP_002305844
278
LLAQIGDNYAELFLSAKKLYDSILLSGILTVTDVSTKAPLSASMIQRYNEHQMDLAQLKQFIRQK-LSDKYNEVFSDVSK
356


WP_002307203
278
LLAQIGDNYAELFLSAKKLYDSILLSGILTVTDVSTKAPLSASMIQRYNEHQMDLAQLKQFIRQK-LSDKYNEVFSDVSK
356


WP_002310390
278
LLAQIGDNYAELFLSAKKLYDSILLSGILTVTDVSTKAPLSASMIQRYNEHQMDLAQLKQFIRQK-LSDKYNEVFSDVSK
356


WP_002352408
278
LLAQIGDNYAELFLSAKKLYDSILLSGILTVTDVSTKAPLSASMIQRYNEHQMDLAQLKQFIRQK-LSDKYNEVFSDVSK
356


WP_012997688
278
LLAQIGDNYAELFLSAKKLYDSILLSGILTVTDVSTKAPLSASMIQRYNEHQMDLAQLKQFIRQK-LSDKYNEVFSDVSK
356


WP_014677909
278
LLAQIGDNYAELFLSAKKLYDSILLSGILTVTDVSTKAPLSASMIQRYNEHQMDLAQLKQFIRQK-LSDKYNEVFSDVSK
356


WP_019312892
278
LLAQIGDNYAELFLSAKKLYDSILLSGILTVTDVSTKAPLSASMIQRYNEHQMDLAQLKQFIRQK-LSDKYNEVFSDVSK
356


WP_019313659
278
LLAQIGDNYAELFLSAKKLYDSILLSGILTVTDVGTQAPLSASMIQRYNEHQMDLAQLKQFIRQK-LSDKYNEVFSDVSK
356


WP_019314093
278
LLAQIGDNYAELFLSAKKLYDSILLSGILTVTDVSTKAPLSASMIQRYNEHQMDLAQLKQFIRQK-LSDKYNEVFSDVSK
356


WP_019315370
278
LLAQIGDNYAELFLSAKKLYDSILLSGILTVTDVSTKAPLSASMIQRYNEHQMDLTQLKQFIRQK-LSDKYNEVFSDVSK
356


WP_019803776
278
LLAQIGDNYAELFLSAKKLYDSILLSGILTVTDVGTKAPLSASMIQRYNEHQMDLAQLKQFIRQK-LSDKYNEVFSDVSK
356


WP_019805234
278
LLAQIGDNYAELFLSAKKLYDSILLSGILTVTDVSTKAPLSASMIQRYNEHQMDLAQLKQFIRQK-LSDKYNEVFSDVSK
356


WP_024783594
278
LLAQIGDNYAELFLSAKKLYDSILLSGILTVTDVGTKAPLSASMIQRYNEHQMDLAQLKQFIRQK-LSDKYNEVFSDVSK
356


WP_024784288
278
LLGKIGDDYADLFTLAKNLYDAILLSGILTADDSSTKAPLSASMIKRYAEHHEDLEKLKEFIKAN-KPELYHDIFKDETK
356


WP_024784666
278
LLAQIGDNYAELFLSAKKLYDSILLSGILTVTDVSTKAPLSASMIQRYNEHQMDLVQLKQFIRQK-LSDKYNEVFSDVSK
356


WP_024784894
278
LLAQIGDNYAELFLSAKKLYDSILLSGILTVTDVSTKAPLSASMIQRYNEHQMDLTQLKQFIRQK-LSDKYNEVFSDVSK
356


WP_024786433
278
LLGKIGDDYADLFTLAKNLYDAILLSGILTADDSSTKAPLSASMIKRYAEHHEDLEKLKEFIKAN-KPELYHDIFKDETK
356


WP_049473442
278
LLGKIGDDYADLFTLAKNLYDAILLSGILTADDSSTKAPLSASMIQRYNEHQMDLAQLKQFIRQK-LSDKYNEVFSDVSK
356


WP_049474547
278
LLAQIGDNYAELFLSAKKLYDSILLSGILTVIDVSTKAPLSASMIQRYNEHQMDLTQLKQFIRQK-LSDKYNEVFSDVSK
356


EMC03581
271
LLAQIGDNYAELFLSAKKLYDSILLSGILTVIDVSTKAPLSASMIQRYNEHQMDLAQLKQFIRQK-LSDKYNEVFSDVSK
349


WP_000428612
279
LLGQIGDDFADLEVAAKKLYDAILLSGILTVIDPSTKAPLSASMIERYENHQKDLATLKQFIKTN-LPEKYDEVFSDQSK
357


WP_000428613
279
LLGQIGDDFADLFLVAKKLYDAILLSGILTVIDPSTKAPLSASMIERYENHQKDLAVLKQFIKNN-LPEKYDEVFSDQSK
357


WP_049523028
278
LLGQIGDVYADLFVVAKKLYDAILLAGILSVKDPGIKAPLSASMIERYDNHQNDLSALKQFVRRN-LPEKYAEVFSDDSK
356


WP_003107102
247
LLAQIGDQYADLFIAAKNLSDAILLSDILTVKGVNTKAPLSASMVQRFNEHQDDLKLLKKLVKVQ-LPEKYKEIFDIKDK
325


WP_054279288
280
LLTQIGDEYADLELSAKNLSDAILLSDILIVNGDGIQAPLSASLIKRYEEHRQDLALLKQMFKEQ-LPDLYRDVFIDENK
358


WP_049531101
279
LLGQIGDDFADLFLVAKKLYDAILLSGILTVIDPSTKAPLSASMIERYENHQKDLAALKQFIKNN-LPEKYDEVFSDQSK
357


WP_049538452
279
LLGQIGDGFADLFLVAKKLYDAILLSGILTVIDPSTKAPLSASMIERYQNHQNDLASLKQFIKNN-LPEKYDEVFSDQSK
357


WP_049549711
279
LLGQIGDDFADLFLVAKKLYDAILLSGILTVIDPSTKAPLSASMIERYENHQKDLITLKQFIKNN-LPEKYDEVFSDQSK
357


WP_007896501
280
LLAEIGDHYADLFLAAKNLSDAILLSDILTLSDENTRAPLSASMIKRYEEHQEDLALLKKLVKEQ-MPEKYWEIFSNAKK
358


EFR44625
232
LLAEIGDHYADLFLAAKNLSDAILLSDILTLSDENTRAPLSASMIKRYEEHQEDLALLKKLVKEQ-MPEKYWEIFSNAKK
310


WP_002897477
278
LLGQIGDDFADLFLIAKKLYDAILLSGILTVIDPSTKAPLSASMIERYENHQKDLAALKQFIKNN-LPEKYVEVFSDQSK
356


WP_002906454
278
LLGQIGDGFADLFLVAKKLYDAILLSGILTVIDPSTKAPLSASMIERYENHQEDLAALKQFIKNN-LSEKYAEVFSDQSK
356


WP_009729476
279
LLGQIGDDFADLFLVAKKLYDAILLSGILTVINPSTKAPLSASMIERYENHQKDLASLKQFIKNN-LPEKYDEVFSDQSE
357


CQR24647
278
LLGIIGDEYADVFVAAKKVYDSILLSGILTINNHSTKAPLSASMIDRYDEHNSDKKLLRDFIRTNiGKEVFKEVFYDISK
357


WP_000066813
279
LLGQIGDDFADLFLVAKKLYDAILLSGILTVKDLSTKAPLSASMIERYENHQKDLAALKQFIQNN-LQEKYDEVFSDQSK
357


WP_009754323
279
LLGQIGDDFADLFLVAKKLYDAILLSGILTVIDPSTKAPLSASMIERYENHQEDLAALKQFIKNN-LPEKYAEVFSDQSK
357


WP_044674937
278
LLGKIGDDYADLFIATKSLYDGILLAGILSTIDSTIKAPLSSSMVNRYEEHKKDLALLKNFIHQN-LSDSYKEVFNDKLK
356


WP_044676715
278
LLGKIGDDYADLFIATKSLYDGILLAGILSTIDSTIKAPLSSSMVNRYEEHQKDLALLKNFIHQN-LSDSYKEVFNDKLK
356


WP_044680361
278
LLGKIGDDYADLFIATKSLYDGILLAGILSTIDSTIKAPLSSSMVNRYEEHQKDLALLKNFIHQN-LSDSYKEVFNDKLK
356


WP_044681799
278
LLGKIGDDYADLFIATKSLYDGILLAGILSTIDSTIKAPLSSSMVNRYEEHKKDLALLKNFIHQN-LSDSYKEVFNDKLK
356


WP_049533112
278
LLGEIGDEYADLFASAKNLYDAILLSGILTVDDNSTKAPLSASMVKRYEEHQKDLKKLKDFIKVN-APDQYNAIFKDKNK
356


WP_029090905
244
LADVLADEEYDLLLTAQKIYSAIILDESMDGYEYFA-----EAKKESYRKHQEELVLVKKMLKSNaIINDERAKF---EY
315


WP_006506696
284
VEKDLGE-YVEFVDALHNVYSWVELQIIMGATHTD-NASISEAMVSRYNKHHDDLKLLKDCIKNN-VPNKYFDMERNDSE
360


AIT42264
278
LLAQIGDQYADLFLAAKNLSDAILLSDILRVNTEITKAPLSASMIKRYDEHHQDLILLKALVRQQ-LPEKYKEIFFDQSK
356


WP_034440723
284
LLSNIDEGYRDVFLQAKNVYNAIELSKILKIDGKETKAPLSAQMVELYNQHREDLKKYKDYIKAY-LPEKYGETFKDATK
362


AKQ21048
278
LLAQIGDQYADLFLAAKNLSDAILLSDILRVNTEITKAPLSASMIKRYDEHHQDLILLKALVRQQ-LPEKYKEIFFDQSK
356


WP_004636532
277
LLGMTDDVFLDVFMAAKNVYDAVEMSAIISTDIGNSKAVLSNQMINFYDEHKVDLAQLKQFFKTH-LPDKYYECFSDPSK
355


WP_002364836
284
ILAKVGDEYSDVFLAAKNVYDAVELSTILADSDKKSHAKLSSSMIVRFTEHQEDLKKFKRFIREN-CPDEYDNLFKNEQK
362


WP_016631044
235
ILAKVGDEYSDVFLAAKNVYDAVELSTILADSDKKSHAKLSSSMIVRFTEHQEDLKKFKRFIREN-CPDEYDNLFKNEQK
313


EMS75795
21
LLEKSGEEFRDVFLQAKKVYDAILLSDILSIKKQNSKAKLSLGMIERYDSHKKDLEELKQFVKAN-LPEKTAIFFKDSSK
99


WP_002373311
284
ILAKVGDEYSDVFLAAKNVYDAVELSTILADSDKKSHAKLSSSMIVRFTEHQEDLKKFKRFIREN-CPDEYDNLFKNEQK
362


WP_002378009
284
ILAKVGDEYSDVFLAAKNVYDAVELSTILADSDKKSHAKLSSSMIVRFTEHQEDLKNFKRFIREN-CPDEYDNLFKNEQK
362


WP_002407324
284
ILAKVGDEYSDVFLAAKNVYDAVELSTILADSDKKSHAKLSSSMIVRFTEHQEDLKNFKRFIREN-CPDEYDNLFKNEQK
362


WP_002413717
284
ILAKVGDEYSDVFLAAKNVYDAVELSTILADSDKKSHAKLSSSMIVRFTEHQEDLKKFKRFIREN-CPDEYDNLFKNEQK
362


WP_010775580
286
ILAKVGDEYSDVFLAAKNVYDAVELSTILADSDKKSHAKLSSSMIVRFTEHQEDLKNFKRFIREN-CPDEYDNLFKNEQK
364


WP_010818269
284
ILAKVGDEYSDVFLAAKNVYDAVELSTILADSDKKSHAKLSSSMIVRFTEHQEDLKKFKRFIREN-CPDEYDNLFKNEQK
362


WP_010824395
284
ILAKVGDEYSDVFLAAKNVYDAVELSTILADSDKKSHAKLSSSMIVRFTEHQEDLKNFKRFIREN-CPDEYDNLFKNEQK
362


WP_016622645
284
ILAKVGDEYSDVFLAAKNVYDAVELSTILADSDKKSYAKLSSSMIVRFTEHQEDLKKFKRFIREN-CPDEYDNLFKNEQK
362


WP_033624816
284
ILAKVGDEYSDVFLAAKNVYDAVELSTILADSDKKSHAKLSSSMIVRFTEHQEDLKNFKRFIREN-CPDEYDNLFKNEQK
362


WP_033625576
284
ILAKVGDEYSDVFLAAKNVYDAVELSTILADSDKKSHAKLSSSMIVRFTEHQEDLKKFKRFIREN-CPDEYDNLFKNEQK
362


WP_033789179
284
ILAKVGDEYSDVFLAAKNVYDAVELSTILADSDKKSHAKLSSSMIVRFTEHQEDLKNFKRFIREN-CPDEYDNLFKNEQK
362


WP_002310644
282
LLEKIGDDYIDLFVQAKNVYDAVLLSEILSDSTKNTRAKLSAGMIRRYDAHKEDLVLLKRFVKEN-LPKKYRAFFGDNSV
360


WP_002312694
283
LLEKIGDDYIDLFVQAKNVYDAVLLSEILSDSTKNTRAKLSAGMIRRYDAHKEDLVLLKRFVKEN-LPKKYRAFFGDNSV
361


WP_002314015
283
LLEKIGDDYIDLFVQAKNVYDAVLLSEILSDSTKNTRAKLSAGMIRRYDAHKEDLVLLKRFVKEN-LPKKYRAFFGDNSV
361


WP_002320716
283
LLEKIGDDYIDLFVQAKNVYDAVLLSEILSDSTKNTRAKLSAGMIRRYDAHKEDLVLLKRFVKEN-LPKKYRAFFGDNSV
361


WP_002330729
282
LLEKIGDDYIDLFVQAKNVYDAVLLSEILSDSTKNTRAKLSAGMIRRYDAHKEDLVLLKRFVKEN-LPKKYRAFFGDNSV
360


WP_002335161
283
LLEKIGDDYIDLFVQAKNVYDAVLLSEILSDSTKNTRAKLSAGMIRRYDAHKEDLVLLKRFVKEN-LPKKYRAFFGDNSV
361


WP_002345439
283
LLEKIGDDYIDLFVQAKNVYDAVLLSEILSDSTKNTRAKLSAGMIRRYDAHKEDLVLLKRFVKEN-LPKKYRAFFGDNSV
361


WP_034867970
276
LLEKIGDEYLDIFLQAKKVHDAILLSEIISSIVKHTKAKLSSGMVERYERHKADLAKFKQFVKEN-VPQKATVFFKDITK
354


WP_047937432
283
LLEKIGDDYIDLFVQAKNVYDAVLLSEILSDSTKNTRAKLSAGMIRRYDAHKEDLVLLKRFVKEN-LPKKYRAFFGDNSV
361


WP_010720994
276
LLEKIGDEYLDIFLQAKKVHDAILLSEIISSIVKHTQAKLSSGMVERYERHKADLAKFKQFVKEN-VPQKATVFFKDITK
354


WP_010737004
276
LLEKIGDEYLDIFLQAKKVHDAILLSEIISSIVKHTKAKLSSGMVERYERHKADLAKFKQFVKEN-VPQKATVFFKDITK
354


WP_034700478
276
LLEKIGDEYLDIFLQAKKVHDAILLSEIISSIVKHTQAKLSSGMVERYERHKADLAKFKQFVKEN-VPQKATVFFKDITK
354


WP_007209003
281
LLAIIGDEYGDIFVAAQNLYQAILLAGILTSTEK-TRAKLSASMIQRYEEHAKDLKLLKRFVKEH-IPDKYAEIFNDATK
358


WP_023519017
276
LLEKTSDDYAELFLKAKGVYDAILLSQILSKSDDETKAKLSANMKLRFEEHQRDLKQLKELVRRD-LPKKYDDFFKNRSK
354


WP_010770040
279
LLAIIGDEYAEIFSATKSVYDAVALSGILSVIDGDTKAKLSASMVERYEAHQKDLVQFKQFIRKE-LPEMYAPIERDNSV
357


WP_048604708
275
LLGEIGDEYADVFEAAKNVYNAVELSGILTVIDNSTKAKLSASMIKRYEDHKIDLKLEKEFIRKN-LPEKYHEIENDKNT
353


WP_010750235
276
LLRKSNEEMIDVFLQVKKVYDAILLSDILSTKMKDTKAKLSAGMIERYQNHKKDLEELKQFVRAH-LHEKVIVFFKDSSK
354


AII16583
317
LLAQIGDQYADLFLAAKNLSDAILLSDILRVNTEITKAPLSASMIKRYDEHHQDLILLKALVRQQ-LPEKYKEIFFDQSK
395


WP_029073316
290
KQPLLGD-CVEFIDLLHDIYSWVELQNILGSAHTS-EPSISAAMIQRYEDHKNDLKLLKDVIRKY-LPKKYFEVERDEKS
366


WP_031589969
290
KQPLLGD-CVEFIDLLHDIYSWVELQNILGSAHTS-EPSISAAMIQRYEDHKNDLKLLKDVIRKY-LPKKYFEVERDEKS
366


KDA45870
276
LLAEAGDQYLDIEVAAKKVYDAAILASILDVKDTQTKIVESQAMIERYEEHQKDLIELKRVEKKY-LPEKCHDFFSE-PK
353


WP_039099354
286
LESSLDDNAHQIIESLQELYSGVLLAGIVPENQSLS-----QAMITKYDDHQKHLKMLKAVREAL-APEDRQRLKQAYDQ
359


AKP02966
279
LDSILDDDQFTVLDTANRIYSTITLNEIL-----NGESYFSMAKVNQYENHAIDLCKLRDMWHTT----KNEKAV-GLSR
348


WP_010991369
284
LLALIGDEYAELEVAAKNAYSAVVLSSIITVAETETNAKLSASMIERFDTHEEDLGELKAFIKLH-LPKHYEEIFSNTEK
362


WP_033838504
284
LLALIGDEYAELEVAAKNAYSAVVLSSIITVAETETNAKLSASMIERFDTHEEDLGELKAFIKLH-LPKHYEEIFSNTEK
362


EHN60060
287
LLALIGDEYAELEVAAKNAYSAVVLSSIITVAETETNAKLSASMIERFDTHEEDLGELKAFIKLH-LPKHYEEIFSNTEK
365


EFR89594
53
LLALIGDEYAELEVAAKNAYSAVVLSSIITVAETETNAKLSASMIERFDTHEEDLGELKAFIKLH-LPKHYEEIFSNTEK
131


WP_038409211
284
LLAKIGDEYAEIEVAAKSTYNAVVLSNIITVIDTETKAKLSASMIERFDKHAKDLKRLKAFFKMQ-LPEKENEVENDIEK
362


EFR95520

--------------------------------------------------------------------------------



WP_003723650
284
LLAIIGDEYAELEVAAKNTYNAVVLSSIITVIDTETNAKLSASMIERFDAHEKDLVELKAFIKLN-LPKQYEEIFSNAAI
362


WP_003727705
284
LLAIIGDEYAELEVAAKNTYNAVVLSSIITVTATETNAKLSASMIERFDAHEKELGELKAFIKLH-LPKQYQEIENNAEI
362


WP_003730785
284
LLAIIGDEYAELEVAAKNTYNAVVLSSIITVTATETNAKLSASMIERFDAHEKELGELKAFIKLH-LPKQYQEIENNAEI
362


WP_003733029
284
LLAIIGDEFAEVEVAAKNAYNAVVLSNIITVIDSTTRAKLSASLIERFENHKEDLKKMKRFVRTY-LPEKYDEIFDDTEK
362


WP_003739838
284
LLAIIGDEYAELEVAAKNTYNAVVLSSIITVIDTETNAKLSASMIERFDAHEKDLSELKAFIKLH-LPKQYEEIFSNVAI
362


WP_014601172
284
LLAIIGDEYAELFVAAKNTYNAVVLSSIITVTATETNAKLSASMIERFDAHEKDLGELKAFIKLH-LPKQYQEIFNNAAI
362


WP_023548323
284
LLAIIGDEYAELFVAAKNTYNAVVLSSIITVTDTETNAKLSASMIERFDAHEKDLVELKAFIKLN-LPKQYEEIFSNAAI
362


WP_031665337
284
LLAIIGDEYAELFVAAKNTYNAVVLSSIITVNDTETNAKLSASMIERFDAHEKDLVELKAFIKLN-LPKQYEEIFSNAAI
362


WP_031669209
284
LLAIIGDEFAEVFVAAKNAYNAVVLSNIITVTDSTTRAKLSASLIERFENHKEDLKKMKRFVRTY-LPEKYDEIFDDTEK
362


WP_033920898
284
LLAIIGDEYAELFVAAKNTYNAVVLSSIITVTDTETNAKLSASMIERFDAHEKDLVELKAFIKLN-LPKQYEEIFSNAAI
362


AKI42028
287
LLAIIGDEYAELFVAAKNTYNAVVLSSIITVTATETNAKLSASMIERFDAHEKDLGELKAFIKLH-LPKQYQEIFNNAAI
365


AKI50529
287
LLAIIGDEYAELFVAAKNTYNAVVLSSIITVTDTETNAKLSASMIERFDAHEKDLVELKAFIKLN-LPKQYEEIFSNAAI
365


EFR83390

--------------------------------------------------------------------------------



WP_046323366
284
LLARVGDEYAEIFVAAKNAYNAVVLSSIITVSNTETKAKLSASMIERFDKHDKDLKRMKAFFKVR-LPENFNEVENDVEK
362


AKE81011
294
LLAQIGDQYADLFLAAKNLSDAILLSDILRVNTEITKAPLSASMIKRYDEHHQDLTLLKALVRQQ-LPEKYKEIFFDQSK
372


CUO82355
288
VENDLGE-YVEFIDSLHNIYSWVELQTIMGATHTD-NASISEAMVSRYNKHHEDLQLLKKCIKDN-VPKKYFDMERNDSE
364


WP_033162887
289
LQSELGE-YIEFIEMLHNIYSWVELQAILGATHTD-NPSISAAMVERYEEHKKDLRVLKKVIREE-LPDKYNEVFRKDNR
365


AGZ01981
311
LLAQIGDQYADLFLAAKNLSDAILLSDILRVNTEITKAPLSASMIKRYDEHHQDLTLLKALVRQQ-LPEKYKEIFFDQSK
389


AKA60242
278
LLAQIGDQYADLFLAAKNLSDAILLSDILRVNTEITKAPLSASMIKRYDEHHQDLTLLKALVRQQ-LPEKYKEIFFDQSK
356


AKS40380
278
LLAQIGDQYADLFLAAKNLSDAILLSDILRVNTEITKAPLSASMIKRYDEHHQDLTLLKALVRQQ-LPEKYKEIFFDQSK
356


4UN5_B
282
LLAQIGDQYADLFLAAKNLSDAILLSDILRVNTEITKAPLSASMIKRYDEHHQDLTLLKALVRQQ-LPEKYKEIFFDQSK
360


WP_010922251
357


embedded image


419


WP_039695303
358
--NGYAG YIEN G VKQDEFYKYLKNILSK-IkiDGSDYFL--DKIEREDFLRKQRTFDNGSIPHQIHLQEM
422


WP_045635197
357
--DGYAG YIDG K TIQETFYKYIKNLLSK-F--EGTDYFL--DKIEREDFLRKQRTFDNGSIPHQIHLQEM
419


5AXW_A
169
------G SINR - ---------------K------TSDYVk----------------------------EA
183


WP_009880683
41
--NGYAG YIDG G ASQEEFYKFIKPILEK-M--DGTEELLa--KLNREDLLRKQRTFDNGSIPHQIHLGEL
103


WP_010922251
357
--NGYAG YIDG G ASQEEFYKFIKPILEK-M--DGTEELLv--KLNREDLLRKQRTEDNGSIPHQIHLGEL
419


WP_011054416
357
--NGYAG YIDG G ASQEEFYKFIKPILEK-M--DGTEELLa--KLNREDLLRKQRTFDNGSIPYQIHLGEL
419


WP_011284745
357
--NGYAG YIDG G ASQEEFYKFIKPILEK-M--DGTEELLa--KLNREDLLRKQRTFDNGSIPHQIHLGEL
419


WP_011285506
357
--NGYAG YIDG G ASQEEFYKFIKPILEK-M--DGTEELLv--KLNREDLLRKQRTEDNGSIPHQIHLGEL
419


WP_011527619
357
--NGYAG YIDG G ASQEEFYKFIKPILEK-M--DGTEELLa--KLNREDLLRKQRTFDNGSIPHQIHLGEL
419


WP_012560673
357
--NGYAG YIDG G ASQEEFYKFIKPILEK-M--DGTEELLa--KLNREDLLRKQRTFDNGSIPHQIHLGEL
419


WP_014407541
357
--NGYAG YIDG G ASQEEFYKFIKPILEK-M--DGTEELLv--KLNREDLLRKQRTEDNGSIPHQIHLGEL
419


WP_020905136
357
--NGYAG YIDG G ASQEEFYKFIKPILEK-M--DGTEELLa--KLNREDLLRKQRTFDNGSIPHQIHLGEL
419


WP_023080005
357
--NGYAG YIDG G ASQEEFYKFIKPILEK-M--DGTEELLa--KLNREDLLRKQRTFDNGSIPYQIHLGEL
419


WP_023610282
357
--NGYAG YIDG G ASQEEFYKFIKPILEK-M--DGTEELLa--KLNREDLLRKQRTFDNGSIPYQIHLGEL
419


WP_030125963
357
--NGYAG YIDG G ASQEEFYKFIKPILEK-M--DGTEELLv--KLNREDLLRKQRTEDNGSIPHQIHLGEL
419


WP_030126706
357
--NGYAG YIDG G ASQEEFYKFIKPILEK-M--DGTEELLa--KLNREDLLRKQRTFDNGSIPYQIHLGEL
419


WP_031488318
357
--NGYAG YIDG G ASQEEFYKFIKPILEK-M--DGTEELLa--KLNREDLLRKQRTFDNGSIPHQIHLGEL
419


WP_032460140
357
--NGYAG YIDG G ASQEEFYKFIKPILEK-M--DGTEELLa--KLNREDLLRKQRTFDNGSIPHQIHLGEL
419


WP_032461047
357
--NGYAG YIDG G ASQEEFYKFIKPILEK-M--DGTEELLa--KLNREDLLRKQRTFDNGSIPHQIHLGEL
419


WP_032462016
357
--NGYAG YIDG G ASQEEFYKFIKPILEK-M--DGTEELLv--KLNREDLLRKQRTEDNGSIPHQIHLGEL
419


WP_032462936
357
--NGYAG YIDG G ASQEEFYKFIKPILEK-M--DGTEELLa--KLNREDLLRKQRTFDNGSIPHQIHLGEL
419


WP_032464890
357
--NGYAG YIDG G ASQEEFYKFIKPILEK-M--DGTEELLa--KLNRKDLLRKQRTFDNGSIPHQIHLGEL
419


WP_033888930
182
--NGYAG YIDG G ASQEEFYKFIKPILEK-M--DGTEELLv--KLNREDLLRKQRTEDNGSIPHQIHLGEL
244


WP_038431314
357
--NGYAG YIDG G ASQEEFYKFIKPILEK-M--DGTEELLa--KLNREDLLRKQRTFDNGSIPHQIHLGEL
419


WP_038432938
357
--NGYAG YIDG G ASQEEFYKFIKPILEK-M--DGTEELLa--KLNREDLLRKQRTFDNGSIPYQIHLGEL
419


WP_038434062
357
--NGYAG YIDG G ASQEEFYKFIKPILEK-M--DGTEELLa--KLNREDLLRKQRTFDNGSIPHQIHLGEL
419


BAQ51233
268
--NGYAG YIDG G ASQEEFYKFIKPILEK-M--DGTEELLv--KLNREDLLRKQRTEDNGSIPHQIHLGEL
330


KGE60162

------- ---- - ----------------------------------------------------------



KGE60856

------- ---- - ----------------------------------------------------------



WP_002989955
357
--NGYAG YIDG G ASQEEFYKFIKPILEK-M--DGTEELLa--KLNREDLLRKQRTFDNGSIPHQIHLGEL
419


WP_003030002
357
--KGYAG YIEN G VKQDEFYKYLKGILLQ-I--NGSGDFL--DKIDREDFLRKQRTFDNGSIPHQIHLQEM
419


WP_003065552
360
--NGYAG YIEN G VKQDEFYKYLKNILSK-Ia--GSDYFL--DKIEREDFLRKQRTFDNGSIPHQIHLQEM
422


WP_001040076
358
--DGYAG YIEG K INQEAFYKYLSKLLIK-Q--EGSEYFL--EKIKNEDFLRKQRTFDNGSIPHQVHLTEL
420


WP_001040078
358
--DGYAG YIEG K INQEAFYKYLSKLLIK-Q--EDSENFL--EKIKNEDFLRKQRTFDNGSIPHQVHLTEL
420


WP_001040080
358
--DGYAG YIEG K INQEAFYKYLSKLLIK-Q--EDSENFL--EKIKNEDFLRKQRTFDNGSIPHQVHLTEL
420


WP_001040081
358
--DGYAG YIEG K INQEAFYKYLSKLLIK-Q--EDSENFL--EKIKNEDFLRKQRTFDNGSIPHQVHLTEL
420


WP_001040083
358
--DGYAG YIEG K INQEAFYKYLSKLLIK-Q--EDSENFL--EKIKNEDFLRKQRTFDNGSIPHQVHLTEL
420


WP_001040085
358
--DGYAG YIEG K INQEAFYKYLSKLLIK-Q--EDSENFL--EKIKNEDFLRKQRTFDNGSIPHQVHLTEL
420


WP_001040087
358
--DGYAG YIEG K TNQEAFYKYLSKLLTK-Q--EDSENFL--EKIKNEDFLRKQRTFDNGSIPHQVHLTEL
420


WP_001040088
358
--DGYAG YIEG K TNQEAFYKYLSKLLTK-Q--EDSENFL--EKIKNEDFLRKQRTFDNGSIPHQVHLTEL
420


WP_001040089
358
--DGYAG YIEG K TNQEAFYKYLSKLLTK-Q--EDSENFL--EKIKNEDFLRKQRTFDNGSIPHQVHLTEL
420


WP_001040090
358
--DGYAG YIEG K TNQEAFYKYLSKLLTK-Q--EDSENFL--EKIKNEDFLRKQRTFDNGSIPHQVHLTEL
420


WP_001040091
358
--DGYAG YIEG K TNQEAFYKYLSKLLTK-Q--EDSENFL--EKIKNEDFLRKQRTFDNGSIPHQVHLTEL
420


WP_001040092
358
--DGYAG YIEG K TNQEAFYKYLSKLLTK-Q--EDSEYFL--EKIKNEDFLRKQRTFDNGSIPHQVHLTEL
420


WP_001040094
358
--DGYAG YIEG K TNQEAFYKYLSKLLTK-Q--EGSEYLL--EKIKNEDFLRKQRTFDNGSIPHQVHLTEL
420


WP_001040095
358
--DGYAG YIEG K TNQEAFYKYLSKLLTK-Q--EGSEYLL--EKIKNEDFLRKQRTFDNGSIPHQVHLTEL
420


WP_001040096
358
--DGYAG YIEG K TNQEAFYKYLSKLLTK-Q--EGSEYLL--EKIKNEDFLRKQRTFDNGSIPHQVHLTEL
420


WP_001040097
358
--DGYAG YIEG K TNQEAFYKYLSKLLTK-Q--EGSEYLL--EKIKNEDFLRKQRTFDNGSIPHQVHLTEL
420


WP_001040098
358
--DGYAG YIEG K TNQEAFYKYLSKLLTK-Q--EGSEYLL--EKIKNEDFLRKQRTFDNGSIPHQVHLTEL
420


WP_001040099
358
--DGYAG YIEG K TNQEAFYKYLSKLLTK-Q--EGSEYLL--EKIKNEDFLRKQRTFDNGSIPHQVHLTEL
420


WP_001040100
358
--DGYAG YIEG K TNQEAFYKYLSKLLTK-Q--EGSEYLL--EKIKNEDFLRKQRTFDNGSIPHQVHLTEL
420


WP_001040104
358
--DGYAG YIEG K TNQEAFYKYLSKLLTK-Q--EDSENFL--EKIKNEDFLRKQRTFDNGSIPHQVHLTEL
420


WP_001040105
358
--DGYAG YIEG K TNQEAFYKYLSKLLTK-Q--EDSENFL--EKIKNEDFLRKQRTFDNGSIPHQVHLTEL
420


WP_001040106
358
--DGYAG YIEG K TNQGAFYKYLSKLLTK-Q--EGSEYFL--EKIKNEDFLRKQRTFDNGSIPHQVHLTEL
420


WP_001040107
358
--DGYAG YIEG K TNQGAFYKYLSKLLTK-Q--EGSEYFL--EKIKNEDFLRKQRTFDNGSIPHQVHLTEL
420


WP_001040108
358
--DGYAG YIEG K TNQGAFYKYLSKLLTK-Q--EGSEYFL--EKIKNEDFLRKQRTFDNGSIPHQVHLTEL
420


WP_001040109
358
--DGYAG YIEG K TNQGAFYKYLSKLLTK-Q--EGSEYFL--EKIKNEDFLRKQRTFDNGSIPHQVHLTEL
420


WP_001040110
358
--DGYAG YIEG K TNQGAFYKYLSKLLTK-Q--EGSEYFL--EKIKNEDFLRKQRTFDNGSIPHQVHLTEL
420


WP_015058523
358
--DGYAG YIEG K TNQEAFYKYLSKLLTK-Q--EDSEYFL--EKIKNEDFLRKQRTFDNGSIPHQVHLTEL
420


WP_017643650
358
--DGYAG YIEG K TNQEAFYKYLSKLLTK-Q--EGSEYLL--EKIKNEDFLRKQRTFDNGSIPHQVHLTEL
420


WP_017647151
358
--DGYAG YIEG K TNQGAFYKYLSKLLTK-Q--EGSEYFL--EKIKNEDFLRKQRTFDNGSIPHQVHLTEL
420


WP_017648376
358
--DGYAG YIEG K TNQGAFYKYLSKLLTK-Q--EGSEYFL--EKIKNEDFLRKQRTFDNGSIPHQVHLTEL
420


WP_017649527
358
--DGYAG YIEG K TNQEAFYKYLSKLLTK-Q--EDSENFL--EKIKNEDFLRKQRTFDNGSIPHQVHLTEL
420


WP_017771611
358
--DGYAG YIEG K TNQGAFYKYLSKLLTK-Q--EGSEYFL--EKIKNEDFLRKQRTFDNGSIPHQVHLTEL
420


WP_017771984
358
--DGYAG YIEG K TNQEAFYKYLSKLLTK-Q--EDSENFL--EKIKNEDFLRKQRTFDNGSIPHQVHLTEL
420


CFQ25032
358
--DGYAG YIEG K TNQEAFYKYLSKLLTK-Q--EDSENFL--EKIKNEDFLRKQRTFDNGSIPHQVHLTEL
420


CFV16040
358
--DGYAG YIEG K TNQEAFYKYLSKLLTK-Q--EDSENFL--EKIKNEDFLRKQRTFDNGSIPHQVHLTEL
420


KLJ37842
358
--DGYAG YIEG K TNQEAFYKYLSKLLTK-Q--EDSENFL--EKIKNEDFLRKQRTFDNGSIPHQVHLTEL
420


KLJ72361
358
--DGYAG YIEG K TNQEAFYKYLSKLLTK-Q--EDSENFL--EKIKNEDFLRKQRTFDNGSIPHQVHLTEL
420


KLL20707
358
--DGYAG YIEG K TNQEAFYKYLSKLLTK-Q--EDSENFL--EKIKNEDFLRKQRTFDNGSIPHQVHLTEL
420


KLL42645
358
--DGYAG YIEG K TNQGAFYKYLSKLLTK-Q--EGSEYFL--EKIKNEDFLRKQRTFDNGSIPHQVHLTEL
420


WP_047207273
358
--DGYAG YIEG K TNQEAFYKYLSKLLTK-Q--EDSENFL--EKIKNEDFLRKQRTFDNGSIPHQVHLTEL
420


WP_047209694
358
--DGYAG YIEG K TNQEAFYKYLSKLLTK-Q--EGSEYLL--EKIKNEDFLRKQRTFDNGSIPHQVHLTEL
420


WP_050198062
358
--DGYAG YIEG K TNQEAFYKYLSKLLTK-Q--EDSENFL--EKIKNEDFLRKQRTFDNGSIPHQVHLTEL
420


WP_050201642
358
--DGYAG YIEG K TNQEAFYKYLSKLLTK-Q--EDSENFL--EKIKNEDFLRKQRTFDNGSIPHQVHLTEL
420


WP_050204027
358
--DGYAG YIES K TNQGAFYKYLSKLLTK-Q--EGSEYFL--EKIKNEDFLRKQRTFDNGSIPHQVHLTEL
420


WP_050881965
358
--DGYAG YIEG K TNQEAFYKYLSKLLTK-Q--EDSENFL--EKIKNEDFLRKQRTFDNGSIPHQVHLTEL
420


WP_050886065
358
--DGYAG YIEG K TNQEAFYKYLSKLLTK-Q--EDSENFL--EKIKNEDFLRKQRTFDNGSIPHQVHLTEL
420


AHN30376
358
--DGYAG YIEG K TNQEAFYKYLSKLLTK-Q--EDSEYFL--EKIKNEDFLRKQRTFDNGSIPHQVHLTEL
420


EAO78426
358
--DGYAG YIEG K TNQEAFYKYLSKLLTK-Q--EDSENFL--EKIKNEDFLRKQRTFDNGSIPHQVHLTEL
420


CCW42055
358
--DGYAG YIEG K TNQEAFYKYLSKLLTK-Q--EGSEYLL--EKIKNEDFLRKQRTFDNGSIPHQVHLTEL
420


WP_003041502
357
--KGYAG YIES G VKQDEFYKYLKGILLQ-I--NGSGDFL--DKIDREDFLRKQRTFDNGSIPHQIHLQEM
419


WP_037593752
358
--KGYAG YIES G VEQDEFYKYLKGILLK-I--NGSGDFL--DKIDCEDFLRKQRTFDNGSIPHQIHLQEM
420


WP_049516684
358
--NGYAG YIEN G VKQDEFYKYLKNTLSK-I--DGSDYFL--DKIDREDFLRKQRTFDNGSIPHQIHLQEM
420


GAD46167
357
--KGYAG YIES G VEQDEFYKYLKGILLK-I--NGSGDFL--DKIDCEDFLRKQRTFDNGSIPHQIHLQEM
419


WP_018363470
358
--NGYAG YIEN G VKQDEFYKYLKGILTK-I--NGSDYFL--DKIEREDFLRKQRTFDNGSIPHQIHLQEM
420


WP_003043819
357
--NGYAG YVGI G ATQEEFYKFIKPILEK-M--DGAEELLa--KLNRDDLLRKQRTFDNGSIPHQIHLKEL
429


WP_006269658
357
--KGYAS YIES G VKQDEFYKYLKGILLK-I--NGSGDFL--DKIDREDFLRKQRTFDNGSIPHQIHLQEM
419


WP_048800889
357
--NGYAG YIEN G VKQDEFYKYLKNTLSK-I--DGSGYFL--DKIEREDFLRKQRTFDNGSIPHQIHLQEM
419


WP_012767106
357
--NGYAG YIDG G ASQEEFYKFIKPILEK-M--DGTEELLa--KLNREDLLRKQRTFDNGSIPHQIHLGEL
419


WP_014612333
357
--NGYAG YIDG G ASQEEFYKFIKPILEK-M--DGTEELLa--KLNREDLLRKQRTFDNGSIPHQIHLGEL
419


WP_015017095
357
--NGYAG YIDG G ASQEEFYKFIKPILEK-M--DGTEELLa--KLNREDLLRKQRTFDNGSIPHQIHLGEL
419


WP_015057649
357
--NGYAG YIDG G ASQEEFYKFIKPILEK-M--DGTEELLa--KLNREDLLRKQRTFDNGSIPHQIHLGEL
419


WP_048327215
357
--NGYAG YIDG G ASQEEFYKFIKPILEK-M--DGTEELLa--KLNREDLLRKQRTFDNGSIPHQIHLGEL
419


WP_049519324
357
--NGYAG YIDG G ASQEEFYKFIKPILEK-M--DGTEELLa--KLNREDLLRKQRTFDNGSIPHQIHLGEL
419


WP_012515931
357
--NGYAG YIEG Q VSQEEFYKYLKPILAR-L--DGSEPLL1--KIDREDFLRKQRTEDNGSIPHQIHLEEL
419


WP_021320964
357
--NGYAG YIEG Q VSQEEFYKYLKPILAR-L--DGSEPLL1--KIDREDFLRKQRTEDNGSIPHQIHLEEL
419


WP_037581760
357
--NGYAG YIEG Q VSQEEFYKYLKPILAR-L--DGSEPLL1--KIDREDFLRKQRTEDNGSIPHQIHLEEL
419


WP_004232481
357
--NGYAG YIEN G VKQDIFYKHLKSIISE-K--NGGQYFL--DKIEREDFLRKQRTFDNGSIPYQIHLQEM
419


WP_009854540
358
--NGYAG YIEN G VKQDEFYKYLKNTLSK-I--DGSDYFL--DKIEREDFLRKQRTFDNGSIPHQIHLQEM
420


WP_012962174
358
--NGYAG YIEN G VKQDEFYKYLKTTLSK-I--DGSDYFL--DKIEREDFLRKQRTFDNGSIPHQIHLQEM
420


WP_039695303
358
--NGYAG YIEN G VKQDEFYKYLKNILSK-IkiDGSDYFL--DKIEREDFLRKQRTFDNGSIPHQIHLQEM
422


WP_014334983
357
--NGYAG YIDN G VKQDEFYKYLKTILTK-I--DDSDYFL--DKIERDDFLRKQRTFDNGSIPHQIHLQEM
419


WP_003099269
357
--NGYAG YIDG K TSQEEFYKYIKPILLK-L--DGTEKLIs--KLEREDFLRKQRTFDNGSIPHQIHLNEL
419


AHY15608
357
--NGYAG YIDG K TSQEEFYKYIKPILLK-L--DGTEKLIs--KLEREDFLRKQRTFDNGSIPHQIHLNEL
419


AHY17476
357
--NGYAG YIDG K TSQEEFYKYIKPILLK-L--DGTEKLIs--KLEREDFLRKQRTFDNGSIPHQIHLNEL
419


ESR09100

------- ---- - ----------------------------------------------------------



AGM98575
357
--NGYAG YIDG K TSQEEFYKYIKPILLK-L--DGTEKLIs--KLEREDFLRKQRTFDNGSIPHQIHLNEL
419


ALF27331
357
--DGYAG YIDG K TNQEAFYKYLKGLLNK-I--EGSGYFL--DKIEREDFLRKQRTFDNGSIPHQIHLQEM
419


WP_018372492
355
--PSYAA YVSG A VTEDDFYKFSKGLLID-V--EGAEYFL--EKIEREDFLRKQRTFDNGAIPNQVHVKEL
432


WP_045618028
358
--DGYAG YIDG K TTQEAFYKYIKNLLSK-L--EGADYFL--DKIEREDFLRKQRTFDNGSIPHQIHLQEM
420


WP_045635197
357
--DGYAG YIDG K TTQETFYKYIKNLLSK-F--EGIDYFL--DKIEREDFLRKQRTFDNGSIPHQIHLQEM
419


WP_002263549
357
--DGYAG YIDG K TNQEAFYKYLKGLLNK-I--EGSGYFL--DKIEREDFLRKQRTFDNGSIPHQIHLQEM
419


WP_002263887
357
--DGYAG YIDG K TNQEAFYKYLKGLLNK-I--EGSGYFL--DKIEREDFLRKQRTFDNGSIPHQIHLQEM
419


WP_002264920
357
--NGYAG YIEN G VKQDEFYKYLKNTLSK-I--AGSDYFL--DKIEREDFLRKQRTFDNGSIPHQIHLQEM
419


WP_002269043
357
--DGYAG YIDG K TNQEAFYKYLKGLLNK-I--EGSGYFL--DKIEREDFLRKQRTFDNGSIPHQIHLQEM
419


WP_002269448
357
--DGYAG YIDG K TNQEAFYKYLKGLLNK-I--EGSGYFL--DKIEREDFLRKQRTEDNGSIPHQIHLQEM
419


WP_002271977
357
--DGYAG YIDG K TNQEAFYKYLKGLLNK-I--EGSGYFL--DKIEREDFLRKQRTEDNGSIPHQIHLQEM
419


WP_002272766
357
--DGYAG YIDG K TNQEAFYKYLKGLLNK-I--EGSGYFL--DKIEREDFLRKQRTEDNGSIPHQIHLQEM
419


WP_002273241
357
--DGYAG YIDG K TNQEAFYKYLKGLLNK-I--EGSGYFL--DKIEREDFLRKQRTEDNGSIPHQIHLQEM
419


WP_002275430
357
--DGYAG YIDG K TNQEAFYKYLKGLLNK-I--EGSGYFL--DKIEREDFLRKQRTEDNGSIPHQIHLQEM
419


WP_002276448
357
--DGYAG YIDG K TNQEAFYKYLKGLLNK-I--EGSGYFL--DKIEREDFLRKQRTEDNGSIPHQIHLQEM
419


WP_002277050
357
--NGYAG YIEN G VKQDEFYKYLKNTLSK-I--AGSDYFL--DKIEREDFLRKQRTEDNGSIPHQIHLQEM
419


WP_002277364
357
--DGYAG YIDG K TNQEAFYKYLKGLLNK-I--EGSGYFL--DKIEREDFLRKQRTEDNGSIPHQIHLQEM
419


WP_002279025
357
--DGYAG YIDG K TNQEAFYKYLKGLLNK-I--EGSGYFL--DKIEREDFLRKQRTEDNGSIPHQIHLQEM
419


WP_002279859
357
--DGYAG YIDG K TNQEAFYKYLKGLLNK-I--EGSGYFL--DKIEREDFLRKQRTEDNGSIPHQIHLQEM
419


WP_002280230
357
--DGYAG YIDG K TNQEAFYKYLKGLLNK-I--EGSGYFL--DKIEREDFLRKQRTEDNGSIPHQIHLQEM
419


WP_002281696
357
--DGYAG YIDG K TNQEAFYKYLKGLLNK-I--EGSGYFL--DKIEREDFLRKQRTEDNGSIPHQIHLQEM
419


WP_002282247
357
--NGYAG YIEN G VKQDEFYKYLKNTLSK-I--TGSDYFL--DQIEREDFLRKQRTEDNGSIPHQIHLQEM
419


WP_002282906
357
--DGYAG YIDG K TNQEAFYKYLKGLLNK-I--EGSGYFL--DKIEREDFLRKQRTEDNGSIPHQIHLQEM
419


WP_002283846
357
--DGYAG YIDG K TNQEAFYKYLKGLLNK-I--EGSGYFL--DKIEREDFLRKQRTEDNGSIPHQIHLQEM
419


WP_002287255
357
--DGYAG YIDG K TNQEAFYKYLKGLLNK-I--EGSGYFL--DKIEREDFLRKQRTEDNGSIPHQIHLQEM
419


WP_002288990
357
--DGYAG YIDG K TNQEAFYKYLKGLLNK-I--EGSGYFL--DKIEREDFLRKQRTEDNGSIPHQIHLQEM
419


WP_002289641
357
--DGYAG YIDG K TNQEAFYKYLKGLLNK-I--EGSGYFL--DKIEREDFLRKQRTEDNGSIPHQIHLQEM
419


WP_002290427
357
--DGYAG YIDG K TNQEAFYKYLKGLLNK-I--EGSGYFL--DKIEREDFLRKQRTEDNGSIPHQIHLQEM
419


WP_002295753
357
--DGYAG YIDG K TNQEAFYKYLKGLLNK-I--EGSGYFL--DKIEREDFLRKQRTEDNGSIPHQIHLQEM
419


WP_002296423
357
--DGYAG YIDG K TNQEAFYKYLKGLLNK-I--EGSGYFL--DKIEREDFLRKQRTEDNGSIPHQIHLQEM
419


WP_002304487
357
--NGYAG YVGA D ATEEEFYKYVKGILNK-V--EGADVWL--DKIDREDFLRKQRTEDNGSIPHQIHLQEM
429


WP_002305844
357
--DGYAG YIDG K TNQEAFYKYLKGLLNK-I--EGSGYFL--DKIEREDFLRKQRTEDNGSIPHQIHLQEM
419


WP_002307203
357
--DGYAG YIDG K TNQEAFYKYLKGLLNK-I--EGSGYFL--DKIEREDFLRKQRTEDNGSIPHQIHLQEM
419


WP_002310390
357
--DGYAG YIDG K TNQEAFYKYLKGLLNK-I--EGSGYFL--DKIEREDFLRKQRTEDNGSIPHQIHLQEM
419


WP_002352408
357
--DGYAG YIDG K TNQEAFYKYLKGLLNK-I--EGSGYFL--DKIEREDFLRKQRTEDNGSIPHQIHLQEM
419


WP_012997688
357
--DGYAG YIDG K TNQEAFYKYLKGLLNK-I--EGSGYFL--DKIEREDFLRKQRTEDNGSIPHQIHLQEM
419


WP_014677909
357
--DGYAG YIDG K TNQEAFYKYLKGLLNK-I--EGSGYFL--DKIEREDFLRKQRTEDNGSIPHQIHLQEM
419


WP_019312892
357
--DGYAG YIDG K TNQEAFYKYLKGLLNK-I--EGSGYFL--DKIEREDFLRKQRTEDNGSIPHQIHLQEM
419


WP_019313659
357
--DGYAG YIDG K TNQEAFYKYLKGLLNK-I--EGSGYFL--DKIEREDFLRKQRTEDNGSIPHQIHLQEM
419


WP_019314093
357
--DGYAG YIDG K TNQEAFYKYLKGLLNK-I--EGSGYFL--DKIEREDFLRKQRTEDNGSIPHQIHLQEM
419


WP_019315370
357
--DGYAG YIDG K TNQEAFYKYLKGLLNK-I--EGNGYFL--DKIEREDFLRKQRTEDNGSIPHQIHLQEM
419


WP_019803776
357
--DGYAG YIDG K TNQEAFYKYLKGLLNK-I--EGSGYFL--DKIEREDFLRKQRTEDNGSIPHQIHLQEM
419


WP_019805234
357
--DGYAG YIDG K TNQEAFYKYLKGLLNK-I--EGSGYFL--DKIEREDFLRKQRTEDNGSIPHQIHLQEM
419


WP_024783594
357
--DGYAG YIDG K TNQEAFYKYLKGLLNK-I--EGSGYFL--DKIEREDFLRKQRTEDNGSIPHQIHLQEM
419


WP_024784288
357
--NGYAG YIEN G VKQDEFYKYLKNTLSK-I--TGSDYFL--DQIEREDFLRKQRTEDNGSIPHQIHLQEM
419


WP_024784666
357
--DGYAG YIDG K TNQEAFYKYLKGLLNK-I--EGSGYFL--DKIEREDFLRKQRTEDNGSIPHQIHLQEM
419


WP_024784894
357
--DGYAG YIDG K TNQEAFYKYLKGLLNK-I--EGSGYFL--DKIEREDFLRKQRTEDNGSIPHQIHLQEM
419


WP_024786433
357
--NGYAG YIEN G VKQDEFYKYLKNTLSK-I--AGSDYFL--DKIEREDFLRKQRTEDNGSIPHQIHLQEM
419


WP_049473442
357
--DGYAG YIDG K TNQEAFYKYLKGLLNK-I--EGSGYFL--DKIEREDFLRKQRTEDNGSIPHQIHLQEM
419


WP_049474547
357
--DGYAG YIDG K TNQEAFYKYLKGLLNK-I--EGSGYFL--DKIEREDFLRKQRTEDNGSIPHQIHLQEM
419


EMC03581
350
--DGYAG YIDG K TNQEAFYKYLKGLLNK-I--EGSGYFL--DKIEREDFLRKQRTEDNGSIPHQIHLQEM
412


WP_000428612
358
--DGYAG YIDG K TTQESFYKYIKNLLSK-F--EGADYFL--EKIEREDFLRKQRTEDNGSIPHQIHLQEM
420


WP_000428613
358
--DGYAG YIDG K TTQEAFYKYIKNLLSK-F--EGTDYFL--EKIEREDFLRKQRTEDNGSIPHQIHLQEM
420


WP_049523028
357
--DGYAG YIDG K TTQEGFYKYIKNLISK-I--EGAEYFL--EKIEREDFLRKQRTEDNGSIPHQIHLQEM
419


WP_003107102
326
--NGYAG YING K TSQEDFYKYIKPILSK-L--KGAESLIs--KLEREDFLRKQRTFDNGSIPHQIHLNEL
388


WP_054279288
359
--DGYAG YISG K TSQEAFYKYIKPILET-L--DGAEDFLt--KINREDFLRKQRTEDNGSIPHQIHLGEL
421


WP_049531101
358
--EGYAG YIDS K TTQEAFYKYIKNLLSK-I--DGADYLL--DKIEREDFLRKQRTEDNGSIPHQIHLQEM
420


WP_049538452
358
--DGYAG YVDG K TTQEAFYKYIKNLLSK-F--EGADYFL--EKIEREDFLRKQRTEDNGSIPHQIHLQEM
420


WP_049549711
358
--DGYAG YIDG K TTQEAFYKYIKNLLSK-F--EGTDYFL--EKIEREDFLRKQRTEDNGSIPHQIHLQEM
420


WP_007896501
359
--NGYAG YIEG K VSQEDFYRYIKPILSR-L--KGGDEFLa--KIDRDDFLRKQRTEDNGSIPHQIHLKEL
421


EFR44625
311
--NGYAG YIEG K VSQEDFYRYIKPILSR-L--KGGDEFLa--KIDRDDFLRKQRTEDNGSIPHQIHLKEL
373


WP_002897477
357
--DGYAG YIDG K TTQEAFYKYIKNLLSK-F--EGADYFL--DKIEREDFLRKQRTEDNGSIPHQIHLQEM
419


WP_002906454
357
--DGYAG FIDG K TTQEAFYKYIKNLLSK-L--EGADYFL--NKIEREDFLRKQRTEDNGSIPHQIHLQEM
419


WP_009729476
358
--DGYAG YIDG K TTQETFYKYIKNLLSK-F--EGADYFL--DKIEREDFLRKQRTEDNGSIPHQIHLQEM
420


CQR24647
358
--NGYAG YIDG K TNQEDFYKYLKNLLQK-V--DGGDYFI--EKIEREDFLRKQRTFDNGSIPHQVHLDEM
420


WP_000066813
358
--DGYAG YIDG K TTQEAFYKYIKNLLSK-F--EGADYFL--DKIEREDFLKKQRTEDNGSIPHQIHLQEM
420


WP_009754323
358
--DGYAG YIDG K TTQEAFYKYIKNLLSK-F--EGADYFL--DKIEREDFLRKQRTEDNGSIPHQIHLQEM
420


WP_044674937
357
--DGYAG YIEG K TTQENFYRFIKKAIEK-I--EGSDYFI--DKIDREDFLRKQRTFDNGSIPHQIHLQEM
419


WP_044676715
357
--DGYAG YIEG K TTQENFYRFIKKAIEK-I--EGSNYFI--DKIDREDFLRKQRTFDNGSIPHQIHLQEM
419


WP_044680361
357
--DGYAG YIEG K TTQENFYRFIKKAIEK-I--EGSNYFI--DKIDREDFLRKQRTFDNGSIPHQIHLQEM
419


WP_044681799
357
--DGYAG YIEG K TTQENFYRFIKKAIEK-I--EGSDYFI--DKIDREDFLRKQRTFDNGSIPHQIHLQEM
419


WP_049533112
357
--KGYAG YIEN G VKQDEFYKYLKGILLQ-I--NGSGDFL--DKIDREDFLRKQRTEDNGSIPHQIHLQEM
419


WP_029090905
316
fyIDYIG YEES K SKEERLEKHIELLLAKeNvlTTVEHALleKNITFASLLPLQRSSRNAVIPYQVHEKEL
403


WP_006506696
361
ksKGYYN YINR K APVDEFYKYVKKCIEK-VdtPEAKQILn--DIELENFLLKQNSRINGSVPYQMQLDEM
429


AIT42264
357
--NGYAG YIDG G ASQEEFYKFIKPILEK-M--DGTEELLv--KLNREDLLRKQRTEDNGSIPHQIHLGEL
419


WP_034440723
363
--NGYAG YIDG K TSQEDFYKFVKAQLKG---eENGEYFL--EAIENENFLRKQRSFYNGVIPYQIHLQEL
425


AKQ21048
357
--NGYAG YIDG G ASQEEFYKFIKPILEK-M--DGTEELLv--KLNREDLLRKQRTEDNGSIPHQIHLGEL
419


WP_004636532
356
--NGYAG YIDG K TNQEDFYKYIEKVMKT-IksDKKDYFL--DKIDREVFLRKQRSFYNSVIPHQIHLQEM
420


WP_002364836
363
--DGYAG YIAH A VSQLKFYQYVKKIIQD-I--AGAEYFL--EKIAQENFLRKQRTFDNGVIPHQIHLAEL
427


WP_016631044
314
--DGYAG YIAH A VSQLKFYQYVKKIIQD-I--AGAEYFL--EKIAQENFLRKQRTEDNGVIPHQIHLAEL
378


EMS75795
100
--NGYAG YIDG K TTQEDFYKFLKKELNG-I--AGSERFM--EKVDQENFLLKQRTTANGVIPHQVHLTEL
162


WP_002373311
363
--DGYAG YIAH A VSQLKFYQYVKKIIQD-I--AGAEYFL--EKIAQENFLRKQRTFDNGVIPHQIHLAEL
427


WP_002378009
363
--DGYAG YITH A VSQLKFYQYVKKIIQD-I--AGAEYFL--EKIAQENFLRKQRTFDNGVIPHQIHLAEL
427


WP_002407324
363
--DGYAG YITH A VSQLKFYQYVKKIIQD-I--AGAEYFL--EKIAQENFLRKQRTFDNGVIPHQIHLAEL
427


WP_002413717
363
--DGYAG YIAH A VSQLKFYQYVKKIIQD-I--AGAEYFL--EKIAQENFLRKQRTFDNGVIPHQIHLAEL
427


WP_010775580
365
--DGYAG YIAH A VSQLKFYQYVKKIIQD-I--AGAEYFL--EKIAQENFLRKQRTEDNGVIPHQIHLAEL
429


WP_010818269
363
--DGYAG YIAH A VSQLKFYQYVKKIIQD-I--AGAEYFL--EKIAQENFLRKQRTFDNGVIPHQIHLAEL
427


WP_010824395
363
--DGYAG YITH A VSQLKFYQYVKKIIQD-I--AGAEYFL--EKIAQENFLRKQRTFDNGVIPHQIHLAEL
427


WP_016622645
363
--DGYAG YIAH A VSQLKFYQYVKKIIQD-I--AGAEYFL--EKIAQENFLRKQRTFDNGVIPHQIHLAEL
427


WP_033624816
363
--DGYAG YIAH A VSQLKFYQYVKKIIQD-I--AGAEYFL--EKIAQENFLRKQRTFDNGVIPHQIHLAEL
427


WP_033625576
363
--DGYAG YIAH A VSQLKFYQYVKKIIQD-I--AGAEYFL--EKIAQENFLRKQRTFDNGVIPHQIHLAEL
427


WP_033789179
363
--DGYAG YIAH A VSQLKFYQYVKKIIQD-I--AGAEYFL--EKIAQENFLRKQRTFDNGVIPHQIHLAEL
427


WP_002310644
361
--NGYAG YIEG H ATQEDFYKFVKKELTG-I--RGSEVFL--TKIEQENFLRKQRTFDNGVIPHQIHLTEL
423


WP_002312694
362
--NGYAG YIEG H ATQEAFYKFVKKELTG-I--RGSEVFL--TKIEQENFLRKQRTFDNGVIPHQIHLSEL
424


WP_002314015
362
--NGYAG YIEG H ATQEDFYKFVKKELTG-I--RGSEVFL--TKIEQENFLRKQRTFDNGVIPHQIHLTEL
424


WP_002320716
362
--NGYAG YIEG H ATQEDFYKFVKKELTG-I--RGSEVFL--TKIEQENFLRKQRTFDNGVIPHQIHLTEL
424


WP_002330729
361
--NGYAG YIEG H ATQEDFYKFVKKELTG-I--RGSEVFL--TKIEQENFLRKQRTFDNGVIPHQIHLTEL
423


WP_002335161
362
--NGYAG YIEG H ATQEDFYKFVKKELTG-I--RGSEVFL--TKIEQENFLRKQRTFDNGVIPHQIHLTEL
424


WP_002345439
362
--NGYAG YIEG H ATQEDFYKFVKKELTG-I--RGSEVFL--TKIEQENFLRKQRTFDNGVIPHQIHLTEL
424


WP_034867970
355
--NGYAG YIKG K TIQEEFYKFVKKELSG-V--VGSEPFL--EKIDQETFLLKQRTYINGVIPHQVHLIEL
417


WP_047937432
362
--NGYAG YIEG H ATQEDFYKFVKKELTG-I--RGSEVFL--TKIEQENFLRKQRTFDNGVIPHQIHLTEL
424


WP_010720994
355
--NGYAG YIKG K TIQEEFYKFVKKELSG-V--VGSEPFL--EKIDQETFLLKQRTYINGVIPHQVHLIEL
417


WP_010737004
355
--NGYAG YIKG K TIQEEFYKFVKKELSG-V--VGSEPFL--EKIDQETFLLKQRTYINGVIPHQVHLIEL
417


WP_034700478
355
--NGYAG YIKG K TIQEEFYKFVKKELSG-V--VGSEPFL--EKIDQETFLLKQRTYINGVIPHQVHLIEL
417


WP_007209003
359
--NGYAG YIDG K TKEEEFYKYLKTTLVQ---kSGYQYFI--EKIEQENFLRKQRIYDNGVIPHQVHAEEL
421


WP_023519017
355
--NGYAG YVKG K ATQEDFYKFLRTELAG-L--EESQSIM--EKIDLEIYLLKQRTFANGVIPHQIHLVEM
417


WP_010770040
358
--SGYAG YVEN S VTQAEFYKYIKKAIEK-V--PGAEYFL--EKIEQETFLDKQRTENNGVIPHQIHLEEL
422


WP_048604708
354
--DGYAG YIDN S ISQEKFYKYITNLIEK-I--DGAEYFL--KKIENEDFLRKQRTFDNGIIPHQIHLEEL
418


WP_010750235
355
--DGYAG YIDG K TTQADFYKFLKKELTG-V--PGSEPML--AKIDQENFLLKQRTPINGVIPHQVHLTEF
417


AII16583
396
--NGYAG YIDG G ASQEEFYKFIKPILEK-M--DGTEELLv--KLNREDLLRKQRTEDNGSIPHQIHLGEL
458


WP_029073316
367
kkNNYCN YINH K TPVDEFYKYIKKLIEK-IddPDVKTILn--KIELESFMLKQNSRINGAVPYQMQLDEL
435


WP_031589969
367
kkNNYCN YINH K TPVDEFYKYIKKLIEK-IddPDVKTILn--KIELESFMLKQNSRINGAVPYQMQLDEL
435


KDA45870
354
-iSGYAG YIDG K VSEEDFYKYIKKILKG-I--PETEEILq--KIDANNYLRKQRTEDNGAIPHQVHLKEL
417


WP_039099354
360
------- YVDG K -SKEDFYGDITKALKNnPdhPIVSEIKk--LIELDQFMPKQRTKDNGAIPHQLHQQEL
425


AKP02966
349
--QAYDD YINK K ---KELYISLKKELKVaLp-INLAKEAe-EKISKGTYLVKPRNSENGVVPYQLNKIEM
415


WP_010991369
363
--HGYAG YIDG - TKQADFYKYMKMTLEN-I--EGADYFI--AKIEKENFLRKQRTFDNGAIPHQLHLEEL
425


WP_033838504
363
--HGYAG YIDG - TKQADFYKYMKMTLEN-I--EGADYFI--AKIEKENFLRKQRTFDNGAIPHQLHLEEL
425


EHN60060
366
--HGYAG YIDG - TKQADFYKYMKMTLEN-I--EGADYFI--AKIEKENFLRKQRTFDNGAIPHQLHLEEL
428


EFR89594
132
--HGYAG YIDG - TKQADFYKYMKTTLEN-I--EGADYFI--AKIEKENFLRKQRTFDNGAIPHQLHLEEL
194


WP_038409211
363
--DGYAG YIDG - TIQEKFYKYMKKMLAN-I--DGADYFI--DQIEEENFLRKQRTFDNGTIPHQLHLEEL
425


EFR95520
1
------- ---- - ---------MKKMLAN-I--DGADYFI--DQIEEENFLRKQRTFDNGTIPHQLHLEEL
44


WP_003723650
363
--DGYAG YIDG - TKQVDFYKYLKTILEN-I--EGSDYFI--AKIEEENFLRKQRTFDNGAIPHQLHLEEL
425


WP_003727705
363
--DGYAG YIDG - TKQVDFYKYLKTTLEN-V--EGADYFI--TKIEEENFLRKQRTFDNGVIPHQLHLEEL
425


WP_003730785
363
--DGYAG YIDG - TKQVDFYKYLKTTLEN-V--EGADYFI--TKIEEENFLRKQRTFDNGVIPHQLHLEEL
425


WP_003733029
363
--HGYAG YISG - TKQADFYKYMKATLEK-I--EGADYFI--AKIEEENFLRKQRTEDNGVIPHQLHLEEL
425


WP_003739838
363
--DGYAG YIDG - TKQVDFYKYLKILLEN-I--EGADYFI--AKIEEENFLRKQRTFDNGAIPHQLHLEEL
425


WP_014601172
363
--DGYAG YIDG - TKQVDFYKYLKTILEN-I--EGADYFI--AKIEEENFLRKQRTFDNGAIPHQLHLEEL
425


WP_023548323
363
--DGYAG YIDG - TKQVDFYKYLKTTLEN-V--EGADYFI--TKIEEENFLRKQRTFDNGVIPHQLHLEEL
425


WP_031665337
363
--DGYAG YIDG - TKQVDFYKYLKTILEN-I--EGSDYFI--AKIEEENFLRKQRTFDNGAIPHQLHLEEL
425


WP_031669209
363
--HGYAG YISG - TKQADFYKYMKATLEK-I--EGADYFI--AKIEEENFLRKQRTFDNGVIPHQLHLEEL
425


WP_033920898
363
--DGYAG YIDG - TKQVDFYKYLKTILEN-I--EGADYFI--AKIEEENFLRKQRTFDNGAIPHQLHLEEL
425


AKI42028
366
--DGYAG YIDG - TKQVDFYKYLKTILEN-I--EGADYFI--AKIEEENFLRKQRTFDNGAIPHQLHLEEL
428


AKI50529
366
--DGYAG YIDG - TKQVDFYKYLKTILEN-I--EGADYFI--AKIEEENFLRKQRTFDNGAIPHQLHLEEL
428


EFR83390

------- ---- - ----------------------------------------------------------



WP_046323366
363
--DGYAG YIEG - TKQEAFYKYMKKMLEH-V--EGADYFI--NQIEEENFLRKQRTFDNGAIPHQLHLEEL
425


AKE81011
373
--NGYAG YIDG G ASQEEFYKFIKPILEK-M--DGTEELLv--KLNREDLLRKQRTFDNGSIPHQIHLGEL
435


CUO82355
365
kvKGYYN YINR K APVDEFYKFVKKCIEK-VdtPEAKQILh--DIELENFLLKQNSRINGSVPYQMQLDEM
433


WP_033162887
366
klHNYLG YIKY D TPVEEFYKYIKGLLAK-VdtDEAREILe--RIDLEKFMLKQNSRTNGSIPYQMQKDEM
434


AGZ01981
390
--NGYAG YIDG G ASQEEFYKFIKPILEK-M--DGTEELLv--KLNREDLLRKQRTFDNGSIPHQIHLGEL
452


AKA60242
357
--NGYAG YIDG G ASQEEFYKFIKPILEK-M--DGTEELLv--KLNREDLLRKQRTFDNGSIPHQIHLGEL
419


AKS40380
357
--NGYAG YIDG G ASQEEFYKFIKPILEK-M--DGTEELLv--KLNREDLLRKQRTFDNGSIPHQIHLGEL
419


4UN5_B
361
--NGYAG YIDG G ASQEEFYKFIKPILEK-M--DGTEELLv--KLNREDLLRKQRTFDNGSIPHQIHLGEL
423


WP_010922251
420


embedded image


486


WP_039695303
423
HAILRRQGDYYPFLKE--KQD RIEKILTFRIPYYVGPL VRKD--SRFAWAEY---RSDEKITPWNFDKVIDKEK
489


WP_045635197
420
NAILRRQGEYYPFLKD--NKE KIEKILTFRIPYYVGPL ARGN--RDFAWLTR---NSDEAIRPWNFEEIVDKAS
486


5AXW_A
184
KQLLKVQKAYHQLDQSfi--D TYIDLLETRRTYYEGPG ---Eg-SPFGWKDI----------------------
229


WP_009880683
104
HAILRRQEDFYPFLKD--NRE KIEKILTFRIPYYVGPL ARG-n-SRFAWMTR---KSEETITPWNFEEVVDKGA
170


WP_010922251
420
HAILRRQEDFYPFLKD--NRE KIEKILTFRIPYYVGPL ARG-n-SRFAWMTR---KSEETITPWNFEEVVDKGA
486


WP_011054416
420
HAILRRQEDFYPFLKD--NRE KIEKILTFRIPYYVGPL ARG-n-SRFAWMTR---KSEETITPWNFEEVVDKGA
486


WP_011284745
420
HAILRRQEDFYPFLKD--NRE KIEKILTFRIPYYVGPL ARG-n-SRFAWMTR---KSEETITPWNFEEVVDKGA
486


WP_011285506
420
HAILRRQEDFYPFLKD--NRE KIEKILTFRIPYYVGPL ARG-n-SRFAWMTR---KSEETITPWNFEEVVDKGA
486


WP_011527619
420
HAILRRQEDFYPFLKD--NRE KIEKILTFRIPYYVGPL ARG-n-SRFAWMTR---KSEETITPWNFEEVVDKGA
486


WP_012560673
420
HAILRRQEDFYPFLKD--NRE KIEKILTFRIPYYVGPL ARG-n-SRFAWMTR---KSEETITPWNFEEVVDKGA
486


WP_014407541
420
HAILRRQEDFYPFLKD--NRE KIEKILTFRIPYYVGPL ARG-n-SRFAWMTR---KSEETITPWNFEEVVDKGA
486


WP_020905136
420
HAILRRQEDFYPFLKD--NRE KIEKILTFRIPYYVGPL ARG-n-SRFAWMTR---KSEETITPWNFEEVVDKGA
486


WP_023080005
420
HAILRRQEDFYPFLKD--NRE KIEKILTFRIPYYVGPL ARG-n-SRFAWMTR---KSEETITPWNFEEVVDKGA
486


WP_023610282
420
HAILRRQEDFYPFLKD--NRE KIEKILTFRIPYYVGPL ARG-n-SRFAWMTR---KSEETITPWNFEEVVDKGA
486


WP_030125963
420
HAILRRQEDFYPFLKD--NRE KIEKILTFRIPYYVGPL ARG-n-SRFAWMTR---KSEETITPWNFEEVVDKGA
486


WP_030126706
420
HAILRRQEDFYPFLKD--NRE KIEKILTFRIPYYVGPL ARG-n-SRFAWMTR---KSEETITPWNFEEVVDKGA
486


WP_031488318
420
HAILRRQEDFYPFLKD--NRE KIEKILTFRIPYYVGPL ARG-n-SRFAWMTR---KSEETITPWNFEEVVDKGA
486


WP_032460140
420
HAILRRQEDFYPFLKD--NRE KIEKILTFRIPYYVGPL ARG-n-SRFAWMTR---KSEETITPWNFEEVVDKGA
486


WP_032461047
420
HAILRRQEDFYPFLKD--NRE KIEKILTFRIPYYVGPL ARG-n-SRFAWMTR---KSEETITPWNFEEVVDKGA
486


WP_032462016
420
HAILRRQEDFYPFLKD--NRE KIEKILTFRIPYYVGPL ARG-n-SRFAWMTR---KSEETITPWNFEEVVDKGA
486


WP_032462936
420
HAILRRQEDFYPFLKD--NRE KIEKILTFRIPYYVGPL ARG-n-SRFAWMTR---KSEETITPWNFEEVVDKGA
486


WP_032464890
420
HAILRRQEDFYPFLKD--NRE KIEKILTFRIPYYVGPL ARG-n-SRFAWMTR---KSEETITPWNFEEVVDKGA
486


WP_033888930
245
HAILRRQEDFYPFLKD--NRE KIEKILTFRIPYYVGPL ARG-n-SRFAWMTR---KSEETITPWNFEEVVDKGA
311


WP_038431314
420
HAILRRQEDFYPFLKD--NRE KIEKILTFRIPYYVGPL ARG-n-SRFAWMTR---KSEETITPWNFEEVVDKGA
486


WP_038432938
420
HAILRRQEDFYPFLKD--NRE KIEKILTFRIPYYVGPL ARG-n-SRFAWMTR---KSEETITPWNFEEVVDKGA
486


WP_038434062
420
HAILRRQEDFYPFLKD--NRE KIEKILTFRIPYYVGPL ARG-n-SRFAWMTR---KSEETITPWNFEEVVDKGA
486


BAQ51233
331
HAILRRQEDFYPFLKD--NRE KIEKILTFRIPYYVGPL ARG-n-SRFAWMTR---KSEETITPWNFEEVVDKGA
397


KGE60162

--------------------- ----------------- ------------------------------------



KGE60856

--------------------- ----------------- ------------------------------------



WP_002989955
420
HAILRRQEDFYPFLKD--NRE KIEKILTFRIPYYVGPL ARG-n-SRFAWMTR---KSEETITPWNFEEVVDKGA
486


WP_003030002
420
HAILRRQEEHYPFLKE--NQD KIEKILTFRIPYYVGPL ARKG--SRFAWAEY---KADEKITPWNFDDILDKEK
486


WP_003065552
423
HAILRRQGDYYPFLKE--NQD RIEKILTFRIPYYVGPL ARKD--SRFSWAEY---HSDEKITPWNFDKVIDKEK
489


WP_001040076
421
RAIIRRQSEYYPFLKE--NLD RIEKILTFRIPYYVGPL AREK--SDFAWMTR---KTDDSIRPWNFEDLVDKEK
487


WP_001040078
421
KAIIRRQSEYYPFLKE--NQD RIEKILTFRIPYYIGPL AREK--SDFAWMTR---KTDDSIRPWNFEDLVDKEK
487


WP_001040080
421
KAIIRRQSEYYPFLKE--NQD RIEKILTFRIPYYIGPL AREK--SDFAWMTR---KTDDSIRPWNFEDLVDKEK
487


WP_001040081
421
KAIIRRQSEYYPFLKE--NQD RIEKILTFRIPYYIGPL AREK--SDFAWMTR---KTDDSIRPWNFEDLVDKEK
487


WP_001040083
421
KAIIRRQSEYYPFLKE--NQD RIEKILTFRIPYYIGPL AREK--SDFAWMTR---KTDDSIRPWNFEDLVDKEK
487


WP_001040085
421
KAIIRRQSEYYPFLKE--NQD RIEKILTFRIPYYIGPL AREK--SDFAWMTR---KTDDSIRPWNFEDLVDKEK
487


WP_001040087
421
KAIIRRQSEYYPFLKE--NQD RIEKILTFRIPYYIGPL AREK--SDFAWMTR---KTDDSIRPWNFEDLVDKEK
487


WP_001040088
421
KAIIRRQSEYYPFLKE--NQD RIEKILTFRIPYYIGPL AREK--SDFAWMTR---KTDDSIRPWNFEDLVDKEK
487


WP_001040089
421
KAIIRRQSEYYPFLKE--NQD RIEKILTFRIPYYIGPL AREK--SDFAWMTR---KTDDSIRPWNFEDLVDKEK
487


WP_001040090
421
KAIIRRQSEYYPFLKE--NQD RIEKILTFRIPYYIGPL AREK--SDFAWMTR---KTDDSIRPWNFEDLVDKEK
487


WP_001040091
421
KAIIRRQSEYYPFLKE--NQD RIEKILTFRIPYYIGPL AREK--SDFAWMTR---KTDDSIRPWNFEDLVDKEK
487


WP_001040092
421
KAIIRRQSEYYPFLKE--NQD KIEKILTFRIPYYVGPL ARGN--SDFAWMTR---KTDDSIRPWNFEDLVDKEK
487


WP_001040094
421
RAIIRRQSEYYPFLKE--NLD RIEKILTFRIPYYVGPL AREK--SDFAWMTR---KTDDSIRPWNFEDLVDKEK
487


WP_001040095
421
RAIIRRQSEYYPFLKE--NLD RIEKILTFRIPYYVGPL AREK--SDFAWMTR---KTDDSIRPWNFEDLVDKEK
487


WP_001040096
421
RAIIRRQSEYYPFLKE--NLD RIEKILTFRIPYYVGPL AREK--SDFAWMTR---KTDDSIRPWNFEDLVDKEK
487


WP_001040097
421
RAIIRRQSEYYPFLKE--NLD RIEKILTFRIPYYVGPL AREK--SDFAWMTR---KTDDSIRPWNFEDLVDKEK
487


WP_001040098
421
RAIIRRQSEYYPFLKE--NLD RIEKILTFRIPYYVGPL AREK--SDFAWMTR---KTDDSIRPWNFEDLVDKEK
487


WP_001040099
421
RAIIRRQSEYYPFLKE--NLD RIEKILTFRIPYYVGPL AREK--SDFAWMTR---KTDDSIRPWNFEDLVDKEK
487


WP_001040100
421
RAIIRRQSEYYPLLKE--NLD RIEKILTFRIPYYVGPL AREK--SDFAWMTR---KTDDSIRPWNFEDLVDKEK
487


WP_001040104
421
KAIIRRQSEYYPFLKE--NQD RIEKILTFRIPYYIGPL AREK--SDFAWMTR---KTDDSIRPWNFEDLVDKEK
487


WP_001040105
421
KAIIRRQSEYYPFLKE--NQD RIEKILTFRIPYYIGPL AREK--SDFAWMTR---KTDDSIRPWNFEDLVDKEK
487


WP_001040106
421
KAIIRRQSEYYPFLKE--NLD RIEKILTFRIPYYVGPL AREK--SDFAWMTR---KTDDSIRPWNFEELVDKEA
487


WP_001040107
421
KAIIRRQSEYYPFLKE--NLD RIEKILTFRIPYYVGPL AREK--SDFAWMTR---KTDDSIRPWNFEELVDKEA
487


WP_001040108
421
KAIIRRQSEYYPFLKE--NLD RIEKILTFRIPYYVGPL AREK--SDFAWMTR---KTDDSIRPWNFEELVDKEA
487


WP_001040109
421
KAIIRRQSEYYPFLKE--NLD RIEKILTFRIPYYVGPL AREK--SDFAWMTR---KTDDSIRPWNFEELVDKEA
487


WP_001040110
421
KAIIRRQSEYYPFLKE--NLD RIEKILTFRIPYYVGPL AREK--SDFAWMTR---KTDDSIRPWNFEELVDKEA
487


WP_015058523
421
KAIIRRQSEYYPFLKE--NQD KIEKILTFRIPYYVGPL ARGN--SDFAWMTR---KTDDSIRPWNFEDLVDKEK
487


WP_017643650
421
RAIIRRQSEYYPFLKE--NLD RIEKILTFRIPYYVGPL AREK--SDFAWMTR---KTDDSIRPWNFEDLVDKEK
487


WP_017647151
421
KAIIRRQSEYYPFLKE--NLD RIEKILTFRIPYYVGPL AREK--SDFAWMTR---KTDDSIRPWNFEELVDKEA
487


WP_017648376
421
KAIIRRQSEYYPFLKE--NLD RIEKILTFRIPYYVGPL AREK--SDFAWMTR---KTDDSIRPWNFEELVDKEA
487


WP_017649527
421
KAIIRRQSEYYPFLKE--NQD RIEKILTFRIPYYIGPL AREK--SDFAWMTR---KTDDSIRPWNFEDLVDKEK
487


WP_017771611
421
KAIIRRQSEYYPFLKE--NLD RIEKILTFRIPYYVGPL AREK--SDFAWMTR---KTDDSIRPWNFEELVDKEA
487


WP_017771984
421
KAIIRRQSEYYPFLKE--NQD RIEKILTFRIPYYIGPL AREK--SDFAWMTR---KTDDSIRPWNFEDLVDKEK
487


CFQ25032
421
KAIIRRQSEYYPFLKE--NQD RIEKILTFRIPYYIGPL AREK--SDFAWMTR---KTDDSIRPWNFEDLVDKEK
487


CFV16040
421
KAIIRRQSEYYPFLKE--NQD RIEKILTFRIPYYIGPL AREK--SDFAWMTR---KTDDSIRPWNFEDLVDKEK
487


KLJ37842
421
KAIIRRQSEYYPFLKE--NQD RIEKILTFRIPYYIGPL AREK--SDFAWMTR---KTDDSIRPWNFEDLVDKEK
487


KLJ72361
421
KAIIRRQSEYYPFLKE--NQD RIEKILTFRIPYYIGPL AREK--SDFAWMTR---KTDDSIRPWNFEDLVDKEK
487


KLL20707
421
KAIIRRQSEYYPFLKE--NQD RIEKILTFRIPYYIGPL AREK--SDFAWMTR---KTDDSIRPWNFEDLVDKEK
487


KLL42645
421
KAIIRRQSEYYPFLKE--NLD RIEKILTFRIPYYVGPL AREK--SDFAWMTR---KTDDSIRPWNFEELVDKEA
487


WP_047207273
421
KAIIRRQSEYYPFLKE--NQD RIEKILTFRIPYYIGPL AREK--SDFAWMTR---KTDDSIRPWNFEDLVDKEK
487


WP_047209694
421
RAIIRRQSEYYPFLKE--NLD RIEKILTFRIPYYVGPL AREK--SDFAWMTR---KTDDSIRPWNFEDLVDKEK
487


WP_050198062
421
KAIIRRQSEYYPFLKE--NQD RIEKILTFRIPYYIGPL AREK--SDFAWMTR---KTDDSIRPWNFEDLVDKEK
487


WP_050201642
421
KAIIRRQSEYYPFLKE--NQD RIEKILTFRIPYYIGPL AREK--SDFAWMTR---KTDDSIRPWNFEDLVDKEK
487


WP_050204027
421
KAIIRRQSEYYPFLKE--NLD RIEKILTFRIPYYVGPL AREK--SDFAWMTR---KTDDSIRPWNFEELVDKEA
487


WP_050881965
421
KAIIRRQSEYYPFLKE--NQD RIEKILTFRIPYYIGPL AREK--SDFAWMTR---KTDDSIRPWNFEDLVDKEK
487


WP_050886065
421
KDIIRRQSEYYPFLKE--NQD RIEKILTFRIPYYIGPL AREK--SDFAWMTR---KTDDSIRPWNFEDLVDKEK
487


AHN30376
421
KAIIRRQSEYYPFLKE--NQD KIEKILTFRIPYYVGPL ARGN--SDFAWMTR---KTDDSIRPWNFEDLVDKEK
487


EAO78426
421
KAIIRRQSEYYPFLKE--NQD RIEKILTFRIPYYIGPL AREK--SDFAWMTR---KTDDSIRPWNFEDLVDKEK
487


CCW42055
421
RAIIRRQSEYYPFLKE--NLD RIEKILTFRIPYYVGPL AREK--SDFAWMTR---KTDDSIRPWNFEELVDKEA
487


WP_003041502
420
HAILRRQGEHYPFLKE--NQD KIEKILTFRIPYYVGPL ARKG--SRFAWAEY---KADEKITPWNFDDILDKEK
486


WP_037593752
421
HAILRRQGEHYPFLKE--NQD KIEKILTFRIPYYVGPL ARKG--SRFAWAEY---KADEKITPWNFDDILDKEK
487


WP_049516684
421
HAILRRQGEHYPFLKE--NQD KIEKILTFRIPYYVGPL ARKG--SRFAWAEY---KADEKITPWNFDDILDKEK
487


GAD46167
420
HAILRRQGEHYPFLKE--NQD KIEKILTFRIPYYVGPL ARKG--SRFAWAEY---KADEKITPWNFDDILDKEK
486


WP_018363470
421
HAILRRQGDYYPFLKE--NQE EIEKILTFRIPYYVGPL ARKD--SRFAWAEY---RSDEKITPWNFDKVIDKEK
487


WP_003043819
430
HAILRRQEEFYPFLKE--NRE KIEKILTFRIPYYVGPL ARG-n-SRFAWLTR---KSEEAITPWNFEEVVDKGA
496


WP_006269658
420
HAILRRQGEHYPFLKE--NQD KIEKILTFRIPYYVGPL ARKG--SRFAWAEY---KADEKITPWNFDDILDKEK
486


WP_048800889
420
HAILRRQGEHYPFLKE--NQD KIEKILTFRIPYYVGPL VRKG--SRFAWAEY---KADEKITPWNFDDILDKEK
486


WP_012767106
420
HAILRRQEDFYPFLKD--NRE KIEKILTFRIPYYVGPL ARG-n-SRFAWMTR---KSEETITPWNFEEVVDKGA
486


WP_014612333
420
HAILRRQEDFYPFLKD--NRE KIEKILTFRIPYYVGPL ARG-n-SRFAWMTR---KSEETITPWNFEEVVDKGA
486


WP_015017095
420
HAILRRQEDFYPFLKD--NRE KIEKILTFRIPYYVGPL ARG-n-SRFAWMTR---KSEETITPWNFEEVVDKGA
486


WP_015057649
420
HAILRRQEDFYPFLKD--NRE KIEKILTFRIPYYVGPL ARG-n-SRFAWMTR---KSEETITPWNFEEVVDKGA
486


WP_048327215
420
HAILRRQEDFYPFLKD--NRE KIEKILTFRIPYYVGPL ARG-n-SRFAWMTR---KSEETITPWNFEEVVDKGA
486


WP_049519324
420
HAILRRQEDFYPFLKD--NRE KIEKILTFRIPYYVGPL ARG-n-SRFAWMTR---KSEETITPWNFEEVVDKGA
486


WP_012515931
420
HAILRRQEVEYPFLKD--NRK KIESLLTFRIPYYVGPL ARG-h-SRFAWVKR---KFDGAIRPWNFEEIVDEEA
486


WP_021320964
420
HAILRRQEVEYPFLKD--NRK KIESLLTFRIPYYVGPL ARG-h-SRFAWVKR---KFDGAIRPWNFEEIVDEEA
486


WP_037581760
420
HAILRRQEVEYPFLKD--NRK KIESLLTFRIPYYVGPL ARG-h-SRFAWVKR---KFDGAIRPWNFEEIVDEEA
486


WP_004232481
420
RTILRRQGEYYPFLKE--NQA KIEKILTFRIPYYVGPL ARKN--SRFAWAKY---HSDEPITPWNFDEVVDKEK
486


WP_009854540
421
HAILRRQGDYYPFLKE--KQD RIEKILTFRIPYYVGPL VRKD--SRFAWAEY---RSDEKITPWNFDKVIDKEK
487


WP_012962174
421
HAILRRQGEHYAFLKE--NQA KIEKILTFRIPYYVGPL ARKN--SRFAWAEY---HSDEKITPWNFDEIIDKEK
487


WP_039695303
423
HAILRRQGDYYPFLKE--KQD RIEKILTFRIPYYVGPL VRKD--SRFAWAEY---RSDEKITPWNFDKVIDKEK
489


WP_014334983
420
HSILRRQGDYYPFLKE--NQA KIEKILTFRIPYYVGPL ARKD--SRFAWANY---HSDEPITPWNFDEVVDKEK
486


WP_003099269
420
KAIIRRQEKEYPFLKE--NQK KIEKLFTFKIPYYVGPL ANG-q-SSFAWLKR---QSNESITPWNFEEVVDQEA
486


AHY15608
420
KAIIRRQEKEYPFLKE--NQK KIEKLFTFKIPYYVGPL ANG-q-SSFAWLKR---QSNESITPWNFEEVVDQEA
486


AHY17476
420
KAIIRRQEKEYPFLKE--NQK KIEKLFTFKIPYYVGPL ANG-q-SSFAWLKR---QSNESITPWNFEEVVDQEA
486


ESR09100

--------------------- ----------------- ------------------------------------



AGM98575
420
KAIIRRQEKEYPFLKE--NQK KIEKLFTFKIPYYVGPL ANG-q-SSFAWLKR---QSNESITPWNFEEVVDQEA
486


ALF27331
420
RAIIRRQAEFYPFLAD--NQD RIEKILTFRIPYYIGPL ARGK--SDFSWLSR---KSADKITPWNFDEIVDKES
486


WP_018372492
433
QAIILNQSKYYPFLAE--NKE KIEKILTFRIPYYVGPL ARGN--SSFAWLQR---KSDEAIRPWNFEQVVDMET
499


WP_045618028
421
NAIIRRQGEHYPFLQE--NKE KIEKILTFRIPYYVGPL ARGN--RDFAWLTR---NSDQAIRPWNFEEIVDKAR
487


WP_045635197
420
NAILRRQGEYYPFLKD--NKE KIEKILTFRIPYYVGPL ARGN--RDFAWLTR---NSDEAIRPWNFEEIVDKAS
486


WP_002263549
420
RAIIRRQAEFYPFLAD--NQD RIEKLLTFRIPYYVGPL ARGK--SDFAWLSR---KSADKITPWNFDEIVDKES
486


WP_002263887
420
RAIIRRQAEFYPFLAD--NQD RIEKLLTFRIPYYVGPL ARGK--SDFAWLSR---KSADKITPWNFDEIVDKES
486


WP_002264920
420
HAILRRQGDYYPFLKE--NQD RIEKILTFRIPYYVGPL ARGK--SDFAWLSR---KSADKITPWNFDEIVDKES
486


WP_002269043
420
RAIIRRQAEFYPFLAD--NQD RIEKILTFRIPYYVGPL ARGK--SDFAWLSR---KSADKITPWNFDEIVDKES
486


WP_002269448
420
RAIIRRQAEFYPFLAD--NQD RIEKILTFRIPYYVGPL ARGK--SDFAWLSR---KSADKITPWNFDEIVDKES
486


WP_002271977
420
RAIIRRQAEFYPFLAD--NQD RIEKILTFRIPYYVGPL ARGK--SDFAWLSR---KSADKITPWNFDEIVDKES
486


WP_002272766
420
RAIIRRQAEFYPFLAD--NQD RIEKILTFRIPYYVGPL ARGK--SDFAWLSR---KSADKITPWNFDEIVDKES
486


WP_002273241
420
RAIIRRQAEFYPFLAD--NQD RIEKILTFRIPYYVGPL ARGK--SDFAWLSR---KSADKITPWNFDEIVDKES
486


WP_002275430
420
RAIIRRQAEFYPFLAD--NQD RIEKILTFRIPYYVGPL ARGK--SDFAWLSR---KSADKITPWNFDEIVDKES
486


WP_002276448
420
RAIIRRQAEFYPFLAD--NQD RIEKILTFRIPYYVGPL ARGK--SDFAWLSR---KSADKITPWNFDEIVDKES
486


WP_002277050
420
HAILRRQGDYYPFLKE--NQD RIEKILTFRIPYYVGPL ARKN--SRFAWAEY---HSDEAVMPWNFDQVIDKES
486


WP_002277364
420
RAIIRRQAEFYPFLAD--NQD RIEKILTFRIPYYVGPL ARGK--SDFAWLSR---KSADKITPWNFDEIVDKES
486


WP_002279025
420
RAIIRRQSEFYPFLAD--NQD RIEKILTFRIPYYVGPL ARGK--SDFAWLSR---KSADKITPWNFDEIVDKES
486


WP_002279859
420
RAIIRRQAEFYPFLAD--NQD RIEKILTFRIPYYVGPL ARGK--SDFAWLSR---KSADKITPWNFDEIVDKES
486


WP_002280230
420
RAIIRRQAEFYPFLAD--NQD RIEKILTFRIPYYVGPL ARGK--SDFAWLSR---KSADKITPWNFDEIVDKES
486


WP_002281696
420
RAIIRRQAEFYPFLAD--NQD RIEKILTFRIPYYVGPL ARGK--SDFAWLSR---KSADKITPWNFDEIVDKES
486


WP_002282247
420
HAILRRQGDYYPFLKE--NQD RIEKILTFRIPYYVGPL ARKN--SRFAWAEY---HSDEAVTPWNFDQVIDKES
486


WP_002282906
420
RAIIRRQAEFYPFLAD--NQD RIEKLLTFRIPYYVGPL ARGK--SDFAWLSR---KSADKITPWNFDEIVDKES
486


WP_002283846
420
RAIIRRQAEFYPFLAD--NQD RIEKILTFRIPYYVGPL ARGK--SDFAWLSR---KSADKITPWNFDEIVDKES
486


WP_002287255
420
RAIIRRQAEFYPFLAD--NQD RIEKILTFRIPYYVGPL ARGK--SDFAWLSR---KSADKITPWNFDEIVDKES
486


WP_002288990
420
RAIIRRQAEFYPFLAD--NQD RIEKILTFRIPYYVGPL ARGK--SDFAWLSR---KSADKITPWNFDEIVDKES
486


WP_002289641
420
RAIIRRQAEFYPFLAD--NQD RIEKLLTFRIPYYVGPL ASGK--SDFAWLSR---KSADKITPWNFDEIVDKES
486


WP_002290427
420
RAIIRRQAEFYPFLAD--NQD RIEKILTFRIPYYVGPL ARGK--SDFAWLSR---KSADKITPWNFDEIVDKES
486


WP_002295753
420
RAIIRRQAEFYPFLAD--NQD RIEKILTFRIPYYVGPL ARGK--SDFAWLSR---KSADKITPWNFDEIVDKES
486


WP_002296423
420
RAIIRRQAEFYPFLAD--NQD RIEKILTFRIPYYVGPL ARGK--SDFAWLSR---KSADKITPWNFDEIVDKES
486


WP_002304487
430
HAILRRQGEHYPFLKE--NQD KIEKILTFRIPYYVGPL VRKG--SRFAWAEY---KADEKITPWNFDDILDKEK
496


WP_002305844
420
RAIIRRQAEFYPFLAD--NQD RIEKILTFRIPYYVGPL ARGK--SDFAWLSR---KSADKITPWNFDEIVDKES
486


WP_002307203
420
RAIIRRQAEFYPFLAD--NQD RIEKILTFRIPYYVGPL ARGK--SDFAWLSR---KSADKITPWNFDEIVDKES
486


WP_002310390
420
RAIIRRQAEFYPFLAD--NQD RIEKILTFRIPYYVGPL ARGK--SDFAWLSR---KSADKITPWNFDEIVDKES
486


WP_002352408
420
RAIIRRQAEFYPFLAD--NQD RIEKILTFRIPYYVGPL ARGK--SDFAWLSR---KSADKITPWNFDEIVDKES
486


WP_012997688
420
RAIIRRQAEFYPFLAD--NQD RIEKILTFRIPYYVGPL ARGK--SDFAWLSR---KSADKITPWNFDEIVDKES
486


WP_014677909
420
RAIIRRQAEFYPFLAD--NQD RIEKILTFRIPYYVGPL ARGK--SDFAWLSR---KSADKITPWNFDEIVDKES
486


WP_019312892
420
RAIIRRQAEFYPFLAD--NQD RIEKILTFRIPYYVGPL ARGK--SDFAWLSR---KSADKITPWNFDEIVDKES
486


WP_019313659
420
RAIIRRQAEFYPFLAD--NQD RIEKLLTFRIPYYVGPL ARGK--SDFAWLSR---KSADKITPWNFDEIVDKES
486


WP_019314093
420
RAIIRRQAEFYPFLAD--NQD RIEKILTFRIPYYVGPL ARGK--SDFAWLSR---KSADKITPWNFDEIVDKES
486


WP_019315370
420
RAIIRRQAEFYPFLAD--NQD RIEKILTFRIPYYVGPL ARGK--SDFAWLSR---KSADKITPWNFDEIVDKES
486


WP_019803776
420
RAIIRRQAEFYPFLAD--NQD RIEKLLTFRIPYYVGPL ARGK--SDFAWLSR---KSADKITPWNFDEIVDKES
486


WP_019805234
420
RAIIRRQAEFYPFLAD--NQD RIEKILTFRIPYYVGPL ARGK--SDFAWLSR---KSADKITPWNFDEIVDKES
486


WP_024783594
420
RAIIRRQAEFYPFLAD--NQD RIEKLLTFRIPYYVGPL ARGK--SDFAWLSR---KSADKITPWNFDEIVDKES
486


WP_024784288
420
HAILRRQGDYYPFLKE--NQD RIEKILTFRIPYYVGPL ARKN--SRFAWAEY---HSDEAVTPWNFDQVIDKES
486


WP_024784666
420
RAIIRRQAEFYPFLAD--NQD RIEKILTFRIPYYVGPL ARGK--SDFAWLSR---KSADKITPWNFDEIVDKES
486


WP_024784894
420
RAIIRRQAEFYPFLAD--NQD RIEKLLTFRIPYYVGPL ASGK--SDFAWLSR---KSADKITPWNFDEIVDKES
486


WP_024786433
420
HAILRRQGDYYPFLKE--NQD RIEKILTFRIPYYVGPL ARKN--SRFAWAEY---HSDEAVTPWNFDQVIDKES
486


WP_049473442
420
RAIIRRQAEFYPFLAD--NQD RIEKILTFRIPYYVGPL ARGK--SDFAWLSR---KSADKITPWNFDEIVDKES
486


WP_049474547
420
RAIIRRQAEFYPFLAD--NQD RIEKLLTFRIPYYVGPL ASGK--SDFAWLSR---KSADKITPWNFDEIVDKES
486


EMC03581
413
RAIIRRQAEFYPFLAD--NQD RIEKILTFRIPYYVGPL ARGK--SDFAWLSR---KSADKITPWNFDEIVDKES
479


WP_000428612
421
NAILRRQGEHYPFLKE--NKE KIEKILTFRIPYYVGPL ARGN--RDFAWLTR---NSDQAIRPWNFEEIVDKAS
487


WP_000428613
421
NAILRRQGEHYPFLKD--NKE KIEKILTFRIPYYVGPL ARGN--RDFAWLTR---NSDEAIRPWNFEEIVDKAS
487


WP_049523028
420
NAILRHQGEYYPFLKE--NKD KIEQILTFRIPYYVGPL ARGN--SDFAWLSR---NSDEAIRPWNFEEMVDKSS
486


WP_003107102
389
KSIIRRQEKYYPFLKD--KQV RIEKIFTFRIPYFVGPL ANG-n-SSFAWVKR---RSNESITPWNFEEVVEQEA
455


WP_054279288
422
QAILERQQAYYPFLKD--NQE KIEKILTFRIPYYIGPL ARG-n-SRFAWLTR---TSDQKITPWNFDEMVDQEA
488


WP_049531101
421
NAILRRQGEHYPFLKE--NRE KIEKILTFRIPYYVGPL ARGN--RDFAWLTR---NSDQAIRPWNFEEIVDKAS
487


WP_049538452
421
NAILRRQGEHYPFLKE--NKE KIEKILTFRIPYYVGPL ARGN--RDFAWLTR---NSDQAIRPWNFEEIVDKAS
487


WP_049549711
421
NAILRRQGEHYPFLKE--NKE KIEKILTFRIPYYVGPL ARGN--RDFAWLTR---NSDQAIRPWNFEEIVDKAS
487


WP_007896501
422
HAILRRQEKYYPFLAE--QKE KIEQLLCFRIPYYVGPL AKGGn-SSFAWLKR---RSDEPITPWNFKDVVDEEA
489


EFR44625
374
HAILRRQEKYYPFLAE--QKE KIEQLLCFRIPYYVGPL AKGGn-SSFAWLKR---RSDEPITPWNFKDVVDEEA
441


WP_002897477
420
NAILRRQGEHYPFLKE--NRE KIEKILTFRIPYYVGPL ARDN--RDFSWLTR---NSDEPIRPWNFEEVVDKAR
486


WP_002906454
420
NAILRRQGEHYLFLKE--NRE KIEKILAFRIPYYVGPL ARGN--RDFAWLTR---NSDQAIRPWNFEEVVDKAS
486


WP_009729476
421
NAILRRQGEHYPFLKE--NKE KIEKILTFRIPYYVGPL ARGN--RDFAWLTR---NSDQAIRPWNFEEIVDKAS
487


CQR24647
421
KAILRRQGEFYPFLKE--NAE KIQQILTFKIPYYVGPL ARGN--SRFAWASY---NSNEKMTPWNFDNVIDKTS
487


WP_000066813
421
NAIIRRQGEHYPFLQE--NKE KIEKILTFRIPYYVGPL ARGN--GDFAWLTR---NSDQAIRPWNFEEIVDQAS
487


WP_009754323
421
NAILRRQGEHYPLLKE--NKE KIEKILTFRIPYYVGPL ARGN--RDFAWLTR---NSDQAIRPWNFEEIVDKAS
487


WP_044674937
420
HAIIRRQAEFYPFLVE--NQD KIEKILTFRIPYYVGPL ARGK--SEFAWLNR---KSDEKIRPWNFDEMVDKET
486


WP_044676715
420
HAIIRRQAEFYPFLVE--NQD KIEKILTFRIPYYVGPL ARGK--SEFAWLNR---KSDEKIRPWNFDEMVDKET
486


WP_044680361
420
HAIIRRQAEFYPFLVE--NQD KIEKILTFRIPYYVGPL ARGK--SEFAWLNR---KSDEKIRPWNFDEMVDKET
486


WP_044681799
420
HAIIRRQAEFYPFLVE--NQD KIEKILTFRIPYYVGPL ARGK--SEFAWLNR---KSDEKIRPWNFDEMVDKET
486


WP_049533112
420
HAILRRQEEHYPFLKE--NQD KIEKILTFRIPYYVGPL ARKG--SRFAWAEY---KADEKITPWNFDDILDKEK
486


WP_029090905
404
VAILENQATYYPFLLE--QKD NIHKLLTFRIPYYVGPL ADQKd-SEFAWMVR---KQAGKITPFNFEEMVDIDA
471


WP_006506696
430
IKIIDNQAEYYPILKE--KRE QLLSILTFRIPYYFGPL ETSEh----AWIKRlegKENQRILPWNYQDIVDVDA
498


AIT42264
420
HAILRRQEDFYPFLKD--NRE KIEKILTFRIPYYVGPL ARG-n-SRFAWMTR---KSEETITPWNFEEVVDKGA
486


WP_034440723
426
TAVLDQQEKHYSFLKE--NRD KIISLLTFRIPYYVGPL AKGE--SRFAWLER--sNSEEKIKPWNFDKIVDIDK
493


AKQ21048
420
HAILRRQEDFYPFLKD--NRE KIEKILTFRIPYYVGPL ARG-n-SRFAWMTR---KSEETITPWNFEEVVDKGA
486


WP_004636532
421
QAILDRQSQYYPFLAE--NRD KIESLVTFRIPYYVGPL TVSDg-SEFAWMER---QSDEPIRPWNFDEIVNKER
488


WP_002364836
428
QAIIHRQAAYYPFLKE--NQE KIEQLVTFRIPYYVGPL SKGDa-STFAWLKR---QSEEPIRPWNLQETVDLDQ
495


WP_016631044
379
QAIIHRQAAYYPFLKE--NQE KIEQLVTFRIPYYVGPL SKGDa-STFAWLKR---QSEEPIRPWNLQETVDLDQ
446


EMS75795
163
KAIIERQKPYYPSLEE--ARD KMIRLLTFRIPYYVGPL AQGEetSSFAWLER---KTPEKVTPWNATEVIDYSA
231


WP_002373311
428
QAIIHRQAAYYPFLKE--NQE KIEQLVTFRIPYYVGPL SKGDa-STFAWLKR---QSEEPIRPWNLQETVDLDQ
495


WP_002378009
428
QAIIHRQAAYYPFLKE--NQE KIEQLVTFRIPYYVGPL SKGDa-NTFAWLKR---QSEEPIRPWNLQETVDLDQ
495


WP_002407324
428
QAIIHRQAAYYPFLKE--NQE KIEQLVTFRIPYYVGPL SKGDa-STFAWLKR---QSEEPIRPWNLQETVDLDQ
495


WP_002413717
428
QAIIHRQAAYYPFLKE--NQE KIEQLVTFRIPYYVGPL SKGDa-STFAWLKR---QSEEPIRPWNLQETVDLDQ
495


WP_010775580
430
QAIIHRQAAYYPFLKE--NQK KIEQLVTFRIPYYVGPL SKGDa-STFAWLKR---QSEEPIRPWNLQETVDLDQ
497


WP_010818269
428
QAIIHRQAAYYPFLKE--NQE KIEQLVTFRIPYYVGPL SKGDa-STFAWLKR---QSEEPIRPWNLQETVDLDQ
495


WP_010824395
428
QAIIHRQAAYYPFLKE--NQE KIEQLVTFRIPYYVGPL SKGDa-STFAWLKR---QSEEPIRPWNLQETVDLDQ
495


WP_016622645
428
QAIIHRQAAYYPFLKE--NQE KIEQLVTFRIPYYVGPL SKGDa-STFAWLKR---QSEEPIRPWNLQETVDLDQ
495


WP_033624816
428
QAIIHRQAAYYPFLKE--NQK KIEQLVTFRIPYYVGPL SKGDa-STFAWLKR---QSEEPIRPWNLQETVDLDQ
495


WP_033625576
428
QAIIHRQAAYYPFLKE--NQE KIEQLVTFRIPYYVGPL SKGDa-STFAWLKR---QNEKPIRPWNLQETVDLDQ
495


WP_033789179
428
QAIIHRQAAYYPFLKE--NQK KIEQLVTFRIPYYVGPL SKGDa-STFAWLKR---QSEEPIRPWNLQETVDLDQ
495


WP_002310644
424
RAIIANQKKHYPFLKE--EQE KLESLLTFKIPYYVGPL AKKQenSPFAWLIR---KSEEKIKPWNLPEIVDMEG
492


WP_002312694
425
RAIIANQKKHYPFLKE--EQE KLESLLTFKIPYYVGPL AKKQenSPFAWLIR---KSEEKIKPWNLPEIVDMEG
493


WP_002314015
425
RAIIANQKKHYPFLKE--EQE KLESLLTFKIPYYVGPL AKKQenSPFAWLIR---KSEEKIKPWNLPEIVDMEG
493


WP_002320716
425
RAIIANQKKHYPFLKE--EQE KLESLLTFKIPYYVGPL AKKQenSPFAWLIR---KSEEKIKPWNLPEIVDMEG
493


WP_002330729
424
RAIIANQKKHYPFLKE--EQE KLESLLTFKIPYYVGPL AKKQenSPFAWLIR---KSEEKIKPWNLPEIVDMEG
492


WP_002335161
425
RAIIANQKKHYPFLKE--EQE KLESLLTFKIPYYVGPL AKKQenSPFAWLIR---KSEEKIKPWNLPEIVDMEG
493


WP_002345439
425
RAIIANQKKHYPFLKE--EQE KLESLLTFKIPYYVGPL AKKQenSPFAWLIR---KSEEKIKPWNLPEIVDMEG
493


WP_034867970
418
KAIIDQQKQHYPFLEE--AGP KIIALFKFRIPYYVGPL AKEQeaSSFAWIER---KTAEKINPWNFSEVVDIEK
486


WP_047937432
425
RAIIANQKKHYPFLKE--EQE KLESLLTFKIPYYVGPL AKKQenSPFAWLIR---KSEEKIKPWNLPEIVDMEG
493


WP_010720994
418
KAIIDQQKQHYPFLEE--AGP KIIALFKFRIPYYVGPL AKEQeaSSFAWIER---KTAEKINPWNFSEVVDIEK
486


WP_010737004
418
KAIIDQQKQHYPFLEE--AGP KIIALFKFRIPYYVGPL AKEQeaSSFAWIER---KTAEKINPWNFSEVVDIEK
486


WP_034700478
418
KAIIDQQKQHYPFLEE--AGP KIIALFKFRIPYYVGPL AKEQeaSSFAWIER---KTAEKINPWNFSEVVDIEK
486


WP_007209003
422
RAILRKQEKYYSFLKE--NHE KIEQIFKVRIPYYVGPL AKHNegSRFAWNIR---KSDEPIRPWNMNDVVDENA
490


WP_023519017
418
REIMDRQKRFYPFLKG--AQG KIEKLLTFRIPYYVGPL AQEGg-SPFAWIKR---KSPSQITPWNFAEVVDKEN
485


WP_010770040
423
EAIIQKQATYYPFLAD--NKE EMKQLVTFRIPYYVGPL ADGN--SPFAWLER---ISSEPIRPGNLAEVVDIKK
489


WP_048604708
419
KAILHHQAMYYPFLQE--KFS NFVDLLTFRIPYYVGPL ANGN--SRFSWLSR---KSDEPIRPWNLAEVVDLSK
485


WP_010750235
418
KAIIDQQKQYYPFLEK--SKE KMIQLLTFRIPYYVGPL AQDKetSSFAWLER---KTTEKIKPWNAKDVIDYGA
486


AII16583
459
HAILRRQEDFYPFLKD--NRE KIEKILTFRIPYYVGPL ARG-n-SRFAWMTR---KSEETITPWNFEEVVDKGA
525


WP_029073316
436
NKILENQSVYYSDLKD--NED KIRSILTFRIPYYFGPL ITKDr--QFDWIIKkegKENERILPWNANEIVDVDK
506


WP_031589969
436
NKILENQSVYYSDLKD--NED KIRSILTFRIPYYFGPL ITKDr--QFDWIIKkegKENERILPWNANEIVDVDK
506


KDA45870
418
VAIVENQGKYYPFLRE--NKD KFEKILNFRIPYYVGPL ARGN--SKFAWLTR--a-GEGKITPYNFDEMIDKET
484


WP_039099354
426
DRIIENQQQYYPWLAE-1NPN KLDELVAFRVPYYVGPL QQQSsdAKFAWMIR---KAEGQIIPWNFDDKVDRQA
509


AKP02966
416
EKIIDNQSQYYPFLKE--NKE KLLSILSFRIPYYVGPL -QSSekNPFAWMER---KSNGHARPWNFDEIVDREK
483


WP_010991369
426
EAILHQQAKYYPFLKE--NYD KIKSLVTFRIPYFVGPL ANGQ--SEFAWLTR---KADGEIRPWNIEEKVDFGK
492


WP_033838504
426
EAILHQQAKYYPFLKE--NYD KIKSLVTFRIPYFVGPL ANGQ--SEFAWLTR---KADGEIRPWNIEEKVDFGK
492


EHN60060
429
EAILHQQAKYYPFLKE--NYD KIKSLVTFRIPYFVGPL ANGQ--SEFAWLTR---KADGEIRPWNIEEKVDFGK
495


EFR89594
195
EAILHQQAKYYPFLKE--NYD KIKSLVTFRIPYFVGPL ANGQ--SEFAWLTR---KADGEIRPWNIEEKVDFGK
261


WP_038409211
426
EAILHQQAKYYPFLRK--DYE KIRSLVTFRIPYFIGPL ANGQ--SDFAWLTR---KADGEIRPWNIEEKVDFGK
492


EFR95520
45
EAILHQQAKYYPFLRK--DYE KIRSLVTFRIPYFIGPL ANGQ--SDFAWLTR---KADGEIRPWNIEEKVDFGK
111


WP_003723650
426
EAIIHQQAKYYPFLKE--DYD KIKSLVTFRIPYFVGPL ANGQ--SEFAWLTR---KADGEIRPWNIEEKVDFGK
492


WP_003727705
426
EAILHQQAKYYPFLRE--GYD KIKSLVTFRIPYFVGPL ANGQ--SEFAWLTR---KDDGEIRPWNIEEKVDFGK
492


WP_003730785
426
EAILHQQAKYYPFLRE--GYD KIKSLVTFRIPYFVGPL ANGQ--SEFAWLTR---KDDGEIRPWNIEEKVDFGK
492


WP_003733029
426
EAILHQQAKYYPFLRE--DYE KIKSLVTFRIPYFVGPL AKGQ--SEFAWLTR---KADGEIRPWNIEEKVDFGK
492


WP_003739838
426
EAILHQQAKYYPFLKE--AYD KIKSLVTFRIPYFVGPL ANGQ--SDFAWLTR---KADGEIRPWNIEEKVDFGK
492


WP_014601172
426
EAIIHQQAKYYPFLRE--DYE KIKSLVTFRIPYFVGPL AKGQ--SEFAWLTR---KADGEIRPWNIEEKVDFGK
492


WP_023548323
426
EAILHQQAKYYPFLRE--DYE KIKSLVTFRIPYFVGPL AKGQ--SEFAWLTR---KADGEIRPWNIEEKVDFGK
492


WP_031665337
426
EAIIHQQAKYYTELKE--DYD KIKSLVTFRIPYFVGPL ANGQ--SEFAWLTR---KADGEIRPWNIEEKVDFGK
492


WP_031669209
426
EAILHQQAKYYPFLRE--DYE KIKSLVTFRIPYFVGPL AKGQ--SEFAWLTR---KADGEIRPWNIEEKVDFGK
492


WP_033920898
426
EAIIHQQAKYYPFLRE--DYE KIKSLVTFRIPYFVGPL AKGQ--SEFAWLTR---KADGEIRPWNIEEKVDFGK
492


AKI42028
429
EAIIHQQAKYYPFLRE--DYE KIKSLVTFRIPYFVGPL AKGQ--SEFAWLTR---KADGEIRPWNIEEKVDFGK
495


AKI50529
429
EAIIHQQAKYYPFLRE--DYE KIKSLVTFRIPYFVGPL AKGQ--SEFAWLTR---KADGEIRPWNIEEKVDFGK
495


EFR83390

--------------------- ----------------- ------------------------------------



WP_046323366
426
EAILHQQAKYYPFLKV--DYE KIKSLVTFRIPYFVGPL ANGQ--SEFSWLTR---KADGEIRPWNIEEKVDFGK
492


AKE81011
436
HAILRRQEDFYPFLKD--NRE KIEKILTFRIPYYVGPL ARG-n-SRFAWMTR---KSEETITPWNFEEVVDKGA
502


CUO82355
434
IKIIDNQAKYYPVLKE--KRE QLLSILTFRIPYYFGPL ETSEh----AWIKRlegKENQRILPWNYQDTVDVDA
502


WP_033162887
435
IQIIDNQSVYYPQLKE--NRD KLISILEFRIPYYFGPL AHSE----FAWIKKfedKQKERILPWNYDQIVDIDA
503


AGZ01981
453
HAILRRQEDFYPFLKD--NRE KIEKILTFRIPYYVGPL ARG-n-SRFAWMTR---KSEETITPWNFEEVVDKGA
519


AKA60242
420
HAILRRQEDFYPFLKD--NRE KIEKILTFRIPYYVGPL ARG-n-SRFAWMTR---KSEETITPWNFEEVVDKGA
486


AKS40380
420
HAILRRQEDFYPFLKD--NRE KIEKILTFRIPYYVGPL ARG-n-SRFAWMTR---KSEETITPWNFEEVVDKGA
486


4UN5_B
424
HAILRRQEDFYPFLKD--NRE KIEKILTFRIPYYVGPL ARG-n-SRFAWMTR---KSEETITPWNFEEVVDKGA
490


WP_010922251
487


embedded image


561


WP_039695303
490
SAEKFITRMTLNDLYLPEEKVLPKHSHVYETYAVYNELTKIKYVN--EQGKES-FFDSNMKQEIFDHVEK--ENR-KVTK
563


WP_045635197
487
SAEDFINKMTNYDLYLPEEKVLPKHSLLYETFAVYNELTKVKFIA--EGLRDYqFLDSGQKKQIVNQLFK--ENR-KVTE
561


5AXW_A
230
--KEWYEMLMGHCTYFPEELRSVKYAYNADLYNALNDLNNLVITR--DENEKLeYYE---KFQIIENVFK--QKK-KPTL
299


WP_009880683
171
SAQSFIERMTNEDKNLPNEKVLPKHSLLYEYFTVYNELTKVKYVT--EGMRKPaELSGEQKKAIVDLLFK--TNR-KVTV
245


WP_010922251
487
SAQSFIERMTNEDKNLPNEKVLPKHSLLYEYFTVYNELTKVKYVT--EGMRKPaELSGEQKKAIVDLLFK--TNR-KVTV
561


WP_011054416
487
SAQSFIERMTNEDKNLPNEKVLPKHSLLYEYFTVYNELTKVKYVT--EGMRKPaELSGEQKKAIVDLLFK--TNR-KVTV
561


WP_011284745
487
SAQSFIERMTNEDKNLPNEKVLPKHSLLYEYFTVYNELTKVKYVT--EGMRKPaELSGEQKKAIVDLLFK--TNR-KVTV
561


WP_011285506
487
SAQSFIERMTNEDKNLPNEKVLPKHSLLYEYFTVYNELTKVKYVT--EGMRKPaELSGEQKKAIVDLLFK--TNR-KVTV
561


WP_011527619
487
SAQSFIERMTNEDKNLPNEKVLPKHSLLYEYFTVYNELTKVKYVT--EGMRKPaELSGEQKKAIVDLLFK--TNR-KVTV
561


WP_012560673
487
SAQSFIERMTNEDKNLPNEKVLPKHSLLYEYFTVYNELTKVKYVT--EGMRKPaELSGEQKKAIVDLLFK--TNR-KVTV
561


WP_014407541
487
SAQSFIERMTNEDKNLPNEKVLPKHSLLYEYFTVYNELTKVKYVT--EGMRKPaELSGEQKKAIVDLLFK--TNR-KVTV
561


WP_020905136
487
SAQSFIERMTNEDKNLPNEKVLPKHSLLYEYFTVYNELTKVKYVT--EGMRKPaELSGEQKKAIVDLLFK--TNR-KVTV
561


WP_023080005
487
SAQSFIERMTNEDKNLPNEKVLPKHSLLYEYFTVYNELTKVKYVT--EGMRKPaELSGEQKKAIVDLLFK--TNR-KVTV
561


WP_023610282
487
SAQSFIERMTNEDKNLPNEKVLPKHSLLYEYFTVYNELTKVKYVT--EGMRKPaELSGEQKKAIVDLLFK--TNR-KVTV
561


WP_030125963
487
SAQSFIERMTNEDKNLPNEKVLPKHSLLYEYFTVYNELTKVKYVT--EGMRKPaELSGEQKKAIVDLLFK--TNR-KVTV
561


WP_030126706
487
SAQSFIERMTNEDKNLPNEKVLPKHSLLYEYFTVYNELTKVKYVT--EGMRKPaELSGEQKKAIVDLLFK--TNR-KVTV
561


WP_031488318
487
SAQSFIERMTNEDKNLPNEKVLPKHSLLYEYFTVYNELTKVKYVT--EGMRKPeFLSGEQKKAIVDLLFK--TNR-KVTV
561


WP_032460140
487
SAQSFIERMTNEDKNLPNEKVLPKHSLLYEYFTVYNELTKVKYVT--EGMRKPaELSGEQKKAIVDLLFK--TNR-KVTV
561


WP_032461047
487
SAQSFIERMTNEDKNLPNEKVLPKHSLLYEYFTVYNELTKVKYVT--EGMRKPaELSGEQKKAIVDLLFK--TNR-KVTV
561


WP_032462016
487
SAQSFIERMTNEDKNLPNEKVLPKHSLLYEYFTVYNELTKVKYVT--EGMRKPaELSGEQKKAIVDLLFK--TNR-KVTV
561


WP_032462936
487
SAQSFIERMTNEDKNLPNEKVLPKHSLLYEYFTVYNELTKVKYVT--EGMRKPaELSGEQKKAIVDLLFK--TNR-KVTV
561


WP_032464890
487
SAQSFIERMTNEDKNLPNEKVLPKHSLLYEYFTVYNELTKVKYVT--EGMRKPaELSGEQKKAIVDLLFK--TNR-KVTV
561


WP_033888930
312
SAQSFIERMTNEDKNLPNEKVLPKHSLLYEYFTVYNELTKVKYVT--EGMRKPaELSGEQKKAIVDLLFK--TNR-KVTV
386


WP_038431314
487
SAQSFIERMTNEDKNLPNEKVLPKHSLLYEYFTVYNELTKVKYVT--EGMRKPaELSGEQKKAIVDLLFK--TNR-KVTV
561


WP_038432938
487
SAQSFIERMTNEDKNLPNEKVLPKHSLLYEYFTVYNELTKVKYVT--EGMRKPaELSGEQKKAIVDLLFK--TNR-KVTV
561


WP_038434062
487
SAQSFIERMTNEDKNLPNEKVLPKHSLLYEYFTVYNELTKVKYVT--EGMRKPaELSGEQKKAIVDLLFK--TNR-KVTV
561


BAQ51233
398
SAQSFIERMTNEDKNLPNEKVLPKHSLLYEYFTVYNELTKVKYVT--EGMRKPaELSGEQKKAIVDLLFK--TNR-KVTV
472


KGE60162

--------------------------------------------------------------------------------



KGE60856

--------------------------------------------------------------------------------



WP_002989955
487
SAQSFIERMTNEDKNLPNEKVLPKHSLLYEYFTVYNELTKVKYVT--EGMRKPaELSGEQKKAIVDLLFK--TNR-KVTV
561


WP_003030002
487
SAEKFITRMTLNDLYLPEEKVLPKHSLLYETFTVYNELTKVKYVN--EQGEAK-FFDANMKQEIFDHVEK--ENR-KVTK
560


WP_003065552
490
SAEKFITRMTLNDLYLPEEKVLPKHSHVYETYAVYNELTKIKYVN--EQGKDS-FFDSNMKQEIFDHVEK--ENR-KVTK
563


WP_001040076
488
SAEAFIHRMTNNDLYLPEEKVLPKHSLIYEKFTVYNELTKVRFLA--EGFKDFqFLNRKQKETIENSLEK--EKR-KVTE
562


WP_001040078
488
SAEAFIHRMTNNDFYLPEEKVLPKHSLIYEKFTVYNELTKVRYKN--EQGETY-FFDSNIKQEIFDGVFK--EHR-KVSK
561


WP_001040080
488
SAEAFIHRMTNNDFYLPEEKVLPKHSLIYEKFTVYNELTKVRYKN--EQGETY-FFDSNIKQEIFDGVFK--EHR-KVSK
561


WP_001040081
488
SAEAFIHRMTNNDFYLPEEKVLPKHSLIYEKFTVYNELTKVRYKN--EQGETY-FFDSNIKQEIFDGVFK--EHR-KVSK
561


WP_001040083
488
SAEAFIHRMTNNDFYLPEEKVLPKHSLIYEKFTVYNELTKVRYKN--EQGETY-FFDSNIKQEIFDGVFK--EHR-KVSK
561


WP_001040085
488
SAEAFIHRMTNNDFYLPEEKVLPKHSLIYEKFTVYNELTKVRYKN--EQGETY-FFDSNIKQEIFDGVFK--EHR-KVSK
561


WP_001040087
488
SAEAFIHRMTNNDFYLPEEKVLPKHSLIYEKFTVYNELTKVRYKN--EQGETY-FFDSNIKQEIFDGVFK--EHR-KVSK
561


WP_001040088
488
SAEAFIHRMTNNDFYLPEEKVLPKHSLIYEKFTVYNELTKVRYKN--EQGETY-FFDSNIKQEIFDGVFK--EHR-KVSK
561


WP_001040089
488
SAEAFIHRMTNNDFYLPEEKVLPKHSLIYEKFTVYNELTKVRYKN--EQGETY-FFDSNIKQEIFDGVFK--EHR-KVSK
561


WP_001040090
488
SAEAFIHRMTNNDFYLPEEKVLPKHSLIYEKFTVYNELTKVRYKN--EQGETY-FFDSNIKQEIFDGVFK--EHR-KVSK
561


WP_001040091
488
SAEAFIHRMTNNDFYLPEEKVLPKHSLIYEKFTVYNELTKVRYKN--EQGETY-FFDSNIKQEIFDGVFK--EHR-KVSK
561


WP_001040092
488
SAEAFIHRMTNNDLYLPEEKVLPKHSLIYEKFTVYNELTKVRYKN--EQGETY-FFDSNVKQEIFDGVFK--EHR-KVSK
561


WP_001040094
488
SAEAFIHRMTNNDLYLPEEKVLPKHSLIYEKFTVYNELTKVRFLA--EGFKDFqFLNRKQKETIENSLEK--EKR-KVTE
562


WP_001040095
488
SAEAFIHRMTNNDLYLPEEKVLPKHSLIYEKFTVYNELTKVRFLA--EGFKDFqFLNRKQKETIENSLEK--EKR-KVTE
562


WP_001040096
488
SAEAFIHRMTNNDLYLPEEKVLPKHSLIYEKFTVYNELTKVRFLA--EGFKDFqFLNRKQKETIENSLEK--EKR-KVTE
562


WP_001040097
488
SAEAFIHRMTNNDLYLPEEKVLPKHSLIYEKFTVYNELTKVRFLA--EGFKDFqFLNRKQKETIENSLEK--EKR-KVTE
562


WP_001040098
488
SAEAFIHRMTNNDLYLPEEKVLPKHSLIYEKFTVYNELTKVRFLA--EGFKDFqFLNRKQKETIENSLEK--EKR-KVTE
562


WP_001040099
488
SAEAFIHRMTNNDLYLPEEKVLPKHSLIYEKFTVYNELTKVRFLA--EGFKDFqFLNRKQKETIENSLEK--EKR-KVTE
562


WP_001040100
488
SAEAFIHRMTNNDLYLPEEKVLPKHSLIYEKFTVYNELTKVRFLA--EGFKDFqFLNRKQKETIENSLEK--EKR-KVTE
562


WP_001040104
488
SAEAFIHRMTNNDFYLPEEKVLPKHSLIYEKFTVYNELTKVRYKN--EQGETY-FFDSNIKQEIFDGVFK--EHR-KVSK
561


WP_001040105
488
SAEAFIHRMTNNDFYLPEEKVLPKHSLIYEKFTVYNELTKVRYKN--EQGETY-FFDSNIKQEIFDGVFK--EHR-KVSK
561


WP_001040106
488
SAEAFIHRMTNNDLYLPEEKVLPKHSLIYEKFTVYNELTKVRYKN--EQGETY-FFDSNIKQEIFDGVFK--EHR-KVSK
561


WP_001040107
488
SAEAFIHRMTNNDLYLPEEKVLPKHSLIYEKFTVYNELTKVRYKN--EQGETY-FFDSNIKQEIFDGVFK--EHR-KVSK
561


WP_001040108
488
SAEAFIHRMTNNDLYLPEEKVLPKHSLIYEKFTVYNELTKVRYKN--EQGETY-FFDSNIKQEIFDGVFK--EHR-KVSK
561


WP_001040109
488
SAEAFIHRMTNNDLYLPEEKVLPKHSLIYEKFTVYNELTKVRYKN--EQGETY-FFDSNIKQEIFDGVFK--EHR-KVSK
561


WP_001040110
488
SAEAFIHRMTNNDLYLPEEKVLPKHSLIYEKFTVYNELTKVRYKN--EQGETY-FFDSNIKQEIFDGVFK--EHR-KVSK
561


WP_015058523
488
SAEAFIHRMTNNDLYLPEEKVLPKHSLIYEKFTVYNELTKVRYKN--EQGETY-FFDSNVKQEIFDGVFK--EHR-KVSK
561


WP_017643650
488
SAEAFIHRMTNNDLYLPEEKVLPKHSLIYEKFTVYNELTKVRFLA--EGFKDFqFLNRKQKETIENSLEK--EKR-KVTE
562


WP_017647151
488
SAEAFIHRMTNNDLYLPEEKVLPKHSLIYEKFTVYNELTKVRYKN--EQGETY-FFDSNIKQEIFDGVFK--EHR-KVSK
561


WP_017648376
488
SAEAFIHRMTNNDLYLPEEKVLPKHSLIYEKFTVYNELTKVRYKN--EQGETY-FFDSNIKQEIFDGVFK--EHR-KVSK
561


WP_017649527
488
SAEAFIHRMTNNDFYLPEEKVLPKHSLIYEKFTVYNELTKVRYKN--EQGETY-FFDSNIKQEIFDGVFK--EHR-KVSK
561


WP_017771611
488
SAEAFIHRMTNNDLYLPEEKVLPKHSLIYEKFTVYNELTKVRYKN--EQGETY-FFDSNIKQEIFDGVFK--EHR-KVSK
561


WP_017771984
488
SAEAFIHRMTNNDFYLPEEKVLPKHSLIYEKFTVYNELTKVRYKN--EQGETY-FFDSNIKQEIFDGVFK--EHR-KVSK
561


CFQ25032
488
SAEAFIHRMTNNDFYLPEEKVLPKHSLIYEKFTVYNELTKVRYKN--EQGETY-FFDSNIKQEIFDGVFK--EHR-KVSK
561


CFV16040
488
SAEAFIHRMTNNDFYLPEEKVLPKHSLIYEKFTVYNELTKVRYKN--EQGETY-FFDSNIKQEIFDGVFK--EHR-KVSK
561


KLJ37842
488
SAEAFIHRMTNNDFYLPEEKVLPKHSLIYEKFTVYNELTKVRYKN--EQGETY-FFDSNIKQEIFDGVFK--EHR-KVSK
561


KLJ72361
488
SAEAFIHRMTNNDFYLPEEKVLPKHSLIYEKFTVYNELTKVRYKN--EQGETY-FFDSNIKQEIFDGVFK--EHR-KVSK
561


KLL20707
488
SAEAFIHRMTNNDFYLPEEKVLPKHSLIYEKFTVYNELTKVRYKN--EQGETY-FFDSNIKQEIFDGVFK--EHR-KVSK
561


KLL42645
488
SAEAFIHRMTNNDLYLPEEKVLPKHSLIYEKFTVYNELTKVRYKN--EQGETY-FFDSNIKQEIFDGVFK--EHR-KVSK
561


WP_047207273
488
SAEAFIHRMTNNDFYLPEEKVLPKHSLIYEKFTVYNELTKVRYKN--EQGETY-FFDSNIKQEIFDGVFK--EHR-KVSK
561


WP_047209694
488
SAEAFIHRMTNNDLYLPEEKVLPKHSLIYEKFTVYNELTKVRFLA--EGFKDFqFLNRKQKETIENSLEK--EKR-KVTE
562


WP_050198062
488
SAEAFIHRMTNNDFYLPEEKVLPKHSLIYEKFTVYNELTKVRYKN--EQGETY-FFDSNIKQEIFDGVFK--EHR-KVSK
561


WP_050201642
488
SAEAFIHRMTNNDFYLPEEKVLPKHSLIYEKFTVYNELTKVRYKN--EQGETY-FFDSNIKQEIFDGVFK--EHR-KVSK
561


WP_050204027
488
SAEAFIHRMTNNDLYLPEEKVLPKHSLIYEKFTVYNELTKVRYKN--EQGETY-FFDSNIKQEIFDGVFK--EHR-KVSK
561


WP_050881965
488
SAEAFIHRMTNNDFYLPEEKVLPKHSLIYEKFTVYNELTKVRYKN--EQGETY-FFDSNIKQEIFDGVFK--EHR-KVSK
561


WP_050886065
488
SAEAFIHRMTNNDFYLPEEKVLPKHSLIYEKFTVYNELTKVRYKN--EQGETY-FFDSNIKQEIFDGVEK--EHR-KVSK
561


AHN30376
488
SAEAFIHRMTNNDLYLPEEKVLPKHSLIYEKFTVYNELTKVRYKN--EQGETY-FFDSNVKQEIFDGVEK--EHR-KVSK
561


EAO78426
488
SAEAFIHRMTNNDFYLPEEKVLPKHSLIYEKFTVYNELTKVRYKN--EQGETY-FFDSNIKQEIFDGVEK--EHR-KVSK
561


CCW42055
488
SAEAFIHCMTNNDLYLPEEKVLPKHSLIYEKFTVYNELTKVRYKN--EQGETY-FFDSNIKQEIFDGVEK--EYR-KVSK
561


WP_003041502
487
SAEKFITRMTLNDLYLPEEKVLPKHSLLYETFTVYNELTKVKYVN--EQGEAK-FFDANMKQEIFDHVEK--ENR-KVTK
560


WP_037593752
488
SAEKFITRMTLNDLYLPEEKVLPKHSPLYETFTVYNELTKVKYVN--EQGEAK-FFDTNMKQEIFDHVEK--ENR-KVTK
561


WP_049516684
488
SAEKFITRMTLNDLYLPEEKVLPKHSPLYETFTVYNELTKVKYVN--EQGEAK-FFDTNMKQEIFDHVEK--ENR-KVTK
561


GAD46167
487
SAEKFITRMTLNDLYLPEEKVLPKHSPLYETFTVYNELTKVKYVN--EQGEAK-FFDTNMKQEIFDHVEK--ENR-KVTK
560


WP_018363470
488
SAEKFITRMTLNDLYLPEEKVLPKHSHVYETFAVYNELTKVKYVN--EQGKDS-FFDSNMKQEIFDHVEK--ENR-KVTK
561


WP_003043819
497
SAQSFIERMTNEDEQLPNKKVLPKHSLLYEYFTVYNELTKVKYVT--ERMRKPeFLSGEQKKAIVDLLFK--TNR-KVTV
571


WP_006269658
487
SAEKFITRMTLNDLYLPEEKVLPKHSPLYEAFTVYNELTKVKYVN--EQGEAK-FFDTNMKQEIFDHVEK--ENR-KVTK
560


WP_048800889
487
SAEKFITRMTLNDLYLPEEKVLPKHSLLYEIFTVYNELTKVKYVN--EQGEAK-FFDANMKQEIFDHVEK--ENP-KVTK
560


WP_012767106
487
SAQSFIERMTNEDKNLPNEKVLPKHSLLYEYFTVYNELTKVKYVT--EGMRKPeFLSGKQKEAIVDLLFK--TNR-KVTV
561


WP_014612333
487
SAQSFIERMTNEDKNLPNEKVLPKHSLLYEYFTVYNELTKVKYVT--EGMRKPeFLSGKQKEAIVDLLFK--TNR-KVTV
561


WP_015017095
487
SAQSFIERMTNEDKNLPNEKVLPKHSLLYEYFTVYNELTKVKYVT--EGMRKPeFLSGKQKEAIVDLLFK--TNR-KVTV
561


WP_015057649
487
SAQSFIERMTNEDKNLPNEKVLPKHSLLYEYFTVYNELTKVKYVT--EGMRKPeFLSGKQKEAIVDLLFK--TNR-KVTV
561


WP_048327215
487
SAQSFIERMTNEDKNLPNEKVLPKHSLLYEYFTVYNELTKVKYVT--EGMRKPeFLSGKQKEAIVDLLFK--TNR-KVTV
561


WP_049519324
487
SAQSFIERMTNEDKNLPNEKVLPKHSLLYEYFTVYNELTKVKYVT--EGMRKPaELSGEQKKAIVDLLFK--TNR-KVTV
561


WP_012515931
487
SAQIFIEKMTKNDLYLPNEKVLPKHSLLYETFTVYNELTKVKYAT--EGMTRPqFLSADQKQAIVDLLFK--TNR-KVTV
561


WP_021320964
487
SAQIFIEKMTKNDLYLPNEKVLPKHSLLYETFTVYNELTKVKYAT--EGMTRPqFLSADQKQAIVDLLFK--TNR-KVTV
561


WP_037581760
487
SAQIFIEKMTKNDLYLPNEKVLPKHSLLYETFTVYNELTKVKYAT--EGMTRPqFLSADQKQAIVDLLFK--TNR-KVTV
561


WP_004232481
487
SAEKFITRMTLNDLYLPEEKVLPKHSYVYETFAVYNELTKIKYVN--EQGKSF-FFDANMKQEIFDHVEK--ENR-KVTK
560


WP_009854540
488
SAEKFITRMTLNDLYLPEEKVLPKHSHVYETYAVYNELTKIKYVN--EQGKES-FFDSNMKQEIFDHVEK--ENR-KVTK
561


WP_012962174
488
SAEKFITRMTLNDLYLPEEKVLPKHSLVYETYTVYNELTKVKYVN--EQGKSN-FFDANMKQEIFEHVEK--ENR-KVTK
561


WP_039695303
490
SAEKFITRMTLNDLYLPEEKVLPKHSHVYETYAVYNELTKIKYVN--EQGKES-FFDSNMKQEIFDHVEK--ENR-KVTK
563


WP_014334983
487
SAEKFITRMTLNDLYLPEEKVLPKHSHVYETFTVYNELTKIKYVN--EQGESF-FFDANMKQEIFDHVEK--ENR-KVTK
560


WP_003099269
487
SARAFIERMTNEDTYLPEEKVLPKHSPLYEMFMVYNELTKVKYQT--EGMKRPvFLSSEDKEEIVNLLFK--KER-KVTV
561


AHY15608
487
SARAFIERMTNEDTYLPEEKVLPKHSPLYEMFMVYNELTKVKYQT--EGMKRPvFLSSEDKEEIVNLLFK--KER-KVTV
561


AHY17476
487
SARAFIERMTNEDTYLPEEKVLPKHSPLYEMFMVYNELTKVKYQT--EGMKRPvFLSSEDKEEIVNLLFK--KER-KVTV
561


ESR09100

--------------------------------------------------------------------------------



AGM98575
487
SARAFIERMTNEDTYLPEEKVLPKHSPLYEMFMVYNELTKVKYQT--EGMKRPvFLSSEDKEEIVNLLFK--KER-KVTV
561


ALF27331
487
SAEAFINRMTNYDLYLPNQKVLPRHSLLYEKFTVYNELTKVKYKT--EQGKTA-FFDANMKQEIEDGVEK--VYR-KVTK
560


WP_018372492
500
SASRFIERMTLHDLYLPDEKVLPRHSLIYEKYTVFNELTKVRETP--EGGKEV-YESKTDKENIFDSLEK--RYR-KVTK
573


WP_045618028
488
SAEDFINKMTNYDLYLPEEKVLPKHSLLYETFAVYNELTKVKFIA--EGLRDYqFLDSGQKQQIVTQLFK--EKR-KVTE
562


WP_045635197
487
SAEDFINKMTNYDLYLPEEKVLPKHSLLYETFAVYNELTKVKFIA--EGLRDYqFLDSGQKKQIVNQLFK--ENR-KVTE
561


WP_002263549
487
SAEAFINRMTNYDLYLPNQKVLPKHSLLYEKFTVYNELTKVKYKT--EQGKTA-FFDANMKQEIEDGVEK--VYR-KVTK
560


WP_002263887
487
SAEAFINRMTNYDLYLPNQKVLPKHSLLYEKFTVYNELIKVKYKT--EQGKTA-FFDANMKQEIEDGVEK--VYR-KVTK
560


WP_002264920
487
SVEAFINRMTNYDLYLPNQKVLPKHSLLYEKFTVYNELTKVKYKT--EQGKTA-FFDANMKQEIEDGVEK--VYR-KVTK
560


WP_002269043
487
SVEAFINRMTNYDLYLPNQKVLPKHSLLYEKFTVYNELTKVKYKT--EQGKTA-FFDANMKQEIEDGVEK--VYR-KVTK
560


WP_002269448
487
SAEAFINRMTNYDLYLPNQKVLPKHSLLYEKFTVYNELTKVKYKT--EQGKTA-FFDANMKQEIFDGVFK--VYR-KVTK
560


WP_002271977
487
SAEAFINRMTNYDLYLPNQKVLPKHSLLYEKFTVYNELTKVKYKT--EQGKTA-FFDANMKQEIFDGVFK--VYR-KVTK
560


WP_002272766
487
SAEAFINRMTNYDLYLPNQKVLPKHSLLYEKFTVYNELTKVKYKT--EQGKTA-FFDANMKQEIFDGVFK--VYR-KVTK
560


WP_002273241
487
SAEAFINRMTNYDLYLPNQKVLPKHSLLYEKFTVYNELTKVKYKT--EQGKTA-FFDANMKQEIFDGVFK--VYR-KVTK
560


WP_002275430
487
SAEAFINRMTNYDLYLPNQKVLPKHSLLYEKFTVYNELTKVKYKT--EQGKTA-FFDANMKQEIFDGVFK--VYR-KVTK
560


WP_002276448
487
SAEAFINRMTNYDLYLPNQKVLPKHSLLYEKFTVYNELTKVKYKT--EQGKTA-FFDANMKQEIFDGVFK--VYR-KVTK
560


WP_002277050
487
SAQAFIEHMTNNDLYLPNEKVLPKHSPLYEKYTVYNELTKIKYVT--EIGEAK-FFDANLKQEIFDGLFK--HER-KVTK
560


WP_002277364
487
SAEAFINRMTNYDLYLPNQKVLPKHSLLYEKFTVYNELTKVKYKT--EQGKTA-FFDANMKQEIFDGVFK--VYR-KVTK
560


WP_002279025
487
SAEAFINRMTNYDLYLPNQKVLPKHSLLYEKFTVYNELTKVKYKT--EQGETA-FFDANMKQEIFDGVFK--VYR-KVTK
560


WP_002279859
487
SVEAFINRMTNYDLYLPNQKVLPKHSLLYEKFTVYNELTKVKYKT--EQGKTA-FFDANMKQEIFDGVFK--VYR-KVTK
560


WP_002280230
487
SAEAFINRMTNYDLYLPNQKVLPKHSLLYEKFTVYNELTKVKYKT--EQGKTA-FFDANMKQEIFDGVFK--VYR-KVTK
560


WP_002281696
487
SAEAFINRMTNYDLYLPNQKVLPKHSLLYEKFTVYNELTKVKYKT--EQGKTA-FFDANMKQEIFDGVFK--VYR-KVTK
560


WP_002282247
487
SAQAFIEHMTNNDLYLPNEKVLPKHSPLYEKYTVYNELTKIKYVT--EIGEAK-FFDANLKQEIFDGLFK--HER-KVTK
560


WP_002282906
487
SAEAFINRMTNYDLYLPNQKVLPKHSLLYEKFTVYNELTKVKYKT--EQGKTA-FFDANMKQEIFDGVFK--VYR-KVTK
560


WP_002283846
487
SVEAFINRMTNYDLYLPNQKVLPKHSLLYEKFTVYNELTKVKYKT--EQGKTA-FFDANMKQEIFDGVFK--VYR-KVTK
560


WP_002287255
487
SAEAFINRMTNYDLYLPNQKVLPKHSLLYEKFTVYNELTKVKYKT--EQGKTA-FFDANMKQEIFDGVFK--VYR-KVTK
560


WP_002288990
487
SVEAFINRMTNYDLYLPNQKVLPKHSLLYEKFTVYNELTKVKYKT--EQGKTA-FFDANMKQEIFDGVFK--VYR-KVTK
560


WP_002289641
487
SAEAFINRMTNYDLYLPNQKVLPKHSLLYEKFTVYNELTKVKYKT--EQGKTA-FFDANMKQEIFDGVFK--VYR-KVTK
560


WP_002290427
487
SAEAFINRMTNYDLYLPNQKVLPKHSLLYEKFTVYNELTKVKYKT--EQGKTA-FFDANMKQEIFDGVFK--VYR-KVTK
560


WP_002295753
487
SAEAFINRMTNYDLYLPNQKVLPKHSLLYEKFTVYNELTKVKYKT--EQGKTA-FFDANMKQEIFDGVFK--VYR-KVTK
560


WP_002296423
487
SVEAFINRMTNYDLYLPNQKVLPKHSLLYEKFTVYNELTKVKYKT--EQGKTA-FFDANMKQEIFDGVFK--VYR-KVTK
560


WP_002304487
497
SAEKFITRMTLNDLYLPEEKVLPKHSLLYETFTVYNELTKVKYVN--EQGEAK-FFDANMKQEIFDHVFK--ENR-KVTK
570


WP_002305844
487
SAEAFINRMTNYDLYLPNQKVLPKHSLLYEKFTVYNELTKVKYKT--EQGKTA-FFDANMKQEIFDGVFK--VYR-KVTK
560


WP_002307203
487
SVEAFINRMTNYDLYLPNQKVLPKHSLLYEKFTVYNELTKVKYKT--EQGKTA-FFDANMKQEIFDGVFK--VYR-KVTK
560


WP_002310390
487
SAEAFINRMTNYDLYLPNQKVLPKHSLLYEKFTVYNELTKVKYKT--EQGKTA-FFDANMKQEIFDGVFK--VYR-KVTK
560


WP_002352408
487
SAEAFINRMTNYDLYLPNQKVLPKHSLLYEKFTVYNELTKVKYKT--EQGKTA-FFDANMKQEIFDGVFK--VYR-KVTK
560


WP_012997688
487
SAEAFINRMTNYDLYLPNQKVLPKHSLLYEKFTVYNELTKVKYKT--EQGKTA-FFDANMKQEIFDGVFK--VYR-KVTK
560


WP_014677909
487
SVEAFINRMTNYDLYLPNQKVLPKHSLLYEKFTVYNELTKVKYKT--EQGKTA-FFDANMKQEIFDGVFK--VYR-KVTK
560


WP_019312892
487
SAEAFINRMTNYDLYLPNQKVLPKHSLLYEKFTVYNELTKVKYKT--EQGKTA-FFDANMKQEIFDGVFK--VYR-KVTK
560


WP_019313659
487
SAEAFINRMTNYDLYLPNQKVLPKHSLLYEKFTVYNELTKVKYKT--EQGKTA-FFDANMKQEIFDGVFK--VYR-KVTK
560


WP_019314093
487
SVEAFINRMTNYDLYLPNQKVLPKHSLLYEKFTVYNELTKVKYKT--EQGKTA-FFDANMKQEIFDGVFK--VYR-KVTK
560


WP_019315370
487
SAEAFINRMTNYDLYLPNQKVLPKHSLLYEKFTVYNELTKVKYKT--EQGKTA-FFDANMKQEIFDGVFK--VYR-KVTK
560


WP_019803776
487
SAEAFINRMTNYDLYLPNQKVLPKHSLLYEKFTVYNELTKVKYKT--EQGKTA-FFDANMKQEIFDGVFK--VYR-KVTK
560


WP_019805234
487
SAEAFINRMTNYDLYLPNQKVLPKHSLLYEKFTVYNELTKVKYKT--EQGKTA-FFDANMKQEIFDGVFK--VYR-KVTK
560


WP_024783594
487
SAEAFINRMTNYDLYLPNQKVLPKHSLLYEKFTVYNELTKVKYKT--EQGKTA-FFDANMKQEIFDGVFK--VYR-KVTK
560


WP_024784288
487
SAQAFIEHMTNNDLYLPNEKVLPKHSPLYEKYTVYNELTKIKYVT--EIGEAK-FFDANLKQEIFDGLFK--HER-KVTK
560


WP_024784666
487
SAEAFINRMTNYDLYLPNQKVLPKHSLLYEKFTVYNELTKVKYKT--EQGKTA-FFDANMKQEIFDGVFK--VYR-KVTK
560


WP_024784894
487
SAEAFINRMTNYDLYLPNQKVLPKHSLLYEKFTVYNELTKVKYKT--EQGKTA-FFDANMKQEIFDGVFK--VYR-KVTK
560


WP_024786433
487
SAQAFIEHMTNNDLYLPNEKVLPKHSPLYEKYTVYNELTKIKYVT--EIGEAK-FFDANLKQEIFDGLFK--HER-KVTK
560


WP_049473442
487
SAEAFINRMTNYDLYLPNQKVLPKHSLLYEKFTVYNELTKVKYKT--EQGKTA-FFDANMKQEIFDGVFK--VYR-KVTK
560


WP_049474547
487
SAEAFINRMTNYDLYLPNQKVLPKHSLLYEKFTVYNELTKVKYKT--EQGKTA-FFDANMKQEIFDGVFK--VYR-KVTK
560


EMC03581
480
SAEAFINRMTNYDLYLPNQKVLPKHSLLYEKFTVYNELTKVKYKT--EQGKTA-FFDANMKQEIFDGVFK--VYR-KVTK
553


WP_000428612
488
SAESFINKMTNYDLYLPEEKVLPKHSLLYETFAVYNELTKVKFIA--EGLRDYqFLDSRQKKDIFYTLFKaeDKR-KVTE
564


WP_000428613
488
SAEDFINKMTNYDLYLPEEKVLPKHSLLYETFAVYNELTKVKFIA--EGLRDYqFLDSGQKKQIVTQLFK--EKR-KVTE
562


WP_049523028
487
SAEDFIHRMTNYDLYLPEEKVLPKHSLLYETFTVYNELTKVKYIA--EGMKDYqFLDSGQKKQIVNQLFK--EKR-KVTE
561


WP_003107102
456
SAKVFIERMTNFDTYLPEEKVLPKHSLLYEMFTVYNELTKVKYQA--EGMRKPeFLSSEEKIEIVSNLFK--TER-KVTV
530


WP_054279288
489
SAQAFIERMTNFDEYLPQEKVLPKHSLTYEYFTVYNELTKVKYVT--EGMTKPeFLSAGQKEQIVELLFK--KYR-KVTV
563


WP_049531101
488
SAEAFINKMTNYDLYLPEEKVLPKHSLLYETFAVYNELTKVKFIA--EGLRDYqFLDSGQKKKIINQLFK--EKR-KVTE
562


WP_049538452
488
SAEDFINKMTNYDLYLPEEKVLPKHSLLYETFAVYNELTKVKFIA--EGLRDYqFLDSGQKKQIVNQLFK--EKR-KVTE
562


WP_049549711
488
SAEDFINKMTNYDLYLPEEKVLPKHSLLYETFAVYNELTKVKFIA--EGLRDYqFLDSGQKKQIVNQLFK--EKR-KVTE
562


WP_007896501
490
SAQAFIEGMTNYDTYLPEEKVLPKHSPLYEMFTVYNELTKVKYIA--ENMTKPlYLSAEQKEATIDHLFK--QTR-KVTV
564


EFR44625
442
SAQAFIEGMTNYDTYLPEEKVLPKHSPLYEMFTVYNELTKVKYIA--ENMTKPlYLSAEQKEATIDHLFK--QTR-KVTV
516


WP_002897477
487
SAEDFIHRMTNYDLYLPEEKVLPKHSLLYETFAVYNELTKVKFIA--EGLRDYqFLDSGQKKQIVNQLFK--EKR-KVTE
561


WP_002906454
487
SAEDFINKMTNYDLYLPEEKVLPKHSLLYETFAVYNELTKVKFIA--EGLRDYqFLDSGQKKQIVNQLFK--DKR-KVTE
561


WP_009729476
488
SAEDFINKMTNYDLYLPEEKVLPKHSLLYETFAVYNELTKVKFIA--EGLRDYqFLDSGQKKQIVTQLFK--EKR-KVTE
562


CQR24647
488
SAQAFIERMTNNDLYLPDQKVLPKHSLLYQKFAVYNELTKIKYVT--ETGEAR-LFDVFLKKEIFDGLFK--KER-KVTK
561


WP_000066813
488
SAEDFINKMTNYDLYLPEEKVLPKHSLLYETFAVYNELTKVKFIA--EGLTRYqFLDKKQKKDIFDTFFKaeNKR-KVTE
564


WP_009754323
488
SAESFINKMTNYDLYLPEEKVLPKHSLLYETFAVYNELTKVKFIA--EGLRDYqFFDSGQKKQIVNQLFK--EKR-KVTE
562


WP_044674937
487
SAENFITRMTNYDQYLPDQKVLPKHSLLYEKFAVYNELTKVKFIA--EGMRDYqFLDSGQKKDIVKTLFK--TKR-KVTA
561


WP_044676715
487
SAENFITRMTNYDQYLPDQKVLPKHSLLYEKFAVYNELTKVRYVT--EQGKSF-FFDANMKQEIFDGVFK--VYR-KVTK
560


WP_044680361
487
SAENFITRMTNYDQYLPDQKVLPKHSLLYEKFAVYNELTKVRYVT--EQGKSF-FFDANMKQEIFDGVFK--VYR-KVTK
560


WP_044681799
487
SAENFITRMTNYDQYLPDQKVLPKHSLLYEKFAVYNELTKVKFIA--EGMRDYqFLDSGQKKDIVKTLFK--TKR-KVTA
561


WP_049533112
487
SAEKFITRMTLNDLYLPEEKVLPKHSLLYETFTVYNELTKVKYVN--EQGEAK-FFDANMKQEIFDHVEK--ENR-KVTK
560


WP_029090905
472
SSEAFIKRMTNKCTYLIHEDVIPKHSFSYAKFEVLNELNKIRLDG------KP--IDIPLKKRIFEGLFL---EKtKVTQ
540


WP_006506696
499
TAEGFIKRMRSYCTYFPDEEVLPKNSLIVSKYEVYNELNKIRVDD--------kLLEVDVKNDIYNELFM--KNK-TVTE
567


AIT42264
487
SAQSFIERMTNEDKNLPNEKVLPKHSLLYEYFTVYNELTKVKYVT--EGMRKPaELSGEQKKAIVDLLFK--TNR-KVTV
561


WP_034440723
494
SAELFIENLTSRDTYLPDEPVLPKRSLIYQKFTIFNELTKISYID--ERGILQ-NFSSREKIAIFNDLFK---NKsKVTK
567


AKQ21048
487
SAQSFIERMTNEDKNLPNEKVLPKHSLLYEYFTVYNELTKVKYVT--EGMRKPaELSGEQKKAIVDLLFK--TNR-KVTV
561


WP_004636532
489
SAEKFIERMTNMDTYLLEEKVLPKRSLLYQTFEVYNELTKVRYTN--EQGKTE-KLNRQQKAEIIETLFK-qKNR--VRE
562


WP_002364836
496
SATAFIERMTNEDTYLPSEKVLPKHSLLYEKFMVFNELTKISYTD--DRGIKA-NFSGKEKEKIFDYLFK--TRR-KVKK
569


WP_016631044
447
SATAFIERMTNEDTYLPSEKVLPKHSLLYEKFMVFNELTKISYTD--DRGIKA-NFSGKEKEKIFDYLFK--TRR-KVKK
520


EMS75795
232
SAMKFIQRMINYDTYLPTEKVLPKHSILYQKYTIFNELTKVAYKD--ERGIKH-QFSSKEKREIFKELFQ--KQR-KVTV
305


WP_002373311
496
SATAFIERMTNEDTYLPSEKVLPKHSLLYEKFMVFNELTKISYTD--DRGIKA-NFSGKEKEKIFDYLFK--TRR-KVKK
569


WP_002378009
496
SATAFIERMTNEDTYLPSEKVLPKHSLLYEKFMVFNELTKISYTD--DRGIKA-NFSGKEKEKIFDYLFK--TRR-KVKK
569


WP_002407324
496
SATAFIERMTNEDTYLPSEKVLPKHSLLYEKFMVFNELTKISYTD--DRGIKA-NFSGKEKEKIFDYLFK--TRR-KVKK
569


WP_002413717
496
SATAFIERMTNEDTYLPSEKVLPKHSLLYEKFMVFNELTKISYTD--DRGIKA-NFSGKEKEKIFDYLFK--TRR-KVKK
569


WP_010775580
498
SATAFIERMTNEDTYLPSEKVLPKHSLLYEKFMVFNELTKISYTD--DRGIKA-NFSGKEKEKIFDYLFK--TRR-KVKK
571


WP_010818269
496
SATAFIERMTNEDTYLPSEKVLPKHSLLYEKFMVFNELTKISYTD--DRGIKA-NFSGKEKEKIFDYLFK--TRR-KVKK
569


WP_010824395
496
SATAFIERMINFDTYLPSEKVLPKHSLLYEKFMVFNELTKISYTD--DRGIKA-NFSGKEKEKIFDYLFK--TRR-KVKK
569


WP_016622645
496
SATAFIERMINFDTYLPSEKVLPKHSLLYEKFMVFNELTKISYTD--DRGIKA-NFSGKEKEKIFDYLFK--TRR-KVKK
569


WP_033624816
496
SATAFIERMINFDTYLPSEKVLPKHSLLYEKFMVFNELTKISYTD--DRGIKA-NFSGKEKEKIFDYLFK--TRR-KVKK
569


WP_033625576
496
SATAFIERMINFDTYLPSEKVLPKHSLLYEKFMVFNELTKISYTD--DRGIKA-NFSGKEKEKIFDYLFK--TRR-KVKK
569


WP_033789179
496
SATAFIERMINFDTYLPSEKVLPKHSLLYEKFMVFNELTKISYTD--DRGIKA-NFSGKEKEKIFDYLFK--TRR-KVKK
569


WP_002310644
493
SAVRFIERMINTDMYMPHNKVLPKNSLLYQKFSIYNELTKVRYQD--ERGQMN-YFSSIEKKEIFHELFE--KNR-KVIK
566


WP_002312694
494
SAVRFIERMINTDMYMPHNKVLPKNSLLYQKFSIYNELTKVRYQD--ERGQMN-YFSSIEKKEIFHELFE--KNR-KVIK
567


WP_002314015
494
SAVRFIERMNNTDMYIPHNKVLPKNSLLYQKFSIYNELTKVRYQD--ERGQMN-YFSSIEKKEIFHELFE--KNR-KVIK
567


WP_002320716
494
SAVRFIERMINTDMYIPHNKVLPKNSLLYQKFSIYNELTKVRYQD--ERGQMN-YFSSIEKKEIFHELFE--KNR-KVIK
567


WP_002330729
493
SAVRFIERMINTDMYIPHNKVLPKNSLLYQKFSIYNELTKVRYQD--ERGQMN-YFSSIEKKEIFHELFE--KNR-KVIK
566


WP_002335161
494
SAVRFIERMINTDMYMPHNKVLPKNSLLYQKFSIYNELTKVRYQD--ERGQMN-YFSSIEKKEIFHELFE--KNR-KVIK
567


WP_002345439
494
SAVRFIERMINTDMYIPHNKVLPKNSLLYQKFSIYNELTKVRYQD--ERGQMN-YFSSIEKKEIFHELFE--KNR-KVIK
567


WP_034867970
487
SAMRFIQRMTKQDTYLPTEKVLPKNSLLYQKYMIFNELTKVSYKD--ERGVKQ-YFSGDEKQQIFKQLFQ--KERgKITV
561


WP_047937432
494
SAVRFIERMINTDMYMPHNKVLPKNSLLYQKFSIYNELTKVRYQD--ERGQMN-YFSSIEKKEIFHELFE--KNR-KVIK
567


WP_010720994
487
SAMRFIQRMTKQDTYLPTEKVLPKNSLFYQKYMIFNELTKVSYKD--ERGVKQ-YFSGDEKQQIFKQLFQ--KERgKITV
561


WP_010737004
487
SAMRFIQRMTKQDTYLPTEKVLPKNSLLYQKYMIFNELTKVSYKD--ERGVKQ-YFSGDEKQQIFKQLFQ--KERgKITV
561


WP_034700478
487
SAMRFIQRMTKQDTYLPTEKVLPKNSLLYQKYMIFNELTKVSYKD--ERGVKQ-YFSGDEKQQIFKQLFQ--KERgKITV
561


WP_007209003
491
SAVAFIERMTIKDIYL-NENVLPRHSLIYEKFTVFNELTKVLYAD--DRGVFQ-RFSAEEKEDIFEKLFK--SER-KVIK
563


WP_023519017
486
SAIEFIERMINQDTYLPKEKVLPKQSLIYQRFMIFNELTKVSYTD--ERGKSH-YFSSEQKRKIFNELFK--QHP-RVIE
559


WP_010770040
490
SATKFIERMINFDTYLPTEKVLPKHSMIYEKYMVYNELTKVSYVD--ERGMNQ-RFSGEEKKQIVEELFK--QSR-KVIK
563


WP_048604708
486
SAELFIERMINFDLYLPSEKVLPKHSMLYEKYTVYNELTKVTYKD--EQGKVQ-NFSSEEKERIFIDLFK--QHR-KVIK
559


WP_010750235
487
SATKFIQRMINYDTYLPTEKVLPKYSMLYQKYTIFNELTKVAYKD--DRGIKH-QFSSEEKLRIFQELFK--KQR-RVIK
560


AII16583
526
SAQSFIERMINFDKNLPNEKVLPKHSLLYEYFTVYNELTKVKYVT--EGMRKPaFLSGEQKKAIVDLLFK--TNR-KVIV
600


WP_029073316
507
TADEFIKRMRNFCTYFPDEPVLAKNSLIVSKYEVLNEINKLRIND--------hLIKRDIKDKMLHTLFM--DHK-SISA
575


WP_031589969
507
TADEFIKRMRNECTYFPDEPVMAKNSLIVSKYEVLNEINKLRIND--------hLIKRDMKDKMLHTLFM--DHK-SISA
575


KDA45870
485
SAEDFIKRMTINDLYLPTEPVLPKHSLLYERYTIFNELAGVRYVT--ENGEAK-YEDAQTKRSIFE-LFKl--DR-KVSE
557


WP_039099354
510
SANEFIKRMITIDTYLLAEDVLPKQSLIYQRFEVLNELNGLKIDD--QPITTE------LKQAIFTDLFM---QKtSVTV
578


AKP02966
484
SSNKFIRRMTVIDSYLVGEPVLPKNSLIYQRYEVLNELNNIRITEnlKINPIGsRLIVETKQHIYNELFK--NYK-KITV
560


WP_010991369
493
SAVDFIEKMINKDTYLPKENVLPKHSLCYQKYLVYNELTKVRYIN--DQGKTS-YFSGQEKEQIENDLFK--QKR-KVKK
566


WP_033838504
493
SAVDFIEKMINKDTYLPKENVLPKHSLCYQKYLVYNELTKVRYIN--DQGKTS-YFSGQEKEQIENDLFK--QKR-KVKK
566


EHN60060
496
SAVDFIEKMINKDTYLPKENVLPKHSLCYQKYLVYNELTKVRYIN--DQGKTS-YFSGQEKEQIENDLFK--QKR-KVKK
569


EFR89594
262
SAVDFIEKMINKDTYLPKENVLPKHSLCYQKYLVYNELTKVRYIN--DQGKTS-YFSGQEKEQIENDLFK--QKR-KVKK
335


WP_038409211
493
SAIDFIEKMINKDTYLPKENVLPKHSLCYQKYMVYNELTKIRYID--DQGKTH-HFSGQEKQQIFNGLFK--QQR-KVKK
566


EFR95520
112
SAIDFIEKMINKDTYLPKENVLPKHSLCYQKYMVYNELTKIRYID--DQGKTH-HFSGQEKQQIFNGLFK--QQR-KVKK
185


WP_003723650
493
SAVDFIEKMINKDTYLPKENVLPKHSLCYQKYMVYNELTKIRYID--DQGKIN-YFSGREKQQVFNDLFK--QKR-KVKK
566


WP_003727705
493
SAVDFIEKMINKDTYLPKENVLPKHSLCYQKYMVYNELTKIRYID--DQGKIN-YFSGREKQQIENDLFK--QKR-KVKK
566


WP_003730785
493
SAVDFIEKMINKDTYLPKENVLPKHSLCYQKYMVYNELTKIRYID--DQGKIN-YFSGREKQQIENDLFK--QKR-KVKK
566


WP_003733029
493
SAVDFIEKMINKDTYLPKENVLPKHSLCYQKYMVYNELTKVRYID--DQGKIN-YFSGQEKQQIENDLFK--QKR-KVKK
566


WP_003739838
493
SAVDFIEKMINKDTYLPKENVLPKHSLYYQKYMVYNELTKVRYID--DQGKIN-YFSGQEKQQIENDYFK--QKR-KVSK
566


WP_014601172
493
SAVDFIEKMTNKDTYLPKENVLPKHSLCYQKYMVYNELTKVRYID--DQGKTN-YFSGQEKQQIENDLEK--QKR-KVKK
566


WP_023548323
493
SAVDFIEKMTNKDTYLPKENVLPKHSLCYQKYMVYNELTKIRYID--DQGKTN-YFSGQEKQQIENDLEK--QKR-KVKK
566


WP_031665337
493
SAVDFIEKMTNKDTYLPKENVLPKHSLCYQKYMVYNELTKVRYID--DQGKTN-YFSGQEKQQIENDLEK--QKR-KVKK
566


WP_031669209
493
SAVDFIEKMTNKDTYLPKENVLPKHSLCYQKYMVYNELTKVRYID--DQGKTN-YFSGQEKQQIENDLEK--QKR-KVKK
566


WP_033920898
493
SAVDFIEKMTNKDTYLPKENVLPKHSLCYQKYMVYNELTKIRYID--DQGKTN-YFSGQEKQQIENDLEK--QKR-KVKK
566


AKI42028
496
SAVDFIEKMTNKDTYLPKENVLPKHSLCYQKYMVYNELTKVRYID--DQGKTN-YFSGQEKQQIENDLEK--QKR-KVKK
569


AKI50529
496
SAVDFIEKMTNKDTYLPKENVLPKHSLCYQKYMVYNELTKIRYID--DQGKTN-YFSGQEKQQIENDLEK--QKR-KVKK
569


EFR83390
1
---------------------------------------------------------------IFNDLFK--QKR-KVKK
14


WP_046323366
493
SAIDFIEKMTNKDTYLPKENVLPKHSMCYQKYMVYNELTKIRYTD--DQGKTH-YESGQEKQQIENDLEK--QKR-KVKK
566


AKE81011
503
SAQSFIERMTNEDKNLPNEKVLPKHSLLYEYFTVYNELTKVKYVT--EGMRKPaELSGEQKKAIVDLLFK--TNR-KVTV
577


CUO82355
503
TAEGFIKRMRSYCTYFPDEEVLPKNSLIVSKYEVYNELNKIRVDD--------kLLEVDVKNDIYNELFM--KNK-TVTE
571


WP_033162887
504
TAEGFIERMKNTGTYFPDEPVMAKNSLTVSKFEVLNELNKIRING--------kLIAVETKKELLSDLFM--KNK-TITD
572


AGZ01981
520
SAQSFIERMTNEDKNLPNEKVLPKHSLLYEYFTVYNELTKVKYVT--EGMRKPaELSGEQKKAIVDLLFK--TNR-KVTV
594


AKA60242
487
SAQSFIERMTNEDKNLPNEKVLPKHSLLYEYFTVYNELTKVKYVT--EGMRKPaELSGEQKKAIVDLLFK--TNR-KVTV
561


AKS40380
487
SAQSFIERMTNEDKNLPNEKVLPKHSLLYEYFTVYNELTKVKYVT--EGMRKPaELSGEQKKAIVDLLFK--TNR-KVTV
561


4UN5_B
491
SAQSFIERMTNEDKNLPNEKVLPKHSLLYEYFTVYNELTKVKYVT--EGMRKPaELSGEQKKAIVDLLFK--TNR-KVTV
565


WP_010922251
562
KQLKEDYFKK--IECFDSVEISGVEDR---FNASLGTYHDLLKIIKDK DFLDNEENEDILEDIVLTLTLFEDREMIE
633


WP_039695303
564
EKLLNYLNKE--FPEYRIKDLIGLDKEnkSFNASLGTYHDLKKIL-DK AFLDDKVNEEVIEDIIKTLTLFEDKDMIH
637


WP_045635197
562
KDIIHYLHN---VDGYDGIELKGIEKQ---FNASLSTYHDLLKIIKDK EFMDDAKNEAILENIVHTLTIFEDREMIK
632


5AXW_A
300
KQIAKEILVNe--EDIKGYRVISIGKPe---FTNLKVYHDIKDITARK ------ENAELLDQIAKILTIYQSSEDIQ
368


WP_009880683
246
KQLKEDYFKK--IECFDSVEISGVEDR---FNASLGTYHDLLKIIKDK DFLDNEENEDILEDIVLTLTLFEDREMIE
317


WP_010922251
562
KQLKEDYFKK--IECFDSVEISGVEDR---FNASLGTYHDLLKIIKDK DFLDNEENEDILEDIVLTLTLFEDREMIE
633


WP_011054416
562
KQLKEDYFKK--IECFDSVEISGVEDR---FNASLGTYHDLLKIIKDK DFLDNEENEDILEDIVLTLTLFEDREMIE
633


WP_011284745
562
KQLKEDYFKK--IECFDSVEISGVEDR---FNASLGTYHDLLKIIKDK DFLDNEENEDILEDIVLTLTLFEDREMIE
633


WP_011285506
562
KQLKEDYFKK--IECFDSVEISGVEDR---FNASLGTYHDLLKIIKDK DFLDNEENEDILEDIVLTLTLFEDREMIE
633


WP_011527619
562
KQLKEDYFKK--IECFDSVEISGVEDR---FNASLGTYHDLLKIIKDK DFLDNEENEDILEDIVLTLTLFEDREMIE
633


WP_012560673
562
KQLKEDYFKK--IECFDSVEISGVEDR---FNASLGTYHDLLKIIKDK DFLDNEENEDILEDIVLTLTLFEDREMIE
633


WP_014407541
562
KQLKEDYFKK--IECFDSVEISGVEDR---FNASLGAYHDLLKIIKDK DFLDNEENEDILEDIVLTLTLFEDRGMIE
633


WP_020905136
562
KQLKEDYFKK--IECFDSVEISGVEDR---FNASLGTYHDLLKIIKDK DFLDNEENEDILEDIVLTLTLFEDREMIE
633


WP_023080005
562
KQLKEDYFKK--IECFDSVEISGVEDR---FNTSLGTYHDLLKIIKDK DFLDNEENEDILEDIVLTLTLFEDKEMIE
633


WP_023610282
562
KQLKEDYFKK--IECFDSVEISGVEDR---FNTSLGTYHDLLKIIKDK DFLDNEENEDILEDIVLTLTLFEDKEMIE
633


WP_030125963
562
KQLKEDYFKK--IECFDSVEISGVEDR---FNASLGTYHDLLKIIKDK DFLDNEENEDILEDIVLTLTLFEDREMIE
633


WP_030126706
562
KQLKEDYFKK--IECFDSVEISGVEDR---FNASLGTYHDLLKIIKDK DFLDNEENEDILEDIVLTLTLFEDREMIE
633


WP_031488318
562
KQLKEDYFKK--IECFDSVEISGVEDR---FNASLGTYHDLLKIIKDK DFLDNEENEDILEDIVLTLTLFEDREMIE
633


WP_032460140
562
KQLKEDYFKK--IECFDSVEISGVEDR---FNASLGTYHDLLKIIKDK DFLDNEENEDILEDIVLTLTLFEDREMIE
633


WP_032461047
562
KQLKEDYFKK--IECFDSVEISGVEDR---FNASLGTYHDLLKIIKDK DFLDNEENEDILEDIVLTLTLFEDREMIE
633


WP_032462016
562
KQLKEDYFKK--IECFDSVEISGVEDR---FNASLGTYHDLLKIIKDK DFLDNEENEDILEDIVLTLTLFEDREMIE
633


WP_032462936
562
KQLKEDYFKK--IECFDSVEISGVEDR---FNASLGTYHDLLKIIKDK DFLDNEENEDILEDIVLTLTLFEDKEMIE
633


WP_032464890
562
KQLKEDYFKK--IECFDSVEISGVEDR---FNASLGTYHDLLKIIKDK DFLDNEENEDILEDIVLTLTLFEDREMIE
633


WP_033888930
387
KQLKEDYFKK--IECFDSVEISGVEDR---FNASLGTYHDLLKIIKDK DFLDNEENEDILEDIVLTLTLFEDREMIE
458


WP_038431314
562
KQLKEDYFKK--IECFDSVEISGVEDR---FNASLGTYHDLLKIIKDK DFLDNEENEDILEDIVLTLTLFEDREMIE
633


WP_038432938
562
KQLKEDYFKK--IECFDSVEISGVEDR---FNTSLGTYHDLLKIIKDK DFLDNEENEDILEDIVLTLTLFEDKEMIE
633


WP_038434062
562
KQLKEDYFKK--IECFDSVEISGVEDR---FNASLGTYHDLLKIIKDK DFLDNEENEDILEDIVLTLTLFEDREMIE
633


BAQ51233
473
KQLKEDYFKK--IECFDSVEISGVEDR---FNASLGTYHDLLKIIKDK DFLDNEENEDILEDIVLTLTLFEDREMIE
544


KGE60162

------------------------------------------------ -----------------------------



KGE60856

------------------------------------------------ -----------------------------



WP_002989955
562
KQLKEDYFKK--IECFDSVEISGVEDR---FNASLGTYHDLLKIIKDK DFLDNEENEDILEDIVLTLTLFEDREMIE
633


WP_003030002
561
DKLLNYLNKE--FEEFRIVNLIGLDKEnkAFNSSLGTYHDLRKIL-DK SFLDDKANEKTIEDIIQTLTLFEDREMIR
634


WP_003065552
564
EKLLNYLNKE--FPEYRIKDLIGLDKEnkSFNASLGTYHDLKKIL-DK AFLDDKVNEEVIEDIIKTLTLFEDKDMIH
637


WP_001040076
563
KDIISFLNK---VDGYEGIAIKGIEKQ---FNASLSTYHDLKKIL-GK DFLDNIDNELILEDIVQTLTLFEDREMIK
632


WP_001040078
562
KKLLDFLAKE--YEEFRIVDVIGLDKEnkAFNASLGTYHDLEKIL-DK DFLDNPDNESILEDIVQTLTLFEDREMIK
635


WP_001040080
562
KKLLDFLAKE--YEEFRIVDVIGLDKEnkAFNASLGTYHDLEKIL-DK DFLDNPDNESILEDIVQTLTLFEDREMIK
635


WP_001040081
562
KKLLDFLAKE--YEEFRIVDVIGLDKEnkAFNASLGTYHDLEKIL-DK DFLDNPDNESILEDIVQTLTLFEDREMIK
635


WP_001040083
562
KKLLDFLAKE--YEEFRIVDVIGLDKEnkAFNASLGTYHDLEKIL-DK DFLDNPDNESILEDIIQTLTLFEDREMIK
635


WP_001040085
562
KKLLDFLAKE--YEEFRIVDVIGLDKEnkAFNASLGTYHDLEKIL-DK DFLDNPDNESILEDIVQTLTLFEDREMIK
635


WP_001040087
562
KKLLDFLAKE--YEEFRIVDVIGLDKEnkAFNASLGTYHDLEKIL-DK DFLDNPDNESILEDIVQTLTLFEDREMIK
635


WP_001040088
562
KKLLDFLAKE--YEEFRIVDVIGLDKEnkAFNASLGTYHDLEKIL-DK DFLDNPDNESILEDIVQTLTLFEDREMIK
635


WP_001040089
562
KKLLDFLAKE--YEEFRIVDVIGLDKEnkAFNASLGTYHDLEKIL-DK DFLDNPDNESILEDIVQTLTLFEDREMIK
635


WP_001040090
562
KKLLDFLAKE--YEEFRIVDVIGLDKEnkAFNASLGTYHDLEKIL-DK DFLDNPDNESILEDIVQTLTLFEDREMIK
635


WP_001040091
562
KKLLDFLAKE--YEEFRIVDVIGLDKEnkAFNASLGTYHDLEKIL-DK DFLDNPDNESILEDIVQTLTLFEDREMIK
635


WP_001040092
562
KQLLDFLAKE--FEEFRIVDVTGLDKEnkAFNASLGTYHDLKKIL-DK DFLDNPDNESILEDIVQTITLFEDREMIK
635


WP_001040094
563
KDIISFLNK---VDGYEGIAIKGIEKQ---FNASLSTYHDLKKIL-GK DFLDNIDNELILEDIVQTLTLFEDREMIR
632


WP_001040095
563
KDIISFLNK---VDGYEGIAIKGIEKQ---FNASLSTYHDLKKIL-GK DFLDNIDNELILEDIVQTLTLFEDREMIR
632


WP_001040096
563
KDIISFLNK---VDGYEGIAIKGIEKQ---FNASLSTYHDLKKIL-GK DFLDNIDNELILEDIVQTLTLFEDREMIR
632


WP_001040097
563
KDIISFLNK---VDGYEGIAIKGIEKQ---FNASLSTYHDLKKIL-GK DFLDNIDNELILEDIVQTLTLFEDREMIR
632


WP_001040098
563
KDIISFLNK---VDGYEGIAIKGIEKQ---FNASLSTYHDLKKIL-GK DFLDNIDNELILEDIVQTLTLFEDREMIR
632


WP_001040099
563
KDIISFLNK---VDGYEGIAIKGIEKQ---FNASLSTYHDLKKIL-GK DFLDNIDNELILEDIVQTLTLFEDREMIR
632


WP_001040100
563
KDIISFLNK---VDGYEGIAIKGIEKQ---FNASLSTYHDLKKIL-GK DFLDNIDNELILEDIVQTLTLFEDREMIR
632


WP_001040104
562
KKLLDFLAKE--YEEFRIVDVIGLDKEnkAFNASLGTYHDLEKIL-DK DFLDNPDNESILEDIVQTLTLFEDREMIK
635


WP_001040105
562
KKLLDFLAKE--YEEFRIVDVIGLDKEnkAFNASLGTYHDLEKIL-DK DFLDNPDNESILEDIVQTLTLFEDREMIK
635


WP_001040106
562
KKLLDFLAKE--YEEFRIVDVIGLDKEnkAFNASLGTYHDLKKIL-DK DFLDNPDNESILEDIVQTLTLFEDREMIK
635


WP_001040107
562
KKLLDFLAKE--YEEFRIVDVIGLDKEnkAFNASLGTYHDLKKIL-DK DFLDNPDNESILEDIVQTLTLFEDREMIK
635


WP_001040108
562
KKLLDFLAKE--YEEFRIVDVIGLDKEnkAFNASLGTYHDLKKIL-DK DFLDNPDNESILEDIVQTLTLFEDREMIK
635


WP_001040109
562
KKLLDFLAKE--YEEFRIVDVIGLDKEnkAFNASLGTYHDLKKIL-DK DFLDNPDNESILEDIVQTLTLFEDREMIK
635


WP_001040110
562
KKLLDFLAKE--YEEFRIVDVIGLDKEnkAFNASLGTYHDLKKIL-DK DFLDNPDNESILEDIVQTLTLFEDREMIK
635


WP_015058523
562
KQLLDFLAKE--FEEFRIVDVTGLDKEnkAFNASLGTYHDLKKIL-DK DFLDNPDNESILEDIVQTITLFEDREMIK
635


WP_017643650
563
KDIISFLNK---VDGYEGIAIKGIEKQ---FNASLSTYHDLKKIL-GK DFLDNIDNELILEDIVQTLTLFEDREMIR
632


WP_017647151
562
KKLLDFLAKE--YEEFRIVDVIGLDKEnkAFNASLGTYHDLKKIL-DK DFLDNPDNESILEDIVQTLTLFEDREMIK
635


WP_017648376
562
KKLLDFLAKE--YEEFRIVDVIGLDKEnkAFNASLGTYHDLKKIL-DK DFLDNPDNESILEDIVQTLTLFEDREMIK
635


WP_017649527
562
KKLLDFLAKE--YEEFRIVDVIGLDKEnkAFNASLGTYHDLEKIL-DK DFLDNPDNESILEDIVQTLTLFEDREMIK
635


WP_017771611
562
KKLLDFLAKE--YEEFRIVDVIGLDKEnkAFNASLGTYHDLKKIL-DK DFLDNPDNESILEDIVQTLTLFEDREMIK
635


WP_017771984
562
KKLLDFLAKE--YEEFRIVDVIGLDKEnkAFNASLGTYHDLEKIL-DK DFLDNPDNESILEDIVQTLTLFEDREMIK
635


CFQ25032
562
KKLLDFLAKE--YEEFRIVDVIGLDKEnkAFNASLGTYHDLEKIL-DK DFLDNPDNESILEDIVQTLTLFEDREMIK
635


CFV16040
562
KKLLDFLAKE--YEEFRIVDVIGLDKEnkAFNASLGTYHDLEKIL-DK DFLDNPDNESILEDIVQTLTLFEDREMIK
635


KLJ37842
562
KKLLDFLAKE--YEEFRIVDVIGLDKEnkAFNASLGTYHDLEKIL-DK DFLDNPDNESILEDIVQTLTLFEDREMIK
635


KLJ72361
562
KKLLDFLAKE--YEEFRIVDVIGLDKEnkAFNASLGTYHDLEKIL-DK DFLDNPDNESILEDIVQTLTLFEDREMIK
635


KLL20707
562
KKLLDFLAKE--YEEFRIVDVIGLDKEnkAFNASLGTYHDLEKIL-DK DFLDNPDNESILEDIVQTLTLFEDREMIK
635


KLL42645
562
KKLLDFLAKE--YEEFRIVDVIGLDKEnkAFNASLGTYHDLKKIL-DK DFLDNPDNESILEDIVQTLTLFEDREMIK
635


WP_047207273
562
KKLLDFLAKE--YEEFRIVDVIGLDKEnkAFNASLGTYHDLEKIL-DK DFLDNPDNESILEDIVQTLTLFEDREMIK
635


WP_047209694
563
KDIISFLNK---VDGYEGIAIKGIEKQ---FNASLSTYHDLKKIL-GK DFLDNIDNELILEDIVQTLTLFEDREMIR
632


WP_050198062
562
KKLLDFLAKE--YEEFRIVDVIGLDKEnkAFNASLGTYHDLEKIL-DK DFLDNPDNESILEDIVQTLTLFEDREMIK
635


WP_050201642
562
KKLLDFLAKE--YEEFRIVDVIGLDKEnkAFNASLGTYHDLEKIL-DK DFLDNPDNESILEDIVQTLTLFEDREMIK
635


WP_050204027
562
KKLLDFLAKE--YEEFRIVDVIGLDKEnkAFNASLGTYHDLKKIL-DK DFLDNPDNESILEDIVQTLTLFEDREMIK
635


WP_050881965
562
KKLLDFLAKE--YEEFRIVDVIGLDKEnkAFNASLGTYHDLEKIL-DK DFLDNPDNESILEDIVQTLTLFEDREMIK
635


WP_050886065
562
KKLLDFLAKE--YEEFRIVDVIGLDKEnkAFNASLGTYHDLEKIL-DK DFLDNPDNESILEDIVQTLTLFEDREMIK
635


AHN30376
562
KQLLDFLAKE--FEEFRIVDVTGLDKEnkAFNASLGTYHDLKKIL-DK DFLDNPDNESILEDIVQTITLFEDREMIK
635


EAO78426
562
KKLLDFLAKE--YEEFRIVDVIGLDKEnkAFNASLGTYHDLEKIL-DK DFLDNPDNESILEDIVQTLTLFEDREMIK
635


CCW42055
562
KQLLDFLAKE--FEEFRIVDVTGLDKEnkAFNASLGTYHDLEKIL-GK DFLDNPDNESILEDIVQTLTLFEDREMIK
635


WP_003041502
561
DKLLNYLNKE--FEEFRIVNLTGLDKEnkVENSSLGTYHDLRKIL-NK SFLDNKENAQIIEDIIQTLTLFEDREMIR
634


WP_037593752
562
DKLLNYLNKE--FEEFRIVNLTGLDKEnkAENSSLGTYHDLRKIL-DK SFLDDKANEKTIEDIIQTLTLFEDREMIR
635


WP_049516684
562
DKLLNYLNKE--FEEFRIVNLTGLDKEnkAFNASLGTYHDLRKIL-DK SFLDDKVNEKIIEDIIQTLTLFEDREMIR
635


GAD46167
561
DKLLNYLNKE--FEEFRIVNLTGLDKEnkAENSSLGTYHDLRKIL-DK SFLDDKANEKTIEDIIQTLTLFEDREMIR
634


WP_018363470
562
EKLLNYLDKE--FPEYRIQDLVGLDKEnkSFNASLGTYHDLKKIL-DK SFLDDKVNEEVIEDIIKTLTLFEDREMIQ
635


WP_003043819
572
KQLKEDYFKK--IECFDSVEIIGVEDR---FNASLGTYHDLLKIIKDK DELDNEENEDILEDIVLILTLFEDREMIE
643


WP_006269658
561
DKLLNYLNKE--FEEFRIVNLTGLDKEnkAENSSLGTYHDLRKIL-DK SFLDDKANEKTIEDIIQTLTLFEDREMIR
634


WP_048800889
561
DKLLNYLDKE--FDEFRIVDLTGLDKEnkAFNASLGTYHDLRKIL-DK SFLDDKANEKTIEDIIQTLTLFEDREMIR
634


WP_012767106
562
KQLKEDYFKK--IECFDSVEISGVEDR---FNASLGTYHDLLKIIKDK DELDNEENEDILEDIVLILTLFEDKEMIE
633


WP_014612333
562
KQLKEDYFKK--IECFDSVEISGVEDR---FNASLGTYHDLLKIIKDK DELDNEENEDILEDIVLILTLFEDKEMIE
633


WP_015017095
562
KQLKEDYFKK--IECFDSVEISGVEDR---FNASLGTYHDLLKIIKDK DELDNEENEDILEDIVLILTLFEDKEMIE
633


WP_015057649
562
KQLKEDYFKK--IECFDSVEISGVEDR---FNASLGTYHDLLKIIKDK DELDNEENEDILEDIVLILTLFEDKEMIE
633


WP_048327215
562
KQLKEDYFKK--IECFDSVEISGVEDR---FNASLGTYHDLLKIIKDK DELDNEENEDILEDIVLILTLFEDKEMIE
633


WP_049519324
562
KQLKEDYFKK--IECFDSVEISGVEDR---FNASLGTYHDLLKIIKDK DELDNEENEDILEDIVLILTLFEDKEMIE
633


WP_012515931
562
KQLKENYFKK--IECWDSVEITGVEDS---FNASLGTYHDLLKIIQDK DFLDNPDNQKIIEDIILTLTLFEDKKMIS
633


WP_021320964
562
KQLKENYFKK--IECWDSVEITGVEDS---FNASLGTYHDLLKIIQDK DFLDNPDNQKIIEDIILTLTLFEDKKMIS
633


WP_037581760
562
KQLKENYFKK--IECWDSVEITGVEDS---FNASLGTYHDLLKIIQDK DFLDNPDNQKIIEDIILTLTLFEDKKMIS
633


WP_004232481
561
AKLLSYLNNE--FEEFRINDLIGLDKDskSFNASLGTYHDLKKIL-DK SFLDDKTNEQIIEDIVLTLTLFEDRDMIH
634


WP_009854540
562
EKLLNYLNKE--FPEYRIKDLIGLDKEnkSFNASLGTYHDLKKIL-DK AFLDDKVNEEVIEDIIKTLTLFEDKDMIH
635


WP_012962174
562
DKFLNYLNKE--FPEYRIQDLIGLDKEnkSFNASLGTYHDLKKIL-DK SFLDDKTNETIIEDIIQTLTLFEDRDMIR
635


WP_039695303
564
EKLLNYLNKE--FPEYRIKDLIGLDKEnkSFNASLGTYHDLKKIL-DK AFLDDKVNEEVIEDIIKTLTLFEDKDMIH
637


WP_014334983
561
AKLLSYLNNE--FEEFRINDLIGLDKDskSFNASLGTYHDLKKIL-DK SELDDKINGQIIEDIVLILTLFEDRDMIH
634


WP_003099269
562
KQLKEEYESK--MKCFHTVTILGVEDR---FNASLGTYHDLLKIFKDK AFLDDEANQDILEEIVWTLTLFEDQAMIE
633


AHY15608
562
KQLKEEYESK--MKCFHTVTILGVEDR---FNASLGTYHDLLKIFKDK AFLDDEANQDILEEIVWTLTLFEDQAMIE
633


AHY17476
562
KQLKEEYESK--MKCFHTVTILGVEDR---FNASLGTYHDLLKIFKDK AFLDDEANQDILEEIVWTLTLFEDQAMIE
633


ESR09100

------------------------------------------------ -----------------------------



AGM98575
562
KQLKEEYESK--MKCFHTVTILGVEDR---FNASLGTYHDLLKIFKDK AFLDDEANQDILEEIVWTLTLFEDQAMIE
633


ALF27331
561
DKLMDFLEKE--FDEFRIVDLTGLDKEnkAFNASYGTYHDLRKIL-DK DELDNSKNEKILEDIVLILTLFEDREMIR
634


WP_018372492
574
RKLKDFIEKElgYGYIDIDNIKGVEEQ---FNASYTTYQDLLKIIGDK EFLDNEENKDLLEEIIYILTVFEDRKMIE
647


WP_045618028
563
KDIIQYLHN---VDSYDGIELKGIEKQ---FNASLSTYHDLLKIIKDK EFMDDSKNEAILENIVHTLTIFEDREMIK
633


WP_045635197
562
KDIIHYLHN---VDGYDGIELKGIEKQ---FNASLSTYHDLLKIIKDK EFMDDAKNEAILENIVHTLTIFEDREMIK
632


WP_002263549
561
DKLMDFLEKE--FDEFRIVDLTGLDKEnkVFNASYGTYHDLCKIL-DK DELDNSKNEKILEDIVLILTLFEDREMIR
634


WP_002263887
561
DKLMDFLEKE--FDEFRIVDLTGLDKEnkVFNASYGTYHDLCKIL-DK DELDNSKNEKILEDIVLILTLFEDREMIR
634


WP_002264920
561
DKLMDFLEKE--FDEFRIVDLTGLDKEnkAFNASYGTYHDLRKIL-DK DELDNSKNEKILEDIVLILTLFEDREMIR
634


WP_002269043
561
DKLMDFLEKE--FDEFRIVDLTGLDKEnkAFNASYGTYHDLRKIL-DK DELDNSKNEKILEDIVLILTLFEDREMIR
634


WP_002269448
561
DKLMDFLEKE--FDEFRIVDLTGLDKEnkVFNASYGTYHDLCKIL-DK DELDNSKNEKILEDIVLILTLFEDREMIR
634


WP_002271977
561
DKLMDFLEKE--FDEFRIVDLTGLDKEnkVFNASYGTYHDLCKIL-DK DELDNSKNEKILEDIVLILTLFEDREMIR
634


WP_002272766
561
DKLMDFLEKE--FDEFRIVDLTGLDKEnkVFNASYGTYHDLCKIL-DK DELDNSKNEKILEDIVLILTLFEDREMIR
634


WP_002273241
561
DKLMDFLEKE--FDEFRIVDLTGLDKEnkVFNASYGTYHDLCKIL-DK DELDNSKNEKILEDIVLILTLFEDREMIR
634


WP_002275430
561
DKLMDFLEKE--FDEFRIVDLTGLDKEnkAFNASYGTYHDLRKIL-DK DELDNSKNEKILEDIVLILTLFEDREMIR
634


WP_002276448
561
DKLMDFLEKE--FDEFRIVDLTGLDKEnkVFNASYGTYHDLCKIL-DK DELDNSKNEKILEDIVLILTLFEDREMIR
634


WP_002277050
561
KKLRTFLDKN--FDEFRIVDIQGLDKEteTENASYATYQDLLKVIKDK VFMDNPENAEILENIVLTLTLFEDREMIK
635


WP_002277364
561
DKLMDFLEKE--FDEFRIVDLTGLDKEnkAFNASYGTYHDLRKIL-DK DELDNSKNEKILEDIVLILTLFEDREMIR
634


WP_002279025
561
DKLMDFLEKE--FDEFRIVDLTGLDKEnkAFNASYGTYHDLRKIL-DK DELDNSKNEKILEDIVLILTLFEDREMIR
634


WP_002279859
561
DKLMDFLEKE--FDEFRIVDLTGLDKEnkAFNASYGTYHDLRKIL-DK DELDNSKNEKILEDIVLILTLFEDREMIR
634


WP_002280230
561
DKLMDFLEKE--FDEFRIVDLTGLDKEnkVFNASYGTYHDLCKIL-DK DELDNSKNEKILEDIVLILTLFEDREMIR
634


WP_002281696
561
DKLMDFLEKE--FDEFRIVDLTGLDKEnkAFNASYGTYHDLRKIL-DK DELDNSKNEKILEDIVLILTLFEDREMIR
634


WP_002282247
561
KKLRTFLDKN--FDEFRIVDIQGLDKEteTENASYATYQDLLKVIKDK VFMDNPENAEILENIVLTLTLFEDREMIK
635


WP_002282906
561
DKLMDFLEKE--FDEFRIVDLTGLDKEnkVFNASYGTYHDLCKIL-DK DELDNSKNEKILEDIVLILTLFEDREMIR
634


WP_002283846
561
DKLMDFLEKE--FDEFRIVDLTGLDKEnkAFNASYGTYHDLRKIL-DK DELDNSKNEKILEDIVLILTLFEDREMIR
634


WP_002287255
561
DKLMDFLEKE--FDEFRIVDLTGLDKEnkAFNASYGTYHDLRKIL-DK DELDNSKNEKILEDIVLILTLFEDREMIR
634


WP_002288990
561
DKLMDFLEKE--FDEFRIVDLTGLDKEnkAFNASYGTYHDLRKIL-DK DELDNSKNEKILEDIVLILTLFEDREMIR
634


WP_002289641
561
DKLMDFLEKE--FDEFRIVDLTGLDKEnkVFNASYGTYHDLCKIL-DK DELDNSKNEKILEDIVLILTLFEDREMIR
634


WP_002290427
561
DKLMDFLEKE--FDEFRIVDLTGLDKEnkAFNASYGTYHDLRKIL-DK DELDNSKNEKILEDIVLILTLFEDREMIR
634


WP_002295753
561
DKLMDFLEKE--FDEFRIVDLTGLDKEnkVFNASYGTYHDLCKIL-DK DELDNSKNEKILEDIVLILTLFEDREMIR
634


WP_002296423
561
DKLMDFLEKE--FDEFRIVDLTGLDKEnkAFNASYGTYHDLRKIL-DK DELDNSKNEKILEDIVLILTLFEDREMIR
634


WP_002304487
571
DKLLNYLNKE--FEEFRIVNLTGLDKEnkVENSSLGTYHDLRKIL-NK SFLDNKENEQIIEDIIQTLTLFEDREMIR
644


WP_002305844
561
DKLMDFLEKE--FDEFRIVDLTGLDKEnkVFNASYGTYHDLCKIL-DK DELDNSKNEKILEDIVLILTLFEDREMIR
634


WP_002307203
561
DKLMDFLEKE--FDEFRIVDLTGLDKEnkAFNASYGTYHDLRKIL-DK DELDNSKNEKILEDIVLILTLFEDREMIR
634


WP_002310390
561
DKLMDFLEKE--FDEFRIVDLTGLDKEnkAFNASYGTYHDLRKIL-DK DELDNSKNEKILEDIVLILTLFEDREMIR
634


WP_002352408
561
DKLMDFLEKE--FDEFRIVDLTGLDKEnkAFNASYGTYHDLRKIL-DK DELDNSKNEKILEDIVLILTLFEDREMIR
634


WP_012997688
561
DKLMDFLEKE--FDEFRIVDLTGLDKEnkAFNASYGTYHDLRKIL-DK DELDNSKNEKILEDIVLILTLFEDREMIR
634


WP_014677909
561
DKLMDFLEKE--FDEFRIVDLTGLDKEnkAFNASYGTYHDLRKIL-DK DELDNSKNEKILEDIVLILTLFEDREMIR
634


WP_019312892
561
DKLMDFLEKE--FDEFRIVDLTGLDKEnkAFNASYGTYHDLRKIL-DK DELDNSKNEKILEDIVLILTLFEDREMIR
634


WP_019313659
561
DKLMDFLEKE--FDEFRIVDLTGLDKEnkVFNASYGTYHDLCKIL-DK DELDNSKNEKILEDIVLILTLFEDREMIR
634


WP_019314093
561
DKLMDFLEKE--FDEFRIVDLTGLDKEnkAFNASYGTYHDLRKIL-DK DELDNSKNEKILEDIVLILTLFEDREMIR
634


WP_019315370
561
DKLMDFLEKE--FDEFRIVDLTGLDKEnkAFNASYGTYHDLRKIL-DK DELDNSKNEKILEDIVLILTLFEDREMIR
634


WP_019803776
561
DKLMDFLEKE--FDEFRIVDLTGLDKEnkVFNASYGTYHDLCKIL-DK DELDNSKNEKILEDIVLILTLFEDREMIR
634


WP_019805234
561
DKLMDFLEKE--FDEFRIVDLTGLDKEnkAFNASYGTYHDLRKIL-DK DELDNSKNEKILEDIVLILTLFEDREMIR
634


WP_024783594
561
DKLMDFLEKE--FDEFRIVDLTGLDKEnkVFNASYGTYHDLCKIL-DK DELDNSKNEKILEDIVLILTLFEDREMIR
634


WP_024784288
561
KKLRTFLDKN--FDEFRIVDIQGLDKEteTENASYATYQDLLKVIKDK VFMDNPENAEILENIVLTLTLFEDREMIK
635


WP_024784666
561
DKLMDFLEKE--FDEFRIVDLTGLDKEnkAFNASYGTYHDLRKIL-DK DELDNSKNEKILEDIVLILTLFEDREMIR
634


WP_024784894
561
DKLMDFLEKE--FDEFRIVDLTGLDKEnkVFNASYGTYHDLCKIL-DK DELDNSKNEKILEDIVLILTLFEDREMIR
634


WP_024786433
561
KKLRTFLDKN--FDEFRIVDIQGLDKEteTENASYATYQDLLKVIKDK VFMDNPENAEILENIVLTLTLFEDREMIK
635


WP_049473442
561
DKLMDFLEKE--FDEFRIVDLTGLDKEnkVFNASYGIYHDLCKIL-DK DFLDNSKNEKILEDIVLTLTLFEDREMIR
634


WP_049474547
561
DKLMDFLEKE--FDEFRIVDLTGLDKEnkVFNASYGIYHDLCKIL-DK DFLDNSKNEKILEDIVLTLTLFEDREMIR
634


EMC03581
554
DKLMDFLEKE--FDEFRIVDLTGLDKEnkAFNASYGIYHDLRKIL-DK DFLDNSKNEKILEDIVLTLTLFEDREMIR
627


WP_000428612
565
KDIIQYLHT---VDGYDGIELKGIEKQ---FNASLSTYHDLLKIIKDK EFMDDPNNEEILENIVHTLTIFEDREMIK
635


WP_000428613
563
KDIIQFLHN---VDGYDGIELKGIEKQ---FNASLSTYHDLLKIIKDK EFMDDSKNEEILENIVHTLTIFEDREMIK
633


WP_049523028
562
KDIIHYLHN---VDGYDGIELKGIEKH---FNSSLSTYHDLLKIIKDK EFMDDPKNEEIFENIVHTLTIFEDRVMIK
632


WP_003107102
531
KQLKENYFNK--IRCLDSITISGVEDK---FNASLGTYHDLLNIIKNQ KILDDEQNQDSLEDIVLTLTLFEDEKMIA
602


WP_054279288
564
KQLKEDFFSK--IECFDTVDISGVEDK---FNASLGTYHDLLKIIKDK AFLDNSENENIIEDIILTLTLFEDKEMIA
635


WP_049531101
563
KDLIHYLHN---VDGYDGIELKGIEKQ---FNASLSTYHDLLKIIKDK RFMDEPKNQEILENIVHTLTIFEDREMIK
633


WP_049538452
563
KDIIQYLHN---VDGYDGIELKGIEKQ---FNASLSTYHDLLKIIKDK EFMDDSKNEEILENIVHTLTIFEDREMIK
633


WP_049549711
563
KDIIHYLHT---VDGYDGIELKGIEKQ---FNASLSTYHDLLKIIKDK EFMDDSKNEAILENIVHTLTIFEDREMIK
633


WP_007896501
565
KDLKEKYFSQ--IEGLENVDVTGVEGA---FNASLGTYNDLLKIIKDK AFLDDEANAEILEEIVLILTLFQDEKLIE
636


EFR44625
517
KDLKEKYFSQ--IEGLENVDVTGVEGA---FNASLGTYNDLLKIIKDK AFLDDEANAEILEEIVLILTLFQDEKLIE
588


WP_002897477
562
KDIIHYLHN---VDGYDGIELKGIEKQ---FNANLSTYHDLLKITKDK EFMDDPKNEEILENIVHTLTIFEDREMIK
632


WP_002906454
562
KDIIHYLHN---VDGYDGIELKGIEKQ---FNASLSTYHDLLKIIKDK EFMDNPKNGEILENIIHTLTIFEDREMIK
632


WP_009729476
563
KDIIQFLHN---VDGYDGIELKGIEKQ---FNASLSTYHDLLKIIKDK AFMDDAKNEAILENIVHTLTIFEDREMIK
633


CQR24647
562
KKILNFLDKN--FDEFRITDIQGLDNEtgNFNASYGIYHDLLKIIGDK EFMDSSDNVDVLEDIVLSLTLFEDREMIK
636


WP_000066813
565
KDIIHYLHN---VDGYDGIELKGIEKQ---FNASLSTYHDLLKIIKDK AFMDDSKNEEILENIIHTLTIFEDREMIK
635


WP_009754323
563
KDIIHYLHN---VDGYDGIELKGIEKQ---FNASLSTYHDLLKIIKDK EFMDNHKNQEILENIVHTLTIFEDREMIK
633


WP_044674937
562
KDIKAYL-EN--SNGYAGVELKGLEEQ---FNASLPTYHDLLKILRDK AFIDAEENQEILEDIVLTLTLFEDREMIR
632


WP_044676715
561
EKLMDFLGKE--FDEFRIVDLLGLDKDnkSFNASLGTYHDLKKIV-SK DLLDNPENEDILENVVLTLTLFEDREMIR
634


WP_044680361
561
EKLMDFLGKE--FDEFRIVDLLGLDKDnkSFNASLGTYHDLKKIV-SK DLLDNPENEDILENVVLTLTLFEDREMIR
634


WP_044681799
562
KDIKAYL-EN--SNGYAGVELKGLEEQ---FNASLPTYHDLLKILRDK AFIDAEENQEILEDIVLTLTLFEDREMIR
632


WP_049533112
561
DKLLNYLGKE--FDEFRIVDLTGLDKEnkVFNSSLGTYHDLRKIL-DK SFLDNKENEQIIEDIIQTLTLFEDREMIR
634


WP_029090905
541
TSLKKWLAEH---EHMTVSVVQGTQKEt-EFATSLQAFHRFVKIF-DR ETVSNPANEEMFEKIIYWSTVFEDKKIMR
612


WP_006506696
568
KKLKNWLVNNgcCS--KDAEIKGFQKEn-QESTSLIPWIDETNIFGKI ----DQSNFDLIENIIYDLTVFEDKKIMK
637


AIT42264
562
KQLKEDYFKK--IECFDSVEISGVEDR---FNASLGTYHDLLKIIKDK DFLDNEENEDILEDIVLTLTLFEDREMIE
633


WP_034440723
568
NQLVKYIENK---EQIIAPEIKGIEDS---FNSNYSTYIDLSKIPDMK --LLEKDEDEILEEIIKILTIFEDRKMRK
637


AKQ21048
562
KQLKEDYFKK--IECFDSVEISGVEDR---FNASLGTYHDLLKIIKDK DFLDNEENEDILEDIVLTLTLFEDREMIE
633


WP_004636532
563
KDIANYLEQ---YGYVDGTDIKGVEDK---FNASLSTYNDLAKIDGAK AYLDDPEYADVWEDIIKILTIFEDKAMRK
633


WP_002364836
570
KDIIQFYRNE--YN-TEIVILSGLEED--QFNASFSTYQDLLKCGLIR AELDHPDNAEKLEDIIKILTIFEDRQRIR
641


WP_016631044
521
KDIIQFYRNE--YN-TEIVILSGLEED--QFNASFSTYQDLLKCGLIR AELDHPDNAEKLEDIIKILTIFEDRQRIR
592


EMS75795
306
KKLQQFLSAN--YN-IEDAEILGVDKA---FNSSYATYHDFLDLAKPN ELLEQPEMNAMFEDIVKILTIFEDREMIR
381


WP_002373311
570
KDIIQFYRNE--YN-TEIVILSGLEED--QFNASFSTYQDLLKCGLIR AELDHPDNAEKLEDIIKILTIFEDRQRIR
641


WP_002378009
570
KDIIQFYRNE--YN-TEIVILSGLEED--QFNASFSTYQDLLKCGLIR AELDHPDNAEKLEDIIKILTIFEDRQRIR
641


WP_002407324
570
KDIIQFYRNE--YN-TEIVILSGLEED--QFNASFSTYQDLLKCGLIR AELDHPDNAEKLEDIIKILTIFEDRQRIR
641


WP_002413717
570
KDIIQFYRNE--YN-TEIVILSGLEED--QFNASFSTYQDLLKCGLIR AELDHPDNAEKLEDIIKILTIFEDRQRIR
641


WP_010775580
572
KDIIQFYRNE--YN-TEIVILSGLEED--QFNASFSTYQDLLKCGLIR AELDHPDNAEKLEDIIKILTIFEDRQRIR
643


WP_010818269
570
KDIIQFYRNE--YN-TEIVILSGLEED--QFNASFSTYQDLLKCGLIR AELDHPDNAEKLEDIIKILTIFEDRQRIR
641


WP_010824395
570
KDIIQFYRNE--YN-TEIVTLSGLEED--QFNASFSTYQDLLKCGLTR AELDHPDNAEKLEDIIKILTIFEDRQRIR
641


WP_016622645
570
KDIIQFYRNE--YN-TEIVTLSGLEED--QFNASFSTYQDLLKCGLTR AELDHPDNAEKLEDIIKILTIFEDRQRIR
641


WP_033624816
570
KDIIQFYRNE--YN-TEIVTLSGLEED--QFNASFSTYQDLLKCGLTR AELDHPDNAEKLEDIIKILTIFEDRQRIR
641


WP_033625576
570
KDIIQFYRNE--YN-TEIVTLSGLEED--QFNASFSTYQDLLKCGLTR AELDHPDNAEKLEDIIKILTIFEDRQRIR
641


WP_033789179
570
KDIIQFYRNE--YN-TEIVTLSGLEED--QFNASFSTYQDLLKCGLTR AELDHPDNAEKLEDIIKILTIFEDRQRIR
641


WP_002310644
567
KDLQEFLYLK--YD-IKHAELSGIEKA---FNASYTTYHDFLTMSENK QWLEDPELASMFEEIIKILTVFEDREMIK
641


WP_002312694
568
KDLQEFLYLK--YD-IKHAELSGIEKA---FNASYTTYHDFLTMSENK QWLEDPELASMFEEIIKILTVFEDREMIK
642


WP_002314015
568
KDLQEFLYLK--YD-IKHAELSGIEKA---FNASYTTYHDFLTMSENK QWLEDPELASMFEEIIKILTVFEDREMIK
642


WP_002320716
568
KDLQEFLYLK--YD-IKHAELSGIEKA---FNASYTTYHDFLTMSENK QWLEDPELASMFEEIIKILTVFEDREMIK
642


WP_002330729
567
KDLQEFLYLK--YD-IKHAELSGIEKA---FNASYTTYHDFLTMSENK QWLEDPELASMFEEIIKILTVFEDREMIK
641


WP_002335161
568
KDLQEFLYLK--YD-IKHAELSGIEKA---FNASYTTYHDFLTMSENK QWLEDPELASMFEEIIKILTVFEDREMIK
642


WP_002345439
568
KDLQEFLYLK--YD-IKHAELSGIEKA---FNASYTTYHDFLTMSENK QWLEDPELASMFEEIIKILTVFEDREMIK
642


WP_034867970
562
KKLQNFLYTH--YH-IENAQIFGIEKA---FNASYSTYHDFMKLAKTN EWLEQPEMEPIFEDIVKILTIFEDRQMIK
637


WP_047937432
568
KDLQEFLYLK--YD-IKHAELSGIEKA---FNASYTTYHDFLTMSENK QWLEDPELASMFEEIIKILTVFEDREMIK
642


WP_010720994
562
KKLQNFLYTH--YH-IENAQIFGIEKA---FNASYSTYHDFMKLAKTN EWLEQPEMEPIFEDIVKILTIFEDRQMIK
637


WP_010737004
562
KKLQNFLYTH--YH-IENAQIFGIEKA---FNASYSTYHDFMKLAKTN EWLEQPEMEPIFEDIVKILTIFEDRQMIK
637


WP_034700478
562
KKLQNFLYTH--YH-IENAQIFGIEKA---FNASYSTYHDFMKLAKTN EWLEQPEMEPIFEDIVKILTIFEDRQMIK
637


WP_007209003
564
KKLENYLRIEl---SISSPSVKGIEEQ---FNANFGTYLDLKKFDELH PYLDDEKYQDTLEEVIKVLTVFEDRSMIQ
634


WP_023519017
560
KQLRKFLELN--EQ-IDSTEIKGIETS---FNASYSTYHDLLKLS--- ILLDDPDMITMFEEIIKILTIFEDREMIR
631


WP_010770040
564
KLLEKFLSNE--FG-LVDVAIKGIE-T--SFNAGYGTYHDFLKIGITR EQLDKEENSETLEEIVKILTVFEDRKMIR
634


WP_048604708
560
KDLSNFLRNE--YN-LDDVIIDGIE-N--KFNASFNTYHDFLKLKIDP KVLDDPANEPMFEEIVKILTIFEDRKMLR
630


WP_010750235
561
KKLQHFLSAN--YN-IEDAEILGVDKV---FNSSYATYHDFLELAKPY ELLEQPEMEEMFEDIVKIITIFEDREMVR
636


AII16583
601
KQLKEDYFKK--IECFDSVEISGVEDR---FNASLGTYHDLLKIIKDK DFLDNEENEDILEDIVLTLTLFEDREMIE
672


WP_029073316
576
NAMKKWLVKNgyFSNIDDIKIEGFQKEn-ACSTSLIPWIDETKIFGEI ----NNSNYELIEKIIYDVTVFEDKKILR
647


WP_031589969
576
NAMKKWLVKNgyFSNIDDIKIEGFQKEn-ACSTSLIPWIDETKIFGKI ----NESNYDFIEKIIYDVTVFEDKKILR
647


KDA45870
558
KMVIKHLKVV--MPAIRIQALKGLDNGk--FNASYGTYKDLVDMGVAP ELLNDEVNSEKWEDIIKTLTIFEGRKLIK
630


WP_039099354
579
KNIQDYLVSEk--RYASRPAITGLSDEnk-FNSRLSTYHDLKTIVGDA --VDDVDKQADLEKCIEWSTIFEDGKIYS
650


AKP02966
561
KKLIKWLIAQg---YYKNPILIGLSQKd-EFNSTLITYLDMKKIFGSS -FMENNKNYNQIEELIEWLTIFEDKQILN
632


WP_010991369
567
KDLELFLRNM--SH-VESPTIEGLE-D--SFNSSYSTYHDLLKVGIKQ EILDNPVNTEMLENIVKILTVFEDKRMIK
637


WP_033838504
567
KDLELFLRNM--SH-VESPTIEGLE-D--SFNSSYSTYHDLLKVGIKQ EILDNPVNTEMLENIVKILTVFEDKRMIK
637


EHN60060
570
KDLELFLRNM--SH-VESPTIEGLE-D--SFNSSYSTYHDLLKVGIKQ EILDNPVNTEMLENIVKILTVFEDKRMIK
640


EFR89594
336
KDLELFLRNM--SH-VESPTIEGLE-D--SFNSSYSTYHDLLKVGIKQ EILDNPVNTEMLENIVKILTVFEDKRMIK
406


WP_038409211
567
KDLERFLYTI--NH-IESPTIEGVE-D--AFNSSFATYHDLQKGGVTQ EILDNPLNADMLEEIVKILTVFEDKRMIK
637


EFR95520
186
KDLERFLYTI--NH-IESPTIEGVE-D--AFNSSFATYHDLQKGGVTQ EILDNPLNADMLEEIVKILTVFEDKRMIK
256


WP_003723650
567
KDLELFLRNI--NH-IESPTIEGLE-D--SFNASYATYHDLLKVGMKQ EILDNPLNTEMLEDIVKILTVFEDKPMIK
637


WP_003727705
567
KDLELFLRNI--NH-IESPTIEGLE-D--SFNASYATYHDLLKVGLKQ EILDNPLNTEILEDIVKILTVFEDKRMIK
637


WP_003730785
567
KDLELFLRNI--NH-IESPTIEGLE-D--SFNASYATYHDLLKVGLKQ EILDNPLNTEILEDIVKILTVFEDKRMIK
637


WP_003733029
567
KDLELFLRNI--NQ-IESPTIEGLE-D--SFNASYATYHDLLKVGMKQ EILDNPLNTEMLEDIVKILTVFEDKRMIK
637


WP_003739838
567
KDLEQFLRNM--SH-IESPTIEGLE-D--SENSSYATYHDLLKVGIKQ EVLENPLNTEMLEDIVKILTVFEDKRMIK
637


WP_014601172
567
KDLELFLRNI--NH-IESPTIEGLE-D--SFNASYATYHDLLKVGMKQ EILDNPLNTEMLEDIVKILTVFEDKPMIK
637


WP_023548323
567
KDLELFLRNI--NH-VESPTIEGLE-D--SFNASYATYHDLMKVGIKQ EILDNPLNTEMLEDIVKILTVFEDKPMIK
637


WP_031665337
567
KDLELFLRNI--NQ-IESPTIEGLE-D--SFNASYATYHDLLKVGMKQ EILDNPLNTEMLEDIVKILTVFEDKPMIK
637


WP_031669209
567
KDLELFLRNI--NQ-IESPTIEGLE-D--SFNASYATYHDLLKVGMKQ EILDNPLNTEMLEDIVKILTVFEDKPMIK
637


WP_033920898
567
KDLELFLRNI--NH-VESPTIEGLE-D--SFNASYATYHDLMKVGIKQ EILDNPLNTEMLEDIVKILTVFEDKPMIK
637


AKI42028
570
KDLELFLRNI--NH-IESPTIEGLE-D--SFNASYATYHDLLKVGMKQ EILDNPLNTEMLEDIVKILTVFEDKPMIK
640


AKI50529
570
KDLELFLRNI--NH-VESPTIEGLE-D--SFNASYATYHDLMKVGIKQ EILDNPLNTEMLEDIVKILTVFEDKPMIK
640


EFR83390
15
KDLELFLRNI--NQ-IESPTIEGLE-D--SFNASYATYHDLLKVGMKQ EILDNPLNTEMLEDIVKILTVFEDKPMIK
85


WP_046323366
567
KDLELFLYNM--NH-VESPTVEGVE-D--AFNSSFTTYHDLQKVGVPQ EILDDPLNTEMLEEIIKILTVFEDKRMIN
637


AKE81011
578
KQLKEDYFKK--IECFDSVEISGVEDR---FNASLGTYHDLLKIIKDK DELDNEENEDILEDIVLILTLFEDREMIE
649


CUO82355
572
KKLKNWLVNNqcCR--KDAEIKGFQKEn-QESTSLTPWIDETNIFGKI ----DQSNFDLIEKIIYDLTVFEDKKIMK
641


WP_033162887
573
KKLKDWLVTHqyYDINEELKIEGYQKDl-QESTSLAPWIDETKIFGEI ----NASNYQLIEKIIYDISIFEDKKILK
644


AGZ01981
595
KQLKEDYFKK--IECFDSVEISGVEDR---FNASLGTYHDLLKIIKDK DELDNEENEDILEDIVLILTLFEDREMIE
666


AKA60242
562
KQLKEDYFKK--IECFDSVEISGVEDR---FNASLGTYHDLLKIIKDK DELDNEENEDILEDIVLILTLFEDREMIE
633


AKS40380
562
KQLKEDYFKK--IECFDSVEISGVEDR---FNASLGTYHDLLKIIKDK DELDNEENEDILEDIVLILTLFEDREMIE
633


4UN5_B
566
KQLKEDYFKK--IECFDSVEISGVEDR---FNASLGTYHDLLKIIKDK DELDNEENEDILEDIVLILTLFEDREMIE
637


WP_010922251
634


embedded image


702


WP_039695303
638
ERLQKYSDIFTANQLKKLER-RHYTGWGRLSYKLINGIRNK ENNKTILDYLI DDG---SANRNFMQLINDDIL
706


WP_045635197
633
QRLAQYDSLFDEKVIKALTR-RHYTGWGKLSAKLINGICDK QTGNTILDYLI DDG---KINRNFMQLINDDGL
701


5AXW_A
369
EELTNLNSELTQEEIEQISN1KGYIGTHNLSLKAINLILDE ---------LW -------TNDNQIAIFNRLKL
426


WP_009880683
318
ERLKTYAHLFDDKVMKQLKR-RRYTGWGRLSRKLINGIRDK QSGKTILDFLK -DGf---ANRNFMQLIHDDSL
386


WP_010922251
634
ERLKTYAHLFDDKVMKQLKR-RRYTGWGRLSRKLINGIRDK QSGKTILDFLK -DGf---ANRNFMQLIHDDSL
702


WP_011054416
634
ERLKTYAHLFDDKVMKQLKR-RRYTGWGRLSRKLINGIRDK QSGKTILDFLK -DGf---ANRNFMQLIHDDSL
702


WP_011284745
634
ERLKTYAHLFDDKVMKQLKR-RRYTGWGRLSRKLINGIRDK QSGKTILDFLK -DGf---ANRNFMQLIHDDSL
702


WP_011285506
634
ERLKTYAHLFDDKVMKQLKR-RRYTGWGRLSRKLINGIRDK QSGKTILDFLK -DGf---ANRNFMQLIHDDSL
702


WP_011527619
634
ERLKTYAHLFDDKVMKQLKR-RRYTVWGRLSRKLINGIRDK QSGKTILDFLK -DGf---ANRNFMQLIHDDSL
702


WP_012560673
634
ERLKTYAHLFDDKVMKQLKR-RRYTGWGRLSRKLINGIRDK QSGKTILDFLK -DGf---ANRNFMQLIHDDSL
702


WP_014407541
634
ERLKTYAHLFDDKVMKQLKR-RRYTGWGRLSRKLINGIRDK QSGKTILDFLK -DGf---ANRNFMQLIHDDSL
702


WP_020905136
634
ERLKTYAHLFDDKVMKQLKR-RRYTGWGRLSRKLINGIRDK QSGKTILDFLK -DGf---ANRNFMQLIHDDSL
702


WP_023080005
634
ERLKKYANLFDDKVMKQLKR-RHYTGWGRLSRKLINGIRDK QSGKTILDFLK -DGf---ANRNFMQLINDDSL
702


WP_023610282
634
ERLKKYANLFDDKVMKQLKR-RHYTGWGRLSRKLINGIRDK QSGKTILDFLK -DGf---ANRNFMQLINDDSL
702


WP_030125963
634
ERLKTYAHLFDDKVMKQLKR-RRYTGWGRLSRKLINGIRDK QSGKTILDFLK -DGf---ANRNFMQLIHDDSL
702


WP_030126706
634
ERLKTYAHLFDDKVMKQLKR-RRYTGWGRLSRKLINGIRDK QSGKTILDFLK -DGf---ANRNFMQLIHDDSL
702


WP_031488318
634
ERLKTYAHLFDDKVMKQLKR-RRYTGWGRLSRKLINGIRDK QSGKTILDFLK -DGf---ANRNFMQLIHDDSL
702


WP_032460140
634
ERLKTYAHLFDDKVMKQLKR-RRYTGWGRLSRKLINGIRDK QSGKTILDFLK -DGf---ANRNFMQLIHDDSL
702


WP_032461047
634
ERLKTYAHLFDDKVMKQLKR-RRYTGWGRLSRKLINGIRDK QSGKTILDFLK -DGf---ANRNFMQLIHDDSL
702


WP_032462016
634
ERLKTYAHLFDDKVMKQLKR-RRYTGWGRLSRKLINGIRDK QSGKTILDFLK -DGf---ANRNFMQLIHDDSL
702


WP_032462936
634
ERLKKYAHLFDDKVMKQLKR-RRYTGWGRLSRKLINGIRDK QSGKTILDFLK -DGf---ANRNFMQLIHDDSL
702


WP_032464890
634
ERLKTYAHLFDDKVMKQLKR-RRYTGWGRLSRKLINGIRDK QSGKTILDFLK -DGf---ANRNFMQLIHDDSL
702


WP_033888930
459
ERLKTYAHLFDDKVMKQLKR-RRYTGWGRLSRKLINGIRDK QSGKTILDFLK -DGf---ANRNFMQLIHDDSL
527


WP_038431314
634
ERLKTYAHLFDDKVMKQLKR-RRYTGWGRLSRKLINGIRDK QSGKTILDFLK -DGf---ANRNFMQLIHDDSL
702


WP_038432938
634
ERLKKYANLFDDKVMKQLKR-RHYTGWGRLSRKLINGIRDK QSGKTILDFLK -DGf---ANRNFMQLINDDSL
702


WP_038434062
634
ERLKTYAHLFDDKVMKQLKR-RRYTGWGRLSRKLINGIRDK QSGKTILDFLK -DGf---ANRNFMQLIHDDSL
702


BAQ51233
545
ERLKTYAHLFDDKVMKQLKR-RRYTGWGRLSRKLINGIRDK QSGKTILDFLK -DGf---ANRNFMQLIHDDSL
613


KGE60162

----------------------------------------- ----------- ---------------------



KGE60856

----------------------------------------- ----------- ---------------------



WP_002989955
634
ERLKTYAHLFDDKVMKQLKR-RRYTGWGRLSRKLINGIRDK QSGKTILDFLK -DGf---ANRNFMQLIHDDSL
702


WP_003030002
635
QRLQKYSDIFTKAQLKKLER-RHYTGWGRLSYKLINGIRNK ENKKTILDYLI DDG---YANRNFMQLINDDAL
703


WP_003065552
638
ERLQKYSDIFTADQLKKLER-RHYTGWGRLSYKLINGIRNK ENNKTILDYLI DDG---SANRNFMQLINDDIL
706


WP_001040076
633
KRLDIYKDFFTESQLKKLYR-RHYTGWGRLSAKLINGIRNK ENQKTILDYLI DDG---SANRNFMQLIKDAGL
701


WP_001040078
636
KRLENYKDLFTESQLKKLYR-RHYTGWGRLSAKLINGIRDK ESQKTILDYLI DDG---RSNRNFMQLINDDGL
704


WP_001040080
636
KRLENYKDLFTESQLKKLYR-RHYTGWGRLSAKLINGIRDK ESQKTILDYLI DDG---RSNRNFMQLINDDGL
704


WP_001040081
636
KRLENYKDLFTESQLKKLYR-RHYTGWGRLSAKLINGIRDK ESQKTILDYLI DDG---RSNRNFMQLINDDGL
704


WP_001040083
636
KRLENYKDLFTESQLKKLYR-RHYTGWGRLSAKLINGIRDK ESQKTILDYLI DDG---RSNRNFMQLINDDGL
704


WP_001040085
636
KRLENYKDLFTESQLKKLYR-RHYTGWGRLSAKLINGIRDK ESQKTILDYLI DDG---RSNRNFMQLINDDGL
704


WP_001040087
636
KRLENYKDLFTESQLKKLYR-RHYTGWGRLSAKLINGIRDK ESQKTILDYLI DDG---RSNRNFMQLINDDGL
704


WP_001040088
636
KRLENYKDLFTESQLKKLYR-RHYTGWGRLSAKLINGIRDK ESQKTILDYLI DDG---RSNRNFMQLINDDGL
704


WP_001040089
636
KRLENYKDLFTESQLKKLYR-RHYTGWGRLSAKLINGIRDK ESQKTILDYLI DDG---RSNRNFMQLINDDGL
704


WP_001040090
636
KRLENYKDLFTESQLKKLYR-RHYTGWGRLSAKLINGIRDK ESQKTILDYLI DDG---RSNRNFMQLINDDGL
704


WP_001040091
636
KRLENYKDLFTESQLKKLYR-RHYTGWGRLSAKLINGIRDK ESQKTILDYLI DDG---RSNRNFMQLINDDGL
704


WP_001040092
636
KRLENYKDLFTESQLKKLYR-RHYTGWGRLSAKLINGIRDR ESQKTILDYLI SDG---RANRNFMQLINDDGL
704


WP_001040094
633
KRLDIYKDFFTESQLKKLYR-RHYTGWGRLSAKLINGIRNK ENQKTILDYLI DDG---SANRNFMQLIKDAGL
701


WP_001040095
633
KRLDIYKDFFTESQLKKLYR-RHYTGWERLSAKLINGIRNK ENQKTILDYLI DDG---SANRNFMQLIKDAGL
701


WP_001040096
633
KRLDIYKDFFTESQLKKLYR-RHYTGWGRLSAKLINGIRNK ENQKTILDYLI DDG---SANRNFMQLIKDAGL
701


WP_001040097
633
KRLDIYKDFFTESQLKKLYR-RHYTGWGRLSAKLINGIRNK ENQKTILDYLI DDG---SANRNFMQLIKDAGL
701


WP_001040098
633
KRLDIYKDFFTESQLKKLYR-RHYTGWGRLSAKLINGIRNK ENQKTILDYLI DDG---SANRNFMQLIKDAGL
701


WP_001040099
633
KRLDIYKDFFTESQLKKLYR-RHYTGWGRLSAKLINGIRNK ENQKTILDYLI DDG---SANRNFMQLIKDAGL
701


WP_001040100
633
KRLDIYKDFFTESQLKKLYR-RHYTGWGRLSAKLINGIRNK ENQKTILDYLI DDG---SANRNFMQLIKDAGL
701


WP_001040104
636
KRLENYKDLFTESQLKKLYR-RHYTGWGRLSAKLINGIRDK ESQKTILDYLI DDG---RSNRNFMQLINDDGL
704


WP_001040105
636
KRLENYKDLFTESQLKKLYR-RHYTGWGRLSAKLINGIRDK ESQKTILDYLI DDG---RSNRNFMQLINDDGL
704


WP_001040106
636
KRLENYKDLFTESQLKKLYR-RHYTGWGRLSAKLINGIRDK ESQKTILDYLI SDG---RANRNFMQLIHDDGL
704


WP_001040107
636
KRLENYKDLFTESQLKKLYR-RHYTGWGRLSAKLINGIRDK ESQKTILDYLI SDG---RANRNFMQLIHDDGL
704


WP_001040108
636
KRLENYKDLFTESQLKKLYR-RHYTGWGRLSAKLINGIRDK ESQKTILDYLI SDG---RANRNFMQLIHDDGL
704


WP_001040109
636
KRLENYKDLFTESQLKKLYR-RHYTGWGRLSAKLINGIRDK ESQKTILDYLI SDG---RANRNFMQLIHDDGL
704


WP_001040110
636
KRLENYKDLFTESQLKKLYR-RHYTGWGRLSAKLINGIRDK ESQKTILDYLI SDG---RANRNFMQLIHDDGL
704


WP_015058523
636
KRLENYKDLFTESQLKKLYR-RHYTGWGRLSAKLINGIRDR ESQKTILDYLI SDG---RANRNFMQLINDDGL
704


WP_017643650
633
KRLDIYKDFFTESQLKKLYR-RHYTGWGRLSAKLINGIRNK ENQKTILDYLI DDG---SANRNFMQLIKDAGL
701


WP_017647151
636
KRLENYKDLFTESQLKKLYR-RHYTGWGRLSAKLINGIRDK ESQKTILDYLI DDG---KSNRNFMQLIHDDGL
704


WP_017648376
636
KRLENYKDLFTESQLKKLYR-RHYTGWGRLSAKLINGIRDK ESQKTILDYLI DDG---KSNRNFMQLIHDDGL
704


WP_017649527
636
KRLENYKDLFTESQLKKLYR-RHYTGWGRLSAKLINGIRDK ESQKTILDYLI DDG---RSNRNFMQLINDDGL
704


WP_017771611
636
KRLENYKDLFTESQLKKLYR-RHYTGWGRLSAKLINGIRDK ESQKTILDYLI SDG---RANRNFMQLIHDDGL
704


WP_017771984
636
KRLENYKDLFTESQLKKLYR-RHYTGWGRLSAKLINGIRDK ESQKTILDYLI DDG---RSNRNFMQLINDDGL
704


CFQ25032
636
KRLENYKDLFTESQLKKLYR-RHYTGWGRLSAKLINGIRDK ESQKTILDYLI DDG---RSNRNFMQLINDDGL
704


CFV16040
636
KRLENYKDLFTESQLKKLYR-RHYTGWGRLSAKLINGIRDK ESQKTILDYLI DDG---RSNRNFMQLINDDGL
704


KLJ37842
636
KRLENYKDLFTESQLKKLYR-RHYTGWGRLSAKLINGIRDK ESQKTILDYLI DDG---RSNRNFMQLINDDGL
704


KLJ72361
636
KRLENYKDLFTESQLKKLYR-RHYTGWGRLSAKLINGIRDK ESQKTILDYLI DDG---RSNRNFMQLINDDGL
704


KLL20707
636
KRLENYKDLFTESQLKKLYR-RHYTGWGRLSAKLINGIRDK ESQKTILDYLI DDG---RSNRNFMQLINDDGL
718


KLL42645
636
KRLENYKDLFTESQLKKLYR-RHYTGWGRLSAKLINGIRDK ESQKTILDYLI SDG---RANRNFMQLIHDDGL
704


WP_047207273
636
KRLENYKDLFTESQLKKLYR-RHYTGWGRLSAKLINGIRDK ESQKTILDYLI DDG---RSNRNFMQLINDDGL
704


WP_047209694
633
KRLDIYKDFFTESQLKKLYR-RHYTGWGRLSAKLINGIRNK ENQKTILDYLI DDG---SANRNFMQLIKDAGL
701


WP_050198062
636
KRLENYKDLFTESQLKKLYR-RHYTGWGRLSAKLINGIRDK ESQKTILDYLI DDG---RSNRNFMQLINDDGL
704


WP_050201642
636
KRLENYKDLFTESQLKKLYR-RHYTGWGRLSAKLINGIRDK ESQKTILDYLI DDG---RSNRNFMQLINDDGL
704


WP_050204027
636
KRLENYKDLFTESQLKKLYR-RHYTGWGRLSAKLINGIRDK ESQKTILDYLI SDG---RANRNFMQLIHDDGL
704


WP_050881965
636
KRLENYKDLFTESQLKKLYR-RHYTGWGRLSAKLINGIRDK ESQKTILDYLI DDG---RSNRNFMQLINDDGL
704


WP_050886065
636
KRLENYKDLFTESQLKKLYR-RHYTGWGRLSAKLINGIRDK ESQKTILDYLI DDG---RSNRNFMQLINDDGL
704


AHN30376
636
KRLENYKDLFTESQLKKLYR-RHYTGWGRLSAKLINGIRDR ESQKIILDYLI SDG---RANRNFMQLINDDGL
704


EAO78426
636
KRLENYKDLFTESQLKKLYR-RHYTGWGRLSAKLINGIRDK ESQKTILDYLI DDG---RSNRNFMQLINDDGL
704


CCW42055
636
KRLDIYKDFFTESQLKKLYR-RHYTGWGRLSAKLINGIRNK ENQKTILDYLI DDG---SANRNFMQLIKDAGL
704


WP_003041502
635
QRLQKYSDIFTKAQLKKLER-RHYTGWGRLSYKLINGIRNK ENKKTILDYLI DDG---YANRNFMQLINDDAL
703


WP_037593752
636
QRLQKYSDIFTKAQLKKLER-RHYTGWGRLSYKLINGIRNK ENKKTILDYLI DDG---YANRNFMQLINDDAL
704


WP_049516684
636
QRLQKYSDIFTTQQLKKLER-RHYTGWGRLSYKLINGIRNK ENKKTILDYLI DDG---YANRNFMQLINDDAL
704


GAD46167
635
QRLQKYSDIFTKAQLKKLER-RHYTGWGRLSYKLINGIRNK ENKKTILDYLI DDG---YANRNFMQLINDDAL
703


WP_018363470
636
QRLQKYSDIFTKQQLKKLER-RHYTGWGRLSYKLINGIRNK ENNKTILDYLI DDG---SANRNFMQLINDDAL
704


WP_003043819
644
ERLKTYAHLFDDKVMKQLKR-RHYTGWGRLSRKMINGIRDK QSGKTILDFLK -DGf---SNRNFMQLIHDDSL
712


WP_006269658
635
QRLQKYSDIFTKAQLKKLER-RHYTGWGRLSYKLINGIRNK ENKKTILDYLI DDG---YANRNFMQLINDDAL
703


WP_048800889
635
QRLQKYSDIFTKAQLKKLER-RHYTGWGRLSYKLINGIRNK ENNKTILEYLV DDG---YANRNFMQLINDDIL
703


WP_012767106
634
ERLKKYANLFDDKVMKQLKR-RHYTGWGRLSRKLINGIRDK QSGKTILDFLK -DGf---ANRNFMQLINDDSL
702


WP_014612333
634
ERLKKYANLFDDKVMKQLKR-RHYTGWGRLSRKLINGIRDK QSGKTILDFLK -DGf---ANRNFMQLINDDSL
702


WP_015017095
634
ERLKTYAHLFDDKVMKQLKR-RHYTGWGRLSRKLINGIRDK QSGKTILDFLK -DGf---ANRNFIQLIHDDSL
702


WP_015057649
634
ERLKKYANLFDDKVMKQLKR-RHYTGWGRLSRKLINGIRDK QSGKTILDFLK -DGf---ANRNFMQLINDDSL
702


WP_048327215
634
ERLKTYAHLFDDKVMKQLKR-RHYTGWGRLSRKLINGIRDK QSGKTILDFLK -DGf---ANRNFIQLIHDDSL
702


WP_049519324
634
ERLKTYAHLFDDKVMKQLKR-RHYTGWGRLSRKLINGIRDK QSGKTILDFLK -DGf---ANRNFIQLIHDDSL
702


WP_012515931
634
KRLDQYAHLFDKVVLNKLER-HHYTGWGRLSGKLINGIRDK QSGKTILDFLK -DGf---ANRNFMQLIHDSEL
702


WP_021320964
634
KRLDQYAHLFDKVVLNKLER-HHYTGWGRLSGKLINGIRDK QSGKTILDFLK -DGf---ANRNFMQLIHDSEL
702


WP_037581760
634
KRLDQYAHLFDKVVLNKLER-HHYTGWGRLSGKLINGIRDK QSGKTILDFLK -DGf---ANRNFMQLIHDSEL
702


WP_004232481
635
ERLQKYSDIFTSQQLKKLER-RHYTGWGRLSYKLINGIRNK ENNKTILDFLI DDG---DANRNFMQLINDDSL
703


WP_009854540
636
ERLQKYSDIFTANQLKKLER-RHYTGWGRLSYKLINGIRNK ENNKTILDYLI DDG---SANRNFMQLINDDIL
704


WP_012962174
636
QRLQKYSDIFTPQQLKKLER-RHYTGWGRLSYKLINGIRNK ENGKSILDYLI DDG---YANRNFMQLISDDTL
704


WP_039695303
638
ERLQKYSDIFTANQLKKLER-RHYTGWGRLSYKLINGIRNK ENNKTILDYLI DDG---SANRNFMQLINDDIL
706


WP_014334983
635
ERLQKYSDFFTSQQLKKLER-RHYTGWGRLSYKLINGIRNK ENNKTILDFLI DDG---HANRNFMQLINDESL
703


WP_003099269
634
RRLVKYADVFEKSVLKKLKK-RHYTGWGRLSQKLINGIKDK QTGKTILGFLK -DGv---ANRNFMQLINDSSL
702


AHY15608
634
RRLVKYADVFEKSVLKKLKK-RHYTGWGRLSQKLINGIKDK QTGKTILGFLK -DGv---ANRNFMQLINDSSL
702


AHY17476
634
RRLVKYADVFEKSVLKKLKK-RHYTGWGRLSQKLINGIKDK QTGKTILGFLK -DGv---ANRNFMQLINDSSL
702


ESR09100

----------------------------------------- ----------- ---------------------



AGM98575
634
RRLVKYADVFEKSVLKKLKK-RHYTGWGRLSQKLINGIKDK QTGKTILGFLK -DGv---ANRNFMQLINDSSL
702


ALF27331
635
KRLENYSDLLTKEQVKNLER-RHYTGWGRLSAELIHGIRNK ESRKTILDYLI DDG---NSNRNFMQLINDDAL
703


WP_018372492
648
KRLSELNIPFENKIIKKLAR-KKYTGWGNLSRKLIDGIRNR ETNRTILGHLI DDGf---SNRNLMQLINDDGL
716


WP_045618028
634
QRLAHYASIFDEKVIKALTR-RHYTGWGKLSAKLINGIYDK QSKKTILDYLI DDG---EINRNFMQLINDDGL
702


WP_045635197
633
QRLAQYDSLFDEKVIKALTR-RHYTGWGKLSAKLINGICDK QTGNTILDYLI DDG---KINRNFMQLINDDGL
701


WP_002263549
635
KRLENYSDLLTKEQVKKLER-RHYTGWGRLSAELIHGIRNK ESRKTILDYLI DDG---NSNRNFMQLINDDAL
703


WP_002263887
635
KRLENYSDLLTKEQVKKLER-RHYTGWGRLSAELIHGIRNK ESRKTILDYLI DDG---NSNRNFMQLINDDAL
703


WP_002264920
635
KRLKNYSDLLTKEQLKKLER-RHYTGWGRLSAELIHGIRNK ESRKTILDYLI DDG---NSNRNFMQLINDDAL
703


WP_002269043
635
KRLKNYSDLLTKEQLKKLER-RHYTGWGRLSAELIHGIRNK ESRKTILDYLI DDG---NSNRNFMQLINDDAL
703


WP_002269448
635
KRLENYSDLLTKEQVKKLER-RHYTGWGRLSAELIHGIRNK ESRKTILDYLI DDG---NSNRNFMQLINDDAL
703


WP_002271977
635
KRLENYSDLLTKEQVKKLER-RHYTGWGRLSAELIHGIRNK ESRKTILDYLI DDG---NSNRNFMQLINDDAL
703


WP_002272766
635
KRLENYSDLLTKEQVKKLER-RHYTGWGRLSAELIHGIRNK ESRKTILDYLI DDG---NSNRNFMQLINDDAL
703


WP_002273241
635
KRLENYSDLLTKEQVKKLER-RHYTGWGRLSAELIHGIRNK ESRKTILDYLI DDG---NSNRNFMQLINDDAL
703


WP_002275430
635
KRLENYSDLLTKEQVKKLER-RHYTGWGRLSAELIHGIRNK ESRKTLLDYLI DDG---NSNRNFMQLINDDAL
703


WP_002276448
635
KRLENYSDLLTKEQVKKLER-RHYTGWGRLSAELIHGIRNK ESRKTILDYLI DDG---NSNRNFMQLINDDAL
703


WP_002277050
636
QRLAKYADVFDKKVIDQLAR-RHYTGWGRLSAKLLNGIRDK QSCKTIMDYLI DDA---QSNRNLMQLITDDNL
704


WP_002277364
635
KRLENYSDLLTKEQVKKLER-RHYTGWGRLSAELIHGIRNK ESRKTILDYLI DDG---NSNRNFMQLINDDAL
703


WP_002279025
635
KRLKNYSDLLTKEQLKKLER-RHYTGWGRLSAELIHGIRNK ESRKTILDYLI DDG---NSNRNFMQLINDDAL
703


WP_002279859
635
KRLKNYSDLLTKEQLKKLER-RHYTGWGRLSAELIHGIRNK ESRKTILDYLI DDG---NSNRNFMQLINDDAL
703


WP_002280230
635
KRLENYSDLLTKEQVKKLER-RHYTGWGRLSAELIHGIRNK ESRKTILDYLI DDG---NSNRNFMQLINDDAL
703


WP_002281696
635
KRLENYSDLLTKEQVKKLER-RHYTGWGRLSAELIHGIRNK ESRKTILDYLI DDG---NSNRNFMQLINDDAL
703


WP_002282247
636
QRLAKYADVFDKKVIDQLAR-RHYTGWGRLSAKLLNGIRDK QSCKTIMDYLI DDA---QSNRNLMQLITDDNL
704


WP_002282906
635
KRLENYSDLLTKEQVKKLER-RHYTGWGRLSAELIHGIRNK ESRKTILDYLI DDG---NSNRNFMQLINDDAL
703


WP_002283846
635
KRLKNYSDLLTKEQLKKLER-RHYTGWGRLSAELIHGIRNK ESRKTILDYLI DDG---NSNRNFMQLINDDAL
703


WP_002287255
635
KRLENYSDLLTKEQVKKLER-RHYTGWGRLSAELIHGIRNK ESRKTILDYLI DDG---NSNRNFMQLINDDAL
703


WP_002288990
635
KRLKNYSDLLTKEQLKKLER-RHYTGWGRLSAELIHGIRNK ESRKTILDYLI DDG---NSNRNFMQLINDDAL
703


WP_002289641
635
KRLENYSDLLTKEQVKKLER-RHYTGWGRLSAELIHGIRNK ESRKTILDYLI DDG---NSNRNFMQLINDDAL
703


WP_002290427
635
KRLKNYSDLLTKEQLKKLER-RHYTGWGRLSAELIHGIRNK ESRKTILDYLI DDG---NSNRNFMQLINDDAL
703


WP_002295753
635
KRLENYSDLLTKEQVKKLER-RHYTGWGRLSAELIHGIRNK ESRKTILDYLI DDG---NSNRNFMQLINDDAL
703


WP_002296423
635
KRLKNYSDLLTKEQLKKLER-RHYTGWGRLSAELIHGIRNK ESRKTILDYLI DDG---NSNRNFMQLINDDAL
703


WP_002304487
645
QRLQKYSDIFTKAQLKKLER-RHYTGWGRLSYKLINGIRDK QSNKTILGYLI DDG---YSNRNFMQLINDDAL
713


WP_002305844
635
KRLENYSDLLTKEQVKKLER-RHYTGWGRLSAELIHGIRNK ESRKTILDYLI DDG---NSNRNFMQLINDDAL
703


WP_002307203
635
KRLENYSDLLTKEQVKKLER-RHYTGWGRLSAELIHGIRNK ESRKTLLDYLI DDG---NSNRNFMQLINDDAL
703


WP_002310390
635
KRLKNYSDLLTKEQLKKLER-RHYTGWGRLSAELIHGIRNK ESRKTILDYLI DDG---NSNRNFMQLINDDAL
703


WP_002352408
635
KRLENYSDLLTKEQVKKLER-RHYTGWGRLSAELIHGIRNK ESRKTLLDYLI DDG---NSNRNFMQLINDDAL
703


WP_012997688
635
KRLENYSDLLTKEQVKKLER-RHYTGWGRLSAELIHGIRNK ESRKTILDYLI DDG---NSNRNFMQLINDDAL
703


WP_014677909
635
KRLKNYSDLLTKEQLKKLER-RHYTGWGRLSAELIHGIRNK ESRKTILDYLI DDG---NSNRNFMQLINDDAL
703


WP_019312892
635
KRLENYSDLLTKEQVKKLER-RHYTGWGRLSAELIHGIRNK ESRKTILDYLI DDG---NSNRNFMQLINDDAL
703


WP_019313659
635
KRLENYSDLLTKEQVKKLER-RHYTGWGRLSAELIHGIRNK ESRKTILDYLI DDG---NSNRNFMQLINDDAL
703


WP_019314093
635
KRLENYSDLLTKEQVKKLER-RHYTGWGRLSAELIHGIRNK ESRKTLLDYLI DDG---NSNRNFMQLINDDAL
703


WP_019315370
635
KRLENYSDLLTKEQVKKLER-RHYTGWGRLSAELIHGIRNK ESRKTLLDYLI DDG---NSNRNFMQLINDDAL
703


WP_019803776
635
KRLENYSDLLTKEQVKKLER-RHYTGWGRLSAELIHGIRNK ESRKTILDYLI DDG---NSNRNFMQLINDDAL
703


WP_019805234
635
KRLKNYSDLLTKEQLKKLER-RHYTGWGRLSAELIHGIRNK ESRKTILDYLI DDG---NSNRNFMQLINDDAL
703


WP_024783594
635
KRLENYSDLLTKEQVKKLER-RHYTGWGRLSAELIHGIRNK ESRKTILDYLI DDG---NSNRNFMQLINDDAL
703


WP_024784288
636
QRLAKYADVFDKKVIDQLAR-RHYTGWGRLSAKLLNGIRDK QSCKTIMDYLI DDA---QSNRNLMQLITDDNL
704


WP_024784666
635
KRLENYSDLLTKEQVKKLER-RHYTGWGRLSAELIHGIRNK ESRKTILDYLI DDG---NSNRNFMQLINDDAL
703


WP_024784894
635
KRLENYSDLLTKEQVKKLER-RHYTGWGRLSAELIHGIRNK ESRKTILDYLI DDG---NSNRNFMQLINDDAL
703


WP_024786433
636
QRLAKYADVFDKKVIDQLAR-RHYTGWGRLSAKLLNGIRDK QSCKTIMDYLI DDA---QSNRNLMQLITDDNL
704


WP_049473442
635
KRLENYSDLLTKEQVKKLER-RHYTGWGRLSAELIHGIRNK ESRKTILDYLI DDG---NSNRNFMQLINDDAL
703


WP_049474547
635
KRLENYSDLLTKEQVKKLER-RHYTGWGRLSAELIHGIRNK ESRKTILDYLI DDG---NSNRNFMQLINDDAL
703


EMC03581
628
KRLENYSDLLTKEQVKKLER-RHYTGWGRLSAELIHGIRNK ESRKTILDYLI DDG---NSNRNFMQLINDDAL
696


WP_000428612
636
QRLAQYDSLFDEKVIKALTR-RHYTGWGKLSSKLINGIRDK QTGKTILDYLM DDG---YNNRNFMQLINDDEL
704


WP_000428613
634
QRLAQYDSLFDEKVIKALIR-RHYTGWGKLSAKLIDGICDK QTGNTILDYLI DDG---KNNRNFMQLINDDGL
702


WP_049523028
633
QRLNQYDSIFDEKVIKALTR-RHYTGWGKLSAKLINGIRDK KTSKTILDYLI DDG---YSNRNFMQLINDDGL
701


WP_003107102
603
KRLSKYESIFDPSILKKLKK-RHYTGWGRLSQKLINGIRDK QTGKTILDFLI -DGq---ANRNFMQLINDPSL
671


WP_054279288
636
NRLAVYEDLFDQNVLKQLKR-RHYTGWGRLSKQLINGMRDK HTGKTILDFLK -DGf---INRNFMQLINDDNL
704


WP_049531101
634
QRLAQYASIFDEKVIKTLTR-RHYTGWGKLSAKLINCIRDR KTGKTILDYLI DDG---YNNRNFMQLINDDGL
702


WP_049538452
634
QRLAQYDSIFDEKVIKALTR-RHYTGWGKLSAKLINGIRDK QTGKTILDYLI DDG---YSNRNFMQLINDDGL
702


WP_049549711
634
QRLAQYDSLFDKKVIKALTR-RHYTGWGKLSAKLINGICDK QTGNTILDYLI DDG---EINRNFMQLINDDGL
702


WP_007896501
637
KRLAKYANLFEKSVLKKLRK-RHYRGWGRLSRQLIDGMKDK ASGKTILDFLK -DDf---ANRNFIQLINDSSL
705


EFR44625
589
KRLAKYANLFEKSVLKKLRK-RHYRGWGRLSRQLIDGMKDK ASGKTILDFLK -DDf---ANRNFIQLINDSSL
657


WP_002897477
633
QRLAQYDTLFDEKVIKALTR-RHYTGWGKLSAKLINGIRDK QSGKTILDYLI DDD---KINRNFMQLINDDGL
701


WP_002906454
633
QRLAQYDTLFDEKVIKALTR-RHYTGWGKLSAKLINGIRDK QTGKTILEYLI DDG---DCNRNFMQLINDDGL
701


WP_009729476
634
QRLAQYDSLFDEKVIKALTR-RHYTGWGKLSAKLINGISDK QTGNTILDYLI DDG---EINRNFMQLINDDGL
702


CQR24647
637
QRLLKYEDIFSKKVIANLTR-RHYTGWGRLSAKLINGIKDK HSRKTILDYLI DDG---HSNRNFMQLINDDNL
705


WP_000066813
636
QRLAQYDSLFDEKVIKALTR-RHYTGWGKLSAKLINGIRDK KSGKTILDYLI DDG---EINRNFMQLIHDDGL
704


WP_009754323
634
QRLAQYDSIFDEKVIKALTR-RHYTGWGKLSAKLINGICDK KTGKTILDYLI DDG---YNNRNFMQLINDDGL
702


WP_044674937
633
KRLEKYKDILTEEQRKKLER-RHYTGWGRLSAKLINGILDK VTRKTILGYLI DDG---TSNRNFMQLINDDIL
701


WP_044676715
635
KRLEKYKDVLTEEQRKKLER-RHYTGWGRLSAKLINGIRDK VTRKTILDYLI DDG---TSNRNFMQLINDDIL
703


WP_044680361
635
KRLEKYKDVLTEEQRKKLER-RHYTGWGRLSAKLINGIRDK VTRKTILDYLI DDG---TSNRNFMQLINDDIL
703


WP_044681799
633
KRLEKYKDILTEEQRKKLER-RHYTGWGRLSAKLINGILDK VTRKTILGYLI DDG---TSNRNFMQLINDDIL
701


WP_049533112
635
QRLQKYSDIFTKAQLKKLER-CHYTGWGRLSYKLINGIRNK ENKKTILDYLI DDG---YANRNFMQLINDDAL
703


WP_029090905
613
RKLSEYPQLTEQQQVQLAQV--RFRGWGRLSQRLINRIKTP EDHKLSINEIL ------QTNENFMQIIRNKDY
682


WP_006506696
638
RRLKKKYALPDDKVKQILKL--KYKDWSRLSKKLLDGIVAD SV--TVLDVLE -------SRLNLMEIINDKDL
705


AIT42264
634
ERLKTYAHLFDDKVMKQLKR-RRYTGWGRLSRKLINGIRDK QSGKTILDFLK -DGf---ANRNFMQLIHDDSL
702


WP_034440723
638
RQLMKFKDKLSEKAINQLSK-KHYTGWGQLSEKLINGIRDE QSNKTILDYLI DNGcpkNMNRNFMQLINDDIL
710


AKQ21048
634
ERLKTYAHLFDDKVMKQLKR-RRYTGWGRLSRKLINGIRDK QSGKTILDFLK -DGf---ANRNFMQLIHDDSL
702


WP_004636532
634
KQLQTYSDTLSPEILKKLER-KHYTGWGRFSKKLINGLRDE GSNKTILDYLK DEGssgPINRNFMQLIRDNIL
706


WP_002364836
642
TQLSTFKGQFSAEVLKKLER-KHYTGWGRLSKKLINGIYDK ESGKTILGYLI DDGvskHYNRNFMQLINDSQL
714


WP_016631044
593
TQLSTFKGQFSAEVLKKLER-KHYTGWGRLSKKLINGIYDK ESGKTILDYLV DDGvskHYNRNFMQLINDSQL
665


EMS75795
382
TQLKKYQSVLGDGFFKKLVK-KHYTGWGRLSERLINGIRDK KTNKTILDYLI DDDfpyNRNRNFMQLINDDSL
454


WP_002373311
642
TQLSTFKGQFSAEVLKKLER-KHYTGWGRLSKKLINGIYDK ESGKTILDYLV DDGvskHYNRNFMQLINDSQL
714


WP_002378009
642
TQLSTFKGQFSAEVLKKLER-KHYTGWGRLSKKLINGIYDK ESGKTILDYLI DDGvskHYNRNFMQLINDSQL
714


WP_002407324
642
TQLSTFKGQFSAEVLKKLER-KHYTGWGRLSKKLINGIYDK ESGKTILDYLV DDGvskHYNRNFMQLINDSQL
714


WP_002413717
642
TQLSTFKGQFSAEVLKKLER-KHYTGWGRLSKKLINGIYDK ESGKTILDYLV DDGvskHYNRNFMQLINDSQL
714


WP_010775580
644
TQLSTFKGQFSEEVLKKLER-KHYTGWGRLSKKLINGIYDK ESGKTILDYLI DDGvskHYNRNFMQLINDSQL
716


WP_010818269
642
TQLSTFKGQFSAEVLKKLER-KHYTGWGRLSKKLINGIYDK ESGKTILGYLI DDGvskHYNRNFMQLINDSQL
714


WP_010824395
642
TQLSTFKGQFSAEVLKKLER-KHYTGWGRLSKKLINGIYDK ESGKTILDYLI DDGvskHYNRNFMQLINDSQL
714


WP_016622645
642
TQLSTFKGQFSAEVLKKLER-KHYTGWGRLSKKLINGIYDK ESGKTILDYLV DDGvskHYNRNFMQLINDSQL
714


WP_033624816
642
TQLSTFKGQFSAEVLKKLER-KHYTGWGRLSKKLINGIYDK ESGKTILDYLI DDGvskHYNRNFMQLINDSQL
714


WP_033625576
642
TQLSTFKGQFSAEVLKKLER-KHYTGWGRLSKKLINGIYDK ESGKTILDYLI DDGvskHYNRNFMQLINDSQL
714


WP_033789179
642
TQLSTFKGQFSEEVLKKLER-KHYTGWGRLSKKLINGIYDK ESGKTILDYLI DDGvskHYNRNFMQLINDSQL
714


WP_002310644
642
TRLSHHEATLGKHIIKKLIK-KHYTGWGRLSKELIQGIRDK QSNKTILDYLI DDDfphHRNRNFMQLINDDSL
714


WP_002312694
643
TRLSHHEATLGKHIIKKLIK-KHYTGWGRLSKELIQGIRDK QSNKTILDYLI DDDfphHRNRNFMQLINDDSL
715


WP_002314015
643
TRLSHHEATLGKHIIKKLIK-KHYTGWGRLSKELIQGIRDK QSNKTILDYLI DDDfphHRNRNFMQLINDDSL
715


WP_002320716
643
TRLSHHEATLGKHIIKKLIK-KHYTGWGRLSKELIQGIRDK QSNKTILDYLI DDDfphHRNRNFMQLINDDSL
715


WP_002330729
642
TRLSHHEATLGKHIIKKLIK-KHYTGWGRLSKELIQGIRDK QSNKTILDYLI DDDfphHRNRNFMQLINDDSL
714


WP_002335161
643
TRLSHHEATLGKHIIKKLIK-KHYTGWGRLSKELIQGIRDK QSNKTILDYLI DDDfphHRNRNFMQLINDDSL
715


WP_002345439
643
TRLSHHEATLGKHIIKKLIK-KHYTGWGRLSKELIQGIRDK QSNKTILDYLI DDDfphHRNRNCMQLINDDSL
715


WP_034867970
638
HQLSKYQEVFGEKLLKEFAR-KHYTGWGRFSAKLIHGIRDR KTNKTILDYLI DDDvpaNRNRNLMQLINDEHL
710


WP_047937432
643
TRLSHHEATLGKHIIKKLIK-KHYTGWGRLSKELIQGIRDK QSNKTILDYLI DDDfphHRNRNFMQLINDDSL
715


WP_010720994
638
HQLSKYQEVFGEKLLKEFAR-KHYTGWGRFSAKLIHGIRDR KTNKTILDYLI DDDvpaNRNRNLMQLINDEHL
710


WP_010737004
638
HQLSKYQEVFGEKLLKEFAR-KHYTGWGRFSAKLIHGIRDR KTNKTILDYLI DDDvpaNRNRNLMQLINDEHL
710


WP_034700478
638
HQLSKYQEVFGEKLLKEFAR-KHYTGWGRFSAKLIHGIRDR KTNKTILDYLI DDDvpaNRNRNLMQLINDEHL
710


WP_007209003
635
NQLEQLPLNLSTKTIKALSR-RKYTGWGRLSARLIDGIHDK NSGKTILDYLI DESdsyIVNRNFMQLINDDHL
707


WP_023519017
632
EQLKPYETVLGLPAIKKLAK-KHYTGWGRLSEKMIQGMREK QSRKTILDYLI DDDfpcNRNRNFMQLINDDHL
704


WP_010770040
635
EQLKKYTYLFDEEVLKKLER-RHYTGWGRLSAKLLIGIKEK RTHKTILDYLI DDGgkqPINRNLMQLINDSDL
707


WP_048604708
631
EQLSKFSDRLSEKTIKDLER-RHYTGWGRLSAKLINGIHDK QSNKTILDYLI DDApkkNINRNFMQLINDNRL
703


WP_010750235
637
TQLKKYQRILGEEIFKKLVK-KKYTGWGRLSKRLINGIRDQ KTNKTILDYLI DDDfpyNRNRNFMQLINDDHL
709


AII16583
673
ERLKTYAHLFDDKVMKQLKR-RRYTGWGRLSRKLINGIRDK QSGKTILDFLK -DGf---ANRNFMQLIHDDSL
741


WP_029073316
648
RRLKKEYDLDEEKIKKILKL--KYSGWSRLSKKLLSGIKTK RTPETVLEVME -------TNMNLMQVINDEKL
717


WP_031589969
648
RRLKKEYDLDEEKIKKILKL--KYSGWSRLSKKLLSGIKTK RTPETVLEVME -------TNMNLMQVINDEKL
717


KDA45870
631
RRLENYRDFLGEDILRKLSR-KKYTGWGRLSAKLLDGIYDK KTHKTILDCLM EDYs-----QNFMQLINDDTY
698


WP_039099354
651
AKLNEIDWLIDQQRVQLAAK--RYRGWGRLSAKLLTQIVN- ANGQRIMDLLW -------TTDNFMRIVHSE--
712


AKP02966
633
EKLHSSNYSYTSDQIKKISN-MRYKGWGRLSKKILICITTE TNTPKSLQLSN -DLm-wITNNNFISIISNDKY
706


WP_010991369
638
EQLQQFSDVLDGVVLKKLER-RHYTGWGRLSAKLLMGIRDK QSHLTILDYLM DDG----LNRNLMQLINDSNL
706


WP_033838504
638
EQLQQFSDVLDGVVLKKLER-RHYTGWGRLSAKLLMGIRDK QSHLTILDYLM DDG----LNRNLMQLINDSNL
706


EHN60060
641
EQLQQFSDVLDGVVLKKLER-RHYTGWGRLSAKLLMGIRDK QSHLTILDYLM DDG----LNRNLMQLINDSNL
709


EFR89594
407
EQLQQFSDVLDGVVLKKLER-RHYTGWGRLSAKLLMGIRDK QSHLTILDYLM DDG----LNRNLMQLINDSNL
475


WP_038409211
638
EQLQSFSDVLDGTILKKLER-RHYTGWGRLSAKLLTGIRDK HSHLTILDYLM DDG----LNRNLMQLINDSNL
706


EFR95520
257
EQLQSFSDVLDGTILKKLER-RHYTGWGRLSAKLLTGIRDK HSHLTILDYLM DDG----LNRNLMQLINDSNL
325


WP_003723650
638
EQLQQFSDVLDGGVLKKLER-RHYTGWGRLSAKLLVGIREK QSHLTILDYLM DDG----LNRNLMQLINDSNL
706


WP_003727705
638
EQLEQFSDVLDGVVLKKLER-RHYTGWGRLSAKLLVGIRDK QSHLTILDYLM DDG----LNRNLMQLINDSNL
706


WP_003730785
638
EQLEQFSDVLDGVVLKKLER-RHYTGWGRLSAKLLVGIRDK QSHLTILDYLM DDG----LNRNLMQLINDSNL
706


WP_003733029
638
EQLQQFSDVLDGTVLKKLER-RHYTGWGRLSAKLLVGIRDK QSHLTILDYLM DDG----LNRNLMQLINDSNL
706


WP_003739838
638
EQLQQFSDVLDGAVLKKLER-RHYTGWGRLSAKLLVGIRDK QSHLTILDYLM DDG----LNRNLMQLINDSNL
706


WP_014601172
638
EQLQQFSDVLDGGVLKKLER-RHYTGWGRLSAKLLVGIREK QSHLTILDYLM DDG----LNRNLMQLINDSNL
706


WP_023548323
638
EQLQQFSDVLDGTVLKKLER-RHYTGWGRLSAKLLVGIRDK QSHLTILDYLM DDG----LNRNLMQLINDSNL
706


WP_031665337
638
EQLQQFSDVLDGVVLKKLER-RHYTGWGRLSAKLLVGIRDK QSHLTILEYLM DDG----LNRNLMQLINDSNL
706


WP_031669209
638
EQLQQFSDVLDGTVLKKLER-RHYTGWGRLSAKLLVGIRDK QSHLTILDYLM DDG----LNRNLMQLINDSNL
706


WP_033920898
638
EQLQQFSDVLDGTVLKKLER-RHYTGWGRLSAKLLVGIRDK QSHLTILDYLM DDG----LNRNLMQLINDSNL
706


AKI42028
641
EQLQQFSDVLDGGVLKKLER-RHYTGWGRLSAKLLVGIREK QSHLTILDYLM DDG----LNRNLMQLINDSNL
709


AKI50529
641
EQLQQFSDVLDGTVLKKLER-RHYTGWGRLSAKLLVGIRDK QSHLTILDYLM DDG----LNRNLMQLINDSNL
709


EFR83390
86
EQLQQFSDVLDGVVLKKLER-RHYTGWGRLSAKLLVGIRDK QSHLTILEYLM DDG----LNRNLMQLINDSNL
154


WP_046323366
638
ERLQEFSNVLDEAVLKKLER-RHYTGWGRLSAKLLIGIRDK ESHLTILDYLM DDK----HNRNLMQLINDSNL
706


AKE81011
650
ERLKTYAHLFDDKVMKQLKR-RRYTGWGRLSRKLINGIRDK QSGKTILDFLK -DGf---ANRNFMQLIHDDSL
718


CUO82355
642
RRLKKKYALPDDKIKQILKL--KYKDWSRLSKKLLDGIVAD SV--TVLDVLE -------SRLNLMEIINDKEL
709


WP_033162887
645
RRLKKVYQLDDLLVDKILKL--NYTGWSRLSEKLLTGMTAD KA--TVLFVLE -------SNKNLMEIINDEKL
712


AGZ01981
667
ERLKTYAHLFDDKVMKQLKR-RRYTGWGRLSRKLINGIRDK QSGKTILDFLK -DGf---ANRNFMQLIHDDSL
735


AKA60242
634
ERLKTYAHLFDDKVMKQLKR-RRYTGWGRLSRKLINGIRDK QSGKTILDFLK -DGf---ANRNFMQLIHDDSL
702


AKS40380
634
ERLKTYAHLFDDKVMKQLKR-RRYTGWGRLSRKLINGIRDK QSGKTILDFLK -DGf---ANRNFMQLIHDDSL
702


4UN5_B
638
ERLKTYAHLFDDKVMKQLKR-RRYTGWGRLSRKLINGIRDK QSGKTILDFLK -DGf---ANRNFMQLIHDDSL
706


WP_010922251
703


embedded image


777


WP_039695303
707
PFKQIIQKSQVVG-DVDD-IEAVVHDLPGSPAIKKGILQSVKIVDELVKVMG-GNPDNIVIEMARENQ TTNRGRSQS
780


WP_045635197
702
SFKEIIQKAQVIG-KTDD-VKQVVQELSGSPAIKKGILQSIKIVDELVKVMG-HAPESIVIEMARENQ TTARGKKNS
775


5AXW_A
427
VPKKVDLSQQKEI---PT---TLVDDFILSPVVKRSFIQSIKVINAIIKKYG--LPNDIIIELAREKN --------S
487


WP_009880683
387
TFKEDLQKAQVSG-QGDS-LHEHIANLAGSPAIKKGILQTVKVVDELVKVMGrHKPENIVIEMARENQ TTQKGQKNS
461


WP_010922251
703
TFKEDIQKAQVSG-QGDS-LHEHIANLAGSPAIKKGILQTVKVVDELVKVMGrHKPENIVIEMARENQ TTQKGQKNS
777


WP_011054416
703
TFKEDIQKAQVSG-QGDS-LHEHIANLAGSPAIKKGILQTVKVVDELVKVMGrHKPENIVIEMARENQ TTQKGQKNS
777


WP_011284745
703
TFKEDIQKAQVSG-QGDS-LHEHIANLAGSPAIKKGILQTVKVVDELVKVMGrHKPENIVIEMARENQ TTQKGQKNS
777


WP_011285506
703
TFKEDIQKAQVSG-QGDS-LHEHIANLAGSPAIKKGILQTVKVVDELVKVMGrHKPENIVIEMARENQ TTQKGQKNS
777


WP_011527619
703
TFKEDIQKAQVSG-QGDS-LHEHIANLAGSPAIKKGILQTVKVVDELVKVMGrHKPENIVIEMARENQ TTQKGQKNS
777


WP_012560673
703
TFKEDLQKAQVSG-QGDS-LHEHIANLAGSPAIKKGILQTVKVVDELVKVMGrHKPENIVIEMARENQ TTQKGQKNS
777


WP_014407541
703
TFKEDIQKAQVSG-QGHS-LHEQIANLAGSPAIKKGILQTVKIVDELVKVMG-HKPENIVIEMARENQ TTQKGQKNS
776


WP_020905136
703
TFKEDIQKAQVSG-QGDS-LHEHIANLAGSPAIKKGILQTVKVVDELVKVMGrHKPENIVIEMARENQ TTQKGQKNS
777


WP_023080005
703
TFKEAIQKAQVSG-QGHS-LHEQIANLAGSPAIKKGILQTVKIVDELVKVMG-HKPENIVIEMARENQ TTQKGQKNS
776


WP_023610282
703
TFKEAIQKAQVSG-QGHS-LHEQIANLAGSPAIKKGILQTVKIVDELVKVMG-HKPENIVIEMARENQ TTQKGQKNS
776


WP_030125963
703
TFKEDLQKAQVSG-QGDS-LHEHIANLAGSPAIKKGILQTVKVVDELVKVMGrHKPENIVIEMARENQ TTQKGQKNS
777


WP_030126706
703
TFKEDIQKAQVSG-QGDS-LHEHIANLAGSPAIKKGILQTVKVVDELVKVMGrHKPENIVIEMARENQ TTQKGQKNS
777


WP_031488318
703
TFKEDIQKAQVSG-QGDS-LHEHIANLAGSPAIKKGILQTVKVVDELVKVMGrHKPENIVIEMARENQ TTQKGQKNS
777


WP_032460140
703
TFKEDLQKAQVSG-QGDS-LHEHIANLAGSPAIKKGILQTVKVVDELVKVMGrHKPENIVIEMARENQ TTQKGQKNS
777


WP_032461047
703
TFKEDLQKAQVSG-QGDS-LHEHIANLAGSPAIKKGILQTVKVVDELVKVMGrHKPENIVIEMARENQ TTQKGQKNS
777


WP_032462016
703
TFKEDIQKAQVSG-QGDS-LHEHIANLAGSPAIKKGILQTVKVVDELVKVMGrHKPENIVIEMARENQ TTQKGQKNS
777


WP_032462936
703
TFKEDIQKAQVSG-QGDS-LHEHIANLAGSPAIKKGILQTVKVVDELVKVMGrHKPENIVIEMARENQ TTQKGQKNS
777


WP_032464890
703
TFKEDIQKAQVSG-QGDS-LHEHIANLAGSPAIKKGILQTVKVVDELVKVMGrHKPENIVIEMARENQ TTQKGQKNS
777


WP_033888930
528
TFKEDIQKAQVSG-QGDS-LHEHIANLAGSPAIKKGILQTVKVVDELVKVMGrHKPENIVIEMARENQ TTQKGQKNS
602


WP_038431314
703
TFKEDIQKAQVSG-QGDS-LHEHIANLAGSPAIKKGILQTVKVVDELVKVMGrHKPENIVIEMARENQ TTQKGQKNS
777


WP_038432938
703
TFKEAIQKAQVSG-QGHS-LHEQIANLAGSPAIKKGILQTVKIVDELVKVMG-HKPENIVIEMARENQ TTQKGQKNS
776


WP_038434062
703
TFKEDIQKAQVSG-QGDS-LHEHIANLAGSPAIKKGILQTVKIVDELVKVMGrHKPENIVIEMARENQ TTQKGQKNS
777


BAQ51233
614
TFKEDIQKAQVSG-QGDS-LHEHIANLAGSPAIKKGILQTVKVVDELVKVMGrHKPENIVIEMARENQ TTQKGQKNS
688


KGE60162

-------------------------------------------------------------------- ---------



KGE60856

-------------------------------------------------------------------- ---------



WP_002989955
703
TFKEDIQKAQVSG-QGDS-LHEHIANLAGSPAIKKGILQTVKVVDELVKVMGrHKPENIVIEMARENQ TTQKGQKNS
777


WP_003030002
704
SEKEEIARAQIIG-DVDD-IANVVHDLPGSPAIKKGILQSVKIVDELVKVMG-HNPANIIIEMARENQ MTDKGRRNS
777


WP_003065552
707
PFKQIIQKSQVVG-DVDD-IEAVVHDLPGSPAIKKGILQSVKIVDELVKVMG-DNPDNIVIEMARENQ TTNRGRSQS
780


WP_001040076
702
SFKPIIDKARTGS-HSDN-LKEVIGELAGSPAIKKGILQSLKIVDELVKVMG-YEPEQIVVEMARENQ TTAKGLSRS
775


WP_001040078
705
SFKSIISKAQAGS-HSDN-LKEVVGELAGSPAIKKGILQSLKIVDELVKVMG-YEPEQIVVEMARENQ TTNQGRRNS
778


WP_001040080
705
SFKSIISKAQAGS-HSDN-LKEVVGELAGSPAIKKGILQSLKIVDELVKVMG-YEPEQIVVEMARENQ TTNQGRRNS
778


WP_001040081
705
SFKSIISKAQAGS-HSDN-LKEVVGELAGSPAIKKGILQSLKIVDELVKVMG-YEPEQIVVEMARENQ TTNQGRRNS
778


WP_001040083
705
SFKSIISKAQAGS-HSDN-LKEVVGELAGSPAIKKGILQSLKIVDELVKVMG-YEPEQIVVEMARENQ TTNQGRRNS
778


WP_001040085
705
SFKSIISKAQAGS-HSDN-LKEVVGELAGSPAIKKGILQSLKIVDELVKVMG-YEPEQIVVEMARENQ TTNQGRRNS
778


WP_001040087
705
SFKSIISKAQAGS-HSDN-LKEVVGELAGSPAIKKGILQSLKIVDELVKVMG-YEPEQIVVEMARENQ TTNQGRRNS
778


WP_001040088
705
SFKSIISKAQAGS-HSDN-LKEVVGELAGSPAIKKGILQSLKIVDELVKVMG-YEPEQIVVEMARENQ TTNQGRRNS
778


WP_001040089
705
SFKSIISKAQAGS-HSDN-LKEVVGELAGSPAIKKGILQSLKIVDELVKVMG-YEPEQIVVEMARENQ TTNQGRRNS
778


WP_001040090
705
SFKSIISKAQAGS-HSDN-LKEVVGELAGSPAIKKGILQSLKIVDELVKVVG-YEPEQIVVEMARENQ TTNQGRRNS
778


WP_001040091
705
SFKSIISKAQAGS-HSDN-LKEVVGELAGSPAIKKGILQSLKIVDELVKVMG-YEPEQIVVEMARENQ TTNQGRRNS
778


WP_001040092
705
SFKSIISKAQSGS-HSDN-LKEVVGELAGSPAIKKGILQSLKIVDELVKVMG-YEPEQIVVEMARENQ TTNQGRRNS
778


WP_001040094
702
SFKPIIDKARTGS-HSDN-LKEVVGELAGSPAIKKGILQSLKIVDELVKVMG-YEPEQIVVEMARENQ TTAKGLSRS
775


WP_001040095
702
SFKPIIDKARTGS-HLDN-LKEVVGELAGSPAIKKGILQSLKIVDELVKVMG-YEPEQIVVEMARENQ TTAKGLSRS
775


WP_001040096
702
SFKPIIDKARTGS-HLDN-LKEVVGELAGSPAIKKGILQSLKIVDELVKVMG-YEPEQIVVEMARENQ TTAKGLSRS
775


WP_001040097
702
SFKPIIDKARTGS-HSDN-LKEVVGELAGSPAIKKGILQSLKIVDELVKVMG-YEPEQIVVEMARENQ TTAKGLSRL
775


WP_001040098
702
SFKPIIDKARTGS-HSDN-LKEVVGELAGSPAIKKGILQSLKIVDELVKVMG-YEPEQIVVEMARENQ TTAKGLSRS
775


WP_001040099
702
SFKPIIDKARTGS-HSDN-LKEVVGELAGSPAIKKGILQSLKIVDELVKVMG-YEPEQIVVEMARENQ TTAKGLSRS
775


WP_001040100
702
SFKPIIDKARTGS-HSDN-LKEVVGELAGSPAIKKGILQSLKIVDELVKVMG-YEPEQIVVEMARENQ TTAKGLSRS
775


WP_001040104
705
SFKSIISKAQAGS-HSDN-LKEVVGELAGSPAIKKGILQSLKIVDELVKVMG-YEPEQIVVEMARENQ TTNQGRRNS
778


WP_001040105
705
SFKSIISKAQAGS-HSDN-LKEVVGELAGSPAIKKGILQSLKIVDELVKVMG-YEPEQIVVEMARENQ TTNQGRRNS
778


WP_001040106
705
SFKPIIDKAQAGS-HSDN-LKEVVGELAGSPAIKKGILQSLKIVDELVKVMG-YEPEQVVVEMARENQ TTNQGRRNT
778


WP_001040107
705
SFKPIIDKAQAGS-HSDN-LKEVVGELAGSPAIKKGILQSLKIVDELVKVMG-YEPEQVVVEMARENQ TTNQGRRNT
778


WP_001040108
705
SFKPIIDKAQAGS-HSDN-LKEVVGELAGSPAIKKGILQSLKIVDELVKVMG-YEPEQVVVEMARENQ TTNQGRRNT
778


WP_001040109
705
SFKPIIDKAQAGS-HSDN-LKEVVGELAGSPAIKKGILQSLKIVDELVKVMG-YEPEQVVVEMARENQ TTNQGRRNT
778


WP_001040110
705
SFKPIIDKAQAGS-HSDN-LKEVVGELAGSPAIKKGILQSLKIVDELVKVMG-YEPEQVVVEMARENQ TTNQGRRNT
778


WP_015058523
705
SFKSIISKAQSGS-HSDN-LKEVVGELAGSPAIKKGILQSLKIVDELVKVMG-YEPEQIVVEMARENQ TTNQGRRNS
778


WP_017643650
702
SFKPIIDKARTGS-HSDN-LKEVVGELAGSPAIKKGILQSLKIVDELVKVMG-YEPEQIVVEMARENQ TTAKGLSRL
775


WP_017647151
705
SFKSIISKAQAGS-HSDN-LKEVVGELAGSPAIKKGILQSLKIVDELVKVMG-YEPEQIVVEMARENQ TTNQGRRNS
778


WP_017648376
705
SFKSIISKAQAGS-HSDN-LKEVVGELAGSPAIKKGILQSLKIVDELVKVMG-YEPEQIVVEMARENQ TTNQGRRNS
778


WP_017649527
705
SFKSIISKAQAGS-HSDN-LKEVVGELAGSPAIKKGILQSLKIVDELVKVMG-YEPEQIVVEMARENQ TTNQGRRNS
778


WP_017771611
705
SFKPIIDKAQAGS-HSDN-LKEVVGELAGSPAIKKGILQSLKIVDELVKVMG-YEPEQVVVEMARENQ TTNQGRRNT
778


WP_017771984
705
SFKSIISKAQAGS-HSDN-LKEVVGELAGSPAIKKGILQSLKIVDELVKVMG-YEPEQIVVEMARENQ TTNQGRRNS
778


CFQ25032
705
SFKSIISKAQAGS-HSDN-LKEVVGELAGSPAIKKGILQSLKIVDELVKVMG-YEPEQIVVEMARENQ TTNQGRRNS
778


CFV16040
705
SFKSIISKAQAGS-HSDN-LKEVVGELAGSPAIKKGILQSLKIVDELVKVMG-YEPEQIVVEMARENQ TTNQGRRNS
778


KLJ37842
705
SFKSIISKAQAGS-HSDN-LKEVVGELAGSPAIKKGILQSLKIVDELVKVMG-YEPEQIVVEMARENQ TTNQGRRNS
778


KLJ72361
705
SFKSIISKAQAGS-HSDN-LKEVVGELAGSPAIKKGILQSLKIVDELVKVMG-YEPEQIVVEMARENQ TTNQGRRNS
778


KLL20707
719
SFKSIISKAQAGS-HSDN-LKEVVGELAGSPAIKKGILQSLKIVDELVKVMG-YEPEQIVVEMARENQ TTNQGRRNS
792


KLL42645
705
SFKPIIDKAQAGS-HSDN-LKEVVGELAGSPAIKKGILQSLKIVDELVKVMG-YEPEQVVVEMARENQ TTNKGRRNT
778


WP_047207273
705
SFKSIISKAQAGS-HSDN-LKEVVGELAGSPAIKKGILQSLKIVDELVKVMG-YEPEQIVVEMARENQ TTNQGRRNS
778


WP_047209694
702
SFKPIIDKARTGS-HSDN-LKEVVGELAGSPAIKKGILQSLKIVDELVKVMG-YEPEQIVVEMARENQ TTAKGLSRS
775


WP_050198062
705
SFKSIISKAQAGS-HSDN-LKEVVGELAGSPAIKKGILQSLKIVDELVKVMG-YEPEQIVVEMARENQ TTNQGRRNS
778


WP_050201642
705
SFKSIISKAQAGS-HSDN-LKEVVGELAGSPAIKKGILQSLKIVDELVKVMG-YEPEQIVVEMARENQ TTNQGRRNS
778


WP_050204027
705
SFKPIIDKAQAGS-HSDN-LKEVVGELAGSPAIKKGILQSLKIVDELVKVMG-YEPEQVVVEMARENQ TTNQGRRNT
778


WP_050881965
705
SFKSIISKAQAGS-HSDN-LKEVVGELAGSPAIKKGILQSLKIVDELVKVMG-YEPEQIVVEMARENQ TTNQGRRNS
778


WP_050886065
705
SFKSIISKAQAGS-HSDN-LKEVVGELAGSPAIKKGILQSLKIVDELVKVMG-YEPEQIVVEMARENQ TTNQGRRNS
778


AHN30376
705
SFKSIISKAQSGS-HSDN-LKEVVGELAGSPAIKKGILQSLKIVDELVKVMG-YEPEQIVVEMARENQ TTNQGRRNS
778


EAO78426
705
SFKSIISKAQAGS-HSDN-LKEVVGELAGSPAIKKGILQSLKIVDELVKVMG-YEPEQIVVEMARENQ TTNQGRRNS
778


CCW42055
705
SFKSIISKAQSGS-HSDN-LKEVVSELAGSPAIKKGILQSLKIVDELVKVMG-YKPEQIVVEMARENQ TTNQGRRNS
778


WP_003041502
704
SFKEEIAKAQIIG-DVDD-IANVVHDLPGSPAIKKGILQSVKIVDELVKVMG-HNPANIIIEMARENQ TTDRGRRNS
777


WP_037593752
705
SEKEEIARAQIIG-DVDD-IANVVHDLPGSPAIKKGILQSVKIVDELVKVMG-HNPANIIIEMARENQ TTDKGRRNS
778


WP_049516684
705
SEKEEIARAQIIG-DVDD-IANVVHDLPGSPAIKKGILQSVKIVDELVKVMG-HNPANIIIEMARENQ TTDKGRRNS
778


GAD46167
704
SEKEEIARAQIIG-DVDD-IANVVHDLPGSPAIKKGILQSVKIVDELVKVMG-HNPANIIIEMARENQ TTDKGRRNS
777


WP_018363470
705
SFKQIIQEAQVVG-DVDD-IETVVHDLPGSPAIKKGILQSVKIVDELIKVMG-DNPDNIVIEMARENQ TTNRGRSQS
778


WP_003043819
713
TFKEEIEKAQVSG-QGDS-LHEQIADLAGSPAIKKGILQTVKIVDELVKVMG-HKPENIVIEMARENQ TTTKGLQQS
786


WP_006269658
704
SEKEEIARAQIID-DVDD-IANVVHDLPGSPAIKKGILQSVKIVDELVKVMG-HNPANIIIEMARENQ TTDKGRRNS
777


WP_048800889
704
PFKQIIKDAQAID-DVDD-IELIVHDLPGSPAIKKGILQSIKIVDELVKVMG-YNPDNIVIEMARENQ TTTKGRRNS
777


WP_012767106
703
TFKEAIQKAQVSG-QGHS-LHEQIANLAGSPAIKKGILQSVKVVDELVKVMG-HKPENIVIEMARENQ TTQKGQKNS
776


WP_014612333
703
TFKEAIQKAQVSG-QGHS-LHEQIANLAGSPAIKKGILQSVKVVDELVKVMG-HKPENIVIEMARENQ TTQKGQKNS
776


WP_015017095
703
TFKEAIQKAQVSG-QGHS-LHEQIANLAGSPAIKKGILQSVKVVDELVKVMG-HKPENIVIEMARENQ TTQKGQKNS
776


WP_015057649
703
TFKEAIQKAQVSG-QGHS-LHEQIANLAGSPAIKKGILQSVKVVDELVKVMG-HKPENIVIEMARENQ TTQKGQKNS
776


WP_048327215
703
TFKEAIQKAQVSG-QGHS-LHEQIANLAGSPAIKKGILQSVKVVDELVKVMG-HKPENIVIEMARENQ TTQKGQKNS
776


WP_049519324
703
TFKEAIQKAQVSG-QGHS-LHEQIANLAGSPAIKKGILQSVKVVDELVKVMG-HKPENIVIEMARENQ TTQKGQKNS
776


WP_012515931
703
SFIDEIAKAQVIG-KTEY-SKDLVGNLAGSPAIKKGISQTIKIVDELVKIMG-YLPQQIVIEMARENQ TTAQGIKNA
776


WP_021320964
703
SFIDEIAKAQVIG-KTEY-SKDLVGNLASSPAIKKGISQTIKIVDELVKIMG-YLPQQIVIEMARENQ TTAQGIKNA
776


WP_037581760
703
SFIDEIAKAQVIG-KTEY-SKDLVGNLAGSPAIKKGISQTIKIVDELVKIMG-YLPQQIVIEMARENQ TTAQGIKNA
776


WP_004232481
704
SFKITIQEAQVVG-DVDD-IEAVVHDLPGSPAIKKGILQSVKIVDELVKVMG-HNPQNIVIEMARENQ ITGYGRNRS
777


WP_009854540
705
PFKQIIQKSQVVG-DVDD-IEAVVHDLPGSPAIKKGILQSVKIVDELVKVMG-DNPDNIVIEMARENQ TTNRGRSQS
778


WP_012962174
705
PFKQIIKDAQIIG-DIDD-VISVVRELPGSPAIKKGILQSVKIVDELVKVMG-HNPDNIVIEMARENQ TTNRGRNQS
778


WP_039695303
707
PFKQIIQKSQVVG-DVDD-IEAVVHDLPGSPAIKKGILQSVKIVDELVKVMG-GNPDNIVIEMARENQ TTNRGRSQS
780


WP_014334983
704
SFKIIIQEAQVVG-DVDD-IEAVVHDLPGSPAIKKGILQSVKIVDELVKVMG-DNPDNIVIEMARENQ TTGYGRNKS
777


WP_003099269
703
DFAKIIKNEQEKTiKNES-LEETIANLAGSPAIKKGILQSIKIVDEIVKIMG-QNPDNIVIEMARENQ STMQGIKNS
777


AHY15608
703
DFAKIIKNEQEKTiKNES-LEETIANLAGSPAIKKGILQSIKIVDEIVKIMG-QNPDNIVIEMARENQ STMQGIKNS
777


AHY17476
703
DFAKIIKNEQEKTiKNES-LEETIANLAGSPAIKKGILQSIKIVDEIVKIMG-QNPDNIVIEMARENQ STMQGIKNS
777


ESR09100

-------------------------------------------------------------------- ---------



AGM98575
703
DFAKIIKNEQEKTiKNES-LEETIANLAGSPAIKKGILQSIKIVDEIVKIMG-QNPDNIVIEMARENQ STMQGIKNS
777


ALF27331
704
SFKEEIAKAQVIG-EIDN-LNQVVSDIAGSPAIKKGILQSLKIVDELVKIMG-HQPENIVVEMARENQ FTNQGRRNS
777


WP_018372492
717
DFKEIIRKAQTIE-NIDT-NQALVSSLPGSPAIKKGILQSLNIVDEIIAIMG-YAPTNIVIEMARENQ TTQKGRDNS
790


WP_045618028
703
SFKEIIQKAQVVG-KIND-VKQVVQELPGSPAIKKGILQSIKLVDELVKVMG-HAPESIVIEMARENQ TTARGKKNS
776


WP_045635197
702
SFKEIIQKAQVIG-KTDD-VKQVVQELSGSPAIKKGILQSIKIVDELVKVMG-HAPESIVIEMARENQ TTARGKKNS
775


WP_002263549
704
SFKEEIAKAQVIG-EIDN-LNQVVSDIAGSPAIKKGILQSLKIVDELVKIMG-HQPENIVVEMARENQ FTNQGRRNS
777


WP_002263887
704
SFKEEIAKAQVIG-EIDN-LNQVVSDIAGSPAIKKGILQSLKIVDELVKIMG-HQPENIVVEMARENQ FTNQGRRNS
777


WP_002264920
704
SFKEEIAKAQVIG-EIDN-LNQVVSDIAGSPAIKKGILQSLKIVDELVKIMG-HQPENIVVEMARENQ FTNQGRRNS
777


WP_002269043
704
SFKEEIAKAQVIG-EIDN-LNQVVSDIAGSPAIKKGILQSLKIVDELVKIMG-HQPENIVVEMARENQ FTNQGRRNS
777


WP_002269448
704
SFKEEIAKAQVIG-ETDN-LNQVVSDIAGSPAIKKGILQSLKIVDELVKIMG-HQPENIVVEMARENQ FTNQGRQNS
777


WP_002271977
704
SFKEEIAKAQVIG-ETDN-LNQVVSDIAGSPAIKKGILQSLKIVDELVKIMG-HQPENIVVEMARENQ FTNQGRRNS
777


WP_002272766
704
SFKEEIAKAQVIG-ETDN-LNQVVSDIAGSPAIKKGILQSLKIVDELVKIMG-HQPENIVVEMARENQ FTNQGRRNS
777


WP_002273241
704
SFKEEIAKAQVIG-ETDN-LNQVVSDIAGSPAIKKGILQSLKIVDELVKIMG-HQPENIVVEMARENQ FTKQGRRNS
777


WP_002275430
704
SFKEEIAKAQVIG-ETDN-LNQVVSDIAGSPAIKKGILQSLKIVDELVKIMG-HQPENIVVEMARENQ FTNQGRRNS
777


WP_002276448
704
SFKEEIAKAQVIG-ETDN-LNQVVSDIAGSPAIKKGILQSLKIVDELVKIMG-HQPENIVVEMARENQ FTKQGRRNS
777


WP_002277050
705
TFKDDIVKAQYVD-NSDD-LHQVVQSLAGSPAIKKGILQSLKIVDELVKVMG-KEPEQIVVEMARENQ TTAKGRRNS
778


WP_002277364
704
SFKEEIAKAQVIG-ETDN-LNQVVSDIAGSPAIKKGILQSLKIVDELVKIMG-HQPENIVVEMARENQ FTNQGRRNS
777


WP_002279025
704
SFKEEIAKAQVIG-ETDN-LNQVVSDIAGSPAIKKGILQSLKIVDELVKIMG-HQPENIVVEMARENQ FTNQGRRNS
777


WP_002279859
704
SFKEEIAKAQVIG-ETDN-LNQVVSDIAGSPAIKKGILQSLKIVDELVKIMG-HQPENIVVEMARENQ FTNQGRRNS
777


WP_002280230
704
SFKEEIAKAQVIG-ETDN-LNQVVSDIAGSPAIKKGILQSLKIVDELVKIMG-HQPENIVVEMARENQ FTKQGRRNS
777


WP_002281696
704
SFKEEIAKAQVIG-ETDN-LNQVVSDIAGSPAIKKGILQSLKIVDELVKIMG-HQPENIVVEMARENQ FTNQGRRNS
777


WP_002282247
705
TFKDDIVKAQYVD-NSDD-LHQVVQSLAGSPAIKKGILQSLKIVDELVKVMG-KEPEQIVVEMARENQ TTAKGRRNS
778


WP_002282906
704
SFKEEIAKAQVIG-ETDN-LNQVVSDIAGSPAIKKGILQSLKIVDELVKIMG-HQPENIVVEMARENQ FTNQGRRNS
777


WP_002283846
704
SFKEEIAKAQVIG-ETDN-LNQVVSDIAGSPAIKKGILQSLKIVDELVKIMG-HQPENIVVEMARENQ FTNQGRRNS
777


WP_002287255
704
SFKEEIAKAQVIG-ETDN-LNQVVSDIAGSPAIKKGILQSLKIVDELVKIMG-HQPENIVVEMARENQ FTNQGRRNS
777


WP_002288990
704
SFKEEIAKAQVIG-ETDN-LNQVVSDIAGSPAIKKGILQSLKIVDELVKIMG-HQPENIVVEMARENQ FTNQGRRNS
777


WP_002289641
704
SFKEEIAKAQVIG-ETDN-LNQVVSDIAGSPAIKKGILQSLKIVDELVKIMG-HQPENIVVEMARENQ FTNQGRRNS
777


WP_002290427
704
SFKEEIAKAQVIG-ETDN-LNQVVSDIAGSLAIKKGILQSLKIVDELVKIMG-HQPENIVVEMARENQ FTNQGRRNS
777


WP_002295753
704
SFKEEIAKAQVIG-ETDN-LNQVVSDIAGSPAIKKGILQSLKIVDELVKIMG-HQPENIVVEMARENQ FTKQGRRNS
777


WP_002296423
704
SFKEEIAKAQVIG-ETDN-LNQVVSDIAGSPAIKKGILQSLKIVDELVKIMG-HQPENIVVEMARENQ FTNQGRRNS
777


WP_002304487
714
SFKEEIAKAQVIG-EMDG-LNQVVSDIAGSPAIKKGILQSLKIVDELVKVMG-HNPANIVIEMARENQ TTAKGRRSS
787


WP_002305844
704
SFKEEIAKAQVIG-ETDN-LNQVVSDIAGSPAIKKGILQSLKIVDELVKIMG-HQPENIVVEMARENQ FTKQGRRNS
777


WP_002307203
704
SFKEEIAKAQVIG-ETDN-LNQVVSDIAGSPAIKKGILQSLKIVDELVKIMG-HQPENIVVEMARENQ FTNQGRRNS
777


WP_002310390
704
SFKEEIAKAQVIG-ETDN-LNQVVSDIAGSLAIKKGILQSLKIVDELVKIMG-HQPENIVVEMARENQ FTNQGRRNS
777


WP_002352408
704
SFKEEIAKAQVIG-ETDN-LNQVVSDIAGSPAIKKGILQSLKIVDELVKIMG-HQPENIVVEMARENQ FTNQGQRNS
777


WP_012997688
704
SFKEEIAKAQVIG-ETDN-LNQVVSDIAGSPAIKKGILQSLKIVDELVKIMG-HQPENIVVEMARENQ FTNQGRRNS
777


WP_014677909
704
SFKEEIAKAQVIG-ETDN-LNQVVSDIAGSPAIKKGILQSLKIVDELVKIMG-HQPENIVVEMARENQ FTNQGRRNS
777


WP_019312892
704
SFKEEIAKAQVIG-ETDN-LNQVVSDIAGSPAIKKGILQSLKIVDELVKIMG-HQPENIVVEMARENQ FTNQGRRNS
777


WP_019313659
704
SFKEEIAKAQVIG-ETDN-LNQVVSDIAGSPAIKKGILQSLKIVDELVKIMG-HQPENIVVEMARENQ FTNQGRRNS
777


WP_019314093
704
SFKEEIAKAQVIG-ETDN-LNQVVSDIAGSPAIKKGILQSLKIVDELVKIMG-HQPENIVVEMARENQ FTNQGRRNS
777


WP_019315370
704
SFKEEIAKAQVIG-ETDN-LNQVVSDIAGSPAIKKGILQSLKIVDELVKIMG-HQPENIVVEMARENQ FTNQGRRNS
777


WP_019803776
704
SFKEEIAKAQVIG-ETDN-LNQVVSDIAGSPAIKKGILQSLKIVDELVKIMG-HQPENIVVEMARENQ FTNQGRRNS
777


WP_019805234
704
SFKEEIAKAQVIG-ETDN-LNQVVSDIAGSLAIKKGILQNLKIVDELVKIMG-HQPENIVVEMARENQ FTNQGRRNS
777


WP_024783594
704
SFKEEIAKAQVIG-ETDN-LNQVVSDIAGSPAIKKGILQSLKIVDELVKIMG-HQPENIVVEMARENQ FTNQGRRNS
777


WP_024784288
705
TFKDDIVKAQYVD-NSDD-LHQVVQSLAGSPAIKKGILQSLKIVDELVKVMG-KEPEQIVVEMARENQ TTAKGRRNS
778


WP_024784666
704
SFKEEIAKAQVIG-ETDN-LNQVVSDIAGSPAIKKGILQSLKIVDELVKIMG-HQPENIVVEMARENQ FTNQGRRNS
777


WP_024784894
704
SFKEEIAKAQVIG-ETDN-LNQVVSDIAGSPAIKKGILQSLKIVDELVKIMG-HQPENIVVEMARENQ FTNQGRRNS
777


WP_024786433
705
TFKDDIVKAQYVD-NSDD-LHQVVQSLAGSPAIKKGILQSLKIVDELVKVMG-KEPEQIVVEMARENQ TTAKGRRNS
778


WP_049473442
704
SFKEEIAKAQVIG-EIDN-LNQVVSDIAGSPAIKKGILQSLKIVDELVKIMG-HQPENIVVEMARENQ FTNQGRRNS
777


WP_049474547
704
SFKEEIAKAQVIG-EIDN-LNQVVSDIAGSPAIKKGILQSLKIVDELVKIMG-HQPENIVVEMARENQ FTNQGRRNS
777


EMC03581
697
SFKEEIAKAQVIG-EIDN-LNQVVSDIAGSPAIKKGILQSLKIVDELVKIMG-HQPENIVVEMARENQ FTNQGRRNS
770


WP_000428612
705
SFKEIIKKAQVVG-KTDD-VKQVVQELPGSPAIKKGILQSIKLVDELVKVMG-HEPESIVIEMARENQ TTARGKKNS
778


WP_000428613
703
SFKEITQKAQVVG-KTDD-VKQVVQELPGSPAIKKGILQSIKIVDELVKVMG-HIPESIVIEMARENQ TTARGKKNS
776


WP_049523028
702
SFKETIQKAQVVG-EIND-VKQVVQELPGSPAIKKGILQSIKIVDELVKVMG-HAPESVVIEMARENQ TTNKGKSKS
775


WP_003107102
672
DFASIIKEAQEKTiKSEK-LEETIANLAGSPAIKKGILQSVKIVDEVVKVMG-YEPSNIVIEMARENQ STQRGINNS
746


WP_054279288
705
SFKEEIKKAQEGG-LKDS-INDQIRDLAGSPAIKKGILQIINIVDEIVKIMG-KAPQHIVVEMARDVQ KTDIGVKQS
778


WP_049531101
703
SFKEIIQESQVVG-KPDD-VKQIVQELPGSSAIKKGILQSIKLVDELVKVMG-HDPESIVIEMARENQ TTARGKKNS
776


WP_049538452
703
SFKEIIQKAQVFG-KIND-VKQVVQELPGSPAIKKGILQSIKIVEELVKVMG-HEPESIVIEMARENQ TTTRGKKNS
776


WP_049549711
703
SFKKIIQKSQVVG-ETDD-VKQVVRELPGSPAIKKGILQSIKIVDELVKVMD-HAPESIVIEMARENQ TTARGKKNS
776


WP_007896501
706
DFEKLIDDAQKKAiKRES-LTEAVANLAGSPAIKKGILQSLKVVDEIVKVMG-HNPDNIVIEMSRENQ TTAQGLKNA
780


EFR44625
658
DFEKLIDDAQKKAiKRES-LTEAVANLAGSPAIKKGILQSLKVVDEIVKVMG-HNPDNIVIEMSRENQ TTAQGLKNA
732


WP_002897477
702
SFKEIIQKAQVVG-KTDD-VKQVVQELPGSPAIKKGILQSIKIVDELVKVMG-YALESIVIEMARENQ TTARGKKNS
775


WP_002906454
702
SFKEIIQKAQVVG-KTDD-VKQVVQEIPGSPAIKKGILQSIKIVDELVKVMG-HNPESIVIEMARENQ TTAKGKKNS
775


WP_009729476
703
SFKEIIQKAQVVG-KIND-VKQVVQELPGSPAIKKGILQSIKIVDELVKVMG-HAPESIVIEMARENQ TTARGKKNS
776


CQR24647
706
SFKDEIANSQVIG-DGDD-LHQVVQELAGSPAIKKGILQSLKIVDELVKVMG-YNPEQIVVEMARENQ TTARGRNNS
779


WP_000066813
705
SFKEIIQKAQVFG-KIND-VKQVVQELPGSPAIKKGILQSIKIVDELVKVMG-HAPESIVIEMARENQ TTARGKKNS
778


WP_009754323
703
SFKEIIQKAQVVG-KTDD-LIQVVRELSGSPAIKKGILQSIKIVDELVKIMG-YAPESIVIEMARENQ TTAKGKKNS
776


WP_044674937
702
SFVDEIRLAQGSG-EAED-YRAEVQNLAGSPAIKKGILQSLKIVDELIEVMG-YDPEHIVVEMARENQ FTNQGRRNS
775


WP_044676715
704
SFVDEIRLAQGSG-EAED-YRAEVQNLAGSPAIKKGILQSLKIVDELIEVMG-YDPEHIVVEMARENQ FTNQGRRNS
777


WP_044680361
704
SFVDEIRLAQGSG-EAED-YRAEVQNLAGSPAIKKGILQSLKIVDELIEVMG-YDPEHIVVEMARENQ FTNQGRRNS
777


WP_044681799
702
SFVDEIRLAQGSG-EAED-YRAEVQNLAGSPAIKKGILQSLKIVDELIEVMG-YDPEHIVVEMARENQ FTNQGRRNS
775


WP_049533112
704
SFKEEIAKAQVIG-ETDD-LNQVVSDIAGSPAIKKGILQSLKIVDELVKVMG-YNPANIVIEMARENQ TTDKGRRNS
777


WP_029090905
683
LFKKIIEEQFENEtALLN--KQRIDELAASPANKKGIWQAIKIVKELEKVLQ-QPAENIFIEFARSDE ES----KRS
752


WP_006506696
706
GYAQMIEEATSCPeDGKF-TYEEVERLAGSPALKRGIWQSLQIVEEITKVMK-CRPKYIYIEFERSEE -----KERT
776


AIT42264
703
TFKEDIQKAQVSG-QGDS-LHEHIANLAGSPAIKKGILQTVKVVDELVKVMGrHKPENIVIEMARENQ TTQKGQKNS
777


WP_034440723
711
SFKEKIRKAQDIN-QVND-IKEIVKDLPGSPAIKKGIYQSIRIVDEIIRKMK-DRPKNIVIEMARENQ TTQEGKNKS
784


AKQ21048
703
TFKEDIQKAQVSG-QGDS-LHEHIANLAGSPAIKKGILQTVKVVDELVKVMGrHKPENIVIEMARENQ TTQKGQKNS
777


WP_004636532
707
SFKKKIEDAQTIE-DITH-IYDTVAELPGSPAIKKGIRQALKIVEEIIDIIG-YEPENIVVEMARESQ TTKKGKDLS
780


WP_002364836
715
SFKNAIQKAQSSE-HEET-LSETVNELAGSPAIKKGIYQSLKIVDELVAIMG-YAPKRIVVEMARENQ TTSTGKRRS
788


WP_016631044
666
SFKNAIQKAQSSE-HEET-LSETVNELAGSPAIKKGIYQSLKIVDELVAIMG-YAPKRIVVEMARENQ TTSTGKRRS
739


EMS75795
455
SFKEELANELALA-GNQS-LLEVVEALLGSPAIKKGIWQTLKIVEELIEIIG-YNPKNIVVEMARENQ RT----NRS
524


WP_002373311
715
SFKNAIQKAQSSE-HEET-LSETVNELAGSPAIKKGIYQSLKIVDELVAIMG-YAPKRIVVEMARENQ TTSTGKRRS
788


WP_002378009
715
SFKNAIQKAQSSE-HEET-LSETVNELAGSPAIKKGIYQSLKIVDELVAIMG-YAPKRIVVEMARENQ TTSTGKRRS
788


WP_002407324
715
SFKNAIQKAQSSE-HEET-LSETVNELAGSPAIKKGIYQSLKIVDELVAIMG-YAPKRIVVEMARENQ TTSTGKRRS
788


WP_002413717
715
SFKNAIQKAQSSE-HEET-LSETVNELAGSPAIKKGIYQSLKIVDELVAIMG-YAPKRIVVEMARENQ TTSTGKRRS
788


WP_010775580
717
SFKNAIQKAQSSE-HEET-LSETVNELAGSPAIKKGIYQSLKIVDELVAIMG-YAPKRIVVEMARENQ TTSTGKRRS
790


WP_010818269
715
SFKNAIQKAQSSE-HEET-LSETVNELAGSPAIKKGIYQSLKIVDELVAIMG-YAPKRIVVEMARENQ TTSTGKRRS
788


WP_010824395
715
SEKNAIQKAQSSE-HEET-LSETVNELAGSPAIKKGIYQSLKIVDELVAIMG-YAPKRIVVEMARENQ TTSTGKRRS
788


WP_016622645
715
SEKNAIQKAQSSE-HEET-LSETVNELAGSPAIKKGIYQSLKIVDELVAIMG-YAPKRIVVEMARENQ TTSTGKRRS
788


WP_033624816
715
SEKNAIQKAQSSE-HEET-LSETVNELAGSPAIKKGIYQSLKIVDELVAIMG-YAPKRIVVEMARENQ TTSTGKRRS
788


WP_033625576
715
SEKNAIQKAQSSE-HEET-LSETVNELAGSPAIKKGIYQSLKIVDELVAIMG-YAPKRIVVEMARENQ TTSTGKRRS
788


WP_033789179
715
SEKNAIQKAQSSE-HEET-LSETVNELAGSPAIKKGIYQSLKIVDELVAIMG-YAPKRIVVEMARENQ TTSTGKRRS
788


WP_002310644
715
SFKKEIKKAQMIT-DTEN-LEEIVKELIGSPAIKKGILQSLKIVDEIVGIMG-YEPANIVVEMARENQ TTGRGLKSS
788


WP_002312694
716
SFKKEIKKAQMIT-DTEN-LEEIVKELIGSPAIKKGILQSLKIVDEIVGIMG-YEPANIVVEMARENQ TTGRGLKSS
789


WP_002314015
716
SFKKEIKKAQMIT-DTEN-LEEIVKELIGSPAIKKGILQSLKIVDEIVGIMG-YEPANIVVEMARENQ TTGRGLKSS
789


WP_002320716
716
SFKKEIKKAQMIT-DTEN-LEEIVKELIGSPAIKKGILQSLKIVDEIVGIMG-YEPANIVVEMARENQ TTGRGLKSS
789


WP_002330729
715
SFKKEIKKAQMIT-DTEN-LEEIVKELIGSPAIKKGILQSLKIVDEIVGIMG-YEPANIVVEMARENQ TTGRGLKSS
788


WP_002335161
716
SFKKEIKKAQMIT-DTEN-LEEIVKELIGSPAIKKGILQSLKIVDEIVGIMG-YEPANIVVEMARENQ TTGRGLKSS
789


WP_002345439
716
SFKKEIKKAQMIT-DTEN-LEEIVKELIGSPAIKKGILQSLKIVDEIVGIMG-YEPANIVVEMARENQ TTGRGLKSS
789


WP_034867970
711
SEKEEIAKATVES-KHKS-LVDVIQDLPGSPAIKKGIWQSLKIVEELIAIIG-YKPKNIVIEMARENQ KT----HRT
780


WP_047937432
716
SFKKEIKKAQMIT-DTEN-LEEIVKELIGSPAIKKGILQSLKIVDEIVGIMG-YEPANIVVEMARENQ TTGRGLKSS
789


WP_010720994
711
SEKEEIAKATVES-KHKS-LVDVIQDLPGSPAIKKGIWQSLKIVEELIAIIG-YKPKNIVIEMARENQ KT----HRT
780


WP_010737004
711
SEKEEIAKATVES-KHKS-LVDVIQDLPGSPAIKKGIWQSLKIVEELIAIIG-YKPKNIVIEMARENQ KT----HRT
780


WP_034700478
711
SEKEEIAKATVES-KHKS-LVDVIQDLPGSPAIKKGIWQSLKIVEELIAIIG-YKPKNIVIEMARENQ KT----HRT
780


WP_007209003
708
SFKKIIEDSQPYK-EQQS-AEEIVSELSGSPAIKKGILQSLKIVDELVAIMG-YKPKNIVVEMARENQ TTGRGKQNS
781


WP_023519017
705
SEKETIANELIMS-DSNV-LLDQVKAIPGSPAVKKGIWQSIKIVEEIIGIIG-KAPKNIVIEMARENQ RTSR----S
774


WP_010770040
708
SFKSEIAEAQSDM-NTED-LHEVVQNLAGSPAIKKGILQSLKIVDELVDIMG-SLPKNIVVEMARENQ TTSRGRTNS
781


WP_048604708
704
TEKEEIEKEQLKA-NSEEsLIEIVQNLAGSPAIKKGIFQSLKIVDELVEIMG-YAPTNIVVEMARENQ TTANGRRNS
778


WP_010750235
710
SFKEEIAKELTLS-DKQS-LLEVVEAIPGSPAIKKGIWQTLKIVEELIAIIG-YKPKNIVIEMARENQ TTTGGKNRS
783


AII16583
742
TEKEDIQKAQVSG-QGDS-LHEHIANLAGSPAIKKGILQTVKVVDELVKVMGrHKPENIVIEMARENQ TTQKGQKNS
816


WP_029073316
718
GFKKTIDDANSTSvSGKF-SYAEVQELAGSPAIKRGIWQALLIVDEIKKIMK-HEPAHVYIEFARNED -----KERK
788


WP_031589969
718
GFKKTIDDANSTSvSGKF-SYAEVQELAGSPAIKRGIWQALLIVDEIKKIMK-HEPAHVYIEFARNED -----KERK
788


KDA45870
699
SFKETIKNAQVIE-KEET-LAKTVQELPGSPAIKKGILQSLEIVDEIIKVMG-YKPKSIVVEMARETQ --THGTRKR
771


WP_039099354
713
DFDKLITEANQMM-LAENdVQDVINDLYTSPQNKKALRQILLVVNDIQKAMKgQAPERILIEFAREDE VNPRLSVQR
788


AKP02966
707
DFKNYIENHNLNKnEDQN-ISNLVNDIHVSPALKRGITQSIKIVQEIVKFMG-HAPKYIFIEVIRETK TTSRGKRIQ
785


WP_010991369
707
SFKSIIEKEQVIT-ADKD-IQSIVADLAGSPAIKKGILQSLKIVDELVSVMG-YPPQTIVVEMARENQ TTGKGKNNS
780


WP_033838504
707
SFKSIIEKEQVIT-ADKD-IQSIVADLAGSPAIKKGILQSLKIVDELVSVMG-YPPQTIVVEMARENQ TTGKGKNNS
780


EHN60060
710
SFKSIIEKEQVIT-ADKD-IQSIVADLAGSPAIKKGILQSLKIVDELVSVMG-YPPQTIVVEMARENQ TTGKGKNNS
783


EFR89594
476
SFKSIIEKEQVIT-ADKD-IQSIVADLAGSPAIKKGILQSLKIVDELVSVMG-YPPQTIVVEMARENQ TTGKGKNNS
549


WP_038409211
707
SFKSIIEKEQVST-ADKG-IQSIVAELAGSPAIKKGILQSLKIVDELVGIMG-YPPQTIVVEMARENQ TTGKGKNNS
780


EFR95520
326
SFKSIIEKEQVST-ADKG-IQSIVAELAGSPAIKKGILQSLKIVDELVGIMG-YPPQTIVVEMARENQ TTGKGKNNS
399


WP_003723650
707
SFKSIIEKEQVST-TDKD-LQSIVAELAGSPAIKKGILQSLKIVDELVSIMG-YPPQTIVVEMARENQ TTGKGKNNS
780


WP_003727705
707
SFKSIIEKEQVST-TDKD-LQSIVADLAGSPAIKKGILQSLKIVDELVSIMG-YPPQTIVVEMARENQ TTGKGKNNS
780


WP_003730785
707
SFKSIIEKEQVST-TDKD-LQSIVADLAGSPAIKKGILQSLKIVDELVSIMG-YPPQTIVVEMARENQ TTGKGKNNS
780


WP_003733029
707
SFKSIIEKEQVST-TDKD-LQSIVAELAGSPAIKKGILQSLKIVDELVSVMG-YPPQTIVVEMARENQ TTNKGKNNS
780


WP_003739838
707
SFKSIIEKEQVST-TDKD-LQSIVADLAGSPAIKKGILQSLKIVDELVSIMG-YPPQTIVVEMARENQ TTVKGKNNS
780


WP_014601172
707
SFKSIIEKEQVST-TDKD-LQSIVADLAGSPAIKKGILQSLKIVDELVSIMG-YPPQTIVVEMARENQ TTGKGKNNS
780


WP_023548323
707
SFKSIIEKEQVST-ADKD-LQSIVADLAGSPAIKKGILQSLKVVEELVSVMG-YPPQTIVVEMARENQ TTNKGKNNS
780


WP_031665337
707
SFKSIIEKEQVST-TDKD-LQSIVAELAGSPAIKKGILQSLKIVDELVSIMG-YPPQTIVVEMARENQ TTGKGKNNS
780


WP_031669209
707
SFKSIIEKEQVST-ADKD-LQSIVADLAGSPAIKKGILQSLKIVDELVSVMG-YPPQTIVVEMARENQ TTNKGKNNS
780


WP_033920898
707
SFKSIIEKEQVST-ADKD-LQSIVADLAGSPAIKKGILQSLKVVEELVSVMG-YPPQTIVVEMARENQ TTNKGKNNS
780


AKI42028
710
SFKSIIEKEQVST-TDKD-LQSIVADLAGSPAIKKGILQSLKIVDELVSIMG-YPPQTIVVEMARENQ TTGKGKNNS
783


AKI50529
710
SFKSIIEKEQVST-ADKD-LQSIVADLAGSPAIKKGILQSLKVVEELVSVMG-YPPQTIVVEMARENQ TTNKGKNNS
783


EFR83390
155
SFKSIIEKEQVST-TDKD-LQSIVADLAGSPAIKKGILQSLKIVDELVSIMG-YPPQTIVVEMARENQ TTVKGKNNS
228


WP_046323366
707
SFKSIIEKEQVST-ADKD-IQSIVADLAGSPAIKKGILQSLKIVDELVGIMG-YPPQTIVVEMARENQ TTGKGKNNS
780


AKE81011
719
TEKEDIQKAQVSG-QGDS-LHEHIANLAGSPAIKKGILQTVKVVDELVKVMGrHKPENIVIEMARENQ TTQKGQKNS
793


CUO82355
710
GYAQMIEEASSCPkDGKF-TYEEVAKLAGSPALKRGIWQSLQIVEEITKVMK-CRPKYIYIEFERSEE -----KERT
780


WP_033162887
713
GYKQIIEESNMQDiEGPF-KYDEVKKLAGSPAIKRGIWQALLVVREITKFMK-HEPSHIYIEFAREEQ -----KVRK
783


AGZ01981
736
TEKEDIQKAQVSG-QGDS-LHEHIANLAGSPAIKKGILQTVKVVDELVKVMGrHKPENIVIEMARENQ TTQKGQKNS
810


AKA60242
703
TEKEDIQKAQVSG-QGDS-LHEHIANLAGSPAIKKGILQTVKVVDELVKVMGrHKPENIVIEMARENQ TTQKGQKNS
777


AKS40380
703
TEKEDIQKAQVSG-QGDS-LHEHIANLAGSPAIKKGILQTVKVVDELVKVMGrHKPENIVIEMARENQ TTQKGQKNS
777


4UN5_B
707
TEKEDIQKAQVSG-QGDS-LHEHIANLAGSPAIKKGILQTVKVVDELVKVMGrHKPENIVIEMARENQ TTQKGQKNS
781


WP_010922251
778


embedded image


841


WP_039695303
781
QQRLKKLQNSLK PSYI E----DK--VE---NSHLQNDQLFLYYIQNGKDMYTGDEL--D--IDHLSDYDIDHI
851


WP_045635197
776
QQRYKRIEDSLK ILAS NILKENP--TD---NNQLQNDRLFLYYLQNGKDMYTGEAL--D--INQLSSYDIDHI
843


5AXW_A
488
KDAQKMINEMQK QTNE EIIRTIGk--E---NAKYLIEKIKLHDMQEGKCLYSLEAIplEdlLNNPFNYEVDHI
561


WP_009880683
462
RERMKRIEEGIK ELGS DILKEYP--VE---NTQLQNEKLYLYYLQNGRDMYVDQEL--D--INRLSDYDVDHI
525


WP_010922251
778
RERMKRIEEGIK ELGS QILKEHP--VE---NTQLQNEKLYLYYLQNGRDMYVDQEL--D--INRLSDYDVDHI
841


WP_011054416
778
RERMKRIEEGIK ELGS DILKEYP--VE---NTQLQNEKLYLYYLQNGRDMYVDQEL--D--INRLSDYDVDHI
841


WP_011284745
778
RERMKRIEEGIK ELGS QILKEHP--VE---NTQLQNEKLYLYYLQNGRDMYVDQEL--D--INRLSDYDVDHI
841


WP_011285506
778
RERMKRIEEGIK ELGS QILKEHP--VE---NTQLQNEKLYLYYLQNGRDMYVDQEL--D--INRLSDYDVDHI
841


WP_011527619
778
RERMKRIEEGIK ELGS QILKEHP--VE---NTQLQNEKLYLYYLQNGRDMYVDQEL--D--INRLSDYDVDHI
841


WP_012560673
778
RERMKRIEEGIK ELGS DILKEYP--VE---TTQLQNEKLYLYYLQNGRDMYVDQEL--D--INRLSDYDVDHI
841


WP_014407541
777
RERMKRIEEGIK ELGS QILKEHP--VE---NTQLQNEKLYLYYLQNGRDMYVDQEL--D--INRLSDYDVDHI
840


WP_020905136
778
RERMKRIEEGIK ELGS QILKEHP--VE---NTQLQNEKLYLYYLQNGRDMYVDQEL--D--INRLSDYDVDHI
841


WP_023080005
777
RERMKRIEEGIK ELGS QILKEHP--VE---NTQLQNEKLYLYYLQNGRDMYVDQEL--D--INRLSDYDVDHI
840


WP_023610282
777
RERMKRIEEGIK ELGS QILKEHP--VE---NTQLQNEKLYLYYLQNGRDMYVDQEL--D--INRLSDYDVDHI
840


WP_030125963
778
RERMKRIEEGIK ELGS DILKEYP--VE---NTQLQNEKLYLYYLQNGRDMYVDQEL--D--INRLSDYDVDHI
841


WP_030126706
778
RERMKRIEEGIK ELGS DILKEYP--VE---NTQLQNEKLYLYYLQNGRDMYVDQEL--D--INRLSDYDVDHI
841


WP_031488318
778
RERMKRIEEGIK ELGS DILKEYP--VE---NTQLQNEKLYLYYLQNGRDMYVDQEL--D--INRLSDYDVDHI
841


WP_032460140
778
RERMKRIEEGIK ELGS DILKEYP--VE---NTQLQNEKLYLYYLQNGRDMYVDQEL--D--INRLSDYDVDHI
841


WP_032461047
778
RERMKRIEEGIK ELGS DILKEYP--VE---NTQLQNEKLYLYYLQNGRDMYVDQEL--D--INRLSDYDVDHI
841


WP_032462016
778
RERMKRIEEGIK ELGS QILKEHP--VE---NTQLQNEKLYLYYLQNGRDMYVDQEL--D--INRLSDYDVDHI
841


WP_032462936
778
RERMKRIEEGIK ELGS DILKEYP--VE---NTQLQNEKLYLYYLQNGRDMYVDQEL--D--INRLSDYDVDHI
841


WP_032464890
778
RERMKRIEEGIK ELGS QILKEHP--VE---NTQLQNEKLYLYYLQNGRDMYVDQEL--D--INRLSDYDVDHI
841


WP_033888930
603
RERMKRIEEGIK ELGS QILKEHP--VE---NTQLQNEKLYLYYLQNGRDMYVDQEL--D--INRLSDYDVDHI
666


WP_038431314
778
RERMKRIEEGIK ELGS DILKEYP--VE---NTQLQNEKLYLYYLQNGRDMYVDQEL--D--INRLSDYDVDHI
841


WP_038432938
777
RERMKRIEEGIK ELGS QILKEHP--VE---NTQLQNEKLYLYYLQNGRDMYVDQEL--D--INRLSDYDVDHI
840


WP_038434062
778
RERMKRIEEGIK ELGS DILKEYP--VE---NTQLQNEKLYLYYLQNGRDMYVDQEL--D--INRLSDYDVDHI
841


BAQ51233
689
RERMKRIEEGIK ELGS QILKEHP--VE---NTQLQNEKLYLYYLQNGRDMYVDQEL--D--INRLSDYDVDHI
752


KGE60162
1
------------ ---- -------------------------------------QEL--D--INRLSGYDVDHI
16


KGE60856

------------ ---- ---------------------------------------------------------



WP_002989955
778
RERMKRIEEGIK ELGS QILKEHP--VE---NTQLQNEKLYLYYLQNGRDMYVDQEL--D--INRLSDYDVDHI
841


WP_003030002
778
QQRLKLLQDSLK PVNI K-----N--VE---NQQLQNDRLFLYYIQNGKDMYTGETL--D--INNLSQYDIDHI
840


WP_003065552
781
QQRLKKLQNSLK PSYI E----DK--VE---NSHLQNDQLFLYYIQNGKDMYTGDEL--D--IDHLSDYDIDHI
851


WP_001040076
776
RQRLTTLRESLA NLKS EKKPKYV--KDqveNHHLSDDRLFLYYLQNGKDMYTDDEL--D--IDNLSQYDIDHI
846


WP_001040078
779
RQRYKLLDDGVK NLAS NILKEYP--TD---NQALQNERLFLYYLQNGRDMYTGEAL--D--IDNLSQYDIDHI
846


WP_001040080
779
RQRYKLLDDGVK NLAS NILKEYP--TD---NQALQNERLFLYYLQNGRDMYTGEAL--D--IDNLSQYDIDHI
846


WP_001040081
779
RQRYKLLDDGVK NLAS NILKEYP--TD---NQALQNERLFLYYLQNGRDMYTGEAL--D--IDNLSQYDIDHI
846


WP_001040083
779
RQRYKLLDDGVK NLAS NILKEYP--TD---NQALQNERLFLYYLQNGRDMYTGEAL--D--IDNLSQYDIDHI
846


WP_001040085
779
RQRYKLLDDGVK NLAS NILKEYP--TD---NQALQNERLFLYYLQNGRDMYTGEAL--D--IDDLSQYDIDHI
846


WP_001040087
779
RQRYKLLDDGVK NLAS NILKEYP--TD---NQALQNERLFLYYLQNGRDMYTGEAL--D--IDNLSQYDIDHI
846


WP_001040088
779
RQRYKLLDDGVK NLAS NILKEYP--TD---NQALQNERLFLYYLQNGRDMYTGEAL--D--IDNLSQYDIDHI
846


WP_001040089
779
RQRYKLLDDGVK NLAS NILKEYP--TD---NQALQNERLFLYYLQNGRDMYTGEAL--D--IDNLSQYDIDHI
846


WP_001040090
779
RQRYKLLDDGVK NLAS NILKEYP--TD---NQALQNERLFLYYLQNGRDMYTGEAL--D--IDNLSQYDIDHI
846


WP_001040091
779
RQRYKLLDDGVK NLAS NILKEYP--TD---NQALQNERLFLYYLQNGRDMYTGEAL--D--IDNLSQYDIDHI
846


WP_001040092
779
RQRYKLLEDGVK NLAS DILKEYP--TD---NQALQNERLFLYYLQNGRDMYTGEAL--D--IDNLSQYDIDHI
846


WP_001040094
776
RQRLTTLRESLA NLKS EKKPKYV--KDqveNHHLSDDRLFLYYLQNGKDMYTDDEL--D--IDNLSQYDIDHI
846


WP_001040095
776
RQRLTTLRESLA NLKS EKKPKYV--KDqveNHHLSDDRLFLYYLQNGKDMYTDDEL--D--IDNLSQYDIDHI
846


WP_001040096
776
RQRLTTLRESLA NLKS EKKPKYV--KDqveNHHLSDDRLFLYYLQNGKDMYTDDEL--D--IDNLSQYDIDHI
846


WP_001040097
776
RQRLTTLRESLA NLKS EKKPKYV--KDqveNHHLSDDRLFLYYLQNGKDMYTDDEL--D--IDNLSQYDIDHI
846


WP_001040098
776
RQRLTTLRESLA NLKS EKKPKYV--KDqveNHHLSDDRLFLYYLQNGKDMYTDDEL--D--IDNLSQYDIDHI
846


WP_001040099
776
RQRLTTLRESLA NLKS EKKPKYV--KDqveNHHLSDDRLFLYYLQNGKDMYTDDEL--D--IDNLSQYDIDHI
846


WP_001040100
776
RQRLTTLRESLA NLKS EKKPKYV--KDqveNHHLSDDRLFLYYLQNGKDMYTDDEL--D--IDNLSQYDIDHI
846


WP_001040104
779
RQRYKLLDDGVK NLAS NILKEYP--TD---NQALQNERLFLYYLQNGRDMYTGEAL--D--IDNLSQYDIDHI
846


WP_001040105
779
RQRYKLLDDGVK NLAS NILKEYP--TD---NQALQNERLFLYYLQNGRDMYTGEAL--D--IDNLSQYDIDHI
846


WP_001040106
779
RQRYKLLEEGVK NLAS NILKEYP--TD---NQALQNERLFLYYLQNGRDMYTGEAL--D--IDNLSQYDIDHI
846


WP_001040107
779
RQRYKLLEEGVK NLAS NILKEYP--TD---NQALQNERLFLYYLQNGRDMYTGEAL--D--IDNLSQYDIDHI
846


WP_001040108
779
RQRYKLLEEGVK NLAS NILKEYP--TD---NQALQNERLFLYYLQNGRDMYTGETL--D--IDNLSQYDIDHI
846


WP_001040109
779
RQRYKLLEEGVK NLAS NILKEYP--TD---NQALQNERLFLYYLQNGRDMYTGEAL--D--IDNLSQYDIDHI
846


WP_001040110
779
RQRYKLLEEGVK NLAS NILKEYP--TD---NQALQNERLFLYYLQNGRDMYTGEAL--D--IDNLSQYDIDHI
846


WP_015058523
779
RQRYKLLEDGVK NLAS DILKEYP--TD---NQALQNERLFLYYLQNGRDMYTGEAL--D--IDNLSQYDIDHI
846


WP_017643650
776
RQRLTTLRESLA NLKS EKKPKYV--KDqveNHHLSDDRLFLYYLQNGKDMYTDDEL--D--IDNLSQYDIDLI
846


WP_017647151
779
RQRYKLLDDGVK NLAS NILKEYP--TD---NQALQNERLFLYYLQNGRDMYTGKAL--D--IDNLSQYDIDHI
846


WP_017648376
779
RQRYKLLDDGVK NLAS NILKEYP--TD---NQALQNERLFLYYLQNGRDMYTGKAL--D--IDNLSQYDIDHI
846


WP_017649527
779
RQRYKLLDDGVK NLAS NILKEYP--TD---NQALQNERLFLYYLQNGRDMYTGEAL--D--IDNLSQYDIDHI
846


WP_017771611
779
RQRYKLLEEGVK NLAS NILKEYP--TD---NQALQNERLFLYYLQNGRDMYTGEAL--D--IDNLSQYDIDHI
846


WP_017771984
779
RQRYKLLDDGVK NLAS NILKEYP--TD---NQALQNERLFLYYLQNGRDMYTGEAL--D--IDNLSQYDIDHI
846


CFQ25032
779
RQRYKLLDDGVK NLAS NILKEYP--TD---NQALQNERLFLYYLQNGRDMYTGEAL--D--IDNLSQYDIDHI
846


CFV16040
779
RQRYKLLDDGVK NLAS NILKEYP--TD---NQALQNERLFLYYLQNGRDMYTGEAL--D--IDNLSQYDIDHI
846


KLJ37842
779
RQRYKLLDDGVK NLAS NILKEYP--TD---NQALQNERLFLYYLQNGRDMYTGEAL--D--IDNLSQYDIDHI
846


KLJ72361
779
RQRYKLLDDGVK NLAS NILKEYP--TD---NQALQNERLFLYYLQNGRDMYTGEAL--D--IDNLSQYDIDHI
846


KLL20707
793
RQRYKLLDDGVK NLAS NILKEYP--TD---NQALQNERLFLYYLQNGRDMYTGEAL--D--IDNLSQYDIDHI
860


KLL42645
779
RQRYKLLEEGVK NLAS NILKEYP--TD---NQALQNERLFLYYLQNGRDMYTGEAL--D--IDNLSQYDIDHI
846


WP_047207273
779
RQRYKLLDDGVK NLAS NILKEYP--TD---NQALQNERLFLYYLQNGRDMYTGEAL--D--IDNLSQYDIDHI
846


WP_047209694
776
RQRLTTLRESLA NLKS EKKPKYV--KDqveNHHLSDDRLFLYYLQNGKDMYTDDEL--D--IDNLSQYDIDHI
846


WP_050198062
779
RQRYKLLDDGVK NLAS NILKEYP--TD---NQALQNERLFLYYLQNGRDMYTGEAL--D--IDNLSQYDIDHI
846


WP_050201642
779
RQRYKLLDDGVK NLAS NILKEYP--TD---NQALQNERLFLYYLQNGRDMYTGEAL--D--IDNLSQYDIDHI
846


WP_050204027
779
RQRYKLLEEGVK NLAS NILKEYP--TD---NQALQNERLFLYYLQNGRDMYTGEAL--D--IDNLSQYDIDHI
846


WP_050881965
779
RQRYKLLDDGVK NLAS NILKEYP--TD---NQALQNERLFLYYLQNGRDMYTGEAL--D--IDNLSQYDIDHI
846


WP_050886065
779
RQRYKLLDDGVK NLAS NILKEYP--TD---NQALQNERLFLYYLQNGRDMYTGEAL--D--IDNLSQYDIDHI
846


AHN30376
779
RQRYKLLEDGVK NLAS DILKEYP--TD---NQALQNERLFLYYLQNGRDMYTGEAL--D--IDSLSQYDIDHI
846


EAO78426
779
RQRYKLLDDGVK NLAS NILKEYP--TD---NQALQNERLFLYYLQNGRDMYTGEAL--D--IDNLSQYDIDHI
846


CCW42055
779
RQRYKLLDDGVR NLAS NILKEYP--TD---NQALQNERLFLYYLQNGRDMYTEKAL--D--IDNLSQYDIDHI
846


WP_003041502
778
QQRLKLLQDSLK PVNI K-----N--VE---NQQLQNDRLFLYYIQNGKDMYTGETL--D--INNLSQYDIDHI
840


WP_037593752
779
QQRLKLLQDSLK PVNI K-----N--VE---NQQLQNDRLFLYYIQNGKDMYTGETL--D--INNLSQYDIDHI
841


WP_049516684
779
QQRLKLLQDSLK PVNI K-----N--VE---NQQLQNDRLFLYYIQNGKDMYTGETL--D--INNLSQYDIDHI
841


GAD46167
778
QQRLKLLQDSLK PVNI K-----N--VE---NQQLQNDRLFLYYIQNGKDMYTGETL--D--INNLSQYDIDHI
840


WP_018363470
779
QQRLKKLQNSLK PSYI E----DK--VE---NSHLQNDQLFLYYIQNGKDMYTGDEL--D--IDHLSDYDIDHI
849


WP_003043819
787
RERKKRIEEGIK ELES QILKENP--VE---NTQLQNEKLYLYYLQNGRDMYVDQEL--D--INRLSDYDVDHI
850


WP_006269658
778
QQRLKLLQDSLK PVNI K-----N--VE---NQQLQNDRLFLYYIQNGKDMYTGETL--D--INNLSQYDIDHI
840


WP_048800889
778
QQRLKLLQDSLT PVSI K-----N--VE---NQQLQNDRLFLYYIQNGKDMYTGEEL--D--IHHLSDYDIDHI
840


WP_012767106
777
RERMKRIEEGIK ELGS QILKEHP--VE---NTQLQNEKLYLYYLQNGRDMYVDQEL--D--INRLSDYDVDHI
840


WP_014612333
777
RERMKRIEEGIK ELGS QILKEHP--VE---NTQLQNEKLYLYYLQNGRDMYVDQEL--D--INRLSDYDVDHI
840


WP_015017095
777
RERMKRIEEGIK ELGS QILKEHP--VE---NTQLQNEKLYLYYLQNGRDMYVDQEL--D--INRLSDYDVDHI
840


WP_015057649
777
RERMKRIEEGIK ELGS QILKEHP--VE---NTQLQNEKLYLYYLQNGRDMYVDQEL--D--INRLSDYDVDHI
840


WP_048327215
777
RERMKRIEEGIK ELGS QILKEHP--VE---NTQLQNEKLYLYYLQNGRDMYVDQEL--D--INRLSDYDVDHI
840


WP_049519324
777
RERMKRIEEGIK ELGS QILKEHP--VE---NTQLQNEKLYLYYLQNGRDMYVDQEL--D--INRLSDYDVDHI
840


WP_012515931
777
RQRMRKLEETAK KLGS NILKEHP--VD---NSQLQNDKRYLYYLQNGKDMYTGDDL--D--IDYLSSYDIDHI
840


WP_021320964
777
RQRMRKLEETAK KLGS NILKEHP--VD---NSQLQNDKRYLYYLQNGKDMYTGDDL--D--IDYLSSYDIDHI
840


WP_037581760
777
RQRMRKLEETAK KLGS NILKEHP--VD---NSQLQNDKRYLYYLQNGKDMYTGDDL--D--IDYLSSYDIDHI
840


WP_004232481
778
NQRLKRLQDSLK PSYV D----SK--VE---NSHLQNDRLFLYYIQNGKDMYTGEEL--D--IDHLSDYDIDHI
848


WP_009854540
779
QQRLKKLQSSLK PSYI E----DK--VE---NSHLQNDQLFLYYIQNGKDMYTGDEL--D--IDHLSDYDIDHI
849


WP_012962174
779
QQRLKKLQDSLK PSYI E----GK--VE---NNHLQDDRLFLYYIQNGKDMYTGDEL--D--IDHLSDYDIDHI
849


WP_039695303
781
QQRLKKLQNSLK PSYI E----DK--VE---NSHLQNDQLFLYYIQNGKDMYTGDEL--D--IDHLSDYDIDHI
851


WP_014334983
778
NQRLKRLQDSLK PSYV D----SK--VE---NSHLQNDRLFLYYIQNGKDMYTGEEL--D--IDRLSDYDIDHI
848


WP_003099269
778
RQRLRKLEEVHK NTGS KILKEYN--VS---NTQLQSDRLYLYLLQDGKDMYTGKEL--D--YDNLSQYDIDHI
841


AHY15608
778
RQRLRKLEEVHK NTGS KILKEYN--VS---NTQLQSDRLYLYLLQDGKDMYTGKEL--D--YDNLSQYDIDHI
841


AHY17476
778
RQRLRKLEEVHK NTGS KILKEYN--VS---NTQLQSDRLYLYLLQDGKDMYTGKEL--D--YDNLSQYDIDHI
841


ESR09100

------------ ---- ---------------------------------------------------------



AGM98575
778
RQRLRKLEEVHK NTGS KILKEYN--VS---NTQLQSDRLYLYLLQDGKDMYTGKEL--D--YDNLSQYDIDHI
841


ALF27331
778
QQRLKGLTDSIK EFGS QILKEHP--VE---NSQLQNDRLFLYYLQNGRDMYTGEEL--D--IDYLSQYDIDHI
841


WP_018372492
791
AQRLKKIEDGIK -LGS DLLKQNP--IQd--NKDLQKEKLFLYYMQNGIDLYTGQPLncD--PDSLAFYDVDHI
857


WP_045618028
777
QQRYKRIEDALK NLAH NILKEHP--TD---NIQLQNDRLFLYYLQNGKDMYTGKSL--D--INQLSSCDIDHI
844


WP_045635197
776
QQRYKRIEDSLK ILAS NILKENP--TD---NNQLQNDRLFLYYLQNGKDMYTGEAL--D--INQLSSYDIDHI
843


WP_002263549
778
QQRLKGLTDSIK EFGS QILKEHP--VE---NSQLQNDRLFLYYLQNGRDMYTGEEL--D--IDYLSQYDIDHI
841


WP_002263887
778
QQRLKGLTDSIK EFGS QILKEHP--VE---NSQLQNDRLFLYYLQNGRDMYTGEEL--D--IDYLSQYDIDHI
841


WP_002264920
778
QQRLKGLTDSIK EFGS QILKEHP--VE---NSQLQNDRLFLYYLQNGRDMYTGEEL--D--IDYLSQYDIDHI
841


WP_002269043
778
QQRLKGLTDSIK EFGS QILKEHP--VE---NSQLQNDRLFLYYLQNGRDMYTGEEL--D--IDYLSQYDIDHI
841


WP_002269448
778
QQRLKGLTDSIK EFGS QILKEHP--VE---NSQLQNDRLFLYYLQNGRDMYTGEEL--D--IDYLSQYDIDHI
841


WP_002271977
778
QQRLKGLTDSIK EFGS QILKEHP--VE---NSQLQNDRLFLYYLQNGRDMYTGEEL--D--IDYLSQYDIDHI
841


WP_002272766
778
QQRLKGLTDSIK EFGS QILKEHP--VE---NSQLQNDRLFLYYLQNGRDMYTGEEL--D--IDYLSQYDIDHI
841


WP_002273241
778
QQRLKGLTDSIK EFGS QILKEHP--VE---NSQLQNDRLFLYYLQNGRDMYTGEEL--D--IDYLSQYDIDHI
841


WP_002275430
778
QQRLKGLTDSIK EFGS QILKEHP--VE---NSQLQNDRLFLYYLQNGRDMYTGEEL--D--IDYLSQYDIDHI
841


WP_002276448
778
QQRLKGLTDSIK EFGS QILKEHP--VE---NSQLQNDRLFLYYLQNGRDMYTGEEL--D--IDYLSQYDIDHI
841


WP_002277050
779
QQRYKRLKEAIK DLNH KILKEHP--TD---NQALQNNRLFLYYLQNGRDMYTGESL--D--INRLSDYDIDHV
846


WP_002277364
778
QQRLKGLTDSIK EFGS QILKEHP--VE---HSQLQNDRLFLYYLQNGRDMYTGEEL--D--IDYLSQYDIDHI
841


WP_002279025
778
QQRLKGLTDSIK EFGS QILKEHP--VE---NSQLQNDRLFLYYLQNGRDMYTGEEL--D--IDYLSQYDIDHI
841


WP_002279859
778
QQRLKGLTDSIK EFGS QILKEHP--VE---NSQLQNDRLFLYYLQNGRDMYTGEEL--D--IDYLSQYDIDHI
841


WP_002280230
778
QQRLKGLTDSIK EFGS QILKEHP--VE---NSQLQNDRLFLYYLQNGRDMYTGEEL--D--IDYLSQYDIDHI
841


WP_002281696
778
QQRLKGLTDSIK EFGS QILKEHP--VE---NSQLQNDRLFLYYLQNGRDMYTGEEL--D--IDYLSQYDIDHI
841


WP_002282247
779
QQRYKRLKEAIK DLNH KILKEHP--TD---NQALQNNRLFLYYLQNGRDMYTGESL--D--INRLSDYDIDHV
846


WP_002282906
778
QQRLKGLTDSIK EFGS QILKEHP--VE---NSQLQNDRLFLYYLQNGRDMYTGEEL--D--IDYLSQYDIDHI
841


WP_002283846
778
QQRLKGLTDSIK EFGS QILKEHP--VE---NSQLQNDRLFLYYLQNGRDMYTGEEL--D--IDYLSQYDIDHI
841


WP_002287255
778
QQRLKGLTDSIK EFGS QILKEHP--VE---HSQLQNDRLFLYYLQNGRDMYTGEEL--D--IDYLSQYDIDHI
841


WP_002288990
778
QQRLKGLTDSIK EFGS QILKEHP--VE---NSQLQNDRLFLYYLQNGRDMYTGEEL--D--IDYLSQYDIDHI
841


WP_002289641
778
QQRLKGLTDSIK EFGS QILKEHP--VE---NSQLQNDRLFLYYLQNGRDMYTGEEL--D--IDYLSQYDIDHI
841


WP_002290427
778
QQRLKGLTDSIK EFGS QILKEHP--VE---NSQLQNDRLFLYYLQNGRDMYTGEEL--D--IDYLSQYDIDHI
841


WP_002295753
778
QQRLKGLTDSIK EFGS QILKEHP--VE---NSQLQNDRLFLYYLQNGRDMYTGEEL--D--IDYLSQYDIDHI
841


WP_002296423
778
QQRLKGLTDSIK EFGS QILKEHP--VE---NSQLQNDRLFLYYLQNGRDMYTGEEL--D--IDYLSQYDIDHI
841


WP_002304487
788
QKRYKRLEEAIK DLNH KILKEHP--TD---NQALQNDRLFLYYLQNGRDMYTEDPL--D--INRLSDYDIDHI
855


WP_002305844
778
QQRLKGLTDSIK EFGS QILKEHP--VE---NSQLQNDRLFLYYLQNGRDMYTGEEL--D--IDYLSQYDIDHI
841


WP_002307203
778
QQRLKGLTDSIK EFGS QILKEHP--VE---NSQLQNDRLFLYYLQNGRDMYTGEEL--D--IDYLSQYDIDHI
841


WP_002310390
778
QQRLKGLTDSIK EFGS QILKEHP--VE---NSQLQNDRLFLYYLQNGRDMYTGEEL--D--IDYLSQYDIDHI
841


WP_002352408
778
QQRLKGLTDSIK EFGS QILKEHP--VE---NSQLQNDRLFLYYLQNGRDMYTGEEL--D--IDYLSQYDIDHI
841


WP_012997688
778
QQRLKGLTDSIK EFGS QILKEHP--VK---HSQLQNDRLFLYYLQNGRDMYTGEEL--D--IDYLSQYDIDHI
841


WP_014677909
778
QQRLKGLTDSIK EFGS QILKEHP--VE---NSQLQNDRLFLYYLQNGRDMYTGEEL--D--IDYLSQYDIDHI
841


WP_019312892
778
QQRLKGLTDSIK EFGS QILKEHP--VE---NSQLQNDRLFLYYLQNGRDMYTGEEL--D--IDYLSQYDIDHI
841


WP_019313659
778
QQRLKGLTDSIK EFGS QILKEHP--VE---NSQLQNDRLFLYYLQNGRDMYTGEEL--D--IDYLSQYDIDHI
841


WP_019314093
778
QQRLKGLTDSIK EFGS QILKEHP--VE---NSQLQNDRLFLYYLQNGRDMYTGEEL--D--IDYLSQYDIDHI
841


WP_019315370
778
QQRLKGLTDSIK EFGS QILKEHP--VE---NSQLQNDRLFLYYLQNGRDMYTGEEL--D--IDYLSQYDIDHI
841


WP_019803776
778
QQRLKGLTDSIK EFGS QILKEHP--VE---NSQLQNDRLFLYYLQNGRDMYTGEEL--D--IDYLSQYDIDHI
841


WP_019805234
778
QQRLKGLTDSIK EFGS QILKEHP--VE---NSQLQNDRLFLYYLQNGRDMYTGEEL--D--IDYLSQYDIDHI
841


WP_024783594
778
QQRLKGLTDSIK EFGS QILKEHP--VE---NSQLQNDRLFLYYLQNGRDMYTGEEL--D--IDYLSQYDIDHI
841


WP_024784288
779
QQRYKRLKEAIK DLNH KILKEHP--TD---NQALQNNRLFLYYLQNGRDMYTGESL--D--INRLSDYDIDHV
846


WP_024784666
778
QQRLKGLTDSIK EFGS QILKEHP--VE---HSQLQNDRLFLYYLQNGRDMYTGEEL--D--IDYLSQYDIDHI
841


WP_024784894
778
QQRLKGLTDSIK EFGS QILKEHP--VE---NSQLQNDRLFLYYLQNGRDMYTGEEL--D--IDYLSQYDIDHI
841


WP_024786433
779
QQRYKRLKEAIK DLNH KILKEHP--TD---NQALQNNRLFLYYLQNGRDMYTGESL--D--INRLSDYDIDHV
846


WP_049473442
778
QQRLKGLTDSIK EFGS QILKEHP--VE---NSQLQNDRLFLYYLQNGRDMYTGEEL--D--IDYLSQYDIDHI
841


WP_049474547
778
QQRLKGLTDSIK EFGS QILKEHP--VE---NSQLQNDRLFLYYLQNGRDMYTGEEL--D--IDYLSQYDIDHI
841


EMC03581
771
QQRLKGLTDSIK EFGS QILKEHP--VE---HSQLQNDRLFLYYLQNGRDMYTGEEL--D--IDYLSQYDIDHI
834


WP_000428612
779
QQRYKRIEDSLK ILAS KILKEHP--TD---NIQLQNDRLFLYYLQNGRDMYTGKPL--D--INQLSSYDIDHI
846


WP_000428613
777
QQRYKRIEDALK NLAS NILKEHP--TN---NIQLQNDRLFLYYLQNGRDMYTGKPL--D--INQLSSYDIDHI
844


WP_049523028
776
QQRLKTLSDAIS ELG- NILKEHP--TD---NIQLQNDRLFLYYLQNGKDMYTGEAL--D--INQLSNYDIDHI
839


WP_003107102
747
RERLRKLEEVHK NIGS KILKEHE--IS---NAQLQSDRVYLYLLQDGKDMYTGKDL--D--FDRLSQYDIDHI
810


WP_054279288
779
RERMKRVQEVLK KLGS QLLKEHP--VE---NFQLQNERLYLYYLQNGKDMYTGEEL--S--ISNLSHYDIDHI
842


WP_049531101
777
QQRYKRIEDSLK ILAS NILKEHP--TD---NIQLQNDRLFLYYLQNGKDMYTGNPL--D--INHLSSYDIDHI
844


WP_049538452
777
QQRYKRIENSLK ILAS KILKEHP--TD---NNQLQNDRLFLYYLQNGKDMYTGEAL--D--INQLSSCDIDHI
844


WP_049549711
777
QQRYKRIEDSLK ILAS NILKENP--TD---NNQLQNDRLFLYYLQNGKDMYTGEAL--D--INQLSSYDIDHI
844


WP_007896501
781
RQRLKKIKEVHK KTGS RILEDNSerIT---NLTLQDNRLYLYLLQDGKDMYTGQDL--D--INNLSQYDIDHI
846


EFR44625
733
RQRLKKIKEVHK KTGS RILEDNSerIT---NLTLQDNRLYLYLLQDGKDMYTGQDL--D--INNLSQYDIDHI
798


WP_002897477
776
QQRYKRIEDALK NLAP NILKENP--TD---NIQLKNDRLFLYYLQNGKDMYTGKPL--D--INQLSSYDIDHI
843


WP_002906454
776
QQRYKRIEDALK NLAP NILKENP--TD---NIQLQNDRLFLYYLQNGKDMYTGKAI--D--INQLSNYDIDHI
843


WP_009729476
777
QQRYKRIEDSLK ILAS KILKEHP--TD---NIQLQNDRLFLYYLQNGKDMYTGEAL--D--INQLSSCDIDHI
844


CQR24647
780
QQRLGSLTKAIQ DFGS DILKRYP--VE---NNQLQNDQLYLYYLQNGKDMYTGDTL--D--IHNLSQYDIDHI
843


WP_000066813
779
QQRYKRIEDSLK NLAS NILKENP--TD---NIQLQNDRLFLYYLQNGRDMYTGKPL--E--INQLSNYDIDHI
846


WP_009754323
777
QQRYKRIEDALK NLAP TISKENP--TD---NIQLQNDRLFLYYLQNGKDMYTGEAL--D--INQLSSYDIDHI
844


WP_044674937
776
QQRYKKIENAIK NLNS KILKEYP--TN---NQALQNDRLFLYYLQNGKDMYTDEEL--D--IDQLSQYDIDHI
843


WP_044676715
778
QQRYKKIENAIK NLNS KILKEYP--TN---NQALQNDRLFLYYLQNGKDMYTDEEL--D--IDQLSQYDIDHI
845


WP_044680361
778
QQRYKKIENAIK NLNS KILKEYP--TN---NQALQNDRLFLYYLQNGKDMYTDEEL--D--IDQLSQYDIDHI
845


WP_044681799
776
QQRYKKIENAIK NLNS KILKEYP--TN---NQALQNDRLFLYYLQNGKDMYTDEEL--D--IDQLSQYDIDHI
843


WP_049533112
778
QQRLKLLQDSLK PVNI K-----N--VE---NQQLQNDRLFLYYIQNGKDMYTGETL--D--INNLSQYDIDHI
840


WP_029090905
753
TPRDKFIEKAYA ETDT EHLKELK---Qr--SKQLSSQRLFLYFIQNGKCMYSGEHL--D--IERLDSYEVDHI
823


WP_006506696
777
ESKIKKLENVYK DEQT SVLEELKg-FDn--TKKISSDSLFLYFTQLGKCMYSGKKL--D--IDSLDKYQIDHI
849


AI T42264
778
RERMKRIEEGIK ELGS QILKEHP--VE---NTQLQNEKLYLYYLQNGRDMYVDQEL--D--INRLSDYDVDHI
841


WP_034440723
785
KARLKKIQEGLE NLDS HVEKQAL---D---EEMLKSPKYYLYCLQNGKDIYTGKDL--D--IGQLQTYDIDHI
848


AKQ21048
778
RERMKRIEEGIK ELGS QILKEHP--VE---NTQLQNEKLYLYYLQNGRDMYVDQEL--D--INRLSDYDVDHI
841


WP_004636532
781
KERLEKLTEAIK EFDG --VKVKD--LK---NENLRNDRLYLYYLQNGRDMYTNEPL--D--INNLSKYDIDHI
845


WP_002364836
789
IQRLKIVEKAMA EIGS NLLKEQP--TT---NEQLRDTRLFLYYMQNGKDMYTGDEL--S--LHRLSHYDIDHI
852


WP_016631044
740
IQRLKIVEKAMA EIGS NLLKEQP--TT---NEQLRDTRLFLYYMQNGKDMYTGDEL--S--LHRLSHYDIDHI
803


EM575795
525
KPRLKALEEALK SFDS PLLKEQP--VD---NQALQKDRLYLYYLQNGKDMYTGEAL--D--IDRLSEYDIDHI
588


WP_002373311
789
IQRLKIVEKAMA EIGS NLLKEQP--TT---NEQLRDTRLFLYYMQNGKDMYTGDEL--S--LHRLSHYDIDHI
852


WP_002378009
789
IQRLKIVEKAMA EIGS NLLKEQP--TT---NEQLRDTRLFLYYMQNGKDMYTGDEL--S--LHRLSHYDIDHI
852


WP_002407324
789
IQRLKIVEKAMA EIGS NLLKEQP--TT---NEQLRDTRLFLYYMQNGKDMYTGDEL--S--LHRLSHYDIDHI
852


WP_002413717
789
IQRLKIVEKAMA EIGS NLLKEQP--TT---NEQLRDTRLFLYYMQNGKDMYTGDEL--S--LHRLSHYDIDHI
852


WP_010775580
791
IQRLKIVEKAMA EIGS NLLKEQP--TT---NEQLRDTRLFLYYMQNGKDMYTGDEL--S--LHRLSHYDIDHI
854


WP_010818269
789
IQRLKIVEKAMA EIGS NLLKEQP--TT---NEQLRDTRLFLYYMQNGKDMYTGDEL--S--LHRLSHYDIDHI
852


WP_010824395
789
IQRLKIVEKAMA EIGS NLLKEQP--TT---NEQLRDTRLFLYYMQNGKDMYTGDEL--S--LHRLSHYDIDHI
852


WP_016622645
789
IQRLKIVEKAMA EIGS NLLKEQP--TT---NEQLRDTRLFLYYMQNGKDMYTGDEL--S--LHRLSHYDIDHI
852


WP_033624816
789
IQRLKIVEKAMA EIGS NLLKEQP--TT---NEQLRDTRLFLYYMQNGKDMYTGDEL--S--LHRLSHYDIDHI
852


WP_033625576
789
IQRLKIVEKAMA EIGS NLLKEQP--TT---NEQLRDTRLFLYYMQNGKDMYTGDEL--S--LHRLSHYDIDHI
852


WP_033789179
789
IQRLKIVEKAMA EIGS NLLKEQP--TT---NEQLRDTRLFLYYMQNGKDMYTGDEL--S--LHRLSHYDIDHI
852


WP_002310644
789
RPRLKALEESLK DFGS QLLKEYP--TD---NSSLQKDRLYLYYLQNGRDMYTGAPL--D--IHRLSDYDIDHI
852


WP_002312694
790
RPRLKALEESLK DFGS QLLKEYP--TD---NSSLQKDRLYLYYLQNGRDMYTGAPL--D--IHRLSDYDIDHI
853


WP_002314015
790
RPRLKALEESLK DFGS QLLKEYP--TD---NSSLQKDRLYLYYLQNGRDMYTGAPL--D--IHRLSDYDIDHI
853


WP_002320716
790
RPRLKALEESLK DFGS QLLKEYP--TD---NSSLQKDRLYLYYLQNGRDMYTGAPL--D--IHRLSDYDIDHI
853


WP_002330729
789
RPRLKALEESLK DFGS QLLKEYP--TD---NSSLQKDRLYLYYLQNGRDMYTGAPL--D--IHRLSDYDIDHI
852


WP_002335161
790
RPRLKALEESLK DFGS QLLKEYP--TD---NSSLQKDRLYLYYLQNGRDMYTGAPL--D--IHRLSDYDIDHI
853


WP_002345439
790
RPRLKALEESLK DFGS QLLKEYP--TD---NSSLQKDRLYLYYLQNGRDMYTGAPL--D--IHRLSDYDIDHI
853


WP_034867970
781
SPRLKALENGLK QIGS TLLKEQP--TD---NKALQKERLYLYYLQNGRDMYTGEPL--E--IENLHQYEVDHI
844


WP_047937432
790
RPRLKALEESLK DFGS QLLKEYP--TD---NSSLQKDRLYLYYLQNGRDMYTGAPL--D--IHRLSDYDIDHI
853


WP_010720994
781
KPRLKALENGLK QIGS TLLKEQP--TD---NKALQKERLYLYYLQNGRDMYTGEPL--E--IENLHQYEVDHI
844


WP_010737004
781
SPRLKALENGLK QIGS TLLKEQP--TD---NKALQKERLYLYYLQNGRDMYTGEPL--E--IENLHQYEVDHI
844


WP_034700478
781
KPRLKALENGLK QIGS TLLKEQP--TD---NKALQKERLYLYYLQNGRDMYTGEPL--E--IENLHQYEVDHI
844


WP_007209003
782
KPRLKGIENGLK EFSD SVLKGSS--ID---NKQLQNDRLYLYYLQNGKDMYTGHEL--D--IDHLSTYDIDHI
845


WP_023519017
775
RPRLKALEEALK NIDS PLLKDYP--TD---NQALQKDRLYLYYLQNGKDMYTGEPL--E--IHRLSEYDIDHI
838


WP_010770040
782
NPRMKALEEAMR NLRS NLLKEYP--TD---NQALQNDRLYLYYLQNGKDMYTGLDL--S--LHNLSSYDIDHI
845


WP_048604708
779
RPRLKNLEKAID DLDS EILKKHP--VD---NKALQKDRLYLYYLQNGKDMYTNEEL--D--IHKLSTYDIDHI
842


WP_010750235
784
KPRLKSLEEALK NFDS QLLKERP--VD---NQSLQKDRLYLYYLQNGKDMYTGESL--D--IDRLSEYDIDHI
847


AII16583
817
RERMKRIEEGIK ELGS QILKEHP--VE---NTQLQNEKLYLYYLQNGRDMYVDQEL--D--INRLSDYDVDHI
880


WP_029073316
789
DSFVNQMLKLYK DFED EANKHLKg-EDa--KSKIRSERLKLYYTQMGKCMYTGKSL--D--IDRLDTYQVDHI
860


WP_031589969
789
DSFVNQMLKLYK DFED EANKHLKg-EDa--KSKIRSERLKLYYTQMGKCMYTGKSL--D--IDRLDTYQVDHI
860


KDA45870
772
EDRVQQIVKNLK ELPK ------P---S---NAELSDERKYLYCLQNGRDMYTGAPL--D--YDHLQFYDVDHI
833


WP_039099354
789
KRQVEQVYQNIS EL-- EIRNELK---Dl-sNSALSNTRLFLYFMQGGRDMYTGDSL--N--IDRLSTYDIDHI
856


AKP02966
786
RLQSKLLNKANG -LVP EELKKHKn--D------LSSERIMLYFLQNGKSLYSEESL--N--INKLSDYQVDHI
858


WP_010991369
781
RPRYKSLEKAIK EFGS QILKEHP--TD---NQELRNNRLYLYYLQNGKDMYTGQDL--D--IHNLSNYDIDHI
844


WP_033838504
781
RPRYKSLEKAIK EFGS QILKEHP--TD---NQELRNNRLYLYYLQNGKDMYTGQDL--D--IHNLSNYDIDHI
844


EHN60060
784
RPRYKSLEKAIK EFGS QILKEHP--TD---NQELRNNRLYLYYLQNGKDMYTGQDL--D--IHNLSNYDIDHI
847


EFR89594
550
RPRYKSLEKAIK EFGS QILKEHP--TD---NQELKNNRLYLYYLQNGKDMYTGQDL--D--IHNLSNYDIDHI
613


WP_038409211
781
KPRFISLEKAIK EFGS QILKEHP--TD---NQCLKNDRLYLYYLQNGKDMYTGKEL--D--IHNLSNYDIDHI
844


EFR95520
400
KPRFISLEKAIK EFGS QILKEHP--TD---NQCLKNDRLYLYYLQNGKDMYTGKEL--D--IHNLSNYDIDHI
463


WP_003723650
781
KPRYKSLEKAIK EFGS QILKEHP--TD---NQELKNNRLYLYYLQNGKDMYTGQEL--D--IHNLSNYDIDHI
844


WP_003727705
781
KPRYKSLEKAIK DFGS QILKEHP--TD---NQELKNNRLYLYYLQNGKDIYTGQEL--D--IHNLSNYDIDHI
844


WP_003730785
781
KPRYKSLEKAIK DFGS QILKEHP--TD---NQELKNNRLYLYYLQNGKDIYTGQEL--D--IHNLSNYDIDHI
844


WP_003733029
781
KPRYKSLEKAIK EFGS QILKEHP--TD---NQELKNNRLYLYYLQNGKDMYTGQEL--D--IHNLSNYDIDHI
844


WP_003739838
781
RPRYKSLEKAIK EFGS QILKEHP--TD---NQELRNNRLYLYYLQNGKDMYTGQEL--D--IHNLSNYDIDHI
844


WP_014601172
781
KPRYKSLEKAIK EFGS KILKEHP--TD---NQELKNNRLYLYYLQNGKDMYTGQEL--D--IHNLSNYDIDHI
844


WP_023548323
781
KPRYKSLEKAIK EFGS QILKEHP--TD---NQELKNNRLYLYYLQNGKDMYTGQEL--D--IHNLSNYDIDHI
844


WP_031665337
781
KPRYKSLEKAIK EFGS QILKEHP--TD---NQELKNNRLYLYYLQNGKDMYTGQEL--D--IHNLSNYDIDHI
844


WP_031669209
781
KPRYKSLEKAIK EFGS QILKEHP--TD---NQELKNNRLYLYYLQNGKDMYTGQEL--D--IHNLSNYDIDHI
844


WP_033920898
781
KPRYKSLEKAIK EFGS QILKEHP--TD---NQELKNNRLYLYYLQNGKDMYTGQEL--D--IHNLSNYDIDHI
844


AKI42028
784
KPRYKSLEKAIK EFGS KILKEHP--TD---NQELKNNRLYLYYLQNGKDMYTGQEL--D--IHNLSNYDIDHI
847


AKI50529
784
KPRYKSLEKAIK EFGS QILKEHP--TD---NQELKNNRLYLYYLQNGKDMYTGQEL--D--IHNLSNYDIDHI
847


EFR83390
229
RPRYKSLEKAIK EFGS QILKEHP--TD---NQELKNNRLYLYYLQNGKDIYTGQEL--D--IHNLSNYDIDHI
292


WP_046323366
781
KPRFTSLEKAIK ELGS QILKEHP--TD---NQGLKNDRLYLYYLQNGKDMYTGQEL--D--IHNLSNYDIDHV
844


AKE81011
794
RERMKRIEEGIK ELGS QILKEHP--VE---NTQLQNEKLYLYYLQNGRDMYVDQEL--D--INRLSDYDVDHI
857


CUO82355
781
ESKIKKLENVYK DEQT SVLEELKg-FDn--TKKISSDSLFLYFTQLGKCMYSGKKL--D--IDSLDKYQIDHI
853


WP_033162887
784
ESKIAKLQKIYE NLQT QVYESLKk-EDa--KKRMETDALYLYYLQMGKSMYSGKPL--D--IDKLSTYQIDHI
855


AGZ01981
811
RERMKRIEEGIK ELGS QILKEHP--VE---NTQLQNEKLYLYYLQNGRDMYVDQEL--D--INRLSDYDVDHI
874


AKA60242
778
RERMKRIEEGIK ELGS QILKEHP--VE---NTQLQNEKLYLYYLQNGRDMYVDQEL--D--INRLSDYDVDAI
841


AKS40380
778
RERMKRIEEGIK ELGS QILKEHP--VE---NTQLQNEKLYLYYLQNGRDMYVDQEL--D--INRLSDYDVDHI
841


4UN5_B
782
RERMKRIEEGIK ELGS QILKEHP--VE---NTQLQNEKLYLYYLQNGRDMYVDQEL--D--INRLSDYDVDAI
845


WP_010922251
842


embedded image


910


WP_039695303
852
IPQAFIKDDSIDNRVLISSAKNRG-KSDD--VP S--LDIVRARKA-EWVRLYKSGLISKRKEDNLTKA--ERGGLTE
920


WP_045635197
844
IPQAFIKDDSLDNRVLISSKDNRG-KSDN--VP S--IEVVQKRKA-FWQQLLDSKLISERKFNNLTKA--ERGGLDE
912


5AXW_A
562
IPRSVSFDNSFNNKVLVKQEEASK-KGNR--TP Fqy-LSSSDSKI-SYETFKKHILNLAKGKGRISKTk-KEYLLEE
632


WP_009880683
526
VPQSFLKDDSIDNKVLIRSDKNRG-KSDN--VP S--EEVVKKMKN-YWKQLLNAKLITQRKFDNLTKA--ERGGLSE
594


WP_010922251
842
VPQSFLKDDSIDNKVLIRSDKNRG-KSDN--VP S--EEVVKKMKN-YWRQLLNAKLITQRKFDNLTKA--ERGGLSE
910


WP_011054416
842
VPQSFLKDDSIDNKVLIRSDKNRG-KSDN--VP S--EEVVKKMKN-YWRQLLNAKLITQRKFDNLTKA--ERGGLSE
910


WP_011284745
842
VPQSFIKDDSIDNKVLIRSDKNRG-KSNN--VP S--EEVVKKMKN-YWRQLLNAKLITQRKFDNLTKA--ERGGLSE
910


WP_011285506
842
VPQSFLKDDSIDNKVLIRSDKNRG-KSDN--VP S--EEVVKKMKN-YWRQLLNAKLITQRKFDNLTKA--ERGGLSE
910


WP_011527619
842
VPQSFIKDDSIDNKVLIRSDKNRG-KSDN--VP S--EEVVKKMKN-YWRQLLNAKLITQRKFDNLTKA--ERGGLSE
910


WP_012560673
842
VPQSFLKDDSIDNKVLIRSDKNRG-KSDN--VP S--EEVVKKMKN-YWKQLLNAKLITQRKFDNLTKA--ERGGLSE
910


WP_014407541
841
VPQSFIKDDSIDNKVLIRSDKNRG-KSDN--VP S--EEVVKKMKN-YWRQLLNAKLITQRKFDNLTKA--ERGGLSE
909


WP_020905136
842
VPQSFIKDDSIDNKVLIRSDKNRG-KSDN--VP S--EEVVKKMKN-YWRQLLNAKLITQRKFDNLTKA--ERGGLSE
910


WP_023080005
841
VPQSFLKDDSIDNKVLIRSDKNRG-KSDN--VP S--EEVVKKMKN-YWRQLLNAKLITQRKFDNLTKA--ERGGLSE
909


WP_023610282
841
VPQSFLKDDSIDNKVLIRSDKNRG-KSDN--VP S--EEVVKKMKN-YWRQLLNAKLITQRKFDNLTKA--ERGGLSE
909


WP_030125963
842
VPQSFIKDDSIDNKVLIRSDKNRG-KSDN--VP S--EEVVKKMKN-YWRQLLNAKLITQRKFDNLTKA--ERGGLSE
910


WP_030126706
842
VPQSFLKDDSIDNKVLIRSDKNRG-KSDN--VP S--EEVVKKMKN-YWRQLLNAKLITQRKFDNLTKA--ERGGLSE
910


WP_031488318
842
VPQSFIKDDSIDNKVLIRSDKNRG-KSDN--VP S--EEVVKKMKN-YWKQLLNAKLITQRKFDNLTKA--ERGGLSE
910


WP_032460140
842
VPQSFLKDDSIDNKVLIRSDKNRG-KSDN--VP S--EEVVKKMKN-YWKQLLNAKLITQRKFDNLTKA--ERGGLSE
910


WP_032461047
842
VPQSFLKDDSIDNKVLIRSDKNRG-KSDN--VP S--EEVVKKMKN-YWKQLLNAKLITQRKFDNLTKA--ERGGLSE
910


WP_032462016
842
VPQSFLKDDSIDNKVLIRSDKNRG-KSDN--VP S--EEVVKKMKN-YWRQLLNAKLITQRKFDNLTKA--ERGGLSE
910


WP_032462936
842
VPQSFLKDDSIDNKVLIRSDKNRG-KSDN--VP S--EEVVKKMKN-YWKQLLNAKLITQRKFDNLTKA--ERGGLSE
910


WP_032464890
842
VPQSFIKDDSIDNKVLIRSDKNRG-KSDN--VP S--EEVVKKMKN-YWRQLLNAKLITQRKFDNLTKA--ERGGLSE
910


WP_033888930
667
VPQSFLKDDSIDNKVLIRSDKNRG-KSDN--VP S--EEVVKKMKN-YWRQLLNAKLITQRKFDNLTKA--ERGGLSE
735


WP_038431314
842
VPQSFLKDDSIDNKVLIRSDKNRG-KSDN--VP S--EEVVKKMKN-YWRQLLNAKLITQRKFDNLTKA--ERGGLSE
910


WP_038432938
841
VPQSFLKDDSIDNKVLIRSDKNRG-KSDN--VP S--EEVVKKMKN-YWRQLLNAKLITQRKFDNLTKA--ERGGLSE
909


WP_038434062
842
VPQSFLKDDSIDNKVLIRSDKNRG-KSDN--VP S--EEVVKKMKN-YWKQLLNAKLITQRKFDNLTKA--ERGGLSE
910


BAQ51233
753
VPQSFLKDDSIDNKVLIRSDKNRG-KSDN--VP S--EEVVKKMKN-YWRQLLNAKLITQRKFDNLTKA--ERGGLSE
821


KGE60162
17
VPQSFLKDDSIDNKVLIRSDKNRG-KSDN--VP S--EEVVKKMKN-YWRQLLNAKLITQRKFDNLTKA--ERGGLSE
85


KGE60856

--------------------------------- --------------------------------------------



WP_002989955
842
VPQSFIKDDSIDNKVLIRSDKNRG-KSDN--VP S--EEVVKKMKN-YWRQLLNAKLITQRKFDNLTKA--ERGGLSE
910


WP_003030002
841
IPQAFIKDNSLDNRVLIRSDKNRG-KSDD--VP S--IEVVHEMKS-FWSKLLSVKLITQRKFDNLTKA--ERGGLTE
909


WP_003065552
852
IPQAFIKDDSIDNRVLISSAKNRG-KSDD--VP S--LDIVRARKA-EWVRLYKSGLISKRKEDNLTKA--ERGGLTE
920


WP_001040076
847
IPQAFIKDDSIDNRVLVSSAKNRG-KSDD--VP S--LEIVKDCKV-FWKKLLDAKLMSQRKYDNLTKA--ERGGLTS
915


WP_001040078
847
IPQAFIKDDSIDNRVLVSSAKNRG-KSDD--VP S--LEIVKDCKV-FWKKLLDAKLMSQRKYDNLTKA--ERGGLTS
915


WP_001040080
847
IPQAFIKDDSIDNRVLVSSAKNRG-KSDD--VP S--LEIVKDCKV-FWKKLLDAKLMSQRKYDNLTKA--ERGGLTS
915


WP_001040081
847
IPQAFIKDDSIDNRVLVSSAKNRG-KSDD--VP S--LEIVKDCKV-FWKKLLDAKLMSQRKYDNLTKA--ERGGLTS
915


WP_001040083
847
IPQAFIKDDSIDNRVLVSSAKNRG-KSDD--VP S--LEIVKDCKV-FWKKLLDAKLMSQRKYDNLTKA--ERGGLTS
915


WP_001040085
847
IPQAFIKDDSIDNRVLVSSAKNRG-KSDD--VP S--LEIVKDCKV-FWKKLLDAKLMSQRKYDNLTKA--ERGGLTS
915


WP_001040087
847
IPQAFIKDDSIDNRVLVSSAKNRG-KSDD--VP S--LEIVKDCKV-FWKKLLDAKLMSQRKYDNLTKA--ERGGLTS
915


WP_001040088
847
IPQAFIKDDSIDNRVLVSSAKNRG-KSDD--VP S--LEIVKDCKV-FWKKLLDAKLMSQRKYDNLTKA--ERGGLTS
915


WP_001040089
847
IPQAFIKDDSIDNRVLVSSAKNRG-KSDD--VP S--LEIVKDCKV-FWKKLLDAKLMSQRKYDNLTKA--ERGGLTS
915


WP_001040090
847
IPQAFIKDDSIDNRVLVSSAKNRG-KSDD--VP S--LEIVKDCKV-FWKKLLDAKLMSQRKYDNLTKA--ERGGLTS
915


WP_001040091
847
IPQAFIKDDSIDNRVLVSSAKNRG-KSDD--VP S--LEIVKDCKV-FWKKLLDAKLMSQRKYDNLTKA--ERGGLTS
915


WP_001040092
847
VPQAFIKDDSIDNRVLVSSAKNRG-KSDD--VP S--IDIVKARKA-FWKKLLDAKLISQRKYDNLTKA--ERGGLTP
915


WP_001040094
847
IPQAFIKDDSIDNRVLVSSAKNRG-KSDD--VP S--VEIVKDCKV-FWKKLLDAKLMSQRKYDNLTKA--ERGGLTS
915


WP_001040095
847
IPQAFIKDDSIDNRVLVSSAKNRG-KSDD--VP S--LEIVKDCKV-FWKKLLDAKLMSQRKYDNLTKA--ERGGLTS
915


WP_001040096
847
IPQAFIKDDSIDNRVLVSSAKNRG-KSDD--VP S--LEIVKDCKV-FWKKLLDAKLMSQRKYDNLTKA--ERGGLTS
915


WP_001040097
847
IPQAFIKDDSIDNRVLVSSAKNRG-KSDD--VP S--VEIVKDCKV-FWKKLLDAKLMSQRKYDNLTKA--ERGGLTS
915


WP_001040098
847
IPQAFIKDDSIDNRVLVSSAKNRG-KSDD--VP S--VEIVKDCKV-FWKKLLDAKLMSQRKYDNLTKA--ERGGLTS
915


WP_001040099
847
IPQAFIKDDSIDNRVLVSSAKNRG-KSDD--VP S--VEIVKDCKV-FWKKLLDAKLMSQRKYDNLTKA--ERGGLTS
915


WP_001040100
847
IPQAFIKDDSIDNRVLVSSAKNRG-KSDD--VP S--VEIVKDCKV-FWKKLLDAKLMSQRKYDNLTKA--ERGGLTS
915


WP_001040104
847
IPQAFIKDDSIDNRVLVSSAKNRG-KSDD--VP S--LEIVKDCKV-FWKKLLDAKLMSQRKYDNLTKA--ERGGLTS
915


WP_001040105
847
IPQAFIKDDSIDNRVLVSSAKNRG-KSDD--VP S--LEIVKDCKV-FWKKLLDAKLMSQRKYDNLTKA--ERGGLTS
915


WP_001040106
847
VPQAFIKDDSIDNRVLVSSAKNRG-KSDN--VP S--IDIVKARKA-FWKKLLDAKLMSQRKYDNLTKA--ERGGLTS
915


WP_001040107
847
VPQAFIKDDSIDNRVLVSSAKNRG-KSDN--VP S--IDIVKARKA-FWKKLLDAKLMSQRKYDNLTKA--ERGGLTS
915


WP_001040108
847
VPQAFIKDDSIDNRVLVSSAKNRG-KSDN--VP S--IDIVKARKA-FWKKLLDAKLMSQRKYDNLTKA--ERGGLTS
915


WP_001040109
847
VPQAFIKDDSIDNRVLVSSAKNRG-KSDN--VP S--IDIVKARKA-FWKKLLDAKLMSQRKYDNLTKA--ERGGLTS
915


WP_001040110
847
VPQAFIKDDSIDNRVLVSSAKNRG-KSDN--VP S--IDIVKARKA-FWKKLLDAKLMSQRKYDNLTKA--ERGGLTS
915


WP_015058523
847
VPQAFIKDDSIDNRVLVSSAKNRG-KSDD--VP S--IDIVKARKA-FWKKLLDAKLISQRKYDNLTKA--ERGGLTP
915


WP_017643650
847
IPQAFIKDDSIDNRVLVSSAKNRG-KSDD--VP S--VEIVKDCKV-FWKKLLDAKLMSQRKYDNLTKA--ERGGLTS
915


WP_017647151
847
IPQAFIKDDSIDNRVLVSSAKNRG-KSDD--VP S--LEIVKDCKV-FWKKLLDAKLMSQRKYDNLTKA--ERGGLTS
915


WP_017648376
847
IPQAFIKDDSIDNRVLVSSAKNRG-KSDD--VP S--LEIVKDCKV-FWKKLLDAKLMSQRKYDNLTKA--ERGGLTS
915


WP_017649527
847
IPQAFIKDDSIDNRVLVSSAKNRG-KSDD--VP S--LEIVKDCKV-FWKKLLDAKLMSQRKYDNLTKA--ERGGLTS
915


WP_017771611
847
VPQAFIKDDSIDNRVLVSSAKNRG-KSDN--VP S--IDIVKARKA-FWKKLLDAKLMSQRKYDNLTKA--ERGGLTS
915


WP_017771984
847
IPQAFIKDDSIDNRVLVSSAKNRG-KSDD--VP S--LEIVKDCKV-FWKKLLDAKLMSQRKYDNLTKA--ERGGLTS
915


CFQ25032
847
IPQAFIKDDSIDNRVLVSSAKNRG-KSDD--VP S--LEIVKDCKV-FWKKLLDAKLMSQRKYDNLTKA--ERGGLTS
915


CFV16040
847
IPQAFIKDDSIDNRVLVSSAKNRG-KSDD--VP S--LEIVKDCKV-FWKKLLDAKLMSQRKYDNLTKA--ERGGLTS
915


KLJ37842
847
IPQAFIKDDSIDNRVLVSSAKNRG-KSDD--VP S--LEIVKDCKV-FWKKLLDAKLMSQRKYDNLTKA--ERGGLTS
915


KLJ72361
847
IPQAFIKDDSIDNRVLVSSAKNRG-KSDD--VP S--LEIVKDCKV-FWKKLLDAKLMSQRKYDNLTKA--ERGGLTS
915


KLL20707
861
IPQAFIKDDSIDNRVLVSSAKNRG-KSDD--VP S--LEIVKDCKV-FWKKLLDAKLMSQRKYDNLTKA--ERGGLTS
929


KLL42645
847
VPQAFIKDDSIDNRVLVSSAKNRG-KSDN--VP S--IDIVKARKA-FWKKLLDAKLMSQRKYDNLTKA--ERGGLTS
915


WP_047207273
847
IPQAFIKDDSIDNRVLVSSAKNRG-KSDD--VP S--LEIVKDCKV-FWKKLLDAKLMSQRKYDNLTKA--ERGGLTS
915


WP_047209694
847
IPQAFIKDDSIDNRVLVSSAKNRG-KSDD--VP S--VEIVKDCKV-FWKKLLDAKLMSQRKYDNLTKA--ERGGLTS
915


WP_050198062
847
IPQAFIKDDSIDNRVLVSSAKNRG-KSDD--VP S--LEIVKDCKV-FWKKLLDAKLMSQRKYDNLTKA--ERGGLTS
915


WP_050201642
847
IPQAFIKDDSIDNRVLVSSAKNRG-KSDD--VP S--LEIVKDCKV-FWKKLLDAKLMSQRKYDNLTKA--ERGGLTS
915


WP_050204027
847
VPQAFIKDDSIDNRVLVSSAKNRG-KSDN--VP S--IDIVKARKA-FWKKLLDAKLMSQRKYDNLTKA--ERGGLTS
915


WP_050881965
847
IPQAFIKDDSIDNRVLVSSAKNRG-KSDD--VP S--LEIVKDCKV-FWKKLLDAKLMSQRKYDNLTKA--ERGGLTS
915


WP_050886065
847
IPQAFIKDDSIDNRVLVSSAKNRG-KSDD--VP S--LEIVKDCKV-FWKKLLDAKLMSQRKYDNLTKA--ERGGLTS
915


AHN30376
847
VPQAFIKDDSIDNRVLVSSAKNRG-KSDD--VP S--IDIVKARKA-FWKKLLDAKLISQRKYDNLTKA--ERGGLTP
915


EAO78426
847
IPQAFIKDDSIDNRVLVSSAKNRG-KSDD--VP S--LEIVKDCKV-FWKKLLDAKLMSQRKYDNLTKA--ERGGLTS
915


CCW42055
847
IPQAFIKDDSIDNRVLVSSAKNRG-KSDD--VP S--LEIVKDCKV-FWKKLLDAKLMSQRKYDNLTKA--ERGGLTS
915


WP_003041502
841
IPQAYIKDDSFDNRVLTSSSENRG-KSDN--VP S--IEVVCARKA-DWMRLRKAGLISQRKEDNLTKA--ERGGLTE
909


WP_037593752
842
IPQAFIKDNSLDNRVLTRSDKNRG-KSDD--VP S--IEVVHEMKS-FWSKLLSVKLITQRKEDNLTKA--ERGGLTE
910


WP_049516684
842
IPQAFIKDNSLDNRVLTRSDKNRG-KSDD--VP S--IEVVHEMKS-FWSKLLSVKLITQRKEDNLTKA--ERGGLTE
910


GAD46167
841
IPQAFIKDNSLDNRVLTRSDKNRG-KSDD--VP S--IEVVHEMKS-FWSKLLSVKLITQRKEDNLTKA--ERGGLTE
909


WP_018363470
850
IPQAFIKDDSIDNRVLTSSAKNRG-KSDD--VP S--LGIVRARKA-EWVRLYKSGLISKRKEDNLTKA--ERGGLTE
918


WP_003043819
851
VPQSFIKDDSIDNKVLTRSVENRG-KSDN--VP S--EEVVKKMKN-YWRQLLNAKLITQRKEDNLTKA--ERGGLSE
919


WP_006269658
841
IPQAFIKDNSLDNRVLTRSDKNRG-KSDD--VP S--IEVVHEMKS-FWSKLLSVKLITQRKEDNLTKA--ERGGLTE
909


WP_048800889
841
IPQAFIKDDSIDNRVLTSSAKNRG-KSDN--VP N--LEVVCDRKA-DWIRLREAGLISQRKEDNLTKA--ERGGLTE
909


WP_012767106
841
VPQSFIKDDSIDNKILTRSDKNRG-KSDN--VP S--EEVVKKMKN-YWRQLLNAKLITQRKEDNLTKA--ERGGLSE
909


WP_014612333
841
VPQSFIKDDSIDNKVLTRSDKNRG-KSDN--VP S--EEVVKKMKN-YWRQLLNAKLITQRKEDNLTKA--ERGGLSE
909


WP_015017095
841
VPQSFIKDDSIDNKVLTRSDKNRG-KSDD--VP S--EEVVKKMKN-YWRQLLNAKLITQRKEDNLTKA--ERGGLSE
909


WP_015057649
841
VPQSFIKDDSIDNKVLTRSDKNRG-KSDN--VP S--EEVVKKMKN-YWRQLLNAKLITQRKEDNLTKA--ERGGLSE
909


WP_048327215
841
VPQSFIKDDSIDNKVLTRSDKNRG-KSDD--VP S--EEVVKKMKN-YWRQLLNAKLITQRKEDNLTKA--ERGGLSE
909


WP_049519324
841
VPQSFIKDDSIDNKVLTRSDKNRG-KSDN--VP S--EEVVKKMKN-YWRQLLNAKLITQRKEDNLTKA--ERGGLSE
909


WP_012515931
841
IPQSFIKNNSIDNKVLTSQGANRG-KLDN--VP S--EAIVRKMKG-YWQSLLRAGAISKQKEDNLTKA--ERGGLIQ
909


WP_021320964
841
IPQSFIKNNSIDNKVLTSQGANRG-KLDN--VP S--EAIVRKMKG-YWQSLLRAGAISKQKEDNLTKA--ERGGLIQ
909


WP_037581760
841
IPQSFIKNNSIDNKVLTSQGANRG-KLDN--VP S--EAIVRKMKG-YWQSLLRAGAISKQKEDNLTKA--ERGGLIQ
909


WP_004232481
849
IPQAFIKDNSIDNRVLTSSAKNRG-KSDD--VP S--IEIVRNRKS-YWYKLYKSGLISKRKEDNLTKA--ERGGLTE
917


WP_009854540
850
IPQAFIKDDSIDNRVLTSSAKNRG-KSDD--VP S--LDIVRARKA-EWVRLYKSGLISKRKEDNLTKA--ERGGLTE
918


WP_012962174
850
IPQAFIKDDSIDNRVLTSSAKNRG-KSDD--VP S--LDIVHDRKA-DWIRLYKSGLISKRKEDNLTKA--ERGGLTE
918


WP_039695303
852
IPQAFIKDDSIDNRVLTSSAKNRG-KSDD--VP S--LDIVRARKA-EWVRLYKSGLISKRKEDNLTKA--ERGGLTE
920


WP_014334983
849
IPQAFIKDNSIDNKVLTSSAKNRG-KSDD--VP S--IEIVRNRRS-YWYKLYKSGLISKRKEDNLTKA--ERGGLTE
917


WP_003099269
842
IPQSFIKDNSIDNIVLITQASNRG-KSDN--VP N--IETVNKMKS-FWYKQLKSGAISQRKFDHLTKA--ERGALSD
910


AHY15608
842
IPQSFIKDNSIDNIVLITQASNRG-KSDN--VP N--IETVNKMKS-FWYKQLKSGAISQRKFDHLTKA--ERGALSD
910


AHY17476
842
IPQSFIKDNSIDNIVLITQASNRG-KSDN--VP N--IETVNKMKS-FWYKQLKSGAISQRKFDHLTKA--ERGALSD
910


ESR09100

--------------------------------- --------------------------------------------



AGM98575
842
IPQSFIKDNSIDNIVLITQASNRG-KSDN--VP N--IETVNKMKS-FWYKQLKSGAISQRKFDHLTKA--ERGALSD
910


ALF27331
842
IPQAFIKDNSIDNRVLTSSKENRG-KSDD--VP S--KDVVRKMKS-YWSKLLSAKLITQRKEDNLTKA--ERGGLTD
910


WP_018372492
858
VPRSYIKNDSFDNKVLITSKGNRK-KLDD--VP A--KEVVEKMEN-TWRRLHAAGLISDIKLSYLMKGe-----LTE
923


WP_045618028
845
IPQAFIKDDSLDNRVLTSSKDNRG-KSDN--VP S--LEIVQKRKA-FWQQLLDSKLISERKENNLTKA--ERGGLDE
913


WP_045635197
844
IPQAFIKDDSLDNRVLTSSKDNRG-KSDN--VP S--IEVVQKRKA-FWQQLLDSKLISERKENNLTKA--ERGGLDE
912


WP_002263549
842
IPQAFIKDNSIDNRVLTSSKENRG-KSDD--VP S--KDVVRKMKS-YWSKLLSAKLITQRKEDNLTKA--ERGGLTD
910


WP_002263887
842
IPQAFIKDNSIDNRVLTSSKENRG-KSDD--VP S--KDVVRKMKS-YWSKLLSAKLITQRKEDNLTKA--ERGGLTD
910


WP_002264920
842
IPQAFIKDNSIDNRVLTSSKENRG-KSDD--VP S--KDVVRKMKS-YWSKLLSAKLITQRKEDNLTKG--ERGGLTD
910


WP_002269043
842
IPQAFIKDNSIDNRVLTSSKENRG-KSDD--VP S--KDVVRKMKS-YWSKLLSAKLITQRKEDNLTKA--ERGGLTD
910


WP_002269448
842
IPQAFIKDNSIDNRVLTSSKENRG-KSDD--VP S--EDVVRKMKS-YWSKLLSAKLITQRKEDNLTKA--ERGGLTD
910


WP_002271977
842
IPQAFIKDNSIDNRVLTSSKENRG-KSDD--VP S--KDVVRKMKS-YWSKLLSAKLITQRKEDNLTKA--ERGGLTD
910


WP_002272766
842
IPQAFIKDNSIDNRVLTSSKENRG-KSDD--VP S--KDVVRKMKP-YWSKLLSAKLITQRKEDNLTKA--ERGGLTD
910


WP_002273241
842
IPQAFIKDNSIDNRVLTSSKENRG-KSDD--VP S--KDVVRKMKS-YWSKLLSAKLITQRKEDNLTKA--ERGGLTD
910


WP_002275430
842
IPQAFIKDNSIDNRVLTSSKENRG-KSDD--VP S--KDVVRKMKP-YWSKLLSAKLITQRKEDNLTKA--ERGGLTD
910


WP_002276448
842
IPQAFIKDNSIDNRVLTSSKENRG-KSDD--VP S--KDVVRKMKS-YWSKLLSAKLITQRKEDNLTKA--ERGGLTD
910


WP_002277050
847
IPQAFIKDNSIDNRVLTSSKANRG-KSDD--VP S--EDVVNRMRP-FWNKLLSSGLISQRKYNNLTKK--E---LTP
912


WP_002277364
842
IPQAFIKDNSIDNRVLTSSKENRG-KSDD--VP S--KNVVRKMKS-YWSKLLSAKLITQRKEDNLTKA--ERGGLTD
910


WP_002279025
842
IPQAFIKDNSIDNRVLTSSKENRG-KSDD--VP S--KDVVRKMKP-YWSKLLSAKLITQRKEDNLTKA--ERGGLTD
910


WP_002279859
842
IPQAFIKDNSIDNRVLTSSKENRG-KSDD--VP S--KDVVRKMKS-YWSKLLSAKLITQRKEDNLTKG--ERGGLTD
910


WP_002280230
842
IPQAFIKDNSIDNRVLTSSKENRG-KSDD--VP S--KDVVRKMKS-YWSKLLSAKLITQRKEDNLTKA--ERGGLTD
910


WP_002281696
842
IPQAFIKDNSIDNRVLTSSKENRG-KSDD--VP S--KNVVRKMKS-YWSKLLSAKLITQRKEDNLTKA--ERGGLTD
910


WP_002282247
847
IPQAFIKDNSIDNRVLTSSKANRG-KSDD--VP S--EDVVNRMRP-FWNKLLSSGLISQRKYNNLTKK--E---LTL
912


WP_002282906
842
IPQAFIKDNSIDNRVLTSSKENRG-KSDD--VP S--KDVVRKMKS-YWSKLLSAKLITQRKEDNLTKA--ERGGLTD
910


WP_002283846
842
IPQAFIKDNSIDNRVLTSSKENRG-KSDD--VP S--KNVVRKMKS-YWSKLLSAKLITQRKEDNLTKA--ERGGLTD
910


WP_002287255
842
IPQAFIKDNSIDNRVLTSSKENRG-KSDD--VP S--KNVVRKMKS-YWSKLLSAKLITQRKEDNLTKA--ERGGLTD
910


WP_002288990
842
IPQAFIKDNSIDNRVLTSSKENRG-KSDD--VP S--KDVVRKMKS-YWSKLLSAKLITQRKEDNLTKA--ERGGLTD
910


WP_002289641
842
IPQAFIKDNSIDNRVLTSSKENRG-KSDD--VP S--KDVVRKMKS-YWSKLLSAKLITQRKEDNLTKA--ERGGLTD
910


WP_002290427
842
IPQAFIKDNSIDNRVLTSSKENRG-KSDD--VP S--KDVVRKMKS-YWSKLLSAKLITQRKEDNLTKG--ERGGLTD
910


WP_002295753
842
IPQAFIKDNSIDNRVLTSSKENRG-KSDD--VP S--KDVVRKMKS-YWSKLLSAKLITQRKEDNLTKA--ERGGLTD
910


WP_002296423
842
IPQAFIKDNSIDNRVLTSSKENRG-KSDD--VP S--KNVVRKMKS-YWSKLLSAKLITQRKEDNLTKA--ERGGLTD
910


WP_002304487
856
IPQAFIKDNSIDNRVLTRSDKNRG-KSDD--VP S--EEVVHKMKP-FWSKLLSAKLITQRKEDNLTKA--ERGGLTD
924


WP_002305844
842
IPQAFIKDNSIDNRVLTSSKENRG-KSDD--VP S--KDVVRKMKS-YWSKLLSAKLITQRKEDNLTKA--ERGGLTD
910


WP_002307203
842
IPQAFIKDNSIDNRVLTSSKENRG-KSDD--VP S--KDVVRKMKS-YWSKLLSAKLITQRKEDNLTKA--ERGGLTD
910


WP_002310390
842
IPQAFIKDNSIDNRVLTSSKENRG-KSDD--VP S--KDVVRKMKS-YWSKLLSAKLITQRKEDNLTKG--ERGGLTD
910


WP_002352408
842
IPQAFIKDNSIDNRVLTSSKENRG-KSDD--VP S--KDVVRKMKS-YWSKLLSAKLITQRKEDNLTKA--ERGGLTD
910


WP_012997688
842
IPQAFIKDNSIDNRVLTSSKENRG-KSDD--VP S--KNVVRKMKS-YWSKLLSAKLITQRKEDNLTKA--ERGGLTD
910


WP_014677909
842
IPQAFIKDNSIDNRVLTSSKENRG-KSDD--VP S--KDVVRKMKS-YWSKLLSAKLITQRKEDNLTKA--ERGGLTD
910


WP_019312892
842
IPQAFIKDNSIDNRVLTSSKENRG-KSDD--VP S--KNVVRKMKS-YWSKLLSAKLITQRKEDNLTKA--ERGGLTD
910


WP_019313659
842
IPQAFIKDNSIDNRVLTSSKENRG-KSDD--VP S--KDVVRKMKS-YWSKLLSAKLITQRKEDNLTKA--ERGGLTD
910


WP_019314093
842
IPQAFIKDNSIDNRVLTSSKENRG-KSDD--VP S--KDVVRKMKS-YWSKLLSAKLITQRKEDNLTKA--ERGGLTD
910


WP_019315370
842
IPQAFIKDNSIDNRVLTSSKENRG-KSDD--VP S--KDVVRKMKP-YWSKLLSAKLITQRKEDNLTKA--ERGGLTD
910


WP_019803776
842
IPQAFIKDNSIDNRVLTSSKENRG-KSDD--VP S--KDVVRKMKS-YWSKLLSAKLITQRKEDNLTKA--ERGGLTD
910


WP_019805234
842
IPQAFIKDNSIDNRVLTSSKENRG-KSDD--VP S--KDVVRKMKS-YWSKLLSAKLITQRKEDNLTKG--ERGGLTD
910


WP_024783594
842
IPQAFIKDNSIDNRVLTSSKENRG-KSDD--VP S--KDVVRKMKS-YWSKLLSAKLITQRKEDNLTKA--ERGGLTD
910


WP_024784288
847
IPQAFIKDNSIDNRVLTSSKANRG-KSDD--VP S--EDVVNRMRP-FWNKLLSSGLISQRKYNNLTKK--E---LTL
912


WP_024784666
842
IPQAFIKDNSIDNRVLTSSKENRG-KSDD--VP S--KNVVRKMKS-YWSKLLSAKLITQRKEDNLTKA--ERGGLTD
910


WP_024784894
842
IPQAFIKDNSIDNRVLTSSKENRG-KSDD--VP S--KDVVRKMKS-YWSKLLSAKLITQRKEDNLTKA--ERGGLTD
910


WP_024786433
847
IPQAFIKDNSIDNRVLTSSKANRG-KSDD--VP S--EDVVNRMRP-FWNKLLSSGLISQRKYNNLTKK--E---LTL
912


WP_049473442
842
IPQAFIKDNSIDNRVLISSKENRG-KSDD--VP S--KDVVRKMKP-YWSKLLSAKLITQRKFDNLTKA--ERGGLTD
910


WP_049474547
842
IPQAFIKDNSIDNRVLISSKENRG-KSDD--VP S--KDVVRKMKS-YWSKLLSAKLITQRKFDNLTKA--ERGGLTD
910


EMC03581
835
IPQAFIKDNSIDNRVLISSKENRG-KSDD--VP S--KNVVRKMKS-YWSKLLSAKLITQRKFDNLTKA--ERGGLTD
903


WP_000428612
847
VPQAFIKDDSLDNRVLISLKDNRG-KSDN--VP S--LEVVEKMKT-FWQQLLDSKLISYRKFNNLTKA--ERGGLDE
915


WP_000428613
845
VPQAFIKDDSLDNRVLISLKDNRG-KSDN--VP S--IEVVQKRKA-FWQQLLDSKLISERKFNNLTKA--ERGGLDE
913


WP_049523028
840
IPQAFIKDDSLDNRVLISSKDNRG-KSDN--VP S--LEIVEKMKG-FWQQLLDSKLISERKFNNLTKA--ERGGLDE
908


WP_003107102
811
IPQSFIKDNSIDNIVLISQESNRG-KSDN--VP Y--IAIVNKMKS-YWQHQLKSGAISQRKFDNLTKA--ERGGLSE
879


WP_054279288
843
IPRSFIKDDSIDNKVLIRSEHNRG-KIDN--VP S--IEVVKRMKP-YWQKLLDTKVISQRKEDNLTKA--ERGGLQE
911


WP_049531101
845
IPQAFIKDDSLDNRVLISSKDNRG-KSDN--VP S--LEVVQKRKA-FWQQLLESKLISERKFNNLTKA--ERGGLNE
913


WP_049538452
845
IPQAFIKDDSLDNRVLISSKENRG-KSDN--VP C--LEVVDKMKV-FWQQLLDFKLISYRKFNNLTKA--ERGGLDE
913


WP_049549711
845
IPQAFIKDDSLDNRVLISSKDNRG-KSDN--VP S--LEVVQKRKA-FWQQLLDSKLISERKFNNLTKAerERDGLNE
915


WP_007896501
847
IPQSFIKDNSIDNLVLITQKANRG-KSDN--VP S--IEVVRDMKDrVWRRQLANGAISRQKFDHLTKA--ERGGLAD
916


EFR44625
799
IPQSFIKDNSIDNLVLITQKANRG-KSDN--VP S--IEVVRDMKDrVWRRQLANGAISRQKFDHLTKA--ERGGLAD
868


WP_002897477
844
IPQAFIKDDSIDNRVLISSKDNRG-KSDN--VP S--LEVVQKRKA-FWQQLLDSKLISERKFNNLTKA--ERGGLDE
912


WP_002906454
844
IPQAFIKDDSLDNRVLISSKDNRG-KSDN--VP S--IEVVQKRKA-FWQQLLDSKLISERKFNNLTKA--KRGGLDE
912


WP_009729476
845
IPQAFIKDDSLDNRVLISSKDNRG-KSDN--VP S--LEVVDKMKV-FWQQLLDSKLISYRKFNNLTKA--ERGGLNE
913


CQR24647
844
IPQSFIKDNSLDNRVLINSKSNRG-KSDN--VP S--NEVVKRMKG-FWLKQLDAKLISQRKEDNLTKA--ERGGLSA
912


WP_000066813
847
IPQAFIKDDSLDNRVLISSKDNRG-KSDN--VP S--LEVVEKMKA-FWQQLLDSKLISERKFNNLTKAerERGGLNE
917


WP_009754323
845
IPQAFIKDDSLDNRVLISSKDNRG-KSDN--VP S--LEVVKKRKA-FWQQLLDSKLISERKFNNLTKA--ERGGLDE
913


WP_044674937
844
IPQAFIKDDSLDNKVLIKSAKNRG-KSDD--VP S--LEIVHKKKN-FWKQLLDSQLISQRKFDNLTKA--ERGGLTN
912


WP_044676715
846
IPQAFIKDDSLDNKVLIKSAKNRG-KSDD--VP S--LEIVHKKKN-FWKQLLDSQLISQRKFDNLTKA--ERGGLTN
914


WP_044680361
846
IPQAFIKDDSLDNKVLIKSAKNRG-KSDD--VP S--LEIVHKKKN-FWKQLLDSQLISQRKFDNLTKA--ERGGLTN
914


WP_044681799
844
IPQAFIKDDSLDNKVLIKSAKNRG-KSDD--VP S--LEIVHKKKN-FWKQLLDSQLISQRKFDNLTKA--ERGGLTN
912


WP_049533112
841
IPQAFIKDDSFDNRVLISSSENRG-KSDN--VP S--IEVVRARKA-DWMRLRKAGLISQRKEDNLTKA--ERGGLTE
909


WP_029090905
824
LPQSYIKDNSIENLALVKKVENQR-KKDSllLN S---SIINQNYS-RWEQLKNAGLIGEKKFRNLTRTk-----ITD
890


WP_006506696
850
VPQSLVKDDSEDNRVLVVPSENQR-KLDDlvVP ---FDIRDKMYR-FWKLLFDHELISPKKFYSLTKTe-----YTE
916


AIT42264
842
VPQSFLKDDSIDNKVLIRSDKNRG-KSDN--VP S--EEVVKKMKN-YWRQLLNAKLITQRKFDNLTKA--ERGGLSE
910


WP_034440723
849
IPRSFITDNSFDNLVLISSIVNRG-KLDN--VP Sp--DIVRQQKG-FWKQLLRAGLMSQRKENNLTKGk-----LTD
914


AKQ21048
842
VPQSFLKDDSIDNKVLIRSDKNRG-KSDN--VP S--EEVVKKMKN-YWRQLLNAKLITQRKFDNLTKA--ERGGLSE
910


WP_004636532
846
IPQSFTIDNSIDNKVLVSRTKNQGnKSDD--VP S--INIVHKMKP-FWRQLHKAGLISDRKFKNLTKA--EHGGLTE
915


WP_002364836
853
IPQSFMKDDSLDNLVLVGSTENRG-KSDD--VP S--KEVVKDMKA-YWEKLYAAGLISQRKFQRLTKG--EQGGLTL
921


WP_016631044
804
IPQSFMKDDSLDNLVLVGSTENRG-KSDD--VP S--KEVVKDMKA-YWEKLYAAGLISQRKFQRLTKG--EQGGLTL
872


EMS75795
589
IPRSFIVDNSIDNKVLVSSKENRL-KMDD--VP D--QKVVIRMRR-YWEKLLRANLISERKFAYLTKLe-----LTP
654


WP_002373311
853
IPQSFMKDDSLDNLVLVGSTENRG-KSDD--VP S--KKVVKKMKA-YWEKLYAAGLISQRKFQRLTKG--EQGGLTL
921


WP_002378009
853
IPQSFMKDDSLDNLVLVGSTENRG-KSDD--VP S--KEVVKDMKA-YWEKLYAAGLISQRKFQRLTKG--EQGGLTL
921


WP_002407324
853
IPQSFMKDDSLDNLVLVGSTENRG-KSDD--VP S--KEVVKDMKA-YWEKLYAAGLISQRKFQRLTKG--EQGGLTL
921


WP_002413717
853
IPQSFMKDDSLDNLVLVGSTENRG-KSDD--VP S--KEVVKDMKA-YWEKLYAAGLISQRKFQRLTKG--EQGGLTL
921


WP_010775580
855
IPQSFMKDDSLDNLVLVGSTENRG-KSDD--VP S--KEVVKKMKA-YWEKLYAAGLISQRKFQRLTKG--EQGGLTL
923


WP_010818269
853
IPQSFMKDDSLDNLVLVGSTENRG-KSDD--VP S--KEVVKDMKA-YWEKLYAAGLISQRKFQRLTKG--EQGGLTL
921


WP_010824395
853
IPQSFMKDDSLDNLVLVGSTENRG-KSDD--VP S--KEVVKDMKA-YWEKLYAAGLISQRKFQRLTKG--EQGGLTL
921


WP_016622645
853
IPQSFMKDDSLDNLVLVGSTENRG-KSDD--VP S--KEVVKDMKA-YWEKLYAAGLISQRKFQRLTKG--EQGGLTL
921


WP_033624816
853
IPQSFMKDDSLDNLVLVGSTENRG-KSDD--VP S--KEVVKKMKA-YWEKLYAAGLISQRKFQRLTKG--EQGGLTL
921


WP_033625576
853
IPQSFMKDDSLDNLVLVGSTENRG-KSDD--VP S--KEVVKKMKA-YWEKLYAAGLISQRKFQRLTKG--EQGGLTL
921


WP_033789179
853
IPQSFMKDDSLDNLVLVGSTENRG-KSDD--VP S--KEVVKKMKA-YWEKLYAAGLISQRKFQRLTKG--EQGGLTL
921


WP_002310644
853
IPRSFTIDNSIDNKVLVSSKENRL-KKDD--VP S--EKVVKKMRS-FWYDLYSSKLISKRKLDNLTKIk-----LTE
918


WP_002312694
854
IPRSFTIDNSIDNKVLVSSKENRL-KKDD--VP S--EKVVKKMRS-FWYDLYSSKLISKRKLDNLTKIk-----LTE
919


WP_002314015
854
IPRSFTIDNSIDNKVLVSSKENRL-KKDD--VP S--EKVVKKMRS-FWYDLYSSKLISKRKLDNLTKIk-----LTE
919


WP_002320716
854
IPRSFTIDNSIDNKVLVSSKENRL-KKDD--VP S--EKVVKKMRS-FWYDLYSSKLISKRKLDNLTKIk-----LTE
919


WP_002330729
853
IPRSFTIDNSIDNKVLVSSKENRL-KKDD--VP S--EKVVKKMRS-FWYDLYSSKLISKRKLDNLTKIk-----LTE
918


WP_002335161
854
IPRSFTIDNSIDNKVLVSSKENRL-KKDD--VP S--EKVVKKMRS-FWYDLYSSKLISKRKLDNLTKIk-----LTE
919


WP_002345439
854
IPRSFTIDNSIDNKVLVSSKENRL-KKDD--VP S--EKVVKKMRS-FWYDLYSSKLISKRKLDNLTKIk-----LTE
919


WP_034867970
845
IPRSFIVDNSIDDKVLVASKQNQK-KRDD--VP K--KQIVNEQRI-FWNQLKEAKLISTKKYAYLTKIe-----LTP
910


WP_047937432
854
IPRSFTIDNSIDNKVLVSSKENRL-KKDD--VP S--EKVVKKMRS-FWYDLYSSKLISKRKLDNLTKIk-----LTE
919


WP_010720994
845
IPRSFIVDNSIDNKVLVASKQNQK-KRDD--VP K--KQIVNEQRI-FWNQLKEAKLISPKKYAYLTKIe-----LTP
910


WP_010737004
845
IPRSFIVDNSIDNKVLVASKQNQK-KRDD--VP K--KQIVNEQRI-FWNQLKEAKLISPKKYAYLTKIe-----LTP
910


WP_034700478
845
IPRSFIVDNSIDNKVLVASKQNQK-KRDD--VP N--KQIVNEQRI-FWNQLKEAKLISPKKYAYLTKIe-----LTP
910


WP_007209003
846
IPQSFLIDNSIDNRVLITSKSNRG-KSDN--VP S--EEVVRKMDR-FWRKLLNAKLISERKYTNLTKKe-----LTE
911


WP_023519017
839
IPRSFIVDNSLDNKVLVSSKVNRG-KLDN--AP D--PLVVKRMRS-HWEKLHQAKLISDKKLANLTKQn-----LTE
904


WP_010770040
846
VPQSFTTDNSLDNRVLVSSKENRG-KKDD--VP S--KEVVQKNIT-LWETLKNSNLISQKKYDNLTKG--LRGGLTE
914


WP_048604708
843
IPQSFIVDNSLDNRVLVSSSKNRG-KLDD--VP S--KEVVKKMRA-FWESLYRSGLISKKKEDNLVKA--ESGGLSE
911


WP_010750235
848
IPRSFIVDHSLDNKVLVSSKENRL-KKDD--VP D--SKVVKRMKA-YWEKLLRANLISERKESYLIKLe-----LTD
913


AII16583
881
VPQSFLKDDSIDNKVLIRSDKNRG-KSDN--VP S--EEVVKKMKN-YWRQLLNAKLITQRKEDNLTKA--ERGGLSE
949


WP_029073316
861
VPQSLLKDDSIDNKVLVLSSENQR-KLDDlvIP ---EMIRNKMFG-FWNKLYENKIISPKKFYSLIKSe-----YSD
927


WP_031589969
861
VPQSLLKDDSIDNKVLVLSSENQR-KLDDlvIP ---SSIRNKMYG-FWEKLENNKIISPKKFYSLIKTe-----FNE
927


KDA45870
834
IPQSFLKDDSIENKVLTIKKENVR-KTNG--LP S--EAVIQKMGS-FWKKLLDAGAMTNKKYDNLRRNl--HGGLNE
902


WP_039099354
857
LPQSFIKDNSLDNRVLVSQRMNRS-KADQ--VP S--VELGQKMQI-QWEQMLRAGLITKKKYDNLTLNp--------
923


AKP02966
859
LPRTYIPDDSLENKALVLAKENQR-KADDllLN S---NVIDKNLE-RWTYMLNNNMMGLKKEKNLTRRv-----ITD
925


WP_010991369
845
VPQSFITDNSIDNLVLISSAGNRE-KGDD--VP P--LEIVRKRKV-FWEKLYQGNLMSKRKFDYLTKA--ERGGLTE
913


WP_033838504
845
VPQSFITDNSIDNLVLISSAGNRE-KGDD--VP P--LEIVRKRKV-FWEKLYQGNLMSKRKFDYLTKA--ERGGLTE
913


EHN60060
848
VPQSFITDNSIDNLVLISSAGNRE-KGDD--VP P--LEIVRKRKV-FWEKLYQGNLMSKRKFDYLTKA--ERGGLTE
916


EFR89594
614
VPQSFITDNSIDNLVLISSAGNRE-KGND--VP P--LEIVQKRKV-FWEKLYQGNLMSKRKFDYLTKA--ERGGLTE
682


WP_038409211
845
IPQSFITDNSIDNRVLVSSTANRE-KGDN--VP L--LEVVRKRKA-FWEKLYQAKLMSKRKFDYLTKA--ERGGLTE
913


EFR95520
464
IPQSFITDNSIDNRVLVSSTANRE-KGDN--VP L--LEVVRKRKA-FWEKLYQAKLMSKRKFDYLTKA--ERGGLTE
532


WP_003723650
845
VPQSFITDNSIDNLVLISSAGNRE-KGGD--VP P--LEIVRKRKV-FWEKLYQGNLMSKRKFDYLTKA--ERGGLTE
913


WP_003727705
845
VPQSFITDNSIDNLVLISSAGNRE-KGGD--VP P--LEIVRKRKV-FWEKLYQGNLMSKRKFDYLTKA--ERGGLTE
913


WP_003730785
845
VPQSFITDNSIDNLVLISSAGNRE-KGGD--VP P--LEIVRKRKV-FWEKLYQGNLMSKRKFDYLTKA--ERGGLTE
913


WP_003733029
845
VPQSFITDNSVDNLVLISSAGNRE-KGDN--VP P--LEIVQKRKI-FWEKLYQGNLMSKRKFDYLTKA--ERGGLTE
913


WP_003739838
845
VPQSFITDNSIDNLVLISSAGNRE-KGDD--VP P--LEIVRKRKV-FWEKLFQGNLMSKRKFDYLTKA--ERGGLTE
913


WP_014601172
845
VPQSFITDNSIDNLVLTSSAGNRE-KGGD--VP P--LEIVRKRKV-FWEKLYQGNLMSKRKFDYLTKA--ERGGLTD
913


WP_023548323
845
VPQSFITDNSIDNLVLTSSAGNRE-KGDN--VP P--LEIVQKRKI-FWEKLYQGNLMSKRKFDYLTKA--ERGGLTE
913


WP_031665337
845
VPQSFITDNSIDNLVLTSSAGNRE-KGGD--VP P--LEIVRKRKV-FWEKLYQGNLMSKRKFDYLTKA--ERGGLTE
913


WP_031669209
845
VPQSFITDNSVDNLVLTSSAGNRE-KGDN--VP P--LEIVQKRKI-FWEKLYQGNLMSKRKFDYLTKA--ERGGLTE
913


WP_033920898
845
VPQSFITDNSIDNLVLTSSAGNRE-KGDN--VP P--LEIVQKRKI-FWEKLYQGNLMSKRKFDYLTKA--ERGGLTE
913


AKI42028
848
VPQSFITDNSIDNLVLTSSAGNRE-KGGD--VP P--LEIVRKRKV-FWEKLYQGNLMSKRKFDYLTKA--ERGGLTD
916


AKI50529
848
VPQSFITDNSIDNLVLTSSAGNRE-KGDN--VP P--LEIVQKRKI-FWEKLYQGNLMSKRKFDYLTKA--ERGGLTE
916


EFR83390
293
VPQSFITDNSIDNLVLTSSAGNRE-KGDD--VP P--LEIVRKRKV-FWEKLYQGNLMSKRKFDYLTKA--ERGGLTE
361


WP_046323366
845
VPQSFITDNSIDNRVLASSAANRE-KGDN--VP S--LEVVRKRKV-YWEKLYQAKLMSKRKFDYLTKA--ERGGLTE
913


AKE81011
858
VPQSFLKDDSIDNKVLTRSDKNRG-KSDN--VP S--EEVVKKMKN-YWRQLLNAKLITQRKFDNLTKA--ERGGLSE
926


CUO82355
854
VPQSLVKDDSEDNRVLVLPSENQR-KLDDlvVP ---FDIRDKMYR-FWKLLFDHELISPKKFYSLIKTe-----YTE
920


WP_033162887
856
LPQSLIKDDSFDNRVLVLPEENQW-KLDSetVP ---FEIRNKMIG-FWQMLHENGLMSNKKFFSLIRTd-----FSD
922


AGZ01981
875
VPQSFLKDDSIDNKVLTRSDKNRG-KSDN--VP S--EEVVKKMKN-YWRQLLNAKLITQRKFDNLTKA--ERGGLSE
943


AKA60242
842
VPQSFLKDDSIDNKVLTRSDKNRG-KSDN--VP S--EEVVKKMKN-YWRQLLNAKLITQRKFDNLTKA--ERGGLSE
910


AKS40380
842
VPQSFLKDDSIDNKVLTRSDKNRG-KSDN--VP S--EEVVKKMKN-YWRQLLNAKLITQRKFDNLTKA--ERGGLSE
910


4UN5_B
846
VPQSFLKDDSIDNKVLTRSDKNRG-KSDN--VP S--EEVVKKMKN-YWRQLLNAKLITQRKFDNLTKA--ERGGLSE
914


WP_010922251
911


embedded image


981


WP_039695303
921
AD KAGFIKRQLVETRQITKHVAQILDARFNTEHDENDKVIR--DVKVITLKSNLVSQFRKDF EFYKVREINDY
991


WP_045635197
913
RD KVGFIKRQLVETRQITKHVAQILDARYNTEVNEKDKKNR--TVKIITLKSNLVSNFRKEF RLYKVREINDY
983


5AXW_A
633
RD QKDFINRNLVDTRYATRGLMNLLRSYFR---------VNnlDVKVKSINGGFTSFLRRKW KFKKERNKGYK
702


WP_009880683
595
LD KAGFIKRQLVETRQITKHVAQILDSRMNIKYDENDKLIR--EVRVITLKSKLVSDFRKDF QFYKVREINNY
665


WP_010922251
911
LD KAGFIKRQLVETRQITKHVAQILDSRMNIKYDENDKLIR--EVKVITLKSKLVSDFRKDF QFYKVREINNY
981


WP_011054416
911
LD KVGFIKRQLVETRQITKHVAQILDSRMNIKYDENDKLIR--EVRVITLKSKLVSDFRKDF QFYKVREINNY
981


WP_011284745
911
LD KAGFIKRQLVETRQITKHVAQILDSRMNIKYDENDKLIR--EVKVITLKSKLVSDFRKDF QFYKVREINNY
981


WP_011285506
911
LD KAGFIKRQLVETRQITKHVAQILDSRMNIKYDENDKLIR--EVKVITLKSKLVSDFRKDF QFYKVREINNY
981


WP_011527619
911
LD KAGFIKRQLVETRQITKHVAQILDSRMNIKYDENDKLIR--EVKVITLKSKLVSDFRKDF QFYKVREINNY
981


WP_012560673
911
LD KAGFIKRQLVETRQITKHVAQILDSRMNIKYDENDKLIR--EVRVITLKSKLVSDFRKDF QFYKVREINNY
981


WP_014407541
910
LD KAGFIKRQLVETRQITKHVAQILDSRMNIKYDENDKLIR--EVKVITLKSKLVSDFRKDF QFYKVREINNY
980


WP_020905136
911
LD KAGFIKRQLVETRQITKHVAQILDSRMNIKYDENDKLIR--EVKVITLKSKLVSDFRKDF QFYKVREINNY
981


WP_023080005
910
LD KAGFIKRQLVETRQITKHVAQILDSRMNIKYDENDKLIR--EVKVITLKSKLVSDFRKDF QFYKVREINNY
980


WP_023610282
910
LD KAGFIKRQLVETRQITKHVAQILDSRMNIKYDENDKLIR--EVKVITLKSKLVSDFRKDF QFYKVREINNY
980


WP_030125963
911
LD KAGFIKRQLVETRQITKHVAQILDSRMNIKYDENDKLIR--EVKVITLKSKLVSDFRKDF QFYKVREINNY
981


WP_030126706
911
LD KAGFIKRQLVETRQITKHVAQILDSRMNIKYDENDKLIR--EVKVITLKSKLVSDFRKDF QFYKVREINNY
981


WP_031488318
911
LD KAGFIKRQLVETRQITKHVAQILDSRMNIKYDENDKLIR--EVKVITLKSKLVSDFRKDF QFYKVREINNY
981


WP_032460140
911
LD KAGFIKRQLVETRQITKHVAQILDSRMNIKYDENDKLIR--EVRVITLKSKLVSDFRKDF QFYKVREINNY
981


WP_032461047
911
LD KAGFIKRQLVETRQITKHVAQILDSRMNIKYDENDKLIR--EVRVITLKSKLVSDFRKDF QFYKVREINNY
981


WP_032462016
911
LD KAGFIKRQLVETRQITKHVAQILDSRMNIKYDENDKLIR--EVKVITLKSKLVSDFRKDF QFYKVREINNY
981


WP_032462936
911
LD KAGFIKRQLVETRQITKHVAQILDSRMNIKYDENDKLIR--EVRVITLKSKLVSDFRKDF QFYKVREINNY
981


WP_032464890
911
LD KAGFIKRQLVETRQITKHVAQILDSRMNIKYDENDKLIR--EVKVITLKSKLVSDFRKDF QFYKVREINNY
981


WP_033888930
736
LD KAGFIKRQLVETRQITKHVAQILDSRMNIKYDENDKLIR--EVKVITLKSKLVSDFRKDF QFYKVREINNY
806


WP_038431314
911
LD KAGFIKRQLVETRQITKHVAQILDSRMNIKYDENDKLIR--EVKVITLKSKLVSDFRKDF QFYKVREINNY
981


WP_038432938
910
LD KAGFIKRQLVETRQITKHVAQILDSRMNIKYDENDKLIR--EVKVITLKSKLVSDFRKDF QFYKVREINNY
980


WP_038434062
911
LD KAGFIKRQLVETRQITKHVAQILDSRMNIKYDENDKLIR--EVKVITLKSKLVSDFRKDF QFYKVREINNY
981


BAQ51233
822
LD KAGFIKRQLVETRQITKHVAQILDSRMNIKYDENDKLIR--EVKVITLKSKLVSDFRKDF QFYKVREINNY
892


KGE60162
86
LD KVGFIKRQLVETRQITKHVAQILDSRMNIKYDENDKLIR--EVRVITLKSKLVSDFRKDF QFYKVREINNY
156


KGE60856

-- ------------------------------------------------------------ -----------



WP_002989955
911
LD KAGFIKRQLVETRQITKHVAQILDSRMNIKYDENDKLIR--EVKVITLKSKLVSDFRKDF QFYKVREINNY
981


WP_003030002
910
ED KAGFIKRQLVETRQITKHVAQILDERFNIEFDGNKRRIR--NVKIITLKSNLVSNFRKEF ELYKVREINDY
980


WP_003065552
921
AD KAGFIKRQLVETRQITKHVAQILDARFNTESDENDKVIR--DVKVITLKSNLVSQFRKDF EFYKVREINDY
991


WP_001040076
916
DD KARFIQRQLVETRQITKHVARILDERFNNELDSKGRRIR--KVKIVTLKSNLVSNFRKEF VFYKIREVNNY
986


WP_001040078
916
DD KARFIQRQLVETRQITKHVARILDERFNNELDSKGRRIR--KVKIVTLKSNLVSNFRKEF GFYKIREVNDY
986


WP_001040080
916
DD KARFIQRQLVETRQITKHVARILDERFNNELDSKGRRIR--KVKIVTLKSNLVSNFRKEF GFYKIREVNNY
986


WP_001040081
916
DD KARFIQRQLVETRQITKHVARILDERFNNELDSKGRRIR--KVKIVTLKSNLVSNFRKEF GFYKIREVNNY
986


WP_001040083
916
DD KARFIQRQLVETRQITKHVARILDERFNNELDSKGRRIR--KVKIVTLKSNLVSNFRKEF GFYKIREVNNY
986


WP_001040085
916
DD KARFIQRQLVETRQITKHVARILDERFNNELDSKGRRIR--KVKIVTLKSNLVSNFRKEF GFYKIREVNNY
986


WP_001040087
916
DD KARFIQRQLVETRQITKHVARILDERFNNELDSKGRRIR--KVKIVTLKSNLVSNFRKEF GFYKIREVNNY
986


WP_001040088
916
DD KARFIQRQLVETRQITKHVARILDERFNNELDSKGRRIR--KVKIVTLKSNLVSNFRKEF GFYKIREVNNY
986


WP_001040089
916
DD KARFIQRQLVETRQITKHVARILDERFNNELDSKGRRIR--KVKIVTLKSNLVSNFRKEF GFYKIREVNNY
986


WP_001040090
916
DD KARFIQRQLVETRQITKHVARILDERFNNELDSKGRRIR--KVKIVTLKSNLVSNFRKEF GFYKIREVNNY
986


WP_001040091
916
DD KARFIQRQLVETRQITKHVARILDERFNNELDSKGRRIR--KVKIVTLKSNLVSNFRKEF GFYKIREVNNY
986


WP_001040092
916
DD KAGFIQRQLVETRQITKHVARILDERFNNKVDDNNKPIR--KVKIVTLKSNLVSNFRKEF GFYKIREVNNY
986


WP_001040094
916
DD KARFIQRQLVETRQITKHVARILDERFNNELDSKGRRIR--KVKIVTLKSNLVSNFRKEF GFYKIREVNNY
986


WP_001040095
916
DD KARFIQRQLVETRQITKHVARILDERFNNELDSKGRRIR--KVKIVTLKSNLVSNFRKEF GFYKIREVNNY
986


WP_001040096
916
DD KARFIQRQLVETRQITKHVARILDERFNNELDSKGRRIR--KVKIVTLKSNLVSNFRKEF GFYKIREVNNY
986


WP_001040097
916
DD KARFIQRQLVETRQITKHVARILDERFNNELDSKGRRIR--KVKIVTLKSNLVSNFRKEF GFYKIREVNNY
986


WP_001040098
916
DD KARFIQRQLVETRQITKHVARILDERFNNELDSKGRRIR--KVKIVTLKSNLVSNFRKEF GFYKIREVNNY
986


WP_001040099
916
DD KARFIQRQLVETRQITKHVARILDERFNNELDSKGRRIR--KVKIVTLKSNLVSNFRKEF GFYKIREVNNY
986


WP_001040100
916
DD KARFIQRQLVETRQITKHVARILDERFNNELDSKGRRIR--KVKIVTLKSNLVSNFRKEF GFYKIREVNNY
986


WP_001040104
916
DD KARFIQRQLVETRQITKHVARILDERFNNELDSKGRRIR--KVKIVTLKSNLVSNFRKEF GFYKIREVNNY
986


WP_001040105
916
DD KARFIQRQLVETRQITKHVARILDERFNNELDSKGRRIR--KVKIVTLKSNLVSNFRKEF GFYKIREVNNY
986


WP_001040106
916
DD KARFIQRQLVETRQITKHVARILDERFNNELDSKGRRIR--KVKIVTLKSNLVSNFRKEF GFYKIREVNDY
986


WP_001040107
916
DD KARFIQRQLVETRQITKHVARILDERFNNELDSKGRRIR--KVKIVTLKSNLVSNFRKEF GFYKIREVNDY
986


WP_001040108
916
DD KARFIQRQLVETRQITKHVARILDERFNNELDSKGRRIR--KVKIVTLKSNLVSNFRKEF GFYKIREVNDY
986


WP_001040109
916
DD KARFIQRQLVETRQITKHVARILDERFNNELDSKGRRIR--KVKIVTLKSNLVSNFRKEF GFYKIREVNDY
986


WP_001040110
916
DD KARFIQRQLVETRQITKHVARILDERFNNELDSKGRRIR--KVKIVTLKSNLVSNFRKEF GFYKIREVNDY
986


WP_015058523
916
DD KAGFIQRQLVETRQITKHVARILDERFNNKVDDNNKPIR--KVKIVTLKSNLVSNFRKEF GFYKIREVNNY
986


WP_017643650
916
DD KARFIQRQLVETRQITKHVARILDERFNNELDSKGRRIR--KVKIVTLKSNLVSNFRKEF GFYKIREVNNY
986


WP_017647151
916
DD KARFIQRQLVETRQITKHVARILDERFNNELDSKGRRIR--KVKIVTLKSNLVSNFRKEF GFYKIREVNNY
986


WP_017648376
916
DD KARFIQRQLVETRQITKHVARILDERFNNELDSKGRRIR--KVKIVTLKSNLVSNFRKEF GFYKIREVNNY
986


WP_017649527
916
DD KARFIQRQLVETRQITKHVARILDERFNNELDSKGRRIR--KVKIVTLKSNLVSNFRKEF GFYKIREVNNY
986


WP_017771611
916
DD KARFIQRQLVETRQITKHVARILDERFNNELDSKGRRIR--KVKIVTLKSNLVSNFRKEF GFYKIREVNDY
986


WP_017771984
916
DD KARFIQRQLVETRQITKHVARILDERFNNELDSKGRRIR--KVKIVTLKSNLVSNFRKEF GFYKIREVNNY
986


CFQ25032
916
DD KARFIQRQLVETRQITKHVARILDERFNNELDSKGRRIR--KVKIVTLKSNLVSNFRKEF GFYKIREVNNY
986


CFV16040
916
DD KARFIQRQLVEIRQITKHVARILDERFNNELDSKGRRIR--KVKIVTLKSNLVSNFRKEF GFYKIREVNNY
986


KLJ37842
916
DD KARFIQRQLVETRQITKHVARILDERFNNELDSKGRRIR--KVKIVTVKSNLVSNFRKEF GFYKIREVNNY
986


KLJ72361
916
DD KARFIQRQLVETRQITKHVARILDELFNNELDSKGRRIR--KVKIVTLKSNLVSNFRKEF GFYKIREVNNY
986


KLL20707
930
DD KARFIQRQLVETRQITKHVARILDERFNNELDSKGRRIR--KVKIVTLKSNLVSNFRKEF GFYKIREVNNY
1000


KLL42645
916
DD KARFIQRQLVETRQITKHVARILDERFNNELDSKGRRIR--KVKIVTLKSNLVSNFRKEF GFYKIREVNDY
986


WP_047207273
916
DD KARFIQRQLVETRQITKHVARILDERFNNELDSKGRRIR--KVKIVTLKSNLVSNFRKEF GFYKIREVNNY
986


WP_047209694
916
DD KARFIQRQLVETRQITKHVARILDERFNNELDSKGRRIR--KVKIVTLKSNLVSNFRKEF GFYKIREVNNY
986


WP_050198062
916
DD KARFIQRQLVETRQITKHVARILDERFNNELDSKGRRIR--KVKIVTLKSNLVSNFRKEF GFYKIREVNNY
986


WP_050201642
916
DD KARFIQRQLVETRQITKHVASILDERFNNELDSKGRRIR--KVKIVTLKSNLVSNFRKEF GFYKIREVNNY
986


WP_050204027
916
DD KARFIQRQLVETRQITKHVARILDERFNNELDSKGRRIR--KVKIVTLKSNLVSNFRKEF GFYKIREVNDY
986


WP_050881965
916
DD KARFIQRQLVETRQITKHVARILDERFNNELDSKGRRIR--KVKIVTLKSNLVSNFRKEF GFYKIREVNNY
986


WP_050886065
916
DD KARFIQRQLVETRQIIKHVARILDERENNELDSKGRRIR--KVKIVTLKSNLVSNFRKEF GFYKIREVNNY
986


AHN30376
916
DD KAGFIQRQLVETRQITKHVARILDERFNNKVDDNNKPIR--KVKIVILKSNLVSNERKEF GFYKIREVNNY
986


EAO78426
916
DD KARFIQRQLVETRQIIKHVARILDERENNELDSKGRRIR--KVKIVTLKSNLVSNFRKEF GFYKIREVNNY
986


CCW42055
916
DD KARFIQRQLVETRQIIKHVARILDERENNELDSKGRRIR--KVKIVTLKSNLVSNFRKEF GFYKIREVNDY
986


WP_003041502
910
ND KAGFIKRQLVETRQITKHVAQVLDARFNAKHDENKKVIR--DVKIITLKSNLVSQFRKDF KFYKVREINDY
980


WP_037593752
911
ED KAGFIKRQLVETRQIIKHVAQILDERENTEEDGAQRRIR--NVKIITLKSNLVSNERKEF ELYKVREINDY
981


WP_049516684
911
ED KAGFIKRQLVETRQIIKHVAQILDERENTEEDGAQRRIR--NVKIITLKSNLVSNERKEF ELYKVREINDY
981


GAD46167
910
ED KAGFIKRQLVETRQIIKHVAQILDERENTEEDGAQRRIR--NVKIITLKSNLVSNERKEF ELYKVREINDY
980


WP_018363470
919
AD KAGFIKRQLVETRQIIKHVAQILDARENTERDENDKVIR--DVKVITLKSNLVSQFRKEF KFYKVREINDY
989


WP_003043819
920
AD KAGFIKRQLVETRQITKHVARILDSRMNTKRDKNDKPIR--EVKVITLKSKLVSDFRKDF QLYKVRDINNY
990


WP_006269658
910
ED KAGFIKRQLVETRQIIKHVAQILDERENTEEDGNKRRIR--NVKIITLKSNLVSNERKEF ELYKVREINDY
980


WP_048800889
910
ND KAGFIHRQLVETRQITKHVAQILDARFNPKRDDNKKVIR--DVKIITLKSNLVSQFRRDF KLYKVREINDY
980


WP_012767106
910
LD KAGFIKRQLVETRQIIKHVAQILDSRMNIKYDENDKLIR--EVKVITLKSKLVSDFRKDF QFYKVREINNY
980


WP_014612333
910
LD KAGFIKRQLVETRQIIKHVAQILDSRMNIKYDENDKLIR--EVKVITLKSKLVSDFRKDF QFYKVREINNY
980


WP_015017095
910
LD KAGFIKRQLVETRQIIKHVAQILDSRMNIKYDENDKLIR--EVKVITLKSKLVSDFRKDF QFYKVREINNY
980


WP_015057649
910
LD KAGFIKRQLVETRQIIKHVAQILDSRMNIKYDENDKLIR--EVKVITLKSKLVSDFRKDF QFYKVREINNY
980


WP_048327215
910
LD KAGFIKRQLVETRQIIKHVAQILDSRMNIKYDENDKLIR--EVKVITLKSKLVSDFRKDF QFYKVREINNY
980


WP_049519324
910
LD KAGFIKRQLVETRQIIKHVAQILDSRMNIKYDENDKLIR--EVKVITLKSKLVSDFRKDF QFYKVREINNY
980


WP_012515931
910
VD KAGFIQRQLVETRQIIKHVAQILDSRENTEFDDHNKRIR--KVHIITLKSKLVSDERKEF GLYKIRDINHY
980


WP_021320964
910
VD KAGFIQRQLVETRQIIKHVAQILDSRENTEFDDHNKRIR--KVHIITLKSKLVSDERKEF GLYKIRDINHY
980


WP_037581760
910
VD KAGFIQLQLVETRQIIKHVAQILDSRENTEFDDHNKRIR--KVHIITLKSKLVSDERKEF GLYKIRDINHY
980


WP_004232481
918
TD KAGFIKRQLVETRQIIKHVAQILDARENTKCDENDKVIR--DVKVITLKSSLVSQFRKEF KFYKVREINDY
988


WP_009854540
919
AD KAGFIKRQLVETRQIIKHVAQILDARENTEHDENDKVIR--DVKVITLKSNLVSQFRKDF EFYKVREINDY
989


WP_012962174
919
ND KAGFIKRQLVETRQIIKHVAQILDSRENTERDENDKVIR--NVKVITLKSNLVSQFRKDF KFYKVREINDY
989


WP_039695303
921
AD KAGFIKRQLVETRQIIKHVAQILDARENTEHDENDKVIR--DVKVITLKSNLVSQFRKDF EFYKVREINDY
991


WP_014334983
918
AD KAGFIKRQLVETRQIIKHVAQILDARENTKRDENDKVIR--DVKVITLKSNLVSQFRKEF KFYKVREINDY
988


WP_003099269
911
FD KAGFIKRQLVETRQIIKHVAQILDSRENSNLTEDSKSNR--NVKIITLKSKMVSDERKDF GFYKLREVNDY
981


AHY15608
911
FD KAGFIKRQLVETRQIIKHVAQILDSRENSNLTEDSKSNR--NVKIITLKSKMVSDERKDF GFYKLREVNDY
981


AHY17476
911
FD KAGFIKRQLVETRQIIKHVAQILDSRENSNLTEDSKSNR--NVKIITLKSKMVSDERKDF GFYKLREVNDY
981


ESR09100

-- ------------------------------------------------------------ -----------



AGM98575
911
FD KAGFIKRQLVETRQIIKHVAQILDSRENSNLTEDSKSNR--NVKIITLKSKMVSDERKDF GFYKLREVNDY
981


ALF27331
911
DD KAGFIKRQLVETRQIIKHVARILDERENTETDENNKKIR--QVKIVTLKSNLVSNERKEF ELYKVREINDY
981


WP_018372492
924
ED KAGFIRRQLVETRQITKHVARLLDEKLNRKKNENGEKLR--TTKIITLKSVFASRFRANF DLYKLRELNHY
994


WP_045618028
914
RD KVGFIKRQLVETRQIIKHVAQILDARENTEVTEKDKKDR--SVKIITLKSNLVSNERKEF RLYKVREINDY
984


WP_045635197
913
RD KVGFIKRQLVETRQIIKHVAQILDARYNTEVNEKDKKNR--TVKIITLKSNLVSNERKEF RLYKVREINDY
983


WP_002263549
911
DD KAGFIKRQLVETRQIIKHVARILDERENTETDENNKKIR--QVKIVTLKSNLVSNERKEF ELYKVREINDY
981


WP_002263887
911
DD KAGFIKRQLVETRQIIKHVARILDERENTETDENNKKIR--QVKIVTLKSNLVSNERKEF ELYKVREINDY
981


WP_002264920
911
DD KAGFIKRQLVETRQIIKHVARILDERENTETDENNKKIR--QVKIVTLKSNLVSNERKEF ELYKVREINDY
981


WP_002269043
911
DD KAGFIKRQLVETRQIIKHVARILDERENTETDENNKKIR--QVKIVTLKSNLVSNERKEF ELYKVREINDY
981


WP_002269448
911
DD KAGFIKRQLVETRQITKHVARILDERFYTETDENNKKIR--QVKIVTLKSNLVSNERKEF ELYKVREINDY
981


WP_002271977
911
DD KAGFIKRQLVETRQITKHVARILDERFYTETDENNKKIR--QVKIVTLKSNLVSNERKEF ELYKVREINDY
981


WP_002272766
911
DD KAGFIKRQLVETRQITKHVARILDERENTETDENNKKIR--QVKIVTLKSNLVSNERKEF ELYKVREINDY
981


WP_002273241
911
DD KAGFIKRQLVETRQITKHVARILDERFYTETDENNKKIR--QVKIVTLKSNLVSNERKEF ELYKVREINDY
981


WP_002275430
911
DD KAGFIKRQLVETRQITKHVARILDERENTETDENNKKIR--QVKIVTLKSNLVSNERKEF ELYKVREINDY
981


WP_002276448
911
DD KAGFIKRQLVETRQITKHVARILDERFYTETDENNKKIR--QVKIVTLKSNLVSNERKEF ELYKVREINDY
981


WP_002277050
913
DD KAGFIKRQLVETRQITKHVARMLDERFNKEFDDNNKRIR--RVKIVTLKSNLVSSFRKEF ELYKVREINDY
983


WP_002277364
911
DD KAGFIKRQLVETRQITKHVARILDERFHTETDENNKKIR--QVKIVTLKSNLVSNFRKEF ELYKVREINDY
981


WP_002279025
911
DD KAGFIKRQLVETRQITKHVARILDERENTETDENNKKIR--QVKIVTLKSNLVSNERKEF ELYKVREINDY
981


WP_002279859
911
DD KAGFIKRQLVETRQITKHVARILDERENTETDENNKKIR--QVKIVTLKSNLVSNERKEF ELYKVREINDY
981


WP_002280230
911
DD KAGFIKRQLVETRQITKHVARILDERFYTETDENNKKIR--QVKIVTLKSNLVSNERKEF ELYKVREINDY
981


WP_002281696
911
DD KAGFIKRQLVETRQITKHVARILDERFHTETDENNKKIR--QVKIVTLKSNLVSNFRKEF ELYKVREINDY
981


WP_002282247
913
DD KAGFIKRQLVETRQITKHVARMLDERFNKEFDDNNKRIR--RVKIVTLKSNLVSSFRKEF ELYKVREINDY
983


WP_002282906
911
DD KAGFIKRQLVETRQITKHVARILDERENTETDENNKKIR--QVKIVTLKSNLVSNERKEF ELYKVREINDY
981


WP_002283846
911
DD KAGFIKRQLVETRQITKHVARILDERFHTETDENNKKIR--QVKIVTLKSNLVSNFRKEF ELYKVREINDY
981


WP_002287255
911
DD KAGFIKRQLVETRQITKHVARILDERFHTETDENNKKIR--QVKIVTLKSNLVSNFRKEF ELYKVREINDY
981


WP_002288990
911
DD KAGFIKRQLVETRQITKHVARILDERENTETDENNKKIR--QVKIVTLKSNLVSNERKEF ELYKVREINDY
981


WP_002289641
911
DD KAGFIKRQLVETRQITKHVARILDERENTETDENNKKIR--QVKIVTLKSNLVSNERKEF ELYKVREINDY
981


WP_002290427
911
DD KAGFIKRQLVETRQITKHVARILDERENTETDENNKKIR--QVKIVTLKSNLVSNERKEF ELYKVREINDY
981


WP_002295753
911
DD KAGFIKRQLVETRQITKHVARILDERFYTETDENNKKIR--QVKIVTLKSNLVSNERKEF ELYKVREINDY
981


WP_002296423
911
DD KAGFIKRQLVETRQITKHVARILDERFHTETDENNKKIR--QVKIVTLKSNLVSNFRKEF ELYKVREINDY
981


WP_002304487
925
DD KAGFIKRQLVETRQITKHVARILDERENTETDENNKKIR--QVKIVTLKSNLVSNERKEF ELYKVREINDY
995


WP_002305844
911
DD KAGFIKRQLVETRQITKHVARILDERFYTETDENNKKIR--QVKIVTLKSNLVSNERKEF ELYKVREINDY
981


WP_002307203
911
DD KAGFIKRQLVETRQITKHVARILDERENTETDENNKKIR--QVKIVTLKSNLVSNERKEF ELYKVREINDY
981


WP_002310390
911
DD KAGFIKHQLVETRQITKHVARILDERENTETDENNKKIR--QVKIVTLKSNLVSNERKEF ELYKVREINDY
981


WP_002352408
911
DD KAGFIKRQLVETRQITKHVARILDERENTETDENNKKIR--QVKIVTLKSNLVSNERKEF ELYKVREINDY
981


WP_012997688
911
DD KAGFIKRQLVETRQITKHVARILDERFHTETDENNKKIR--QVKIVTLKSNLVSNFRKEF ELYKVREINDY
981


WP_014677909
911
DD KAGFIKRQLVETRQITKHVARILDERFYTETDENNKKIR--QVKIVTLKSNLVSNERKEF ELYKVREINDY
981


WP_019312892
911
DD KAGFIKRQLVETRQITKHVARILDERFHTETDENNKKIR--QVKIVTLKSNLVSNFRKEF ELYKVREINDY
981


WP_019313659
911
DD KAGFIKRQLVETRQITKHVARILDERFHTETDENNKKIR--QVKIVTLKSNLVSNFRKEF ELYKVREINDY
981


WP_019314093
911
DD KAGFIKRQLVETRQITKHVARILDERENTETDENNKKIR--QVKIVTLKSNLVSNERKEF ELYKVREINDY
981


WP_019315370
911
DD KAGFIKRQLVETRQITKHVARILDERENTETDENNKKIR--QVKIVTLKSNLVSNERKEF ELYKVREINDY
981


WP_019803776
911
DD KAGFIKRQLVETRQITKHVARILDERENTETDENNKKIR--QVKIVTLKSNLVSNERKEF ELYKVREINDY
981


WP_019805234
911
DD KAGFIKRQLVETRQITKHVARILDERENTETDENNKKIR--QVKIVTLKSNLVSNERKEF ELYKVREINDY
981


WP_024783594
911
DD KAGFIKRQLVETRQITKHVARILDERENTETDENNKKIR--QVKIVTLKSNLVSNERKEF ELYKVREINDY
981


WP_024784288
913
DD KAGFIKRQLVETRQITKHVARMLDERFNKEFDDNNKRIR--RVKIVTLKSNLVSSFRKEF ELYKVREINDY
983


WP_024784666
911
DD KAGFIKRQLVETRQITKHVARILDERFHTETDENNKKIR--QVKIVTLKSNLVSNFRKEF ELYKVREINDY
981


WP_024784894
911
DD KAGFIKRQLVETRQITKHVARILDERENTETDENNKKIR--QVKIVTLKSNLVSNERKEF ELYKVREINDY
981


WP_024786433
913
DD KAGFIKRQLVETRQITKHVARMLDERFNKEFDDNNKRIR--RVKIVTLKSNLVSSFRKEF ELYKVREINDY
983


WP_049473442
911
DD KAGFIKRQLVETRQITKHVARILDERENTETDENNKKIR--QVKIVILKSNLVSNERKEF ELYKVREINDY
981


WP_049474547
911
DD KAGFIKRQLVETRQITKHVARILDERENTETDENNKKIR--QVKIVILKSNLVSNERKEF ELYKVREINDY
981


EMC03581
904
DD KAGFIKRQLVETRQITKHVARILDERFHTETDENNKKIR--QVKIVILKSNLVSNERKEF ELYKVREINDY
974


WP_000428612
916
RD KVGFIKRQLVETRQITKHVAQILDARYNTEVNEKDKKNR--TVKIITLKSNLVSNFRKEF RLYKIREINDY
986


WP_000428613
914
RD KVGFIKRQLVETRQITKHVAQILDARFNKEVNEKDKKNR--TVKIITLKSNLVSNFRKEF RLYKVREINDY
984


WP_049523028
909
RD KVGFIKRQLVETRQITKHVAQILDDRFNAEVNEKNQKLR--SVKIITLKSNLVSNFRKEF GLYKVREINDY
979


WP_003107102
880
YD KAGFIKRQLVETRQITKHVAQILNNRENNNVDDSSKNKR--PVKIITLKSKMVSDERKEF GFYKIREVNDY
950


WP_054279288
912
SD KANFIQRQLVETRQITKHVAQILDSRENTERDEKDRPIR--RVKVITLKSKEVSDFRQDF GFYKLREINDY
982


WP_049531101
914
RD KVGFIKRQLVETRQITKHVAQILDSRFNIKVNEKNQKIR--TVKIITLKSNLVSNFRKEF RLYKVREINDY
984


WP_049538452
914
RD KVGFIRRQLVETRQITKHVAQILDSRFNIEVTEKDKKNR--NVKIITLKSNLVSNFRKEF GLYKVREINDY
984


WP_049549711
916
LD KVGFIKRQLVETRQITKHVAQILDARFNKEVTEKDKKNR--NVKIITLKSNLVSNFRKEF RLYKVREINDY
986


WP_007896501
917
SD KARFLRRQLVETRQITKHVAQLLDSRENSKSNQNKKLAR--NVKIITLKSKIVSDERKDF GLYKLREVNNY
987


EFR44625
869
SD KARFLRRQLVETRQITKHVAQLLDSRENSKSNQNKKLAR--NVKIITLKSKIVSDERKDF GLYKLREVNNY
939


WP_002897477
913
RD KVGFIRRQLVETQQITKNVAQILDARFNIEVKEKNQKIR--TVKIITLKSNLVSNFRKEF GLYKVREINNY
983


WP_002906454
913
RD KVGFIKRQLVETRQITKHVAQLLDTRFNIEVNEENQKIR--TVKIITLKSNLVSNFRKEF GLYKVREINDY
983


WP_009729476
914
LD KVGFIKRQLVETRQITKHVAQILDARFNKEVTEKDKKNR--TVKIITLKSNLVSNFRKEF ELYKVREINDY
984


CQR24647
913
ED KAGFIKRQLVETRQITKHVARILDERFNRDFDKNDKRIR--NVKIVILKSNLVSNERKEF GFYKVREINNF
983


WP_000066813
918
LD KVGFIKRQLVETRQITKHVAQFLDARFNKEVTEKDKKNR--NVKIITLKSNLVSNFRKEF GLYKVREINDY
988


WP_009754323
914
RD KVGFIKRQLVETRQITKHVARILDARFNIEVSEKNQKIR--SVKIITLKSNLVSNFRKEF KLYKVREINDY
984


WP_044674937
913
ED KARFIQRQLVETRQITKHVARILDTRENTKLDEAGNRIRdpKVNIITLKSNLVSQFRKDY QLYKVREINNY
985


WP_044676715
915
ED KARFIQRQLVETRQITKHVARILDTRENTKLDEAGNRIRdpKVNIITLKSNLVSQFRKDY QLYKVREINNY
987


WP_044680361
915
ED KARFIQRQLVETRQITKHVARILDTRENTKLDEAGNRIRdpKVNIITLKSNLVSQFRKDY QLYKVREINNY
987


WP_044681799
913
ED KARFIQRQLVETRQITKHVARILDTRENTKLDEAGNRIRdpKVNIITLKSNLVSQFRKDY QLYKVREINNY
985


WP_049533112
910
ND KAGFIKRQLVETRQITKHVAQVLDARFNAKHDENKKVIR--DVKIITLKSNLVSQFRKDF KFYKVREINDY
980


WP_029090905
891
RD KEGFIARQLVETRQITKHVTQLLQQEY-----------K-dTTKVFAIKATLVSGLRRKF EFIKNRNVNDY
951


WP_006506696
917
RD EERFINRQLVETRQITKNVIQIIEDHYST-------------TKVAAIRANLSHEFRVKN HIYKNRDINDY
976


AIT42264
911
LD KAGFIKRQLVETRQITKHVAQILDSRMNIKYDENDKLIR--EVKVITLKSKLVSDERKDF QFYKVREINNY
981


WP_034440723
915
RD RQQFINRQLVETRQITKHVANLLSHHLNEK-----KEVG--EINIVLLKSALTSQFRKKF DFYKVREVNDY
980


AKQ21048
911
LD KAGFIKRQLVETRQITKHVAQILDSRMNIKYDENDKLIR--EVKVITLKSKLVSDERKDF QFYKVREINNY
981


WP_004636532
916
AD RAHFLNRQLVETRQITKHVANLLDSQYNTAEEQ-----R---INIVLLKSSMTSRFRKEF KLYKVREINDY
980


WP_002364836
922
ED KAHFIQRQLVETRQITKNVAGILDQRYNANSKE-----K--KVQIITLKASLTSQFRSIF GLYKVREVNDY
987


WP_016631044
873
ED KAHFIQRQLVETRQITKNVAGILDQRYNAKSKE-----K--KVQIITLKASLTSQFRSIF GLYKVREVNDY
938


EMS75795
655
ED KARFIQRQLVETRQITKHVAAILDQYFN-QPEE-SK-NK--GIRIITLKSSLVSQFRKTF GINKVREINNH
722


WP_002373311
922
ED KAHFIQRQLVETRQITKNVAGILDQRYNAKSKE-----K--KVQIITLKASLTSQFRSIF GLYKVREVNDY
987


WP_002378009
922
ED KAHFIQRQLVETRQITKNVAGILDQRYNAKSKE-----K--KVQIITLKASLTSQFRSIF GLYKVREVNDY
987


WP_002407324
922
ED KAHFIQRQLVETRQITKNVAGILDQRYNAKSKE-----K--KVQIITLKASLTSQFRSIF GLYKVREVNDY
987


WP_002413717
922
ED KAHFIQRQLVETRQITKNVAGILNQRYNANSKE-----K--KVQIITLKASLTSQFRSIF GLYKVREVNDY
987


WP_010775580
924
ED KAHFIQRQLVETRQITKNVAGILDQRYNAKSKE-----K--KVQIITLKASLTSQFRSIF GLYKVREVNDY
989


WP_010818269
922
ED KAHFIQRQLVETRQITKNVAGILDQRYNAKSKE-----K--KVQIITLKASLTSQFRSIF GLYKVREVNDY
987


WP_010824395
922
ED KAHFIQRQLVETRQITKNVAGILDQLYNAKSKE-----K--KVQIITLKASLTSQFRSIF GLYKVREVNDY
987


WP_016622645
922
ED KAHFIQRQLVETRQITKNVAGILDQRYNAKSKE-----K--KVQIITLKASLTSQFRSIF GLYKVREVNDY
987


WP_033624816
922
ED KAHFIQRQLVETRQITKNVAGILDQRYNAKSKE-----K--KVQIITLKASLTSQFRSIF GLYKVREVNDY
987


WP_033625576
922
ED KAHFIQRQLVETRQITKNVAGILDQRYNAKSKE-----K--KVQIITLKASLTSQFRSIF GLYKVREVNDY
987


WP_033789179
922
ED KAHFIQRQLVETRQITKNVAGILDQRYNAKSKE-----K--KVQIITLKASLTSQFRSIF GLYKVREVNDY
987


WP_002310644
919
ED KAGFIKRQLVETRQITKHVAGILHHRFN-KAEDTNEPIR--KVRIITLKSALVSQFRNRF GIYKVREINEY
988


WP_002312694
920
ED KAGFIKRQLVETRQITKHVAGILHHRFN-KAEDTNDPIR--KVRIITLKSALVSQFRNRF GIYKVREINEY
989


WP_002314015
920
ED KAGFIKRQLVETRQITKHVAGILHHRFN-KAEDTNEPIR--KVRIITLKSALVSQFRNRF GIYKVREINEY
989


WP_002320716
920
ED KAGFIKRQLVETRQITKHVAGILHHRFN-KAEDTNEPIR--KVRIITLKSALVSQFRNRF GIYKVREINEY
989


WP_002330729
919
ED KAGFIKRQLVETRQITKHVAGILHHRFN-KAEDTNEPIR--KVRIITLKSALVSQFRNRF GIYKVREINEY
988


WP_002335161
920
ED KAGFIKRQLVETRQITKHVAGILHHRFN-KAEDTNEPIR--KVRIITLKSALVSQFRNRF GIYKVREINEY
989


WP_002345439
920
ED KAGFIKRQLVETRQITKHVAGILHHRFN-KAEDTNEPIR--KVRIITLKSALVSQFRNRF GIYKVREINEY
989


WP_034867970
911
ED KARFIQRQLVETRQITKHVANILHQSFN-QEEEGTD-CD--GVQIITLKATLISQFRQTF GLYKVREINPH
979


WP_047937432
920
ED KAGFIKRQLVETRQITKHVAGILHHRFN-KAEDINEPIR--KVRIITLKSALVSQFRNRF GIYKVREINEY
989


WP_010720994
911
ED KARFIQRQLVETRQITKHVANILHQSFN-QEEEGTD-CD--GVQIITLKATLISQFRQTF GLYKVREINPH
979


WP_010737004
911
ED KARFIQRQLVETRQITKHVANILHQSFN-QEEEGTD-CD--GVQIITLKATLISQFRQTF GLYKVREINPH
979


WP_034700478
911
ED KARFIQRQLVETRQITKHVANILHQSFN-QEEEGTD-CD--GVQIITLKATLISQFRQTF GLYKVREINPH
979


WP_007209003
912
SD KAGELKRQLVETRQITKHVATILDSKFNE--DSNNRDVQ-----IITLKSALVSEFRKTF NLYKVREINDL
977


WP_023519017
905
AD KARFIQRQLVETRQITKHVANLLHQHFN-LPEEVSA-TE--KTSIITLKSTLTSQFRQMF DIYKVREINHH
973


WP_010770040
915
DD RAHFIKRQLVETRQITKHVARILDQRFNSQKDEEGKTIR--AVRVVTLKSSLTSQFRKQF AIHKVREINDY
985


WP_048604708
912
DD KAGFIHRQLVETRQITKNVARILHQRFNSEKDEEGNLIR--KVRIITLKSALTSQFRKNY GIYKIREINDY
982


WP_010750235
914
DD KARFIQRQLVETRQITKHVAAILHQYFN-QTQELEK-EK--DIRIITLKSSLVSQFRQVF GIHKVREINHH
982


AII16583
950
LD KAGFIKRQLVETRQITKHVAQILDSRMNIKYDENDKLIR--EVKVITLKSKLVSDERKDF QFYKVREINNY
1020


WP_029073316
928
KD KERFINRQIVETRQITKHVAQIISNHYET-------------TKVVTVRADLSHAFRERY HIYKNRDINDF
987


WP_031589969
928
KD QERFINRQIVETRQITKHVAQIIDNHYEN-------------TKVVTVRADLSHQFRERY HIYKNRDINDF
987


KDA45870
903
KL KERFIERQLVETRQITKYVAQLLDQRLN--YDGNGVELD-eKIAIVTLKAQLASQFRSEF KLRKVRALNNL
972


WP_039099354
924
-D MKGFINRQLVETRQVIKLATNLLMEQYGED-----------NIELITVKSGLTHQMRTEF DFPKNRNLNNH
990


AKP02966
926
KD KLGFIHRQLVQTSQMVKGVANILNSMYK---NQGTTCIQ--------ARANLSTAFRKAL ELVKNRNINDF
999


WP_010991369
914
AD KARFIHRQLVETRQITKNVANILHQRFNYEKDDHGNTMK--QVRIVTLKSALVSQFRKQF QLYKVRDVNDY
984


WP_033838504
914
AD KARFIHRQLVETRQITKNVANILHQRFNYEKDDHGNTMK--QVRIVTLKSALVSQFRKQF QLYKVRDVNDY
984


EHN60060
917
AD KARFIHRQLVETRQITKNVANILHQRFNYEKDDHGNTMK--QVRIVTLKSALVSQFRKQF QLYKVRDVNDY
987


EFR89594
683
AD KARFIHRQLVETRQITKNVANILHQRFNYGKDDHGNTMK--QVRIVTLKSALVSQFRKQF QLYKVRGVNDY
753


WP_038409211
914
AD KANFIQRQLVETRQITKNVANILYQRFNCKQDENGNEVE--QVRIVTLKSTLVSQFRKQF QLYKVREVNDY
984


EFR95520
533
AD KANFIQRQLVETRQITKNVANILYQRFNCKQDENGNEVE--QVRIVTLKSTLVSQFRKQF QLYKVREVNDY
603


WP_003723650
914
AD KARFIHRQLVETRQITKNVANILYQRFNKEIDNHGNIME--QVRIVTLKSALVSQFRKQF QLYKVREVNGY
984


WP_003727705
914
AD KARFIHRQLVETRQITKNVANILHQRFNKEIDNHGNTME--QVRIVTLKSALVSQFRKQF QLYKVREVNDY
984


WP_003730785
914
AD KARFIHRQLVETRQITKNVANILHQRFNKEIDNHGNTME--QVRIVTLKSALVSQFRKQF QLYKVREVNDY
984


WP_003733029
914
AD KARFIHRQLVETRQITKNVANILHQRFNYKIDGNKDTME--TVRIVTLKSALVSQFRKQF QFYKVREVNDY
984


WP_003739838
914
AD KATFIHRQLVETRQITKNVANILHQRFNNETDNHGNNME--QVRIVMLKSALVSQFRKQF QLYKVREVNDY
984


WP_014601172
914
AD KARFIHRQLVETRQITKNVANILHQRFNNETDNHGNTME--QVRIVTLKSALVSQFRKQF QLYKVREVNDY
984


WP_023548323
914
AD KARFIHRQLVETRQITKNVANILHQRFNYKTDDNEDTME--PVRIVTLKSALVSQFRKQF QLYKVREVNDY
984


WP_031665337
914
AD KARFIHRQLVETRQITKNVANILHQRFNKETDNHGNTME--QVRIVTLKSALVSQFRKQF QLYKVREVNDY
984


WP_031669209
914
AD KARFIHRQLVETRQITKNVANILHQRFNYKTDGNKDTME--TVRIVTLKSALVSQFRKQF QFYKVREVNDY
984


WP_033920898
914
AD KARFIHRQLVETRQITKNVANILHQRFNYKTDDNEDTME--PVRIVTLKSALVSQFRKQF QLYKVREVNDY
984


AKI42028
917
AD KARFIHRQLVETRQITKNVANILHQRFNNETDNHGNTME--QVRIVTLKSALVSQFRKQF QLYKVREVNDY
987


AKI50529
917
AD KARFIHRQLVETRQITKNVANILHQRFNYKTDDNEDTME--PVRIVTLKSALVSQFRKQF QLYKVREVNDY
987


EFR83390
362
AD KARFIHRQLVETRQITKNVANILHQRFNNETDNHGNTME--QVRIVTLKSALVSQFRKQF QLYKVREVNDY
432


WP_046323366
914
AD KARFIHRQLVETRQITKNVANILHQRFNCKKDESGNVIE--QVRIVTLKAALVSQFRKQF QLYKVREVNDY
984


AKE81011
927
LD KAGFIKRQLVETRQITKHVAQILDSRMNIKYDENDKLIR--EVKVITLKSKLVSDFRKDF QFYKVREINNY
997


CUO82355
921
RD EERFINRQLVETRQITKNVTQIIEDHYST-------------TKVAAIRANLSHEFRVKN HIYKNRDINDY
980


WP_033162887
923
KD KERFINRQLVETRQIIKNVAVIINDHYTN-------------TNIVTVRAELSHQFRERY KIYKNRDINDF
982


AGZ01981
944
LD KAGFIKRQLVETRQIIKHVAQILDSRMNIKYDENDKLIR--EVKVITLKSKLVSDFRKDF QFYKVREINNY
1014


AKA60242
911
LD KAGFIKRQLVETRQIIKHVAQILDSRMNIKYDENDKLIR--EVKVITLKSKLVSDFRKDF QFYKVREINNY
981


AKS40380
911
LD KAGFIKRQLVETRQIIKHVAQILDSRMNIKYDENDKLIR--EVKVITLKSKLVSDFRKDF QFYKVREINNY
981


4UN5_B
915
LD KAGFIKRQLVETRQIIKHVAQILDSRMNIKYDENDKLIR--EVKVITLKSKLVSDFRKDF QFYKVREINNY
985


WP_010922251
982


embedded image


1051


WP_039695303
992
HHAHDAYLNAVVGTALLKKYPKL-ASEFVYGEYKKYDI S---SD------ KATAK--YfFYSNLM-NFFKTKVK
1058


WP_045635197
984
HHAHDAYLNAVVAKAILKKYPKL-EPEFVYGEYQKYDL SkdpKEV---EK ATEKY--F-FYSNLL-NFFKEEVH
1055


5AXW_A
703
HHAEDALI--------------IaNADFIFKEWKKLDK Nq-mFE----EK ETEQEykEiFITPHQiKHIKDFKD
771


WP_009880683
666
HHAHDAYLNAVVGTALIKKYPKL-ESEFVYGDYKVYDI S---EQEi--GK ATAKY--F-FYSNIM-NFFKTEIT
735


WP_010922251
982
HHAHDAYLNAVVGTALIKKYPKL-ESEFVYGDYKVYDV S---EQEi--GK ATAKY--F-FYSNIM-NFFKTEIT
1051


WP_011054416
982
HHAHDAYLNAVVGTALIKKYPKL-ESEFVYGDYKVYDV S---EQEi--GK ATAKY--F-FYSNIM-NFFKTEIT
1051


WP_011284745
982
HHAHDAYLNAVVGTALIKKYPKL-ESEFVYGDYKVYDV S---EQEi--GK ATAKY--F-FYSNIM-NFFKTEIT
1051


WP_011285506
982
HHAHDAYLNAVVGTALIKKYPKL-ESEFVYGDYKVYDV S---EQEi--GK ATAKY--F-FYSNIM-NFFKTEIT
1051


WP_011527619
982
HHAHDAYLNAVVGTALIKKYPKL-ESEFVYGDYKVYDV S---EQEi--GK ATAKY--F-FYSNIM-NFFKTEIT
1051


WP_012560673
982
HHAHDAYLNAVVGTALIKKYPKL-ESEFVYGDYKVYDI S---EQEi--GK ATAKY--F-FYSNIM-NFFKTEIT
1051


WP_014407541
981
HHAHDAYLNAVVGTALIKKYPKL-ESEFVYGDYKVYDV S---EQEi--GK ATAKY--F-FYSNIM-NFFKTEIT
1050


WP_020905136
982
HHAHDAYLNAVVGTALIKKYPKL-ESEFVYGDYKVYDV S---EQEi--GK ATAKY--F-FYSNIM-NFFKTEIT
1051


WP_023080005
981
HHAHDAYLNAVVGTALIKKYPKL-ESEFVYGDYKVYDV S---EQEi--GK ATAKY--F-FYSNIM-NFFKTEIT
1050


WP_023610282
981
HHAHDAYLNAVVGTALIKKYPKL-ESEFVYGDYKVYDV S---EQEi--GK ATAKY--F-FYSNIM-NFFKTEIT
1050


WP_030125963
982
HHAHDAYLNAVVGTALIKKYPKL-ESEFVYGDYKVYDV S---EQEi--GK ATAKY--F-FYSNIM-NFFKTEIT
1051


WP_030126706
982
HHAHDAYLNAVVGTALIKKYPKL-ESEFVYGDYKVYDV S---EQEi--GK ATAKY--F-FYSNIM-NFFKTEIT
1051


WP_031488318
982
HHAHDAYLNAVVGTALIKKYPKL-ESEFVYGDYKVYDV S---EQEi--GK ATAKY--F-FYSNIM-NFFKTEIT
1051


WP_032460140
982
HHAHDAYLNAVVGTALIKKYPKL-ESEFVYGDYKVYDI S---EQEi--GK ATAKY--F-FYSNIM-NFFKTEIT
1051


WP_032461047
982
HHAHDAYLNAVVGTALIKKYPKL-ESEFVYGDYKVYDI S---EQEi--GK ATAKY--F-FYSNIM-NFFKTEIT
1051


WP_032462016
982
HHAHDAYLNAVVGTALIKKYPKL-ESEFVYGDYKVYDV S---EQEi--GK ATAKY--F-FYSNIM-NFFKTEIT
1051


WP_032462936
982
HHAHDAYLNAVVGTALIKKYPKL-ESEFVYGDYKVYDV S---EQEi--GK ATAKY--F-FYSNIM-NFFKTEIT
1051


WP_032464890
982
HHAHDAYLNAVVGTALIKKYPKL-ESEFVYGDYKVYDV S---EQEi--GK ATAKY--F-FYSNIM-NFFKTEIT
1051


WP_033888930
807
HHAHDAYLNAVVGTALIKKYPKL-ESEFVYGDYKVYDV S---EQEi--GK ATAKY--F-FYSNIM-NFFKTEIT
876


WP_038431314
982
HHAHDAYLNAVVGTALIKKYPKL-ESEFVYGDYKVYDV S---EQEi--GK ATAKY--F-FYSNIM-NFFKTEIT
1051


WP_038432938
981
HHAHDAYLNAVVGTALIKKYPKL-ESEFVYGDYKVYDV S---EQEi--GK ATAKY--F-FYSNIM-NFFKTEIT
1050


WP_038434062
982
HHAHDAYLNAVVGTALIKKYPKL-ESEFVYGDYKVYDV S---EQEi--GK ATAKY--F-FYSNIM-NFFKTEIT
1051


BAQ51233
893
HHAHDAYLNAVVGTALIKKYPKL-ESEFVYGDYKVYDV S---EQEi--GK ATAKY--F-FYSNIM-NFFKTEIT
962


KGE60162
157
HHAHDAYLNAVVGTALIKKYPKL-ESEFVYGDYKVYDV S---EQEi--GK ATAKY--F-FYSNIM-NFFKTEIT
226


KGE60856

-------------------------------------- ------------ ------------------------



WP_002989955
982
HHAHDAYLNAVVGTALIKKYPKL-ESEFVYGDYKVYDV S---EQEi--GK ATAKY--F-FYSNIM-NFFKTEIT
1051


WP_003030002
981
HHAHDAYLNAVVGNALLLKYPQL-EPEFVYGEYPKYN- S---YR---sRK SATEK--FlFYSNIL-RFFKKE--
1041


WP_003065552
992
HHAHDAYLNAVVGTALLKKYPKL-ASEFVYGEYKKYDI S---SD------ KATAK--YfFYSNLM-NFFKRVIR
1058


WP_001040076
987
HHAHDAYLNAVVAKAILTKYPQL-EPEFVYGDYPKYN- S---YKT---RK ATEKL--F-FYSNIM-NFFKTKVT
1049


WP_001040078
987
HHAHDAYLNAVVAKAILTKYPQL-EPEFVYGLYRRKK- L---SKI---VR ATRKM--F-FYSNLM-NMFKRVVR
1057


WP_001040080
987
HHAHDAYLNAVVAKAILTKYPQL-EPEFVYGDYPKYN- S---YKT---RK ATEKL--F-FYSNIM-NFFKTKVT
1049


WP_001040081
987
HHAHDAYLNAVVAKAILTKYPQL-EPEFVYGDYPKYN- S---YKT---RK ATEKL--F-FYSNIM-NFFKTKVT
1049


WP_001040083
987
HHAHDAYLNAVVAKAILTKYPQL-EPEFVYGDYPKYN- S---YKT---RK ATEKL--F-FYSNIM-NFFKTKVT
1049


WP_001040085
987
HHAHDAYLNAVVAKAILTKYPQL-EPEFVYGDYPKYN- S---YKT---RK ATEKL--F-FYSNIM-NFFKTKVT
1049


WP_001040087
987
HHAHDAYLNAVVAKAILTKYPQL-EPEFVYGDYPKYN- S---YKT---RK ATEKL--F-FYSNIM-NFFKTKVT
1049


WP_001040088
987
HHAHDAYLNAVVAKAILTKYPQL-EPEFVYGDYPKYN- S---YKT---RK ATEKL--F-FYSNIM-NFFKTKVT
1049


WP_001040089
987
HHAHDAYLNAVVAKAILTKYPQL-EPEFVYGDYPKYN- S---YKT---RK ATEKL--F-FYSNIM-NFFKTKVT
1049


WP_001040090
987
HHAHDAYLNAVVAKAILTKYPQL-EPEFVYGDYPKYN- S---YKT---RK ATEKL--F-FYSNIM-NFFKTKVT
1049


WP_001040091
987
HHAHDAYLNAVVAKAILTKYPQL-EPEFVYGDYPKYN- S---YKT---RK ATEKL--F-FYSNIM-NFFKTKVT
1049


WP_001040092
987
HHAHDAYLNAVVAKAILTKYPQL-EPEFVYGDYPKYN- S---YKT---RK ATEKL--F-FYSNIM-NFFKTKVT
1049


WP_001040094
987
HHAHDAYLNAVVAKAILTKYPQL-EPEFVYGDYPKYN- S---YKT---RK ATEKL--F-FYSNIM-NFFKTKVT
1049


WP_001040095
987
HHAHDAYLNAVVAKAILTKYPQL-EPEFVYGDYPKYN- S---YKT---RK ATEKL--F-FYSNIM-NFFKTKVT
1049


WP_001040096
987
HHAHDAYLNAVVAKAILTKYPQL-EPEFVYGDYPKYN- S---YKT---RK ATEKL--F-FYSNIM-NFFKTKVT
1049


WP_001040097
987
HHAHDAYLNAVVAKAILTKYPQL-EPEFVYGDYPKYN- S---YKT---RK ATEKL--F-FYSNIM-NFFKTKVT
1049


WP_001040098
987
HHAHDAYLNAVVAKAILTKYPQL-EPEFVYGDYPKYN- S---YKT---RK ATEKL--F-FYSNIM-NFFKTKVT
1049


WP_001040099
987
HHAHDAYLNAVVAKAILTKYPQL-EPEFVYGDYPKYN- S---YKT---RK ATEKL--F-FYSNIM-NFFKTKVT
1049


WP_001040100
987
HHAHDAYLNAVVAKAILTKYPQL-EPEFVYGDYPKYN- S---YKT---RK ATEKL--F-FYSNIM-NFFKTKVT
1049


WP_001040104
987
HHAHDAYLNAVVAKAILTKYPQL-EPEFVYGDYPKYN- S---YKT---RK ATEKL--F-FYSNIM-NFFKTKVT
1049


WP_001040105
987
HHAHDAYLNAVVAKAILTKYPQL-EPEFVYGDYPKYN- S---YKT---RK ATEKL--F-FYSNIM-NFFKTKVT
1049


WP_001040106
987
HHAHDAYLNAVVAKAILTKYPQL-EPEFVYGDYPKYN- S---YKT---RK ATEKL--F-FYSNIM-NFFKTKVT
1049


WP_001040107
987
HHAHDAYLNAVVAKAILTKYPQL-EPEFVYGDYPKYN- S---YKT---RK ATEKL--F-FYSNIM-NFFKTKVT
1049


WP_001040108
987
HHAHDAYLNAVVAKAILTKYPQL-EREFVYGDYPKYN- S---YKT---RK ATEKL--F-FYSNIM-NFFKTKVT
1049


WP_001040109
987
HHAHDAYLNAVVAKAILTKYPQL-EPEFVYGDYPKYN- S---YKT---RK ATEKL--F-FYSNIM-NFFKTKVT
1049


WP_001040110
987
HHAHDAYLNAVVAKAILTKYPQL-EPEFVYGDYPKYN- S---YKT---RK ATEKL--F-FYSNIM-NFFKTKVT
1049


WP_015058523
987
HHAHDAYLNAVVAKAILTKYPQL-EPEFVYGDYPKYN- S---YKT---RK ATEKL--F-FYSNIM-NFFKTKVT
1049


WP_017643650
987
HHAHDAYLNAVVAKAILTKYPQL-EPEFVYGDYPKYN- S---YKT---RK ATEKL--F-FYSNIM-NFFKTKVT
1049


WP_017647151
987
HHAHDAYLNAVVAKAILTKYPQL-EPEFVYGDYPKYN- S---YKT---RK ATEKL--F-FYSNIM-NFFKTKVT
1049


WP_017648376
987
HHAHDAYLNAVVAKAILTKYPQL-EPEFVYGDYPKYN- S---YKT---RK ATEKL--F-FYSNIM-NFFKTKVT
1049


WP_017649527
987
HHAHDAYLNAVVAKAILTKYPQL-EPEFVYGDYPKYN- S---YKT---RK ATEKL--F-FYSNIM-NFFKTKVT
1049


WP_017771611
987
HHAHDAYLNAVVAKAILTKYPQL-EPEFVYGDYPKYN- S---YKT---RK ATEKL--F-FYSNIM-NFFKTKVT
1049


WP_017771984
987
HHAHDAYLNAVVAKAILTKYPQL-EPEFVYGDYPKYN- S---YKT---RK ATEKL--F-FYSNIM-NFFKTKVT
1049


CFQ25032
987
HHAHDAYLNAVVAKAILTKYPQL-EPEFVYGDYPKYN- S---YKT---RK ATEKL--F-FYSNIM-NFFKTKVT
1049


CFV16040
987
HHAHDAYLNAVVAKAILTKYPQL-EPEFVYGDYPKYN- S---YKT---RK ATEKL--F-FYSNIM-NFFKTKVT
1049


KLJ37842
987
HHAHDAYLNAVVAKAILTKYPQL-EPEFVYGDYPKYN- S---YKT---RK ATEKL--F-FYSNIM-NFFKTKVT
1049


KLJ72361
987
HHAHDAYLNAVVAKAILTKYPQL-EPEFVYGDYPKYN- S---YKT---RK ATEKL--F-FYSNIM-NFFKTKVT
1049


KLL20707
1001
HHAHDAYLNAVVAKAILTKYPQL-EPEFVYGDYPKYN- S---YKT---RK ATEKL--F-FYSNIM-NFFKTKVT
1063


KLL42645
987
HHAHDAYLNAVVAKAILTKYPQL-EPEFVYGDYPKYN- S---YKT---RK ATEKL--F-FYSNIM-NFFKTKVT
1049


WP_047207273
987
HHAHDAYLNAVVAKAILTKYPQL-EPEFVYGDYPKYN- S---YKT---RK ATEKL--F-FYSNIM-NFFKTKVT
1049


WP_047209694
987
HHAHDAYLNAVVAKAILTKYPQL-EPEFVYGDYPKYN- S---YKT---RK ATEKL--F-FYSNIM-NFFKTKVT
1049


WP_050198062
987
HHAHDAYLNAVVAKAILTKYPQL-EPEFVYGDYPKYN- S---YKT---RK ATEKL--F-FYSNIM-NFFKTKVT
1049


WP_050201642
987
HHAHDAYLNAVVAKAILTKYPQL-EPEFVYGDYPKYN- S---YKT---RK ATEKL--F-FYSNIM-NFFKTKVT
1049


WP_050204027
987
HHAHDAYLNAVVAKAILTKYPQL-EPEFVYGDYPKYN- S---YKT---RK ATEKL--F-FYSNIM-NFFKTKVT
1049


WP_050881965
987
HHAHDAYLNAVVAKAILTKYPQL-EPEFVYGDYPKYN- S---YKT---RK ATEKL--F-FYSNIM-NFFKTKVT
1049


WP_050886065
987
HHAHDAYLNAVVAKAILTKYPQL-EPEFVYGDYPKYN- S---YKT---RK ATEKL--F-FYSNIM-NFFKTKVT
1049


AHN30376
987
HHAHDAYLNAVVAKAILTKYPQL-EPEFVYGDYPKYN- S---YKT---RK ATEKL--F-FYSNIM-NFFKTKVT
1049


EAO78426
987
HHAHDAYLNAVVAKAILTKYPQL-EPEFVYGDYPKYN- S---YKT---RK ATEKL--F-FYSNIM-NFFKTKVT
1049


CCW42055
987
HHAHDAYLNAVVAKAILTKYPQL-EPEFVYGDYPKYN- S---YKT---RK ATEKL--F-FYSNIM-NFFKTKVT
1049


WP_003041502
981
HHAHDAYLNAVIGTALLKKYPKL-ASEFVYGEFKKYDV S---DK---eIG KATAK--YfFYSNLM-NFFKKEVK
1050


WP_037593752
982
HHAHDAYLNAVVGNALLLKYPQL-EPEFVYGEYPKYN- S---YR---sRK SATEK--FlFYSNIL-RFFKKE--
1042


WP_049516684
982
HHAHDAYLNAVVGNALLLKYPQL-EPEFVYGEYPKYN- S---YR---sRK SATEK--FlFYSNIL-RFFKKE--
1042


GAD46167
981
HHAHDAYLNAVVGNALLLKYPQL-EPEFVYGEYPKYN- S---YR---sRK SATEK--FlFYSNIL-RFFKKE--
1041


WP_018363470
990
HHAHDAYLNAVVGTALLKKYPKL-APEFVYGEYKKYDV S---SDDhseMG KATAK--YfFYSNLM-NFFKRVIR
1062


WP_003043819
991
HHAHDAYLNAVVGTALIKKYPKL-ESEFVYGDYKVYDV S---EQEi--GK ATAKR--F-FYSNIM-NFFKTEVK
1060


WP_006269658
981
HHAHDAYLNAVVGNALLLKYPQL-EPEFVYGEYPKYN- S---YR---sRK SATEK--FlFYSNIL-RFFKKE--
1041


WP_048800889
981
HHAHDAYLNAVVGTALLKKYPKL-TSEFVYGEYKKYDV S---DND--eIG KATAK--YfFYSNLM-NFFKTEVK
1051


WP_012767106
981
HHAHDAYLNAVVGTALIKKYTKL-ESEFVYGDYKVYDV S---EQEi--GK ATAKR--F-FYSNIM-NFFKTEIT
1050


WP_014612333
981
HHAHDAYLNAVVGTALIKKYPKL-ESEFVYGDYKVYDV S---EQEi--GK ATAKR--F-FYSNIM-NFFKTEIT
1050


WP_015017095
981
HHAHDAYLNAVVGTALIKKYPKL-ESEFVYGDYKVYDV S---EQEi--GK ATAKR--F-FYSNIM-NFFKTEIT
1050


WP_015057649
981
HHAHDAYLNAVVGTALIKKYPKL-ESEFVYGDYKVYDV S---EQEi--GK ATAKR--F-FYSNIM-NFFKTEIT
1050


WP_048327215
981
HHAHDAYLNAVVGTALIKKYPKL-ESEFVYGDYKVYDV S---EQEi--GK ATAKR--F-FYSNIM-NFFKTEIT
1050


WP_049519324
981
HHAHDAYLNAVVGTALIKKYPKL-ESEFVYGDYKVYDV S---EQEi--GK ATAKR--F-FYSNIM-NFFKTEIT
1050


WP_012515931
981
HHAHDAYLNAVVAKAILGKYPQL-APEFVYGDYPKYN- S---FKEr--QK ATQKM--L-FYSNIL-KFFKDQES
1043


WP_021320964
981
HHAHDAYLNAVVAKAILGKYPQL-APEFVYGDYPKYN- S---FKEr--QK ATQKT--L-FYSNIL-KFFKDQES
1043


WP_037581760
981
HHAHDAYLNAVVAKAILGKYPQL-APEFVYGDYPKYN- S---FKEr--QK ATQKT--L-FYSNIL-KFFKDQES
1043


WP_004232481
989
HHAHDAYLNAVVGTALLKKYPKL-APEFVYGEYKKYDV S---SDNhseLG KATAK--YfFYSNLM-NFFKTEVK
1061


WP_009854540
990
HHAHDAYLNAVVGTALLKKYPKL-ASEFVYGEYKKYDI S---SD------ KATAK--YfFYSNLM-NFFKTKVK
1056


WP_012962174
990
HHAHDAYLNAVVGTALLKKYPKL-APEFVYGEYKKYDI S---GD------ KATAK--YfFYSNLM-NFFKRVIR
1056


WP_039695303
992
HHAHDAYLNAVVGTALLKKYPKL-ASEFVYGEYKKYDI S---SD------ KATAK--YfFYSNLM-NFFKTKVK
1058


WP_014334983
989
HHAHDAYLNAVVGTALLKKYPKL-TPEFVYGEYKKYDV S---SDDyseMG KATAK--YfFYSNLM-NFFKTEVK
1061


WP_003099269
982
HHAQDAYLNAVVGTALLKKYPKL-EAEFVYGDYKHYDL P---DSSl--GK ATTRM--F-FYSNLM-NFFKKEIK
1051


AHY15608
982
HHAQDAYLNAVVGTALLKKYPKL-EAEFVYGDYKHYDL P---DSSl--GK ATTRM--F-FYSNLM-NFFKKEIK
1051


AHY17476
982
HHAQDAYLNAVVGTALLKKYPKL-EAEFVYGDYKHYDL P---DSSl--GK ATTRM--F-FYSNLM-NFFKKEIK
1051


ESR09100

-------------------------------------- ------------ ------------------------



AGM98575
982
HHAQDAYLNAVVGTALLKKYPKL-EAEFVYGDYKHYDL P---DSSl--GK ATTRM--F-FYSNLM-NFFKKEIK
1051


ALF27331
982
HHAHDAYLNAVIGKALLGVYPQL-EPEFVYGDYPHFH- G---HK---eNK ATAKK--F-FYSNIM-NFFKKD--
1041


WP_018372492
995
HHAHDAYLNAVVAQALLKVYPKF-ERELVYGSYVKESI ----FS----RK ATERM---rMYNNIL-KFISKD--
1055


WP_045618028
985
HHAHDPYLNAVVAKAILKKYPKL-EPEFVYGDYQKYDL TkdpKEV---EK ATEKY--F-FYSNLL-NFFKEEVH
1056


WP_045635197
984
HHAHDAYLNAVVAKAILKKYPKL-EPEFVYGEYQKYDL SkdpKEV---EK ATEKY--F-FYSNLL-NFFKEEVH
1055


WP_002263549
982
HHAHDAYLNAVIGKALLGVYPQL-EPEFVYGDYPHFH- G---HK---eNK ATAKK--F-FYSNIM-NFFKKD--
1041


WP_002263887
982
HHAHDAYLNAVIGKALLGVYPQL-EPEFVYGDYPHFH- G---HK---eNK ATAKK--F-FYSNIM-NFFKKD--
1041


WP_002264920
982
HHAHDAYLNAVIGKALLGVYPQL-EPEFVYGDYPHFH- G---HK---eNK ATAKK--F-FYSNIM-NFFKKD--
1041


WP_002269043
982
HHAHDAYLNAVIGKALLGVYPQL-EPEFVYGDYPHFH- G---HK---eNK ATAKK--F-FYSNIM-NFFKKD--
1041


WP_002269448
982
HHAHDAYLNAVIGKALLGVYPQL-EPEFVYGDYPHFH- G---HK---eNK ATAKK--F-FYSNIM-NFFKKD--
1041


WP_002271977
982
HHAHDAYLNAVIGKALLGVYPQL-EPEFVYGDYPHFH- G---HK---eNK ATAKK--F-FYSNIM-NFFKKD--
1041


WP_002272766
982
HHAHDAYLNAVIGKALLGVYPQL-EPEFVYGDYPHFH- G---HE---eNK ATAKK--F-FYSNIM-NFFKKD--
1041


WP_002273241
982
HHAHDAYLNAVIGKALLGVYPQL-EPEFVYGDYPHFH- G---HK---eNK ATAKK--F-FYSNIM-NFFKKD--
1041


WP_002275430
982
HHAHDAYLNAVIGKALLGVYPQL-EPEFVYGDYPHFH- G---HE---eNK ATAKK--F-FYSNIM-NFFKKD--
1041


WP_002276448
982
HHAHDAYLNAVIGKALLGVYPQL-EPEFVYGDYPHFH- G---HK---eNK ATAKK--F-FYSNIM-NFFKKD--
1041


WP_002277050
984
HHAHDAYLNAVVVKALLVKYPKL-EPEFVYGEYPKYN- S---YR---eRK ATQKM--F-FYSNIM-NMFKSKVK
1046


WP_002277364
982
HHAHDAYLNAVIGKALLGVYPQL-EPEFVYGDYPHFH- G---HK---eNK ATAKK--F-FYSNIM-NFFKKD--
1041


WP_002279025
982
HHAHDAYLNAVIGKALLGVYPQL-EPEFVYGDYPHFH- G---HE---eNK ATAKK--F-FYSNIM-NFFKKD--
1041


WP_002279859
982
HHAHDAYLNAVIGKALLGVYPQL-EPEFVYGDYPHFH- G---HK---eNK ATAKK--F-FYSNIM-NFFKKD--
1041


WP_002280230
982
HHAHDAYLNAVIGKALLGVYPQL-EPEFVYGDYPHFH- G---HK---eNK ATAKK--F-FYSNIM-NFFKKD--
1041


WP_002281696
982
HHAHDAYLNAVIGKALLGVYPQL-EPEFVYGDYPHFH- G---HK---eNK ATAKK--F-FYSNIM-NFFKKD--
1041


WP_002282247
984
HHAHDAYLNAVVVKALLVKYPKL-EPEFVYGEYPKYN- S---YR---eRK ATQKM--F-FYSNIM-NMFKSKVK
1046


WP_002282906
982
HHAHDAYLNAVIGKALLGVYPQL-EPEFVYGDYPHFH- G---HK---eNK ATAKK--F-FYSNIM-NFFKKD--
1041


WP_002283846
982
HHAHDAYLNAVIGKALLGVYPQL-EPEFVYGDYPHFH- G---HK---eNK ATAKK--F-FYSNIM-NFFKKD--
1041


WP_002287255
982
HHTHDAYLNAVIGKALLGVYPQL-EPEFVYGDYPHFH- G---HK---eNK ATAKK--F-FYSNIM-NFFKKD--
1041


WP_002288990
982
HHAHDAYLNAVIGKALLGVYPQL-EPEFVYGDYPHFH- G---HK---eNK ATAKK--F-FYSNIM-NFFKKD--
1041


WP_002289641
982
HHAHDAYLNAVIGKALLGVYPQL-EPEFVYGDYPHFH- G---HK---eNK ATAKK--F-FYSNIM-NFFKKD--
1041


WP_002290427
982
HHAHDAYLNAVIGKALLGVYPQL-EPEFVYGDYPHFH- G---HK---eNK ATAKK--F-FYSNIM-NFFKKD--
1041


WP_002295753
982
HHAHDAYLNAVIGKALLGVYPQL-EPEFVYGDYPHFH- G---HK---eNK ATAKK--F-FYSNIM-NFFKKD--
1041


WP_002296423
982
HHAHDAYLNAVIGKALLGVYPQL-EPEFVYGDYPHFH- G---HK---eNK ATAKK--F-FYSNIM-NFFKKD--
1041


WP_002304487
996
HHAHDAYLNAVIGKALLGVYPQL-EPEFVYGDYPHFH- G---HK---eNK ATAKK--F-FYSNIM-NFFKKG--
1055


WP_002305844
982
HHAHDAYLNAVIGKALLGVYPQL-EPEFVYGDYPHFH- G---HK---eNK ATAKK--F-FYSNIM-NFFKKD--
1041


WP_002307203
982
HHAHDAYLNAVIGKALLGVYPQL-EPEFVYGDYPHFH- G---HK---eNK ATAKK--F-FYSNIM-NFFKKD--
1041


WP_002310390
982
HHAHDAYLNAVIGKALLGVYPQL-EPEFVYGDYPHFH- G---HK---eNK ATAKK--F-FYSNIM-NFFKKD--
1041


WP_002352408
982
HHAHDAYLNAVIGKALLGVYPQL-EPEFVYGDYPHFH- G---HK---eNK ATAKK--F-FYSNIM-NFFKKD--
1041


WP_012997688
982
HHAHDAYLNAVIGKALLGVYPQL-EPEFVYGDYPHFH- G---HK---eNK ATAKK--F-FYSNIM-NFFKKD--
1041


WP_014677909
982
HHAHDAYLNAVIGKALLGVYPQL-EPEFVYGDYPHFH- G---HK---eNK ATAKK--F-FYSNIM-NFFKKD--
1041


WP_019312892
982
HHAHDAYLNAVIGKALLGVYPQL-EPEFVYGDYPHFH- G---HK---eNK ATAKK--F-FYSNIM-NFFKKD--
1041


WP_019313659
982
HHAHDAYLNAVIGKALLGVYPQL-EPEFVYGDYPHFH- G---HK---eNK ATAKK--F-FYSNIM-NFFKKD--
1041


WP_019314093
982
HHAHDAYLNAVIGKALLGVYPQL-EPEFVYGDYPHFH- G---HK---eNK ATAKK--F-FYSNIM-NFFKKD--
1041


WP_019315370
982
HHAHDAYLNAVIGKALLGVYPQL-EPEFVYGDYPHFH- G---HE---eNK ATAKK--F-FYSNIM-NFFKKD--
1041


WP_019803776
982
HHAHDAYLNAVIGKALLGVYPQL-EPEFVYGDYPHFH- G---HK---eNK ATAKK--F-FYSNIM-NFFKKD--
1041


WP_019805234
982
HHAHDAYLNAVIGKALLGVYPQL-EPEFVYGDYPHFH- G---HK---eNK ATAKK--F-FYSNIM-NFFKKD--
1041


WP_024783594
982
HHAHDAYLNAVIGKALLGVYPQL-EPEFVYGDYPHFH- G---HK---eNK ATAKK--F-FYSNIM-NFFKKD--
1041


WP_024784288
984
HHAHDAYLNAVVVKALLVKYPKL-EPEFVYGEYLKYN- S---YR---eRK ATQKM--F-FYSNIM-NMFKSKVK
1046


WP_024784666
982
HHAHDAYLNAVIGKALLGVYPQL-EPEFVYGDYPHFH- G---HK---eNK ATAKK--F-FYSNIM-NFFKKD--
1041


WP_024784894
982
HHAHDAYLNAVIGKALLGVYPQL-EPEFVYGDYPHFH- G---HK---eNK ATAKK--F-FYSNIM-NFFKKD--
1041


WP_024786433
984
HHAHDAYLNAVVVKALLVKYPKL-EPEFVYGEYPKYN- S---YR---eRK ATQKM--F-FYSNIM-NMFKSKVK
1046


WP_049473442
982
HHAHDAYLNAVIGKALLGVYPQL-EPEFVYGDYPHFH- G---HE---eNK ATAKK--F-FYSNIM-NFFKKD--
1041


WP_049474547
982
HHAHDAYLNAVIGKALLGVYPQL-EPEFVYGDYPHFH- G---HK---eNK ATAKK--F-FYSNIM-NFFKKD--
1041


EMC03581
975
HHAHDAYLNAVIGKALLGVYPQL-EPEFVYGDYPHFH- G---HK---eNK ATAKK--F-FYSNIM-NFFKKD--
1034


WP_000428612
987
HHAHDAYLNAVVAKAILKKYPKL-EPEFVYGDYQKYDL SkdpKEI---EK ATEKY--F-FYSNLL-NFFKEEVH
1058


WP_000428613
985
HHAHDAYLNAVVAKAILKKYPKL-EPEFVYGDYQKYDL SrnpKEV---EK ATEKY--F-FYSNLL-NFFKEEVH
1056


WP_049523028
980
HHAHDAYLNAVVAKAILKKYPKL-EPEFVYGDYQKYDL TkdpKEI---EK ATEKY--F-FYSNLL-NFFKDKVY
1051


WP_003107102
951
HHAHDAYLNAVVGTALLKKYPKL-EAEFVYGDYKHYDL S---DTSl--GK ATAKM--F-FYSNIM-NFFKKEVR
1020


WP_054279288
983
HHAHDAYLNAVVGTALLKMYPKL-ASEFVYGDYQKYDL S---GKAs--GH ATAKY--F-FYSNLM-NFFKSEVK
1052


WP_049531101
985
HHAHDAYLNAVVAKAILKKYPKL-EPEFVYGDYQKYDL SrdpKEI---EK ATEKY--F-FYSNLL-NFFKEEVH
1056


WP_049538452
985
HHAHDAYLNAVVAKAILKKYPKL-EPEFVYGDYQKYDL SkdpKDI---EK ATEKY--F-FYSNLL-NFFKEEVH
1056


WP_049549711
987
HHAHDAYLNAVVAKAILKKYPKL-EPEFVYGDYQKNDL SkdpKDI---EK ATEKY--F-FYSNLL-NFFKEEVH
1058


WP_007896501
988
HHAHDAYLNAVVGTALLKKYPKL-EAEFVYGDYKHFDL S---DPSl--GK ATAKV--F-FYSNIM-NFFKEELS
1057


EFR44625
940
HHAHDAYLNAVVGTALLKKYPKL-EAEFVYGDYKHFDL S---DPSl--GK ATAKV--F-FYSNIM-NFFKEELS
1009


WP_002897477
984
HHAHDAYLNAVVAKAILKKYPKL-EPEFVYGDYQKYDL FkpsKEI---EK ATEKY--F-FYSNLL-NFFKEEVL
1055


WP_002906454
984
HHAHDAYLNAVVAKAILKKYPKL-EPEFVYGDYQKYDL SkasNTI---DK ATEKY--F-FYSNLL-NFFKEKVR
1055


WP_009729476
985
HHAHDAYLNAVVAKAILKKYPKL-EPEFVYGDYQKYDL SkdpKEI---EK ATEKY--F-FYSNLL-NFFKEEVH
1056


CQR24647
984
HHAHDAYLNAVVAKALLIRYPKL-EPEFVYGEYPKYN- S---YRE---RK ATEKM--F-FYSNIM-NMFKTTIK
1046


WP_000066813
989
HHAHDAYLNAVLAKAILKKYPKL-EPEFVYGDYQKYDL SrepKEV---EK ATQKY--F-FYSNLL-NFFKEEVH
1060


WP_009754323
985
HHAHDAYLNAVVAKAILKKYPKL-EPEFVYGDYQKYDL SkdpKEV---EK ATEKY--F-FYSNLL-NFFKEEVH
1056


WP_044674937
986
HHAHDAYLNAVVATALLKKYPQL-APEFVYGDYPKYN- S---YKS---RK ATEKV--L-FYSNIM-NFFRRVLV
1048


WP_044676715
988
HHAHDAYLNAVVATALLKKYPQL-APEFVYGDYPKYN- S---YKS---RK ATEKV--L-FYSNIM-NFFRRVLV
1050


WP_044680361
988
HHAHDAYLNAVVATALLKKYPQL-APEFVYGDYPKYN- S---YKS---RK ATEKV--L-FYSNIM-NFFRRVLV
1050


WP_044681799
986
HHAHDAYLNAVVATALLKKYPQL-APEFVYGDYPKYN- S---YKS---RK ATEKV--L-FYSNIM-NFFRRVLV
1048


WP_049533112
981
HHAHDAYLNAVIGTALLKKYPKL-ASEFVYGEFKKYDV S---DK---eIG KATAK--YfFYSNLM-NFFKKEVK
1050


WP_029090905
952
HHAQDAFLVAFLGTNITSNYPKI-EMEYLFKGYQHYLN ------Ev--GK AAKPKftF-IVENLS---------
1007


WP_006506696
977
HHAHDAYIVALIGGFMRDRYPNMhDSKAVYSEYMKMFR ----NKNd--QK -----g---FVINSM-NYPY-EV-
1038


AIT42264
982
HHAHDAYLNAVVGTALIKKYPKL-ESEFVYGDYKVYDV S---EQEi--GK ATAKY--F-FYSNIM-NFFKTEIT
1051


WP_034440723
981
HHAHDAYLNGVIALKLLELYPYM-AKDLIYGKYSYHRK G---------DK ATQAK--Y-KMSNII-ERFSQDL-
1041


AKQ21048
982
HHAHDAYLNAVVGTALIKKYPKL-ESEFVYGDYKVYDV S---EQEi--GK ATAKY--F-FYSNIM-NFFKTEIT
1051


WP_004636532
981
HHGHDAYLNAVVATTIMKVYPNL-KPQFVYGQYKKTSM ----FKE---EK ATARK--H-FYSNIT-KFFKKEKV
1042


WP_002364836
988
HHGQDAYLNCVVATTLLKVYPNL-APEFVYGEYPKFQT ----FKE---NK ATAKA--I-IYTNLL-RFFTED--
1047


WP_016631044
939
HHGQDAYLNCVVATTLLKVYPNL-APEFVYGEYPKFQT ----FKE---NK ATAKA--I-IYTNLL-RFFTED--
998


EMS75795
723
HHAHDAYLNGVVAIALLKKYPKL-EPEFVYGNYTKFNL ----AT---eNK ATAKK--E-FYSNIL-RFFEKE--
782


WP_002373311
988
HHGQDAYLNCVVATTLLKVYPNL-APEFVYGEYPKFQA ----FKE---NK ATAKT--I-IYTNLM-RFFTED--
1047


WP_002378009
988
HHGQDAYLNCVVATTLLKVYPNL-APEFVYGEYPKFQT ----FKE---NK ATAKA--I-IYTNLL-RFFTED--
1047


WP_002407324
988
HHGQDAYLNCVVATTLLKVYPNL-APEFVYGEYPKFQT ----FKE---NK ATAKA--I-IYTNLL-RFFTED--
1047


WP_002413717
988
HHGQDAYLNCVVATTLLKVYPNL-APEFVYGEYPKFQT ----FKE---NK ATAKA--I-IYTNLL-RFFTED--
1047


WP_010775580
990
HHGQDAYLNCVVATTLLKVYPNL-APEFVYGEYPKFQA ----FKE---NK ATAKA--I-IYTNLL-RFFTED--
1049


WP_010818269
988
HHGQDAYLNCVVATTLLKVYPNL-APEFVYGEYPKFQT ----FKE---NK ATAKA--I-IYTNLL-RFFTED--
1047


WP_010824395
988
HHGQDAYLNCVVATTLLKVYPNL-APEFVYGEYPKFQT ----FKE---NK ATAKT--I-IYTNLM-RFFTED--
1047


WP_016622645
988
HHGQDAYLNCVVATTLLKVYPNL-APEFVYGEYPKFQT ----FKE---NK ATAKA--I-IYTNLL-RFFTED--
1047


WP_033624816
988
HHGQDAYLNCVVATTLLKVYPNL-APEFVYGEYPKFQA ----FKE---NK AMAKA--I-IYTNLL-RFFTED--
1047


WP_033625576
988
HHGQDAYLNCVVATTLLKVYPNL-APEFVYGEYPKFQA ----FKE---NK ATAKA--I-IYTNLM-RFFTEV--
1047


WP_033789179
988
HHGQDAYLNCVVATTLLKVYPNL-APEFVYGEYPKFQA ----FKE---NK ATAKA--I-IYTNLL-RFFTED--
1047


WP_002310644
989
HHAHDAYLNGVVALALLKKYPQL-APEFVYGEYLKFNA ----HK---aNK ATVKK--E-FYSNIM-KFFESD--
1048


WP_002312694
990
HHAHDAYLNGVVALALLKKYPQL-APEFVYGEYLKFNA ----HK---aNK ATVKK--E-FYSNIM-KFFESD--
1049


WP_002314015
990
HHAHDAYLNGVVALALLKKYPQL-APEFVYGEYLKFNA ----HK---aNK ATVKK--E-FYSNIM-KFFESD--
1049


WP_002320716
990
HHAHDAYLNGVVALALLKKYPQL-APEFVYGEYLKFNA ----HK---aNK ATVKK--E-FYSNIM-KFFESD--
1049


WP_002330729
989
HHAHDAYLNGVVALALLKKYPQL-APEFVYGEYLKFNA ----HK---aNK ATVKK--E-FYSNIM-KFFESD--
1048


WP_002335161
990
HHAHDAYLNGVVALALLKKYPQL-APEFVYGEYLKFNA ----HK---aNK ATVKK--E-FYSNIM-KFFESD--
1049


WP_002345439
990
HHAHDAYLNGVVALALLKKYPQL-APEFVYGEYLKFNA ----HK---aNK ATVKK--E-FYSNIM-KFFESD--
1049


WP_034867970
980
HHAHDAYLNGFIANVLLKRYPKL-APEFVYGKYVKYSL ----AR---eNK ATAKK--E-FYSNIL-KFLESD--
1039


WP_047937432
990
HHAHDAYLNGVIALALLKKYPQL-APEFVYGEYLKFNA ----HK---aNK ATVKK--E-FYSNIM-KFFESD--
1049


WP_010720994
980
HHAHDAYLNGFIANVLLKRYPKL-APEFVYGKYVKYSL ----AR---eNK ATAKK--E-FYSNIL-KFLESD--
1039


WP_010737004
980
HHAHDAYLNGFIANVLLKRYPKL-APEFVYGKYVKYSL ----AR---eNK ATAKK--E-FYSNIL-KFLESD--
1039


WP_034700478
980
HHAHDAYLNGFIANVLLKRYPKL-APEFVYGKYVKYSL ----AR---eNK ATAKK--E-FYSNIL-KFLESD--
1039


WP_007209003
978
HHAHDAYLNAVVALSLLRVYPQL-KPEFVYGEYGKNS- ----IHDg--NK ATIKK---qFYSNIT-RYFASK--
1037


WP_023519017
974
HHAHDAYLNGVVAMTLLKKYPKL-APEFVYGSYIKGDI ----NQ---iNK ATAKK--E-FYSNIM-KFFESE--
1033


WP_010770040
986
HHGHDAYLNGVVANSLLRVYPQL-QPEFVYGDYPKFNA ----YKA---NK ATAKK--Q-LYTNIM-KFFAED--
1045


WP_048604708
983
HHAHDAYLNGVVATALLKIYPQL-EPEFVYGEFHRFNA ----FKE---NK ATAKK--Q-FYSNLM-EFSKSD--
1042


WP_010750235
983
HHAHDAYLNAVVALALLKKYPRL-APEFVYGSFAKFHL ----VK---eNK ATAKK--E-FYSNIL-KFFEKE--
1042


AII16583
1021
HHAHDAYLNAVVGTALIKKYPKL-ESEFVYGDYKVYDV S---EQEi--GK ATAKY--F-FYSNIM-NFFKTEIT
1090


WP_029073316
988
HHAHDAYIATILGTYIGHRFESL-DAKYIYGEYQKIFR ----NKNk--DK ---KDg---FILNSM-RNLYADK-
1052


WP_031589969
988
HHAHDAYIATILGTYIGHRFESL-DAKYIYGEYKRIFR ----QKNk--GK ---NDg---FILNSM-RNIYADK-
1052


KDA45870
973
HHAHDAYLNAVVANLIMAKYPEL-EPEFVYGKYRKTK- ----FKGl--GK ATAKN---tLYANVL-YFLKENEV
1034


WP_039099354
991
HHAFDAYLTAFVGLYLLKRYPKL-KPYFVYGEYQKAS- ----QQ----DK ---RN--F----NFL-NGLKKD--
1043


AKP02966
1000
HHAQDAYLASFLGTYRLRRFPTD-EMLLMNGEYNKFYG -----KElysKK -SRKN-gF-IISPLV---------
1062


WP_010991369
985
HHAHDAYLNGVVANTLLKVYPQL-EPEFVYGDYHQFDW ----FKA---NK ATAKK--Q-FYTNIM-LFFAQK--
1044


WP_033838504
985
HHAHDAYLNGVVANTLLKVYPQL-EPEFVYGDYHQFDW ----FKA---NK ATAKK--Q-FYTNIM-LFFAQK--
1044


EHN60060
988
HHAHDAYLNGVVANTLLKVYPQL-EPEFVYGDYHQFDW ----FKA---NK ATAKK--Q-FYTNIM-LFFAQK--
1047


EFR89594
754
HHAHDAYLNGVVANTLLKVYPQL-EPEFVYGDYHQFDW ----FKA---NK ATAKK--Q-FYTNIM-LFFAQK--
813


WP_038409211
985
HHAHDAYLNGVVANTLLKVYPQL-EPEFVYGDYHQFDW ----FKA---NK ATAKK--Q-FYTNIM-RFFAKE--
1044


EFR95520
604
HHAHDAYLNGVVANTLLKVYPQL-EPEFVYGDYHQFDW ----FKA---NK ATAKK--Q-FYTNIM-RFFAKE--
663


WP_003723650
985
HHAHDAYLNGVVANTLLKVYPQL-EPEFVYGEYHQFDW ----FKA---NK ATAKK--Q-FYTNIM-LFFAQK--
1044


WP_003727705
985
HHAHDAYLNGVVANTLLKVYPQL-EPEFVYGEYHQFDW ----FKA---NK ATAKK--Q-FYTNIM-LFFAQK--
1044


WP_003730785
985
HHAHDAYLNGVVANTLLKVYPQL-EPEFVYGEYHQFDW ----FKA---NK ATAKK--Q-FYTNIM-LFFAQK--
1044


WP_003733029
985
HHAHDAYLNGVVANTLLKVYPQL-EPEFVYGEYHQFGW ----FKA---NK ATAKK--Q-FYTNIM-LFFAQK--
1044


WP_003739838
985
HHAHDAYLNGVVANTLLKVYPQL-EPEFVYGEYHQFDW ----FKA---NK ATAKK--Q-FYTNIM-LFFAQK--
1044


WP_014601172
985
HHAHDAYLNGVVANTLLKVYPQL-EPEFVYGEYHQFDW ----FKA---NK ATAKK--Q-FYTNIM-LFFGQK--
1044


WP_023548323
985
HHAHDAYLNGVVANTLLKVYPQL-EPEFVYGEYHQFDW ----FKA---NK ATAKK--Q-FYTNIM-LFFAQK--
1044


WP_031665337
985
HHAHDAYLNGVVANTLLKVYPQL-EPEFVYGEYHQFDW ----FKA---NK ATAKK--Q-FYTNIM-LFFAQK--
1044


WP_031669209
985
HHAHDAYLNGVVANTLLKVYPQL-EPEFVYGEYHQFDW ----FKA---NK ATAKK--Q-FYTNIM-LFFAQK--
1044


WP_033920898
985
HHAHDAYLNGVVANTLLKVYPQL-EPEFVYGEYHQFDW ----FKA---NK ATAKK--Q-FYTNIM-LFFAQK--
1044


AKI42028
988
HHAHDAYLNGVVANTLLKVYPQL-EPEFVYGEYHQFDW ----FKA---NK ATAKK--Q-FYTNIM-LFFGQK--
1047


AKI50529
988
HHAHDAYLNGVVANTLLKVYPQL-EPEFVYGEYHQFDW ----FKA---NK ATAKK--Q-FYTNIM-LFFAQK--
1047


EFR83390
433
HHAHDAYLNGVVANTLLKVYPQL-EPEFVYGEYHQFDW ----FKA---NK ATAKK--Q-FYTNIM-LFFAQK--
492


WP_046323366
985
HHAHDAYLNCVVANTLLKVYPQL-EPEFVYGDYHQFDW ----FKA---NK ATAKK--Q-FYTNIM-LFFAKK--
1044


AKE81011
998
HHAHDAYLNAVVGTALIKKYPKL-ESEFVYGDYKVYDV S---EQEi--GK ATAKY--F-FYSNIM-NFFKTEIT
1067


CUO82355
981
HHAHDAYIVALIGGFMRDRYPNMhDSKAVYSEYMKMFR ----NKNd--QK -----g---FVINSM-NYPY-EV-
1042


WP_033162887
983
HHAHDAYIACIVGQFMHQNFEHL-DAKIIYGQYK---- -----KNy--KK ---NYg---FILNSM-NHLQSDI-
1042


AGZ01981
1015
HHAHDAYLNAVVGTALIKKYPKL-ESEFVYGDYKVYDV S---EQEi--GK ATAKY--F-FYSNIM-NFFKTEIT
1084


AKA60242
982
HHAHDAYLNAVVGTALIKKYPKL-ESEFVYGDYKVYDV S---EQEi--GK ATAKY--F-FYSNIM-NFFKTEIT
1051


AKS40380
982
HHAHDAYLNAVVGTALIKKYPKL-ESEFVYGDYKVYDV S---EQEi--GK ATAKY--F-FYSNIM-NFFKTEIT
1051


4UN5_B
986
HHAHDAYLNAVVGTALIKKYPKL-ESEFVYGDYKVYDV S---EQEi--GK ATAKY--F-FYSNIM-NFFKTEIT
1055


WP_010922251
1052


embedded image


1114


WP_039695303
1059
YAD-GTVFERPIIE T-NAD-GE-IAWNKQIDFEKVRKVLS-YPQVNIVKKVETQT GGFSK ESIL-PKG-
1120


WP_045635197
1056
YAD-GTIVKRENIE Y-SKDtGE-IAWNKEKDFAIIKKVLS-LPQVNIVKKREVQT GGFSK ESIL-PKG-
1118


5AXW_A
772
YKYsHRVDKKPNRE VNNLN-GL---YDKDND--KLKKLINkSPEKLLMYHHDPQT --YQK KLIMeQYGd
852


WP_009880683
736
LAN-GEIRKRPLIE TNGET-GE-IVWDKGRDFATVRKVLS-MPQVNIVKKTEVQT GGFSK ESIL-PKR-
798


WP_010922251
1052
LAN-GEIRKRPLIE TNGET-GE-IVWDKGRDFATVRKVLS-MPQVNIVKKTEVQT GGFSK ESIL-PKR-
1114


WP_011054416
1052
LAN-GEIRKRPLIE TNGET-GE-IVWDKGRDFATVRKVLS-MPQVNIVKKTEVQT GGFSK ESIL-PKR-
1114


WP_011284745
1052
LAN-GEIRKRPLIE TNGET-GE-IVWDKGRDFATVRKVLS-MPQVNIVKKTEVQT GGFSK ESIL-PKR-
1114


WP_011285506
1052
LAN-GEIRKRPLIE TNGET-GE-IVWDKGRDFATVRKVLS-MPQVNIVKKTEVQT GGFSK ESIL-PKR-
1114


WP_011527619
1052
LAN-GEIRKRPLIE TNGET-GE-IVWDKGRDFATVRKVLS-MPQVNIVKKTEVQT GGFSK ESIL-PKR-
1114


WP_012560673
1052
LAN-GEIRKRPLIE TNGET-GE-IVWDKGRDFATVRKVLS-MPQVNIVKKTEVQT GGFSK ESIL-PKR-
1114


WP_014407541
1051
LAN-GEIRKRPLIE TNGET-GE-IVWDKGRDFATVRKVLS-MPQVNIVKKTEVQT GGFSK ESIL-PKR-
1113


WP_020905136
1052
LAN-GEIRKRPLIE TNGET-GE-IVWDKGRDFATVRKVLS-MPQVNIVKKTEVQT GGFSK ESIL-PKR-
1114


WP_023080005
1051
LAN-GEIRKRPLIE TNGET-GE-IVWDKGRDFATVRKVLS-MPQVNIVKKTEVQT GGFSK ESIL-PKR-
1113


WP_023610282
1051
LAN-GEIRKRPLIE TNGET-GE-IVWDKGRDFATVRKVLS-MPQVNIVKKTEVQT GGFSK ESIL-PKR-
1113


WP_030125963
1052
LAN-GEIRKRPLIE TNGET-GE-IVWDKGRDFATVRKVLS-MPQVNIVKKTEVQT GGFSK ESIL-PKR-
1114


WP_030126706
1052
LAN-GEIRKRPLIE TNGET-GE-IVWDKGRDFATVRKVLS-MPQVNIVKKTEVQT GGFSK ESIL-PKR-
1114


WP_031488318
1052
LAN-GEIRKRPLIE TNGET-GE-IVWDKGRDFATVRKVLS-MPQVNIVKKTEVQT GGFSK ESIL-PKR-
1114


WP_032460140
1052
LAN-GEIRKRPLIE TNGET-GE-IVWDKGRDFATVRKVLS-MPQVNIVKKTEVQT GGFSK ESIL-PKR-
1114


WP_032461047
1052
LAN-GEIRKRPLIE TNGET-GE-IVWDKGRDFATVRKVLS-MPQVNIVKKTEVQT GGFSK ESIL-PKR-
1114


WP_032462016
1052
LAN-GEIRKRPLIE TNGET-GE-IVWDKGRDFATVRKVLS-MPQVNIVKKTEVQT GGFSK ESIL-PKR-
1114


WP_032462936
1052
LAN-GEIRKRPLIE TNGET-GE-IVWDKGRDFATVRKVLS-MPQVNIVKKTEVQT GGFSK ESIL-PKR-
1114


WP_032464890
1052
LAN-GEIRKRPLIE TNGET-GE-IVWDKGRDFATVRKVLS-MPQVNIVKKTEVQT GGFSK ESIL-PKR-
1114


WP_033888930
877
LAN-GEIRKRPLIE TNGET-GE-IVWDKGRDFATVRKVLS-MPQVNIVKKTEVQT GGFSK ESIL-PKR-
939


WP_038431314
1052
LAN-GEIRKRPLIE TNGET-GE-IVWDKGRDFATVRKVLS-MPQVNIVKKTEVQT GGFSK ESIL-PKR-
1114


WP_038432938
1051
LAN-GEIRKRPLIE TNGET-GE-IVWDKGRDFATVRKVLS-MPQVNIVKKTEVQT GGFSK ESIL-PKR-
1113


WP_038434062
1052
LAN-GEIRKRPLIE TNGET-GE-IVWDKGRDFATVRKVLS-MPQVNIVKKTEVQT GGFSK ESIL-PKR-
1114


BAQ51233
963
LAN-GEIRKRPLIE TNGET-GE-IVWDKGRDFATVRKVLS-MPQVNIVKKTEVQT GGFSK ESIL-PKR-
1025


KGE60162
227
LAN-GEIRKRPLIE TNGET-GE-IVWDKGRDFATVRKVLS-MPQVNIVKKTEVQT GGFSK ESIL-PKR-
289


KGE60856
1
------------IE TNGET-GE-IVWDKGRDFATVRKVLS-MPQVNIVKKTEVQT GGFSK ESIL-PKR-
52


WP_002989955
1052
LAN-GEIRKRPLIE TNGET-GE-IVWDKGRDFATVRKVLS-MPQVNIVKKTEVQT GGFSK ESIL-PKR-
1114


WP_003030002
1042
-----------DIQ T-NED-GE-IAWNKEKHIKILRKVLS-YPQVNIVKKTEEQT GGFSK ESIL-PKG-
1093


WP_003065552
1059
YSN-GKVIVRPVVE Y-SKD-TEdIAWDKKSNFRTICKVLS-YPQVNIVKKVETQT GGFSK ESIL-PKG-
1121


WP_001040076
1050
LAD-GTVVVKDDIE VNNDT-GE-IVWDKKKHFATVRKVLS-YPQVNIVKKTEIQT GGFSK ESIL-AHG-
1112


WP_001040078
1058
LAD-GSIVVRPVIE TGRYM-GK-TAWDKKKHFATVRKVLS-YPQVNIVKKTEIQT GGFSK ESIL-AHG-
1120


WP_001040080
1050
LAD-GTVVVKDDIE VNNDT-GE-IVWDKKKHFATVRKVLS-YPQNNIVKKTEIQT GGFSK ESIL-AHG-
1112


WP_001040081
1050
LAD-GTVVVKDDIE VNNDT-GE-IVWDKKKHFATVRKVLS-YPQNNIVKKTEIQT GGFSK ESIL-AHG-
1112


WP_001040083
1050
LAD-GTVVVKDDIE VNNDT-GE-IVWDKKKHFATVRKVLS-YPQNNIVKKTEIQT GGFSK ESIL-AHG-
1112


WP_001040085
1050
LAD-GTVVVKDDIE VNNDT-GE-IVWDKKKHFATVRKVLS-YPQNNIVKKTEIQT GGFSK ESIL-AHG-
1112


WP_001040087
1050
LAD-GTVVVKDDIE VNNDT-GE-IVWDKKKHFATVRKVLS-YPQNNIVKKTEIQT GGFSK ESIL-AHG-
1112


WP_001040088
1050
LAD-GTVVVKDDIE VNNDT-GE-IVWDKKKHFATVRKVLS-YPQNNIVKKTEIQT GGFSK ESIL-AHG-
1112


WP_001040089
1050
LAD-GTVVVKDDIE VNNDT-GE-IVWDKKKHFATVRKVLS-YPQNNIVKKTEIQT GGFSK ESIL-AHG-
1112


WP_001040090
1050
LAD-GTVVVKDDIE VNNDT-GE-IVWDKKKHFATVRKVLS-YPQNNIVKKTEIQT GGFSK ESIL-AHG-
1112


WP_001040091
1050
LAD-GTVVVKDDIE VNNDT-GE-IVWDKKKHFATVRKVLS-YPQNNIVKKTEIQT GGFSK ESIL-AHG-
1112


WP_001040092
1050
LAD-ETVVVKDDIE VNNET-GE-IAWDKKKHFATVRKVLS-YPQVNIVKKTEVQT GGFSK ESIL-AHS-
1112


WP_001040094
1050
LAD-GTVVVKDDIE VNNDT-GE-IVWDKKKHFATVRKVLS-YPQVNIVKKTEIQT GGFSK ESIL-AHG-
1112


WP_001040095
1050
LAD-GTVVVKDDIE VNNDT-GE-IVWDKKKHFATVRKVLS-YPQVNIVKKTEVQT GGFSK ESIL-AHG-
1112


WP_001040096
1050
LAD-GTVVVKDDIE VNNDT-GE-IVWDKKKHFATVRKVLS-YPQVNIVKKTEVQT GGFSK ESIL-AHG-
1112


WP_001040097
1050
LAD-GTVVVKDDIE VNNDT-GE-IVWDKKKHFATVRKVLS-YPQVNIVKKTEIQT GGFSK ESIL-AHG-
1112


WP_001040098
1050
LAD-GTVVVKDDIE VNNDT-GE-IVWDKKKHFATVRKVLS-YPQVNIVKKTEIQT GGFSK ESIL-AHG-
1112


WP_001040099
1050
LAD-GTVVVKDDIE VNNDT-GE-IVWDKKKHFATVRKVLS-YPQVNIVKKTEIQT GGFSK ESIL-AHG-
1112


WP_001040100
1050
LAD-GTVVVKDDIE VNNDT-GE-IVWDKKKHFATVRKVLS-YPQVNIVKKTEIQT GGFSK ESIL-AHG-
1112


WP_001040104
1050
LAD-GTVVVKDDIE VNNDT-GE-IVWDKKKHFATVRKVLS-YPQNNIVKKTEIQT GGFSK ESIL-AHG-
1112


WP_001040105
1050
LAD-GTVVVKDDIE VNNDT-GE-IVWDKKKHFATVRKVLS-YPQNNIVKKTEIQT GGFSK ESIL-AHG-
1112


WP_001040106
1050
LAD-GTVVVKDDIE VNNDT-GE-IVWDKKKHFATVRKVLS-YPQVNIVKKTEIQT GGFSK ESIL-AHG-
1112


WP_001040107
1050
LAD-GTVVVKDDIE VNNDT-GE-IVWDKKKHFATVRKVLS-YPQVNIVKKTEIQT GGFSK ESIL-AHG-
1112


WP_001040108
1050
LAD-GTVVVKDDIE VNNDT-GE-IVWDKKKHFATVRKVLS-YPQVNIVKKTEIQT GGFSK ESIL-AHG-
1112


WP_001040109
1050
LAD-GTVVVKDDIE VNNDT-GE-IVWDKKKHFATVRKVLS-YPQVNIVKKTEIQT GGFSK ESIL-AHG-
1112


WP_001040110
1050
LAD-GTVVVKDDIE VNNDT-GE-IVWDKKKHFATVRKVLS-YPQVNIVKKTEIQT GGFSK ESIL-AHG-
1112


WP_015058523
1050
LAD-ETVVVKDDIE VNNET-GE-IAWDKKKHFATVRKVLS-YPQVNIVKKTEVQT GGFSK ESIL-AHS-
1112


WP_017643650
1050
LAD-GTVVVKDDIE VNNDT-GE-IVWDKKKHFATVRKVLS-YPQVNIVKKTEIQT GGFSK ESIL-AHG-
1112


WP_017647151
1050
LAD-GTVVVKDDIE VNNDT-GE-IVWDKKKHFATVRKVLS-YPQVNIVKKTEIQT GGFSK ESIL-AHG-
1112


WP_017648376
1050
LAD-GTVVVKDDIE VNNDT-GE-IVWDKKKHFATVRKVLS-YPQVNIVKKTEIQT GGFSK ESIL-AHG-
1112


WP_017649527
1050
LAD-GTVVVKDDIE VNNDT-GE-IVWDKKKHFATVRKVLS-YPQNNIVKKTEIQT GGFSK ESIL-AHG-
1112


WP_017771611
1050
LAD-GTVVVKDDIE VNNDT-GE-IVWDKKKHFATVRKVLS-YPQVNIVKKTEIQT GGFSK ESIL-AHG-
1112


WP_017771984
1050
LAD-GTVVVKDDIE VNNDT-GE-IVWDKKKHFATVRKVLS-YPQNNIVKKTEIQT GGFSK ESIL-AHG-
1112


CFQ25032
1050
LAD-GTVVVKDDIE VNNDT-GE-IVWDKKKHFATVRKVLS-YPQNNIVKKTEIQT GGFSK ESIL-AHG-
1112


CFV16040
1050
LAD-GTVVVKDDIE VNNDT-GE-IVWDKKKHFATVRKVLS-YPQNNIVKKTEIQT GGFSK ESIL-AHG-
1112


KLJ37842
1050
LAD-GTVVVKDDIE VNNDT-GE-IVWDKKKHFATVRKVLS-YPQNNIVKKTEIQT GGFSK ESIL-AHG-
1112


KLJ72361
1050
LAD-GTVVVKDDIE VNNDT-GE-IVWDKKKHFATVRKVLS-YPQNNIVKKTEIQT GGFSK ESIL-AHG-
1112


KLL20707
1064
LAD-GTVVVKDDIE VNNDT-GE-IVWDKKKHFATVRKVLS-YPQNNIVKKTEIQT GGFSK ESIL-AHG-
1126


KLL42645
1050
LAD-GTVVVKDDIE VNNDT-GE-IVWDKKKHFATVRKVLS-YPQVNIVKKTEIQT GGFSK ESIL-AHG-
1112


WP_047207273
1050
LAD-GTVVVKDDIE VNNDT-GE-IVWDKKKHFATVRKVLS-YPQNNIVKKTEIQT GGFSK ESIL-AHG-
1112


WP_047209694
1050
LAD-GTVVVKDDIE VNNDT-GE-IVWDKKKHFATVRKVLS-YPQVNIVKKTEIQT GGFSK ESIL-AHG-
1112


WP_050198062
1050
LAD-GTVVIKDDIE VNNDT-GE-IVWDKKKHFATVRKVLS-YPQNNIVKKTEIQT GGFSK ESIL-AHG-
1112


WP_050201642
1050
LAD-GTVVVKDDIE VNNDT-GE-IVWDKKKHFATVRKVLS-YPQNNIVKKTEIQT GGFSK ESIL-AHG-
1112


WP_050204027
1050
LAD-GTVVVKDDIE VNNDT-GE-IVWDKKKHFATVRKVLS-YPQVNIVKKTEIQT GGFSK ESIL-AHG-
1112


WP_050881965
1050
LAD-GTVVVKDDIE VNNDT-GE-IVWDKKKHFATVRKVLS-YPQNNIVKKTEIQT GGFSK ESIL-AHG-
1112


WP_050886065
1050
LAD-GTVVVKDDIE VNNDT-GE-IVWDKKKHFATVRKVLS-YPQNNIVKKTEIQT GGFSK ESIL-AHG-
1112


AHN30376
1050
LAD-ETVVVKDDIE VNNET-GE-IAWDKKKHFATVRKVLS-YPQVNIVKKTEVQT GGFSK ESIL-AHS-
1112


EAO78426
1050
LAD-GTVVVKDDIE VNNDT-GE-IVWDKKKHFATVRKVLS-YPQNNIVKKTEIQT GGFSK ESIL-AHG-
1112


CCW42055
1050
LAD-GTVVVKDDIE VNNDT-GE-IVWDKKKHFATVRKVLS-YPQNNIVKKTEIQT GGFSK ESIL-AHG-
1112


WP_003041502
1051
FAD-GTVVERPDIE T-SED-GE-IAWNKQTDFKIVRKVLS-YPQVNIVKKTEVQT HGLDR PSPK-PKP-
1122


WP_037593752
1043
-----------DIQ T-NED-GE-IAWNKEKHIKILRKVLS-YPQVNIVKKTEEQT GGFSK ESIL-PKG-
1094


WP_049516684
1043
-----------DIQ T-NED-GE-IAWNKEKHIKILRKVLS-YPQVNIVKKTEEQT GGFSK ESIL-PKG-
1094


GAD46167
1042
-----------DIQ T-NED-GE-IAWNKEKHIKILRKVLS-YPQVNIVKKTEEQT GGFSK ESIL-PKG-
1093


WP_018363470
1063
YSN-GKVIVRPVVE Y-SKDtGE-IAWNKRTDFEKVRKVLS-YPQVNIVKKVETQT GGFSK ESIL-PKG-
1125


WP_003043819
1061
LAN-GEIRKRPLIE TNGET-GE-VVWNKEKDFATVRKVLA-MPQVNIVKKTEVQT GGFSK ESIL-SKR-
1123


WP_006269658
1042
-----------DIQ T-NED-GE-IAWNKEKHIKILRKVLS-YPQVNIVKKTEEQT GGFSK ESIL-PKG-
1093


WP_048800889
1052
FAD-GTVVERPDIE T-SED-GE-IAWNKQTDFKIVRKVLS-YPQVNIVKKVEKQT GRFSK ESIL-PKG-
1113


WP_012767106
1051
LAN-GEIRKRPLIE TNEET-GE-IVWDKGRDFATVRKVLS-MPQVNIVKKTEVQT GALTN ESIY-ARG-
1113


WP_014612333
1051
LAN-GEIRKRPLIE TNEET-GE-IVWDKGRDFATVRKVLS-MPQVNIVKKTEVQT GALTN ESIY-ARG-
1113


WP_015017095
1051
LAN-GEIRKRPLIE TNEET-GE-IVWNKGRDFATVRKVLS-MPQVNIVKKTEVQT GALTN ESIY-ARG-
1113


WP_015057649
1051
LAN-GEIRKRPLIE TNEET-GE-IVWDKGRDFATVRKVLS-MPQVNIVKKTEVQT GALTN ESIY-ARG-
1113


WP_048327215
1051
LAN-GEIRKRPLIE TNEET-GE-IVWDKGRDFATVRKVLS-MPQVNIVKKTEVQT GALTN ESIY-ARG-
1113


WP_049519324
1051
LAN-GEIRKRPLIE TNEET-GE-IVWDKGRDFATVRKVLS-MPQVNIVKKTEVQT GALTN ESIY-ARG-
1113


WP_012515931
1044
L------------H VNSD--GE-EIWNANKHLPIIKNVLS-IPQVNIVKKTEVQT GGFYK ESIL-SKG-
1094


WP_021320964
1044
L------------H VNSD--GE-EIWNANKHLPIIKNVLS-IPQVNIVKKTEVQT GGFYK ESIL-SKG-
1094


WP_037581760
1044
L------------H VNSD--GE-EIWNANKHLPIIKNVLS-IPQVNIVKKTEVQT GGFYK ESIL-SKG-
1094


WP_004232481
1062
YAD-GRVFERPDIE T-NAD-GE-VVWNKQRDFNIVRKVLS-YPQVNIVKKVEVQT GGFSK ESIL-PKG-
1123


WP_009854540
1057
YAD-GTVFERPIIE T-NAD-GE-IAWNKQIDFEKVRKVLS-YPQVNIVKKVETQT GGFSK ESIL-PKG-
1118


WP_012962174
1057
YSN-GKVVVRPVIE C-SKDtGE-IAWNKQTDFEKVRRVLS-YPQVNIVKKVETQT GGFSK ESIL-PKG-
1119


WP_039695303
1059
YAD-GTVFERPIIE T-NAD-GE-IAWNKQIDFEKVRKVLS-YPQVNIVKKVETQT GGFSK ESIL-PKG-
1120


WP_014334983
1062
YAD-GRVFERPDIE T-NAD-GE-VVWNKQKDFDIVRKVLS-YPQVNIVKKVEAQT GGFSK ESIL-SKG-
1123


WP_003099269
1052
LAD-DTIFTRPQIE VNTET-GE-IVWDKVKDMQTIRKVMS-YPQVNIVMKTEVQT GGFSK ESIW-PKG-
1114


AHY15608
1052
LAD-DTIFTRPQIE VNTET-GE-IVWDKVKDMQTIRKVMS-YPQVNIVMKTEVQT GGFSK ESIW-PKG-
1114


AHY17476
1052
LAD-DTIFTRPQIE VNTET-GE-IVWDKVKDMQTIRKVMS-YPQVNIVMKTEVQT GGFSK ESIW-PKG-
1114


ESR09100

-------------- ----------------------------------------- ----- ---------



AGM98575
1052
LAD-DTIFTRPQIE VNTET-GE-IVWDKVKDMQTIRKVMS-YPQVNIVMKTEVQT GGFSK ESIW-PKG-
1114


ALF27331
1042
-----------DVR T-DKN-GE-IIWKKDEHISNIKKVLS-YPQVNIVKKVEEQT GGFSK ESIL-PKG-
1093


WP_018372492
1056
--K----------K --DQEtGE-IVWDKKEIENIVKKVIY-SSPVNIVKKREEQS GALFK QSNM-AVGy
1108


WP_045618028
1057
YAD-GTIVKRENIE Y-SKDtGE-IAWNKEKDFATIKKVLS-LPQVNIVKKTEEQT GGLFD NNIV-SKKk
1124


WP_045635197
1056
YAD-GTIVKRENIE Y-SKDtGE-IAWNKEKDFAIIKKVLS-LPQVNIVKKREVQT GGFSK ESIL-PKG-
1118


WP_002263549
1042
-----------DVR T-DKN-GE-IIWKKDEHISNIKKVLS-YPQVNIVKKVEEQT GGFSK ESIL-PKG-
1093


WP_002263887
1042
-----------DVR T-DKN-GE-IIWKKDEHISNIKKVLS-YPQVNIVKKVEEQT GGFSK ESIL-PKG-
1093


WP_002264920
1042
-----------DVR T-DKN-GE-IIWKKDEYISNIKKVLS-YPQVNIVKKVEEQT GGFSK ESIL-PKG-
1093


WP_002269043
1042
-----------DVR T-DKN-GE-IIWKKDEHISNIKKVLS-YPQVNIVKKVEEQT GGFSK ESIL-PKG-
1093


WP_002269448
1042
-----------DVR T-DKN-GE-IIWKKDEHISNIKKVLS-YPQVNIVKKVEEQT GGFSK ESIL-PKG-
1093


WP_002271977
1042
-----------DVR T-DKN-GE-IIWKKDEHISNIKKVLS-YPQVNIVKKVEEQT GGFSK ESIL-PKG-
1093


WP_002272766
1042
-----------DVR T-DKN-GE-IIWKKDEHISNIKKVLS-YPQVNIVKKVEEQT GGFSK ESIL-PKG-
1093


WP_002273241
1042
-----------DVR T-DKN-GE-IIWKKDEHISNIKKVLS-YPQVNIVKKVEEQT GGFSK ESIL-PKG-
1093


WP_002275430
1042
-----------DVR T-DKN-GE-IIWKKDEHISNIKKVLS-YPQVNIVKKVEEQT GGFSK ESIL-PKG-
1093


WP_002276448
1042
-----------DVR T-DRN-GE-IIWKKDEHISNIKKVLS-YPQVNIVKKVEEQT GGFSK ESIL-PKG-
1093


WP_002277050
1047
LAD-DQIVERPMIE VNDET-GE-IAWDKTKHITTVKKVLS-YPQVNIVKKVEEQT GGLFD -----PKS-
1111


WP_002277364
1042
-----------DVR T-DKN-GE-IIWKKDEHISNIKKVLS-YPQVNIVKKVEEQT GGFSK ESIL-PKG-
1093


WP_002279025
1042
-----------DVR T-DKN-GE-IIWKKDEHISNIKKVLS-YPQVNIVKKVEEQT GGFSK ESIL-PKG-
1093


WP_002279859
1042
-----------DVR T-DKN-GE-IIWKKDEYISNIKKVLS-YPQVNIVKKVEEQT GGFSK ESIL-PKG-
1093


WP_002280230
1042
-----------DVR T-DKN-GE-IIWKKDEHISNIKKVLS-YPQVNIVKKVEEQT GGFSK ESIL-PKG-
1093


WP_002281696
1042
-----------DVR T-DKN-GE-IIWKKDEHISNIKKVLS-YPQVNIVKKVEEQT GGFSK ESIL-PKG-
1093


WP_002282247
1047
LAD-DQIVERPMIE VNDET-GE-IAWDKTKHITTVKKVLS-YPQVNIVKKVEEQT GGLFD -----PKS-
1111


WP_002282906
1042
-----------DVR I-DKN-GE-IIWKKDEHISNIKKVLS-YPQVNIVKKVEEQT GGFSK ESIL-PKG-
1093


WP_002283846
1042
-----------DVR T-DKN-GE-IIWKKDEHISNIKKVLS-YPQVNIVKKVEEQT GGFSK ESIL-PKG-
1093


WP_002287255
1042
-----------DVR T-DKN-GE-IIWKKDEHISNIKKVLS-YPQVNIVKKVEEQT GGFSK ESIL-PKG-
1093


WP_002288990
1042
-----------DVR T-DKN-GE-IIWKKDEHISNIKKVLS-YPQVNIVKKVEEQT GGFSK ESIL-PKG-
1093


WP_002289641
1042
-----------DVR T-DKN-GE-IIWKKDEHISNIKKVLS-YPQVNIVKKVEEQT GGFSK ESIL-PKG-
1093


WP_002290427
1042
-----------DVR T-DKN-GE-IIWKKDEYISNIKKVLS-YPQVNIVKKVEEQT GGFFK ESIL-PKG-
1093


WP_002295753
1042
-----------DVR T-DKN-GE-IIWKKDEYISNIKKVLS-YPQVNIVKKVEEQT GGFSK ESIL-PKG-
1093


WP_002296423
1042
-----------DVR T-DKN-GE-IIWKKDEHISNIKKVLS-YPQVNIVKKVEEQT GGFSK ESIL-PKG-
1093


WP_002304487
1056
-----------DVR T-DKN-GE-IIWKKDEHISNIKKVLS-YPQVNIVKKVEEQT GGFSK ESIL-PKG-
1107


WP_002305844
1042
-----------DVR T-DKN-GE-IIWKKDEHISNIKKVLS-YPQVNIVKKVEEQT GGFSK ESIL-PKG-
1093


WP_002307203
1042
-----------DVR T-DKN-GE-IIWKKDEYISNIKKVLS-YPQVNIVKKVEEQT GGFSK ESIL-PKG-
1093


WP_002310390
1042
-----------DVR T-DKN-GE-IIWKKDEYISNIKKVLS-YPQVNIVKKVEEQT GGFFK ESIL-PKG-
1093


WP_002352408
1042
-----------DVR T-DKN-GE-IIWKKDEYISNIKKVLS-YPQVNIVKKVEEQT GGFSK ESIL-PKG-
1093


WP_012997688
1042
-----------DVR T-DKN-GE-IIWKKDEHISNIKKVLS-YPQVNIVKKVEEQT GGFSK ESIL-PKG-
1093


WP_014677909
1042
-----------DVR T-DKN-GE-IIWKKDEHISNIKKVLS-YPQVNIVKKVEEQT GGFSK ESIL-PKG-
1093


WP_019312892
1042
-----------DVR T-DKN-GE-IIWKKDEHISNIKKVLS-YPQVNIVKKVEEQT GGFSK ESIL-PKG-
1093


WP_019313659
1042
-----------DVR T-DKN-GE-IIWKKDEHISNIKKVLS-YPQVNIVKKVEEQT GGFSK ESIL-PKG-
1093


WP_019314093
1042
-----------DVR T-DKN-GE-IIWKKDEYISNIKKVLS-YPQVNIVKKVEEQT GGFSK ESIL-PKG-
1093


WP_019315370
1042
-----------DVR T-DKN-GE-IIWKKDEHISNIKKVLS-YPQVNIVKKVEEQT GGFSK ESIL-PKG-
1093


WP_019803776
1042
-----------DVR T-DKN-GE-IIWKKDEHISNIKKVLS-YPQVNIVKKVEEQT GGFSK ESIL-PKG-
1093


WP_019805234
1042
-----------DVR T-DKN-GE-IIWKKDEYISNIKKVLS-YPQVNIVKKVEEQT GGFFK ESIL-PKG-
1093


WP_024783594
1042
-----------DVR T-DKN-GE-IIWKKDEHISNIKKVLS-YPQVNIVKKVEEQT GGFSK ESIL-PKG-
1093


WP_024784288
1047
LAD-DQIVERPMIE VNDET-GE-IAWDKTKHITTVKKVLS-YPQVNIVKKVEEQT GGLFD -----PKS-
1111


WP_024784666
1042
-----------DVR T-DKN-GE-IIWKKDEHISNIKKVLS-YPQVNIVKKVEEQT GGFSK ESIL-PKG-
1093


WP_024784894
1042
-----------DVR T-DKN-GE-IIWKKDEHISNIKKVLS-YPQVNIVKKVEEQT GGFSK ESIL-PKG-
1093


WP_024786433
1047
LAD-DQIVERPMIE VNDET-GE-IAWDKTKHITTVKKVLS-YPQVNIVKKVEEQT GGLFD -----PKS-
1111


WP_049473442
1042
-----------DVR T-DKN-GE-IIWKKDEHISNIKKVLS-YPQVNIVKKVEEQT GGFSK ESIL-PKG-
1093


WP_049474547
1042
-----------DVR T-DKN-GE-IIWKKDEHISNIKKVLS-YPQVNIVKKVEEQT GGFSK ESIL-PKG-
1093


EMC03581
1035
-----------DVR T-DKN-GE-IIWKKDEHISNIKKVLS-YPQVNIVKKVEEQT GGFSK ESIL-PKG-
1086


WP_000428612
1059
YAD-GTIVKRENIE Y-SKDtGE-IAWNKEKDFATIKKVLS-LPQVNIVKKREVQT GGFSK ESIL-PKG-
1121


WP_000428613
1057
YAD-GTIVKRENIE Y-SKDtGE-IAWNKEKDFATIKKVLS-YPQVNIVKKREVQT GGFSK ESIL-PKG-
1119


WP_049523028
1052
YAD-GTIIQRGNVE Y-SKDtGE-IAWNKKRDFAIVRKVLS-YPQVNIVKKTEEQT GGFSK ESIL-PKG-
1114


WP_003107102
1021
LAD-GTVITRPQIE TNTET-GE-IVWDKVKDIKTIRKVLS-IPQINVVKKTEVQT GGFSK ESIL-SKR-
1083


WP_054279288
1053
LAN-GNIIKRSPIE VNEET-GE-IVWDKIKDFGTVRKVLS-APQVNIVKKTEIQT GGFSN ETIL-SKG-
1115


WP_049531101
1057
YAD-GTIVKRENIE Y-SKDtGE-IAWNKEIDFATIRKILS-LSQVNIVKKTEEQT GGLFD NNIV-SKKk
1124


WP_049538452
1057
YAD-GTIVKRENIE Y-SKDtGE-IAWNKEKDFATIKKILS-LPQVNIVKKTEEQT GGLFD NNIV-SKKk
1124


WP_049549711
1059
YAD-GTIVKRENIE Y-SKDtGE-IAWNKEKDFATIKKVLS-YPQVNIVKKTEEQT GGLFD NNIV-SKEk
1126


WP_007896501
1058
LAD-GTLMKRPVIE TNTET-GE-VVWDKVKDFKTIRKVLS-YPQVNIVKKTEIQS GAFSK ESVL-SKG-
1120


EFR44625
1010
LAD-GTLMKRPVIE TNTET-GE-VVWDKVKDFKTIRKVLS-YPQVNIVKKTEIQS GAFSK ESVL-SKG-
1072


WP_002897477
1056
YAD-GTIRKRENIE Y-SKDtGE-IAWDKEKDFATIKKVLS-YPQVNIVKKREVQT GGFSK ESIL-PKG-
1118


WP_002906454
1056
YAD-GTIKKRENIE Y-SNDtGE-IAWNKEKDFATIKKVLS-LPQVNIVKKTEEQT GGLFD NNIV-SKKk
1123


WP_009729476
1057
YAD-GTIVKRENIE Y-SKDtGE-IAWNKEKDFATIKKVLS-LPQVNIVKKREVQT GGFSK ESIL-PKG-
1119


CQR24647
1047
LAD-GRVVEKPVIE ANEET-GE-IAWDKTKHFANVKKVLS-YPQVSIVKKVEEQT GGFSK ESIL-PKG-
1109


WP_000066813
1061
YAD-GTIVKRENIE Y-SKDtGE-IAWNKEKDFATVKKVLS-LPQVNIVKKTEVQT GGFSK ESIL-PKG-
1123


WP_009754323
1057
YAD-GTIVKRENIE Y-SKDtGE-IAWNKEKDFVTIKKVLS-YPQVNIVKKREVQT GGFSK ESIL-PKG-
1119


WP_044674937
1049
YSKtGEVRIRPVIE VNKET-GE-IVWDKKSDFRTVRKVLS-YPQVNVVKKVEMQT GGFSK ESIL-QHG-
1112


WP_044676715
1051
YSKtGEVRIRPVIE VNKET-GE-IVWDKKSDFRTVRKVLS-YPQVNVVKKVEMQT GGFSK ESIL-QHG-
1114


WP_044680361
1051
YSKtGEVRIRPVIE VNKET-GE-IVWDKKSDFRTVRKVLS-YPQVNVVKKVEMQT GGFSK ESIL-QHG-
1114


WP_044681799
1049
YSKtGEVRIRPVIE VNKET-GE-IVWDKKSDFKTVRKVLS-YPQVNVVKKVEMQT GGFSK ESIL-QHG-
1112


WP_049533112
1051
FAD-GTVVERPDIE T-SED-GE-IAWNKQTDFKIVRKVLS-YPQVNIVKKTEVQT HGLDR PSPK-PKP-
1122


WP_029090905
1008
-KQ----------Q --NSTtGE-VKWNPEVDIAKLKRILN-FKQCNIVRKVEEQS GALFK ETIY-PVEe
1061


WP_006506696
1039
--D----------- ------GK-LIWNP-DLINEIKKCFY-YKDCYCTTKLDQKS GQLFN -TVL-SNDa
1084


AIT42264
1052
LAN-GEIRKRPLIE TNGET-GE-IVWDKGRDFATVRKVLS-MPQVNIVKKTEVQT GGFSK ESIL-PKR-
1114


WP_034440723
1042
------------LA --NPD-GE-IAWEKDKDLNTIRKVLS-SKQINIIKKAEEGK GRLFK ETIN-SRPs
1092


AKQ21048
1052
LAN-GEIRKRPLIE TNGET-GE-IVWDKGRDFATVRKVLS-MPQVNIVKKTEVQT GGFSK ESIL-PKR-
1114


WP_004636532
1043
-------------- VNEET-GE-ILWDTERHLSTIKRVLS-WKQMNIVKKVEKQK GQLWK ETIY-PKG-
1092


WP_002364836
1048
--E----------P RFTKD-GE-ILWSN-SYLKTIKKELN-YHQMNIVKKVEVQK GGFSK ESIK-PKG-
1098


WP_016631044
999
--E----------P RFTKD-GE-ILWSN-SYLKTIKKELN-YHQMNIVKKVEVQK GGFSK ESIK-PKG-
1049


EMS75795
783
--E----------Y SYDEN-GE-IFWDKARHIPQIKKVIS-SHQVNIVKKVEVQT GGFYK ETVN-PKG-
834


WP_002373311
1048
--E----------P RFTKD-SE-ILWSN-SYLKTIKKELN-YHQMNIVKKVEVQK GGFSK ESIK-PKG-
1098


WP_002378009
1048
--E----------P RFTKD-GE-ILWSN-SYLKTIKKELN-YHQMNIVKKVEVQK GGFSK ESIK-PKG-
1098


WP_002407324
1048
--E----------P RFTKD-GE-ILWSN-SYLKTIKKELN-YHQMNIVKKVEVQK GGFSK ESIK-PKG-
1098


WP_002413717
1048
--E----------P RFTKD-GE-ILWSN-SYLKTIKKELN-YHQMNIVKKVEVQK GGFSK ESIK-PKG-
1098


WP_010775580
1050
--E----------P RFTKD-GE-ILWSN-SYLKTIKKELN-YHQMNIVKKVEVQK GGFSK ESIK-PKG-
1100


WP_010818269
1048
--E----------P RFTKD-GE-ILWSN-SYLKTIKKELN-YHQMNIVKKVEVQK GGFSK ESIK-PKG-
1098


WP_010824395
1048
--E----------P RFTKD-GE-ILWSN-SYLKTIKKELN-YHQMNIVKKVEVQK GGFSK ESIK-PKG-
1098


WP_016622645
1048
--E----------P RFTKD-GE-ILWSN-SYLKTIKKELN-YHQMNIVKKVEVQK GGFSK ESIK-PKG-
1098


WP_033624816
1048
--E----------P RFTKD-GE-ILWSN-SYLKTIKKELN-YHQMNIVKKVEVQK GGFSK ESIK-PKG-
1098


WP_033625576
1048
--E----------P RFTKD-GE-ILWSN-SYLKTIKKELN-YHQMNIVKKVEVQK GGFSK ESIK-PKG-
1098


WP_033789179
1048
--E----------P RFTKD-GE-ILWSN-SYLKTIKKELN-YHQMNIVKKVEVQK GGFSK ESIK-PKG-
1098


WP_002310644
1049
--T----------P VCDEN-GE-IFWDKSKSIAQVKKVIN-HHHMNIVKKTEIQK GGFSK ETVE-PKK-
1100


WP_002312694
1050
--T----------P VCDEN-GE-IFWDKSKSIAQVKKVIN-HHHMNIVKKTEIQK GGFSK ETVE-PKK-
1101


WP_002314015
1050
--T----------P VCDEN-GE-IFWDKSKSIAQVKKVIN-HHHMNIVKKTEIQK GGFSK ETVE-PKK-
1101


WP_002320716
1050
--T----------P VCDEN-GE-IFWDKSKSIAQVKKVIN-HHHMNIVKKTEIQK GGFSK ETVE-PKK-
1101


WP_002330729
1049
--T----------P VCDEN-GE-IFWDKSKSIAQVKKVIN-HHHMNIVKKTEIQK GGFSE ETVE-PKK-
1100


WP_002335161
1050
--T----------P VCDEN-GE-IFWDKSKSIAQVKKVIN-HHHMNIVKKTEIQK GGFSK ETVE-PKK-
1101


WP_002345439
1050
--T----------P VCDEN-GE-IFWDKSKSIAQVKKVIN-HHHMNIVKKTEIQK GGFSK ETVE-PKK-
1101


WP_034867970
1040
--E----------P FCDEN-GE-IYWEKSHHLPRIKKVLS-SHQVNVVKKVEQQK GGFYK ETVN-SKE-
1091


WP_047937432
1050
--T----------P VCDEN-GE-IFWDKSKSIAQVKKVIN-HHHMNIVKKTEIQK GGFSK ETVE-PKK-
1101


WP_010720994
1040
--E----------P FCDEN-GE-IYWEKSHHLPRIKKVLS-SHQVNVVKKVEQQK GGFYK ETVN-SKE-
1091


WP_010737004
1040
--E----------P FCDEN-GE-IYWEKSHHLPRIKKVLS-SHQVNVVKKVEQQK GGFYK ETVN-SKE-
1091


WP_034700478
1040
--E----------P FCDEN-GE-IYWEKSHHLPRIKKVLS-SHQVNVVKKVEQQK GGFYK ETVN-SKE-
1091


WP_007209003
1038
--D----------- IINDD-GE-ILWNKQETIAQVIKTLG-MHQVNVVKKVEIQK GGFSK ESIQ-PKG-
1089


WP_023519017
1034
--E----------I ICDEQ-GE-VIWNKKRDLSTIKKTIG-AHQVNIVKKVEKQK GGFYK ETIN-SKA-
1085


WP_010770040
1046
--A----------V IIDEN-GE-ILWDK-KNIATVKKVMS-YPQMNIVKKPEIQT GSFSK ETIK-PKG-
1096


WP_048604708
1043
--K----------V IIDEN-GE-ILWNQ-KKIVTVKKVMN-YRQMNIVKKVEIQK GGFSK ESIL-PKG-
1093


WP_010750235
1043
--E----------Q FCDEN-GE-IFWDKRKHIQQIKKVIS-SHQVNIVKKVEVQT GSFYK ETVN-TKE-
1094


A1116583
1091
LAN-GEIRKRPLIE TNGET-GE-IVWDKGRDFATVRKVLS-MPQVNIVKKTEVQT GGFSK ESIL-PKR-
1153


WP_029073316
1053
--D----------- ----T-GE-VVWDP-EWISRIKKCFY-YKDCFVTKKLEENN GSFFN -TVR-PNDe
1099


WP_031589969
1053
--D----------- ----T-GE-IVWDP-NYIDRIKKCFY-YKDCFVTKKLEENN GTFFN -TVL-PNDt
1099


KDA45870
1035
YPF----------- -----------WDKARDLPTIKRYLY-RAQVNKVRKAERQT GGFSD EMLV-PKS-
1078


WP_039099354
1044
-------------E LVDEN-TEaVIWNKESGLAYLNKIYQ-FKKILVTREVHENS GALFN QTLYaAKDd
1097


AKP02966
1063
--N-------GTTQ --DRNtGE-IIWNVG-FRDKILKIFN-YHQCNVTRKTEIKT GQFYD QTIYsPKNp
1118


WP_010991369
1045
--D----------R IIDEN-GE-ILWDK-KYLDTVKKVMS-YRQMNIVKKTEIQK GEFSK ATIK-PKG-
1095


WP_033838504
1045
--D----------R IIDEN-GE-ILWDK-KYLDTVKKVMS-YRQMNIVKKTEIQK GEFSK ATIK-PKG-
1095


EHN60060
1048
--D----------R IIDEN-GE-ILWDK-KYLDTVKKVMS-YRQMNIVKKTEIQK GEFSK ATIK-PKG-
1098


EFR89594
814
--D----------R IIDEN-GE-ILWDK-KYLDTVKKVMS-YRQMNIVKKTEIQK GEFSK ATIK-PKG-
864


WP_038409211
1045
--N----------Q IIDKN-GE-ILWDN-RYLDTIKKVLS-YRQMNIVKKTEIQK GEFSN ATVN-PKG-
1095


EFR95520
664
--N----------Q IIDKN-GE-ILWDN-RYLDTIKKVLS-YRQMNIVKKTEIQK GEFSN ATVN-PKG-
714


WP_003723650
1045
--E----------R IIDEN-GE-ILWDK-KYLETIKKVLD-YRQMNIVKKTEIQK GEFSK ATIK-PKG-
1095


WP_003727705
1045
--E----------R IIDEN-GE-ILWDK-KYLETIKKVLD-YRQINIVKKTEIQK GEFSK ATIK-PKG-
1095


WP_003730785
1045
--E----------R IIDEN-GE-ILWDK-KYLETIKKVLD-YRQINIVKKTEIQK GEFSK ATIK-PKG-
1095


WP_003733029
1045
--D----------R IIDEN-GE-ILWDK-RYLETVKKVLG-YRQMNIVKKTEIQK GEFSN VTPN-PKG-
1095


WP_003739838
1045
--E----------R IIDEN-GE-ILWDK-KYLETIKKVLD-YRQMNIVKKTEIQK GEFSK ATIK-PKG-
1095


WP_014601172
1045
--E----------R IIDEN-GE-ILWDK-KYLETIKKVLD-YRQMNIVKKTEIQK GEFSK ATIK-PKG-
1095


WP_023548323
1045
--E----------R IIDEN-GE-ILWDK-KYLETIKKVLN-YRQMNIVKKTEIQK GEFSN QNPK-PRG-
1095


WP_031665337
1045
--E----------R IIDEN-GE-ILWDK-KYLETIKKVLD-YRQMNIVKKTEIQK GEFSK ATIK-PKG-
1095


WP_031669209
1045
--D----------R IIDEN-GE-ILWDK-RYLETVKKVLG-YRQMNIVKKTEIQK GEFSN VTPN-PKG-
1095


WP_033920898
1045
--E----------R IIDEN-GE-ILWDK-KYLETIKKVLN-YRQMNIVKKTEIQK GEFSN QNPK-PRG-
1095


AKI42028
1048
--E----------R IIDEN-GE-ILWDK-KYLETIKKVLD-YRQMNIVKKTEIQK GEFSK ATIK-PKG-
1098


AKI 50529
1048
--E----------R IIDEN-GE-ILWDK-KYLETIKKVLN-YRQMNIVKKTEIQK GEFSN QNPK-PRG-
1098


EFR83390
493
--E----------R IIDEN-GE-ILWDK-KYLETIKKVLD-YRQMNIVKKTEIQK GEFSK ATIK-PKG-
543


WP_046323366
1045
--D----------R IIDEN-GE-ILWDK-KYLDTIKKVLN-YRQMNIVKKTEIQK GEFSN ATAN-PKG-
1095


AKE81011
1068
LAN-GEIRKRPLIE TNGET-GE-IVWDKGRDFATVRKVLS-MPQVNIVKKTEVQT GGFSK ESIL-PKR-
1130


CUO82355
1043
--D----------- ------GK-LIWNP-DLINEIKKCFY-YKDCYCITKLDQKS GQMFN -TVL-PNDa
1088


WP_033162887
1043
--D----------- ----T-GE-VMWDP-AKIGKIKSCFY-YKDVYVTKKLEQNS GTLFN -TVL-PNDa
1089


AGZ 01981
1085
LAN-GEIRKRPLIE TNGET-GE-IVWDKGRDFATVRKVLS-MPQVNIVKKTEVQT GGFSK ESIL-PKR-
1147


AKA60242
1052
LAN-GEIRKRPLIE TNGET-GE-IVWDKGRDFATVRKVLS-MPQVNIVKKTEVQT GGFSK ESIL-PKR-
1114


AKS40380
1052
LAN-GEIRKRPLIE TNGET-GE-IVWDKGRDFATVRKVLS-MPQVNIVKKTEVQT GGFSK ESIL-PKR-
1114


4UN5_B
1056
LAN-GEIRKRPLIE TNGET-GE-IVWDKGRDFATVRKVLS-MPQVNIVKKTEVQT GGFSK ESIL-PKR-
1118


WP_010922251
1115
--NSD KLIA----RKKDW-DPKKYGGFDSPIVAYSV-LVVAK--VE--KGKSKKLKSVKELLGITIME RSSFEK
1176


WP_039695303
1121
--DSD KLIPRKIkKV-YW-DIKKYGGEDSPIVAYSV-FVVAD--VE--KGKAKKLKTVKELVGISIME RSFFEE
1185


WP_045635197
1119
--NSD KLIPRKT-KDILL-DTTKYGGEDSPVIAYSI-LLIAD--IE--KGKAKKLKTVKILVGITIME KAAFEE
1183


5AXW_A
853
--EKN -LYKYYEeTGNYL---TKYSKKDNGPVIKKI------------KYYGNKLNAHLDITDDYPNS -VKLSL
912


WP_009880683
799
--NSD KLIA----RKKDW-DPKKYGGFDSPIVAYSV-LVVAK--VE--KGKSKKLKSVKELVGITIME RSSFEK
860


WP_010922251
1115
--NSD KLIA----RKKDW-DPKKYGGFDSPIVAYSV-LVVAK--VE--KGKSKKLKSVKELLGITIME RSSFEK
1176


WP_011054416
1115
--NSD KLIA----RKKDW-DPKKYGGFDSPIVAYSV-LVVAK--VE--KGKSKKLKSVKELLGITIME RSSFEK
1176


WP_011284745
1115
--NSD KLIA----RKKDW-DPKKYGGFDSPIVAYSV-LVVAK--VE--KGKSKKLKSVKELLGITIME RSSFEK
1176


WP_011285506
1115
--NSD KLIA----RKKDW-DPKKYGGFDSPIVAYSV-LVVAK--VE--KGKSKKLKSVKELLGITIME RSSFEK
1176


WP_011527619
1115
--NSD KLIA----RKKDW-DPKKYGGFDSPIVAYSV-LVVAK--VE--KGKSKKLKSVKELLGITIME RSSFEK
1176


WP_012560673
1115
--NSD KLIA----RKKDW-DPKKYGGFDSPIVAYSV-LVVAK--VE--KGKSKKLKSVKELVGITIME RSSFEK
1176


WP_014407541
1114
--NSD KLIA----RKKDW-DPKKYGGFDSPIVAYSV-LVVAK--VE--KGKSKKLKSVKELLGITIME RSSFEK
1175


WP_020905136
1115
--NSD KLIA----RKKDW-DPKKYGGFDSPIVAYSV-LVVAK--VE--KGKSKKLKSVKELLGLTIME RSSFEK
1176


WP_023080005
1114
--NSD KLIA----RKKDW-DPKKYGGFDSPIVAYSV-LVVAK--VE--KGKSKKLKSVKELLGITIME RSSFEK
1175


WP_023610282
1114
--NSD KLIA----RKKDW-DPKKYGGFDSPIVAYSV-LVVAK--VE--KGKSKKLKSVKELLGITIME RSSFEK
1175


WP_030125963
1115
--NSD KLIA----RKKDW-DPKKYGGFDSPIVAYSV-LVVAK--VE--KGKSKKLKSVKELLGITIME RSSFEK
1176


WP_030126706
1115
--NSD KLIA----RKKDW-DPKKYGGFDSPIVAYSV-LVVAK--VE--KGKSKKLKSVKELLGITIME RSSFEK
1176


WP_031488318
1115
--NSD KLIA----RKKDW-DPKKYGGFDSPIVAYSV-LVVAK--VE--KGKSKKLKSVKELLGITIME RSSFEK
1176


WP_032460140
1115
--NSD KLIA----RKKDW-DPKKYGGFDSPIVAYSV-LVVAK--VE--KGKSKKLKSVKELVGITIME RSSFEK
1176


WP_032461047
1115
--NSD KLIA----RKKDW-DPKKYGGFDSPIVAYSV-LVVAK--VE--KGKSKKLKSVKELVGITIME RSSFEK
1176


WP_032462016
1115
--NSD KLIA----RKKDW-DPKKYGGFDSPIVAYSV-LVVAK--VE--KGKSKKLKSVKELLGITIME RSSFEK
1176


WP_032462936
1115
--NSD KLIA----RKKDW-DPKKYGGFDSPIVAYSV-LVVAK--VE--KGKSKKLKSVKELLGITIME RSSFEK
1176


WP_032464890
1115
--NSD KLIA----RKKDW-DPKKYGGFDSPIVAYSV-LVVAK--VE--KGKSKKLKSVKELLGITIME RSSFEK
1176


WP_033888930
940
--NSD KLIA----RKKDW-DPKKYGGFDSPIVAYSV-LVVAK--VE--KGKSKKLKSVKELLGITIME RSSFEK
1001


WP_038431314
1115
--NSD KLIA----RKKDW-DPKKYGGFDSPIVAYSV-LVVAK--VE--KGKSKKLKSVKELLGITIME RSSFEK
1176


WP_038432938
1114
--NSD KLIA----RKKDW-DPKKYGGFDSPIVAYSV-LVVAK--VE--KGKSKKLKSVKELLGITIME RSSFEK
1175


WP_038434062
1115
--NSD KLIA----RKKDW-DPKKYGGFDSPIVAYSV-LVVAK--VE--KGKSKKLKSVKELLGITIME RSSFEK
1176


BAQ51233
1026
--NSD KLIA----RKKDW-DPKKYGGFDSPIVAYSV-LVVAK--VE--KGKSKKLKSVKELLGITIME RSSFEK
1087


KGE60162
290
--NSD KLIA----RKKDW-DPKKYGGFDSPIVAYSV-LVVAK--VE--KGKSKKLKSVKELLGITIME RSSFEK
351


KGE60856
53
--NSD KLIA----RKKDW-DPKKYGGFDSPIVAYSV-LVVAK--VE--KGKSKKLKSVKELLGITIME RSSFEK
114


WP_002989955
1115
--NSD KLIA----RKKDW-DPKKYGGFDSPIVAYSV-LVVAK--VE--KGKSKKLKSVKELLGITIME RSSFEK
1176


WP_003030002
1094
--ESD KLIPRKT-KNSYW-NPKKYGGEDSPVVAYSI-LVFAD--VE--KGKSKKLRKVQDMVGITIME KKRFEK
1158


WP_003065552
1122
--DSD KLIPRKTkKA-YW-DIKKYGGEDSPIVAYSV-FVVAD--VE--KGKAKKLKTVKELVGISIME RSFFEE
1186


WP_001040076
1113
--NSD KLIPRKT-KDIYL-DPKKYGGEDSPIVAYSV-LVVAD--IK--KGKAQKLKTVTELLGITIME RSRFEK
1177


WP_001040078
1121
--NSD KLIPRKT-KDIYL-DPKKYGGEDSPIVAYSV-LVVAD--IK--KGKAQKLKTVTELLGITIME RSKFEK
1185


WP_001040080
1113
--NSD KLIPRKT-KDIYL-DPKKYGGEDSPIVAYSV-LVVAD--IK--KGKAQKLKTVTELLGITIME RSRFEK
1177


WP_001040081
1113
--NSD KLIPRKT-KDIYL-DPKKYGGEDSPIVAYSV-LVVAD--IK--KGKAQKLKTVTELLGITIME RSRFEK
1177


WP_001040083
1113
--NSD KLIPRKT-KDIYL-DPKKYGGEDSPIVAYSV-LVVAD--IK--KGKAQKLKTVTELLGITIME RSRFEK
1177


WP_001040085
1113
--NSD KLIPRKT-KDIYL-DPKKYGGEDSPIVAYSV-LVVAD--IK--KGKAQKLKTVTELLGITIME RSRFEK
1177


WP_001040087
1113
--NSD KLIPRKT-KDIYL-DPKKYGGFDSPIVAYSV-LVVAD--IK--KGKAQKLKTVTELLGITIME RSRFEK
1177


WP_001040088
1113
--NSD KLIPRKT-KDIYL-DPKKYGGFDSPIVAYSV-LVVAD--IK--KGKAQKLKTVTELLGITIME RSRFEK
1177


WP_001040089
1113
--NSD KLIPRKT-KDIYL-DPKKYGGFDSPIVAYSV-LVVAD--IK--KGKAQKLKTVTELLGITIME RSRFEK
1177


WP_001040090
1113
--NSD KLIPRKT-KDIYL-DPKKYGGFDSPIVAYSV-LVVAD--IK--KGKAQKLKTVTELLGITIME RSRFEK
1177


WP_001040091
1113
--NSD KLIPRKT-KDIYL-DPKKYGGFDSPIVAYSV-LVVAD--IK--KGKAQKLKTVTELLGITIME RSRFEK
1177


WP_001040092
1113
--NSD KLIPRKT-KDIYL-DPKKYGGFDSPIVAYSV-LVLAD--IK--KGKAQKLKTVKELIGITIME RERFEK
1177


WP_001040094
1113
--NSD KLIPRKT-KDIYL-DPKKYGGFDSPIVAYSV-LVVAD--IK--KGKAQKLKTVTELLGITIME RSRFEK
1177


WP_001040095
1113
--NSD KLIPRKT-KDIYL-DPKKYGGFDSPIVAYSV-LVVAD--IK--KGKAQKLKTVTELLGITIME RSRFEK
1177


WP_001040096
1113
--NSD KLIPRKT-KDIYL-DPKKYGGFDSPIVAYSV-LVVAD--IK--KGKAQKLKTVTELLGITIME RSRFEK
1177


WP_001040097
1113
--NSD KLIPRKT-KDIYL-DPKKYGGFDSPIVAYSV-LVVAD--IK--KGKAQKLKTVTELLGITIME RSRFEK
1177


WP_001040098
1113
--NSD KLIPRKT-KDIYL-DPKKYGGFDSPIVAYSV-LVVAD--IK--KGKAQKLKTVTELLGITIME RSRFEK
1177


WP_001040099
1113
--NSD KLIPRKT-KDIYL-DPKKYGGFDSPKVAYSV-LVVAD--IK--KGKAQKLKTVTELLGITIME RSRFEK
1177


WP_001040100
1113
--NSD KLIPRKT-KDIYL-DPKKYGGFDSPIVAYSV-LVVAD--IK--KGKAQKLKTVTELLGITIME RSRFEK
1177


WP_001040104
1113
--NSD KLIPRKT-KDIYL-DPKKYGGFDSPIVAYSV-LVVAD--IK--KGKAQKLKTVTELLGITIME RSRFEK
1177


WP_001040105
1113
--NSD KLIPRKT-KDIYL-DPKKYGGFDSPIVAYSV-LVVAD--IK--KGKAQKLKTVTELLGITIME RSRFEK
1177


WP_001040106
1113
--NSD KLIPRKT-KDIYL-DPKKYGGFDSPIVAYSV-LVVAD--IK--KGKAQKLKTVTELLGITIME RFRFEK
1177


WP_001040107
1113
--NSD KLIPRKT-KDIYL-DPKKYGGFDSPIVAYSV-LVVAD--IK--KGKAQKLKTVTELLGITIME RFRFEK
1177


WP_001040108
1113
--NSD KLIPRKT-KDIYL-DPKKYGGFDSPIVAYSV-LVVAD--IK--KGKAQKLKTVTELLGITIME RFRFEK
1177


WP_001040109
1113
--NSD KLIPRKT-KDIYL-DPKKYGGFDSPIVAYSV-LVVAD--IK--KGKAQKLKTVTELLGITIME RFRFEK
1177


WP_001040110
1113
--NSD KLIPRKT-KDIYL-DPKKYGGFDSPIVAYSV-LVVAD--IK--KGKAQKLKTVTELLGITIME RFRFEK
1177


WP_015058523
1113
--NSD KLIPRKT-KDIYL-DPKKYGGFDSPIVAYSV-LVLAD--IK--KGKAQKLKTVKELIGITIME RERFEK
1177


WP_017643650
1113
--NSD KLIPRKT-KDIYL-DPKKYGGFDSPIVAYSV-LVVAD--IK--KGKAQKLKTVTELLGITIME RSRFEK
1177


WP_017647151
1113
--NSD KLIPRKT-KDIYL-DPKKYGGFDSPIVAYSV-LVVAD--IK--KGKAQKLKTVTELLGITIME RSRFEK
1177


WP_017648376
1113
--NSD KLIPRKT-KDIYL-DPKKYGGFDSPIVAYSV-LVVAD--IK--KGKAQKLKTVTELLGITIME RSRFEK
1177


WP_017649527
1113
--NSD KLIPRKT-KDIYL-DPKKYGGFDSPIVAYSV-LVVAD--IK--KGKAQKLKTVTELLGITIME RSRFEK
1177


WP_017771611
1113
--NSD KLIPRKT-KDIYL-DPKKYGGFDSPIVAYSV-LVVAD--IK--KGKAQKLKTVTELLGITIME RFRFEK
1177


WP_017771984
1113
--NSD KLIPRKT-KDIYL-DPKKYGGFDSPIVAYSV-LVAAD--IK--KGKAQKLKTVTELLGITIME RSRFEK
1177


CFQ25032
1113
--NSD KLIPRKT-KDIYL-DPKKYGGFDSPIVAYSV-LVVAD--IK--KGKAQKLKTVTELLGITIME RSRFEK
1177


CFV16040
1113
--NSD KLIPRKT-KDIYL-DPKKYGGFDSPIVAYSV-LVVAD--IK--KGKAQKLKTVTELLGITIME RSRFEK
1177


KLJ37842
1113
--NSD KLIPRKT-KDIYL-DPKKYGGFDSPIVAYSV-LVVAD--IK--KGKAQKLKTVTELLGITIME RSRFEK
1177


KLJ72361
1113
--NSD KLIPRKT-KDIYL-DPKKYGGFDSPIVAYSV-LVVAD--IK--KGKAQKLKTVTELLGITIME RSRFEK
1177


KLL20707
1127
--NSD KLIPRKT-KDIYL-DPKKYGGFDSPIVAYSV-LVVAD--IK--KGKAQKLKTVTELLGITIME RSRFEK
1191


KLL42645
1113
--NSD KLIPRKT-KDIYL-DPKKYGGFDSPIVAYSV-LVVAD--IK--KGKAQKLKTVTELLGITIME RFRFEK
1177


WP_047207273
1113
--NSD KLIPRKT-KDIYL-DPKKYGGFDSPIVAYSV-LVVAD--IK--KGKAQKLKTVTELLGITIME RSRFEK
1177


WP_047209694
1113
--NSD KLIPRKT-KDIYL-DPKKYGGFDSPIVAYSV-LVVAD--IK--KGKAQKLKTVTELLGITIME RSRFEK
1177


WP_050198062
1113
--NSD KLIPRKT-KDIYL-DPKKYGGFDSPIVAYSV-LVVAD--IK--KGKAQKLKTVTELLGITIME RSRFEK
1177


WP_050201642
1113
--NSD KLIPRKT-KDIYL-DPKKYGGFDSPIVAYSV-LVVAD--IK--KGKAQKLKTVTELLGITIME RSRFEK
1177


WP_050204027
1113
--NSD KLIPRKT-KDIYL-DPKKYGGFDSPIVAYSV-LVVAD--IK--KGKAQKLKTVTELLGITIME RFRFEK
1177


WP_050881965
1113
--NSD KLIPRKT-KDIYL-DPKKYGGFDSPIVAYSV-LVVAD--IK--KGKAQKLKTVTELLGITIME RSRFEK
1177


WP_050886065
1113
--NSD KLIPRKT-KDIYL-DPKKYGGFDSPIVAYSV-LVVAD--IK--KGKAQKLKTVTELLGITIME RSRFEK
1177


AHN30376
1113
--NSD KLIPRKT-KDIYL-DPKKYGGFDSPIVAYSV-LVLAD--IK--KGKAQKLKTVKELIGITIME RERFEK
1177


EAO78426
1113
--NSD KLIPRKT-KDIYL-DPKKYGGFDSPIVAYSV-LVVAD--IK--KGKAQKLKTVTELLGITIME RSRFEK
1177


CCW42055
1113
--NSD KLIPRKT-KDIYL-DPKKYGGFDSPIVAYSV-LVVAD--IK--KGKAQKLKTVTELLGITIME RSRFEK
1177


WP_003041502
1123
--DSS ENLVGVK-RNL---DPKKYGGYAGISNSYAV-LVKAI--IE--KGVKKKETMVLEFQGISILD RITFEK
1185


WP_037593752
1095
--ESD KLIPRKT-KNSYW-NPKKYGGFDSPVVAYSI-LVFAD--VE--KGKSKKLRKVQDMVGITIME KKRFEK
1159


WP_049516684
1095
--ESD KLIPRKT-KNSYW-NPKKYGGFDSPVVAYSI-LVFAD--VE--KGKSKKLRKVQDMVGITIME KKRFEK
1159


GAD46167
1094
--ESD KLIPRKT-KNSYW-NPKKYGGFDSPVVAYSI-LVFAD--VE--KGKSKKLRKVQDMVGITIME KKRFEK
1158


WP_018363470
1126
--DSD KLIPRKTkKV-LW-EPKKYGGFDSPTVAYSV-LVVAD--VE--KGKIKKLKTVKELVGISIME RSFFEK
1190


WP_003043819
1124
--ESA KLIP----RKKGW-DIRKYGGFGSPTVAYSI-LVVAK--VE--KGKAKKLKSVKVLVGITIME KGSYEK
1185


WP_006269658
1094
--ESD KLIPRKT-KNSYW-DPKKYGGFDSPVVAYSI-LVFAD--VE--KGKSKKLRKVQDMVGITIME KKRFEK
1158


WP_048800889
1114
--DSD KLIARKTkEN-YW-DIKKYGGFDSPTVAYSV-LVVAD--IK--KGKAKKLKTVKELVGISIME RPFFEK
1178


WP_012767106
1114
--SFD KLIS----RKHRF-ESSKYGGFGSPTVTYSV-LVVAKskVQ--DGKVKKIKTGKELIGMTLLD KLVFEK
1177


WP_014612333
1114
--SFD KLIS----RKHRF-ESSKYGGFGSPTVTYSV-LVVAKskVQ--DGKVKKIKTGKELIGITLLD KLVFEK
1177


WP_015017095
1114
--SFD KLIS----RKHRF-ESSKYGGFGSPTVTYSV-LVVAKskVQ--DGKVKKIKTGKELIGITLLD KLVFEK
1177


WP_015057649
1114
--SFD KLIS----RKHRF-ESSKYGGFGSPTVTYSV-LVVAKskVQ--DGKVKKIKTGKELIGITLLD KLVFEK
1177


WP_048327215
1114
--SFD KLIS----RKHRF-ESSKYGGFGSPTVTYSV-LVVAKckVQ--DGKVKKIKTGKELIGITLLD KLVFEK
1177


WP_049519324
1114
--SFD KLIS----RKHRF-ESSKYGGFGSPTVTYSV-LVVAKskVQ--DGKVKKIKTGKELIGITLLD KLVFEK
1177


WP_012515931
1095
--NSD KLIP----RKNNW-DTRKYGGFDSPTVAYSV-LVIAK--ME--KGKAKVLKPVKEMVGITIME RTAFEE
1156


WP_021320964
1095
--NSD KLIP----RKNNW-DIRKYGGFDSPTVAYSV-LVIAK--ME--KGKAKVLKPVKEMVGITIME RIAFEE
1156


WP_037581760
1095
--NSD KLIP----RKNNW-DIRKYGGFDSPTVAYSV-LVIAK--ME--KGKAKVLKPVKEMVGITIME RIAFEE
1156


WP_004232481
1124
--DSD KLIPRKTkKL-QW-ETQKYGGFDSPTVAYSV-LVVAD--VE--KGKIRKLKTVKELVGISIME RSSFEE
1188


WP_009854540
1119
--DSD KLIPRKIkKV-YW-DIKKYGGFDSPTVAYSV-FVVAD--VE--KGKAKKLKTVKELVGISIME RSFFEE
1183


WP_012962174
1120
--NSD KLIPRKTkKF-RW-DTPKYGGFDSPNIAYSV-FVIAD--VE--KGKAKKLKTVKELVGISIME RSSFEE
1184


WP_039695303
1121
--DSD KLIPRKIkKV-YW-DIKKYGGFDSPTVAYSV-FVVAD--VE--KGKAKKLKTVKELVGISIME RSFFEE
1185


WP_014334983
1124
--DSD KLIPRKIkKV-YW-NIKKYGGFDSPTVAYSV-LVVAD--IE--KGKAKKLKTVKELVGISIME RSFFEE
1188


WP_003099269
1115
--DSD KLIA----RKKSW-DPKKYGGFDSPIIAYSV-LVVAK--IA--KGKTQKLKTIKELVGIKIME QDEFEK
1176


AHY15608
1115
--DSD KLIA----RKKSW-DPKKYGGFDSPIIAYSV-LVVAK--IA--KGKTQKLKTIKELVGIKIME QDEFEK
1176


AHY17476
1115
--DSD KLIA----RKKSW-DPKKYGGFDSPIIAYSV-LVVAK--IA--KGKTQKLKTIKELVGIKIME QDEFEK
1176


ESR09100
1
----- -------------------------------------------------------------ME QDEFEK
8


AGM98575
1115
--DSD KLIA----RKKSW-DPKKYGGFDSPIIAYSV-LVVAK--IA--KGKTQKLKTIKELVGIKIME QDEFEK
1176


AL F27331
1094
--NSD KLIPRKT-KKFYW-DTKKYGGFDSPIVAYSI-LVIAN--IE--KGKSKKLKLVKDLVGITIME RTIFEK
1158


WP_018372492
1109
---NN KLIP----RKKDW-SVDKYGGFIEPAESYSLaIFYID--IN-----GKKPKKKSTIIAISRME KKDYEK
1167


WP_045618028
1125
vvDAS KLTPIKS-G---L-SPEKYGGYARPTIAYSV-LVIAD--IE--KGKAKKLKRIKEMVGITVQD KKKFEA
1188


WP_045635197
1119
--NSD KLIPRKT-KDILL-DTTKYGGFDSPVIAYSI-LLIAD--IE--KGKAKKLKTVKILVGITIME KAAFEE
1183


WP_002263549
1094
--NSD KLIPRKT-KKFYW-DIKKYGGFDSPIVAYSI-LVIAD--IE--KGKSKKLKTVKALVGVTIME KMTFER
1158


WP_002263887
1094
--NSD KLIPRKT-KKFYW-DIKKYGGFDSPIVAYSI-LVIAD--IE--KGKSKKLKTVKALVGVTIME KMTFER
1158


WP_002264920
1094
--DSD KLIPRKT-KKFYW-DIKKYGGFDSPIVAYSI-LVIAD--IE--KGKSKKLKTVKALVGVTIME KMTFER
1158


WP_002269043
1094
--NSD KLIPRKT-KKFYW-DIKKYGGFDSPIVAYSI-LVIAD--IE--KGKSKKLKTVKALVGVTIME KMTFER
1158


WP_002269448
1094
--NSD KLIPRKT-KKFYW-DTKKYGGEDSPIVAYSI-LVIAD--IE--KGKSKKLKTVKALVGVTIME KMTFER
1158


WP_002271977
1094
--NSD KLIPRKT-KKFYW-DTKKYGGEDSPIVAYSI-LVIAD--IE--KGKSKKLKTVKALVGVTIME KMTFER
1158


WP_002272766
1094
--NSD KLIPRKT-KKFYW-DTKKYGGEDSPIVAYSI-LVIAD--IE--KGKSKKLKTVKALVGVTIME KMTFER
1158


WP_002273241
1094
--NSD KLIPRKT-KKFYW-DTKKYGGEDSPIVAYSI-LVIAD--IE--KGKSKKLKTVKALVGVTIME KMTFER
1158


WP_002275430
1094
--NSD KLIPRKT-KKFYW-DTKKYGGEDSPIVAYSI-LVIAD--IE--KGKSKKLKTVKALVGVTIME KMTFER
1158


WP_002276448
1094
--NSD KLIPRKT-KKFYW-DTKKYGGEDSPIVAYSI-LVIAD--IE--KGKSKKLKTVKALVGVTIME KMTFER
1158


WP_002277050
1112
--PLE KLVPLKK----AL-NPEKYGGYQKPTTAYPI-LLIVD---------------TKQLIPISVMD KKRFEQ
1166


WP_002277364
1094
--NSD KLIPRKT-KKFYW-DTKKYGGEDSPIVAYSI-LVIAD--IE--KGKSKKLKTVKALVGVTIME KMTFER
1158


WP_002279025
1094
--NSD KLIPRKT-KKFYW-DTKKYGGEDSPIVAYSI-LVIAD--IE--KGKSKKLKTVKALVGVTIME KMTFER
1158


WP_002279859
1094
--DSD KLIPRKT-KKFYW-DTKKYGGEDSPIVAYSI-LVIAD--IE--KGKSKKLKTVKALVGVTIME KMTFER
1158


WP_002280230
1094
--NSD KLIPRKT-KKFYW-DTKKYGGEDSPIVAYSI-LVIAD--IE--KGKSKKLKTVKALVGVTIME KMTFER
1158


WP_002281696
1094
--NSD KLIPRKT-KKFYW-DTKKYGGEDSPIVAYSI-LVIAD--IE--KGKSKKLKTVKALVGVTIME KMTFER
1158


WP_002282247
1112
--PLE KLVPLKK----AL-NPEKYGGYQKPTTAYPI-LLIVD---------------TKQLIPISVMD KKRFEQ
1166


WP_002282906
1094
--NSD KLIPRKT-KKFYW-DTKKYGGEDSPIVAYSI-LVIAD--IE--KGKSKKLKTVKALVGVTIME KMTFER
1158


WP_002283846
1094
--NSD KLIPRKT-KKFYW-DTKKYGGEDSPIVAYSI-LVIAD--IE--KGKSKKLKTVKALVGVTIME KMTFER
1158


WP_002287255
1094
--NSD KLIPRKT-KKFYW-DTKKYGGEDSPIVAYSI-LVIAD--IE--KGKSKKLKTVKALVGVTIME KMTFER
1158


WP_002288990
1094
--NSY KLIPRKT-KKFYW-DTKKYGGEDSPIVAYSI-LVIAD--IE--KGKSKKLKTVKALVGVTIME KMTFER
1158


WP_002289641
1094
--NSD KLIPRKT-KKFYW-DTKKYGGEDSPIVAYSI-LVIAD--IE--KGKSKKLKTVKALVGVTIME KMTFER
1158


WP_002290427
1094
--DSD KLIPRKT-KKFYW-DTKKYGGEDSPIVAYSI-LVIAD--IE--KGKSKKLKTVKALVGVTIME KMTFER
1158


WP_002295753
1094
--NSD KLIPRKT-KKFYW-DTKKYGGEDSPIVAYSI-LVIAD--IE--KGKSKKLKTVKALVGVTIME KMTFER
1158


WP_002296423
1094
--NSD KLIPRKT-KKFYW-DTKKYGGEDSPIVAYSI-LVIAD--IE--KGKSKKLKTVKALVGVTIME KMTFER
1158


WP_002304487
1108
--NSD KLIPRKT-KKFYW-DTKKYGGEDSPIVAYSI-LVIAD--IE--KGKSKKLKTVKALVGVTIME KMTFER
1172


WP_002305844
1094
--NSD KLIPRKT-KKFYW-DTKKYGGEDSPIVAYSI-LVIAD--IE--KGKSKKLKTVKALVGVTIME KMTFER
1158


WP_002307203
1094
--NSD KLIPRKT-KKFYW-DTKKYGGEDSPIVAYSI-LVIAD--IE--KGKSKKLKTVKALVGVTIME KMTFER
1158


WP_002310390
1094
--DSD KLIPRKT-KKFYW-DTKKYGGEDSPIVAYSI-LVIAD--IE--KGKSKKLKTVKALVGVTIME KMTFER
1158


WP_002352408
1094
--DSD KLIPRKT-KKFYW-DTKKYGGEDSPIVAYSI-LVIAD--IE--KGKSKKLKTVKALVGVTIME KMTFER
1158


WP_012997688
1094
--NSD KLIPRKT-KKFYW-DTKKYGGEDSPIVAYSI-LVIAD--IE--KGKSKKLKTVKALVGVTIME KMTFER
1158


WP_014677909
1094
--NSD KLIPRKT-KKFYW-DTKKYGGEDSPIVAYSI-LVIAD--IE--KGKSKKLKTVKALVGVTIME KMTFER
1158


WP_019312892
1094
--NSD KLIPRKT-KKFYW-DTKKYGGEDSPIVAYSI-LVIAD--IE--KGKSKKLKTVKALVGVTIME KMTFER
1158


WP_019313659
1094
--NSD KLIPRKT-KKFYW-DTKKYGGEDSPIVAYSI-LVIAD--IE--KGKSKKLKTVKALVGVTIME KMTFER
1158


WP_019314093
1094
--NSD KLIPRKT-KKFYW-DTKKYGGEDSPIVAYSI-LVIAD--IE--KGKSKKLKTVKALVGVTIME KMTFER
1158


WP_019315370
1094
--NSD KLIPRKT-KKFYW-DTKKYGGEDSPIVAYSI-LVIAD--IE--KGKSKKLKTVKALVGVTIME KMTFER
1158


WP_019803776
1094
--NSD KLIPRKT-KKFYW-DTKKYGGEDSPIVAYSI-LVIAD--IE--KGKSKKLKTVKALVGVTIME KMTFER
1158


WP_019805234
1094
--DSD KLIPRKT-KKFYW-DTKKYGGEDSPIVAYSI-LVIAD--IE--KGKSKKLKTVKALVGVTIME KMTFER
1158


WP_024783594
1094
--NSD KLIPRKT-KKFYW-DTKKYGGEDSPIVAYSI-LVIAD--IE--KSKSKKLKTVKALVGVTIME KMTFER
1158


WP_024784288
1112
--PLE KLVPLKK----AL-NPEKYGGYQKPTTAYPI-LLIVD---------------TKQLIPISVMD KKRFEQ
1166


WP_024784666
1094
--NSD KLIPRKT-KKEYW-DTKKYGGEDSPIVAYSI-LVIAD--IE--KGKSKKLKTVKALVGVTIME KMTFER
1158


WP_024784894
1094
--NSD KLIPRKT-KKEYW-DTKKYGGEDSPIVAYSI-LVIAD--IE--KGKSKKLKTVKALVGVTIME KMTFER
1158


WP_024786433
1112
--PLE KLVPLKK----AL-NPEKYGGYQKPTTAYPI-LLIVD---------------TKQLIPISVMD KKRFEQ
1166


WP_049473442
1094
--NSD KLIPRKT-KKEYW-DIKKYGGEDSPIVAYSI-LVIAD--IE--KGKSKKLKTVKALVGVTIME KMTFER
1158


WP_049474547
1094
--NSD KLIPRKT-KKEYW-DIKKYGGEDSPIVAYSI-LVIAD--IE--KGKSKKLKTVKALVGVTIME KMTFER
1158


EMC03581
1087
--NSD KLIPRKT-KKEYW-DIKKYGGEDSPIVAYSI-LVIAD--IE--KGKSKKLKTVKALVGVTIME KMTFER
1151


WP_000428612
1122
--NSD KLIPRKT-KDILW-DTTKYGGEDSPVIAYSI-LLIAD--IE--KGKAKRLKTVKILVGITIME KATFEK
1186


WP_000428613
1120
--NSD KLIPRKT-KDILW-ETTKYGGEDSPVIAYSI-LLIAD--IE--KGKAKKLKTVKILVGITIME KAAFEE
1184


WP_049523028
1115
--NSD KLIPRKT-KNVQL-DTTKYGGFDSPVIAYSI-LLVAD--VE--KGKSKKLKTVKSLIGITIME KVKFEA
1179


WP_003107102
1084
--DSD KLIP----RKNNW-DPKKYGGFGSPIIAYSV-LVVAK--VT--KGKSQKIKSVKELVGITIME QNEFEK
1145


WP_054279288
1116
--KSS KLIP----RKNKWrDTTKYGGENTPTVAYSV-LVVAK--VE--KGKAKKLKPVKELVGITIME RTKFEA
1178


WP_049531101
1125
vvDAS KLIPIKS-G---L-SPEKYGGYARPTIAYSV-LVIAD--IE--KGKAKKLKRIKEMVGITIQD KKKFEA
1188


WP_049538452
1125
vvDAS KLIPIKS-G---L-SPEKYGGYARPTIAYSV-LVIAD--IE--KGKIKKLKRIKEMIGITVQD KKIFES
1188


WP_049549711
1127
vvDAS KLIPIKS-G---L-SPEKYGGYARPTIAYSV-LVIAD--IE--KGKIKKLKRIKEMVGITIQD KKKFEA
1190


WP_007896501
1121
--NSD KLIE----RKKGW-DPKKYGGEDSPNTAYSI-FVVAK--VA--KRKAQKLKTVKEIVGITIME QAEYEK
1182


EFR44625
1073
--NSD KLIE----RKKGW-DPKKYGGEDSPNTAYSI-FVVAK--VA--KRKAQKLKTVKEIVGITIME QAEYEK
1134


WP_002897477
1119
--NSD KLIPRKT-KDILW-DTTKYGGEDSPVIAYSI-LLIAD--IE--KGKAKKLKTVKILVGITIME KAAFEE
1183


WP_002906454
1124
vvDAS KLIPIKS-S---L-SPEKYGGYARPTIAYSV-LVIAD--IEkgKGKAKKLKRIKEIVGITIQD KKKFES
1189


WP_009729476
1120
--NSD KLIPRKT-KDILW-DTTKYGGEDSPVIAYSI-LLIAD--IE--KGKAKKLKTVKILVGITIME KDAFEK
1184


CQR24647
1110
--GSD KLIARKT-KNNYL-STQKYGGFDSPIVAYSI-MFVAD--IE--KGKSKRLKTVKEMIGITIME RSRFES
1174


WP_000066813
1124
--NSD KLIPRKT-KEILW-DTTKYGGEDSPVIAYSI-LLIAD--IE--KGKAKKLKTVKILVGITIME KATFEK
1188


WP_009754323
1120
--NSD KLIPRKT-KDILW-DTTKYGGEDSPVIAYSI-LLIAD--IE--KGKAKKLKTVKILVGITIME KAAFEK
1184


WP_044674937
1113
--DSD KLIPRKT-EKFYL-DIKKYGGEDSPTIAYSV-LLIAD--IE--KGKAKKLKRVKELIGITIME RMAFEK
1177


WP_044676715
1115
--DSD KLIPRKT-EKFYL-DIKKYGGEDSPTIAYSV-LLIAD--IE--KGKAKKLKRVKELIGITIME RMAFEK
1179


WP_044680361
1115
--DSD KLIPRKT-EKFYL-DIKKYGGEDSPTIAYSV-LLIAD--IE--KGKAKKLKRVKELIGITIME RMAFEK
1179


WP_044681799
1113
--DSD KLIPRKT-EKFYL-DIKKYGGEDSPTIAYSV-LLIAD--IE--KGKAKKLKRVKELIGITIME RMAFEK
1177


WP_049533112
1123
--DSS ENLVGVK-RNL---DPKKYGGYAGISNSYAV-LVKAI--IE--KGVKKKETMVLEFQGISILD RITFEK
1185


WP_029090905
1062
--SSS KTIP----LKKHL-DTAIYGGYTAVNYASYA---LIQ--FK----KGRKLK--REIIGIPLAV QTRIDN
1117


WP_006506696
1085
haDKG AVVP---vNKNRS-DVHKYGGFSG--LQYTI----VA--IEgqKKKGKKTELVKKISGVPLHL KAASIN
1149


AIT42264
1115
--NSD KLIA----RKKDW-DPKKYGGFDSPIVAYSV-LVVAK--VE--KGKSKKLKSVKELLGITIME RSSFEK
1176


WP_034440723
1093
k-KTE KRIP----IKNNL-DPNIYGGYIEEKMAYYI----AInyLE--NGKTKK-----AIVGISIKD KKDFEG
1149


AKQ21048
1115
--NSD KLIA----RKKDW-DPKKYGGFDSPIVAYSV-LVVAK--VE--KGKSKKLKSVKELLGITIME RSSFEK
1176


WP_004636532
1093
--DSS KLIP----VKEGM-DPQKYGGLSQVSEAFAV-VIT----HE--KGKKKQLK--SDLISIPIVD QKAYEQ
1150


WP_002364836
1099
--PSN KLIP----VKNGL-DPQKYGGFDSPIVAYTV-LF--T--HE--KGK-KPL-IKQEILGITIME KTRFEQ
1156


WP_016631044
1050
--PSN KLIP----VKNGL-DPQKYGGFDSPVVAYTV-LF--T--HE--KGK-KPL-IKQEILGITIME KTRFEQ
1107


EMS75795
835
--KPD KLIQ----RKAGW-DVSKYGGFGSPVVAYAV-AFI----YE--KGKAR--KKAKAIEGITIMK QSLFEQ
892


WP_002373311
1099
--PSN KLIP----VKNGL-DPQKYGGFDSPVVAYTV-LF--T--HE--KGK-KPL-IKQEILGITIME KTRFEQ
1156


WP_002378009
1099
--PSN KLIP----VKNGL-DPQKYGGFDSPIVAYTV-LF--T--HE--KGK-KPL-IKQEILGITIME KTRFEQ
1156


WP_002407324
1099
--PSN KLIP----VKNGL-DPQKYGGFDSPIVAYTV-LF--T--HE--KGK-KPL-IKQEILGITIME KTRFEQ
1156


WP_002413717
1099
--PSN KLIP----VKNGL-DPQKYGGFDSPVVAYTV-LF--T--HE--KGK-KPL-IKQEILGITIME KTRFEQ
1156


WP_010775580
1101
--PSN KLIP----VKNGL-DPQKYGGFDSPVVAYTV-LF--T--HE--KGK-KPL-IKQEILGITIME KTRFEQ
1158


WP_010818269
1099
--PSN KLIP----VKNGL-DPQKYGGFDSPIVAYTV-LF--T--HE--KGK-KPL-IKQEILGITIME KTRFEQ
1156


WP_010824395
1099
--PSN KLIP----VKNGL-DPQKYGGFDSPVVAYTV-LF--T--HE--KGK-KPL-IKQEILGITIME KTRFEQ
1156


WP_016622645
1099
--PSN KLIP----VKNGL-DPQKYGGFDSPIVAYTV-LF--T--HE--KGK-KPL-IKQEILGITIME KTRFEQ
1156


WP_033624816
1099
--PSN KLIP----VKNGL-DPQKYGGFDSPVVAYTV-LF--T--HE--KGK-KPL-IKQEILGITIME KTRFEQ
1156


WP_033625576
1099
--PSN KLIP----VKNGL-DPQKYGGFDSPVVAYTV-LF--T--HE--KGK-KPL-IKQEILGITIME KTKFEQ
1156


WP_033789179
1099
--PSN KLIP----VKNGL-DPQKYGGFDSPVVAYTV-LF--T--HE--KGK-KPL-IKQEILGITIME KTRFEQ
1156


WP_002310644
1101
--DSS KLLP----RKNNW-DPAKYGGLGSPNVAYTV-AFT----YE--KGKAR--KRTNALEGITIME REAFEQ
1158


WP_002312694
1102
--DSS KLLP----RKNNW-DPAKYGGLGSPNVAYTV-AFT----YE--KGKAR--KRTNALEGITIME REAFEQ
1159


WP_002314015
1102
--DSS KLLP----RKNNW-DPAKYGGLGSPNVAYTV-AFT----YE--KGKAR--KRTNALEGITIME REAFEQ
1159


WP_002320716
1102
--DSS KLLP----RKNNW-DPAKYGGLGSPNVAYTV-AFT----YE--KGKAR--KRTNALEGITIME REAFEQ
1159


WP_002330729
1101
--DSS KLLP----RKNNW-DPAKYGGLGSPNVAYTV-AFT----YE--KGKAR--KRTNALEGITIME REAFEQ
1158


WP_002335161
1102
--DSS KLLP----RKNNW-DPAKYGGLGSPNVAYTV-AFT----YE--KGKAR--KRTNALEGITIME REAFEQ
1159


WP_002345439
1102
--DSS KLLP----RKNNW-DPTKYGGLGSPNVAYTV-AFT----YE--KGKAR--KRTNALEGITIME REAFEQ
1159


WP_034867970
1092
--KPD KLIE----RKNNW-DVIKYGGFGSPVIAYAI-AFV----YA--KGKTQ--KKTRAIEGITIME QAAFEK
1149


WP_047937432
1102
--DSS KLLP----RKNNW-DPAKYGGLGSPNVAYTV-AFT----YE--KGKAR--KRTNALEGITIME REAFEQ
1159


WP_010720994
1092
--KPD KLIE----RKNNW-DVIKYGGFGSPVIAYAI-AFV----YA--KGKTQ--KKIKAIEGITIME QAAFEK
1149


WP_010737004
1092
--KPD KLIE----RKNNW-DVIKYGGFGSPVIAYAI-AFV----YA--KGKTQ--KKTRAIEGITIME QAAFEK
1149


WP_034700478
1092
--KPD KLIE----RKNNW-DVIKYGGFGSPVIAYAI-AFV----YA--KGKTQ--KKTRAIEGITIME QAAFEK
1149


WP_007209003
1090
--ESQ KLIR----RKQQW-NTKKYGGFDSPVVAYAI---LLS--FD--KGK-RKARSFK-IVGITIQD RESFEG
1147


WP_023519017
1086
--NPE KLIP----RKASL-DPLKYGGYGSPLVAYTV-IFI----FE--KGKQK--KVIKGIEGITVME QLRFEQ
1143


WP_010770040
1097
--DSD KLIS----RKTNW-SPKLYGGFDSPQVAYSV-II--T--YE--KGK-KKVRA-KAIVGITIME QSLFKK
1154


WP_048604708
1094
--DSD KLIS----RKKEW-DTTKYGGFDSPNVAYSV-VI--R--YE--KGK-TRKLV-KTIVGITIME RAAFEK
1151


WP_010750235
1095
--KPD KLIK----RKNNW-DVTKYGGFGSPVVAYAV-VFT----YE--KGKNH--KKAKAIEGITIME QALFEK
1152


AII16583
1154
--NSD KLIA----RKKDW-DPKKYGGFDSPIVAYSV-LVVAK--VE--KGKSKKLKSVKELLGITIME RSSFEK
1215


WP_029073316
1100
hsEKG AKVP---vNKLRS-NVHKYGGFEG--LKYSI----VA--IKgkKKKGKKIIDVNKLVGIPLMY KNVDDE
1164


WP_031589969
1100
nsDKD ATVP---vNKYRS-NVNKYGGFSG--VNSFI----VA--IKgkKKKGKKVIEVNKLIGIPLMY KNADEE
1164


KDA45870
1079
--DSG KLLP----RKEGL-DPVKYGGYAKAVESYAV-LITAD-eVK--KGKTKKVKT---LVNIPIID SKKYEA
1138


WP_039099354
1098
k-ASG QLIPAKQdRPTAL-----YGGYSGKTVAYMC---IVR--IKnkKGDLYKVCGVETSWLAQLKQ KKAFLK
1170


AKP02966
1119
k---- KLIA----QKKDM-DPNIYGGFSGDNKSSIT---IVK--ID-----NNKIKPVA--IPIRLIN ----DK
1172


WP_010991369
1096
--NSS KLIP----RKTNW-DPMKYGGLDSPNMAYAV-VI--E--YA--KGK-NKLVFEKKIIRVTIME RKAFEK
1154


WP_033838504
1096
--NSS KLIS----RKTNW-DPMKYGGLDSPNMAYAV-VI--E--YA--KGK-NKLVFEKKIIRVTIME RKAFEK
1154


EHN60060
1099
--NSS KLIS----RKTNW-DPMKYGGLDSPNMAYAV-VI--E--YA--KGK-NKLVFEKKIIRVTIME RKAFEK
1157


EFR89594
865
--NSS KLIP----RKTNW-DPMKYGGLDSPNMAYAV-VI--E--YA--KGK-NKLVFEKKIIRVTIME RKAFEK
923


WP_038409211
1096
--NSS KLIS----RKADW-NPIKYGGFDGSNMAYSI-VI--E--YE--KRK-KKTVIKKELIQINIME RVAFEK
1154


EFR95520
715
--NSS KLIS----RKADW-NPIKYGGFDGSNMAYSI-VI--E--YE--KRK-KKTVIKKELIQINIME RVAFEK
773


WP_003723650
1096
--NSS KLIP----RKENW-DPMKYGGLDSPNMAYAV-II--E--HA--KGK-KKIVIEKKLIQINIME RKMFEK
1154


WP_003727705
1096
--NSS KLIP----RKENW-DPMKYGGLDSPNMAYAV-II--E--HA--KGK-KKIVIEKKLIQINIME RKMFEK
1154


WP_003730785
1096
--NSS KLIP----RKENW-DPVKYGGLDSPNMAYAV-II--E--HA--KGK-KKIVIEKKLIQINIME RKMFEK
1154


WP_003733029
1096
--KSN KLIP----RKKDW-DPIKYGGFDGSKMAYAI-II--E--YE--KQK-RKVRIEKKLIQINIME REAFEK
1154


WP_003739838
1096
--NSS KLIP----RKENW-DPMKYGGLDSPNMAYAV-II--E--HA--KGK-KKVVFEKKIIRITIME RKAFEK
1154


WP_014601172
1096
--NSS KLIP----RKENW-DPMKYGGLDSPNMAYAV-II--E--HA--KGK-KKLIFEKKIIRITIME RKMFEK
1154


WP_023548323
1096
--DSS KLIP----KKTNL-NPIKYGGFEGSNMAYAI-II--E--HE--KRK-KKVTIEKKLIQINIME RKAFEK
1154


WP_031665337
1096
--NSS KLIP----RKENW-DPMKYGGLDSPNMAYAV-II--E--HA--KGK-KRIVIEKKLIQINIME RKMFEK
1154


WP_031669209
1096
--KSN KLIP----RKKDW-DPIKYGGFDGSKMAYAI-II--E--YE--KQK-RKVRIEKKLIQINIME REAFEK
1154


WP_033920898
1096
--DSS KLIP----KKTNL-NPIKYGGFEGSNMAYAI-II--E--HE--KRK-KKVTIEKKLIQINIME RKAFEK
1154


AKI42028
1099
--NSS KLIP----RKENW-DPMKYGGLDSPNMAYAV-II--E--HA--KGK-KKLIFEKKIIRITIME RKMFEK
1157


AKI50529
1099
--DSS KLIP----KKTNL-NPIKYGGFEGSNMAYAI-II--E--HE--KRK-KKVTIEKKLIQINIME RKAFEK
1157


EFR83390
544
--NSS KLIP----RKENW-DPMKYGGLDSPNMAYAV-II--E--HA--KGK-KKIVIEKKLIQINIME RKMFEK
602


WP_046323366
1096
--NSS KLIP----RKADW-DPIKYGGFDGSNMAYAI-VI--E--HE--KRK-KKTVIKKELIQINIME RTAFEK
1154


AKE81011
1131
--NSD KLIA----RKKDW-DPKKYGGFDSPIVAYSV-LVVAK--VE--KGKSKKLKSVKELLGITIME RSSFEK
1192


CUO82355
1089
hsAKG AVIP---vNKNRK-DVNKYGGFSG--LQYVI----AA--IEgtKKKGKKLVKVRKLSGIPLYL KQADIK
1153


WP_033162887
1090
hsEKG ATVP---lNKYRA-DVHKYGGFGN--VQSII----VA--IEgkKKKGKKLIDVRKLISIPLHL KNAPVE
1154


AGZ01981
1148
--NSD KLIA----RKKDW-DPKKYGGFDSPIVAYSV-LVVAK--VE--KGKSKKLKSVKELLGITIME RSSFEK
1209


AKA60242
1115
--NSD KLIA----RKKDW-DPKKYGGFDSPIVAYSV-LVVAK--VE--KGKSKKLKSVKELLGITIME RSSFEK
1176


AKS40380
1115
--NSD KLIA----RKKDW-DPKKYGGFDSPIVAYSV-LVVAK--VE--KGKSKKLKSVKELLGITIME RSSFEK
1176


4UN5_B
1119
--NSD KLIA----RKKDW-DPKKYGGFDSPIVAYSV-LVVAK--VE--KGKSKKLKSVKELLGITIME RSSFEK
1180


WP_010922251
1177


embedded image


1239


WP_039695303
1186
NPV---EFLE---NKGYHN--I-REDKLIK--LPKYSLFE---FEGGRRRLLAS ASELQKGNEMVLPGYLVELLYHA
1248


WP_045635197
1184
NPI---TFLE---NKGYHN--V-RKENILC--LPKYSLFE---LENGRRRLLAS AKELQKGNEIVLPVYLTTLLYHS
1246


5AXW_A
913
KPYrfdVYLD---NGVYKFvtV-KNLDVIK----KENYYE---VNSKAYEEAKK -KKISNQAEFIASFYNNDLIKIN
978


WP_009880683
861
DPV---DFLE---AKGYKE--V-RKDLIIK--LPKYSLFE---LENGRKRMLAS -GELQKGNELALPSKYVNFLYLA
923


WP_010922251
1177
NPI---DFLE---AKGYKE--V-KKDLIIK--LPKYSLFE---LENGRKRMLAS -GELQKGNELALPSKYVNFLYLA
1239


WP_011054416
1177
DPI---DFLE---AKGYKE--V-RKDLIIK--LPKYSLFE---LENGRKRMLAS -GELQKGNELALPSKYVNFLYLA
1239


WPO11284745
1177
NPI---DFLE---AKGYKE--V-RKDLIVK--LPKYSLFE---LENGRKRMLAS -GELQKGNELALPSKYVNFLYLA
1239


WP_011285506
1177
NPI---DFLE---AKGYKE--V-KKDLIIK--LPKYSLFE---LENGRKRMLAS -GELQKGNELALPSKYVNFLYLA
1239


WP_011527619
1177
NPI---DFLE---AKGYKE--V-RKDLIIK--LPKYSLFE---LENGRKRMLAS -GELQKGNELALPSKYVNFLYLA
1239


WP_012560673
1177
DPV---DFLE---AKGYKE--V-RKDLIIK--LPKYSLFE---LENGRKRMLAS -GELQKGNELALPSKYVNFLYLA
1239


WP_014407541
1176
NPI---DFLE---AKGYKE--V-KKDLIIK--LPKYSLFE---LENGRKRMLAS -GELQKGNELALPSKYVNFLYLA
1238


WP_020905136
1177
NPI---DFLE---AKGYKE--V-KKDLIIK--LPKYSLFE---LENGRKRMLAS -GELQKGNELALPSKYVNFLYLA
1239


WP_023080005
1176
NPI---DFLE---AKGYKE--V-RKDLIIK--LPKYSLFE---LENGRKRMLAS -GELQKGNELALPSKYVNFLYLA
1238


WP_023610282
1176
NPI---DFLE---AKGYKE--V-RKDLIIK--LPKYSLFE---LENGRKRMLAS -GELQKGNELALPSKYVNFLYLA
1238


WP_030125963
1177
NPI---DFLE---AKGYKE--V-RKDLIIK--LPKYSLFE---LENGRKRMLAS -GELQKGNELALPSKYVNFLYLA
1239


WP_030126706
1177
NPI---DFLE---AKGYKE--V-RKDLIIK--LPKYSLFE---LENGRKRMLAS -GELQKGNELALPSKYVNFLYLA
1239


WP_031488318
1177
NPI---DFLE---AKGYKE--V-RKDLIIK--LPKYSLFE---LENGRKRMLAS -GELQKGNELALPSKYVNFLYLA
1239


WP_032460140
1177
DPV---DFLE---AKGYKE--V-RKDLIIK--LPKYSLFE---LENGRKRMLAS -GELQKGNELALPSKYVNFLYLA
1239


WP_032461047
1177
DPV---DFLE---AKGYKE--V-RKDLIIK--LPKYSLFE---LENGRKRMLAS -GELQKGNELALPSKYVNFLYLA
1239


WP_032462016
1177
NPI---DFLE---AKGYKE--V-KKDLIIK--LPKYSLFE---LENGRKRMLAS -GELQKGNELALPSKYVNFLYLA
1239


WP_032462936
1177
NPI---DFLE---AKGYKE--V-RKDLIIK--LPKYSLFE---LENGRKRMLAS -GELQKGNELALPSKYVNFLYLA
1239


WP_032464890
1177
NPI---DFLE---AKGYKE--V-RKDLIIK--LPKYSLFE---LENGRKRMLAS -GELQKGNELALPSKYVNFLYLA
1239


WP_033888930
1002
NPI---DFLE---AKGYKE--V-KKDLIIK--LPKYSLFE---LENGRKRMLAS -GELQKGNELALPSKYVNFLYLA
1064


WP_038431314
1177
NPI---DFLE---AKGYKE--V-RKDLIIK--LPKYSLFE---LENGRKRMLAS -GELQKGNELALPSKYVNFLYLA
1239


WP_038432938
1176
NPI---DFLE---AKGYKE--V-RKDLIIK--LPKYSLFE---LENGRKRMLAS -GELQKGNELALPSKYVNFLYLA
1238


WP_038434062
1177
NPI---DFLE---AKGYKE--V-RKDLIIK--LPKYSLFE---LENGRKRMLAS -GELQKGNELALPSKYVNFLYLA
1239


BAQ51233
1088
NPI---DFLE---AKGYKE--V-KKDLIIK--LPKYSLFE---LENGRKRMLAS -GELQKGNELALPSKYVNFLYLA
1150


KGE60162
352
DPI---DFLE---AKGYKE--V-RKDLIIK--LPKYSLFE---LENGRKRMLAS -GELQKGNELALPSKYVNFLYLA
414


KGE60856
115
DPI---DFLE---AKGYKE--V-RKDLIIK--LPKYSLFE---LENGRKRMLAS -GELQKGNELALPSKYVNFLYLA
177


WP_002989955
1177
NPI---DFLE---AKGYKE--V-RKDLIIK--LPKYSLFE---LENGRKRMLAS -GELQKGNELALPSKYVNFLYLA
1239


WP_003030002
1159
HPV---DFLE---QRGYRN--V-RLEKIIK--LPKYSLFE---LENKRRRLLAS ARELQKGNELVIPQRFTTLLYHS
1221


WP_003065552
1187
NPV---EFLE---NKGYHN--I-REDKLIK--LPKYSLFE---FEGGKRRLLAS ASELQKGNEMVIPGHLVKLLYHA
1249


WP_001040076
1178
NPS---AFLE---SKGYLN--I-RTDKLII--LPKYSLFE---LENGRRRLLAS AGELQKGNELALPTQFMKFLYLA
1240


WP_001040078
1186
NPS---AFLE---SKGYLN--I-RDDKLMI--LPKYSLFE---LENGRRRLLAS AGELQKGNELALPTQFMKFLYLA
1248


WP_001040080
1178
NPS---AFLE---SKGYLN--I-RADKLII--LPKYSLFE---LENGRRRLLAS AGELQKGNELALPTQFMKFLYLA
1240


WP_001040081
1178
NPS---AFLE---SKGYLN--I-RADKLII--LPKYSLFE---LENGRRRLLAS AGETIDRLQKGNELALPTQFMKFLYLA
1240


WP_001040083
1178
NPS---AFLE---SKGYLN--I-RADKLII--LPKYSLFE---LENGRRRLLAS AGELQKGNELALPTQFMKFLYLA
1240


WP_001040085
1178
NPS---AFLE---SKGYLN--I-RADKLII--LPKYSLFE---LENGRRRLLAS AGELQKGNELALPTQFMKFLYLA
1240


WP_001040087
1178
NPS---AFLE---SKGYLN--I-RADKLII--LPKYSLFE---LENGRRRLLAS AGELQKGNELALPTQFMKFLYLA
1240


WP_001040088
1178
NPS---AFLE---SKGYLN--I-RADKLII--LPKYSLFE---LENGRRRLLAS AGELQKGNELALPTQFMKFLYLA
1240


WP_001040089
1178
NPS---AFLE---SKGYLN--I-RDDKLMI--LPKYSLFE---LENGRRRLLAS AGELQKGNELALPTQFMKFLYLA
1240


WP_001040090
1178
NPS---AFLE---SKGYLN--I-RADKLII--LPKYSLFE---LENGRRRLLAS AGELQKGNELALPTQFMKFLYLA
1240


WP_001040091
1178
NPS---AFLE---SKGYLN--I-RADKLII--LPKYSLFE---LENGRRRLLAS AGELQKGNELALPTQFMKFLYLA
1240


WP_001040092
1178
NPS---AFLE---SKGYLN--I-RTDKLII--LPKYSLFE---LENGRRRLLAS AGELQKGNELALPTQYMKFLYLA
1240


WP_001040094
1178
NPS---AFLE---SKGYLN--I-RDDKLMI--LPKYSLFE---LENGRRRLLAS AGELQKGNELALPTQFMKFLYLA
1240


WP_001040095
1178
NPS---AFLE---SKGYLN--I-RTDKLII--LPKYSLFE---LENGRRRLLAS AGELQKGNELALPTQYMKFLYLA
1240


WP_001040096
1178
NPS---AFLE---SKGYLN--I-RTDKLII--LPKYSLFE---LENGRRRLLAS AGELQKGNELALPTQYMKFLYLA
1240


WP_001040097
1178
NPS---AFLE---SKGYLN--I-RDDKLMI--LPKYSLFE---LENGRRRLLAS ADELQKGNELALPTQFMKFLYLA
1240


WP_001040098
1178
NPS---AFLE---SKGYLN--I-RDDKLMI--LPKYSLFE---LENGRRRLLAS AGELQKGNELALPTQFMKFLYLA
1240


WP_001040099
1178
NPS---AFLE---SKGYLN--I-RDDKLMI--LPKYSLFE---LENGRRRLLAS AGELQKGNELALPTQFMKFLYLA
1240


WP_001040100
1178
NPS---AFLE---SKGYLD--I-RDDKLMI--LPKYSLFE---LENGRRRLLAS AGELQKGNELALPTQFMKFLYLA
1240


WP_001040104
1178
NPS---AFLE---SKGYLN--I-RADKLII--LPKYSLFE---LENGRRRLLAS AGELQKGNELALPTQFMKFLYLA
1240


WP_001040105
1178
NPS---AFLE---SKGYLN--I-RADKLII--LPKYSLFE---LENGRRRLLAS AGELQKGNELALPTQFMKFLYLA
1240


WP_001040106
1178
NPS---AFLE---SKGYLN--I-RDDKLMI--LPKYSLFE---LENGRRRLLAS AGELQKGNELALPTQYMKFLYLA
1240


WP_001040107
1178
NPS---AFLE---SKGYLN--I-RDDKLMI--LPKYSLFE---LENGRRRLLAS AGELQKGNELALPTQYMKFLYLA
1240


WP_001040108
1178
NPS---AFLE---SKGYLN--I-RDDKLMI--LPKYSLFE---LENGRRRLLAS AGELQKGNELALPTQYMKFLYLA
1240


WP_001040109
1178
NPS---AFLE---SKGYLN--I-RDDKLMI--LPKYSLFE---LENGRRRLLAS AGELQKGNELALPTQYMKFLYLA
1240


WP_001040110
1178
NPS---AFLE---SKGYLN--I-RDDKLMI--LPKYSLFE---LENGRRRLLAS AGELQKGNELALPTQYMKFLYLA
1240


WP_015058523
1178
NPS---AFLE---SKGYLN--I-RTDKLII--LPKYSLFE---LENGRRRLLAS AGELQKGNELALPTQYMKFLYLA
1240


WP_017643650
1178
NPS---AFLE---SKGYLN--I-RDDKLMI--LPKYSLFE---LENGRRRLLAS ADELQKGNELALPTQFMKFLYLA
1240


WP_017647151
1178
NPS---AFLE---SKGYLN--I-RDDKLMI--LPKYSLFE---LENGRRRLLAS AGELQKGNELALPTQFMKFLYLA
1240


WP_017648376
1178
NPS---AFLE---SKGYLN--I-RDDKLMI--LPKYSLFE---LENGRRRLLAS AGELQKGNELALPTQFMKFLYLA
1240


WP_017649527
1178
NPS---AFLE---SKGYLN--I-RADKLII--LPKYSLFE---LENGRRRLLAS AGELQKGNELALPTQFMKFLYLA
1240


WP_017771611
1178
NPS---AFLE---SKGYLN--I-RDDKLMI--LPKYSLFE---LENGRRRLLAS AGELQKGNELALPTQYMKFLYLA
1240


WP_017771984
1178
NPS---AFLE---SKGYLN--I-RADKLII--LPKYSLFE---LENGRRRLLAS AGELQKGNELALPTQFMKFLYLA
1240


CFQ25032
1178
NPS---AFLE---SKGYLN--I-RADKLII--LPKYSLFE---LENGRRRLLAS AGELQKGNELALPTQFMKFLYLA
1240


CFV16040
1178
NPS---AFLE---SKGYLN--I-RADKLII--LPKYSLFE---LENGRRRLLAS AGELQKGNELALPTQFMKFLYLA
1240


KLJ37842
1178
NPS---AFLE---SKGYLN--I-RADKLII--LPKYSLFE---LENGRRRLLAS AGELQKGNELALPTQFMKFLYLA
1240


KLJ72361
1178
NPS---AFLE---SKGYLN--I-RADKLII--LPKYSLFE---LENGRRRLLAS AGELQKGNELALPTQFMKFLYLA
1240


KLL20707
1192
NPS---AFLE---SKGYLN--I-RADKLII--LPKYSLFE---LENGRRRLLAS AGELQKGNELALPTQFMKFLYLA
1254


KLL42645
1178
NPS---AFLE---SKGYLN--I-RDDKLMI--LPKYSLFE---LENGRRRLLAS AGELQKGNELALPTQYMKFLYLA
1240


WP_047207273
1178
NPS---AFLE---SKGYLN--I-RADKLII--LPKYSLFE---LENGRRRLLAS AGELQKGNELALPTQFMKFLYLA
1240


WP_047209694
1178
NPS---AFLE---SKGYLN--I-RDDKLMI--LPKYSLFE---LENGRRRLLAS AGELQKGNELALPTQFMKFLYLA
1240


WP_050198062
1178
NPS---AFLE---SKGYLN--I-RADKLII--LPKYSLFE---LENGRRRLLAS AGELQKGNELALPTQFMKFLYLA
1240


WP_050201642
1178
NPS---AFLE---SKGYLN--I-RADKLII--LPKYSLFE---LENGRRRLLAS AGELQKGNELALPTQFMKFLYLA
1240


WP_050204027
1178
NPS---AFLE---SKGYLN--I-RDDKLMI--LPKYSLFE---LENGRRRLLAS AGELQKGNELALPTQYMKFLYLA
1240


WP_050881965
1178
NLS---AFLE---SKGYLN--I-RADKLII--LPKYSLFE---LENGRRRLLAS AGELQKGNELALPTQFMKFLYLA
1240


WP_050886065
1178
NPS---AFLE---SKGYLN--I-RADKLII--LPKYSLFE---LENGRRRLLAS AGELQKGNELALPTQFMKFLYLA
1240


AHN30376
1178
NPS---AFLE---SKGYLN--I-RTDKLII--LPKYSLFE---LENGRRRLLAS AGELQKGNELALPTQYMKFLYLA
1240


EAO78426
1178
NPS---AFLE---SKGYLN--I-RADKLII--LPKYSLFE---LENGRRRLLAS AGELQKGNELALPTQFMKFLYLA
1240


CCW42055
1178
NPS---AFLE---SKGYLN--I-RTDKLII--LPKYSLFE---LENGRRRLLAS AGELQKGNELALPTQFMKFLYLA
1240


WP_003041502
1186
DKR---AFLL---GKGYKD--I-K--KIIE--LPKYSLFE---LKDGSRRMLAS RGEIHKGNELFVPQKFTTLLYHA
1253


WP_037593752
1160
NPV---DFLE---QRGYRN--V-RLEKIIK--LPKYSLFE---LENKRRRLLAS ARELQKGNELVIPQRFTTLLYHS
1222


WP_049516684
1160
HPV---DFLE---QRGYRN--V-RLEKIIK--LPKYSLFE---LENKRRRLLAS ARELQKGNELVIPQRFTTLLYHS
1222


GAD46167
1159
NPV---DFLE---QRGYRN--V-RLEKIIK--LPKYSLFE---LENKRRRLLAS ARELQKGNELVIPQRFTTLLYHS
1221


WP_018363470
1191
NPV---EFLK---NKGYQN--V-QEDKLMK--LPKYSLFE---FEGGRRRLLAS ATELQKGNEIMLSAHLVALLYHA
1253


WP_003043819
1186
DPI---GFLE---AKGYKD--I-KKELIFK--LPKYSLFE---LENGRRRMLAS --ELQKANELVLPQHLVRLLYYT
1248


WP_006269658
1159
NPV---DFLE---QRGYRN--V-RLEKIIK--LPKYSLFE---LENKRRRLLAS AKELQKGNELVIPQRFTTLLYHS
1221


WP_048800889
1179
NPI---MFLE---SKGYRN--I-QKDKLIK--LPKYSLFE---FEGGRRRLLAS AVELQKGNEMVLPQYLNNLLYHA
1241


WP_012767106
1178
NPL---KFIE---DKGYGN--V-QIDKCIK--LPKYSLFE---FENGTRRMLAS RGDLQKANEMFLPAKLVTLLY--
1245


WP_014612333
1178
NPL---KFIE---DKGYGN--V-QIDKCIK--LPKYSLFE---FENGTRRMLAS RGDLQKANEMFLPAKLVTLLY--
1245


WP_015017095
1178
NPL---KFIE---DKGYGN--V-QIDKCIK--LPKYSLFE---FENGTRRMLAS RGDLQKANEMFLPAKLVTLLY--
1245


WP_015057649
1178
NPL---KFIE---DKGYGN--V-QIDKCIK--LPKYSLFE---FENGTRRMLAS RGDLQKANEMFLPAKLVTLLY--
1245


WP_048327215
1178
NPL---KFIE---DKGYGN--V-QIDKCIK--LPKYSLFE---FENGTRRMLAS RGDLQKANEMFLPAKLVTLLY--
1245


WP_049519324
1178
NPL---KFIE---DKGYGN--V-QIDKCIK--LPKYSLFE---FENGTRRMLAS RGDLQKANEMFLPAKLVTLLY--
1245


WP_012515931
1157
NPV---VFLE---ARGYRE--I-QEHLIIK--LPKYSLFE---LENGRRRLLAS -SELQKGNELFLPVDYMTFLYLA
1219


WP_021320964
1157
NPV---VFLE---AKGYRE--I-QEHLIIK--LPKYSLFE---LENGRRRLLAS -SELQKGNELFLPVDYMTFLYLA
1219


WP_037581760
1157
NPV---VFLE---AKGYRE--I-QEHLIIK--LPKYSLFE---LENGRRRLLAS -SELQKGNELFLPVDYMTFLYLA
1219


WP_004232481
1189
NPV---SFLE---KKGYHN--V-QEDKLIK--LPKYSLFE---FEGGRRRLLAS ATELQKGNEVVLPQYMVNLLYHS
1251


WP_009854540
1184
NPV---EFLE---NKGYHN--I-REDKLIK--LPKYSLFE---FEGGRRRLLAS ASELQKGNEMVLPGYLVELLYHA
1246


WP_012962174
1185
NPV---VFLE---KKGYQN--V-QEDNLIK--LPKYSLFE---FEGGRRRLLAS ASELQKGNEVVLSRHLVELLYHA
1247


WP_039695303
1186
NPV---EFLE---NKGYHN--I-REDKLIK--LPKYSLFE---FEGGRRRLLAS ASELQKGNEMVLPGYLVELLYHA
1248


WP_014334983
1189
NPV---SFLE---KKGYHN--V-QEDKLIK--LPKYSLFE---FEGGRRRLLAS ATELQKGNEVMLPAHLVELLYHA
1251


WP_003099269
1177
DPI---AFLE---KKGYQD--I-QTSSIIK--LPKYSLFE---LENGRKRLLAS --ELQKGNELALPNKYVKFLYLA
1239


AHY15608
1177
DPI---AFLE---KKGYQD--I-QTSSIIK--LPKYSLFE---LENGRKRLLAS --ELQKGNELALPNKYVKFLYLA
1239


AHY17476
1177
DPI---AFLE---KKGYQD--I-QTSSIIK--LPKYSLFE---LENGRKRLLAS --ELQKGNELALPNKYVKFLYLA
1239


ESR09100
9
DPI---AFLE---KKGYQD--I-QTSSIIK--LPKYSLFE---LENGRKRLLAS -KELQKGNELALPNKYVKFLYLA
71


AGM98575
1177
DPI---AFLE---KKGYQD--I-QTSSIIK--LPKYSLFE---LENGRKRLLAS --ELQKGNELALPNKYVKFLYLA
1239


ALF27331
1159
NPV---AFLE---RKGYRN--V-QEENIVK--LPKYSLFE---LENGRRRLLAS ARELQKGNEIVLPNHLGTMLYHA
1221


WP_018372492
1168
EPEr---FLA---QKGFER--V-EKT--IK--LPKYSLFE---MEKGRRRLLAS SGELQKGNQVLLPEHLIRLLSYA
1228


WP_045618028
1189
NPI---AYLE---ECGYKN--I-NPNLIIK--LPKYSLFE---FNNGQRRLLAS SIELQKGNELIVPYHFTALLYHA
1251


WP_045635197
1184
NPI---TFLE---NKGYHN--V-RKENILC--LPKYSLFE---LENGRRRLLAS AKELQKGNEIVLPVYLTTLLYHS
1246


WP_002263549
1159
DPV---AFLE---RKGYRN--V-QEENIIK--LPKYSLFK---LENGRKRLLAS ARELQKGNEIVLPNHLGTLLYHA
1221


WP_002263887
1159
DPV---AFLE---RKGYRN--V-QEENIIK--LPKYSLFK---LENGRKRLLAS ARELQKGNEIVLPNHLGTLLYHA
1221


WP_002264920
1159
DPV---AFLE---RKGYRN--V-QEENIIK--LPKYSLFK---LENGRKRLLAS ARELQKGNEIVLPNHLGTLLYHA
1221


WP_002269043
1159
DPV---AFLE---RKGYRN--V-QEENIIK--LPKYSLFK---LENGRKRLLAS ARELQKGNEIVLPNHLGTLLYHA
1221


WP_002269448
1159
DPV---AFLE---RKGYRN--V-QEENIIK--LPKYSLFK---LENGRKRLLAS ARELQKGNEIVLPNHLGTLLYHA
1221


WP_002271977
1159
DPV---AFLE---RKGYRN--V-QEENIIK--LPKYSLFK---LENGRKRLLAS ARELQKGNEIVLPNHLGTLLYHA
1221


WP_002272766
1159
DPV---AFLE---RKGYRN--V-QEENIIK--LPKYSLFK---LENGRKRLLAS ARELQKGNEIVLPNHLGTLLYHA
1221


WP_002273241
1159
DPV---AFLE---RKGYRN--V-QEENIIK--LPKYSLFK---LENGRKRLLAS ARELQKGNEIVLPNHLGTLLYHA
1221


WP_002275430
1159
DPV---AFLE---RKGYRN--V-QEENIIK--LPKYSLFK---LENGRKRLLAS ARELQKGNEIVLPNHLGTLLYHA
1221


WP_002276448
1159
DPV---AFLE---RKGYRN--V-QEENIIK--LPKYSLFK---LENGRKRLLAS ARELQKGNEIVLPNHLGTLLYHA
1221


WP_002277050
1167
NPV---KFLK---DKGYQQ--I-EKNNFVK--LPKYTLVD---IGNGIKRLWAS SKEVHKGNQLVVSKKSQDLLYHA
1229


WP_002277364
1159
DPV---AFLE---RKGYRN--V-QEENIIK--LPKYSLFK---LENGRKRLLAS ARELQKGNEIVLPNHLGTLLYHA
1221


WP_002279025
1159
DPV---AFLE---RKGYRN--V-QEENIIK--LPKYSLFK---LENGRKRLLAS ARELQKGNEIVLPNHLGTLLYHA
1221


WP_002279859
1159
DPV---AFLE---RKGYRN--V-QEENIIK--LPKYSLFK---LENGRKRLLAS ARELQKGNEIVLPNHLGTLLYHA
1221


WP_002280230
1159
DPV---AFLE---RKGYRN--V-QEENIIK--LPKYSLFK---LENGRKRLLAS ARELQKGNEIVLPNHLGTLLYHA
1221


WP_002281696
1159
DPV---AFLE---RKGYRN--V-QEENIIK--LPKYSLFK---LENGRKRLLAS ARELQKGNEIVLPNHLGTLLYHA
1221


WP_002282247
1167
NPV---KFLK---DKGYQQ--I-EKNNFVK--LPKYTLVD---IGNGIKRLWAS SKEVHKGNQLVVSKKSQDLLYHA
1229


WP_002282906
1159
DPV---AFLE---RKGYRN--V-QEENIIK--LPKYSLFK---LENGRKRLLAS ARELQKGNEIVLPNHLGTLLYHA
1221


WP_002283846
1159
DPV---AFLE---RKGYRN--V-QEENIIK--LPKYSLFK---LENGRKRLLAS ARELQKGNEIVLPNHLGTLLYHA
1221


WP_002287255
1159
DPV---AFLE---RKGYRN--V-QEENIIK--LPKYSLFK---LENGRKRLLAS ARELQKGNEIVLPNHLGTLLYHA
1221


WP_002288990
1159
DPV---AFLE---RKGYRN--V-QEENIIK--LPKYSLFK---LENGRKRLLAS ARELQKGNEIVLPNHLGTLLYHA
1221


WP_002289641
1159
DPV---AFLE---RKGYRN--V-QEENIIK--LPKYSLFK---LENGRKRLLAS ARELQKGNEIVLPNHLGTLLYHA
1221


WP_002290427
1159
DPV---AFLE---RKGYRN--V-QEENIIK--LPKYSLFK---LENGRKRLLAS ARELQKGNEIVLPNHLGTLLYHA
1221


WP_002295753
1159
DPI---AFLE---RKGYRN--V-QEENIIK--LPKYSLFK---LENGRKRLLAS ARELQKGNEIVLPNHLGTLLYHA
1221


WP_002296423
1159
DPV---AFLE---RKGYRN--V-QEENIIK--LPKYSLFK---LENGRKRLLAS ARELQKGNEIVLPNHLGTLLYHA
1221


WP_002304487
1173
DPV---AFLE---RKGYRN--V-QEENIIK--LPKYSLFK---LENGRKRLLAS ARELQKGNEIVLPNHLETLLYHA
1235


WP_002305844
1159
DPV---AFLE---RKGYRN--V-QEENIIK--LPKYSLFK---LENGRKRLLAS ARELQKGNEIVLPNHLGTLLYHA
1221


WP_002307203
1159
DPI---AFLE---RKGYRN--V-QEENIIK--LPKYSLFK---LENGRKRLLAS ARELQKGNEIVLPNHLGTLLYHA
1221


WP_002310390
1159
DPV---AFLE---RKGYRN--V-QEENIIK--LPKYSLFK---LENGRKRLLAS ARELQKGNEIVLPNHLGTLLYHA
1221


WP_002352408
1159
DPV---AFLE---RKGYRN--V-QEENIIK--LPKYSLFK---LENGRKRLLAS ARELQKGNEIVLPDHLGTLLYHA
1221


WP_012997688
1159
DPV---AFLE---RKGYRN--V-QEENIIK--LPKYSLFK---LENGRKRLLAS ARELQKGNEIVLPNHLGTLLYHA
1221


WP_014677909
1159
DPV---AFLE---RKGYRN--V-QEENIIK--LPKYSLFK---LENGRKRLLAS ARELQKGNEIVLPNHLGTLLYHA
1221


WP_019312892
1159
DPV---AFLE---RKGYRN--V-QEENIIK--LPKYSLFK---LENGRKRLLAS ARELQKGNEIVLPNHLGTLLYHA
1221


WP_019313659
1159
DPV---AFLE---RKGYRN--V-QEENIIK--LPKYSLFK---LENGRKRLLAS ARELQKGNEIVLPNHLGTLLYHA
1221


WP_019314093
1159
DPI---AFLE---RKGYRN--V-QEENIIK--LPKYSLFK---LENGRKRLLAS ARELQKGNEIVLPNHLGTLLYHA
1221


WP_019315370
1159
DPV---AFLE---RKGYRN--V-QEENIIK--LPKYSLFK---LENGRKRLLAS ARELQKGNEIVLPNHLGTLLYHA
1221


WP_019803776
1159
DPV---AFLE---RKGYRN--V-QEENIIK--LPKYSLFK---LENGRKRLLAS ARELQKGNEIVLPNHLGTLLYHA
1221


WP_019805234
1159
DPV---AFLE---RKGYRN--V-QEENIIK--LPKYSLFK---LENGRKRLLAS ARELQKGNEIVLPNHLGTLLYHA
1221


WP_024783594
1159
DPV---AFLE---RKGYRN--V-QEENIIK--LPKYSLFK---LENGRKRLLAS ARELQKGNEIVLPNHLGTLLYHA
1221


WP_024784288
1167
NPV---KFLK---DKGYQQ--I-EKNNFVK--LPKYTLVD---IGNGIKRLWAS SKEVHKGNQLVVSKKSQDLLYHA
1229


WP_024784666
1159
DPV---AFLE---RKGYRN--V-QEENIIK--LPKYSLFK---LENGRKRLLAS ARELQKGNEIVLPNHLGTLLYHA
1221


WP_024784894
1159
DPV---AFLE---RKGYRN--V-QEENIIK--LPKYSLFK---LENGRKRLLAS ARELQKGNEIVLPNHLGTLLYHA
1221


WP_024786433
1167
NPV---KFLK---DKGYQQ--I-EKNNFVK--LPKYTLVD---IGNGIKRLWAS SKEVHKGNQLVVSKKSQDLLYHA
1229


WP_049473442
1159
DPV---AFLE---RKGYRN--V-QEENIIK--LPKYSLFK---LENGRKRLLAS ARELQKGNEIVLPNHLGTLLYHA
1221


WP_049474547
1159
DPV---AFLE---RKGYRN--V-QEENIIK--LPKYSLFK---LENGRKRLLAS ARELQKGNEIVLPNHLGTLLYHA
1221


EMC03581
1152
DPV---AFLE---RKGYRN--V-QEENIIK--LPKYSLFK---LENGRKRLLAS ARELQKGNEIVLPNHLGTLLYHA
1214


WP_000428612
1187
SPI---AFLE---NKGYHN--V-RKENILC--LPKYSLFE---LKNGRRRMLAS AKELQKGNEIVLPVHLTTLLYHA
1249


WP_000428613
1185
NPI---TFLE---NKGYHN--V-RKENILC--LPKYSLFE---LENGRRRLLAS AKELQKGNEIVLPVYLTTLLYHS
1247


WP_049523028
1180
NPV---AFLE---GKGYQN--V-VEENIIR--LPKYSLFE---LENGRRRMLAS AKELQKGNEMVLPSYLIALLYHA
1242


WP_003107102
1146
DRI---TFLE---KKGYQD--I-QESLIIK--LPKFSLFE---LENGRKRLLAS --ELQKGNELSLPNKYIQFLYLA
1208


WP_054279288
1179
NPI---AFLE---SKGYHD--I-QEHLMIT--LPKYSLFE---LENGRRRLLAS --ELQKGNEMVLPQHLVTFLYRV
1241


WP_049531101
1189
NPT---AYLE---EYGYKN--I-NPNLIIK--LPKYSLFK---FNDGQRRLLAS SIELQKGNELILPYHFTTLLYHA
1251


WP_049538452
1189
NPI---AYLE---ECGYKN--I-NPNLIIK--LPKYSLFE---FNGGQRRLLAS SIELQKGNELILPYHFTALLYHT
1251


WP_049549711
1191
NPI---AYLE---ECGYKN--I-NPNLIIK--LPKYSLFE---FNGGQRRLLAS SIELQKGNELILPYHFTALLYHA
1253


WP_007896501
1183
DNI---AFLE---KKGYQD--I-QEKLLIK--LPKYSLFE---LENGRRRLLAS --EFQKGNELALSGKYMKFLYLA
1245


EFR44625
1135
DNI---AFLE---KKGYQD--I-QEKLLIK--LPKYSLFE---LENGRRRLLAS --EFQKGNELALSGKYMKFLYLA
1197


WP_002897477
1184
NPI---TFLE---NKGYHN--V-RKENILC--LPKYSLFE---LENGRRRLLAS AKELQKGNEIVLPVCLTTLLYHS
1246


WP_002906454
1190
NPV---TYLE---ECGYKN--I-NSNLIIK--LPKYSLFE---FNDGQRRLLAS SIELQKGNELILPYHLTALLYHA
1252


WP_009729476
1185
NPI---AFLE---NKGYHN--V-CKENILC--LPKYSLFE---LENGRRRLLAS AKELQKCNEIVLPVYLTTLLYHS
1247


CQR24647
1175
NSV---TFLE---EKGYRN--I-RENTIIK--FPKYSLFE---LENGRRRLLAS AIELQKGNEMFLPQQFVNLLYHA
1237


WP_000066813
1189
NPI---TFLE---NKGYHN--V-RKENILC--LPKYSLFE---LESGRRRMLAS AKELQKGNEIVLPVYLTTLLYHS
1251


WP_009754323
1185
NPI---TFLE---NKGYHN--V-RKENILC--LPKYSLFE---LENGRRRLLAS AKELQKGNEIVLPVYLTTLLYHS
1247


WP_044674937
1178
NPI---EFLE---HKGYKN--I-LEKNIIK--LPKYSLFE---LENGRRRLLAS AKELQKGNEMILPPHLVTLLYHS
1240


WP_044676715
1180
NPI---EFLE---HKGYKN--I-LEKNIIK--LPKYSLFE---LENGRRRLLAS AKELQKGNEMILPPHLVTLLYHS
1242


WP_044680361
1180
NPI---EFLE---HKGYKN--I-LEKNIIK--LPKYSLFE---LENGRRRLLAS AKELQKGNEMILPPHLVTLLYHS
1242


WP_044681799
1178
NPI---EFLE---HKGYKN--I-LEKNIIK--LPKYSLFE---LENGRRRLLAS AKELQKGNEMILPPHLVTLLYHS
1240


WP_049533112
1186
DKR---AFLL---GKGYKD--I-K--KIIE--LPKYSLFE---LKDGSRRMLAS RGEIHKGNELFVPQKFTTLLYHA
1253


WP_029090905
1118
SETslgAYIA---EQIKSE--VeILN----grILKYQLIS----NNGNRLYIAG -SERHNARQLIVSDEAAKVIWLI
1181


WP_006506696
1150
EKI---NYIE--eKEGLSD--VrIIK---Dn-IPVNQMIEm----DGGEYLLTS --EYVNARQLVLNEKQCALIADI
1211


AIT42264
1177
NPI---DFLE---AKGYKE--V-KKDLIIK--LPKYSLFE---LENGRKRMLAS -GELQKGNELALPSKYVNFLYLA
1239


WP_034440723
1150
QTT---EYLG---KIGFNK--AsIIN---S--FKNYTLFE---LENGSRRMIVG KGELQKGNQMYLPQNLLEFVYHL
1217


AKQ21048
1177
NPI---DFLE---AKGYKE--V-KKDLIIK--LPKYSLFE---LENGRKRMLAS -GELQKGNELALPSKYVNFLYLA
1239


WP_004636532
1151
HPT---AYLE---EAGYNN--P-TV--LHE--LFKYQLFE---LEDGSRRMIAS AKEFQKGNQMVLPLELVELLYHA
1211


WP_002364836
1157
NPI---LFLE---EKGFLR--P-RV--LMK--LPKYTLYE---FPEGRRRLLAS AKEAQKGNQMVLPEHLLTLLYHA
1217


WP_016631044
1108
NPI---LFLE---EKGFLR--P-RV--LMK--LPKYTLYE---FPEGRRRLLAS AKEAQKGNQMVLPEHLLTLLYHA
1168


EMS75795
893
DPI---GFLS---NKGYSN--V-TKF--IK--LSKYTLYE---LENGRRRMVAS -KEAQKANSFILPEKLVTLLYHA
953


WP_002373311
1157
NPI---LFLE---EKGFLR--P-RV--LMK--LPKYTLYE---FPEGRRRLLAS AKEAQKGNQMVLPEHLLTLLYHA
1217


WP_002378009
1157
NPI---LFLE---EKGFLR--P-RV--LMK--LPKYTLYQ---FPEGRRRLLAS AKEAQKGNQMVLPEHLLTLLYHA
1217


WP_002407324
1157
NPI---LFLE---EKGFLR--P-RV--LMK--LPKYTLYE---FPEGRRRLLAS AKEAQKGNQMVLPEHLLTLLYHA
1217


WP_002413717
1157
NPI---LFLE---EKGFLR--P-RV--LMK--LPKYTLYE---FPEGRRRLLAS AKEAQKGNQMVLPEHLLTLLYHA
1217


WP_010775580
1159
NPI---LFLE---EKGFLR--P-RV--LMK--LPKYTLYE---FPEGRRRLLAS AKEAQKGNQMVLPEHLLTLLYHA
1219


WP_010818269
1157
NPI---LFLE---EKGFLR--P-RV--LMK--LPKYTLYE---FPEGRRRLLAS AKEAQKGNQMVLPEHLLTLLYHA
1217


WP_010824395
1157
NPI---LFLE---EKGFLR--P-RV--LMK--LPKYTLYE---FPEGRRRLLAS AKEAQKGNQMVLPEHLLTLLYHA
1217


WP_016622645
1157
NPI---LFLE---EKGFLR--P-RV--LMK--LPKYTLYE---FPEGRRRLLAS AKEAQKGNQMVLPEHLLTLLYHA
1217


WP_033624816
1157
NPI---LFLE---EKGFLR--P-RV--LMK--LPKYTLYE---FPEGRRRLLAS AKEAQKGNQMVLPERLLTLLYHA
1217


WP_033625576
1157
NPI---LFLE---EKGFLR--P-RV--LMK--LPKYTLYE---FPEGRRRLLAS AKEAQKGNQMVLPEHLLTLLYHA
1217


WP_033789179
1157
NPI---LFLE---EKGFLR--P-RV--LMK--LPKYTLYE---FPEGRRRLLAS AKEAQKGNQMVLPEHLLTLLYHA
1217


WP_002310644
1159
SPV---LFLK---NKGYEQ--A-EIE--MK--LPKYALFE---LENGRKRMVAS -KEAQKANSFLLPEHLVTLLYHA
1219


WP_002312694
1160
SPV---LFLK---NKGYEQ--A-EIE--MK--LPKYALFE---LENGRKRMVAS -KEAQKANSFLLPEHLVTLLYHA
1220


WP_002314015
1160
SPV---LFLK---NKGYEQ--A-EIE--MK--LPKYALFE---LENGRKRMVAS -KEAQKANSFLLPEHLVTLLYHA
1220


WP_002320716
1160
SPV---LFLK---NKGYEQ--A-EIE--MK--LPKYALFE---LENGRKRMVAS -KEAQKANSFLLPEHLVTLLYHA
1220


WP_002330729
1159
SPV---LFLK---NKGYEQ--A-EIE--MK--LPKYALFE---LENGRKRMVAS -KEAQKANSFLLPEHLVTLLYHA
1219


WP_002335161
1160
SPV---LFLK---NKGYEQ--A-EIE--MK--LPKYALFE---LENGRKRMVAS -KEAQKANSFLLPEHLVTLLYHA
1220


WP_002345439
1160
SPV---LFLK---NKGYEQ--A-EIE--MK--LPKYALFE---LENGRKRMVAS -KEAQKANSFLLPEHLVTLLYHA
1220


WP_034867970
1150
DPT---TFLK---EKGFPQ--V-TEF--IK--LPKYTLFE---FDNGRRRFLAS -KESQKGNPFILSDQLVTLLYHA
1210


WP_047937432
1160
SPV---LFLK---NKGYEQ--A-EIE--MK--LPKYALFE---LENGRKRMVAS -KEAQKANSFLLPEHLVTLLYHA
1220


WP_010720994
1150
DPT---TFLK---DKGFPQ--V-TEF--IK--LPKYTLFE---FDNGRRRFLAS -KESQKGNPFILSDQLVTLLYHA
1210


WP_010737004
1150
DPT---TFLK---EKGFPQ--V-TEF--IK--LPKYTLFE---FDNGRRRFLAS -KESQKGNPFILSDQLVTLLYHA
1210


WP_034700478
1150
DPT---TFLK---DKGFPH--V-TEF--IK--LPKYTLFE---FDNGRRRFLAS -KESQKGNPFILSDQLVTLLYHA
1210


WP_007209003
1148
NPIl---YLS---KKDYHN---pKVEAI----LPKYSLFE---FENGRRRMVAS -SETQKGNQLIIPGHLMELLYHS
1208


WP_023519017
1144
DPR---EFLK---TKGYEG--V-KQW--LI--LPKYILFE---AQGGYRRMIAS -QETQKANSLILPENLVTLLYHA
1204


WP_010770040
1155
DPV---SLLE---EKGYAN--P-EV--LIH--LPKYTLYE---LENGRRRLLAS ANEAQKGNQLVLPASLVTLLYHA
1215


WP_048604708
1152
NER---EFLK---NKGYQN--P-QI--CMK--LPKYSLYE---FDDGRRRLLAS AKEAQKGNQMVLPAHLVTFLYHA
1212


WP_010750235
1153
DPI---SFLI---EKGYSN--V-NQF--IK--LPKYTLFE---LANGQRRMLAS -QELQKANSFILPEKLVTLLYHA
1213


AII16583
1216
NPI---DFLE---AKGYKE--V-KKDLIIK--LPKYSLFE---LENGRKRMLAS -GELQKGNELALPSKYVNFLYLA
1278


WP_029073316
1165
TKI---NYIK--eSEGLEE--VkIIK---E--ILKNQLIEi----NGGLFYVTS --EIVNARQLILDFNCTRIIDGI
1225


WP_031589969
1165
IKI---NYLK--qAEDLEE--VqIGK---E--ILKNQLIEk----DGGLYYIVA --EIINAKQLILNESQTKLVCEI
1225


KDA45870
1139
DPT---AYLA---SRGYTNvtNsFIL-------PKYSLLEd---PEGRRRYLAS -KEFQKANELILPQHLVELLYWV
1199


WP_039099354
1171
QKI-spQFTKv---KKQKGtiV-KVVEDFEv-IAPHILINqrfFDNGQELTLGS ----HNEQELILDKTAVKLLNGA
1241


AKP02966
1173
KTL--qNWLE---ENVKHKksIqIIK---Nn-VPIGQIIY------SKKVGLLS -REIANRQQLILPPEHSALLRIL
1237


WP_010991369
1155
DEK---AFLE---EQGYRQ--P-KV--LAK--LPKYTLYE---CEEGRRRMLAS ANEAQKGNQQVLPNHLVTLLHHA
1215


WP_033838504
1155
DEK---AFLE---EQGYRQ--P-KV--LAK--LPKYTLYE---CEEGRRRMLAS ANEAQKGNQQVLPNHLVTLLHHV
1215


EHN60060
1158
DEK---AFLE---EQGYRQ--P-KV--LAK--LPKYTLYE---CEEGRRRMLAS ANEAQKGNQQVLPNHLVTLLHHV
1218


EFR89594
924
DEK---AFLE---EQGYRQ--P-KV--LAK--LPKYTLYE---CEEGRRRMLAS ANEAQKGNQQVLPNHLVTLLHHA
984


WP_038409211
1155
DQK---AFLE---EKGYYS--P-KV--LTK--IPKYTLYE---CENGRRRMLGS ANEAQKGNQMVLPNHLMTLLYHA
1215


EFR95520
774
DQK---AFLE---EKGYYS--P-KV--LTK--IPKYTLYE---CENGRRRMLGS ANEAQKGNQMVLPNHLMTLLYHA
834


WP_003723650
1155
DEE---AFLE---EKGYRH--P-KV--LTK--LPKYTLYE---CEKGRRRMLAS ANEAQKGNQLVLSNHLVSLLYHA
1215


WP_003727705
1155
DEE---AFLE---EKGYHQ--P-KV--LTK--LPKYTLYE---CEKGRRRMLSS ANEAQKGNQLVLSNHLVSLLYHA
1215


WP_003730785
1155
DEE---AFLE---EKGYHQ--P-KV--LTK--LPKYTLYE---CEKGRRRMLSS ANEAQKGNQLVLSNHLVSLLYHA
1215


WP_003733029
1155
DEK---TFLE---EKGYHQ--P-KV--LIK--VPKYTLYE---CKNGRRRMLGS ANEAHKGNQMLLPNHLMALLYHA
1215


WP_003739838
1155
DEK---SFLE---KQGYRQ--P-KV--LTK--LPKYTLYE---CENGRRRMLAS ANEAQKGNQQVLKGQLITLLHHA
1215


WP_014601172
1155
DEE---AFLE---EKGYRH--P-KV--LTK--LPKYTLYE---CEKGRRRMLAS ANEAQKGNQLVLSNHLVSLLYHA
1215


WP_023548323
1155
DEK---VFLE---GKGYHQ--P-KV--LTK--LPKYALYE---CENGRRRMLGS ANEVHKGNQMLLPNHLMTLLYHA
1215


WP_031665337
1155
DEE---AFLE---EKGYRH--P-KV--LTK--LPKYTLYE---CEKGRRRMLAS ANEAQKGNQLVLSNHLVSLLYHA
1215


WP_031669209
1155
DEK---TFLE---EKGYHQ--P-KV--LIK--VPKYTLYE---CENGRRRMLGS ANEAHKGNQMLLPNHLMALLYHA
1215


WP_033920898
1155
DEK---VFLE---GKGYHQ--P-KV--LTK--LPKYALYE---CENGRRRMLGS ANEVHKGNQMLLPNHLMTLLYHA
1215


AKI42028
1158
DEE---AFLE---EKGYRH--P-KV--LTK--LPKYTLYE---CEKGRRRMLAS ANEAQKGNQLVLSNHLVSLLYHA
1218


AKI 50529
1158
DEK---VFLE---GKGYHQ--P-KV--LTK--LPKYALYE---CENGRRRMLGS ANEVHKGNQMLLPNHLMTLLYHA
1218


EFR83390
603
DEE---AFLE---EKGYRH--P-KV--LTK--LPKYTLYE---CEKGRRRMLAS ANEAQKGNQLVLSNHLVSLLYHA
663


WP_046323366
1155
DQK---EFLE---GKGYRN--P-KV--ITK--IPKYTLYE---CENGRRRMLGS ANEAQKGNQMVLPNHLMTLLYHA
1215


AKE81011
1193
NPI---DFLE---AKGYKE--V-KKDLIIK--LPKYSLFE---LENGRKRMLAS -GELQKGNELALPSKYVNFLYLA
1255


CUO82355
1154
EQI---EYVE--kEEKLSD--VkIIK---Nn-IPLNQLIEi----DGRQYLLTS --ECVNAMQLVLNEEQCKLIADI
1215


WP_033162887
1155
EQL---SYIAspeHEDLID--VrIVK---E--ILKNQLIEi----DGGLYYVTS --EYVTARQLSLNEQSCKLISEI
1217


AGZ01981
1210
NPI---DFLE---AKGYKE--V-KKDLIIK--LPKYSLFE---LENGRKRMLAS -GELQKGNELALPSKYVNFLYLA
1272


AKA60242
1177
NPI---DFLE---AKGYKE--V-KKDLIIK--LPKYSLFE---LENGRKRMLAS -GELQKGNELALPSKYVNFLYLA
1239


AKS40380
1177
NPI---DFLE---AKGYKE--V-KKDLIIK--LPKYSLFE---LENGRKRMLAS -GELQKGNELALPSKYVNFLYLA
1239


4UN5_B
1181
NPI---DFLE---AKGYKE--V-KKDLIIK--LPKYSLFE---LENGRKRMLAS -GELQKGNELALPSKYVNFLYLA
1243


WP_010922251
1240
SHYEKLKgSPEDnEQKQL--FVEQHKHYLDEIIEQISEFSKRVILAD--ANLDKVL-S AYN-KH---RDKPIREq-
1305


WP_039695303
1249
HRAD----NFNS-TEYLN--YVSEHKKEFEKVLSCVEDFANLYVDVE--KNLSKIR-A VAD-SM---DNFSIEE--
1308


WP_045635197
1247
KNVH----KLDE-PGHLE--YIQKHRNEFKDLLNLVSEFSQKYVLAD--ANLEKIK-S LYA-DN---EQADIEI--
1306


5AXW_A
979
GELYRVIgVNND1LNRIE---VNMIDITYREYLENMNDKRPPRIIKTiaSKTQSIK-K LYEyKSk--KHPQIIKkg
1056


WP_009880683
924
SHYEKLKgSPEDnEQKQL--FVEQHKHYLDEIIEQISEFSKRVILAD--ANLDKVL-S AYN-KH---RDKPIREq-
989


WP_010922251
1240
SHYEKLKgSPEDnEQKQL--FVEQHKHYLDEIIEQISEFSKRVILAD--ANLDKVL-S AYN-KH---RDKPIREq-
1305


WP_011054416
1240
SHYEKLKgSPEDnEQKQL--FVEQHKHYLDEIIEQISEFSKRVILAD--ANLDKVL-S AYN-KH---RDKPIREq-
1305


WP_011284745
1240
SHYEKLKgSPEDnEQKQL--FVEQHKHYLDEIIEQISEFSKRVILAD--ANLDKVL-S AYN-KH---RDKPIREq-
1305


WP_011285506
1240
SHYEKLKgSPEDnEQKQL--FVEQHKHYLDEIIEQISEFSKRVILAD--ANLDKVL-S AYN-KH---RDKPIREq-
1305


WP_011527619
1240
SHYEKLKgSPEDnEQKQL--FVEQHKHYLDEIIEQISEFSKRVILAD--ANLDKVL-S AYN-KH---RDKPIREq-
1305


WP_012560673
1240
SHYEKLKgSPEDnEQKQL--FVEQHKHYLDEIIEQISEFSKRVILAD--ANLDKVL-S AYN-KH---RDKPIREq-
1305


WP_014407541
1239
SHYEKLKgSPEDnEQKQL--FVEQHKHYLDEIIEQISEFSKRVILAD--ANLDKVL-S AYN-KH---RDKPIREq-
1304


WP_020905136
1240
SHYEKLKgSPEDnEQKQL--FVEQHKHYLDEIIEQISEFSKRVILAD--ANLDKVL-S AYN-KH---RDKPIREq-
1305


WP_023080005
1239
SHYEKLKgSPEDnEQKQL--FVEQHKHYLDEIIEQISEFSKRVILAD--ANLDKVL-S AYN-KH---RDKPIREq-
1304


WP_023610282
1239
SHYEKLKgSPEDnEQKQL--FVEQHKHYLDEIIEQISEFSKRVILAD--ANLDKVL-S AYN-KH---RDKPIREq-
1304


WP_030125963
1240
SHYEKLKgSPEDnEQKQL--FVEQHKHYLDEIIEQISEFSKRVILAD--ANLDKVL-S AYN-KH---RDKPIREq-
1305


WP_030126706
1240
SHYEKLKgSPEDnEQKQL--FVEQHKHYLDEIIEQISEFSKRVILAD--ANLDKVL-S AYN-KH---RDKPIREq-
1305


WP_031488318
1240
SHYEKLKgSPEDnEQKQL--FVEQHKHYLDEIIEQISEFSKRVILAD--ANLDKVL-S AYN-KH---RDKPIREq-
1305


WP_032460140
1240
SHYEKLKgSPEDnEQKQL--FVEQHKHYLDEIIEQISEFSKRVILAD--ANLDKVL-S AYN-KH---RDKPIREq-
1305


WP_032461047
1240
SHYEKLKgSPEDnEQKQL--FVEQHKHYLDEIIEQISEFSKRVILAD--ANLDKVL-S AYN-KH---RDKPIREq-
1305


WP_032462016
1240
SHYEKLKgSPEDnEQKQL--FVEQHKHYLDEIIEQISEFSKRVILAD--ANLDKVL-S AYN-KH---RDKPIREq-
1305


WP_032462936
1240
SHYEKLKgSPEDnEQKQL--FVEQHKHYLDEIIEQISEFSKRVILAD--ANLDKVL-S AYN-KH---RDKPIREq-
1305


WP_032464890
1240
SHYEKLKgSPEDnEQKQL--FVEQHKHYLDEIIEQISEFSKRVILAD--ANLDKVL-S AYN-KH---RDKPIREq-
1305


WP_033888930
1065
SHYEKLKgSPEDnEQKQL--FVEQHKHYLDEIIEQISEFSKRVILAD--ANLDKVL-S AYN-KH---RDKPIREq-
1130


WP_038431314
1240
SHYEKLKgSPEDnEQKQL--FVEQHKHYLDEIIEQISEFSKRVILAD--ANLDKVL-S AYN-KH---RDKPIREq-
1305


WP_038432938
1239
SHYEKLKgSPEDnEQKQL--FVEQHKHYLDEIIEQISEFSKRVILAD--ANLDKVL-S AYN-KH---RDKPIREq-
1304


WP_038434062
1240
SHYEKLKgSPEDnEQKQL--FVEQHKHYLDEIIEQISEFSKRVILAD--ANLDKVL-S AYN-KH---RDKPIREq-
1305


BAQ51233
1151
SHYEKLKgSPEDnEQKQL--FVEQHKHYLDEIIEQISEFSKRVILAD--ANLDKVL-S AYN-KH---RDKPIREq-
1216


KGE60162
415
SHYEKLKgSPEDnEQKQL--FVEQHKHYLDEIIEQISEFSKRVILAD--ANLDKVL-S AYN-KH---RDKPIREq-
480


KGE60856
178
SHYEKLKgSPEDnEQKQL--FVEQHKHYLDEIIEQISEFSKRVILAD--ANLDKVL-S AYN-KH---RDKPIREq-
243


WP_002989955
1240
SHYEKLKgSPEDnEQKQL--FVEQHKHYLDEIIEQISEFSKRVILAD--ANLDKVL-S AYN-KH---RDKPIREq-
1305


WP_003030002
1222
YQIE----KNYE-PEHRE--YVEKHKDEFKELLEYISVFSRKYVLAD--NNLTKIE-M LFS-KN---KDAEVSS--
1281


WP_003065552
1250
QRIN----SFNS-TKYLD--YVSAHKKEFEKVLSCVEDFANLYVDVE--KNLSKIR-A VAD-SM---DNFSIEE--
1309


WP_001040076
1241
SRYNESKgKPEEiEKKQE--FVNQHVSYFDDIFQIINDFSKRVILAD--ANLEKIN-R LYQ-DNk--ENIPVDE--
1306


WP_001040078
1249
SRYNESKgKPEEiEKKQE--FVNQHVSYFDDILQLINDFSKRVILAD--ANLEKIN-K LYQ-DNk--ENISVDE--
1314


WP_001040080
1241
SRYNESKgKPEEiEKKQE--FVNQHVSYFDDILQLINDFSKRVILAD--ANLEKIN-K LYQ-DNk--ENISVDE--
1306


WP_001040081
1241
SRYNESKgKPEEiEKKQE--FVNQHVSYFDDILQLINDFSKRVILAD--ANLEKIN-K LYQ-DNk--ENISVDE--
1306


WP_001040083
1241
SRYNESKgKPEEiEKKQE--FVNQHVSYFDDILQLINDFSKRVILAD--ANLEKIN-K LYQ-DNk--ENISVDE--
1306


WP_001040085
1241
SRYNESKgKPEEiEKKQE--FVNQHVSYFDDILQLINDFSKRVILAD--ANLEKIN-K LYQ-DNk--ENISVDE--
1306


WP_001040087
1241
SRYNESKgKPEEiEKKQE--FVNQHVSYFDDILQLINDFSKRVILAD--ANLEKIN-K LYQ-DNk--ENISVDE--
1306


WP_001040088
1241
SRYNESKgKPEEiEKKQE--FVNQHVSYFDDILQLINDFSKRVILAD--ANLEKIN-K LYQ-DNk--ENISVDE--
1306


WP_001040089
1241
SRYNESKgKPEEiEKKQE--FVNQHVSYFDDILQLINDFSKRVILAD--ANLEKIN-K LYQ-DNk--ENISVDE--
1306


WP_001040090
1241
SRYNESKgKPEEiEKKQE--FVNQHVSYFDDILQLINDFSKRVILAD--ANLEKIN-K LYQ-DNk--ENISVDE--
1306


WP_001040091
1241
SRYNESKgKPEEiEKKQE--FVNQHVSYFDDILQLINDFSKRVILAD--ANLEKIN-K LYQ-DNk--ENISVDE--
1306


WP_001040092
1241
SRYNESKgKPEEiEKKQE--FVNQHISYFDDILQLINDFSKRVILAD--ANLEKIN-K LYS-DNk--DNTPVDE--
1306


WP_001040094
1241
SRYNELKgKPEEiEQKQE--FVVQHVSYFDDILQIINDFSNRVILAD--ANLEKIN-K LYQ-DNk--ENIPVDE--
1306


WP_001040095
1241
SRYNELKgKPEEiEQKQE--FVVQHVSYFDDILQIINDFSNRVILAD--ANLEKIN-K LYQ-DNk--ENIPVDE--
1306


WP_001040096
1241
SRYNELKgKPEEiEQKQE--FVVQHVSYFDDILQIINDFSNRVILAD--ANLEKIN-K LYQ-DNk--ENIPVDE--
1306


WP_001040097
1241
SRYNELKgKPEEiEQKQE--FVVQHVSYFDDILQIINDFSNRVILAD--ANLEKIN-K LYQ-DNk--ENIPVDE--
1306


WP_001040098
1241
SRYNELKgKPEEiEQKQE--FVVQHVSYFDDILQIINDFSNRVILAD--ANLEKIN-K LYQ-DNk--ENIPVDE--
1306


WP_001040099
1241
SRYNELKgKPEEiEQKQE--FVVQHVSYFDDILQIINDFSNRVILAD--ANLEKIN-K LYQ-DNk--ENIPVDE--
1306


WP_001040100
1241
SRYNELKgKPEEiEQKQE--FVVQHVSYFDDILQIINDFSNRVILAD--ANLEKIN-K LYQ-DNk--ENIPVDE--
1306


WP_001040104
1241
SRYNESKgKPEEiEKKQE--FVNQHVSYFDDILQLINDFSKRVILAD--ANLEKIN-K LYQ-DNk--ENISVDE--
1306


WP_001040105
1241
SRYNESKgKPEEiEKKQE--FVNQHVSYFDDILQLINDFSKRVILAD--ANLEKIN-K LYQ-DNk--ENISVDE--
1306


WP_001040106
1241
SRYNELKgKPEEiEQKQE--FVVQHVSYFDDILQIINDFSNRVILAD--ANLEKIN-K LYQ-DNk--ENISVDE--
1306


WP_001040107
1241
SRYNELKgKPEEiEQKQE--FVVQHVSYFDDILQIINDFSNRVILAD--ANLEKIN-K LYQ-DNk--ENISVDE--
1306


WP_001040108
1241
SRYNELKgKPEEiEQKQE--FVVQHVSYFDDILQIINDFSNRVILAD--ANLEKIN-K LYQ-DNk--ENISVDE--
1306


WP_001040109
1241
SRYNELKgKPEEiEQKQE--FVVQHVSYFDDILQIINDFSNRVILAD--ANLEKIN-K LYQ-DNk--ENISVDE--
1306


WP_001040110
1241
SRYNELKgKPEEiEQKQE--FVVQHVSYFDDILQIINDFSNRVILAD--ANLEKIN-K LYQ-DNk--ENISVDE--
1306


WP_015058523
1241
SRYNESKgKPEEiEKKQE--FVNQHVSYFDDILQLINDFSKRVILAD--ANLEKIN-K LYS-DNk--DNTPVDE--
1306


WP_017643650
1241
SRYNELKgKPEEiEQKQE--FVVQHVSYFDDILQIINDFSNRVILAD--ANLEKIN-K LYQ-DNk--ENIPVDE--
1306


WP_017647151
1241
SRYNELKgKPEEiEQKQE--FVVQHVSYFDDILQIINDFSNRVILAD--ANLEKIN-K LYQ-DNk--ENISVDE--
1306


WP_017648376
1241
SRYNELKgKPEEiEQKQE--FVVQHVSYFDDILQIINDFSNRVILAD--ANLEKIN-K LYQ-DNk--ENISVDE--
1306


WP_017649527
1241
SRYNESKgKPEEiEKKQE--FVNQHVSYFDDILQLINDFSKRVILAD--ANLEKIN-K LYQ-DNk--ENISVDE--
1306


WP_017771611
1241
SRYNELKgKPEEiEQKQE--FVVQHVSYFDDILQIINDFSNRVILAD--ANLEKIN-K LYQ-DNk--ENISVDE--
1306


WP_017771984
1241
SRYNESKgKPEEiEKKQE--FVNQHVSYFDDILQLINDFSKRVILAD--ANLEKIN-K LYQ-DNk--ENISVDE--
1306


CFQ25032
1241
SRYNESKgKPEEiEKKQE--FVNQHVSYFDDILQLINDFSKRVILAD--ANLEKIN-K LYQ-DNk--ENISVDE--
1306


CFV16040
1241
SRYNESKgKPEEiEKKQE--FVNQHVSYFDDILQLINDFSKRVILAD--ANLEKIN-K LYQ-DNk--ENISVDE--
1306


KLJ37842
1241
SRYNESKgKPEEiEKKQE--FVNQHVSYFDDILQLINDFSKRVILAD--ANLEKIN-K LYQ-DNk--ENISVDE--
1306


KLJ72361
1241
SRYNESKgKPEEiEKKQE--FVNQHVSYFDDILQLINDFSKRVILAD--ANLEKIN-K LYQ-DNk--ENISVDE--
1306


KLL20707
1255
SRYNESKgKPEEiEKKQE--FVNQHVSYFDDILQLINDFSKRVILAD--ANLEKIN-K LYQ-DNk--ENISVDE--
1320


KLL42645
1241
SRYNELKgKPEEiEQKQE--FVVQHVSYFDDILQIINDFSNRVILAD--ANLEKIN-K LYQ-DNk--ENISVDE--
1306


WP_047207273
1241
SRYNESKgKPEEiEKKQE--FVNQHVSYFDDILQLINDFSKRVILAD--ANLEKIN-K LYQ-DNk--ENISVDE--
1306


WP_047209694
1241
SRYNELKgKPEEiEQKQE--FVVQHVSYFDDILQIINDFSNRVILAD--ANLEKIN-K LYQ-DNk--ENIPVDE--
1306


WP_050198062
1241
SRYNESKgKPEEiEKKQE--FVNQHVSYFDDILQLINDFSKRVILAD--ANLEKIN-K LYQ-DNk--ENISVDE--
1306


WP_050201642
1241
SRYNESKgKPEEiEKKQE--FVNQHVSYFDDILQLINDFSKRVILAD--ANLEKIN-K LYQ-DNk--ENISVDE--
1306


WP_050204027
1241
SRYNELKgKPEEiEQKQE--FVVQHVSYFDDILQIINDFSNRVILAD--ANLEKIN-K LYQ-DNk--ENISVDE--
1306


WP_050881965
1241
SRYNESKgKPEEiEKKQE--FVNQHVSYFDDILQLINDFSKRVILAD--ANLEKIN-K LYQ-DNk--ENISVDE--
1306


WP_050886065
1241
SRYNESKgKPEEiEKKQE--FVNQHVSYFDDILQLINDFSKRVILAD--ANLEKIN-K LYQ-DNk--ENISVDE--
1306


AHN30376
1241
SRYNESKgKPEEiEKKQE--FVNQHVSYFDDILQLINDFSKRVILAD--ANLEKIN-K LYS-DNk--DNTPVDE--
1306


EAO78426
1241
SRYNESKgKPEEiEKKQE--FVNQHVSYFDDILQLINDFSKRVILAD--ANLEKIN-K LYQ-DNk--ENISVDE--
1306


CCW42055
1241
SRYNESKgKPEEiEKKQE--FVNQHVSYFDDILQIINDFSNRVILAD--ANLEKIN-K LYQ-DNk--ENISVDE--
1306


WP_003041502
1254
KRIN----NPIN-KDHIE--YVKKHRDDFKELLNYVLEFNEKYVGAT--KNGERLK-E AVA-DF---DSKSNEE--
1313


WP_037593752
1223
YQIE----KNYE-PEHRE--YVEKHKDEFKELLEYISVFSRKYVLAD--NNLTKIE-M LFS-KN---KDAEVSS--
1282


WP_049516684
1223
YRIE----KDYE-PEHRE--YVEKHKDEFKELLEYISVFSRKYVLAD--NNLTKIE-M LFS-KN---KDAEVSS--
1282


GAD46167
1222
YQIE----KNYE-PEHRE--YVEKHKDEFKELLEYISVFSRKYVLAD--NNLTKIE-M LFS-KN---KDAEVSS--
1281


WP_018363470
1254
HRIG----NFNS-AEHLK--YVSEHKKEFEEVLSCVENFANVYVDVE--KNLSKIR-A AAD-SM---DNFSIEE--
1313


WP_003043819
1249
QNISATIgSNNLg-------YIEQHREEFKEIFEKIIDFSEKYILKN--KVNSNLK-S SFD-EQfavSDSIL--l-
1310


WP_006269658
1222
YRIE----KDYE-PEHRE--YVEKHKDEFKELLEYISVFSRKYVLAD--NNLTKIE-M LFS-KN---KDAEVSS--
1281


WP_048800889
1242
HRID----NSDN-SEHLK--YITEHKEEFGKLLSYIENFAKSYVDVD--KNLEKIQ-L AVE-KI---DSFSVKE--
1301


WP_012767106
1246
-HAHKIEsSKE--LEHEA--YILDHYNDLYQLLSYIERFASLYVDVE--KNISKVK-E LFS-NI---ESYSISEi-
1308


WP_014612333
1246
-HAHKIEsSKE--LEHEA--YILDHYNDLYQLLSYIERFASLYVDVE--KNISKVK-E LFS-NI---ESYSISEi-
1308


WP_015017095
1246
-HAHKIEsSKE--LEHEA--YILDHYNDLYQLLSYIERFASLYVDVE--KNISKVK-E LFS-NI---ESYSISEi-
1308


WP_015057649
1246
-HAHKIEsSKE--LEHEA--YILDHYNDLYQLLSYIERFASLYVDVE--KNISKVK-E LFS-NI---ESYSISEi-
1308


WP_048327215
1246
-HAHKIEsSKE--LEHEA--YILDHYNDLYQLLSYIERFASLYVDVE--KNISKVK-E LFS-NI---ESYSISEi-
1308


WP_049519324
1246
-HAHKIEsSKE--LEHEA--YILDHYNDLYQLLSYIERFASLYVDVE--KNISKVK-E LFS-NI---ESYSISEi-
1308


WP_012515931
1220
AHYHELIgSSEDvLRKKY--FVDRHLHYFDDIIQMINDFAERHILAS--SNLEKIN-H TYH-NN---SDLPVNEr-
1285


WP_021320964
1220
AHYHELIgSSEDvLRKKY--FVERHLHYFDDIIQMINDFAERHILAS--SNLEKIN-H TYH-NN---SDLPINEr-
1285


WP_037581760
1220
AHYHELIgSSEDvLRKKY--FVERHLHYFDDIIQMINDFAERHILAS--SNLEKIN-H TYH-NN---SDLPVNEr-
1285


WP_004232481
1252
QHVN----NSHK-PEHLN--YVKQHKDEFKDIFNLIISIARINILKP--KVVDNL--- -IN-EF---TEYGQED--
1308


WP_009854540
1247
HRAD----NFNS-TEYLN--YVSEHKKEFEKVLSCVEDFANLYVDVE--KNLSKIR-A VAD-SM---DNFSIEE--
1306


WP_012962174
1248
HRVN----SFNN-SEHLK--YVSEHKKEFGEVLSCVENFAKSYVDVE--KNLGKIR-A VAD-KI---DTFSIED--
1307


WP_039695303
1249
HRAD----NFNS-TEYLN--YVSEHKKEFEKVLSCVEDFANLYVDVE--KNLSKIR-A VAD-SM---DNFSIEE--
1308


WP_014334983
1252
HRID----SFNS-TEHLK--YVSEHKKEFEKVLSCVENFSNLYVDVE--KNLSKVR-A AAE-SM---TNFSLEE--
1311


WP_003099269
1240
SHYTKFIgKEEDrEKKRS--YVESHLYYFDEIMQIIVEYSNRYILAD--SNLIKIQ-N LYK-EKd---NFSIEEq-
1305


AHY15608
1240
SHYTKFTgKEEDrEKKRS--YVESHLYYFXEVKSSF---------------------- ------------------
1273


AHY17476
1240
SHYTKFTgKEEDrEKKRS--YVESHLYXFX---------------------------- ------------------
1267


ESR09100
72
SHYTKFIgKEEDrEKKRS--YVESHLYYFDEIMQIIVEYSNRYILAD--SNLIKIQ-N LYK--Ek--DNFSIEEq-
137


AGM98575
1240
SHYTKFTgKEEDrEKKRS--YVESHLYYFDVRLSQVFRVTNVEF-------------- ------------------
1281


ALF27331
1222
KNIH----KVDE-PKHLD--YVKKHKDEFKELLDVVSNFSKKNILAE--SNLEKIE-E LYA-QN---NNKDITE--
1281


WP_018372492
1229
KKVDVLVkSKDD---DYD---LEEHRAEFAELLDCIKKFNDMYILAS--SNMSKIE-E IYQ-KNi---DAPIEE--
1289


WP_045618028
1252
QRIN----KISE-PIHKQ--YVETHQSEFKELLTAIISLSKKYI-QK--PNVESL--- LQQ-AF---DQSDKDIyq
1310


WP_045635197
1247
KNVH----KLDE-PGHLE--YIQKHRNEFKDLLNLVSEFSQKYVLAD--ANLEKIK-S LYA-DN---EQADIEI--
1306


WP_002263549
1222
KNIH----KVDE-PKHLD--YVDKHKDEFKELLDVVSNFSKKYTLAE--GNLEKIK-E LYA-QN---NGEDLKE--
1281


WP_002263887
1222
KNIH----KVDE-PKHLD--YVDKHKDEFKELLDVVSNFSKKYTLAE--GNLEKIK-E LYA-QN---NGEDLKE--
1281


WP_002264920
1222
KNIH----KVDE-PKHLD--YVDKHKDEFKELLDVVSNFSKKYTLAE--GNLEKIK-E LYA-QN---NGEDLKE--
1281


WP_002269043
1222
KNIH----KVDE-PKHLD--YVDKHKDEFKELLDVVSNFSKKYTLAE--GNLEKIK-E LYA-QN---NGEDLKE--
1281


WP_002269448
1222
KNIH----KVDE-PKHLD--YVDKHKDEFKELLDVVSNFSKKYTLAE--GNLEKIK-E LYA-QN---NGEDLKE--
1281


WP_002271977
1222
KNIH----KVDE-PKHLD--YVDKHKDEFKELLDVVSNFSKKYTLAE--GNLEKIK-E LYA-QN---NGEDLKE--
1281


WP_002272766
1222
KNIH----KVDE-PKHLD--YVDKHKDEFKELLDVVSNFSKKYTLAE--GNLEKIK-E LYA-QN---NGEDLKE--
1281


WP_002273241
1222
KNIH----KVDE-PKHLD--YVDKHKDEFKELLDVVSNFSKKYTLAE--GNLEKIK-E LYA-QN---NGEDLKE--
1281


WP_002275430
1222
KNIH----KVDE-PKHLD--YVDKHKDEFKELLDVVSNFSKKYTLAE--GNLEKIK-E LYA-QN---NGEDLKE--
1281


WP_002276448
1222
KNIH----KVDE-PKHLD--YVDKHKDEFKELLDVVSNFSKKYTLAE--GNLEKIK-E LYA-QN---NGEDLKE--
1281


WP_002277050
1230
HHL-------DN-DYSNE--YVKNHYQQFDILFNEITSFSKKCKLGK--EHIQKIE-E AYSkER---DSASIEE--
1287


WP_002277364
1222
KNIH----KVDE-PKHLD--YVDKHKDEFKELLDVVSNFSKKYTLAE--GNLEKIK-E LYA-QN---NGEDLKE--
1281


WP_002279025
1222
KNIH----KVDE-PKHLD--YVDKHKDEFKELLDVVSNFSKKYTLAE--GNLEKIK-E LYA-QN---NGEDLKE--
1281


WP_002279859
1222
KNIH----KVDE-PKHLD--YVDKHKDEFKELLDVVSNFSKKYTLAE--GNLEKIK-E LYA-QN---NGEDLKE--
1281


WP_002280230
1222
KNIH----KVDE-PKHLD--YVDKHKDEFKELLDVVSNFSKKYTLAE--GNLEKIK-E LYA-QN---NGEDLKE--
1281


WP_002281696
1222
KNIH----KVDE-PKHLD--YVDKHKDEFKELLDVVSNFSKKYTLAE--GNLEKIK-E LYA-QN---NGEDLKE--
1281


WP_002282247
1230
HHL-------DN-DYSNE--YVKNHYQQFDILFNEITSFSKKCKLGK--EHIQKIE-E AYSkER---DFASIEE--
1287


WP_002282906
1222
KNIH----KVDE-PKHLD--YVDKHKDEFKELLDVVSNFSKKYTLAE--GNLEKIK-E LYA-QN---NGEDLKE--
1281


WP_002283846
1222
KNIH----KVDE-PKHLD--YVDKHKDEFKELLDVVSNFSKKYTLAE--GNLEKIK-E LYA-QN---NGEDLKE--
1281


WP_002287255
1222
KNIH----KVDE-PKHLD--YVDKHKDEFKELLDVVSNFSKKYTLAE--GNLEKIK-E LYA-QN---NGEDLKE--
1281


WP_002288990
1222
KNIH----KVDE-PKHLD--YVDKHKDEFKELLDVVSNFSKKYTLAE--GNLEKIK-E LYA-QN---NGEDLKE--
1281


WP_002289641
1222
KNIH----KVDE-PKHLD--YVDKHKDEFKELLDVVSNFSKKYTLAE--GNLEKIK-E LYA-QN---NGEDLKE--
1281


WP_002290427
1222
KNIH----KVDE-PKHLD--YVDKHKDEFKELLDVVSNFSKKYTLAE--GNLEKIK-E LYA-QN---NGEDLKE--
1281


WP_002295753
1222
KNIH----KVDE-PKHLD--YVDKHKDEFKELLDVVSNFSKKYTLAE--GNLEKIK-E LYA-QN---NGEDLKE--
1281


WP_002296423
1222
KNIH----KVDE-PKHLD--YVDKHKDEFKELLDVVSNFSKKYTLAE--GNLEKIK-E LYA-QN---NGEDLKE--
1281


WP_002304487
1236
KNIH----KVDE-PKHLD--YVDKHKDEFKELLDVVSNFSKKYTLAE--GNLEKIK-E LYA-QN---NGEDLKE--
1295


WP_002305844
1222
KNIH----KVDE-PKHLD--YVDKHKDEFKELLDVVSNFSKKYTLAE--GNLEKIK-E LYA-QN---NGEDLKE--
1281


WP_002307203
1222
KNIH----KVDE-PKHLD--YVDKHKDEFKELLDVVSNFSKKYTLAE--GNLEKIK-E LYA-QN---NGEDLKE--
1281


WP_002310390
1222
KNIH----KVDE-PKHLD--YVDKHKDEFKELLDVVSNFSKKYTLAE--GNLEKIK-E LYA-QN---NGEDLKE--
1281


WP_002352408
1222
KNIH----KVDE-PKHLD--YVDKHKDEFKELLDVVSNFSKKYTLAE--GNLEKIK-E LYA-QN---NGEDLKE--
1281


WP_012997688
1222
KNIH----KVDE-PKHLD--YVDKHKDEFKELLDVVSNFSKKYTLAE--GNLEKIK-E LYA-QN---NGEDLKE--
1281


WP_014677909
1222
KNIH----KVDE-PKHLD--YVDKHKDEFKELLDVVSNFSKKYTLAE--GNLEKIK-E LYA-QN---NGEDLKE--
1281


WP_019312892
1222
KNIH----KVDE-PKHLD--YVDKHKDEFKELLDVVSNFSKKYTLAE--GNLEKIK-E LYA-QN---NGEDLKE--
1281


WP_019313659
1222
KNIH----KVDE-PKHLD--YVDKHKDEFKELLDVVSNFSKKYTLAE--GNLEKIK-E LYA-QN---NGEDLKE--
1281


WP_019314093
1222
KNIH----KVDE-PKHLD--YVDKHKDEFKELLDVVSNFSKKYTLAE--GNLEKIK-E LYA-QN---NGEDLKE--
1281


WP_019315370
1222
KNIH----KVDE-PKHLD--YVDKHKDEFKELLDVVSNFSKKYTLAE--GNLEKIK-E LYA-QN---NGEDLKE--
1281


WP_019803776
1222
KNIH----KVDE-PKHLD--YVDKHKDEFKELLDVVSNFSKKYTLAE--GNLEKIK-E LYA-QN---NGEDLKE--
1281


WP_019805234
1222
KNIH----KVDE-PKHLD--YVDKHKDEFKELLDVVSNFSKKYTLAE--GNLEKIK-E LYA-QN---NGEDLKE--
1281


WP_024783594
1222
KNIH----KVDE-PKHLD--YVDKHKDEFKELLDVVSNFSKKYTLAE--GNLEKIK-E LYA-QN---NGEDLKE--
1281


WP_024784288
1230
HHL-------DN-DYSNE--YVKNHYQQFDILFNEITSFSKKCKLGK--EHIQKIE-E AYSkER---DFASIEE--
1287


WP_024784666
1222
KNIH----KVDE-PKHLD--YVDKHKDEFKELLDVVSNFSKKYTLAE--GNLEKIK-E LYA-QN---NGEDLKE--
1281


WP_024784894
1222
KNIH----KVDE-PKHLD--YVDKHKDEFKELLDVVSNFSKKYTLAE--GNLEKIK-E LYA-QN---NGEDLKE--
1281


WP_024786433
1230
HHL-------DN-DYSNE--YVKNHYQQFDILFNEITSFSKKCKLGK--EHIQKIE-E AYSkER---DSASIEE--
1287


WP_049473442
1222
KNIH----KVDE-PKHLD--YVDKHKDEFKELLDVVSNFSKKYTLAE--GNLEKIK-E LYA-QN---NGEDLKE--
1281


WP_049474547
1222
KNIH----KVDE-PKHLD--YVDKHKDEFKELLDVVSNFSKKYTLAE--GNLEKIK-E LYA-QN---NGEDLKE--
1281


EMC03581
1215
KNIH----KVDE-PKHLD--YVDKHKDEFKELLDVVSNFSKKYTLAE--GNLEKIK-E LYA-QN---NGEDLKE--
1274


WP_000428612
1250
KNIH----RLDE-PEHLE--YIQKHRNEFKGLLNLVSEFSQKYVLAD--ANLEKIK-N LYA-DN---EQADIEI--
1309


WP_000428613
1248
KNVH----KLDE-PEHLE--YIQKHRNEFKDLLNLVSEFSQKYVLAD--ANLEKIQ-N LYA-DN---EQADIEI--
1307


WP_049523028
1243
KRIQ----KKDE-PEHLE--YIKQHHSEFNDLLNFVSEFSQKYVLAE--SNLEKIK-N LYI-DN---EQTNMEE--
1302


WP_003107102
1209
SRYTSFSgKEEDrEKHRH--FVESHLHYFDEIKDIIADFSRRYILAD--ANLEKIL-T LYN-EKn---QFSIEEg-
1274


WP_054279288
1242
SKRDK--gTQSEnME-----YISNHKEKFIEIFHYIIRYAEKNVIKP--KVIERLN-D TFNqKF---NDSDLTEl-
1303


WP_049531101
1252
QRIN----KISE-PIHKQ--YVETHQSEFEELLTTIISLSKKYI-QK--PIVESL--- LQQ-AF---EQADKDIyg
1310


WP_049538452
1252
QRIN----KISE-PIHKQ--YVEAHQNEFKELLTTIISLSKKYI-QK--PNVESL--- LQQ-AF---EQADKDIyg
1310


WP_049549711
1254
QRIN----KFSE-PIHKQ--YVEAHQNEFKELLTIIISLSKKYI-QK--PNVESL--- LHQ-AF---EQADNDIyg
1312


WP_007896501
1246
SRYDKLSsKIESeQQKKL--FVEQHLHYFDEILDIVVKHATCYIKAE--NNLKKII-S LYK-KK---EAYSINEg-
1311


EFR44625
1198
SRYDKLSsKIESeQQKKL--FVEQHLHYFDEILDIVVKHATCYIKAE--NNLKKII-S LYK-KK---EAYSINEg-
1263


WP_002897477
1247
KNLH----KLDE-PEHLE--YIQKHRNEFKDLLNLVSEFSQKYILAE--ANLEKIK-D LYA-DN---EQADIEI--
1306


WP_002906454
1253
QRIN----KISE-PIHKQ--YVEAHQNEFKELLTTIISLSKKYI-QK--PNVELL--- LQQ-AF---DQADKDIyg
1311


WP_009729476
1248
KNVH----KLDE-PGHLE--YIQKHRNEFKDLLNLVSEFSQKYVLAD--ANLEKIK-N LYA-DN---EQADIEI--
1307


CQR24647
1238
QHAN----KEDS----VI--YLEKHRHELSELFHHIIGVSEKTILKP--KVEMTLN-E AFE-KHf--EFDEVSE--
1295


WP_000066813
1252
KNVH----KLDE-PEHLE--YIQKHRYEFKDLLNLVSEFSQKYVLAD--ANLEKIK-N LYA-DN---EQADIEI--
1311


WP_009754323
1248
KNVH----KLDE-PEHLE--YIQKHRYEFKDLLNLVSEFSQKYVLAE--ANLEKIK-S LYV-DN---EQADIEI--
1307


WP_044674937
1241
SNIH----KITE-PIHLN--YVNKNKHEFKELLRHISDFSTRYILAQ--DRLSKIE-E LYD-KN---DGDDISD--
1300


WP_044676715
1243
SNIH----KITE-PIHLN--YVNKNKHEFKELLRHISDFSTRYILAQ--DRLSKIE-E LYD-KN---DGDDISD--
1302


WP_044680361
1243
SNIH----KITE-PIHLN--YVNKNKHEFKELLRHISDFSTRYILAQ--DRLSKIE-E LYD-KN---DGDDISD--
1302


WP_044681799
1241
SNIH----KITE-PIHLN--YVNKNKHEFKELLRHISDFSTRYILAQ--DRLSKIE-E LYD-KN---DGDDISD--
1300


WP_049533112
1254
KRIN----NPIN-KDHIE--YVKKHRDDFKELLNYVLEFNEKYVGAT--KNGERLK-E AVA-DF---DSKSNEE--
1313


WP_029090905
1182
STKQA-----DE-AMFLKyyRLEHLEAVFEEL---IRKQAADYQIFE--KLIKKIEvN FYS----c----TYNEk-
1240


WP_006506696
1212
YNAIYKQ-DYDNlDDILMi-----------QLYIELTNKMKVLYPAY-rGIAEKFE-S YVV----i----SKEEk-
1268


AIT42264
1240
SHYEKLKgSPEDnEQKQL--FVEQHKHYLDEIIEQISEFSKRVILAD--ANLDKVL-S AYN-KH---RDKPIREg-
1305


WP_034440723
1218
KHYNE-----DE--TSHK--FIVEHKAYFDELLNYIVEFANKYLELE--NSIEKIK-D LYH-----gKGPDVEEke
1276


AKQ21048
1240
SHYEKLKgSPEDnEQKQL--FVEQHKHYLDEIIEQISEFSKRVILAD--ANLDKVL-S AYN-KH---RDKPIREg-
1305


WP_004636532
1212
NRYDKVK-----fPDSIE--YVHDNLAKFDDLLEYVIDFSNKYINAD--KNVQKIQ-K IYK-EH---GTEDVEL--
1271


WP_002364836
1218
KQCLL----PNQ-SESLA--YVEQHQPEFQEILERVVDFAEVHTLAK--SKVQQIV-K LFE-AN---QTADVKE--
1277


WP_016631044
1169
KQCLL----PNQ-SESLA--YVEQHQPEFQEILERVVDFAEVHTLAK--SKVQQIV-K LFE-AN---QTADVKE--
1228


EMS75795
954
QHYDEIAhKESF-----D--YVNDHLSEFREILDQVIDFSNRYTIAA--KNTEKIA-E LFE-QN---QESTVQS--
1013


WP_002373311
1218
KQCLL----PNQ-SESLA--YVEQHQPEFQEILERVVDFAEVHTLAK--SKVQQIV-K LFE-AN---QTADVKE--
1277


WP_002378009
1218
KQCLL----PNQ-SESLA--YVEQHQPEFQEILERVVDFAEVHTLAK--SKVQQIV-K LFE-AN---QTADVKE--
1277


WP_002407324
1218
KQCLL----PNQ-SESLA--YVEQHQPEFQEILERVVDFAEVHTLAK--SKVQQIV-K LFE-AN---QTADVKE--
1277


WP_002413717
1218
KQCLL----PNQ-SESLA--YVEQHQPEFQEILERVVDFAEVHTLAK--SKVQQIV-K LFE-AN---QTADVKE--
1277


WP_010775580
1220
KQCLL----PNQ-SESLA--YVEQHQPEFQEILERVVDFAEVHTLAK--SKVQQIV-K LFE-AN---QTADVKE--
1279


WP_010818269
1218
KQCLL----PNQ-SESLA--YVEQHQPEFQEILERVVDFAEVHTLAK--SKVQQIV-K LFE-AN---QTADVKE--
1277


WP_010824395
1218
KQCLL----PNQ-SESLA--YVEQHQPEFQEILERVVDFAEVHTLAK--SKVQQIV-K LFE-AN---QTADVKE--
1277


WP_016622645
1218
KQCLL----PNQ-SESLA--YVEQHQPEFQEILERVVDFAEVHTLAK--SKVQQIV-K LFE-AN---QTADVKE--
1277


WP_033624816
1218
KQCLL----PNQ-SESLA--YVEQHQPEFQEILERVVDFAEVHTLAK--SKVQQIV-K LFE-AN---QTADVKE--
1277


WP_033625576
1218
KQCLL----PNQ-SESLA--YVEQHQPEFQEILERVVDFAEVHTLAK--SKVQQIV-K LFE-TN---QTADVKE--
1277


WP_033789179
1218
KQCLL----PNQ-SESLA--YVEQHQPEFQEILERVVDFAEVHTLAK--SKVQQIV-K LFE-AN---QTADVKE--
1277


WP_002310644
1220
KQYDEIShKESF-----D--YVNEHHKEFSEVFARVLEFAGKYTLAE--KNIEKLE-K IYK-EN---QTDDLAK--
1279


WP_002312694
1221
KQYDEIShKESF-----D--YVNEHHKEFSEVFARVLEFAGKYTLAE--KNIEKLE-K IYK-EN---QTDDLAK--
1280


WP_002314015
1221
KQYDEIShKESF-----D--YVNEHHKEFSEVFARVLEFAGKYTLAE--KNIEKLE-K IYK-EN---QTDDLAK--
1280


WP_002320716
1221
KQYDEIShKESF-----D--YVNEHHKEFSEVFARVLEFAGKYTLAE--KNIEKLE-K IYK-EN---QTDDLAK--
1280


WP_002330729
1220
KQYDEIShKESF-----D--YVNEHHKEFSEVFARVLEFAGKYTLAE--KNIEKLE-K IYK-EN---QTDDLAK--
1279


WP_002335161
1221
KQYDEIShKESF-----D--YVNEHHKEFSEVFARVLEFAGKYTLAE--KNIEKLE-K IYK-EN---QTDDLAK--
1280


WP_002345439
1221
KQYDEIShKESF-----D--YVNEHHKEFSEVFARVLEFAGKYTLAE--KNIEKLE-K IYK-EN---QTDDLAK--
1280


WP_034867970
1211
QHYDKITyQESF-----D--YVNTHLSDFSAILTEVLAFAEKYTLAD--KNIERIQ-E LYE-EN---KYGETSM--
1270


WP_047937432
1221
KQYDEIShKESF-----D--YVNEHHKEFSEVFARVLEFAGKYTLAE--KNIEKLE-K IYK-EN---QTDDLAK--
1280


WP_010720994
1211
QHYDKITyQESF-----D--YVNTHLSDFSAILTEVLAFAEKYTLAD--KNIERIQ-E LYE-EN---KYGEISM--
1270


WP_010737004
1211
QHYDKITyQESF-----D--YVNTHLSDFSAILTEVLAFAEKYTLAD--KNIERIQ-E LYE-EN---KYGETSM--
1270


WP_034700478
1211
QHYDKITyQESF-----D--YVNTHLSDFSAILTEVLAFAEKYTLAD--KNIERIQ-E LYE-EN---KYGEISM--
1270


WP_007209003
1209
KKIIN--gKNSD---SVS--YIQNNKEKFREIFEYIVDFSSKYISAD--ANLNKIE-K IFE-NNfh----KASEge
1269


WP_023519017
1205
RHYDEINhKVSF-----D--YVNAHKEGFNDIFDFISDFGVRYILAP--QHLEKIK-V AYE-KN---KEVDLKE--
1264


WP_010770040
1216
KQVDE-----DS-GKSEE--YVREHRAEFAEILNYVQAFSETKILAN--KNLQTIL-K LYE-EN---KEADIKE--
1274


WP_048604708
1213
KHCNE-----KP-D-SLK--YVTEHQSGFSEIMAHVKDFAEKYTLVD--KNLEKIL-S LYA-KN---MDSEVKE--
1270


WP_010750235
1214
NHYDEIAyKDSY-----D--YVNEHFSNFQDILDKVIIFAEKYTSAP--QKLNQII-A TYE-KN---QEADRKI--
1273


AII16583
1279
SHYEKLKgSPEDnEQKQL--FVEQHKHYLDEIIEQISEFSKRVILAD--ANLDKVL-S AYN-KH---RDKPIREg-
1344


WP_029073316
1226
YKAMKYK-NYSElSQEEIm-----------NVYDIFVEKLKLYYPTY-kNIAINFE-N FEN----i----SDEEk-
1282


WP_031589969
1226
YKAMKYK-NYDNlDSEKIi-----------DLYRLLINKMELYYPEYrkQLVKKFE-D LKV----i----SIEEk-
1283


KDA45870
1200
NAKDG--------EQKLE-----DHKAEFKELFDKIMEFADKYVVAP--KNSEKIR-R LYE-ENg-----DATPme
1253


WP_039099354
1242
LPLTQ-----SEeLAEQV----------YDEILDQVMHYFPLYDINQfrAKLSAGKaA DGN-KMv-----QVGQgv
1306


AKP02966
1238
QIPDE------DpDQILAf----YDKNILVEILQELITKMKKFYPFY--KNEQEFLaS FNQ--------ATTSEk-
1296


WP_010991369
1216
ANCEV-----SD-GKSLD--YIESNREMFAELLAHVSEFAKRYTLAE--ANLNKIN-Q LFE-QN---KEGDIKA--
1274


WP_033838504
1216
ANCEV-----SD-GKSLD--YIESNREMFAELLAHVSEFAKRYTLAE--ANLNKIN-Q LFE-QN---KEGDIKA--
1274


EHN60060
1219
ANCEV-----SD-GKSLD--YIESNREMFAELLAHVSEFAKRYTLAE--ANLNKIN-Q LFE-QN---KEGDIKA--
1277


EFR89594
985
ANCEV-----SD-GKSLD--YIESNREMFAELLAHVSEFAKRYTLAE--ANLNKIN-Q LFE-QN---KEGDIKA--
1043


WP_038409211
1216
KNCEA-----ND-GESLA--YIEMHREMFAELLAYISEFAKRYTLAN--DRLEKIN-M FFE-QN---KKGDIKV--
1274


EFR95520
835
KNCEA-----ND-GESLA--YIEMHREMFAELLAYISEFAKRYTLAN--DRLEKIN-M FFE-QN---KKGDIKV--
893


WP_003723650
1216
KNCEA-----SD-GKSLK--YIEAHRETFSELLAQVSEFATRYTLAD--ANLSKIN-N LFE-QN---KEGDIKA--
1274


WP_003727705
1216
KNCEA-----SD-GKSLK--YIEAHRETFSELLAQVSEFATKYTLAD--ANLSKIN-N LFE-QN---KEGDIKA--
1274


WP_003730785
1216
KNCEA-----SD-GKSLK--YIEAHRETFSELLAQVSEFATKYTLAD--ANLSKIN-N LFE-QN---KEGDIKA--
1274


WP_003733029
1216
EKYEA-----ID-GESLA--YIEVHRALFDELLAYISEFARKYTLSN--DRLDEIN-M LYE-RN---KDGDVKS--
1274


WP_003739838
1216
KNCEA-----SD-GKSLD--YIESNREMFGELLAHVSEFAKRYTLAD--ANLSKIN-Q LFE-QN---KDNDIKV--
1274


WP_014601172
1216
KNCEA-----SD-GKSLK--YIEAHRETFSELLAQVSEFATRYTLAD--ANLSKIN-N LFE-QN---KEGDIQA--
1274


WP_023548323
1216
EKREA-----ID-GESLA--YIEAHKAVFGELLAHISEFARKYTLAN--DKLDEIN-M LYE-RN---KDGDVKS--
1274


WP_031665337
1216
KNCEA-----SD-GKSLK--YIEAHRETFSELLAQVSEFATRYTLAD--ANLSKIN-N LFE-QN---KEGDIKA--
1274


WP_031669209
1216
EKYEA-----ID-GESLA--YIEVHRALFDELLAYISEFARKYTLSN--DRLDEIN-M LYE-RN---KDGDVKS--
1274


WP_033920898
1216
EKREA-----ID-GESLA--YIEAHKAVFGELLAHISEFARKYTLAN--DKLDEIN-M LYE-RN---KDGDVKS--
1274


AKI42028
1219
KNCEA-----SD-GKSLK--YIEAHRETFSELLAQVSEFATRYTLAD--ANLSKIN-N LFE-QN---KEGDIQA--
1277


AKI50529
1219
EKREA-----ID-GESLA--YIEAHKAVFGELLAHISEFARKYTLAN--DKLDEIN-M LYE-RN---KDGDVKS--
1277


EFR83390
664
KNCEA-----SD-GKSLK--YTEAHRETFSELLAQVSEFATRYTLAD--ANLSKIN-N LFE-QN---KEGDIKX--
722


WP_046323366
1216
KNCEA-----SD-GKSLA--YIESHREMFAELLDSISEFASRYTLAD--ANLEKIN-T IFE-QN---KSGDVKV--
1274


AKE81011
1256
SHYEKLKgSPEDnEQKQL--FVEQHKHYLDEIIEQISEFSKRVILAD--ANLDKVL-S AYN-KH---RDKPIREq-
1321


CUO82355
1216
YNAIYKQ-DEDGlDNMLMi-----------QLYLQLIDKLKTLYPIY-mGIVEKFE-K FVS----i----SKEEk-
1272


WP_033162887
1218
YAAMLKK-RYEYlDEEEIf-----------DLYLQLLQKMDTLYPAY-kGIAKRFF-D FKN----i----DVVEk-
1274


AGZ01981
1273
SHYEKLKgSPEDnEQKQL--FVEQHKHYLDEIIEQISEFSKRVILAD--ANLDKVL-S AYN-KH---RDKPIREq-
1338


AKA60242
1240
SHYEKLKgSPEDnEQKQL--FVEQHKHYLDEIIEQISEFSKRVILAD--ANLDKVL-S AYN-KH---RDKPIREq-
1305


AKS40380
1240
SHYEKLKgSPEDnEQKQL--FVEQHKHYLDEIIEQISEFSKRVILAD--ANLDKVL-S AYN-KH---RDKPIREq-
1305


4UN5_B
1244
SHYEKLKgSPEDnEQKQL--FVEQHKHYLDEIIEQISEFSKRVILAD--ANLDKVL-S AYN-KH---RDKPIREq-
1309


WP_010922251
1306


embedded image


1365


WP_039695303
1309
ISN---SFI NLLTLTALGAP-ADFNFLG--EKI--PRK--R-YTSTKECL NATLIHQSITGLYETRIDLSKL--
1369


WP_045635197
1307
LAN---SFI NLLTFTALGAP-AAFKFFG--KDI--DRK--R-YTTVSEIL NATLIHQSITGLYETWIDLSKL--
1367


5AXW_A

--------- ----------------------------------------- ------------------------



WP_009880683
990
-AE---NII HLFTLTNLGAP-AAFKCFD--TTI--GRN--R-YKSIKEVL DATLIHQSITGLYETRIDLSQL--
1049


WP_010922251
1306
-AE---NII HLFTLTNLGAP-AAFKYFD--TTI--DRK--R-YTSTKEVL DATLIHQSITGLYETRIDLSQL--
1365


WP_011054416
1306
-AE---NII HLFTLTNLGAP-AAFKYFD--TTI--DRK--R-YTSTKEVL DATLIHQSITGLYETRIDLSQL--
1365


WP_011284745
1306
-AE---NII HLFTLTNLGAP-AAFKYFD--TTI--DRK--R-YTSTKEVL DATFIHQSITGLYETRIDLSQL--
1365


WP_011285506
1306
-AE---NII HLFTLTNLGAP-AAFKYFD--TTI--DRK--R-YTSTKEVL DATLIHQSITGLYETRIDLSQL--
1365


WP_011527619
1306
-AE---NII HLFTLTNLGAP-TAFKYFD--TTI--DRK--R-YTSTKEVL DATFIHQSITGLYETRIDLSQL--
1365


WP_012560673
1306
-AE---NII HLFTLTNLGAP-AAFKCFD--TTI--GRN--R-YKSIKEVL DATLIHQSITGLYETRIDLSQL--
1365


WP_014407541
1305
-AE---NII HLFTLTNLGAP-AAFKYFD--TTI--DRK--R-YTSTKEVL DATLIHQSITGLYETRIDLSQL--
1364


WP_020905136
1306
-AE---NII HLFTLTNLGAP-AAFKYFD--TTI--DRK--R-YTSTKEVL DATLIHQSITGLYETRIDLSQL--
1365


WP_023080005
1305
-AK---NII HLFTLTNLGAP-AAFKYFD--TTI--ERN--R-YKSIKEVL DATLIHQSITGLYETRIDLSQL--
1364


WP_023610282
1305
-AK---NII HLFTLTNLGAP-AAFKYFD--TTI--ERN--R-YKSIKEVL DATLIHQSITGLYEIRIDLSQL--
1364


WP_030125963
1306
-AE---NII HLFTLTNLGAP-AAFKYFD--TTI--GRN--R-YKSIKEVL DATLIHQSITGLYETRIDLSQL--
1365


WP_030126706
1306
-AE---NII HLFTLTNLGAP-AAFKYFD--TTI--DRK--R-YTSTKEVL DATLIHQSITGLYETRIDLSQL--
1365


WP_031488318
1306
-AE---NII HLFTLTNFGAP-AAFIYFD--TTI--GRN--R-YKSIKEVL DATLIHQSITGLYETRIDLSQL--
1365


WP_032460140
1306
-AE---NII HLFTLTNLGAP-AAFKYFD--TTI--GRN--R-YKSIKEVL DATLIHQSITGLYETRIDLSQL--
1365


WP_032461047
1306
-AE---NII HLFTLTNLGAP-AAFKYFD--TTI--GRN--R-YKSIKEVL DATLIHQSITGLYETRIDLSQL--
1365


WP_032462016
1306
-AE---NII HLFTLTNLGAP-AAFKYFD--TTI--DRK--R-YTSTKEVL DATLIHQSITGLYETRIDLSQL--
1365


WP_032462936
1306
-AE---NII HLFTLTNLGAP-AAFKYFD--TTI--DRK--R-YTSTKEVL DATLIHQSITGLYETRIDLSQL--
1365


WP_032464890
1306
-AE---NII HLFTLTNLGAP-TAFKYFD--TTI--DRK--R-YTSTKEVL DATFIHQSITGLYETRIDLSQL--
1365


WP_033888930
1131
-AE---NII HLFTLTNLGAP-AAFKYFD--TTI--DRK--R-YTSTKEVL DATLIHQSITGLYETRIDLSQL--
1190


WP_038431314
1306
-AE---NII HLFTLTNLGAP-AAFKYFD--TTI--DRK--R-YTSTKEVL DATLIHQSITGLYETRIDLSQL--
1365


WP_038432938
1305
-AK---NII HLFTLTNLGAP-AAFKYFD--TTI--ERN--R-YKSIKEVL DATLIHQSITGLYETRIDLSQL--
1364


WP_038434062
1306
-AE---NII HLFTLTNLGAP-AAFKYFD--TTI--GRN--R-YKSIKEVL DATLIHQSITGLYETRIDLSQL--
1365


BAQ51233
1217
-AE---NII HLFTLTNLGAP-AAFKYFD--TTI--DRK--R-YTSTKEVL DATLIHQSITGLYETRIDLSQL--
1276


KGE60162
481
-AE---NII HLFTLTNLGAP-AAFKYFD--TTI--DRK--R-YTSTKEVL DATLIHQSITGLYETRIDLSQL--
540


KGE60856
244
-AE---NII HLFTLTNLGAP-AAFKYFD--TTI--DRK--R-YTSTKEVL DATLIHQSITGLYETRIDLSQL--
303


WP_002989955
1306
-AE---NII HLFTLTNLGAP-TAFKYFD--TTI--DRK--R-YTSTKEVL DATFIHQSITGLYETRIDLSQL--
1365


WP_003030002
1282
LAK---SFI SLLTFTAFGAP-AAFNFFG--ENI--DRK--R-YTSVTECL NATLIHQSITGLYETRIDLSKL--
1342


WP_003065552
1310
ISN---SFI NLLTLTALGAP-ADFNFLG--EKI--PRK--R-YTSTKECL NATLIHQSITGLYETRIDLSKI--
1370


WP_001040076
1307
LAN---NII NLFTFTSLGAP-AAFKFFD--KIV--DRK--R-YTSTKEVL NSTLIHQSITGLYETRIDLGKL--
1367


WP_001040078
1315
LAN---NII NLFTFTSLGAP-AAFKFFD--KIV--DRK--R-YTSTKEVL NSTLIHQSITGLYETRIDLSKL--
1375


WP_001040080
1307
LAN---NII NLFTFTSLGAP-AAFKFFD--KIV--DRK--R-YTSTKEVL NSTLIHQSITGLYETRIDLGKL--
1367


WP_001040081
1307
LAN---NII NLFTFTSLGAP-AAFKFFD--KIV--DRK--R-YTSTKEVL NSTLIHQSITGLYETRIDLGKL--
1367


WP_001040083
1307
LAN---NII NLFTFTSLGAP-AAFKFFD--KIV--DRK--R-YTSTKEVL NSTLIHQSITGLYETRIDLGKL--
1367


WP_001040085
1307
LAN---NII NLFTFTSLGAP-AAFKFFD--KIV--DRK--R-YTSTKEVL NSTLIHQSITGLYETRIDLGKL--
1367


WP_001040087
1307
LAN---NII NLFTFTSLGAP-AAFKFFD--KIV--DRK--R-YTSTKEVL NSTLIHQSITGLYETRIDLGKL--
1367


WP_001040088
1307
LAN---NII NLFTFTSLGAP-AAFKFFD--KIV--DRK--R-YTSTKEVL NSTLIHQSITGLYETRIDLGKL--
1367


WP_001040089
1307
LAN---NII NLFTFTSLGAP-AAFKFFD--KIV--DRK--R-YTSTKEVL NSTLIHQSITGLYETRIDLGKL--
1367


WP_001040090
1307
LAN---NII NLFTFTSLGAP-AAFKFFD--KIV--DRK--R-YTSTKEVL NSTLIHQSITGLYETRIDLGKL--
1367


WP_001040091
1307
LAN---NII NLFTFTSLGAP-AAFKFFD--KIV--DRK--R-YTSTKEVL NSTLIHQSITGLYETRIDLGKL--
1367


WP_001040092
1307
LAK---NII NLFTFTSLGAP-AAFKFFD--KSV--DRK--R-YTSTKEVL DSTLIHQSITGLYETRIDLGKL--
1367


WP_001040094
1307
LAN---NII NLFTFTSLGAP-AAFKFFD--KIV--DRK--R-YTSTKEVL NSTLIHQSITGLYETRIDLGKL--
1367


WP_001040095
1307
LAN---NII NLFTFTSLGAP-AAFKFFD--KIV--DRK--R-YTSTKEVL NSTLIHQSITGLYETRIDLGKL--
1367


WP_001040096
1307
LAN---NII NLFTFTSLGAP-AAFKFFD--KIV--DRK--R-YTSTKEVL NSTLIHQSITGLYETRIDLGKL--
1367


WP_001040097
1307
LAN---NII NLFTFTSLGAP-AAFKFFD--KIV--DRK--R-YTSTKEVL NSTLIHQSITGLYETRIDLGKL--
1367


WP_001040098
1307
LAN---NII NLFTFTSLGAP-AAFKFFD--KIV--DRK--R-YTSTKEVL NSTLIHQSITGLYETRIDLGKL--
1367


WP_001040099
1307
LAN---NII NLFTFTSLGAP-AAFKFFD--KIV--DRK--R-YTSTKEVL NSTLIHKSITGLYETRIDLGKL--
1367


WP_001040100
1307
LAN---NII NLFTFTSLGAP-AAFKFFD--KIV--DRK--R-YTSTKEVL NSTLIHQSITGLYETRIDLGKL--
1367


WP_001040104
1307
LAN---NII NLFTFTSLGAP-AAFKFFD--KIV--DRK--R-YTSTKEVL NSTLIHQSITGLYETRIDLGKL--
1367


WP_001040105
1307
LAN---NII NLFTFTSLGAP-AAFKFFD--KIV--DRK--R-YTSTKEVL NSTLIHQSITGLYETRIDLGKL--
1367


WP_001040106
1307
LAN---NII NLFTFTSLGAP-AAFKFFD--KIV--DRK--R-YTSTKEVL NSTLIHQSITGLYETRIDLGKL--
1367


WP_001040107
1307
LAN---NII NLFTFTSLGAP-AAFKFFD--KIV--DRK--R-YTSTKEVL NSTLIHQSITGLYETRIDLGKL--
1367


WP_001040108
1307
LAN---NII NLFTFTSLGAP-AAFKFFD--KIV--DRK--R-YTSTKEVL NSTLIHQSITGLYETRIDLGKL--
1367


WP_001040109
1307
LAN---NII NLFTFTSLGAP-AAFKFFD--KIV--DRK--R-YTSTKEVL NSTLIHQFITGLYETRIDLGKL--
1367


WP_001040110
1307
LAN---NII NLFTFTSLGAP-AAFKFFD--KIV--DRK--R-YTSTKEVL NSTLIHQSITGLYETRIDLGKL--
1367


WP_015058523
1307
LAK---NII NLFTFTSLGAP-AAFKFFD--KSV--DRK--R-YTSTKEVL DSTLIHQSITGLYETRIDLGKL--
1367


WP_017643650
1307
LAN---NII NLFTFTSLGAP-AAFKFFD--KIV--DRK--R-YTSTKEVL NSTLIHQSITGLYETRIDLGKL--
1367


WP_017647151
1307
LAN---NII NLFTFTSLGAP-AAFKFFD--KIV--DRK--R-YTSTKEVL NSTLIHQSITGLYETRIDLGKL--
1367


WP_017648376
1307
LAN---NII NLFTFTSLGAP-AAFKFFD--KIV--DRK--R-YTSTKEVL NSTLIHQSITGLYETRIDLGKL--
1367


WP_017649527
1307
LAN---NII NLFTFTSLGAP-AAFKFFD--KIV--DRK--R-YTSTKEVL NSTLIHQSITGLYETRIDLGKL--
1367


WP_017771611
1307
LAN---NII NLFTFTSLGAP-AAFKFFD--KIV--DRK--R-YTSTKEVL NSTLIHQSITGLYETRIDLGKL--
1367


WP_017771984
1307
LAN---NII NLFTFTSLGAP-AAFKFFD--KIV--DRK--R-YTSTKEVL NSTLIHQSITGLYETRIDLGKL--
1367


CFQ25032
1307
LAN---NII NLFTFTSLGAP-AAFKFFD--KIV--DRK--R-YTSTKEVL NSTLIHQSITGLYETRIDLGKL--
1367


CFV16040
1307
LAN---NII NLFTFTSLGAP-AAFKFFD--KIV--DRK--R-YTSTKEVL NSTLIHQSITGLYETRIDLGKL--
1367


KLJ37842
1307
LAN---NII NLFTFTSLGAP-AAFKFFD--KIV--DRK--R-YTSTKEVL NSTLIHQSITGLYETRIDLGKL--
1367


KLJ72361
1307
LAN---NII NLFTFTSLGAP-AAFKFFD--KIV--DRK--R-YTSTKEVL NSTLIHQSITGLYETRIDLGKL--
1367


KLL20707
1321
LAN---NII NLFTFTSLGAP-AAFKFFD--KIV--DRK--R-YTSTKEVL NSTLIHQSITGLYETRIDLGKL--
1381


KLL42645
1307
LAN---NII NLFTFTSLGAP-AAFKFFD--KIV--DRK--R-YTSTKEVL NSTLIHQSITGLYETRIDLGKL--
1367


WP_047207273
1307
LAN---NII NLFTFTSLGAP-AAFKFFD--KIV--DRK--R-YTSTKEVL NSTLIHQSITGLYETRIDLGKL--
1367


WP_047209694
1307
LAN---NII NLFTFTSLGAP-AAFKFFD--KIV--DRK--R-YTSTKEVL NSTLIHKSITGLYETRIDLGKL--
1367


WP_050198062
1307
LAN---NII NLFTFTSLGAP-AAFKFFD--KIV--DRK--R-YTSTKEVL NSTLIHQSITGLYETRIDLGKL--
1367


WP_050201642
1307
LAN---NII NLFTFTSLGAP-AAFKFFD--KIV--DRK--R-YTSTKEVL NSTLIHQSITGLYETRIDLGKL--
1367


WP_050204027
1307
LAN---NII NLFTFTSLGAP-AAFKFFD--KIV--DRK--R-YTSTKEVL NSTLIHQSITGLYETRIDLGKL--
1367


WP_050881965
1307
LAN---NII NLFTFTSLGAP-AAFKFFD--KII--DRK--R-YTSTKEVL NSTLIHQSITGLYETRIDLGKL--
1367


WP_050886065
1307
LAN---NII NLFTFTSLGAP-AAFKFFD--KIV--DRK--R-YTSTKEVL NSTLIHQSITGLYETRIDLGKL--
1367


AHN30376
1307
LAK---NII NLFTFTSLGAP-AAFKFFD--KSV--DRK--R-YTSTKEVL DSTLIHQSITGLYETRIDLGKL--
1367


EAO78426
1307
LAN---NII NLFTFTSLGAP-AAFKFFD--KIV--DRK--R-YTSTKEVL NSTLIHQSITGLYETRIDLGKL--
1367


CCW42055
1307
LAN---NII NLFTFTSLGAP-AAFKFFD--KIV--DRK--R-YTSTKEVL NSTLIHQSITGLYETRIDLGKL--
1367


WP_003041502
1314
ICT---SFL GLFELTSLGSA-SDFEFLG--VKI--PRY--RdYTPSSLLK DSTLIHQSITGLYETRIDLSKL--
1383


WP_037593752
1283
LAK---SFI SLLTFTAFGAP-AAFNFFG--ENI--DRK--R-YTSVTECL NATLIHQSITGLYETRIDLSKL--
1343


WP_049516684
1283
LAK---SFI SLLTFTAFGAP-AAFNFFG--ENI--DRK--R-YTSVTECL NATLIHQSITGLYETRIDLSKL--
1343


GAD46167
1282
LAK---SFI SLLTFTAFGAP-AAFNFFG--ENI--DRK--R-YTSVTECL NATLIHQSITGLYETRIDLSKL--
1342


WP_018363470
1314
ISD---SFI NLLTLTALGAP-ADFNFLG--EKI--PRK--R-YNSTKECL NATLIHQSITGLYETRIDLSKL--
1374


WP_003043819
1311
-SN---SFV SLLKYTSFGAS-GGFTFLD--LDVkgGRL--R-YQTVTEVL DATLIYQSITGLYETRTDLSQL--
1372


WP_006269658
1282
LAK---SFI SLLTFTAFGAP-AAFNFFG--ENI--DRK--R-YTSVTECL NATLIHQSITGLYETRIDLSKL--
1342


WP_048800889
1302
ISN---SFI HLLTLTALGAP-ADFNFLG--EKI--PRK--R-YTSTKECL NATLIHQSITGLYETQTDLSKL--
1362


WP_012767106
1309
-CS---SVI NLLTLTASGAP-ADFKFLG--TTI--PRK--R-YGSPQSIL SSTLIHQSITGLYETRIDLSQL--
1368


WP_014612333
1309
-CS---SVI NLLTLTASGAP-ADFKFLG--TTI--PRK--R-YGSPQSIL SSTLIHQSITGLYETRIDLSQL--
1368


WP_015017095
1309
-CS---SVI NLLTLTASGAP-ADFKFLG--TTI--PRK--R-YGSPQSIL SSTLIHQSITGLYETRIDLSQL--
1368


WP_015057649
1309
-CS---SVI NLLTLTASGAP-ADFKFLG--TTI--PRK--R-YGSPQSIL SSTLIHQSITGLYETRIDLSQL--
1368


WP_048327215
1309
-CS---SVI NLLTLTASGAP-ADFKFLG--TTI--PRK--R-YGSPQSIL SSTLIHQSITGLYETRIDLSQL--
1368


WP_049519324
1309
-CS---SVI NLLTLTASGAP-ADFKFLG--TTI--PRK--R-YGSPQSIL SSTLIHQSITGLYETRIDLSQL--
1368


WP_012515931
1286
-AE---NII NVFTFVALGAP-AAFKFFD--ATI--DRK--R-YTSTKEVL NATLIHQSVTGLYETRIDLSQL--
1345


WP_021320964
1286
-AE---NII NVFTFVALGAP-AAFKFFD--ATI--DRK--R-YTSTKEVL NATLIHQSVTGLYETRIDLSQL--
1345


WP_037581760
1286
-AE---NII NVFTFVALGAP-AAFKFFD--ATI--DRK--R-YTSTKEVL NATLIHQSVTGLYETRIDLSQL--
1345


WP_004232481
1309
ISSlseSFI NLLKFISFGAP-GAFKFLK--LDV--KQSnlR-YKSTTEAL SATLIHQSVTGLYETRIDLSKL--
1374


WP_009854540
1307
ISN---SFI NLLTLTALGAP-ADFNFLG--EKI--PRK--R-YTSTKECL TATLIHQSITGLYETRIDLSKL--
1367


WP_012962174
1308
ISI---SFV NLLTLTALGAP-ADFNFLG--EKI--PRK--R-YTSTKECL NATLIHQSITGLYETRIDLSKL--
1368


WP_039695303
1309
ISN---SFI NLLTLTALGAP-ADFNFLG--EKI--PRK--R-YTSTKECL NATLIHQSITGLYETRIDLSKL--
1369


WP_014334983
1312
ISA---SFI NLLTLTALGAP-ADFNFLG--EKI--PRK--R-YTSTKECL SATLIHQSVTGLYETRIDLSKL--
1372


WP_003099269
1306
-AI---NML NLFTFTDLGAP-SAFKFFN--GDI--DRK--R-YSSTNEII NSTLIYQSPTGLYETRIDLSKL--
1365


AHY15608

--------- ----------------------------------------- ------------------------



AHY17476

--------- ----------------------------------------- ------------------------



ESR09100
138
-AI---NML NLFTFTDLGAP-SAFKFFNg--DI--DRK--R-YSSTNEII NSTLIYQSPTGLYETRIDLSKL--
197


AGM98575

--------- ----------------------------------------- ------------------------



ALF27331
1282
LAS---SFI NLLTFTAIGAP-AAFKFFD--NNI--DRK--R-YTSTTEIL NATLIHQSITGLYETRIDLSRL--
1342


WP_018372492
1290
VAR---SFV -LLNFTMMGAA-TDFKFFG--QII--PRK--R-YPSTTECL KSTLIHQSVTGLYETRIDLSKL--
1350


WP_045618028
1311
LSE---SFI SLLKLISFGAP-GTFKFLG--VEI--SQSnvR-YQSVSSCF NATLIHQSITGLYETRIDLSKL--
1373


WP_045635197
1307
LAN---SFI NLLTFTALGAP-AAFKFFG--KDI--DRK--R-YTTVSEIL NATLIHQSITGLYETWIDLSKL--
1367


WP_002263549
1282
LAS---SFI NLLTFTAIGAP-ATFKFFD--KNI--DRK--R-YTSTTEIL NATLIHQSITGLYETRIDLNKL--
1342


WP_002263887
1282
LAS---SFI NLLTFTAIGAP-ATFKFFD--KNI--DRK--R-YTSTTEIL NATLIHQSITGLYETRIDLNKL--
1342


WP_002264920
1282
LAS---SFI NLLTFTAIGAP-ATFKFFD--KNI--DRK--R-YTSTTEIL NATLIHQSITGLYETRIDLSKL--
1342


WP_002269043
1282
LAS---SFI NLLTFTAIGAP-ATFKFFD--KNI--DRK--R-YTSTTEIL NATLIHQSITGLYETRIDLNKL--
1342


WP_002269448
1282
LAS---SFI NLLTFTAIGAP-ATFKFFD--KNI--DRK--R-YTSTTEIL NATLIHQSITGLYETRIDLSKL--
1342


WP_002271977
1282
LAS---SFI NLLTFTAIGAP-ATFKFFD--KNI--DRK--R-YTSTTEIL NATLIHQSITGLYETRIDLSKL--
1342


WP_002272766
1282
LAS---SFI NLLTFTAIGAP-ATFKFFD--KNI--DRK--R-YTSTTEIL NATLIHQSITGLYETRIDLSKL--
1342


WP_002273241
1282
LAS---SFI NLLTFTAIGAP-ATFKFFD--KNI--DRK--R-YTSTTEIL NATLIHQSITGLYETRIDLSKL--
1342


WP_002275430
1282
LSS---SFI NLLTFTAIGAP-AAFKFFD--KNI--DRK--R-YTSTTEIL NATLIHQSITGLYETRIDLSKL--
1342


WP_002276448
1282
LAS---SFI NLLTFTAIGAP-ATFKFFD--KNI--DRK--R-YTSTTEIL NATLIHQSITGLYETRIDLSKL--
1342


WP_002277050
1288
LAD---GFI KLLGFTQLGAT-SPFSFLG--IKL--NQK--Q-YTGKKDYL EATLIHQSITGLYETRIDLNKL--
1352


WP_002277364
1282
LAS---SFI NLLTFTAIGAP-ATFKFFD--KNI--DRK--R-YTSTTEIL NATLIHQSITGLYETRIDLSKL--
1342


WP_002279025
1282
LAS---SFI NLLTFTAIGAP-ATFKFFD--KNI--DRK--R-YTSTTEIL NATLIHQSITGLYETRIDLSKL--
1342


WP_002279859
1282
LAS---SFI NLLTFTAIGAP-ATFKFFD--KNI--DRK--R-YTSTTEIL NATLIHQSITGLYETRIDLSKL--
1342


WP_002280230
1282
LAS---SFI NLLTFTAIGAP-ATFKFFD--KNI--DRK--R-YTSTTEIL NATLIHQSITGLYETRIDLSKL--
1342


WP_002281696
1282
LSS---SFI NLLTFTAIGAP-AAFKFFD--KNI--DRK--R-YTSTTEIL NATLIHQSITGLYETRIDLSKL--
1342


WP_002282247
1288
LAD---GFI KLLGFTQLGAT-SPFSFLG--IKL--NQK--Q-YTGKKDYL EATLIHQSITGLYETRIDLSKL--
1352


WP_002282906
1282
LAS---SFI NLLTFTAIGAP-ATFKFFD--KNI--DRK--R-YTSTTEIL NATLIHQSITGLYETRIDLSKL--
1342


WP_002283846
1282
LAS---SFI NLLTFTAIGAP-ATFKFFD--KNI--DRK--R-YTSTTEIL NATLIHQSITGLYETRIDLSKL--
1342


WP_002287255
1282
LAS---SFI NLLTFTAIGAP-ATFKFFD--KNI--DRK--R-YTSTTEIL NATLIHQSITGLYETRIDLSKL--
1342


WP_002288990
1282
LAS---SFI NLLTFTAIGAP-AAFKFFD--KNI--DRK--R-YTSTTEIL NATLIHQSITGLYETRIDLSKL--
1342


WP_002289641
1282
LAS---SFI NLLTFTAIGAP-ATFKFFD--KNI--DRK--R-YTSTTEIL NATLIHQSITGLYETRIDLSKL--
1342


WP_002290427
1282
LAS---SFI NLLTFTAIGAP-ATFKFFD--KNI--DRK--R-YTSTTEIL NATLIHQSITGLYETRIDLSKL--
1342


WP_002295753
1282
LAS---SFI NLLTFTAIGAP-AAFKFFD--KNI--DRK--R-YTSTTEIL NATLIHQSITGLYETRIDLSKL--
1342


WP_002296423
1282
LAS---SFI NLLTFTAIGAP-ATFKFFD--KNI--DRK--R-YTSTTEIL NATLIHQSITGLYETRIDLSKL--
1342


WP_002304487
1296
LAS---SFI NLLTFTAIGAP-AAFKFFD--KNI--DRK--R-YTSTTEIL NATLIHQSITGLYETRIDLNKL--
1356


WP_002305844
1282
LAS---SFI NLLTFTAIGAP-ATFKFFD--KNI--DRK--R-YTSTTEIL NATLIHQSITGLYETRIDLSKL--
1342


WP_002307203
1282
LAS---SFI NLLTFTAIGAP-ATFKFFD--KNI--DRK--R-YTSTTEIL NATLIHQSITGLYETRIDLSKL--
1342


WP_002310390
1282
LAS---SFI NLLTFTAIGAP-ATFKFFD--KNI--DRK--R-YTSTTEIL NATLIHQSITGLYETRIDLSKL--
1342


WP_002352408
1282
LAS---SFI NLLTFTAIGAP-ATFKFFD--KNI--DRK--R-YTSTTEIL NATLIHQSITGLYETRIDLSKL--
1342


WP_012997688
1282
LAS---SFI NLLTFTAIGAP-ATFKFFD--KNI--DRK--R-YTSTTEIL NATLIHQSITGLYETRIDLSKL--
1342


WP_014677909
1282
LAS---SFI NLLTFTAIGAP-ATFKFFD--KNI--DRK--R-YTSTTEIL NATLIHQSITGLYETRIDLSKL--
1342


WP_019312892
1282
LAS---SFI NLLTFTAIGAP-ATFKFFD--KNI--DRK--R-YTSTTEIL NATLIHQSITGLYETRIDLSKL--
1342


WP_019313659
1282
LAS---SFI NLLTFTAIGAP-ATFKFFD--KNI--DRK--R-YTSTTEIL NATLIHQSITGLYETRIDLNKL--
1342


WP_019314093
1282
LAS---SFI NLLTFTAIGAP-AAFKFFD--KNI--DRK--R-YTSTTEIL NATLIHQSITGLYETRIDLSKL--
1342


WP_019315370
1282
LSS---SFI NLLTFTAIGAP-AAFKFFD--KNI--DRK--R-YTSTTEIL NATLIHQSITGLYETRIDLSKL--
1342


WP_019803776
1282
LAS---SFI NLLTFTAIGAP-ATFKFFD--KNI--DRK--R-YTSTTEIL NATLIHQSITGLYETRIDLNKL--
1342


WP_019805234
1282
LAS---SFI NLLTFTAIGAP-ATFKFFD--KNI--DRK--R-YTSTTEIL NATLIHQSITGLYETRIDLSKL--
1342


WP_024783594
1282
LAS---SFI NLLTFTAIGAP-ATFKFFD--KNI--DRK--R-YTSTTEIL NATLIHQSITGLYETRIDLNKL--
1342


WP_024784288
1288
LAD---GFI KLLGFTQLGAT-SPFSFLG--IKL--NQK--Q-YTGKKDYL EATLIHQSITGLYETRIDLSKL--
1352


WP_024784666
1282
LAS---SFI NLLTFTAIGAP-ATFKFFD--KNI--DRK--R-YTSTTEIL NATLIHQSITGLYETRIDLSKL--
1342


WP_024784894
1282
LAS---SFI NLLTFTAIGAP-ATFKFFD--KNI--DRK--R-YTSTTEIL NATLIHQSITGLYETRIDLSKL--
1342


WP_024786433
1288
LAD---GFI KLLGFTQLGAT-SPFSFLG--IKL--NQK--Q-YTGKKDYL EATLIHQSITGLYETRIDLSKL--
1352


WP_049473442
1282
LAS---SFI NLLTFTAIGAP-ATFKFFD--KNI--DRK--R-YTSTTEIL NATLIHQSITGLYETRIDLSKL--
1342


WP_049474547
1282
LAS---SFI NLLTFTAIGAP-ATFKFFD--KNI--DRK--R-YTSTTEIL KATLIHQSITGLYETRIDLSKL--
1342


EMC03581
1275
LAS---SFI NLLTFTAIGAP-ATFKFFD--KNI--DRK--R-YTSTTEIL NATLIHQSITGLYETRIDLSKL--
1335


WP_000428612
1310
LAN---SFI NLLTFTALGAP-AAFKFFG--KDV--DRK--R-YTTVSEIL NATLIHQSITGLYETRIDLSKL--
1370


WP_000428613
1308
LAN---SFI NLLTFTALGAP-AAFKFFG--KDI--DRK--R-YTTVSEIL NATLIHQSITGLYETRIDLSKL--
1368


WP_049523028
1303
IAN---SFI NLLTFTAFGAP-AVFKFFG--KDI--ERK--R-YSTVTEIL KATLIHQSLTGLYETRIDLSKL--
1363


WP_003107102
1275
-AT---NML NLFTFTGLGAP-ATLKFFN--VDI--DRK--R-YTSSTEIL NSTLIRQSITGLYETRIDLSKI--
1334


WP_054279288
1304
-SI---SFL NLFKFTSFGAP-EKFTFLN--SEIkgDDV--R-YRSTKECL NSTLIHQSVTGLYETRIDLSQF--
1365


WP_049531101
1311
LSE---SFI SLLKLTSFGAP-GAFRFLG--VEI--SQSnvR-YQSVSSCF NATLIHQSITGLYETRIDLSKL--
1373


WP_049538452
1311
LSE---SFI SLLKLTSFGAP-GAFKFLG--VEI--SQSsvR-YKPNSQFL DATLIHQSITGLYETRIDLSKL--
1373


WP_049549711
1313
LSE---SFI SLLKLTSFGAP-GAFKFLG--AEI--SQSsvR-YKPNSQFL DTTLIHQSITGLYETRIDLSKL--
1375


WP_007896501
1312
-AL---NML NLFIFTSLGAP-STFVFFD--ETI--DRK--R-YTTSSDVL NGILIQQSITGLYETRIDLSRF--
1371


EFR44625
1264
-AL---NML NLFIFTSLGAP-STFVFFD--ETI--DRK--R-YTTSSDVL NGILIQQSITGLYETRIDLSRF--
1323


WP_002897477
1307
LAN---SFI NLLTFTALGAP-AAFKFFG--KDV--DRK--R-YTTVSEIL NATLIHQSITGLYETRIDLSKL--
1367


WP_002906454
1312
LSE---SFI SLLKLTSFGAP-GAFKFLG--VEI--SQSsvR-YKPNSQFL DTTLIHQSITGLYETRIDLSKL--
1374


WP_009729476
1308
LAN---SFI NLLTFTALGAP-AAFKFFG--KDV--DRK--R-YTTVSEIL NATLIHQSITGLYETRIDLSKL--
1368


CQR24647
1296
LAQ---SFI SLLKFTAFGAP-GGFKFLD--ADI--KQSnlR-YQTVTEVL SSTLIHQSVTGLYETRIDLSKL--
1358


WP_000066813
1312
LAN---SFI NLLTFTALGAP-AAFKFLG--KDV--DRK--R-YTTVSEIL NATLIHQSITGLYETRIDLSKL--
1372


WP_009754323
1308
LAN---SFI NLLTFTALGAP-AAFKFFG--KDV--DRK--R-YTTVSEIL NATLIHQSITGLYETRIDLSKL--
1368


WP_044674937
1301
LTS---SFV NLLTFTAIGAP-AAFKFLG--SVI--DRK--R-YTSIAEIL EATLIHQSVTGLYETRIDLSKL--
1361


WP_044676715
1303
LTS---SFV NLLTFTAIGAP-AAFKFLG--SVI--DRK--R-YTSIAEIL EATLIHQSVTGLYETRIDLSKL--
1363


WP_044680361
1303
LTS---SFV NLLTFTAIGAP-AAFKFLG--SVI--DRK--R-YTSIAEIL EATLIHQSVTGLYETRIDLSKL--
1363


WP_044681799
1301
LTS---SFV NLLTFTAIGAP-AAFKFLG--SVI--DRK--R-YTSIAEIL EATLIHQSVTGLYETRIDLSKL--
1361


WP_049533112
1314
ICT---SFL GLFELTSLGSA-SDFEFLG--VKI--PRY--RdYTPSSLLK DSTLIHQSITGLYETRIDLSKL--
1383


WP_029090905
1241
-VK----VI ELLKITQANATnGDLKLLK----M-sNREg-R-LGSVSVAL DFKIINQSVTGLYQSIEDYNN---
1300


WP_006506696
1269
-AN----II QMLIVMHRGPQnGNIVYDDf--KI-sDRIg-R-LKTKNHNL NIVFISQSPTGIYTKKYKL-----
1329


AIT42264
1306
-AE---NII HLFTLTNLGAP-AAFKYFD--TTI--DRK--R-YTSTKEVL DATLIHQSITGLYETRIDLSQL--
1365


WP_034440723
1277
LVE---SFI NLLAITKCGPA-ADITFLG--EKI--SRK--R-YRSTNCLW GSEVIFQSPTGLYETRLRLE----
1335


AKQ21048
1306
-AE---NII HLFTLTNLGAP-AAFKYFD--TTI--DRK--R-YTSTKEVL DATLIHQSITGLYETRIDLSQL--
1365


WP_004636532
1272
TVE---SFV NLMTFTAMGAP-ATFKFYG--ESI--TRS--R-YTSITEFR GSTLIFQSITGLYETRYKL-----
1329


WP_002364836
1278
IAA---SFI QLMQFNAMGAP-STFKFFQ--KDI--ERA--R-YTSIKEIF DATIIYQSTTGLYETRRKV-----
1335


WP_016631044
1229
IAA---SFI QLMQFNAMGAP-STFKFFQ--KDI--ERA--R-YTSIKEIF DATIIYQSPTGLYETRRKV-----
1286


EMS75795
1014
LSQ---SFI NLMQLNAMGAP-ADFKFFD--VII--PRK--R-YPSLTEIW ESTITYQSITGLRETRTRMATLwd
1076


WP_002373311
1278
IAA---SFI QLMQFNAMGAP-STFKFFQ--KDI--ERA--R-YTSIKEIF DATIIYQSTTGLYETRRKV-----
1335


WP_002378009
1278
IAA---SFI QLMQFNAMGAP-STFKFFQ--KDI--ERA--R-YTSIKEIF DATIIYQSTTGLYETRRKV-----
1335


WP_002407324
1278
IAA---SFI QLMQFNAMGAP-STFKFFQ--KDI--ERA--R-YTSIKEIF DATIIYQSTTGLYETRRKV-----
1335


WP_002413717
1278
IAA---SFI QLMQFNAMGAP-STFKFFQ--KDI--ERA--R-YTSIKEIF DATIIYQSTTGLYETRRKV-----
1335


WP_010775580
1280
IAA---SFI QLMQFNAMGAP-STFKFFQ--KDI--ERA--R-YTSIKEIF DATIIYQSTTGLYETRRKV-----
1337


WP_010818269
1278
IAA---SFI QLMQFNAMGAP-STFKFFQ--KDI--ERA--R-YTSIKEIF DATIIYQSTTGLYETRRKV-----
1335


WP_010824395
1278
IAA---SFI QLMQFNAMGAP-STFKFFQ--KDI--ERA--R-YTSIKEIF DATIIYQSTTGLYETRRKV-----
1335


WP_016622645
1278
IAA---SFI QLMQFNAMGAP-STFKFFQ--KDI--ERA--R-YTSIKEIF DATIIYQSTTGLYETRRKV-----
1335


WP_033624816
1278
IAA---SFI QLMQFNAMGAP-STFKFFQ--KDI--ERA--R-YTSIKEIF DATIIYQSTTGLYETRRKV-----
1335


WP_033625576
1278
IAA---SFI QLMQFNAMGAP-STFKFFQ--KDI--ERA--R-YTSIKEIF DATIIYQSTTGLYETRRKV-----
1335


WP_033789179
1278
IAA---SFI QLMQFNAMGAP-STFKFFQ--KDI--ERA--R-YTSIKEIF DATIIYQSTTGLYETRRKV-----
1335


WP_002310644
1280
LAS---SFV NLMQFNAMGAP-ADFKFFD--VTI--PRK--R-YTSLTEIW QSTIIHQSITGLYETRIRMGK---
1339


WP_002312694
1281
LAS---SFV NLMQFNAMGAP-ADFKFFD--VTI--PRK--R-YTSLTEIW QSTIIHQSITGLYETRIRMGK---
1340


WP_002314015
1281
LAS---SFV NLMQFNAMGAP-ADFKFFD--VTI--PRK--R-YTSLTEIW QSTIIHQSITGLYETRIRMGK---
1340


WP_002320716
1281
LAS---SFV NLMQFNAMGAP-ADFKFFD--VTI--PRK--R-YTSLTEIW QSTIIHQSITGLYETRIRMGK---
1340


WP_002330729
1280
LAS---SFV NLMQFNAMGAP-ADFKFFD--VTI--PRK--R-YTSLTEIW QSTIIHQSITGLYETRIRMGK---
1339


WP_002335161
1281
LAS---SFV NLMQFNAMGAP-ADFKFFD--VTI--PRK--R-YTSLTEIW QSTIIHQSITGLYETRIRMGK---
1340


WP_002345439
1281
LAS---SFV NLMQFNAMGAP-ADFKFFD--VTI--PRK--R-YTSLTEIW QSTIIHQSITGLYETRIRMGK---
1340


WP_034867970
1271
IAQ---SFL QLLQFNAIGAP-ADFKFFG--VTI--PRK--R-YTSLTEIW DATIIYQSVTGLYETRIRMGDLwa
1333


WP_047937432
1281
LAS---SFV NLMQFNAMGAP-ADFKFFD--VTI--PRK--R-YTSLTEIW QSTIIHQSITGLYETRIRMGK---
1340


WP_010720994
1271
IAQ---SFL QLLQFNAIGAP-ADFKFFG--VTI--PRK--R-YTSLTEIW DATIIYQSVTGLYETRIRMGDLwa
1333


WP_010737004
1271
IAQ---SFL QLLQFNAIGAP-ADFKFFG--VTI--PRK--R-YTSLTEIW DATIIYQSVTGLYETRIRMGDLwa
1333


WP_034700478
1271
IAQ---SFL QLLQFNAIGAP-ADFKFFG--VTI--PRK--R-YTSLTEIW DATIIYQSVTGLYETRIRMGDLwa
1333


WP_007209003
1270
IAK---SFI NLLIFTAMGAP-ADFEFFG--EKI--PRK--R-YVSISEII DAVFIHQSITGLYETRVRLTEV--
1330


WP_023519017
1265
MID---AIL SLLKFTLFGAS-VEFKFFD--IKI---LK--R-YKSLTDIW EATIIYQSVTGLYERRVEVRKLwd
1326


WP_010770040
1275
IAE---SFV NLMKFSAYGAP-MDFKFFG--KTI--PRS--R-YTSVGELL SATIINQSITGLYETRRKL-----
1332


WP_048604708
1271
IAQ---SFV DLMQLNAFGAP-ADFKFFG--ETI--PRK--R-YTSVNELL EATIINQSITGLYETRRRL-----
1328


WP_010750235
1274
MAH---SFV NLMQFNALGAP-ADFKFFD--TTI--TRK--R-YISLTEIW QSTIIYQSVTGLYETRRRMADLwd
1336


AII16583
1345
-AE---NII HLFTLINLGAP-AAFKYFD--TTI--DRK--R-YISTKEVL DATLIHQSITGLYETRIDLSQL--
1404


WP_029073316
1283
-CE----VI QMLVVMHAGPQnGNITFDDf--KL-sNRLg-R-LNCKTISL TIVFIADSPIGMYSKKYKL-----
1343


WP_031589969
1284
-CN----II QILATLHCNSSiGKIMYSDf--KI-sTTIg-R-LNGRTISL DISFIAESPTGMYSKKYKL-----
1344


KDA45870
1254
LGK---NFV ELLRYTADGAA-SDFKFFG--ENI--PRK--R-YNSAGSLL NGTLIYQSKTGLYETRIDLGKL--
1314


WP_039099354
1307
ILDr----V -LIGLHANAAV-SDLGVLKisTPL--GKM--Q---QPSGIS DTQIIYQSPTGLFERRVALRDL--
1368


AKP02966
1297
INSl-eELI ILLHANSTSAH-LIFNNIE-kKAF--GRK-------THGLT DTDFIYQSVTGLYETRIHIE----
1356


WP_010991369
1275
IAQ---SFV DLMAFNAMGAP-ASFKFFE--TTI--ERK--R-YNNLKELL NSTIIYQSITGLYESRKRL-----
1332


WP_033838504
1275
IAQ---SFV DLMAFNAMGAP-ASFKFFE--TTI--ERK--R-YNNLKELL NSTIIYQSITGLYESRKRL-----
1332


EHN60060
1278
IAQ---SFV DLMAFNAMGAP-ASFKFFE--TTI--ERK--R-YNNLKELL NSTIIYQSITGLYESRKRL-----
1335


EFR89594
1044
IAQ---SFV DLMAFNAMGAP-ASFKFFE--TTI--ERK--R-YNNLKELL NSTIIYQSITGLYESRKRL-----
1101


WP_038409211
1275
IAK---SFD KLKVFNAFGAP-RDFEFFE--TTI--KRK--R-YYNIKELL NATIIYQSITGLYEARKRL-----
1332


EFR95520
894
IAK---SFD KLKVFNAFGAP-RDFEFFE--TTI--KRK--R-YYNIKELL NATIIYQSITGLYEARKRL-----
951


WP_003723650
1275
IAQ---SFV DLMAFNAMGAP-ASFKFFE--ATI--DRK--R-YTNLKELL SSTIIYQSITGLYESRKRL-----
1332


WP_003727705
1275
IAQ---SFV DLMAFNAMGAP-ASFKFFE--ATI--DRK--R-YTNLKELL SSTIIYQSITGLYESRKRL-----
1332


WP_003730785
1275
IAQ---SFV DLMAFNAMGAP-ASFKFFE--ATI--DRK--R-YTNLKELL SSTIIYQSITGLYESRKRL-----
1332


WP_003733029
1275
IAE---SFV SLKKFNAFGVH-QDFSFFG--TKI--ERK--R-DRKLNELL NSTIIYQSITGLYESRKRL-----
1332


WP_003739838
1275
IAQ---SFV NLMAFNAMGAP-ASFKFFE--ATI--ERK--R-YTNLKELL SATIIYQSITGLYEARKRL-----
1332


WP_014601172
1275
IAQ---SFV DLMAFNAMGAP-ASFKFFE--ATI--DRK--R-YTNLKELL SSTIIYQSITGLYESRKRL-----
1332


WP_023548323
1275
IAE---SFV SLKKFNAFGVH-KDFNFFG--TTI--KRK--R-DRKLKELL NSTIIYQSITGLYESRKRL-----
1332


WP_031665337
1275
IAQ---SFV DLMAFNAMGAP-ASFKFFE--ATI--DRK--R-YTNLKELL SSTIIYQSITGLYESRKRL-----
1332


WP_031669209
1275
IAE---SFV SLKKFNAFGVH-QDFSFFG--TKI--ERK--R-DRKLNELL NSTIIYQSITGLYESRKRL-----
1332


WP_033920898
1275
IAE---SFV SLKKFNAFGVH-KDFNFFG--TTI--KRK--R-DRKLKELL NSTIIYQSITGLYESRKRL-----
1332


AKI42028
1278
IAQ---SFV DLMAFNAMGAP-ASFKFFE--ATI--DRK--R-YTNLKELL SSTIIYQSITGLYESRKRL-----
1335


AKI50529
1278
IAE---SFV SLKKFNAFGVH-KDFNFFG--TTI--KRK--R-DRKLKELL NSTIIYQSITGLYESRKRL-----
1335


EFR83390
723
IAQ---SFV DLMVFNAMGAP-ASFKFFE--ATI--DRK--R-YTNLKELL SSTIIYQSITGLYESRKRL-----
780


WP_046323366
1275
IAQ---SFV NLLEFNAMGAP-ASFKYFE--TNI--ERK--R-YNNLKELL NATIIYQSITGLYEARKRL-----
1332


AKE81011
1322
-AE---NII HLFTLTNLGAP-AAFKYFD--TTI--DRK--R-YTSTKEVL DATLIHQSITGLYETRIDLSQL--
1381


CUO82355
1273
-AN----VI QMLIIMHKGPQnGNIIYDDf--NV-gKRIg-R-LNGRTFYL NIEFISQSPIGIYIKKYKL-----
1333


WP_033162887
1275
-CD----VI QILIIMHAGPMnGNIMYDDf--KF-tNRIg-R-FTHKNIDL KTTFISTSVTGLFSKKYKL-----
1335


AGZ01981
1339
-AE---NII HLFTLTNLGAP-AAFKYFD--TTI--DRK--R-YTSTKEVL DATLIHQSITGLYETRIDLSQL--
1398


AKA60242
1306
-AE---NII HLFTLTNLGAP-AAFKYFD--TTI--DRK--R-YTSTKEVL DATLIHQSITGLYETRIDLSQL--
1365


AKS40380
1306
-AE---NII HLFTLTNLGAP-AAFKYFD--TTI--DRK--R-YTSTKEVL DATLIHQSITGLYETRIDLSQL--
1365


4UN5_B
1310
-AE---NII HLFTLTNLGAP-AAFKYFD--TTI--DRK--R-YTSTKEVL DATLIHQSITGLYETRIDLSQL--
1369


WP_010922251
1366
GGD
1368


WP_039695303
1370
GEE
1372


WP_045635197
1368
GED
1370


5AXW_A

---



WP_009880683
1050
GGD
1052


WP_010922251
1366
GGD
1368


WP_011054416
1366
GGD
1368


WP_011284745
1366
GGD
1368


WP_011285506
1366
GGD
1368


WP_011527619
1366
GGD
1368


WP_012560673
1366
GGD
1368


WP_014407541
1365
GGD
1367


WP_020905136
1366
GGD
1368


WP_023080005
1365
GGD
1367


WP_023610282
1365
GGD
1367


WP_030125963
1366
GGD
1368


WP_030126706
1366
GGD
1368


WP_031468318
1366
GGD
1368


WP_032460140
1366
GGD
1368


WP_032461047
1366
GGD
1368


WP_032462016
1366
GGD
1368


WP_032462936
1366
GGD
1368


WP_032464890
1366
GGD
1368


WP_033888930
1191
GGD
1193


WP_038431314
1366
GGD
1368


WP_038432938
1365
GGD
1367


WP_038434062
1366
GGD
1368


BAQ51233
1277
GGD
1279


KGE60162
541
GGD
543


KGE60856
304
GGD
306


WP_002989955
1366
GGD
1368


WP_003030002
1343
GED
1345


WP_003065552
1371
GEE
1373


WP_001040076
1368
GED
1370


WP_001040078
1376
GED
1378


WP_001040080
1368
GED
1370


WP_001040081
1368
GED
1370


WP_001040083
1368
GED
1370


WP_001040085
1368
GED
1370


WP_001040087
1368
GED
1370


WP_001040088
1368
GGD
1370


WP_001040089
1368
GED
1370


WP_001040090
1368
GED
1370


WP_001040091
1368
GED
1370


WP_001040092
1368
GED
1370


WP_001040094
1368
GED
1370


WP_001040095
1368
GEG
1370


WP_001040096
1368
GEG
1370


WP_001040097
1368
GED
1370


WP_001040098
1368
GED
1370


WP_001040099
1368
GED
1370


WP_001040100
1368
GED
1370


WP_001040104
1368
GED
1370


WP_001040105
1368
GED
1370


WP_001040106
1368
GED
1370


WP_001040107
1368
GED
1370


WP_001040108
1368
GED
1370


WP_001040109
1368
GED
1370


WP_001040110
1368
GED
1370


WP_015058523
1368
GED
1370


WP_017643650
1368
GED
1370


WP_017647151
1368
GED
1370


WP_017648376
1368
GED
1370


WP_017649527
1368
GED
1370


WP_017771611
1368
GED
1370


WP_017771984
1368
GED
1370


CFQ25032
1368
GED
1370


CFV16040
1368
GED
1370


KLJ37842
1368
GED
1370


KLJ72361
1368
GGD
1370


KLL20707
1382
GED
1384


KLL42645
1368
GED
1370


WP_047207273
1368
GED
1370


WP_047209694
1368
GED
1370


WP_050198062
1368
GED
1370


WP_050201642
1368
GED
1370


WP_050204027
1368
GED
1370


WP_050881965
1368
GED
1370


WP_050886065
1368
GED
1370


AHN30376
1368
GED
1370


EAO78426
1368
GED
1370


CCW42055
1368
GED
1370


WP_003041502
1384
GED
1386


WP_037593752
1344
GED
1346


WP_049516684
1344
GED
1346


GAD46167
1343
GED
1345


WP_018363470
1375
GEE
1377


WP_003043819
1373
GGD
1375


WP_006269658
1343
GED
1345


WP_048800889
1363
GED
1365


WP_012767106
1369
GGD
1371


WP_014612333
1369
GGD
1371


WP_015017095
1369
GGD
1371


WP_015057649
1369
GGD
1371


WP_048327215
1369
GGD
1371


WP_049519324
1369
GGD
1371


WP_012515931
1346
GEN
1348


WP_021320964
1346
GEN
1348


WP_037581760
1346
GEN
1348


WP_004232481
1375
GEE
1377


WP_009854540
1368
GEE
1370


WP_012962174
1369
GEE
1371


WP_039695303
1370
GEE
1372


WP_014334983
1373
GEE
1375


WP_003099269
1366
GGK
1368


AHY15608

---



AHY17476

---



ESR09100
198
GGK
200


AGM98575

---



ALF27331
1343
GGD
1345


WP_018372492
1351
GEN
1353


WP_045618028
1374
GED
1376


WP_045635197
1368
GED
1370


WP_002263549
1343
GGD
1345


WP_002263887
1343
GGD
1345


WP_002264920
1343
GGD
1345


WP_002269043
1343
GGD
1345


WP_002269448
1343
GGD
1345


WP_002271977
1343
GGD
1345


WP_002272766
1343
GGD
1345


WP_002273241
1343
GGD
1345


WP_002275430
1343
GGD
1345


WP_002276448
1343
GGD
1345


WP_002277050
1353
GGD
1355


WP_002277364
1343
GGD
1345


WP_002279025
1343
GGD
1345


WP_002279859
1343
GGD
1345


WP_002280230
1343
GGD
1345


WP_002281696
1343
GGD
1345


WP_002282247
1353
GGD
1355


WP_002282906
1343
GGD
1345


WP_002283846
1343
GGD
1345


WP_002287255
1343
GGD
1345


WP_002288990
1343
GGD
1345


WP_002289641
1343
GGD
1345


WP_002290427
1343
GGD
1345


WP_002295753
1343
GGD
1345


WP_002296423
1343
GGD
1345


WP_002304487
1357
GGD
1359


WP_002305844
1343
GGD
1345


WP_002307203
1343
GGD
1345


WP_002310390
1343
GGD
1345


WP_002352408
1343
GGD
1345


WP_012997688
1343
GGD
1345


WP_014677909
1343
GGD
1345


WP_019312892
1343
GGD
1345


WP_019313659
1343
GGD
1345


WP_019314093
1343
GGD
1345


WP_019315370
1343
GGD
1345


WP_019803776
1343
GGD
1345


WP_019805234
1343
GGD
1345


WP_024783594
1343
GGD
1345


WP_024784288
1353
GGD
1355


WP_024784666
1343
GGD
1345


WP_024784894
1343
GGD
1345


WP_024786433
1353
GGD
1355


WP_049473442
1343
GGD
1345


WP_049474547
1343
GGD
1345


EMC03581
1336
GGD
1338


WP_000428612
1371
GED
1373


WP_000428613
1369
GED
1371


WP_049523028
1364
GEE
1366


WP_003107102
1335
GGD
1337


WP_054279288
1366
GGD
1368


WP_049531101
1374
GED
1376


WP_049538452
1374
GED
1376


WP_049549711
1376
GED
1378


WP_007896501
1372
GGD
1374


EFR44625
1324
GGD
1326


WP_002897477
1368
GEE
1370


WP_002906454
1375
GED
1377


WP_009729476
1369
GED
1371


CQR24647
1359
GGE
1361


WP_000066813
1373
GED
1375


WP_009754323
1369
GED
1371


WP_044674937
1362
GGD
1364


WP_044676715
1364
GGD
1366


WP_044680361
1364
GGD
1366


WP_044681799
1362
GGD
1364


WP_049533112
1384
GED
1386


WP_029090905

---



WP_006506696

---



AIT42264
1366
GGD
1389


WP_034440723

---



AKQ21048
1366
GGD
1384


WP_004636532
1330
-ED
1332


WP_002364836
1336
-VD
1337


WP_016631044
1287
-VD
1288


EMS75795
1077
GEQ
1079


WP_002373311
1336
-VD
1337


WP_002378009
1336
-VD
1337


WP_002407324
1336
-VD
1337


WP_002413717
1336
-VD
1337


WP_010775580
1338
-VD
1339


WP_010818269
1336
-VD
1337


WP_010824395
1336
-VD
1337


WP_016622645
1336
-VD
1337


WP_033624816
1336
-VD
1337


WP_033625576
1336
-VD
1337


WP_033789179
1336
-VD
1337


WP_002310644

---



WP_002312694

---



WP_002314015

---



WP_002320716

---



WP_002330729

---



WP_002335161

---



WP_002345439

---



WP_034867970
1334
GEQ
1336


WP_047937432

---



WP_010720994
1334
GEQ
1336


WP_010737004
1334
GEQ
1336


WP_034700478
1334
GEQ
1336


WP_007209003

---



WP_023519017
1327
GER
1330


WP_010770040
1333
-VD
1334


WP_048604708
1329
-GD
1330


WP_010750235
1337
GVQ
1339


AII16583
1405
GGD
1424


WP_029073316

---



WP_031589969

---



KDA45870

---



WP_039099354

---



AKP02966

---



WP_010991369
1333
-DD
1334


WP_033838504
1333
-DD
1334


EHN60060
1336
-DD
1337


EFR89594
1102
-DD
1103


WP_038409211
1333
-ED
1334


EFR95520
952
-ED
953


WP_003723650
1333
-DD
1334


WP_003727705
1333
-DD
1334


WP_003730785
1333
-DD
1334


WP_003733029
1333
-DN
1334


WP_003739838
1333
-DG
1334


WP_014601172
1333
-DD
1334


WP_023548323
1333
-DS
1334


WP_031665337
1333
-DD
1334


WP_031669209
1333
-DN
1334


WP_033920898
1333
-DS
1334


AKI42028
1336
-DD
1337


AKI50529
1336
-DS
1337


EFR83390
781
-DD
782


WP_046323366
1333
-DD
1334


AKE81011
1382
GGD
1400


CUO82355

---



WP_033162887

---



AGZ01981
1399
GGD
1417


AKA60242
1366
GGD
1368


AKS40380
1366
GGD
1376


4UN5_B
1370
GGD
1372









Additional suitable Cas9 sequences in which amino acid residues homologous to residues 10, 122, 137, 182, 262, 294, 409, 480, 543, 660, 694, 840, 1219, and/or 1329 of SEQ ID NO: 9 can be identified are known to those of skill in the art. See, e.g., Supplementary Table S2 and Supplementary Figure S2 of Fonfara et al., Phylogeny of Cas9 determines functional exchangeability of dual-RNA and Cas9 among orthologous type II CRISPR-Cas systems, Nucl. Acids Res. 2013, doi: 10.1093/nar/gkt1074, which are incorporated herein by reference in their entirety. Cas9 variants of the sequences provided herein or known in the art comprising one or more mutations, e.g., at least one, at least two, at least three, at least four, at least five, at least six, or at least seven mutations as provided herein, e.g., of one or more amino acid residue that is homologous to amino acid residue 10, 122, 137, 182, 262, 294, 409, 480, 543, 660, 694, 840, 1219, and/or 1329 in SEQ ID NO: 9 are provided by this disclosure, for example, Cas9 variants comprising a A262T, K294R, S409I, E480K, E543D, M694I, and/or E1219V mutation.


Example 4: Evolution of Cas9 with Broadened PAM Specificities

By evolving S. pyogenes Cas9 on a NNN PAM library using PACE, Cas9s with broadened PAM specificities have been evolved with higher activities for many non-canonical PAMs. Such a Cas9 still retains its native DNA binding and cutting activity and can be utilized with all of the current tools available. It has been hypothesized that by modulating Cas9's interactions with the DNA, the PAM specificity of Cas9 can be modified and expanded. Other Cas9s such as Staphylococcus aureus could also be engineered to change and expand their PAM specificity by such a method. Methods to modulate DNA binding such as targeted mutagenesis of the Cas9 protein, fusions to DNA-binding proteins, and the use of multiple Cas9 proteins tethered to each other could also expand the PAMs that can be targeted.


Cas9 Evolution. After evolution using overnight propagation of the phage with the mutagenesis plasmid (MP), the resultant phages containing mutations, discussed above, in PACE were used. Twenty-four individual phages were sequenced from the PACE run. Mutations found in the Cas9 gene are documented in Table 3 below. The Cas9 gene containing these mutations was cloned out of the phage and into plasmids to test both DNA binding and cutting activity.









TABLE 3





Cas9 mutations



























pJH306














(WT dCas9- VPR)


pJH407


(WT Cas9)


pJH562





E480K
E543D

E1219V


(dCas9-VPR)


pJH599
A262T



S409I
E480K
E543D
M694I
E1219V


(dCas9-VPR)


pJH600


K294R


E480K
E543D

E1219V

Q1256K
L1362P


(dCas9-VPR)


pJH601
A262T



S409I
E480K
E543D
M694I
E1219V


(dCas9-VPR)


pJH602


K294R


E480K
E543D

E1219V

Q1256K


(dCas9-VPR)


pJH603
A262T



S409I
E480K
E543D
M694I
E1219V


(dCas9-VPR)


pJH604

S267G
K294R


E480K
E543D

E1219V
N1224K
Q1256K


(dCas9-VPR)


pJH605
A262T


F405I
S409I
E480K
E543D
M694I
E1219V


(dCas9-VPR)


pJH760
A262T



S409I
E480K
E543D
M694I
E1219V


(pJH599 Minus


VPR, Nuclease


Positive)









GFP Activation in Human Cell Culture. Testing was performed on a reporter with a GFP reporter activated by dCas9-VPR. Testing was performed on 5′-NGG-3′ PAM first (FIGS. 4A and 4B) and then with a library of GFP reporters all containing the same Cas9 target site, but with NNN at the PAM position (FIGS. 5A and 5B). In this testing, dCas9-VPR was found to activate the GFP signal. Wild-type Cas9 with no mutations (pJH306), Cas9 evolved from overnight propagation (pJH562), and Cas9 evolved from PACE (pJH599-pJH605) were all tested. Mutations for each Cas9 are documented in Table 3 above.


dCas9-VPR on all 64 PAM Sequences. pJH306 (WT dCas9-VPR) and pJH599 (WT dCas9-VPR with mutations A262T, S409I, E480K, E543D, M694I, and E1219V) were tested on all 64 PAM sequences (FIG. 6). dCas9-VPR was used to activate GFP as before and a different reporter plasmid was used for each well to ascertain the activation efficiency for all 64 different PAM sequences. The mean GFP fluorescence was measured for all transfected cells, as gated by iRFP signal. pJH599 showed either improved or similar levels of activation as compared to pJH306 for all PAM sequences.


In Vitro Cutting Assay. The ability of expressed and purified WT Cas9 (WT) and Cas 9 with an E1219V mutation (1) to cut DNA with different PAMs was tested (FIG. 7). Cas9 was incubated with dsDNA containing the target site. Cutting was measured by running the DNA on a gel to compare the amount of uncut product to the amount of cut products, which run faster due to their smaller size. The E1219V mutation was found to increase Cas9 cutting activity on non-canonical PAMs while maintaining activity on 5′-NGG-3′ PAMs.


Evolving Different Systems. In addition to S. pyogenes Cas9 evolution, other Cas9 systems such as S. aureus, S. thermophilus, N. meningitidis, and T. denticola, etc. can be evolved to modify and expand their PAM specificities. The data indicates that, by using a similar system to the S. pyogenes Cas9 evolution, a phage containing the S. aureus Cas9 can also be evolved to expand its PAM specificity.


Modulating PAM Specificity. By mutating neutral and negatively charged amino acids to positively charged amino acids, Cas9 could be modified to expand the PAMs that can be targeted. Generally, incorporating mutations into Cas9 proteins that generate a net increase in positive charge may increase the affinity of Cas9 to bind DNA. In combination with the Cas9 mutations provided herein, additional residues that could be mutated for increased PAM targeting in S. pyogenes Cas9 further include ones that have been identified to change the PAM specificity (D1135, G1218, R1333, R1335, T1337)38 and residues that can increase Cas9 activity (S845 and L847) 37. Residues that increase Cas9 specificity such as the mutations of arginine, histidine, and lysine to alanine previously identified37 and the mutations of asparagine, arginine, and glutamine to alanine as previously identified39 could lead to lower tolerability for non-canonical PAMs as these mutations presumably decrease the interactions between the Cas9 and DNA.


Fusions to Modulate PAM Specificity. Programmable DNA-binding proteins such as zinc-finger domains, TALEs, and other Cas9 proteins could be fused to Cas9 to improve the ability to target nucleotide sequences having canonical or non-canonical PAMs, for example to increase activity, specificity or efficiency. A nuclease-null dCas9 could be fused to a nuclease active Cas9 to increase the ability of the nuclease active Cas9 to target different PAM sequences. One example of a nuclease-null dCas9 fused to a nuclease active Cas9 is shown in FIG. 8. Such fusions can be useful for improving the ability to target nucleotide sequences having canonical or non-canonical PAMs. The Cas9s could either be from the same species or from different species. Furthermore, both Cas9s could be nuclease-null dCas9, and could be further fused to effector proteins such as VP64, VP64-p65-Rta, FokI, GFP and other fluorescent proteins, deaminases, or any of the effector proteins provided herein.


Using Cas9 to Localize Other Nucleases and Other DNA-Binding Proteins. Cas9 can also be used to overcome the native binding specificity of other proteins by localizing them to their DNA targets. DNA nucleases, recombinases, deaminases, and other effectors often have a native DNA specificity. Cas9 can be fused to these proteins to overcome and expand their native DNA specificities. gRNAs will target the Cas9 adjacent to the DNA effector's target site and will help to localize them to their target site.


dCas9-VPR on NNNNN PAM Library. To test that the evolved Cas9s had not picked up specificity in the 4th and 5th PAM positions, dCas9-VPR on a NNNNN PAM library was tested. As seen with the NNN library, most of the constructs (e.g., pJH562, pJ559, pJH600, pJH601, pJH602, pJH603, and pJH605) showed improved activity. pJH599 consistently showed improvement in both the percentage of cells that showed GFP activation (FIG. 9A) and the mean fluorescence of those cells that showed GFP activation (FIG. 9B).


Cas9 GFP Cutting. The WT Cas9, pJH407, was compared with a nuclease-positive evolved Cas9, pJH760 (FIG. 10). pJH760 contained the same mutations as pJH599 but without the D10A and H480A nuclease-inactivating mutations, and without the VPR fusion. A genomically integrated GFP gene was cut by Cas9 and the activity was measured by the loss of GFP signal in cells. On a site with 5′-NGG-3′ PAM, pJH407 and pJH760 showed comparable activity. On a site with GAT PAM, pJH760 showed a significant increase in activity as compared to pJH407.


Example 5 Cas9:DNA Editing Enzyme Fusion Proteins

This disclosure further provides Cas9 fused with a DNA editing enzyme for the targeted editing of DNA sequences. FIG. 11 illustrates double stranded DNA substrate binding by DNA editing enzyme-dCas9:sgRNA complexes. The DNA editing enzyme shown is a deaminase. The structures according to FIG. 11 are identified in these sequences (36 bp: underlined, sgRNA target sequence: bold; PAM: boxed; 21 bp: italicized).


Example 6 PAM Depletion Assay

In E. coli, a library of PAM sequences are encoded in a plasmid that also contains an antibiotic gene. If the Cas9 can cut the PAM sequences on the plasmid, the plasmid is not replicated and is lost; only plasmids that are uncut remain the population. The plasmids that were cut by the Cas9 can be determined by sequencing the initial plasmid population and the final plasmid population through high throughput sequencing. The proportion of the library consisting of each PAM sequence was obtained by dividing the number of reads containing the PAM sequence by the total number of reads. The depletion score was then calculated by dividing the proportion of the library containing the PAM section before the selection by the proportion of the library containing the PAM sequence after selection. Higher depletion scores signify higher cutting activity by the Cas9 of that particular PAM sequence. The results of the PAM depletion assay are shown in FIG. 12.


A number of PAM sequences that were not cut with the wild-type Cas9 were cut with the evolved Cas9 (xCas9 v1.0, pJH760). Notably, all PAM sequences of the form NGN and NNG, as well as GAA and GAT showed a depletion greater than 10-fold with the xCas9. A single G in either the second or third PAM position could be sufficient for cutting with the newly evolved Cas9, opening up the sequence space significantly for the target sites that can be targeted using Cas9. The PAM depletion scores are given in Table 4.









TABLE 4







PAM Depletion Scores









PAM

xCas9


Sequence
WT Cas9
v1.0












TCG
0.96
32.75


CAG
12.63
32.01


GCG
1.38
31.14


ACG
1.12
30.15


TGG
18.99
30.13


TGT
1.01
28.37


GGC
11.78
28.17


AGA
1.25
27.80


GAG
19.47
27.71


GGT
12.22
27.59


CGA
1.27
27.53


CGT
0.97
27.30


TGA
1.72
27.02


GGA
16.03
26.90


AGG
17.80
26.19


TAG
9.54
25.98


CGC
1.76
25.88


AGT
0.97
24.88


CGG
19.03
24.77


AAG
15.40
24.16


GTG
3.76
23.71


ATG
1.26
23.48


GGG
17.59
23.01


TGC
1.71
23.00


TTG
0.98
22.15


GAA
1.04
20.96


AGC
1.43
16.85


GAT
1.02
16.09


CTG
1.29
13.88


CCG
1.02
11.86


CAT
0.99
5.75


CAA
1.00
5.28


GAC
0.98
3.96


TAA
0.97
1.90


AAA
1.02
1.81


TAT
0.95
1.56


CAC
1.01
1.48


GTA
0.94
1.42


AAT
0.98
1.39


GCA
0.98
1.22


ACA
0.95
1.13


AAC
1.08
1.09


TAC
0.92
0.95


ATA
1.04
0.94


GTC
0.99
0.92


GCT
0.99
0.87


TCA
0.94
0.84


CTA
0.95
0.83


GCC
0.99
0.82


GTT
0.97
0.81


TCC
0.98
0.80


ACC
0.96
0.80


CTC
0.92
0.80


CCA
0.97
0.79


CCC
0.95
0.79


CTT
0.96
0.79


ATC
0.96
0.78


CCT
0.94
0.78


ATT
0.93
0.77


ACT
0.89
0.77


TTT
0.94
0.77


TCT
0.95
0.77


TTC
0.96
0.76


TTA
0.94
0.76









Example 7: GFP Cutting Mammalian Cells

Wild-type or evolved Cas9 and gRNAs were transfected into mammalian cells containing a genomically integrated GFP gene. Different gRNAs targeted different sites with different PAM sequences, such that cutting of the GFP by Cas9 would lead to a loss of the GFP signal. The GFP signal was quantified after five days with flow cytometry. As shown in FIG. 13, evolved Cas9 cut GFP in mammalian, in line with the results in the GFP activation assay and in the PAM depletion assay. High throughput sequencing around the cut site verified the results seen with the flow cytometer; the indels were proportional to the cutting percentage seen with the flow cytometer.


Example 8: Further Evolution of the HHH Library

As SpCas9 has a preference for the G residues at the second and third base, evolutation was continued using the end point from the last evolution on a HHH (H=A, C, or T) PAM library. After evolution, 13 colonies were sequenced and a number of new mutations were identified. Three mutations, the E1219V, E480K, and E543D mutations were found in all the clones. A number of the clones either had the S267G/K294R/Q1256K mutations or the A262T/S409I mutations but those mutations were never seen together, suggesting that the clones had taken two divergent paths along the evolutionary landscape. The new mutations are given in Table 5.









TABLE 5







New Mutations



















HHH
HHH
HHH
HHH
HHH
HHH
HHH
HHH
HHH
HHH
HHH
HHH
HHH


#1
#2
#3
#4
#5
#6
#7
#8
#9
#10
#11
#12
#13


(xCas9
(xCas9
(xCas9
(xCas9
(xCas9
(xCas9
(xCas9
(xCas9
(xCas9
(xCas9
(xCas9
(xCas9
(xCas9


2.0)
2.1)
2.2)
2.3)
2.4)
2.5)
2.6)
2.7)
2.8)
2.9)
2.10)
2.11)
2.12)







D23N














E108G


R115H


K141Q











D180N










P230S



P230S





D257N




A262T



A262T



A262T


S267G
S267G

S267G

S267G


S267G


S267G
S267G











D284N


K294R
K294R

K294R

K294R

K294R
K294R


K294R
K294R








R324L


Q394H




S409I

S409I

S409I



S409I






L455F





T466A











T474I


E480K
E480K
E480K
E480K
E480K
E480K
E480K
E480K
E480K
E480K
E480K
E480K
E480K


E543D
E543D
E543D
E543D
E543D
E543D
E543D
E543D
E543D
E543D
E543D
E543D
E543D











K554R






R654L




M694I



M694I



M694I









A711E




L727P











M763I





I1063V






V1100I


E1219V
E1219V
E1219V
E1219V
E1219V
E1219V
E1219V
E1219V
E1219V
E1219V
E1219V
E1219V
E1219V











K1244N


Q1256K
Q1256K

Q1256K

Q1256K

Q1256K
Q1256K


Q1256K
Q1256K




K1289Q






A1323S









Example 9: Further Evolved Cas9 Proteins for Gene Editing

pJH760, described in Example 6, was tested in the PAM depletion assay on a number of new targets. Four new targets were selected: re2 (GGGGCCACTAGGGACAGGAT (SEQ ID NO: 314)), a synthetic target previously used for GFP activation in mammalian cells; VEGF (GGGTGGGGGGAGTTTGCTCC (SEQ ID NO: 315)), a target within the VEGF gene, CLTA (GCAGATGTAGTGTTTCCACA (SEQ ID NO: 316)), a target within the CLTA gene; and CCR5D (TCACTATGCTGCCGCCCAGT (SEQ ID NO: 317)), a target within the CCR5D gene. The results of the PAM depletion assay are given in FIGS. 14 to 17. It was found that, in addition to the canonical NGG sequence, PAM depletion demonstrates cutting for most NGN and some NNG sequences as well.


The HHH PAM library was further evolved using the end point from the last evolution on a HHH (H=A, C, or T) PAM library. After evolution, 13 colonies were sequenced and a number of new mutations were identified. Three mutations, the E1219V, E480K, and E543D mutations were found in all the clones. A number of the clones either had the K294R/Q1256K mutations or the A262T/S409I mutations but those mutations were never seen together, suggesting that the clones had taken two divergent paths along the evolutionary landscape. The new mutations are given in Tables 8 and 9 below.


As expected, variation in activity was seen with different targets. The PAM depletion assay scores are given in Table 10. NGN consistently showed cutting activity with some targets. Variation was seen amongst the xCas9 3.x mutants in terms of which mutant had the best activity. Of note, xCas9 3.3 contained the K294R/Q1256K series of mutations, while the other three mutants (3.6, 3.7, and 3.8) contained the A262T/S409I series of mutations. xCas9 3.6 and 3.7 outperformed 3.8. While 3.3 seemed to have the highest activity for most cases, 3.6 and 3.7 performed better on certain PAM sequences. The results of the PAM depletion assays for three of the new targets described above are given in FIGS. 18 to 20.


A NNNNN PAM depletion library was constructed. It was assayed to examine any fourth or fifth base specificity. Initial results of the PAM depletion assay show that there is no preference at the fourth and fifth base as expected.


In summary, E1219V was found to be one of the earliest mutations that fixed in the evaluation. It is close to the PAM sequence in the crystal structure. E480K and E543D were also seen in all of the clones from the early stages of the evolution, and may be important. K294R/Q1256K and A262T/S409I seem to be two divergent paths, and may be important. Their PAM sequence profiles seem to be slightly different, which implies their importance relative to PAM activity determination.









TABLE 6







Diseases/disorders containging T to C Changes.The table includes human gene


mutations that may be corrected by changing a cytosine (C) to a thymine (T). The gene


name, gene symbol,and Gene ID are indicated.











SEQ






ID

Gene
Gene



NO: 
Name
ID
Symbol
Flanks














674
NM_000410.3(HFE): c.314T > C
3077
HFE
[′ATGTTCACTGTTGACTTCTGGACTAYTATGG



(p.Ile105Thr)


AAAATCACAACCACAGCAAG′]





675
NM_144631.5(ZNF513): c.1015T >
130557
ZNF513
[′GCTGGGAGCTGCCATGTGTGGGCGCYGCAT



C (p.Cys339Arg)


GCGAGGAGAGGCTGGAGGGGG′]





676
NM_001199107.1(TBC1D24): c.
57465
TBC1D24
[′CGTGGCGCTGGCCATCCTCAAGTTCYTCCAC



751T > C (p.Phe251Leu)


AAGGTGAGGGCCGGGCAGCC′]





677
NM_001708.2(OPN1SW): c.640T >
611
OPN1SW
[′CATCTTCTGCTTCATTGTGCCTCTCBCCCTCA



C (p.Ser214Pro)


TCTGCTTCTCCTACACTCA′]





678
NM_000235.3(LIPA): c.599T > C
3988
LIPA
[′AAAAGGATTAAAATGTTTTTTGCCCYGGGTC



(p.Leu200Pro)


CTGTGGCTTCCGTCGCCTTC′]





679
NM_000071.2(CBS): c.833T > C
875
CBS
[′CTGAAGCCGCGCCCTCTGCAGATCAYTGGG



(p.Ile278Thr)


GTGGATCCCGAAGGGTCCATC′]





680
NM_000071.2(CBS): c.1616T > C
875
CBS
[′TTCGGGGTGGTCACCGCCATTGACTYGCTGA



(p.Leu539Ser)


ACTTCGTGGCCGCCCAGGAG′]





681
NM_033409.3(SLC52A3): c.670T >
113278
SLC52A3
[′CGCCCACTTCTCACCCCTGGTCTTCYTCCTCC



C (p.Phe224Leu)


TCCTATCCATCATGATGGC′]





682
NM_033409.3(SLC52A3): c.1238T >
113278
SLC52A3
[′CTTTTCAGCGGCTGCCTCAGTTACGYCAAGG



C (p.Val413Ala)


TGATGCTGGGCGTGGTCCTG′]





683
NM_000274.3 (OAT): c.163T > C
4942
OAT
[′GGAATATAAGTATGGTGCACACAACYACCA



(p.Tyr55His)


TCCTTTACCTGTAGCCCTGGA′]





684
NM_000274.3(OAT): c.1205T > C
4942
OAT
[′TGTCTACGACTTCGAGATAATGGACYTCTGG



(p.Leu402Pro)


CCAAGCCAACCCATGGCGAC′]





685
NM_000274.3(OAT): c.1180T > C
4942
OAT
[′TTTAGATTGGGATGCTTGGAAGGTGYGTCTA



(p.Cys394Arg)


CGACTTCGAGATAATGGACT′]





686
NM_001385.2(DPYS): c.1078T >
1807
DPYS
[′TGTTGAAGATCGGATGTCCGTAATAYGGGA



C (p.Trp360Arg)


AAAAGGCGTGGTGGGTTTCAC′]





687
NM_000027.3(AGA): c.916T > C
175
AGA
[′TCCAGAATTCTTTGGGGCTGTTATAYGTGCC



(p.Cys306Arg)


AATGTGACTGGAAGTTACGG′]





688
NM_000027.3(AGA): c.214T > C
175
AGA
[′GTGTGAGAGAGAGCAGTGTGACGGCYCTGT



(p.Ser72Pro)


AGGCTTTGGAGGAAGTCCTGA′]





689
NM_000398.6(CYB5R3): c.382T >
1727
CYB5R3
[′CAAGTTTCCCGCTGGAGGGAAGATGYCTCA



C (p.Ser128Pro)


GTACCTGGAGAGCATGCAGAT′]





690
NM_000398.6(CYB5R3): c.446T >
1727
CYB5R3
[′GAGTTCCGGGGCCCCAGTGGGCTGCYGGTC



C (p.Leu149Pro)


TACCAGGGCAAAGGTGATTCG′]





691
NM_000398.6(CYB5R3): c.610T >
1727
CYB5R3
[′GAAGGACCCTGATGACCACACTGTGYGCCA



C (p.Cys204Arg)


CCTGCTCTTTGCCAACCAGGT′]





692
NM_000398.6(CYB5R3): c.218T >
1727
CYB5R3
[′CCGTCACCCCAGCACATCCTGGGCCYCCCTG



C (p.Leu73Pro)


TCGGTGAGTCACGCCCCTGC′]





693
NM_000552.3(VWF): c.4883T > C
7450
VWF
[′CCTGGAGACATCCAGGTGGTGCCCAYTGGA



(p.Ile1628Thr)


GTGGGCCCTAATGCCAACGTG′]





694
NM_000552.3(VWF): c.4837T > C
7450
VWF
[′CTACATGGTCACCGGAAATCCTGCCYCTGAT



(p.Ser1613Pro)


GAGATCAAGAGGCTGCCTGG′]





695
NM_000552.3(VWF): c.3814T > C
7450
VWF
[′GGAACCGCCGTTGCACGATTTCTACBGCAGC



(p.Cys1272Arg)


AGGCTACTGGACCTGGTCTT′]





696
NM_000552.3(VWF): c.8317T > C
7450
VWF
[′CAACGATGTGCAGGACCAGTGCTCCYGCTG



(p.Cys2773Arg)


CTCTCCGACACGGACGGAGCC′]





697
NM_000552.3(VWF): c.3445T > C
7450
VWF
[′TGAGTGTGAGTGGCGCTATAACAGCYGTGC



(p.Cys1149Arg)


ACCTGCCTGTCAAGTCACGTG′]





698
NM_000552.3(VWF): c.3178T > C
7450
VWF
[′GAAGCAGACGATGGTGGATTCCTCCYGTAG



(p.Cys1060Arg)


AATCCTTACCAGTGACGTCTT′]





699
NM_001042492.2(NF1): c.5858T >
4763
NF1
[′TGTTTGGAATACATGACTCCATGGCYGTCAA



C (p.Leu1953Pro)


ATCTAGTTCGTTTTTGCAAG′]





700
NM_000267.3(NF1): c.1523T > C
4763
NF1
[′ATTCATGCAGATCCAAAGCTCTTGCYTTGTG



(p.Leu508Pro)


TAAGTATTTTTTTATGAAAT′]





701
NM_000267.3(NF1): c.6200T > C
4763
NF1
[′ATTTTAGCACGCTACATGCTGATGCYGTCCT



(p.Leu2067Pro)


TCAACAATTCCCTTGATGTG′]





702
NM_000267.3(NF1): c.1070T > C
4763
NF1
[′CTGTTGGGGTTTTTATAGAACCTGCYTTTTA



(p.Leu357Pro)


ATCCAAGTAAGCCATTCTCA′]





703
NM_000267.3(NF1): c.3728T > C
4763
NF1
[′TCTCAGGATGAACTAGCTCGAGTTCYGGTTA



(p.Leu1243Pro)


CTCTGTTTGATTCTCGGCAT′]





704
NM_000308.2(CTSA): c.247T > C
5476
CTSA
[′CTCCGGCTCCAAGCACCTCCACTACYGGTCT



(p.Trp83Arg)


GCCGCCCTGCCTTCTGGGCG′]





705
NM_001127695.1(CTSA): c.707T >
5476
CTSA
[′ATCTCCTACAGGCTTTGGTCTTCTCYCCAGA



C (p.Leu236Pro)


CCCACTGCTGCTCTCAAAAC′]





706
NM_000308.2(CTSA): c.1271T >
5476
CTSA
[′GATGTAGACATGGCCTGCAATTTCAYGGGG



C (p.Met424Thr)


GATGAGTGGTTTGTGGATTCC′]





707
NM_000405.4(GM2A): c.412T >
2760
GM2A
[′GCGTACCTATGGGCTTCCTTGCCACYGTCCC



C (p.Cys138Arg)


TTCAAAGAAGTAAGTACTTA′]





708
NM_001165974.1(UROC1): c.209T >
131669
UROC1
[′CCAGAGTTTGCCCAGGAGCTGCAACYGTAC



C (p.Leu70Pro)


GGACACATCTACATGTACCGG′]





709
NM_003730.4(RNASET2): c.550T >
8635
RNASET2
[′ATATGGAGTGATACCCAAAATCCAGYGCCT



C (p.Cys184Arg)


TCCACCAAGCCAGGTTAGACA′]





710
NM_199069.1(NDUFAF3): c.2T >
25915
NDUFAF3
[′GACTTCGCCGCGCGTTGGTCAGCCAYGGCC



C (p.Met1Thr)


ACCGCTCTCGCGCTACGTAGC′]





711
NM_178012.4(TUBB2B): c.514T >
347733
TUBB2B
[′CATGAACACCTTCAGCGTCATGCCCYCACCC



C (p.Ser172Pro)


AAGGTGTCAGACACGGTGGT′]





712
NM_178012.4(TUBB2B): c.683T >
347733
TUBB2B
[′CCCACCTACGGGGACCTCAACCACCYGGTG



C (p.Leu228Pro)


TCGGCCACCATGAGCGGGGTC′]





713
NM_178012.4(TUBB2B): c.793T >
347733
TUBB2B
[′CATGGTGCCCTTCCCTCGCCTGCACYTCTTC



C (p.Phe265Leu)


ATGCCCGGCTTCGCGCCCCT′]





714
NM_000110.3(DPYD): c.85T > C
1806
DPYD
[′TCGAACACAAACTCATGCAACTCTGYGTTCC



(p.Cys29Arg)


ACTTCGGCCAAGAAATTAGA′]





715
NM_133459.3(CCBE1): c.520T >
147372
CCBE1
[′CATCCGGGAAGATGATGGGAAGACAYGTAC



C (p.Cys174Arg)


CAGGGGAGACAAATATCCCAA′]





716
NM_000035.3(ALDOB): c.442T >
229
ALDOB
[′GAAAGATGGTGTTGACTTTGGGAAGYGGCG



C (p.Trp148Arg)


TGCTGTGCTGAGGATTGCCGA′]





717
NM_000320.2(QDPR): c.106T > C
5860
QDPR
[′AACCAAAGCTGTTTTCTCCTTCCAGYGGGTT



(p.Trp36Arg)


GCCAGCGTTGATGTGGTGGA′]





718
NM_173560.3(RFX6): c.380 + 2T >
222546
RFX6
[′GCAGACACAGCTCACGCTGCAGTGGYGAGA



C


CTCGCCCGCAGGGTACACTGA′]





719
NM_173560.3(RFX6): c.649T > C
222546
RFX6
[′AAAATGTACTAATTTTTTAAGGTTTYCTGGA



(p.Ser217Pro)


AGCAAGCTAAAGAATGAGGT′]





720
NM_000037.3(ANK1): c.-
286
ANK1
[′CTGCGGGGCCTGTGACGTGCGGGCCRGGCC



108T > C


CCCGAGGGCCTTATCGGCCCC′]





721
NM_001145308.4(LRTOMT): c.313T >
220074
LRTOMT
[′TCACATCCTCACCACCCTGGACCACYGGAGC



C (p.Trp105Arg)


AGCCGCTGCGAGTACTTGAG′]





722
NM_001012515.2(FECH): c.1268T >
2235
FECH
[′CCTGTCTGCAGGGAGACTAAATCCTYCTTCA



C (p.Phe423Ser)


CCAGCCAGCAGCTGTGACCC′]





723
NM_000140.3(FECH): c.315-
2235
FECH
[′TATTGAGTAGAAAACATTTCTCAGGYTGCTA



48T > C


AGCTGGAATAAAATCCACTT′]





724
NM_024120.4(NDUFAF5): c.686T >
79133
NDUFAF5
[′GCTGTCAATGACCTGGGACATCTGCYTGGG



C (p.Leu229Pro)


AGAGCTGGCTTTAATACTCTG′]





725
NM_000277.1(PAH): c.932T > C
5053
PAH
[′TTACAGGAAATTGGCCTTGCCTCTCYGGGTG



(p.Leu311Pro)


CACCTGATGAATACATTGAA′]





726
NM_000277.1(PAH): c.764T > C
5053
PAH
[′GGCCTGCTTTCCTCTCGGGATTTCTYGGGTG



(p.Leu255Ser)


GCCTGGCCTTCCGAGTCTTC′]





727
NM_000277.1(PAH): c.143T > C
5053
PAH
[′TCACTCAAAGAAGAAGTTGGTGCATYGGCC



(p.Leu48Ser)


AAAGTATTGCGCTTATTTGAG′]





728
NM_000277.1(PAH): c.1045T > C
5053
PAH
[′AAAGGCATATGGTGCTGGGCTCCTGBCATCC



(p.Ser349Pro)


TTTGGTGAATTACAGGTATG′]





729
NM_000277.1(PAH): c.293T > C
5053
PAH
[GCTCTGACAAACATCATCAAGATCTYGAGG



(p.Leu98Ser)


CATGACATTGGTGCCACTGTC′]





730
NM_000277.1(PAH): c.734T > C
5053
PAH
[′TGCACTGGTTTCCGCCTCCGACCTGHGGCTG



(p.Val245Ala)


GCCTGCTTTCCTCTCGGGAT′]





731
NM_000277.1(PAH): c.194T > C
5053
PAH
[′GAGAATGATGTAAACCTGACCCACANTGAA



(p.Ile65Thr)


TCTAGACCTTCTCGTTTAAAG′]





732
NM_000130.4(F5): c.1160T > C
2153
F5
[′CATTTGGATAATTTCTCAAACCAAAYTGGAA



(p.Ile387Thr)


AACATTATAAGAAAGTTATG′]





733
NM_000512.4(GALNS): c.413T >
2588
GALNS
[′AAGGCCGGCTACGTCAGCAAGATTGYCGGC



C (p.Val138Ala)


AAGTGGTAAGTCTCCTGGCCA′]





734
NM_018077.2(RBM28): c.1052T >
55131
RBM28
[′TCCTTTGACTCAGAAGAAGAAGAACYTGGG



C (p.Leu351Pro)


GAGCTTCTCCAACAGTTTGGA′]





735
NM_203395.2(IYD): c.347T > C
389434
IYD
[′AATGAGCAAGTCCCAATGGAAGTCAYTGAT



(p.Ile116Thr)


AATGTCATCAGAACGGCAGGT′]





736
NM_015702.2(MMADHC): c.776T >
27249
MMADHC
[′CATTTAGGATTCTCTGTTGATGACCYTGGAT



C (p.Leu259Pro)


GCTGTAAAGTGATTCGTCAT′]





737
NM_014165.3(NDUFAF4): c.194T >
29078
NDUFAF4
[′AAAGATGAAAAGCTGCTGTCGTTTCYAAAA



C (p.Leu65Pro)


GATGTGTATGTTGATTCCAAA′]





738
NM_001136271.2(NKX2-
137814
NKX2-6
[′GCAGGTGCTGGCCCTGGAGCGGCGCYTCAA



6): c.451T > C (p.Phe151Leu)


GCAGCAGCGGTACCTGTCAGC′]





739
NM_013319.2(UBIAD1): c.511T >
29914
UBIAD1
[′TATCTACTTTGGAGGCCTGTCTGGCYCCTTT



C (p.Ser171Pro)


CTCTACACAGGAGGTAAGAT′]





740
NM_001127628.1(FBP1): c.581T >
2203
FBP1
[′TTGTCTAAAAAGGCCATCGGGGAGTYCATTT



C (p.Phe194Ser)


TGGTGGACAAGGATGTGAAG′]





741
NM_000046.3(ARSB): c.349T > C
411
ARSB
[′TTTACAGCACCAAATAATCTGGCCCYGTCAG



(p.Cys117Arg)


CCCAGCTGTGTTCCTCTGGA′]





742
NM_000046.3(ARSB): c.707T > C
411
ARSB
[′TCTTTCCAGCCTCTGTTTCTCTACCYTGCTCT



(p.Leu236Pro)


CCAGTCTGTGCATGAGCCC′]





743
NM_000404.2(GLB1): c.152T > C
2720
GLB1
[′AAGGATGGCCAGCCATTTCGCTACAYCTCA



(p.Ile51Thr)


GGAAGCATTCACTACTCCCGT′]





744
NM_000404.2(GLB1): c.247T > C
2720
GLB1
[′AAGGGGCTGTGTGTGTCTTGGCAGGBATGTG



(p.Tyr83His)


CCCTGGAACTTTCATGAGCC′]





745
NM_024782.2(NHEJ1) : c.367T >
79840
NHEJ1
[′CCTCCCCTTCTATTGGAATTTCCACYGCATG



C (p.Cys123Arg)


CTAGCTAGTCCTTCCCTGGT′]





746
NM_139241.3(FGD4): c.893T > C
121512
FGD4
[′CAGAAATTGGCACCATTCCTTAAGABGTATG



(p.Met298Thr)


GAGAATATGTGAAAGGATTT′]





747
NM_020631.4(PLEKHG5): c.1940T >
57449
PLEKHG5
[′TTGGGCCTTCCCTAACCAGGGTCCTYCCTCC



C (p.Phe647Ser)


TTATCTACCTGAATGAGTTT′]





748
NM_015559.2(SETBP1): c.2612T >
26040
SETBP1
[′GAGACGATCCCCAGCGACAGCGGCAYTGGG



C (p.Ile871Thr)


ACAGACAACAACAGCACTTCT′]





749
NM_138387.3(G6PC3): c.554T >
92579
G6PC3
[′CTCCTAGGCGCTGTCCTGGGCTGGCYGATGA



C (p.Leu185Pro)


CTCCCCGAGTGCCTATGGAG′]





750
NM_022489.3(INF2): c.556T > C
64423
INF2
[′CTTCAGCATTGTCATGAACGAGCTCYCCGGC



(p.Ser186Pro)


AGCGACAACGTGCCCTACGT′]





751
NM_022489.3(INF2): c.125T > C
64423
INF2
[′GACCCCGAGCTGTGCATCCGGCTGCYCCAG



(p.Leu42Pro)


ATGCCCTCTGTGGTCAACTAC′]





752
NM_018122.4(DARS2): c.492 + 2T >
55157
DARS2
[′TTTGAAATTAAGAACTTCGTGAAGGBACCA



C


ACCTCTGTTATTAATAAAATA′]





753
NM_015272.3(RPGRIP1L): c.1975T >
23322
RPGR1P1L
[′CCTTCATCCCGAATATAACTTCACTYCTCAA



C (p.Ser659Pro)


TATCTTGTTCATGTTAATGA′]





754
NM_001029871.3(RSP04): c.319T >
343637
RSPO4
[′CTTCAGCCAGGACTTCTGCATCCGGYGCAAG



C (p.Cys107Arg)


AGGCAGTTTTACTTGTACAA′]





755
NM_000429.2(MAT1A): c.914T >
4143
MAT1A
[′GCTGCCCGCTGGGTGGCCAAGTCTCYGGTG



C (p.Leu305Pro)


AAAGCAGGGCTCTGCCGGAGA′]





756
NM_032581.3(FAM126A): c.158T >
84668
FAM126A
[′AACATTTTGTCTTTCTTCTAGTTGCBAGAAC



C (p.Leu53Pro)


CTGTCTGTCACCAGCTCTTT′]





757
NM_006364.2(SEC23A): c.1144T >
10484
SEC23A
[′GGGTGATTCTTTCAATACTTCCTTAYTCAAA



C (p.Phe382Leu)


CAAACTTTTCAAAGAGTCTT′]





758
NM_018006.4(TRMU): c.229T >
55687
TRMU
[′CCATCAAGTGTCCTACGTAAAGGAGYATTG



C (p.Tyr77His)


GAATGATGTGTTCAGGTGAGT′]





759
NM_001174089.1(SLC4A11): 
83959
SLC4A11
[′CTGCAGGTGCTTCAGCTGCTGCTGCYGTGTG



c.2480T > C (p.Leu827Pro)


CCTTCGGCATGAGCTCCCTG′]





760
NM_001174089.1(SLC4A11): c.589T >
83959
SLC4A11
[′AGTGACAGGGGTGCGGTACCAGCAGYCGTG



C (p.Ser197Pro)


GCTCTGCATCATGTGAGTTGC′]





761
NM_148960.2(CLDN19): c.269T >
149461
CLDN19
[′GCCCTGATGGTGGTGGCCGTGCTCCYGGGCT



C (p.Leu90Pro)


TCGTGGCCATGGTCCTCAGC′]





762
NM_153704.5(TMEM67): c.2498T >
91147
TMEM67
[′AACACAGATGGTCAGACTTTTGAGAYTGCA



C (p.Ile833Thr)


ATTTCTAACCAGATGAGACAA′]





763
NM_153704.5(TMEM67): c.1769T >
91147
TMEM67
[′ACAGGTCTTTACTGGCTTATTTTCTYCAAAG



C (p.Phe590Ser)


TGAGTGAGTTTCTGAATTTT′]





764
NM_153704.5(TMEM67): c.1843T >
91147
TMEM67
[′AGAACGTTTTGTCACTTATGTTGGAHGTGCC



C (p.Cys615Arg)


TTTGCTCTGAAGGTAAGTTT′]





765
NM_153704.5(TMEM67): c.755T >
91147
TMEM67
[′ACATCTTGTCAAGCTCTTGGAAATAYGTGTG



C (p.Met252Thr)


TGATGAACATGAATTCTTAC′]





766
NM_017777.3(MKS1): c.80 + 2T >
54903
MKS1
[′CCCCGTGCGCAACTTGCGCCTCCGGYAGTCG



C


CACCGCCCCAGCCCCGAGGC′]





767
NM_001041.3(SI): c.1022T > C
6476
SI
[′AATTACATGCTCATTTACTTTAAGCYTGTTG



(p.Leu341Pro)


GACTACCAGCAATGCCAGCA′]





768
NM_001041.3(SI): c.1859T > C
6476
SI
[′ATGGAATGGTCTATAACTGGAATGCYGGAG



(p.Leu620Pro)


TTCAGTTTGTTTGGAATACCT′]





769
NM_015506.2(MMACHC): c.347T >
25974
MMACHC
[′CACCCCAACCGACGCCCCAAGATCCYGGCC



C (p.Leu116Pro)


CAGACAGCAGCCCATGTAGCT′]





770
NM_000190.3(HMBS): c.739T >
3145
HMBS
[′GCACGATCCCGAGACTCTGCTTCGCYGCATC



C (p.Cys247Arg)


GCTGAAAGGGCCTTCCTGAG′]





771
NM_000190.3(HMBS): c.242T >
3145
HMBS
[′GAGAAAAGCCTGTTTACCAAGGAGCYTGAA



C (p.Leu81Pro)


CATGCCCTGGAGAAGAATGAG′]





772
NM_000237.2(LPL): c.662T > C
4023
LPL
[′ACCAGAGGGTCCCCTGGTCGAAGCAYTGGA



(p.Ile221Thr)


ATCCAGAAACCAGTTGGGCAT′]





773
NM_000237.2(LPL): c.337T > C
4023
LPL
[′AGACTCCAATGTCATTGTGGTGGACYGGCTG



(p.Trp113Arg)


TCACGGGCTCAGGAGCATTA′]





774
NM_000237.2(LPL): c.755T > C
4023
LPL
[′AACATTGGAGAAGCTATCCGCGTGAYTGCA



(p.Ile252Thr)


GAGAGAGGACTTGGAGGTAAA′]





775
NM_000263.3(NAGLU): c.142T >
4669
NAGLU
[′GCTGGGGCCAGGCCCCGCGGCCGACYTCTC



C (p.Phe48Leu)


CGTGTCGGTGGAGCGCGCTCT′]





776
NM_000018.3(ACADVL): c.1372T >
37
ACADVL
[′GCGTGTGCTCCGAGATCTTCGCATCYTCCGG



C (p.Phe458Leu)


ATCTTTGAGGGGACAAATGA′]





777
NM__018105.2(THAP 1): c.241T >
55145
THAP1
[′GAAAGAGAATGCTGTGCCCACAATAYTTCTT



C (p.Phe81Leu)


TGTACTGAGCCACATGACAA′]





778
NM_005908.3(MANBA): c.1513T >
4126
MANBA
[′AGACAAGAGTCGTCCTTTTATTACGYCCAGT



C (p.Ser505Pro)


CCTACAAATGGGGCTGAAAC′]





779
NM_000124.3(ERCC6): c.2960T >
2074
ERCC6
[′AAGCAGTTTTTGACAAATAGAGTGCYAAAA



C (p.Leu987Pro)


GACCCAAAACAAAGGCGGTTT′]





780
NM_014845.5(FIG4): c.122T > C
9896
FIG4
[′GAAACGAAATATCGTGTCTTGAAGAYTGAT



(p.Ile41Thr)


AGAACAGAACCAAAAGATTTG′]





781
NM_000787.3(DBH): c.339+2T >
1621
DBH
[′GATGGGGACACTGCCTATTTTGCGGYGAGTC



C


TCTCCTCCCTGCCAGCTCTC′]





782
NM_000102.3(CYP17A1): c.316T >
1586
CYP17A1
[′TCTAAAGGCAACTCTAGACATCGCGYCCAA



C (p.Ser106Pro)


CAACCGTAAGGGTATCGCCTT′]





783
NM_000102.3(CYP17A1): c.1216T >
1586
CYP17A1
[′GGCGCTGCATCACAATGAGAAGGAGYGGCA



C (p.Trp406Arg)


CCAGCCGGATCAGTTCATGCC′]





784
NM_000102.3(CYP17A1): c.1358T >
1586
CYP17A1
[′GAGATCCTGGCCCGCCAGGAGCTCTYCCTCA



C (p.Phe453Ser)


TCATGGCCTGGCTGCTGCAG′]





785
NM_152783.4(D2HGDH): c.1331T >
728294
D2HGDH
[′GGAGATGGTAACCTGCACCTCAATGYGACG



C (p.Val444Ala)


GCGGAGGCCTTCAGCCCCTCG′]





786
NM_000255.3(MUT): c.313T > C
4594
MUT
[′TCCTACCATGTATACCTTTAGGCCCYGGACC



(p.Trp105Arg)


ATCCGCCAGTATGCTGGTTT′]





787
NM_000411.6(HLCS): c.710T > C
3141
HLCS
[′CTGTACCAGAAGTTCATGGCCTATCYTTCTC



(p.Leu237Pro)


AGGGAGGGAAGGTGTTGGGC′]





788
NM_022132.4(MCCC2): c.499T >
64087
MCCC2
[′AATTGCCATGCAAAACAGGCTCCCCYGCAT



C (p.Cys167Arg)


CTACTTAGGCAAGTCACCAGA′]





789
NM_020166.4(MCCC1): c.1310T >
56922
MCCC1
[′CATTATGACCCCATGATTGCGAAGCYGGTCG



C (p.Leu437Pro)


TGTGGGCAGCAGATCGCCAG′]





790
NM_198578.3(LRRK2): c.6059T >
120892
LR12K2
[′ATTGCAAAGATTGCTGACTACGGCAYTGCTC



C (p.Ile2020Thr)


AGTACTGCTGTAGAATGGGG′]





791
NM_000022.2(ADA): c.320T > C
100
ADA
[′GAGGTGCGGTACAGTCCGCACCTGCYGGCC



(p.Leu107Pro)


AACTCCAAAGTGGAGCCAATC′]





792
NM_199242.2(UNC13D): c.1208T >
201294
UNC13D
[′CTGGCCGCCTCATTCAGCTCCCTGCYGACCT



C (p.Leu403Pro)


ACGGCCTCTCCCTCATCCGG′]





793
NM_152443.2(RDH12): c.523T >
145226
RDH12
[′CCCTGCACGGGTGGTTAATGTGTCCYCGGTG



C (p.Ser175Pro)


GCTCACCACATTGGCAAGAT′]





794
NM_020435.3(GJC2): c.857T > C
57165
GJC2
[′TGCCTGCTGCTCAACCTCTGTGAGAYGGCCC



(p.Met286Thr)


ACCTGGGCTTGGGCAGCGCG′]





795
NM_000159.3(GCDH): c.883T >
2639
GCDH
[′CTTCGGCTGCCTGAACAACGCCCGGYACGG



C (p.Tyr295His)


CATCGCGTGGGGCGTGCTTGG′]





796
NM_000920.3(PC): c.434T > C
5091
PC
[′CGGTTTATTGGGCCAAGCCCAGAAGBGGTC



(p.Val145Ala)


CGCAAGATGGGAGACAAGGTG′]





797
NM_207118.2(GTF2H5): c.62T >
404672
GTF2H5
[′GATCCTGCCATGAAGCAGTTTCTGCYGTACT



C (p.Leu21Pro)


TGGATGAGTCCAATGCCCTG′]





798
NM_005787.5(ALG3): c.211T > C
10195
ALG3
[′TCTTCTTCCAGACACAGAGATTGACYGGAA



(p.Trp7lArg)


GGCCTACATGGCCGAGGTAGA′]





799
NM_024514.4(CYP2R1): c.296T >
120227
CYP2R1
[′GGCTATGATGTAGTAAAGGAATGCCYTGTTC



C (p.Leu99Pro)


ATCAAAGCGAAATTTTTGCA′]





800
NM_017929.5(PEX26): c.2T > C
55670
PEX26
[′CTGGGCCTTGGACCCGGACTCGTTAYGAAG



(p.Met1Thr)


AGCGATTCTTCGACCTCTGCA′]





801
NM_017929.5(PEX26): c.134T >
55670
PEX26
[′CTTCTGGAGGAGGCGGCCGACCTCCYGGTG



C (p.Leu45Pro)


GTGCACCTGGACTTCCGGGCG′]





802
NM_213599.2(AN05): c.1066T >
203859
ANO5
[′TGGTCAGATGATCATGTGCCCACTCBGTGAT



C (p.Cys356Arg)


CAAGTGTGTGATTATTGGAG′]





803
NM_022370.3(ROBO3): c.2113T >
64221
ROBO3
[′CCAGCTGGTGCAAGGTTTCCGGGTGHCTTGG



C (p.Ser705Pro)


AGGGTAGCAGGCCCTGAGGG′]





804
NM_022370.3(ROBO3): c.14T > C
64221
ROBO3
[′CTGGGTCGAGCCATGCTGCGCTACCYGCTGA



(p.Leu5Pro)


AAACGCTGCTGCAGATGAAC′]





805
NM_207352.3(CYP4V2): c.332T >
285440
CYP4V2
[′GTATGTTTTTCTCTTCCTAAGGTAABTTTAAC



C (p.Ile111Thr)


TAGTTCAAAGCAAATTGAC′]





806
NM_178857.5(RP1L1): c.2878T >
94137
RP1L1
[′GTCTCCAGAGGCTGTGGTCCGCGAAYGGCT



C (p.Trp960Arg)


GGACAACATTCCAGAAGAGCC′]





807
NM_018668.4(VPS33B): c.89T >
26276
VPS33B
[′GCTCGAGACCAGCTCATCTATCTGCYGGAGC



C (p.Leu30Pro)


AGGTCAGTGCTTGCCTGACG′]





808
NM_024006.5(VKORC1): c.134T >
79001
VKORC1
[′CGGGATTACCGCGCGCTCTGCGACGYGGGC



C (p.Val45Ala)


ACCGCCATCAGCTGTTCGCGC′]





809
NM_000551.3(VHL): c.334T > C
7428
VHL
[′TGGCACGGGCCGCCGCATCCACAGCHACCG



(p.Tyr112His)


AGGTACGGGCCCGGCGCTTAG′]





810
NM_000551.3(VHL): c.292T > C
7428
VHL
[′CAACTTCGACGGCGAGCCGCAGCCCYACCC



(p.Tyr98His)


AACGCTGCCGCCTGGCACGGG′]





811
NM_000551.3(VHL): c.188T > C
7428
VHL
[′GAGGCCGGGCGGCCGCGGCCCGTGCYGCGC



(p.Leu63Pro)


TCGGTGAACTCGCGCGAGCCC′]





812
NM_000551.3(VHL): c.488T > C
7428
VHL
[′GTGTATACTCTGAAAGAGCGATGCCYCCAG



(p.Leu163Pro)


GTTGTCCGGAGCCTAGTCAAG′]





813
NM_014874.3(MFN2): c.227T > C
9927
MFN2
[′CCCGTTACCACAGAAGAACAGGTTCBGGAC



(p.Leu76Pro)


GTCAAAGGTTACCTATCCAAA′]





814
NM_015046.5(SETX): c.1166T >
23064
SETX
MACATGTATGAAGAAATGGAAACATYAGCC



C (p.Leu389Ser)


AGTGTACTTCAGTCAGATATT′]





815
NM_005609.2(PYGM): c.1187T >
5837
PYGM
[′TGGCCGGTGCACCTCTTGGAGACGCYGCTGC



C (p.Leu396Pro)


CGCGGCACCTCCAGATCATC′]





816
NM_005609.2(PYGM): c.2392T >
5837
PYGM
[′CTTTGACCTGCAGAACCCAAGAGAGHGGAC



C (p.Trp798Arg)


GCGGATGGTGATCCGGAACAT′]





817
NM_213653.3(HFE2): c.842T > C
148738
HFE2
[′CATGTGGAGATCCAAGCTGCCTACAYTGGC



(p.Ile281Thr)


ACAACTATAATCATTCGGCAG′]





818
NM_213653.3(HFE2): c.238T > C
148738
HFE2
[′TGGAGGGGTGGGCTCTGGCGGCCTCBGTCG



(p.Cys80Arg)


AGCCCTCCGCTCCTATGCGCT′]





819
NM_213653.3(HFE2): c.302T > C
148738
HFE2
[′ACCGCCCGCACCTGCCGCGGGGACCYCGCC



(p.Leu101Pro)


TTCCATTCGGCGGTACATGGC′]





820
NM_000045.3(ARG1): c.32T > C
383
ARG1
[′GCCAAGTCCAGAACCATAGGGATTAYTGGA



(p.Ile11Thr)


GCTCCTTTCTCAAAGGGACAG′]





821
NM_032409.2(PINK1): c.1040T >
−1

[′GCCGCCATGATGCTGCTGCAGCTGCYGGAA



C (p.Leu347Pro)


GGCGTGGACCATCTGGTTCAA′]





822
NM_153006.2(NAGS): c.1289T >
−1

[′GCCAGGTACAACGCCGCCGCCATTCYGACC



C (p.Leu430Pro)


ATGGAGCCCGTCCTGGGGGGC′]





823
NM_153006.2(NAGS): c.1450T >
−1

[′CCGGGTCACCAACCCCATCAATCCCBGGTAG



C (p.Trp484Arg)


GTCCTGCCACTCCCAGCTCT′]





824
NM_001173464.1(KIF21A): c.3029T >
55605
KIF21A
[′AGTATTTCTGATTGTCAGGCCAACAYAATGC



C (p.Ile1010Thr)


AGATGGAAGAAGCAAAGGTT′]





825
NM_001173464.1(KIF21A): c.1067T >
55605
KIF21A
[′GTCAGCCCTTCAGACAGAGACTTTAYGGAA



C (p.Met356Thr)


ACGTTAAACACCCTGAAATAC′]





826
NM_000434.3(NEU1): c.1088T >
4758
NEU1
[′TCATGGCGGAAAGAGACAGTCCAGCYATGG



C (p.Leu363Pro)


CCAGGCCCCAGTGGCTATTCA′]





827
NM_000434.3(NEU1): c.718T > C
4758
NEU1
[′CCTCAGCGATGATCATGGTGCCTCCYGGCGC



(p.Trp240Arg)


TACGGAAGTGGGGTCAGCGG′]





828
NM_000026.2(ADSL): c.1312T >
158
ADSL
[′TGATGCCTACTTCAGTCCCATTCACYCCCAG



C (p.Ser438Pro)


TTGGATCATTTACTGGATCC′]





829
NM_000026.2(ADSL): c.674T > C
158
ADSL
[′TCCAAGGTAGAGCAGCTTGACAAGAYGGTG



(p.Met225Thr)


ACAGAAAAGGCAGGATTTAAG′]





830
NM_018400.3(SCN3B): c.29T > C
55800
SCN3B
[′CCTGCCTTCAATAGATTGTTTCCCCYGGCTT



(p.Leu10Pro)


CTCTCGTGCTTATCTACTGG′]





831
NM_024577.3(SH3TC2): c.505T >
79628
SH3TC2
[′CCTTCCTGTATCAGGAGTCCCAGGTRTATTG



C (p.Tyr169His)


TTTCCAGGTGTTTATCATCT′]





832
NM_000243.2(MEFV): c.2177T >
4210
MEFV
[′GTGGGCATCTTCGTGGACTACAGAGHTGGA



C (p.Val726Ala)


AGCATCTCCTTTTACAATGTG′]





833
NM_000483.4(APOC2): c.142T >
−1

[′GGTGAAGGAATCTCTCTCCAGTTACYGGGA



C (p.Trp48Arg)


GTCAGCAAAGACAGCCGCCCA′]





834
NM_058172.5(ANTXR2): c.566T >
118429
ANTXR2
[′CTCTTCTTTCTAAAGCTTGAAAGAAYTGCTG



C (p.Ile189Thr)


ATTCCAAGGAGCAAGTTTTC′]





835
M_001128085.1(ASPA): c.454T >
−1

[′TCAGACTTCTCTGGCTCCACTACCCYGCTAC



C (p.Cys152Arg)


GTTTATCTGATTGAGCATCC′]





836
NM_022464.4(SIL1): c.645 + 2T >
64374
SIL1
[′TGACTTATGGACGAAGAAATACAGTRCCTG



C


ATGGACATAATATTCAAGATC′]





837
NM_001037633.1(SIL1): c.1370T >
64374
SIL1
[′CTGCTGGGCTCTGTCAACAGCTTGCYGAAGG



C (p.Leu457Pro)


AGCTGAGATGAGGCCCCACA′]





838
NM_000391.3(TPP1): c.1093T > C
1200
TPP1
[′TCTCTCAGGTGACAGTGGGGCCGGGYGTTG



(p.Cys365Arg)


GTCTGTCTCTGGAAGACACCA′]





839
NM_182760.3(SUMF1): c.1006T >
285362
SUMF1
[′AGTGAAGAAAGGTGGATCCTACATGYGCCA



C (p.Cys336Arg)


TAGGGTAAGTCATGTCACTAA′]





840
NM_182760.3(SUMF1): c.463T >
285362
SUMF1
[′CTTATAGGCTGAGAAGTTTGGCGACYCCTTT



C (p.Ser155Pro)


GTCTTTGAAGGCATGTTGAG′]





841
NM_177986.3(DSG4): c.574T > C
−1

[′TGCAGATGAAGAAAATCATCTGAATHCTAA



(p.Ser192Pro)


AATTGCCTACAAGATCGTCTC]





842
NM_004183.3(BEST1): c.253T >
7439
BEST1
[′CCCCCGCCCCTCCTGCCCAGGCTTCYACGTG



C (p.Tyr85His)


ACGCTGGTCGTGACCCGCTG′]





843
NM_004183.3(BEST1): c.122T >
7439
BEST1
[′TATGGCGAGTTCTTAATCTTCCTGCYCTGCT



C (p.Leu41Pro)


ACTACATCATCCGCTTTATT′]





844
NM_004183.3(BEST1): c.614T >
7439
BEST1
[′CTTGGAGGTCGAATCCGGGACCCTAYCCTGC



C (p.Ile205Thr)


TCCAGAGCCTGCTGAACGTG′]





845
NM_004183.3(BEST1): c.704T >
7439
BEST1
[′TACGACTGGATTAGTATCCCACTGGYGTATA



C (p.Val235Ala)


CACAGGTGAGGACTAGGCTG′]





846
NM_024312.4(GNPTAB): c.1120T >
79158
GNPTAB
[′TGTTTGTTGTTGTTAAAAGGATGTTYTTCGA



C (p.Phe374Leu)


AATTTGAGCCACTTGCCTAC′]





847
NM_000158.3(GBE1): c.671T > C
2632
GBE1
[′TATAAACATTTTACATGCAATGTACYACCAA



(p.Leu224Pro)


GAATCAAAGGCCTTGGTAAG′]





848
NM_017890.4(VPS13B): c.8459T >
157680
VPS13B
[′CAGGTGCCATCTTCAAACAGTTCCAYTATTT



C (p.Ile2820Thr)


ATGTCTGGTGCACAGTTTTG′]





849
NM_000019.3(ACAT1): c.935T >
38
ACAT1
[′CTCAATGTTACACCACTGGCAAGAAYAGTA



C (p.Ile312Thr)


GGTAAGGCCAGGCGAGGTGGC′]





850
NM_020184.3(CNNM4): c.971T >
26504
CNNM4
[′CTCAGTTTTCCCATTAGCAAGCTCCYGGACT



C (p.Leu324Pro)


TTTTTCTGGGCCAGGAGATT′]





851
NM_001171507.2(MCFD2): c.407T >
90411
MCFD2
[′GATGACAAGAACAATGATGGATACAYTGAC



C (p.Ile136Thr)


TATGCTGAATTTGCAAAATCA′]





852
NM_174936.3(PCSK9): c.646T >
255738
PCSK9
[′TGTGCCCGAGGAGGACGGGACCCGCYTCCA



C (p.Phe216Leu)


CAGACAGGTAAGCACGGCCGT′]





853
NM_000419.3(ITGA2B): c.1787T >
3674
ITGA2B
[′GACTTCCGGGACAAGCTGAGCCCCAYTGTG



C (p.Ile596Thr)


CTCAGCCTCAATGTGTCCCTA′]





854
NM_000419.3(ITGA2B): c.641T >
3674
ITGA2B
[′CCCTTCCAGGCCGGAGAGCTGGTGCYTGGG



C (p.Leu214Pro)


GCTCCTGGCGGCTATTATTTC′]





855
NM_004817.3(TJP2): c.143T > C
9414
TJP2
[′TCCAAAAGAGGATTTGGAATTGCAGYGTCC



(p.Val48Ala)


GGAGGCAGAGACAACCCCCAC′]





856
NM_173477.4(1JSH1G): c.143T >
124590
USH1G
[′GCCTACCATGGCAACCTCGAGTCGCYGCGTC



C (p.Leu48Pro)


TCATTGTGAGCCGCGGGTGA′]





857
NM_000271.4(NPC1): c.3182T >
4864
NPC1
[′GACGCTCTGAAGAAAGCCCGACTTAYAGCC



C (p.Ile1061Thr)


AGTAATGTCACCGAAACCATG′]





858
NM_000271.4(NPC1): c.1133T >
4864
NPC1
[′TTTGTCCGGGTCACAACCAATCCAGYTGACC



C (p.Val378Ala)


TCTGGTCAGCCCCCAGCAGC′]





859
NM_000271.4(NPC1): c.337T > C
4864
NPC1
[′ACTGAACCTGTTTTGTGAGCTGACAYGTAGC



(p.Cys113Arg)


CCTCGACAGAGTCAGTTTTT′]





860
NM_000543.4(SMPD1): c.911T >
6609
SMPD1
[′CGGGCCCTGACCACCGTCACAGCACYTGTG



C (p.Leu304Pro)


AGGAAGTTCCTGGGGCCAGTG′]





861
NM_000226.3(KRT9): c.503T > C
3857
KRT9
[CTCAATTCTCGGCTGGCCTCTTACTYGGATA



(p.Leu168Ser)


AGGTGCAGGCTCTAGAGGAG′]





862
NM_000226.3(KRT9): c.470T > C
3857
KRT9
[′CTGACTGCTAATGAGAAGAGCACCANGCAG



(p.Met157Thr)


GAACTCAATTCTCGGCTGGCC′]





863
NM_000051.3(ATM): c.7967T > C
−1

[′CCAGCAGACCAGCCAATTACTAAACYTAAG



(p.Leu2656Pro)


AATTTAGAAGATGTTGTTGTC′]





864
NM_000487.5(ARSA): c.410T > C
410
ARSA
[′GGGGTGGGGCCTGAGGGGGCCTTCCYGCCC



(p.Leu137Pro)


CCCCATCAGGGCTTCCATCGA′]





865
NM_017653.3(DYM): c.1624T >
54808
DYM
[′AATGATGTTAGAGATCATCAACTCCYGCCTG



C (p.Cys542Arg)


ACAAATTCCCTTCACCACAA′]





866
NM_016038.2(SBDS): c.258 + 2T >
51119
SBDS
[′GACCAAACTGAAATCTGTAAGCAGGYGGGT



C


AACAGCTGCAGCATAGCTAAC′]





867
NM_001079802.1(FKTN): c.527T >
2218
FKTN
[′ACTCATGCGATCCACTTGGTAGTCTYTCATG



C (p.Phe176Ser)


AGAGGAGTGGCAACTACCTC′]





868
NM_013382.5(POMT2): c.2242T >
29954
POMT2
[′GGCAGGACTAAGGTGGCTGGACTCAYGGGA



C (p.Trp748Arg)


CTTTTGAGGCCACTGCAAAGA′]





869
NM_024529.4(CDC73): c.191T >
79577
CDC73
[′ACATTGGATTCCATTTTATTTCTACYTAATA



C (p.Leu64Pro)


ACGTGCACCTTTCTCATCCT′]





870
NM_000268.3(NF2): c.1079T > C
4771
NF2
[′ACGAGGGATGAGTTGGAGAGGAGGCYGCTG



(p.Leu360Pro)


CAGATGAAAGAAGAAGCAACA′]





871
NM_000268.3(NF2): c.1604T > C
4771
NF2
[′GAATACATGGAAAAGAGCAAGCATCYGCAG



(p.Leu535Pro)


GAGCAGCTCAATGAACTCAAG′]





872
NM_000268.3(NF2): c.185T > C
4771
NF2
[′CTGGGGCTCCGAGAAACCTGGTTCTYTGGAC



(p.Phe62Ser)


TGCAGTACACAATCAAGGAC′]





873
NM_139248.2(LIPH): c.322T > C
200879
LIPH
[′AGACATGAACGTAGTTGTTGTTGATYGGAAT



(p.Trp108Arg)


CGAGGAGCTACAACTTTAAT′]





874
NM_015102.4(NPHP4): c.2972T >
261734
NPHP4
[′GCCACGCTGGGGGTCGCCGAGTTCTYTGAGT



C (p.Phe991Ser)


TTGTGCTTAAGAACCCCCAC′]





875
NM_024105.3(ALG12): c.473T >
79087
ALG12
[′ACCCTCCCGCACTGTCTTGCAGTCCYGCTGG



C (p.Leu158Pro)


CCCTCGCGGCCTGGCTGCGG′]





876
NM_000280.4(PAX6): c.773T > C
5080
PAX6
[′GTCCCACCTGATTTCCAGGTATGGTYTTCTA



(p.Phe258Ser)


ATCGAAGGGCCAAATGGAGA′]





877
NM_024426.4(WT1): c.1351T > C
7490
WT1
[′CTCTGTCCATTTAGGTGTGAAACCAYTCCAG



(p.Phe451Leu)


TGTAAAACTTGTCAGCGAAA′]





878
NM_024426.4(WT1): c.1378T > C
7490
WT1
[′CCAGTGTAAAACTTGTCAGCGAAAGYTCTCC



(p.Phe460Leu)


CGGTCCGACCACCTGAAGAC′]





879
NM_005957.4(MTHFR): c.968T >
4524
MTHFR
[′GTGCCAGGCCTCCACTTCTACACCCYCAACC



C (p.Leu323Pro)


GCGAGATGGCTACCACAGAG′]





880
NM_016247.3(IMPG2): c.370T >
50939
IMPG2
[′TCACGCCCAGGAAGTCGATCCCAAARAGTC



C (p.Phe124Leu)


CTGAAGGCTTCCCAGACAGCT′]





881
NM_002225.3(IVD): c.134T > C
3712
IVD
[′CCCGTGGACGATGCAATCAATGGGCYAAGC



(p.Leu45Pro)


GAGGAGCAGAGGCAGGTGAGG′]





882
NM_001127328.2(ACADM): c.
34
ACADM
[′CAGTTAGCTACTGATGCTGTGCAGAYACTTG



1136T > C (p.Ile379Thr)


GAGGCAATGGATTTAATACA′]





883
NM_001127328.2(ACADM): c.
34
ACADM
[′TTAGGAATTAAACATGGGCCAGCGAYGTTC



742T > C (p.Cys248Arg)


AGATACTAGAGGAATTGTCTT′]





884
NM_000016.5(ACADM): c.199T>
34
ACADM
[′GGAAATCATCCCAGTGGCTGCAGAAYATGA



C (p.Tyr67His)


TAAAACTGGTGAAGTAGGTAT′]





885
NM_000155.3(GALT): c.221T > C
2592
GALT
[′CCCCGCCATGACCCTCTCAACCCTCBGTGTC



(p.Leu74Pro)


CTGGGGCCATCCGAGCCAAC′]





886
NM_000155.3(GALT): c.512T > C
2592
GALT
[′CTCCGTATCCCTATCTGATAGATCTYTGAAA



(p.Phe171Ser)


ACAAAGGTGCCATGATGGGC′]





887
NM_000155.3(GALT): c.580T > C
2592
GALT
[′CCCTTGACAGGTATGGGCCAGCAGTYTCCTG



(p.Phe194Leu)


CCAGATATTGCCCAGCGTGA′]





888
NM_000250.1(MPO): c.752T > C
4353
MPO
[′ACTCCGGACCAGGAGCGCTCACTCAYGTTC



(p.Met251Thr)


ATGCAATGGGGCCAGCTGTTG′]





889
NM_020247.4(ADCK3): c.1398 +
56997
ADCK3
[′CTCAGCCAGGAGATTCGGAACGAGGYTTGT



2T > C


CTGTGCCAGCAGACAGGTGGG′]





890
NM_000229.1(LCAT): c.508T > C
3931
LCAT
[′GACTGTGCGCGCCGCCCCCTATGACYGGCG



(p.Trp170Arg)


GCTGGAGCCCGGTGAGTGTCT′]





891
NM_000229.1(LCAT): c.698T > C
3931
LCAT
[′CGCTTTATTGATGGCTTCATCTCTCYTGGGG



(p.Leu233Pro)


CTCCCTGGGGTGGCTCCATC′]





892
NM_000229.1(LCAT): c.524-
3931
LCAT
[′CAGGTGCCCCAGACCCCAGCTGCCCYGACC



22T > C


CCTTCCACCCGCTGCAGGCCA′]





893
NM_000403.3(GALE): c.548T > C
2582
GALE
[′CCACAGACTTGGAACGCAGTGCTGCYGCGC



(p.Leu183Pro)


TATTTCAACCCCACAGGTGCC′]





894
NM_000527.4(LDLR): c.694 + 2T >
3949
LDLR
[′ACAAATCTGACGAGGAAAACTGCGGYATGG



C


GCGGGGCCAGGGTGGGGGCGG′]





895
NM_000375.2(UROS): c.217T > C
7390
UROS
[′CAGAGCAGTGGAAGCAGCAGAGTTAYGTTT



(p.Cys73Arg)


GGAGCAAAACAATAAAACTGA]





896
NM_000375.2(UROS): c.-26 −
7390
UROS
[′GCTAACATGCTCTTTCTTGGCCTTAYCAGTG



177T > C


ACAGGGGTCTTCAGAAAGAA′]





897
NM_000372.4(TYR): c.265T > C
7299
TYR
[′GCCTTCCGTCTTTTATAATAGGACCYGCCAG



(p.Cys89Arg)


TGCTCTGGCAACTTCATGGG′]





898
NM_000017.3(ACADS): c.529T >
35
ACADS
[′CACCGCCCGGGCCGAGGGCGACTCABGGGT



C (p.Trp177Arg)


TCTGAATGGAACCAAAGCCTG′]





899
NM_000053.3(ATP7B): c.3443T >
540
ATP7B
[′GCGCCTCAGCCACTCACGGTTTCCARTCAGC



C (p.Ile1148Thr)


ACAGAGAAGGTCTGGGGGAC′]





900
NM_000053.3(ATP7B): c.2123T >
540
ATP7B
[′GCCTTCACTGTCCTTGTCTTTCAGCYCCTCG



C (pLeu708Pro)


GTGGGTGGTACTTCTACGTT′]





901
NM_000520.4(HEXA): c.1453T >
3073
HEXA
[′AGCAGGGGCTGTTGCCGAAAGGCTGYGGAG



C (p.Trp485Arg)


CAACAAGTTGACATCTGACCT′]





902
NM_000520.4(HEXA): c.632T > C
3073
HEXA
[′TGGCATCTGGTAGATGATCCTTCCTYCCCAT



(p.Phe211Ser)


ATGAGAGCTTCACTTTTCCA′]





903
NM_000520.4(HEXA): c.538T > C
3073
HEXA
[′CTTGCTGTTGGATACATCTCGCCATYACCTG



(p.Tyr180His)


CCACTCTCTAGCATCCTGGA′]





904
NM_016335.4(PRODH): c.1322T >
5625
PRODH
[′CTGGGCCAGGTATGCGCCCCGCACCRGCTTG



C (p.Leu441Pro)


GCCCCAAAACACCAGCCCTC′]





905
NM_000152.3(GAA): c.953T > C
2548
GAA
[′GTGTTCCTGCTAAACAGCAATGCCAYGGGT



(p.Met318Thr)


AAGCTGCCCGCCGCCCAGCGC′]





906
NM_012213.2(MLYCD): c.119T >
23417
MLYCD
[′GCGGCCGGCGCCCTGGAGCGGGCCAYGGAC



C (p.Met40Thr)


GAGCTGCTGCGCCGCGCGGTG′]





907
NM_012464.4(TLL1): c.713T > C
7092
TLL1
[′AAGAACTGTGATAAATTTGGGATTGYTGTTC



(p.Val238Ala)


ATGAATTGGGTCATGTGATA′]





908
NM_000112.3(SLC26A2): c.-
1836
SLC26A2
[′CCTGCAGCGGCCCGGACCCGAGAGGYGAGA



26 + 2T > C


AGAGGGAAGCGGACCAGGGAA′]





909
NM_138691.2(TMC1): c.1543T >
117531
TMC1
[′CCCTGCAGATGTACCTCGAGGACCTYGCTGG



C (p.Cys515Arg)


GAAACAATGGTGGGACAGGT′]





910
NM_138694.3(PKHD1): c.10658T >
5314
PKHD1
[′GTTGTCCTACAAGGAGAGGAGCCCAYTGAA



C (p.Ile3553Thr)


ATACGCTCAGGTGTTTCCATT′]





911
NM_001034116.1(EIF2B4): c.1393T >
8890
EIF2B4
[′TGCAGATGACCCTGATGATCTGCAAYGTAA



C (p.Cys465Arg)


GCGGGGAGAACATGTTGCGCT′]





912
NM_001034116.1(EIF2B4): c.1465T >
8890
EIF2B4
[′ATCCCTACGGTTGTTGAATCTAGTCYATGAT



C (p.Tyr489His)


GTGACTCCCCCAGAGCTTGT′]





913
NM_018960.4(GNMT): c.149T >
27232
GNMT
[′ACCGCCGAGTACAAGGCATGGCTGCYTGGG



C (p.Leu50Pro)


CTGCTGCGCCAGCACGGCTGC′]





914
NM_181457.3(PAX3): c.268T > C
5077
PAX3
[′CTGCGTCTCCAAGATCCTGTGCAGGYACCAG



(p.Tyr90His)


GAGACTGGCTCCATACGTCC′]





915
NM_024301.4(FKRP): c.899T > C
79147
FKRP
[′GAGACCACGCGCTGCTTCGGAACCGYGGTG



(p.Val300Ala)


GGCGACACGCCCGCCTACCTC′]





916
NM_021020.3(LZTS1): c.85T > C
11178
LZTS1
[′TTCGCAGTACAAGCTGCGCAAGTCCYCCCAC



(p.Ser29Pro)


CTCAAGAAGCTCAACCGGTA′]





917
NM_005857.4(ZMPSTE24): c.1018T >
10269
ZMPSTE24
[′TGTACTAGGCCATGAACTGGGGCACYGGAA



 C (p.Trp340Arg)


GTTGGGACATACAGTCAAAAA′]





918
NM_017838.3(NHP2): c.415T > C
55651
NHP2
[GCCCCATGAGGAGTACCAGGAGGCTYACGA



(p.Tyr139His)


TGAGTGCCTGGAGGAGGTGCA′]





919
NM_000157.3(GBA): c.1448T > C
2629
GBA
[′GGGATGCATCAGTGCCACTGCGTCCVGGTC



(p.Leu483Pro)


GTTCTTCTGACTGGCAACCAG′]





920
NM_001005741.2(GBA): c.751T >
2629
GBA
[′CATCTACCACCAGACCTGGGCCAGAYACTTT



C (p.Tyr251His)


GTGAAGTAAGGGATCAGCAA′]





921
NM_001243133.1(NLRP3): c.1718T >
114548
NLRP3
[′AAATTCGAAAAGGGGTATTTGATTTYTGTTG



C (p.Phe573Ser)


TACGTTTCCTCTTTGGCCTG′]





922
NM_001243133.1(NLRP3): c.926T >
114548
NLRP3
[′GGCTTCGATGAGCTGCAAGGTGCCTYTGAC



C (p.Phe309Ser)


GAGCACATAGGACCGCTCTGC′]





923
NM_001243133.1(NLRP3): c.1058T >
114548
NLRP3
[′CTCATCACCACGAGACCTGTGGCCCYGGAG



C (p.Leu353Pro)


AAACTGCAGCACTTGCTGGAC′]





924
NM_057176.2(BSND): c.35T > C
7809
BSND
[′GAGAAGACCTTCCGGATCGGCTTCAYTGTGC



(p.Ile12Thr)


TGGGGCTTTTCCTGCTGGCC′]





925
NM_001195794.1(CLRN1): c.488T >
7401
CLRN1
[′TCTGTTGCAGGCTCCTGTGGCTGTCYTGTCA



C (p.Leu163Pro)


TGATATTGTTTGCCTCTGAA′]





926
NM_175073.2(APTX): c.668T > C
54840
APTX
[′GCTGTGGCCAGGGAACACCTTGAACYCCTT



(p.Leu223Pro)


AAGCATATGCACACTGTGGGG′]





927
NM_020365.4(E1F2B3): c.1037T >
8891
EIF2B3
[′CCACCAGTCCATTCGTCAGCCCAGAYTGTCA



C (p.Ile346Thr)


GCAAACACCTGGTAAGTGCT′]





928
NM_031433.3(MFRP): c.545T > C
−1

[′ATCCAGGTGGCCACAGACCATGCAAYACAG



(p.Ile182Thr)


CTCAAGATCGAAGCCCTCAGC′]





929
NM_016180.4(SLC45A2): c.1082T >
51151
SLC45A2
[′AGTGCACACAACTCCACAGAGTTTCYCATCT



C (p.Leu361Pro)


ACGAAAGAGGAGTCGAGGTT′]





930
NM_006005.3(VVFS1): c.2486T >
7466
WFS1
[′AGCCTCATCGAGTTCAGCACCATCCYGGAG



C (p.Leu829Pro)


GGCCGCCTGGGCAGCAAGTGG′]





931
NM_024960.4(PANK2): c.178T >
80025
PANK2
[′GATCAAAGGAATTTTATACATTGACYCAGTC



C (p.Ser60Pro)


GGATTCAATGGACGGTCACA′]





932
NM_024960.4(PANK2): c.437T >
80025
PANK2
[′ACCACTTTTGAAGAAGCTCTTGAAAYGGCAT



C (p.Met146Thr)


CTCGTGGAGATAGCACCAAA′]





933
NM_020427.2(SLURP1): c.43T >
57152
SLURP1
[′TGTGCAGCTGCTGCTCGTGGCAGCCYGGAG



C (p.Trpl5Arg)


CATGGGCTGTGGTGAGTGGGC′]





934
NM_020427.2(SLURP1): c.229T >
57152
SLURP1
[′GGTGACCCGCTCCTGCTCCAGCTCCYGTGTG



C (p.Cys77Arg)


GCCACCGACCCCGACAGCAT′]





935
NM_021830.4(C10orf2): c.1142T >
56652
C10orf2
[′CTTCGGGAGGAGGTGCTAGGAGAACBGTCA



C (p.Leu381Pro)


AATGTGGAGCAAGCAGCTGGC′]





936
NM_001033855.2(DCLRE1C): c.
64421
DCLRE1C
[′CCGGACTCTGGGATCGGCGGCGCTAYGAGT



2T > C (p.Met1Thr)


TCTTTCGAGGGGCAGATGGCC′]





937
NM_153741.1(DPM3): c.254T > C
54344
DPM3
[′CAGATACAGGAGGCCCGAGCCGACTYAGCC



(p.Leu85Ser)


CGCAGGGGGCTGCGCTTCTGA′]





938
NM_000441.1(SLC26A4): c.707T >
5172
SLC26A4
[′GCCTTCCAAGTGCTGGTCTCACAGCYAAAG



C (p.Leu236Pro)


ATTGTCCTCAATGTTTCAACC′]





939
NM_000441.1(SLC26A4): c.1588T >
5172
SLC26A4
[′TGGAAGCATCCCTAGCACAGATATCYACAA



C (p.Tyr530His)


AAGTACCAAGAATTACAAAAA′]





940
NM_000441.1(SLC26A4): c.-
−1

[CTTTCCCTTCGACCAAGGTGTCTGTYGCTCC



103T > C


GTAAATAAAACGTCCCACTG′]





941
NM_000441.1(SLC26A4): c.1003T >
5172
SLC26A4
[′ATTTTTCACTTAAAAACTCACTAGGHTTTTG



C (p.Phe335Leu)


CCTCCTGAACTTCCACCTGT′]





942
NM_022458.3(LMBR1): c.423 +
64327
LMBR1
[′AACAAAGATTTTTTTAATATGTTTCYATCCT



4842T > C


GTGTCACAGTTTGAAATTGT′]





943
NM_022458.3(LMBR1): c.423 +
64327
LMBR1
[′AAAGCTGAGCAACATGACAGCACAAYAGAG



4808T > C


GAGGAACAAAGATTTTTTTAA′]





944
NM_145693.2(LPIN1): c.1441 +
23175
LPIN1
[′GCGACCACCGGGAGATCACGAAAGGYACCG



2T > C


CGGGCCTCGCGCGGGCGCCCT′]





945
NM_022124.5(CDH23): c.5663T >
64072
CDH23
[′AGTGGCTGCAATGCACGCCTCACCTYCAAC



C (p.Phe1888Ser)


ATCACTGCGGGCAACCGCGAG′]





946
NM_153212.2(GJB4): c.409T > C
127534
GJB4
[′GTGGACGTACTTGCTGAGCCTCATCYTCAAG



(p.Phe137Leu)


GCCGCCGTGGATGCTGGCTT′]





947
NM_021044.2(DHH): c.2T > C
50846
DHH
[′TTTTGGCCGAGGTCCGCTGTATCCAYGGCTC



(p.Met1Thr)


TCCTGACCAATCTACTGCCC′]





948
NM_021044.2(DHH): c.485T > C
50846
DHH
[′CGCGACCGCAACAAGTATGGGTTGCYGGCG



(p.Leu162Pro)


CGCCTCGCAGTGGAAGCCGGC′]





949
NM_020638.2(FGF23): c.287T >
8074
FGF23
[′GTGATGAGCAGAAGATACCTCTGCAYGGAT



C (p.Met96Thr)


TTCAGAGGCAACATTTTTGGA′]





950
NM_022041.3(GAN): c.1268T > C
8139
GAN
[′TGCTATGCAGCTATGAAAAAGAAAAYCTAC



(p.Ile423Thr)


GCCATGGGTGGAGGCTCCTAC′]





951
NM_015665.5(AAAS): c.787T > C
8086
AAAS
[′CAGTGGGGGGCGGCTGCTCTCAGCTYCACC



(p.Ser263Pro)


CGTGGATGCTGCTATCCGGGT′]





952
NM_021615.4(CHST6): c.827T >
4166
CHST6
[′TACCGCCTGGTGCGCTTCGAGGACCYGGCG



C (p.Leu276Pro)


CGGGAGCCGCTGGCAGAAATC′]





953
NM_000368.4(TSC1): c.539T > C
7248
TSC1
[′GTGGCGGAAGTCTATCTCGTCCATCYCCATG



(p.Leu180Pro)


CCAGTGTGTACGCACTCTTT′]





954
NM_020661.2(AICDA): c.238T >
57379
AICDA
[′CCCTGGCCGCTGCTACCGCGTCACCYGGTTC



C (p.Trp80Arg)


ACCTCCTGGAGCCCCTGCTA′]





955
NM_020661.2(AICDA): c.317T >
57379
AICDA
[′CTGCGAGGGAACCCCAACCTCAGTCYGAGG



C (p.Leu106Pro)


ATCTTCACCGCGCGCCTCTAC′]





956
NM_020661.2(AICDA): c.452T >
57379
AICDA
[′GATTATTTTTACTGCTGGAATACTTYTGTAG



C (p.Phe151Ser)


AAAACCACGAAAGAACTTTC′]





957
NM_020632.2(ATP6V0A4): c.
50617
ATP6V0A4
[′ATCATTCTGCAATTTATCCCTGAGAYGATTT



1739T > C (p.Met580Thr)


TTATCCTGTGTCTGTTTGGA′]





958
NM_054027.4(ANKH): c.143T >
56172
ANKH
[′GCTGTCAAGGAGGATGCAGTCGAGAYGCTG



C (p.Met48Thr)


GCCAGCTACGGGCTGGCGTAC′]





959
NM_054027.4(ANKH): c.1015T >
56172
ANKH
[′TGTTTGATGTCTTTCTCCCCAGCTCYGTTTCG



C (p.Cys339Arg)


TGATGTTTTGGACACCCAA′]





960
NM_054027.4(ANKH): c.1172T >
−1

[′GTGAGGGCGCATCTCACCGGGTGGCYGATG



C (p.Leu391Pro)


ACACTGAAGAAAACCTTCGTC′]





961
NM_016373.3(WWOX): c.872T >
51741
WWOX
[′ACAAAAAACGACTATTGGGCGATGCYGGCT



C (p.Leu291Pro)


TATAACAGGTCCAAGCTCTGC′]





962
NM_021102.3(SPINT2): c.337 +
10653
SPINT2
[′CAGCGGATTCCTCTGTCCCAAGTGGYAGGTT



2T > C


CTTAAAGAGACCCGCGATGG′]





963
NM_014588.5(VSX1): c.50T > C
30813
VSX1
[′GACGGGCGCACTAGCAGCAGGGCGCYGGTG



(p.Leu17Pro)


CCTGGCGGTTCCCCTAGGGGC′]





964
NM_006946.2(SPTBN2): c.758T >
6712
SPTBN2
[′GAAAAGGAACTGGGACTTACCAAGCYGCTG



C (p.Leu253Pro)


GATCCCGAAGGTGGGGCCAGA′]





965
NM_012452.2(TNFRSF13B): c.
23495
TNFRSF13B
[′GCACCCTAAGCAATGTGCATACTTCYGTGAG



310T > C (p.Cys104Arg)


AACAAGCTCAGGAGCCCAGT′]





966
NM_170784.2(MKKS): c.830T >
8195
MKKS
[′GAAAATGCAGTCTTGGACCAGCTGCYTAAC



C (p.Leu277Pro)


CTAGGAAGGCAGCTAATCAGT′]





967
NM_015717.4(CD207): c.790T >
50489
CD207
[′AATGGCGTGTCATCCACCCAGGACCRGTCCC



C (p.Trp264Arg)


CTTCCATCCCTGCTTTAGTC′]





968
NM_153717.2(EVC): c.919T > C
2121
EVC
[′TGTGGAAAAGAAGGAGAGAGAATACYCTGA



(p.Ser307Pro)


ACAGCTAATCGATAATGTGCG′]





969
NM_014384.2(ACAD8): c.455T >
27034
ACAD8
[′AAATTTTGCCCACCGCTCTGTACCAYGGAGA



C (p.Met152Thr)


AGTTTGCTTCCTACTGCCTC′]





970
NM_004924.4(ACTN4): c.784T >
81
ACTN4
[′CGAGAAGGCCATAATGACCTATGTGYCCAG



C (p.Ser262Pro)


CTTCTACCATGCCTTTTCAGG′]





971
NM_005097.3(LGI1): c.136T > C
9211
LGI1
[′AGCGAAGCCAAAATGCCCTGCCGTGYGTAC



(p.Cys46Arg)


TTGTACCAAAGATAATGCTTT′]





972
NM_005097.3(LGI1): c.695T > C
9211
LGI1
[′GCAGAATTTGCAAAGTCTCAAGACCYGCCTT



(p.Leu232Pro)


ATCAATCATTGTCCATAGAC′]





973
NM_006329.3(FBLN5): c.679T >
10516
FBLN5
[′GCAAACCTGCGTCAACACCTACGGCYCTTTC



C (p.Ser227Pro)


ATCTGCCGCTGTGACCCAGG′]





974
NM_006329.3(FBLN5): c.506T >
10516
FBLN5
[′TTGCTTGCATTTCTGTTTCCAGACAYTGATG



C (p.Ile169Thr)


AATGTCGCTATGGTTACTGC′]





975
NM_013339.3(ALG6): c.1432T >
29929
ALG6
[′GTTTTCTGTATTGGTGTGTTTTGTAYCTTGCT



C (p.Ser478Pro)


TGAACTTCCTGTTCTTCTT′]





976
NM_006899.3(IDH3B): c.395T >
3420
IDH3B
[′GAGCTAGCCTCCTATGATATGCGGCYGAGG



C (p.Leu132Pro)


TAGGTGGTCTGGGTGGGGTGA′]





977
NM_014363.5(SACS): c.5836T >
26278
SACS
[′AATGGATTATACTTACTATGCAGTAYGGCCC



C (p.Trp1946Arg)


GATCCTGATTTAGTTCATGA′]





978
NM_014363.5(SACS): c.9742T >
26278
SACS
[′AAGTGAGTCTTGGCTTAAGAATGCAYGGCA



C (p.Trp3248Arg)


TTTTATTAGTGAATCTGTAAG′]





979
NM_014363.5(SACS): c.3161T >
26278
SACS
[′CAGATGGTATCAGCTGGTGAACTCTYTGACC



C (p.Phe1054Ser)


CTGATATAGAAGTACTAAAG′]





980
NM_014324.5(AMACR): c.154T >
−1

[′GAGCCGCTTGGGCCGGGGCAAGCGCYCGCT



C (p.Ser52Pro)


AGTGCTGGACCTGAAGCAGCC′]





981
NM_014324.5(AMACR): c.320T >
−1

[′AATCCAAGGCTTATTTATGCCAGGCYGAGTG



C (p.Leu107Pro)


GATTTGGCCAGTCAGGAAGC′]





982
NM_001040108.1(MLH3): c.3826T >
27030
MLH3
[′GACAGAGGAACAAAGGAGACTCTTAYGGTC



C (p.T1p1276Arg)


AGTACCACCATGAGAATGTGA′]





983
NM_014336.4(A1PL1): c.715T > C
23746
AIPL1
[′TACTCTGATCCTCAACTACTGCCAGYGCCTG



(p.Cys239Arg)


CTGAAGAAGGAGGAGTACTA′]





984
NM_001001486.1(ATP2C1): c.
27032
ATP2C1
[′CTCTCATTTGCTTTAGCCAGTCGTCYGGGAT



1751T > C (p.Leu584Pro)


TGTATTCCAAAACTTCCCAG′]





985
NM_007194.3(CHEK2): c.470T >
11200
CHEK2
[′GAAGTGGGTCCTAAAAACTCTTACAYTGCAT



C (p.Ile157Thr)


ACATAGAAGATCACAGTGGC′]





986
NM_007255.2(B4GALT7): c.617T >
11285
B4GALT7
[′ACCTATGTCGGCGGCATCCTGCTGCYCTCCA



C (pLeu206Pro)


AGCAGCACTACCGGCTGGTG′]





987
NM_000030.2(AGXT): c.613T > C
189
AGXT
[′ATCTACAGGCATCGACATCCTGTACYCGGGC



(p.Ser205Pro)


TCCCAGAAGGCCCTGAACGC′]





988
NM_000030.2(AGXT): c.731T > C
189
AGXT
[′AAGCCCTTCTCCTTCTACCTGGACAYCAAGT



(p.Ile244Thr)


GGCTGGCCAACTTCTGGGGC′]





989
NM_201253.2(CRB1): c.3122T >
23418
CRB1
[′ACATGGCACGAAGTGACCCTTTCCAYGACA



C (p.Met1041Thr)


GACCCACTGTCCCAGACCTCC′]





990
NM_201253.2(CRB1): c.3541T >
23418
CRB1
[′ACACTGTGAACTCAACATCGATGAAYGCTTT



C (p.Cys1181Arg)


TCAAACCCCTGTATCCATGG′]





991
NM_005094.3(SLC27A4): c.739T >
10999
SLC27A4
[′AGATAAACTGTTCTACATCTACACAYCCGGC



C (p.Ser247Pro)


ACCACAGGGCTGCCCAAGGC′]





992
NM_032551.4(KISS1R): c.443T >
84634
KISS1R
[′CGCTGGTACGTGACGGTGTTCCCGTYGCGCG



C (p.Leu148Ser)


CCCTGCACCGCCGCACGCCC′]





993
NM_032551.4(KISS1R): c.305T >
84634
KISS1R
[′TGCTGCGTCCCCTTCACGGCCCTGCYGTACC



C (p.Leu102Pro)


CGCTGCCCGGCTGGGTGCTG′]





994
NM_014270.4(SLC7A9): c.131T >
11136
SLC7A9
[′ATCTCCATCATCGTGGGCACCATCAYTGGCT



C (p.Ile44Thr)


CTGGGATCTTCGTTTCCCCC′]





995
NM_003332.3(TYROBP): c.2T >
7305
TYROBP
[′TGGTGTCCAGCAGCATCCGGCTTCAYGGGG



C (p.Met1Thr)


GGACTTGAACCCTGCAGCAGG′]





996
NM_000843.3(GRM6): c.1214T >
−1

[′CAGGAGGGCAAGGTGCAGTTTGTGAYTGAT



C (p.Ile405Thr)


GCGGTGTACGCCATTGCCCAC′]





997
NM_022336.3(EDAR): c.259T > C
10913
EDAR
[′GTTTTCCAAAGGAGGCTACCAGATAYGCAG



(p.Cys87Arg)


GCGTCACAAAGACTGTGAGGG′]





998
NM_003835.3(RGS9): c.895T > C
8787
RGS9
[′CCCAACCAAGATGCGAGTGGAACGAYGGGC



(p.Trp299Arg)


CTTCAACTTCAGCGAATTGAT′]





999
NM_004870.3(MPDU1): c.356T >
9526
MPDU1
[′CTCCAGACGATCACCATCTGCTTCCYGGTCA



C (p.Leu119Pro)


TGCACTACAGAGGACAGACT′]





1000
NM_004870.3(MPDU1): c.2T > C
9526
MPDU1
[′ACTGGCGGAAGCTAGCTTTGCAATAYGGCG



(p.Met1Thr)


GCCGAGGCGGACGGACCGCTT′]





1001
NM_004870.3(MPDU1): c.221T >
9526
MPDU1
[′CTGGGAGCCAAGAGTGCTGAAGGGTYGAGT



C (p.Leu74Ser)


CTCCAGTCTGTAATGCTGGAG′]





1002
NM_000334.4(SCN4A): c.2078T >
6329
SCN4A
[′ACGCTGAACATGCTCATCAAGATCAYTGGC



C (p.Ile693Thr)


AATTCAGTGGGGGCGCTGGGT′]





1003
NM_006580.3(CLDN16): c.500T >
10686
CLDN16
[′GCTGGGTTTGGATTTCTCACCCTGCYCCTTG



C (p.Leu167Pro)


GTCTTGACTGCGTGAAATTC′]





1004
NM_006580.3(CLDN16): c.434T >
10686
CLDN16
[′ATATGCCCTGGTCTTCCAGTGAAGCYGGTGG



C (p.Leu145Pro)


TAACTCGAGCGTTGATGATT′]





1005
NM_003907.2(EIF2B5): c.1882T >
8893
EIF2B5
[′CTTTCTTCCATAGCTGCTAAAGGCCYGGAGC



C (p.Trp628Arg)


CCTGTTTTTAGGAACTACAT′]





1006
NM_183235.2(RAB27A): c.389T >
5873
RAB27A
[′TATTGTGAAAACCCAGATATAGTGCYGTGTG



C (p.Leu130Pro)


GAAACAAGAGTGATCTGGAG′]





1007
NM_001128227.2(GNE): c.2228T >
10020
GNE
[′CCCGCCCTGCTGGGTGCTGCCAGCAYGGTTC



C (p.Met743Thr)


TGGACTACACAACACGCAGG′]





1008
NM_004273.4(CHST3): c.776T >
9469
CHST3
[′CGCTGCGGCCCCCTCAACGTGACGCYGGCC



C (p.Leu259Pro)


GCAGAGGCCTGCCGCCGCAAG′]





1009
NM_004273.4(CHST3): c.920T >
9469
CHST3
[′CTGGTGCGCGACCCCCGGGCCGTGCYGGCC



C (p.Leu307Pro)


TCGCGCATGGTGGCCTTCGCC′]





1010
NM_004273.4(CHST3): c.857T >
9469
CHST3
[′CGGCAGCTGGAGTTCCTGCAGCCGCYGGCC



C (p.Leu286Pro)


GAGGACCCCCGCCTGGACCTG′]





1011
NM_172201.1(KCNE2): c.161T >
9992
KCNE2
[′TTCTACTATGTCATCCTGTACCTCAYGGTGA



C (p.Met54Thr)


TGATTGGAATGTTCTCTTTC′]





1012
NM_172201.1(KCNE2): c.170T >
9992
KCNE2
[′GTCATCCTGTACCTCATGGTGATGAYTGGAA



C (p.Ile57Thr)


TGTTCTCTTTCATCATCGTG′]





1013
NM_172201.1(KCNE2): c.178T >
9992
KCNE2
[′GTACCTCATGGTGATGATTGGAATGHTCTCT



C (p.Phe60Leu)


TTCATCATCGTGGCCATCCT′]





1014
NM_001139.2(ALOX12B): c.1277T>
242
ALOX12B
[′TCATCCTCCTTGCTCTCCCCACAGCYCCTCA



> C (p.Leu426Pro)


TCCCCCATACCCGATACACC′]





1015
NM_003640.3(IKBKAP): c.2204 +
8518
IKBKAP
[′ATTCGGAAGTGGTTGGACAAGTAAGYGCCA



6T > C


TTGTACTGTTTGCGACTAGTT′]





1016
NM_005413.3(SIX3): c.749T > C
6496
SIX3
[′GCCACCGGCCTCACTCCCACACAAGYAGGC



(p.Val250Ala)


AACTGGTTTAAGAACCGGCGG′]





1017
NM_004820.3(CYP7B1): c.647T >
9420
CYP7B1
[HITATTAGTGAGCTAAGAGATGATTYTTTAA



C (p.Phe216Ser)


AATTTGATGACAAGTTTGCA′]





1018
NM_194248.2(OTOF): c.3032T >
9381
OTOF
′CTGTGTCCCACCTGGGACCAGATGCYGGTGT



C (p.Leu1011Pro)


TCGACAACCTGGAGCTCTAT]





1019
NM_194248.2(OTOF): c.1544T >
9381
OTOF
[′GACGTGGCCATCGGCACCCACTTCAYTGACC



C (p.Ile515Thr)


TGCGCAAGATTTCTAATGAC′]





1020
NM_004737.4(LARGE): c.1483T >
9215
LARGE
[′GATGCTGGAGGCCATCTGCAAGCACYGGGA



C (p.Trp495Arg)


GGGGCCCATCAGCCTGGCCCT′]





1021
NM_002420.5(TRPM1): c.296T >
4308
TRPM1
[′GAGGCCTCCATGCACAGATATTAAGRGCTTG



C (p.Leu99Pro)


GGGAGTTCCAGCTGCCAATC′]





1022
NM_004700.3(KCNQ4): c.842T >
9132
KCNQ4
[′ACCTGTTTGTGTCTCCAGATTACATYGACAA



C (p.Leu281Ser)


CCATCGGCTATGGTGACAAG′]





1023
NM_003839.3(TNFRSF11A): c.
8792
TNFRSF11
[′ACTGAACCACCTTTTCCCCCACAGCYGTACC



523T > C (p.Cys175Arg)


TTCCTTGGAAAGAGAGTAGA′]





1024
NM_030761.4(WNT4): c.35T > C
54361
WNT4
[′CGCTCGTGCCTGCGTTCGCTGCGCCYCCTCG



(p.Leu12Pro)


TCTTCGCCGTCTTCTCAGCC′]





1025
NM_000050.4(ASS1): c.535T > C
445
ASS1
[′CATCCCGGTCACTCCCAAGAACCCGYGGAG



(p.Trp179Arg)


CATGGATGAGAACCTCATGCA′]





1026
NM_002977.3(SCN9A): c.2543T >
−1

[′ACATTGAACATGCTGATTAAGATCAYTGGTA



C (p.Ile848Thr)


ACTCAGTAGGGGCTCTAGGT′]





1027
NM_002977.3(SCN9A): c.4382T >
−1

[′TTTCTTTACCTTGGAGGTCAAGACAYCTTTA



C (p.Ile1461Thr)


TGACAGAAGAACAGAAGAAA′]





1028
NM_002977.3(SCN9A): c.647T >
6335
SCN9A
[′GGCAATGTTTCAGCTCTTCGAACTTYCAGAG



C (p.Phe216Ser)


TATTGAGAGCTTTGAAAACT′]





1029
NM_003880.3(WISP3): c.232T >
8838
WISP3
[′AGATGGCTGTGGATGCTGTAAAATCYGTGC



C (p.Cys78Arg)


CAAGCAACCAGGGGAAATCTG′]





1030
NM_003880.3(WISP3): c.1000T >
8838
WISP3
[′TAAATGGAAGATGCTGTGGATTACAYCTTGT



C (p.Ser334Pro)


GTGTGTCAGAGAAACTGCAG′]





1031
NM_001457.3(FLNB): c.703T > C
2317
FLNB
[′CGAGCACTCAGTTATGACTTACCTGYCCCAG



(p.Ser235Pro)


TTCCCCAAAGCCAAGCTCAA′]





1032
NM_003060.3(SLC22A5): c.1051T >
6584
SLC22A5
[′GATTTGTTACTGACAAGGCCTAGGGNAAGTT


-
C (p.Trp351Arg)


TTCACAGCCTAAAACACAGT′,


1036



′TACAAGACCTAAGTTCCAAGAAGCARCAGTC






CCACAACATTCTGGATCTGC′,






′GGTCACCATCATGTCCATAATGCTGYGGTAT






GTAAAAGAGACCTGCCTGAG′,






′ATGCCTCAGACAAAATTCAAAGCCTRTGTCA






TCAGAGAGTGAAAAGGATAT′,






′GGCTGTTGTGGGAAATATGGACTCTYGTGGG






GAATCTCTCCAGATCTTAAG′]





1037
NM_000369.2(TSHR): c.1891T >
7253
TSHR
[′TGCCAAGAGGATGGCTGTGTTGATCYTCACC



C (p.Phe631Leu)


GACTTCATATGCATGGCCCC′]





1038
NM_000369.2(TSHR): c.1358T >
7253
TSHR
[′AAACTGAACGTCCCCCGCTTTCTCAYGTGCA



C (p.Met453Thr)


ACCTGGCCTTTGCGGATTTC′]





1039
NM_000369.2(TSHR): c.1526T >
7253
TSHR
[′ACTGTCTTTGCAAGCGAGTTATCGGYGTATA



C (p.Val509Ala)


CGCTGACGGTCATCACCCTG′]





1040
NM_000369.2(TSHR): c.1798T >
7253
TSHR
[′AGTTGCCTTCGTCATCGTCTGCTGCYGTTAT



C (p.Cys600Arg)


GTGAAGATCTACATCACAGT′]





1041
NM_000369.2(TSHR): c.1400T >
7253
TSHR
[′GCGGATTTCTGCATGGGGATGTACCYGCTCC



C (p.Leu467Pro)


TCATCGCCTCTGTAGACCTC′]





1042
NM_001003722.1(GLE1): c.2051T >
2733
GLE1
[′CAGAAATGTTTGCAACACAAGGACAYTCCT



C (p.Ile684Thr)


GTCCCCAAGGGCTTTCTGACT′]





1043
NM_024009.2(GJB3): c.101T > C
2707
GJB3
[′TCCGTGGTGTTCGTCTTCCGGGTGCYGGTAT



(p.Leu34Pro)


ACGTGGTGGCTGCAGAGCGC′]





1044
NM_001080463.1(DYNC2H1): c.
79659
DYNC2H1
[′GATTTGCTCAGAGTAGCTGATACAAYTGTAG



3719T > C (p.Ile1240Thr)


CCAAAGCTGCCGACCTTAAA′]





1045
NM_018129.3(PNPO): c.784T > C
55163
PNPO
[CTGGCTCTATGAGAGACTTGCACCTYAACTC



(p.Ter262Gln)


TGGGACCTGCTGGCCCAGAG′]





1046
NM_003722.4(TP63): c.1033T > C
8626
TP63
[′CCGACGCTGCTTTGAGGCCCGGATCYGTGCT



(p.Cys345Arg)


TGCCCAGGAAGAGACAGGAA′]





1047
NM_003722.4(TP63): c.1646T > C
8626
TP63
[′CCTCCGTATCCCACAGATTGCAGCAYTGTCA



(p.Ile549Thr)


GGTGAGTCCACAGCATGTGC′]





1048
NM_003722.4(TP63): c.1738T > C
8626
TP63
[′CACCATCTATCAGATTGAGCATTACBCCATG



(p.Ser580Pro)


GATGTAAGTAACTGTTAGAC′]





1049
NM_004086.2(COCH): c.349T > C
−1

[′CATCCAGTCTCAAATGCTTTCTAGAYGGTCT



(p.Trp117Arg)


GCTTCTTTCACAGTAACTAG′]





1050
NM_004086.2(COCH): c.1535T >
−1

[′GCACCTCTGGATGACCTGAAAGATAYGGCT



C (p.Met512Thr)


TCTAAACCGAAGGAGTCTCAT′]





1051
NM_006412.3(AGPAT2): c.683T >
10555
AGPAT2
[′ACAGGAACAGTCACAGTGCAGGTGCYGGAA



C (p.Leu228Pro)


GCCATCCCCACCAGCGGCCTC′]





1052
NM_003659.3(AGPS): c.1406T >
8540
AGPS
[′AATCAGCTAAGTGTAGCCACATTACYGTTTG



C (p.Leu469Pro)


AGGGGGATCGTGAGAAGGTT′]





1053
NM_004550.4(NDUFS2): c.1237T >
4720
NDUFS2
[′GGGAGAGTTTGGGGTGTACCTGGTGYCTGA



C (p.Ser413Pro)


TGGCAGCAGCCGCCCTTATCG′]





1054
NM_006892.3(DNMT3B): c.808T >
1789
DNMT3B
[′CCAGTGGTTTGGCGATGGCAAGTTCYCCGA



C (p.Ser270Pro)


GGTGAGTCCGGGGAAGGGCAA′]





1055
NM_002538.3(OCLN): c.656T > C
100506658
OCLN
[′CAAATATATGCCCTCTGCAACCAATYTTATA



(p.Phe219Ser)


CACCTGCAGCTACTGGACTC′]





1056
NM_001211.5(BUB1B): c.3035T >
−1

[′AATGATGAGGCCACAGTGTCTGTTCYTGGG



C (p.Leu1012Pro)


GAGCTTGCAGCAGAAATGAAT′]





1057
NM_016203.3(PRKAG2): c.1459T >
51422
PRKAG2
[′ACAGAATCTTGCTGCTGAGAAAACAYACAA



C (p.Tyr487His)


TAACCTAGATATCACGGTGAC′]





1058
NM_016203.3(PRKAG2): c.1642T >
51422
PRKAG2
[′TAGTATTGTGGGTATTATTTCCCTGYCGGAC



C (p.Ser548Pro)


ATTCTGCAAGCCCTGATCCT′]





1059
NM_001287.5(CLCN7): c.2297T >
1186
CLCN7
[′TTCAAGCTGTTCCGGGCCCTGGGCCYGCGGC



C (p.Leu766Pro)


ACCTGGTGGTGGTGGACAAC′]





1060
NM_004646.3(NPHS1): c.793T >
4868
NPHS1
[′GGCAGGACAGAGCTTGGAGCTGCCGYGCGT



C (p.Cys265Arg)


GGCCCGAGGGGGTAATCCCTT′]





1061
NM_003002.3(SDHD): c.416T > C
6392
SDHD
[′CTTTCAGCTTTAACCTTTGCTGGGCYTTGCT



(p.Leu139Pro)


ATTTCAACTATCACGATGTG′]





1062
NM_001164277.1(SLC37A4): c.
2542
SLC37A4
[′TAATGGCCTGGCCCAGGGGCTGGGCYGGCC



352T > C (p.Trp118Arg)


CCCATGTGGGAAGGTCCTGCG′]





1063
NM_002546.3(TNFRSF11B): c.
4982
TNFRSF11B
[′GGAAGGGCGCTACCTTGAGATAGAGYTCTG



349T > C (p.Phe117Leu)


CTTGAAACATAGGAGCTGCCC′]





1064
NM_005422.2(TECTA): c.5509T >
7007
TECTA
[′GGGCGTGAGGATCAATGACAGACAGBGCAC



C (p.Cys1837Arg)


CGGCATCGAGGGGGAAGATTT′]





1065
NM_007262.4(PARK7): c.497T >
11315
PARK7
[′CCTGGGACCAGCTTCGAGTTTGCGCYTGCAA



C (p.Leu166Pro)


TTGTTGAAGCCCTGAATGGC′]





1066
NM_006009.3(TUBA1A): c.1190T >
7846
TUBA1A
[′GCTCGCCTGGACCACAAGTTTGACCYGATGT



C (p.Leu397Pro)


ATGCCAAACGTGCCTTTGTT′]





1067
NM_002700.2(POU4F3): c.668T >
5459
POU4F3
[′CTCAAGATCCCCGGCGTGGGCTCGCYGAGC



C (p.Leu223Pro)


CAAAGCACCATCTGCAGGTTC′]





1068
NM_005025.4(SERPINI1): c.145T >
5274
SERPINI1
[′TGGTGAAGATGAAAATATTCTCTTCYCTCCA



C (p.Ser49Pro)


TTGAGTATTGCTCTTGCAAT′]





1069
NM_001040667.2(HSF4): c.341T >
3299
HSF4
[′TTCGTGCGCGGCCGCGAGCAGCTACYGGAG



C (p.Leu114Pro)


CGCGTGCGGCGCAAGGTGGGG′]





1070
NM_002942.4(ROBO2): c.2834T >
6092
ROBO2
[′AATAGCAACAGTGGCCCAAATGAGAYTGGA



C (p.Ile945Thr)


AATTTTGGCCGTGGAGGTAAG′]





1071
NM_000492.3(CFTR): c.3857T >
1080
CFTR
[′ACTTTGCAACAGTGGAGGAAAGCCTYTGGA



C (p.Phe1286Ser)


GTGATACCACAGGTGAGCAAA′]





1072
NM_000492.3(CFTR): c.3763T >
1080
CFTR
[′TGGATCAGGGAAGAGTACTTTGTTAYCAGCT



C (p.Ser1255Pro)


TTTTTGAGACTACTGAACAC′]





1073
NM_000492.3(CFTR): c.3194T >
1080
CFTR
[′ACAAGCTTAAAAGGACTATGGACACBTCGT



C (p.Leu1065Pro)


GCCTTCGGACGGCAGCCTTAC′]





1074
NM_000492.3(CFTR): c.3469 −
1080
CFTR
[′TGTCTGCCATTCTTAAAAACAAAAAYGTTGT



20T > C


TATTTTTATTTCAGATGCGA′]





1075
NM_005603.4(ATP8B1): c.863T >
5205
ATP8B1
[′TTTTGGAGAAACACAAGTTTTCCTTYGGATG



C (p.Leu288Ser)


CTGATAAAATTTTGTTACGT′]





1076
NM_005603.4(ATP8B1): c.2097 +
5205
ATP8B1
[′GAGGAGATTGAAAAAGACTTAATTGYGAGT



C


TTTAGCCTTAATAACTTTTTC′]





1077
NM_005603.4(ATP8B1): c.1982T >
5205
ATP8B1
[′ACCCTATGCCTTTGCTACAAGGAAAYTGAA



C (p.Ile661Thr)


GAAAAAGAATTTACAGAATGG′]





1078
NM_005144.4(HR): c.-320T > C
55806
HR
[′CGCAGCACGGAGTCTCGGCGTCCCAYGGCG






CAACCTACGGCCTCGGCCCAG′]





1079
NM_003322.4(TULP1): c.1471T >
7287
TULP1
[′GGTCACCCAGGCCTCAGTCAAGAACYTCCA



C (p.Phe491Leu)


GATTGTCCACGCTGATGACCG′]





1080
NM_003322.4(TULP1): c.1145T >
7287
TULP1
[CTCCTGGGGAACCGCTTCACGGTCTYTGACA



C (p.Phe382Ser)


ACGGGCAGAACCCACAGCGT′]





1081
NM_000455.4(STK11): c.200T >
6794
STK11
[′TCTTACGGCAAGGTGAAGGAGGTGCYGGAC



C (p.Leu67Pro)


TCGGAGACGCTGTGCAGGAGG′]





1082
NM_002241.4(KCNJ10): c.418T >
3766
KCNJ10
[′TGGCTTCCGCTACATCAGTGAGGAAYGTCCA



C (p.Cys140Arg)


CTGGCCATTGTGCTTCTTAT′]





1083
NM_001172567.1(MYD88): c.317T >
4615
MYD88
[′TCTGTAGGCCGACTGCTCGAGCTGCYTACCA



C (p.Leu106Pro)


AGCTGGGCCGCGACGACGTG′]





1084
NM_000466.2(PEX1): c.1991T >
5189
PEX1
[′CCATCTGTTGTCCTGCTGGATGACCYTGACC



C (p.Leu664Pro)


TCATTGCTGGACTGCCTGCT′]





1085
NM_001303.3(COX10): c.2T > C
1352
COX10
[′GGAGCGGCCCCAGACTCGTAAATTAYGGCC



(p.Met1Thr)


GCATCTCCGCACACTCTCTCC′]





1086
NM_001300.5(KLF6): c.346T > C
1316
KLF6
[′TGTCAGCAGCGAATCCTCTGACAGCYCCGA



(p.Ser116Pro)


GGAACTTTCTCCCACGGCCAA′]





1087
NM_001300.5(KLF6): c.190T > C
1316
KLF6
[′CAAATTTGACAGCCAGGAAGATCTGYGGAC



(p.Trp64Arg)


CAAAATCATTCTGGCTCGGGA′]





1088
NM_001300.5(KLF6): c.506T > C
1316
KLF6
[′CTGTGGGGTTGCGTGCCCGGGGAGCYGCCC



(p.Leu169Pro)


TCGCCAGGGAAGGTGCGCAGC′]





1089
NM_000085.4(CLCNKB): c.1294T >
1188
CLCNKB
[′CGGGTACTTCATGCCCATCTTTGTCYATGGT



C (p.Tyr432His)


GAGTCTGGGGTCCTGAGGTT′]





1090
NM_000214.2(JAG1): c.110T > C
182
JAG1
[TGTGGGGCCTCGGGTCAGTTCGAGTYGGAG



(p.Leu37Ser)


ATCCTGTCCATGCAGAACGTG′]





1091
NM_003865.2(HESX1): c.77T > C
8820
HESX1
[′ACTTGCTCCTTTTCAATTGAGAGAAYCTTAG



(p.Ile26Thr)


GACTGGACCAGAAGAAAGAC′]





1092
NM_003865.2(HESX1): c.357 +
8820
HESX1
[′TCATTATTGGGTGAAAAAACTTCCCDCCTGG



2T > C


TTTTGAGTAAAAGCAGTTCT′]





1093
NM_002618.3(PEX13): c.977T >
5194
PEX13
[′CTTGATGGCCAAACAACAGGACTTAYACCT



C (p.Ile326Thr)


GCGAATTATGTCAAAATTCTT′]





1094
NM_000303.2(PMM2): c.395T >
5373
PMM2
[′AATGGGATGTTAAACGTGTCCCCTAYTGGA



C (p.Ile132Thr)


AGAAGCTGCAGCCAAGAAGAA′]





1095
NM_000303.2(PMM2): c.131T >
5373
PMM2
[′AGGCAGAAGATCAAAATCGGAGTGGYAGGC



C (p.Val44Ala)


GGATCGGACTTTGAGAAAGTG′]





1096
NM_000104.3(CYP1B1): c.2T > C
1545
CYP1B1
[′CGCCTTCTCCTCTCTGTCCCCAGCAYGGGCA



(p.Met1Thr)


CCAGCCTCAGCCCGAACGAC′]





1097
NM_032977.3(CASP10): c.440T >
843
CASP10
[′AAAGACTCGCTTCCCAAAACTGAAAYGGTG



C (p.Met147Thr)


AGTGGGTCATACAGAATGGGT′]





1098
NM_003999.2(OSMR): c.2072T >
9180
OSMR
[′GGTTCAGAATGTTGCAAATACAAAAYTGAC



C (p.Ile691Thr)


AACCCGGAAGAAAAGGCATTG′]





1099
NM_000314.6(PTEN): c.370T > C
5728
PTEN
[′TGACAATCATGTTGCAGCAATTCACBGTAAA



(p.Cys124Arg)


GCTGGAAAGGGACGAACTGG′]





1100
NM_000314.6(PTEN): c.209T > C
5728
PTEN
[′AAAAACCATTACAAGATATACAATCYGTAA



(p.Leu70Pro)


GTATGTTTTCTTATTTGTATG′]





1101
NM_000314.6(PTEN): c.335T > C
5728
PTEN
[′TTTTGTGAAGATCTTGACCAATGGCYAAGTG



(p.Leu112Pro)


AAGATGACAATCATGTTGCA′]





1102
NM_000314.6(PTEN): c.722T > C
5728
PTEN
[′CGACGGGAAGACAAGTTCATGTACTYTGAG



(p.Phe241Ser)


TTCCCTCAGCCGTTACCTGTG′]





1103
NM_006949.3(STXBP2): c.626T >
6813
STXBP2
[′TTGGCCCACGCCGTCCTGGCCAAGCHGAAC



C (p.Leu209Pro)


GCCTTCAAGGCAGACACTCCC′]





1104
NM_000358.2(TGFBI): c.1619T >
7045
TGFBI
[′AACCGGGAAGGAGTCTACACAGTCTYTGCT



C (p.Phe540Ser)


CCCACAAATGAAGCCTTCCGA′]





1105
NM_000350.2(ABCA4): c.1622T >
24
ABCA4
[′CAGCTCACCCAACGTGCCCTCTCTCYACTGG



C (p.Leu541Pro)


AGGAAAACATGTTCTGGGCC′]





1106
NM_000350.2(ABCA4): c.5819T >
24
ABCA4
[′GGAAATAAAACTGACATCTTAAGGCYACAT



C (p.Leu1940Pro)


GAACTAACCAAGGTAAGGGAA′]





1107
NM_000860.5(HPGD): c.577T > C
3248
HPGD
[′CTTTGTTAACACAGCCATCCTTGAAYCAATT



(p.Ser193Pro)


GAAAAAGAAGAAAACATGGG′]





1108
NM_000223.3(KRT12): c.386T >
3859
KRT12
[′CTTTCTGGATCAGAAAAAGAAACTAYGCAA



C (p.Met129Thr)


AATCTTAATGATAGATTAGCT′]





1109
NM_000503.5(EYA1): c.1459T >
2138
EYA1
[′GTTGACACTGGCCCTGAAAGCACTCYCGCTC



C (p.Ser487Pro)


ATTCACTCCCGGTGAGGCTC′]





1110
NM_000261.1(MYOC): c.1309T >
4653
MYOC
[′TGCCTTCATCATCTGTGGCACCTTGYACACC



C (p.Tyr437His)


GTCAGCAGCTACACCTCAGC′]





1111
NM_000261.1(MYOC): c.1297T >
4653
MYOC
[′GTCAGTCGCCAATGCCTTCATCATCYGTGGC



C (p.Cys433Arg)


ACCTTGTACACCGTCAGCAG′]





1112
NM_130838.1(UBE3A): c.389T >
7337
UBE3A
[′GATTATTCCCCTTTAATCCGTGTTAYTGGAA



C (p.Ile130Thr)


GAGTTTTTTCTAGTGCTGAG′]





1113
NM_000474.3(TWIST1): c.392T >
7291
TWIST1
[′TCGCTGAACGAGGCGTTCGCCGCGCYGCGG



C (p.Leu131Pro)


AAGATCATCCCCACGCTGCCC′]





1114
NM_000192.3(TBX5): c.161T > C
6910
TBX5
[′TCCTTCTTGCAGGGCATGGAGGGAAYCAAA



(p.Ile54Thr)


GTGTTTCTCCATGAAAGAGAA′]





1115
NM_002905.3(RDH5): c.841T > C
−1

[′GACTGCTCGACACCCCCGAACCCGCBACAG



(p.Tyr281His)


CCCAGGTTGGGATGCCAAGCT′]





1116
NM_001089.2(ABCA3): c.302T >
21
ABCA3
[′GTCACTGAGACAGTGCGCAGGGCACYTGTG



C (p.Leu101Pro)


ATCAACATGCGAGGTGAGACA′]





1117
NM_001089.2(ABCA3): c.4658T >
21
ABCA3
[′ATGGACCCCGTGGCCCGGCGCCTGCYTTGG



C (p.Leu1553Pro)


GACACCGTGGCACGAGCCCGA′]





1118
NM_001089.2(ABCA3): c.977T >
21
ABCA3
[′ATCGCCGCCTCCTTCATGACCCTGCYCTTCT



C (p.Leu326Pro)


GTGTCAAGGTGAGCATGGCG′]





1119
NM_005535.2(IL12RB1): c.592T >
3594
IL12RB1
[′CTGCCTCTCCCCAGAGTCCTGCCTCYGCCCC



C (p.Cys198Arg)


CTGGAGATGAATGTGGCCCA′]





1120
NM_005055.4(RAPSN): c.41T > C
5913
RAPSN
[′ACCAAGCAGCAGATCGAGAAGGGGCYCCAG



(p.Leu14Pro)


CTGTACCAGTCCAACCAGACA′]





1121
NM_005055.4(RAPSN): c.848T >
5913
RAPSN
[′ATCATGACCGAGATCGGAAACCGCCYGGGG



C (p.Leu283Pro)


CAGGTGCAGGCGCTGCTGGGT′]





1122
NM_005055.4(RAPSN): c.416T >
5913
RAPSN
MATGCCTTCCTGGGCCTCAGCGTCTYCCAGA



C (p.Phe139Ser)


AGGCCCTGGAGAGCTTCGAG′]





1123
NM_005570.3(LMAN1): c.2T > C
3998
LMAN1
[′CTCCTCCGCGTTCCAGAATCCAAGAYGGCG



(p.Met1Thr)


GGATCCAGGCAAAGGGGTCTC′]





1124
NM_000430.3(PAFAH1B1): c.505T >
5048
PAFAH1B1
[CAGCGGCAAGCTTCTGGCTTCCTGTYCTGCA



C (p.Ser169Pro)


GATATGACCATTAAACTATG′]





1125
NM_000430.3(PAFAH1B1): c.92T >
5048
PAFAH1B1
[′GGCTATGAAGAGGCATATTCAGTTTYTAAA



C (p.Phe31Ser)


AAGGAAGCTGAATTAGATGTG′]





1126
NM_006261.4(PROP1): c.263T >
5626
PROP1
[′CAGTTGGAACAGCTGGAGTCAGCCTYTGGG



C (p.Phe88Ser)


AGGAACCAGTACCCCGACATC′]





1127
NM_175929.2(FGF14): c.449T >
2259
FGF14
[′GAACTTTTTACCCCTGAATGCAAGTYTAAAG



C (p.Phe150Ser)


AATCTGTTTTTGAAAATTAT′]





1128
NM_004970.2(IGFALS): c.1618T >
3483
IGFALS
[′GTGGCTGGAGGGTAACCCCTGGGACYGTGG



C (p.Cys540Arg)


CTGCCCTCTCAAGGCGCTGCG′]





1129
NM_005379.3(MYO1A): c.2728T >
4640
MYO1A
[′CCCTTGCCTGTTCCGTCCCTAGACTYCTTCTC



C (p.Ser910Pro)


GGATTCTCCTCCTGACCAA′]





1130
NM_006302.2(MOGS): c.1954T >
7841
MOGS
[′GCACTGGGCCCCAGAGCTAGGAGTCYTTGC



C (p.Phe652Leu)


AGACTTTGGGAACCACACAAA′]





1131
NM_001009944.2(PKD1): c.2534T >
5310
PKD1
[′TACGTGCCCACCAACGGCTCAGCCTYGGTGC



C (p.Leu845Ser)


TCCAGGTGGACTCTGGTGCC′]





1132
NM_004329.2(BMPR1A): c.370T >
657
BMPR1A
[′AGCCCAGCTACGCCGGACAATAGAAYGTTG



C (p.Cys124Arg)


TCGGACCAATTTATGTAACCA′]





1133
NM_004329.2(BMPR1A): c.1409T >
657
BMPR1A
[′CCGAGTGATCCGTCATACGAAGATAYGCGT



C (p.Met470Thr)


GAGGTTGTGTGTGTCAAACGT′]





1134
NM_000452.2(SLC10A2): c.728T >
6555
SLC10A2
[′GTGGCGGGTTACTCCCTGGGGTTTCYTCTGG



C (p.Leu243Pro)


CTAGAATTGCTGGTCTACCC′]





1135
NM_030662.3(MAP2K2): c.400T >
5605
MAP2K2
[′CAACTCGCCGTACATCGTGGGCTTCYACGGG



C (p.Tyr134His)


GCCTTCTACAGTGACGGGGA′]





1136
NM_033337.2(CAV3): c.260T > C
859
CAV3
[′CTGCTGGGCGTCCCACTGGCCCTGCHCTGGG



(p.Leu87Pro)


GCTTCCTGTTCGCCTGCATC′]





1137
NM_000388.3(CASR): c.2417T >
846
CASR
[′CCGGAGAACTTCAATGAAGCCAAGTHCATC



C (p.Phe806Ser)


ACCTTCAGCATGCTCATCTTC′]





1138
NM_000388.3(CASR): c.382T > C
846
CASR
[′AATTGATTCTTTGAACCTTGATGAGYTCTGC



(p.Phe128Leu)


AACTGCTCAGAGCACATTCC′]





1139
NM_000388.3(CASR): c.1835T >
846
CASR
[GAGTTTCTGTCGTGGACGGAGCCCTYTGGGA



C (p.Phe612Ser)


TCGCACTCACCCTCTTTGCC′]





1140
NM_000388.3(CASR): c.2641T >
846
CASR
[′GCGTTGCAGCACCGCAGCTCACGCTYTCAA



C (p.Phe881Leu)


GGTGGCTGCCCGGGCCACGCT′]





1141
NM_000388.3(CASR): c.374T > C
846
CASR
[′CAAAACAAAATTGATTCTTTGAACCYTGATG



(p.Leu125Pro)


AGTTCTGCAACTGCTCAGAG′]





1142
NM_000388.3(CASR): c.2362T >
846
CASR
[′CACCTGCCTGCTGGCTGCCATCTGCYTCTTC



C (p.Phe788Leu)


TTTGCCTTCAAGTCCCGGAA′]





1143
NM_000388.3(CASR): c.38T > C
846
CASR
[′AGCTGCTGCTGGGTCCTCTTGGCACYCACCT



(p.Leu13Pro)


GGCACACCTCTGCCTACGGG′]





1144
NM_030653.3(DDX11): c.2271 +
1663
DDX11
[′CTGGCATATTCCAGGTGCATCCAGGYGCGG



2T > C


GCGTCATGCTGGGCTTGGGTC′]





1145
NM_001001557.2(GDF6): c.866T >
392255
GDF6
[′TTCACCAGATCCCAGCGCAAGAACCYGTTC



C (p.Leu289Pro)


GCAGAGATGCGCGAGCAGCTG′]





1146
NM_000557.4(GDF5): c.1322T >
−1

[′TGCGAGTTCCCATTGCGCTCCCACCYGGAGC



C (p.Leu441Pro)


CCACGAATCATGCAGTCATC′]





1147
NM_000392.4(ABCC2): c.1967 +
1244
ABCC2
[′TGATTCGGAAGCCACAGTCCGAGAGYGAGT



2T > C


TGCCTTCTTTCCATCCTAATG′]





1148
NM_000396.3(CTSK): c.926T > C
1513
CTSK
[′AACTGGGGAAACAAAGGATATATCCYCATG



(p.Leu309Pro)


GCTCGAAATAAGAACAACGCC′]





1149
NM_000304.3(PMP22): c.47T > C
5376
PMP22
[′ATCATCGTCCTCCACGTCGCGGTGCYGGTGC



(p.Leu16Pro)


TGCTGTTCGTCTCCACGATC′]





1150
NM_000304.3(PMP22): c.82T > C
5376
PMP22
[′ATATCTATCTGATTCTCTCTAGCAAYGGATC



(p.Trp28Arg)


GTGGGCAATGGACACGCAAC′]





1151
NM_001453.2(FOXC1): c.335T >
2296
FOXC1
[′ATCTACCAGTTCATCATGGACCGCTHCCCCT



C (p.Phe112Ser)


TCTACCGGGACAACAAGCAG′]





1152
NM_001451.2(FOXF1): c.1138T >
2294
FOXF1
[′CCAAGACATCAAGCCTTGCGTGATGYGAGG



C (p.Ter380Arg)


CTGCCGCCGCAGGCCCTCCTG′]





1153
NM_006432.3(NPC2): c.199T > C
10577
NPC2
[′CTCTTTTTTTCTCTTAGATATTCAGYCTAAAA



(p.Ser67Pro)


GCAGCAAGGCCGTGGTGCA′]





1154
NM_001127221.1(CACNA1A): c.
773
CACNA1A
[′CTGAATGTGTTCTTGGCCATCGCTGYGGACA



2141T > C (p.Val714Ala)


ATCTGGCCAACGCCCAGGAG′]





1155
NM_001127221.1(CACNA1A): c.
773
CACNA1A
[′GGGTACCGCATGGAGATGTCCATTTYCTACG



4469T > C (p.Phe1490Ser)


TCGTCTACTTTGTGGTGTTC′]





1156
NM_001127221.1(CACNA1A): c.
773
CACNA1A
[′ATGCTCTTCTTCATCTATGCCATCAYTGGGA



5126T > C (p.Ile1709Thr)


TGCAGGTGAGTGTCGTGTCC′]





1157
NM_000901.4(NR3C2): c.2771T >
4306
NR3C2
[′CAGAGCTGGCAGAGGTTCTACCAACYGACC



C (p.Leu924Pro)


AAGCTGCTGGACTCCATGCAT′]





1158
NM_000901.4(NR3C2): c.2936T >
4306
NR3C2
[′GTGGAGTCGGGGAACGCCAAGCCGCYCTAC



C (p.Leu979Pro)


TTCCACCGGAAGTGACTGCCC′]





1159
NM_000339.2(SLC12A3): c.2576T >
6559
SLC12A3
[′CTCACCCTCCTCATTCCCTATCTCCYTGGCC



C (p.Leu859Pro)


GCAAGAGGAGGTGGAGCAAA′]





1160
NM_000339.2(SLC12A3): c.1261T >
6559
SLC12A3
[′CTGGGGTGCCTGCGAGGGGCTGGCCYGCAG



C (p.Cys421Arg)


CTATGGCTGGAACTTCACCGA′]





1161
NM_000339.2(SLC12A3): c.1868T >
6559
SLC12A3
[′TCGGTACAGGCTGGCTCCTACAACCYGGCCC



C (p.Leu623Pro)


TCAGCTACTCGGTGGGCCTC′]





1162
NM_000163.4(GHR): c.341T > C
2690
GHR
[′TCTGCTGGGGAAAACAGCTGTTACTYTAATT



(p.Phe114Ser)


CATCGTTTACCTCCATCTGG′]





1163
NM_000163.4(GHR): c.512T > C
2690
GHR
[′AGTTTAACTGGGATTCATGCAGATAYCCAA



(p.Ile171Thr)


GTGAGATGGGAAGCACCACGC′]





1164
NM_000525.3(KCNJ11): c.440T >
3767
KCNJ11
[′ACTGAGGAGTGCCCACTGGCCATCCYGATC



C (p.Leu147Pro)


CTCATCGTGCAGAACATCGTG′]





1165
NM_000525.3(KCNJ11): c.124T >
3767
KCNJ11
[′CCGCTTTGTGTCCAAGAAAGGCAACYGCAA



C (p.Cys42Arg)


CGTGGCCCACAAGAACATCCG′]





1166
NM_001122764.1(PPDX): c.35T >
5498
PPDX
[′ACCGTGGTCGTGCTGGGCGGAGGCAYCAGC



C (p.Ile12Thr)


GGCTTGGCCGCCAGTTACCAC′]





1167
NM_000182.4(HADHA): c.1025T >
3030
HADHA
[′AAAGAATCAAAGGCCTTGATGGGACYCTAC



C (p.Leu342Pro)


CATGGTCAGGTCCTGTGCAAG′]





1168
NM_003476.4(CSRP3): c.131T >
8048
CSRP3
[′CTGGCAGTGGCCTGCAGGAAGGCTCYTGAC



C (p.Leu44Pro)


AGCACGACAGTCGCGGCTCAT′]





1169
NM_001204.6(BMPR2): c.367T >
659
BMPR2
[′TTTCTGCTGTTGTAGCACAGATTTAHGTAAT



C (p.Cys123Arg)


GTCAACTTTACTGAGAATTT′]





1170
NM_000336.2(SCNN1B): c.1858T >
6338
SCNN1B
[′CATCCCAGGCACCCCGCCCCCCAACYATGA



C (p.Tyr620His)


CTCCCTGCGTCTGCAGCCGCT′]





1171
NM_002181.3(IHH): c.569T > C
3549
IHH
[′TCAAAGGCCCACGTGCATTGCTCCGYCAAGT



(p.Val190Ala)


CCGGTGAGCCGCCGCCGGGG′]





1172
NM_000193.3(SHH): c.349T > C
6469
SHH
[′TTTGGCCATCTCGGTGATGAACCAGBGGCCA



(p.Trp117Arg)


GGAGTGAAACTGCGGGTGAC′]





1173
NM_000193.3(SHH): c.995T > C
6469
SHH
[′GACCGCCGGCTCCTGCCCGCCGCTGYGCAC



(p.Val332Ala)


AGCGTGACCCTAAGCGAGGAG′]





1174
NM_000179.2(MSH6): c.2633T >
2956
MSH6
[′AAAATTATAGGGATCATGGAAGAAGBTGCT



C (p.Val878Ala)


GATGGTTTTAAGTCTAAAATC′]





1175
NM_000098.2(CPT2): c.1342T >
1376
CPT2
[′AACCCTCACTATTGACTGCGTCCAGYTTCAG



C (p.Phe448Leu)


AGAGGAGGCAAAGAATTCCT′]





1176
NM_007315.3(STAT1): c.2117T >
6772
STAT1
[′GGAACTGGATATATCAAGACTGAGTYGATT



C (p.Leu706Ser)


TCTGTGTCTGAAGTGTAAGTG′]





1177
NM_007315.3(STAT1): c.1799T >
6772
STAT1
[′AAGGACCAGCAGCCGGGGACCTTCCYGCTG



C (p.Leu600Pro)


CGGTTCAGTGAGAGCTCCCGG′]





1178
NM_024420.2(PLA2G4A): c.331T >
5321
PLA2G4A
[′AGGGACAGCAACATTTACTGTATCTYCTATG



C (p.Ser111Pro)


AAGGTGGGAGAAAAGAAAGA′]





1179
NM_000352.4(ABCC8): c.394T >
6833
ABCC8
[′CTATCACAACATCGAGACTTCCAACBTCCCC



C (p.Phe132Leu)


AAGCTGCTAATTGGTAGGTG′]





1180
NM_033163.3(FGF8): c.118T > C
2253
FGF8
[′GCTGGGCAGGGAGCTCGCTTCCCTGYTCCGG



(p.Phe40Leu)


GCTGGCCGGGAGCCCCAGGG′]





1181
NM_153767.3(KCNJ1): c.1013T >
3758
KCNJ1
[′AACATCTTTCTCATTATAAAGGCACRTGGCA



C (p.Met338Thr)


CAGTGAGGGGTCTCCACTTC′]





1182
NM_000095.2(COMP): c.982T >
1311
COMP
[′AACCCACCCTGTCATCCAGGACAACYGCCC



C (p.Cys328Arg)


GCTGGTGCGGAACCCAGACCA′]





1183
NM_000095.2(COMP): c.1042T >
1311
COMP
[′GGACGAGGACAAGTGGGGCGATGCGYGCGA



C (p.Cys348Arg)


CAACTGCCGGTCCCAGAAGAA′]





1184
NM_002047.2(GARS): c.548T > C
2617
GARS
[′ATCCTGGAGATCGATTGCACCATGCYCACCC



(p.Leu183Pro)


CTGAGCCAGTTTTAAAGTGA′]





1185
NM_000435.2(NOTCH3): c.1363T >
4854
NOTCH3
[′CCTCGACCGCATAGGCCAGTTCACCYGTATC



C (p.Cys455Arg)


TGTATGGCAGGTGGGTGGTG′]





1186
NM_001166107.1(HMGCS2): c.
3158
HMGCS2
[′CTGCTACGGTGGTACTGCCTCCCTCYTCAAT



520T > C (p.Phe174Leu)


GCTGCCAACTGGATGGAGTC′]





1187
NM_001038.5(SCNN1A): c.1477
6337
SCNN1A
[′CCAGCTCTCTGCTGGTTACTCACGAYGGCCC



C (p.Trp493Arg)


TCGGTGACATCCCAGGTAGA′]





1188
NM_000161.2(GCH1): c.662T > C
2643
GCH1
[′ATGGTAATGCGAGGTGTACAGAAAAYGAAC



(p.Met221Thr)


AGCAAAACTGTGACCAGCACA′]





1189
NM_000059.3(BRCA2): c.7529T >
675
BRCA2
[′CGCGTCTTTCCACAGCCAGGCAGTCYGTATC



C (p.Leu2510Pro)


TTGCAAAAACATCCACTCTG′]





1190
NM_000180.3(GUCY2D): c.1694T >
3000
GUCY2D
[′GGAGACAGGGTTTGGCTGAAGAAATYCCCA



C (p.Phe565Ser)


GGGGATCAGCACATAGCTATC′]





1191
NM_000180.3(GUCY2D): c.2846T >
3000
GUCY2D
[′AATGGGCAGCGACACGCGGCAGAGAYCGCC



C (p.Ile949Thr)


AACATGTCACTGGACATCCTC′]





1192
NM_198056.2(SCN5A): c.3963 +
6331
SCN5A
[′CTGTCACGATTTGAGGGCATGAGGGYAAGA



2T > C


GAGGTGGCTGCCTTCCCACCA′]





1193
NM_000335.4(SCN5A): c.5380T >
6331
SCN5A
[′GAGTGAGGACGACTTCGATATGTTCYATGA



C (p.Tyr1794His)


GATCTGGGAGAAATTTGACCC′]





1194
NM_000023.2(SGCA): c.524T > C
6442
SGCA
[′CCCGGAGAGCTTCAGCTGCTCAACGYCACCT



(p.Val175Ala)


CTGCCTTGGACCGTGGGGGC′]





1195
NM_002427.3(MMP13): c.224T >
4322
MMP13
[′AGGCTCCGAGAAATGCAGTCTTTCTYCGGCT



C (p.Phe75Ser)


TAGAGGTGACTGGCAAACTT′]





1196
NM_002427.3(MMP13): c.221T >
4322
MMP13
[′GAGAGGCTCCGAGAAATGCAGTCTTYCTTC



C (p.Phe74Ser)


GGCTTAGAGGTGACTGGCAAA′]





1197
NM_002427.3(MMP13): c.272T >
4322
MMP13
[′CTTGACGATAACACCTTAGATGTCAYGAAA



C (p.Met91Thr)


AAGCCAAGATGCGGGGTTCCT′]





1198
NM_004525.2(LRP2): c.7564T >
4036
LRP2
[′CTCCTTTTGTATGACTAGGTACCTGYACTGG



C (p.Tyr2522His)


GCTGACTGGGATACACATGC′]





1199
NM_000211.4(ITGB2): c.446T >
3689
ITGB2
[′GATGACCTCAGGAATGTCAAGAAGCYAGGT



C (p.Leu149Pro)


GGCGACCTGCTCCGGGCCCTC′]





1200
NM_000211.4(ITGB2): c.412T >
3689
ITGB2
[′GTACTATCTGATGGACCTCTCCTACYCCATG



C (p.Ser138Pro)


CTTGATGACCTCAGGAATGT′]





1201
NM_005502.3(ABCA1): c.4429T >
19
ABCA1
[′CAAAATCAAGAAGATGCTGCCTGTGYGTCC



C (p.Cys1477Arg)


CCCAGGGGCAGGGGGGCTGCC′]





1202
NM_005502.3(ABCA1): c.6026T >
19
ABCA1
[′TTGACTGGGAGAGAACACGTGGAGTYCTTT



C (p.Phe2009Ser)


GCCCTTTTGAGAGGAGTCCCA′]





1203
NM_130439.3(MXI1): c.552 +
4601
MXI1
[′AACAAAGCCAAAGCACACATCAAGGYGAGA



2T > C


ATTTTTACTTTCAGATTTGCA′]





1204
m.5874T > C
4579
MT-TY
[′GTCTTTAGATTTACAGTCCAATGCTYCACTC






AGCCATTTTACCTCACCCCC′]





1205
m.7512T > C
4574
MT-TS1
[′CCAACCCCATGGCCTCCATGACTTTYTCAAA






AAGGTATTAGAAAAACCATT′]





1206
m.7510T > C
4574
MT-TS1
[′AGCCAACCCCATGGCCTCCATGACTYTTTCA






AAAAGGTATTAGAAAAACCA′]





1207
m.7511T > C
4574
MT-TS1
[′GCCAACCCCATGGCCTCCATGACTTYTTCAA






AAAGGTATTAGAAAAACCAT′]





1208
m.616T > C
4558
MT-TF
[′CCTCCTCAAAGCAATACACTGAAAABGTTTA






GACGGGCTCACATCACCCCA′]





1209
m.4409T > C
4569
MT-TM
[′TATCACACCCCATCCTAAAGTAAGGYCAGCT






AAATAAGCTATCGGGCCCAT′]





1210
m.8356T > C
4566
MT-TK
[′AAAGATTAAGAGAACCAACACCTCTYTACA






GTGAAATGCCCCAACTAAATA′]





1211
m.12297T > C
4568
MT-TL2
[′AAAGGATAACAGCTATCCATTGGTCYTAGG






CCCCAAAAATTTTGGTGCAAC′]





1212
m.3271T > C
4567
MT-TL1
[′CCGGTAATCGCATAAAACTTAAAACYTTAC






AGTCAGAGGTTCAATTCCTCT′]





1213
m.3250T > C
4567
MT-TL1
[′GGTTTGTTAAGATGGCAGAGCCCGGYAATC






GCATAAAACTTAAAACTTTAC′]





1214
m.3290T > C
4567
MT-TL1
[′TAAAACTTTACAGTCAGAGGTTCAAYTCCTC






TTCTTAACAACATACCCATG′]





1215
m.4290T > C
4565
MT-TI
[′AAATATGTCTGATAAAAGAGTTACTYTGATA






GAGTAAATAATAGGAGCTTA′]





1216
m.4291T > C
4565
MT-TI
[′AATATGTCTGATAAAAGAGTTACTTYGATAG






AGTAAATAATAGGAGCTTAA′]





1217
m.9997T > C
4563
MT-TG
[′ATCTATTGATGAGGGTCTTACTCTTYTAGTA






TAAATAGTACCGTTAACTTC′]





1218
m.10010T > C
4563
MT-TG
[′GGTCTTACTCTTTTAGTATAAATAGYACCGT






TAACTTCCAATTAACTAGTT′]





1219
m.4336T > C
4572
MT-TQ
[′GCTTAAACCCCCTTATTTCTAGGACYATGAG






AATCGAACCCATCCCTGAGA′]





1220
m.14709T > C
4556
MT-TE
[′CGGACTACAACCACGACCAATGATAYGAAA






AACCATCGTTGTATTTCAACT′]





1221
m.14674T > C
4556
MT-TE
[′TCAACAGAAACAAAGCATACATCATBATTCT






CGCACGGACTACAACCACGA′]





1222
m.5692T > C
4570
MT-TN
[′GGGACTTAAACCCACAAACACTTAGYTAAC






AGCTAAGCACCCTAATCAACT′]





1223
m.5728T > C
4570
MT-TN
[′GCACCCTAATCAACTGGCTTCAATCYACTTC






TCCCGCCGCCGGGAAAAAAG′]





1224
m.2991T > C
4550
MT-RNR2
[′TCAACAATAGGGTTTACGACCTCGAYGTTGG






ATCAGGACATCCCGATGGTG′]





1225
m.1291T > C
4549
MT-RNR1
[′ATCTTCAGCAAACCCTGATGAAGGCYACAA






AGTAAGCGCAAGTACCCACGT′]





1226
m.1095T > C
4549
MT-RNR1
[′CTGGGATTAGATACCCCACTATGCTYAGCCC






TAAACCTCAACAGTTAAATC′]





1227
m.8528T > C
−1

[′TTATAACAAACCCTGAGAACCAAAAYGAAC






GAAAATCTGTTCGCTTCATTC′]





1228
m.8993T > C
4508
MT-ATP6
[′AGCCTACTCATTCAACCAATAGCCCBGGCCG






TACGCCTAACCGCTAACATT′]





1229
m.9101T > C
4508
MT-ATP6
[′ATTAACCTTCCCTCTACACTTATCAYCTTCA






CAATTCTAATTCTACTGACT′]





1230
m.9176T > C
4508
MT-ATP6
[′ATCCAAGCCTACGTTTTCACACTTCBAGTAA






GCCTCTACCTGCACGACAAC′]





1231
m.8851T > C
4508
MT-ATP6
[′AAACCTAGCCATGGCCATCCCCTTAYGAGC






GGGCACAGTGATTATAGGCTT′]





1232
m.9185T > C
4508
MT-ATP6
[′TACGTTTTCACACTTCTAGTAAGCCYCTACC






TGCACGACAACACATAATGA′]





1233
m.7587T > C
4513
MT-CO2
[′ATAGGCTAAATCCTATATATCTTAAYGGCAC






ATGCAGCGCAAGTAGGTCTA′]





1234
m.6742T > C
4512
MT-CO1
[′GGTATGGTCTGAGCTATGATATCAAYTGGCT






TCCTAGGGTTTATCGTGTGA′]





1235
m.6721T > C
4512
MT-CO1
[′AAAGAACCATTTGGATACATAGGTAYGGTC






TGAGCTATGATATCAATTGGC′]





1236
m.7275T > C
4512
MT-CO1
[′CATGAAACATCCTATCATCTGTAGGYTCATT






CATTTCTCTAACAGCAGTAA′]





1237
m.15572T > C
4519
MT-CYB
[′CATCAAGCCCGAATGATATTTCCTAYTCGCC






TACACAATTCTCCGATCCGT′]





1238
m.15197T > C
4519
MT-CYB
[′GGCCACAGTAATTACAAACTTACTAYCCGCC






ATCCCATACATTGGGACAGA′]





1239
m.14849T > C
4519
MT-CYB
[′CATCTCCGCATGATGAAACTTCGGCYCACTC






CTTGGCGCCTGCCTGATCCT′]





1240
NC_012920.1: m.14484T > C
4541
MT-ND6
[′GCTGTAGTATATCCAAAGACAACCAYCATTC






CCCCTAAATAAATTAAAAAA′]





1241
m.14487T > C
4541
MT-ND6
[′GTAGTATATCCAAAGACAACCATCAYTCCCC






CTAAATAAATTAAAAAAACT′]





1242
m.12706T > C
4540
MT-NDS
[′ATCAGTTCTTCAAATATCTACTCATYTTCCT






AATTACCATACTAATCTTAG′]





1243
m.10563T > C
4539
MT-ND4L
[′CTCACACCTCATATCCTCCCTACTAYGCCTA






GAAGGAATAATACTATCGCT′]





1244
m.10663T > C
4539
MT-ND4L
[′ATATTGTGCCTATTGCCATACTAGTYTTTGC






CGCCTGCGAAGCAGCGGTNG′]





1245
m.10191T > C
4537
MT-ND3
[′TTACGAGTGCGGCTTCGACCCTATAYCCCCC






GCCCGCGTCCCTTTCTCCAT′]





1246
m.10158T > C
4537
MT-ND3
[′ACAACTCAACGGCTACATAGAAAAAYCCAC






CCCTTACGAGTGCGGCTTCGA′]





1247
m.4681T > C
4536
MT-ND2
[′CAAGCAACCGCATCCATAATCCTTCYAATAG






CTATCCTCTTCAACAATATA′]





1248
m.4160T > C
4535
MT-ND1
[′TACCCCCGATTCCGCTACGACCAACYCATAC






ACCTCCTATGAAAAAACTTC′]





1249
m.3394T > C
4535
MT-ND1
[′GCTTACCGAACGAAAAATTCTAGGCYATAT






ACAACTACGCAAAGGCCCCAA′]





1250
m.3308T > C
4535
MT-ND1
[′GGTTCAATTCCTCTTCTTAACAACABACCCA






TGGCCAACCTCCTACTCCTC′]





1251
m.3949T > C
4535
MT-ND1
[′ACTAGTCTCAGGCTTCAACATCGAAYACGCC






GCAGGCCCCTTCGCCCTATT′]





1252
NM_003140.2(SRY): c.326T > C
6736
SRY
[′CTTACTGAAGCCGAAAAATGGCCATYCTTCC



(p.Phe109Ser)


AGGAGGCACAGAAATTACAG′]





1253
NM_003140.2(SRY): c.203T > C
6736
SRY
[′GTGAAGCGACCCATGAACGCATTCAYCGTG



(p.IIe68Thr)


TGGTCTCGCGATCAGAGGCGC′]





1254
NM_021083.2(XK): c.880T > C
7504
XK
[′ACTCTATACTGGTATCAACATGTTCNGCTGG



(p.Cys294Arg)


TCTGCTGTACAGCTGAAAAT′]





1255
NM_000354.5(SERPINA7): c.
6906
SERPINA7
[′CACCAGATGGAACAATACTATCACCYAGTG



740T > C (p.Leu247Pro)


GATATGGAATTGAACTGCACA′]





1256
NM_000044.3(AR): c.2033T > C
367
AR
[′TGTCAGCCCATCTTTCTGAATGTCCYGGAAG



(p.Leu678Pro)


CCATTGAGCCAGGTGTAGTG′]





1257
NM_000044.3(AR): c.2423T > C
367
AR
[′ATCACCCCCCAGGAATTCCTGTGCAYGAAA



(p.Met808Thr)


GCACTGCTACTCTTCAGCATT′]





1258
NM_000044.3(AR): c.2596T > C
367
AR
[′CTACCAGCTCACCAAGCTCCTGGACYCCGTG



(p.Ser866Pro)


CAGCCTGTAAGCAAACGATG′]





1259
NM_000451.3(SHOX): c.877T > C
6473
SHOX
[′GAAGCACGCGGAGGCCCTGGGGCTCYGACC



(p.Ter293Arg)


CGCCGCGCAGCCCCCCGCGCG′]





1260
NM_000330.3(RS1): c.286T > C
−1

[′TTGAGCCGGGCCTTGTTTGCAGTCCRCGAAG



(p.Trp96Arg)


AATACCAGCCCACATACTGC′]





1261
NM_000330.3(RS1): c.38T > C
6247
RS1
[′ATAGAAGGCTTTTTGTTATTACTTCYCTTTG



(p.Leu13Pro)


GCTATGAAGGTATGTGCTAT′]





1262
NM_000330.3(RS1): c.667T > C
−1

[′CCGAGCTGAGGCAGGCATCAGGCACRCTTG



(p.Cys223Arg)


CTGACGCACTCCAGCAGCTCC′]





1263
NM_002764.3(PRPS1): c.344T >
5631
PRPS1
[′ATCTCAGCCAAGCTTGTTGCAAATAYGCTAT



C (p.Met115Thr)


CTGTAGCAGGTGCAGATCAT′]





1264
NM_002764.3(PRPS1): c.455T >
5631
PRPS1
[′AATTTGTATGCAGAGCCGGCTGTCCYAAAGT



C (p.Leu152Pro)


GGATAAGGGAGAATATCTCT′]





1265
NM_002764.3(PRPS1): c.869T >
5631
PRPS1
[′TTTCCTTTCTTGCCTTTCTAGGTGAYTGACAT



C (p.Ile290Thr)


CTCTATGATCCTTGCAGAA′]





1266
NM_000291.3(PGK1): c.263T > C
5230
PGK1
[′CCAGTTGCTGTAGAACTCAAATCTCYGCTGG



(p.Leu88Pro)


GCAAGTAAGTGCCAGGCTCT′]





1267
NM_000291.3(PGK1): c.946T > C
5230
PGK1
[′CACCTCTACCCCTCAGGGCTTGGACYGTGGT



(p.Cys316Arg)


CCTGAAAGCAGCAAGAAGTA′]





1268
NM_000291.3(PGK1): c.758T > C
5230
PGK1
[′CATCATTTTGGCTCCCCTGTGTAGAYTGGCA



(p.Ile253Thr)


CTTCTCTGTTTGATGAAGAG′]





1269
NM_001122606.1(LAMP2): c.961T >
3920
LAMP2
[′CATTGCAAATAACAATCTCAGCTACYGGGA



C (p.Trp321Arg)


TGCCCCCCTGGGAAGTTCTTA′]





1270
NM_000206.2(IL2RG): c.343T >
3561
IL2RG
[′ATTCTCTGAAGAAATCACTTCTGGCYGTCAG



C (p.Cys115Arg)


TTGCAAAAAAAGGAGATCCA′]





1271
NM_000206.2(IL2RG): c.452T >
3561
IL2RG
[′ACACAGATGCTAAAACTGCAGAATCYGGGT



C (p.Leu151Pro)


AATTTGGAAAGAAAGGGTCAA′]





1272
NM_000194.2(HPRT1): c.122T >
3251
HPRT1
[′GAAAGGGTGTTTATTCCTCATGGACYAATTA



C (p.Leu41Pro)


TGGACAGGTAAGTAAGATCT′]





1273
NM_000194.2(HPRT1): c.170T >
3251
HPRT1
[′CTTGCTCGAGATGTGATGAAGGAGAYGGGA



C (p.Met57Thr)


GGCCATCACATTGTAGCCCTC′]





1274
NM_000132.3(F8): c.6554T > C
2157
F8
[′ATTCGCAGCACTCTTCGCATGGAGTYGATGG



(p.Leu2185Ser)


GCTGTGATTTAAATAGTAAG′]





1275
NM_000132.3(F8): c.985T > C
2157
F8
[′GGACCTTGGACAGTTTCTACTGTTTYGTCAT



(p.Cys329Arg)


ATCTCTTCCCACCAACATGG′]





1276
NM_000132.3(F8): c.5372T > C
2157
F8
[′AGAGCAGAAGTTGAAGATAATATCAYGGTG



(p.Met1791Thr)


AGTTAAGGACAGTGGAATTAC′]





1277
NM_000132.3(F8): c.1754T > C
2157
F8
[′CCTTTCAATATATGTAATTAACAGAYAATGT



(p.Ile585Thr)


CAGACAAGAGGAATGTCATC′]





1278
NM_000132.3(F8): c.935T > C
2157
F8
[′TCCTTGGAAATCTCGCCAATAACTTYCCTTA



(p.Phe312Ser)


CTGCTCAAACACTCTTGATG′]





1279
NM_000132.3(F8): c.980T > C
2157
F8
[′TTGATGGACCTTGGACAGTTTCTACYGTTTT



(p.Leu327Pro)


GTCATATCTCTTCCCACCAA′]





1280
NM_000132.3(F8): c.1174T > C
2157
F8
[′CTCTCCTTCCTTTATCCAAATTCGCYCAGTTG



(p.Ser392Pro)


CCAAGAAGCATCCTAAAAC′]





1281
NM_000132.3(F8): c.1417T > C
2157
F8
[′ATCAGGAATCTTGGGACCTTTACTTYATGGG



(p.Tyr473His)


GAAGTTGGAGACACACTGTT′]





1282
NM_000132.3(F8): c.1481T > C
2157
F8
[′AATCAAGCAAGCAGACCATATAACAYCTAC



(p.Ile494Thr)


CCTCACGGAATCACTGATGTC′]





1283
NM_000132.3(F8): c.1729T > C
2157
F8
[′CCCTCTCCTCATCTGCTACAAAGAAYCTGTA



(p.Ser577Pro)


GATCAAAGAGGAAACCAGGT′]





1284
NM_000132.3(F8): c.1958T > C
2157
F8
[′CAGTTGTCAGTTTGTTTGCATGAGGYGGCAT



(p.Val653Ala)


ACTGGTACATTCTAAGCATT′]





1285
NM_000132.3(F8): c.2029T > C
2157
F8
[′TTCTGTCTTCTTCTCTGGATATACCYTCAAAC






ACAAAATGGTCTATGAAGA′]





1286
NM_000132.3 (F8): c.6193T > C
2157
F8
[′GTTTCTTTACTTGGGCAAAGGACAGYGGGCC






CCAAAGCTGGCCAGACTTCA′]





1287
NM_007325.4(GRIA3): c.2117T >
2892
GRIA3
[′GTGTACGAGAAAATGTGGTCTTACAYGAAA



C (p.Met706Thr)


TCAGCGGAGCCATCTGTGTTT′]





1288
NM_000402.4(G6PD): c.1058T >
2539
G6PD
[′GAGGGCGAGGCCACCAAAGGGTACCYGGAC



C (p.Leu353Pro)


GACCCCACGGTGCCCCGCGGG′]





1289
NM_000402.4(G6PD): c.1054T >
2539
G6PD
[′TGGAGAGGGCGAGGCCACCAAAGGGYACCT



C (p.Tyr352His)


GGACGACCCCACGGTGCCCCG′]





1290
NM_001097642.2(GJB1): c.397T >
2705
GJB1
[′GGTCCACATCTCAGGGACACTGTGGYGGAC



C (p.Trp133Arg)


CTATGTCATCAGCGTGGTGTT′]





1291
NM_000166.5(GJB1): c.407T > C
2705
GJB1
[′TCAGGGACACTGTGGTGGACCTATGYCATC



(p.Val136Ala)


AGCGTGGTGTTCCGGCTGTTG′]





1292
NM_000032.4(ALAS2): c.595T >
212
ALAS2
[′TGTGTCCGTCTGGTGTAGTAATGATYACCTG



C (p.Tyr199His)


GGCATGAGCCGACACCCTCA′]





1293
NM_020061.5(OPN1MW): c.607T >
5956
OPN1LW
[′CTGGCCCCACGGCCTGAAGACTTCAYGCGG



C (p.Cys203Arg)


CCCAGACGTGTTCAGCGGCAG′]





1294
NM_000513.2(OPN1MW): c.607T >
2652
OPN1MW
[′CTGGCCCCACGGCCTGAAGACTTCAYGCGG



C (p.Cys203Arg)


CCCAGACGTGTTCAGCGGCAG′]





1295
NM_000513.2(OPN1MW): c.529T >
2652
OPN1MW
[′GGCCATCGTGGGCATTGCCTTCTCCYGGATC



C (p.Trp177Arg)


TGGGCTGCTGTGTGGACAGC′]





1296
NM_000273.2(GPR143): c.397T >
4935
GPR143
[′GCTGTTGTACAGTGCCTGCTTCTGGHGGCTG



C (p.Trp133Arg)


TTTTGCTATGCAGTGGATGC′]





1297
NM_000133.3(F9): c.52T > C
2158
F9
[′AGAATCACCAGGCCTCATCACCATCYGCCTT



(p.Cys18Arg)


TTAGGATATCTACTCAGTGC′]





1298
NM_000133.3(F9): c.1058T > C
2158
F9
[′TTCCTCAAATTTGGATCTGGCTATGYAAGTG



(p.Val353Ala)


GCTGGGGAAGAGTCTTCCAC′]





1299
NM_000133.3(F9): c.1144T > C
2158
F9
[′AGTTCCACTTGTTGACCGAGCCACAHGTCTT



(p.Cys382Arg)


CGATCTACAAAGTTCACCAT′]





1300
NM_000133.3(F9): c.1328T > C
2158
F9
[′TGTGCAATGAAAGGCAAATATGGAAYATAT



(p.Ile443Thr)


ACCAAGGTATCCCGGTATGTC′]





1301
NM_000133.3(F9): c.1357T > C
2158
F9
[′TACCAAGGTATCCCGGTATGTCAACYGGATT



(p.Trp453Arg)


AAGGAAAAAACAAAGCTCAC′]





1302
NM_000133.3(F9): c.82T > C
2158
F9
[′TTTAGGATATCTACTCAGTGCTGAAYGTACA



(p.Cys28Arg)


GGTTTGTTTCCTTTTTTAAA′]





1303
NM_000133.3(F9): c.277 + 2T > C
2158
F9
[′CTGAATTTTGGAAGCAGTATGTTGGYAAGC






AATTCATTTTATCCTCTAGCT′]





1304
NM_000133.3(F9): c.1031T > C
2158
F9
[′ATTGCTGACAAGGAATACACGAACAYCTTC



(p.Ile344Thr)


CTCAAATTTGGATCTGGCTAT′]





1305
NM_000169.2(GLA): c.484T > C
−1

[′CATTGATGCCCAGACCTTTGCTGACYGGGGA



(p.Trp162Arg)


GTAGATCTGCTAAAATTTGA′]





1306
NM_000169.2(GLA): c.806T > C
−1

[′TTATTTCATTCTTTTTCTCAGTTAGYGATTGG



(p.Val269Ala)


CAACTTTGGCCTCAGCTGG′]





1307
NM_015107.2(PHF8): c.836T > C
23133
PHF8
[′CCAACAAATGCCAATCTGACTCTCTYTGAGT



(p.Phe279Ser)


GCTGGAGCAGTTCCTCTAAT′]





1308
NM_033290.3 (MID1): c.1877T >
4281
MID1
[′TATGATGCTTTGAACTCCATCCACCYCTACA



C (p.Leu626Pro)


CCTTCGACGTCGCATTTGCG′]





1309
NM_033290.3 (MID1): c.884T > C
4281
MID1
[′TTCAAGGTGATGAGGCTTCGCAAACYGGCT



(p.Leu295Pro)


CAGCAGATTGCAAACTGCAAA′]





1310
NM_000444.5(PHEX): c.755T > C
5251
PHEX
[′CAGTATCGGGATGCCCTTTACAAGTYCATGG



(p.Phe252Ser)


TGGATACTGCCGTGCTTTTA′]





1311
NM_000444.5(PHEX): c.1664T >
5251
PHEX
[′CTCATAGGATTTCCAGCAGGAGAGCYCCAG



C (p.Leu555Pro)


AAGCCTTTCTTTTGGGGAACA′]





1312
NM_001205019.1(GK): c.1525T >
2710
GK
[′AGAAAGTGAAATTCGTTATTCTACAYGGAA



C (p.Trp509Arg)


GAAAGCTGTGATGAAGTCAAT′]





1313
NM_000475.4(NR0B1): c.890T >
190
NR0B1
[′AACTGCTGGGCGTCCCTGCTCATGCYTGAGC



C (p.Leu297Pro)


TGGCCCAGGACCGCTTGCAG′]





1314
NM_000531.5(OTC): c.332T > C
5009
OTC
[′CTTCTGGGAGGACATCCTTGTTTTCYTACCA



(p.Leu111Pro)


CACAAGATATTCATTTGGGT′]





1315
NM_000531.5(OTC): c.134T > C
5009
OTC
[′CTGAAGGGCCGTGACCTTCTCACTCYAAAA



(p.Leu45Pro)


AACTTTACCGGAGAAGAAATT′]





1316
NM_000531.5(OTC): c.717+2T >
5009
OTC
[′TTGGCAGAGCAGTATGCCAAAGAGGYATGC



C


TCTTTACATGTAAAGCTATTA′]





1317
NM_001399.4(EDA): c.181T > C
1896
EDA
[′CCTCCACCTGCTGACGTTGTGCTGCYACCTA



(p.Tyr61His)


GAGTTGCGCTCGGAGTTGCG′]





1318
NM_001015877.1(PHF6): c.2T >
84295
PHF6
[′CATTCTAAAGGCAATTTAAAAATCAYGTCA



C (p.Met1Thr)


AGCTCAGTTGAACAGAAAAAA′]





1319
NM_001128834.2(PLP1): c.487T >
5354
PLP1
[′CATCACCTATGCCCTGACCGTTGTGYGGCTC



C (p.Trp163Arg)


CTGGTGTTTGCCTGCTCTGC′]





1320
NM_001128834.2(PLP1): c.671T >
5354
PLP1
[′CCTGGCAAGGTTTGTGGCTCCAACCYTCTGT



C (p.Leu224Pro)


CCATCTGCAAAACAGCTGAG′]





1321
NM_001128834.2(PLP1): c.560T >
5354
PLP1
[′AACACCTGGACCACCTGCCAGTCTAYTGCCT



C (p.Ile187Thr)


TCCCCAGCAAGACCTCTGCC′]





1322
NM_001128834.2(PLP1): c.710T >
5354
PLP1
[ATTTTCCTGCAGTTCCAAATGACCTYCCACC



C (p.Phe237Ser)


TGTTTATTGCTGCATTTGTG′]





1323
NM_000116.4(TAZ): c.352T > C
6901
TAZ
[′CTCCCACTTCTTCAGCTTGGGCAAGYGTGTG



(p.Cys118Arg)


CCTGTGTGCCGAGGTGAGCT′]





1324
NM_000377.2(WAS): c.244T > C
7454
WAS
[′CTTCGTGAAGGATAACCCCCAGAAGYCCTA



(p.Ser82Pro)


CTTCATCCGCCTTTACGGCCT′]





1325
NM_000377.2(WAS): c.809T > C
7454
WAS
[′AACCTCGACCCAGATCTGCGGAGTCYGTTCT



(p.Leu270Pro)


CCAGGGCAGGAATCAGCGAG′]





1326
NM_182680.1(AMELX): c.2T > C
−1

[′CTTACATTTCAGAACCATCAAGAAAYGGGG



(p.Met1Thr)


ACCTGGATTTTATTTGCCTGC′]





1327
NM_000074.2(CD40LG): c.464T >
959
CD40LG
[′ACCATGAGCAACAACTTGGTAACCCYGGAA



C (p.Leu155Pro)


AATGGGAAACAGCTGACCGTT′]





1328
NM_139058.2(ARX): c.98T > C
170302
ARX
[′TCCTCCTACTGCATCGACAGCATCCYGGGCC



(p.Leu33Pro)


GGAGGAGCCCGTGCAAAATG′]





1329
NM_001109878.1(TBX22): c.641T >
50945
TBX22
[′TGATCATTTCTCCTCCAGATCATTCYGCAAT



C (p.Leu214Pro)


CCATGCATAAGTACAAACCC′]





1330
NM_000061.2(BTK): c.2T > C
695
BTK
[′GGTGAACTCCAGAAAGAAGAAGCTAYGGCC



(p.Met1Thr)


GCAGTGATTCTGGAGAGCATC′]





1331
NM_000061.2(BTK): c.1223T > C
695
BTK
[′AAGGACCTGACCTTCTTGAAGGAGCYGGGG



(p.Leu408Pro)


ACTGGACAATTTGGGGTAGTG′]





1332
NM_000061.2(BTK): c.1516T > C
695
BTK
[′GCTGCTAGAGATGTGCAAGGATGTCYGTGA



(p.Cys506Arg)


AGCCATGGAATACCTGGAGTC′]





1333
NM_000061.2(BTK): c.1625T > C
695
BTK
[′GTTGTTAAAGTATCTGATTTCGGCCYGTCCA



(p.Leu542Pro)


GGTGAGTGTGGCTTTTTCAT′]





1334
NM_000061.2(BTK): c.1741T > C
695
BTK
[′CAAGTTCAGCAGCAAATCTGACATTYGGGC



(p.Trp581Arg)


TTTTGGTAAGTGGATAAGATT′]





1335
NM_000061.2(BTK): c.1955T > C
695
BTK
[′TTCAAAATTCTTCTGAGCAATATTCYAGATG



(p.Leu652Pro)


TCATGGATGAAGAATCCTGA′]





1336
NM_015884.3(MBTPS2): c.1424T >
51360
MBTPS2
[′GATGGACAATGGATTCTAAACTCTTYCTTGG



C (p.Phe475Ser)


ATGCCACCCTTACCTCAGTG′]





1337
NM_014009.3(FOXP3): c.970T >
50943
FOXP3
[′GATTCATCCCCACCCTCTGACAGAGYTCCTC



C (p.Phe324Leu)


CACAACATGGACTACTTCAA′]





1338
NM_014009.3(FOXP3): c.1099T >
50943
FOXP3
[′GACACTCAATGAGATCTACCACTGGYTCAC



C (p.Phe367Leu)


ACGCATGTTTGCCTTCTTCAG′]





1339
NM_022567.2(NYX): c.302T > C
60506
NYX
[′CTGCGCCACAACAACCTGTCCTTCAYCACGC



(p.Ile101Thr)


CCGGCGCCTTCAAGGGCCTG′]





1340
NM_003639.4(IKBKG): c.1249T >
8517
EKBKG
[′CACCCTGCAGATACATGTCATGGAGYGCATT



C (p.Cys417Arg)


GAGTAGGGCCGGCCAGTGCA′]





1341
NM_006579.2(EBP): c.53T > C
10682
EBP
[′CCATACTGGCCTCAGCACCTAAGACYGGAC



(p.Leu18Pro)


AACTTTGTACCTAATGACCGC′]





1342
NM_003159.2(CDKL5): c.215T >
6792
CDKL5
[′CTTCGGACTCTCAAGCAGGAAAACAHTGTG



C (p.Ile72Thr)


GAGTTGAAGGAAGCATTTCGT′]





1343
NM_001011658.3(TRAPPC2): c.
−1

[′GCCTTAATTATTTCACATATGAGGTYTATTA



248T > C (p.Phe83Ser)


TGCTTCATGACATAAGACAA′]





1344
NM_001011658.3(TRAPPC2): c.
−1

[′AGTTACCTTTACTAAGAAGGTAAGGRTATGC



238 + 4T > C


CCCGCAGTGACAAATGCCGA′]





1345
NM_003688.3(CASK): c.802T > C
8573
CASK
[′GGATCCAGCTGAAAGGATCACTGTTYATGA



(p.Tyr268His)


AGCACTGAATCACCCATGGCT′]





1346
NM_003688.3(CASK): c.2740T >
8573
CASK
[′TGAGCTCGTGTGCACAGCCCCACAGYGGGT



C (p.Trp914Arg)


CCCTGTCTCCTGGGTCTATTA′]





1347
NM_001159702.2(FHL1): c.457T >
2273
FHL1
[′AGGGGAGGACTTCTACTGCGTGACTYGCCA



C (p.Cys153Arg)


TGAGACCAAGTTTGCCAAGCA′]





1348
NM_001159702.2(FHL1): c.310T >
2273
FHL1
[′GGAGGACTCCCCCAAGTGCAAGGGGYGCTT



C (p.Cys104Arg)


CAAGGCCATTGTGGCAGGTAC′]





1349
NM_001159702.2(FHL1): c.625T >
2273
FHL1
[′CACCGCTGTGGAGGACCAGTATTACYGCGT



C (p.Cys209Arg)


GGATTGCTACAAGAACTTTGT′]





1350
NM_001363.4(DKC1): c.113T > C
1736
DKC1
[′ATACAACACGCTGAAGAATTTCTTANCAAA



(p.Ile38Thr)


CCTGAATCCAAAGTTGCTAAG′]





1351
NM_178152.2(DCX): c.373T > C
1641
DCX
[′CTTATTTCTTGCCTTAGGGGAAAGCYATGTC



(p.Tyr125His)


TGTTCCTCAGACAACTTCTT′]





1352
NM_005183.3(CACNA1F): c.2267T >
778
CACNAF
[′ATCCTGTTGAACGTGTTTCTTGCCAYTGCTG



C (p.Ile756Thr)


TGGACAACCTGGCCAGTGGA′]





1353
NM_001493.2(GDI1): c.275T > C
2664
GDI1
[′ACAGGGCAGCTGGTAAAGATGCTACYGTAT



(p.Leu92Pro)


ACAGAGGTGACTCGCTACCTG′]





1354
NM_006517.4(SLC16A2): c.1313T >
6567
SLC16A2
[′ATCATGGCCCCCATTGCATTTGAGCYGGTGG



C (p.Leu438Pro)


GCCCAATGCAGGCCTCACAG′]





1355
NM_006517.4(SLC16A2): c.1190T >
6567
SLC16A2
[′CTCCAGGTCCTTTCCTTCCTGCTCCYGGGCC



C (p.Leu397Pro)


TGATGTCCATGATGATTCCC′]





1356
NM_006517.4(SLC16A2): c.1481T >
6567
SLC16A2
[′CCCCCCATCATCGGGGCTGTAATCCYCTTCT



C (p.Leu494Pro)


TCGTCCCTCTGATGCATCAA′]





1357
NM_004586.2(RPS6KA3): c.803T >
6197
RPS6KA3
[′GAAATGCTTACTGGTACACTCCCTTYCCAAG



C (p.Phe268Ser)


GAAAAGATCGAAAAGAAACA′]





1358
NM_000489.4(ATRX): c.4840T >
546
ATRX
[′AAGTTTTCTTCATACAGTTCTTTTGYGTGAC



C (p.Cys1614Arg)


AAACTGGATTTCAGCACGGC′]





1359
NM_000489.4(ATRX): c.6250T >
546
ATRX
[′GAAGTGGCTTCGAAACATTGACTATYACCGT



C (p.Tyr2084His)


TTAGATGGTTCCACTACTGC′]





1360
NM_000489.4(ATRX): c.1226T >
546
ATRX
[′GATATTAAGAAGGCTCATCTTGCATYGGAA



C (p.Leu409Ser)


GAAGACTTAAATTCCGAGTTT′]





1361
NM_000489.4(ATRX): c.6149T >
546
ATRX
[′CAGTCCCTCATATCTCTGGACTTGAYTGAAG



C (p.Ile2050Thr)


ATTTTCTTGAATTAGCTAGT′]






NM_001110556.1(FLNA): c.720 +
2316
FLNA




2T > C








1362
NM_001127899.3(CLCN5): c.1768T >
1184
CLCN5
[′AGGTGGGGTGACTCGGATGACTGTTYCTCTT



C (p.Ser590Pro)


GTTGTCATAATGTTTGAACT′]





1363
NM_004992.3(MECP2): c.464T >
4204
MECP2
[′GACACATCCCTGGACCCTAATGATTBTGACT



C (p.Phe155Ser)


TCACGGTAACTGGGAGAGGG′]





1364
NM_001061.4(TBXAS1): c.1463T >
6916
TBXAS1
[′TGCCTCGGGGTGCGTCTAGGGCTGCYTGAG



C (p.Leu488Pro)


GTCAAGTTGACACTGCTCCAC′]





1365
NM_001061.4(TBXAS1): c.248T >
6916
TBXAS1
[′TTTTTTATTCCTCCCAGGTACTATCYTGGTCG



C (p.Leu83Pro)


TCGGATGTTTATTGTTATT′]





1366
NM_000128.3(F11): c.901T > C
2160
F11
[′TTCTTCATTTTACCATGACACTGATYTCTTGG



(p.Phe301Leu)


GAGAAGAACTGGATATTGT′]





1367
NM_000128.3(F11): c.166T > C
2160
F11
[′GGTAGTCTGCACTTACCACCCAAGAYGTTTA



(p.Cys56Arg)


CTCTTCACTTTCACGGCGGA′]





1368
NM_000203.4(IDUA): c.1469T >
3425
IDUA
[′AGCCCCGACGGCGAGTGGCGGCGCCYGGGC



C (p.Leu490Pro)


CGGCCCGTCTTCCCCACGGCA′]





1369
NM_000431.3(MVK): c.803T > C
4598
MVK
[′ATCGTGGCCCCCCTCCTGACCTCAAYAGATG



(p.Ile268Thr)


CCATCTCCCTGGAGTGTGAG′]





1370
NM_014425.3 (INVS): c.1478T >
27130
INVS
[′TTATGCTTATAGGGAAGAACAGCTTYGCATT



C (p.Leu493Ser)


GGTCCTGCAACAATGGATAC′]





1371
NM_000108.4(DLD): c.1178T > C
1738
DLD
[′GACTACAATTGTGTGCCATCAGTGAYTTACA



(p.Ile393Thr)


CACACCCTGAAGTTGCTTGG′]





1372
NM_000170.2(GLDC): c.2T > C
2731
GLDC
[′GGGCAGGGGACGGTGGCCGCGGCCAYGCAG



(p.Met1Thr)


TCCTGTGCCAGGGCGTGGGGG′]





1373
NM_000151.3(G6PC): c.229T > C
2538
G6PC
[′AGACTGGCTCAACCTCGTCTTTAAGYGGTAA



(p.Trp77Arg)


GAACCATATAGAGAGGAGAT′]





1374
NM_004453.3 (ETFDH): c.2T > C
2110
ETFDH
[′CCGAGAGTCCTGGTGACTTTGAACAYGCTG



(p.Met1Thr)


GTGCCGCTAGCCAAGCTGTCC′]





1375
NM_000136.2(FANCC): c.1661T >
−1

[′CTGGCCCGAGAGCTCCTTAAAGAGCYGCGA



C (p.Leu554Pro)


ACTCAAGTCTAGAAGGCACGC′]





1376
NM_000131.4(F7): c.38T > C
2155
F7
[′GCCCTCAGGCTCCTCTGCCTTCTGCYTGGGC



(p.Leu13Pro)


TTCAGGGCTGCCTGGCTGCA′]





1377
NM_000131.4(F7): c.983T > C
2155
F7
[′CCCCTCTGCCTGCCCGAACGGACGTYCTCTG



(p.Phe328Ser)


AGAGGACGCTGGCCTTCGTG′]





1378
NM_024649.4(BBS1): c.1553T >
−1

[′ACAACCCGTCCTGTCCTGGGGCTGCYGGTCT



C (p.Leu518Pro)


GCTTCCTGTACAACGAGGCG′]





1379
NM_000490.4(AVP): c.200T > C
551
AVP
[′TGCGCGGACGAGCTGGGCTGCTTCGYGGGC



(p.Val67Ala)


ACGGCTGAGGCGCTGCGCTGC′]





1380
NM_000490.4(AVP): c.61T > C
551
AVP
[′CCTACTGGCCTTCTCCTCCGCGTGCYACTTC



(p.Tyr21His)


CAGAACTGCCCGAGGGGCGG′]





1381
NM_001692.3 (ATP6V1B1): c.242T >
525
ATP6V1B1
[′GGGACTCAGAGGAGCGGGCAGGTGCYTGAG



C (p.Leu81Pro)


GTGGCTGGCACCAAGGCGATT′]





1382
NM_003361.3 (UMOD): c.649T >
7369
UMOD
[′GGGCGGTGCGCGCATGGCCGAGACCBGCGT



C (p.Cys217Arg)


GCCAGTCCTGCGCTGCAACAC′]





1383
NM_003361.3 (UMOD): c.376T >
7369
UMOD
[′TAGCCACTGCCACGCCCTGGCCACAYGTGTC



C (p.Cys126Arg)


AATGTGGTGGGCAGCTACTT′]





1384
NM_003361.3 (UMOD): c.943T >
7369
UMOD
[′CAAATCGAATAATGGCAGATGGCACYGCCA



C (p.Cys315Arg)


GTGCAAACAGGACTTCAACAT′]





1385
NM_080911.2(UNG): c.752T > C
7374
UNG
[′AATCAGAACTCGAATGGCCTTGTTTYCTTGC



(p.Phe251Ser)


TCTGGGGCTCTTATGCTCAG′]





1386
NM_199292.2(TH): c.707T > C
7054
TH
[′CAGGTGTACCGCCAGCGCAGGAAGCYGATT



(p.Leu236Pro)


GCTGAGATCGCCTTCCAGTAC′]





1387
NM_001065.3(TNFRSF1A): c.175T >
7132
TNFRSF1A
[′CCACCCTCAAAATAATTCGATTTGCYGTACC



C (p.Cys59Arg)


AAGTGCCACAAAGGTAGGGG′]





1388
NM_001065.3(TNFRSF1A): c.349T >
7132
TNFRSF1A
[′AATGGGTCAGGTGGAGATCTCTTCTYGCACA



C (p.Cys117Arg)


GTGGACCGGGACACCGTGTG′]





1389
NM_000546.5(TP53): c.755T > C
7157
TP53
[′GGCGGCATGAACCGGAGGCCCATCCYCACC



(p.Leu252Pro)


ATCATCACACTGGAAGACTCC′]





1390
NM_000546.5(TP53): c.398T > C
7157
TP53
[′CAGTACTCCCCTGCCCTCAACAAGAYGTTTT



(p.Met133Thr)


GCCAACTGGCCAAGACCTGC′]





1391
NM_000546.5(TP53): c.1031T > C
7157
TP53
[′GAGCGCTTCGAGATGTTCCGAGAGCYGAAT



(p.Leu344Pro)


GAGGCCTTGGAACTCAAGGAT′]





1392
NM_001018005.1(TPM1): c.284T >
7168
TPM1
[′TCTCTGAACAGACGCATCCAGCTGGYTGAG



C (p.Val95Ala)


GAAGAGTTGGATCGTGCCCAG′]





1393
NM_001159287.1(TPI1): c.832T >
7167
TPI1
[′GGGTGGTGCTTCCCTCAAGCCCGAAYTCGTG



C (p.Phe278Leu)


GACATCATCAATGCCAAACA′]





1394
NM_003242.5(TGFBR2): c.923T >
7048
TGFBR2
[′AAGCATGAGAACATACTCCAGTTCCYGACG



C (p.Leu308Pro)


GCTGAGGAGCGGAAGACGGAG′]





1395
NM_000660.5(TGFB1): c.673T >
7040
TGFB1
[′CTTTCGCCTTAGCGCCCACTGCTCCYGTGAC



C (p.Cys225Arg)


AGCAGGGATAACACACTGCA′]





1396
NM_000660.5(TGFB1): c.241T >
7040
TGFB1
[′GCTGCCCGAGGCCGTGCTCGCCCTGYACAA



C (p.Tyr81His)


CAGCACCCGCGACCGGGTGGC′]





1397
NM_000660.5(TGFB1): c.667T >
7040
TGFB1
[′TGAGGGCTTTCGCCTTAGCGCCCACNGCTCC



C (p.Cys223Arg)


TGTGACAGCAGGGATAACAC′]





1398
NM_001128177.1(THRB): c.929T >
7068
THRB
[′ATCATCCTCCTCAAAGGCTGCTGCAYGGAG



C (p.Met310Thr)


ATCATGTCCCTTCGCGCTGCT′]





1399
NM_001128177.1(THRB): c.1336T ?
7068
THRB
[′CCGCTTCCTGCACATGAAGGTGGAAYGCCC



C (p.Cys446Arg)


CACAGAACTCTTCCCCCCTTT′]





1400
NM_001128177.1(THRB): c.1373T >
7068
THRB
[′CTCTTCCCCCCTTTGTTCTTGGAAGYGTTCG



C (p.Val458Ala)


AGGATTAGACTGACTGGATT′]





1401
NM_007313.2(ABL1): c.814T > C
25
ABL1
[′GAAGCACAAGCTGGGCGGGGGCCAGYACGG



(p.Tyr272His)


GGAGGTGTACGAGGGCGTGTG′]





1402
NM_007313.2(ABL1): c.988T > C
25
ABL1
[′AGGGGTCTGCACCCGGGAGCCCCCGYTCTA



(p.Phe330Leu)


TATCATCACTGAGTTCATGAC′]





1403
NM_007313.2(ABL1): c.1109T >
25
ABL1
[′ATGGCCACTCAGATCTCGTCAGCCAYGGAG



C (p.Met370Thr)


TACCTGGAGAAGAAAAACTTC′]





1404
NM_021961.5(TEAD1): c.1261T >
7003
TEAD1
[′TGAACACGGAGCACAACATCATATTYACAG



C (p.Tyr?His)


GCTTGTAAAGGACTGAACATG′]





1405
NM_001256850.1(TTN): c.2926T >
7273
TTN
[′TGGATACCCATCCCCGACAGTGACAHGGTA



C (p.Trp976Arg)


CAGGGAAGACTACCAAATCGA′]





1406
NM_133378.4(TTN): c.100163T >
−1

[′GAAAACACAGATGACCTGACAACCCYGATC



C (p.Leu33388Pro)


ATCATGGACGTACAGAAACAA′]





1407
NM_003235.4(TG): c.3733T > C
7038
TG
[′CCCCACAGGCTCTGCCATGCAGCAGYGCCA



(p.Cys1245Arg)


ATTGCTGTGCCGCCAGGGCTC′]





1408
NM_003235.4(TG): c.3229T > C
7038
TG
[′TCTCTCTCCCACAGGCCCGACAACCYGCGAG



(p.Cys1077Arg)


AAATCTCGAACCAGTGGGCT′]





1409
NM_000733.3(CD3E): c.520 + 2T >
916
CD3E
[′CGGGTGCTGGCGGCAGGCAAAGGGGYAAGG



C


CTGTGGAGTCCAGTCAGAGGA′]





1410
NM_003000.2(SDHB): c.487T > C
6390
SDHB
[′GCCTTATTTGAAGAAGAAGGATGAAYCTCA



(p.Ser163Pro)


GGAAGGCAAGCAGCAGTATCT′]





1411
NM_003106.3(SOX2): c.290T > C
−1

[′CCGTTCATCGACGAGGCTAAGCGGCYGCGA



(p.Leu97Pro)


GCGCTGCACATGAAGGAGCAC′]





1412
NM_001024858.2(SPTB): c.604T >
6710
SPTB
[′TAATGTCACCAACTTTACCTCCAGCYGGAAG



C (p.Trp202Arg)


GATGGCTTGGCCTTTAATGC′]





1413
NM_001024858.2(SPTB): c.6055T >
6710
SPTB
[′GGTGTGCCAGTTCTCGAGGGATGCCYCTGTG



C (p.Ser2019Pro)


GCTGAGGCGTGGCTGATTGC′]





1414
NM_003126.2(SPTA1): c.779T >
6708
SPTA1
[′TTGGCTCTCCAGAGACAGAAAGCTCBGTCCA



C (p.Leu260Pro)


ATGCTGCAAACTTACAACGA′]





1415
NM_003126.2(SPTA1): c.781T >
6708
SPTA1
[′GGCTCTCCAGAGACAGAAAGCTCTGYCCAA



C (p.Ser261Pro)


TGCTGCAAACTTACAACGATT′]





1416
NM_003126.2(SPTA1): c.620T >
6708
SPTA1
[′AAATTTGAAGACTTCCAAGTGGAGCYGGTA



C (p.Leu207Pro)


GCTAAAGAAGGGAGAGTTGTT′]





1417
NM_005633.3(SOS1): c.1294T >
6654
SOS1
[′CGAGATTCAGAAGAATATTGATGGTYGGGA



C (p.Trp432Arg)


GGGAAAAGACATTGGACAGTG′]





1418
NM_006920.4(SCN1A): c.3577T >
−1

[′TGTGGAAGAAGGCAGAGGAAAACAAYGGT



C (p.Trp1193Arg)


GGAACCTGAGAAGGACGTGTTT′]





1419
NM_006920.4(SCN1A): c.4250T >
−1

[′TTTGGGTATCTCTCTTTGCTTCAAGYTGTAA



C (p.Val1417Ala)


GTGAACACTATTTTCTCTGA′]





1420
NM_006920.4(SCN1A): c.434T >
6323
SCN1A
[′ACTATTTTGACAAACTGTGTGTTTAHGACAA



C (p.Met145Thr)


TGAGTAACCCTCCTGATTGG′]





1421
NM_006920.4(SCN1A): c.4462T >
−1

[′TCTATACTTTGGAGGTCAAGACATCYTTATG



C (p.Phe1488Leu)


ACAGAAGAACAGAAGAAATA′]





1422
NM_152296.4(ATP1A3): c.821T >
478
ATP1A3
[′GGGCTGGAGGTGGGCAAGACGCCCAHCGCC



C (p.Ile274Thr)


ATCGAGATTGAGCACTTCATC′]





1423
NM_152296.4(ATP1A3): c.2338T >
478
ATP1A3
[′CAGCAATATCCCGGAGATCACGCCCYTCCTG



C (p.Phe780Leu)


CTGTTCATCATGGCCAACAT′]





1424
NM_000702.3(ATP1A2): c.2291T >
477
ATP1A2
[′CCTCAGAATCTCCCCACAGGCCGCCYGATCT



C (p.Leu764Pro)


TTGACAACTTGAAGAAATCC′]





1425
NM_000702.3(ATP1A2): c.2659T >
477
ATP1A2
[′ACGGCTACTGGGAATCCGCCTCGACYGGGA



C (p.Trp887Arg)


TGACCGGACCATGAATGATCT′]





1426
NM_000702.3(ATP1A2): c.2192T >
477
ATP1A2
[′AAGAAGGCTGACATTGGCATTGCCAYGGGC



C (p.Met731Thr)


ATCTCTGGCTCTGACGTCTCT′]





1427
NM_000702.3(ATP1A2): c.857T >
477
ATP1A2
[′GGGCGGACACCCATAGCAATGGAGAYTGAA



C (p.Ile286Thr)


CACTTCATCCAGCTGATCACA′]





1428
NM_001035.2(RYR2): c.1298T >
6262
RYR2
[′ATGTTTATGGTTTATTTTAGGGGCCYTGATG



C (p.Leu433Pro)


CTCTCAGCAAGAAAGCGAAG′]





1429
NM_000540.2(RYR1): c.14693T >
6261
RYR1
[′GTGGGTGTCCGGGCTGGCGGAGGCAYTGGG



C (p.Ile4898Thr)


GACGAGATCGAGGACCCCGCG′]





1430
NM_000539.3(RHO): c.133T > C
6010
RHO
[′GTTCTCCATGCTGGCCGCCTACATGYTTCTG



(p.Phe45Leu)


CTGATCGTGCTGGGCTTCCC′]





1431
NM_000321.2(RB1): c.1960+2T >
5925
RB1
[′CTCTTTCACTGTTTTATAAAAAAGGYTAGTA



C


GATGATTATTTTCAAGAGCA′]





1432
NM_000321.2(RB1): c.2134T > C
5925
RB1
[′TATGATGTGTTCCATGTATGGCATAYGCAAA



(p.Cys712Arg)


GTGAAGAATATAGACCTTAA′]





1433
NM_000329.2(RPE65): c.1022T >
6121
RPE65
[′AGATTTGAGTTTGTTTATAATTACTYATATTT



C (p.Leu341Ser)


AGCCAATTTACGTGAGAAC′]





1434
NM_000322.4(PRPH2): c.554T >
5961
PRPH2
[′ATTCAGTGGATCAGCAATCGCTACCYGGACT



C (p.Leu185Pro)


TTTCCTCCAAAGAAGTCAAA′]





1435
NM_000322.4(PRPH2): c.2T > C
5961
PRPH2
[′CAACCCGGACTACACTTGGCAAGCAYGGCG



(p.Met1Thr)


CTACTGAAAGTCAAGTTTGAC′]





1436
NM_001098668.2(SFTPA2): c.
729238
SFTPA2
[′ACTGAGGGTCCCAGCCCTGGAGACTYCCGC



593T > C (p.Phe198Ser)


TACTCAGATGGGACCCCTGTA′]





1437
NM_003018.3(SFTPC): c.218T >
6440
SFTPC
[′TTTCCCCAGGTTCTGGAGATGAGCAHTGGGG



C (p.Ile73Thr)


CGCCGGAAGCCCAGCAACGC′]





1438
NM_003018.3 (SFTPC): c.581T >
6440
SFTPC
[′AGCACCCTGTGTGGCGAGGTGCCGCYCTACT



C (p.Leu194Pro)


ACATCTAGGACGCCTCCGGT′]





1439
NM_000055.2(BCHE): c.1004T >
590
BCHE
[′CTCACTGACATGCCAGACATATTACYTGAAC



C (p.Leu335Pro)


TTGGACAATTTAAAAAAACC′]





1440
NM_002739.3(PRKCG): c.355T >
5582
PRKCG
[′CCCCACCTTCTGCGACCACTGTGGCYCCCTC



C (p.Ser119Pro)


CTCTACGGGCTTGTGCACCA′]





1441
NM_002739.3(PRKCG): c.1927T >
5582
PRKCG
[′ACAGTGTGGCCGCAGCGGCGAGAACYTTGA



C (p.Phe643Leu)


CAAGTTCTTCACGCGGGCGGC′]





1442
NM_000141.4(FGFR2): c.1018T >
2263
FGFR2
[′TGTAACTTTTGAGGACGCTGGGGAAYATAC



C (p.Tyr340His)


GTGCTTGGCGGGTAATTCTAT′]





1443
NM_000141.4(FGFR2): c.1024T >
2263
FGFR2
[′TTTTGAGGACGCTGGGGAATATACGHGCTTG



C (p.Cys342Arg)


GCGGGTAATTCTATTGGGAT′]





1444
NM_000141.4(FGFR2): c.868T >
2263
FGFR2
[′CAGTGATGCCCAGCCCCACATCCAGBGGAT



C (p.Trp290Arg)


CAAGCACGTGGAAAAGAACGG′]





1445
NM_000141.4(FGFR2): c.799T >
2263
FGFR2
[′CCAAGCCGGACTGCCGGCAAATGCCYCCAC



C (p.Ser267Pro)


AGTGGTCGGAGGAGACGTAGA′]





1446
NM_000506.3(F2): c.1139T > C
2147
F2
[′CCTGCTGCCCCTCCCAGGCAGGTGAYGCTTT



(p.Met380Thr)


TCCGGAAGAGTCCCCAGGAG′]





1447
NM_000313.3 (PROS1): c.1501T >
5627
PROS1
[′TTCATTATTTTAAATAGATAATGTABCCAGT



C (p.Ser501Pro)


GCTGAGGGTTGGCATGTAAA′]





1448
NM_002834.3(PTPN11): c.854T >
5781
PTPN11
[′TGACCGTGGTCTCTTTTTCTTCTAGNTGATCA



C (p.Phe285Ser)


TACCAGGGTTGTCCTACAC′]





1449
NM_002755.3(MAP2K1): c.158T >
5604
MAP2K1
[′CAGCAGCGAAAGCGCCTTGAGGCCTYTCTT



C (p.Phe53Ser)


ACCCAGAAGCAGAAGGTGGGA′]





1450
NM_001042465.1(PSAP): c.1055T >
5660
PSAP
[′GCTTTTGACAAAATGTGCTCGAAGCYGCCG



C (p.Leu352Pro)


AAGTCCCTGTCGGAAGAGTGC′]





1451
NM_000207.2(INS): c.143T > C
−1

[′TACCTAGTGTGCGGGGAACGAGGCTBCTTCT



(p.Phe48Ser)


ACACACCCAAGACCCGCCGG′]





1452
NM_000311.3(PRNP): c.593T > C
5621
PRNP
[′ACCACAACCACCAAGGGGGAGAACTYCACC



(p.Phe198Ser)


GAGACCGACGTTAAGATGATG′]





1453
NM_000371.3(TTR): c.149T > C
7276
TTR
[′GGCAGTCCTGCCATCAATGTGGCCGBGCATG



(p.Val50Ala)


TGTTCAGAAAGGCTGCTGAT′]





1454
NM_000371.3(TTR): c.224T > C
7276
TTR
[′AGGAAAACCAGTGAGTCTGGAGAGCYGCAT



(p.Leu75Pro)


GGGCTCACAACTGAGGAGGAA′]





1455
NM_000371.3(TTR): c.88T > C
7276
TTR
[′CACCCAGGGCACCGGTGAATCCAAGYGTCC



(p.Cys30Arg)


TCTGATGGTCAAAGTTCTAGA′]





1456
NM_000371.3(TTR): c.272T > C
7276
TTR
[′GAATTTGTAGAAGGGATATACAAAGYGGAA



(p.Val91Ala)


ATAGACACCAAATCTTACTGG′]





1457
NM_000371.3(TTR): c.400T > C
7276
TTR
[′CACCATTGCCGCCCTGCTGAGCCCCYACTCC



(p.Tyr134His)


TATTCCACCACGGCTGTCGT′]





1458
NM_000371.3(TTR): c.250T > C
7276
TTR
[′GCATGGGCTCACAACTGAGGAGGAAYTTGT



(p.Phe84Leu)


AGAAGGGATATACAAAGTGGA′]





1459
NM_000371.3(TTR): c.157T > C
7276
TTR
[′TGCCATCAATGTGGCCGTGCATGTGHTCAGA



(p.Phe53Leu)


AAGGCTGCTGATGACACCTG′]





1460
NM_000371.3(TTR): c.95T > C
7276
TTR
[′GGCACCGGTGAATCCAAGTGTCCTCYGATG



(p.Leu32Pro)


GTCAAAGTTCTAGATGCTGTC′]





1461
NM_000371.3(TTR): c.191T > C
7276
TTR
[′GCTGCTGATGACACCTGGGAGCCATYTGCCT



(p.Phe64Ser)


CTGGGTAAGTTGCCAAAGAA′]





1462
NM_000371.3(TTR): c.265T > C
7276
TTR
[′TGAGGAGGAATTTGTAGAAGGGATAYACAA



(p.Tyr89His)


AGTGGAAATAGACACCAAATC′]





1463
NM_000217.2(KCNA1): c.1223T >
3736
KCNA1
[′ATTGCCCTGCCCGTACCTGTCATTGYGTCCA



C (p.Val408Ala)


ATTTCAACTATTTCTACCAC′]





1464
NM_000174.4(GP9): c.212T > C
2815
GP9
[′CTTCAGTCCGTGCCCCCGGGAGCCTBTGACC



(p.Phe71Ser)


ACCTGCCCCAGCTGCAGACC′]





1465
NM_000174.4(GP9): c.167T > C
2815
GP9
[′GCCCTGCCGGCCCGCACCCGCCACCYTCTGC



(p.Leu56Pro)


TGGCCAACAACAGCCTTCAG′]





1466
NM_000174.4(GP9): c.70T > C
2815
GP9
[′GGCCACCAAGGACTGCCCCAGCCCAYGTAC



(p.Cys24Arg)


CTGCCGCGCCCTGGAAACCAT′]





1467
NM_000174.4(GP9): c.20T > C
2815
GP9
[′TGTCCCATGCCTGCCTGGGGAGCCCYGTTCC



(p.Leu7Pro)


TGCTCTGGGCCACAGCAGAG′]





1468
NM_001001547.2(CD36): c.760T >
948
CD36
[′CGATTTTTAAACAGATGCAGCCTCABTTCCA



C (p.Phe254Leu)


CCTTTTGTTGAGAAAAGCCA′]





1469
NM_000212.2(ITGB3): c.2332T >
−1

[′CAACCCACTGTATAAAGAGGCCACGYCTAC



C (p.Ser778Pro)


CTTCACCAATATCACGTACCG′]





1470
NM_000212.2(ITGB3): c.176T >
3690
ITGB3
[′GCTCCTGTCTTACAGGCCCTGCCTCYGGGCT



C (p.Leu59Pro)


CACCTCGCTGTGACCTGAAG′]





1471
NM_000301.3(PLG): c.1771T > C
5340
PLG
[′AGGGGGGTGTGTGGCCCACCCACATYCCTG



(p.Ser591Pro)


GCCCTGGCAAGTCAGTCTTAG′]





1472
NM_001122757.2(POU1F1): c.
5449
POU1F1
[′CAAACTGAAAGCAATATTATCCAAAYGGCT



655T > C (p.Trp219Arg)


GGAGGAAGCTGAGCAAGTAGG′]





1473
NM_000293.2(PHKB): c.2923T >
5257
PHKB
[′ACCAACCCTGTCAGATATGACCATGHATGA



C (p.Tyr975His)


GATGAATTTCTCTCTCCTTGT′]





1474
NM_004577.3(PSPH): c.155T > C
5723
PSPH
[′CTCCCTCCTAGGACACGGCGAGCCAYGGGC



(p.Met52Thr)


GGGGCAGTGCCTTTCAAAGCT′]





1475
NM_000175.3(GPI): c.1574T > C
2821
GPI
[′CTGGGAAAGCAGCTGGCTAAGAAAABAGAG



(p.Ile525Thr)


CCTGAGCTTGATGGCAGTGCT′]





1476
NM_000175.3(GPI): c.1016T > C
2821
GPI
[′TTTGGGTGTGAGACACACGCCATGCYGCCCT



(p.Leu339Pro)


ATGACCAGTACCTGCACCGC′]





1477
NM_000478.4(ALPL): c.1306T >
249
ALPL
[′ACGAGAGAATGTCTCCATGGTGGACYATGG



C (p.Tyr436His)


TGAGACCTCCAGGACCCAGGG′]





1478
NM_000478.4(ALPL): c.979T > C
249
ALPL
[′GATCCTGCGGAAGAACCCCAAAGGCYTCTT



(p.Phe327Leu)


CTTGCTGGTGGAAGGTAGGGA′]





1479
NM_018849.2(ABCB4): c.1207T >
5244
ABCB4
[′GGAGTTCAATGATGTTCACTTTTCTYACCCT



C (p.Tyr403His)


TCTCGAGCTAACGTCAAGGT′]





1480
NM_198965.1(PTHLH): c.179T >
5744
PTHLH
[′CAAGATTTACGGCGACGATTCTTCCYTCACC



C (p.Leu60Pro)


ATCTGATCGCAGAAATCCAC′]





1481
NM_198965.1(PTHLH): c.131T >
5744
PTHLH
[′AGAGCTGTGTCTGAACATCAGCTCCYCCATG



C (p.Leu44Pro)


ACAAGGGGAAGTCCATCCAA′]





1482
NM_000315.2(PTH): c.52T > C
5741
PTH
[′AGTTATGATTGTCATGTTGGCAATTYGTTTT



(p.Cys18Arg)


CTTACAAAATCGGATGGGAA′]





1483
NM_000315.2(PTH): c.67T > C
5741
PTH
[′GTTGGCAATTTGTTTTCTTACAAAAYCGGAT



(p.Ser23Pro)


GGGAAATCTGTTAAGTAAGT′]





1484
NM_003122.4(SPINK1): c.2T > C
6690
SPINK1
[′ACCTCTGGACGCAGAACTTCAGCCAYGAAG



(p.Met1Thr)


GTAACAGGCATCTTTCTTCTC′]





1485
NM_003122.4(SPINK1): c.41T >
6690
SPINK1
[′ATCTTTCTTCTCAGTGCCTTGGCCCBGTTGA



C (p.Leu14Pro)


GTCTATCTGGTAAGTGTTGC′]





1486
NM_006194.3(PAX9): c.62T > C
5083
PAX9
[′GGAGTGTTCGTGAACGGGAGGCCGCYGCCC



(p.Leu21Pro)


AACGCCATCCGGCTTCGCATC′]





1487
NM_005188.3(CBL): c.1111T > C
867
CBL
[′TTAATCAAAGGAACAATATGAATTAHACTG



(p.Tyr371His)


TGAGATGGGCTCCACATTCCA′]





1488
NM_005247.2(FGF3): c.466T > C
2248
FGF3
[′CAGCGCCGAGAGACTGTGGTACGTGYCTGT



(p.Ser156Pro)


GAACGGCAAGGGCCGGCCCCG′]





1489
NM_005247.2(FGF3): c.17T > C
2248
FGF3
[′GATGCCACGATGGGCCTAATCTGGCYGCTA



(p.Leu6Pro)


CTGCTCAGCCTGCTGGAGCCC′]





1490
NM_000222.2(KIT): c.1676T > C
3815
KIT
[′CCCATGTATGAAGTACAGTGGAAGGNTGTT



(p.Val559Ala)


GAGGAGATAAATGGAAACAAT′]





1491
NM_005249.4(FOXG1): c.643T >
2290
FOXG1
[′CATCTACGAGTTCATCATGAAGAACYTCCCT



C (p.Phe215Leu)


TACTACCGCGAGAACAAGCA′]





1492
NM_001127500.1(MET): c.3446T >
4233
MET
[′CAATTTCTGACCGAGGGAATCATCAYGAAA



C (p.Met1149Thr)


GATTTTAGTCATCCCAATGTC′]





1493
NM_020975.4(RET): c.1858T > C
5979
RET
[′CTTCCCTGAGGAGGAGAAGTGCTTCNGCGA



(p.Cys620Arg)


GCCCGAAGACATCCAGGGTGA′]





1494
NM_020975.4(RET): c.1900T > C
5979
RET
[′CACAGATCCACTGTGCGACGAGCTGNGCCG



(p.Cys634Arg)


CACGGTGATCGCAGCCGCTGT′]





1495
NM_020975.4(RET): c.2753T > C
5979
RET
[′TAGGGTCGGATTCCAGTTAAATGGAYGGCA



(p.Met918Thr)


ATTGAATCCCTTTTTGATCAT′]





1496
NM_020630.4(RET): c.1852T > C
5979
RET
[′CAACTGCTTCCCTGAGGAGGAGAAGNGCTT



(p.Cys618Arg)


CTGCGAGCCCGAAGACATCCA′]





1497
NM_020630.4(RET): c.1825T > C
5979
RET
[′GGGGATTAAAGCTGGCTATGGCACCNGCAA



(p.Cys609Arg)


CTGCTTCCCTGAGGAGGAGAA′]





1498
NM_013251.3(TAC3): c.269T > C
6866
TAC3
[′ATGCATGACTTCTTTGTGGGACTTAYGGGCA



(p.Met90Thr)


AGAGGAGCGTCCAGCCAGGT′]





1499
NM_006158.4(NEFL): c.281T > C
4747
NEFL
[′ATCCGCACGCAGGAGAAGGCGCAGCYCCAG



(p.Leu94Pro)


GACCTCAATGACCGCTTCGCC′]





1500
NM_006177.3(NRL): c.479T > C
4901
NRL
[′TGCGGGCGCGACGAGGCGCTGCGGCYGAAG



(p.Leu160Pro)


CAGAGGCGCCGCACGCTGAAG′]





1501
NM_000432.3(MYL2): c.52T > C
4633
MYL2
[′AGCCGGGGGCGCCAACTCCAACGTGYTCTC



(p.Phe18Leu)


CATGTTCGAACAGACCCAAAT′]





1502
NM_000257.3(MYH7): c.1046T >
4625
MYH7
[′TTCACTTCAGAGGAGAAAAACTCCAYGTAT



C (p.Met349Thr)


AAGCTGACAGGCGCCATCATG′]





1503
NM_000257.3(MYH7): c.1594T >
4625
MYH7
[′GCTTCCTCAGCCCATGGGCATCATGYCCATC



C (p.Ser532Pro)


CTGGAAGAGGAGTGCATGTT′]





1504
NM_000257.3(MYH7): c.5378T >
4625
MYH7
[′AACATGGAACAGACCATTAAGGACCYGCAG



C (p.Leu1793Pro)


CACCGGCTGGACGAAGCCGAG′]





1505
NM_001040113.1(MYH11): c.
4629
MYH11
[′GAGGTGGAACATAAGAAGAAGAAGCYGGA



3791T > C (p.Leu1264Pro)


GGCGCAGGTGCAGGAGCTGCAG′]





1506
NM_000530.6(MPZ): c.404T > C
4359
MPZ
[′TGTGACGTCAAAAACCCTCCAGACAYAGTG



(p.Ile135Thr)


GGCAAGACCTCTCAGGTCACG′]





1507
NM_000530.6(MPZ): c.341T > C
4359
MPZ
[′CGCTGGAAGGATGGCTCCATTGTCAYACAC



(p.Ile114Thr)


AACCTAGACTACAGTGACAAT′]





1508
NM_016835.4(MAPT): c.1839T >
4137
MAPT
[′AGTCCAAGTGTGGCTCAAAGGATAAYATCA



C (p.Asn613=)


AACACGTCCCGGGAGGCGGCA′]





1509
NM_198159.2(MITF): c.1051T >
4286
MITF
[′GAACAAGGGAACCATCTTAAAAGCAYCCGT



C (p.Ser351Pro)


GGACTATATCCGAAAGTTGCA′]





1510
NM_198159.2(MITF): c.1195T >
4286
MITF
[′AATGCAGGCTCGAGCTCATGGACTTYCCCTT



C (p.Ser399Pro)


ATTCCATCCACGGGTCTCTG′]





1511
NM_000426.3 (LAMA2): c.7691T >
3908
LAMA2
[′ACCAAGAATGAGTCCGGCATCATTCYTTTGG



C (p.Leu2564Pro)


GAAGTGGAGGGACACCAGCA′]





1512
NM_000426.3(LAMA2): c.2584T >
3908
LAMA2
[′ACAACCCTCTGTACCTGGAGGATCAYGTCA



C (p.Cys862Arg)


GCCATGCCAATGCAATGACAA′]





1513
NM_002435.2(MPI): c.413T > C
4351
MPI
[′CCCGATGCCAACCACAAGCCAGAGAYGGCC



(p.Met138Thr)


ATTGCCCTCACCCCCTTCCAG′]





1514
NM_000239.2(LYZ): c.221T > C
4069
LYZ
[′GGAGACAGAAGCACTGATTATGGGAYATTT



(p.Ile74Thr)


CAGATCAATAGCCGCTACTGG′]





1515
NM_000239.2(LYZ): c.244T > C
4069
LYZ
[′GATATTTCAGATCAATAGCCGCTACHGGTGT



(p.Trp82Arg)


AATGATGGCAAAACCCCAGG′]





1516
NM_000233.3(LHCGR): c.1627T >
−1

[CAATGTGGTGGCCTTCTTCATAATTYGTGCT



C (p.Cys543Arg)


TGCTACATTAAAATTTATTT′]





1517
NM_000233.3(LHCGR): c.1193T >
−1

[′AAACTTACAGTGCCTCGTTTTCTCAYGTGCA



C (p.Met398Thr)


ATCTCTCCTTTGCAGACTTT′]





1518
NM_000233.3 (LHCGR): c.391T >
−1

[′TCCTGTCCCTAATCACAGGAGCATCYGTAAC



C (p.Cys131Arg)


ACAGGCATCAGAAAGTTTCC′]





1519
NM_000233.3(LHCGR): c.1103T >
−1

[′GACTTCCTTAGGGTCCTGATTTGGCYGATTA



C (p.Leu368Pro)


ATATTCTAGCCATCATGGGA′]





1520
NM_000233.3(LHCGR): c.1505T >
−1

[′TCTTCTCTAATTGCTATGTTGCCCCYTGTCGG



C (p.Leu502Pro)


TGTCAGCAATTACATGAAG′]





1521
NM_170707.3(LMNA): c.1589T >
4000
LMNA
[′TGCGGGAACAGCCTGCGTACGGCTCYCATC



C (p.Leu530Pro)


AACTCCACTGGGGAAGTAAGT′]





1522
NM_170707.3(LMNA): c.1139T >
4000
LMNA
[′GAGATCCACGCCTACCGCAAGCTCTYGGAG



C (p.Leu380Ser)


GGCGAGGAGGAGAGGTGGGCT′]





1523
NM_002292.3(LAMB2): c.961T >
3913
LAMB2
[′CAAACACAACACACGTGGCCTCAACYGCGA



C (p.Cys321Arg)


GCAGTGTCAGGATTTCTATCG′]





1524
NM_000228.2(LAMB3): c.565 −
3914
LAMB3
[′AAATCCATAAGGTTAAGTTGGACCTRCAGA



3T > C


GGGAAGGGAAAGAGAAGCGCT′]





1525
NM_000421.3(KRT10): c.482T >
−1

[CTGAATGACCGCCTGGCTTCCTACTYGGACA



C (p.Leu161Ser)


AAGTTCGGGCTCTGGAAGAA′]





1526
NM_000421.3(KRT10): c.449T >
−1

[′CTCTCTGGAAATGAAAAAGTAACCABGCAG



C (p.Met150Thr)


AATCTGAATGACCGCCTGGCT′]





1527
NM_000422.2(KRT17): c.263T >
3872
KRT17
[′CTGGCTGGAGGTGAGAAGGCCACCAHGCAG



C (p.Met88Thr)


AACCTCAATGACCGCCTGGCC′]





1528
NM_000422.2(KRT17): c.284T >
3872
KRT17
[′ACCATGCAGAACCTCAATGACCGCCHGGCC



C (p.Leu95Pro)


TCCTACCTGGACAAGGTGCGT′]





1529
NM_000422.2(KRT17): c.296T >
3872
KRT17
[′CTCAATGACCGCCTGGCCTCCTACCYGGACA



C (p.Leu99Pro)


AGGTGCGTGCCCTGGAGGAG′]





1530
NM_005557.3(KRT16): c.395T >
3868
KRT16
[′CTCAATGACCGCCTGGCCTCCTACCYGGACA



C (p.Leu132Pro)


AGGTGCGTGCTCTGGAGGAG′]





1531
NM_005557.3(KRT16): c.362T >
3868
KRT16
[′CTGGTGGGCAGTGAGAAGGTGACCAHGCAG



C (p.Met121Thr)


AACCTCAATGACCGCCTGGCC′]





1532
NM_000526.4(KRT14): c.1151T >
3861
KRT14
[′ATGATTGGCAGCGTGGAGGAGCAGCYGGCC



C (p.Leu384Pro)


CAGCTCCGCTGCGAGATGGAG′]





1533
NM_000526.4(KRT14): c.356T >
3861
KRT14
[′CTGGTGGGCAGTGAGAAGGTGACCAYGCAG



C (p.Met119Thr)


AACCTCAATGACCGCCTGGCC′]





1534
NM_000526.4(KRT14): c.1243T >
3861
KRT14
[′GCGGCTGGAGCAGGAGATCGCCACCYACCG



C (p.Tyr415His)


CCGCCTGCTGGAGGGCGAGGA′]





1535
NM_153490.2(KRT13): c.356T >
3860
KRT13
[′CTCAACGACCGCCTGGCTTCCTACCYGGAGA



C (p.Leu119Pro)


AGGTGCGCGCCCTGGAGGAG′]





1536
NM_002273.3(KRT8): c.160T > C
3856
KRT8
[′CTTTCGCGGTGGCCTGGGCGGCGGCHATGGT



(p.Tyr54His)


GGGGCCAGCGGCATGGGAGG′]





1537
NM_000424.3(KRT5): c.1388T >
3852
KRT5
[′GAGCTCATGAACACCAAGCTGGCCCYGGAC



C (p.Leu463Pro)


GTGGAGATCGCCACTTACCGC′]





1538
NM_000424.3(KRT5): c.980T > C
3852
KRT5
[′TCTGACACCTCAGTGGTCCTCTCCAHGGACA



(p.Met327Thr)


ACAACCGCAACCTGGACCTG′]





1539
NM_000424.3(KRT5): c.20T > C
3852
KRT5
[′GCCACCATGTCTCGCCAGTCAAGTGYGTCCT



(p.Val7Ala)


TCCGGAGCGGGGGCAGTCGT′]





1540
NM_000424.3(KRT5): c.541T > C
3852
KRT5
[′CAAGACCCTCAACAATAAGTTTGCCYCCTTC



(p.Ser181Pro)


ATCGACAAGGTGAGCTACGA′]





1541
NM_000208.2(INSR): c.779T > C
3643
INSR
[′TGCGTGGCCTGCCGCAACTTCTACCYGGACG



(p.Leu260Pro)


GCAGGTGTGTGGAGACCTGC′]





1542
NM_000208.2(INSR): c.164T > C
3643
INSR
[′TTGCATGAGCTGGAGAATTGCTCTGYCATCG



(p.Val55Ala)


AAGGACACTTGCAGATACTC′]





1543
NM_002198.2(IRF1): c.31T > C
3659
IRF1
[′CATCACTCGGATGCGCATGAGACCCYGGCT



(p.Trp11Arg)


AGAGATGCAGATTAATTCCAA′]





1544
NM_000213.3(ITGB4): c.467T >
3691
ITGB4
[′AACCTCAAGAAGATGGGGCAGAACCYGGGT



C (p.Leu156Pro)


ACGGCAGGGCCAGAGTGGAGG′]





1545
NM_000213.3(ITGB4): c.1684T >
3691
ITGB4
[′CCGAGGACGCTGCTCCATGGGCCAGYGTGT



C (p.Cys562Arg)


GTGTGAGCCTGGTTGGACAGG′]





1546
NM_000213.3 (ITGB4): c.112T >
3691
ITGB4
[′CTGCAAGAAGGCCCCAGTGAAGAGCYGCAC



C (p.Cys38Arg)


GGAGTGTGTCCGTGTGGATAA′]





1547
NM_000454.4(SOD1): c.338T > C
6647
SOD1
[′ATCTCACTCTCAGGAGACCATTGCAYCATTG



(p.Ile113Thr)


GCCGCACACTGGTGGTAAGT′]





1548
NM_000454.4(SOD1): c.434T > C
6647
SOD1
[′AAGACAGGAAACGCTGGAAGTCGTTYGGCT



(p.Leu145Ser)


TGTGGTGTAATTGGGATCGCC′]





1549
NM_000454.4(SOD1): c.455T > C
6647
SOD1
[′CGTTTGGCTTGTGGTGTAATTGGGAYCGCCC



(p.Ile152Thr)


AATAAACATTCCCTTGGATG′]





1550
NM_001025107.2(ADAR): c.1883T >
103
ADAR
[′ACCAGACTTTCTTTTTGTAGGTTTCYCTACA



C (p.Leu628Pro)


GTGAGTTAATGAAATACAAC′]





1551
NM_001025107.2(ADAR): c.2609T >
103
ADAR
[′TCCAAAAAGAACATTTTTCTTCTATYTAAGA



C (p.Phe870Ser)


AGCTCTGCTCCTTCCGTTAC′]





1552
NM_002185.3(IL7R): c.197T > C
3575
UL7R
[′CCATATTTCAAATTCCAGATTGGTGRTGTTG



(p.Ile66Thr)


ACATCTGGGTCCTCAAAAGC′]





1553
NM_033500.2(HK1): c.1550T > C
3098
HK1
[′ACTGCAACAGAGAATGGTGACTTCTYGGCC



(p.Leu517Ser)


CTGGATCTTGGAGGAACCAAT′]





1554
NM_000184.2(HB G2): c.-
3048
HBG2
[′CTTCCCCACACTATCTCAATGCAAAYATCTG



228T > C


TCTGAAACGGTCCCTGGCTA′]





1555
NM_000184.2(HB G2): c.125T > C
3048
HBG2
[′GTTGTCTACCCATGGACCCAGAGGTYCTTTG



(p.Phe42Ser)


ACAGCTTTGGCAACCTGTCC′]





1556
NM_000559.2(HB G1): c.-
3047
HBG1
[′TAGCAGTATCCTCTTGGGGGCCCCTYCCCCA



251T > C


CACTATCTCAATGCAAATAT′]





1557
NM_000519.3(HBD): c.-127T > C
3045
HBD
[′TCTCACAAACTAATGAAACCCTGCTYATCTT






AAACCAACCTGCTCACTGGA′]





1558
NM_000518.4(HBB): c.257T > C
3043
HBB
[′CACCTGGACAACCTCAAGGGCACCTYTGCC



(p.Phe86Ser)


ACACTGAGTGAGCTGCACTGT′]





1559
NM_000518.4(HBB): c.128T > C
3043
HBB
[′GTCTACCCTTGGACCCAGAGGTTCTBTGAGT



(p.Phe43Ser)


CCTTTGGGGATCTGTCCACT′]





1560
NM_000518.4(HBB): c.337T > C
3043
HBB
[′ACAGCTCCTGGGCAACGTGCTGGTCYGTGTG



(p.Cys113Arg)


CTGGCCCATCACTTTGGCAA′]





1561
NM_000518.4(HBB): c.127T > C
3043
HBB
[′GGTCTACCCTTGGACCCAGAGGTTCBTTGAG



(p.Phe43Leu)


TCCTTTGGGGATCTGTCCAC′]





1562
NM_000518.4(HBB): c.332T > C
3043
HBB
[′CTCCCACAGCTCCTGGGCAACGTGCYGGTCT



(pLeu111Pro)


GTGTGCTGGCCCATCACTTT′]





1563
NM_000518.4(HBB): c.92 + 6T > C
3043
HBB
[′GGTGGTGAGGCCCTGGGCAGGTTGGHATCA






AGGTTACAAGACAGGTTTAAG′]





1564
NM_000518.4(HBB): c.344T > C
3043
HBB
[′CTGGGCAACGTGCTGGTCTGTGTGCYGGCCC



(p.Leu115Pro)


ATCACTTTGGCAAAGAATTC′]





1565
NM_000517.4(HBA2): c.427T > C
3040
HBA2
[′CACCGTGCTGACCTCCAAATACCGTNAAGCT



(p.Ter143Gln)


GGAGCCTCGGTAGCCGTTCC′]





1566
NM_000517.4(HBA2): c.2T > C
3040
HBA2
[′CCACAGACTCAGAGAGAACCCACCAYGGTG



(p.Met1Thr)


CTGTCTCCTGCCGACAAGACC′]





1567
NM_000517.4(HBA2): c.89T > C
3040
HBA2
[′GCTGGCGAGTATGGTGCGGAGGCCCYGGAG



(p.Leu30Pro)


AGGTGAGGCTCCCTCCCCTGC′]





1568
NM_006121.3(KRT1): c.482T > C
3848
KRT1
[′CAAGAAGTCACTATCAACCAGAGCCYTCTTC



(p.Leu161Pro)


AGCCCCTCAATGTGGAGATT′]





1569
NM_006121.3(KRT1): c.1436T >
3848
KRT1
[′ACCAAGCTGGCCCTGGATCTGGAGAYTGCC



C (p.Ile479Thr)


ACCTACAGGACCCTCCTGGAG′]





1570
NM_006121.3(KRT1): c.1424T >
3848
KRT1
[′GAGCTGATGAACACCAAGCTGGCCCYGGAT



C (p.Leu475Pro)


CTGGAGATTGCCACCTACAGG′]





1571
NM_001077488.3(GNAS): c.299T >
2778
GNAS
[′AAAGTGCAGGACATCAAAAACAACCYGAAA



C (p.Leu100Pro)


GAGGCGATTGAAGTACGTGCT′]





1572
NM_000515.4(GH1): c.291 + 6T >
2688
GH1
[′AGGAAACACAACAGAAATCCGTGAGYGGAT



C


GCCTTCTCCCCAGGCGGGGAT′]





1573
NM_002087.3(GRN): c.2T > C
2896
GRN
[′TCCTTGGTACTTTGCAGGCAGACCAYGTGGA



(p.Met1Thr)


CCCTGGTGAGCTGGGTGGCC′]





1574
NM_021957.3(GYS2): c.1447T >
2998
GYS2
[′GGTGATTTTGCACCCAGAGTTTCTAYCCTCC



C (p.Ser483Pro)


ACCAGTCCCTTACTACCCAT′]





1575
NM_001083112.2(GPD2): c.1904T >
2820
GPD2
[′AGGTATAAGAAGAGATTTCATAAGTYTGAT



C (p.Phe635Ser)


GCAGACCAGAAAGGCTTTATT′]





1576
NM_000340.1(SLC2A2): c.1166T >
6514
SLC2A2
[′ATCTTCATGTCAGTGGGACTTGTGCBGCTGG



C (p.Leu389Pro)


TAAGTTTGGTGCCTGCACTG′]





1577
NM_005271.3(GLUD1): c.1501T >
2746
GLUD1
[′GTGTTCTTTTCCCTAATAGGGTGCAYCTGAG



C (p.Ser501Pro)


AAAGACATCGTGCACTCTGG′]





1578
NM_000162.3(GCK): c.391T > C
2645
GCK
[′CTTCGACTACATCTCTGAGTGCATCYCCGAC



(p.Ser131Pro)


TTCCTGGACAAGCATCAGAT′]





1579
NM_001018077.1(NR3C1): c.1712T >
2908
NR3C1
[′CTCAACATGTTAGGAGGGCGGCAAGYGATT



C (p.Val571Ala)


GCAGCAGTGAAATGGGCAAAG′]





1580
NM_001018077.1(NR3C1): c.2318T >
2908
NR3C1
[′TCAAATGGAAATATCAAAAAACTTCYGTTTC



C (p.Leu773Pro)


ATCAAAAGTGACTGCCTTAA′]





1581
NM_001018077.1(NR3C1): c.2209T >
2908
NR3C1
[′GGTTGAAAATCTCCTTAACTATTGCYTCCAA



C (p.Phe737Leu)


ACATTTTTGGATAAGACCAT′]





1582
NM_002055.4(GFAP): c.1055T >
2670
GFAP
[′CGCCACTTGCAGGAGTACCAGGACCYGCTC



C (p.Leu352Pro)


AATGTCAAGCTGGCCCTGGAC′]





1583
NM_002353.2(TACSTD2): c.557T >
4070
TACSTD2
[′CGGCTCTTCCGCGAGCGCTATCGGCYGCACC



C (p.Leu186Pro)


CCAAGTTCGTGGCGGCCGTG′]





1584
NM_000821.6(GGCX): c.896T >
2677
GGCX
[′TTTCTCCCTGCTTTCCTAGGTATGTYCTCCTA



C (p.Phe299Ser)


CGTCATGCTGGCCAGCAGC′]





1585
NM_000145.3(FSHR): c.479T > C
2492
FSHR
[′CAAGATAACATAAACATCCACACAAYTGAA



(p.Ile160Thr)


AGAAATTCTTTCGTGGGGCTG′]





1586
NM_000145.3(FSHR): c.1634T >
2492
FSHR
[′CTCAATGTCCTGGCCTTTGTGGTCAYCTGTG



C (p.Ile545Thr)


GCTGCTATATCCACATCTAC′]





1587
NM_182925.4(FLT4): c.3131T > C
2324
FLT4
[′AGAGACCTGGCTGCTCGGAACATTCYGCTGT



(p.Leu1044Pro)


CGGAAAGCGACGTGGTGAAG′]





1588
NM_182925.4(FLT4): c.3257T > C
2324
FLT4
[′CTGAAGTGGATGGCCCCTGAAAGCAYCTTC



(p.Ile1086Thr)


GACAAGGTGTACACCACGCAG′]





1589
NM_023110.2(FGFR1): c.899T >
2260
FGFR1
[′CACATCGAGGTGAATGGGAGCAAGAYTGGC



C (p.Ile300Thr)


CCAGACAACCTGCCTTATGTC′]





1590
NM_023110.2(FGFR1): c.1141T >
2260
FGFR1
[′CCTGTACCTGGAGATCATCATCTATYGCACA



C (p.Cys381Arg)


GGGGCCTTCCTCATCTCCTG′]





1591
NM_000138.4(FBN1): c.4987T >
2200
FBN1
[′TCCTGGAATCTGTGGTCCAGGGACAYGTTAC



C (p.Cys1663Arg)


AACACCGTTGGCAACTACAC′]





1592
NM_000138.4(FBN1): c.3220T >
2200
FBN1
[′CTGTTTTTGTGCAGACATTGACGAAYGCCGC



C (p.Cys1074Arg)


ATATCTCCTGACCTCTGTGG′]





1593
NM_000138.4(FBN1): c.3793T >
2200
FBN1
[′TATCCCTGGAGAGTACAGGTGCTTGYGTTAT



C (p.Cys1265Arg)


GATGGATTCATGGCATCTGA′]





1594
NM_000043.4(FAS): c.532T > C
355
FAS
[′ATCCAGATCTAACTTGGGGTGGCTTYGTCTT



(p.Cys178Arg)


CTTCTTTTGCCAATTCCACT′]





1595
NM_000043.4(FAS): c.651 + 2T >
355
FAS
[′CATGAATCTCCAACTTTAAATCCTGHAGGTA



C


TTGAAATAGGTATCAGCTTT′]





1596
NM_000129.3(F13A1): c.728T > C
2162
F13A1
[′ATCCTGGACACTTGCCTGTATGTGAYGGACA



(p.Met243Thr)


GAGCACAAATGGACCTCTCT′]





1597
NM_000186.3(CFH): c.1606T > C
3075
CFH
[′GCTGAATGACACATTGGACTATGAAYGCCA



(p.Cys536Arg)


TGATGGTTATGAAAGCAATAC′]





1598
NM_000123.3(ERCC5): c.2573T >
−1

[′AAGTTAATAAATTTGGCTTATTTGCYTGGAA



C (p.Leu858Pro)


GTGATTATACCGAAGGAATA′]





1599
NM_000122.1(ERCC3): c.296T >
2071
ERCC3
[′CCAGTTTACAAATATGCCCAAGACTYCTTGG



C (p.Phe99Ser)


TGGCTATTGCAGAGCCAGTG′]





1600
NM_001113755.2(TYMP): c.854T >
1890
TYMP
[′CTGGGTCGCTGCGTGGGCCACGCCCYGGAG



C (p.Leu285Pro)


GTGGAGGAGGCGCTGCTCTGC′]





1601
NM_000118.3(ENG): c.2T > C
2022
ENG
[′CGCACAGGCCCCCACGTGGACAGCAYGGAC



(p.Met1Thr)


CGCGGCACGCTCCCTCTGGCT′]





1602
NM_203342.2(EPB41): c.2T > C
2035
EPB41
[′AAACCAATCAGAAAACACAGGAACABGCAC



(p.Met1Thr)


TGCAAGGTTTCTTTGTTGGAT′]





1603
NM_001972.2(ELANE): c.211T >
1991
ELANE
[′CAACTTCGTCATGTCGGCCGCGCACYGCGTG



C (p.Cys71Arg)


GCGAATGTGTGAGTAGCCGG′]





1604
NM_000400.3(ERCC2): c.1454T >
2068
ERCC2
[′ACCATGGCAACCTTCACCATGACGCYGGCA



C (p.Leu485Pro)


CGGGTCTGCCTCTGCCCTATG′]





1605
NM_000281.3(PCBD1): c.244T >
5092
PCBD1
[′CCACATCACGCTGAGCACCCATGAGYGTGC



C (p.Cys82Arg)


CGGCCTTTCAGAACGGGACAT′]





1606
NM_001927.3(DES): c.1034T > C
1674
DES
[′CCCCCTCTCCTGCAGAACGATTCCCYGATGA



(p.Leu345Pro)


GGCAGATGCGGGAATTGGAG′]





1607
NM_001927.3(DES): c.1154T > C
1674
DES
[′CTCAAGGATGAGATGGCCCGCCATCYGCGC



(p.Leu385Pro)


GAGTACCAGGACCTGCTCAAC′]





1608
NM_000498.3(CYP11B2): c.1157T >
−1

[′GTTCTGAAGCACCAAGTCTGAGCTCRCCACT



C (p.Val386Ala)


CGCTCCAAAAACAGACCCAC′]





1609
NM_000498.3(CYP11B2): c.1382T >
−1

[′CGGCGCCTGGCAGAGGCAGAGATGCYGCTG



C (p.Leu461Pro)


CTGCTGCACCACGTAAGCAGG′]





1610
NM_001886.2(CRYBA4): c.281T >
1413
CRYBA4
[′TACCCCGCCGAGAGGCTCACCTCCTYCCGGC



C (p.Phe94Ser)


CTGCGGCCTGTGCTGTAAGT′]





1611
NM_001886.2(CRYBA4): c.206T >
1413
CRYBA4
[′GGCTTCCAAGGGCAGCAGTACATTCYGGAA



C (p.Leu69Pro)


CGAGGCGAATATCCAAGCTGG′]





1612
NM_000762.5(CYP2A6): c.670T >
−1

[′GCAACCCCAGCTCTATGAGATGTTCYCTTCG



C (p.Ser224Pro)


GTGATGAAACACCTGCCAGG′]





1613
NM_000165.4(GJA1): c.52T > C
2697
GJA1
[′ACTCCTTGACAAGGTTCAAGCCTACYCAACT



(p.Ser18Pro)


GCTGGAGGGAAGGTGTGGCT′]





1614
NM_000165.4(GJA1): c.32T > C
2697
GJA1
[′GACTGGAGCGCCTTAGGCAAACTCCYTGAC



(p.Leu11Pro)


AAGGTTCAAGCCTACTCAACT′]





1615
NM_004004.5(GJB2): c.101T > C
2706
GJB2
[′CTCCTTTGCAGCCACAACGAGGATCVTAATG



(p.Met34Thr)


CGAAAAATGAAGAGGACGGT′]





1616
NM_004004.5(GJB2): c.229T > C
2706
GJB2
[′CTTCCCCATCTCCCACATCCGGCTAYGGGCC



(p.Trp77Arg)


CTGCAGCTGATCTTCGTGTC′]





1617
NM_004004.5(GJB2): c.269T > C
2706
GJB2
[′ATCTTCGTGTCCACGCCAGCGCTCCYAGTGG



(p.Leu90Pro)


CCATGCACGTGGCCTACCGG′]





1618
NM_005215.3(DCC): c.503T > C
1630
DCC
[′AAGTGTGAAGTCATTGGGGAGCCCAYGCCA



(p.Met168Thr)


ACAATCCACTGGCAGAAGAAC′]





1619
NM_001849.3(COL6A2): c.2329T >
1292
COL6A2
[′GAGTGAAAACCTCTACTCCATCGCCYGCGA



C (p.Cys777Arg)


CAAGCCACAGCAGGTGCGCAA′]





1620
NM_000090.3(COL3A1): c.582 +
1281
COL3A1
[′CTGGTCATCCTGGTTCCCCTGTAAGHATAGC



6T > C


CATTGGTGGTGTTTTCTTCC′]





1621
NM_000089.3(COL1A2): c.279 +
1278
COL1A2
[′GTTGGACTTGGCCCTGGACCAATGGYATGCT



2T > C


TATCTGTTTATCTTAGCCAA′]





1622
NM_000089.3(COL1A2): c.3105 +
1278
COL1A2
[′TTGCAAGGTCTGCCTGGTATCGCTGYAAGTA



2T > C


AACTGTAGCCATCTCGCACA′]





1623
NM_000088.3(COL1A1): c.4391T >
1277
COL1A1
[′TTCGACGTTGGCCCTGTCTGCTTCCYGTAAA



C (p.Leu1464Pro)


CTCCCTCCATCCCAACCTGG′]





1624
NM_000493.3 (COL10A1): c.1841T >
−1

[′AAAGGGACTCATGTTTGGGTAGGCCYGTAT



C (p.Leu614Pro)


AAGAATGGCACCCCTGTAATG′]





1625
NM_000493.3(COL10A1): c.1771T >
−1

[′TGACCCAAGGACTGGAATCTTTACTYGTCAG



C (p.Cys591Arg)


ATACCAGGAATATACTATTT′]





1626
NM_000493.3(COL10A1): c.1951T >
−1

[′CGATCTCACAGAAAATGACCAGGTGYGGCT



C (p.Trp651Arg)


CCAGCTTCCCAATGCCGAGTC′]





1627
NM_000493.3(COL10A1): c.2011T >
−1

[′ATACTCCTCTGAGTATGTCCACTCCYCTTTCT



C (p.Ser671Pro)


CAGGATTCCTAGTGGCTCC′]





1628
NM_000493.3(COL10A1): c.1798T >
−1

[TCAGATACCAGGAATATACTATTTTYCATAC



C (p.Ser600Pro)


CACGTGCATGTGAAAGGGAC′]





1629
NM_020549.4(CHAT): c.629T > C
1103
CHAT
[′ATGTATCTCAACAACCGCCTGGCCCYGCCTG



(p.Leu210Pro)


TCAACTCCAGCCCTGCCGTG′]





1630
NM_020549.4(CHAT): c.914T > C
1103
CHAT
[′ATCATGCCGGAGCCTGAGCACGTCABCGTA



(p.Ile305Thr)


GCCTGCTGCAATCAGGTAAGC′]





1631
NM_020549.4(CHAT): c.1007T >
1103
CHAT
[′GATCTGTTCACTCAGTTGAGAAAGAYAGTC



C (p.Ile336Thr)


AAAATGGCTTCCAACGAGGAC′]





1632
NM_001822.5(CHN1): c.427T > C
1123
CHN1
[′TGCCAAGATGACGATAAACCCAATTYATGA



(p.Tyr143His)


GCACGTAGGATACACAACCTT′]





1633
NM_001904.3(CTNNB1): c.133T >
1499
CTNNB1
[′TTCTGGTGCCACTACCACAGCTCCTBCTCTG



C (p.Ser45Pro)


AGTGGTAAAGGCAATCCTGA′]





1634
NM_004056.4(CA8): c.298T > C
767
CA8
[′ACATATATTTTCTTTTTCAGTTCTTYCGGGAG



(p.Ser100Pro)


GACCATTGCCTCAAGGGCA′]





1635
NM_016124.4(RHD): c.329T > C
6007
RHD
[′CCTTCTGGGAAGGTGGTCATCACACYGTTCA



(p.Leu110Pro)


GGTATTGGGATGGTGGCTGG′]





1636
NM_015865.6(SLC14A1): c.871T >
6563
SLC14A1
[′CTTTGGACTCTGGGGTTTCAACAGCYCTCTG



C (p.Ser291Pro)


GCCTGCATTGCAATGGGAGG′]





1637
NM_001250.5(CD40): c.247T > C
958
CD40
[′GACACACTGCCACCAGCACAAATACYGCGA



(p.Cys83Arg)


CCCCAGTGCGTGCGCTGTTGG′]





1638
NM_000342.3(SLC4A1): c.2317T >
6521
SLC4A1
[′AGTGTGCGGCTCCCCCACAGGCCTGYCCATC



C (p.Ser773Pro)


CTCATGGAGCCCATCCTGTC′]





1639
NM_001681.3(ATP2A2): c.1678T >
488
ATP2A2
[′GGGTAGTGGCAGCGACACACTGCGAYGCCT



C (p.Cys560Arg)


GGCCCTGGCCACTCATGACAA′]





1640
NM_001082971.1(DDC): c.925T >
1644
DDC
[TCCCCACAAATGGCTATTGGTGAATYTTGAC



C (p.Phe309Leu)


TGTTCTGCCATGTGGTAAGT′]





1641
NM_031226.2(CYP19A1): c.743 +
−1

[′ATACAAAAAGTATGAGAAGTCTGTGYAAGT



2T > C


AATACAACTTTGGAAGATTTA′]





1642
NM_000486.5(AQP2): c.646T > C
−1

[′ACCCCTGGTGGGCGCCATCCTGGGCYCCCTC



(p.Ser216Pro)


CTCTACAACTACGTGCTGTT′]





1643
NM_000041.3(APOE): c.388T > C
348
APOE
[′GCTGGGCGCGGACATGGAGGACGTGYGCGG



(p.Cys130Arg)


CCGCCTGGTGCAGTACCGCGG′]





1644
NM_000041.3(APOE): c.137T > C
348
APOE
[′TGGCAGAGCGGCCAGCGCTGGGAACYGGCA



(p.Leu46Pro)


CTGGGTCGCTTTTGGGATTAC′]





1645
NM_000039.1(APOA1): c.220T >
−1

[′CTCCAGCCTAAAGCTCCTTGACAACYGGGA



C (p.Trp74Arg)


CAGCGTGACCTCCACCTTCAG′]





1646
NM_000039.1(APOA1): c.341T >
−1

[′CTGAGGCAGGAGATGAGCAAGGATCYGGAG



C (p.Leu114Pro)


GAGGTGAAGGCCAAGGTGCAG′]





1647
NM_000039.1(APOA1): c.593T >
335
APOA1
[′TACAGCGACGAGCTGCGCCAGCGCTYGGCC



C (p.Leu198Ser)


GCGCGCCTTGAGGCTCTCAAG′]





1648
NM_000416.2(IFNGR1): c.260T >
3459
IFNGR1
[′AATATTTCTCATCATTATTGTAATAYTTCTG



C (p.Ile87Thr)


ATCATGTTGGTGATCCATCA′]





1649
NM_000488.3(SERPINC1): c.1141T >
462
SERPINC1
[′TGTCGATCTGTTCAGCCCTGAAAAGYCCAAA



C (p.Ser381Pro)


CTCCCAGGTTTGTCTAGGAA′]





1650
NM_000488.3(SERPINC1): c.442T >
462
SERPINC1
[′GTTTGACACCATATCTGAGAAAACAYCTGAT



C (p.Ser148Pro)


CAGATCCACTTCTTCTTTGC′]





1651
NM_000488.3(SERPINC1): c.68T >
462
SERPINC1
[′AAGGTTTATCTTTTGTCCTTGCTGCYCATTG



C (p.Leu23Pro)


GCTTCTGGGACTGCGTGACC′]





1652
NM_000488.3(SERPINC1): c.667T >
462
SERPINC1
[′CAGAGCGGCCATCAACAAATGGGTGYCCAA



C (p.Ser223Pro)


TAAGACCGAAGGCCGAATCAC′]





1653
NM_000488.3(SERPINC1): c.379T >
462
SERPINC1
[′TTTTGCTATGACCAAGCTGGGTGCCYGTAAT



C (p.Cys127Arg)


GACACCCTCCAGCAACTGAT′]





1654
NM_001085.4(SERPINA3): c.233T >
12
SERPINA3
[′GATAAGAATGTCATCTTCTCCCCACYGAGCA



C (p.Leu78Pro)


TCTCCACCGCCTTGGCCTTC′]





1655
NM_000341.3(SLC3A1): c.1400T >
6519
SLC3A1
[′AATCAGTATGTCAACGTGATGAACAHGCTTC



C (p.Met467Thr)


TTTTCACACTCCCTGGAACT′]





1656
NM_000341.3(SLC3A1): c.2033T >
−1

[′AATCGAGCATGCTATTCCAGTGTACYGAAC



C (p.Leu678Pro)


ATACTGTATACCTCGTGTTAG′]





1657
NM_000021.3(PSEN1): c.749T >
5663
PSEN1
[′CCTGAATGGACTGCGTGGCTCATCTYGGCTG



C (p.Leu250Ser)


TGATTTCAGTATATGGTAAA′]





1658
NM_000021.3(PSEN1): c.338T >
5663
PSEN1
[′TTTTATACCCGGAAGGATGGGCAGCYGTAC



C (p.Leu113Pro)


GTATGAGTTTTGTTTTATTAT′]





1659
NM_000021.3(PSEN1): c.497T >
5663
PSEN1
[′CTTTTCTAGGTCATCCATGCCTGGCBTATTAT



C (p.Leu166Pro)


ATCATCTCTATTGTTGCTG′]





1660
NM_000021.3(PSEN1): c.254T >
5663
PSEN1
[′TATGGCGCCAAGCATGTGATCATGCYCTTTG



C (p.Leu85Pro)


TCCCTGTGACTCTCTGCATG′]





1661
NM_001151.3(SLC25A4): c.293T >
291
SLC25A4
[′GCCTTCAAGGACAAGTACAAGCAGCYCTTC



T > C (p.Leu98Pro)


TTAGGGGGTGTGGATCGGCAT′]





1662
NM_001100.3(ACTA1): c.287T >
58
ACTA1
[′TGGCACCACACCTTCTACAACGAGCYTCGCG



C (p.Leu96Pro)


TGGCTCCCGAGGAGCACCCC′]





1663
NM_001100.3(ACTA1): c.668T >
58
ACTA1
[′AAGGAGAAGCTGTGCTACGTGGCCCYGGAC



C (p.Leu223Pro)


TTCGAGAACGAGATGGCGACG′]





1664
NM_000485.2(APRT): c.407T > C
353
APRT
[′CTCACCCTCCCATCCCCAGGAACCAYGAAC



(p.Met136Thr)


GCTGCCTGTGAGCTGCTGGGC′]





1665
NM_000485.2(APRT): c.329T > C
353
APRT
[′CACCACTTCCCACTCCAGGCTGAGCYGGAG



(p.Leu110Pro)


ATTCAGAAAGACGCCCTGGAG′]





1666
NM_001614.3(ACTG1): c.1109T >
71
ACTG1
[′TACGACGAGTCGGGCCCCTCCATCGYCCACC



C (p.Val370Ala)


GCAAATGCTTCTAAACGGAC′]





1667
NM_000751.2(CHRND): c.283T >
1144
CHRND
[′CCGGCTGAAGTGGAATGCTGAAGAAYTTGG



C (p.Phe95Leu)


AAACATCAGTGTCCTGCGCCT′]





1668
NM_000751.2(CHRND): c.188T >
1144
CHRND
[′GCCCTGGCCCTCACACTCTCCAACCYCATCT



C (p.Leu63Pro)


CCCTGGTGAGAGGCCCTCCG′]





1669
NM_001039523.2(CHRNA1): c.
1134
CHRNA1
[′CTCTGTCTTACTGTCTTTGACTGTGYTCCTTC



901T > C (p.Phe301Leu)


TGGTCATCGTGGAGCTGAT′]





1670
NM_001004127.2(AL G11): c.257T >
440138
ALG11
[′GGAGAAAGAGTTTTATGGTGTGCTTYAAGA



C (p.Leu86Ser)


GCCCTGCAGAAAAAGTAGGTA′]





1671
NM_002036.3(ACKR1): c.-
2532
ACKR1
[′AGAGGGAGCTAGGAGGCTAGCATAGRAAGG


-
67T > C


AGARAAGGAAAAAGACTTTGA′,


1674



′TATAAAGACTGAGGGGCAAACAGCASGGGA






AATGAGGGGCATAGGGATAAG′,






′CGCAGACAGAAGGGCTGGGACGGCTRTCAG






CGCCTGTGCTTCCAAGRTAAG′,






′ATCAGGAAGCCTTACCCCACGCCCAYTGCCT






GCACAAGCCTCAGGCCTATG′]





1675
NM_014053.3(FLVCR1): c.574T >
28982
FLVCR1
[′CAACTGCCTGGGTGCCTGGATCAAGYGCGG



C (p.Cys192Arg)


CAGTGTGCAGCAGCATCTCTT′]





1676
NM_004268.4(MED17): c.1112T >
9440
MED17
[′TGTCCGGAGGACCACCTTTATGTCCYAGAGC



C (p.Leu371Pro)


ATAATTTGCATCTACTGATT′]





1677
NM_024411.4(PDYN): c.632T > C
5173
PDYN
[′CTGTACAAACGCTATGGGGGCTTCTYGCGGC



(p.Leu211Ser)


GCATTCGTCCCAAGCTCAAG′]





1678
NM_000018.3(ACADVL): c.848T >
37
ACADVL
[′GTGAAGGAGAAGATCACAGCTTTTGYGGTG



C (p.Val283Ala)


GAGAGGGGCTTCGGGGGCATT′]





1679
NM_000021.3(PSEN1): c.1175T >
5663
PSEN1
[′GGAGATTTCATTTTCTACAGTGTTCYGGTTG



C (p.Leu392Pro)


GTAAAGCCTCAGCAACAGCC′]





1680
NM_000083.2(CLCN1): c.857T >
1180
CLCN1
[′CCACACTTCTGTGCCCCTGCAGGAGYGCTAT



C (p.Val286Ala)


TTAGCATCGAGGTCACCTCC′]





1681
NM_000083.2(CLCN1): c.920T >
1180
CLCN1
[′GTTCGGAACTACTGGAGAGGATTCTYTGCA



C (p.Phe307Ser)


GCCACGTTCAGCGCCTTTGTG′]





1682
NM_000157.3(GBA): c.703T > C
2629
GBA
[′CAATGGAGCGGTGAATGGGAAGGGGYCACT



(p.Ser235Pro)


CAAGGGACAGCCCGGAGACAT′]





1683
NM_000166.5(GJB1): c.145T > C
2705
GJB1
[′AGAGAGTGTGTGGGGTGATGAGAAAYCTTC



(p.Ser49Pro)


CTTCATCTGCAACACACTCCA′]





1684
NM_000186.3(CFH): c.3590T > C
3075
CFH
[′ATATCCCCGTTTACACACAAATTCARCTGAT


-
(p.Val1197Ala)


TCACCTGTTCTCGAATAAAG′,


1686



′GAACTTATCATTGCTGCTTTTGATTaagatat






tggtcaaagagtacaaact′,






′ttcagctataatatgaataagaacttggaatc






aaacatagagatctagtga]





1687
NM_000195.4(HPS1): c.2003T >
3257
HPS1
[′GGGGATGACAGACAGGTGCAGGGCCRGCAG



C (p.Leu668Pro)


CTCGTAGCACCTGACAGCCTC′]





1688
NM_000195.4(HPS1): c.716T > C
3257
HPS1
[′GCTGGGGTAGAGGTCCTGAACCAGGRGGAT



(p.Leu239Pro)


GAGGGCAAGCAGGTCGGCCGG′]





1689
NM_000334.4(SCN4A): c.4468T >
6329
SCN4A
[′CCTCTTCAACATCGGCCTCCTCCTCYTCCTG



C (p.Phe1490Leu)


GTCATGTTCATCTACTCCAT′]





1690
NM_000352.4(ABCC8): c.257T >
6833
ABCC8
[′ACCTTCATGCTGCTCTTCGTCCTGGBGTGTG



C (p.Val86Ala)


AGATTGCAGAGGGCATCCTG′]





1691
NM_000352.4(ABCC8): c.404T >
6833
ABCC8
[′ATCGAGACTTCCAACTTCCCCAAGCYGCTAA



C (p.Leu135Pro)


TTGGTAGGTGAGGTGTAGGA′]





1692
NM_000352.4(ABCC8): c.674T >
6833
ABCC8
[′TTCCTGCAGCCCTTCGTGAATCTGCYGTCCA



C (p.Leu225Pro)


AAGGCACCTACTGGTGGATG′]





1693
NM_000430.3(PAFAH1B1): c.569 −
5048
PAFAH1B1
[′ATTACTTCATAATATATTGCTGTTAYGTGTTT



10T > C


TAGGCCATGACCACAATGT′]





1694
NM_000525.3(KCNJ11): c.103T >
3767
KCNJ11
[′CCGTGCCCGCCAGCGGAGGGCCCGCBTTGT



C (p.Phe35Leu)


GTCCAAGAAAGGCAACTGCAA′]





1695
NM_000525.3(KCNJ11): c.755T >
3767
KCNJ11
[′GTGGGTGGCAACAGCATCTTCCTGGYGGCC



C (p.Val252Ala)


CCGCTGATCATCTACCATGTC′]





1696
NM_000528.3(MAN2B1): c.2426T >
4125
MAN2B1
[′GGCAGCAGCCTGAGAGATGGCTCGCYGGAG



C (p.Leu809Pro)


CTCATGGTGAGTGGGTCAGAG′]





1697
NM_001034850.2(FAM134B): c.
54463
FAM134B
[′GACTTTTCAGCTCTTTGTCCTAAGGYATTTTT



873 + 2T > C


TGTTTAGTTTTCAATTTGT′]





1698
NM_001457.3(FLNB): c.4804T >
2317
FLNB
[′CTACGGGGGTGACGACATCCCACTTYCTCCT



C (p.Ser1602Pro)


TATCGCATCCGAGCCACACA′]





1699
NM_002863.4(PYGL): c.2461T >
5836
PYGL
[′CTCCAGTGACCGAACAATTAAAGAAYATGC



C (p.Tyr821His)


CCAAAACATCTGGAACGTGGA′]





1700
NM_003002.3(SDHD): c.284T > C
6392
SDHD
[′CCTTGCTCTGCGATGGACTATTCCCYGGCTG



(p.Leu95Pro)


CAGCCCTCACTCTTCATGGT′]





1701
NM_004385.4(VCAN): c.4004 −
1462
VCAN
[′TAAGTATTGTGAAAACTCTGTTTTTHTCAGG



5T > C


TCGAATGAGTGATTTGAGTG′]





1702
NM_004519.3(KCNQ3): c.925T >
3786
KCNQ3
[′TGAGACCTATGCAGATGCCCTGTGGYGGGG



C (p.Trp309Arg)


CCTGGTGAGTCACTACCTTGG′]





1703
NM_004937.2(CTNS): c.473T > C
1497
CTNS
[′TCCACCCCCTGCAGTGTCATTGGTCYGAGCT



(p.Leu158Pro)


TCGACTTCGTGGCTCTGAAC′]





1704
NM_006329.3(FBLN5): c.649T >
10516
FBLN5
[′GAACGAGTGTGCCACCGAGAACCCCYGCGT



C (p.Cys217Arg)


GCAAACCTGCGTCAACACCTA′]





1705
NM_006432.3(NPC2): c.295T > C
10577
NPC2
[′TGATGGTTGTAAGAGTGGAATTAACYGCCCT



(p.Cys99Arg)


ATCCAAAAAGACAAGACCTA′]





1706
NM_007375.3(TARDBP): c.*83T >
23435
TARDBP
[′CATGGTAAGTATATTGTAAAATACAYATGTA



C


CTAAGAATTTTCAAAATTGG′]





1707
NM_013246.2(CLCF1): c.46T > C
−1

[′CTCGTGGGGGATGTTAGCGTGCCTGYGCAC



(p.Cys16Arg)


GGTGCTCTGGCACCTCCCTGC′]





1708
NM_013246.2(CLCF1): c.676T >
−1

[′CCTGCACCTGGGGGCTCATGGCTTCYGACTT



C (p.Ter226Arg)


CTGACCTTCTCCTCTTCGCT′]





1709
NM_024577.3(SH3TC2): c.1982T >
79628
SH3TC2
[′CTGCCCTTTGCCGAGCGCCTGCAGCYCCTCT



C (p.Leu661Pro)


CTGGACACCCTCCTGCCTCT′]





1710
NM_172107.2(KCNQ2): c.2T > C
3785
KCNQ2
[′CCGGGGCGCCTCCCGCCAGGCACCAYGGTG



(p.Met1Thr)


CAGAAGTCGCGCAACGGCGGC′]





1711
NM_004304.4(ALK): c.3749T > C
238
ALK
[′TGCATTTCCTTTCTTCCCAGAGACAYTGCTG



(p.Ile1250Thr)


CCAGAAACTGCCTCTTGACC′]





1712
NM_000495.4(COL4A5): c.4690T >
1287
COL4A5
[′TTCCTTCTCCTTTTCCTTTACCAGAYGTGCAG



C (p.Cys1564Arg)


TATGTGAAGCTCCAGCTGT′]





1713
NM_000495.4(COL4A5): c.4699T >
1287
COL4A5
[′CTTTTCCTTTACCAGATGTGCAGTAYGTGAA



C (p.Cys1567Arg)


GCTCCAGCTGTGGTGATCGC′]





1714
NM_000495.4(COL4A5): c.4756T >
1287
COL4A5
[′CAGTCAGACGATCCAGATTCCCCATYGTCCT



C (p.Cys1586Arg)


CAGGGATGGGATTCTCTGTG′]





1715
NM_000495.4(COL4A5): c.4803 +
1287
COL4A5
[′TAAGAAGCTTAAACTTCAAACAGCTYCTATC



121T > C


CAAGCACTGTGTTCCCCCTC′]





1716
NM_000495.4(COL4A5): c.5032T >
1287
COL4A5
[′AGACTTGAGGACACGAATTAGCCGAYGTCA



C (p.Cys1678Arg)


AGTGTGCATGAAGAGGACATA′]





1717
NM_005359.5(SMAD4): c.970T >
4089
SMAD4
[′ATTTCCTATAGCTCCTGAGTATTGGYGTTCC



C (p.Cys324Arg)


ATTGCTTACTTTGAAATGGA′]





1718
NM_005359.5(SMAD4): c.1087T >
4089
SMAD4
[′GGACCCTTCTGGAGGAGATCGCTTTYGTTTG



C (p.Cys363Arg)


GGTCAACTCTCCAATGTCCA′]





1719
NM_005359.5(SMAD4): c.1598T >
4089
SMAD4
[′ATTGAAATTCACTTACACCGGGCCCBCCAGC



C (p.Leu533Pro)


TCCTAGACGAAGTACTTCAT′]





1720
NM_020630.4(RET): c.1831T > C
5979
RET
[′TAAAGCTGGCTATGGCACCTGCAACNGCTTC



(p.Cys611Arg)


CCTGAGGAGGAGAAGTGCTT′]





1721
NM_020630.4(RET): c.1888T > C
5979
RET
[′ACCACCCCCACCCACAGATCCACTGYGCGA



(p.Cys630Arg)


CGAGCTGTGCCGCACGGTGAT′]





1722
NM_000060.3(BTD): c.248T > C
686
BTD
[′GCTCTCATCAGCCGCCAAGAGGCCTYGGAG



(p.Leu83Ser)


CTCATGAACCAGAACCTTGAC′]





1723
NM_000060.3(BTD): c.445T > C
686
BTD
[′GAACCCATGCCTGGAGCCTCACCGCYTCAAT



(p.Phe149Leu)


GACACAGAGGTGATTCCTGC′]





1724
NM_000060.3(BTD): c.743T > C
686
BTD
[′TTTGGCATCTTCACATGCTTTGATAYATTGTT



(p.Ile248Thr)


CTTTGACCCTGCCATCAGA′]





1725
NM_000060.3(BTD): c.764T > C
686
BTD
[′GATATATTGTTCTTTGACCCTGCCAYCAGAG



(p.Ile255Thr)


TCCTCAGAGACTACAAGGTG′]





1726
NM_000060.3(BTD): c.833T > C
686
BTD
[′ACTGCCTGGATGAACCAGCTCCCACYCTTGG



(p.Leu278Pro)


CAGCAATTGAGATTCAGAAA′]





1727
NM_000060.3(BTD): c.1096T > C
686
BTD
[′CCATAGTAAGTTTTTAAAAATTTTGYCAGGC



(p.Ser366Pro)


GATCCGTACTGTGAGAAGGA′]





1728
NM_000060.3(BTD): c.1214T > C
686
BTD
[′GAGATGATGTATGACAATTTCACCCYGGTCC



(p.Leu405Pro)


CTGTCTGGGGAAAGGAAGGC′]





1729
NM_000060.3(BTD): c.1252T > C
686
BTD
[′GGGAAAGGAAGGCTATCTCCACGTCYGTTC



(p.Cys418Arg)


CAATGGCCTCTGCTGTTATTT′]





1730
NM_000060.3(BTD): c.1267T > C
686
BTD
[′TCTCCACGTCTGTTCCAATGGCCTCYGCTGT



(p.Cys423Arg)


TATTTACTTTACGAGAGGCC′]





1731
NM_000060.3(BTD): c.1459T > C
686
BTD
[′CACGGGGATATTTGAGTTTCACCTGYGGGGC



(p.Trp487Arg)


AACTTCAGTACTTCCTATAT′]





1732
NM_000155.3(GALT): c.265T > C
2592
GALT
[′TCCTTGTCGGTAGGTGAATCCCCAGBACGAT



(p.Tyr89His)


AGCACCTTCCTGTTTGACAA′]





1733
NM_000155.3 (GALT): c.328 + 2T >
2592
GALT
[′TGCAGCCTGATGCCCCCAGTCCAGGYAACCT



C


GGCTCCAACTGCTGCTGGGG′]





1734
NM_000155.3(GALT): c.336T > C
2592
GALT
[′GATACTCCTTTACCTCAGGACCCAGYGATCA



(p.Ser112=)


TCCCCTTTTCCAAGCAAAGT′]





1735
NM_000155.3(GALT): c.350T > C
2592
GALT
[TCAGGACCCAGTGATCATCCCCTTTYCCAAG



(p.Phe117Ser)


CAAAGTCTGCTCGAGGAGTC′]





1736
NM_000155.3(GALT): c.374T > C
2592
GALT
[′TTCCAAGCAAAGTCTGCTCGAGGAGYCTGG



(p.Val125Ala)


TAACTATGGATTTCCCCTCTT′]





1737
NM_000155.3(GALT): c.425T > C
2592
GALT
[′TGGTCGGATGTAACGCTGCCACTCAHGTCGG



(p.Met142Thr)


TCCCTGAGATCCGGGCTGTT′]





1738
NM_000155.3(GALT): c.452T > C
2592
GALT
[′TCGGTCCCTGAGATCCGGGCTGTTGYTGATG



(p.Val151Ala)


CATGGGCCTCAGTCACAGAG′]





1739
NM_000155.3(GALT): c.460T > C
2592
GALT
[′TGAGATCCGGGCTGTTGTTGATGCABGGGCC



(p.Trp154Arg)


TCAGTCACAGAGGAGCTGGG′]





1740
NM_000155.3(GALT): c.482T > C
2592
GALT
[′GCATGGGCCTCAGTCACAGAGGAGCYGGGT



(p.Leu161Pro)


GCCCAGTACCCTTGGGTGCAG′]





1741
NM_000155.3(GALT): c.499T > C
2592
GALT
[′AGAGGAGCTGGGTGCCCAGTACCCTYGGGT



(p.Trp167Arg)


GCAGGTTTGTGAGGTCGCCCC′]





1742
NM_000155.3 (GALT): c.507 + 2T >
2592
GALT
[′GGTGCCCAGTACCCTTGGGTGCAGGYTTGTG



C


AGGTCGCCCCTTCCCCTGGA′]





1743
NM_000155.3(GALT): c.509T > C
2592
GALT
[′GAGCTCCGTATCCCTATCTGATAGAHCTTTG



(p.Ile170Thr)


AAAACAAAGGTGCCATGATG′]





1744
NM_000155.3(GALT): c.584T > C
2592
GALT
[′TGACAGGTATGGGCCAGCAGTTTCCYGCCA



(p.Leu195Pro)


GATATTGCCCAGCGTGAGGAG′]





1745
NM_000155.3(GALT): c.650T > C
2592
GALT
[′TATAAGAGTCAGCATGGAGAGCCCCYGCTA



(p.Leu217Pro)


ATGGAGTACAGCCGCCAGGAG′]





1746
NM_000155.3(GALT): c.677T > C
2592
GALT
[′CTAATGGAGTACAGCCGCCAGGAGCYACTC



(p.Leu226Pro)


AGGAAGGTGGGAGAGAGCCAA′]





1747
NM_000155.3(GALT): c.687 + 2T >
2592
GALT
[′AGCCGCCAGGAGCTACTCAGGAAGGYGGGA



C


GAGAGCCAAGCCCTGTGTCCC′]





1748
NM_000155.3(GALT): c.745T > C
2592
GALT
[′AGTACTGGTCCCCTTCTGGGCAACAYGGCCC



(p.Trp249Arg)


TACCAGACACTGCTGCTGCC′]





1749
NM_000155.3(GALT): c.967T > C
2592
GALT
[′CCATTGGCAGCTGCACGCTCATTACBACCCT



(p.Tyr323His)


CCGCTCCTGCGCTCTGCCAC′]





1750
NM_000155.3(GALT): c.980T > C
2592
GALT
[′CACGCTCATTACTACCCTCCGCTCCYGCGCT



(p.Leu327Pro)


CTGCCACTGTCCGGAAATTC′]





1751
NM_000155.3(GALT): c.1138T >
2592
GALT
[′GGACAGGGAGACAGCAACCATCGCCYGACC



C (p.Ter380Arg)


ACGCCGACCACAGGGCCTTGA′]





1752
NM_207346.2(TSEN54): c.277T >
283989
TSEN54
[′AGAAGAGGGCTTCGTGGAGTTGAAGYCTCC



C (p.Ser93Pro)


CGCGGTGAGCGGCGGGCTCGG′]





1753
NM_016269.4(LEF1): c.181T > C
−1

[′CATCAAGTCTTCCTTGGTGAACGAGYCTGAA



(p.Ser61Pro)


ATCATCCCGGCCAGCAACGG′]





1754
NM_001928.2(CFD): c.640T > C
1675
CFD
[′GGGTGACTCCGGGGGCCCGCTGGTGYGCGG



(p.Cys214Arg)


GGGCGTGCTCGAGGGCGTGGT′]





1755
NM_001458.4(FLNC): c.752T > C
2318
FLNC
[′CCCAACGTGGATGAGCATTCTGTTAYGACCT



(p.Met251Thr)


ACCTGTCCCAGTTCCCCAAG′]





1756
NM_000781.2(CYP11A1): c.665T >
1583
CYP11A1
[′ATTTTTGGGGAGCGCCAGGGGATGCYGGAG



C (p.Leu222Pro)


GAAGTAGTGAACCCCGAGGCC′]





1757
NM_000782.4(CYP24A1): c.1226T >
1591
CYP24A1
[ATAATAATGATGGTTGccaacatgcgctgagt


-
C (p.Leu409Ser)


gcttaaaatgtgccaggta′,


1761



′ataaataggtaaagggctttagaattgtgcac






catactcacaaccaccctg′,






′cgcagcagattctgttattaaacccchttaca






gacgaagttgaggctcac′,






′agagattatgtaactcactcaagacaacacag






ataaaagatgaaactgaat′,






′ACAAATTCTACTTACTCCTTTGGGTRAAGCAT






ATTCACCCAGAACTGTTGC′]





1762
NM_001145661.1(GATA2): c.1117T >
2624
GATA2
[′CAACGGGGACCCTGTCTGCAACGCCYGTGG



C (p.Cys373Arg)


CCTCTACTACAAGCTGCACAA′]





1763
NM_004523.3(KIF11): c.2547 + 2T >
3832
KIF11
[′CAGGAACTTCACAACTTATTGGAGGYAATA



C


ACTTTGTAAGTGGAACTTACT′]





1764
NM_000238.3(KCNH2): c.1831T >
3757
KCNH2
[′GGGCGGCCCCTCCATCAAGGACAAGBATGT



C (p.Tyr611His)


GACGGCGCTCTACTTCACCTT′]





1765
NM_002465.3(MYBPC1): c.706T >
4604
MYBPC1
[′GGAGGAAGAACCCCAGGTGGACGTAYGGGA



C (p.Trp236Arg)


GTTGCTGAAGAACGCGAAACC′]





1766
NM_002465.3(MYBPC1): c.2566T >
4604
MYBPC1
[′CATTCCAAGACACCTGAAGCAAACCYATAT



C (p.Tyr856His)


CCGCAGAGTTGGAGAAGCTGT′]





1767
NM_005211.3(CSF1R): c.2624T >
1436
CSF1R
[′AAACTGGTGAAGGATGGATACCAAAYGGCC



C (p.Met875Thr)


CAGCCTGCATTTGCCCCAAAG′]





1768
NM_005211.3(CSF1R): c.2381T >
1436
CSF1R
[′TTGACCAATGGTCATGTGGCCAAGAYTGGG



C (p.Ile794Thr)


GACTTCGGGCTGGCTAGGGAC′]





1769
NM_003392.4(WNT5A): c.544T >
7474
WNT5A
[′GCCGCGGGACTGGCTCTGGGGCGGCYGCGG



C (p.Cys182Arg)


CGACAACATCGACTATGGCTA′]





1770
NM_005188.3(CBL): c.1150T > C
867
CBL
[′CTCCACATTCCAACTATGTAAAATABGTGCT



(p.Cys384Arg)


GAAAATGATAAGGATGTAAA′]





1771
NM_005188.3(CBL): c.1186T > C
867
CBL
[′TGATAAGGATGTAAAGATTGAGCCCYGTGG



(p.Cys396Arg)


ACACCTCATGTGCACATCCTG′]





1772
NM_006902.4(PRRX1): c.338T >
5396
PRRX1
[′CAGCTGCAGGCTTTGGAGCGTGTCTYTGAGC



C (p.Phe113Ser)


GGACACACTATCCTGATGCT′]





1773
NM_001111035.1(ACP5): c.602T >
−1

[′GCGGCGGCCAGGGAGGACTACGTGCYGGTG



C (p.Leu201Pro)


GCTGGCCACTACCCCGTGTGG′]





1774
NM_000329.2(RPE65): c.1102T >
6121
RPE65
[′GGCTCCCCAACCTGAAGTTAGGAGAYATGT



C (p.Tyr368His)


ACTTCCTTTGAATATTGACAA′]





1775
NM_003172.3(SURF1): c.679T >
6834
SURF1
[′TGAGAACAATCCAGAAAGGAACCACYGGCA



C (p.Trp227Arg)


TTATCGAGACCTGGAAGCTAT′]





1776
NM_002734.4(PRKAR1A): c.1117T >
5573
PRKAR1A
[′CATCCTCAAACGAAACATCCAGCAGYACAA



C (p.Tyr373His)


CAGTTTTGTGTCACTGTCTGT′]





1777
NM_002734.4(PRKAR1A): c.980T >
5573
PRKAR1A
[′CCATCTTTGCTTTCTCCAGGTGAAAYTGCAC



C (p.Ile327Thr)


TACTGATGAATCGTCCTCGT′]





1778
NM_003491.3(NAA10): c.109T >
8260
NAA10
[GAAATACTACTTCTACCATGGCCTTYCCTGG



C (p.Ser37Pro)


CCCCAGGTGGGCAGCTTCTG′]





1779
NM_006306.3(SMC1A): c.2351T >
8243
SMC1A
[′GTGTTTGAAGAGTTTTGTCGGGAGAYTGGTG



C (p.Ile784Thr)


TGCGCAACATCCGGGAGTTT′]





1780
NM_000377.2(WAS): c.814T > C
7454
WAS
[′CGACCCAGATCTGCGGAGTCTGTTCYCCAGG



(p.Ser272Pro)


GCAGGAATCAGCGAGGCCCA′]





1781
NM_000377.2(WAS): c.881T > C
7454
WAS
[′ACCTCTAAACTTATCTACGACTTCAYTGAGG



(p.Ile294Thr)


ACCAGGGTGGGCTGGAGGCT′]





1782
m.12338T > C
4540
MT-NDS
[′TTGGTGCAACTCCAAATAAAAGTAAYAACC






ATGCACACTACTATAACCACC′]





1783
m.5814T > C
4511
MT-TC
[′TCGAATTTGCAATTCAATATGAAAAYCACCT






CGGAGCTGGTAAAAAGAGGC′]





1784
m.12201T > C
4564
MT-TH
[′GACAACAGAGGCTTACGACCCCTTAYTTACC






GAGAAAGCTCACAAGAACTG′]





1785
NM_001165899.1(PDE4D): c.494T >
5144
PDE4D
[′GGAGATGACTTGATTGTGACTCCATBTGCTC



C (p.Phe165Ser)


AGGTAAGCACAGCTTGGTGA′]





1786
NM_139125.3(MASP1): c.1888T >
5648
MASP1
[′GTTACCCGTGGTGCCTCACGCTGAGYGCAA



C (p.Cys630Arg)


AACTAGCTATGAGTCCCGCTC′]





1787
NM_007315.3(STAT1): c.520T >
6772
STAT1
[′TTTACAAGATGAATATGACTTCAAAYGCAA



C (p.Cys174Arg)


AACCTTGCAGAACAGAGGTAA′]





1788
NM_053025.3(MYLK): c.5275T >
-1

[′TGCTGTGAGAGCCATTGGAAGACTGYCCTCT



C (p.Ser1759Pro)


ATGGCAATGATCTCAGGGCT′]





1789
NM_001235.3(SERPINH1): c.233T >
871
SERPINH1
[′TCACCCGTGGTGGTGGCCTCGTCGCYAGGGC



C (p.Leu78Pro)


TCGTGTCGCTGGGCGGCAAG′]





1790
NM_005921.1(MAP3K1): c.566T >
4214
MAP3K1
[′GAGGAACGAATGATCAGGGAGAAACBGAA



C (p.Leu189Pro)


GGCAACCTGTATGCCAGCCTGG′]





1791
NM_005359.5(SMAD4): c.1499T >
4089
SMAD4
[′GTTGATGACCTTCGTCGCTTATGCAYACTCA



C (p.Ile500Thr)


GGATGAGTTTTGTGAAAGGC′]





1792
NM_000287.3(PEX6): c.1601T >
5190
PEX6
[′CTGTTGCTCACAGCTGTGGACCTTCYGGGCC



C (p.Leu534Pro)


GGGACCGTGATGGGCTGGGT′]





1793
NM_004153.3(ORC1): c.266T > C
4998
ORC1
[′AAGAAACGTGCTCGAGTACAGTGGTYTGTC



(p.Phe89Ser)


CGATTCTGTGAAGTCCCTGCC′]





1794
NM_006225.3(PLCD1): c.562T >
5333
PLCD1
[′CTCGGCTGTCCTGGCTCTGCAGGAGYGTGAC



C (p.Cys188Arg)


CACTCCCAGACAGACTCCCT′]





1795
NM_021252.4(RAB18): c.619T >
22931
RAB 18
[′CTGTGGTGGTTATTGCTCTGTGTTAYAAACT



C (p.Ter207Gln)


CTGGGAAATTCCATCTCTTG′]





1796
NM_002242.4(KCNJ13): c.722T >
−1

[′TGGTGTAATGGAGTGATAGTACGTTDGTGG



C (p.Leu241Pro)


AAAGATGAAGAATGGACATTC′]





1797
NM_003072.3(SMARCA4): c.3032T >
6597
SMARCA4
[′CTGCAGCGAGTGCTCTACCGCCACAYGCAG



C (p.Met1011Thr)


GCCAAGGGCGTGCTGCTGACT′]





1798
NM_013339.3 (AL G6): c.391T > C
29929
ALG6
[′GAGATTTCTTTTAAGCAACAACAGTRCAAAA



(p.Tyr131His)


CCACTGCAGGTATGTAAATC′]





1799
NM_019885.3(CYP26B1): c.436T >
56603
CYP26B1
[′TTGCCTCTCTGCCTTCCAGGTCTTCYCCAAG



C (p.Ser146Pro)


ATCTTCAGCCACGAGGCCCT′]





1800
NM_020433.4(JPH2): c.421T > C
57158
JPH2
[′GTTCACCAACGGCATGCGCCATGGCYACGG



(p.Tyr141His)


AGTACGCCAGAGCGTGCCCTA′]





1801
NM_000199.3(SGSH): c.892T > C
6448
SGSH
[′CCCCAGCGTTTTGGGTGCTCCGGGGRTGACA



(p.Ser298Pro)


CCAGTAAGGGTTCAGCAGTG′]





1802
NM_173170.1(IL36RN): c.80T >
26525
IL36RN
[′CTTTATCTGCATAATAACCAGCTTCYAGCTG



C (p.Leu27Pro)


GAGGGCTGCATGCAGGGAAG′]





1803
NM_016599.4(MYOZ2): c.142T >
51778
MYOZ2
[′CAGAGACATCATGTTGGAAGAATTAYCCCA



C (p.Ser48Pro)


TCTCAGTAACCGTGGTGCCAG′]





1804
NM_020191.2(MRPS22): c.644T >
56945
MRPS22
[′CCAATAATTTTCAAGGAAGAAAATCYTAGG



C (p.Leu215Pro)


GTAAGGTGACTTAGGTTTTAT′]





1805
NM_004278.3(PIGL): c.500T > C
9487
PIGL
[′TTGTCCTATCCCTCCTCCAGGGCCCYGCACT



(p.Leu167Pro)


CAGAAGGGAAGTTACCTAAA′]





1806
NM_022445.3(TPK1): c.119T > C
27010
TPK1
[′ATTTTGTTCTTTCTATTTGAAGCTCYTTTAAG



(p.Leu40Pro)


AGCCTGTGCCGATGGAGGT′]





1807
NM_020634.1(GDF3): c.914T > C
9573
GDF3
[′TGTCCCTTCTCACTGACCATCTCTCYCAACA



(pLeu305Pro)


GCTCCAATTATGCTTTCATG′]





1808
NM_017882.2(CLN6): c.200T > C
54982
CLN6
[′CCCATTCTTCCATTTGCTCCGCAGCYGGTAT



(p.Leu67Pro)


TCCCTCTCGAGTGGTTTCCA′]





1809
NM_024513.3(FYC01): c.4127T >
79443
FYCO1
[′TTTGTGAGGTCCAGCACCTACAGCCYGATCC



C (p.Leu1376Pro)


CCATCACTGTGGCCGAGGCA′]





1810
NM_006147.3(IRF6): c.65T > C
3664
1RF6
[′CTGGTGGCCCAGGTGGATAGTGGCCYCTAC



(p.Leu22Pro)


CCTGGGCTCATCTGGCTACAC′]





1811
NM_025132.3(WDR19): c.2129T >
57728
WDR19
[′GGAAATGTTGGCATAGTGATGTCCTYGGAA



C (p.Leu710Ser)


CAAATAAAGGTAAACAGCATG′]





1812
NM_025132.3(WDR19): c.20T >
57728
WDR19
[′TTTATTTTTTAGCGTATTTTCTCACYGCTAGA



C (p.Leu7Pro)


AAAGACTTGGCTTGGCGCA′]





1813
NM_153026.2(PRICKLE1): c.1414T >
144165
PRICKLE1
[′AAGTAAAAAATACCAGTCTGATATGYACTG



C (p.Tyr472His)


GGCACAGTCACAAGATGGACT′]





1814
NM_014874.3(MFN2): c.1392 +
9927
MFN2
[′GTAGTCCTCAAGGTTTATAAGAATGWGAGT



2T > C


CATGGAGCAACAGGTCCTCTT′]





1815
NM_014874.3(MFN2): c.647T > C
9927
MFN2
[′GAGCTGGACAGCTGGATTGACAAGTYTTGT



(p.Phe216Ser)


CTGGATGCTGATGTGTTTGTG′]





1816
NM_016097.4(IER31P1): c.233T >
51124
IER3IP1
[′GTAAACTCAATTGCAATTGTGTTACYTTTAT



C (p.Leu78Pro)


TATTTGGATGAATATCAGTG′]





1817
NM_018718.2(CEP41): c.107T >
95681
CEP41
[′TTCGAGCTTCTCAGTATATTTAGTCRTACTGT



C (p.Met36Thr)


TACCTAAAAAGAAAATAAG′]





1818
NM_022489.3(INF2): c.310T > C
64423
INF2
[′CCTGCTGCAGCTCACCTGCGTCAGCYGCGTG



(p.Cys104Arg)


CGCGCCGTCATGAACTCGCG′]





1819
NM_022489.3(INF2): c.383T > C
64423
INF2
[′AGCAACCAGGGCTACGTGCGCCAGCYCTCC



(p.Leu128Pro)


CAGGGTGAGCCGCAGTGTGGG′]





1820
NM_018713.2(SLC30A10): c.266T >
55532
SLC30A10
[′GGCGCGCTGAGCAACGCGGTCTTCCYCACC



C (p.Leu89Pro)


GCGCTCTGCTTCACCATCTTC′]





1821
NM_058246.3(DNAJB6): c.277T >
10049
DNAJB6
[′CAGTCCATTTGAATTTGGCTTCACAYTCCGT



C (p.Phe93Leu)


AACCCAGATGATGTCTTCAG′]





1822
NM_024753.4(TTC21B): c.2384T >
79809
TTC21B
[′CAAAAGAATTATCTTTGCTATGACCYGGCTG



C (p.Leu795Pro)


AGCTCTTATTAAAATTGAAA′]





1823
NM_032446.2(MEGF10): c.2320T >
84466
MEGF10
[′TGACTGCGACCACATTTCTGGGCAGYGTACT



C (p.Cys774Arg)


TGCCGCACTGGATTCATGGG′]





1824
NM_032446.2(MEGF10): c.976T >
84466
MEGF10
[′CGTTCTCTGTGCTGAGACCTGCCAGYGTGTC



C (p.Cys326Arg)


AACGGAGGGAAGTGTTACCA′]





1825
NM_024027.4(COLEC11): c.505T >
78989
COLEC11
[′GAAGCGCTACGCGGACGCCCAGCTGYCCTG



C (p.Ser169Pro)


CCAGGGCCGCGGGGGCACGCT′]





1826
NM_000035.3(ALDOB): c.1027T >
229
ALDOB
[′GCCCCAGAAGAACCCGTGTGAACATRCTGT



C (p.Tyr343His)


CCTTTGGCCGCCTGGCAGTTA′]





1827
NM_012338.3(TSPAN12): c.734T >
23554
TSPAN12
[′CCTTCTATCATAATACAGAGCCCAGRGCAGA



C (p.Leu245Pro)


GTAATGGTGAGAATCATGGC′]





1828
NM_001159772.1(CANT1): c.671T >
124583
CANT1
[′CTCCTTGCCCAGGCCGCCCACGTACRGACGC



C (p.Leu224Pro)


TCGTCCTTCACTGCCAGCCA′]





1829
NM_001006657.1(WDR35): c.781T >
57539
WDR35
[′TGGCATGTACGTAGTAGGCATCCAGYGGAA



C (p.Trp261Arg)


CCACATGGGCAGCGTGTTAGC′]





1830
NM_000420.2(KEL): c.1790T > C
3792
KEL
[′TCAACAGTACTGCCTGGGGGCTGCCYCGCCT



(p.Leu597Pro)


GTGACAACCATGCCCTCCAG′]





1831
NM_001243473.1(B9D1): c.400 +
27077
B9D1
[′AGGGCCCAGGTCAGAATGAGGACCTRCCGG



2T > C


CCAGGTGAGAAGGGCACGTGC′]





1832
NM_015175.2(NBEAL2): c.1163T >
23218
NBEAL2
[′ATTGCAGTCCATGTAGTCAGAGTGCYGACCT



C (p.Leu388Pro)


GCATCATGAGTGACTCCCCC′]





1833
NM_000196.3(HSD11B2): c.1012T >
3291
HSD11B2
[′GCTGGCAGCTCGGCCCCGCCGCCGCYATTAC



C (p.Tyr338His)


CCCGGCCAGGGCCTGGGGCT′]





1834
NM_024599.5(RHBDF2): c.557T >
79651
RHBDF2
[′GCTTACCGCCCCCCTCCCTTCCAGAYTGTGG



C (p.Ile186Thr)


ATCCGCTGGCCCGGGGCCGG′]





1835
NM_001256714.1(DNAAF3): c.
352909
DNAAF3
[′GGCTCTGTGGATGGACGGCACCTGCYGCGG



386T > C (p.Leu129Pro)


ACCCTGTCCCGAGCGAAGTTC′]





1836
NM_020894.2(UVSSA): c.94T > C
57654
UVSSA
[′GAAAATGAAGGAACTGAAGAAAATTYGCAA



(p.Cys32Arg)


GTATGTCTTAGGGTTCAGTAA]





1837
NM_004453.3(ETFDH): c.1130T >
2110
ETFDH
[′TTGTTTCCTCAGTCTATACCAAAACYCACCT



C (p.Leu377Pro)


TTCCTGGTGGTTTACTAATT′]





1838
NM_024306.4(FA2H): c.707T > C
79152
FA2H
[′CTCATCGAGTACCTCATCCACCGCTYCCTGT



(p.Phe236Ser)


TCCACATGAAGCCCCCCAGC′]





1839
NM_001004127.2(ALG11): c.1142T >
−1

[′AAAATAAACATTCCATTTGATGAATYAAAG



C (p.Leu381Ser)


AATTATTTGTCTGAAGCAACA]





1840
NM_021167.4(GATAD1): c.304T >
57798
GATAD1
[′TCGGCTCAGAAACACTAAATACAAAYCTGC



C (p.Ser102Pro)


TCCGGCTGCTGAAAAGAAAGT′]





1841
NM_016042.3(EXOSC3): c.712T >
51010
EXOSC3
[′AGTATTTGGAATGAATGGAAGAATAYGGGT



C (p.Trp238Arg)


TAAGGCAAAAACCATCCAGCA′]





1842
NM_001018005.1(TPM1): c.515T >
7168
TPM1
[′CAGGTGGCCCGTAAGCTGGTCATCAYTGAG



C (p.Ile172Thr)


AGCGACCTGGAACGTGCAGAG′]





1843
NM_001018005.1(TPM1): c.842T >
7168
TPM1
[′GAGCTGGACCACGCTCTCAACGATAYGACT



C (p.Met281Thr)


TCCATGTAAACGTTCATCCAC′]





1844
NM_033360.3(KRAS): c.211T > C
3845
KRAS
[′GGAGTACAGTGCAATGAGGGACCAGYACAT



(p.Tyr71His)


GAGGACTGGGGAGGGCTTTCT′]





1845
NM_006218.2(PEK3CA): c.1258T >
5290
PIK3CA
[′TTTTTCTTTGTTTTTTAAGGAACACYGTCCAT



C (p.Cys420Arg)


TGGCATGGGGAAATATAAA′]





1846
NM_006265.2(RAD21): c.1753T >
−1

[′TGAATCTATCAGTTTGCTTGAGTTAYGTCGA



C (p.Cys585Arg)


AATACGAACAGAAAACAAGC′]





1847
NM_000222.2(KIT): c.1859T > C
3815
KIT
[′ATTAAGTCAGATGCGGCCATGACTGYCGCT



(p.Val620Ala)


GTAAAGATGCTCAAGCGTAAG′]





1848
NM_000076.2(CDKN1C): c.827T >
1028
CDKN1C
[′CGCGCGCTGTCGCCCGCAGATTTCTYCGCCA



C (p.Phe276Ser)


AGCGCAAGAGATCAGCGCCT′]





1849
NM_005691.3(ABCC9): c.3058T >
10060
ABCC9
[′AGACTATTGGCTGGCCACATGGACAYCGGA



C (p.Ser1020Pro)


GTACAGTATAAACAATACTGG′]





1850
NM_012343.3(NNT): c.2930T > C
23530
NNT
[′ATGCCTGGTCAGCTTAATGTGCTGCYGGCTG



(p.Leu977Pro)


AGGCTGGTGTGCCATATGAC′]





1851
NM_024110.4(CARD14): c.467T >
79092
CARD14
[′GTGCTGCTGCGGCGGTGCCAGCAGCYGCAG



C (p.Leu156Pro)


GAGCACCTGGGCCTGGCCGAG′]





1852
NM_000492.3(CFTR): c.1400T >
1080
CFTR
[′GATGGGTTTTATTTCCAGACTTCACYTCTAA



C (p.Leu467Pro)


TGGTGATTATGGGAGAACTG′]





1853
NM_000518.4(HBB): c.2T > C
3043
HBB
[′CACTAGCAACCTCAAACAGACACCANGGTG



(p.Met1Thr)


CATCTGACTCCTGAGGAGAAG′]





1854
NM_000518.4(HBB): c.*110T > C
3043
HBB
[′CCTTGAGCATCTGGATTCTGCCTAAHAAAAA






ACATTTATTTTCATTGCAAT′]





1855
NM_000518.4(HBB): c.92 + 2T > C
3043
HBB
[′AGTTGGTGGTGAGGCCCTGGGCAGGNTGGT






ATCAAGGTTACAAGACAGGTT′]





1856
NM_000206.2(IL2RG): c.455T >
3561
IL2RG
[′ACCACATATGCACACATATCTCCAGYGATCC



C (p.Val152Ala)


CCTGGGCTCCAGAGAACCTA′]





1857
NM_000244.3(MEN1): c.518T > C
4221
MEN1
[′GCTGTGGTTGGGGCCTGCCAGGCCCYGGGT



(p.Leu173Pro)


CTCCGGGATGTCCACCTCGCC′]





1858
NM_000256.3(MYBPC3): c.2374T >
4607
MYBPC3
[′CCGCCATCGTAGGCAGGCGGCTCCCVCTGTA



C (p.Trp792Arg)


CTGTGCAGGAGTCCTCTCCC′]





1859
NM_002501.3(NFIX): c.179T > C
4784
NFIX
[′GAGGAGCGGGCGGTGAAGGACGAGCYGCTG



(p.Leu60Pro)


GGCGAGAAGCCCGAGATCAAG′]





1860
NM_005022.3(PFN1): c.341T > C
5216
PFN1
[′CCTCCTCCAGCGCTAGTCCTGCTGAYGGGCA



(p.Met114Thr)


AAGAAGGTGTCCACGGTGGT′]





1861
NM_001172567.1(MYD88): c.818T >
4615
MYD88
[′CTTGCAGGTGCCCATCAGAAGCGACYGATC



C (p.Leu273Pro)


CCCATCAAGTACAAGGCAATG′]





1862
NM_001161581.1(POC1A): c.398T >
25886
POC1A
[′GCCAGTGATGACAAGACTGTTAAGCYGTGG



C (p.Leu133Pro)


GACAAGAGCAGCCGGGAATGT′]





1863
NM_005270.4(GLI2): c.4663T > C
2736
GLI2
[′CCCCCGAAACTCCTTGACCCTGCCCYCCATC



(p.Ser1555Pro)


CCCGCAGGCATCAGCAACAT′]





1864
NM_152296.4(ATP1A3): c.2431T >
478
ATP1A3
[′CTCCTCCGCCTAGGTCCCTGCCATCYCACTG



C (p.Ser811Pro)


GCGTACGAGGCTGCCGAAAG′]





1865
NM_022787.3(NMNAT1): c.838T >
64802
NMNAT1
[′GAGAAACACTGCAGAAGCTAAGACAYAGGA



C (p.Ter280Gln)


ATTCTACAGCATGATATTTCA′]





1866
NM_005340.6(HINT1): c.250T >
3094
HINT1
[′ACACTTAATGATTGTTGGCAAGAAAYGTGCT



C (p.Cys84Arg)


GCTGATCTGGGCCTGAATAA′]





1867
NM_000155.3(GALT): c.416T > C
2592
GALT
[′TTCCACCCCTGGTCGGATGTAACGCYGCCAC



(p.Leu139Pro)


TCATGTCGGTCCCTGAGATC′]





1868
NM_000155.3(GALT): c.386T > C
2592
GALT
[′CTCCCGTCACCACCCAGTAAGGTCAYGTGCT



(p.Met129Thr)


TCCACCCCTGGTCGGATGTA′]





1869
NM_000155.3(GALT): c.680T > C
2592
GALT
[′ATGGAGTACAGCCGCCAGGAGCTACYCAGG



(p.Leu227Pro)


AAGGTGGGAGAGAGCCAAGCC′]





1870
NM_007294.3(BRCA1): c.4986 +
672
BRCA1
[′GCCTGACCCCAGAAGAATTTGTGAGBGTATC



6T > C


CATATGTATCTCCCTAATGA′]





1871
NM_007294.3(BRCA1): c.5074 +
672
BRCA1
[′CTACTCATGTTGTTATGAAAACAGGYATACC



2T > C


AAGAACCTTTACAGAATACC′]





1872
NM_007294.3(BRCA1): c.5207T >
672
BRCA1
[′GGTTTCTTTCAGCATGATTTTGAAGBCAGAG



C (p.Val1736Ala)


GAGATGTGGTCAATGGAAGA′]





1873
NM_002437.4(MPV17): c.186 +
4358
MPV17
[′TGAAGCCCTGTTGAGGGGAGAACTTRCCAC



2T > C


AAAGCCACAGCCCAGGGACAC′]





1874
NM_002769.4(PRSS1): c.116T >
−1

[′GAGGAGAATTCTGTCCCCTACCAGGYGTCCC



C (p.Val39Ala)


TGAATTCTGGCTACCACTTC′]





1875
NM_004211.3(SLC6A5): c.1444T >
9152
SLC6A5
[′GATTTTCTTCTCTTTATCTGCTGCAYGGGGA



C (p.Trp82Arg)


GGCCTGATCACTCTCTCTTC′]





1876
NM_005211.3(CSF1R): c.2297T >
1436
CSF1R
[′TTCTCCAGCCAAGTAGCCCAGGGCAYGGCC



C (p.Met766Thr)


TTCCTCGCTTCCAAGAATGTG′]





1877
NM_005211.3(CSF1R): c.2546T >
1436
CSF1R
[TATGGCATCCTCCTCTGGGAGATCTYCTCAC



C (p.Phe849Ser)


TTGGTGAGCCACTGGGCCCA′]





1878
NM_005211.3(CSF1R): c.2603T >
1436
CSF1R
[′CTGGTGAACAGCAAGTTCTATAAACBGGTG



C (p.Leu868Pro)


AAGGATGGATACCAAATGGCC′]





1879
NM_006796.2(AFG3L2): c.1997T >
10939
AFG3L2
[′ATTTTTCAGATTGTTCAGTTTGGCABGAATG



C (p.Met666Thr)


AAAAGGTTGGGCAAATCTCC′]





1880
NM_018713.2(SLC30A10): c.1046T >
55532
SLC30A10
[′GTAAGTGGAAAGATTATTGCCACCCYGCAC



C (p.Leu349Pro)


ATCAAGTATCCTAAGGACAGG′]





1881
NM_018713.2(SLC30A10): c.500T >
55532
SLC30A10
[′GCGGAGGGCTGTGTCCCCGGCGCTTYCGGG



C (p.Phe167Ser)


GGGCCTCAGGGCGCGGAGGAC′]





1882
NM_000060.3(BTD): c.212T > C
686
BTD
[′TATGAGCATCCATCCATCCTGAGTCYGAACC



(p.Leu71Pro)


CTCTGGCTCTCATCAGCCGC′]





1883
NM_000495.4(COL4A5): c.438 +
1287
COL4A5
[′TTTCCTGGTTTACAGGGTCCTCCAGYAAGTT



2T > C


ATAAAATTTGGGATTATGAT′]





1884
NM_000282.3(PCCA): c.491T > C
5095
PCCA
[′CAGGCAGCAGAAGATGTCGTTTTCAYTGGA



(p.Ile164Thr)


CCTGACACACATGCTATTCAA′]





1885
NM_000532.4(PCCB): c.1556T >
5096
PCCB
[′ACACGTGCCCGAATCTGCTGTGACCYGGAT



C (p.Leu519Pro)


GTCTTGGCCAGCAAGAAGGTA′]





1886
NM_001099274.1(TINF2): c.860T >
26277
TINF2
[′CATAAGGAGCGCCCCACAGTCATGCYGTTTC



C (p.Leu287Pro)


CCTTTAGGAATCTCGGCTCA′]





1887
NM_001099274.1(TINF2): c.862T >
26277
TINF2
[′TAAGGAGCGCCCCACAGTCATGCTGYTTCCC



C (p.Phe288Leu)


TTTAGGAATCTCGGCTCACC′]





1888
NM_001363.4(DKC1): c.1049T >
1736
DKC1
[′TCAATGCCTGTAGCTATTGCATTAAYGACCA



C (p.Met350Thr)


CAGCGGTCATCTCTACCTGC′]





1889
NM_001363.4(DKC1): c.1193T >
1736
DKC1
[′AAGCTGATGATCAAGCAGGGCCTTCYGGAC



C (p.Leu398Pro)


AAGCATGGGAAGCCCACAGAC′]





1890
NM_004614.4(TK2): c.156 + 2T >
7084
TK2
[′CAGGAAAAAGAGAAAAAATCAGTGGYAAG



C


TCCCTCTTTTATGTGTACTCTC′]





1891
NM_004614.4(TK2): c.644T > C
7084
TK2
[′GAATACCTGGAAGCAATTCACCATCYCCAT



(p.Leu215Pro)


GAGGAGTGGCTCATCAAAGGC′]





1892
NM_024312.4(GNPTAB): c.1208T >
79158
GNPTAB
[′ATCGAAGGGCTGTCCCAGAAGTTTAYTTACC



C (p.Ile403Thr)


TAAATGATGATGTCATGTTT′]





1893
NM_024312.4(GNPTAB): c.3002T >
79158
GNPTAB
[′TTTGCCTTCTCTTATTTTTATTATCYCATGAG



C (p.Leu1001Pro)


TGCAGTGCAGCCACTGAAT′]





1894
NM_198253.2(TERT): c.3043T >
7015
TERT
[′CCGCCATCCTCTCAGGTTTCACGCAYGTGTG



C (p.Cys1015Arg)


CTGCAGCTCCCATTTCATCA′]





1895
NM_207352.3(CYP4V2): c.1021T >
285440
CYP4V2
[′TACAACTGCAGCTGCAATAAACTGGYCCTTA



C (p.Ser341Pro)


TACCTGTTGGGTTCTAACCC′]





1896
NM_207352.3(CYP4V2): c.655T >
285440
CYP4V2
[′TGCTCAAAGTAATGATGATTCCGAGYATGTC



C (p.Tyr219His)


CGTGCAGTTTATAGGTAAAT′]





1897
NM_000335.4(SCN5A): c.5504T >
6331
SCN5A
[′GCCAAGCCCAACCAGATAAGCCTCAYCAAC



C (p.Ile1835Thr)


ATGGACCTGCCCATGGTGAGT′]





1898
NM_001111.4(ADAR): c.2615T >
103
ADAR
[′CTCGGCCGCAAGATTCTGGCCGCCAYCATTA



C (p.Ile872Thr)


TGAAAAAAGACTCTGAGGAC′]





1899
NM_004281.3(BAG3): c.1385T >
9531
BAG3
[′ATCGAAGAGTATTTGACCAAAGAGCYGCTG



C (p.Leu462Pro)


GCCCTGGATTCAGTGGACCCC′]





1900
NM_183075.2(CYP2U1): c.784T >
113612
CYP2U1
[′TTTTATGTCACGAGGCCTAGAAATCYGTCTG



C (p.Cys262Arg)


AACAGTCAAGTCCTCCTGGT′]





1901
NM_006177.3(NRL): c.287T > C
4901
NRL
[′TTGGGGCTGAGTCCTGAAGAGGCCAYGGAG



(p.Met96Thr)


CTGCTGCAGGGTCAGGGCCCA′]





1902
NM_000344.3(SMN1): c.388T > C
6606
SMN1
[′AACCTGTGTTGTGGTTTACACTGGAYATGGA



(p.Tyr130His)


AATAGAGAGGAGCAAAATCT′]





1903
NM_152692.4(C1GALT1C1): c.
29071
C1GALT1C1
[′AGGAGGAATTGTCTTAAGTGTAGAAYCAAT



577T > C (p.Ser193Pro)


GAAAAGACTTAACAGCCTTCT′]





1904
NM_024531.4(SLC52A2): c.368T >
79581
SLC52A2
[′TTAGCACTGGCCTTTGTGCTGGCACYGGCAT



C (p.Leu123Pro)


GCTGTGCCTCGAATGTCACT′]





1905
NM_001253816.1(SLC52A2): c.
79581
SLC52A2
[′GCTCACTGCAGGTCCTTGGCAGGGCYGGGC



1016T > C (p.Leu339Pro)


GGCCTCTCTCTGCTGGGCGTG′]





1906
NM_002609.3(PDGFRB): c.1973T >
5159
PDGFRB
[′TCGGAGCTGAAGATCATGAGTCACCYTGGG



C (p.Leu658Pro)


CCCCACCTGAACGTGGTCAAC′]





1907
NM_020822.2(KCNT1): c.2386T >
57582
KCNT1
[′CAACAGCTATGAAGACGCCAAGGCCYACGG



C (p.Tyr796His)


GTTCAAGAACAAGCTGATCAT′]





1908
NM_001369.2(DNAH5): c.1121T >
1767
DNAH5
[′ACTATAGATCATTTTAATTGCATTTRTAAGT



C (p.Ile374Thr)


GTAGGAATAGCATCCATCAT′]





1909
NM_017802.3(DNAAF5): c.2384T >
54919
DNAAF5
[′GTCCAGTACCTGTACCGAGAGTTGCYGGTTC



C (p.Leu795Pro)


ACCTTGACGATCCAGAGAGG′]





1910
NM_006383.3(CIB2): c.272T > C
10518
C1B2
[′GAGGGGAACCTCACTTTCAACGACTYTGTG



(p.Phe91Ser)


GACATGTTTTCCGTGCTCTGC′]





1911
NM_006383.3(CIB2): c.368T > C
10518
C1B2
[′ACAGACTTCAACACTGACAACTTCAYCTGCA



(p.Ile123Thr)


AGGAGGACCTGGAGCTGACG′]





1912
NM_005334.2(HCFC1): c.-
3054
HCFC1
[′TTAGTTGTTACTTCTTCACACAAGAYGGCGG



970T > C


CTCCCAGGGAGGAGGCATGA′]





1913
NM_178012.4(TUBB2B): c.350T >
347733
TUBB2B
[′GGAGCCGAGCTGGTCGACTCGGTCCYGGAT



C (p.Leu117Pro)


GTGGTGAGGAAGGAGTCAGAG′]





1914
NM_000431.3(MVK): c.764T > C
4598
MVK
[′GTGGCTGGCGTCAGAAACAGGCTGCYCAAG



(p.Leu255Pro)


GTGACTCTTGTTCCCTTCTTG′]





1915
NM_000431.3(MVK): c.122T > C
4598
MVK
[′TTGAACTTGAGAACATTCCTCCGGCYTCAAC



(p.Leu41Pro)


CCCACAGCAATGGGAAAGTG′]





1916
NM_000431.3(MVK): c.1039 + 2T >
4598
MVK
[′GTGGCATCACACTCCTCAAGCCAGGYATCCC



C


GGGGGTAGGTGGGCCAGGCT′]





1917
NM_000431.3(MVK): c.1094T >
4598
MVK
[′AAGCAGGCCCTGACCAGCTGTGGCTYTGAC



C (p.Phe365Ser)


TGCTTGGAAACCAGCATCGGT′]





1918
NM_004055.4(CAPN5): c.731T >
726
CAPN5
[′ACAGCAGCTGACATGGAGGCCCGCCYGGCG



C (p.Leu244Pro)


TGCGGCCTGGTAAAGGGCCAC′]





1919
NM_133497.3(KCNV2): c.491T >
169522
KCNV2
[GCCGTCTTCCAGCTGGTCTACAATTYCTACC



C (p.Phe164Ser)


TGTCCGGGGTGCTGCTGGTG′]





1920
NM_006567.3(FARS2): c.986T >
10667
FARS2
[′ATGATCCTCTACGACATCCCTGATAYCCGTC



C (p.Ile329Thr)


TCTTCTGGTGTGAGGACGAG′]





1921
NM_020376.3(PNPLA2): c.757 +
57104
PNPLA2
[′GCCTGCGCTTTCTGCAGCGGAACGGYGCGC



2T > C


GGACCCGGGCGGGAGAGGGCG′]





1922
NM_018344.5(SLC29A3): c.607T >
55315
SLC29A3
[′TATGAGGAACTCCCAGGCACTGATAYCAGG



C (p.Ser203Pro)


TGAGAGCCAGGGTCCGGGCAG′]





1923
NM_012275.2(IL36RN): c.115 +
26525
IL36RN
[′TGCAGGGAAGGTCATTAAAGGTTGGYGATG



6T > C


AAACATGACCCACTTTCCTTG′]





1924
m.9191T > C
4508
MT-ATP6
[′TTCACACTTCTAGTAAGCCTCTACCYGCACG






ACAACACATAATGACCCACC′]





1925
NM_000108.4(DLD): c.140T > C
1738
DLD
[′GTAGTTGATGCTGATGTAACAGTTAYAGGTT



(p.Ile47Thr)


CTGGTCCTGGAGGATATGTT′]





1926
NM_000080.3(CHRNE): c.223T >
−1

[′AGAGGAGACTCTCACCACTAGCGTCYGGAT



C (p.Trp75Arg)


TGGAATCGTGAGTCAAATCTG′]





1927
NM_004376.5(COX15): c.1030T >
1355
COX15
[′TGCCATTACAGTGCTCTACTTCCTCBCTCGG



C (p.Ser344Pro)


AGAATTCCCCTTCCTAGAAG′]





1928
NM_004333.4(BRAF): c.1403T >
673
BRAF
[′GGACAAAGAATTGGATCTGGATCATYTGGA



C (p.Phe468Ser)


ACAGTCTACAAGGGAAAGTGG′]





1929
NM_004333.4(BRAF): c.1454T >
673
BRAF
[TTAGGTGATGTGGCAGTGAAAATGTYGAAT



C (p.Leu485Ser)


GTGACAGCACCTACACCTCAG′]





1930
NM_005188.3(CBL): c.1201T > C
867
CBL
[′GATTGAGCCCTGTGGACACCTCATGYGCAC



(p.Cys401Arg)


ATCCTGTCTTACATCCTGGCA′]





1931
NM_002834.3(PTPN11): c.211T >
5781
PTPN11
[′CTATGACCTGTATGGAGGGGAGAAABTTGC



C (p.Phe71Leu)


CACTTTGGCTGAGTTGGTCCA′]





1932
NM_002834.3(PTPN11): c.853T >
5781
PTPN11
[′AAATAGATATAAAAACATCCTGCCCBGTAA



C (p.Phe285Leu)


GTATCAATATTCCGCTCAGTA′]





1933
NM_002880.3(RAF1): c.769T > C
5894
RAF1
[′AGGTTCCCTCTCCCAGAGGCAGAGGYCGAC



(p.Ser257Pro)


ATCCACACCTAATGTCCACAT′]





1934
NM_002880.3(RAF1): c.1423T >
5894
RAF1
[′AGTCCTTAACAAGCATTGAGATATAYTTCTC



C (p.Phe475Leu)


CATGAAGGCTTAACAGTGAA′]





1935
NM_005633.3(SOS1): c.806T > C
6654
SOS1
[′GGCCATATAGAAGATACAGTAGAAABGACA



(p.Met269Thr)


GATGAAGGCAGTCCCCATCCA′]





1936
NM_005633.3(SOS1): c.1649T >
6654
SOS1
[′ATATCTTTACAGTACCGGAGTACACYGGAA



C (p.Leu550Pro)


AGGATGCTTGATGTAACAATG′]





1937
NM_005633.3(SOS1): c.2104T >
6654
SOS1
[′TCGGCACTGGGTAGAGCACCACTTCYATGAT



C (p.Tyr702His)


TTTGAAAGAGATGCATATCT′]





1938
NM_002755.3(MAP2K1): c.388T >
5604
MAP2K1
[′CAACTCTCCGTACATCGTGGGCTTCYATGGT



C (p.Tyr130His)


GCGTTCTACAGCGATGGCGA′]





1939
NC_012920.1: m.7505T > C
4574
MT-TS1
[′TTTCAAGCCAACCCCATGGCCTCCAYGACTT






TTTCAAAAAGGTATTAGAAA′]





1940
NM_000084.4(CLCN5): c.674T >
1184
CLCN5
[′GTGGCTTGCTGCTGTGGGAACATCCYGTGCC



C (p.Leu225Pro)


ACTGCTTCAACAAATACAGG′]





1941
NM_000530.6(MPZ): c.89T > C
4359
MPZ
[′GCAGTGCTGTCCCCGGCCCAGGCCAYCGTG



(p.Ile30Thr)


GTTTACACCGACAGGGAGGTC′]





1942
NM_000530.6(MPZ): c.244T > C
4359
MPZ
[′CCCTCATTCCTCATAGATCTTCCACYATGCC



(p.Tyr82His)


AAGGGACAACCCTACATTGA′]





1943
NM_000530.6(MPZ): c.266T > C
4359
MPZ
[′CACTATGCCAAGGGACAACCCTACAHTGAC



(p.Ile89Thr)


GAGGTGGGGACCTTCAAAGAG′]





1944
NM_000748.2(CHRNB2): c.923T >
1141
CHRNB2
[′TACCTCATGTTCACCATGGTGCTTGYCACCT



C (p.Val308Ala)


TCTCCATCGTCACCAGCGTG′]





1945
NM_003611.2(OFD1): c.111 + 2T >
8481
OFD1
[′CGGGGTATACTGGATACACTCAAGGYATCG



C


GATTTAGGCGTATCTGTGTCA′]





1946
NM_003611.2(OFD1): c.274T > C
8481
OFD1
MAGATGTGGCTATGAATATTCACTTYCTGTT



(p.Ser92Pro)


TTCTTTCCAGAAAGTGGTTT′]


1947
NM_024408.3(NOTCH2): c.1117T >
4853
NOTCH2
[′GCCCCACCCTGTGACAGGTCTCCTGYGTCAT



C (p.Cys373Arg)


CTGGATGATGCATGCATCAG′]





1948
NM_024408.3(NOTCH2): c.1438T >
4853
NOTCH2
[′TCTGGATAAGATTGGAGGCTTCACAYGTCTG



C (p.Cys480Arg)


TGCATGCCAGGTAAATGGGC′]





1949
NM_000540.2(RYR1): c.9242T >
6261
RYR1
[′CCCCGCTGCCCTTCTAGGACAGTGAYGAAGT



C (p.Met3081Thr)


CAGGCCCTGAGATCGTGAAG′]





1950
NM_000096.3(CP): c.650T > C
1356
CP
[′AAAGAAAAACATATTGACCGAGAATYTGTG



(p.Phe217Ser)


GTGATGTTTTCTGTGGTGGAT′]





1951
NM_000096.3(CP): c.548T > C
1356
CP
[′GTGACTAGGATTTACCATTCCCACABTGATG



(p.Ile183Thr)


CTCCAAAAGATATTGCCTCA′]





1952
NM_000540.2(RYR1): c.1205T >
6261
RYR1
[′CAGGAGGAGTCCCAGGCCGCCCGCAYGATC



C (p.Met402Thr)


CACAGCACCAATGGCCTATAC′]





1953
NM_006517.4(SLC16A2): c.1253T >
6567
SLC16A2
[′TTCGGGGGCCTTATCGTCGTCTGTCYTTTCCT



C (p.Leu418Pro)


GGGCCTTTGCGATGGCTTC′]





1954
NM_000096.3(CP): c.1123T > C
1356
CP
[′CCGTGGGAAGCATGTTAGACACTACYACAT



(p.Tyr375His)


TGCCGCTGAGGAAATCATCTG′]





1955
NM_002739.3(PRKCG): c.391T >
5582
PRKCG
[′CGGGCTTGTGCACCAGGGCATGAAAHGCTC



C (p.Cys131Arg)


CTGTGAGTGACCTGGGCCTTG′]





1956
NM_000116.4(TAZ): c.310T > C
6901
TAZ
[′GACCCCTGCAGCTGCAGACATCTGCYTCACC



(p.Phe104Leu)


AAGGAGCTACACTCCCACTT′]





1957
NM_000138.4(FBN1): c.2341T >
2200
FBN1
[′CAGTCTCCTTTGTGACAATGGACAAYGTAGA



C (p.Cys781Arg)


AATACTCCTGGAAGTTTTGT′]





1958
NM_000138.4(FBN1): c.4222T >
2200
FBN1
[′CTTTCTGGCTGTAGACCTTGATGAGYGCTCT



C (p.Cys1408Arg)


GAGAACCTGAATCTCTGTGG′]





1959
NM_000256.3(MYBPC3): c.1351 +
4607
MYBPC3
[′GTAGCACGGAGCTCTTTGTGAAAGGYGGGC



2T > C


CTGGGACCTGAGGATGTGGGA′]





1960
NM_000256.3(MYBPC3): c.3392T >
4607
MYBPC3
[′GACGCGGAAGTAGTAGCCATTGCCARTGAT



C (p.Ile1131Thr)


GAGCTCTGGCACCACGCAGTG′]





1961
NM_000256.3(MYBPC3): c.821 +
4607
MYBPC3
[′CCTCCTATCAGCCTTCCGCCGCACGYGAGTG



2T > C


GCCATCCTCAGGGCCTGGGG′]





1962
NM_000257.3(MYH7): c.1370T >
4625
MYH7
[′ACCAAGCAGCCACGCCAGTACTTCAYAGGA



C (p.Ile457Thr)


GTCCTGGACATCGCTGGCTTC′]





1963
NM_000257.3(MYH7): c.2093T >
4625
MYH7
[′ATGCACCAGCTGCGCTGCAATGGTGYGCTG



C (p.Val698Ala)


GAGGGCATCCGCATCTGCAGG′]





1964
NM_000257.3(MYH7): c.2546T >
4625
MYH7
[′AAGAGTGCAGAAAGAGAGAAGGAGAYGGC



C (p.Met849Thr)


CTCCATGAAGGAGGAGTTCACA′]





1965
NM_000257.3(MYH7): c.2555T >
4625
MYH7
[′GAAAGAGAGAAGGAGATGGCCTCCAHGAA



C (p.Met852Thr)


GGAGGAGTTCACACGCCTCAAA′]





1966
NM_000257.3(MYH7): c.602T >
4625
MYH7
[′CAGTACTTTGCTGTTATTGCAGCCAYTGGGG



C (p.Ile201Thr)


ACCGCAGCAAGAAGGACCAG′]





1967
NM_000257.3(MYH7): c.788T >
4625
MYH7
[′ACAGGAAAGTTGGCATCTGCAGACAYAGAG



C (p.Ile263Thr)


ACCTGTGAGTGCCATGAATCT′]





1968
NM_000260.3(MY07A): c.5573T >
4647
MY07A
[′CTCCTGCCCCACGTGCAGCGCTTCCYGCAGT



C (p.Leu1858Pro)


CCCGAAAGCACTGCCCACTC′]





1969
NM_000441.1(SLC26A4): c.164 +
5172
SLC26A4
[′GGAGAGCCTGGCCAAGTGCTGCAGGYAGCG



2T > C


GCCGCGCGGGCCTGCGTAGAG′]





1970
NM_000441.1(SLC26A4): c.2T >
−1

[′TCGCTGTCCTCTGGCTCGCAGGTCABGGCAG



C (p.Met1Thr)


CGCCAGGCGGCAGGTCGGAG′]





1971
NM_000441.1(SLC26A4): c.765 +
5172
SLC26A4
[′AATGGAGTTCTCTCTATTATCTATGYAAGTG



2T > C


TTGCTTCTTGCTCCAGGGAT′]





1972
NM_000551.3(VHL): c.497T > C
7428
VHL
[′CTGAAAGAGCGATGCCTCCAGGTTGYCCGG



(p.Val166Ala)


AGCCTAGTCAAGCCTGAGAAT′]





1973
NM_001399.4(EDA): c.2T > C
1896
EDA
[′AGAGAGTGGGTGTCTCCGGAGGCCAYGGGC



(p.Met1Thr)


TACCCGGAGGTGGAGCGCAGG′]





1974
NM_001943.3(DSG2): c.523 + 2T >
1829
DSG2
[′CTGTTGAAGAGTTGAGTGCAGCACGYAAGA



C


GTCTTTTTTTTTTTTTTTAAT′]





1975
NM_004572.3(PKP2): c.2062T >
5318
PKP2
[′TTGCGGACACTTTTGGCGATCAAGGRCAGAT



C (p.Ser688Pro)


ACATCCTTATAACAATGGAA′]





1976
NM_005633.3(SOS1): c.1310T >
6654
SOS1
[′ATTGATGGTTGGGAGGGAAAAGACABTGGA



C (p.Ile437Thr)


CAGTGTTGTAATGAATTTATA′]





1977
NM_170707.3(LMNA): c.799T >
4000
LMNA
[GTATAAGAAGGAGCTGGAGAAGACTYATTC



C (p.Tyr267His)


TGCCAAGGTGCTTGCTCTCGA′]





1978
NM_206933.2(USH2A): c.10561T >
7399
USH2A
[′TCTTGAAGATACAATTGTCTTAAACYGGAGA



C (p.Trp3521Arg)


AAACCTATACAATCAAATGG′]





1979
NM_206933.2(USH2A): c.1606T >
7399
USH2A
[′CGACACAACAAGCCAGCCATATAGAYGCCT



C (p.Cys536Arg)


CTGCTCCCAGGAGAGCTTCAC′]





1980
NM_206933.2(USH2A): c.5857 +
−1

[′GTCGAGGACGTACAACAGGAGCAGGYAAAT



2T > C


ACTTATCTTCAAATGCATATG′]





1981
NM_000492.3(CFTR): c.1090T >
1080
CFTR
[′CTGGGCTGTACAAACATGGTATGACYCTCTT



C (p.Ser364Pro)


GGAGCAATAAACAAAATACA′]





1982
NM_000548.3(TSC2): c.5150T >
7249
TSC2
[′CCCTTCGTGGCCCGCCAGATGGCCCYGCACG



C (p.Leu1717Pro)


CAAATGTGAGTGGGGGTGGG′]





1983
NM_000548.3 (TSC2): c.2410T >
7249
TSC2
[′CCTCATCCACCGCTGTGCCAGCCAGYGCGTC



C (p.Cys804Arg)


GTGGCCTTGTCCATCTGCAG′]





1984
NM_000548.3(TSC2): c.3106T >
7249
TSC2
[′GGACATGATGGCTCGATACGTCTTCYCCAAC



C (p.Ser1036Pro)


TTCACGGCTGTCCCGAAGAG′]





1985
NM_000212.2(ITGB3): c.2231T >
−1

[′GCCGCCCTGCTCATCTGGAAACTCCYCATCA



C (p.Leu744Pro)


CCATCCACGACCGAAAAGAA′]





1986
NM_183415.2(UBE3B): c.1741 +
89910
UBE3B
[′AGATGATCTGGGATGGAATTGTAGGYAAGA



2T > C


GAAAAGGTGTCTGCTGTTGTT]





1987
NM_005120.2(MED12): c.3493T >
9968
MED12
[′CCTTTTAGCTTGTAGTGAACAGGACYCTGAG



C (p.Ser1165Pro)


CCAGGGGCCCGGCTTACCTG′]





1988
NM_001033053.2(NLRP1): c.230T >
22861
NLRP1
[′CTAGCCCTCCATACCTGGGAGCAGAYGGGG



C (p.Met77Thr)


CTGAGGTCACTGTGCGCCCAA′]





1989
NM_025152.2(NUBPL): c.815 −
80224
NUBPL
[′ATGCCTATATGAACTTTTCTGGTTCYAATGG



27T > C


ATGTCTGCTGGGCTCTTTTA′]





1990
NM_001288953.1(TTC7A): c.2366T >
57217
TTC7A
[′GCGTGGCAGGGCCTGGGCGAGGTGCYGCAG



C (p.Leu789Pro)


GCCCAGGGCCAGAACGAGGCT′]





1991
NM_014845.5(FIG4): c.524T > C
9896
FIG4
[′TACAGCTATGATTTGTCCCACTCACYTCAAT



(p.Leu175Pro)


ATAATCTCACTGTCTTGCGA′]





1992
NM_000059.3(BRCA2): c.2T > C
675
BRCA2
[′ATTGGAGGAATATCGTAGGTAAAAABGCCT



(p.Met1Thr)


ATTGGATCCAAAGAGAGGCCA′]





1993
NM_000059.3(BRCA2): c.316 +
675
BRCA2
[′TAGATAAATTCAAATTAGACTTAGGYAAGT



2T > C


AATGCAATATGGTAGACTGGG′]





1994
NM_000059.3(BRCA2): c.67 + 2T >
675
BRCA2
[′TTAAGACACGCTGCAACAAAGCAGGHATTG



C


ACAAATTTTATATAACTTTAT′]





1995
NM_000059.3(BRCA2): c.7958T >
675
BRCA2
[′AGATGCCTAAGCCCAGAAAGGGTGCYTCTT



C (p.Leu2653Pro)


CAACTAAAATACAGGCAAGTT′]





1996
NM_000218.2(KCNQ1): c.1016T >
3784
KCNQ1
[′TGCTTCTCTGTCTTTGCCATCTCCTHCTTTGC



C (p.Phe339Ser)


GCTCCCAGCGGTAGGTGCC′]






NM_000218.2(KCNQ1): c.1045T >
3784
KCNQ1
[]



C (p.Ser349Pro)









NM_000218.2(KCNQ1): c.1052T >
3784
KCNQ1
[]



C (p.Phe351Ser)









NM_000218.2(KCNQ1): c.1058T >
3784
KCNQ1
[]



C (p.Leu353Pro)









NM_000218.2(KCNQ1): c.1541T >
3784
KCNQ1
[]



C (p.Ile514Thr)









NM_000218.2(KCNQ1): c.1661T >
3784
KCNQ1
[]



C (p.Val554Ala)








1997
NM_000218.2(KCNQ1): c.1700T >
3784
KCNQ1
[′CTTCTCTCCAGGCTGGACCAGTCCABTGGGA



C (p.Ile567Thr)


AGCCCTCACTGTTCATCTCC′]






NM_000218.2(KCNQ1): c.2T > C
3784
KCNQ1
[]



(p.Met1Thr)









NM_000218.2(KCNQ1): c.341T >
3784
KCNQ1
[]



C (p.Leu114Pro)








1998
NM_000218.2(KCNQ1): c.560T >
3784
KCNQ1
[′GGCTGCCGCAGCAAGTACGTGGGCCYCTGG



C (p.Leu187Pro)


GGGCGGCTGCGCTTTGCCCGG′]






NM_000218.2(KCNQ1): c.572T >
3784
KCNQ1
[]



C (p.Leu191Pro)









NM_000218.2(KCNQ1): c.716T >
3784
KCNQ1
[]



C (p.Leu239Pro)









NM_000218.2(KCNQ1): c.752T >
3784
KCNQ1
[]



C (p.Leu251Pro)









NM_000218.2(KCNQ1): c.797T >
3784
KCNQ1
[]



C (p.Leu266Pro)









NM_000218.2(KCNQ1): c.824T >
3784
KCNQ1
[]



C (p.Phe275Ser)









NM_000218.2(KCNQ1): c.910T >
3784
KCNQ1
[]



C (p.Trp304Arg)









NM_000218.2(KCNQ1): c.913T >
3784
KCNQ1
[]



C (p.Trp305Arg)








1999
NM_000492.3(CFTR): c.1021T >
1080
CFTR
[′CCTCCGGAAAATATTCACCACCATCYCATTC



C (p.Ser341Pro)


TGCATTGTTCTGCGCATGGC′]





2000
NM_000492.3(CFTR): c.1853T >
1080
CFTR
[′TTAAAGAAAGCTGACAAAATATTAAYTTTG



C (p.Ile618Thr)


CATGAAGGTAGCAGCTATTTT′]





2001
NM_000492.3(CFTR): c.2780T >
1080
CFTR
[′TACGTGGGAGTAGCCGACACTTTGCYTGCTA



C (p.Leu927Pro)


TGGGATTCTTCAGAGGTCTA′]





2002
NM_000492.3(CFTR): c.3230T >
1080
CFTR
[′GGACGGCAGCCTTACTTTGAAACTCYGTTCC



C (p.Leu1077Pro)


ACAAAGCTCTGAATTTACAT′]





2003
NM_007294.3(BRCA1): c.115T >
672
BRCA1
[′GATCAAGGAACCTGTCTCCACAAAGNGTGA



C (p.Cys39Arg)


CCACATATTTTGCAAGTAAGT′]





2004
NM_007294.3(BRCA1): c.190T >
672
BRCA1
[′GAAAGGGCCTTCACAGTGTCCTTTABGTAAG



C (p.Cys64Arg)


AATGATATAACCAAAAGGTA′]





2005
NM_007294.3(BRCA1): c.212 +
672
BRCA1
[′ATGTAAGAATGATATAACCAAAAGGYATAT



2T > C


AATTTGGTAATGATGCTAGGT′]





2006
NM_007294.3(BRCA1): c.2T > C
672
BRCA1
[′TAAAGTTCATTGGAACAGAAAGAAABGGAT



(p.Met1Thr)


TTATCTGCTCTTCGCGTTGAA′]





2007
NM_007294.3(BRCA1): c.4357 +
672
BRCA1
[′CAGAACAAAGCACATCAGAAAAAGGBGTGT



2T > C


ATTGTTGGCCAAACACTGATA′]





2008
NM_007294.3 (BRCA1): c.5291T >
672
BRCA1
[′CTCTTCTTCCAGATCTTCAGGGGGCYAGAAA



C (p.Leu1764Pro)


TCTGTTGCTATGGGCCCTTC′]





2009
NM_007294.3(BRCA1): c.65T > C
672
BRCA1
[′GTCATTAATGCTATGCAGAAAATCTYAGAGT



(p.Leu22Ser)


GTCCCATCTGGTAAGTCAGC′]





2010
NM_005236.2(ERCC4): c.689T >
2072
ERCC4
[′ATGCTTGCTATACAGACTGCTATACYGGACA



C (p.Leu230Pro)


TTTTAAATGCATGTCTAAAG′]





2011
NM_005236.2(ERCC4): c.706T >
2072
ERCC4
[′TGCTATACTGGACATTTTAAATGCAYGTCTA



C (p.Cys236Arg)


AAGGAACTAAAATGCCATAA′]





2012
NM_000435.2(NOTCH3): c.4556T >
4854
NOTCH3
[′GGCGTGCTGGTGCTCACAGTGCTGCYGCCGC



C (p.Leu1519Pro)


CAGAGGAGCTACTGCGTTCC′]





2013
NM_153704.5(TMEM67): c.1046T >
91147
TMEM67
[′GGAAATTTTCTCAAGTGGCAAACTTYAGAA



C (p.Leu349Ser)


GGAGGTGTTTTACAGGTAAGC′]





2014
NM_001142519.1(FAM111A): c.
63901
FAM111A
[′GTCTAAAAAAGCAGAAAGTCCAGAGYATGT



1531T > C (p.Tyr511His)


CCATATGTATACTCAAAGAAG′]





2015
NM_014795.3(ZEB2): c.3211T >
9839
ZEB2
[′GCGCTTCTCACACTCGGGCTCGTACYCGCAG



C (p.Ser1071Pro)


CACATGAATCACAGGTATTC′]





2016
NM_001199107.1(TBC1D24): c.
57465
TBC1D24
[′CCCCTCTGCTACTTCGCCCGGGTCTYTGACG



686T > C (p.Phe229Ser)


TCTTCCTGGTGGAGGGCTAC′]





2017
NM_022114.3 (PRDM16): c.2660T >
63976
PRDM16
[′GTGGGAGCCCTGAAGGAGAAGTACCYGCGG



C (p.Leu887Pro)


CCGTCCCCGCTGCTCTTCCAC′]





2018
NM_001130089.1(KARS): c.517T >
3735
KARS
[′AGCTTCTGGGGGAAAGCTCATCTTCYATGAT



C (p.Tyr173His)


CTTCGAGGAGAGGGGGTGAA′]





2019
NM_005689.2(ABCB6): c.1067T >
10058
ABCB6
[′CTCATCTTCTCCCACCTGCACGAGCYCTCAC



C (p.Leu356Pro)


TGCGCTGGCACCTGGGGCGC′]





2020
NM_001070.4(TUBG1): c.1160T >
7283
TUBG1
[′CCCCTGTTTTCTGCACACCCCAAGCYCTTCG



C (p.Leu387Pro)


AGAGAACCTGTCGCCAGTAT′]





2021
NM_001283009.1(RTEL1): c.3730T >
−1

[′CGGGCCCCTCTCAGCAGGCTGTGTGYGCCA



C (p.Cys1244Arg)


GGGCTGTGGGGCAGAGGACGT′]





2022
NM_001135021.1(ELMOD3): c.
84173
ELMOD3
[′ATCACCCACATTGCCATCCAGGCCTYGAGA



794T > C (p.Leu265Ser)


GAGGAGTGTCTCTCCAGGTGA′]





2023
NM_001382.3 (DPAGT1): c.503T >
1798
DPAGT1
[′CTACCATCTCTCCCCGCAGGAATCCYGTACT



C (p.Leu168Pro)


ATGTCTACATGGGGCTGCTG′]





2024
m.10237T > C
4537
MT-ND3
[′CCATAAAATTCTTCTTAGTAGCTATYACCTT






CTTATTATTTGATCTAGAAA′]





2025
m.11253T > C
4538
MT-ND4
[′TCCCTTCCCCTACTCATCGCACTAAYTTACA






CTCACAACACCCTAGGCTCA′]





2026
m.12811T > C
4540
MT-ND5
[′ATCCTTCTTGCTCATCAGTTGATGAYACGCC






CGAGCAGATGCCAACACAGC′]





2027
m.14325T > C
4541
MT-ND6
[′ATTCAGCTTCCTACACTATTAAAGTYTACCA






CAACCACCACCCCATCATAC′]





2028
NM_000142.4(FGFR3): c.2419T >
2261
FGFR3
[′ACCCAGCAGTGGGGGCTCGCGGACGNGAAG



C (p.Ter807Arg)


GGCCACTGGTCCCCAACAATG′]





2029
NM_000370.3 (TTPA): c.548T > C
7274
TTPA
[′GTAGCCAAGAAGATTGCTGCTGTACYTACG



(p.Leu183Pro)


GTAAATGTATATTTTAACTGT′]





2030
NM_000375.2(UROS): c.139T > C
7390
UROS
[′TGAGTTTTTGTCTCTTCCCAGTTTCYCTGAGA



(p.Ser47Pro)


AGGTAAGGCCTGTTGTGAC′]





2031
NM_001006657.1(WDR35): c.
57539
WDR35
[′TCTGGCACCATTCAGAGATACAGTCYACCTA



1592T > C (p.Leu531Pro)


ATGTTGGTTTGATTCAAAAA′]





2032
NM_001876.3 (CPT1A): c.1451T >
1374
CPT1A
[′GCAGATGCGCCGATCGTGGCCCACCYTTGG



C (p.Leu484Pro)


GAGGTGAGTTTTCACACTTTT′]





2033
NM_004595.4(SMS): c.449T > C
6611
SMS
[′GACGAAGATTCACCTTATCAAAATAYAAAA



(p.Ile150Thr)


ATTCTACACTCGAAGCAGTTT′]





2034
NM_005211.3 (C SF1R): c.2483T >
1436
CSF1R
[′AAGTGGATGGCCCCAGAGAGCATCTYTGAC



C (p.Phe828Ser)


TGTGTCTACACGGTTCAGAGC′]





2035
NM_170707.3 (LMNA): c.644T >
4000
LMNA
[′TCCTTCCTCCAACCCTTCCAGGAGCYGCGTG



C (p.Leu215Pro)


AGACCAAGCGCCGTCATGAG′]





2036
NM_194248.2(0T0F): c.3413T >
9381
OTOF
[′CCACCCTCCAACCTCTCCCAGGTGCYGTTCT



C (p.Leu1138Pro)


GGGGCCTACGGGACCTAAAG′]





2037
NM_000540.2(RYR1): c.14762T >
6261
RYR1
[TACAGGGTGGTCTTCGACATCACCTYCTTCT



C (p.Phe4921Ser)


TCTTCGTCATCGTCATCCTG′]





2038
NM_000540.2(RYR1): c.7358T >
6261
RYR1
[′GCCGGCAAGGGTGAGGCCCTGCGGAYCCGC



C (p.Ile2453Thr)


GCCATCCTCCGCTCCCTTGTG′]





2039
NM_000540.2(RYR1): c.10817T >


[′GAAGTGTCAGCCGTGCTCTACTACCYGGACC



C (p.Leu3606Pro)
6261
RYR1
AGGTGGGTGGGGCCGGAGGG′]





2040
NM_000540.2(RYR1): c.13703T >


[′TTTTACACCCTGCGGTTCCTTGCCCYCTTCTT



C (p.Leu4568Pro)
6261
RYR1
GGCATTTGCCATCAACTTC′]





2041
NM_000540.2(RYR1): c.13949T >


[′CCCGCCCTGCGGTGTCTGAGCCTCCYGCATA



C (p.Leu4650Pro)
6261
RYR1
CACTGGTGGCCTTTCTCTGC′]





2042
NM_000540.2(RYR1): c.14378T >


[′GTGTGCCCACAGTCCTTCCTGTACCYGGGCT



C (p.Leu4793Pro)
6261
RYR1
GGTATATGGTGATGTCCCTC′]





2043
NM_015896.3(ZMYND10): c.797T >


[′CTCAGGGCTTAGCAGCAGGTTGTACRGGGC



C (p.Leu266Pro)
51364
ZMYND10
GATCCACACTTGCCCGTCCAA′]





2044
NM_018127.6(ELAC2): c.460T >


[′AAAATACCTCGAAGCAATCAAAATAYTTTCT



C (p.Phe154Leu)
60528
ELAC2
GGTCCATTGAAAGGAATAGA′]





2045
NM_199355.2(ADAMTS18): c.605T >


[′CCTGCGGGTCACCATCCTCACGTACYGTACA



C (p.Leu202Pro)
170692
ADAMTS18
AAAGGACAGCAGAGGAGAAG]





2046
NM_023110.2(FGFR1): c.494T >


[′TCCCCAGAAAAGATGGAAAAGAAATYGCAT



C (p.Leu165Ser)
2260
FGFR1
GCAGTGCCGGCTGCCAAGACA′]





2047
NM_001059.2(TACR3): c.766T >


[′CCATATTATCGTCATTATACTGGTGYACTGT



C (p.Tyr256His)
6870
TACR3
TTCCCATTGCTCATCATGGG′]





2048
NM_002055.4(GFAP): c.1070T >


[′TACCAGGACCTGCTCAATGTCAAGCHGGCC



C (p.Leu357Pro)
2670
GFAP
CTGGACATCGAGATCGCCACC′]





2049
NM_002055.4(GFAP): c.1076T >


[′GACCTGCTCAATGTCAAGCTGGCCCYGGAC



C (p.Leu359Pro)
2670
GFAP
ATCGAGATCGCCACCTACAGG′]





2050
NM_002055.4(GFAP): c.1096T >


[′GGCCCTGGACATCGAGATCGCCACCYACAG



C (p.Tyr366His)
2670
GFAP
GAAGCTGCTAGAGGGCGAGGA′]





2051
NM_002055.4(GFAP): c.221T > C


[′CGGGCCAGTGAGCGGGCAGAGATGAYGGAG



(p.Met74Thr)
2670
GFAP
CTCAATGACCGCTTTGCCAGC]





2052
NM_002055.4(GFAP): c.247T > C


[′GGAGCTCAATGACCGCTTTGCCAGCYACATC



(p.Tyr83His)
2670
GFAP
GAGAAGGTTCGCTTCCTGGA′]





2053
NM_002055.4(GFAP): c.269T > C


[′AGCTACATCGAGAAGGTTCGCTTCCYGGAA



(p.Leu90Pro)
2670
GFAP
CAGCAAAACAAGGCGCTGGCT′]





2054
NM_002055.4(GFAP): c.290T > C


[′TTCCTGGAACAGCAAAACAAGGCGCYGGCT



(p.Leu97Pro)
2670
GFAP
GCTGAGCTGAACCAGCTGCGG′]





2055
NM_002055.4(GFAP): c.302T > C


[′CAAAACAAGGCGCTGGCTGCTGAGCYGAAC



(p.Leu101Pro)
2670
GFAP
CAGCTGCGGGCCAAGGAGCCC′]





2056
NM_002055.4(GFAP): c.704T > C


[′GCCAAGCCAGACCTCACCGCAGCCCYGAAA



(p.Leu235Pro)
2670
GFAP
GAGATCCGCACGCAGTATGAG′]





2057
NM_002055.4(GFAP): c.739T > C


[′CCGCACGCAGTATGAGGCAATGGCGYCCAG



(p.Ser247Pro)
2670
GFAP
CAACATGCATGAAGCCGAAGA′]





2058
NM_002055.4(GFAP): c.992T > C


[′AGTTATCAGGAGGCGCTGGCGCGGCYGGAG



(p.Leu331Pro)
2670
GFAP
GAAGAGGGGCAGAGCCTCAAG′]





2059
NM_005554.3(KRT6A): c.1406T >


[′GAGATCGCCACCTACCGCAAGCTGCBGGAG



C (p.Leu469Pro)
3853
KRT6A
GGTGAGGAGTGCAGGTGGGTA′]





2060
NM_005554.3(KRT6A): c.521T >
3853
KRT6A
[′CAGATCAAGACCCTCAACAACAAGTBTGCC



C (p.Phe174Ser)


TCCTTCATCGACAAGGTGAGC′]





2061
NM_153490.2(KRT13): c.332T >
3860
KRT13
[′AATGAGAAGATCACCATGCAGAACCYCAAC



C (p.Leu111Pro)


GACCGCCTGGCTTCCTACCTG′]





2062
NM_170707.3(LMNA): c.1619T >
4000
LMNA
[′CCATGTCCCCACCAGGAAGTGGCCAYGCGC



C (p.Met540Thr)


AAGCTGGTGCGCTCAGTGACT′]



NM_000218.2(KCNQ1): c.1117T >
3784
KCNQ1
[]



C (p.Ser373Pro)








2063
NM_000218.2(KCNQ1): c.1135T >
3784
KCNQ1
[′TCCCCCTGCCCGACCTCAGACCGCABGGAG



C (p.Trp379Arg)


GTGCTATGCTGCCGAGAACCC′]



NM_000218.2(KCNQ1): c.1165T >
3784
KCNQ1
[]



C (p.Ser389Pro)






NM_000218.2(KCNQ1): c.1174T >
3784
KCNQ1
[]



C (p.Trp392Arg)






NM_000218.2(KCNQ1): c.1550T >
3784
KCNQ1
[]



C (p.Ile517Thr)






NM_000218.2(KCNQ1): c.1696T >
3784
KCNQ1
[]



C (p.Ser566Pro)






NM_000218.2(KCNQ1): c.1805T >
−1

[]



C (p.Leu602Pro)






NM_000218.2(KCNQ1): c.401T >
3784
KCNQ1
[]



C (p.Leu134Pro)








2064
NM_000218.2(KCNQ1): c.550T >
3784
KCNQ1
[′CTGGTCCGCCGGCTGCCGCAGCAAGBACGT



C (p.Tyr184His)


GGGCCTCTGGGGGCGGCTGCG′]



NM_000218.2(KCNQ1): c.608T >
3784
KCNQ1
[]



C (p.Leu203Pro)






NM_000218.2(KCNQ1): c.625T >
3784
KCNQ1
[]



C (p.Ser209Pro)






NM_000218.2(KCNQ1): c.742T >
3784
KCNQ1
[]



C (p.Trp248Arg)








2065
NM_000218.2(KCNQ1): c.749T >
3784
KCNQ1
[′GACCGCCAGGGAGGCACCTGGAGGCHCCTG



C (p.Leu250Pro)


GGCTCCGTGGTCTTCATCCAC′]



NM_000218.2(KCNQ1): c.829T >
3784
KCNQ1
[]



C (p.Ser277Pro)






NM_000218.2(KCNQ1): c.832T >
3784
KCNQ1
[]



C (p.Tyr278His)






NM_000218.2(KCNQ1): c.845T >
3784
KCNQ1
[]



C (p.Leu282Pro)






NM_000218.2(KCNQ1): c.908T >
3784
KCNQ1
[]



C (p.Leu303Pro)








2066
NM_000238.3(KCNH2): c.122T >
3757
KCNH2
[′AACGCTCGGGTGGAGAACTGCGCCGBCATC



C (p.Val41Ala)


TACTGCAACGACGGCTTCTGC′]



NM_000238.3(KCNH2): c.1238T >
3757
KCNH2
[]



C (p.Leu413Pro)






NM_000238.3(KCNH2): c.1279T >
3757
KCNH2
[]



C (p.Tyr427His)






NM_000238.3 (KCNH2): c.1387T >
3757
KCNH2
[]



C (p.Phe463Leu)






NM_000238.3 (KCNH2): c.160T >
3757
KCNH2
[]



C (p.Tyr54His)








2067
NM_000238.3 (KCNH2): c.1655T >
3757
KCNH2
[′GAGTACGGCGCGGCCGTGCTGTTCTYGCTCA



C (p.Leu552Ser)


TGTGCACCTTTGCGCTCATC′]



NM_000238.3 (KCNH2): c.1691T >
3757
KCNH2
[]



C (p.Leu564Pro)






NM_000238.3 (KCNH2): c.1700T >
3757
KCNH2
[]



C (p.Ile567Thr)






NM_000238.3 (KCNH2): c.1702T >
3757
KCNH2
[]



C (p.Trp568Arg)






NM_000238.3 (KCNH2): c.1705T >
3757
KCNH2
[]



C (p.Tyr569His)






NM_000238.3 (KCNH2): c.1736T >
3757
KCNH2
[]



C (p.Met579Thr)








2068
NM_000238.3 (KCNH2): c.1778T >
3757
KCNH2
[′TGGCTGCACAACCTGGGCGACCAGANAGGC



C (p.Ile593Thr)


AAACCCTACAACAGCAGCGGC]



NM_000238.3 (KCNH2): c.1816T >
3757
KCNH2
[]



C (p.Ser606Pro)








2069
NM_000238.3 (KCNH2): c.1879T >
3757
KCNH2
[′CTTCAGCAGCCTCACCAGTGTGGGCHTCGGC



C (p.Phe627Leu)


AACGTCTCTCCCAACACCAM



NM_000238.3 (KCNH2): c.1889T >
3757
KCNH2
[]



C (p.Val630Ala)






NM_000238.3 (KCNH2): c.1945T >
3757
KCNH2
[]



C (p.Ser649Pro)






NM_000238.3 (KCNH2): c.1985T >
3757
KCNH2
[]



C (p.Ile662Thr)






NM_000238.3 (KCNH2): c.202T >
3757
KCNH2
[]



C (p.Phe68Leu)






NM_000238.3(KCNH2): c.2033T >
3757
KCNH2
[]



C (p.Leu678Pro)






NM_000238.3 (KCNH2): c.206T >
3757
KCNH2
[]



C (p.Leu69Pro)






NM_000238.3(KCNH2): c.2078T >
3757
KCNH2
[]



C (p.Leu693Pro)






NM_000238.3(KCNH2): c.2309T >
3757
KCNH2
[]



C (p.Val770Ala)








2070
NM_000238.3 (KCNH2): c.2414T >
3757
KCNH2
[′TGGCCTCCAGGGAAGAATGACATCTBTGGG



C (p.Phe805Ser)


GAGCCTCTGAACCTGTATGCA′]



NM_000238.3(KCNH2): c.2452T >
3757
KCNH2
[]



C (p.Ser818Pro)






NM_000238.3(KCNH2): c.2573T >
3757
KCNH2
[]



C (p.Ile858Thr)








2071
NM_000238.3(KCNH2): c.257T >
3757
KCNH2
[′GCTGCCGCGCAGATCGCGCAGGCACBGCTG



C (p.Leu86Pro)


GGCGCCGAGGAGCGCAAAGTG′]



NM_000238.3(KCNH2): c.260T >
3757
KCNH2
[]



C (p.Leu87Pro)






NM_000238.3(KCNH2): c.287T >
3757
KCNH2
[]



C (p.Ile96Thr)






NM_000238.3(KCNH2): c.3146T>
3757
KCNH2
[]



C (p.Leu1049Pro)






NM_000238.3(KCNH2): c.322T >
3757
KCNH2
[]



C (p.Cys108Arg)








2072
NM_000238.3(KCNH2): c.371T >
3757
KCNH2
[′AAGAACGAGGATGGGGCTGTCATCABGTTC



C (p.Met124Thr)


ATCCTCAATTTCGAGGTGGTG′]



NM_000238.3(KCNH2): c.65T >
3757
KCNH2
[]



C (p.Phe22Ser)






NM_000238.3(KCNH2): c.86T >
3757
KCNH2
[]



C (p.Phe29Ser)






NM_000238.3 (KCNH2): c.872T >
3757
KCNH2
[]



C (p.Met291Thr)






NM_000238.3(KCNH2): c.89T >
3757
KCNH2
[]



C (p.Ile30Thr)








2073
NM_000238.3 (KCNH2): c.92T >
3757
KCNH2
[′GCCCCCCTAGGCCGTAAGTTCATCABCGCCA



C (p.Ile31Thr)


ACGCTCGGGTGGAGAACTGC′]



NM_000891.2(KCNJ2): c.301T >
3759
KCNJ2
[]



C (p.Cys101Arg)






NM_000891.2(KCNJ2): c.650T >
3759
KCNJ2
[]



C (p.Leu217Pro)






NM_000335.4(SCN5A): c.1187T >
6331
SCN5A
[]



C (p.Val396Ala)






NM_000335.4(SCN5A): c.1190T >
6331
SCN5A
[]



C (p.Ile397Thr)






NM_000335.4(SCN5A): c.2018T >
6331
SCN5A
[]



C (p.Leu673Pro)






NM_000335.4(SCN5A): c.2516T >
6331
SCN5A
[]



C (p.Leu839Pro)






NM_000335.4(SCN5A): c.2551T >
6331
SCN5A
[]



C (p.Phe851Leu)






NM_000335.4(SCN5A): c.2743T >
6331
SCN5A
[]



C (p.Cys915Arg)






NM_000335.4(SCN5A): c.2783T >
6331
SCN5A
[]



C (p.Leu928Pro)






NM_000335.4(SCN5A): c.278T >
6331
SCN5A
[]



C (p.Phe93Ser)






NM_000335.4(SCN5A): c.2804T >
6331
SCN5A
[]



C (p.Leu935Pro)








2074
NM_000335.4(SCN5A): c.2944T >
6331
SCN5A
[′CAAGCGGACCACCTGGGATTTCTGCYGTGGT



C (p.Cys982Arg)


CTCCTGCGGCAGCGGCCTCA′]





2075
NM_198056.2(SCN5A): c.3010T >
6331
SCN5A
[′TGCCGCCCAGGGCCAGCTGCCCAGCYGCAT



C (p.Cys1004Arg)


TGCCACCCCCTACTCCCCGCC′]





2076
NM_000335.4(SCN5A): c.3679T >
6331
SCN5A
[′TTGTCTGCAGGCCTTCGAGGACATCYACCTA



C (p.Tyr1227His)


GAGGAGCGGAAGACCATCAA′]



NM_000335.4(SCN5A): c.3713T >






C (p.Leu1238Pro)
6331
SCN5A
[]





2077
NM_000335.4(SCN5A): c.3745T >
6331
SCN5A
[′TGCCGACAAGATGTTCACATATGTCYTCGTG



C (p.Phe1249Leu)


CTGGAGATGCTGCTCAAGTG′]



NM_000335.4(SCN5A): c.3929T >
6331
SCN5A
[]



C (p.Leu1310Pro)






NM_000335.4(SCN5A): c.4027T >
6331
SCN5A
[]



C (p.Phe1343Leu)






NM_000335.4(SCN5A): c.4028T >
6331
SCN5A
[]



C (p.Phe1343Ser)






NM_000335.4(SCN5A): c.4034T >
6331
SCN5A
[]



C (p.Leu1345Pro)






NM_000335.4(SCN5A): c.4046T >
6331
SCN5A
[]



C (p.Ile1349T1ir)






NM_000335.4(SCN5A): c.407T >
6331
SCN5A
[]



C (p.Leu136Pro)






NM_000335.4(SCN5A): c.4340T >
6331
SCN5A
[]



C (p.Ile1447T1ir)








2078
NM_000335.4(SCN5A): c.4415T >
6331
SCN5A
[′TTTATTGGTGTCATCATTGACAACTBCAACC



C (p.Phe1472Ser)


AACAGAAGAAAAAGATACGT′]



NM_000335.4(SCN5A): c.4453T >
6331
SCN5A
[]



C (p.Phe1485Leu)






NM_198056.2(SCN5A): c.4493T >
6331
SCN5A
[]



C (p.Met1498T1ir)






NM_000335.4(SCN5A): c.4742T >
6331
SCN5A
[]



C (p.Leu1581Pro)






NM_000335.4(SCN5A): c.4778T >
6331
SCN5A
[]



C (p.Phe1593Ser)








2079
NM_000335.4(SCN5A): c.4952T >
6331
SCN5A
[′CGCACGCTGCTCTTTGCCCTCATGABGTCCC



C (p.Met1651Thr)


TGCCTGCCCTCTTCAACATC′]



NM_000335.4(SCN5A): c.5111T >
6331
SCN5A
[]



C (p.Phe1704Ser)






NM_000335.4(SCN5A): c.5179T >
6331
SCN5A
[]



C (p.Cys1727Arg)






NM_000335.4(SCN5A): c.544T >
6331
SCN5A
[]



C (p.Cys182Arg)








2080
NM_000335.4(SCN5A): c.5471T >
6331
SCN5A
[′TTTGCCGATGCCCTGTCTGAGCCACYCCGTA



C (p.Leu1824Pro)


TCGCCAAGCCCAACCAGATA′]





2081
NM_198056.2(SCN5A): c.5624T >
6331
SCN5A
[′GAGATGGACGCCCTGAAGATCCAGAHGGAG



C (p.Met1875Thr)


GAGAAGTTCATGGCAGCCAAC′]





2082
NM_000335.4(SCN5A): c.635T >
6331
SCN5A
[′AGATACACAACTGAATTTGTGGACCHGGGC



C (p.Leu212Pro)


AATGTCTCAGCCTTACGCACC′]



NM_000335.4(SCN5A): c.689T >
6331
SCN5A
[]



C (p.Ile230Thr)






NM_198056.2(SCN5A): c.944T >
6331
SCN5A
[]



C (p.Leu315Pro)








2083
NM_177976.2(ARL6): c.272T > C
84100
ARL6
[′TTACACAGAGAAGGCCAAGCTATTAYTTTTG



(p.Ile91Thr)


TCATTGATAGTAGTGATAGA′]





2084
NM_000487.5(ARSA): c.899T > C
410
ARSA
[′TCCCGAGGCGGCTGCTCCGGTCTCTYGCGGT



(p.Leu300Ser)


GTGGAAAGGGAACGACCTAC′]





2085
NM_000267.3(NF1): c.1595T > C
4763
NF1
[′GAATTAATTACAGGGCTCGTCCAACYGGTCC



(p.Leu532Pro)


CTCAGTCACACATGCCAGAG′]





2086
NM_001042492.2(NF1): c.2288T >
4763
NF1
[′CTTCAGAAAAGAGTGATGGCACTGCBGAGG



C (p.Leu763Pro)


CGCATTGAGCATCCCACTGCA′]





2087
NM_004990.3(MARS): c.1108T >
4141
MARS
[′CCTCACCAGAATCACCCAGGACATTYTCCAG



C (p.Phe370Leu)


CAGTTGCTGAAACGAGGTTT′]





2088
NM_004990.3(MARS): c.1568T >
4141
MARS
[′TTCTATGTCTGGTTTGATGCCACTAYTGGCT



C (p.Ile523Thr)


ATCTGTCCATCACAGCCAAC′]





2089
NM_006920.4(SCN1A): c.4729T >
−1

[′GTTCATTGTGCTATTTACTGGAGAGYGTGTA



C (p.Cys1577Arg)


CTGAAACTCATCTCTCTACG′]





2090
NM_006920.4(SCN1A): c.5113T >
−1

[′TGAGACCTTTGGCAACAGCATGATCYGCCTA



C (p.Cys1705Arg)


TTCCAAATTACAACCTCTGC′]





2091
NM_006920.4(SCN1A): c.838T >
6323
SCN1A
[′CAACCTGAGGAATAAATGTATACAAYGGCC



C (p.Trp280Arg)


TCCCACCAATGCTTCCTTGGA′]





2092
NM_006920.4(5CN1A): c.269T >
6323
SCN1A
[′TGTTGTGTTCCTGTCTTACAGACTTYTATAGT



C (p.Phe90Ser)


ATTGAATAAAGGGAAGGCC′]





2093
NM_006920.4(5CN1A): c.272T >
6323
SCN1A
[′TGTGTTCCTGTCTTACAGACTTTTAYAGTATT



C (p.Ile91Thr)


GAATAAAGGGAAGGCCATC′]





2094
NM_006920.4(SCN1A): c.3827T >
−1

[′TATTTCACCAATGCCTGGTGTTGGCYGGACT



C (p.Leu1276Pro)


TCTTAATTGTTGATGTAGGT′]





2095
NM_006920.4(5CN1A): c.5522T >
−1

[′CCAAACAAACTCCAGCTCATTGCCAYGGATT



C (p.Met1841Thr)


TGCCCATGGTGAGTGGTGAC′]





2096
NM_006920.4(SCN1A): c.568T >
6323
SCN1A
[′AGATTTTACTTTCCTTCGGGATCCAYGGAAC



C (p.Trp190Arg)


TGGCTCGATTTCACTGTCAT′]





2097
NM_002608.2(PDGFB): c.356T >
5155
PDGFB
[′ATAGACCGCACCAACGCCAACTTCCYGGTG



C (p.Leu119Pro)


TGGCCGCCCTGTGTGGAGGTG′]





2098
NM_000833.4(GRIN2A): c.2T > C
2903
GRIN2A
[′TTGCAGGGACCGTCAGTGGCGACTAYGGGC



(p.Met1Thr)


AGAGTGGGCTATTGGACCCTG′]





2099
NM_002474.2(MYH11): c.3791T >
4629
MYH11
[′CTCCCCATCGCTGCACTTGGACTGCDGCTCC



C (p.Leu1264Pro)


TGCACCTGCGCCTCCAGCTT′]





2100
NM_014139.2(SCN11A): c.2432T >
11280
SCN11A
[′CTCAACCTCTTCATTGCCTTACTGCYCAATT



C (pLeu811Pro)


CCTTTAGCAATGAGGAAAGA′]





2101
NM_006514.3(SCN10A): c.1661T >
6336
SCN10A
[′GGAGTCAGGGTTGCTGGGTTGAGGARGAGG



C (p.Leu554Pro)


GCTTCTAGGGAGGGGGCCTTG′]





2102
NM_000179.2(MSH6): c.1346T >
2956
MSH6
[′CTTATTGGAGTCAGTGAACTGGGGCYGGTAT



C (p.Leu449Pro)


TCATGAAAGGCAACTGGGCC′]





2103
NM_000179.2(MSH6): c.4001 +
2956
MSH6
[′GAATCAGTCACTACGATTATTTCGGYAACTA



2T > C


ACTAACTATAATGGAATTAT′]





2104
NM_000249.3(MLH1): c.1745T >
4292
MLHI
[′GCTTCTTCCTAGGAGCCAGCACCGCYCTTTG



C (p.Leu582Pro)


ACCTTGCCATGCTTGCCTTA′]





2105
NM_000249.3(MLH1): c.2246T >
4292
MLHI
[′CTGCAGCTTGCTAACCTGCCTGATCHATACA



C (p.Leu749Pro)


AAGTCTTTGAGAGGTGTTAA′]





2106
NM_000249.3(MLH1): c.229T > C
4292
MLHI
[′ACAGAAAGAAGATCTGGATATTGTAYGTGA



(p.Cys77Arg)


AAGGTTCACTACTAGTAAACT′]





2107
NM_000249.3(MLH1): c.453 + 2T >
4292
MLHI
[′GGCAATCAAGGGACCCAGATCACGGYAAGA



C


ATGGTACATGGGAGAGTAAAT′]





2108
NM_000249.3(MLH1): c.739T > C
4292
MLHI
[′AGCCTTCAAAATGAATGGTTACATABCCAAT



(p.Ser247Pro)


GCAAACTACTCAGTGAAGAA′]





2109
NM_000249.3(MLH1): c.790 + 2T >
4292
MLHI
[′GCATCTTCTTACTCTTCATCAACCGHAAGTT



C


AAAAAGAACCACATGGGAAA′]





2110
NM_000251.2(MSH2): c.1319T >
4436
MSH2
[′TTGTTGGCAGTTTTTGTGACTCCTCYTACTG



C (p.Leu440Pro)


ATCTTCGTTCTGACTTCTCC′]





2111
NM_000251.2(MSH2): c.2005 + 2T >
4436
MSH2
[′AACAGATGTTCCACATCATTACTGGYAAAA



C


AACCTGGTTTTTGGGCTTTGT′]





2112
NM_000251.2(MSH2): c.2089T >
4436
MSH2
[′GGCCCAAATTGGGTGTTTTGTGCCAYGTGAG



C (p.Cys697Arg)


TCAGCAGAAGTGTCCATTGT′]





2113
NM_000251.2(MSH2): c.560T > C
4436
MSH2
[′CCTGATAATGATCAGTTCTCCAATCBTGAGG



(p.Leu187Pro)


CTCTCCTCATCCAGATTGGA′]





2114
NM_000251.2(MSH2): c.595T > C
4436
MSH2
[′CCTCATCCAGATTGGACCAAAGGAAYGTGT



(p.Cys199Arg)


TTTACCCGGAGGAGAGACTGC′]





2115
NM_000251.2(MSH2): c.929T > C
4436
MSH2
[′TTGGATATTGCAGCAGTCAGAGCCCBTAACC



(p.Leu310Pro)


TTTTTCAGGTAAAAAAAAAA′]





2116
NM_007294.3(BRCA1): c.134 + 2T >
672
BRCAI
[′AAAGTGTGACCACATATTTTGCAAGBAAGTT



C


TGAATGTGTTATGTGGCTCC′]





2117
NM_001194998.1(CEP152): c.
22995
CEP152
[′TATGAGGAAGACATCCTGACTGTACYTGGG



3149T > C (p.Leu1050Pro)


GTTCTTTTAAGTGATACCCAA′]





2118
NM_001271723.1(FBX038): c.
81545
FBX038
[′AGGGGTGAATGTTCCTGAAATTCCTYGTATC



616T > C (p.Cys206Arg)


CCAATGCTAAGGCACCTTTA′]





2119
NM_014495.3(ANGPTL3): c.883T >
−1

[′ACATCGAATAGATGGATCACAAAACYTCAA



C (p.Phe295Leu)


TGAAACGTGGGAGAACTACAA′]





2120
NM_003184.3(TAF2): c.1945T >
6873
TAF2
[′CTCTCATAGCGGAGCTGATACTGCCRCATAA



C (p.Trp649Arg)


AATCAGCTTGCTCAAATTCT′]





2121
NM_000016.5(ACADM): c.233T >
34
ACADM
[′TTCTTCTAGTATCCAGTCCCCCTAAYTAGAA



C (p.Ile78Thr)


GAGCCTGGGAACTTGGTTTA′]





2122
NM_000019.3(ACAT1): c.730 + 2T
38
ACATI
[′TTCCTGTCACAGTTACAGTAAAAGGYAGAG



C


ATAATGTTCCAAAAAGGATGA′]





2123
NM_000143.3(FH): c.1255T > C
2271
FH
[′GAAGCATCCCCCAGCAGCCTGGCTGRGTGT



(p.Ser419Pro)


AACACATTTTTAATCTTTGAG′]





2124
NM_000169.2(GLA): c.899T > C
−1

[′GCTCCTTTATTCATGTCTAATGACCYCCGAC



(p.Leu300Pro)


ACATCAGCCCTCAAGCCAAA′]





2125
NM_000202.6(IDS): c.587T > C
3423
IDS
[GTGCTGGATGTTCCCGAGGGCACCTYGCCTG



(p.Leu196Ser)


ACAAACAGAGCACTGAGCAA′]





2126
NM_000252.2(MTM1): c.688T >
4534
MTM1
[′TCTGACTTAACCATAGGTGCTGTCAYGGATT



C (p.Trp230Arg)


CATCCAGAAAATAAGACGGT′]





2127
NM_000277.1(PAH): c.638T > C
5053
PAH
[′GAGTACAATCACATTTTTCCACTTCYTGAAA



(p.Leu213Pro)


AGTACTGTGGCTTCCATGAA′]





2128
NM_000404.2(GLB1): c.457 + 2T >
2720
GLB1
[′TTCTTCTCCGCTCCTCCGACCCAGGYAGGTT



C


GTTACAGATGTCTTGAGAAG′]





2129
NM_000528.3(MAN2B1): c.2436 +
4125
MAN2B1
[′AGAGATGGCTCGCTGGAGCTCATGGYGAGT



2T > C


GGGTCAGAGCCCCATCCGAGC′]





2130
NM_000531.5(OTC): c.540 + 2T >
5009
OTC
[′CTGGCTGATTACCTCACGCTCCAGGHTGGTT



C


TATTTATTTGTCTTACAAAA′]





2131
NM_001005741.2(GBA): c.667T >
2629
GBA
[′TTCACCGCTCCATTGGTCTTGAGCCRAGTGG



C (p.Trp223Arg)


GTGATGTCCAGGGGCTGGCA′]





2132
NM_000402.4(G6PD): c.473T > C
2539
G6PD
[′CGCCTCAACAGCCACATGAATGCCCYCCAC



(p.Leu158Pro)


CTGGGGTCACAGGCCAACCGC′]





2133
NM_000402.4(G6PD): c.188T > C
−1

[′CACCGATGCACCCATGATGATGAATRTGTGT



(p.Ile63Thr)


GTATCCGACTGATGGAAGGC′]





2134
NM_006920.4(SCN1A): c.4251 +
−1

[′GGGTATCTCTCTTTGCTTCAAGTTGYAAGTG



2T > C


AACACTATTTTCTCTGAATA′]





2135
NM_002225.3(IVD): c.465+2T >
3712
IVD
[′CAGAAAGAGAAGTATCTCCCGAAGGYGAGG



C


AAATGGAAATGTAATACACGC′]





2136
NM_003494.3(DYSF): c.1284 + 2T >
8291
DYSF
[′GAGGTCAGCTTTGCGGGGAAAATGGYAAGG



C


AGCAAGGGAGCAGGAGGGTTC′]





2137
NM_004006.2(DMD): c.2380 + 2T >
1756
DMD
[′CCCTGGTGGAACAGATGGTGAATGGYAATT



C


ACACGAGTTGATTTAGATAAT′]





2138
NM_012463.3(ATP6V0A2): c.825 +
23545
ATP6V0A2
[′ACCCGCATCCAGGATCTCTACACTGYGAGTA



2T > C


AGCTGGAAGTGGATTGCCTC′]





2139
NM_014795.3(ZEB2): c.73+2T >
9839
ZEB2
[′AAGCCAATCCCAGGAGGAAAAACGGYAAG



C


AAGCAGCCCGAACCAAACTTTT′]





2140
NM_016725.2(FOLR1): c.493 + 2T >
2348
FOLR1
[′ACAAGGGCTGGAACTGGACTTCAGGYGAGG



C


GCTGGGGTGGGCAGGAATGGA′]





2141
NM_000056.3(BCKDHB): c.752T >
594
BCKDHB
[′CCTGTTCTGTATTTAGCGGAAGAAGYCCCTA



C (p.Val251Ala)


TAGAACCATACAACATCCCA′]





2142
NM_175053.3(KRT74): c.821T >
121391
KRT74
[′TACTGCATCATACAGACACTTGAGGRACTTG



C (p.Phe274Ser)


ATTTCTTTGTCCAGTGAGTC′]





2143
NM_003764.3(STX11): c.173T >
8676
STX11
[′GACATTCAGGATGAAAACCAGCTGCYGGTG



C (p.Leu58Pro)


GCCGACGTGAAGCGGCTGGGA′]





2144
NM_001044.4(SLC6A3): c.671T >
6531
SLC6A3
[′CTCTGCAGACGTGGCGTGCTGCACCYCCACC



C (p.Leu224Pro)


AGAGCCATGGCATCGACGAC′]





2145
NM_015662.2(IFT172): c.5179T >
−1

[′CTGATGAATTTCAGCACGTCCTGGCRCACTG



C (p.Cys1727Arg)


GGCTGTGGGAGGTCTGTGAG′]





2146
NM_015662.2(IFT172): c.4607T >
26160
IFT172
[′GCGCGTGGCATAGTAATGAGCGATCRGCAG



C (p.Leu1536Pro)


CATCGTCTTGAACTCCTCATG′]





2147
NM_014754.2(PTDSS1): c.794T >
9791
PTDSS1
[′ACCGGGAAGATCAAGAGAGCTGTTCYGCAG



C (p.Leu265Pro)


TTCACTCCTGCTAGCTGGACC′]





2148
NM_014714.3(IFT140): c.4078T >
9742
IFT140
[′GGACCCCAAGGAGTCCATCAAGCAGYGTGA



C (p.Cys1360Arg)


GCTGCTCCTGGAGGAACCAGA′]





2149
NM_000531.5(OTC): c.1005 + 2T >
5009
OTC
[′GAAAACAGAAAGTGGACAATCATGGYAAGC



C


AAGAAACAAGGAATGGAGGAT′]





2150
NM_000531.5(OTC): c.1018T > C
5009
OTC
[′GTTGTGTCATCAGGCTGTCATGGTGYCCCTG



(p.Ser340Pro)


CTGACAGATTACTCACCTCA′]





2151
NM_000531.5(OTC): c.1022T > C
5009
OTC
[′TGTCATCAGGCTGTCATGGTGTCCCYGCTGA



(p.Leu341Pro)


CAGATTACTCACCTCAGCTC′]





2152
NM_000531.5(OTC): c.1033T > C
5009
OTC
[′TGTCATGGTGTCCCTGCTGACAGATBACTCA



(p.Tyr345His)


CCTCAGCTCCAGAAGCCTAA′]





2153
NM_000531.5(OTC): c.143T > C
5009
OTC
[′CGTGACCTTCTCACTCTAAAAAACTYTACCG



(p.Phe48Ser)


GAGAAGAAATTAAATATATG′]





2154
NM_000531.5(OTC): c.158T > C
5009
OTC
[′CTAAAAAACTTTACCGGAGAAGAAABTAAA



(p.Ile53Thr)


TATATGCTATGGCTATCAGCA′]





2155
NM_000531.5(OTC): c.167T > C
5009
OTC
[′TTTACCGGAGAAGAAATTAAATATAYGCTA



(p.Met56Thr)


TGGCTATCAGCAGATCTGAAA′]





2156
NM_000531.5(OTC): c.188T > C
5009
OTC
[′TATATGCTATGGCTATCAGCAGATCYGAAAT



(p.Leu63Pro)


TTAGGATAAAACAGAAAGGA′]





2157
NM_000531.5(OTC): c.227T > C
5009
OTC
[′GTCCTTGATTTATAGTATTTGCCTTYATTGCA



(p.Leu76Ser)


AGGGAAGTCCTTAGGCATG′]





2158
NM_000531.5(OTC): c.284T > C
5009
OTC
[′GAGAAAAGAAGTACTCGAACAAGATYGTCT



(p.Leu95Ser)


ACAGAAACAGGTAAGTCCACT′]





2159
NM_000531.5(OTC): c.2T > C
5009
OTC
[′CGTCCTTTACACAATTAAAAGAAGAYGCTGT



(p.Met1Thr)


TTAATCTGAGGATCCTGTTA′]





2160
NM_000531.5(OTC): c.386 + 2T >
5009
OTC
[′TGAAAGTCTCACGGACACGGCCCGGYTTGT



C


AAATATTTTCTTCTCTCCAAA′]





2161
NM_000531.5(OTC): c.392T > C
5009
OTC
[′TTTTTCTTGGTTTGCCACAGTGTATYGTCTAG



(p.Leu131Ser)


CATGGCAGATGCAGTATTG′]





2162
NM_000531.5(OTC): c.394T > C
5009
OTC
[′TTTCTTGGTTTGCCACAGTGTATTGYCTAGC



(p.Ser132Pro)


ATGGCAGATGCAGTATTGGC′]





2163
NM_000531.5(OTC): c.416T > C
5009
OTC
[HIGTCTAGCATGGCAGATGCAGTATYGGCTC



(p.Leu139Ser)


GAGTGTATAAACAATCAGAT′]





2164
NM_000531.5(OTC): c.443T > C
5009
OTC
[′GCTCGAGTGTATAAACAATCAGATTBGGAC



(p.Leu148Ser)


ACCCTGGCTAAAGAAGCATCC′]





2165
NM_000531.5(OTC): c.476T > C
5009
OTC
[′CTGGCTAAAGAAGCATCCATCCCAAYTATC



(p.Ile159Thr)


AATGGGCTGTCAGATTTGTAC′]





2166
NM_000531.5(OTC): c.479T > C
5009
OTC
[′GCTAAAGAAGCATCCATCCCAATTANCAAT



(p.Ile160Thr)


GGGCTGTCAGATTTGTACCAT′]





2167
NM_000531.5(OTC): c.490T > C
5009
OTC
[′ATCCATCCCAATTATCAATGGGCTGYCAGAT



(p.Ser164Pro)


TTGTACCATCCTATCCAGAT′]





2168
NM_000531.5(OTC): c.526T > C
5009
OTC
[′CCATCCTATCCAGATCCTGGCTGATYACCTC



(p.Tyr176His)


ACGCTCCAGGTTGGTTTATT′]





2169
NM_000531.5(OTC): c.536T > C
5009
OTC
[′CAGATCCTGGCTGATTACCTCACGCYCCAGG



(p.Leu179Pro)


TTGGTTTATTTATTTGTCTT′]





2170
NM_000531.5(OTC): c.577T > C
5009
OTC
[′CTCTCTGAAAGGTCTTACCCTCAGCBGGATC



(p.Trp193Arg)


GGGGATGGGAACAATATCCT′]





2171
NM_000531.5(OTC): c.602T > C
5009
OTC
[′TGGATCGGGGATGGGAACAATATCCYGCAC



(p.Leu201Pro)


TCCATCATGATGAGCGCAGCG′]





2172
NM_000531.5(OTC): c.663 + 2T >
5009
OTC
[′CACCTTCAGGCAGCTACTCCAAAGGYAGGG



C


AAACTTTTTGCCTTGAAACTA′]





2173
NM_000531.5(OTC): c.779T > C
5009
OTC
[′GAAGCAGCGCATGGAGGCAATGTATYAATT



(p.Leu260Ser)


ACAGACACTTGGATAAGCATG′]





2174
NM_000531.5(OTC): c.793T > C
5009
OTC
[′AGGCAATGTATTAATTACAGACACTYGGAT



(p.Trp265Arg)


AAGCATGGGACAAGAAGAGGA′]





2175
NM_000531.5(OTC): c.803T > C
5009
OTC
[′TTAATTACAGACACTTGGATAAGCAYGGGA



(p.Met268Thr)


CAAGAAGAGGAGAAGAAAAAG′]





2176
NM_000531.5(OTC): c.907T > C
5009
OTC
[′TGCCTCTGACTGGACATTTTTACACBGCTTG



(p.Cys303Arg)


CCCAGAAAGCCAGAAGAAGT′]





2177
NM_000531.5(OTC): c.947T > C
5009
OTC
[′CCAGAAGAAGTGGATGATGAAGTCTYTTAT



(p.Phe316Ser)


TCTCCTCGATCACTAGTGTTC′]





2178
NM_000322.4(PRPH2): c.637T >
5961
PRPH2
[′CCTGGTGGACGGCGTCCCTTTCAGCYGCTGC



C (p.Cys213Arg)


AATCCTAGCTCGCCACGGCC′]





2179
NM_000322.4(PRPH2): c.736T >
5961
PRPH2
[′CCACCAGACGGAGGAGCTCAACCTGYGGGT



C (p.Trp246Arg)


GCGTGGCTGCAGGGCTGCCCT′]



NM_017415.2(KLHL3): c.1160T >
26249
KLHL3
[]



C (p.Leu387Pro)






NM_017415.2(KLHL3): c.1280T >
26249
KLHL3
[]



C (p.Met427Thr)








2180
NM_003859.1(DPM1): c.742T > C
−1

[′AGAGTCAATAATCCTTTCAAGAAAGRTACTA



(p.Ser248Pro)


TTTCATTTCCTCCCAACTTG]





2181
NM_004826.3(ECEL1): c.2278T >
9427
ECEL1
[′GGGTTCATGGGTGAGTCCTTGGGACRGTGG



C (p.Cys760Arg)


AAAGCCCGGCCAAACTCCTCA′]





2182
NM_014908.3(DOLK): c.2T > C
22845
DOLK
[′GGCCGGAGATGGGCACTCTCGGGTCRTATCT



(p.Met1Thr)


CTAGACCTGGGGCTTCACGG′]





2183
NM_000404.2(GLB1): c.922T > C
2720
GLB1
[′TCTTTTGTTTCCTTGTAGGTACATGYTTATAG



(p.Phe308Leu)


GTGGGACCAATTTTGCCTA′]





2184
NM_012434.4(SLC17A5): c.500T >
26503
SLC17A5
[′TTAGGAGTTGGACCACTCATTGTACYCAGAG



C (p.Leu167Pro)


CACTAGAAGGACTAGGAGAG′]





2185
NM_000211.4(ITGB2): c.1877 +
3689
ITGB2
[′CCCCTCACCCTGTGGCAAGTACATGYGAGTG



2T > C


CAGGCGGAGCAGGCAGGGCG′]





2186
NM_006702.4(PNPLA6): c.3053T >
10908
PNPLA6
[′ACCTCCATGTTCACTGGGTCTGCCTYTAACC



C (p.Phe1018Ser)


GCAGCATCCATCGGGTCTTC′]





2187
NM_176787.4(PIGN): c.808T > C
23556
PIGN
[′TCTGAAGGATGACCAGCCCCATGGGRACCT



(p.Ser270Pro)


ACAAATAAGATATAAAGAATA′]





2188
NM_001165899.1(PDE4D): c.1850T >
5144
PDE4D
[′CCATGTCTCCCAGAGGGGATGAACARTATA



C (p.Ile617Thr)


GTCTATGAAGCCCACCTAGTT′]





2189
NM_005017.3(PCYT1A): c.571T >
5130
PCYT1A
[′CCTTCTGTCCTCTGTGTTGGAGCAARCATGC



C (p.Phe191Leu)


CTAACTCAGAAACACATACA′]





2190
NM_000090.3(COL3A1): c.951 +
1281
COL3A1
[′CAGGACTTCCTGGGGCTGCAGTGAGHATAG



6T > C (p.Gly300_Ala317del)


CTGCTAACATCACACAATTAC′]





2191
NM_000090.3(COL3A1): c.2022 +
1281
COL3A1
[′GCACCTGGAGCTCCAGGAGGCAAGGYAGTA



2T > C (p.Gly660_Lys674del)


TTTCAATTTATTCTCTACCTT′]





2192
NM_000090.3(COL3A1): c.951 +
1281
COL3A1
[′CGGCCAGGACTTCCTGGGGCTGCAGHGAGT



2T > C (p.Gly300_Ala317del)


ATAGCTGCTAACATCACACAA′]





2193
NM_000090.3(COL3A1): c.3093 +
1281
COL3A1
[′CGAGATGGATCTCCTGGTGGCAAGGBATAA



2T > C (p.Gly1014_Lys1031del)


TAAACACATGTGCAATTGATT′]





2194
NM_000090.3(COL3A1): c.2337 +
1281
COL3A1
[′CCAGCTGGCCAGCCTGGAGATAAGGYAACC



2T > C (p.Gly762_Lys779del)


CTTAATACTACCTGGATATAA′]





2195
NM_000090.3(COL3A1): c.1761 +
1281
COL3A1
[′TTCCCCGGTCCTAAAGGAAATGATGBGAGTT



2T > C (p.Gly555_Asp587del)


CCTTCATTAATTTCTTCAAT′]





2196
NM_000090.3(C0L3A1): c.3039 +
1281
COL3A1
[′CTGGTGAACCTGGAAGAGATGTGAGYAGCA



6T > C


GTTTTTATTCAACCAGCCAGG′]



(p.Asp1013_Gly1014insVSSSFY






STSQ)








2197
NM_000090.3(COL3A1): c.4399T >
1281
COL3A1
[′GGACGTTGGCCCTGTTTGCTTTTTAYAAACC



C (p.Ter1467Gln)


AAACTCTATCTGAAATCCCA′]





2198
NM_000090.3(COL3A1): c.2553 +
1281
COL3A1
[′CCCCCTGGAGGTTCTGGACCTGCTGYAAGTT



2T > C (p.Gly816_Ala851del)


CCTTCCTCTTTCTCTGTCTA′]





2199
NM_001278503.1(STT3A): c.1877T >
3703
STT3A
[′TATACTCCAACTGGGGAGTTCCGTGYGGACC



C (p.Val626Ala)


GTGAAGGTTCTCCAGTGCTG′]





2200
NM_000277.1(PAH): c.691T > C
5053
PAH
[′TAACATTCCCCAGCTGGAAGACGTTYCTCAG



(p.Ser231Pro)


TTCCTGCAGAGTAAGTCCAC′]





2201
NM_007294.3(BRCA1): c.5467 +
672
BRCA1
[′GGACAGAGGACAATGGCTTCCATGGBAAGG



2T > C


TGCCTGCATGTACCTGTGCTA′]





2202
NM_020347.3(LZTFL1): c.260T >
54585
LZTFL1
[′ATACCACTTCTCAGCTTGTGCAAACRGCTGT



C (p.Leu87Pro)


CGCAGAAGTAACACATTGGT′]





2203
NM_016381.5(TREX1): c.530T >
11277
TREX1
[′CGCCAGCCACAGCCCTGGTGCCTGGYGGCA



C (p.Val177Ala)


CACAATGGTGACCGCTACGAC′]





2204
NM_015474.3(SAMHD1): c.1106T >
25939
SAMHD1
[′TTTGTGTTGATAAGCTCTACGGTGTRAAGAG



C (p.Leu369Ser)


TTGCGAGTGTGGAACATGTC′]





2205
NM_005654.5(NR2F1): c.755T >
7025
NR2F1
[′CAGATCACCGACCAGGTGTCCCTGCYACGC



C (p.Leu252Pro)


CTCACCTGGAGCGAGCTGTTC′]





2206
NM_003638.2(ITGA8): c.2982 + 2T >
8516
ITGA8
[′TGCCTATATATATTTAAAGATACTCRCTACT



C


ATGCTTCCTTCTGGGAGTTT′]





2207
NM_000321.2(RB1): c.2663+2T >
5925
RB1
[′AGGATCAGATGAAGCAGATGGAAGGYAGG



C


AACCAGTTTTGAATGTTTTCCA′]





2208
NM_000321.2(RB1): c.1472T > C
5925
RB1
[′CATATGTCTTTATTGGCGTGCGCTCYTGAGG



(p.Leu491Pro)


TTGTAATGGCCACATATAGC′]





2209
NM_015884.3(MBTPS2): c.1391T >
51360
MBTPS2
[′GCTATTGTTAATGCAGTACCCTGCTYTGCTT



C (p.Phe464Ser)


TGGATGGACAATGGATTCTA′]





2210
NM_001739.1(CA5A): c.697T > C
763
CASA
[′TCGGTCAGCGGCGGGGTGGTGAGCGRGCCC



(p.Ser233Pro)


GCGTAGGTCCAGTAATCCCAG′]





2211
NM_005051.2(QARS): c.169T > C
5859
QARS
[′TCCCTGAGTCGGGAGGCCAAGCCATRTAAC



(p.Tyr57His)


AGGATCCCGGTAGCTTTGTCA′]





2212
NM_005356.4(LCK): c.1022T > C
3932
LCK
[′GGCATCAAGTTGACCATCAACAAACYCCTG



(p.Leu341Pro)


GACATGGCAGCCCAAGTAAGG′]





2213
NM_021803.3(IL21): c.146T > C
59067
IL21
[′TACCAAGTCATTCACATAATTTTTCRGCTGA



(p.Leu49Pro)


TCAACAATATCTATAAGTTG′]





2214
NM_005861.3(STUB1): c.719T >
−1

[′TGTGGCAAGATCAGCTTTGAGCTGAYGCGG



C (p.Met240Thr)


GAGCCGTGCATCACGCCCAGT′]





2215
NM_032575.2(GLIS2): c.523T > C
84662
GLIS2
[′TCAGAACACTTCCCATCCTCCGCAGYGTAAC



(p.Cys175Arg)


CAGCTCTTTGAGCTCCTGCA′]





2216
NM_001101.3(ACTB): c.224T > C
60
ACTB
[′CTGAAGTACCCCATCGAGCACGGCAYCGTC



(p.Ile75Thr)


ACCAACTGGGACGACATGGAG′]





2217
NM_001101.3(ACTB): c.356T > C
60
ACTB
[′AACCCCAAGGCCAACCGCGAGAAGAYGACC



(p.Met119Thr)


CAGGTGAGTGGCCCGCTACCT′]





2218
NM_003401.3(XRCC4): c.127T >
7518
XRCC4
[′TACACTTACTGATGGTCATTCAGCAYGGACT



C (p.Trp43Arg)


GGGACAGGTAATACTAAAAA′]





2219
NM_000051.3(ATM): c.2638 + 2T >
472
ATM
[′CTGGAGAGAGCCAAAGTACCATAGGYAAAT



C


ACATATTTACTACTTGGGATT′]





2220
NM_000535.5(PMS2): c.2T > C
5395
PMS2
[′CGAGGCGGATCGGGTGTTGCATCCAHGGAG



(p.Met1Thr)


CGAGCTGAGAGCTCGAGGTGA′]





2221
NM_015713.4(RRM2B): c.190T >
50484
RRM2B
[′ATGCCACGTACCTCTTCTGCTGTCCRGAAGG



C (p.Trp64Arg)


AAGCCTGTGCCTGTTTATAC′]





2222
NM_015713.4(RRM2B): c.368T >
50484
RRM2B
[′CTCGATGAGAATTTGAAAGCCATAGRAACA



C (p.Phe123Ser)


GCGAGCCTCTGGAACCTGCAC′]





2223
NM_003122.4(SPINK1): c.194 +
6690
SPINK1
[′TTAAAAGAAACTCAAGTTTGTACTCRCCGAT



2T > C


TTTCAAAACATAACACGCAT′]





2224
NM_003122.4(SPINK1): c.160T >
6690
SPINK1
[′AAACATAACACGCATTCATTGGGATRAGTAT



C (p.Tyr54His)


TTCCATCAGTCCCACAGACA′]



NM_000219.5(KCNE1): c.158T >
3753
KCNE1
[]



C (p.Phe53Ser)








2225
NM_000219.5(KCNE1): c.176T >
3753
KCNE1
[′GCGGATGTAGCTCAGCATGATGCCCRGGGT



C (p.Leu59Pro)


GAAGAAGCCGAAGAATCCCAG′]



NM_000219.5(KCNE1): c.259T >
3753
KCNE1
[]



C (p.Trp87Arg)








2226
NM_017890.4(VPS13B): c.11119 +
157680
VPS13B
[′CGTTTGTAAAGCACATCTCCAAAGGYAGCG



2T > C


GGTTCCGTTCCTTGTAATAAT′]





2227
NM_005026.3(PIK3CD): c.1246T >
5293
PIK3CD
[′CACCTGCCCTGTCCTTCTGCAGGACYGCCCC



C (p.Cys416Arg)


ATTGCCTGGGCCAACCTCAT′]





2228
NM_000271.4(NPC1): c.2054T >
4864
NPC1
[′TACATTGGGTTGCCCTTGACCCTCAYTGTGA



C (p.Ile685Thr)


TTGAAGTCATCCCGTTCCTG′]





2229
NM_002633.2(PGM1): c.1547T >
5236
PGM1
[′GGGAGTGCCGGGGCCACCATTCGGCYGTAC



C (p.Leu516Pro)


ATCGATAGCTATGAGAAGGAC′]





2230
NM_015599.2(PGM3): c.248T > C
5238
PGM3
[′TTGGTTGATCCTTTGGGTGAAATGTYGGCAC



(p.Leu83Ser)


CATCCTGGGAGGAACATGCC′]





2231
NM_002136.2(HNRNPA1): c.817T >
3178
HNRNPA1
[′GAATTACAACAATCAGTCTTCAAATBTTGGA



C (p.Phe273Leu)


CCCATGAAGGGAGGAAATTT′]





2232
NM_002136.2(HNRNPA1): c.841T >
3178
HNRNPA1
[′TTTTGGACCCATGAAGGGAGGAAATYTTGG



C (p.Phe281Leu)


AGGCAGAAGCTCTGGCCCCTA′]





2233
NM_001159287.1(TPI1): c.833T >
7167
TPI1
[′GGTGGTGCTTCCCTCAAGCCCGAATYCGTGG



C (p.Phe278Ser)


ACATCATCAATGCCAAACAA′]





2234
NM_130838.1(UBE3A): c.2T > C
7337
UBE3A
[′TCTGACGACATTGAAGCTAGCCGAAYGTAA



(p.Met1Thr)


GTGTAACTTGGTTGAGACTGT′]





2235
NM_130838.1(UBE3A): c.710T >
7337
UBE3A
[′ATTGAAACTGCCTTTCTCAATGCACHTGTAT



C (p.Leu237Pro)


ATTTGTCACCTAACGTGGAA′]





2236
NM_000414.3(HSD17B4): c.1547T >
3295
HSD17B4
[′AGTGGAGACTGGAATCCCTTACACAYTGAT



C (p.Ile516Thr)


CCTAACTTTGCTAGTCTAGCA′]





2237
NM_022068.3(PIEZO2): c.8215T >
63895
PIEZO2
[′GTCCATTTGATCATTGTCTCTGGTGRGCGAT



C (p.Ser2739Pro)


ATAGGAATATTAATTTGGCA′]





2238
NM_012079.5(DGAT1): c.751 +
8694
DGAT1
[′GCACCTCAGGCCCACAGAGGTCCTCRCCGC



2T > C


GGTAGGTCAGATTGTCCGGGT′]





2239
NM_003108.3(S0X11): c.178T >
6664
SOX11
[′GCCGATGAACGCGTTCATGGTATGGYCCAA



C (p.Ser60Pro)


GATCGAACGCAGGAAGATCAT′]





2240
NM_021072.3(HCN1): c.814T > C
348980
HCN1
[′TGATGTATGTATCTAATTAACCTTGRAAGTC



(p.Ser272Pro)


GTAATAAACGCAAGAGACTG′]





2241
NM_001079867.1(PEX2): c.739T >
5828
PEX2
[′CACCAGTGGCAAAGAATGCGCTCTAYGTGG



C (p.Cys247Arg)


AGAGTGGCCCACCATGCCTCA′]





2242
NM_022552.4(DNMT3A): c.1943T >
1788
DNMT3A
[′CTGAATGCCCAAGTCCTTCAGCACCRGGAGC



C (p.Leu648Pro)


CCTGCACCAGCCAGCAGACA′]





2243
NM_022552.4(DNMT3A): c.2705T >
1788
DNMT3A
[′CGCAAAATACTCCTTCAGCGGAGCGRAGAG



C (p.Phe902Ser)


GTGGCGGATGACTGGCACGCT′]





2244
NM_018400.3(SCN3B): c.482T >
55800
SCN3B
[′GAGGAAGACCAGAAGGATGTACATCRTGAT



C (p.Met161Thr)


TTCTGAGACCACAGAGGTGAA′]





2245
NM_000406.2(GNRHR): c.392T >
2798
GNRHR
[′TTCTCCATGTATGCCCCAGCCTTCAYGATGG



C (p.Met131Thr)


TGGTGATCAGCCTGGACCGC′]





2246
NM_001030001.2(RPS29): c.149T >
6235
RPS29
[′GCAGACGCCTACCTTAATGAAACCGRTATCC



C (p.Ile50Thr)


TTCGCGTACTGACGGAAACA′]





2247
NM_177550.4(SLC13A5): c.1463T >
284111
SLC13A5
[′CAGGGTACAGGGCAGCATGATGTACRGCGG



C (p.Leu488Pro)


ATTGAGGCCGATGGAGCGAGA′]





2248
NM_004464.3(FGF5): c.520T > C
2250
FGF5
[′TTTTCAAGAAAATAGCTATAATACCBATGCC



(p.Tyr174His)


TCAGCAATACATAGAACTGA′]





2249
NM_000051.3(ATM): c.4776 + 2T >
472
ATM
[′AGAGGACCCTTTTCACTCTTGGAGGYAATAA



C


AAATTTCATCATCTACTATT′]





2250
NM_002880.3(RAF1): c.1808T >
5894
RAF1
[′GTGTTGGAGCAGCTCAATGGAAGACRGGAT



C (p.Leu603Pro)


CTGAAACAAAGCCCAAGAATG′]





2251
NM_000251.2(MSH2): c.942 + 2T >
4436
MSH2
[′GTCAGAGCCCTTAACCTTTTTCAGGBAAAAA



C


AAAAAAAAAAAAAAAAAAAA′]





2252
NM_001077620.2(PRCD): c.2T >
−1

[′GGGAGGGGATGGGGCAGCTGCGCCAYGTGC



C (p.Met1Thr)


ACCACCCTTTTCCTGCTCAGC′]





2253
NM_001142800.1(EYS): c.9209T >
346007
EYS
[′AGCCACAAAGTTTTTATGTGGATCARTATCC



C (p.Ile3070Thr)


TCGGAAAGAATTAGACTGTT′]





2254
NM_206933.2(USH2A): c.9751T >
7399
USH2A
[′TCCTAAATTGACAGGTGAAGTATGCYGTCCA



C (p.Cys3251Arg)


GATGAACAGCACAATCGGGT′]





2255
NM_000257.3(MYH7): c.4442T >
−1

[′GAGGCTCGCTCCCTCAGCACAGAGCYCTTCA



C (p.Leu1481Pro)


AACTCAAGAACGCCTATGAG′]





2256
NM_000257.3(MYH7): c.4835T >
−1

[′GAGACACGCAGCCGCAACGAGGCCCYGAGG



C (p.Leu1612Pro)


GTGAAGAAGAAGATGGAAGGA′]





2257
NM_000257.3(MYH7): c.4937T >
−1

[′GAGGCCCAGAAGCAAGTCAAGAGCCYCCAG



C (p.Leu1646Pro)


AGCTTGTTGAAGGTACTCACC′]





2258
NM_001199138.1(NLRC4): c.
58484
NLRC4
[′AATCTCATGAAGACCCCTCTCTTTGYGGTCA



1022T > C (p.Val341Ala)


TCACTTGTGCAATCCAGATG′]





2259
NM_000076.2(CDKN1C): c.*5 +
1028
CDKN1C
[′GCGCAAGAGGCTGCGGTGAGCCAAGYGAGT



2T > C


ACAGCGCACCTGGGGGGGCGC′]





2260
NM_003159.2(CDKL5): c.659T >
6792
CDKL5
[′CCTGGAGAAAGTGAAATTGACCAACYTTTT



C (p.Leu220Pro)


ACTATTCAGAAGGTGCTAGGA′]





2261
NM_005027.3(PEK3R2): c.1202T >
5296
PIK3R2
[′CTCACCTTCTGCTCCGTTGTGGACCYCATCA



C (p.Leu401Pro)


ATCACTACCGCCACGAGTCT′]





2262
NM_173596.2(SLC39A5): c.911T >
283375
SLC39A5
[′TTCCTGCTCTTTGTGCTGGAGAACAYGCTGG



C (p.Met304Thr)


GGCTTTTGCGGCACCGAGGG′]





2263
NM_153334.6(SCARF2): c.190T >
91179
SCARF2
[′CCTTGCTGCCTCCAGCCAGCGCAGCRCGTGG



C (p.Cys64Arg)


GCACCTGGGAGCTGCGAGCA′]





2264
NM_001288767.1(ARMC5): c.1928T >
79798
ARMC5
[′GGGGCACTTGTGACCGGCCCGGCGCYGTAC



C (p.Leu643Pro)


GGCCTGCTGACCTATGTGACC′]





2265
NM_001288767.1(ARMC5): c.1379T >
79798
ARMC5
[′CGTGAGGCCATCAACCGGGCCCGACYGCGG



C (p.Leu460Pro)


GATGCTGGTGGCTTGGATCTA′]





2266
NC_012920.1: m.9478T > C
4514
MT-CO3
[′ATAATCCTATTTATTACCTCAGAAGYTTTTTT






CTTCGCAGGATTTTTCTGA′]





2267
NC_012920.1: m.11984T > C
4538
MT-ND4
[′ACTAGTCACAGCCCTATACTCCCTCYACATA






TTTACCACAACACAATGGGG′]





2268
NM_014845.5(FIG4): c.50T > C
9896
FIG4
[′ATCAGCTCGGTCCAGAAGCTGGTTCYGTATG



(p.Leu17Pro)


AGACTAGAGCTGTGAGTACC′]





2269
NM_003159.2(CDKL5): c.145 +
6792
CDKL5
[′TCAAGAAATTCAAGGACAGTGAAGGYAGAT



2T > C


ATATATATATATATATATATA′]





2270
NM_002775.4(HTRA1): c.1091T >
5654
HTRA1
[′CCATCTGATAAGATTAAAAAGTTCCYCACG



C (p.Leu364Pro)


GAGTCCCATGACCGACAGGCC′]





2271
NM_021870.2(FGG): c.1210T > C
2266
FGG
[′ATCTTCATAGTGGTTTTCTTCATGGRATACC



(p.Ser404Pro)


ACCGGGTTTTCCAAGTGGCC′]





2272
NM_017617.3(NOTCH1): c.1285T >
4851
NOTCH1
[′TCGAAGGAGCCCAGCGTGTTGATGCRCTTGC



C (p.Cys429Arg)


CCGCATGCTCGCAGGGGTTG′]





2273
NM_024915.3(GRHL2): c.1192T >
79977
GRHL2
[′GATGATTCAGATTGACACATACAGTYATAA



C (p.Tyr398His)


CAATCGTAGCAATAAACCCAT′]





2274
NM_002049.3(GATA1): c.2T > C
2623
GATA1
[′CGCAGGTTAATCCCCAGAGGCTCCAYGGAG



(p.Met1Thr)


TTCCCTGGCCTGGGGTCCCTG′]





2275
NM_002049.3(GATA1): c.1240T >
2623
GATA1
[′TACTGTGGTGGCTCCGCTCAGCTCAYGAGGG



C (p.Ter414Arg)


CACAGAGCATGGCCTCCAGA′]





2276
NM_005859.4(PURA): c.299T > C
5813
PURA
[′GGCGCGGGCGGCAACAAGAGCCGCCYTACT



(p.Leu100Pro)


CTCTCCATGTCAGTGGCCGTG′]





2277
NM_032374.4(APOPT1): c.353T >
84334
APOPT1
[′TTCTGGGCAAACCAGAATTTGACTTYTAGTA



C (p.Phe118Ser)


AGGTAAGTTTAAGTTTTAGA′]





2278
NM_032551.4(KISS1R): c.937T >
84634
KISS1R
[′TAAGACCTGGGCTCACTGCATGTCCYACAGC



C (p.Tyr313His)


AACTCCGCGCTGAACCCGCT′]





2279
NM_017696.2(MCM9): c.1732 +
254394
MCM9
[′AAAGCTTGATACGATTAGCAGAAGGYCTAT



2T > C


TTCATTCAGCGAATGATGCTT′]





2280
NM_003159.2(CDKL5): c.602T >
6792
CDKL5
[′GACATGTGGTCGGTGGGCTGTATTCYTGGGG



C (p.Leu201Pro)


AGCTTAGCGATGGACAGCCT′]





2281
NM_005740.2(DNAL4): c.153 +
10126
DNAL4
[′GAGAAATTCTCCAACAACAACGAGGYATTG



2T > C


CCAGCAGTGCAGGCGGCCCCT′]





2282
NM_201631.3(TGM5): c.763T > C
9333
TGM5
[′TTCAGGATGGCCACGCTGCCCGTCCRCTCCG



(p.Trp255Arg)


CAGGGTTGGCGCCGTCTGTG′]





2283
NM_201631.3(TGM5): c.122T > C
9333
TGM5
[′GCTCCGGTTCCTGAAGTACAGGGTGRGGTTG



(p.Leu41Pro)


AAGGCCTGGCCCCGGCGAAC′]





2284
NM_001287223.1(SCN11A): c.
11280
SCN11A
[′TACCTTCATTCCTTCAAACTGGGACRGCGCA



3473T > C (p.Leu1158Pro)


CGAAGAGGCCTCAGTGCTCG′]





2285
NM_001287223.1(SCN11A): c.
11280
SCN11A
[′GGGCTCTACTCAGTCTTCTTCTTCAYTGTGG



1142T > C (p.Ile381Thr)


TCATTTTCCTGGGCTCCTTC′]





2286
NM_001302946.1(TRNT1): c.668T >
51095
TRNT1
[′CATGATCCTGAGACTTTGGAAGCAAYTGCA



C (p.Ile223Thr)


GAAAATGCAAAAGGCTTGGCT′]





2287
NM_001302946.1(TRNT1): c.497T >
51095
TRNT1
[′TAATGAATAGGTTTTGATGGCACTTYATTTG



C (p.Leu166Ser)


ACTACTTTAATGGTTATGAA′]





2288
NM_018136.4(ASPM): c.2419 +
259266
ASPM
[′ATAGACACCTATGGAAAGATGTGGGYAAGA



2T > C


AGACTGCAGAAATCTTGACAT′]





2289
NM_022455.4(NSD1): c.5885T >
64324
NSD1
[′TGGGGTCTACGGACAAAAACAGATAYTAAA



C (p.Ile1962Thr)


AAGGTTAGAAAAAGCTAAATT′]





2290
NM_022455.4(NSD1): c.5989T >
64324
NSD1
[′TCAAGAACATGATATCACTAATTTCYATATG



C (p.Tyr1997His)


CTCACCCTAGACAAAGTAAG′]





2291
NM_133433.3(NIPBL): c.7062 +
25836
NIPBL
[′AAAAAATATGCTGGATTCATTCATGYATGTA



2T > C


TTTTAACATTTTATAACCTA′]





2292
NM_000525.3(KCNJ11): c.988T >
3767
KCNJ11
[′GGAGGACGGACGTTACTCTGTGGACYACTC



C (p.Tyr330His)


CAAGTTTGGCAACACCGTCAA′]





2293
NM_004004.5(GJB2): c.107T > C
2706
GJB2
[′CTCTTCATTTTTCGCATTATGATCCYCGTTGT



(p.Leu36Pro)


GGCTGCAAAGGAGGTGTGG′]





2294
NM_130838.1(UBE3A): c.2485T >
7337
UBE3A
[′CTTTAATGTGCTTTTACTTCCGGAAYACTCA



C (p.Tyr829His)


AGCAAAGAAAAACTTAAAGA′]





2295
NM_005682.6(ADGRG1): c.1460T >
9289
ADGRG1
[′GCCATCTTCCTGCACTTCTCCCTGCYCACCT



C (p.Leu487Pro)


GCCTTTCCTGGATGGGCCTC′]





2296
NM_000430.3(PAFAH1B1): c.841T >
5048
PAFAH1B1
[′CCGAGAGCATGAGCATGTGGTAGAAYGCAT



C (p.Cys281Arg)


TTCCTGGGCTCCAGAAAGCTC′]





2297
NM_001005360.2(DNM2): c.1862T >
1785
DNM2
[′GTGGACAGCTGGAAGGCCTCGTTCCYCCGA



C (p.Leu621Pro)


GCTGGCGTCTACCCCGAGAAG′]





2298
NM_178151.2(DCX): c.683T > C
1641
DCX
[′CTGGAGACCGGGGTTGTCAAAAAACYCTAC



(p.Leu228Pro)


ACTCTGGATGGAAAACAGGTA′]





2299
NM_178151.2(DCX): c.641T > C
1641
DCX
[′TCTTTTGAGCAAGTCCTCACTGATAYCACAG



(p.Ile214Thr)


AAGCCATCAAACTGGAGACC′]





2300
NM_178151.2(DCX): c.412T > C
1641
DCX
[′AGACAACTTCTTTAAAAAGGTGGAGYACAC



(p.Tyr138His)


CAAGAATGTCAATCCCAACTG′]





2301
NM_178151.2(DCX): c.272T > C
1641
DCX
[′TTGCTGGCTGACCTGACGCGATCTCYGTCTG



(p.Leu91Pro)


ACAACATCAACCTGCCTCAG′]





2302
NM_178151.2(DCX): c.128T > C
1641
DCX
[′TGTAGCTTCTACCGAACCAGAACCTYGCAG



(p.Leu43Ser)


GCACTGAGTAATGAGAAGAAA′]





2303
NM_178151.2(DCX): c.2T > C
1641
DCX
[′AGGTCTCTGAGGTTCCACCAAAATAYGGAA



(p.Met1Thr)


CTTGATTTTGGACACTTTGAC′]





2304
NM_000252.2(MTM1): c.260T >
4534
MTM1
[′TCTTCTCTAATACTTGATGTTCCTCYGGGTGT



C (p.Leu87Pro)


GATCTCGAGAATTGAAAAA′]





2305
NM_000252.2(MTM1): c.683T >
4534
MTM1
[′AACTTTCTGACTTAACCATAGGTGCYGTCAT



C (p.Leu228Pro)


GGATTCATCCAGAAAATAAG′]





2306
NM_000252.2(MTM1): c.958T >
4534
MTM1
[′TCATAATATTCATGTTATGCGGGAAYCTTTA



C (p.Ser320Pro)


AAAAAAGTGAAGGACATTGT′]





2307
NM_000252.2(MTM1): c.1353 +
4534
MTM1
[′TGTGTGTGGCAAATGTCAAAACAGGYAAGG



2T > C


AATATGAGGGATGAAAATACA′]





2308
NM_000252.2(MTM1): c.1367T >
4534
MTM1
[GTTTTTGTTTAGTTCCCTACAGCTTYTGAATT



C (p.Phe456Ser)


CAATGAACAATTTTTGATT′]





2309
NM_000252.2(MTM1): c.1433T >
4534
MTM1
[′CTGTATAGTTGCCGATTTGGTACTTYCTTATT



C (p.Phe478Ser)


CAACTGTGAATCTGCTCGA′]





2310
NM_000252.2(MTM1): c.1495T >
4534
MTM1
[′GGTTACAGAAAGGACTGTTTCTTTAYGGTCA



C (p.Trp499Arg)


CTGATAAACAGTAATAAAGA′]





2311
NM_006579.2(EBP): c.310T > C
10682
EBP
[′TCTCTTCTTTTCTTCAGGGAAAGAGYATGCC



(p.Tyr104His)


AAGGGAGACAGCCGATACAT′]





2312
NM_152296.4(ATP1A3): c.2270T >
478
ATP1A3
[′GAGCCTGCCTGTGCCACAGGCCGCCYGATCT



C (p.Leu757Pro)


TCGACAACCTAAAGAAGTCC′]





2313
NM_152296.4(ATP1A3): c.1250T >
478
ATP1A3
[′GTGGCCCTGTCTCACATCGCTGGGCYCTGCA



C (p.Leu417Pro)


ATCGCGCTGTCTTCAAGGGT′]





2314
NM_152296.4(ATP1A3): c.1144T >
478
ATP1A3
[′GAACCGCATGACAGTCGCCCACATGYGGTT



C (p.Trp382Arg)


TGACAACCAGATCCACGAGGC′]





2315
NM_152296.4(ATP1A3): c.1112T >
478
ATP1A3
[′ATCTGCTCAGATAAGACAGGGACCCYCACT



C (p.Leu371Pro)


CAGAACCGCATGACAGTCGCC′]





2316
NM_004963.3(GUCY2C): c.2782T >
−1

[′CTTTCTGTCCTTCATTTCAGGTCCCYGTGCTG



C (p.Cys928Arg)


CTGGAGTTGTGGGAATCAA′]





2317
NM_000109.3(DMD): c.1700T >
1756
DMD
[′GTTCACTGCATCTTCTTTTTCTGAARGCCATG



C (p.Leu567Pro)


CACTAAAAAGGCACTGCAA′]





2318
NM_001543.4(NDST1): c.1918T >
3340
NDST1
[′CAGCAACTACCCCAGCTCTGAGACCYTTGA



C (p.Phe640Leu)


GGAGATCCAGTTTTTTAATGG′]





2319
NM_001999.3(FBN2): c.3740T >
2201
FBN2
[′GGTGTCACAGCCTCCGTTCATTATCRTACAT



C (p.Met1247Thr)


TCATCAATATCTGTGAAAAC′]





2320
NM_005154.4(USP8): c.2152T >
9101
USP8
[′ACCTTCCAAACTGAAGCGCTCCTACYCCTCC



C (p.Ser718Pro)


CCAGATATAACCCAGGCTAT′]





2321
NM_000734.3(CD247): c.2T > C
919
CD247
[′CCTCTTTCTGAGGGAAAGGACAAGAYGAAG



(p.Met1Thr)


TGGAAGGCGCTTTTCACCGCG′]





2322
NM_000663.4(ABAT): c.1433T >
18
ABAT
[′AAATCCATTCGTTTCCGTCCCACGCYGGTCT



C (p.Leu478Pro)


TCAGGGATCACCACGCTCAC′]





2323
NM_005211.3(CSF1R): c.2717T >
1436
CSF1R
[′ACCCACAGACCCACCTTCCAGCAGAYCTGCT



C (p.Ile906Thr)


CCTTCCTTCAGGAGCAGGCC′]





2324
NM_005211.3(CSF1R): c.2566T >
1436
CSF1R
[′CTTGGCCTTTGCAGGGCTGAATCCCYACCCT



C (p.Tyr856His)


GGCATCCTGGTGAACAGCAA′]





2325
NM_005211.3(CSF1R): c.2480T >
1436
CSF1R
[′GTGAAGTGGATGGCCCCAGAGAGCAYCTTT



C (p.Ile827Thr)


GACTGTGTCTACACGGTTCAG′]





2326
NM_005211.3(CSF1R): c.2450T >
1436
CSF1R
[′TGGGGACTGTCATCCCAGGCCCGCCYGCCTG



C (p.Leu817Pro)


TGAAGTGGATGGCCCCAGAG′]





2327
NM_005211.3(CSF1R): c.1957T >
1436
CSF1R
[′GAACATCGTCAACCTTCTGGGAGCCYGTACC



C (p.Cys653Arg)


CATGGAGGTAAGGGCCTTGG′]





2328
NM_005211.3(CSF1R): c.1745T >
1436
CSF1R
[′AAGTGGGAGTTCCCCCGGAACAACCYGCAG



C (p.Leu582Pro)


TTTGGTGAGATGGCAGCTCAT′]





2329
NM_001563.3 (EVIPG1): c.461T >
3617
EVIPG1
[′AATTCCCAGGAGCACCTGGATCTTCYCCAGC



C (p.Leu154Pro)


AGGTGAGCCTAAACACCACA′]



NM_001130823.1(DNMT1): c.1531T >
1786
DNMT1
[]



C (p.Tyr511His)








2330
NM_152515.4(CKAP2L): c.2T > C
150468
CKAP2L
[′AGCAGCGGTAGGCCCGGGCCCCACCRTGAC



(p.Met1Thr)


TCTTCAGTGACAGTTTTTCTT′]





2331
NM_170707.3(LMNA): c.1968 +
4000
LMNA
[′GGCAACTCCAGCCCCCGAACCCAGGNGAGT



2T > C


TGTCTCTGCTTTGTCTCCAAA′]





2332
NM_153818.1(PEX10): c.890T >
5192
PEX10
[′AGAAACCCCCTGTGCACCCTGTGCCYGGAG



C (p.Leu297Pro)


GAGCGCAGGCACCCAACAGCC′]





2333
NM_153818.1(PEX10): c.2T > C
5192
PEX10
[′TCGGGACCACCCGAACCCGCGGCCAYGGCC



(p.Met1Thr)


CCGGCCGCCGCCAGCCCCCCG′]





2334
NM_014305.3(TGDS): c.700T > C
23483
TGDS
[′AATGCTTCTACAACATCAGTAGCATRAAGG



(p.Tyr234His)


AAGTTTCTTGTTTGAAGCCCT′]





2335
NM_000256.3(MYBPC3): c.2994 +
4607
MYBPC3
[′GTGAACCTTCTCATCCCTTTCCAGGYGGGAC



2T > C


TGGCCCCCTTCCCTGTCCCC′]





2336
NM_000256.3(MYBPC3): c.1624 +
4607
MYBPC3
[′CTCATGTGCCCCCCCAGCCAGGCTCDCCCTG



2T > C


CACAATGAGCTCAGCCAGCG′]





2337
NM_000257.3(MYH7): c.2207T >
4625
MYH7
[′GCGGCCATCCCTGAGGGACAGTTCAHTGAT



C (p.Ile736Thr)


AGCAGGAAGGGGGCAGAGAAG′]





2338
NM_000138.4(FBN1): c.7754T >
2200
FBN1
[′TGCCAGCATGGCTGCCAGAACATCAYTGGG



C (p.Ile2585Thr)


GGCTACAGGTGCAGCTGCCCC′]





2339
NM_000371.3(TTR): c.190T > C
7276
TTR
[′GGCTGCTGATGACACCTGGGAGCCAYTTGC



(p.Phe64Leu)


CTCTGGGTAAGTTGCCAAAGA′]





2340
NM_000126.3(ETFA): c.2T > C
2108
ETFA
[′GAGGTTGCGGCGGAAGCGGAGACCAYGTTC



(p.Met1Thr)


CGAGCGGCGGCTCCGGGGCAG′]





2341
NM_006493.2(CLN5): c.2T > C
1203
CLN5
[′GCGGGCCGGGCGCGGGGAGGTGTCAYGCGC



(p.Met1Thr)


CGGAACCTGCGCTTGGGGCCA′]





2342
NM_000543.4(SMPD1): c.475T >
6609
SMPD1
[′CTCAGTGCTGAGCCCATCTGAGGCCYGTGGC



C (p.Cys159Arg)


CTGCTCCTGGGCTCCACCTG′]





2343
NM_000501.3(ELN): c.889 + 2T >
2006
ELN
[′TTCCTGGAATTGGAGGCATCGCAGGYAACA



C


TCTGTCCCAGCAGGGGGCGGG′]





2344
NM_000169.2(GLA): c.758T > C
−1

[′TGGACATCTTTTAACCAGGAGAGAAYTGTTG



(p.Ile253Thr)


ATGTTGCTGGACCAGGGGGT′]





2345
NM_152743.3(BRAT1): c.176T >
221927
BRAT1
[′GAGCACCCCTGCCTGGTGGAGCTGCYGTCCC



C (p.Leu59Pro)


ATGTGCTGAAAGTCCAGGAC′]





2346
NM_000152.3(GAA): c.896T > C
2548
GAA
[′CTCTACGGGTCTCACCCTTTCTACCBGGCGC



(p.Leu299Pro)


TGGAGGACGGCGGGTCGGCA′]





2347
NM_015384.4(NIPBL): c.7637T >
25836
N1PBL
[′AATGTGTCCCAGGGTATTTTATTACYTCTCA



C (p.Leu2546Pro)


TGTTAAAACAACATTTGAAG′]





2348
NM_005641.3(TAF6): c.212T > C
6878
TAF6
[′ATTCTTTAGCTTCAAGGCGTAGTCADTGTCA



(p.Ile71Thr)


CTGGTGGTGAGCTTCTGCCG′]





2349
NM_170707.3(LMNA): c.710T >
4000
LMNA
[′ATTGACAATGGGAAGCAGCGTGAGTYTGAG



C (p.Phe237Ser)


AGCCGGCTGGCGGATGCGCTG′]





2350
NM_000527.4(LDLR): c.1468T >
3949
LDLR
[′GGACTGGATCCACAGCAACATCTACYGGAC



C (p.Trp490Arg)


CGACTCTGTCCTGGGCACTGT′]





2351
NM_000081.3(LYST): c.772T > C
1130
LYST
[′CATGAACAATTCTCCATTTGACTTAYGTCAT



(p.Cys258Arg)


GTTTTGTTATCTTTATTAGA′]





2352
NM_000256.3(MYBPC3): c.3796T >
4607
MYBPC3
[′CTTACAGGGCGAGGCACGGTGTGAGYGCCG



C (p.Cys1266Arg)


CCTGGAGGTGCGAGGTGAGGA′]





2353
NM_000256.3(MYBPC3): c.3713T >
4607
MYBPC3
[′TTCAGCAAGCAGGGAGTGTTGACTCYGGAG



C (p.Leu1238Pro)


ATTAGAAAGCCCTGCCCCTTT′]





2354
NM_000256.3(MYBPC3): c.3330 +
4607
MYBPC3
[′CAGAAAGCCGACAAGAAGACCATGGBGAGC



2T > C


CCAGGGTCTGGGGTCCCCACG′]





2355
NM_000256.3(MYBPC3): c.1696T >
4607
MYBPC3
[′CGCAAAGGACCAGGCGGTGTTCAAAYGTGA



C (p.Cys566Arg)


GGTCTCAGATGAGAATGTTCG′]





2356
NM_000256.3(MYBPC3): c.1456T >
4607
MYBPC3
[′ATCGGAGGAGGGGGCGCAAGTCAAABGGTG



C (p.Trp486Arg)


AGTTCCAGAAGCACGGGGCAT′]





2357
NM_000256.3(MYBPC3): c.709T >
4607
MYBPC3
[′TGCCCAGCCTGCCTTCACTGGCAGCYACCGC



C (p.Tyr237His)


TGTGAGGTGTCCACCAAGGA′]





2358
NM_000256.3(MYBPC3): c.467T >
4607
MYBPC3
[′GGAGCCCCCGATGACCCCATTGGCCYCTTCG



C (p.Leu156Pro)


TGATGCGGCCACAGGATGGC′]





2359
NM_000257.3(MYH7): c.2723T >
4625
MYH7
[′GATGCTGAGGAGCGCTGTGATCAGCYGATC



C (p.Leu908Pro)


AAAAACAAGATTCAGCTGGAG′]





2360
NM_000257.3(MYH7): c.2479T >
4625
MYH7
[′TCGGGCCTTCATGGGGGTCAAGAATYGGCC



C (p.Trp827Arg)


CTGGATGAAGCTCTACTTCAA′]





2361
NM_000257.3(MYH7): c.1400T >
4625
MYH7
[′GTCCTGGACATCGCTGGCTTCGAGAYCTTCG



C (p.Ile467Thr)


ATGTGAGTTGGGACCCCTGG′]





2362
NM_000257.3(MYH7): c.1048T >
4625
MYH7
[′CACTTCAGAGGAGAAAAACTCCATGYATAA



C (p.Tyr350His)


GCTGACAGGCGCCATCATGCA′]





2363
NM_000257.3(MYH7): c.730T >
4625
MYH7
[′CGTCCGGAACGACAACTCCTCCCGCYTCGTG



C (p.Phe244Leu)


AGTGGTCCCTGACCTTGGCC′]





2364
NM_005159.4(ACTC1): c.755T >
−1

[′CTGCCTGATGGCCAAGTCATCACTAYTGGCA



C (p.Ile252Thr)


ATGAGCGCTTCCGCTGTCCT′]





2365
NM_030662.3(MAP2K2): c.169T >
5605
MAP2K2
[′GCAGCAGAAGAAGCGGCTGGAAGCCNTTCT



C (p.Phe57Leu)


CACCCAGAAAGCCAAGGTCGG′]





2366
NM_000169.2(GLA): c.41T > C
−1

[′CCAGAACTACATCTGGGCTGCGCGCYTGCG



(p.Leu14Pro)


CTTCGCTTCCTGGCCCTCGTT′]





2367
NM_002294.2(LAMP2): c.864 +
3920
LAMP2
[′TATCTAGACTTTGTCTTTGCTGTGGYGAGTA



2T > C


ACAGATTTTTTAAAGTTAGG′]





2368
NM_000551.3(VHL): c.227T > C
7428
VHL
[′TCGCGCGAGCCCTCCCAGGTCATCTYCTGCA



(p.Phe76Ser)


ATCGCAGTCCGCGCGTCGTG′]





2369
NM_000551.3(VHL): c.266T > C
7428
VHL
[′CCGCGCGTCGTGCTGCCCGTATGGCHCAACT



(p.Leu89Pro)


TCGACGGCGAGCCGCAGCCC′]





2370
NM_000551.3(VHL): c.473T > C
7428
VHL
[′GTTTTTGCCCTTCCAGTGTATACTCHGAAAG



(p.Leu158Pro)


AGCGATGCCTCCAGGTTGTC′]





2371
NM_000051.3(ATM): c.8584 + 2T >
−1

[′GCAGTGTAGCTACTTCTTCTATTGGYAATCT



C


TCTTGTACATATAGTAGATT′]





2372
NM_058216.2(RAD51C): c.404 +
5889
RAD51C
[′AGGTGTTGGAAAAACACAATTATGGYAAAA



2T > C


TAAAGTGTTCTCCTTTTAAGG′]





2373
NM_000455.4(STK11): c.545T >
6794
STK11
[′CACAAGGACATCAAGCCGGGGAACCYGCTG



C (p.Leu182Pro)


CTCACCACCGGTGGCACCCTC′]





2374
NM_001199107.1(TBC1D24): c.
57465
TBC1D24
[′GGACAACACGCAGGTGCCCAGCTACYGCCT



313T > C (p.Cys105Arg)


GAATGCACGCGGCGAGGGGGC′]





2375
NM_000899.4(KITLG): c.98T > C
4254
KITLG
[′ACTGAAGGGATCTGCAGGAATCGTGYGACT



(p.Val33Ala)


AATAATGTAAAAGACGTCACT′]





2376
NM_001195129.1(PRSS56): c.1183T >
646960
PRSS56
[′GCAGTGCCTGCAGCGCCGGCGGCGAYGCGG



C (p.Cys395Arg)


TCAGTTCTGTTCACCCGGACC′]





2377
NM_006888.4(CALM1): c.268T >
801
CALM1
[′TAGTGAAGAAGAAATCCGTGAGGCAYTCCG



C (p.Phe90Leu)


AGTCTTTGACAAGGTAATCCA′]





2378
NM_017534.5(MYH2): c.5609T >
−1

[′GAAGATAGAAAGAATATTCTCAGGCYTCAA



C (p.Leu1870Pro)


GATTTGGTAGATAAACTTCAG′]





2379
NM_003000.2(SDHB): c.574T > C
6390
SDHB
[′CTACGAGTGCATTCTCTGTGCCTGCYGTAGC



(p.Cys192Arg)


ACCAGCTGCCCCAGCTACTG′]





2380
NM_000314.6(PTEN): c.406T > C
5728
PTEN
[′AAAGGGACGAACTGGTGTAATGATAYGTGC



(p.Cys136Arg)


ATATTTATTACATCGGGGCAA′]





2381
NM_000051.3(ATM): c.2T > C
472
ATM
[′ATGTGTGTTCTGAAATTGTGAACCAYGAGTC



(p.Met1Thr)


TAGTACTTAATGATCTGCTT′]





2382
NM_052867.2(NALCN): c.1526T >
259232
NALCN
[′GGTCCTGGAAAAAAGCTTGGGAGTTYGGTT



C (p.Leu509Ser)


GTATTTACTGCCAGCCTCTTG′]





2383
NM_000314.6(PTEN): c.545T > C
5728
PTEN
[′TATGTGTATTATTATAGCTACCTGTYAAAGA



(p.Leu182Ser)


ATCATCTGGATTATAGACCA′]





2384
NM_005957.4(MTHFR): c.1969T >
4524
MTHFR
[′ACGCAGGGCGTCAGGACGCAGGGTCRTGGA



C (p.Ter657Arg)


GCCTCCGTTTCTCTCGCATTC′]





2385
NM_005957.4(MTHFR): c.1883T >
4524
MTHFR
[′AACCTGGTGGACAATGACTTCCCACYGGAC



C (p.Leu628Pro)


AACTGCCTCTGGCAGGTGGTG′]





2386
NM_005957.4(MTHFR): c.1793T >
4524
MTHFR
[′CTGTGGATTGAGCGGTGGGGAAAGCYGTAT



C (p.Leu598Pro)


GAGGAGGAGTCCCCGTCCCGC′]





2387
NM_005957.4(MTHFR): c.1530 +
4524
MTHFR
[′AGCGGGGGCTATGTCTTCCAGAAGGYGTGG



2T > C


TAGGGAGGCACGGGGTGCCCC′]





2388
NM_005957.4(MTHFR): c.388T >
4524
MTHFR
[′CCTGGAGACCATCCTGCACATGACCYGCTGC



C (p.Cys130Arg)


CGTCAGCGCCTGGAGGAGAT′]





2389
NM_000264.3(PTCH1): c.3168 +
5727
PTCH1
[′AACCCCTGGACGGCCGGGATCATTGYGAGT



2T > C


GTATTATAAGGGGCTTTGTGG′]





2390
NM_000030.2(AGXT): c.302T > C
189
AGXT
[′GTGCTGGAGCCTGGGGACTCCTTCCYGGTTG



(p.Leu101Pro)


GGGCCAATGGCATTTGGGGG′]





2391
NM_000030.2(AGXT): c.322T > C
189
AGXT
[′CTTCCTGGTTGGGGCCAATGGCATTYGGGGG



(p.Trp108Arg)


CAGCGAGCCGTGGACATCGG′]





2392
NM_000023.2(SGCA): c.371T > C
6442
SGCA
[′ACTCGGCAGAGGCTGGTGCTGGAGAYTGGG



(p.Ile124Thr)


GACCCAGAAGGTACCTCTAGC′]





2393
NM_016035.4(COQ4): c.155T > C
51117
COQ4
[′CGCCATCGCCGCGGAGCCGGCGGCCRACAG



(p.Leu52Ser)


CCCTTTCTGCAGCGGGGAGGT′]





2394
NM_000510.2(FSHB): c.298T > C
2488
FSHB
[′GTATACATACCCAGTGGCCACCCAGYGTCA



(p.Cys100Arg)


CTGTGGCAAGTGTGACAGCGA′]





2395
NM_007374.2(SIX6): c.110T > C
4990
SIX6
[′CGCCTGGGTCGCTTCCTCTGGTCGCYGCCCG



(p.Leu37Pro)


TGGCCCCTGCGGCCTGCGAG′]





2396
NM_000314.6(PTEN): c.202T > C
5728
PTEN
[′AAAGCATAAAAACCATTACAAGATAHACAA



(p.Tyr68His)


TCTGTAAGTATGTTTTCTTAT′]





2397
NM_001103.3(ACTN2): c.683T >
88
ACTN2
[′GAGAAGCACCTGGATATTCCTAAAAYGTTG



C (p.Met228Thr)


GATGCTGAAGGTGAGATGAAA′]





2398
NM_005249.4(FOXG1): c.700T >
2290
FOXG1
[′GCAGAACTCCATCCGCCACAATCTGYCCCTC



C (p.Ser234Pro)


AACAAGTGCTTCGTGAAGGT′]





2399
NM_001165963.1(SCN1A): c.4055T >
−1

[′ATTCCATCCATCATGAATGTGCTTCYGGTTT



C (p.Leu1352Pro)


GTCTTATATTCTGGCTAATT′]





2400
NM_001165963.1(SCN1A): c.2690T >
6323
SCN1A
[′GCTCTGGGAAATTTAACCCTCGTCTYGGCCA



C (p.Leu897Ser)


TCATCGTCTTCATTTTTGCC′]





2401
NM_001165963.1(SCN1A): c.1265T >
6323
SCN1A
[′CTAATAAATTTGATCCTGGCTGTGGHGGCCA



C (p.Val422Ala)


TGGCCTACGAGGAACAGAAT′]





2402
NM_001165963.1(SCN1A): c.1033T >
6323
SCN1A
[′TTTCTTTTACCCCACTTGCAGCCAAYGTCCA



C (p.Cys345Arg)


GAGGGATATATGTGTGTGAA′]





2403
NM_001165963.1(SCN1A): c.769T >
6323
SCN1A
[′AGATGTAATGATCCTGACTGTGTTCYGTCTG



C (p.Cys257Arg)


AGCGTATTTGCTCTAATTGG′]





2404
NM_001165963.1(SCN1A): c.323T >
6323
SCN1A
[′TTCCGGTTCAGTGCCACCTCTGCCCYGTACA



C (p.Leu108Pro)


TTTTAACTCCCTTCAATCCT′]





2405
NM_000426.3(LAMA2): c.8282T >
3908
LAMA2
[′GCAGAATCAGAACCAGCTCTTTTGAYAGGG



C (p.Ile2761Thr)


AGCAAGCAGTTCGGGCTTTCA′]





2406
NM_001199.3(BMP1): c.*241T >
649
BMP1
[′GTCTGTGACATTTCCTGTTGTGAAGYAAAAG



C


AGGGACCCCTGCGTCCTGCT′]





2407
NM_001987.4(ETV6): c.1046T >
2120
ETV6
[′CTTTGGGATTACGTCTATCAGTTGCYTTCTG



C (p.Leu349Pro)


ACAGCCGGTACGAAAACTTC′]





2408
NM_004974.3(KCNA2): c.788T >
3737
KCNA2
[′ATGAACATCATTGACATTGTGGCCAYCATCC



C (p.Ile263Thr)


CCTACTTCATCACCCTGGGG′]





2409
NM_002055.4(GFAP): c.791T > C
2670
GFAP
[′GTGTCCCCCACCTAGTTTGCAGACCYGACAG



(p.Leu264Pro)


ACGCTGCTGCCCGCAACGCG′]





2410
NM_002055.4(GFAP): c.239T > C
2670
GFAP
[′GAGATGATGGAGCTCAATGACCGCTYTGCC



(p.Phe80Ser)


AGCTACATCGAGAAGGTTCGC′]





2411
NM_002055.4(GFAP): c.218T > C
2670
GFAP
[′ACCCGGGCCAGTGAGCGGGCAGAGADGATG



(p.Met73Thr)


GAGCTCAATGACCGCTTTGCC′]





2412
NM_001288953.1(TTC7A): c.1912T >
57217
TTC7A
[′TTTGCCTGATGCCCATGATGCAGACYCTGGT



C (p.Ser638Pro)


AAGAACGAGCTCCTTGGGCC′]





2413
NM_000257.3(MYH7): c.5117T >
−1

[′TCCCGGAAGCTGGCGGAGCAGGAGCYGATT



C (p.Leu1706Pro)


GAGACTAGTGAGCGGGTGCAG′]





2414
NM_000257.3(MYH7): c.4772T >
−1

[′ATGGAACAGGCCAAGCGCAACCACCWGCG



C (p.Leu1591Pro)


GGTGGTGGACTCGCTGCAGACC′]





2415
NM_016218.2(POLK): c.609T > C
51426
POLK
[′TGAGTCTTGATGAAGCCTACTTGAAYATAAC



(p.Asn203=)


AAAGCACTTAGAAGAAAGAC′]





2416
NM_016218.2(POLK): c.*66T > C
51426
POLK
[′TATTTTATAATCAATGAATTTGTTCYTTCTGA






TTTTAAGTTTGCAGATTTA′]





2417
NM_015662.2(1FT172): c.770T >
26160
1FT172
[′AGTCCTGGGGGCCAGTCTGTTGTGCYAGGA



C (p.Leu257Pro)


AGTTATGACAGGTAAGTCCCC′]





2418
NM_178454.4(DRAM2): c.79T >
128338
DRAM2
[′GACATCTGCTGCTTTCATATTTTCAYACATT



C (p.Tyr27His)


ACTGCAGTAACACTCCACCA′]





2419
NM_032790.3(ORAI1): c.581T >
84876
ORAI1
[′CTCTTCCTAGCTGAGGTGGTGCTGCYCTGCT



C (p.Leu194Pro)


GGGTCAAGTTCTTGCCCCTC′]





2420
NM_001135669.1(XPR1): c.434T >
9213
XPR1
[′GAGTTCTACCTCAGTCTAATCCTGCYGCAGA



C (p.Leu145Pro)


ACTATCAGGTACTTAGATTC′]





2421
NM_001135669.1(XPR1): c.419T >
9213
XPR1
[′AAACTGGCCTTCAGTGAGTTCTACCYCAGTC



C (p.Leu140Pro)


TAATCCTGCTGCAGAACTAT′]





2422
NM_001135669.1(XPR1): c.653T >
9213
XPR1
[′GACAGACAAAAGGCTATGAAGCGTTYACGT



C (p.Leu218Ser)


GTCCCCCCTTTGGGAGCTGCT′]





2423
NM_005859.4(PURA): c.218T > C
5813
PURA
[CGGGTGGACATCCAGAACAAGCGCTYCTAC



(p.Phe73Ser)


CTGGACGTGAAGCAGAACGCC′]





2424
NM_005859.4(PURA): c.563T > C
5813
PURA
[′CTGGGCTCCACGCAGGGCCAGACCAYTGCG



(p.Ile 188Thr)


CTGCCCGCGCAGGGGCTCATC′]





2425
NM_001399.4(EDA): c.396+2T >
1896
EDA
[′TCTGACTCCCAGGACGGGCACCAGGKGAGT



C


CACCTAGTAGGGGCGGCGGCG′]





2426
NM_001848.2(COL6A1): c.957 +
1291
COL6A1
[′TCCAGGGGACCCAAGGGCTACAAGGYGAGC



2T > C


GTGGGCTGCTGGGAGGGGGGA′]





2427
NM_000454.4(SOD1): c.341T > C
6647
SOD1
[′TCACTCTCAGGAGACCATTGCATCAYTGGCC



(p.Ile114Thr)


GCACACTGGTGGTAAGTTTT′]





2428
NM_020451.2(SEPN1): c.872 + 2T >
57190
SEPN1
[′CTTCTACTACACTGTGATGTTCCGGYGAGTG



C


GGCCACACTGGCTGGCCTGG′]





2429
NM_004453.3 (ETFDH): c.1001T >
2110
ETFDH
[′GGTCTAGACTATCAGAATCCATACCYGAGTC



C (p.Leu334Pro)


CATTTAGAGAGTTCCAAAGG′]





2430
NM_198056.2(SCN5A): c.4299 +
6331
SCN5A
[′CAGCTGTGGACTCCAGGGGGGTAGGYTGCC



6T > C


ACAGTGGCTTCTTCCACCAAG′]





2431
NM_198056.2(SCN5A): c.2291T >
6331
SCN5A
[′TTCACAGGGATTTTCACAGCAGAGABGACCT



C (p.Met764Thr)


TCAAGATCATTGCCCTCGAC′]





2432
NM_198056.2(SCN5A): c.2047T >
6331
SCN5A
[′AGAGTTAGAGGAGTCTCGCCACAAGBGTCC



C (p.Cys683Arg)


ACCATGCTGGAACCGTCTCGC′]





2433
NM_004415.2(DSP): c.4961T > C
1832
DSP
[′GAAAAGCAGAGGACCCAGGAAGAGCYGAG



(p.Leu1654Pro)


GAGGCTCTCTTCTGAGGTCGAG′]





2434
NM_000238.3(KCNH2): c.2396T >
3757
KCNH2
[′CGGGGCGACGTCGTCGTGGCCATCCYGGGT



C (p.Leu799Pro)


ATGGGGTGGGGGGCGGGCACT′]





2435
NM_000238.3(KCNH2): c.2366T >
3757
KCNH2
[′TTCATCTCCCGGGGCTCCATCGAGAYCCTGC



C (p.Ile789Thr)


GGGGCGACGTCGTCGTGGCC′]





2436
NM_000238.3(KCNH2): c.1945 +
3757
KCNH2
[′CTGCGTCATGCTCATTGGCTGTGAGYGTGCC



6T > C


CAGGGGCGGGCGGCGGGGAG′]





2437
NM_000238.3(KCNH2): c.1918T >
3757
KCNH2
[′TCCCAACACCAACTCAGAGAAGATCBTCTCC



C (p.Phe640Leu)


ATCTGCGTCATGCTCATTGG′]





2438
NM_000238.3(KCNH2): c.1282T >
3757
KCNH2
[′CTACACGGCTGTCTTCACACCCTACYCGGCT



C (p.Ser428Pro)


GCCTTCCTGCTGAAGGAGAC′]





2439
NM_000238.3(KCNH2): c.125T >
3757
KCNH2
[′GCTCGGGTGGAGAACTGCGCCGTCAHCTAC



C (p.Ile42Thr)


TGCAACGACGGCTTCTGCGAG′]





2440
NM_000218.2(KCNQ1): c.1025T >
3784
KCNQ1
[′GTCTTTGCCATCTCCTTCTTTGCGCYCCCAGC



C (p.Leu342Pro)


GGTAGGTGCCCCGTGGGTG′]





2441
NM_000218.2(KCNQ1): c.1251 +
3784
KCNQ1
[′CCCAAACCCAAGAAGTCTGTGGTGGYGAGT



2T > C


AGCCCACCTGCCACCAGGGCA′]





2442
NM_130799.2(MEN1): c.547T > C
4221
MEN1
[′CCTCGCCCTGTCTGAGGATCATGCCYGGGTA



(p.Trp183Arg)


GTGTTTGGGCCCAATGGGGA′]





2443
NM_000138.4(FBN1): c.7531T >
2200
FBN1
[′CACCATTGGCGGCTTCACATGCAAAYGTCCT



C (p.Cys2511Arg)


CCCGGATTTACCCAACACCA′]





2444
NM_000138.4(FBN1): c.7111T >
2200
FBN1
[′ATGCTGCTGTGACGGAGGGAGAGGCYGGGG



C (p.Trp2371Arg)


TCCCCACTGTGAGATCTGCCC′]





2445
NM_000138.4(FBN1): c.6274T >
2200
FBN1
[′CTGCTGTGCCTTGAAGGGAGAAGGCYGGGG



C (p.Trp2092Arg)


AGACCCCTGCGAGCTCTGCCC′]





2446
NM_000138.4(FBN1): c.5746T >
2200
FBN1
[′CACAATTGGTTCCTTCAACTGCCGCYGCAAT



C (p.Cys1916Arg)


CATGGTTTCATCCTTTCTCA′]





2447
NM_000138.4(FBN1): c.5726T >
2200
FBN1
[′GGGAATGGAACTTGCCGGAACACAAYTGGT



C (p.Ile1909Thr)


TCCTTCAACTGCCGCTGCAAT′]





2448
NM_000138.4(FBN1): c.1468 + 2T >
2200
FBN1
[′TGGACCTCCGTGGGGAGTGTATTGGYACGT



C


GATCCATCCTAGGTTGGCACC′]





2449
NM_004572.3(PKP2): c.2386T >
5318
PKP2
[′TCTCATTGAAACTACAGCCTCTGCCYGTTAC



C (p.Cys796Arg)


ACATTGAACAACATAATCCA′]





2450
NM_004333.4(BRAF): c.1783T >
673
BRAF
[′AGACCTCACAGTAAAAATAGGTGATYTTGG



C (p.Phe595Leu)


TCTAGCTACAGTGAAATCTCG′]





2451
NM_000543.4(SMPD1): c.416T >
6609
SMPD1
[′GCCGTGTGCCAATCCATTGTCCACCYCTTTG



C (p.Leu139Pro)


AGGATGACATGGTGGAGGTG′]





2452
NM_000016.5(ACADM): c.698T >
34
ACADM
[′GAAGCAGATACCCCAGGAATTCAGAHTGGG



C (p.Ile233Thr)


AGAAAGGTAAAGTATTTATTA′]





2453
NM_004453.3(ETFDH): c.1852T >
2110
ETFDH
[′AGGAGGACCTGCTTACAATGGAATGYAAAC



C (p.Ter618Gln)


TGCAGCTAGCCAGTTTCTTTC′]





2454
NM_000255.3(MUT): c.842T > C
4594
MUT
[GCCATTCTGGAGCTGGCCTATACTTYAGCAG



(p.Leu281Ser)


ATGGATTGGAGTACTCTAGA′]





2455
NM_000277.1(PAH): c.2T > C
5053
PAH
[′AGACCTCACTCCCGGGGAGCCAGCABGTCC



(p.Met1Thr)


ACTGCGGTCCTGGAAAACCCA′]





2456
NM_000017.3(ACADS): c.1057T >
35
ACADS
[′GGCAGCCATGGCCAAGCTGGCCGCCYCGGA



C (p.Ser353Pro)


GGCCGCGACCGCCATCAGCCA′]





2457
NM_002225.3(IVD): c.295 + 2T >
3712
IVD
[′GCGTATTGGGCATCACAGCCCCTGGYGAGT



C


ATAGTGTCTTTCCCTAAAAAG′]





2458
NM_000030.2(AGXT): c.2T > C
189
AGXT
[′CGAGCGGCAGGTTGGGTGCGGACCAYGGCC



(p.Met1Thr)


TCTCACAAGCTGCTGGTGACC′]





2459
NM_000030.2(AGXT): c.77T > C
189
AGXT
[′CTCTCCATCCCCAACCAGCTCCTGCYGGGGC



(p.Leu26Pro)


CTGGTCCTTCCAACCTGCCT′]





2460
NM_000030.2(AGXT): c.449T > C
189
AGXT
[′GGCCTGGCCCAGCACAAGCCAGTGCYGCTG



(p.Leu150Pro)


TTCTTAACCCACGGGGAGTCG′]





2461
NM_000030.2(AGXT): c.497T > C
189
AGXT
[′TCGTCCACCGGCGTGCTGCAGCCCCHTGATG



(p.Leu166Pro)


GCTTCGGGGAACTCTGCCAC′]





2462
NM_000030.2(AGXT): c.661T > C
189
AGXT
[′CGCCCCTCCAGGGACCTCGCTCATCYCCTTC



(p.Ser221Pro)


AGTGACAAGGCCAAGTGAGT′]





2463
NM_000030.2(AGXT): c.757T > C
189
AGXT
[′CAAGTGGCTGGCCAACTTCTGGGGCYGTGA



(p.Cys253Arg)


CGACCAGCCCAGGATGTGAGG′]





2464
NM_000030.2(AGXT): c.806T > C
189
AGXT
[′CATCACACAATCCCCGTCATCAGCCYGTACA



(p.Leu269Pro)


GCCTGAGAGAGAGCCTGGCC′]





2465
NM_000030.2(AGXT): c.851T > C
189
AGXT
[′CCAGCGCCATCTCCCACACAGGGCCYGGAG



(p.Leu284Pro)


AACAGCTGGCGCCAGCACCGC′]





2466
NM_000030.2(AGXT): c.893T > C
189
AGXT
[′CAGCACCGCGAGGCCGCGGCGTATCYGCAT



(p.Leu298Pro)


GGGCGCCTGCAGGCACTGGGG′]





2467
NM_000030.2(AGXT): c.947T > C
189
AGXT
[′TGAGCCAGGCCCCTCCTGCAGGCGCYCCGG



(p.Leu316Pro)


CTTCCCACAGTCACCACTGTG′]





2468
NM_000030.2(AGXT): c.1076T >
189
AGXT
[′AGCCCGCCCTGTGCCCCCCAGGTGCYGCGG



C (p.Leu359Pro)


ATCGGCCTGCTGGGCTGCAAT′]





2469
NM_000030.2(AGXT): c.1151T >
189
AGXT
[′GTGACGGAGGCCCTGAGGGCGGCCCYGCAG



C (p.Leu384Pro)


CACTGCCCCAAGAAGAAGCTG′]





2470
NM_012203.1(GRHPR): c.203T >
9380
GRHPR
[′TCCGACCACGTGGACAAGAGGATCCYGGAT



C (p.Leu68Pro)


GCTGCAGGTGCACACTGGGTG′]





2471
NM_012203.1(GRHPR): c.965T >
9380
GRHPR
[′CTGGCTGGCCTGAGAGGGGAGCCGABGCCT



C (p.Met322Thr)


AGTGAACTCAAGCTGTAGCCA′]





2472
NM_138413.3(HOGA1): c.533T >
112817
HOGA1
[′GTCCCAGCCAACACAGGGCTGGACCYGCCT



C (p.Leu178Pro)


GTGGATGCAGTGGTCACGCTT′]





2473
NM_138413.3(HOGA1): c.875T >
112817
HOGA1
[′GGGATCCCAGGGCTGAAGAAAATCAYGGAC



C (p.Met292Thr)


TGGTTTGGCTACTATGGAGGC′]





2474
NM_004370.5(COL12A1): c.7001T >
1303
COL12A1
[′TTCTTGACTGATGCCTCCTGGAGCAYTGGGG



C (p.Ile2334Thr)


ACGATAATTTTAACAAAGTT′]





2475
NM_019074.3(DLL4): c.583T > C
54567
DLL4
[′CCTGTGCAAGAAGCGCAATGACCACYTCGG



(p.Phe195Leu)


CCACTATGTGTGCCAGCCAGA′]





2476
NM_019074.3(DLL4): c.1168T >
54567
DLL4
[′CCAGGGGGCCAACTATGCTTGTGAAYGTCC



C (p.Cys390Arg)


CCCCAACTTCACCGGCTCCAA′]





2477
NM_015909.3(NBAS): c.3164T >
51594
NBAS
[′TCAGAGCTTTTGGAAAAACATGGACYCGAG



C (p.Leu1055Pro)


AAACCAATTTCATTTGTTAAA′]





2478
NM_000263.3(NAGLU): c.1208T >
4669
NAGLU
[′GCCTCCTTCCAGGGCCAGCCCTTCAYCTGGT



C (p.Ile403Thr)


GCATGCTGCACAACTTTGGG′]





2479
NM_203290.2(POLR1C): c.436T >
9533
POLR1C
[′TCTACAGTTTCGTCTCCAGGTCAGAYGCACT



C (p.Cys146Arg)


CGGAACCCCCATGCTGCTAA′]





2480
NM_018359.3(UFSP2): c.868T >
−1

[CCAGGGCATATATGGCTATCATCATYATATG



C (p.Tyr290His)


CAGGATCGCATAGATGACAA′]





2481
NM_000310.3(PPT1): c.2T > C
5538
PPT1
[′CCGCGGTCATGTGACACAGCGAAGAYGGCG



(p.Met1Thr)


TCGCCCGGCTGCCTGTGGCTC′]





2482
NM_021007.2(SCN2A): c.1271T >
6326
SCN2A
[′CTAATAAATTTGATCTTGGCTGTGGYGGCCA



C (p.Val424Ala)


TGGCCTATGAGGAACAGAAT′]





2483
NM_021007.2(SCN2A): c.2306T >
6326
SCN2A
[′GTTGACCTGGCCATCACCATCTGCAYTGTCT



C (p.Ile769Thr)


TAAATACACTCTTCATGGCT′]





2484
NM_021007.2(SCN2A): c.4308 +
6326
SCN2A
[′TATGCAGCTGTTGATTCACGAAATGYAAGTC



2T > C


TAGTTAGAGGGAAATTGTTT′]





2485
NM_021007.2(SCN2A): c.4718T >
6326
SCN2A
[′TGGATTAATCTGGTGTTTATTGTTCYGTTCA



C (p.Leu1573Pro)


CTGGAGAATGTGTGCTGAAA′]





2486
NM_001165963.1(SCN1A): c.
−1

[′CAGCTCATTGCCATGGATTTGCCCAHGGTGA



5567T > C (p.Met1856Thr)


GTGGTGACCGGATCCACTGT′]





2487
NM_001165963.1(SCN1A): c.
6323
SCN1A
[′AATCCCAATTATGGCTACACAAGCTYTGATA



1094T > C (p.Phe365Ser)


CCTTCAGTTGGGCTTTTTTG′]





2488
NM_001165963.1(SCN1A): c.
6323
SCN1A
[′TCGGCATTGAGAACATTCAGAGTTCYCCGA



662T > C (p.Leu221Pro)


GCATTGAAGACGATTTCAGTC′]





2489
NM_000806.5(GABRA1): c.788T >
2554
GABRA1
[′ATTCAAACATACCTGCCATGCATAAYGACA



C (p.Met263Thr)


GTGATTCTCTCACAAGTCTCC′]





2490
NM_014191.3(SCN8A): c.4889T >
6334
SCN8A
[′GCCCGTATTGGGCGCATCTTGCGTCYGATCA



C (p.Leu1630Pro)


AAGGCGCCAAAGGGATTCGT′]





2491
NM_005249.4(FOXG1): c.673T >
2290
FOXG1
[′TTACTACCGCGAGAACAAGCAGGGCYGGCA



C (p.Trp225Arg)


GAACTCCATCCGCCACAATCT′]





2492
NM_017882.2(CLN6): c.486 + 2T >
54982
CLN6
[′AAGAATCTCAAGCCGGAGACGCTGGYGAGG



C


CCACCTCCTGCTCCCTGCCTG′]





2493
NM_002693.2(POLG): c.1808T >
5428
POLG
[′AGGGAAGCCATCCCAGGTAAGTGCCRTGAG



C (p.Met603Thr)


TTTAGGTGTGACCCGCATCTG′]





2494
NM_002693.2(POLG): c.1283T >
5428
POLG
[′AGGCAGGTAGGAGACACCCATCTCCRGCAT



C (p.Leu428Pro)


GCCGGCCAGAGTCACTGGGTG′]





2495
NM_018129.3(PNPO): c.2T > C
55163
PNPO
[′GGGTCACGTGGCCGGCGGCCCCCCAYGACG



(p.Met1Thr)


TGCTGGCTGCGGGGCGTCACG′]





2496
NM_007254.3(PNKP): c.1029 +
11284
PNKP
[′ACCCCCACCCCCGCCCCAGGGCCTCRCCGGA



2T > C


TCAAAGGCTGGGAGCTCGAA′]





2497
NM_172107.2(KCNQ2): c.583T >
3785
KCNQ2
[′CTCCCAGGGCAACGTCTTTGCCACAYCTGCG



C (p.Ser195Pro)


CTCCGGAGCCTGCGCTTCCT′]





2498
NM_000026.2(ADSL): c.340T > C
158
ADSL
[′TATTCACCTTGGTGCTACTTCTTGCYATGTTG



(p.Tyr114His)


GAGACAATACTGTAGGCGC′]





2499
NM_000026.2(ADSL): c.1339T >
158
ADSL
[CCAGTTGGATCATTTACTGGATCCTYCTTCT



C (p.Ser447Pro)


TTCACTGGTCGTGCCTCCCA′]





2500
NM_001356.4(DDX3X): c.704T >
1654
DDX3X
[′GGGTCTGGAAAAACTGCAGCATTTCYGTTGC



C (p.Leu235Pro)


CCATCTTGAGTCAGATTTAT′]





2501
NM_001356.4(DDX3X): c.1175T >
1654
DDX3X
[′TAAAAATTTTTTTTCTTTCAGATGCYGGCTC



C (p.Leu392Pro)


GTGATTTCTTAGATGAATAT′]





2502
NM_001356.4(DDX3X): c.1541T >
1654
DDX3X
[′GACATTTCAAATGTGAAACATGTTAYCAATT



C (p.Ile514Thr)


TTGACTTGCCAAGTGATATT′]





2503
NM_020533.2(MCOLN1): c.317T >
57192
MCOLN1
[′ACCATCGCCTTCCGACACCTCTTCCYGCTGG



C (p.Leu106Pro)


GCTACTCGGACGGAGCGGAT′]





2504
NM_020533.2(MCOLN1): c.1340T >
57192
MCOLN1
[′TACTGCTTCTGTGGCTGGATCGTGCYGGGGC



C (p.Leu447Pro)


CCTATCATGTGAAGGTACAT′]





2505
NM_000083.2(CLCN1): c.1283T >
1180
CLCN1
[′CCCCGCGAAGCCATCAGTACTTTGTYTGACA



C (p.Phe428Ser)


ACAATACATGGGTGAAACAC′]





2506
NM_003995.3(NPR2): c.226T > C
4882
NPR2
[′CAGCTCCGAACTGGAAGGCGCCTGCYCTGA



(p.Ser76Pro)


GTACCTGGCACCGCTGAGCGC′]





2507
NM_004700.3(KCNQ4): c.808T >
9132
KCNQ4
[′GGACGCCAACTCCGACTTCTCCTCCYACGCC



C (p.Tyr270His)


GACTCGCTCTGGTGGGGGAC′]





2508
NM_004700.3(KCNQ4): c.823T >
9132
KCNQ4
[′CTTCTCCTCCTACGCCGACTCGCTCYGGTGG



C (p.Trp275Arg)


GGGACGGTGCGTGAGGGTCT′]





2509
NM_005097.3(LGI1): c.124T > C
9211
LGI1
[′GGGGAAGAAACCAGCGAAGCCAAAABGCCC



(p.Cys42Arg)


TGCCGTGTGTACTTGTACCAA′]





2510
NM_005572.3(LMNA): c.936 + 2T >
4000
LMNA
[′CAGCTCAGCCAGCTCCAGAAGCAGGYGATA



C


CCCCACCTCACCCCTCTCTCC′]





2511
NM_006009.3(TUBA1A): c.1226T >
7846
TUBA
[′AAACGTGCCTTTGTTCACTGGTACGYTGGGG



C (p.Val409Ala)


′ AAGGGGATGGAGGAAGGTGAG′]





2512
NM_001081550.1(THOC2): c.1313T >
57187
THOC2
[′GACGTGTTCAATATGTTCTGTTACCYTGGTC



C (p.Leu438Pro)


CTCACCTTTCTCACGATCCC]





2513
NM_001081550.1(THOC2): c.3034T >
57187
THOC2
[′ACATCAACAGAAAACTCCAAATTTTYCCAC



C (p.Ser1012Pro)


ACTTCTTTGCTATGATCGAGT′]





2514
NM_001081550.1(THOC2): c.2399T >
57187
THOC2
[′GATTATATAAAGCGAGTGCCTTCAAYTGATG



C (p.Ile800Thr)


TACTCTGTAATGAATTTCAT′]





2515
NM_001356.4(DDX3X): c.1520T >
1654
DDX3X
[′CAGGTAGCAGCAAGAGGACTGGACAYTTCA



C (p.Ile507Thr)


AATGTGAAACATGTTATCAAT′]





2516
NM_000158.3(GBE1): c.691 + 2T  >
2632
GBE1
[′TGAATAAAAATCACAGTTATTACTTRCCAAG



C


GCCTTTGATTCTTGGTAGTA′]





2517
NM_000719.6(CACNA1C): c.3497T >
775
CACNA1C
[′ATGAACATCTTCGTGGGCTTCGTCAYCGTCA



C (p.Ile1166Thr)


CCTTTCAGGAGCAGGGGGAG′]





2518
NM_001105.4(ACVR1): c.587T >
90
ACVR1
[′TGTACATCAGGAAGTGGCTCTGGTCYTCCTT



C (p.Leu196Pro)


TTCTGGTACAAAGAACAGTG′]





2519
NM_024531.4(SLC52A2): c.935T >
79581
SLC52A2
[′CCCTACGGGCGTCTGGCCTACCACCYGGCTG



C (p.Leu312Pro)


TGGTGCTGGGCAGTGCTGCC′]





2520
NM_033409.3(SLC52A3): c.224T >
113278
SLC52A3
[′AGCTGCCTTTCCGAAGTGCCCATCAYCTTCA



C (p.Ile75Thr)


CCCTGCTGGGCGTGGGAACC′]





2521
NM_033409.3(SLC52A3): c.49T >
113278
SLC52A3
[′GGTCTGCGTCTTCGGAATGGGCTCCYGGGTG



C (p.Trp17Arg)


ACCATCAATGGGCTCTGGGT′]





2522
NM_133433.3(NIPBL): c.6108 +
25836
NIPBL
[′CCATACCTTACCACTAAATGTAGTGYAAGTA



2T > C


TAGAGCTGTCTTATTCTTGT′]





2523
NM_002397.4(MEF2C): c.2T > C
4208
MEF2C
[′CGTAATCTGAATCTTTTTTCTCCCCDTAGTCC



(p.Met1Thr)


CCGTTTTTCTTCTCTCTCT′]





2524
NM_000124.3(ERCC6): c.2551T >
2074
ERCC6
[′AATACTCGCTGACCCTGCTTGTGCCRTATTT



C (p.Trp851Arg)


TCAACAAAGACTCAACAACA′]





2525
NM_000208.2(INSR): c.1610 + 2T >
3643
INSR
[′GTTCATGCTGTTCTACAAAGAGGCGYAAGT



C


AGAAGAGTTAGAGAGACGCTG′]





2526
NM_000071.2(CBS): c.325T > C
875
CBS
[′CTCCCGCCCGCGTTGAAGAACTCACRCTTGG



(p.Cys109Arg)


CCACTGGGAGGCAGAGATGA′]





2527
NM_004550.4(NDUFS2): c.875T >
4720
NDUFS2
[′CATTATGCTCTCCACAGTGGAGTGAYGCTTC



C (p.Met292Thr)


GGGGCTCAGGCATCCAGTGG′]





2528
NM_003119.3(SPG7): c.2228T >
6687
SPG7
[′AAGGAAGTGATAAACTATGAGGACAYTGAG



C (p.Ile743Thr)


GCTCTCATTGGCCCGCCGCCC′]





2529
NM_000546.5(TP53): c.584T > C
7157
TP53
[′CACACGCAAATTTCCTTCCACTCGGRTAAGA



(p.Ile195Thr)


TGCTGAGGAGGGGCCAGACC′]





2530
NM_018972.2(GDAP1): c.347T >
54332
GDAP1
[′AGGTTAATGCCTGATAAAGAAAGCAKGTAT



C (p.Met116Thr)


TACCCACGGGTACAACATTAC′]





2531
NM_000070.2(CAPN3): c.566T >
825
CAPN3
[′TGCCTGCCAACGTACAACAATCAACYGGTTT



C (p.Leu189Pro)


TCACCAAGTCCAACCACCGC′]





2532
NM_000070.2(CAPN3): c.1117T >
825
CAPN3
[′TTAATTCCTCCATTTTCCCACCAGAYGGAAG



C (p.Trp373Arg)


GACTGGAGCTTTGTGGACAA′]





2533
NM_181534.3(KRT25): c.950T >
147183
KRT25
[′AAATTGTTCTTTTCATACCGTGGCTRGGAGA



C (p.Leu317Pro)


GACTGAAGTTCAATTTCCAG′]





2534
NM_001002294.2(FMO3): c.560T >
2328
FMO3
[′CCAGGTGTATTCAATGGAAAGCGTGBCCTG



C (p.Val187Ala)


GTGGTTGGCCTGGGGAATTCG′]





2535
NM_001080522.2(CC2D2A): c.
57545
CC2D2A
[′GAAATTCAAGCTGAAATAAGTGAACYGTTA



1676T > C (p.Leu559Pro)


GAAGAGCACACGGAGGAGTAC′]





2536
NM_001080522.2(CC2D2A): c.
57545
CC2D2A
[′TACCAAGTCATATTTTCTTCACAGAYTGATG



3596T > C (p.Ile1199Thr)


GAACATTTAAAATAGATATT′]





2537
NM_025114.3(CEP290): c.2343T >
80184
CEP290
[′CCTGTAACAAATGTATTAAATATTCRTTCTG



C (p.Asn781=)


AGAATTAATGATACTGGCAC′]





2538
NM_030578.3(B9D2): c.107T > C
80776
B9D2
[′CGTTTGGCCCTCCCGCACGCCTGACRGGAGC



(p.Leu36Pro)


TTCCATGCCGCCCCTGCAGT′]





2539
NM_004304.4(ALK): c.3520T > C
238
ALK
[′ACATCCCTCTCTGCTCTGCAGCAAAKTCAAC



(p.Phe1174Leu)


CACCAGAACATTGTTCGCTG′]
















TABLE 7







Diseases/disorders containging A to G Changes.The table includes human gene


mutations that may be corrected by changing a guanine (G) to adenine (A).The gene name,


gene symbol, and Gene ID are indicated.











SEQ






ID

Gene
Gene



NO:
Name
ID
Symbol
Flanks














3144
NM_017547.3(FOXRED1): c.1289A >
55572
FOXRED1
[′GTGGGCCCCCACCCGCTAGTTGTCAVCATG



G (p.Asn430Ser)


TACTTTGCTACTGGCTTCAGT′]





3145
NM_001006657.1(WDR35): c.25 −
57539
WDR35
[′CTAGTGCGGCTGTGGTTGCTTTTTCVGATT



2A > G


TCCATTCCCAATAACGTGAAG′]





3146
NM_001006657.1(WDR35): c.1877A >
57539
WDR35
[′TATGTTTTCAGAAACTTGGATCCTGRGGTA



G (p.Glu626Gly)


AAAACAAGAAATGAGTGTTAA′]





3147
NM_000374.4(UROD): c.932A > G
7389
UROD
[′GGCAACCTGGACCCCTGTGCCTTGTRTGCA



(p.Tyr311Cys)


TCTGAGGTAACAGCCAGGGCC′]





3148
NM_004315.4(ASAH1): c.155A > G
427
ASAH1
[′ACAGAGGACTGCAGAAAATCAACCTRTCC



(p.Tyr52Cys)


TCCTTCAGGACCAACGTGAGTA′]





3149
NM_004315.4(ASAH1): c.1006A >
427
ASAH1
[′GGGTAGATGGTATGTGGTACAAACARATT



G (p.Asn336Asp)


ATGACCGTTGGAAACATCCCTT′]





3150
NM_000071.2(CBS): c.1150A > G
875
CBS
[′GGTGACTCCCCCATCCCGCAGGACCRAGTT



(p.Lys384Glu)


CCTGAGCGACAGGTGGATGCT′]





3151
NM_000274.3(OAT): c.734A > G
4942
OAT
[′GGCGTTGTTGTTCCGGATCCAGGTTRCCTA



(p.Tyr245Cys)


ATGGGAGTGCGAGAGCTCTGC]





3152
NM_001385.2(DPYS): c.1001A > G
1807
DPYS
[′GATAACTGCACTTTCAACACCTGCCRGAA



(p.Gln334Arg)


AGCTCTTGGGAAGGATGATTTT′]





3153
NN1_024598.3(USB1): c.502A > G
79650
USB1
[′GATTTACACCAATCAAGAGAAAACCRGGT



(p.Arg168Gly)


GGGTCCTCCCAACCCCCAATCA′]





3154
NM_001194958.2(KCNJ18): c.1097A >
100134444
KCNJ18
[′AGTGCGAAGGATCTGGTAGAGAACARGTT



G (p.Lys366Arg)


CCTGCTGCCCAGTGCCAACTCC′]





3155
NM_001914.3(CYB5A): c.130 −
1528
CYB5A
[′TTTTTATTCTACCTCTCCTTTGAACRGCATC



2A > G


CTGGTGGGGAAGAAGTTTTA′]





3156
NM_000398.6(CYB5R3): c.719A >
1727
CYB5R3
[′CGCTTCAAGCTCTGGTACACGCTGGRCAG



G (p.Asp240Gly)


AGCCCCTGAAGGTGAGTGAGGG′]





3157
NM_004628.4(XPC): c.413 − 24A > G
7508
XPC
[′ATTATTATTGTTATTACTATTACTGRTTTTT






AAAAATGCTTGTTGATAGAA′]





3158
NM_001134363.2(RBM20): c.1909A >
282996
RBM20
[′TGGCCCAGAAAGGCCGCGGTCTCGTRGTC



 G (p.Ser637Gly)


CGGTGAGCCGGTCACTCTCCCC′]





3159
NM_000552.3(VWF): c.2384A > G
7450
VWF
[′GAGTGTACCAAAACGTGCCAGAACTRTGA



(p.Tyr795Cys)


CCTGGAGTGCATGAGCATGGGC′]





3160
NM_000552.3(VWF): c.1583A > G
7450
VWF
[′ACCTGCGGCCTGTGTGGGAATTACARTGG



(p.Asn528Ser)


CAACCAGGGCGACGACTTCCTT′]





3161
NM_144573.3(NEXN): c.1955A > G
91624
NEXN
[′ACTTTCCCAGAAGATGGAGGAGAGTRTAT



(p.Tyr652Cys)


GTGTAAAGCAGTCAACAATAAA′]





3162
NM_000267.3(NF1): c.4267A > G
4763
NF1
[′CGAAAGGGGCTTGAAGTTAATGTCARAGG



(p.Lys1423Glu)


TGAATTATTTTGATAATCTAGC′]





3163
NM_000267.3(NF1): c.1642 − 8A > G
4763
NF1
[′TCTCTTTGTCTTTCTCTTTTTTAAARAATTC






AGGCTCTGCTGGTTCTTCAT′]





3164
NM_000267.3(NF1): c.1466A > G
4763
NF1
[′CCTACAGACCTGGAGACAAGAAGCTRTAA



(p.Tyr489Cys)


GTATCTTCTCTTGTCCATGGTG′]





3165
NM_000267.3(NF1): c.5944 − 5A > G
4763
NF1
[′AAAAACATGTTATTTTCCTTCTTCARCTAG






ATTACAGATCTGCTTGATGTT′]





3166
NM_000308.2(CTSA): c.746 + 3A > G
5476
CTSA
[′TACCATGGCCTTCTGGGGAACAGGTRTGG






GATAGGGCAGTTGGGCAATCTC′]





3167
NM_000308.2(CTSA): c.200A > G
5476
CTSA
[′CTGGCCAAGCAGCCGTCTTTCCGCCRGTAC



(p.Gln67Arg)


TCCGGCTACCTCAAAGGCTCC′]





3168
NM_000308.2(CTSA): c.1238A > G
5476
CTSA
[′CTTTAGAAATACCAGATCCTATTATRTAAT



(p.Tyr413Cys)


GGAGATGTAGACATGGCCTGC′]





3169
NM_000308.2(CTSA): c.1411A > G
5476
CTSA
[′CTCCCACATCGCCTTTCTCACGATCRAGGT



(p.Lys471Glu)


AGGGACTGGGCCTGCTGAGAG′]





3170
NM_000353.2(TAT): c.236 − 5A > G
6898
TAT
[′TTCCAAACACAGTAGGGTCCCCTTTYTATG






GGAGGAAAACACAAAAGGAGC′]





3171
NM_000097.5(CPOX): c.1210A > G
1371
CPOX
[′TAATCTGCTGTATGATCGGGGCACARAGTT



(p.Lys404Glu)


TGGCCTCTTCACTCCAGGATC′]





3172
NM_000317.2(PTS): c.155A > G
5805
PTS
[′AACAATCCAAATGGCCATGGGCACARTTA



(p.Asn52Ser)


TAAAGGTGAGAGAAAAACTGAT′]





3173
NM_000317.2(PTS): c.139A > G
5805
PTS
[′ACTGTTTGGGAAATGCAACAATCCARATG



(p.Asn47Asp)


GCCATGGGCACAATTATAAAGG′]





3174
NM_000317.2(PTS): c.347A > G
5805
PTS
[′GAAAATGTAGCTGTTTATATCTGGGRCAAC



(p.Asp116Gly)


CTCCAGAAAGTTCTTCCTGTA′]





3175
NM_000320.2(QDPR): c.449A > G
5860
QDPR
[′CCCCATTTCCCAGGTATGATCGGGTRCGGC



(p.Tyr150Cys)


ATGGCCAAGGGTGCTGTTCAC′]





3176
NM_173560.3(RFX6): c.224 −
222546
RFX6
[′TCTATTTTTCTTTATCATCCCTTCARCTGGC



12A > G


AATCAGAAATGCACTTAAAC′]





3177
NM_001999.3(FBN2): c.3725 −
2201
FBN2
[′TTCATCAATATCTGTGAAAACAGCAYTGC



15A > G


AACCACATTGTCAGGTCTGCTT]





3178
NM_001040613.2(TMEM70): c.*7 −
54968
TMEM70
[′GATCCTCTCTCTTTTTTTCCCATTTRGGTGT



2A > G


GAAATGTTTCTCTTATTCTA′]





3179
NM_152416.3(NDUFAF6): c.296A >
137682
NDUFAF6
[′AGGGCCTTTAATGTGGAACTGGCTCRGGCT



G (p.Gln99Arg)


GGTATTAAGATACCTTAAAAT′]





3180
NM_000140.3(FECH): c.1137 + 3A >
2235
FECH
[′ACTAAAACGATTGTAACACTGTAGAYACC



G


TTAGAGAACAATGGATTTCCAT′]





3181
NM_000277.1(PAH): c.1A > G
5053
PAH
[′GAGACCTCACTCCCGGGGAGCCAGCDTGT



(p.Met1Val)


CCACTGCGGTCCTGGAAAACCC′]





3182
NM_000277.1(PAH): c.611A > G
5053
PAH
[′TCCTTGTATAAAACCCATGCTTGCTRTGAG



(p.Tyr204Cys)


TACAATCACATTTTTCCACTT]





3183
NM_000277.1(PAH): c.1241A > G
5053
PAH
[′ATACCTCGGCCCTTCTCAGTTCGCTRCGAC



(p.Tyr414Cys)


CCATACACCCAAAGGATTGAG′]





3184
NM_000277.1(PAH): c.662A > G
5053
PAH
[′CTTGAAAAGTACTGTGGCTTCCATGRAGAT



(p.Glu221Gly)


AACATTCCCCAGCTGGAAGAC]





3185
NM_000277.1(PAH): c.916A > G
5053
PAH
[′TTCTATTTTCCCCCAATTACAGGAARTTGG



(p.Ile306Val)


CCTTGCCTCTCTGGGTGCACC′]





3186
NM_000277.1(PAH): c.1169A > G
5053
PAH
[′TTCCAGCCCCTGTATTACGTGGCAGRGAGT



(p.Glu390Gly)


TTTAATGATGCCAAGGAGAAA′]





3187
NM_000277.1(PAH): c.1065 + 3A > G
5053
PAH
[′TGTCATCCTTTGGTGAATTACAGGTVTGAC






CTTCACAGGAACCAAGGATAG′]





3188
NM_000277.1(PAH): c.227A > G
5053
PAH
[′AGACCTTCTCGTTTAAAGAAAGATGVGTA



(p.Glu76Gly)


TGAATTTTTCACCCATTTGGAT′]





3189
NM_000130.4(F5): c.1000A > G
2153
F5
[′CATTAAAAACTGCCCAAAGAAAACCRGGA



(p.Arg334Gly)


ATCTTAAGAAAATAACTCGTGA′]





3190
NM_000130.4(F5): c.5189A > G
2153
F5
[′GGCTCTGCCTGTCGGGCTTGGGCCTRCTAC



(p.Tyr1730Cys)


TCAGCTGTGAACCCAGTAGGT′]





3191
NM_000512.4(GALNS): c.1460A >
2588
GALNS
[′TTGGTCCCCGCGCAGCCCCAGCTCARCGTG



G (p.Asn487Ser)


TGCAACTGGGCGGTCATGGTA′]





3192
NM_015702.2(MMADHC): c.746A
27249
MMADHC
[′ACTCTTTTTGAAACTGATGAACGCTRCCGA



> G (p.Tyr249Cys)


CATTTAGGATTCTCTGTTGAT′]





3193
NM_015141.3(GPD1L): c.370A > G
23171
GPD1L
[′TAACTTCTTGGCATCCTTGTAGGGCRTAGA



(p.Ile124Val)


CGAGGGCCCCGAGGGGCTGAA′]





3194
NM_013319.2(UBIAD1): c.305A > G
29914
UBIAD1
[′GTGCACGGGGCCGGTAATTTGGTCARCAC



(p.Asn102Ser)


TTACTATGACTTTTCCAAGGGC′]





3195
NM_013319.2(UBIAD1): c.355A > G
29914
UBIAD1
[′CATTGACCACAAAAAGAGTGATGACRGGA



(p.Arg119Gly)


CACTTGTGGACCGAATCTTGGA′]





3196
NM_013319.2(UBIAD1): c.695A > G
29914
UBIAD1
[′AGCACCGAGGCCATTCTCCATTCCARCAAC



(p.Asn232Ser)


ACCAGGGACATGGAGTCCGAC′]





3197
NM_013319.2(UBIAD1): c.335A > G
29914
UBIAD1
[′TACTATGACTTTTCCAAGGGCATTGRCCAC



(p.Asp112Gly)


AAAAAGAGTGATGACAGGACA]





3198
NM_000046.3(ARSB): c.629A > G
411
ARSB
[′GTTGCAACAGGATATAAAAATATGTRTTC



(p.Tyr210Cys)


AACAAACATATTCACCAAAAGG]





3199
NM_006331.7(EMGl): c.257A > G
10436
EMG1
[′CGGGACCCTGGGGAAGCGCGGCCAGRTAT



(p.Asp86Gly)


CACCCACCAGGTAACTCCAGGG′]





3200
NM_000181.3(GUSB): c.1484A > G
2990
GUSB
[′CTGCTGCTCTGGTCCTAGGCTCCGTRTGTG



(p.Tyr495Cys)


GATGTGATCTGTTTGAACAGC′]





3201
NM_000067.2(CA2): c.754A > G
760
CA2
[′CTGGCGCCCAGCTCAGCCACTGAAGRACA



(p.Asn252Asp)


GGCAAATCAAAGCTTCCTTCAA′]





3202
NM_000067.2(CA2): c.52A > G
760
CA2
[′TCCCCCAGGACCTGAGCACTGGCATVAGG



(p.Lys18Glu)


ACTTCCCCATTGCCAAGGGAGA′]





3203
NM_000404.2(GLB1): c.947A > G
2720
GLB1
[′TTTATAGGTGGGACCAATTTTGCCTRTTGG



(p.Tyr316Cys)


AATGGTAAGAGCACTTTAATA′]





3204
NM_000404.2(GLB1): c.1498A > G
2720
GLB1
[′TTTGCAGGGTTTGGTTTCTAACCTGRCTCT



(p.Thr500Ala)


CAGTTCCAATATCCTCACGGA′]





3205
NM_000404.2(GLB1): c.1480 −
2720
GLB1
[′GAGAGTCAGGTTAGAAACCAAACCCYGCA



2A > G


AAGCAGAAACAGAGCACAGTGA′]





3206
NM_000404.2(GLB1): c.1772A > G
2720
GLB1
[′ATTAATGGCTTTAACCTTGGCCGCTRTTGG



(p.Tyr591Cys)


CCAGCCCGGGGCCCTCAGTTG′]





3207
NM_203447.3(DOCK8): c.1418A >
81704
DOCK8
[′ACTCTGAGCGTTAGCAGCTTTTTCARGCAG



G (p.Lys473Arg)


GTATCTCTTCACATTACAGTG′]





3208
NM_000275.2(OCA2): c.1465A > G
4948
OCA2
[′TGCCACTGCCATCGGGGACCCTCCARATGT



(p.Asn489Asp)


CATTATTGTTTCCAACCAAGA′]





3209
NM_152778.2(MFSD8): c.362A > G
256471
MFSD8
[′ATTTCCGTGGCAGCCAACTGCCTCTVTGCA



(p.Tyr121Cys)


TATCTCCACATCCCAGCTTCT′]





3210
NM_139241.3(FGD4): c.1762 −
121512
FGD4
[′ACTGTTCATTTTTCTTTTAAATTTARGGTGG



2A > G


TTTGTTGGAAATGCTCCGAC′]





3211
NM_020223.3(FAM20C): c.1364 −
56975
FAM20C
[′TGTGACACTTTCTGCCTCTCTCCGCRGGAA



2A > G


ACATGGACCGTCACCACTACG′]





3212
NM_138387.3(G6PC3): c.346A > G
92579
G6PC3
[′GGCAGGCAGCCCTTCTGGACACTGCRTGA



(p.Met116Val)


TCACAGGAGCAGCCCTCTGGCC′]





3213
NM_018122.4(DARS2): c.133A > G
55157
DARS2
[′TTTTTTTTTTTTTTTTAAAGAATTCRGTAGC



(p.Ser45Gly)


TTTGTTGTCCGGACCAACAC′]





3214
NM_000642.2(AGL): c.4260 −
178
AGL
[′CATCTTTTATTTAACTTAAATTTCARTCATT



12A > G


TTGCAGTGATATGGTTTACT′]





3215
NM_000642.2(AGL): c.3439A > G
178
AGL
[′TCTACTGGGTGAAGGAATTTATGCCRGATA



(p.Arg1147Gly)


CAATTGTCGGGATGCTGTGTG′]





3216
NM_145014.2(HYLS1): c.632A > G
−1

[′TTAAGCCGAAACCGGGGCAAGACAGRCCG



(p.Asp211Gly)


GGTAGCCCGGTATTTTGAGTAC′]





3217
NM_014362.3(HIBCH): c.365A > G
26275
HIBCH
[′GCTCCAGTTTTCTTCAGAGAAGAATRTATG



(p.Tyr122Cys)


CTGAATAATGCTGTTGGTATG′]





3218
NM_014846.3(KIAA0196): c.1411A >
9897
KIAA0196
[′TTTTCTTATTTCTGTATTACTAGAARACCTT



G (p.Asn471Asp)


CAAGCTTGGTTCAGAGAGAT′]





3219
NM_000505.3(F12): c.158A > G
2161
F12
[′GAGCCCTGCCACTTCCCCTTCCAGTRCCAC



(p.Tyr53Cys)


CGGCAGCTGTACCACAAATGT′]





3220
NM_001029871.3(RSPO4): c.194A >
343637
RSPO4
[′TTCATCCGCCGGGAAGGCATCCGCCRGTA



G (p.Gln65Arg)


CGGCAAGTGCCTGCACGACTGT′]





3221
NM_017654.3(SAMD9): c.4483A >
54809
SAMD9
[′TAAAAGACTGGAAAGACTTGTTCACRAAG



G (p.Lys1495Glu)


GAAAAATTGACCAGTGCTTTAA′]





3222
NM_152419.2(HGSNAT): c.372 −
138050
HGSNAT
[′TGTCTTAATTTTACCTAATGTTTGTRGGTTG



2A > G


GAATACAGATTTGGAGAATT′]





3223
NM_001174089.1(SLC4A11): c.2518A >
83959
SLC4A11
[′CATGAGCTCCCTGCCCTACATGAAGRTGAT



G (p.Met840Val)


CTTTCCCCTCATCATGATCGC′]





3224
NM_012073.4(CCT5): c.440A > G
22948
CCT5
[′CAGGCTGCTCGTGTTGCTATTGAACRCCTG



(p.His147Arg)


GACAAGATCAGCGATAGCGTC′]





3225
NM_025114.3(CEP290): c.2991 +
80184
CEP290
[′CACCTGGCCCCAGTTGTAATTGTGARTATC



1655A > G


TCATACCTATCCCTATTGGCA′]





3226
NM_153704.5(TMEM67): c.870 −
91147
TMEM67
[′TATTAAAACAGTTGTAACTGTTTATRGGAG



2A > G


ACAGAATCTTCCTTGGCTGTT′]





3227
NM_153704.5(TMEM67): c.1538A >
91147
TMEM67
[′TATCAGGTTTCTTTCTCAGTCACATDTGAA



G (p.Tyr513Cys)


ATGGATCATGGAGAAGCACAT′]





3228
NM_001041.3(SI): c.350A > G
6476
SI
[′GTTGATAATCATGGTTATAACGTTCRAGAC



(p.Gln117Arg)


ATGACAACAACAAGTATTGGT′]





3229
NM_015697.7(COQ2): c.890A > G
27235
COQ2
[′TCTGGAGTTATGTGGACACTAATATRTGAT



(p.Tyr297Cys)


ACTATTTATGCCCATCAGGTA′]





3230
NM_015697.7(COQ2): c.683A > G
27235
COQ2
[′GCACTGGGTGTTCTTCTGTGTCTAARTTAC



(p.Asn228Ser)


TACAGGTATATTAAACGTTTT′]





3231
NM_000190.3(HMBS): c.1A > G
3145
HMBS
[′CACAGCCTACTTTCCAAGCGGAGCCRTGTC



(p.Met1Val)


TGGTAACGGCAATGCGGCTGC′]





3232
NM_004035.6(ACOX1): c.832A > G
51
ACOX1
[′GAGTAACAAGCTGACTTACGGGACCRTGG



(p.Met278Val)


TGTTTGTCAGGTCCTTCCTTGT′]





3233
NM_004035.6(ACOX1): c.926A > G
51
ACOX1
[′ATCCGATACAGCGCTGTGAGGCACCRGTC



(p.Gln309Arg)


TGAAATCAAGCCAGGGTAAGGA′]





3234
NM_000237.2(LPL): c.548A > G
4023
LPL
[′TGCTTTTTTCCCTTTTAAGGCCTCGRTCCAG



(p.Asp183Gly)


CTGGACCTAACTTTGAGTAT′]





3235
NM_000237.2(LPL): c.953A > G
4023
LPL
[′TGCAACAATCTGGGCTATGAGATCARTAA



(p.Asn318Ser)


AGTCAGAGCCAAAAGAAGCAGC′]





3236
NM_001171993.1(HPD): c.362A > G
3242
HPD
[′TACATCGGCCAATTCTTGCCTGGATRTGAG



(p.Tyr121Cys)


GCCCCAGCGTTCATGGACCCC′]





3237
NM_139281.2(WDR36): c.1064A >
134430
WDR36
[′CTTCTTGTCACAAATGGCGCTGACARTGCT



G (p.Asn355Ser)


CTTAGGGTATTATGATTATTG′]





3238
NM_001127255.1(NLRP7): c.2738A >
−1

[′CTCACAAACCTGGACTTGAGTATCARCCA



G (p.Asn913Ser)


GATAGCTCGTGGATTGTGGATT′]





3239
NM_016417.2(GLRX5): c.294A > G
51218
GLRX5
[′TGCTGGACGACCCGGAGCTCCGACARGGT



(p.Gln98=)


CAGGCCAGTGTGCCGGGCAGGC′]





3240
NM_024884.2(L2HGDH): c.293A >
79944
L2HGDH
[′ACTGGACATAACAGTGGTGTCATACRTAG



G (p.His98Arg)


TGGAATTTATTATAAACCTGAG′]





3241
NM_000382.2(ALDH3A2): c.1157A >
224
ALDH3A2
[′ACATCCAGTGGAGGTGTCACAGGCARTGA



G (p.Asn3865er)


CGTCATTATGCACTTCACGCTC′]





3242
NM_018105.2(THAP1): c.266A > G
55145
THAP1
[′TTTCTTTGTACTGAGCCACATGACARGGTA



(p.Lys89Arg)


ATATGCATTTTAAAATATTGG′]





3243
NM_000785.3(CYP27B1): c.566A >
1594
CYP27B1
[′GCCCTGGTTCGGGACGTGGCGGGGGRATT



G (p.Glu189Gly)


TTACAAGTTCGGACTGGAAGGT′]





3244
NM_182548.3(LHFPL5): c.380A > G
222662
LHFPL5
[′TTCATCTGCAACACGGCCACAGTCTRTAAG



(p.Tyr127Cys)


ATCTGTGCATGGATGCAGCTG′]





3245
NM_015040.3(PIKFYVE): c.3308A >
200576
PIKFYVE
[′TTCAAAGAAATGGAGAACAGGAGGARGA



G (p.Lys1103Arg)


AACAGCTGCTCAGGGATCTCTCT′]





3246
NM_138701.3(MPLKIP): c.430A > G
136647
MPLKIP
[′GTTGGAAAATTATTTCAAGCCTTCARTGCT



(p.Met144Val)


TGAAGATCCTTGGGCTGGCCT′]





3247
NM_152783.4(D2HGDH): c.1315A >
728294
D2HGDH
[′TGCCCTTGTCCCTCCAGGAGATGGTRACCT



G (p.Asn439Asp)


GCACCTCAATGTGACGGCGGA′]





3248
NM_022912.2(REEP1): c.183 −
65055
REEP1
[′AACTTGTGTTTTCATCTCTCTCTCCRGGTTT



2A > G


CCATTCTATTATGAACTAAA′]





3249
NM_000060.3(BTD): c.755A > G
686
BTD
[′ACATGCTTTGATATATTGTTCTTTGRCCCT



(p.Asp252Gly)


GCCATCAGAGTCCTCAGAGAC′]





3250
NM_022132.4(MCCC2): c.1309A >
64087
MCCC2
[′TGTGGCCTGTGCCCAAGTGCCTAAGDTAA



G (p.Ile437Val)


CCCTCATCATTGGGGGCTCCTA′]





3251
NM_022132.4(MCCC2): c.569A > G
64087
MCCC2
[′GCAGATGTGTTTCCAGATCGAGACCRCTTT



(p.His190Arg)


GGCCGTACATTCTATAATCAG′]





3252
NM_198578.3(LRRK2): c.5096A > G
120892
LRRK2
[′ATCATCCGACTATATGAAATGCCTTRTTTT



(p.Tyr1699Cys)


CCAATGGGATTTTGGTCAAGA′]





3253
NM_198578.3(LRRK2): c.3364A > G
120892
LRRK2
[′TGTGACTAGAAATAAAATATCAGGGRTAT



(p.Ile1122Val)


GCTCCCCCTTGAGACTGAAGGA′]





3254
NM_000022.2(ADA): c.219 − 2A > G
100
ADA
[′TTCCCAACCCCTTTCTTCCCTTCCCRGGGG






CTGCCGGGAGGCTATCAAAAG′]





3255
NM_000022.2(ADA): c.290A > G
100
ADA
[′ATGAAGGCCAAAGAGGGCGTGGTGTDTGT



(p.Tyr97Cys)


GGAGGTGCGGTACAGTCCGCAC′]





3256
NM_017780.3(CHD7): c.3082A > G
55636
CHD7
[′TTTAGTAATTGCCCCATTGTCCACARTCCC



(p.Ile1028Val)


CAACTGGGAAAGGGAATTCCG′]





3257
NM_017780.3(CHD7): c.164A > G
55636
CHD7
[′TTTGCCTCTTTACAGCCATCCCTTCRTCATC



(p.His55Arg)


CTTCAACTAATCAAAATCAA′]





3258
NM_152443.2(RDH12): c.677A > G
145226
RDH12
[′GTCCCAGGCACCGGGGTCACCACCTRCGC



(p.Tyr226Cys)


AGTGCACCCAGGCGTCGTCCGC′]





3259
NM_015335.4(MED13L): c.752A >
23389
MED13L
[′TACCCGATGGTGCTAAAAAAGAAAGRAGA



G (p.Glu251Gly)


ATCGAAAGAGGAAGACGAGTTG′]





3260
NM_015335.4(MED13L): c.6068A >
23389
MED13L
[′GCTTTTTTTCCCCCCTTCCCTCTAGRTGATA



G (p.Asp2023Gly)


TGTTTGTTGACCTTCCATTC′]





3261
NM_025265.3(TSEN2): c.926A > G
80746
TSEN2
[′TATTTTCAGGCCTTTTTCTTGGTCTRTGCTC



(p.Tyr309Cys)


TGGGATGTTTAAGTATTTAC′]





3262
NM_015384.4(NIPBL): c.7289A > G
25836
NIPBL
[′AAAACAGACGTGACTATGCTCTTGTRTATA



(p.Tyr2430Cys)


GCAGACAATCTAGCCTGTTTT′]





3263
NM_207352.3(CYP4V2): c.1091 −
285440
CYP4V2
[′GTCATCTTATCTACTTGCTTTCATCRGGGA



2A > G


AGTCTGACCGTCCCGCTACAG′]





3264
NM_024006.5(VKORC1): c.172A >
79001
VKORC1
[′CAGCTGTTCGCGCGTCTTCTCCTCCRGGTG



G (p.Arg58Gly)


TGCACGGGAGTGGGAGGCGTG′]





3265
NM_000551.3(VHL): c.491A > G
7428
VHL
[′TATACTCTGAAAGAGCGATGCCTCCRGGTT



(p.Gln164Arg)


GTCCGGAGCCTAGTCAAGCCT]





3266
NM_000101.3(CYBA): c.281A > G
1535
CYBA
[′AATTACTATGTTCGGGCCGTCCTGCRTCTC



(p.His94Arg)


CTGTGAGTCCCCGTCCCGCAC′]





3267
NM_014874.3(MFN2): c.827A > G
9927
MFN2
[′TTGTTTGGGCTCCAGGTGCGGCGGCRGCAC



(p.Gln276Arg)


ATGGAGCGTTGTACCAGCTTC′]





3268
NM_015046.5(SETX): c.1807A > G
23064
SETX
[′GCAGAAGTCAGATCCACAAAAGTGTYACA



(p.Asn603Asp)


TGGAGGTGCTTTGAATTTTATG′]





3269
NM_005609.2(PYGM): c.1A > G
5837
PYGM
[′CAGTCCGGCCCGCCCTCCTGCAGCCVTGTC



(p.Met1Val)


CCGGCCCCTGTCAGACCAAGA′]





3270
NM_033071.3(SYNE1): c.15705 −
23345
SYNE1
[′ACTTCACTTCTGTTTTATCCCTGTARTGTTT



12A > G


CTGAAGCATGCAGGAGAAAG′]





3271
NM_130468.3(CHST14): c.878A > G
113189
CHST14
[′CTGTGCCAGCCTTGTGCCGTGCACTRTGAC



(p.Tyr293Cys)


TTTGTGGGCTCCTATGAGAGG′]





3272
NM_206933.2(USH2A): c.14020A >
7399
USH2A
[′AAAAGTTTTGTATTACGAATTATACRGAAG



G (p.Arg4674Gly)


ACAAATAGCAACTCAGCCTAG′]





3273
NM_000048.3(ASL): c.857A > G
435
ASL
[′AGCACGGGAAGCAGCCTGATGCCCCRGAA



(p.Gln286Arg)


GAAAAACCCCGACAGTTTGGAG′]





3274
NM_001875.4(CPS1): c.1010A > G
1373
CPS1
[′CAGGCTTTCATTACTGCTCAGAATCRTGGC



(p.His337Arg)


TATGCCTTGGACAACACCCTC′]





3275
NM_001173464.1(KIF21A): c.2839A >
55605
KIF21A
[′GACCATTTCCAACATGGAGGCAGATRTGA



G (p.Met947Val)


ATAGACTCCTCAAGGTGTGGAA]





3276
NM_000026.2(ADSL): c.736A > G
158
ADSL
[′CATCACAGGGCAGACATATACACGARAAG



(p.Lys246Glu)


TGGATATTGAAGTACTGTCTGT′]





3277
NM_024577.3(SH3TC2): c.530 −
79628
SH3TC2
[′AGCCATTGCTTTTCTCATTATCCACRGGCC



2A > G


ACTTCTTCTGCAGAGCCCTGT′]





3278
NM_018249.5(CDK5RAP2): c.4005 −
55755
CDK5RAP2
[′AGCATGGGAGATGATTTATCTTTCARTCTC



15A > G


AATGGTTAAGGATTGAGGAAG′]





3279
NM_000346.3(SOX9): c.517A > G
6662
SOX9
[′GCACAAGAAGGACCACCCGGATTACRAGT



(p.Lys173Glu)


ACCAGCCGCGGCGGAGGAAGTC′]





3280
NM_144596.3(TTC8): c.115 − 2A > G
123016
TTC8
[′GTTTACTGCCTTCTTAATGCTTTCCRGGAA






CCAGATCCTGAATTGCCAGTG′]





3281
NM_000243.2(MEFV): c.2080A > G
4210
MEFV
[′GAATGGCTACTGGGTGGTGATAATGDTGA



(p.Met694Val)


AGGAAAATGAGTACCAGGCGTC′]





3282
NM_000243.2(MEFV): c.2084A > G
4210
MEFV
[′GGCTACTGGGTGGTGATAATGATGADGGA



(p.Lys695Arg)


AAATGAGTACCAGGCGTCCAGC′]





3283
NM_006493.2(CLN5): c.1121A > G
1203
CLN5
[′GTGCACAAACAGTTCTATTTGTTTTRTAAT



(p.Tyr374Cys)


TTTGAATATTGGTTTTTACCT′]





3284
NM_000483.4(APOC2): c.1A > G
−1

[′TCAATGTTCCAGGTCTCTGGACACTRTGGG



(p.Met1Val)


CACACGACTCCTCCCAGCTCT′]





3285
NM_058172.5(ANTXR2): c.1142A >
118429
ANTXR2
[′TGGCCAACTGTGGATGCTTCCTATTDTGGT



G (p.Tyr381Cys)


GGTCGAGGGGTTGGAGGAATT′]





3286
NM_001128085.1(ASPA): c.692A >
−1

[′TATAAAATTATAGAGAAAGTTGATTRCCCC



G (p.Tyr231Cys)


CGGGATGAAAATGGAGAAATT′]





3287
NM_001128085.1(ASPA): c.71A > G
−1

[′ATCTTTGGAGGAACCCATGGGAATGRGCT



(p.Glu24Gly)


AACCGGAGTATTTCTGGTTAAG′]





3288
NM_014365.2(HSPB8): c.421A > G
26353
HSPB8
[′TGGCATTGTTTCTAAGAACTTCACARAGAA



(p.Lys141Glu)


AATCCAGTAAGTAACCTGGAG′]





3289
NM_000391.3(TPP1): c.857A > G
1200
TPP1
[′CAGTACCTGATGAGTGCTGGTGCCARCATC



(p.Asn286Ser)


TCCACCTGGGTCTACAGTAGC′]





3290
NM_000391.3(TPP1): c.887 − 10A > G
1200
TPP1
[′TGTCCCTCATGCCGGCCTGGATTTTYTTTTT






TTTTTTTTTTGAGGGATGGG′]





3291
NM_182760.3(SUMF1): c.1A > G
285362
SUMF1
[′CGGGTCACATGGCCCGCGGGACAACRTGG



(p.Met1Val)


CTGCGCCCGCACTAGGGCTGGT′]





3292
NM_031443.3(CCM2): c.1A > G
83605
CCM2
[′GGCCGCGGGAGCCGCACGCGGCGATRTGG



(p.Met1Val)


AAGAGGAGGGCAAGAAGGGCAA′]





3293
NM_004183.3(BEST1): c.707A > G
7439
BEST1
[′GACTGGATTAGTATCCCACTGGTGTRTACA



(p.Tyr236Cys)


CAGGTGAGGACTAGGCTGGTG′]





3294
NM_004183.3(BEST1): c.680A > G
7439
BEST1
[′ACTCAGTGTGGACACCTGTATGCCTRCGAC



(p.Tyr227Cys)


TGGATTAGTATCCCACTGGTG′]





3295
NM_000158.3(GBE1): c.1634A > G
2632
GBE1
[′TGTAATGCAGGTAATGAATTTGGGCRTCCT



(p.His545Arg)


GAATGGTTAGACTTCCCAAGA′]





3296
NM_000158.3(GBE1): c.1883A > G
2632
GBE1
[′GGTCTTCTTTTCATTTTCAACTTCCRTCCAA



(p.His628Arg)


GCAAGAGCTACACTGACTAC′]





3297
NM_017890.4(VPS13B): c.8978A >
157680
VPS13B
[′CTTCTGCCCTGGGCCCTGCTTATCARTGAA



G (p.Asn2993Ser)


TCCAAATGGGACCTCTGGCTA′]





3298
NM_000019.3(ACAT1): c.278A > G
38
ACAT1
[′GAAGTGAAAGAAGCATACATGGGTARTGT



(p.Asn93Ser)


TCTACAAGGAGGTGAAGGACAA′]





3299
NM_173076.2(ABCA12): c.4139A >
26154
ABCA12
[′CATATTACTTCATTGCTGGGGCCCARTGGA



G (p.Asn1380Ser)


GCTGGGAAAACTACTACCATG′]





3300
NM_030665.3(RAH): c.4685A > G
10743
RAH
[′AAGGGGCGTGCCAAGCGACGACGACRGCA



(p.Gln1562Arg)


GCAGGTGCTGCCCCTGGATCCC]





3301
NM_000271.4(NPC1): c.3467A > G
4864
NPC1
[′AGTCTGAACGCTGTATCCTTGGTCARCCTG



(p.Asn1156Ser)


GTGATGGTGAGTCCTCATACA′]





3302
NM_000271.4(NPC1): c.3263A > G
4864
NPC1
[′CCCTCCAGTGTGTTTTATGTCTTCTRCGAA



(p.Tyr1088Cys)


CAGTACCTGACCATCATTGAC′]





3303
NM_000543.4(SMPD1): c.1154A >
6609
SMPD1
[′CTCCGCCTCATCTCTCTCAATATGARTTTTT



G (p.Asn385Ser)


GTTCCCGTGAGAACTTCTGG′]





3304
NM_000226.3(KRT9): c.469A > G
3857
KRT9
[′TCTGACTGCTAATGAGAAGAGCACCRTGC



(p.Met157Val)


AGGAACTCAATTCTCGGCTGGC′]





3305
NM_000226.3(KRT9): c.482A > G
3857
KRT9
[′GAGAAGAGCACCATGCAGGAACTCADTTC



(p.Asn161Ser)


TCGGCTGGCCTCTTACTTGGAT]





3306
NM_176824.2(BBS7): c.968A > G
55212
BBS7
[′ACAGGTCTGACAACAGAGCCCATTCRTAA



(p.His323Arg)


GGAAAGTGGACCAGGAGAAGAA′]





3307
NM_000051.3(ATM): c.3118A > G
472
ATM
[′GAGGAAATATATATTCTCTGTAAGARTGG



(p.Met1040Val)


CCCTAGTAAATTGCCTTAAAAC′]





3308
NM_000051.3(ATM): c.7268A > G
472
ATM
[′GCTCTCCTGAAAAGAGCCAAAGAGGRAGT



(p.Glu2423Gly)


AGGTCTCCTTAGGGAACATAAA′]





3309
NM_000051.3(ATM): c.8030A > G
−1

[′TATTAGGTGGACCACACAGGAGAATRTGG



(p.Tyr2677Cys)


AAATCTGGTGACTATACAGTCA]





3310
NM_000487.5(ARSA): c.*96A > G
410
ARSA
[′GAGGGGGTTTGTGCCTGATAACGTARTAA






CACCAGTGGAGACTTGCAGATG′]





3311
NM_000487.5(ARSA): c.1055A > G
410
ARSA
[′GCCCTGGCTGGGGCCCCACTGCCCARTGTC



(p.Asn352Ser)


ACCTTGGATGGCTTTGACCTC′]





3312
NM_000218.2(KCNQ1): c.418A > G
3784
KCNQ1
[′CATCGTCCTGGTCTGCCTCATCTTCRGCGT



(p.Ser140Gly)


GCTGTCCACCATCGAGCAGTA′]





3313
NM_172250.2(MMAA): c.620A > G
166785
MMAA
[′GAGTTATCAAGAGATATGAATGCATRCAT



(p.Tyr207Cys)


CAGGCCATCTCCTACTAGAGGA′]





3314
NM_000187.3(HGD): c.1112A >  
3081
HGD
[′AGTCTACACAGCACAATGACCCCCCRTGG



(p.His371Arg)


ACCTGATGCTGACTGCTTTGAG′]





3315
NM_000187.3(HGD): c.1102A > G
3081
HGD
[′AGGGGGAGGGAGTCTACACAGCACARTGA



(p.Met368Val)


CCCCCCATGGACCTGATGCTGA′]





3316
NM_138477.2(CDAN1): c.1796A >
146059
CDAN1
[′CTGAGCTTGAAGATCCAGGAGCTCARTGG



G (p.Asn599Ser)


TCTTGCCCTGCCCCAGCATGAG′]





3317
NM_001079802.1(FKTN): c.1112A >
2218
FKTN
[′GTAAAACTTGATGTTTTTTTCTTCTRTGAA



G (p.Tyr371Cys)


GAAACTGATCACATGTGGAAT′]





3318
NM_013382.5(POMT2): c.1997A >
29954
POMT2
[′GCTTGAGAAGAGCATGGCTGGGAAGYAGT



G (p.Tyr666Cys)


GGTGGAAGTAGAGGACCCGGCC′]





3319
NM_000529.2(MC2R): c.761A > G
4158
MC2R
[′CCAAGTAACCCCTACTGCGCCTGCTRCATG



(p.Tyr254Cys)


TCTCTCTTCCAGGTGAACGGC]





3320
NM_000383.3(AIRE): c.247A > G
326
AIRE
[′CCTGGACTTCTGGAGGGTGCTGTTCRAGGA



(p.Lys83Glu)


CTACAACCTGGAGCGCTATGG′]





3321
NM_020436.3(SALL4): c.2663A > G
57167
SALL4
[′TCGTCTGCTAGCGCTCTTCAGATCCRCGAG



(p.His888Arg)


CGGACTCACACTGGAGAGAAG′]





3322
NM_203288.1(RP9): c.509A > G
6100
RP9
[′CAGTTACTGGAGGATTCTACCTCAGRTGAA



(p.Asp170Gly)


GATAGGAGCAGCTCCAGTTCC′]





3323
NM_000348.3(SRD5A2): c.692A > G
6716
SRD5A2
[′TTCCTTGGGCTGCGAGCTTTTCACCRCCAT



(p.His231Arg)


AGGTAAATTTTTCAATAAAAG′]





3324
NM_006445.3(PRPF8): c.6926A > G
10594
PRPF8
[′CCCAAAGAGTTCTACCACGAGGTGCVCAG



(p.His2309Arg)


GCCCTCTCACTTCCTCAACTTT′]





3325
NM_018319.3(TDP1): c.1478A > G
55775
TDP1
[′TCTGGCCGCAGCAATGCCATGCCACRTATT



(p.His493Arg)


AAGACATATATGAGGCCTTCT′]





3326
NM_144773.2(PROKR2): c.629A >
128674
PROKR2
[′AGCCAGGAGAAGATCTTCTGTGGCCRGAT



G (p.Gln210Arg)


CTGGCCTGTGGATCAGCAGCTC′]





3327
NM_001604.5(PAX6): c.1075 −
5080
PAX6
[′ACCACAGGTTTGCCTCTCTCCTCACRGCCC



2A > G


CCAGTCCCCAGCCAGACCTCC′]





3328
NM_000280.4(PAX6): c.1171A > G
5080
PAX6
[′CAGTCAGCCAATGGGCACCTCGGGCRCCA



(p.Thr391Ala)


CTTCAACAGGTGAGCCACTGCT′]





3329
NM_024426.4(WT1): c.1391A > G
7490
WT1
[′TGTCAGCGAAAGTTCTCCCGGTCCGRCCAC



(p.Asp464Gly)


CTGAAGACCCACACCAGGACT′]





3330
NM_024426.4(WT1): c.1021A > G
7490
WT1
[′TTGCAGCCACAGCACAGGGTACGAGRGCG



(p.Ser341Gly)


ATAACCACACAACGCCCATCCT′]





3331
NM_005957.4(MTHFR): c.971A > G
4524
MTHFR
[′CCAGGCCTCCACTTCTACACCCTCARCCGC



(p.Asn324Ser)


GAGATGGCTACCACAGAGGTG′]





3332
NM_001127328.2(ACADM): c.997A >
34
ACADM
[′TAACTCATTCTAGCTAGTTCAACTTYCATT



G (p.Lys333Glu)


GCCATTTCAGCCAGCATAAAT′]





3333
NM_001127328.2(ACADM): c.589A >
34
ACADM
[′TATTAATGGTCAGAAGATGTGGATARCCA



G (p.Thr197Ala)


ACGGAGGAAAAGCTAATTGGTA′]





3334
NM_000155.3(GALT): c.940A > G
2592
GALT
[′AGGATCAGAGGCTGGGGCCAACTGGRACC



(p.Asn314Asp)


ATTGGCAGCTGCACGCTCATTA′]





3335
NM_000155.3(GALT): c.563A > G
2592
GALT
[′TGTTCTAACCCCCACCCCCACTGCCRGGTA



(p.Gln188Arg)


AGGGTGTCAGGGGCTCCAGTG′]





3336
NM_000250.1(MPO): c.518A > G
4353
MPO
[′GTTGCACATCCCGGTGATGGTGCGGYATTT



(p.Tyr173Cys)


GTCCTGCTCCGGGCAAGTCAC′]





3337
NM_020247.4(ADCK3): c.1541A >
56997
ADCK3
[′TTGGATTTTGGGGCAACGCGGGAATRTGA



G (p.Tyr514Cys)


CAGATCCTTCACCGACCTCTAC′]





3338
NM_000229.1(LCAT): c.463A > G
3931
LCAT
[′CACACTGGTGCAGAACCTGGTCAACRATG



(p.Asn155Asp)


GCTACGTGCGGGACGAGACTGT′]





3339
NM_000403.3(GALE): c.101A > G
2582
GALE
[′GGCTACTTGCCTGTGGTCATCGATARCTTC



(p.Asn34Ser)


CATAATGCCTTCCGTGGTGAG′]





3340
NM_001008216.1(GALE): c.308A >
2582
GALE
[′GGCGAGTCGGTGCAGAAGCCTCTGGRTTA



G (p.Asp103Gly)


TTACAGAGTTAACCTGACCGGG′]





3341
NM_000403.3(GALE): c.770A > G
2582
GALE
[′AAGGGCCACATTGCAGCCTTAAGGARGCT



(p.Lys257Arg)


GAAAGAACAGTGTGGCTGCCGG′]





3342
NM_000527.4(LDLR): c.2483A > G
3949
LDLR
[′AGCATCAACTTTGACAACCCCGTCTRTCAG



(p.Tyr828Cys)


AAGACCACAGAGGATGAGGTC′]





3343
NM_024740.2(ALG9): c.860A > G
79796
ALG9
[′ATTGCACCACTCAACATTGTTTTGTRTAAT



(p.Tyr287Cys)


GTCTTTACTCCTCATGGACCT′]





3344
NM_000375.2(UROS): c.184A > G
7390
UROS
[′TGAAGATTACGGGGGACTCATTTTTRCCAG



(p.Thr62Ala)


CCCCAGAGCAGTGGAAGCAGC′]





3345
NM_000372.4(TYR): c.125A > G
7299
TYR
[′GAATGCTGTCCACCGTGGAGCGGGGRCAG



(p.Asp42Gly)


GAGTCCCTGTGGCCAGCTTTCA′]





3346
NM_000372.4(TYR): c.1A > G
7299
TYR
[′AGACCTTGTGAGGACTAGAGGAAGARTGC



(p.Met1Val)


TCCTGGCTGTTTTGTACTGCCT′]





3347
NM_000053.3(ATP7B): c.3809A > G
540
ATP7B
[′GTCGCCATGGTGGGGGATGGGGTCADTGA



(p.Asn1270Ser)


CTCCCCGGCCTTGGCCCAGGCA′]





3348
NM_000520.4(HEXA): c.1A > G
3073
HEXA
[′CTCCGAGAGGGGAGACCAGCGGGCCVTGA



(p.Met1Val)


CAAGCTCCAGGCTTTGGTTTTC′]





3349
NM_000520.4(HEXA): c.611A > G
3073
HEXA
[′AATAAATTGAACGTGTTCCACTGGCRTCTG



(p.His204Arg)


GTAGATGATCCTTCCTTCCCA′]





3350
NM_000356.3(TCOF1): c.149A > G
6949
TCOF1
[′CAGCCCGTAACCCTTCTGGACATCTRTACA



(p.Tyr50Cys)


CACTGGCAACAGTAAGTGGTG′]





3351
NM_000144.4(FXN): c.385 − 2A > G
2395
FXN
[′ATGCTTTTTTTCCACCTAATCCCCTRGAGT






GGTGTCTTAACTGTCAAACTG′]





3352
NM_016335.4(PRODH): c.1562A >
5625
PRODH
[′GCCTAGCAGCTGTCCAAAGTACACCYGGT



G (p.Gln521Arg)


GGTCAGCAGGATGCAGGCCCAG′]





3353
NM_015474.3(SAMHD1): c.760A >
25939
SAMHD1
[′TAATTCTAATGGAATTAAGCCTGTCRTGGA



G (p.Met254Val)


ACAATATGGTCTCATCCCTGA′]





3354
NM_012464.4(TLL1): c.1885A > G
7092
TLL1
[′ACTTCTTACCAAACTTAACGGCACCRTAAC



(p.Ile629Val)


CACCCCTGGCTGGCCCAAGGA′]





3355
NM_000112.3(SLC26A2): c.1273A >
1836
SLC26A2
[′GGAAATGTATGCCATTGGCTTTTGTRATAT



G (p.Asn425Asp)


CATCCCTTCCTTCTTCCACTG′]





3356
NM_138691.2(TMC1): c.1960A > G
117531
TMC1
[′CCTGTCCACAATGCCTGTCTTGTACRTGAT



(p.Met654Val)


CGTGTCCCTCCCACCATCTTT′]





3357
NM_000173.6(GP1BA): c.763A > G
2811
GP1BA
[′GAAGCAAGGTGTGGACGTCAAGGCCRTGA



(p.Met255Val)


CCTCTAATGTGGCCAGTGTGCA′]





3358
NM_024996.5(GFM1): c.521A > G
85476
GFM1
[′AACGTTCCGTTTCTAACTTTTATTARCAAA



(p.Asn174Ser)


TTGGACCGAATGGGCTCCAAC′]





3359
NM_024301.4(FKRP): c.926A > G
79147
FKRP
[′GTGGGCGACACGCCCGCCTACCTCTRCGA



(p.Tyr309Cys)


GGAGCGCTGGACGCCCCCCTGC′]





3360
NM_024301.4(FKRP): c.1387A > G
79147
FKRP
[′TGCCGGCTTCGTGGCGCAGGCGCCTRACA



(p.Asn463Asp)


ACTACCGCCGCTTCCTGGAGCT′]





3361
NM_021020.3(LZTS1): c.355A > G
11178
LZTS1
[′TCCTTTTCCTCTACAGGGCTCCGAGRAGGG



(p.Lys119Glu)


TGCAGTGAGGCCCACAGCCTT′]





3362
NM_001005741.2(GBA): c.1226A >
2629
GBA
[′CCAGCCGACCACATGGTACAGGAGGBTCT



G (p.Asn409Ser)


AGGGTAAGGACAAAGGCAAAGA′]





3363
NM_000157.3(GBA): c.680A > G
2629
GBA
[′ACATCACCCACTTGGCTCAAGACCARTGG



(p.Asn227Ser)


AGCGGTGAATGGGAAGGGGTCA′]





3364
NM_001005741.2(GBA): c.1049A >
2629
GBA
[′AAATATGTTCATGGCATTGCTGTACRTTGG



G (p.His350Arg)


TACCTGGACTTTCTGGCTCCA′]





3365
NM_014239.3(E1F2B2): c.638A > G
8892
EIF2B2
[′GTGAATTTGTCCAAAGCAGGTATTGRGAC



(p.Glu213Gly)


AACTGTCATGACTGATGCTGCC′]





3366
NM_015915.4(ATL1): c.773A > G
51062
ATL1
[′CTACAGAACGTCAGAAAACACATCCRTTC



(p.His258Arg)


CTGTTTCACCAACATTTCCTGT′]





3367
NM_015915.4(ATL1): c.1222A > G
51062
ATL1
[′GAAGCTATTCCGAGGGGTGAAGAAGRTGG



(p.Met408Val)


GTGGGGAAGAATTTAGCCGGCG′]





3368
NM_022051.2(EGLN1): c.1121A > G
54583
EGLN1
[′TTCTGGTCTGACCGTCGCAACCCTCRTGAA



(p.His374Arg)


GTACAACCAGCATATGCTACA′]





3369
NM_015629.3(PRPF31): c.527 + 3A >
26121
PRPF31
[′GTCACCGCCTCCACCACCCAGGGGTRTGTC



G


CGCTTCGAGGGAGGCGCCGGG′]





3370
NM_001243133.1(NLRP3): c.1880A >
114548
NLRP3
[′CTGCAGATCCAGCCCAGCCAGCTGGRATT



G (p.Glu627Gly)


GTTCTACTGTTTGTACGAGATG′]





3371
NM_020919.3(ALS2): c.2980 −
57679
ALS2
[′CTTATTGACGTTACTTTTTGCTCCTRGACA



2A > G


AAGTGGCTACGAGCTATAAGC′]





3372
NM_175073.2(APTX): c.602A > G
54840
APTX
[′GATAAATACCCAAAGGCCCGTTACCRTTG



(p.His201Arg)


GCTGGTCTTACCGTGGACCTCC′]





3373
NM_001002010.2(NT5C3A): c.686A >
51251
NT5C3A
[′CATCCCAATGTCAAAGTTGTGTCCARTTTT



G (p.Asn229Ser)


ATGGATTTTGATGAAACTGTA′]





3374
NM_020451.2(SEPN1): c.1A > G
57190
SEPN1
[′CCGGCAGCCGCCGCCAGCCGCAGCCRTGG



(p.Met1Val)


GCCGGGCCCGGCCGGGCCAACG′]





3375
NM_032667.6(BSCL2): c.263A > G
−1

[′TCACTCTGCTCCTTCCCTGTTGCCARTGTCT



(p.Asn88Ser)


CGCTGACTAAGGGTGGACGT′]





3376
NM_153638.2(PANK2): c.700A > G
80025
PANK2
[′GGTATATTTTGAACCCAAAGACATCRCTGC



(p.Thr234Ala)


TGAAGAAGAAGAGGAAGAAGT′]





3377
NM_025243.3(SLCl9A3): c.1264A >
80704
SLC19A3
[′TGCCTTGGTGATTCAGACCATCATGRCTGT



G (p.Thr422Ala)


GATTGTAGTAGATCAGAGAGG′]





3378
NM_025243.3(SLCl9A3): c.130A >
80704
SLC19A3
[′TATCCCATATTTATCTGGACCAGATRAAAA



G (p.Lys44Glu)


CCTGACCAGTGCAGAGGTAAG′]





3379
NM_031885.3(BBS2): c.209A > G
583
BBS2
[′CAGACAGCTGACTGCCTGGTTAATGYTGA



(p.Asn70Ser)


GAAGAGAAACATCAGATTCCAG′]





3380
NM_032383.4(HPS3): c.2482 − 2A > G
−1

[′TTTATGAGAAATTCTTTTATGTTTTRGATA






AATGCCTGTAGTCATTATGGC′]





3381
NM_021830.4(C10orf2): c.955A > G
56652
C10orf2
[′TGACCTTCGGTCCTGGGAAGCCGCCVAGTT



(p.Lys319Glu)


GTTTGCACGAAAACTGAACCC′]





3382
NM_021830.4(C10orf2): c.1523A >
56652
C10orf2
[′ACAATGCAACATGCAGTCTACGTCTRTGAC



G (p.Tyr508Cys)


ATTTGTCATGTGATCATCGAC′]





3383
NM_006492.2(ALX3): c.608A > G
257
ALX3
[′ACCTGCCCCCAGGTCTGGTTCCAGARCCGC



(p.Asn203Ser)


AGAGCCAAGTGGCGGAAGCGC′]





3384
NM_174916.2(UBR1): c.407A > G
197131
UBR1
[′TTCCAGGACAGTGTTCATAAAAATCRTCGT



(p.His136Arg)


TACAAGGTAAGAAAATATAAC′]





3385
NM_015166.3(MLC1): c.422A > G
23209
MLC1
[′CTAGTCCTGAACCCATCAGCAATAARCGT



(p.Asn141Ser)


GAGTTCACACGAGCTTCGCGCA′]





3386
NM_013391.3(DMGDH): c.326A >
29958
DMGDH
[′CCTGGAATAAACTTGAAGAAAATACRTTA



G (p.His109Arg)


TGATAGCATCAAACTTTATGAG′]





3387
NM_014795.3(ZEB2): c.3356A > G
9839
ZEB2
[′GCTTACTTGCAGAGCATTACCCCTCRGGGG



(p.Gln1119Arg)


TACTCTGACTCGGAGGAGAGG′]





3388
NM_000441.1(SLC26A4): c.1151A >
5172
SLC26A4
[′GTTGTCATCCAGTCTCTTCCTTAGGRATTC



G (p.Glu384Gly)


ATTGCCTTTGGGATCAGCAAC′]





3389
NM_000441.1(SLC26A4): c.1105A >
5172
SLC26A4
[′TTATGCTATTGCAGTGTCAGTAGGARAAGT



G (p.Lys369Glu)


ATATGCCACCAAGTATGATTA′]





3390
NM_000441.1(SLC26A4): c.2168A >
5172
SLC26A4
[′AAGGACACATTCTTTTTGACGGTCCRTGAT



G (p.His723Arg)


GCTATACTCTATCTACAGAAC′]





3391
NM_000441.1(SLC26A4): c.919 −
5172
SLC26A4
[′TTTTTAACATCTTTTGTTTTATTTCRGACGA



2A > G


TAATTGCTACTGCCATTTCA′]





3392
NM_000197.1(HSD17B3): c.703A >
3293
HSD17B3
[′GACCCCATATGCTGTCTCGACTGCARTGAC



G (p.Met235Val)


AAAGTATCTAAATACAAATGT′]





3393
NM_000197.1(HSD17B3): c.389A >
3293
HSD17B3
[′TTGTTTTGCTTCTTTCTGCCAGTCARCAATG



G (p.Asn130Ser)


TCGGAATGCTTCCAAACCTT′]





3394
NM_022458.3(LMBR1): c.423 + 5252A >
64327
LMBR1
[′GTTTTGATCTTAGTGTTTATTACAGRAAAT



G


GAAGCCATATCTCACTAACTA′]





3395
NM_020366.3(RPGRIP1): c.3341A >
57096
RPGRIP1
[′CTAAATAAACATTTTCCTTATCAGGRTTCA



G (p.Asp1114Gly)


GAGAAGATGTGCATTGAAATT′]





3396
NM_021625.4(TRPV4): c.998A > G
59341
TRPV4
[′CTGCATGCGCTGGTGGCCATTGCTGRCAAC



(p.Asp333Gly)


ACCCGTGAGAACACCAAGTTT′]





3397
NM_004897.4(MINPP1): c.809A > G
9562
MINPP1
[′TTAAAAAAAGTTGCAGCTACTTTGCRAGTG



(p.Gln270Arg)


CCAGTAAATGATTTAAATGCA′]





3398
NM_020638.2(FGF23): c.211A > G
8074
FGF23
[′TGGCGCACCCCATCAGACCATCTACRGTG



(p.Ser71Gly)


AGTAGGGCTTCAGGCTGGGAAG′]





3399
NM_015071.4(ARHGAP26): c.1250A >
23092
ARHGAP26
[′GGGCTGTATCGAATTGTGGGTGTCAVCTCC



 G (p.Asn417Ser)


AGAGTGCAGAAGTTGCTGAGT′]





3400
NM_021615.4(CHST6): c.521A > G
4166
CHST6
[′CGCTCCTACAGCCACGTGGTGCTCARGGA



(p.Lys174Arg)


GGTGCGCTTCTTCAACCTGCAG′]





3401
NM_021615.4(CHST6): c.329A > G
4166
CHST6
[′TGCGACATGGACGTGTTTGATGCCTRTCTG



(p.Tyr110Cys)


CCTTGGCGCCGCAACCTGTCC′]





3402
NM_015560.2(OPA1): c.1745A > G
4976
OPA1
[′CTTGAAACTGAATGGAAGAATAACTRTCC



(p.Tyr582Cys)


TCGCCTGCGGGAACTTGACCGG]





3403
NM_000368.4(TSC1): c.1760A > G
7248
TSC1
[′AGTATCTTCACTCCCAGTCCTTGTARAATT



(p.Lys587Arg)


CCACCTCCGACGAGAGTGGGC′]





3404
NM_020661.2(AICDA): c.415A > G
57379
AICDA
[′CCGCGCCGGGGTGCAAATAGCCATCRTGA



(p.Met139Val)


CCTTCAAAGGTGCGAAAGGGCC′]





3405
NM_020533.2(MCOLN1): c.406 −
57192
MCOLN1
[′ACAGGCCCTCCCCTTCTCTGCCCACRGTAC



2A > G


CTGGCGTTGCCTGACGTGTCA′]





3406
NM_021102.3(SPINT2): c.488A > G
10653
SPINT2
[′AGGAACTCCTGCAATAACTTCATCTRTGGA



(p.Tyr163Cys)


GGCTGCCGGGGCAATAAGAAC′]





3407
NM_006610.3(MASP2): c.359A > G
10747
MASP2
[′GGGAGGGCTGGGGTTTCTCAGGGTCRGGG


-
(p.Asp120Gly)


GGTCCCCAAGGAGTAGCCAGGG′,


3410



′AGGGGCCAGGCTTGGCCAGGAGGGASATC






AGGCCTGGGTCTTGCCTTCACT′,






′GGGCAGGAGAGCACAGACACGGAGCRGGC






CCCTGGCAAGGACACTTTCTAC′,






′AGCCTGGACATTACCTTCCGCTCCGRCTAC






TCCAACGAGAAGCYGTTCACG′]





3411
NM_018965.3(TREM2): c.401A > G
54209
TREM2
[′GCTCTGCCTCCCATAGACCCCCTGGRTCAC



(p.Asp134Gly)


CGGGATGCTGGAGATCTCTGG′]





3412
NM_007375.3(TARDBP): c.1009A >
23435
TARDBP
[′AGCACTACAGAGCAGTTGGGGTATGRTGG



G (p.Met337Val)


GCATGTTAGCCAGCCAGCAGAA′]





3413
NM_007375.3(TARDBP): c.506A >
23435
TARDBP
[′GTAATGTCACAGCGACATATGATAGRTGG



G (p.Asp169Gly)


ACGATGGTGTGACTGCAAACTT′]





3414
NM_007375.3(TARDBP): c.1028A >
23435
TARDBP
[′GGTATGATGGGCATGTTAGCCAGCCRGCA



G (p.Gln343Arg)


GAACCAGTCAGGCCCATCGGGT′]





3415
NM_007375.3(TARDBP): c.787A >
23435
TARDBP
[′CGTTCATATATCCAATGCCGAACCTRAGCA



G (p.Lys263Glu)


CAATAGCAATAGACAGTTAGA′]





3416
NM_015247.2(CYLD): c.2240A > G
1540
CYLD
[′ATCAACAGTAACCTGAAATTTGCAGRGGT



(p.Glu747Gly)


TAGTGATACTCACCTGTGGTAT′]





3417
NM_001128425.1(MUTYH): c.536A >
4595
MUTYH
[′AATCAACTCTGGGCTGGCCTGGGCTRCTAT



G (p.Tyr179Cys)


TCTCGTGGCCGGCGGCTGCAG′]





3418
NM_001128425.1(MUTYH): c.1241A >
4595
MUTYH
[′TCCGTGACCTGGGAGCCCTCAGAGCRGCTT



G (p.Gln414Arg)


CAGCGCAAGGCCCTGCTGCAG′]





3419
NM_170784.2(MKKS): c.110A > G
8195
MKKS
[′TTGAAAAGAATTGTAACATCATGCTRTGGC



(p.Tyr37Cys)


CCCTCAGGTAGGCTGAAGCAG′]





3420
NM_170784.2(MKKS): c.169A > G
8195
MKKS
[′TGGCTTTGGAGGTTACGTGTGTACARCCTC



(p.Thr57Ala)


ACAGTCCTCAGCTCTGCTCAG′]





3421
NM_004795.3(KL): c.578A > G
9365
KL
[′GTGCAGCCCGTGGTCACCCTGTACCRCTGG



(p.His193Arg)


GACCTGCCCCAGCGCCTGCAG′]





3422
NM_014625.3(NPHS2): c.479A > G
7827
NPHS2
[′CTTTTCTTTTTTTTGCCCTGCCTGGRTACCT



(p.Asp160Gly)


ACCACAAGGTTGACCTTCGT′]





3423
NM_015713.4(RRM2B): c.322 −
50484
RRM2B
[′CACCTCCTGACTAAAGCGCTCCACCBAAG



2A > G


AAGATAAGGAAAATAGATATAT′]





3424
NM_006343.2(MERTK): c.1605 −
10461
MERTK
[′GAAGTATCTTTGTTTTCATTCACCCRGGAA



2A > G


TGCATTCACAGAGGAGGATTC′]





3425
NM_014585.5(SLC40A1): c.470A >
30061
SLC40A1
[′GCTACTGCAATCACAATCCAAAGGGRTTG



G (p.Asp157Gly)


GATTGTTGTTGTTGCAGGAGAA′]





3426
NM_004924.4(ACTN4): c.763A > G
81
ACTN4
[′CGTGAACACGGCCCGGCCCGACGAGRAGG



(p.Lys255Glu)


CCATAATGACCTATGTGTCCAG′]





3427
NM_012193.3(FZD4): c.1024A > G
−1

[′CAAATGGGGTCATGAAGCCATTGAARTGC



(p.Met342Val)


ACAGCTCTTATTTCCACATTGC′]





3428
NM_012193.3(FZD4): c.766A > G
−1

[′GTTTTCCTACCCTGAGCGCCCCATCRTATT



(p.Ile256Val)


TCTCAGTATGTGCTATAATAT′]






NM_004239.3(TRIP11): c.202 −
9321
TRIP11




2A > G








3429
NM_004239.3(TRIP11): c.2102A > G
9321
TRIP11
[′AGTGTTTTTTTCCAGAGAAAGCTGAYTGTT



(p.Asn701Ser)


ACCAGCAAGACATTCTTCTAA′]





3430
NM_012434.4(SLC17A5): c.548A >
26503
SLC17A5
[′CAGGGTGTTACATTTCCAGCCATGCRTGCC



G (p.His183Arg)


ATGTGGTCTTCTTGGGCTCCC′]





3431
NM_001099274.1(TINF2): c.838A >
26277
TINF2
[′ATGGGCCTCCACTAGGGGAGGCCATDAGG



G (p.Lys280Glu)


AGCGCCCCACAGTCATGCTGTT′]





3432
NM_012415.3(RAD54B): c.1778A >
25788
RAD54B
[′AGAGTTGAACAAAAGGCAGGGGTGAYTGC



G (p.Asn593Ser)


ACAGTTTTTTAAGAGCTCCTAT′]





3433
NM_014946.3(SPAST): c.1688 −
6683
SPAST
[′TAAGTGCCTGACTTTTATGTTTTACRGAAC



2A > G


TAAAACCAGAACAGGTGAAGA′]





3434
NM_014946.3(SPAST): c.1322A > G
6683
SPAST
[′AGTCTTATACTTGTATTTCCTCTAGRTGAA



(p.Asp441Gly)


GTTGATAGCCTTTTGTGTGAA′]





3435
NM_014946.3(SPAST): c.1245 + 4A >
6683
SPAST
[′TGCAAGTTTAACTTCAAAATACGTGRGTGC



G


TCTGTTTCCAATATTGTCGTA′]





3436
NM_014946.3(SPAST): c.1157A > G
6683
SPAST
[′CTGTTACTCTTTGGTCCACCTGGGARTGGG



(p.Asn386Ser)


AAGACAATGCTGGTAAGGGTT′]





3437
NM_014946.3(SPAST): c.1216A > G
6683
SPAST
[′AGAATCGAATGCAACCTTCTTTAATRTAAG



(p.Ile406Val)


TGCTGCAAGTTTAACTTCAAA′]





3438
NM_182643.2(DLC1): c.2875A > G
10395
DLC1
[′ACACCTGGATGTGGACAACGACCGARCCA



(p.Thr959Ala)


CACCCAGCGACCTGGACAGCAC′]





3439
NM_194456.1(KRIT1): c.410A > G
889
KRIT1
[′TGCCCAATTTTTTACTGCTTACAAGRTATT



(p.Asp137Gly)


ATGCGAGTCTGTAGTGAATCC′]





3440
NM_005094.3(SLC27A4): c.899A >
10999
SLC27A4
[′CCAGGAAACATCGTGGGAATCGGCCRGTG



G (p.Gln300Arg)


CCTGCTGCATGGCATGACGGTG′]





3441
NM_004211.3(SLC6A5): c.1472A >
9152
SLC6A5
[′GGAGGCCTGATCACTCTCTCTTCTTRCAAC



G (p.Tyr491Cys)


AAATTCCACAACAACTGCTAC′]





3442
NM_004211.3(SLC6A5): c.1526A >
9152
SLC6A5
[′GACACTCTAATTGTCACCTGCACCARCAGT



G (p.Asn509Ser)


GCCACAAGCATCTTTGCCGGC′]





3443
NM_014270.4(SLC7A9): c.695A > G
11136
SLC7A9
[′GCGTTTTACAATGGACTCTGGGCCTRTGAT



(p.Tyr232Cys)


GGATGGTGAGGTGTCCTGAGA′]





3444
NM_139025.4(ADAMTS13): c.1582A >
11093
ADAMTS13
[′GAGCCTGTGTGTGTCGGGCAGCTGCRGGG



G (p.Arg528Gly)


TAGGCGTGTGTGGACATTGGCG′]





3445
NM_002894.2(RBBP8): c.1009A > G
5932
RBBP8
[′TGTATTTGGAGCTACCTCTAGTATCRAAAG



(p.Lys337Glu)


TGGTTTAGATTTGAATACAAG′]





3446
NM_005682.6(ADGRGl): c.263A >
9289
ADGRGl
[′TCCTTCCCTGACCCCAGGGGCCTCTRCCAC



G (p.Tyr88Cys)


TTCTGCCTCTACTGGAACCGA′]





3447
NM_006502.2(POLH): c.1603A > G
5429
POLH
[′AGGAACTGAGCCCTTCTTTAAGCAGRAAA



(p.Lys535Glu)


GTCTGCTTCTAAAGCAGAAACA′]





3448
NM_000334.4(SCN4A): c.4774A > G
6329
SCN4A
[′CATCTCCTTCCTCATCGTGGTCAACRTGTA



(p.Met1592Val)


CATCGCCATCATCCTGGAGAA′]





3449
NM_000334.4(SCN4A): c.3478A > G
6329
SCN4A
[′CGCCCTCCTAGGCGCCATCCCCTCCRTCAT



(p.Ile1160Val)


GAATGTGCTGCTTGTCTGCCT′]





3450
NM_000334.4(SCN4A): c.421A > G
6329
SCN4A
[′GTTCAGCATGTTCATCATGATCACCRTCTT



(p.Ile141Val)


GACCAACTGCGTATTCATGAC′]





3451
NM_003907.2(EIF2B5): c.271A > G
8893
EIF2B5
[′CCTGACTGCCACAGGTGTACAGGAARCAT



(p.Thr91Ala)


TTGTCTTTTGTTGCTGGAAAGC′]





3452
NM_001128227.2(GNE): c.604A > G
10020
GNE
[′CAGTGCAGAGCAGCACCTGATATCCRTGT



(p.Met202Val)


GTGAGGACCATGATCGCATCCT′]





3453
NM_001029.3(RPS26): c.1A > G
6231
RPS26
[′CCTCTCTCCGGTCCGTGCCTCCAAGDTGGT



(p.Met1Val)


GAGTCTTCTTGCGTGGTGAGG′]





3454
NM_012082.3(ZFPM2): c.1969A > G
−1

[′TCAAACTAAGAAGCTCTCCACCTCCRGTAA



(p.Ser657Gly)


CAATGATGACAAAATTAATGG′]





3455
NM_012082.3(ZFPM2): c.89A > G
23414
ZFPM2
[′GATGAGGAAGAAGAATGTCCATCAGRGGA



(p.Glu30Gly)


AACAGACATCATCTCCAAAGGA′]





3456
NM_012082.3(ZFPM2): c.2527A > G
−1

[′AAAGTGTTTATCTCAGTCTGAGCGGRCGAC



(p.Thr843Ala)


CACGTCTCCCAAAAGGCTGCT′]





3457
NM_194248.2(OTOF): c.766 − 2A > G
9381
OTOF
[′TCTGGCTCCCCCTTCTCCTGCCTGCRGGTC






AGCATCACGGTGATCGAGGCC′]





3458
NM_003705.4(SLC25A12): c.1769A >
8604
SLC25A12
[′GCTCGAGTGTTTCGATCCTCTCCCCRGTTT



G (p.Gln590Arg)


GGTGTTACCTTGGTCACTTAT′]





3459
NM_004621.5(TRPC6): c.428A > G
7225
TRPC6
[′AATGCCCTACAGTTGGCAGTGGCCARTGA



(p.Asn143Ser)


GCATCTGGAAATTACAGAACTT′]





3460
NM_152384.2(BBS5): c.522 + 3A > G
129880
BBS5
[′TTTGGAATTTATCCAGTGATCAGGTRTTGT






GCAAAGAGCTAGTGAACCTTT′]





3461
NM_152384.2(BBS5): c.547A > G
129880
BBS5
[′GGGCAATTTAGGAACCTTTTTTATTRCCAA



(p.Thr183Ala)


TGTGAGAATTGTGTGGCATGC′]





3462
NM_001257342.1(BCS1L): c.232A >
617
BCS1L
[′CCACAGTACCCGTACTCAGCACCTCRGTGT



G (p.Ser78Gly)


CGAGACTTCGTACCTTCAGCA′]





3463
NM_004328.4(BCS1L): c.148A > G
617
BCS1L
[′GGCATTCCGGCGCCATTACATGATCRCACT



(p.Thr50Ala)


GGAAGTCCCTGCTCGAGACAG′]





3464
NM_003839.3(TNFRSF11A): c.508A >
8792
TNFRSF11A
[′TGCCTTTTCCTCCACGGACAAATGCRGACC



G (p.Arg170Gly)


CTGGACCAAGTAAGTAACAAC′]





3465
NM_030761.4(WNT4): c.647A > G
54361
WNT4
[′TGCCACGGGGTGTCAGGCTCCTGTGRGGT



(p.Glu216Gly)


AAAGACGTGCTGGCGAGCCGTG′]





3466
NM_022817.2(PER2): c.1984A > G
8864
PER2
[′GCTGGCACTGCCGGGCAAGGCAGAGRGTG



(p.Ser662Gly)


TGGCGTCGCTCACCAGCCAGTG′]





3467
NM_002977.3(SCN9A): c.1964A > G
−1

[′TAGGGCACGACCAATCAAATACACARGAA



(p.Lys655Arg)


AAGGCGTTGTAGTTCCTATCTC′]





3468
NM_002977.3(SCN9A): c.184A > G
6335
SCN9A
[′GGAAGCTGGCAAACAGCTGCCCTTCRTCT



(p.Ile62Val)


ATGGGGACATTCCTCCCGGCAT′]





3469
NM_002977.3(SCN9A): c.29A > G
6335
SCN9A
[′GCAATGTTGCCTCCCCCAGGACCTCRGAGC



(p.Gln10Arg)


TTTGTCCATTTCACAAAACAG′]





3470
NM_001457.3(FLNB): c.604A > G
2317
FLNB
[′GCCTGTGGATAATGCACGAGAAGCCRTGC



(p.Met202Val)


AGCAGGCAGATGACTGGCTGGG′]





3471
NM_003060.3(SLC22A5): c.632A >
6584
SLC22A5
[′GTAGGCATGGGCCAGATCTCCAACTRTGT



G (p.Tyr211Cys)


GGCAGCATTTGTCCTGGGTATG′]





3472
NM_000369.2(TSHR): c.1856A > G
7253
TSHR
[′CCGCAGTACAACCCAGGGGACAAAGRTAC



(p.Asp619Gly)


CAAAATTGCCAAGAGGATGGCT′]





3473
NM_000369.2(TSHR): c.548A > G
7253
TSHR
[′TCTCTTCTCTCTGTTGGTTGTAGGARGCTG



(p.Lys183Arg)


TACAACAATGGCTTTACTTCA′]





3474
NM_001430.4(EPAS1): c.1603A > G
2034
EPAS1
[′GGAGACACTGGCACCCTATATCCCCRTGG



(p.Met535Val)


ACGGGGAAGACTTCCAGCTAAG′]





3475
NM_024009.2(GJB3): c.421A > G
2707
GJB3
[′GTTCAGCCTCATCTTCAAGCTCATCRTTGA



(p.Ile141Val)


GTTCCTCTTCCTCTACCTGCT′]





3476
NM_024009.2(GJB3): c.497A > G
2707
GJB3
[′ATGCCGCGCCTGGTGCAGTGTGCCADCGT



(p.Asn166Ser)


GGCCCCCTGCCCCAACATCGTG′]





3477
NM_001080463.1(DYNC2H1): c.11284A >
79659
DYNC2H1
[′TGTTTTTTTGCTTTTGTAGGTTGCCRTGGGT



G (p.Met3762Val)


CAAGGTCAAGCTGATTTAGC′]





3478
NM_001080463.1(DYNC2H1): c.9044A >
79659
DYNC2H1
[′CGCATGCCACCTGATGTAATTAGAGRTATT



G (p.Asp3015Gly)


CTTGAAGGAGTTTTAAGGTTG′]





3479
NM_001080463.1(DYNC2H1): c.4610A >
79659
DYNC2H1
[′GTTGACCCATCTCTGTTCCCTTCACRGGTA



G (p.Gln1537Arg)


AGGGGGCTTACGTGTAGAAGC′]





3480
NM_001080463.1(DYNC2H1): c.5959A >
79659
DYNC2H1
[′TGGTCCAAGTGGTGCTGGAAAATCARCGC



G (p.Thr1987Ala)


TTTGGAGAATGTTAAGGGCTGC′]





3481
NM_007035.3(KERA): c.740A > G
11081
KERA
[′GTGGCCTTTTTGAGACTAAATCACARCAAA



(p.Asn247Ser)


CTGTCAGATGAGGGTCTCCCA′]





3482
NM_003722.4(TP63): c.697A > G
8626
TP63
[′TATCCGCGCCATGCCTGTCTACAAARAAGC



(p.Lys233Glu)


TGAGCACGTCACGGAGGTGGT′]





3483
NM_003722.4(TP63): c.1052A > G
8626
TP63
[′CGGATCTGTGCTTGCCCAGGAAGAGRCAG



(p.Asp351Gly)


GAAGGCGGATGAAGATAGCATC′]





3484
NM_003722.4(TP63): c.1054A > G
8626
TP63
[′GATCTGTGCTTGCCCAGGAAGAGACRGGA



(p.Arg352Gly)


AGGCGGATGAAGATAGCATCAG′]





3485
NM_003742.2(ABCB11): c.890A >
8647
ABCB11
[′AGAACAGTGGCTGCTTTTGGTGGTGRGAA



G (p.Glu297Gly)


AAGAGAGGTTGAAAGGTTGGTT′]





3486
NM_006702.4(PNPLA6): c.3034A >
10908
PNPLA6
[′GGACCTCACGTACCCAGTCACCTCCRTGTT



G (p.Met1012Val)


CACTGGGTCTGCCTTTAACCG′]





3487
NM_006412.3(AGPAT2): c.589 −
10555
AGPAT2
[′GTACACCACGGGGACGATGGGCACCYGCA



2A > G


GGCAGGGAGACGCACAGCTGAG′]





3488
NM_001084.4(PLOD3): c.668A > G
8985
PLOD3
[′AAGTCTCGGATCTTTCAGAACCTCARCGGG



(p.Asn223Ser)


GCTTTAGGTGAGGAGGAAGAC′]





3489
NM_138554.4(TLR4): c.896A > G
7099
TLR4
[′GCATACTTAGACTACTACCTCGATGRTATT



(p.Asp299Gly)


ATTGACTTATTTAATTGTTTG′]





3490
NM_001130978.1(DYSF): c.3892A >
8291
DYSF
[′GGGCCAGGTGCAGGAGACATCAAGGRTCC



G (p.Ile1298Val)


TGGATGAGGTGAGCTGGGCGTG′]





3491
NM_001130978.1(DYSF): c.5264A >
8291
DYSF
[′CTTTTTTGTCTTCTCTCTGGGGCAGRGGCT



G (p.Glu1755Gly)


GGCAGGATCCCAAACCCACAC′]





3492
NM_003494.3(DYSF): c.3443 −
8291
DYSF
[′CAGCTCTTAACCACTCCAGCCACTCRCTCT



33A > G


GGCACCTCTGTTTTTTCCCTT′]





3493
NM_003494.3(DYSF): c.1285 −
8291
DYSF
[′AACTTGTCCCCTCCCTGTGTCTTCTRGCTGT



2A > G


GCAGCAAGATCTTGGAGAAG′]





3494
NM_005450.4(NOG): c.665A > G
9241
NOG
[′CGCTGCGGCTGGATTCCCATCCAGTRCCCC



(p.Tyr222Cys)


ATCATTTCCGAGTGCAAGTGC′]





3495
NM_004629.1(FANCG): c.925 −
2189
FANCG
[′GATACAATTTTTTTCTTTCTCTTTTRGGCCT



2A > G


TGAATGTCCCATGCAGTTCC′]





3496
NM_001701.3(BAAT): c.226A > G
570
BAAT
[′AGGGGATTATATGGGAGTCCACCCCRTGG



(p.Met76Val)


GTCTCTTCTGGTCTCTGAAACC′]





3497
NM_006892.3(DNMT3B): c.2450A >
1789
DNMT3B
[′TTTGGCTTTCCTGTGCACTACACAGRCGTG



G (p.Asp817Gly)


TCCAACATGGGCCGTGGTGCC′]





3498
NM_001360.2(DHCR7): c.839A > G
1717
DHCR7
[′GCTGCTTCTGTCTTGCAGGCCATCTRCGTG



(p.Tyr280Cys)


ATTGACTTCTTCTGGAACGAA′]





3499
NM_001360.2(DHCR7): c.1A > G
1717
DHCR7
[′AAGGTTCTCTTTCTTGCAGGGCCCARTGGC



(p.Met1Val)


TGCAAAATCGCAACCCAACAT′]





3500
NM_032119.3(ADGRV1): c.18131A >
84059
ADGRV1
[′TATCATCAGAGCATGTCACAGATCTRTGGA



G (p.Tyr6044Cys)


CTCATTCATGGTGACCTGTAA′]





3501
NM_004984.2(KIF5A): c.767A > G
3798
KIF5A
[′GTGCTGGACGAGGCAAAGAATATCARCAA



(p.Asn256Ser)


GTCACTGTCAGCTCTGGGCAAT′]





3502
NM_004984.2(KIF5A): c.827A > G
3798
KIF5A
[′GTCTCCTTCCTCCCCCAGAAAAGCTRTGTT



(p.Tyr276Cys)


CCATATCGTGACAGCAAAATG′]





3503
NM_007373.3(SHOC2): c.4A > G
8036
SHOC2
[′TTTTGTCCAGGCTTGAGTCACCATGRGTAG



(p.Ser2Gly)


TAGTTTAGGAAAAGAAAAAGA′]





3504
NM_016203.3(PRKAG2): c.1148A >
51422
PRKAG2
[′TACTCCTTGATCAAAAATAAAATCCRCAG



G (p.His383Arg)


ATTGCCCGTTATTGACCCTATC′]





3505
NM_016203.3(PRKAG2): c.1589A >
51422
PRKAG2
[′GTCCTGCTTTTCTCTTTGCAGGTCCRTCGG



G (p.His530Arg)


CTGGTGGTGGTAAATGAAGCA′]





3506
NM_003816.2(ADAM9): c.411 −
8754
ADAM9
[′TTAAAATTTGTATACGTGTAATGCARCATT



8A > G


CAGAGGATTGCTGCATTTAGA′]





3507
NM_003002.3(SDHD): c.341A > G
6392
SDHD
[′GGCCTTGGACAAGTTGTTACTGACTRTGTT



(p.Tyr114Cys)


CATGGGGATGCCTTGCAGAAA′]





3508
NM_003002.3(SDHD): c.149A > G
6392
SDHD
[′GAATGGTGTGGAGTGCAGCACATACRCTT



(p.His50Arg)


GTCACCGAGCCACCATTGTATG′]





3509
NM_003002.3(SDHD): c.1A > G
6392
SDHD
[′ATGACCTTGAGCCCTCAGGAACGAGDTGG



(p.Met1Val)


CGGTTCTCTGGAGGCTGAGTGC′]





3510
NM_002485.4(NBN): c.511A > G
4683
NBN
[′TCAGTAAAATATTCTGGCTTTACAAYTGGA



(p.Ile171Val)


CGTCCACAAATGAGTGCACAT′]





3511
NM_170695.3(TGIF1): c.838A > G
7050
TGIF1
[′TTCCTGTACAGCTGGGCCAAACCCARCCCT



(p.Thr280Ala)


AGGGAGGCCACTGTCTCCTAA′]





3512
NM_002408.3(MGAT2): c.785A > G
4247
MGAT2
[′CTTATACTTTTCCTAGAAGAGGATCRCTAC



(p.His262Arg)


TTAGCCCCAGACTTTTACCAT′]





3513
NM_002408.3(MGAT2): c.952A > G
4247
MGAT2
[′GAAAACTTGGAAATCCACAGAGCACRATA



(p.Asn318Asp)


TGGGTCTAGCCTTGACCCGGAA′]





3514
NM_005422.2(TECTA): c.5609A >
7007
TECTA
[′CAGTCCAATGGCACGCATATCATGTRTAA



G (p.Tyr1870Cys)


AAACACACTCTGGATCGAAAGC′]





3515
NM_012233.2(RAB3GAP1): c.649 −
22930
RAB3GAP1
[′GGTATTGTCTTTGCATGTATTTCCTRGGGA



2A > G


TGTCCTTTAACTCCATTGCCT′]





3516
NM_005025.4(SERPINI1): c.1013A >
5274
SERPINI1
[′GAGATTTTTCTTTCCAAAGCAATTCRCAAG



G (p.His338Arg)


TCCTTCCTAGAGGTTAATGAA′]





3517
NM_001040667.2(HSF4): c.256A >
3299
HSF4
[′AGACGGTTTTCGGAAGGTGGTGAGCRTCG



G (p.Ile86Val)


AGCAGGGCGGCCTGCTTAGGCC′]





3518
NM_001008211.1(OPTN): c.1433A >
10133
OPTN
[′GTTTACTGTTCTGATTTTCATGCTGRAAGA



G (p.Glu478Gly)


GCAGCGAGAGAGAAAATTCAT′]





3519
NM_000492.3(CFTR): c.2738A > G
1080
CFTR
[′GTGATTATCACCAGCACCAGTTCGTRTTAT



(p.Tyr913Cys)


GTGTTTTACATTTACGTGGGA′]





3520
NM_000492.3(CFTR): c.3717 + 4A >
1080
CFTR
[′CTCAATAAGTCCTGGCCAGAGGGTGRGAT



G


TTGAACACTGCTTGCTTTGTTA′]





3521
NM_000492.3(CFTR): c.1666A > G
1080
CFTR
[′ACTGAGTGGAGGTCAACGAGCAAGARTTT



(p.Ile556Val)


CTTTAGCAAGGTGAATAACTAA′]





3522
NM_000492.3(CFTR): c.326A > G
1080
CFTR
[′TTACTGGGAAGAATCATAGCTTCCTRTGAC



(p.Tyr109Cys)


CCGGATAACAAGGAGGAACGC′]





3523
NM_000492.3(CFTR): c.273 + 4A > G
1080
CFTR
[′TGGAATCTTTTTATATTTAGGGGTARGGAT






CTCATTTGTACATTCATTATG′]





3524
NM_000492.3(CFTR): c.3254A > G
1080
CFTR
[′CTGTTCCACAAAGCTCTGAATTTACRTACT



(p.His1085Arg)


GCCAACTGGTTCTTGTACCTG′]





3525
NM_000492.3(CFTR): c.3700A > G
1080
CFTR
[′CATATTAGAGAACATTTCCTTCTCANTAAG



(p.Ile1234Val)


TCCTGGCCAGAGGGTGAGATT′]





3526
NM_000492.3(CFTR): c.650A > G
1080
CFTR
[′GCACTCCTCATGGGGCTAATCTGGGRGTTG



(p.Glu217Gly)


TTACAGGCGTCTGCCTTCTGT′]





3527
NM_001005360.2(DNM2): c.1684A >
1785
DNM2
[′CCTCCACCCTCAGGAGAAAGAGAAGRAGT



G (p.Lys562Glu)


ACATGCTGCCTCTGGACAACCT′]





3528
NM_001814.4(CTSC): c.857A > G
1075
CTSC
[′TCTCAGACCCCAATCCTAAGCCCTCRGGAG



(p.Gln286Arg)


GTTGTGTCTTGTAGCCAGTAT′]





3529
NM_001814.4(CTSC): c.1235A > G
1075
CTSC
[′AATCATGCTGTTCTGCTTGTGGGCTRTGGC



(p.Tyr412Cys)


ACTGACTCAGCCTCTGGGATG]





3530
NM_001814.4(CTSC): c.1040A > G
1075
CTSC
[′CGTTATTACTCCTCTGAGTACCACTRTGTA



(p.Tyr347Cys)


GGAGGTTTCTATGGAGGCTGC′]





3531
NM_005144.4(HR): c.-218A > G
55806
HR
[′TCCGACCCCTCCAACCTGCGGCCCTRGAGC






GCCCCCGCCGCCCCGGGGGAA′]





3532
NM_172107.2(KCNQ2): c.851A > G
3785
KCNQ2
[′ACCACCATTGGCTACGGGGACAAGTRCCC



(p.Tyr284Cys)


CCAGACCTGGAACGGCAGGCTC′]





3533
NM_001303.3(COX10): c.1007A > G
1352
COX10
[′GCCCTGAGCTGGGGCCTCCGTGAAGDCTA



(p.Asp336Gly)


CTCCCGGGGCGGCTACTGCATG′]





3534
NM_006214.3(PHYH): c.135 − 2A > G
5264
PHYH
[′AGAACGTTATTATCCAGAGTATACCYAAA






GGAGAAAAAGAATCCCAAAATA′]





3535
NM_002284.3(KRT86): c.340A > G
−1

[′GGAGAAGGAGCAGATCAAGTCCCTCVACA



(p.Asn114Asp)


GCAGGTTCGCGGCCTTCATCGA′]





3536
NM_003865.2(HESX1): c.541A > G
8820
HESX1
[′TCTAATGGCGAAAAAAAATTTCAACRCAA



(p.Thr181Ala)


ATCTGCTGGAATAGATAGAAAA′]





3537
NM_000303.2(PMM2): c.563A > G
5373
PMM2
[′TTTGATGTCTTTCCTGATGGATGGGRCAAG



(p.Asp188Gly)


AGATACTGTCTGCGACATGTG′]





3538
NM_000288.3(PEX7): c.340 −
5191
PEX7
[′TCTTTTGCTTTCTAAACACTTTTCARTGTTT



10A > G


TTAGGTGTATAGTGTTGATT′]





3539
NM_004044.6(ATIC): c.1277A > G
471
ATIC
[′CTCATCGTAGCCACCATTGCTGTCARGTAC



(p.Lys426Arg)


ACTCAGTCTAACTCTGTGTGC′]





3540
NM_000314.6(PTEN): c.368A > G
5728
PTEN
[′GATGACAATCATGTTGCAGCAATTCRCTGT



(p.His123Arg)


AAAGCTGGAAAGGGACGAACT′]





3541
NM_000314.6(PTEN): c.278A > G
5728
PTEN
[′GTTGCACAATATCCTTTTGAAGACCRTAAC



(p.His93Arg)


CCACCACAGCTAGAACTTATC′]





3542
NM_000314.6(PTEN): c.755A > G
5728
PTEN
[′CCTCAGCCGTTACCTGTGTGTGGTGRTATC



(p.Asp252Gly)


AAAGTAGAGTTCTTCCACAAA′]





3543
NM_018488.2(TBX4): c.1592A > G
9496
TBX4
[′TCCTTGTCCCGAGAATCTTCCTTACRGTAC



(p.Gln531Arg)


CATTCAGGAATGGGGACTGTG′]





3544
NM_000223.3(KRT12): c.403A > G
3859
KRT12
[′AGAAACTATGCAAAATCTTAATGATRGAT



(p.Arg135Gly)


TAGCTTCCTACCTGGATAAGGT′]





3545
NM_000503.5(EYA1): c.1639A > G
2138
EYA1
[′TGAGAGAATAATTCAAAGGTTTGGARGAA



(p.Arg547Gly)


AAGTGGTGTATGTTGTTATAGG′]





3546
NM_000261.1(MYOC): c.1010A > G
4653
MYOC
[′GTGTACTCGGGGAGCCTCTATTTCCRGGGC



(p.Gln337Arg)


GCTGAGTCCAGAACTGTCATA′]





3547
NM_000261.1(MYOC): c.1267A > G
4653
MYOC
[′ACAAACCTGGGAGACAAACATCCGTRAGC



(p.Lys423Glu)


AGTCAGTCGCCAATGCCTTCAT′]





3548
NM_000474.3(TWIST1): c.466A > G
7291
TWIST1
[′GACCCTCAAGCTGGCGGCCAGGTACRTCG



(p.Ile156Val)


ACTTCCTCTACCAGGTCCTCCA′]





3549
NM_001089.2(ABCA3): c.1702A >
21
ABCA3
[′ACAGATCACCGTCCTGCTGGGCCACRACG



G (p.Asn568Asp)


GTGCCGGGAAGACCACCACCCT′]





3550
NM_005055.4(RAPSN): c.-210A > G
5913
RAPSN
[′ATTCCTCAGAGGCCATGTGGCCCCARCTGG






CAGCGACAGCTGCAGACGGGC′]





3551
NM_198217.2(ING1): c.515A > G
3621
ING1
[′AACGAACCCACGTACTGTCTGTGCARCCA



(p.Asn172Ser)


GGTCTCCTATGGGGAGATGATC′]





3552
NM_000430.3(PAFAH1B1): c.446A >
5048
PAFAH1B1
[′GATTTTGAACGAACTCTTAAAGGACRTAC



G (p.His149Arg)


AGACTCTGTACAGGACATTTCA′]





3553
NM_000579.3(CCR5): c.-301 +
−1

[′TACGGGGAGAGTGGAGAAAAAGGGGRCA



246A > G


CAGGGTTAATGTGAAGTCCAGGA′]





3554
NM_000264.3(PTCH1): c.2479A > G
−1

[′ACTTTACGACCTACACAGGAGTTTCRGTAA



(p.Ser827Gly)


CGTGAAGTATGTCATGTTGGA′]





3555
NM_001184.3(ATR): c.2022A > G
545
ATR
[′TCTGCTGCTGCAATAAGATAAAAAAYCCA



(p.Gly674=)


CTAACACAACTAGCCCGGATTA′]





3556
NM_005982.3(SIX1): c.386A > G
6495
SIX1
[′ATCTGGGACGGCGAGGAGACCAGCTRCTG



(p.Tyr129Cys)


CTTCAAGGAGAAGTCGAGGGGT′]





3557
NM_006267.4(RANBP2): c.1966A >
5903
RANBP2
[′AGAAGACGCACACATAACTTTTGCTRTATT



G (p.Ile656Val)


GGATGCAGTAAATGGAAATAT′]





3558
NM_001001557.2(GDF6): c.1271A >
392255
GDF6
[′CCGCCCAGCTGCTGCGTGCCCACCARATTG



> G (p.Lys424Arg)


ACTCCCATCAGCATTCTATAC′]





3559
NM_000557.4(GDF5): c.517A > G
8200
GDF5
[′ACCCCCCATCACACCCCACGAGTACVTGCT



(p.Met173Val)


CTCGCTGTACAGGACGCTGTC′]





3560
NM_000392.4(ABCC2): c.4145A >
1244
ABCC2
[′CGAGAGAAGCTGACCATCATCCCCCRGGT



G (p.Gln1382Arg)


GAGCTCTAGAACTTACTCGGGC′]





3561
NM_000396.3(CTSK): c.990A > G
1513
CTSK
[′ACCTGGCCAGCTTCCCCAAGATGTGRCTCC



(p.Ter330Trp)


AGCCAGCCAAATCCATCCTGC′]





3562
NM_001127221.1(CACNA1A): c.4151A >
773
CACNA1A
[′AACGTCTTCAACATCCTCATCGTCTRCATG



G (p.Tyr1384Cys)


CTATTCATGTTCATCTTCGCC′]





3563
NM_000178.2(GSS): c.656A > G
2937
GSS
[′CAAGAGAAGGAAAGAAACATATTTGRCCA



(p.Asp219Gly)


GCGTGCCATAGAGAATGAGCTA′]





3564
NM_000901.4(NR3C2): c.2327A > G
4306
NR3C2
[′ACGCTCAACCGCTTAGCAGGCAAACRGAT



(p.Gln776Arg)


GATCCAAGTCGTGAAGTGGGCA′]





3565
NM_000901.4(NR3C2): c.2915A > G
4306
NR3C2
[′ATCAGCGACCAGCTGCCCAAGGTGGRGTC



(p.Glu972Gly)


GGGGAACGCCAAGCCGCTCTAC′]





3566
NM_004407.3(DMP1): c.1A > G
1758
DMP1
[′CCAGGTAGAGGTATCACACCCAACTRTGA



(p.Met1Val)


AGATCAGCATCCTGCTCATGTT′]





3567
NM_004999.3(MYO6): c.737A > G
4646
MYO6
[′CAAGGCAAAGAGGAAAGAAATTATCRTAT



(p.His246Arg)


CTTTTATAGGTTGTGTGCTGGT′]





3568
NM_000256.3(MYBPC3): c.175A >
4607
MYBPC3
[′CGCCAGCAACAAGTACGGCCTGGCCRCAG



G (p.Thr59Ala)


AGGGCACACGGCATACGCTGAC′]





3569
NM_000163.4(GHR): c.594A > G
2690
GHR
[′TGGAGTATGAACTTCAATACAAAGARGTA



(p.Glu198=)


AATGAAACTAAATGGAAAATGG′]





3570
NM_000525.3(KCNJ11): c.509A > G
3767
KCNJ11
[′ATCATGCTTGGCTGCATCTTCATGARGACT



(p.Lys170Arg)


GCCCAAGCCCACCGCAGGGCT′]





3571
NM_000525.3(KCNJ11): c.776A > G
3767
KCNJ11
[′CTGGTGGCCCCGCTGATCATCTACCRTGTC



(p.His259Arg)


ATTGATGCCAACAGCCCACTC′]





3572
NM_000182.4(HADHA): c.180 + 3A >
3030
HADHA
[′GAAAAAAACTGCAAATTAAATGAGAYACC



G


TTTGAATTGGGAGAGTTAATTC′]





3573
NM_005263.3(GFI1): c.1145A > G
2672
GFI1
[′GGCAAGGCATTCAGCCAGAGCTCCARCCT



(p.Asn382Ser)


CATCACCCACAGCCGCAAACAC′]





3574
NM_005263.3(GFI1): c.1208A > G
2672
GFI1
[′CCCTTCGGCTGCGACCTCTGTGGGARGGGT



(p.Lys403Arg)


TTCCAGAGGAAGGTGGACCTC′]





3575
NM_001893.4(CSNK1D): c.130A >
1453
CSNK1D
[′TGCCATCAAGCTTGAATGTGTCAAARCCA



G (p.Thr44Ala)


AACACCCTCAGCTCCACATTGA′]





3576
NM_006204.3(PDE6C): c.1363A > G
5146
PDE6C
[′AAACAGAAAGGACATTGCTCAGGAARTGC



(p.Met455Val)


TCATGAACCAAACCAAAGCCAC′]





3577
NM_006204.3(PDE6C): c.1483 −
5146
PDE6C
[′TGAAACAACCCATCCTTATTTCAACRGAAA



2A > G


GAGGACTTGCCAGACCCACGC′]





3578
NM_003476.4(CSRP3): c.206A > G
8048
CSRP3
[′TGCTATGGGCGCAGATATGGCCCCARAGG



(p.Lys69Arg)


GATCGGGTATGGACAAGGCGCT′]





3579
NM_005591.3(MRE11A): c.350A >
4361
MRE11A
[′GTGAACTATCAAGATGGCAACCTCARCAT



G (p.Asn117Ser)


TTCAATTCCAGTGTTTAGTATT′]





3580
NM_000107.2(DDB2): c.730A > G
1643
DDB2
[′TTGGAATCTCAGAATGCACAAAAAGRAAG



(p.Lys244Glu)


TGACGCATGTGGCCCTGAACCC′]





3581
NM_001204.6(BMPR2): c.1454A >
659
BMPR2
[′AAGGAGACAATCGAAGACTGTTGGGRCCA



G (p.Asp485Gly)


GGATGCAGAGGCTCGGCTTACT′]





3582
NM_000336.2(SCNN1B): c.863A >
6338
SCNN1B
[′ACAGAGAAGGCACTTCCTTCGGCCARCCC



G (p.Asn288Ser)


TGGAACTGAATTCGGTGAGTTT′]





3583
NM_000447.2(PSEN2): c.715A > G
5664
PSEN2
[′CTACCTCATCATGATCAGTGCGCTCRTGGC



(p.Met239Val)


CCTAGTGTTCATCAAGTACCT′]





3584
NM_002181.3(IHH): c.284A > G
3549
IHH
[′CCAGACATCATCTTCAAGGACGAGGRGAA



(p.Glu95Gly)


CACAGGCGCCGACCGCCTCATG′]





3585
NM_000310.3(PPT1): c.236A > G
5538
PPT1
[′ACTTCTCTCTGGCTTCTTTTTTAGGRCGTGG



(p.Asp79Gly)


AGAACAGCTTCTTCTTGAAT′]





3586
NM_003051.3(SLCl6A1): c.610A >
6566
SLC16A1
[′GCGACCAATCGGGCCCAAGCCAACCRAGG



G (p.Lys204Glu)


CAGGGAAAGATAAGTCTAAAGC′]





3587
NM_005587.2(MEF2A): c.788A > G
4205
MEF2A
[′TCTCCCCCTCCACCAGGTGGTGGTARTCTT



(p.Asn263Ser)


GGAATGAACAGTAGGAAACCA′]





3588
NM_000098.2(CPT2): c.638A > G
1376
CPT2
[′TACCTGGTCAATGCGTATCCCCTGGRTATG



(p.Asp213Gly)


TCCCAGTATTTTCGGCTTTTC′]





3589
NM_000098.2(CPT2): c.359A > G
1376
CPT2
[′TTTTTAGGACCCTGGTTTGATATGTRCCTA



(p.Tyr120Cys)


TCTGCTCGAGACTCCGTTGTT′]





3590
NM_001079668.2(NKX2-1): c.464 −
7080
NKX2-1
[′TCGCCGGGCCCATGAAGCGGGAGACHGTA



2A > G


AGCGACAAACGCACAGCGTCGG′]





3591
NM_004387.3(NKX2-5): c.896A > G
1482
NKX2-5
[′AACTTCGTGAACTTCGGCGTCGGGGRCTTG



(p.Asp299Gly)


AATGCGGTTCAGAGCCCCGGG′]





3592
NM_004387.3(NKX2-5): c.547A > G
1482
NKX2-5
[′GCTGAAACTCACGTCCACGCAGGTCRAGA



(p.Lys183Glu)


TCTGGTTCCAGAACCGGCGCTA′]





3593
NM_178138.4(LHX3): c.332A > G
8022
LHX3
[′GTGCGCCGCGCCCAGGACTTCGTGTRCCAC



(p.Tyr111Cys)


CTGCACTGCTTTGCCTGCGTC′]





3594
NM_001698.2(AUH): c.263 − 2A > G
549
AUH
[′CTTGTACTTTTTTTCCCCTTTAACTRGGAAT






TGTGGTGCTTGGAATAAACA′]





3595
NM_001698.2(AUH): c.943 − 2A > G
549
AUH
[′ACATATTTAATATTTTGTTTTTCTTRGACCA






TTCCAACAAAAGACAGACTT′]





3596
NM_001876.3(CPT1A): c.1361A > G
1374
CPT1A
[′ATGTGTGTTTCACGTAGGTGGTTTGRCAAG



(p.Asp454Gly)


TCGTTCACGTTTGTTGTCTTC′]





3597
NM_001876.3(CPT1A): c.1079A > G
1374
CPT1A
[′CGGCTGCTGAAGCCCCGGGAGATGGRGCA



(p.Glu360Gly)


GCAGATGCAGAGGATCCTGGAC′]





3598
NM_001876.3(CPT1A): c.1493A > G
1374
CPT1A
[′TCCATTGACAGCCTCCAGCTGGGCTRTGCG



(p.Tyr498Cys)


GAGGATGGGCACTGCAAAGGC′]





3599
NM_000352.4(ABCC8): c.4270A >
6833
ABCC8
[′CACCCTGCGCTCACGCCTCTCCATCRTCCT



G (p.Ile1424Val)


GCAGGACCCCGTCCTCTTCAG′]





3600
NM_000352.4(ABCC8): c.215A > G
6833
ABCC8
[′ACATGGCTTCATTTCCCTGGGCACARCCTG



(p.Asn72Ser)


CGGTGGATCCTGACCTTCATG′]





3601
NM_002180.2(IGHMBP2): c.638A >
3508
IGHMBP2
[′TCTCAGAAAGAACTTGCCATCATCCRTGGA



G (p.His213Arg)


CCTCCTGGCACTGGGAAAACC′]





3602
NM_033163.3(FGF8): c.298A > G
2253
FGF8
[′GAAGCACGTGCAGGTCCTGGCCAACRAGC



(p.Lys100Glu)


GCATCAACGCCATGGCAGAGGA′]





3603
NM_006180.4(NTRK2): c.2165A >
4915
NTRK2
[′TCCCGGGACGTGTACAGCACTGACTRCTAC



G (p.Tyr722Cys)


AGGGTGAGTAGCTGTGCAGAT′]





3604
NM_033028.4(BBS4): c.157 − 2A > G
585
BBS4
[′TCAGAAGCATTTTTCTCCCTCTTTCRGGCT






GTTATCAAAGAACAGCTTCAA′]





3605
NM_000409.3(GUCA1A): c.296A >
2978
GUCA1A
[′AAGCTCCGCTGGTACTTCAAGCTCTRTGAT



G (p.Tyr99Cys)


GTAGATGGCAACGGCTGCATT′]





3606
NM_000344.3(SMN1): c.815A > G
6606
SMN1
[′TTAATTTCATGGTACATGAGTGGCTRTCAT



(p.Tyr272Cys)


ACTGGCTATTATATGGTAAGT′]





3607
NM_000344.3(SMN1): c.784A > G
6606
SMN1
[′TCTTGATGATGCTGATGCTTTGGGARGTAT



(p.Ser262Gly)


GTTAATTTCATGGTACATGAG′]





3608
NM_000095.2(COMP): c.1358A > G
1311
COMP
[′CGGGACAACTGTCCCACGGTGCCTARCAG



(p.Asn453Ser)


TGCCCAGGAGGACTCAGACCAC]





3609
NM_000095.2(COMP): c.1418A > G
1311
COMP
[′GGTGATGCCTGCGACGACGACGACGRCAA



(p.Asp473Gly)


TGACGGAGTCCCTGACAGTCGG]





3610
NM_002047.2(GARS): c.374A > G
2617
GARS
[′GATATTGTAGACCGAGCAAAAATGGRAGA



(p.Glu125Gly)


TACCCTGAAGAGGAGGTTTTTC′]





3611
NM_001166107.1(HMGCS2): c.500A >
3158
HMGCS2
[′GGCATAGATACCACCAATGCCTGCTRCGG



G (p.Tyr167Cys)


TGGTACTGCCTCCCTCTTCAAT′]





3612
NM_000161.2(GCH1): c.671A > G
2643
GCH1
[′CGAGGTGTACAGAAAATGAACAGCARAAC



(p.Lys224Arg)


TGTGACCAGCACAATGTTGGGT′]





3613
NM_001024630.3(RUNX2): c.598A >
860
RUNX2
[′ATCTGCAGGCAAGAGTTTCACCTTGRCCAT



G (p.Thr200Ala)


AACCGTCTTCACAAATCCTCC′]





3614
NM_000423.2(KRT2): c.556A > G
3849
KRT2
[′AGAGCGTGAGCAGATCAAAACTCTCDACA



(p.Asn186Asp)


ACAAATTTGCCTCCTTCATTGA′]





3615
NM_000215.3(JAK3): c.299A > G
3718
JAK3
[′GATGCCAGCACCCAAGTCCTGCTGTRCAG



(p.Tyr100Cys)


GATTCGGTAGGAAGTGCCCCCC′]





3616
NM_000335.4(SCN5A): c.3971A > G
6331
SCN5A
[′CTCTGTCCACTTGAGGTGGTGGTCARTGCC



(p.Asn1324Ser)


CTGGTGGGCGCCATCCCGTCC′]





3617
NM_000335.4(SCN5A): c.5381A > G
6331
SCN5A
[′AGTGAGGACGACTTCGATATGTTCTRTGAG



(p.Tyr1794Cys)


ATCTGGGAGAAATTTGACCCA]





3618
NM_001014797.2(KCNMA1): c.1301A >
3778
KCNMA1
[′AAGGACTTTCTGCACAAGGACCGGGRTGA



G (p.Asp434Gly)


CGTCAATGTGGAGATCGTTTTT′]





3619
NM_004380.2(CREBBP): c.3524A >
1387
CREBBP
[′TATAATCGCAAGACATCCCGAGTCTRTAA



G (p.Tyr1175Cys)


GTTTTGCAGTAAGCTTGCAGAG′]





3620
NM_000023.2(SGCA): c.410A > G
6442
SGCA
[′GGCCCCCTGCTGCCATACCAAGCCGRGTTC



(p.Glu137Gly)


CTGGTGCGCAGCCACGATGCG′]





3621
NM_002835.3(PTPN12): c.182A > G
5782
PTPN12
[′GGAGAAAAAGAAGAAAATGTTAAAARGA



(p.Lys61Arg)


ACAGATACAAGGACATACTGCCA′]





3622
NM_000211.4(ITGB2): c.1052A > G
3689
ITGB2
[′GGGGAGCTGTCTGAGGACTCCAGCARTGT



(p.Asn351Ser)


GGTCCAACTCATTAAGAATGCT′]





3623
NM_005502.3(ABCA1): c.1790A >
19
ABCA1
[′GTCTGGGGGGGCTTCGCCTACTTGCRGGAT



G (p.Gln597Arg)


GTGGTGGAGCAGGCAATCATC′]





3624
NM_005502.3(ABCA1): c.2804A >
19
ABCA1
[′CAGATCACCTCCTTCCTGGGCCACARTGGA



G (p.Asn935Ser)


GCGGGGAAGACGACCACCATG′]





3625
m.5843A > G
4579
MT-TY
[′CTCGGAGCTGGTAAAAAGAGGCCTARCCC






CTGTCTTTAGATTTACAGTCCA′]





3626
m.7445A > G
−1

[′AAGAACCCGTATACATAAAATCTAGVCAA






AAAAGGAAGGAATCGAACCCCC′]





3627
m.8344A > G
4566
MT-TK
[′ACCTTTTAAGTTAAAGATTAAGAGARCCA






ACACCTCTTTACAGTGAAATGC′]





3628
m.8296A > G
4566
MT-TK
[′ACCCCCTCTACCCCCTCTAGAGCCCRCTGT






AAAGCTAACTTAGCATTAACC′]





3629
m.12320A > G
4568
MT-TL2
[′TCTTAGGCCCCAAAAATTTTGGTGCRACTC






CAAATAAAAGTAATAACCATG′]





3630
m.3243A > G
4567
MT-TL1
[′AGAACAGGGTTTGTTAAGATGGCAGRGCC






CGGTAATCGCATAAAACTTAAA′]





3631
m.3252A > G
4567
MT-TL1
[′TTTGTTAAGATGGCAGAGCCCGGTARTCGC






ATAAAACTTAAAACTTTACAG′]





3632
m.3251A > G
4567
MT-TL1
[′GTTTGTTAAGATGGCAGAGCCCGGTRATC






GCATAAAACTTAAAACTTTACA′]





3633
m.3260A > G
4567
MT-TL1
[′GATGGCAGAGCCCGGTAATCGCATARAAC






TTAAAACTTTACAGTCAGAGGT′]





3634
m.3274A > G
4567
MT-TL1
[′GTAATCGCATAAAACTTAAAACTTTRCAGT






CAGAGGTTCAATTCCTCTTCT′]





3635
m.4317A > G
4565
MT-TI
[′GATAGAGTAAATAATAGGAGCTTAARCCC






CCTTATTTCTAGGACTATGAGA′]





3636
m.4269A > G
4565
MT-TI
[′GCATTCCCCCTCAAACCTAAGAAATRTGTC






TGATAAAAGAGTTACTTTGAT′]





3637
m.4295A > G
4565
MT-TI
[′TGTCTGATAAAAGAGTTACTTTGATRGAGT






AAATAATAGGAGCTTAAACCC′]





3638
m.4300A > G
4565
MT-TI
[′GATAAAAGAGTTACTTTGATAGAGTRAAT






AATAGGAGCTTAAACCCCCTTA′]





3639
m.10044A > G
4563
MT-TG
[′CTTCCAATTAACTAGTTTTGACAACRTTCA






AAAAAGAGTAATAAACTTCGC′]





3640
m.7526A > G
4555
MT-TD
[′TCCATGACTTTTTCAAAAAGGTATTRGAAA






AACCATTTCATAACTTTGTCA′]





3641
m.10438A > G
4573
MT-TR
[′AGTTTAAACAAAACGAATGATTTCGRCTC






ATTAAATTATGATAATCATATT′]





3642
m.1555A > G
4549
MT-RNR1
[′ACCCCTACGCATTTATATAGAGGAGRCAA






GTCGTAACATGGTAAGTGTACT′]





3643
m.827A > G
4549
MT-RNR1
[′CACCCCCACGGGAAACAGCAGTGATNARC






CTTTAGCAATAAACGAAAGTTT′]





3644
m.15579A > G
4519
MT-CYB
[′CCCGAATGATATTTCCTATTCGCCTRCACA






ATTCTCCGATCCGTCCCTAAC′]





3645
m.14495A > G
4541
MT-ND6
[′TCCAAAGACAACCATCATTCCCCCTRAATA






AATTAAAAAAACTATTAAACC′]





3646
m.12770A > G
4540
MT-ND5
[′CTATTCCAACTGTTCATCGGCTGAGRGGGC






GTAGGAATTATATCCTTCTTG′]





3647
m.11084A > G
4538
MT-ND4
[′CTCCCTACAAATCTCCTTAATTATARCATT






CACAGCCACAGAACTAATCAT′]





3648
m.3397A > G
4535
MT-ND1
[′TACCGAACGAAAAATTCTAGGCTATRTAC






AACTACGCAAAGGCCCCAACGT′]





3649
m.4136A > G
4535
MT-ND1
[′CTGTTCTTATGAATTCGAACAGCATRCCCC






CGATTCCGCTACGACCAACTC′]





3650
m.3796A > G
4535
MT-ND1
[′CCGTTTACTCAATCCTCTGATCAGGNTGAG


-



CATCAAACTCAAACTACGCCC′,


3654



′AATAAGTGGCTCCTTTAACCTCTCCDCCCTT






ATCACAACACAAGAACACCT′,






′ACCCCCTTGACCTTGCCGAAGGGGANTCCG






AACTAGTCTCAGGCTTCAACA′,






′CGAATACGCCGCAGGCCCCTTCGCCNTATT






CTTCATAGCCGAATACACAAA′,






′ATTTTGTCACCAAGACCCTACTTCTNACCTC






CCTGTTCTTATGAATTCGAA′]





3655
NM_003334.3(UBA1): c.1639A > G
7317
UBA1
[′AATGAATCCACATATCCGGGTGACARGCC



(p.Ser547Gly)


ACCAGAACCGTGTGGGTCCTGA′]





3656
NM_000354.5(SERPINA7): c.623 −
6906
SERPINA7
[′GATCAAAAGGATTTGCCCACTGGGCYTAA



2A > G


AATACAAAGAAAAGAGAGGTGT′]





3657
NM_000044.3(AR): c.2291A > G
367
AR
[′ACCAATGTCAACTCCAGGATGCTCTRCTTC



(p.Tyr764Cys)


GCCCCTGATCTGGTTTTCAAT′]





3658
NM_000044.3(AR): c.2362A > G
367
AR
[′CCGGATGTACAGCCAGTGTGTCCGARTGA



(p.Met788Val)


GGCACCTCTCTCAAGAGTTTGG′]





3659
NM_000044.3(AR): c.2632A > G
367
AR
[′GATTGCGAGAGAGCTGCATCAGTTCRCTTT



(p.Thr878Ala)


TGACCTGCTAATCAAGTCACA′]





3660
NM_000044.3(AR): c.2708A > G
367
AR
[′ATGATGGCAGAGATCATCTCTGTGCRAGT



(p.Gln903Arg)


GCCCAAGATCCTTTCTGGGAAA′]





3661
NM_002764.3(PRPS1): c.341A > G
5631
PRPS1
[′CCAATCTCAGCCAAGCTTGTTGCAARTATG



(p.Asn114Ser)


CTATCTGTAGCAGGTGCAGAT′]





3662
NM_000194.2(HPRT1): c.602A > G
3251
HPRT1
[′CTTGACTATAATGAATACTTCAGGGRTTTG



(p.Asp201Gly)


AATGTAAGTAATTGCTTCTTT′]





3663
NM_000194.2(HPRT1): c.155A > G
3251
HPRT1
[′TGTAGGACTGAACGTCTTGCTCGAGRTGTG



(p.Asp52Gly)


ATGAAGGAGATGGGAGGCCAT′]





3664
NM_000132.3(F8): c.872A > G
2157
F8
[′CCTGAAGTGCACTCAATATTCCTCGRAGGT



(p.Glu291Gly)


CACACATTTCTTGTGAGGAAC′]





3665
NM_000132.3(F8): c.5183A > G
2157
F8
[′GCTGCAGTGGAGAGGCTCTGGGATTRTGG



(p.Tyr1728Cys)


GATGAGTAGCTCCCCACATGTT′]





3666
NM_000132.3(F8): c.5821A > G
2157
F8
[′TTCTCTGTGTCCTTCTCCAGCAATCRATGG



(p.Asn1941Asp)


CTACATAATGGATACACTACC]





3667
NM_000132.3(F8): c.328A > G
2157
F8
[′TACAGTGGTCATTACACTTAAGAACRTGGC



(p.Met110Val)


TTCCCATCCTGTCAGTCTTCA′]





3668
NM_000132.3(F8): c.398A > G
2157
F8
[′TTTCTTCCTGCTATAGGAGCTGAATRTGAT



(p.Tyr133Cys)


GATCAGACCAGTCAAAGGGAG′]





3669
NM_000132.3(F8): c.404A > G
2157
F8
[′CCTGCTATAGGAGCTGAATATGATGRTCA



(p.Asp135Gly)


GACCAGTCAAAGGGAGAAAGAA′]





3670
NM_000132.3(F8): c.940A > G
2157
F8
[′GGAAATCTCGCCAATAACTTTCCTTRCTGC



(p.Thr314Ala)


TCAAACACTCTTGATGGACCT′]





3671
NM_000132.3(F8): c.1226A > G
2157
F8
[′TGGGTACATTACATTGCTGCTGAAGRGGA



(p.Glu409Gly)


GGACTGGGACTATGCTCCCTTA′]





3672
NM_000132.3(F8): c.1331A > G
2157
F8
[′CAGCGGATTGGTAGGAAGTACAAAARAGT



(p.Lys444Arg)


CCGATTTATGGCATACACAGAT′]





3673
NM_000132.3(F8): c.1418A > G
2157
F8
[′TCAGGAATCTTGGGACCTTTACTTTRTGGG



(p.Tyr473Cys)


GAAGTTGGAGACACACTGTTG′]





3674
NM_000132.3(F8): c.1660A > G
2157
F8
[′TCGGTGCCTGACCCGCTATTACTCTRGTTT



(p.Ser554Gly)


CGTTAATATGGAGAGAGATCT′]





3675
NM_000132.3(F8): c.1682A > G
2157
F8
[′TCTAGTTTCGTTAATATGGAGAGAGRTCTA



(p.Asp561Gly)


GCTTCAGGACTCATTGGCCCT′]





3676
NM_000132.3(F8): c.1892A > G
2157
F8
[′GAGGATCCAGAGTTCCAAGCCTCCARCAT



(p.Asn631Ser)


CATGCACAGTGAGTAAAGCAGC′]





3677
NM_000132.3(F8): c.5600A > G
2157
F8
[′TTCCCTCCCTAGGAAAAAGATGTGCRCTCA



(p.His1867Arg)


GGCCTGATTGGACCCCTTCTG′]





3678
NM_000132.3(F8): c.5822A > G
2157
F8
[′TCTCTGTGTCCTTCTCCAGCAATCARTGGC



(p.Asn1941Ser)


TACATAATGGATACACTACCT′]





3679
NM_000132.3(F8): c.6113A > G
2157
F8
[′AGCACACTTTTTCTGGTGTACAGCARTAGT



(p.Asn2038Ser)


GAGTAGCAATGTGGGCAGAGG′]





3680
NM_000132.3(F8): c.6278A > G
2157
F8
[′AAGTGTTATTTTAATTGGTAGGTGGRTCTG



(p.Asp2093Gly)


TTGGCACCAATGATTATTCAC′]





3681
NM_000132.3(F8): c.6371A > G
2157
F8
[′TACATCTCTCAGTTTATCATCATGTRTAGT






CTTGATGGGAAGAAGTGGCAG′]





3682
NM_000132.3(F8): c.6794A > G
2157
F8
[′ATGAAAGTCACAGGAGTAACTACTCRGGG



(p.Gln2265Arg)


AGTAAAATCTCTGCTTACCAGC′]





3683
NM_000132.3(F8): c.104A > G
2157
F8
[′GGTGCAGTGGAACTGTCATGGGACTRTAT



(p.Tyr35Cys)


GCAAAGTGATCTCGGTGAGCTG′]





3684
NM_000402.4(G6PD): c.466A > G
2539
G6PD
[′CAACTCCTATGTGGCTGGCCAGTACRATGA



(p.Asn156Asp)


TGCAGCCTCCTACCAGCGCCT′]





3685
NM_000402.4(G6PD): c.583A > G
2539
G6PD
[′GCTCCGGGCTCCCAGCAGAGGCTGGRACC



(p.Asn195Asp)


GCATCATCGTGGAGAAGCCCTT′]





3686
NM_002049.3(GATA1): c.653A > G
2623
GATA1
[′ACAGCCACTCCACTGTGGCGGAGGGRCAG



(p.Asp218Gly)


GACAGGCCACTACCTATGCAAC′]





3687
NM_001097642.2(GJB1): c.194A >
2705
GJB1
[′CAGCCTGGCTGCAACAGCGTTTGCTRTGAC



G (p.Tyr65Cys)


CAATTCTTCCCCATCTCCCAT′]





3688
NM_000166.5(GJB1): c.614A > G
2705
GJB1
[′GCCTCTGGCATCTGCATCATCCTCARTGTG



(p.Asn205Ser)


GCCGAGGTGGTGTACCTCATC′]





3689
NM_000032.4(ALAS2): c.1702A > G
212
ALAS2
[′CCGTCCTGTACACTTTGAGCTCATGRGTGA



(p.Ser568Gly)


GTGGGAACGTTCCTACTTCGG′]





3690
NM_000202.6(IDS): c.404A > G
3423
IDS
[′GGCTATGTGACCATGTCGGTGGGAARAGT



(p.Lys135Arg)


CTTTCACCCTGGTACTGCTCCA′]





3691
NM_000292.2(PHKA2): c.896A > G
5256
PHKA2
[′TATGGATGCTGTCGCTTCCTTCGAGRTGGT



(p.Asp299Gly)


TATAAAACTCCAAGAGAGGTT′]





3692
NM_000292.2(PHKA2): c.565A > G
5256
PHKA2
[′TTATGGAATGTGGGAGCGTGGAGATRAGA



(p.Lys189Glu)


CTAATCAGGGCATCCCGGAATT′]





3693
NM_000351.4(STS): c.1331A > G
412
STS
[′CGCTCCGATCATGAGTTTCTCTTCCRTTAC



(p.His444Arg)


TGCAACGCCTACTTAAATGCT′]





3694
NM_000133.3(F9): c.278A > G
2158
F9
[′TTCAATTTCTTAACCTATCTCAAAGRTGGA



(p.Asp93Gly)


GATCAGTGTGAGTCCAATCCA′]





3695
NM_000133.3(F9): c.329A > G
2158
F9
[′TGTTTAAATGGCGGCAGTTGCAAGGRTGA



(p.Asp110Gly)


CATTAATTCCTATGAATGTTGG′]





3696
NM_000133.3(F9): c.917A > G
2158
F9
[′CGAATTATTCCTCACCACAACTACARTGCA



(p.Asn306Ser)


GCTATTAATAAGTACAACCAT′]





3697
NM_000133.3(F9): c.1180A > G
2158
F9
[′TACAAAGTTCACCATCTATAACAACRTGTT



(p.Met394Val)


CTGTGCTGGCTTCCATGAAGG′]





3698
NM_000133.3(F9): c.1231A > G
2158
F9
[′AGGTAGAGATTCATGTCAAGGAGATRGTG



(p.Ser411Gly)


GGGGACCCCATGTTACTGAAGT′]





3699
NM_000266.3(NDP): c.131A > G
4693
NDP
[′CCTCGACGCTGCATGAGGCACCACTRTGTG



(p.Tyr44Cys)


GATTCTATCAGTCACCCATTG′]





3700
NM_000266.3(NDP): c.1A > G
4693
NDP
[′TCTAGAGAAGTTTTTCCTTACAACARTGAG



(p.Met1Val)


AAAACATGTACTAGCTGCATC′]





3701
NM_000266.3(NDP): c.125A > G
4693
NDP
[′TCGGACCCTCGACGCTGCATGAGGCRCCA



(p.His42Arg)


CTATGTGGATTCTATCAGTCAC′]





3702
NM_000169.2(GLA): c.886A > G
−1

[′GGCTATCATGGCTGCTCCTTTATTCRTGTC



(p.Met296Val)


TAATGACCTCCGACACATCAG′]





3703
NM_000169.2(GLA): c.101A > G
−1

[′ATCCCTGGGGCTAGAGCACTGGACARTGG



(p.Asn34Ser)


ATTGGCAAGGACGCCTACCATG′]





3704
NM_000169.2(GLA): c.644A > G
−1

[′GAGTCATATCTGTTTTCACAGCCCARTTAT



(p.Asn215Ser)


ACAGAAATCCGACAGTACTGC′]





3705
NM_000169.2(GLA): c.1228A > G
−1

[′AAGGTTAAGAAGTCACATAAATCCCRCAG



(p.Thr410Ala)


GCACTGTTTTGCTTCAGCTAGA′]





3706
NM_000169.2(GLA): c.815A > G
−1

[′TCTTTTTCTCAGTTAGTGATTGGCARCTTTG



(p.Asn272Ser)


GCCTCAGCTGGAATCAGCAA′]





3707
NM_153252.4(BRWD3): c.4786A >
254065
BRWD3
[′AGAAGATAAAGAGAAAAAAGAAACARAA



G (p.Lys1596Glu)


GAGAAATCTCATTTATCCACCTC′]





3708
NM_004463.2(FGD1): c.1396A > G
2245
FGD1
[′GCAGAAACTGGCCCCCTTCCTCAAGRTGTA



(p.Met466Val)


TGGTGAGTATGTGAAGAACTT′]





3709
NM_000054.4(AVPR2): c.614A > G
554
AVPR2
[′GCGGAGCCCTGGGGCCGTCGCACCTRTGT



(p.Tyr205Cys)


CACCTGGATTGCCCTGATGGTG′]





3710
NM_000054.4(AVPR2): c.839A > G
554
AVPR2
[′ATGACGCTAGTGATTGTGGTCGTCTRTGTG



(p.Tyr280Cys)


CTGTGCTGGGCACCCTTCTTC′]





3711
NM_000276.3(OCRL): c.1436A > G
4952
OCRL
[′ATCAAGTTCATCCCCACTTATAAGTRTGAC



(p.Tyr479Cys)


TCTAAAACAGACCGGTGGGAT]





3712
NM_000397.3(CYBB): c.302A > G
1536
CYBB
[′CAACTGGACAGGAATCTCACCTTTCRTAAA



(p.His101Arg)


ATGGTGGCATGGATGATTGCA′]





3713
NM_000397.3(CYBB): c.1499A > G
1536
CYBB
[′GCTGTGCACCATGATGAGGAGAAAGRTGT



(p.Asp500Gly)


GATCACAGGCCTGAAACAAAAG′]





3714
NM_001205019.1(GK): c.880A > G
2710
GK
[′TGGAACAGGATGTTTCTTACTATGTRATAC



(p.Asn294Asp)


AGGCCATAAGGTTGGTTTTTT′]





3715
NM_005710.2(PQBP1): c.194A > G
10084
PQBP1
[′CGGCCCCACAGCGGGCTCCCTTACTRCTGG



(p.Tyr65Cys)


AATGCAGACACAGACCTTGTA′]





3716
NM_198270.3(NHS): c.853  − 2A > G
4810
NHS
[′CTGAACCTGATTGTACTTTGTTTGCRGTCC






CATCCCCCAGAGGATGAAGAT′]





3717
NM_000252.2(MTM1): c.566A > G
4534
MTM1
[′CACCATTGGAGAATAACTTTTATTARTAAG



(p.Asn189Ser)


TGCTATGAGCTCTGTGACACT′]





3718
NM_000252.2(MTM1): c.1190A > G
4534
MTM1
[′GCCATGCTGATGTTGGATAGCTTCTRTAGG



(p.Tyr397Cys)


AGCATTGAAGGGTTCGAAATA′]





3719
NM_000252.2(MTM1): c.1261 −
4534
MTM1
[′TAATTAAAACAAATTATCTTCATCARTTTA



10A > G


TTCAGCGAATAGGTCATGGTG′]





3720
NM_001015877.1(PHF6): c.700A >
84295
PHF6
[′AGGAAAACTGCATATATTTAATGCCRAGA



G (p.Lys234Glu)


AGGCAGCTGCCCATTATAAGTG′]





3721
NM_001015877.1(PHF6): c.686A >
84295
PHF6
[′GAAAATGAAGCACGAGGAAAACTGCRTAT



G (p.His229Arg)


ATTTAATGCCAAGAAGGCAGCT′]





3722
NM_001015877.1(PHF6): c.769A >
84295
PHF6
[′CACAGTCCAGCTCACAACAACATCARGAG



G (p.Arg257Gly)


CAGAATTTGGAGACTTTGATAT′]





3723
NM_000117.2(EMD): c.1A > G
2010
EMD
[′GCCTCCGCCTGAGCCCGCACCCGCCRTGG



(p.Met1Val)


ACAACTACGCAGATCTTTCGGA′]





3724
NM_004006.2(DMD): c.2317A > G
1756
DMD
[′GGCCATAGAGCGAGAAAAAGCTGAGRAGT



(p.Lys773Glu)


TCAGAAAACTGCAAGATGCCAG′]





3725
NM_004006.2(DMD): c.8734A > G
1756
DMD
[′TCTACGAAAGCAGGCTGAGGAGGTCRATA



(p.Asn2912Asp)


CTGAGTGGGAAAAATTGAACCT′]





3726
NM_004006.2(DMD): c.8762A > G
1756
DMD
[′ACTGAGTGGGAAAAATTGAACCTGCRCTC



(p.His2921Arg)


CGCTGACTGGCAGAGAAAAATA′]





3727
NM_004006.2(DMD): c.835A > G
1756
DMD
[′TCCCCCAAACCCTTCTCTGCAGATCRCGGT



(p.Thr279Ala)


CAGTCTAGCACAGGGATATGA′]





3728
NM_004006.2(DMD): c.9225 −
1756
DMD
[′TCGATCGCACTTCAGTTATGATAAAYTGAC



285A > G


CTTGTTATGTGATCAATAATC′]





3729
NM_000033.3(ABCD1): c.443A > G
215
ABCD1
[′ATCGCCCTCCCTGCTACCTTCGTCARCAGT



(p.Asn148Ser)


GCCATCCGTTACCTGGAGGGC′]





3730
NM_003588.3(CUL4B): c.901 −
8450
CUL4B
[′TTTGATTTCTTTTTTTTTCATTGGCRGATCA



2A > G


TGATCAGGAGCATTTTTTTG′]





3731
NM_000061.2(BTK): c.1288A > G
695
BTK
[′GAGAGGCCAGTACGACGTGGCCATCRAGA



(p.Lys430Glu)


TGATCAAAGAAGGCTCCATGTC′]





3732
NM_000061.2(BTK): c.1082A > G
695
BTK
[′AGCACCATCCCTGAGCTCATTAACTRCCAT



(p.Tyr361Cys)


CAGCACAACTCTGCAGGTGAG′]





3733
NM_000061.2(BTK): c.919A > G
695
BTK
[′GGGGAAAGAAGGAGGTTTCATTGTCRGAG



(p.Arg307Gly)


ACTCCAGCAAAGCTGGCAAATA′]





3734
NM_000061.2(BTK): c.1766A > G
695
BTK
[′CACCTTCTAGGGGTTTTGATGTGGGRAATT



(p.Glu589Gly)


TACTCCCTGGGGAAGATGCCA′]





3735
NM_003413.3(ZIC3): c.1213A > G
7547
ZIC3
[′CTACACGCACCCGAGCTCCCTGCGCRAAC



(p.Lys405Glu)


ACATGAAGGTAATTACCTCTTT′]





3736
NM_001037811.2(HSD17B10): c.71
 3028
HSD17B10
[′GCCATCATCGAGAACCCATTCCTCARTGGA



3A > G (p.Asn238Ser)


GAGGTCATCCGGCTGGATGGG′]





3737
NM_003639.4(IKBKG): c.1219A > G
8517
IKBKG
[′CAAGTGCCAGTATCAGGCCCCTGATRTGG



(p.Met407Val)


ACACCCTGCAGATACATGTCAT′]





3738
NM_003639.4(IKBKG): c.1259A > G
8517
IKBKG
[′ATACATGTCATGGAGTGCATTGAGTRGGG



(p.Ter420Trp)


CCGGCCAGTGCAAGGCCACTGC′]





3739
NM_005448.2(BMP15): c.704A > G
9210
BMP15
[′TTGGACATTGCCTTCTTGTTACTCTRTTTCA



(p.Tyr235Cys)


ATGATACTCATAAAAGCATT′]





3740
NM_005120.2(MED12): c.3020A >
9968
MED12
[′AAGGTGAAGAACACCATCTACTGCARCGT



G (p.Asn1007Ser)


GGAGCCATCGGAATCAAATATG′]





3741
NM_003688.3(CASK): c.2129A > G
8573
CASK
[′GGCAAGAAAAAGAAGCAGTACAAAGRTA



(p.Asp710Gly)


AATATTTGGCAAAGCACAATGCA′]





3742
NM_001363.4(DKC1): c.361A > G
1736
DKC1
[′ACTTCGGGTGGAGAAGACAGGGCACRGTG



(p.Ser121Gly)


GTACTCTGGATCCCAAGGTGAC′]





3743
NM_001363.4(DKC1): c.1069A > G
1736
DKC1
[′ATTAATGACCACAGCGGTCATCTCTRCCTG



(p.Thr357Ala)


CGACCATGGTATAGTAGCCAA′]





3744
NM_000307.4(POU3F4): c.1000A >
5456
POU3F4
[′GTTCTGTAATCGAAGACAAAAAGAGRAAA



G (p.Lys334Glu)


GAATGACTCCGCCAGGGGATCA′]





3745
NM_004429.4(EFNB1): c.472A > G
1947
EFNB1
[′GGGCGGTGTGTGCCGCACACGCACCRTGA



(p.Met158Val)


AGATCATCATGAAGGTTGGGCA′]





3746
NM_000489.4(ATRX): c.4826A > G
546
ATRX
[′TTCTTATAGGTGGTAAGTTTTCTTCRTACA



(p.His1609Arg)


GTTCTTTTGTGTGACAAACTG′]





3747
NM_000489.4(ATRX): c.5579A > G
546
ATRX
[′TTCTTTTGATCAGGTGTGGGCAATAVTAGT



(p.Asn1860Ser)


GAAGGTGGAAGAGGAAAGGCA′]





3748
NM_000489.4(ATRX): c.6488A > G
546
ATRX
[′GGACAAACTAAGCCTGTTTATGTATRTAGG



(p.Tyr2163Cys)


TTCTTAGCTCAGGTAGGTTTA]





3749
NM_000489.4(ATRX): c.6811A > G
546
ATRX
[′AGAAGAAGAGTTGACTGAAGAAGAARGA



(p.Arg2271Gly)


AAAGCAGCTTGGGCTGAGTATGA′]





3750
NM_000052.6(ATP7A): c.3911A > G
538
ATP7A
[′GTAGCAATGGTGGGAGATGGAATCARTGA



(p.Asn1304Ser)


CTCCCCAGCTCTGGCAATGGCT′]





3751
NM_004992.3(MECP2): c.410A > G
4204
MECP2
[′GGAAAAGCCTTTCGCTCTAAAGTGGRGTT



(p.Glu137Gly)


GATTGCGTACTTCGAAAAGGTA′]





3752
NM_000137.2(FAH): c.1141A > G
2184
FAH
[′CATAGACCTGGGGAATGGTCAGACCRGGA



(p.Arg381Gly)


AGTTTCTGCTGGACGGGGATGA′]





3753
NM_000137.2(FAH): c.836A > G
2184
FAH
[′CCCTTTGCTGTGCCCAACCCGAAGCRGGTA



(p.Gln279Arg)


AGCACATTCTCTGCAGGAAGC′]





3754
NM_002769.4(PRSS1): c.68A > G
−1

[′GCTGCCCCCTTTGATGATGATGACARGATC



(p.Lys23Arg)


GTTGGGGGCTACAACTGTGAG′]





3755
NM_002769.4(PRSS1): c.161A > G
−1

[′CACTTCTGTGGTGGCTCCCTCATCARCGAA



(p.Asn54Ser)


CAGTGGGTGGTATCAGCAGGC′]





3756
NM_000373.3(UMPS): c.286A > G
7372
UMPS
[′AACCAATCAAATTCCAATGCTTATTRGAAG



(p.Arg96Gly)


GAAAGAAACAAAGGATTATGG′]





3757
NM_001918.3(DBT): c.1355A > G
1629
DBT
[′ATGAATGTGAGCTGGTCAGCTGATCRCAG



(p.His452Arg)


AGTTATTGATGGTGCTACAATG′]





3758
NM_000108.4(DLD): c.214A > G
1738
DLD
[′TTGGTTGTAGACAGTCTGCATTGAGRAAA



(p.Lys72Glu)


ATGAAACACTTGGTGGAACATG′]





3759
NM_000108.4(DLD): c.1483A > G
1738
DLD
[′CTTGCAGACCTTATCAGAAGCTTTTRGAGA



(p.Arg495Gly)


AGCAAATCTTGCTGCGTCATT′]





3760
NM_000108.4(DLD): c.1081A > G
1738
DLD
[′CATTGGTGATGTAGTTGCTGGTCCARTGCT



(p.Met361Val)


GGCTCACAAAGCAGAGGATGA′]





3761
NM_000481.3(AMT): c.125A > G
275
AMT
[′CGCAGGACACCGCTCTATGACTTCCRCCTG



(p.His42Arg)


GCCCACGGCGGGAAAATGGTG′]





3762
NM_000151.3(G6PC): c.230 + 4A > G
2538
G6PC
[′GGCTCAACCTCGTCTTTAAGTGGTARGAAC






CATATAGAGAGGAGATCAGCA′]





3763
NM_000532.4(PCCB): c.1304A > G
5096
PCCB
[′CAGCATTTGGATCTGTTTTAGGCCTRTGGA



(p.Tyr435Cys)


GGTGCCTATGATGTCATGAGC′]





3764
NM_000387.5(SLC25A20): c.713A >
788
SLC25A20
[′CCAGATGTGCTCAAGTCTCGATTCCRGACT



G (p.Gln238Arg)


GGTGAGTGGAAGGTAGTGGGG′]





3765
NM_004360.3(CDH1): c.2512A > G
999
CDH1
[′TCTGCTCGTGTTTGACTATGAAGGARGCGG



(p.Ser838Gly)


TTCCGAAGCTGCTAGTCTGAG′]





3766
NM_004360.3(CDH1): c.1018A > G
999
CDH1
[′GTCGATCTCTCTGCAGAGTTTCCCTDCGTA



(p.Thr340Ala)


TACCCTGGTGGTTCAAGCTGC′]





3767
NM_003361.3(UMOD): c.383A > G
7369
UMOD
[′TGCCACGCCCTGGCCACATGTGTCARTGTG



(p.Asn128Ser)


GTGGGCAGCTACTTGTGCGTA′]





3768
NM_000463.2(UGT1A1): c.992A >
−1

[′GCTGATGCTTTGGGCAAAATCCCTCRGACA



G (p.Gln331Arg)


GTAAGAAGATTCTATACCATG′]





3769
NM_000463.2(UGT1A1): c.1085 −
−1

[′TGACATCCTCCCTATTTTGCATCTCRGGTC



2A > G


ACCCGATGACCCGTGCCTTTA′]





3770
NM_000463.2(UGT1A1): c.1070A >
−1

[′ACGATACTTGTTAAGTGGCTACCCCRAAAC



G (p.Gln357Arg)


GATCTGCTTGGTATGTTGGGC′]





3771
NM_000463.2(UGT1A1): c.1198A >
−1

[′GCCCTTGTTTGGTGATCAGATGGACVATGC



G (p.Asn400Asp)


AAAGCGCATGGAGACTAAGGG′]





3772
NM_001382.3(DPAGT1): c.509A >
1798
DPAGT1
[′TCTCTCCCCGCAGGAATCCTGTACTRTGTC



G (p.Tyr170Cys)


TACATGGGGCTGCTGGCAGTG′]





3773
NM_001007792.1(NTRK1): c.986A >
4914
NTRK1
[′CCCACCCACGTCAACAACGGCAACTRCAC



G (p.Tyr329Cys)


GCTGCTGGCTGCCAACCCCTTC′]





3774
NM_001007792.1(NTRK1): c.1651A >
4914
NTRK1
[′CTGCACCGAGGGCCGCCCCCTGCTCRTGGT



G (p.Met551Val)


CTTTGAGTATATGCGGCACGG′]





3775
NM_000363.4(TNNI3): c.569A > G
7137
TNNI3
[′CTCCAGGAAAACCGGGAGGTGGGAGRCTG



(p.Asp190Gly)


GCGCAAGAACATCGATGCACTG′]





3776
NM_000363.4(TNNI3): c.532A > G
7137
TNNI3
[′GCGGGCCCACCTCAAGCAGGTGAAGRAGG



(p.Lys178Glu)


AGGACACCGAGAAGGTGAGTGT′]





3777
NM_001018005.1(TPM1): c.539A >
7168
TPM1
[′ATTGAGAGCGACCTGGAACGTGCAGDGGA



G (p.Glu180Gly)


GCGGGCTGAGCTCTCAGAAGGG′]





3778
NM_001159287.1(TPI1): c.622A > G
7167
TPI1
[′CCTGGCCTATGAGCCTGTGTGGGCCRTTGG



(p.Ile208Val)


TACTGGCAAGACTGCAACACC′]





3779
NM_000359.2(TGM1): c.1469A > G
7051
TGM1
[′AATGGCCTGGTCTACATGAAGTACGRCAC



(p.Asp490Gly)


GCCTTTCATTTTTGCTGAGGTG′]





3780
NM_001024847.2(TGFBR2): c.1472 −
7048
TGFBR2
[′CCCTGTGTTTGCTGGCTTTCTTCACRGAAG



2A > G


TAAAAGATTATGAGCCTCCAT′]





3781
NM_003242.5(TGFBR2): c.1273A >
7048
TGFBR2
[′GCTATAGGTGGGAACTGCAAGATACRTGG



G (p.Met425Val)


CTCCAGAAGTCCTAGAATCCAG′]





3782
NM_004612.3(TGFBR1): c.1199A >
7046
TGFBR1
[′CATTTTGAATCCTTCAAACGTGCTGRCATC



G (p.Asp400Gly)


TATGCAATGGGCTTAGTATTC′]





3783
NM_001128177.1(THRB): c.1324A >
7068
THRB
[′CTGCCATGCCAGCCGCTTCCTGCACRTGAA



G (p.Met442Val)


GGTGGAATGCCCCACAGAACT′]





3784
NM_001128177.1(THRB): c.1327A
7068
THRB
[′CCATGCCAGCCGCTTCCTGCACATGRAGGT



> G (p.Lys443Glu)


GGAATGCCCCACAGAACTCTT′]





3785
NM_001128177.1(THRB): c.1009A
7068
THRB
[′AACCTTGAATGGGGAAATGGCAGTGRCAC



> G (p.Thr337Ala)


GGGGCCAGCTGAAAAATGGGGG′]





3786
NM_033360.3(KRAS): c.13A > G
3845
KRAS
[′AGGCCTGCTGAAAATGACTGAATATRAAC



(p.Lys5Glu)


TTGTGGTAGTTGGAGCTGGTGG′]





3787
NM_005343.2(HRAS): c.350A > G
−1

[′GTGCCCATGGTGCTGGTGGGGAACARGTG



(p.Lys117Arg)


TGACCTGGCTGCACGCACTGTG′]





3788
NM_001063.3(TF): c.956A > G
7018
TF
[′GACCTGCTGTTTAAGGACTCTGCCCRCGGG



(p.His319Arg)


TTTTTAAAAGTCCCCCCCAGG′]





3789
NM_001063.3(TF): c.1936A > G
7018
TF
[′CTTTTGTTTGTTCCGGTCGGAAACCRAGGA



(p.Lys646Glu)


CCTTCTGTTCAGAGATGACAC′]





3790
NM_212472.2(PRKAR1A): c.891 + 3A >
5573
PRKAR1A
[′ATGAGTTCTTCATTATTTTAGAGGTRAAGA



 G


ACTCAGAATTTAATACTTGAA′]





3791
NM_212472.2(PRKAR1A): c.1 A > G
5573
PRKAR1A
[′GTGTGTTTTTTTCTCGCAGAGAACCRTGGA



(p.Met1Val)


GTCTGGCAGTACCGCCGCCAG′]





3792
NM_000362.4(TIMP3): c.572A > G
−1

[′GCCTGCATCCGGCAGAAGGGCGGCTRCTG



(p.Tyr191Cys)


CAGCTGGTACCGAGGATGGGCC′]





3793
NM_000367.3(TPMT): c.719A > G
7172
TPMT
[′GATTACAGGTGTGAGCCACCGCACCNAGC


-
(p.Tyr240Cys)


CAATTTTGAGTATTTTTAAAAG′,


3795



′TAACATGTTACTCTTTCTTGTTTCARGTAAA






ATATGCAATATACRTYGTCT′,






′AGGTTGATGCTTTTGAAGAACGACAKAAAA






GTTGGGGAATTGACTGTCTTT′]


3796
NM_198253.2(TERT): c.2315A > G
7015
TERT
[′TCTACCTTGACAGACCTCCAGCCGTRCATG



(p.Tyr772Cys)


CGACAGTTCGTGGCTCACCTG′]





3797
NM_000073.2(CD3G): c.1A > G
917
CD3G
[′CTTTTGCCGGAGGACAGAGACTGACRTGG



(p.MetlVal)


AACAGGGGAAGGGCCTGGCTGT′]





3798
NM_000899.4(KITLG): c.107A > G
4254
KITLG
[′ATCTGCAGGAATCGTGTGACTAATARTGTA



(p.Asn36Ser)


AAAGACGTCACTAAATTGGTA′]





3799
NM_001024858.2(SPTB): c.1A > G
6710
SPTB
[′GCGGAGCTGCTAAGAGCCTGCTGACRTGA



(p.MetlVal)


CATCGGCCACAGAGTTTGAAAA′]





3800
NM_003126.2(SPTA1): c.143A > G
6708
SPTA1
[′GAGCGGGTCGCTGAGAGGGGTCAGARGCT



(p.Lys48Arg)


TGAGGATTCCTATCACTTACAA′]





3801
NM_005633.3(SOS1): c.1654A > G
6654
SOS1
[′TTTACAGTACCGGAGTACACTGGAARGGA



(p.Arg552Gly)


TGCTTGATGTAACAATGCTACA′]





3802
NM_003041.3(SLC5A2): c.1961A >
−1

[′GACCCGAGCTGGGCCCGTGTGGTCARCCT



G (p.Asn654Ser)


CAATGCCCTGCTCATGATGGCA′]





3803
NM_000343.3(SLC5A1): c.83A > G
6523
SLC5A1
[′CACGAGCTCATTCGCAATGCAGCCGRTATC



(p.Asp28Gly)


TCCATCATCGTTATCTACTTC′]





3804
NM_000702.3(ATP1A2): c.1033A >
477
ATP1A2
[′TCTCTACCAGGTGTGCCTGACCCTGRCAGC



G (p.Thr345Ala)


CAAGCGCATGGCACGGAAGAA′]





3805
NM_003124.4(SPR): c.448A > G
6697
SPR
[′CTTCCCGGACAGTCCTGGCCTCAACRGAAC



(p.Arg150Gly)


CGTGGTTAACATCTCGTCCCT′]





3806
NM_001161766.1(AHCY): c.344A >
191
AHCY
[′CTCACCAACCTCATCCACACCAAGTRCCCG



G (p.Tyr115Cys)


CAGCTTCTGCCAGGTGAGCAG′]





3807
NM_001035.2(RYR2): c.12602A > G
6262
RYR2
[′TGCGAGGACACCATCTTTGAAATGCRGCT



(p.Gln4201Arg)


GGCGGCTCAGATCTCGGAGTCG′]





3808
NM_000540.2(RYR1): c.14387A > G
6261
RYR1
[′CAGTCCTTCCTGTACCTGGGCTGGTRTATG



(p.Tyr4796Cys)


GTGATGTCCCTCTTGGGACAC′]





3809
NM_000540.2(RYR1): c.14647 −
6261
RYR1
[′CTCTGTCTCAAAAAAAAAAAAAAACRTAT



1449A > G


GTAAAGTTGTTCCCAAATGCCA′]





3810
NM_000540.2(RYR1): c.13909A > G
6261
RYR1
[′GGTGTACTACTTCCTGGAGGAAAGCRCAG



(p.Thr4637Ala)


GCTACATGGAACCCGCCCTGCG′]





3811
NM_000539.3(RHO): c.533A > G
6010
RHO
[′TCTCCCTACCTGCCTGTCCTCAGGTRCATC



(p.Tyr178Cys)


CCCGAGGGCCTGCAGTGCTCG′]





3812
NM_000539.3(RHO): c.569A > G
6010
RHO
[′GGCCTGCAGTGCTCGTGTGGAATCGRCTAC



(p.Asp190Gly)


TACACGCTCAAGCCGGAGGTC′]





3813
NM_000539.3(RHO): c.886A > G
6010
RHO
[′CATGACCATCCCAGCGTTCTTTGCCRAGAG



(p.Lys296Glu)


CGCCGCCATCTACAACCCTGT′]





3814
NM_000539.3(RHO): c.44A > G
6010
RHO
[′CCTAACTTCTACGTGCCCTTCTCCARTGCG



(p.Asn15Ser)


ACGGGTGTGGTACGCAGCCCC′]





3815
NM_000321.2(RB1): c.2490 −
5925
RB1
[′AAGGGTGCTGTGGATCAGGGAAATGRTGA



1398A > G


GTATGAAGCTGTTTTAAATTCT′]





3816
NM_000536.3(RAG2): c.115A > G
5897
RAG2
[′CTTTGGACAAAAAGGCTGGCCCAAARGAT



(p.Arg39Gly)


CCTGCCCCACTGGAGTTTTCCA′]





3817
NM_000448.2(RAG1): c.2735A > G
5896
RAG1
[′GAGTGCCCAGAATCCCTCTGCCAGTRCAGT



(p.Tyr912Cys)


TTCAATTCACAGCGTTTTGCT]





3818
NM_000448.2(RAG1): c.1286A > G
5896
RAG1
[′TTTGCTGACAAAGAAGAAGGTGGAGRTGT



(p.Asp429Gly)


GAAGTCCGTGTGCATGACCTTG′]





3819
NM_000925.3(PDHB): c.395A > G
5162
PDHB
[′ATAAACTCAGCTGCCAAGACCTACTRCAT



(p.Tyr132Cys)


GTCTGGTGGCCTTCAGCCTGTG′]





3820
NM_000055.2(BCHE): c.293A > G
590
BCHE
[′GCAAATTCTTGCTGTCAGAACATAGRTCAA



(p.Asp98Gly)


AGTTTTCCAGGCTTCCATGGA′]





3821
NM_000055.2(BCHE): c.467A > G
590
BCHE
[′ACTGGAACATCATCTTTACATGTTTDTGAT



(p.Tyr156Cys)


GGCAAGTTTCTGGCTCGGGTT′]





3822
NM_005360.4(MAF): c.890A > G
4094
MAF
[′CTGAAGCAGAAGAGGCGGACCCTGARAAA



(p.Lys297Arg)


CCGCGGCTATGCCCAGTCCTGC′]





3823
NM_002739.3(PRKCG): c.380A > G
5582
PRKCG
[′TCCCTCCTCTACGGGCTTGTGCACCRGGGC



(p.Gln127Arg)


ATGAAATGCTCCTGTGAGTGA′]





3824
NM_002739.3(PRKCG): c.1081A >
5582
PRKCG
[′CTTCCTCATGGTTCTAGGAAAAGGCRGTTT



G (p.Ser361Gly)


TGGGAAGGTTGGATTCCTGGG′]





3825
NM_000141.4(FGFR2): c.983A > G
2263
FGFR2
[′ACGGACAAAGAGATTGAGGTTCTCTRTATT



(p.Tyr328Cys)


CGGAATGTAACTTTTGAGGAC′]





3826
NM_000141.4(FGFR2): c.1124A > G
2263
FGFR2
[′AAGGAGATTACAGCTTCCCCAGACTRCCT



(p.Tyr375Cys)


GGAGATAGCCATTTACTGCATA′]





3827
NM_000141.4(FGFR2): c.874A > G
2263
FGFR2
[′TGCCCAGCCCCACATCCAGTGGATCRAGC



(p.Lys292Glu)


ACGTGGAAAAGAACGGCAGTAA′]





3828
NM_000141.4(FGFR2): c.1576A > G
2263
FGFR2
[′ACTGTTCATAGATGATGCCACAGAGRAAG



(p.Lys526Glu)


ACCTTTCTGATCTGGTGTCAGA′]





3829
NM_000313.3(PROS1): c.773A > G
5627
PROS1
[′AACATGTGTGCTCAGCTTTGTGTCARTTAC



(p.Asn258Ser)


CCTGGAGGTTACACTTGCTAT′]





3830
NM_000313.3(PROS1): c.586A > G
5627
PROS1
[′AAATGGTTTTGTTATGCTTTCAAATRAGAA



(p.Lys196Glu)


AGATTGTAAAGGTAAGAGCAG′]





3831
NM_002834.3(PTPN11): c.922A > G
5781
PTPN11
[′GCCTGTTTCAGATTACATCAATGCARATAT



(p.Asn308Asp)


CATCATGGTAAGCTTTGCTTT′]





3832
NM_002834.3(PTPN11): c.923A > G
5781
PTPN11
[′CCTGTTTCAGATTACATCAATGCAAVTATC



(p.Asn308Ser)


ATCATGGTAAGCTTTGCTTTT′]





3833
NM_002834.3(PTPN11): c.836A > G
5781
PTPN11
[′CAAGAAAACAAAAACAAAAATAGATVTA



(p.Tyr279Cys)


AAAACATCCTGCCCTGTAAGTAT′]





3834
NM_002834.3(PTPN11): c.182A > G
5781
PTPN11
[′CACATCAAGATTCAGAACACTGGTGNTTA



(p.Asp61Gly)


CTATGACCTGTATGGAGGGGAG′]





3835
NM_002834.3(PTPN11): c.188A > G
5781
PTPN11
[′AAGATTCAGAACACTGGTGATTACTRTGA



(p.Tyr63Cys)


CCTGTATGGAGGGGAGAAATTT′]





3836
NM_002834.3(PTPN11): c.227A > G
5781
PTPN11
[′GGGGAGAAATTTGCCACTTTGGCTGNGTT



(p.Glu76Gly)


GGTCCAGTATTACATGGAACAT′]





3837
NM_002834.3(PTPN11): c.236A > G
5781
PTPN11
[′TTTGCCACTTTGGCTGAGTTGGTCCRGTAT



(p.Gln79Arg)


TACATGGAACATCACGGGCAA′]





3838
NM_002834.3(PTPN11): c.1529A >
5781
PTPN11
[′TCAGGGATGGTCCAGACAGAAGCACVGTA



G (p.Gln510Arg)


CCGATTTATCTATATGGCGGTC′]





3839
NM_002755.3(MAP2K1): c.389A >
5604
MAP2K1
[′AACTCTCCGTACATCGTGGGCTTCTRTGGT



G (p.Tyr130Cys)


GCGTTCTACAGCGATGGCGAG′]





3840
NM_006006.4(ZBTB16): c.1849A >
7704
ZBTB16
[′CCAGCGCTCCCGGGACTACTCGGCCRTGAT



G (p.Met617Val)


CAAGCACCTGAGAACGCACAA′]





3841
NM_000311.3(PRNP): c.385A > G
5621
PRNP
[′AGTGGTGGGGGGCCTTGGCGGCTACRTGC



(p.Met129Val)


TGGGAAGTGCCATGAGCAGGCC′]





3842
NM_000311.3(PRNP): c.650A > G
5621
PRNP
[′GTGGTTGAGCAGATGTGTATCACCCRGTAC



(p.Gln217Arg)


GAGAGGGAATCTCAGGCCTAT′]





3843
NM_000311.3(PRNP): c.547A > G
5621
PRNP
[′CTTTGTGCACGACTGCGTCAATATCRCAAT



(p.Thr183Ala)


CAAGCAGCACACGGTCACCAC′]





3844
NM_000311.3(PRNP): c.560A > G
5621
PRNP
[′TGCGTCAATATCACAATCAAGCAGCRCAC



(p.His187Arg)


GGTCACCACAACCACCAAGGGG′]





3845
NM_000371.3(TTR): c.401A > G
7276
TTR
[′ACCATTGCCGCCCTGCTGAGCCCCTRCTCC



(p.Tyr134Cys)


TATTCCACCACGGCTGTCGTC′]





3846
NM_000371.3(TTR): c.238A > G
7276
TTR
[′GTCTGGAGAGCTGCATGGGCTCACARCTG



(p.Thr80Ala)


AGGAGGAATTTGTAGAAGGGAT′]





3847
NM_000371.3(TTR): c.185A > G
7276
TTR
[′AGAAAGGCTGCTGATGACACCTGGGRGCC



(p.Glu62Gly)


ATTTGCCTCTGGGTAAGTTGCC′]





3848
NM_000371.3(TTR): c.205A > G
7276
TTR
[′CCAGACTTTCACACCTTATAGGAAARCCA



(p.Thr69Ala)


GTGAGTCTGGAGAGCTGCATGG′]





3849
NM_000371.3(TTR): c.379A > G
7276
TTR
[′CGACTCCGGCCCCCGCCGCTACACCRTTGC



(p.Ile127Val)


CGCCCTGCTGAGCCCCTACTC′]





3850
NM_000371.3(TTR): c.113A > G
7276
TTR
[′TGTCCTCTGATGGTCAAAGTTCTAGRTGCT



(p.Asp38Gly)


GTCCGAGGCAGTCCTGCCATC′]





3851
NM_000217.2(KCNA1): c.676A > G
3736
KCNA1
[′CACAGACCCCTTCTTCATCGTGGAARCGCT



(p.Thr226Ala)


GTGTATCATCTGGTTCTCCTT′]





3852
NM_000217.2(KCNA1): c.763A > G
3736
KCNA1
[′GACGGACTTCTTCAAAAACATCATGRACTT



(p.Asn255Asp)


CATAGACATTGTGGCCATCAT′]





3853
NM_002693.2(POLG): c.2864A > G
5428
POLG
[′AAAATCTTCAACTACGGCCGCATCTRTGGT



(p.Tyr955Cys)


GCTGGGCAGCCCTTTGCTGAG′]





3854
NM_002693.2(POLG): c.2591A > G
5428
POLG
[′GAGCCCACATGGCTCACCGCCAGCARTGC



(p.Asn864Ser)


CCGGGTATGTGACCTCTGTACC′]





3855
NM_000174.4(GP9): c.182A > G
2815
GP9
[′ACCCGCCACCTTCTGCTGGCCAACARCAGC



(p.Asn61Ser)


CTTCAGTCCGTGCCCCCGGGA′]





3856
NM_000174.4(GP9): c.110A > G
2815
GP9
[′CTGGAAACCATGGGGCTGTGGGTGGRCTG



(p.Asp37Gly)


CAGGGGCCACGGACTCACGGCC′]





3857
NM_006206.4(PDGFRA): c.1664A >
5156
PDGFRA
[′CCTGGTCATTTATAGAAACCGAGGTRTGA



G (p.Tyr555Cys)


AATTCGCTGGAGGGTCATTGAA′]





3858
NM_000301.3(PLG): c.112A > G
5340
PLG
[′GGGGGCTTCACTGTTCAGTGTCACTRAGAA



(p.Lys38Glu)


GCAGCTGGGAGCAGGAAGTAT′]





3859
NM_000293.2(PHKB): c.306 − 2A > G
5257
PHKB
[′GTTTCATGAGTTATCTCTCTCACCCRGGCG






AATTGATGATGACAAGGGAAG′]





3860
NM_000175.3(GPI): c.1028A > G
2821
GPI
[′ACACACGCCATGCTGCCCTATGACCRGTAC



(p.Gln343Arg)


CTGCACCGCTTTGCTGCGTAC′]





3861
NM_002633.2(PGM1): c.343A > G
5236
PGM1
[′CAAAGCCATTGGTGGGATCATTCTGRCAG



(p.Thr115Ala)


CCAGTCACAACCCAGGGGGCCC′]





3862
NM_006218.2(PIK3CA): c.3140A >
5290
PIK3CA
[′TTCATGAAACAAATGAATGATGCACDTCA



G (p.His1047Arg)


TGGTGGCTGGACAACAAAAATG′]





3863
NM_006218.2(PIK3CA): c.1634A >
5290
PIK3CA
[′CGAGATCCTCTCTCTGAAATCACTGVGCAG



G (p.Glu545Gly)


GAGAAAGATTTTCTATGGAGT′]





3864
NM_000478.4(ALPL): c.1250A > G
249
ALPL
[′CCCTTCACTGCCATCCTGTATGGCARTGGG



(p.Asn417Ser)


CCTGGCTACAAGGTGGTGGGC′]





3865
NM_018849.2(ABCB4): c.523A > G
5244
ABCB4
[′AGAAATAAACAGGTATAAGATGTGARTTC


-
(p.Thr175Ala)


AGTCCTCAAATAAACCTACTAT′,


3867



′TTCTATATGAAAGTGTGACATTAACRATGT






ACCTACTCTGTTAGCCGCGYA′,






′TTTCCTGTCGTAGAATAGCATGAAARAACT






TCTGCCTAATTTTCCTGATCT′]





3868
NM_001083116.1(PRF1): c.755A >
5551
PRF1
[′CTGGCCCTGGAAGGGCTCACGGACARCGA



G (p.Asn252Ser)


GGTGGAGGACTGCCTGACTGTC′]





3869
NM_198965.1(PTHLH): c.534A > G
5744
PTHLH
[′TTCCTTCTTTTTGCAGGAGGCATTGRAATT



(p.Ter178T1p)


TTCAGCAGAGACCTTCCAAGG′]





3870
NM_000316.2(PTH1R): c.668A > G
5745
PTH1R
[′CTGCACTGCACGCGCAACTACATCCRCATG



(p.His223Arg)


CACCTGTTCCTGTCCTTCATG′]





3871
NM_003122.4(SPINK1): c.101A > G
6690
SPINK1
[′TTCCATTTTTAGGCCAAATGTTACARTGAA



(p.Asn34Ser)


CTTAATGGATGCACCAAGATA′]





3872
NM_006194.3(PAX9): c.271A > G
5083
PAX9
[′CGTGGTGAAACACATCCGGACCTACRAGC



(p.Lys91Glu)


AGAGAGACCCCGGCATCTTCGC′]





3873
NM_013953.3(PAX8): c.160A > G
−1

[′CGACATCTCTCGCCAGCTCCGCGTCRGCCA



(p.Ser54Gly)


TGGCTGCGTCAGCAAGATCCT′]





3874
NM_005188.3(CBL): c.1144A > G
867
CBL
[′GATGGGCTCCACATTCCAACTATGTRAAAT



(p.Lys382Glu)


ATGTGCTGAAAATGATAAGGA′]





3875
NM_000222.2(KIT): c.2459A > G
3815
KIT
[′GGTCTAGCCAGAGACATCAAGAATGRTTC



(p.Asp820Gly)


TAATTATGTGGTTAAAGGAAAC′]





3876
NM_000222.2(KIT): c.2386A > G
3815
KIT
[′GTGTATTCACAGAGACTTGGCAGCCRGAA



(p.Arg796Gly)


ATATCCTCCTTACTCATGGTCG′]





3877
NM_000222.2(KIT): c.1924A > G
3815
KIT
[′ACGGGAAGCCCTCATGTCTGAACTCRAAG



(p.Lys642Glu)


TCCTGAGTTACCTTGGTAATCA′]





3878
NM_001005862.2(ERBB2): c.2480A >
2064
ERBB2
[′CGGAACGTGCTGGTCAAGAGTCCCARCCA



G (p.Asn827Ser)


TGTCAAAATTACAGACTTCGGG′]





3879
NM_001127500.1(MET): c.3743A >
4233
MET
[′GATTTTGGTCTTGCCAGAGACATGTRTGAT



G (p.Tyr1248Cys)


AAAGAATACTATAGTGTACAC′]





3880
NM_001127500.1(MET): c.3335A >
4233
MET
[′ACAGGGCATTTTGGTTGTGTATATCVTGGG



G (p.His1112Arg)


ACTTTGTTGGACAATGATGGC′]





3881
NM_001127500.1(MET): c.3785A >
4233
MET
[′AGTGTACACAACAAAACAGGTGCAARGCT



G (p.Lys1262Arg)


GCCAGTGAAGTGGATGGCTTTG′]





3882
NM_002524.4(NRAS): c.182A > G
4893
NRAS
[′TTGGACATACTGGATACAGCTGGACNAGA



(p.Gln6lArg)


AGAGTACAGTGCCATGAGAGAC′]





3883
NM_004333.4(BRAF): c.1801A > G
673
BRAF
[′AGGTGATTTTGGTCTAGCTACAGTGVAATC



(p.Lys601Glu)


TCGATGGAGTGGGTCCCATCA′]





3884
NM_004333.4(BRAF): c.1781A > G
673
BRAF
[′GAAGACCTCACAGTAAAAATAGGTGDTTT



(p.Asp594Gly)


TGGTCTAGCTACAGTGAAATCT′]





3885
NM_004333.4(BRAF): c.770A > G
673
BRAF
[′GACTTTTGTCGAAAGCTGCTTTTCCRGGGT



(p.Gln257Arg)


TTCCGCTGTCAAACATGTGGT′]





3886
NM_004333.4(BRAF): c.1495A > G
673
BRAF
[′TACACCTCAGCAGTTACAAGCCTTCRAAA



(p.Lys499Glu)


ATGAAGTAGGAGTACTCAGGTG′]





3887
NM_004333.4(BRAF): c.1502A > G
673
BRAF
[′CAGCAGTTACAAGCCTTCAAAAATGNAGT



(p.Glu501Gly)


AGGAGTACTCAGGTGAGCTTGT′]





3888
NM_004333.4(BRAF): c.1741A > G
673
BRAF
[′CATCCACAGAGACCTCAAGAGTAATVGTA



(p.Asn581Asp)


TCCTTCCTGAAATTTGTCTGCG′]





3889
NM_000270.3(PNP): c.383A > G
4860
PNP
[′CTGAACCCCAAGTTTGAGGTTGGAGRTATC



(p.Asp128Gly)


ATGCTGATCCGTGACCATATC′]





3890
NM_000270.3(PNP): c.575A > G
4860
PNP
[′CAACGTGAGCTACAGGAAGGCACCTRTGT



(p.Tyr192Cys)


GATGGTGGCAGGCCCCAGCTTT′]





3891
NM_000258.2(MYL3): c.445A > G
4634
MYL3
[′CGACAAGGAGGGCAATGGCACTGTCRTGG



(p.Met149Val)


GTGCTGAGCTTCGCCACGTGCT′]





3892
NM_000257.3(MYH7): c.2333A > G
4625
MYH7
[′CTGGGGCTGCTGGAGGAAATGAGGGRCGA



(p.Asp778Gly)


GAGGCTGAGCCGCATCATCACG′]





3893
NM_000257.3(MYH7): c.2717A > G
4625
MYH7
[′CTGGCAGATGCTGAGGAGCGCTGTGRTCA



(p.Asp906Gly)


GCTGATCAAAAACAAGATTCAG′]





3894
NM_002470.3(MYH3): c.1385A > G
4621
MYH3
[′AGACAACACTTCATTGGTGTTTTGGRCATT



(p.Asp462Gly)


GCAGGCTTTGAAATCTTTGAG′]





3895
NM_000530.6(MPZ): c.286A > G
4359
MPZ
[′CTACATTGACGAGGTGGGGACCTTCRAAG



(p.Lys96Glu)


AGCGCATCCAGTGGGTAGGGGA′]





3896
NM_000530.6(MPZ): c.242A > G
4359
MPZ
[′TCCCCTCATTCCTCATAGATCTTCCRCTAT



(p.His81Arg)


GCCAAGGGACAACCCTACATT′]





3897
NG_012123.1: g.2493A > G
6347
CCL2
[′GAAAAGAAAGTCTTCTGGAAAGTGAYAGC






TGTCTGCCTCCCACTTCTGCTC′]





3898
RMRP: n.71A > G
6023
RMRP
[′TGTTCCTCCCCTTTCCGCCTAGGGGRAAGT






CCCCGGACCTCGGGCAGAGAG′]





3899
NM_005006.6(NDUFS1): c.755A >
4719
NDUFS1
[′TTTCTCAGAAAGACAGAATCCATTGRTGTA



G (p.Asp252Gly)


ATGGATGCGGTTGGAAGTAAT′]





3900
NM_005912.2(MC4R): c.508A > G
4160
MC4R
[′GACAGTTAAGCGGGTTGGGATCATCRTAA



(p.Ile170Val)


GTTGTATCTGGGCAGCTTGCAC′]





3901
NM_005912.2(MC4R): c.821A > G
4160
MC4R
[′ATATTCTACATCTCTTGTCCTCAGARTCCA



(p.Asn274Ser)


TATTGTGTGTGCTTCATGTCT′]





3902
NM_005912.2(MC4R): c.289A > G
4160
MC4R
[′GGCTGATATGCTGGTGAGCGTTTCARATGG



(p.Asn97Asp)


ATCAGAAACCATTGTCATCAC′]





3903
NM_005912.2(MC4R): c.185A > G
4160
MC4R
[′CTGGGTGTCATCAGCTTGTTGGAGARTATC



(p.Asn62Ser)


TTAGTGATTGTGGCAATAGCC′]





3904
NM_000900.3(MGP): c.62 − 2A > G
4256
MGP
[′AAGATTCCATGCTTTCATGTGATTCHGAAA






TTAAAAAAAAAAGATTCATTA′]





3905
NM_012064.3(MEP): c.401A > G
4284
MEP
[′AGCGTGGGCCAGGCAACCACAGTGGRGAT



(p.Glu134Gly)


CTTCCTGACGCTCCAGTTCGTG′]





3906
NM_000233.3(LHCGR): c.1733A >
−1

[′AAAATGGCAATCCTCATCTTCACCGRTTTC



G (p.Asp578Gly)


ACCTGCATGGCACCTATCTCT′]





3907
NM_000233.3(LHCGR): c.1691A >
−1

[′CCAGAATTAATGGCTACCAATAAAGRTAC



G (p.Asp564Gly)


AAAGATTGCTAAGAAAATGGCA′]





3908
NM_000894.2(LHB): c.221A > G
3972
LHB
[′CAGGCGGTCCTGCCGCCCCTGCCTCRGGTG



(p.Gln74Arg)


GTGTGCACCTACCGTGATGTG′]





3909
NM_000238.3(KCNH2): c.1408A >
3757
KCNH2
[′CATGTTCATTGTGGACATCCTCATCRACTT



G (p.Asn470Asp)


CCGCACCACCTACGTCAATGC′]





3910
NM_001754.4(RUNX1): c.328A > G
861
RUNX1
[′GCTGCCTACGCACTGGCGCTGCAACRAGA



(p.Lys110Glu)


CCCTGCCCATCGCTTTCAAGGT′]





3911
NM_170707.3(LMNA): c.608A > G
4000
LMNA
[′AACAGGCTGCAGACCATGAAGGAGGDACT



(p.Glu203Gly)


GGACTTCCAGAAGAACATCTAC′]





3912
NM_000421.3(KRT10): c.1315A > G
−1

[′TGAATACCAACAACTCCTGGATATTDAGA



(p.Lys439Glu)


TCCGACTGGAGAATGAAATTCA′]





3913
NM_000421.3(KRT10): c.1374 −
−1

[′CCGCCGCGTCCGCCGCCTCCGGAACYAAA



2A > G


CGGGGTGAGGTCACATTCGGTT′]





3914
NM_000422.2(KRT17): c.274A > G
3872
KRT17
[′TGAGAAGGCCACCATGCAGAACCTCVATG



(p.Asn92Asp)


ACCGCCTGGCCTCCTACCTGGA′]





3915
NM_000422.2(KRT17): c.275A > G
3872
KRT17
[′GAGAAGGCCACCATGCAGAACCTCARTGA



(p.Asn92Ser)


CCGCCTGGCCTCCTACCTGGAC′]





3916
NM_005557.3(KRT16): c.374A > G
3868
KRT16
[′GAGAAGGTGACCATGCAGAACCTCARTGA



(p.Asn125Ser)


CCGCCTGGCCTCCTACCTGGAC′]





3917
NM_000526.4(KRT14): c.368A > G
3861
KRT14
[′GAGAAGGTGACCATGCAGAACCTCARTGA



(p.Asn123Ser)


CCGCCTGGCCTCCTACCTGGAC′]





3918
NM_000424.3(KRT5): c.1424A > G
3852
KRT5
[′ATCGCCACTTACCGCAAGCTGCTGGRGGG



(p.Glu475Gly)


CGAGGAATGCAGGTGAGTAGAC′]





3919
NM_000418.3(IL4R): c.223A > G
3566
IL4R
[′CTGTGTCTGCAGAGCCCACACGTGTNTCCC



(p.Ile75Val)


TGAGAACAACGGAGGCGCGGG′]





3920
NM_001079817.1(INSR): c.1459A >
3643
INSR
[′CCAGGAGAGAAACGACATTGCCCTGRAGA



G (p.Lys487Glu)


CCAATGGGGACCAGGCATCCTG′]





3921
NM_000208.2(INSR): c.707A > G
3643
INSR
[′TGCACCGCCGAAGGCCTCTGTTGCCRCAGC



(p.His236Arg)


GAGTGCCTGGGCAACTGTTCT′]





3922
NM_000208.2(INSR): c.1466A > G
3643
INSR
[′AGAAACGACATTGCCCTGAAGACCARTGG



(p.Asn489Ser)


GGACCAGGCATCCTGTAAGTCA′]





3923
NM_000208.2(INSR): c.1124 − 2A > G 
3643
INSR
[′CTTCTAGCTCAGCTGCCAGATTGTCYAAGG






AAAGGAGAGAATATCCAGTGG′]





3924
NM_000208.2(INSR): c.1372A > G
3643
INSR
[′TCAGGGGAAACTCTTCTTCCACTATRACCC



(p.Asn458Asp)


CAAACTCTGCTTGTCAGAAAT′]





3925
NM_000454.4(SOD1): c.131A > G
6647
SOD1
[′ATTAAAGGACTGACTGAAGGCCTGCRTGG



(p.His44Arg)


ATTCCATGTTCATGAGTTTGGA′]





3926
NM_000454.4(SOD1): c.302A > G
6647
SOD1
[′GATGGTGTGGCCGATGTGTCTATTGRAGAT



(p.Glu101Gly)


TCTGTGATCTCACTCTCAGGA′]





3927
NM_000454.4(SOD1): c.140A > G
6647
SOD1
[′CTGACTGAAGGCCTGCATGGATTCCRTGTT



(p.His47Arg)


CATGAGTTTGGAGATAATACA′]





3928
NM_000454.4(SOD1): c.242A > G
6647
SOD1
[′ATCTGATGCTTTTTCATTATTAGGCRTGTT



(p.His81Arg)


GGAGACTTGGGCAATGTGACT′]





3929
NM_000183.2(HADHB): c.788A > G
3032
HADHB
[′GCACAGGATGAAGGACTCCTTTCTGRTGTG



(p.Asp263Gly)


GTACCCTTCAAAGTACCAGGT′]





3930
NM_000523.3(HOXD13): c.974A >
3239
HOXD13
[′GAGAGACAAGTGACCATTTGGTTTCRGAA



G (p.Gln325Arg)


CCGAAGAGTGAAGGACAAGAAA′]





3931
NM_000545.6(HNF1A): c.365A > G
6927
HNF1A
[′CGTGTGGCGAAGATGGTCAAGTCCTRCCT



(p.Tyr122Cys)


GCAGCAGCACAACATCCCACAG′]





3932
NM_000519.3(HBD): c.-81A > G
3045
HBD
[′CTGGAGCAGGGAGGACAGGACCAGCRTAA






AAGGCAGGGCAGAGTCGACTGT′]





3933
NM_000518.4(HBB): c.199A > G
3043
HBB
[′CCCTAAGGTGAAGGCTCATGGCAAGRAAG



(p.Lys67Glu)


TGCTCGGTGCCTTTAGTGATGG′]





3934
NM_000518.4(HBB): c.59A > G
3043
HBB
[′GTTACTGCCCTGTGGGGCAAGGTGARCGT



(p.Asn20Ser)


GGATGAAGTTGGTGGTGAGGCC′]





3935
NM_000518.4(HBB): c.-81A > G
3043
HBB
[′GGGAGGGCAGGAGCCAGGGCTGGGCVTA






AAAGTCAGGGCAGAGCCATCTAT′]





3936
NM_000518.4(HBB): c.-50 − 29A > G
3043
HBB
[′GAGGGCAGGAGCCAGGGCTGGGCATRAAA






GTCAGGGCAGAGCCATCTATTG′]





3937
NM_000518.4(HBB): c.-78A > G
3043
HBB
[′AGGGCAGGAGCCAGGGCTGGGCATAVAA






GTCAGGGCAGAGCCATCTATTGC′]





3938
NM_000518.4(HBB): c.*113A > G
3043
HBB
[′TGAGCATCTGGATTCTGCCTAATAARAAAC






ATTTATTTTCATTGCAATGAT′]





3939
NM_000518.4(HBB): c.*112A > G
3043
HBB
[′TTGAGCATCTGGATTCTGCCTAATADAAAA






CATTTATTTTCATTGCAATGA′]





3940
NM_000518.4(HBB): c.*111A > G
3043
HBB
[′CTTGAGCATCTGGATTCTGCCTAATRAAAA






ACATTTATTTTCATTGCAATG′]





3941
NM_000518.4(HBB): c.80A > G
3043
HBB
[′GTGAACGTGGATGAAGTTGGTGGTGNGGC



(p.Glu27Gly)


CCTGGGCAGGTTGGTATCAAGG′]





3942
NM_000518.4(HBB): c.247A > G
3043
HBB
[′TGGCCTGGCTCACCTGGACAACCTCVAGG



(p.Lys83Glu)


GCACCTTTGCCACACTGAGTGA′]





3943
NM_000517.4(HBA2): c.1A > G
3040
HBA2
[′CCCACAGACTCAGAGAGAACCCACCRTGG



(p.Met1Val)


TGCTGTCTCCTGCCGACAAGAC′]





3944
NM_000517.4(HBA2): c.*92A > G
3040
HBA2
[′CACCGGCCCTTCCTGGTCTTTGAATRAAGT






CTGAGTGGGCAGCAGCCTGTG′]





3945
NM_000517.4(HBA2): c.96 − 2A > G
3040
HBA2
[′CACCCCTCACTCTGCTTCTCCCCGCRGGAT






GTTCCTGTCCTTCCCCACCAC′]





3946
NM_006121.3(KRT1): c.1445A > G
3848
KRT1
[′GCCCTGGATCTGGAGATTGCCACCTRCAG



(p.Tyr482Cys)


GACCCTCCTGGAGGGAGAAGAA′]





3947
NM_001077488.3(GNAS): c.1A > G
2778
GNAS
[′GCGCCCCGCCGCCGCCGCCGCCGCCRTGG



(p.Met1Val)


GCTGCCTCGGGAACAGTAAGAC′]





3948
NM_000516.5(GNAS): c.680A > G
2778
GNAS
[′ACCAGCATGTTTGACGTGGGTGGCCDGCG



(p.Gln227Arg)


CGATGAACGCCGCAAGTGGATC′]





3949
NM_000515.4(GH1): c.413A > G
2688
GH1
[′GGCGCCTCTGACAGCAACGTCTATGRCCTC



(p.Asp138Gly)


CTAAAGGACCTAGAGGAAGGC′]





3950
NM_000823.3(GHRHR): c.985A > G
2692
GHRHR
[′TTGTCTTTCCTGCAGGCGTCTCTCCRAGTC



(p.Lys329Glu)


GACACTTTTCCTGATCCCACT′]





3951
NM_002890.2(RASA1): c.1198A > G
5921
RASA1
[′GACCAATGAAAATATTCAGCGATTTRAAA



(p.Lys400Glu)


TATGTCCAACGCCAAACAATCA′]





3952
NM_002890.2(RASA1): c.1201A > G
5921
RASA1
[′CAATGAAAATATTCAGCGATTTAAARTAT



(p.Ile401Val)


GTCCAACGCCAAACAATCAGTT′]





3953
NM_000406.2(GNRHR): c.317A > G
2798
GNRHR
[′GATGGGATGTGGAACATTACAGTCCRATG



(p.Gln106Arg)


GTATGCTGGAGAGTTACTCTGC′]





3954
NM_000406.2(GNRHR): c.851A > G
2798
GNRHR
[′TTTACTGTCTGCTGGACTCCCTACTRTGTC



(p.Tyr284Cys)


CTAGGAATTTGGTATTGGTTT′]





3955
NM_000407.4(GP1BB): c.338A > G
−1

[′GCCGGCCGCCCCGAGCGTGCGCCCTDCCG



(p.Tyr113Cys)


CGACCTGCGTTGCGTGGCGCCC′]





3956
NM_021957.3(GYS2): c.116A > G
2998
GYS2
[′TTTGAAGTTGCTTGGGAAGTGACCARTAA



(p.Asn39Ser)


AGGTTTGTACTGCTCCTGAAGG′]





3957
NM_001146040.1(GLRA1): c.920A >
2741
GLRA1
[′CCTCCACCCCCACTCTAGGTGTCCTVTGTG



G (p.Tyr307Cys)


AAAGCCATTGACATTTGGATG′]





3958
NM_001146040.1(GLRA1): c.910A >
2741
GLRA1
[′CTCCGGCTCTCGAGCATCTCTGCCCRAGGT



G (p.Lys304Glu)


AAGTCCCATTGCCCAAGAGCA′]





3959
NM_000171.3(GLRA1): c.523A > G
2741
GLRA1
[′CCCCATGGACTTGAAGAATTTCCCCRTGGA



(p.Met175Val)


TGTCCAGACATGTATCATGCA′]





3960
NM_000162.3(GCK): c.641A > G
2645
GCK
[′ACGGTGGCCACGATGATCTCCTGCTRCTAC



(p.Tyr214Cys)


GAAGACCATCAGTGCGAGGTC′]





3961
NM_000145.3(FSHR): c.1345A > G
2492
FSHR
[′AGGCTGTGATGCTGCTGGCTTTTTCRCTGT



(p.Thr449Ala)


CTTTGCCAGTGAGCTGTCAGT′]





3962
NM_182925.4(FLT4): c.3104A > G
2324
FLT4
[′CGCCTCCCCGCACCCCAGTGCATCCRCAGA



(p.His1035Arg)


GACCTGGCTGCTCGGAACATT′]





3963
NM_023110.2(FGFR1): c.1121A > G
2260
FGFR1
[′CCGGCAGTGATGACCTCGCCCCTGTRCCTG



(p.Tyr374Cys)


GAGATCATCATCTATTGCACA′]





3964
NM_006894.5(FMO3): c.182A > G
2328
FMO3
[′AGCATTTACAAATCAGTCTTTTCCARCTCT



(p.Asn61Ser)


TCCAAAGAGATGATGTGTTTC′]





3965
NM_001002294.2(FMO3): c.923A >
2328
FMO3
[′AAGCCTAACGTGAAGGAATTCACAGRGAC



G (p.Glu308Gly)


CTCGGCCATTTTTGAGGATGGG′]





3966
NM_212482.1(FN1): c.2918A > G
2335
FN1
[′ACCGGGCTGTCCCCTGGGGTCACCTRTTAC



(p.Tyr973Cys)


TTCAAAGTCTTTGCAGTGAGC′]





3967
NM_000142.4(FGFR3): c.1948A > G
2261
FGFR3
[′CGTGCACAACCTCGACTACTACAAGVAGA



(p.Lys650Glu)


CAACCAACGTGAGCCCGGCCCT′]





3968
NM_000142.4(FGFR3): c.1118A > G
2261
FGFR3
[′GAGGCTGACGAGGCGGGCAGTGTGTRTGC



(p.Tyr373Cys)


AGGCATCCTCAGCTACGGGGTG]





3969
NM_000142.4(FGFR3): c.1612A > G
2261
FGFR3
[′GTGCAGGCGCCCAGCAGGTTGATGAYGTT



(p.Ile538Val)


TTTGTGTTTCCCGATCATCTTC′]





3970
NM_000142.4(FGFR3): c.1619A > G
2261
FGFR3
[′GCCCTGCGTGCAGGCGCCCAGCAGGBTGA



(p.Asn540Ser)


TGATGTTTTTGTGTTTCCCGAT′]





3971
NM_000142.4(FGFR3): c.833A > G
2261
FGFR3
[′GACGTGGAGTTCCACTGCAAGGTGTRCAG



(p.Tyr278Cys)


TGACGCACAGCCCCACATCCAG]





3972
NM_000138.4(FBN1): c.6431A > G
2200
FBN1
[′GTCTGTAAACATGGACAGTGCATCARTAC



(p.Asn2144Ser)


AGATGGTTCCTATCGCTGCGAG]





3973
NM_000138.4(FBN1): c.3128A > G
2200
FBN1
[′ATACCCAGCCTCTGCACCCACGGCARGTG



(p.Lys1043Arg)


CAGAAACACCATTGGCAGCTTT′]





3974
NM_000138.4(FBN1): c.2261A > G
2200
FBN1
[′TATAAATGTATATGCAATTCAGGATRTGAA



(p.Tyr754Cys)


GTGGATTCAACTGGGAAAAAC′]





3975
NM_000146.3(FTL): c.-160A > G
2512
FTL
[′CCGCGGGTCTGTCTCTTGCTTCAACRGTGT






TTGGACGGAACAGATCCGGGG′]





3976
NM_000043.4(FAS): c.695A > G
355
FAS
[′TTTTCAGATGTTGACTTGAGTAAATRTATC



(p.Tyr232Cys)


ACCACTATTGCTGGAGTCATG]





3977
NM_000043.4(FAS): c.763A > G
355
FAS
[′AGGCTTTGTTCGAAAGAATGGTGTCRATG



(p.Asn255Asp)


AAGCCAAAATAGATGAGATCAA′]





3978
NM_000043.4(FAS): c.353A > G
355
FAS
[′TTTCTAGGCTTAGAAGTGGAAATAARCTGC



(p.Asn118Ser)


ACCCGGACCCAGAATACCAAG′]





3979
NM_000129.3(F13A1): c.851A > G
2162
F13A1
[′CTCGTTGGATCCTGGGACAATATCTRTGCC



(p.Tyr284Cys)


TATGGCGTCCCCCCATCGGCC′]





3980
NM_000121.3(EPOR): c.1460A > G
2057
EPOR
[′GGCTTATCCGATGGCCCCTACTCCARCCCT



(p.Asn487Ser)


TATGAGAACAGCCTTATCCCA′]





3981
NM_207034.2(EDN3): c.335A > G
1908
EDN3
[′GACAAGGAGTGTGTCTACTATTGCCRCCTG



(p.His112Arg)


GACATCATTTGGATCAACACT′]





3982
NM_001257988.1(TYMP): c.665A >
1890
TYMP
[′CAGAGCGGACAGCCCCTCCACGAGTYTCT



G (p.Lys222Arg)


TACTGAGAATGGAGGCTTTGGG′]





3983
NM_003286.2(TOP1): c.1598A > G
−1

[′GTAGAGTTTGACTTCCTCGGGAAGGRCTCC



(p.Asp533Gly)


ATCAGATACTATAACAAGGTC′]





3984
NM_001943.3(DSG2): c.797A > G
1829
DSG2
[′GTTCAGATTCGTATTTTGGATGTCARTGAC



(p.Asn266Ser)


AATATACCTGTAGTAGAAAAT′]





3985
NM_001943.3(DSG2): c.1880 −
1829
DSG2
[′TCTGTGTTCAATTTTGTGTCTGTACRGTGG



2A > G


TACCACTTTTACTGCTGATGT′]





3986
NM_024422.4(DSC2): c.631 − 2A > G
1824
DSC2
[′TTTCTCCTTATTTTACTCTCTTCACRGATAA






TTGCCTTTGCAACAACTCCA′]





3987
NG_012088.1: g.2209A > G
3586
IL10
[′CCAGGATGGTCTCGATCTCCTGACCYTATG






ATCCGCCCGCCTTGGCCTCCC′]





3988
NM_000498.3(CYP11B2): c.1492A >
−1

[′GAGGCCTGGCACGTCCCCCCTCCTCRCTTT



G (p.Thr498Ala)


CAGAGCGATTAACTAGTCTTG′]





3989
NM_000941.2(POR): c.1733A > G
5447
POR
[′CGCCGCTCGGATGAGGACTACCTGTRCCG



(p.Tyr578Cys)


GGAGGAGCTGGCGCAGTTCCAC′]





3990
NM_000941.2(POR): c.15A > G
5447
POR
[′CTAACAGTTTCATGATCAACATGGGRGACT



(p.Gly5=)


CCCACGTGGACACCAGCTCCA′]





3991
NM_001885.2(CRYAB): c.358A > G
1410
CRYAB
[′TGGTTTCATCTCCAGGGAGTTCCACRGGAA



(p.Arg120Gly)


ATACCGGATCCCAGCTGATGT′]





3992
NM_021954.3(GJA3): c.188A > G
2700
GJA3
[′AACACCCAGCAGCCGGGCTGCGAGARCGT



(p.Asn63Ser)


CTGCTACGACAGGGCCTTCCCC′]





3993
NM_004004.5(GJB2): c.218A > G
2706
GJB2
[′TACGATCACTACTTCCCCATCTCCCRCATC



(p.His73Arg)


CGGCTATGGGCCCTGCAGCTG′]





3994
NM_001735.2(C5): c.1115A > G
727
C5
[′CGTCTACCCCCTCACCCAATCTACCYTGAT



(p.Lys372Arg)


GGGATATGGAATCCCAGGCTT′]





3995
NM_001848.2(COL6A1): c.362A >
1291
COL6A1
[′CTCAAAAGCAGCGTGGACGCGGTCARGTA



G (p.Lys121Arg)


CTTTGGGAAGGGCACCTACACC′]





3996
NM_000093.4(COL5A1): c.655 −
1289
COL5A1
[′TTTTCATGAGCGTCTCTTCTTTTCCRGGGTG



2A > G


ACATCCAGCAGCTGCTCTTT′]





3997
NM_000089.3(COL1A2): c.226 −
1278
COL1A2
[′TATAATTTTTTTTTTTTACTTCTCTRGAACT



2A > G


TTGCTGCTCAGTATGATGGA′]





3998
NM_000089.3(COL1A2): c.70 + 717A >
1278
COL1A2
[′GAGTGGGTACATTCTGAAAAGTAATRTAA



G


GTGTCTCAATTCACTTTCTAGT′]





3999
NM_001844.4(COL2A1): c.4172A >
1280
COL2A1
[′ACGGAAGGCTCCCAGAACATCACCTRCCA



G (p.Tyr1391Cys)


CTGCAAGAACAGCATTGCCTAT′]





4000
NM_001844.4(COL2A1): c.2974A >
1280
COL2A1
[′CGGTCTGCCTGGGCAACGTGGTGAGRGAG



G (p.Arg992Gly)


GATTCCCTGGCTTGCCTGGCCC′]





4001
NM_000493.3(COL10A1): c.1790A >
−1

[′TTTACTTGTCAGATACCAGGAATATRCTAT



G (p.Tyr597Cys)


TTTTCATACCACGTGCATGTG′]





4002
NM_004385.4(VCAN): c.4004 −
1462
VCAN
[′GTATTGTGAAAACTCTGTTTTTTTCDGGTC



2A > G


GAATGAGTGATTTGAGTGTAA′]





4003
NM_020549.4(CHAT): c.1444A > G
1103
CHAT
[′CGTCAGCGAGCTCCCCGCCCCCCGGVGGC



(p.Arg482Gly)


TGCGGTGGAAATGCTCCCCGGA′]





4004
NM_000078.2(CETP): c.1376A > G
1071
CETP
[′AACAGCAAAGGCGTGAGCCTCTTCGRCAT



(p.Asp459Gly)


CATCAACCCTGAGATTATCACT′]





4005
NM_000083.2(CLCN1): c.1655A > G
1180
CLCN1
[′GTGATTTGCTTCGAATTAACGGGTCDGATT



(p.Gln552Arg)


GCTCACATCCTGCCCATGATG′]





4006
NM_000083.2(CLCN1): c.382A > G
1180
CLCN1
[′CTTTCTGGTGCTTCTGGGACTGCTGRTGGC



(p.Met128Val)


TCTGGTCAGCTGGAGCATGGA′]





4007
NM_199440.1(HSPD1): c.86A > G
3329
HSPD1
[′CATCTCACTCGGGCTTATGCCAAAGRTGTA



(p.Asp29Gly)


AAATTTGGTGCAGATGCCCGA′]





4008
NM_001904.3(CTNNB1): c.95A > G
1499
CTNNB1
[′CACTGGCAGCAACAGTCTTACCTGGNCTCT



(p.Asp32Gly)


GGAATCCATTCTGGTGCCACT′]





4009
NM_001904.3(CTNNB1): c.121A >
1499
CTNNB1
[′CTCTGGAATCCATTCTGGTGCCACTNCCAC



G (p.Thr41Ala)


AGCTCCTTCTCTGAGTGGTAA′]





4010
NM_007294.3(BRCA1): c.211A > G
672
BRCA1
[′TTTATGTAAGAATGATATAACCAAARGGT



(p.Arg71Gly)


ATATAATTTGGTAATGATGCTA′]





4011
NM_001202.3(BMP4): c.278A > G
652
BMP4
[′GATCTTTACCGGCTTCAGTCTGGGGRGGAG



(p.Glu93Gly)


GAGGAAGAGCAGATCCACAGC′]





4012
NM_000342.3(SLC4A1): c.166A > G
6521
SLC4A1
[′CACCACATCACACCCGGGTACCCACRAGG



(p.Lys56Glu)


TGAGGACCCCAGCCTCCTCCGT′]





4013
NM_000342.3(SLC4A1): c.2509A >
6521
SLC4A1
[′GAAGACCTGGCGCATGCACTTATTCRCGG



G (p.Thr837Ala)


GCATCCAGATCATCTGCCTGGC′]





4014
NM_001681.3(ATP2A2): c.2300A >
488
ATP2A2
[′TTCATCCGCTACCTCATCTCGTCCARCGTC



G (p.Asn767Ser)


GGGGAAGTTGTCTGGTAGGTC′]





4015
NM_000486.5(AQP2): c.203A > G
359
AQP2
[′GGCCACATAAGCGGGGCCCACATCAVCCC



(p.Asn68Ser)


TGCCGTGACTGTGGCCTGCCTG′]





4016
NM_000041.3(APOE): c.237 − 2A > G
348
APOE
[′GACACCCTCCCGCCCTCTCGGCCGCRGGGC






GCTGATGGACGAGACCATGAA′]





4017
NM_000041.3(APOE): c.490A > G
348
APOE
[′CGCCTCCCACCTGCGCAAGCTGCGTVAGC



(p.Lys164Glu)


GGCTCCTCCGCGATGCCGATGA′]





4018
NM_000041.3(APOE): c.178A > G
348
APOE
[′TTGGGATTACCTGCGCTGGGTGCAGRCACT



(p.Thr60Ala)


GTCTGAGCAGGTGCAGGAGGA′]





4019
NM_000040.1(APOC3): c.280A > G
345
APOC3
[′GGATTTGGACCCTGAGGTCAGACCARCTTC



(p.Thr94Ala)


AGCCGTGGCTGCCTGAGACCT′]





4020
NM_000040.1(APOC3): c.232A > G
345
APOC3
[′CCTGAAAGACTACTGGAGCACCGTTRAGG



(p.Lys78Glu)


ACAAGTTCTCTGAGTTCTGGGA′]





4021
NM_001042425.1(TFAP2A): c.751A >
7020
TFAP2A
[′GTCGCTGCTGGGCGGAGTGCTCCGGVGGT



G (p.Arg251Gly)


GAGGCCCGGCACGGCCCCGCCC′]





4022
NM_000488.3(SERPINC1): c.655A >
462
SERPINC1
[′TGCAGAGCAATCCAGAGCGGCCATCRACA



G (p.Asn219Asp)


AATGGGTGTCCAATAAGACCGA′]





4023
NM_001085.4(SERPINA3): c.1240A >
12
SERPINA3
[′TACAGACACCCAGAACATCTTCTTCRTGAG



G (p.Met414Val)


CAAAGTCACCAATCCCAAGCA′]





4024
NM_001148.4(ANK2): c.4373A > G
287
ANK2
[′TGCATGGCATCTTGGGGCGGAAAGGRATC



(p.Glu1458Gly)


AGAGTCAGATCAAGAACAGGAG′]





4025
NM_001145.4(ANG): c.121A > G
−1

[′CTTCCTGACCCAGCACTATGATGCCRAACC



(p.Lys41Glu)


ACAGGGCCGGGATGACAGATA′]





4026
NM_001145.4(ANG): c.208A > G
−1

[′ACCCTGCAAAGACATCAACACATTTRTTCA



(p.Ile70Val)


TGGCAACAAGCGCAGCATCAA′]





4027
NM_000484.3(APP): c.2146A > G
351
APP
[′GGGCGGTGTTGTCATAGCGACAGTGRTCG



(p.Ile716Val)


TCATCACCTTGGTGATGCTGAA′]





4028
NM_000484.3(APP): c.2078A > G
351
APP
[′TTTGTTTTCAAGGTGTTCTTTGCAGRAGAT



(p.Glu693Gly)


GTGGGTTCAAACAAAGGTGCA′]





4029
NM_000484.3(APP): c.2140A > G
351
APP
[′CATGGTGGGCGGTGTTGTCATAGCGRCAG



(p.Thr714Ala)


TGATCGTCATCACCTTGGTGAT′]





4030
NM_000021.3(PSEN1): c.488A > G
5663
PSEN1
[′AAATGCTTTCTTTTCTAGGTCATCCRTGCC



(p.His163Arg)


TGGCTTATTATATCATCTCTA′]





4031
NM_000021.3(PSEN1): c.415A > G
5663
PSEN1
[′GCACTCAATTCTGAATGCTGCCATCRTGAT



(p.Met139Val)


CAGTGTCATTGTTGTCATGAC′]





4032
NM_000021.3(PSEN1): c.436A > G
5663
PSEN1
[′CATCATGATCAGTGTCATTGTTGTCNTGAC



(p.Met146Val)


TATCCTCCTGGTGGTTCTGTA′]





4033
NM_000021.3(PSEN1): c.839A > G
5663
PSEN1
[′GTTGAAACAGCTCAGGAGAGAAATGVAAC



(p.Glu280Gly)


GCTTTTTCCAGCTCTCATTTAC′]





4034
NM_000021.3(PSEN1): c.998A > G
5663
PSEN1
[′CAAGACACTGTTGCAGAGAATGATGRTGG



(p.Asp333Gly)


CGGGTTCAGTGAGGAATGGGAA′]





4035
NM_000034.3(ALDOA): c.386A > G
226
ALDOA
[′CCCCTTCCTCTTCTCTTAGGGTTGGRTGGG



(p.Asp129Gly)


CTGTCTGAGCGCTGTGCCCAG′]





4036
NM_000477.5(ALB): c.714 − 2A > G
213
ALB
[′CATTTTGATTGGCGATTTTCTTTTTDGGGC






AGTAGCTCGCCTGAGCCAGAG′]





4037
NM_001151.3(SLC25A4): c.311A >
291
SLC25A4
[′AAGCAGCTCTTCTTAGGGGGTGTGGRTCG



G (p.Asp104Gly)


GCATAAGCAGTTCTGGCGCTAC′]





4038
NM_013411.4(AK2): c.1A > G
204
AK2
[′GTGGCAGTGAGAGACTTCGGCGGACRTGG



(p.Met1Val)


CTCCCAGCGTGCCAGCGGCAGA′]





4039
NM_013411.4(AK2): c.494A > G
204
AK2
[′AACCCTCCAAAAGAGCCCATGAAAGRTGA



(p.Asp165Gly)


CGTATGTAAACTCAGGACAAAA′]





4040
NM_000476.2(AK1): c.491A > G
203
AK1
[′GCCACAGAACCCGTCATCGCCTTCTRTGAG



(p.Tyr164Cys)


AAACGTGGCATTGTGCGCAAG′]





4041
NM_001100.3(ACTA1): c.350A > G
58
ACTA1
[′GAGGCCCCCCTCAATCCCAAGGCCARCCG



(p.Asn117Ser)


CGAGAAGATGACCCAGATCATG′]





4042
NM_001103.3(ACTN2): c.26A > G
88
ACTN2
[′ATGAACCAGATAGAGCCCGGCGTGCRGTA



(p.Gln9Arg)


CAACTACGTGTACGACGAGGAT′]





4043
NM_005159.4(ACTC1): c.1088A > G
−1

[′CAGCAAATGTGGATTAGCAAGCAAGRGTA



(p.Glu363Gly)


CGATGAGGCAGGCCCATCCATT′]





4044
NM_005159.4(ACTC1): c.373A > G
−1

[′CAACCGGGAGAAGATGACTCAGATCRTGT



(p.Met125Val)


TTGAGACCTTCAATGTCCCTGC′]





4045
NM_018109.3(MTPAP): c.1432A >
55149
MTPAP
[′TGATTCTTCTCCTCTGTACATTCAGRATCC



G (p.Asn478Asp)


ATTTGAAACTTCTCTCAACAT′]





4046
NM_016955.3(SEPSECS): c.1001A >
51091
SEPSECS
[′TTATTGTCACTTGGATCAAATGGCTRTAAG



G (p.Tyr334Cys)


AAGCTACTAAAAGAAAGAAAG′]





4047
NM_014053.3(FLVCR1): c.361A >
28982
FLVCR1
[′GATCTTCAGCCTGTACTCGCTGGTCRACGC



G (p.Asn121Asp)


CTTTCAGTGGATCCAGTACAG′]





4048
NM_000021.3(PSEN1): c.697A > G
5663
PSEN1
[′ATATCTCATTATGATTAGTGCCCTCDTGGC



(p.Met233Val)


CCTGGTGTTTATCAAGTACCT′]





4049
NM_000207.2(INS): c.323A > G
−1

[′TGCTCCCTCTACCAGCTGGAGAACTRCTGC



(p.Tyr108Cys)


AACTAGACGCAGCCCGCAGGC′]





4050
NM_000334.4(SCN4A): c.4078A > G
6329
SCN4A
[′GAAGCAGGCCTTCGACATCACCATCRTGA



(p.Met1360Val)


TCCTCATCTGCCTCAACATGGT′]





4051
NM_000334.4(SCN4A): c.4108A > G
6329
SCN4A
[′CCTCATCTGCCTCAACATGGTCACCRTGAT



(p.Met1370Val)


GGTGGAGACAGACAACCAGAG′]





4052
NM_000518.4(HBB): c.316 − 2A > G
3043
HBB
[′TTCATACCTCTTATCTTCCTCCCACVGCTCC






TGGGCAACGTGCTGGTCTGT′]





4053
NM_000525.3(KCNJ11): c.155A > G
3767
KCNJ11
[′GTGGCCCACAAGAACATCCGGGAGCRGGG



(p.Gln52Arg)


CCGCTTCCTGCAGGACGTGTTC′]





4054
NM_000525.3(KCNJ11): c.544A > G
3767
KCNJ11
[′AGCCCACCGCAGGGCTGAGACCCTCRTCTT



(p.Ile182Val)


CAGCAAGCATGCGGTGATCGC′]





4055
NM_000525.3(KCNJ11): c.886A > G
3767
KCNJ11
[′GGAAGGCGTGGTGGAAACCACGGGCVTCA



(p.Ile296Val)


CCACCCAGGCCCGCACCTCCTA′]





4056
NM_000525.3(KCNJ11): c.989A > G
3767
KCNJ11
[′GAGGACGGACGTTACTCTGTGGACTRCTCC



(p.Tyr330Cys)


AAGTTTGGCAACACCGTCAAA′]





4057
NM_000528.3(MAN2B1): c.1831 −
4125
MAN2B1
[′CCCATCTGTGGACCCTTTTCTGCCCRGCAC



2A > G


ATCCGGGCAACGTTTGATCCT′]





4058
NM_000639.2(FASLG): c.466A > G
356
FASLG
[′ATTTATTTCAGGCAAGTCCAACTCARGGTC



(p.Arg156Gly)


CATGCCTCTGGAATGGGAAGA′]





4059
NM_000920.3(PC): c.1705A > G
5091
PC
[′CCCGGGGCTGCTGCTGATGGACACGRCCTT



(p.Thr569Ala)


CAGGGACGCCCACCAGTCACT′]





4060
NM_001017420.2(ESCO2): c.1132 −
157570
ESCO2
[′AATGGGTTTCTTTTTTTACCCCCCARTTATA



7A > G


GGACGCTGGTCAGAAACATT′]





4061
NM_001017420.2(ESCO2): c.1674 −
157570
ESCO2
[′ATTAAATCATCTTTTCTTCTCTTTTRGGAAT



2A > G


TGCTTCATGTTTGGCTGTTT′]





4062
NM_001129765.1(NSDHL): c.1046A >
50814
NSDHL
[′GAGAGAGCCAAAAAGGCCATGGGCTVCCA



G (p.Tyr349Cys)


GCCACTAGTGACCATGGATGAT′]





4063
NM_001701.3(BAAT): c.967A > G
570
BAAT
[′AGAGGCCCAGGGGCAATTCCTCTTCRTTGT



(p.Ile323Val)


AGGAGAAGGTGATAAGACTAT′]





4064
NM_002977.3(SCN9A): c.406A > G
6335
SCN9A
[′ATTCAGCATGCTCATCATGTGCACTRTTCT



(p.Ile136Val)


GACAAACTGCATATTTATGAC′]





4065
NM_004004.5(GJB2): c.487A > G
2706
GJB2
[′CTATGTCATGTACGACGGCTTCTCCRTGCA



(p.Met163Val)


GCGGCTGGTGAAGTGCAACGC′]





4066
NM_004519.3(KCNQ3): c.1403A >
3786
KCNQ3
[′GAACCAAAGCCTGTTGGCTTAAACARTAA



G (p.Asn468Ser)


AGAGCGTTTCCGCACGGCCTTC′]





4067
NM_004519.3(KCNQ3): c.2462A >
3786
KCNQ3
[′AGAGATGATTATGTGTTCGGCCCCARTGG



G (p.Asn821Ser)


GGGGTCGAGCTGGATGAGGGAG′]





4068
NM_004519.3(KCNQ3): c.914A > G
3786
KCNQ3
[′AAAGAGGAGTTTGAGACCTATGCAGRTGC



(p.Asp305Gly)


CCTGTGGTGGGGCCTGGTGAGT′]





4069
NM_004525.2(LRP2): c.770 − 2A > G
4036
LRP2
[′TGTAACTCTCTCTTTTTCCCCCCACRGAAA






GCGGTCCTCATGATGTTCATA′]





4070
NM_007375.3(TARDBP): c.1055A >
23435
TARDBP
[′CAGAACCAGTCAGGCCCATCGGGTARTAA



G (p.Asn352Ser)


CCAAAACCAAGGCAACATGCAG′]





4071
NM_007375.3(TARDBP): c.800A >
23435
TARDBP
[′AATGCCGAACCTAAGCACAATAGCARTAG



G (p.Asn267Ser)


ACAGTTAGAAAGAAGTGGAAGA′]





4072
NM_012434.4(SLCl7A5): c.406A >
26503
SLC17A5
[′ATATGTTGCCAGCAAAATAGGGGGGDAAA



G (p.Lys136Glu)


TGCTGCTAGGATTTGGGATCCT′]





4073
NM_012463.3(ATP6V0A2): c.732 −
23545
ATP6V0A2
[′AGACTGTGTTCAACTCTTGTCTTCCRGCTA



2A > G


CCACTGCCACGTGTACCCCTA′]





4074
NM_014043.3(CHMP2B): c.85A > G
25978
CHMP2B
[′GTTACGAGGTACACAGAGGGCTATARTCA



(p.Ile29Val)


GAGATCGAGCAGCTTTAGAGAA′]





4075
NM_018136.4(ASPM): c.2761 −
259266
ASPM
[′AGCAAAATTATAATATTGGAATATARTATC



25A > G


TGGAACTTATTTCTTTATAGG′]





4076
NM_022081.5(HPS4): c.461A > G
89781
HPS4
[′ATTCTGAAAAACACCAGTGATCTGCRTAA



(p.His154Arg)


GATTTTCAATTCCCTCTGGAAC′]





4077
NM_024649.4(BBS1): c.1340 −
−1

[′GTCAGCCTCTGGGACCCTTCTCCACRGCCA



2A > G


TGCACCGGGCCTTCCAGACAG′]





4078
NM_032520.4(GNPTG): c.610 −
84572
GNPTG
[′TGCTGCCCCTGCATCCTCCACCTTCRGGGC



2A > G


CATGAGAAGTTGCTGAGGACA′]





4079
NM_172107.2(KCNQ2): c.1A > G
3785
KCNQ2
[′CCCGGGGCGCCTCCCGCCAGGCACCRTGG



(p.MetlVal)


TGCAGAAGTCGCGCAACGGCGG′]





4080
NM_172107.2(KCNQ2): c.356A > G
3785
KCNQ2
[′GTGTTTTCCACCATCAAGGAGTATGRGAA



(p.Glu119Gly)


GAGCTCGGAGGGGGCCCTCTAC′]





4081
NM_172107.2(KCNQ2): c.622A > G
3785
KCNQ2
[′CCTGCGCTTCCTGCAGATTCTGCGGRTGAT



(p.Met208Val)


CCGCATGGACCGGCGGGGAGG′]





4082
NM_172107.2(KCNQ2): c.635A > G
3785
KCNQ2
[′CAGATTCTGCGGATGATCCGCATGGRCCG



(p.Asp212Gly)


GCGGGGAGGCACCTGGAAGCTG′]





4083
NM_172107.2(KCNQ2): c.773A > G
3785
KCNQ2
[′GTGTACTTGGCAGAGAAGGGGGAGARCGA



(p.Asn258Ser)


CCACTTTGACACCTACGCGGAT′]





4084
NM_172107.2(KCNQ2): c.1764 −
3785
KCNQ2
[′ATGCTTTGGGGTCTCTGTTCCCGGTRGAGT



2A > G


GGACCAGATCGTGGGGCGGGG′]





4085
NM_000495.4(COL4A5): c.1A > G
1287
COL4A5
[′AAGGAGCTGCGGGAGCCGGAGAAGARTG



(p.Met1Val)


AAACTGCGTGGAGTCAGCCTGGC′]





4086
NM_000495.4(COL4A5): c.466 −
1287
COL4A5
[′AGAACTTCCATTGATGGCTTCTTTTRGGGT



2A > G


GAACCAGGTAGTATAATTATG′]





4087
NM_000495.4(COL4A5): c.547 −
1287
COL4A5
[′TCATTTTCTTTACTCACTTTATAACRGGGC



2A > G


CTACCTGGTCCCACTGGTATA′]





4088
NM_000495.4(COL4A5): c.610 −
1287
COL4A5
[′ATTTTCTCTTTTGTCTTCTCTTCTTRGGGCC



2A > G


CTCCTGGTCCACCAGGACTT′]





4089
NM_000495.4(COL4A5): c.892 −
1287
COL4A5
[′GCCCTATCATTTCTTTGTATCCTATRGGGT



2A > G


AAACCAGGCAAAGATGGAGAA′]





4090
NM_000495.4(COL4A5): c.1340 −
1287
COL4A5
[′TTGCTATCCTTTCTTTATCTTACTCRGGTGA



2A > G


TGAGATATGTGAACCAGGCC′]





4091
NM_000495.4(COL4A5): c.2042 −
1287
COL4A5
[′TTCTTTGAACGTTTTCCTTTCAATARCTGCT



18A > G


GTTTCTCCATAGGTGACCCT′]





4092
NM_000495.4(COL4A5): c.2147 −
1287
COL4A5
[′GTTAAAAAATGACTTATCATTTTACRGGCT



2A > G


TTCCTGGAATTCCAGGACCTC′]





4093
NM_000495.4(COL4A5): c.2394A >
1287
COL4A5
[′GCTTAGATGGGCTCCCTGGACCAAARGGT



G (p.Lys798=)


ATGGAGGCTGTCACTGCATCTC]





4094
NM_000495.4(COL4A5): c.2510 −
1287
COL4A5
[′CAGATACATCTTTTAAAACTGCTTCRGTAC



33A > G


TTATTAATATTGATATTGTAT′]





4095
NM_000495.4(COL4A5): c.2692A >
1287
COL4A5
[′ATTCTTCAAAGGTACCAAAGGTGAARTGG



G (p.Met898Val)


GTATGATGGGACCTCCAGGCCC′]





4096
NM_000495.4(COL4A5): c.2746A >
1287
COL4A5
[′AGGACCTTTGGGAATTCCTGGCAGGRGTG



G (p.Ser916Gly)


GTGTACCTGGTCTTAAAGGTAA′]





4097
NM_000495.4(COL4A5): c.3107 −
1287
COL4A5
[′ATATTATATATCACATATTTTCAACRGGGC



2A > G


CTCAGGGTGTGGAAGGGCCTC′]





4098
NM_000495.4(COL4A5): c.3455 −
1287
COL4A5
[′AACTGGGTGTAACCTGCTGTACTCARTTTT



9A > G


TTAGGTGGTGGAGGTCATCCT′]





4099
NM_000495.4(COL4A5): c.3605 −
1287
COL4A5
[′TCTTCTAATTATACTTTACTTTCATRGGCCA



2A > G


AAAGGGTGATGGAGGATTAC′]





4100
NM_000495.4(COL4A5): c.3925 −
1287
COL4A5
[′GTAACATTAATGATTTTATTTATTCRGGGT



2A > G


AATCCTGGCCGGCCGGGTCTC′]





4101
NM_000495.4(COL4A5): c.3998 −
1287
COL4A5
[′ATAAAACTGTATGTACCTTCTGTGCDGGCA



2A > G


TGAAAGGACCCAGTGGAGTAC′]





4102
NM_000495.4(COL4A5): c.4790A >
1287
COL4A5
[′GGATGGGATTCTCTGTGGATTGGTTRTTCC



G (p.Tyr1597Cys)


TTCATGATGGTATTTTACACT′]





4103
NM_000495.4(COL4A5): c.4977 −
1287
COL4A5
[′CTGATTGTCTTATTTCTTATTTCCCRGTAAA



2A > G


CCTCAGTCAGAAACGCTGAA′]





4104
NM_005359.5(SMAD4): c.425 −
4089
SMAD4
[′TTTCATTTGTTTTCCCCTTTAAACARTTAAG



6A > G


ATCTCTCAGGATTAACACTG′]





4105
NM_005359.5(SMAD4): c.989A > G
4089
SMAD4
[′TATTGGTGTTCCATTGCTTACTTTGRAATG



(p.Glu330Gly)


GATGTTCAGGTAGGAGAGACA′]





4106
NM_020630.4(RET): c.1996A > G
5979
RET
[′CCACTGCTACCACAAGTTTGCCCACVAGCC



(p.Lys666Glu)


ACCCATCTCCTCAGCTGAGAT′]





4107
NM_020630.4(RET): c.2342A > G
5979
RET
[′CTGTCAGAGTTCAACGTCCTGAAGCRGGTC



(p.Gln781Arg)


AACCACCCACATGTCATCAAA′]





4108
NM_000060.3(BTD): c.194A > G
686
BTD
[′TATTATGTGGCTGCCGTGTATGAGCRTCCA



(p.His65Arg)


TCCATCCTGAGTCTGAACCCT′]





4109
NM_000060.3(BTD): c.278A > G
686
BTD
[′CTCATGAACCAGAACCTTGACATCTRTGAA



(p.Tyr93Cys)


CAGCAAGTGATGACTGCAGCC′]





4110
NM_000060.3(BTD): c.356A > G
686
BTD
[′CCAGAAGATGGCATTCATGGATTCARCTTT



(p.Asn119Ser)


ACAAGAACATCCATTTATCCA′]





4111
NM_000060.3(BTD): c.364A > G
686
BTD
[′TGGCATTCATGGATTCAACTTTACARGAAC



(p.Arg122Gly)


ATCCATTTATCCATTTTTGGA′]





4112
NM_000060.3(BTD): c.515A > G
686
BTD
[′AGGGGAGATATGTTCTTGGTGGCCARTCTT



(p.Asn172Ser)


GGGACAAAGGAGCCTTGTCAT′]





4113
NM_000060.3(BTD): c.583A > G
686
BTD
[′CCCAAAAGATGGGAGATACCAGTTCRACA



(p.Asn195Asp)


CAAATGTCGTGTTCAGCAATAA′]





4114
NM_000060.3(BTD): c.584A > G
686
BTD
[′CCAAAAGATGGGAGATACCAGTTCARCAC



(p.Asn195Ser)


AAATGTCGTGTTCAGCAATAAT′]





4115
NM_000060.3(BTD): c.641A > G
686
BTD
[′CTTGTTGACCGCTACCGTAAACACARCCTC



(p.Asn214Ser)


TACTTTGAGGCAGCATTCGAT′]





4116
NM_000060.3(BTD): c.880A > G
686
BTD
[′GAAAGCTTTTGCTGTTGCCTTTGGCRTCAA



(p.Ile294Val)


CGTTCTGGCAGCTAATGTCCA′]





4117
NM_000060.3(BTD): c.1205A > G
686
BTD
[′TTTCACTCTGAGATGATGTATGACARTTTC



(p.Asn402Ser)


ACCCTGGTCCCTGTCTGGGGA′]





4118
NM_000060.3(BTD): c.1313A > G
686
BTD
[′AGGCCCACCTTATCCAAAGAGCTGTRTGCC



(p.Tyr438Cys)


CTGGGGGTCTTTGATGGGCTT′]





4119
NM_000060.3(BTD): c.1619A > G
686
BTD
[′ACGGCGGCTCTCTATGGGCGCTTGTRTGAG



(p.Tyr540Cys)


AGGGACTAGGAAAAGTGTGTG]





4120
NM_000155.3(GALT): c.1A > G
2592
GALT
[′TTCCAGCGGATCCCCCGGTGGCCTCRTGTC



(p.Met1Val)


GCGCAGTGGAACCGATCCTCA′]





4121
NM_000155.3(GALT): c.67A > G
2592
GALT
[′GTCAGAGGCGGACGCCGCAGCAGCARCCT



(p.Thr23Ala)


TCCGGGCAAACGGTAACTGCAC′]





4122
NM_000155.3(GALT): c.253 − 2A > G
2592
GALT
[′GTGCTTCTAGCCTATCCTTGTCGGTRGGTG






AATCCCCAGTACGATAGCACC′]





4123
NM_000155.3(GALT): c.290A > G
2592
GALT
[′TACGATAGCACCTTCCTGTTTGACARCGAC



(p.Asn97Ser)


TTCCCAGCTCTGCAGCCTGAT′]





4124
NM_000155.3(GALT): c.308A > G
2592
GALT
[′TTTGACAACGACTTCCCAGCTCTGCRGCCT



(p.Gln103Arg)


GATGCCCCCAGTCCAGGTAAC′]





4125
NM_000155.3(GALT): c.379A > G
2592
GALT
[′ATCTTTTCTCCCGTCACCACCCAGTRAGGT



(p.Lys127Glu)


CATGTGCTTCCACCCCTGGTC′]





4126
NM_000155.3(GALT): c.424A > G
2592
GALT
[′CTGGTCGGATGTAACGCTGCCACTCRTGTC



(p.Met142Val)


GGTCCCTGAGATCCGGGCTGT′]





4127
NM_000155.3(GALT): c.565 − 2A > G
2592
GALT
[′TTCTTCTCTGCTTTTGCCCCTTGACRGGTAT






GGGCCAGCAGTTTCCTGCCA′]





4128
NM_000155.3(GALT): c.574A > G
2592
GALT
[′TTTTGCCCCTTGACAGGTATGGGCCRGCAG



(p.Ser192Gly)


TTTCCTGCCAGATATTGCCCA′]





4129
NM_000155.3(GALT): c.626A > G
2592
GALT
[′CGTGAGGAGCGATCTCAGCAGGCCTVTAA



(p.Tyr209Cys)


GAGTCAGCATGGAGAGCCCCTG′]





4130
NM_000155.3(GALT): c.752A > G
2592
GALT
[′GTCCCCTTCTGGGCAACATGGCCCTVCCAG



(p.Tyr251Cys)


ACACTGCTGCTGCCCGTCGGC′]





4131
NM_000155.3(GALT): c.812A > G
2592
GALT
[′CGGCTACCTGAGCTGACCCCTGCTGRGCGT



(p.Glu271Gly)


GATGGTCAGTCTCCCAAGTAG′]





4132
NM_000155.3(GALT): c.821 − 2A > G
2592
GALT
[′AGGCTGAGAGTCAGGCTCTGATTCCRGAT






CTAGCCTCCATCATGAAGAAGC′]





4133
NM_000155.3(GALT): c.854A > G
2592
GALT
[′TCCATCATGAAGAAGCTCTTGACCARGTAT



(p.Lys285Arg)


GACAACCTCTTTGAGACGTCC′]





4134
NM_000155.3(GALT): c.968A > G
2592
GALT
[′CATTGGCAGCTGCACGCTCATTACTRCCCT



(p.Tyr323Cys)


CCGCTCCTGCGCTCTGCCACT′]





4135
NM_000155.3(GALT): c.1001A > G
2592
GALT
[′CTCCTGCGCTCTGCCACTGTCCGGARATTC



(p.Lys334Arg)


ATGGTTGGCTACGAAATGCTT′]





4136
NM_000155.3(GALT): c.1048A > G
2592
GALT
[′GCTTGCTCAGGCTCAGAGGGACCTCRCCCC



(p.Thr350Ala)


TGAGCAGGTCAGGACTCAGAA′]





4137
NM_000155.3(GALT): c.1132A > G
2592
GALT
[′GCAGAAGGACAGGGAGACAGCAACCRTCG



(p.Ile378Val)


CCTGACCACGCCGACCACAGGG′]





4138
NM_000553.4(WRN): c.403A > G
7486
WRN
[′GTTGCTTGAAAATAAAGCAGTTAAARAGG



(p.Lys135Glu)


CAGGTGTAGGAATTGAAGGAGA′]





4139
NM_000433.3(NCF2): c.481A > G
4688
NCF2
[′CTTACCCAGACACACTCCATCGCCTYGTCG



(p.Lys161Glu)


ATTTTGGAATGTCTGGGCTCA′]





4140
NM_198056.2(SCN5A): c.1673A > G
6331
SCN5A
[′ACAGCGGGGGAGAGCGAGAGCCACCRCAC



(p.His558Arg)


ATCACTGCTGGTGCCCTGGCCC′]





4141
NM_000074.2(CD40LG): c.386A >
959
CD40LG
[′CAAATTGCGGCACATGTCATAAGTGRGGC



G (p.Glu129Gly)


CAGCAGTAAAACAACATCTGGT′]





4142
NM_002863.4(PYGL): c.1016A > G
5836
PYGL
[′CCCACCCAGGTGGCCATCCAGCTGARTGA



(p.Asn339Ser)


CACTCACCCTGCACTCGCGATC′]





4143
NM_000142.4(FGFR3): c.1454A > G
2261
FGFR3
[′CCCCTTGGGGAGGGCTGCTTCGGCCRGGT



(p.Gln485Arg)


GGTCATGGCGGAGGCCATCGGC′]





4144
NM_001101.3(ACTB): c.34A > G
60
ACTB
[′TGATATCGCCGCGCTCGTCGTCGACVACG



(p.Asn12Asp)


GCTCCGGCATGTGCAAGGCCGG′]





4145
NM_001202.3(BMP4): c.362A > G
652
BMP4
[′TGGGGGAAGAGACTGACCTTCGTGGYGGA



(p.His121Arg)


AGCTCCTCACGGTGTTGGCCCG′]





4146
NM_000094.3(COL7A1): c.425A >
1294
COL7A1
[′CAGCTGGCCCGACCTGGTGTCCCCARGGT



G (p.Lys142Arg)


GATCCCTACCCCTACCATGCCT′]



NM_001130823.1(DNMT1): c.1532A >
1786
DNMT1
[]



G (p.Tyr511Cys)








4147
NM_000138.4(FBN1): c.5096A > G
2200
FBN1
[′AGAAGAAGTTTGTGCTACAGAAACTRCTA



(p.Tyr1699Cys)


TGCTGACAACCAGACCTGTGAT]





4148
NM_000138.4(FBN1): c.5087A > G
2200
FBN1
[′CTAGATATGAGAAGAAGTTTGTGCTRCAG



(p.Tyr1696Cys)


AAACTACTATGCTGACAACCAG′]





4149
NM_000138.4(FBN1): c.5099A > G
2200
FBN1
[′AGAAGTTTGTGCTACAGAAACTACTRTGCT



(p.Tyr1700Cys)


GACAACCAGACCTGTGATGGA′]





4150
NM_001244710.1(GFPT1): c.43A >
2673
GFPT1
[′TTACTTAAACTACCATGTTCCTCGARCGAG



G (p.Thrl5Ala)


ACGAGAAATCCTGGAGACCCT′]





4151
NM_002292.3(LAMB2): c.440A > G
3913
LAMB2
[′CTGGAGGCTGAGTTTCATTTCACACRCCTC



(p.His147Arg)


ATTATGACCTTCAAGGTGCCT′]





4152
NM_005211.3(CSF1R): c.1754 −
1436
CSF1R
[′GACTTAAGGGACCTGTGTGCGTGGCRGGT



2A > G


AAGACCCTCGGAGCTGGAGCCT′]





4153
NM_005247.2(FGF3): c.146A > G
2248
FGF3
[′GGGGCGCCCCGGCGCCGCAAGCTCTRCTG



(p.Tyr49Cys)


CGCCACGAAGTACCACCTCCAG′]





4154
NM_005247.2(FGF3): c.317A > G
2248
FGF3
[′GCCATGAACAAGAGGGGACGACTCTRTGC



(p.Tyr106Cys)


TTCGGTGAGTCCAGGCTGTCAC′]





4155
NM_005188.3(CBL): c.1112A > G
867
CBL
[′TAATCAAAGGAACAATATGAATTATRCTG



(p.Tyr371Cys)


TGAGATGGGCTCCACATTCCAA′]





4156
NM_000313.3(PROS1): c.701A > G
5627
PROS1
[′TGTGAATGCCCCGAAGGCTACAGATRTAA



(p.Tyr234Cys)


TCTCAAATCAAAGTCTTGTGAA′]





4157
NM_000329.2(RPE65): c.1292A > G
6121
RPE65
[′TACCAGAAGTATTGTGGGAAACCTTRCAC



(p.Tyr431Cys)


ATATGCGTATGGACTTGGCTTG′]





4158
NM_001040142.1(SCN2A): c.4419A >
6326
SCN2A
[′TGAATCTTTTCATTGGTGTCATCATRGATA



G (p.Ile1473Met)


ACTTCAACCAACAGAAAAAGA′]





4159
NM_001040142.1(SCN2A): c.754A >
6326
SCN2A
[′GTCAGTGAAGAAGCTTTCTGATGTCRTGAT



G (p.Met252Val)


CTTGACTGTGTTCTGTCTAAG′]





4160
NM_004612.3(TGFBR1): c.134A >
7046
TGFBR1
[′TTCTGCCACCTCTGTACAAAAGACARTTTT



G (p.Asn45Ser)


ACTTGTGTGACAGATGGGCTC′]





4161
NM_003688.3(CASK): c.2168A > G
8573
CASK
[′TTTGATCAATTAGATCTTGTCACATRTGAA



(p.Tyr723Cys)


GAAGTAGTAAAACTGCCAGCA′]





4162
NM_015884.3(MBTPS2): c.1523A >
51360
MBTPS2
[′GGTGGCAGTGTACTTTTGGCTGCCARTGTG



G (p.Asn508Ser)


ACCCTGGGACTCTGGATGGTT′]





4163
m.10450A > G
4573
MT-TR
[′ACGAATGATTTCGACTCATTAAATTRTGAT






AATCATATTTACCAAATGCCC′]





4164
m.5816A > G
4511
MT-TC
[′GAATTTGCAATTCAATATGAAAATCRCCTC






GGAGCTGGTAAAAAGAGGCCT′]





4165
m.608A > G
4558
MT-TF
[′GTAGCTTACCTCCTCAAAGCAATACRCTGA






AAATGTTTAGACGGGCTCACA′]





4166
NM_172337.2(OTX2): c.674A > G
5015
OTX2
[′CTGATTGAGATGGCTGGTGACTGCAYTGG



(p.Asn225Ser)


TACCCATGGGACTGAGTGTGGC′]





4167
NM_001376.4(DYNC1H1): c.917A >
1778
DYNC1H1
[′CTCCTGACTCTGGATATCTTGAAACRTGGC



G (p.His306Arg)


AAGCGCTTCCATGCCACCGTC′]





4168
NM_001376.4(DYNC1H1): c.2011A >
1778
DYNC1H1
[′GAAGCGGGTGGAAGATGTCCTTGGCRAGG



G (p.Lys671Glu)


GCTGGGAGAATCACGTGGAGGG′]





4169
NM_001376.4(DYNC1H1): c.2909A >
1778
DYNC1H1
[′CTAAGAATAACCAATCAGGTAATCTRCTTG



G (p.Tyr970Cys)


AATCCACCAATTGAAGAGTGC′]





4170
NM_004380.2(CREBBP): c.2728A >
1387
CREBBP
[′ACTGTAGGGGTGCTCTGGGTTTGGGHAGC



G (p.Thr910Ala)


ACTGGGCACTGAGCCAGGAGTC′]





4171
NM_000459.4(TEK): c.2690A > G
7010
TEK
[′ATGCTCTCTTCCTTCCCTCCAGGCTVCTTGT



(p.Tyr897Cys)


ACCTGGCCATTGAGTACGCG]





4172
NM_001354.5(AKR1C2): c.235A >
1646
AKR1C2
[′AGATGGCAGTGTGAAGAGAGAAGACRTAT



G (p.Ile79Val)


TCTACACTTCAAAGGTACTGTG′]





4173
NM_007315.3(STAT1): c.604A > G
6772
STAT1
[′ACAAGAACAGCTGTTACTCAAGAAGRTGT



(p.Met202Val)


ATTTAATGCTTGACAATAAGAG′]





4174
NM_007315.3(STAT1): c.494A > G
6772
STAT1
[′GAGCATGAAATCAAGAGCCTGGAAGRTTT



(p.Asp165Gly)


ACAAGATGAATATGACTTCAAA′]





4175
NM_007315.3(STAT1): c.862A > G
6772
STAT1
[′GTTGGAGGAATTGGAACAGAAATACRCCT



(p.Thr288Ala)


ACGAACATGACCCTATCACAAA′]





4176
NM_002052.4(GATA4): c.928A > G
2626
GATA4
[′CCTCCAGGTCCCCAGGCCTCTTGCARTGCG



(p.Met310Val)


GAAAGAGGGGATCCAAACCAG′]





4177
NM_014191.3(SCN8A): c.5302A > G
6334
SCN8A
[′CATGTACATTGCCATCATCCTGGAGRACTT



(p.Asn1768Asp)


CAGTGTAGCCACAGAGGAAAG′]





4178
NM_000209.3(PDX1): c.533A > G
3651
PDX1
[′TACATCTCACGGCCGCGCCGGGTGGRGCT



(p.Glu178Gly)


GGCTGTCATGTTGAACTTGACC′]





4179
NM_000890.3(KCNJ5): c.472A > G
3762
KCNJ5
[′CATTGGGTATGGCTTCCGAGTCATCRCAGA



(p.Thr158Ala)


GAAGTGTCCAGAGGGGATTAT′]





4180
NM_000256.3(MYBPC3): c.2234A
4607
MYBPC3
[′ACGGTCGAGGGGGCAGAGAAGGAAGRTG



> G (p.Asp745Gly)


AGGGCGTCTACACGGTCACAGTG′]





4181
NM_005359.5(SMAD4): c.1498A >
4089
SMAD4
[′TGTTGATGACCTTCGTCGCTTATGCRTACT



G (p.Ile500Val)


CAGGATGAGTTTTGTGAAAGG′]





4182
NM_005359.5(SMAD4): c.1500A >
4089
SMAD4
[′TTGATGACCTTCGTCGCTTATGCATRCTCA



G (p.Ile500Met)


GGATGAGTTTTGTGAAAGGCT′]





4183
NM_001184.3(ATR): c.6431A > G
545
ATR
[′TATCAATTTTTGACTGCTTTTTCACRATTGA



(p.Gln2144Arg)


TCTCTCGAATTTGTCATTCT′]





4184
NM_153427.2(PITX2): c.262A > G
5308
PITX2
[′CCCCAACCGCCCCCAGGTTTGGTTCRAGAA



(p.Lys88Glu)


TCGTCGGGCCAAATGGAGAAA′]





4185
NM_005257.5(GATA6): c.1354A >
2627
GATA6
[′CTGTGCCAACTGTCACACCACAACTRCCAC



G (p.Thr452Ala)


CTTATGGCGCAGAAACGCCGA′]





4186
NM_005257.5(GATA6): c.1396A >
2627
GATA6
[′AAACGCCGAGGGTGAACCCGTGTGCVATG



G (p.Asn466Asp)


CTTGTGGACTCTACATGAAACT′]





4187
NM_000414.3(HSD17B4): c.650A >
3295
HSD17B4
[′CTTGTGGAAGCCCTGAAGCCAGAGTRTGT



G (p.Tyr217Cys)


GGCACCTCTTGTCCTTTGGCTT′]





4188
NM_004153.3(ORC1): c.380A > G
4998
ORC1
[′GCCTGTGACAGCAACATTAATGCGGRGAC



(p.Glu127Gly)


CATCATTGGCCTTGTTCGGGTA′]





4189
NM_002552.4(ORC4): c.521A > G
5000
ORC4
[′CATCATAAAAACCAAACACTTCTCTRTAAT



(p.Tyr174Cys)


CTTTTTGACATTTCTCAGTCT′]





4190
NM_004656.3(BAP1): c.2057 −
8314
BAP1
[′GCTCCACTAGGTTGGCCAGCATGCCYGCG



2A > G


AAGAGGTAGAGACCCTTGAGCA′]





4191
NM_004656.3(BAP1): c.438 − 2A > G
8314
BAP1
[′TCAGGGAGGTGGCGTGGCTCGGGCCYGGG






GAAAAACAGAGTCAGGGCCCAA′]



NM_003590.4(CUL3): c.1238A > G
8452
CUL3
[]



(p.Asp413Gly)








4192
NM_004813.2(PEX16): c.992A > G
9409
PEX16
[′TACTTGCCCACCTGGCAGAAAATCTRCTTC



(p.Tyr331Cys)


TACAGTTGGGGCTGACAGACC′]





4193
NM_004544.3(NDUFA10): c.1A > G
4705
NDUFA10
[′TTGATCCTGAGCTGACCGGGTAGCCRTGGC



(p.Met1Val)


CTTGCGGCTCCTGAAGCTGGC′]





4194
NM_004544.3(NDUFA10): c.425A >
4705
NDUFA10
[′TGGTTGTACAGCAGTCGCCTGCTGCRGTAC



G (p.Gln142Arg)


TCAGATGCCTTGGAGCACTTG′]





4195
NM_006796.2(AFG3L2): c.1996A >
10939
AFG3L2
[′TATTTTTCAGATTGTTCAGTTTGGCDTGAA



G (p.Met666Val)


TGAAAAGGTTGGGCAAATCTC′]





4196
NM_006796.2(AFG3L2): c.1847A >
10939
AFG3L2
[′TATTTACCAAAAGAACAATACCTCTRTACC



G (p.Tyr616Cys)


AAAGAGCAGCTCTTGGATAGG′]





4197
NM_001199397.1(NEK1): c.869 −
4750
NEK1
[′CAAAATTCTTTGTATCTTTTCATCTRGCTA



2A > G


AAAGACCAGCTTCAGGACAAA′]





4198
NM_006587.3(CORIN): c.949A > G
10699
CORIN
[′GAATCTGTTTCACTGTCACACAGGCRAGTG



(p.Lys317Glu)


CCTTAATTACAGCCTTGTGTG′]





4199
NM_006587.3(CORIN): c.1414A > G
10699
CORIN
[′CATGAATTTGCCCTACAACAGTACARGTTA



(p.Ser472Gly)


TCCAAATTATTTTGGCCACAG′]





4200
NM_015560.2(OPA1): c.1294A > G
4976
OPA1
[′AGCTTACATGCAGAATCCTAATGCCRTCAT



(p.Ile432Val)


ACTGTGTATTCAAGGTAAATC′]





4201
NM_021625.4(TRPV4): c.1805A > G
59341
TRPV4
[′CGTGGGCTGAAGCTGACGGGGACCTRTAG



(p.Tyr602Cys)


CATCATGATCCAGAAGGTACGG′]





4202
NM_021625.4(TRPV4): c.590A > G
59341
TRPV4
[′TCTACGGGGAAGACCTGCCTGCCCARGGC



(p.Lys197Arg)


CTTGCTGAACCTGAGCAATGGC′]





4203
NM_021625.4(TRPV4): c.826A > G
59341
TRPV4
[′GGCCCGTGGGCGCTTCTTCCAGCCCRAGG



(p.Lys276Glu)


ATGAGGGGGGCTACTTCTACTT′]





4204
NM_024022.2(TMPRSS3): c.308A >
64699
TMPRSS3
[′GTCTCGGATTGCAAAGACGGGGAGGRCGA



G (p.Asp103Gly)


GTACCGCTGTGGTAAGGTCATG′]





4205
NM_016599.4(MYOZ2): c.738A > G
51778
MYOZ2
[′GATGGATATCTGAGAATATTCCTATRGTGA



(p.Ile246Met)


TAACAACCGAACCTACAGATG′]



NM_017415.2(KLHL3): c.1670A > G
26249
KLHL3
[]



(p.Tyr557Cys)








4206
NM_019109.4(ALG1): c.1129A > G
56052
ALG1
[′GTCCTCCAGTGGCCTGGACCTGCCCRTGAA



(p.Met377Val)


GGTGGTGGACATGTTCGGGTG′]





4207
NM_031885.3(BBS2): c.472 − 2A > G
583
BBS2
[′GCTAATGGTTTGGGGTTTTATTTTCRGGTT






ACTGGAGACAATGTTAATTCC′]





4208
NM_006886.3(ATP5E): c.35A > G
−1

[′TACCTTCTCTCATTTTCTCCCAGCTRCATCC



(p.Tyr12Cys)


GATACTCCCAGATCTGTGCA′]





4209
NM_022445.3(TPK1): c.656A > G
27010
TPK1
[′CACAACACCAGACCCGTCGTAGGTAYTGG



(p.Asn219Ser)


AAGTACTGACCAATGTTCCAAA′]





4210
NM_000017.3(ACADS): c.1031A >
35
ACADS
[′CTCTGACTGTACCCCCATGTTTAGGRGGCA



G (p.Glu344Gly)


GCCATGGCCAAGCTGGCCGCC′]





4211
NM_016013.3(NDUFAF1): c.758A >
51103
NDUFAF1
[′GGGGGACCCTACTGGCAGGAGGTCARGGT



G (p.Lys253Arg)


AACAGCATAAATCTTCATTGTT′]





4212
NM_032580.3(HES7): c.172A > G
84667
HES7
[′GAACCCGAAGCTGGAGAAAGCGGAGRTAT



(p.Ile58Val)


TGGAGTTCGCCGTGGGCTACTT′]





4213
NM_024887.3(DHDDS): c.124A > G
79947
DHDDS
[′GGACGGGAACCGTCGCTATGCCAAGRAGT



(p.Lys42Glu)


GCCAGGTGGAGCGGCAGGAAGG′]





4214
NM_024700.3(SNEP1): c.1097A > G
79753
SNIP1
[′CTCAAATTTGGATTCAGTAGCAGAGRATA



(p.Glu366Gly)


CGTCTTGCTCCATGAGTCGTCG′]





4215
NM_206933.2(USH2A): c.7595 −
7399
USH2A
[′AATTGAACACCTCTCCTTTCCCAAGRTAAG



2144A > G


AGATCATCTTTAAGAAAAGGC′]





4216
NM_016952.4(CDON): c.2368A > G
50937
CDON
[′GTTTTTGTTTTCCCTCAAAGGTTCARCATA



(p.Thr790Ala)


CAAATTTAGGGTCATTGCCAT′]





4217
NM_020435.3(GJC2): c.-167A > G
57165
GJC2
[′AGACCCTGAGGCCGAGGGGGGAACARTGG






GGCCCTTGAGGGCCCCTCCTCC′]





4218
NM_024549.5(TCTN1): c.221 −
79600
TCTN1
[′TGGATCCTACCCCTCTTTTTTCTGCRGTTGC



2A > G


TGTTCTCTGTGTCTGTGACT′]





4219
NM_031427.3(DNAL1): c.449A > G
83544
DNAL1
[′CTCGAAGACCTGGTGTTTGTAGGCARTCCC



(p.Asn150Ser)


TTGGAAGAGAAACATTCTGCT′]





4220
NM_145046.4(CALR3): c.245A > G
125972
CALR3
[′AGTTTTCCCTTTATTGCTGAACGGTYTGAA



(p.Lys82Arg)


GCGTGCAGAGATGGCATAGAA′]





4221
NM_020320.3(RARS2): c.1024A > G
57038
RARS2
[′AATGGACAAGTATAATTTTGATACARTGAT



(p.Met342Val)


ATATGTGGTAAGTAATCAGAA′]





4222
NM_020320.3(RARS2): c.35A > G
57038
RARS2
[′CTCTGCGCGCTCCGGGATCCATACCYGGC



(p.Gln12Arg)


AAGCAATAGCGCGGCGAAAGCC′]





4223
NM_001017361.2(KHDC3L): c.1A >
154288
KHDC3L
[′TGTCTCCTGCAGGACCGGCCGCAGCRTGG



G (p.MetlVal)


ACGCTCCCAGGCGGTTTCCGAC′]





4224
NM_024753.4(TTC21B): c.2758 −
79809
TTC21B
[′TAATCGTGCCAGTTCCAACATAATCYGTAG



2A > G


AGCAAAGGGCTAGATTCATCA′]





4225
NM_001145901.1(SARS2): c.1175A >
54938
SARS2
[′TTCGTCCTTGACCGCAGGGTCCTGGRTATG



G (p.Asp392Gly)


CCCACCCAAGAACTGGGCCTC′]





4226
NM_000552.3(VWF): c.3437A > G
7450
VWF
[′AACGGGTATGAGTGTGAGTGGCGCTRTAA



(p.Tyr1146Cys)


CAGCTGTGCACCTGCCTGTCAA′]





4227
NM_014985.3(CEP152): c.2000A >
22995
CEP152
[′ACCTTACCTATCCACAGCTTCTTGTYTGTC



G (p.Lys667Arg)


ATGGTCAAAATCTTGTACCAT′]





4228
NM_024809.4(TCTN2): c.1506 −
79867
TCTN2
[′GCTGAGAAATGTCTTACTCTCTTGCRGGGA



2A > G


GAATGCTGTTGAAAGACTTGA′]





4229
NM_198994.2(TGM6): c.980A > G
343641
TGM6
[′CGGACCCTGGAGGACCTGACAGAAGRCAG



(p.Asp327Gly)


CATGTGGTGGGTCCTGCCCCCA′]





4230
NM_052873.2(IFT43): c.1A > G
112752
IFT43
[′GAAGTGACGTCAGGCGGCCGCGGAGRTGG



(p.Met1Val)


AGGATTTGCTCGACTTGGACGA′]





4231
NM_201269.2(ZNF644): c.2014A >
84146
ZNF644
[′AACATTTGGATCAACCTCACAATCARGTA



G (p.Ser672Gly)


GTTTTTCAAAAATTCATAAGCG′]





4232
NM_201269.2(ZNF644): c.1759A >
84146
ZNF644
[′GTAGTAAAAGGACACATCTTACATAYGTA



G (p.Ile587Val)


GGTAGCTGATTTTTTGGATGAT′]





4233
NM_018699.3(PRDM5): c.320A > G
11107
PRDM5
[′TTTCAGGAAGGAGAAAACATTTTCTRTTTG



(p.Tyr107Cys)


GCAGTTGAAGATATAGAAACA′]





4234
NM_001198799.2(ASCC1): c.953A >
51008
ASCC1
[′CTATAGTTCTCTGGGGGACTTACCAYTGGG



G (p.Asn318Ser)


GTCTTTCCTGAATAGTGTATT′]





4235
NM_007055.3(POLR3A): c.2554A >
11128
POLR3A
[′ACCAACTGAGTTTTTCTTCCACACARTGGC



G (p.Met852Val)


CGGCCGGGAAGGTCTAGTCGA′]





4236
NM_001256047.1(C19orf12): c.391A >
83636
C19orf12
[′TACTGGATCTCGGCCCGCAGCTCCTYGGTG



G (p.Lys131Glu)


ACGTAGTTCACCAGCATGGCC′]





4237
NM_016464.4(TMEM138): c.287A >
51524
TMEM138
[′TACTTTGCCCTCAGCATCTCCCTTCRTGTCT



G (p.His96Arg)


GGGTCATGGTAAGAGTGGCA′]





4238
NM_016464.4(TMEM138): c.389A >
51524
TMEM138
[′TTCCTCCCCACAGCAGCAGTGTTGTRCTGC



G (p.Tyr130Cys)


TACTTCTATAAACGGACAGCC′]





4239
NM_177965.3(C8orf37): c.545A > G
157657
C8orf37
[′AAAGGAACACGGGCATATGCCTGCCRGTG



(p.Gln182Arg)


TAGCTGGAGAACTATTGAAGAA′]





4240
NM_001004334.3(GPR179): c.659A >
440435
GPR179
[′CCCAAGTGGCCGCAGGCAGATGGATRTGT



G (p.Tyr220Cys)


GGGGGACACGCAGCAGGTGAGG′]





4241
NM_004963.3(GUCY2C): c.1160A >
2984
GUCY2C
[′AGCAGTGAGACATACTTTCTTGGTGYCCAC



G (p.Asp387Gly)


AGAGGTATACAGAAGCACCAT′]





4242
NM_024110.4(CARD14): c.425A >
79092
CARD14
[′AGCCTGCAGGAGGAGCTGAACCAGGRAAA



G (p.Glu142Gly)


GGGGCAGAAGGAGGTGCTGCTG′]





4243
NM_018105.2(THAP1): c.70A > G
55145
THAP1
[′CAAGGACAAGCCCGTTTCTTTCCACRAGTG



(p.Lys24Glu)


AGGACCCTGCGCGCCTCGCGG′]





4244
NM_000933.3(PLCB4): c.1868A > G
5332
PLCB4
[′AACAAACGGCAAATGAGTCGCATTTRCCC



(p.Tyr623Cys)


CAAGGGAGGCCGAGTCGATTCC′]





4245
NM_001172646.1(PLCB4): c.986A >
5332
PLCB4
[′CACTACTTCATCAGTTCTTCCCATAVCACT



G (p.Asn329Ser)


TATCTCACTGGCAGACAGTTC′]





4246
NM_005850.4(SF3B4): c.1A > G
10262
SF3B4
[′GGGAGACGGCGGGATCTCTTTCGCCRTGG



(p.Met1Val)


CTGCCGGGCCGATCTCCGAGCG′]





4247
NM_014714.3(IFT140): c.932A > G
9742
IFT140
[′TGGGACATAGAACGAGGAGAGAATTRTAT



(p.Tyr311Cys)


ACTGAGTCCAGATGAGAAGTTT′]





4248
NM_000258.2(MYL3): c.517A > G
4634
MYL3
[′GACAGAAGACGAAGTGGAGAAGTTGRTGG



(p.Met173Val)


CTGGGCAAGAGGACTCCAATGG′]





4249
NM_032578.3(MYPN): c.59A > G
84665
MYPN
[′ATATCTCAGCTTCTAAGAGAGAGCTRTTTA



(p.Tyr20Cys)


GCTGAAACCAGACATCGGGGA′]





4250
NM_001018005.1(TPM1): c.742A >
7168
TPM1
[′TGAGTTTGCGGAGAGGTCAGTAACTRAAT



G (p.Lys248Glu)


TGGAGAAAAGCATTGATGACTT′]





4251
NM_005006.6(NDUFS1): c.1783A >
4719
NDUFS1
[′AGCTGCTTACACAGAGAAGTCTGCTRCAT



G (p.Thr595Ala)


ATGTCAACACTGAGGGTAGAGC′]





4252
NM_033360.3(KRAS): c.439A > G
3845
KRAS
[′AATTCCTTTTATTGAAACATCAGCARAGAC



(p.Lys147Glu)


AAGACAGGTAAGTAACACTGA′]





4253
NM_014236.3(GNPAT): c.1556A >
8443
GNPAT
[′GAAGATGAACTCATCTGCAAAAACAHCAC



G (p.Asp519Gly)


GTAGGAAGCGAAAGCAACTGTA′]





4254
NM_017565.3(FAM20A): c.813 −
−1

[′GGCACCCGTCGGAAGTCCAGAATCCYGCA



2A > G


AGAGAGGAAGCTCTGTTCCATC′]





4255
NM_017565.3(FAM20A): c.590 −
54757
FAM20A
[′AGGCTTTCTCATCTTGACTGTAATCYGCAA



2A > G


AGGAGGAGAAGGGCAATGAGA′]





4256
NM_017636.3(TRPM4): c.2741A >
54795
TRPM4
[′CTGCTTCACATCTTCACGGTCAACARACAG



G (p.Lys914Arg)


CTGGGGCCCAAGATCGTCATC′]





4257
NM_000076.2(CDKN1C): c.832A >
1028
CDKN1C
[′GCTGTCGCCCGCAGATTTCTTCGCCRAGCG



G (p.Lys278Glu)


CAAGAGATCAGCGCCTGAGAA′]





4258
NM_022912.2(REEP1): c.304 −
65055
REEP1
[′AGTGTGCCTCTGTTTTTCCTTTGACRGGAA



2A > G


ATCGATGATTGTCTGGTCCAA′]





4259
NM_000053.3(ATP7B): c.2305A > G
540
ATP7B
[′TGTGACATTCTTCGACACGCCCCCCRTGCT



(p.Met769Val)


CTTTGTGTTCATTGCCCTGGG′]





4260
NM_000053.3(ATP7B): c.3620A > G
540
ATP7B
[′GTCCACACCCATGCTCTGCAGCGTGYGCA



(p.His1207Arg)


CAGCCAGGGCAGCCTCCTGCTT′]





4261
NM_000492.3(CFTR): c.3140 −
1080
CFTR
[′ACATTTTGTGTTTATGTTATTTGCARTGTTT



26A > G


TCTATGGAAATATTTCACAG′]





4262
NM_000570.4(FCGR3B): c.194A >
2215
FCGR3B
[′GCTCGAGGCCTGGCTTGAGATGAGGYTCT



G (p.Asn65Ser)


CATTGTGAAACCACTGTGTGGA′]





4263
NM_198253.2(TERT): c.2705A > G
7015
TERT
[′TATGGCTGCGTGGTGAACTTGCGGARGAC



(p.Lys902Arg)


AGTGGTGAACTTCCCTGTAGAA′]





4264
NM_005022.3(PFN1): c.350A > G
5216
PFN1
[′GTTGATCAAACCACCGTGGACACCTYCTTT



(p.Glu117Gly)


GCCCATCAGCAGGACTAGCGC′]





4265
NM_005349.3(RBPJ): c.188A > G
3516
RBPJ
[′GTTGCACAGAAGTCATATGGAAATGRAAA



(p.Glu63Gly)


AAGGTAAGATTATTTTTCTGGT′]





4266
NM_005349.3(RBPJ): c.505A > G
3516
RBPJ
[′GATAAAAGTCATCTCCAAACCTTCCRAAA



(p.Lys169Glu)


AGAAGCAGTCATTGAAAAATGC′]





4267
NM_022787.3(NMNAT1): c.817A >
64802
NMNAT1
[′GGTCATCCTGGCCCCTTTGCAGAGARACAC



G (p.Asn273Asp)


TGCAGAAGCTAAGACATAGGA′]





4268
NM_020921.3(NIN): c.3665A > G
51199
NIN
[′CACAGAAACATCAAAAAGTAGGTCCYGTT



(p.Gln1222Arg)


TCTTTTCAGAAGCTCGATCACA′]





4269
NM_020921.3(NIN): c.5126A > G
51199
NIN
[′AAAATCTCTAGTGTTCTAAGCTACARCGAA



(p.Asn1709Ser)


AAACTGCTGAAAGAAAAGGAA′]





4270
NM_005340.6(HINT1): c.152A > G
3094
HINT1
[′GACATTTCCCCTCAAGCACCAACACRTTTT



(p.His51Arg)


CTGGTGATACCCAAGAAACAT′]





4271
NM_005050.3(ABCD4): c.956A > G
5826
ABCD4
[′GAGCTGGGTGAAGCAGCTGATGAGGYAGA



(p.Tyr319Cys)


TGCACACAAAGGCATTCTGGAC′]





4272
NM_000155.3(GALT): c.950A > G
2592
GALT
[′GCTGGGGCCAACTGGAACCATTGGCRGCT



(p.Gln317Arg)


GCACGCTCATTACTACCCTCCG′]





4273
NM_007294.3(BRCA1): c.213 −
672
BRCA1
[′ACTTGCTGAGTGTGTTTCTCAAACARTTTA



12A > G


ATTTCAGGAGCCTACAAGAAA′]





4274
NM_007294.3(BRCA1): c.4096 + 3A >
672
BRCA1
[′GCAAAGCATGGATTCAAACTTAGGTRTTG



G


GAACCAGGTTTTTGTGTTTGCC′]





4275
NM_007294.3(BRCA1): c.5194 −
 72
BRCA1
[′TGATGGGTTGTGTTTGGTTTCTTTCVGCAT



2A > G


GATTTTGAAGTCAGAGGAGAT′]





4276
NM_007294.3(BRCA1): c.5453A >
672
BRCA1
[′GTGCAGCCAGATGCCTGGACAGAGGRCAA



G (p.Asp1818Gly)


TGGCTTCCATGGTAAGGTGCCT′]





4277
NM_000059.3(BRCA2): c.1799A >
675
BRCA2
[′TATGCTATACATGATGAAACATCTTRTAAA



G (p.Tyr600Cys)


GGAAAAAAAATACCGAAAGAC′]





4278
NM_000059.3(BRCA2): c.476 −
675
BRCA2
[′ACAATTTTCCCCTTTTTTTACCCCCRGTGGT



2A > G


ATGTGGGAGTTTGTTTCATA′]





4279
NM_000059.3(BRCA2): c.8168A >
675
BRCA2
[′AAAGTGGCCATTATTGAACTTACAGNTGG



G (p.Asp2723Gly)


GTGGTATGCTGTTAAGGCCCAG′]





4280
NM_000059.3(BRCA2): c.8633 −
675
BRCA2
[′GAATTAATAATCCTTTTGTTTTCTTDGAAA



2A > G


ACACAACAAAACCATATTTAC′]





4281
NM_000060.3(BTD): c.629A > G
686
BTD
[′AATAATGGAACCCTTGTTGACCGCTRCCGT



(p.Tyr210Cys)


AAACACAACCTCTACTTTGAG]





4282
NM_000060.3(BTD): c.968A > G
686
BTD
[′ACCCCTCTGGAGTCCTTTTGGTACCRTGAC



(p.His323Arg)


ATGGAAAATCCCAAAAGTCAC′]





4283
NM_000155.3(GALT): c.857A > G
2592
GALT
[′ATCATGAAGAAGCTCTTGACCAAGTRTGA



(p.Tyr286Cys)


CAACCTCTTTGAGACGTCCTTT′]





4284
NM_000060.3(BTD): c.128A > G
686
BTD
[′TGTTACGTGGTTGCCCTGGGAGCCCRCACC



(p.His43Arg)


GGGGAGGAGAGCGTGGCTGAC′]





4285
NM_002437.4(MPV17): c.262A > G
4358
MPV17
[′CACCACCAAAGTGGATGCACTGAAGRAGA



(p.Lys88Glu)


TGTTGTTGGATCAGGTGAGCAG′]





4286
NM_002769.4(PRSS1): c.65A > G
−1

[′GTTGCTGCCCCCTTTGATGATGATGRCAAG



(p.Asp22Gly)


ATCGTTGGGGGCTACAACTGT′]





4287
NM_005211.3(CSF1R): c.2320 −
1436
CSF1R
[′GACTAACCCTGCAGTGCTTTCCCTCRGTGC



2A > G


ATCCACCGGGACGTGGCAGCG′]





4288
NM_024312.4(GNPTAB): c.118 −
79158
GNPTAB
[′GAAAACGTTTCTTTTTCTTTGTTCTRGGTG



2A > G


GTTCTGGAATGGAGCCGAGAT′]





4289
NM_000495.4(COL4A5): c.3107 −
1287
COL4A5
[′AAATATTATATATCACATATTTTCARCAGG



4A > G


GCCTCAGGGTGTGGAAGGGCC′]





4290
NM_000282.3(PCCA): c.862A > G
5095
PCCA
[′TGGGAATGCTTTATGGCTTAATGAANGAG



(p.Arg288Gly)


AGTGCTCAATTCAGAGAAGAAA′]





4291
NM_000288.3(PEX7): c.854A > G
5191
PEX7
[′TCTCTTCTTGAAACAGTGGAGCATCRTACA



(p.His285Arg)


GAGTTTACTTGTGGTTTAGAC′]





4292
NM_000532.4(PCCB): c.1606A > G
5096
PCCB
[′ACAACGTCCTTGGAGAAAACATGCARATA



(p.Asn536Asp)


TTCCATTGTAAACAAATCAAAG′]





4293
NM_000553.4(WRN): c.2089 −
7486
WRN
[′TCAAAGGAAAAATACATTTAAGATTVTAA



3024A > G


GTCTGGTTATAAGCTTAAAAAG′]





4294
NM_001039958.1(MESP2): c.271A >
145873
MESP2
[′GCGGCAGAGCGCCAGCGAGCGGGAGRAA



G (p.Lys91Glu)


CTGCGCATGCGCACGCTGGCCCG′]





4295
NM_001099274.1(TINF2): c.850A >
26277
TINF2
[′TAGGGGAGGCCATAAGGAGCGCCCCRCAG



G (p.Thr284Ala)


TCATGCTGTTTCCCTTTAGGAA′]





4296
NM_001099274.1(TINF2): c.871A >
26277
TINF2
[′CCCCACAGTCATGCTGTTTCCCTTTRGGAA



G (p.Arg291Gly)


TCTCGGCTCACCAACCCAGGT′]





4297
NM_001363.4(DKC1): c.115A > G
1736
DKC1
[′ACAACACGCTGAAGAATTTCTTATCRAACC



(p.Lys39Glu)


TGAATCCAAAGTTGCTAAGTT′]





4298
NM_001363.4(DKC1): c.127A > G
1736
DKC1
[′AGAATTTCTTATCAAACCTGAATCCRAAGT



(p.Lys43Glu)


TGCTAAGTTGGACACGTCTCA′]





4299
NM_001363.4(DKC1): c.196A > G
1736
DKC1
[′GAATTTTGATAAGCTGAATGTAAGGRCAA



(p.Thr66Ala)


CACACTATACACCTCTTGCATG′]





4300
NM_001363.4(DKC1): c.941A > G
1736
DKC1
[′GTAAATGCCATCTGCTATGGGGCCARGATT



(p.Lys314Arg)


ATGCTTCCAGGTGTTCTTCGA′]





4301
NM_004614.4(TK2): c.173A > G
7084
TK2
[′GCATGTCGTCTTCCCACTTGCAATAYTGCC



(p.Asn58Ser)


CTCGACACAGATCTGGCAAAA′]





4302
NM_004614.4(TK2): c.278A > G
7084
TK2
[′AACCAACAACCCACTCACCAGAGGAYTGT



(p.Asn93Ser)


GGCCACGGACATTTCTCCACTT′]





4303
NM_004614.4(TK2): c.562A > G
7084
TK2
[′AGTTTACCTTCGGACCAATCCTGAGRCTTG



(p.Thr188Ala)


TTACCAGAGGTTAAAGAAGAG′]





4304
NM_024312.4(GNPTAB): c.1285 −
79158
GNPTAB
[′TTTATTTTCTCTTTGGTTTTATCGTRGGTTT



2A > G


ATTTGACATGGCCTGTGCCA′]





4305
NM_024312.4(GNPTAB): c.2867A >
79158
GNPTAB
[′TTCACATCGCGGAAAGTCCCTGCTCRCATG



G (p.His956Arg)


CCTCACATGATTGACCGGATT′]





4306
NM_024312.4(GNPTAB): c.3458A >
79158
GNPTAB
[′AGGAAGTTTGTTTGCCTGAATGACARCATT



G (p.Asn1153Ser)


GACCACAATCATAAAGATGCT′]





4307
NM_024312.4(GNPTAB): c.2783A >
79158
GNPTAB
[′AGCAAAAATACTGGGAGGCAACTAARAGA



G (p.Lys928Arg)


TACATTTGCAGATTCCCTCAGA′]





4308
NM_198253.2(TERT): c.2537A > G
7015
TERT
[′TCCACGCTGCTCTGCAGCCTGTGCTRCGGC



(p.Tyr846Cys)


GACATGGAGAACAAGCTGTTT′]





4309
NM_198578.3(LRRK2): c.3342A > G
120892
LRRK2
[′TAGAGAAACTGGAGCAGCTCATTTTRGAA



(p.Leu1114=)


GGGTAAGAAAGAGCTCATTAAA′]





4310
NM_198578.3(LRRK2): c.5605A > G
120892
LRRK2
[′TTTGGCTGACCTGCCTAGAAATATTRTGTT



(p.Met1869Val)


GAATAATGATGAGTTGGAATT′]





4311
NM_207352.3(CYP4V2): c.367A > G
285440
CYP4V2
[′TTCAAAGCAAATTGACAAATCCTCTRTGTA



(p.Met123Val)


CAAGTTTTTAGAACCATGGCT′]





4312
NM_207352.3(CYP4V2): c.761A > G
285440
CYP4V2
[′CTTATGTTTAAAGAAGGATGGGAACRCAA



(p.His254Arg)


AAAGAGCCTTCAGATCCTACAT′]





4313
NR_001566.1(TERC): n.37A > G
7012
TERC
[′GGTGGGCCTGGGAGGGGTGGTGGCCDTTT






TTTGTCTAACCCTAACTGAGAA′]





4314
NR_001566.1(TERC): n.48A > G
7012
TERC
[′GAGGGGTGGTGGCCATTTTTTGTCTRACCC






TAACTGAGAAGGGCGTAGGCG′]





4315
NM_007171.3(POMT1): c.430A > G
10585
POMT1
[′CATGTGTTTCCTCTTTGAAACAGAGRATGC



(p.Asn144Asp)


TCTCATCACTCAGTCAAGGCT′]





4316
NM_003863.3(DPM2): c.68A > G
8818
DPM2
[′GCCGTTAGCCTGATCATCTTCACCTRCTAC



(p.Tyr23Cys)


ACCGCCTGGGTGATTCTCTTG′]





4317
NM_000030.2(AGXT): c.1020A > G
189
AGXT
[′GGAGAGACATCGTCAGCTACGTCATRGAC



(p.Ile340Met)


CACTTCGACATTGAGATCATGG′]





4318
NM_031418.2(ANO3): c.2053A > G
63982
ANO3
[′TTATGTTCTATTTCAGTGTCATCCTRGTGG



(p.Ser685Gly)


CTGTTTGATAGACCTCTGCCT′]





4319
NM_183075.2(CYP2U1): c.1139A >
113612
CYP2U1
[′CCTTTTTACATAGAAAAGGTTCATGRAGAA



G (p.Glu380Gly)


ATTGAAAGAGTCATTGGCGCC′]





4320
NM_003094.3(SNRPE): c.1A > G
6635
SNRPE
[′GGTGTGCTCTTTGTGAAATTCCACCRTGGC



(p.Met1Val)


GTACCGTGGCCAGGGTCAGAA′]





4321
NM_000344.3(SMN1): c.389A > G
6606
SMN1
[′ACCTGTGTTGTGGTTTACACTGGATRTGGA



(p.Tyr130Cys)


AATAGAGAGGAGCAAAATCTG]





4322
NM_012082.3(ZFPM2): c.2209A > G
−1

[′CATGCAGAGAACCATGCGCACACGCRAGC



(p.Lys737Glu)


GCAGAAAGATGTATGAGATGTG′]





4323
NM_006364.2(SEC23A): c.2104A >
10484
SEC23A
[′TGTTCAGTGTCAATGTATCTTGGCAYTGGA



G (p.Met702Val)


AATCTGGAGTGAAGAATTTCC′]





4324
NM_001139.2(ALOX12B): c.1562A >
242
ALOX12B
[′ACCCTCCACGGCTGCGTCACTCGGGYAAT



G (p.Tyr521Cys)


AATAGGTGATGATCTCCGTCAC′]





4325
NM_001004434.2(SLC30A2): c.161A >
7780
SLC30A2
[′GTGACTGTCAGGACCCTTCTGAGCAYGGC



> G (p.His54Arg)


AGTGATGGTTGCTCTGGGCAGC′]





4326
NM_001168272.1(ITPR1): c.1759A
3708
ITPR1
[′CACTATCACTGCCCTGCTCCACAATRATCG



> G (p.Asn587Asp)


GAAACTCCTGGAAAAACACAT′]





4327
m.15923A > G
−1

[′ATAAACTAATACACCAGTCTTGTAARCCG






GAGATGAAAACCTTTTTCCAAG′]





4328
NM_007332.2(TRPA1): c.2564A > G
−1

[′TTTTTTTACTTTTCTAGATTTGAAARTTGTG



(p.Asn855Ser)


GAATTTTTATTGTTATGTTG′]





4329
NM_014254.2(TMEM5): c.1016A >
10329
TMEM5
[′CCGGTCGGAGTAAACACAGAATGCTRTCG



G (p.Tyr339Cys)


AATCTATGAGGCTTGCTCCTAT′]





4330
NM_144577.3(CCDC114): c.487 −
93233
CCDC114
[′ACTGATTTTTTTCTCCTCCCCCCACRGGAG



2A > G


ATCCACCACCTGCATCACCTG′]





4331
NM_000834.3(GRIN2B): c.2172 −
2904
GRIN2B
[′GGATTTGTTTGCTTTTTTCCTGTACRGGAA



2A > G


ACTGGATGCCTTCATCTATGA′]





4332
NM_018486.2(HDAC8): c.539A > G
55869
HDAC8
[′ATTCTCTACGTGGATTTGGATCTGCRCCAT



(p.His180Arg)


GGAGATGGTAAGCCCTTTGGT′]





4333
NM_018486.2(HDAC8): c.1001A >
55869
HDAC8
[′ACACTATCCTCTGAGATCCCAGATCRTGAG



G (p.His334Arg)


GTAAGTAAGGCTCTGACAAGT′]





4334
NM_178012.4(TUBB2B): c.767A >
347733
TUBB2B
[′GCAGACCTGCGCAAGCTGGCGGTGARCAT



G (p.Asn256Ser)


GGTGCCCTTCCCTCGCCTGCAC′]





4335
NM_006888.4(CALM1): c.293A > G
801
CALM1
[′ATTGCTGAATGTTCACAGGATGGCARTGGT



(p.Asn98Ser)


TATATCAGTGCAGCAGAACTA′]





4336
NM_172107.2(KCNQ2): c.1636A >
3785
KCNQ2
[′GCCCCACCCACCCCCCTGCAGTGTCRTGCG



G (p.Met546Val)


GTTCCTGGTGTCCAAGCGGAA′]





4337
NM_001866.2(COX7B): c.41 − 2A > G
1349
COX7B
[′TGTATTCTTTTTTCGTTTTCCTGTARGTTCG






AAGCATTCAGCAAACAATGG′]





4338
NM_001099922.2(ALGl3): c.339A >
79868
ALGl3
[′TGAACAATCATCAGCTGGAACTGGCRAAG



G (p.Ala113=)


CAGCTACACAAAGAGGGTCATC′]





4339
NM_001083614.1(EARS2): c.502A >
124454
EARS2
[′CCCCATCAGGTATGACAATCGGTGCRGGA



G (p.Arg168Gly)


ACATGAGCCAGGAGCAGGTGGC′]





4340
NM_001083614.1(EARS2): c.193A >
124454
EARS2
[′TGCCTTGTACAACTACATCTTTGCTRAGAA



G (p.Lys65Glu)


GTACCAGGGGAGCTTCATCCT′]





4341
NM_033109.4(PNPT1): c.1160A > G
87178
PNPT1
[′ACCCTTCATGGATCAGCATTATTTCRAAGA



(p.Gln387Arg)


GGACAAACACAGGTAATTTAT′]





4342
NM_033109.4(PNPT1): c.1424A > G
87178
PNPT1
[′CCTTTCACCATAAGAGTTACATCTGRAGTC



(p.Glu475Gly)


CTAGAGTCAAATGGTATGGTA′]





4343
NM_000390.2(CHM): c.1520A > G
1121
CHM
[′ATTTTTTTTTTAACAGATTTGGTTCRTTTGA



(p.His507Arg)


CTTGCACATCTTCTAAAACA′]





4344
NM_181690.2(AKT3): c.686A > G
10000
AKT3
[′TTGTGTTTTGTGATGGAATATGTTARTGGG



(p.Asn229Ser)


GGCGAGGTGAGTCAAGAAGTA′]





4345
NM_006567.3(FARS2): c.431A > G
10667
FARS2
[′CCCAGCAGGAAGAAGGGGGACAACTRTTA



(p.Tyr144Cys)


CCTGAATCGGACTCACATGCTG′]





4346
NM_001410.2(MEGF8): c.7099A >
1954
MEGF8
[′CAAGTGCCGGGAATCATTTCACGGGRGTC



G (p.Ser2367 Gly)


CGCTGGGCGGCCAGCAGTGCTA′]





4347
NM_003124.4(SPR): c.596 − 2A > G
6697
SPR
[′CCTCATCGTCTCCTTTTCATCCTCTRGGTCC






TCTGGACACAGACATGCAGC′]





4348
NM_005609.2(PYGM): c.152A > G
5837
PYGM
[′GACCGCAATGTGGCCACCCCACGAGRCTA



(p.Asp51Gly)


CTACTTTGCTCTGGCCCATACC′]





4349
NM_004247.3(EFTUD2): c.623 A >
9343
EFTUD2
[′TTACTTAGTATTTGCTTTTCAGGACRTGTG



G (p.His208Arg)


AATTTCTCTGATGAGGTCACA′]





4350
NM_001310338.1(MGME1): c.743
92667
MGME1
[′GCTGTTCAACATGAAACCTTAAACTRTATA



A > G (p.Tyr248Cys)


GGTCTGCTGGACTGTGTGGCT′]





4351
NM_001128085.1(ASPA): c.433 −
−1

[′AAGAAAGACGTTTTTGATTTTTTTCRGACT



2A > G


TCTCTGGCTCCACTACCCTGC′]





4352
NM_000108.4(DLD): c.1444A > G
1738
DLD
[′TGGAGCATCCTGTGAAGATATAGCTRGAG



(p.Arg482Gly)


TCTGTCATGCACATCCGGTAAT′]





4353
NM_007215.3(POLG2): c.1105A > G
11232
POLG2
[′ACTAACATTAAGAACAAACAAACCCNTAT



(p.Arg369Gly)


TTTTAGTTTCCCAAGTCTATCT′]





4354
NM_004333.4(BRAF): c.2126A > G
673
BRAF
[′AGAGATGAGAGACCACTCTTTCCCCRAGT



(p.Gln709Arg)


AAGTAAAAGCTTCATGCTATCC′]





4355
NM_004985.4(KRAS): c.65A > G
3845
KRAS
[′GTAGGCAAGAGTGCCTTGACGATACDGCT



(p.Gln22Arg)


AATTCAGAATCATTTTGTGGAC′]





4356
NM_004985.4(KRAS): c.458A > G
3845
KRAS
[′ACTTTTTATGTATTTCAGGGTGTTGDTGAT



(p.Asp153Gly)


GCCTTCTATACATTAGTTCGA′]





4357
NM_002834.3(PTPN11): c.124A > G
5781
PTPN11
[′TAGTAAAAGTAACCCTGGAGACTTCRCAC



(p.Thr42Ala)


TTTCCGTTAGGTAAGTTGGAAT′]





4358
NM_002834.3(PTPN11): c.172A > G
5781
PTPN11
[′AGCTGTCACCCACATCAAGATTCAGNACA



(p.Asn58Asp)


CTGGTGATTACTATGACCTGTA′]





4359
NM_002834.3(PTPN11): c.767A > G
5781
PTPN11
[′TTTCTTTCTTTCCAGACACTACAACRACAG



(p.Gln256Arg)


GAGTGCAAACTTCTCTACAGC′]





4360
NM_002834.3(PTPN11): c.844A > G
5781
PTPN11
[′CAAAAACAAAAATAGATATAAAAACRTCC



(p.Ile282Val)


TGCCCTGTAAGTATCAATATTC′]





4361
NM_002834.3(PTPN11): c.1510A >
5781
PTPN11
[′GATGGTGCGGTCTCAGAGGTCAGGGRTGG



G (p.Met504Val)


TCCAGACAGAAGCACAGTACCG′]





4362
NM_002880.3(RAF1): c.524A > G
5894
RAF1
[′ACTTGTGGCTACAAATTTCATGAGCRCTGT



(p.His175Arg)


AGCACCAAAGTACCTACTATG′]





4363
NA4_002880.3(RAF1): c.1279A > G
5894
RAF1
[′AATTGTGACCCAGTGGTGCGAGGGCRGCA



(p.Ser427Gly)


GCCTCTACAAACACCTGCATGT′]





4364
NM_005633.3(SOS1): c.508A >  
6654
SOS1
[′TATTAAAGTGGCAATGTGTGCTGACRAGG



(p.Lys170Glu)


TAGGAAACTGAGCTTTTCTATT′]





4365
NM_030662.3(MAP2K2): c.181A >
5605
MAP2K2
[′GCGGCTGGAAGCCTTTCTCACCCAGRAAG



G (p.Lys61Glu)


CCAAGGTCGGCGAACTCAAAGA′]





4366
NM_024334.2(TMEM43): c.271A >
79188
TMEM43
[′GGAGAATGAAGGAAGGCTGGTGCACRTCA



G (p.Ile91Val)


TTGGCGCCTTACGGACATCCAA′]





4367
NM_000084.4(CLCN5): c.1637A > G
1184
CLCN5
[′CTGATGGCTGCAGCCATGACAAGCARGTG



(p.Lys546Arg)


GGTGGCAGATGCTCTTGGGCGG′]





4368
NM_000084.4(CLCN5): c.815A > G
1184
CLCN5
[′CCTTCTTTCTTCTAGGTCAGCTACTRTTTTC



(p.Tyr272Cys)


CCCTCAAAACATTGTGGCGT′]





4369
NM_000095.2(COMP): c.1760A > G
1311
COMP
[′GGCGTGGACTTCGAGGGCACGTTCCRTGT



(p.His587Arg)


GAACACGGTCACGGATGACGAC′]





4370
NM_000530.6(MPZ): c.389A > G
4359
MPZ
[′AATGGCACGTTCACTTGTGACGTCARAAA



(p.Lys130Arg)


CCCTCCAGACATAGTGGGCAAG′]





4371
NM_000530.6(MPZ): c.347A > G
4359
MPZ
[′AAGGATGGCTCCATTGTCATACACARCCTA



(p.Asn116Ser)


GACTACAGTGACAATGGCACG′]





4372
NA4_003611.2(OFD1): c.260A > G
8481
OFD1
[′GCAGATCACTTACAAAGATGTGGCTDTGA



(p.Tyr87Cys)


ATATTCACTTTCTGTTTTCTTT′]





4373
NA4_003611.2(OFD1): c.290A > G
8481
OFD1
[′TATTCACTTTCTGTTTTCTTTCCAGRAAGTG



(p.Glu97Gly)


GTTTGGCAAAAGAAAAGGTA′]





4374
NA4_003611.2(OFD1): c.382 − 2A > G
8481
OFD1
[′TAAAAGTGAAATATTTTCTTTTAACRGGTT






TCAGGATCTGATAAAGAAAAT′]





4375
NM_003977.3(AIP): c.721A > G
9049
AIP
[′GCTGCTGCTCAACTACTGCCAGTGCDAGCT



(p.Lys241Glu)


GGTGGTCGAGGAGTACTACGA′]





4376
NM_006158.4(NEFL): c.293A > G
4747
NEFL
[′GAGAAGGCGCAGCTCCAGGACCTCARTGA



(p.Asn98Ser)


CCGCTTCGCCAGCTTCATCGAG′]





4377
NA4_024312.4(GNPTAB): c.3053A >
79158
GNPTAB
[′ATATCTCAAGTCTTTGATGAAGTTGRTACA



G (p.Asp1018Gly)


GATCAATCTGGTGTCTTGTCT′]





4378
NA4_025137.3(SPGl1): c.1457 −
80208
SPG11
[′TAAAGCTAACTTTTATTTTTCCTATRGAGA



2A > G


ATGGACTCTCTCTGATTTTGT′]





4379
NM_025137.3(SPGl1): c.2608A > G
80208
SPG11
[′ACAAGAATCCATCCTTCTCCCCAGGRTAAG



(p.Ile870Val)


TCCAGAAGGCAAGTGTGAGAG′]





4380
NM_025137.3(SPGl1): c.2833A > G
80208
SPG11
[′GAATGAAATTTTAGATAAGCTGGCCRGGT



(p.Arg945Gly)


ATTATAACTGTTGAACTAATAC′]





4381
NA4_025137.3(SPGl1): c.6477 + 4A >
80208
SPG11
[′CAGTGAGGAGTATGGGCTGGTGGTARGTA



G


GCCCCCTCAACCCCAGTCTCCA′]





4382
NM_212472.2(PRKAR1A): c.178 −
5573
PRKAR1A
[′ATTTTGCAAACTCGTAATTTCTTTCRGGAG



2A > G


GAGGCAAAACAGATTCAGAAT′]





4383
NM_006231.3(POLE): c.4444 + 3A >
5426
POLE
[′CCAGTTCAGCTACCTGGAACCAGGTRTGG



G


CCTGCACCAGCCGCCCATCATG′]





4384
NM_003156.3(STEV11): c.251A > G
6786
STEV11
[′GACGATGATGCCAATGGTGATGTGGRTGT



(p.Asp84Gly)


GGAAGAAAGTGATGAGGTGAGC′]





4385
NM_003156.3(STEV11): c.326A > G
6786
STEV11
[′CCAACAGTGAAACACAGCACCTTCCRTGG



(p.His109Arg)


TGAGGATAAGCTCATCAGCGTG′]





4386
NM_001128425.1(MUTYH): c.934 −
4595
MUTYH
[′GGCTAAGAGCTGTTCCTGCTCCACCYGAG



2A > G


AGGCACAGGGTTGAGTGTCATA′]





4387
NM_133499.2(SYN1): c.1699A > G
6853
SYN1
[′GGCGGAGCCGGGCCAGAGACGGATGYCTG



(p.Thr567Ala)


ACGGGTAGCCTGTGGGGGGCCC′]





4388
NM_021629.3(GNB4): c.265A > G
59345
GNB4
[′TATTTGGGATAGCTATACAACAAATRAGG



(p.Lys89Glu)


TAGAATTTCTTCATAATTCTTT′]





4389
NM_138425.3(C12orf57): c.1A > G
113246
C12orf57
[′CTGAACCTAGAGCTTCAGACGCCCTRTGGC



(p.Met1Val)


GTCCGCCTCGACCCAACCGGC′]





4390
NM_000096.3(CP): c.2953A > G
1356
CP
[′GGGAGATGAAGTCAACTGGTATCTGRTGG



(p.Met985Val)


GAATGGGCAATGAAATAGACTT′]





4391
NM_000057.3(BLM): c.1088 − 2A > G
641
BLM
[′AATATTAACAACATAATTATTTTATRGCTA






GACAGATAAGTTTACAGCAGC′]





4392
NM_000257.3(MYH7): c.5807A > G
4625
MYH7
[′TTTCAAAAGGGCTTGAATGAGGAGTRGCT



(p.Ter1936Trp)


TTGCCACATCTTGATCTGCTCA′]





4393
NM_152263.3(TPM3): c.505A > G
7170
TPM3
[′GGATCTTTTCCTGTAGGTGGCTCGTRAGTT



(p.Lys169Glu)


GGTGATCATTGAAGGAGACTT′]





4394
NM_152263.3(TPM3): c.733A > G
7170
TPM3
[′AGAGACCCGTGCTGAGTTTGCTGAGRGAT



(p.Arg245Gly)


CGGTAGCCAAGCTGGAAAAGAC′]





4395
NM_000096.3(CP): c.1209 − 2A > G
1356
CP
[′GCATTAAACACTTTTTTCCCCCTGCRGTGA






CTCAGCGGTGTTTTTTGAACA′]





4396
NM_002739.3(PRKCG): c.76A > G
5582
PRKCG
[′CCTGTTTTGCAGAAAGGGGGCCCTGRGGC



(p.Arg26Gly)


AGAAGGTGGTCCACGAAGTCAA′]





4397
NM_000138.4(FBN1): c.1148 −
2200
FBN1
[′GTGTTTTGTTTTGTTGTGTTTTTCTRGAGGA



2A > G


TTTCAACAAGCTGTGCTCTG′]





4398
NM_000138.4(FBN1): c.3058A > G
2200
FBN1
[′ACCCGGATTTGCCACAAAAGAAATTRCAA



(p.Thr1020Ala)


ATGGAAAGCCTTTCTTCAAAGG′]





4399
NM_000169.2(GLA): c.1153A > G
−1

[′GGCCTGTAATCCTGCCTGCTTCATCRCACA



(p.Thr385Ala)


GCTCCTCCCTGTGAAAAGGAA′]





4400
NM_000256.3(MYBPC3): c.1224 −
4607
MYBPC3
[′ACTTCAACGGCCCCTTCTGTTCTACRGCAA



2A > G


GTAAGTTCCCCTCTGGATGGC′]





4401
NM_000256.3(MYBPC3): c.1814A >
4607
MYBPC3
[′GTCAGCCTCGTCGGCAGGTGTGACGYCGT



G (p.Asp605Gly)


CAATGGTCAGTTTGTGGACCCT′]





4402
NM_000256.3(MYBPC3): c.1928 −
4607
MYBPC3
[′CTCTGAACTACATTGTGTCTTCTGCRGAAC



2A > G


CTCCCAAGATCCACCTGGACT′]





4403
NM_000256.3(MYBPC3): c.2309 −
4607
MYBPC3
[′GGGCCGCAGGTGCGTCTGGCACGTCBGGA



2A > G


TGGGGTGGGATGGACCCACATC′]





4404
NM_000256.3(MYBPC3): c.26 −
4607
MYBPC3
[′GTGGCTTCTTGCTAAAAGCTGAGACYGAA



2A > G


GGGCCAGGTGGAGGCTACAGCG′]





4405
NM_000256.3(MYBPC3): c.927 −
4607
MYBPC3
[′GGCCACAGCCTAGACTGCGGGACACRGGG



2A > G


ACTCGAAGCTGGAGGCACCAGC′]





4406
NM_000257.3(MYH7): c.2206A > G
4625
MYH7
[′AGCGGCCATCCCTGAGGGACAGTTCRTTG



(p.Ile736Val)


ATAGCAGGAAGGGGGCAGAGAA′]





4407
NM_000257.3(MYH7): c.2681A > G
4625
MYH7
[′CTCCCCTCTGTTCCTCACCTTCAGGDACAA



(p.Glu894Gly)


GACAACCTGGCAGATGCTGAG′]





4408
NM_000260.3(MYO7A): c.1344 −
4647
MYO7A
[′CCTTACCCCATCCCTGTGCCCCTGCRGCTT



2A > G


TGAGCAGCTCTGCATCAACTT′]


4409
NM_000260.3(MYO7A): c.6029A >
4647
MYO7A
[′GTGCCAGGGAAGGATCCCATGGCCGRTTC






G (p.Asp2010Gly)


CATCTTCCACTATTACCAGGTG′]





4410
NM_000260.3(MYO7A): c.6439 −
4647
MYO7A
[′CTCTCTATGCCCTTTCTGCTCCCCCRGGAT



2A > G


ATCCTCACCACTCATCCCTTC′]





4411
NM_000441.1(SLC26A4): c.-3 −
−1

[′CCCTCCTCGCTGTCCTCTGGCTCGCRGGTC



2A > G


ATGGCAGCGCCAGGCGGCAGG′]





4412
NM_000441.1(SLC26A4): c.1149 + 3A >
5172
SLC26A4
[′ATTACACCATCGATGGGAACCAGGTDTGG



G


GTGCCCTTTTGCTGAACTGGTT′]





4413
NM_000551.3(VHL): c.467A > G
7428
VHL
[′GATTTGGTTTTTGCCCTTCCAGTGTRTACTC



(p.Tyr156Cys)


TGAAAGAGCGATGCCTCCAG]





4414
NM_002294.2(LAMP2): c.65 − 2A > G
3920
LAMP2
[′AAATATTATTTTTTTAAATGAATCCRGGAG






CTGTGCGGTCTTATGCATTGG′]





4415
NM_004004.5(GJB2): c.1A > G
2706
GJB2
[′CAGAGCAAACCGCCCAGAGTAGAAGRTGG



(p.Met1Val)


ATTGGGGCACGCTGCAGACGAT′]





4416
NM_004004.5(GJB2): c.617A > G
2706
GJB2
[′GTGTCTGGAATTTGCATCCTGCTGARTGTC



(p.Asn206Ser)


ACTGAATTGTGTTATTTGCTA′]





4417
NM_033360.3(KRAS): c.182A > G
3845
KRAS
[′TTGGATATTCTCGACACAGCAGGTCNAGA



(p.Gln6lArg)


GGAGTACAGTGCAATGAGGGAC′]





4418
NM_006218.2(PIK3CA): c.1637A >
5290
PIK3CA
[′GATCCTCTCTCTGAAATCACTGAGCRGGAG



G (p.Gln546Arg)


AAAGATTTTCTATGGAGTCAC′]





4419
NM_006218.2(PIK3CA): c.3073A >
5290
PIK3CA
[′TGATGACATTGCATACATTCGAAAGRCCCT



G (p.Thr1025Ala)


AGCCTTAGATAAAACTGAGCA′]





4420
NM_032119.3(ADGRV1): c.14973 −
84059
ADGRV1
[′TTCTTCATGATTTAATTTTTTTCCCRGATCA



2A > G


GGTTTCATTGTTGCTGAAAT′]





4421
NM_033056.3(PCDH15): c.1998 −
65217
PCDH15
[′TTATTTGTTTGTTTGTTTTGTCACTRGCACG



2A > G


GGGATTCTAACCTTAGGGAA′]





4422
NM_138691.2(TMC1): c.1763 + 3A >
117531
TMC1
[′ATCTTCAACCAAGGCATGATCTGGTRGGCC



G


AGCTGTTGGACAGCTTATCAC′]





4423
NM_206933.2(USH2A): c.12067 −
7399
USH2A
[′CAACTTAACCTGTTAATTTTCTTACRGGGA



2A > G


ACAAGCCATCAAGCCCACCTG′]





4424
NM_206933.2(USH2A): c.12295 −
7399
USH2A
[′CCCGTCACTGAAGATGTTGTATGTCYACAG



2A > G


AAGGACAGAAGCAAAAGGGAT′]





4425
NM_206933.2(USH2A): c.1841 −
7399
USH2A
[′ATAATGCATAACCTTTCCCTGATGCRGGAA



2A > G


GGAACTGTGAGCTGTGCAAGG′]





4426
NM_206933.2(USH2A): c.8559 −
7399
USH2A
[′GATGTTCCTGCTTGTCTTTTGCTTTRGATAT



2A > G


GAGCTTCTGAGACGTAAAAT′]





4427
NM_03241S.5(CARD11): c.401A >
84433
CARD11
[′GGCCTCACGCACTTCCTGATGAACGRGGTC



G (p.Glu134Gly)


ATCAAGCTGCAGCAGCAGATG′]





4428
NM_000548.3(TSC2): c.226 − 2A > G
7249
TSC2
[′CACCGCTGTCCCCTCTGCTGGTGACRGCAC






GCAGTGGAAGCACTCTGGAAG′]





4429
NM_000548.3(TSC2): c.1444 − 2A > G
7249
TSC2
[′TCATTGGCCTCCCTTGTGCCTGTGCRGGAG






GAGCTGATTAACTCAGTGGTC′]





4430
NM_000548.3(TSC2): c.2546 − 2A > G
7249
TSC2
[′CCCTGACCACCCTCTCCATTACCGCDGCTC






TGGCCAGGCTGCCGCACCTCT′]





4431
NM_130466.3(UBE3B): c.545 −
89910
UBE3B
[′TTTGTTCTCACTGTTTTCTTTCTTTRGGTGA



2A > G


AAGTCTTCGACCAGCGATGA′]





4432
NM_005430.3(WNT1): c.624 + 4A >
7471
WNT1
[′CAACAACGAGGCAGGCCGTACGGTGRGCT



G


TTGAGAGGCTCCGCACCCTAAG′]





4433
NM_001893.4(CSNK1D): c.137A >
1453
CSNK1D
[′AAGCTTGAATGTGTCAAAACCAAACRCCC



G (p.His46Arg)


TCAGCTCCACATTGAGAGCAAA′]





4434
NM_018972.2(GDAP1): c.368A > G
54332
GDAP1
[′AGCATGTATTACCCACGGGTACAACRTTAC



(p.His123Arg)


CGAGAGCTGCTTGACTCCTTG′]





4435
NM_032237.4(POMK): c.773A > G
84197
POMK
[′CATGGGGATTTCGTGGCTCCAGAGCRACT



(p.Gln258Arg)


GTGGCCCTATGGAGAGGACGTG′]





4436
NM_201647.2(STAMBP): c.125A >
10617
STAMBP
[′CGTCGGTACTTCCGCTCTGGAGTTGRGATT



G (p.Glu42Gly)


ATCCGAATGGCATCCATTTAC′]





4437
NM_001946.3(DUSP6): c.566A > G
1848
DUSP6
[′ACTACCATCCGAGTCTGTTGCACTAYTGGG



(p.Asn189Ser)


GTCTCGGTCAAGGTCAGACTC′]





4438
NM_003867.3(FGF17): c.560A > G
8822
FGF17
[′TACCAAGGCCAGCTGCCCTTCCCCARCCAC



(p.Asn187Ser)


GCCGAGAAGCAGAAGCAGTTC′]





4439
NM_013281.3(FLRT3): c.1016A > G
−1

[′GGGCTCATGTGCCAAGCCCCAGAAARGGT



(p.Lys339Arg)


TCGTGGGATGGCTATTAAGGAT′]





4440
NM_015560.2(OPA1): c.1146A > G
4976
OPA1
[′TTTTTATTTTTCCTGAGTAGACCATRTCCTT



(p.Ile382Met)


AAATGTAAAAGGCCCTGGAC′]





4441
NM_030964.3(SPRY4): c.530A > G
81848
SPRY4
[′CCGGCGGTCCCACCCGAGCTGGACARGCA



(p.Lys177Arg)


CTTCTTGCTGTGCGAGGCCTGT′]





4442
NM_002972.3(SBF1): c.1249A > G
6305
SBF1
[′AAGGCCATGCCCTCCAGCACCTTCAYCAG



(p.Met417Val)


GAAATCGTCCTCTACCAGCCCA′]





4443
NM_002972.3(SBF1): c.4768A > G
6305
SBF1
[′TACATGTAATTGTGGAACACAGGCGYCCT



(p.Thr1590Ala)


CTTGCTCAGCCGGTCCACATAC′]





4444
NM_006876.2(B4GAT1): c.1168A >
11041
B4GAT1
[′GTTCCATCCCCAAAAGGAGGCTGAARATC



G (p.Asn390Asp)


AGCACAATAAGATCCTATATCG′]





4445
NM_000059.3(BRCA2): c.517 −
675
BRCA2
[′AAAATAAACTATTTTCTTTCCTCCCVGGGT



2A > G


CGTCAGACACCAAAACATATT′]





4446
NM_000059.3(BRCA2): c.6938 −
675
BRCA2
[′ATGTAATATAAAATAATTGTTTCCTRGGCA



2A > G


CAATAAAAGATCGAAGATTGT′]





4447
NM_000059.3(BRCA2): c.7008 −
675
BRCA2
[′AACTTATATATTTTCTCCCCATTGCDGCAC



2A > G


AACTAAGGAACGTCAAGAGAT′]





4448
NM_000059.3(BRCA2): c.7806 −
675
BRCA2
[′GATAATATTCTACTTTTATTTGTTCRGGGC



2A > G


TCTGTGTGACACTCCAGGTGT′]





4449
NM_000059.3(BRCA2): c.8754 + 4A >
675
BRCA2
[′AGCAGACCCAGCTTACCTTGAGGTGRGAG



G


AGTAAGAGGACATATAATGAGG′]





4450
NM_000059.3(BRCA2): c.9118 −
675
BRCA2
[′GTTGAATTTTTGTTTTGTTTTCTGTRGGTTT



2A > G


CAGATGAAATTTTATTTCAG′]





4451
NM_000059.3(BRCA2): c.9649 −
675
BRCA2
[′TAGGCTACGTTTTCATTTTTTTATCRGATGT



2A > G


CTTCTCCTAATTGTGAGATA′]



NM_000218.2(KCNQ1): c.1070A >
3784
KCNQ1
[]



G (p.Gln357Arg)








4452
NM_000218.2(KCNQ1): c.1085A >
3784
KCNQ1
[′AAGGTGCAGCAGAAGCAGAGGCAGARGC



G (p.Lys362Arg)


ACTTCAACCGGCAGATCCCGGCG]





4453
NM_000218.2(KCNQ1): c.1576A >
3784
KCNQ1
[′TCGACGCATGCAGTACTTTGTGGCCVAGA



G (p.Lys526Glu)


AGAAATTCCAGGTAAGCCCTGT′]



NM_000218.2(KCNQ1): c.1756A >
3784
KCNQ1
[]



G (p.Asn586Asp)








4454
NM_000218.2(KCNQ1): c.332A > G
3784
KCNQ1
[′CGCACCCACGTCCAGGGCCGCGTCTRCAA



(p.Tyr111Cys)


CTTCCTCGAGCGTCCCACCGGC′]



NM_000218.2(KCNQ1): c.344A > G
3784
KCNQ1
[]



(p.Glu115Gly)








4455
NM_000218.2(KCNQ1): c.773A > G
3784
KCNQ1
[′CTCCTGGGCTCCGTGGTCTTCATCCVCCGC



(p.His258Arg)


CAGGTGGGTGGCCCGGGTTAG′]





4456
NM_000218.2(KCNQ1): c.944A > G
3784
KCNQ1
[′CAGGTCACAGTCACCACCATCGGCTNTGG



(p.Tyr315Cys)


GGACAAGGTGCCCCAGACGTGG′]



NM_000218.2(KCNQ1): c.964A > G
3784
KCNQ1
[]



(p.Thr322Ala)








4457
NM_000492.3(CFTR): c.1393 −
1080
CFTR
[′CCTAATAATGATGGGTTTTATTTCCRGACT



2A > G


TCACTTCTAATGGTGATTATG′]





4458
NM_000492.3(CFTR): c.1766 + 3A >
1080
CFTR
[′ACAGAAAAAGAAATATTTGAAAGGTVTGT



G


TCTTTGAATACCTTACTTATAA′]





4459
NM_000492.3(CFTR): c.1A > G
1080
CFTR
[′CAGGGACCCCAGCGCCCGAGAGACCRTGC



(p.Met1Val)


AGAGGTCGCCTCTGGAAAAGGC′]





4460
NM_000492.3(CFTR): c.2989 −
1080
CFTR
[′ACCAACATGTTTTCTTTGATCTTACDGTTG



2A > G


TTATTAATTGTGATTGGAGCT′]





4461
NM_000492.3(CFTR): c.579 + 3A > G
1080
CFTR
[′ACAACCTGAACAAATTTGATGAAGTNTGT






ACCTATTGATTTAATCTTTTAG′]





4462
NM_007294.3(BRCA1): c.122A > G
672
BRCA1
[′GAACCTGTCTCCACAAAGTGTGACCRCAT



(p.His41Arg)


ATTTTGCAAGTAAGTTTGAATG′]





4463
NM_007294.3(BRCA1): c.1A > G
672
BRCA1
[′TTAAAGTTCATTGGAACAGAAAGAARTGG



(p.Met1Val)


ATTTATCTGCTCTTCGCGTTGA′]





4464
NM_007294.3(BRCA1): c.212 + 3A >
672
BRCA1
[′TGTAAGAATGATATAACCAAAAGGTRTAT



G


AATTTGGTAATGATGCTAGGTT′]





4465
NM_007294.3(BRCA1): c.4097 −
672
BRCA1
[′TCTGAACCTCTGTTTTTGTTATTTAVGGTG



2A > G


AAGCAGCATCTGGGTGTGAGA′]





4466
NM_007294.3(BRCA1): c.4485 −
672
BRCA1
[′GTTTTCTCCTTCCATTTATCTTTCTRGGTCA



2A > G


TCCCCTTCTAAATGCCCATC′]





4467
NM_007294.3(BRCA1): c.4987 −
672
BRCA1
[′ATAATGGAATATTTGATTTAATTTCRGATG



2A > G


CTCGTGTACAAGTTTGCCAGA′]





4468
NM_007294.3(BRCA1): c.5053A >
672
BRCA1
[′AACTAATCTAATTACTGAAGAGACTRCTCA



G (p.Thr1685Ala)


TGTTGTTATGAAAACAGGTAT′]





4469
NM_007294.3(BRCA1): c.5407 −
672
BRCA1
[′AATGCTCTTTCCTTCCTGGGGATCCDGGGT



2A > G


GTCCACCCAATTGTGGTTGTG′]





4470
NM_000540.2(RYR1): c.97A > G
6261
RYR1
[′CGCTACCGTGCTCAAGGAGCAGCTCRAGC



(p.Lys33Glu)


TCTGCCTGGCCGCCGAGGGCTT′]





4471
NM_015250.3(BICD2): c.2321A > G
23299
BICD2
[′CGGCAGCTGGCGGCTGCTGAGGACGRGAA



(p.Glu774Gly)


GAAGACGCTGAACTCGCTGCTG′]





4472
NM_006012.2(CLPP): c.270 + 4A > G
8192
CLPP
[′CATCGTGTGCGTCATGGGCCCGGTGRGCG






CCCCGCGCCGGGACCCTCCCCA′]





4473
NM_004656.3(BAP1): c.277A > G
8314
BAP1
[′AGGAGCACGCTCAGCAAGGCATGAGHTGC



(p.Thr93Ala)


ACAAGAGTTGGGTATCAGCTGT′]





4474
NM_004315.4(ASAH1): c.965 + 4A >
427
ASAH1
[′AGGAATCATTGGATGTATATGAGTARGTA



G


GGTTTGTTAAAGCAAAAGAAGT′]





4475
NM_000100.3(CSTB): c.169 − 2A > G
1476
CSTB
[′GCTTCGCTCACTCCGCTCTCTTCCCRGGTG






CACGTCGGCGACGAGGACTTC′]





4476
NM_015268.3(DNAJC13): c.2564A >
23317
DNAJC13
[′TTAAAATCTAGGTATGAATTTTTCARTGAG



G (p.Asn855Ser)


CTTTATCATCGCTTCTTGCTC′]





4477
NM_001003722.1(GLE1): c.433 −
2733
GLE1
[′CTTAAAAAAAAAAAAAAAAAAAAAARCCT



10A > G


TTTCAGGAGGGCCTGAGGCTAT′]





4478
NM_001142519.1(FAM111A): c.1583A >
63901
FAM111A
[′TTCCAGAAAATAGTTCACAACCCTGDTGTG



G (p.Asp528Gly)


ATTACCTATGACACTGAATTT′]





4479
NM_001142519.1(FAM111A): c.1012A >
63901
FAM111A
[′GCATAGAACAACGTTTGGGAAAGTARCAA



G (p.Thr338Ala)


AAAATTCTTCTTCGATTAAAGT′]





4480
NM_001927.3(DES): c.1289 − 2A > G
1674
DES
[′CTGAGTGTGCGATGGACCCTGTTACRGAA






ACCAGCCCTGAGCAAAGGGGTT′]





4481
NM_014795.3(ZEB2): c.3134A > G
9839
ZEB2
[′AAACACAAGCACCACCTTATCGAGCRCTC



(p.His1045Arg)


AAGGCTTCACTCGGGCGAGAAG′]





4482
NM_002163.2(IRF8): c.322A > G
3394
IRF8
[′CCAACTGGACATTTCCGAGCCATACRAAG



(p.Lys108Glu)


TTTACCGAATTGTTCCTGAGGA′]





4483
NM_002163.2(IRF8): c.238A > G
3394
IRF8
[′CAAAGCTGAACCAGCCACTTGGAAGRCGA



(p.Thr80Ala)


GGTTACGCTGTGCTTTGAATAA′]





4484
NM_001287.5(CLCN7): c.296A > G
1186
CLCN7
[′TGTCCCGGCCTGCAGAGCTTGGACTRTGAC



(p.Tyr99Cys)


AACAGTGAGAACCAGCTGTTC′]





4485
NM_001127217.2(SMAD9): c.127A >
4093
SMAD9
[′AGAGAAGGCAGTGGACTCTCTAGTGRAGA



G (p.Lys43Glu)


AGTTAAAGAAGAAGAAGGGAGC′]





4486
NM_002246.2(KCNK3): c.575A > G
3777
KCNK3
[′TGGACCTTCTTCCAGGCCTACTACTRCTGC



(p.Tyr192Cys)


TTCATCACCCTCACCACCATC′]





4487
NM_080605.3(B3GALT6): c.1A > G
126792
B3GALT6
[′CGCCACGCCCGCCGCAGCAGCTTCAYGGC



(p.Met1Val)


GCCCGCGCCGGGCCGGCGGCCC′]





4488
NM_080605.3(B3GALT6): c.193A >
126792
B3GALT6
[′CGGCGCTCGGCGGCGCGGGGCGCGCYGGC



G (p.Ser65Gly)


CACCAGCACTGCCAGGAAGGCG′]





4489
NM_000388.3(CASR): c.85A > G
846
CASR
[′CGGGCCAGACCAGCGAGCCCAAAAGRAGG



(p.Lys29Glu)


GGGACATTATCCTTGGGGGGCT′]





4490
NM_003793.3(CTSF): c.962A > G
8722
CTSF
[′GGGACCCTGCTCTCCCTCTCTGAACRGGGT



(p.Gln321Arg)


GAGCATCTCGCTCTACTCCTC′]





4491
NM_003793.3(CTSF): c.692A > G
8722
CTSF
[′GAGATCACTGAACTTGGTGACTCCAYACT



(p.Tyr231Cys)


GAGCTGTGCCACGGTCCAGGGC′]





4492
NM_022114.3(PRDM16): c.2447A >
63976
PRDM16
[′GGCAGCCGGGCCCGTGCCAGCCAAARCGG



G (p.Asn816Ser)


CGGCGGGCGGGAGCCCCGCAAG′]





4493
NM_173551.4(ANKS6): c.1322A >
203286
ANKS6
[′GGGCAGCACTGGGATGCTCCAGGGCYGTC



G (p.Gln441Arg)


GGACCTTCGAGTGGGGCAGGGG′]





4494
NM_005689.2(ABCB6): c.508A > G
10058
ABCB6
[′GAACTTGGCCCTGGTGTCTTGGAACRGCCC



(p.Ser170Gly)


ACAGTGGTGGTGGGCAAGGGC′]





4495
NM_001070.4(TUBG1): c.275A > G
7283
TUBG1
[′AAGCTCTACAACCCAGAGAACATCTRCCT



(p.Tyr92Cys)


GTCGGAACATGGAGGAGGAGCT′]





4496
NM_001613.2(ACTA2): c.145A > G
59
ACTA2
[′ACCTTTTTAGGGGGTGATGGTGGGARTGG



(p.Met49Val)


GACAAAAAGACAGCTACGTGGG′]





4497
NM_031157.2(HNRNPA1): c.956A >
3178
HNRNPA1
[′AGCTACAATGATTTTGGGAATTACARCAAT



G (p.Asn319Ser)


CAGTCTTCAAATTTTGGACCC′]





4498
NM_020117.9(LARS): c.1118A > G
51520
LARS
[′CTTAATAGTTAGCATTGGGAGAACAYAGA



(p.Tyr373Cys)


TCACCTTGTATGATGTTAAAGG′]





4499
NM_001651.3(AQP5): c.367A > G
362
AQP5
[′CTAACCCGCTATCCCCTTGCAGCTCRACAA



(p.Asn123Asp)


CAACACAACGCAGGGCCAGGC′]





4500
m.13637A > G
4540
MT-NDS
[′ATAATTCTTCTCACCCTAACAGGTCRACCT






CGCTTCCCCACCCTTACTAAC′]





4501
NM_000081.3(LYST): c.10127A > G
1130
LYST
[′GGGAAGGCTTCTGTTCAAGCGATCARTGTT



(p.Asn3376Ser)


TTTCATCCTGCTGTAAGTGAC′]





4502
NM_000142.4(FGFR3): c.2421A > G
2261
FGFR3
[′CCAGCAGTGGGGGCTCGCGGACGTGNAGG



(p.Ter807Trp)


GCCACTGGTCCCCAACAATGTG′]





4503
NM_000207.2(INS): c.*59A > G
−1

[′TCCTGCACCGAGAGAGATGGAATAARGCC






CTTGAACCAGCCCTGCTGTGCC′]





4504
NM_000370.3(TTPA): c.191A > G
7274
TTPA
[′CTGCGCGCCCGGGATTTCGATCTGGRCCTG



(p.Asp64Gly)


GCCTGGCGGGTAAGCGTGCGT′]





4505
NM_001006657.1(WDR35): c.2912A >
57539
WDR35
[′AAACCTTTACGTGTCAAGAAGCTCTRTGTA



G (p.Tyr971Cys)


CTGTCAGCCTTACTTATAGAG′]





4506
NM_004595.4(SMS): c.443A > G
6611
SMS
[′GTATATGACGAAGATTCACCTTATCRAAAT



(p.Gln148Arg)


ATAAAAATTCTACACTCGAAG′]





4507
NM_005259.2(MSTN): c.458A > G
−1

[′AAAATACAATACAATAAAGTAGTAARGGC



(p.Lys153Arg)


CCAACTATGGATATATTTGAGA′]





4508
NM_000784.3(CYP27A1): c.1061A >
1593
CYP27A1
[′TGGGCCCTGTACCACCTCTCAAAGGRCCCT



G (p.Asp354Gly)


GAGATCCAGGAGGCCTTGCAC′]





4509
NM_000784.3(CYP27A1): c.776A >
1593
CYP27A1
[′TCACTCTATGCCACCTTCCTCCCCARGTGG



G (p.Lys259Arg)


ACTCGCCCCGTGCTGCCTTTC′]





4510
NM_000540.2(RYR1): c.10100A > G
6261
RYR1
[′ATCCCAACTATCGGGCGGCTGCGCARGAG



(p.Lys3367Arg)


GGCAGGGAAGGTGGTGTCCGAG′]





4511
NM_000540.2(RYR1): c.14572A > G
6261
RYR1
[′CTACCTGTACACCGTGGTGGCCTTCRACTT



(p.Asn4858Asp)


CTTCCGCAAGTTCTACAACAA′]





4512
NM_000540.2(RYR1): c.14740A > G
6261
RYR1
[′CGCGGGTGACGAATACGAGCTCTACRGGG



(p.Arg4914Gly)


TGGTCTTCGACATCACCTTCTT′]





4513
NM_000540.2(RYR1): c.14591A > G
6261
RYR1
[′GCCTTCAACTTCTTCCGCAAGTTCTRCAAC



(p.Tyr4864Cys)


AAGAGCGAGGATGAGGATGAA′]





4514
NM_002336.2(LRP6): c.1298A > G
4040
LRP6
[′GATCGAATAGAAGTGACAAGGCTCARTGG



(p.Asn433Ser)


GACCATGAGGAAGATCTTGATT′]





4515
NM_001257235.1(ALGl3): c.8A > G
79868
ALG13
[′GTTATAAACGAAAAGTTGATGAACARTCA



(p.Asn3Ser)


TCAGCTGGAACTGGCAAAGCAG′]





4516
NM_001015879.1(AURKC): c.379 −
6795
AURKC
[′CAGGGTGACTTTTCTTTGCACCCACRGATA



2A > G


ATAGAGGAGTTGGCAGATGCC′]





4517
NM_012160.4(FBXL4): c.1694A > G
26235
FBXL4
[′AATTGTACCAGGTTACAGCAGCTGGRCAT



(p.Asp565Gly)


ATTAGGTAAGGTTACAATATAT′]





4518
NM_020988.2(GNAO1): c.521A > G
2775
GNAO1
[′GCCGACTACCAGCCCACCGAGCAGGRCAT



(p.Asp174Gly)


CCTCCGAACCAGGGTCAAAACC′]





4519
NM_001927.3(DES): c.1024A > G
1674
DES
[′GACCTGGGTTCCCCCTCTCCTGCAGRACGA



(p.Asn342Asp)


TTCCCTGATGAGGCAGATGCG′]





4520
NM_001927.3(DES): c.1333A > G
1674
DES
[′GGGTTCTGAGGTCCATACCAAGAAGRCGG



(p.Thr445Ala)


TGATGATCAAGACCATCGAGAC′]





4521
NM_001927.3(DES): c.735 + 3A > G
1674
DES
[′TCCTTAAGAAAGTGCATGAAGAGGTRTAC






CTTGGCCCCTCTTCCTGGGGTC′]





4522
NM_002055.4(GFAP): c.1097A > G
2670
GFAP
[′GCCCTGGACATCGAGATCGCCACCTRCAG



(p.Tyr366Cys)


GAAGCTGCTAGAGGGCGAGGAG′]





4523
NM_002055.4(GFAP): c.1112A > G
2670
GFAP
[′ATCGCCACCTACAGGAAGCTGCTAGDGGG



(p.Glu371Gly)


CGAGGAGAACCGGTGAGCCCTC′]





4524
NM_002055.4(GFAP): c.1121A > G
2670
GFAP
[′TACAGGAAGCTGCTAGAGGGCGAGGRGAA



(p.Glu374Gly)


CCGGTGAGCCCTCATCACAGCC′]





4525
NM_002055.4(GFAP): c.230A > G
2670
GFAP
[′GAGCGGGCAGAGATGATGGAGCTCARTGA



(p.Asn77Ser)


CCGCTTTGCCAGCTACATCGAG′]





4526
NM_002055.4(GFAP): c.770A > G
2670
GFAP
[′AACATGCATGAAGCCGAAGAGTGGTRCCG



(p.Tyr257Cys)


CTCCAAGGTAGCCCTGCCTGTG′]





4527
NM_002055.4(GFAP): c.835A > G
2670
GFAP
[′CAACGCGGAGCTGCTCCGCCAGGCCRAGC



(p.Lys279Glu)


ACGAAGCCAACGACTACCGGCG′]





4528
NM_005554.3(KRT6A): c.511A > G
3853
KRT6A
[′GGAGCGTGAACAGATCAAGACCCTCDACA



(p.Asn171Asp)


ACAAGTTTGCCTCCTTCATCGA′]





4529
NM_005554.3(KRT6A): c.512A > G
3853
KRT6A
[′GAGCGTGAACAGATCAAGACCCTCAVCAA



(p.Asn171Ser)


CAAGTTTGCCTCCTTCATCGAC′]





4530
NM_005557.3(KRT16): c.373A > G
3868
KRT16
[′TGAGAAGGTGACCATGCAGAACCTCRATG



(p.Asn125Asp)


ACCGCCTGGCCTCCTACCTGGA′]





4531
NM_170707.3(LMNA): c.640 −
4000
LMNA
[′TTTTGGTTTCTGTGTCCTTCCTCCAVCCCTT



10A > G


CCAGGAGCTGCGTGAGACCA′]



NM_000218.2(KCNQ1): c.1061A >
3784
KCNQ1
[]



G (p.Lys354Arg)






NM_000218.2(KCNQ1): c.1138A >
3784
KCNQ1
[]



G (p.Arg380Gly)






NM_000218.2(KCNQ1): c.1193A >
3784
KCNQ1
[]



G (p.Lys398Arg)






NM_000218.2(KCNQ1): c.1640A >
3784
KCNQ1
[]



G (p.Gln547Arg)






NM_000218.2(KCNQ1): c.1669A >
3784
KCNQ1
[]



G (p.Lys557Glu)






NM_000218.2(KCNQ1): c.1705A >
3784
KCNQ1
[]



G (p.Lys569Glu)






NM_000218.2(KCNQ1): c.1793A >
3784
KCNQ1
[]



G (p.Lys598Arg)






NM_000218.2(KCNQ1): c.430A > G
3784
KCNQ1
[]



(p.Thr144Ala)






NM_000218.2(KCNQ1): c.440A > G
3784
KCNQ1
[]



(p.Gln147Arg)






NM_000218.2(KCNQ1): c.548A > G
3784
KCNQ1
[]



(p.Lys183Arg)








4532
NM_000218.2(KCNQ1): c.592A > G
3784
KCNQ1
[′GCGGCTGCGCTTTGCCCGGAAGCCCRTTTC



(p.Ile198Val)


CATCATCGGTGAGTCATGCCT′]





4533
NM_000218.2(KCNQ1): c.652A > G
3784
KCNQ1
[′CATGGTGGTCCTCTGCGTGGGCTCCRAGGG



(p.Lys218Glu)


GCAGGTGTTTGCCACGTCGGC′]





4534
NM_000218.2(KCNQ1): c.820A > G
3784
KCNQ1
[′CCTGTACATCGGCTTCCTGGGCCTCRTCTT



(p.Ile274Val)


CTCCTCGTACTTTGTGTACCT′]



NM_000218.2(KCNQ1): c.842A > G
3784
KCNQ1
[]



(p.Tyr281Cys)






NM_000218.2(KCNQ1): c.931A > G
3784
KCNQ1
[]



(p.Thr311Ala)






NM_000218.2(KCNQ1): c.950A > G
3784
KCNQ1
[]



(p.Asp317Gly)






NM_000238.3(KCNH2): c.1205A >
3757
KCNH2
[]



G (p.His402Arg)






NM_000238.3(KCNH2): c.1259A >
3757
KCNH2
[]



G (p.Tyr420Cys)








4535
NM_000238.3(KCNH2): c.1280A >
3757
KCNH2
[′ATCTACACGGCTGTCTTCACACCCTVCTCG



G (p.Tyr427Cys)


GCTGCCTTCCTGCTGAAGGAG′]



NM_000238.3(KCNH2): c.128A > G
3757
KCNH2
[]



(p.Tyr43Cys)






NM_000238.3(KCNH2): c.1424A >
3757
KCNH2
[]



G (p.Tyr475Cys)








4536
NM_000238.3(KCNH2): c.1478A >
3757
KCNH2
[′CACCCCGGCCGCATCGCCGTCCACTNCTTC



G (p.Tyr493Cys)


AAGGGCTGGTTCCTCATCGAC′]



NM_000238.3(KCNH2): c.1502A >
3757
KCNH2
[]



G (p.Asp501Gly)








4537
NM_000238.3(KCNH2): c.1685A >
3757
KCNH2
[′ATGTGCACCTTTGCGCTCATCGCGCVCTGG



G (p.His562Arg)


CTAGCCTGCATCTGGTACGCC′]





4538
NM_000238.3(KCNH2): c.1711A >
3757
KCNH2
[′CTGGCTAGCCTGCATCTGGTACGCCVTCGG



G (p.Ile571Val)


CAACATGGAGCAGCCACACAT′]





4539
NM_000238.3(KCNH2): c.1720A >
3757
KCNH2
[′CTGCATCTGGTACGCCATCGGCAACVTGG



G (p.Met574Val)


AGCAGCCACACATGGACTCACG′]



NM_000238.3(KCNH2): c.1724A >
3757
KCNH2
[]



G (p.Glu575Gly)








4540
NM_000238.3(KCNH2): c.173A > G
3757
KCNH2
[′GAGCTGTGCGGCTACTCGCGGGCCGVGGT



(p.Glu58Gly)


GATGCAGCGACCCTGCACCTGC′]



NM_000238.3(KCNH2): c.1747A >
3757
KCNH2
[]



G (p.Ile583Val)






NM_000238.3(KCNH2): c.1762A >
3757
KCNH2
[]



G (p.Asn588Asp)






NM_000238.3(KCNH2): c.1777A >
3757
KCNH2
[]



G (p.Ile593Val)






NM_000238.3(KCNH2): c.1783A >
3757
KCNH2
[]



G (p.Lys595Glu)






NM_000238.3(KCNH2): c.1790A >
3757
KCNH2
[]



G (p.Tyr597Cys)






NM_000238.3(KCNH2): c.1826A >
3757
KCNH2
[]



G (p.Asp609Gly)






NM_000238.3(KCNH2): c.1847A >
3757
KCNH2
[]



G (p.Tyr616Cys)






NM_000238.3(KCNH2): c.1885A >
3757
KCNH2
[]



G (p.Asn629Asp)








4541
NM_000238.3(KCNH2): c.1886A >
3757
KCNH2
[′AGCCTCACCAGTGTGGGCTTCGGCANCGT



G (p.Asn629Ser)


CTCTCCCAACACCAACTCAGAG′]



NM_000238.3(KCNH2): c.1897A >
3757
KCNH2
[]



G (p.Asn633Asp)








4542
NM_000238.3(KCNH2): c.1898A >
3757
KCNH2
[′GTGGGCTTCGGCAACGTCTCTCCCADCACC



G (p.Asn633Ser)


AACTCAGAGAAGATCTTCTCC′]



NM_000238.3(KCNH2): c.1903A >
3757
KCNH2
[]



G (p.Asn635Asp)






NM_000238.3(KCNH2): c.1910A >
3757
KCNH2
[]



G (p.Glu637Gly)






NM_000238.3(KCNH2): c.1912A >
3757
KCNH2
[]



G (p.Lys638Glu)








4543
NM_000238.3(KCNH2): c.1933A >
3757
KCNH2
[′AGAGAAGATCTTCTCCATCTGCGTCDTGCT



G (p.Met645Val)


CATTGGCTGTGAGTGTGCCCA′]



NM_000238.3(KCNH2): c.209A > G
3757
KCNH2
[]



(p.His70Arg)








4544
NM_000238.3(KCNH2): c.2131A >
3757
KCNH2
[′GCACGCCTGGTCCTACACCAACGGCRTCG



G (p.Ile711Val)


ACATGAACGCGGTGAGGCCACC′]



NM_000238.3(KCNH2): c.2266A >
3757
KCNH2
[]



G (p.Met756Val)






NM_000238.3(KCNH2): c.2510A >
3757
KCNH2
[]



G (p.Asp837Gly)






NM_000238.3(KCNH2): c.2591A >
3757
KCNH2
[]



G (p.Asp864Gly)






NM_000238.3(KCNH2): c.286A > G
3757
KCNH2
[]



(p.Ile96Val)








4545
NM_000238.3(KCNH2): c.301A > G
3757
KCNH2
[′CAAAGTGGAAATCGCCTTCTACCGGDAAG



(p.Lys101Glu)


ATGGTAGGAGCGGGCCGGGGCG′]





4546
NM_000238.3(KCNH2): c.3118A >
3757
KCNH2
[′TCGGCGGCCCCGGGGCGACGTGGAGRGCA



G (p.Ser1040Gly)


GGCTGGATGCCCTCCAGCGCCA′]



NM_000238.3(KCNH2): c.3233A >
3757
KCNH2
[]



G (p.Tyr1078Cys)






NM_000238.3(KCNH2): c.3343A >
3757
KCNH2
[]



G (p.Met1115Val)






NM_000238.3(KCNH2): c.652A > G
3757
KCNH2
[]



(p.Met218Val)






NM_000238.3(KCNH2): c.82A > G
3757
KCNH2
[]



(p.Lys28Glu)






NM_000891.2(KCNJ2): c.220A > G
3759
KCNJ2
[]



(p.Thr74Ala)






NM_000891.2(KCNJ2): c.223A > G
3759
KCNJ2
[]



(p.Thr75Ala)






NM_000891.2(KCNJ2): c.233A > G
3759
KCNJ2
[]



(p.Asp78Gly)






NM_000891.2(KCNJ2): c.574A > G
3759
KCNJ2
[]



(p.Thr192Ala)








4547
NM_000891.2(KCNJ2): c.913A > G
3759
KCNJ2
[′CATACTGGAAGGCATGGTGGAAGCCVCTG



(p.Thr305Ala)


CCATGACGACACAGTGCCGTAG′]



NM_172201.1(KCNE2): c.269A > G
9992
KCNE2
[]



(p.Glu90Gly)








4548
NM_172201.1(KCNE2): c.281A > G
9992
KCNE2
[′CAGTACATTGTAGAGGACTGGCAGGRAAA



(p.Glu94Gly)


GTACAAGAGCCAAATCTTGAAT′]



NM_000335.4(SCN5A): c.1217A > G
6331
SCN5A
[]



(p.Asn406Ser)






NM_000335.4(SCN5A): c.1502A > G
6331
SCN5A
[]



(p.Asp501Gly)






NM_000335.4(SCN5A): c.2249A > G
6331
SCN5A
[]



(p.Gln750Arg)






NM_198056.2(SCN5A): c.2527A > G
6331
SCN5A
[]



(p.Thr843Ala)






NM_000335.4(SCN5A): c.2780A > G
6331
SCN5A
[]



(p.Asn927Ser)






NM_000335.4(SCN5A): c.3164A > G
6331
SCN5A
[]



(p.Asp1055Gly)






NM_000335.4(SCN5A): c.343A > G
6331
SCN5A
[]



(p.Ser115Gly)






NM_000335.4(SCN5A): c.3755A > G
6331
SCN5A
[]



(p.Glu1252Gly)








4549
NM_000335.4(SCN5A): c.376A > G
6331
SCN5A
[′AAAGGATATGAGTGAACCAGAATCTYCAC



(p.Lys126Glu)


AGCCGCTCTCCGGATGGGGTGG′]





4550
NM_198056.2(SCN5A): c.4000A > G
6331
SCN5A
[′TGCCCTGGTGGGCGCCATCCCGTCCRTCAT



(p.Ile1334Val)


GAACGTCCTCCTCGTCTGCCT′]



NM_000335.4(SCN5A): c.4223A > G
6331
SCN5A
[]



(p.Tyr1408Cys)






NM_000335.4(SCN5A): c.4252A > G
6331
SCN5A
[]



(p.Lys1418Glu)






NM_000335.4(SCN5A): c.4291A > G
6331
SCN5A
[]



(p.Arg1431Gly)






NM_198056.2(SCN5A): c.4346A > G
6331
SCN5A
[]



(p.Tyr1449Cys)






NM_000335.4(SCN5A): c.4412A > G
6331
SCN5A
[]



(p.Asn1471Ser)








4551
NM_198056.2(SCN5A): c.4478A > G
6331
SCN5A
[′ATCTTCATGACAGAGGAGCAGAAGARGTA



(p.Lys1493Arg)


CTACAATGCCATGAAGAAGCTG′]



NM_000335.4(SCN5A): c.4489A > G
6331
SCN5A
[]



(p.Met1497Val)






NM_000335.4(SCN5A): c.4577A > G
6331
SCN5A
[]



(p.Lys1526Arg)








4552
NM_198056.2(SCN5A): c.4978A > G
6331
SCN5A
[′GATGTCCCTGCCTGCCCTCTTCAACRTCGG



(p.Ile1660Val)


GCTGCTGCTCTTCCTCGTCAT′]



NM_000335.4(SCN5A): c.5138A > G
6331
SCN5A
[]



(p.Asp1713Gly)






NM_000335.4(SCN5A): c.5161A > G
6331
SCN5A
[]



(p.Asn1721Asp)






NM_000335.4(SCN5A): c.5297A > G
6331
SCN5A
[]



(p.Tyr1766Cys)






NM_198056.2(SCN5A): c.5302A > G
6331
SCN5A
[]



(p.Ile1768Val)






NM_000335.4(SCN5A): c.5317A > G
6331
SCN5A
[]



(p.Asn1773Asp)






NM_000335.4(SCN5A): c.5318A > G
6331
SCN5A
[]



(p.Asn1773Ser)






NM_000335.4(SCN5A): c.5366A > G
6331
SCN5A
[]



(p.Asp1789Gly)






NM_000335.4(SCN5A): c.5402A > G
6331
SCN5A
[]



(p.Asp1801Gly)






NM_000335.4(SCN5A): c.5513A > G
6331
SCN5A
[]



(p.Asp1838Gly)






NM_198056.2(SCN5A): c.5726A > G
6331
SCN5A
[]



(p.Gln1909Arg)








4553
NM_000335.4(SCN5A): c.688A > G
6331
SCN5A
[′CCGAGTCCTCCGGGCCCTGAAAACTRTATC



(p.Ile230Val)


AGTCATTTCAGGTGAAAATCA′]



NM_000335.4(SCN5A): c.715A > G
6331
SCN5A
[]



(p.Ile239Val)






NM_000335.4(SCN5A): c.89A > G
6331
SCN5A
[]



(p.Glu30Gly)








4554
NM_000383.3(AIRE): c.254A > G
326
AIRE
[′TTCTGGAGGGTGCTGTTCAAGGACTRCAAC



(p.Tyr85Cys)


CTGGAGCGCTATGGCCGGCTG′]





4555
NM_006920.4(SCN1A): c.1876A > G
6323
SCN1A
[′ACGCAACAGCAACCTGAGTCAGACCRGTA



(p.Ser626Gly)


GGTCATCCCGGATGCTGGCAGT′]





4556
NM_006920.4(SCN1A): c.4352A > G
−1

[′GAAGAAAGTCTGTACATGTATCTTTRCTTT



(p.Tyr1451Cys)


GTTATTTTCATCATCTTTGGG′]





4557
NM_000165.4(GJA1): c.617A > G
2697
GJA1
[′TGTTTCCTCTCTCGCCCCACGGAGARAACC



(p.Lys206Arg)


ATCTTCATCATCTTCATGCTG′]





4558
NM_000833.4(GRIN2A): c.1123 −
2903
GRIN2A
[′AGCTGTGTCTTTGTGTTTGTGCTGCRGGTG



2A > G


GGCAAGTGGGAGAACCATACG′]





4559
NC_000007.14: g.62535490A > G
−1

[′GGAGAGTTTTGAGGCCTGTGGTTGARATG






GAAATATCTTCACAGAAAAACT′]





4560
NM_004595.4(SMS): c.983A > G
6611
SMS
[′AATCTGACAGAAGCACTGTCGCTCTVTGA



(p.Tyr328Cys)


AGAACAGCTGGGGCGCCTGTAT′]





4561
NM_001256864.1(DNAJC6): c.801 −
9829
DNAJC6
[′CAAGAGAGTGCCAACCTTCTGTTTCRGATA



2A > G


CCTGGGCTATATGTGTGACCT′]





4562
NM_001204316.1(PRLR): c.635A >
5618
PRLR
[′GTCCAGGTTCGCTGCAAACCAGACCRTGG



G (p.His212Arg)


ATACTGGAGTGCATGGAGTCCA′]





4563
NM_012243.2(SLC35A3): c.886A >
23443
SLC35A3
[′TTGGCTTCAAGATTTTGTGCCAACCRGGTA



G (p.Ser296Gly)


AAATGTTCTTTTCTATTTTTT′]





4564
NM_000179.2(MSH6): c.3439 −
2956
MSH6
[′AAAGACCTTTTCCTCCCTCATTCACRGGCT



2A > G


GGCTTATTAGCTGTAATGGCC′]





4565
NM_000249.3(MLH1): c.113A > G
4292
MLH1
[′AATGCTATCAAAGAGATGATTGAGARCTG



(p.Asn38Ser)


GTACGGAGGGAGTCGAGCCGGG′]





4566
NM_000249.3(MLH1): c.122A > G
4292
MLH1
[′TTTTCTGTTTGATTTGCCAGTTTAGRTGCA



(p.Asp41Gly)


AAATCCACAAGTATTCAAGTG′]





4567
NM_000249.3(MLH1): c.1559 −
4292
MLH1
[′TTTTTGGTTTTATTTTTTGTTTTGCNGTTCT



2A > G


CCGGGAGATGTTGCATAACC′]





4568
NM_000249.3(MLH1): c.1990 −
4292
MLH1
[′TTGAGGTATTGAATTTCTTTGGACCRGGTG



2A > G


AATTGGGACGAAGAAAAGGAA′]





4569
NM_000249.3(MLH1): c.208 − 2A > G
4292
MLH1
[′TTTACTCATCTTTTTGGTATCTAACVGAAA






GAAGATCTGGATATTGTATGT′]





4570
NM_000249.3(MLH1): c.544A > G
4292
MLH1
[′TGGGAAAATTTTGGAAGTTGTTGGCRGGT



(p.Arg182Gly)


ACAGTCCAAAATCTGGGAGTGG′]





4571
NM_000249.3(MLH1): c.545 + 3A >
4292
MLH1
[′AAAATTTTGGAAGTTGTTGGCAGGTRCAGT



G


CCAAAATCTGGGAGTGGGTCT′]





4572
NM_000249.3(MLH1): c.546 − 2A > G
4292
MLH1
[′TCTTACTCTTTTGTTTTTCTTTTCCVGGTAT






TCAGTACACAATGCAGGCAT′]





4573
NM_000249.3(MLH1): c.589 − 2A > G
4292
MLH1
[′TTGTGTCTTCTGCTGTTTGTTTATCRGCAAG






GAGAGACAGTAGCTGATGTT′]





4574
NM_000249.3(MLH1): c.677 + 3A >
4292
MLH1
[′GATTTTTTTATATAGGTTATCGACABACCG



G


ACTAACAGCATTTCCAAAGAT′]





4575
NM_000249.3(MLH1): c.791 − 2A > G
4292
MLH1
[′ACTGGTTGCTTTCTTTTTATTGTTTRGATCG






TCTGGTAGAATCAACTTCCT′]





4576
NM_000249.3(MLH1): c.883A > G
4292
MLH1
[′AAACACACACCCATTCCTGTACCTCVGGTA



(p.Ser295Gly)


ATGTAGCACCAAACTCCTCAA′]





4577
NM_000249.3(MLH1): c.884 + 4A >
4292
MLH1
[′CACACCCATTCCTGTACCTCAGGTARTGTA



G


GCACCAAACTCCTCAACCAAG′]





4578
NM_000251.2(MSH2): c.1277 −
4436
MSH2
[′TTTGTTTGTTTTACTACTTTCTTTTVGGAAA



2A > G


ACACCAGAAATTATTGTTGG′]





4579
NM_000251.2(MSH2): c.1511 −
4436
MSH2
[′CTTTTTCTTTTCTTCTTGATTATCARGGCTT



2A > G


GGACCCTGGCAAACAGATTA′]





4580
NM_000251.2(MSH2): c.1660A > G
4436
MSH2
[′GAAGAATGGTGTTAAATTTACCAACNGGT



(p.Ser554Gly)


TTGCAAGTCGTTATTATATTTT′]





4581
NM_000535.5(PMS2): c.1A > G
5395
PMS2
[′CCGAGGCGGATCGGGTGTTGCATCCDTGG



(p.Met1Val)


AGCGAGCTGAGAGCTCGAGGTG′]





4582
NM_000535.5(PMS2): c.989 − 2A > G
5395
PMS2
[′ATAAATATGTTTTCTTTTTTGCCTTRGAATG






CGTTGATATCAATGTTACTC′]





4583
NM_000059.3(BRCA2): c.426 −
675
BRCA2
[′TAAGGGATTTGCTTTGTTTTATTTTRGTCCT



2A > G


GTTGTTCTACAATGTACACA′]





4584
NM_024876.3(ADCK4): c.857A > G
79934
ADCK4
[′CAGCAGGAGCTGGCTTGGGAGTGTGRCTA



(p.Asp286Gly)


CCGTCGTGAGGCGGCTTGTGCC′]





4585
NM_006005.3(WFS1): c.1385A > G
7466
WFS1
[′TACACGCGCAGGGCCCTGGCCACCGRGGT



(p.Glu462Gly)


CACCGCCGGCCTGCTATCGCTG′]





4586
NM_000019.3(ACAT1): c.472A > G
38
ACAT1
[′GGCAGGTGGGATGGAGAGCATGTCCRATG



(p.Asn158Asp)


TTCCATATGTAATGAACAGAGG′]





4587
NM_000050.4(ASS1): c.496 − 2A > G
445
ASS1
[′TCCACCTGTGCTGTCTCTTTCCTGCRGCAA






CACGGGATTCCCATCCCGGTC′]





4588
NM_000117.2(EMD): c.450 − 2A > G
2010
EMD
[′CCCACTTGCTCCCCTCTTTTGCCTCRGGGA






ACGCCCCATGTACGGCCGGGA′]





4589
NM_000153.3(GALC): c.334A > G
2581
GALC
[′GCATAATGCATGTGGGAGGGCTCAGBGCC



(p.Thr112Ala)


GTCTGAATAGAGGAGAGCAAAA′]





4590
NM_000155.3(GALT): c.905 − 2A > G
2592
GALT
[′CCCCACTGTCTCTCTTCTTTCTGTCRGGGG






CTCCCACAGGATCAGAGGCTG′]





4591
NM_000159.3(GCDH): c.542A > G
2639
GCDH
[′CTCCTGGGCTGCTTCGGGCTCACAGRGCCC



(p.Glu181Gly)


AACAGCGGAAGTGACCCCAGC′]





4592
NM_000169.2(GLA): c.509A > G
−1

[′TGGGGAGTAGATCTGCTAAAATTTGRTGGT



(p.Asp170Gly)


TGTTACTGTGACAGTTTGGAA′]





4593
NM_000169.2(GLA): c.548 − 2A > G
−1

[′TATTTTACCCATTGTTTTCTCATACRGGTTA






TAAGCACATGTCCTTGGCCC′]





4594
NM_000169.2(GLA): c.647A > G
−1

[′TCATATCTGTTTTCACAGCCCAATTRTACA



(p.Tyr216Cys)


GAAATCCGACAGTACTGCAAT′]





4595
NM_000232.4(SGCB): c.1A > G
6443
SGCB
[′GCTCGGCGGCGGCGGGCGCGGGAAGRTGG



(p.Met1Val)


CGGCAGCGGCGGCGGCGGCTGC′]





4596
NM_000255.3(MUT): c.1445 − 2A > G
4594
MUT
[′TAAAATTTTTCTTTGGGAAATTACCRGGTT






CTGAAGTAATTGTTGGAGTAA′]





4597
NM_000277.1(PAH): c.533A > G
5053
PAH
[′AGTGGGCAGCCCATCCCTCGAGTGGDATA



(p.Glu178Gly)


CATGGAGGAAGAAAAGAAAACA′]





4598
NM_000277.1(PAH): c.974A > G
5053
PAH
[′CAGATTGACTTTCCATTCCAGATTTRCTGG



(p.Tyr325Cys)


TTTACTGTGGAGTTTGGGCTC]





4599
NM_000328.2(RPGR): c.155 − 2A > G
6103
RPGR
[′TGATTATTTCTTTTTCCCTCCTACCRGGAA






ATAATAAACTTTACATGTTTG′]





4600
NM_000350.2(ABCA4): c.4540 −
24
ABCA4
[′ATTAACGTGGGTGTCTCATTGCCTCRGAGA



2A > G


ACACAGCGCAGCACGGAAATT′]





4601
NM_000350.2(ABCA4): c.67 − 2A > G
24
ABCA4
[′TTCTCTCTTTTTGTTTTGTTTTTCCRGATTC






GCTTTGTGGTGGAACTCGTG′]





4602
NM_000487.5(ARSA): c.1108 −
410
ARSA
[′CCCCGTGACCCCTGACTCTGCCCCCRGAGC



2A > G


CCTCGGCAGTCTCTCTTCTTC′]





4603
NM_000489.4(ATRX): c.134 − 2A > G
546
ATRX
[′TAATGTTCTTTATTTCTTCTTTTTTRGATAA






AATCAGTGGTTCTGGAAGTA′]





4604
NM_000489.4(ATRX): c.536A > G
546
ATRX
[′TGCACTGCTTGTGGACAACAGGTCARTCAT



(p.Asn179Ser)


TTTCAAAAAGATTCCATTTAT′]





4605
NM_000512.4(GALNS): c.1171A >
2588
GALNS
[′CTTCTATTACCGTGGCGACACGCTGRTGGC



G (p.Met391Val)


GGCCACCCTCGGGCAGCACAA′]





4606
NM_000521.3(HEXB): c.1243 −
3074
HEXB
[′ATGTATTGCAATTTGTAACGTTAATRGCTT



2A > G


GCGCCGGGCACAATAGTTGAA′]





4607
NM_000531.5(OTC): c.238A > G
5009
OTC
[′ATAGTATTTGCCTTTATTGCAAGGGRAGTC



(p.Lys80Glu)


CTTAGGCATGATTTTTGAGAA′]





4608
NM_000551.3(VHL): c.233A > G
7428
VHL
[′GAGCCCTCCCAGGTCATCTTCTGCARTCGC



(p.Asn78Ser)


AGTCCGCGCGTCGTGCTGCCC′]





4609
NM_001848.2(COL6A1): c.805 −
1291
COL6A1
[′CCAACCTTGACCTGTTTTGTGTTCCRGGGA



2A > G


GAACGAGGCAAGCCGGGGCTC′]





4610
NM_001918.3(DBT): c.773 − 2A > G
1629
DBT
[′AATGAATAACAATTTAATGCTTTTCRGGCT






TTCAAAAAGCAATGGTCAAGA′]





4611
NM_003482.3(KMT2D): c.5645 −
8085
KMT2D
[′TCAACAGTGTCCTTCATTCCCCCACRGAAC



2A > G


TGCCCAAGATGGAATCCAAGG′]





4612
NM_003494.3(DYSF): c.1398 −
8291
DYSF
[′CAGGCCCTCTCTGCTCCCTTGCTCTRGGGA



2A > G


CCGCCTGACTCACAATGACAT′]





4613
NM_004006.2(DMD): c.1332 − 9A > G
1756
DMD
[′AAGAGGTCATAATAGGCTTCTTTCAVATTT






TCAGTTTACATAGAGTTTTAA′]





4614
NM_004006.2(DMD): c.3432 + 3A >
1756
DMD
[′AGTGGGATCACATGTGCCAACAGGTRTAG



G


ACAATCTCTTTCACTGTGGCTT′]





4615
NM_004006.2(DMD): c.6763 − 2A > G
1756
DMD
[′AAACGTTGTTGCATTTGTCTGTTTCRGTTA






CTGGTGGAAGAGTTGCCCCTG′]





4616
NM_004006.2(DMD): c.9224 + 61934A >
1756
DMD
[′AGCTGTGAATGCTTCATTCAGGCCCRAGTA



G


AATATAGGAAGAGGTGTAGTG′]





4617
NM_004006.2(DMD): c.9225 −
1756
DMD
[′GCTGTGAATGCTTCATTCAGGCCCARGTAA



647A > G


ATATAGGAAGAGGTGTAGTGG′]





4618
NM_004006.2(DMD): c.9650 − 2A > G
1756
DMD
[′TGTTGCAATTTTCTTCTTCCTTTGTRGACCT






TTTCAAGCAAGTGGCAAGTT′]





4619
NM_015560.2(OPA1): c.983A > G
4976
OPA1
[′GAGATGATGACACGTTCTCCAGTTAVGGT



(p.Lys328Arg)


AAGAACATAGGCCGTCTCAGTG′]





4620
NM_144997.5(FLCN): c.1433 −
201163
FLCN
[′TTGCTCTGCCCCTGCCCTTCTCCCCRGTGG



2A > G


GCCCCACCATCCTGAATAAGA′]





4621
NM_144997.5(FLCN): c.250 − 2A > G
201163
FLCN
[′AGATTTACTTTTCCTTTTCATGGACRGGGC






TGCCGGTCACTTGCTGCAGGG′]





4622
NM_000146.3(FTL): c.1A > G
2512
FTL
[′GTTAGCTCCTTCTTGCCAACCAACCRTGAG



(p.Met1Val)


CTCCCAGATTCGTCAGAATTA′]





4623
NM_024531.4(SLC52A2): c.914A >
79581
SLC52A2
[′GTGCAGAGCTTTTCCTGCTTACCCTRCGGG



G (p.Tyr305Cys)


CGTCTGGCCTACCACCTGGCT′]





4624
NM_001743.5(CALM2): c.293A > G
805
CALM2
[′TACTAAATTTTTTGCTAGGATGGCADTGGC



(p.Asn98Ser)


TATATTAGTGCTGCAGAACTT′]





4625
NM_014754.2(PTDSS1): c.1058A >
9791
PTDSS1
[′ACACAGTGCAAGCGCGTAGGAACACRATG



G (p.Gln353Arg)


CTGGGTGTTTGGGTGAGTAATC′]





4626
NM_052844.3(WDR34): c.1307A >
89891
WDR34
[′GGACCAGCGCACAGCAAACAGATACYTGA



G (p.Lys436Arg)


GGGAGAGCTGCAGCGAAGTCAA′]





4627
NM_001130010.2(C15orf41): c.281A >
84529
C15orf41
[′TACTTCTGTTTTATAAAGGTGGACTVTGCG



G (p.Tyr94Cys)


CCCTCATTAATGGCTCGGCTT′]





4628
NM_001290048.1(ATL3): c.521A >
25923
ATL3
[′AATTTCATCCATTGCCAGACGACCGYATTC



G (p.Tyr174Cys)


TGTGAAGAGCTTTAAAAAAGA′]





4629
NM_000531.5(OTC): c.1034A > G
5009
OTC
[′GTCATGGTGTCCCTGCTGACAGATTRCTCA



(p.Tyr345Cys)


CCTCAGCTCCAGAAGCCTAAA′]





4630
NM_000531.5(OTC): c.122A > G
5009
OTC
[′AATAAAGTGCAGCTGAAGGGCCGTGRCCT



(p.Asp41Gly)


TCTCACTCTAAAAAACTTTACC′]





4631
NM_000531.5(OTC): c.155A > G
5009
OTC
[′ACTCTAAAAAACTTTACCGGAGAAGRAAT



(p.Glu52Gly)


TAAATATATGCTATGGCTATCA′]





4632
NM_000531.5(OTC): c.1A > G
5009
OTC
[′TCGTCCTTTACACAATTAAAAGAAGDTGCT



(p.Met1Val)


GTTTAATCTGAGGATCCTGTT′]





4633
NM_000531.5(OTC): c.268A > G
5009
OTC
[′CTTAGGCATGATTTTTGAGAAAAGARGTA



(p.Ser90Gly)


CTCGAACAAGATTGTCTACAGA′]





4634
NM_000531.5(OTC): c.277A > G
5009
OTC
[′GATTTTTGAGAAAAGAAGTACTCGARCAA



(p.Thr93Ala)


GATTGTCTACAGAAACAGGTAA′]





4635
NM_000531.5(OTC): c.350A > G
5009
OTC
[′TGTTTTCTTACCACACAAGATATTCDTTTG



(p.His117Arg)


GGTGTGAATGAAAGTCTCACG′]





4636
NM_000531.5(OTC): c.377A > G
5009
OTC
[′TTGGGTGTGAATGAAAGTCTCACGGRCAC



(p.Asp126Gly)


GGCCCGGTTTGTAAATATTTTC′]





4637
NM_000531.5(OTC): c.387 − 2A > G
5009
OTC
[′GATTATCTTTTTCTTGGTTTGCCACNGTGT






ATTGTCTAGCATGGCAGATGC′]





4638
NM_000531.5(OTC): c.481A > G
5009
OTC
[′TAAAGAAGCATCCATCCCAATTATCRATG



(p.Asn161Asp)


GGCTGTCAGATTTGTACCATCC′]





4639
NM_000531.5(OTC): c.482A > G
5009
OTC
[′AAAGAAGCATCCATCCCAATTATCARTGG



(p.Asn161Ser)


GCTGTCAGATTTGTACCATCCT′]





4640
NM_000531.5(OTC): c.503A > G
5009
OTC
[′ATCAATGGGCTGTCAGATTTGTACCVTCCT



(p.His168Arg)


ATCCAGATCCTGGCTGATTAC′]





4641
NM_000531.5(OTC): c.524A > G
5009
OTC
[′TACCATCCTATCCAGATCCTGGCTGDTTAC



(p.Asp175Gly)


CTCACGCTCCAGGTTGGTTTA′]





4642
NM_000531.5(OTC): c.527A > G
5009
OTC
[′CATCCTATCCAGATCCTGGCTGATTRCCTC



(p.Tyr176Cys)


ACGCTCCAGGTTGGTTTATTT]





4643
NM_000531.5(OTC): c.541 − 2A > G
5009
OTC
[′TCATCTCCTTCATCCCGTGCCTTTTRGGAA






CACTATAGCTCTCTGAAAGGT′]





4644
NM_000531.5(OTC): c.542A > G
5009
OTC
[′TCTCCTTCATCCCGTGCCTTTTAGGRACAC



(p.Glu181Gly)


TATAGCTCTCTGAAAGGTCTT′]





4645
NM_000531.5(OTC): c.548A > G
5009
OTC
[′TCATCCCGTGCCTTTTAGGAACACTRTAGC



(p.Tyr183Cys)


TCTCTGAAAGGTCTTACCCTC]





4646
NM_000531.5(OTC): c.595A > G
5009
OTC
[′CCTCAGCTGGATCGGGGATGGGAACRATA



(p.Asn199Asp)


TCCTGCACTCCATCATGATGAG′]





4647
NM_000531.5(OTC): c.596A > G
5009
OTC
[′CTCAGCTGGATCGGGGATGGGAACARTAT



(p.Asn199Ser)


CCTGCACTCCATCATGATGAGC′]





4648
NM_000531.5(OTC): c.613A > G
5009
OTC
[′TGGGAACAATATCCTGCACTCCATCRTGAT



(p.Met205Val)


GAGCGCAGCGAAATTCGGAAT′]





4649
NM_000531.5(OTC): c.716A > G
5009
OTC
[′AAGTTGGCAGAGCAGTATGCCAAAGDGGT



(p.Glu239Gly)


ATGCTCTTTACATGTAAAGCTA′]





4650
NM_000531.5(OTC): c.717 + 3A > G
5009
OTC
[′TGGCAGAGCAGTATGCCAAAGAGGTRTGC






TCTTTACATGTAAAGCTATTAT′]





4651
NM_000531.5(OTC): c.718 − 2A > G
5009
OTC
[′TTTAACCAGCGTGTTTATGTATGCTRGAAT






GGTACCAAGCTGTTGCTGACA′]





4652
NM_000531.5(OTC): c.788A > G
5009
OTC
[′CATGGAGGCAATGTATTAATTACAGRCAC



(p.Asp263 Gly)


TTGGATAAGCATGGGACAAGAA′]





4653
NM_000531.5(OTC): c.790A > G
5009
OTC
[′TGGAGGCAATGTATTAATTACAGACRCTTG



(p.Thr264Ala)


GATAAGCATGGGACAAGAAGA′]





4654
NM_000531.5(OTC): c.905A > G
5009
OTC
[′GCTGCCTCTGACTGGACATTTTTACDCTGC



(p.His302Arg)


TTGCCCAGAAAGCCAGAAGAA′]





4655
NM_000531.5(OTC): c.929A > G
5009
OTC
[′CACTGCTTGCCCAGAAAGCCAGAAGRAGT



(p.Glu310Gly)


GGATGATGAAGTCTTTTATTCT′]





4656
NM_000531.5(OTC): c.988A > G
5009
OTC
[′ACTAGTGTTCCCAGAGGCAGAAAACRGAA



(p.Arg330Gly)


AGTGGACAATCATGGTAAGCAA′]





4657
NM_000322.4(PRPH2): c.422A > G
5961
PRPH2
[′GGGCTCAAGAACGGCATGAAGTACTRCCG



(p.Tyr141Cys)


GGACACAGACACCCCTGGCAGG′]



NM_003590.4(CUL3): c.1207 −
8452
CUL3
[]



26A > G






NM_003590.4(CUL3): c.1376A > G
8452
CUL3
[]



(p.Lys459Arg)






NM_003590.4(CUL3): c.1377 + 3A >
8452
CUL3
[]



G








4658
NM_017415.2(KLHL3): c.232A > G
26249
KLHL3
[′AGCCTGCAGCCCCTACTTCTGTGCGDTGTT



(p.Met78Val)


CACAGGTATGGTGAGTGGCCA]



NM_017415.2(KLHL3): c.926A > G
26249
KLHL3
[]



(p.Gln309Arg)








4659
NM_005763.3(AASS): c.874A > G
10157
AASS
[′CTCACATCAGTATTAAAACGACTTAYGTA



(p.Ile292Val)


GCGCTCCGGATGTTTGTCATAC′]





4660
NM_000203.4(IDUA): c.1874A > G
3425
IDUA
[′TCCTACCGAGTTCGAGCCCTGGACTRCTGG



(p.Tyr625Cys)


GCCCGACCAGGCCCCTTCTCG′]





4661
NM_000546.5(TP53): c.736A > G
7157
TP53
[′GTGTAACAGTTCCTGCATGGGCGGCVTGA



(p.Met246Val)


ACCGGAGGCCCATCCTCACCAT]





4662
NM_194442.2(LBR): c.1639A > G
3930
LBR
[′GCCATGATGAGATCACCCAAGTAATYGGG



(p.Asn547Asp)


GTGGCGAACAAAGCCCCACCAT′]





4663
NM_000090.3(COL3A1): c.2284 −
1281
COL3A1
[′ATTAAAAAATATTTTTATTTCCTCTRGGGT



2A > G (p.Gly762_Lys779del)


CCTACTGGTCCTATTGGTCCT′]





4664
NM_000090.3(COL3A1): c.997 −
1281
COL3A1
[′TCTTGAAATTGTATTTAATTTTTTCRGGGC



2A > G (p.Gly333_Lys350del+)


CCTCCTGGTCCTCCTGGAACT′]





4665
NM_000090.3(COL3A1): c.3418 −
1281
COL3A1
[′CATTGTGATGTCATGATACTTTCTTDGGGA



2A > G


CCTGTTGGACCCAGTGGACCT′]



(p.Arg1139_Gly1140insVSSTERY






YRSTCFRCLHFRKIFWHCDVMI






LSW)








4666
NM_000090.3(COL3A1): c.997 −
1281
COL3A1
[′AAAAGAGCTCTTGAAATTGTATTTARTTTT



10A > G (p.Pro332_Gly333insFFQ)


TTCAGGGCCCTCCTGGTCCTC′]





4667
NM_000090.3(COL3A1): c.1870 −
1281
COL3A1
[′ACAGAGTGTATCATTATACTTTTCTDGGGG



2A > G (p.Gly624_Gln641del)


CCTGGTGGTGACAAAGGAGAC′]





4668
NM_000090.3(COL3A1): c.3202 −
1281
COL3A1
[′CTTCTCAATTGAATGTTTTCATCTTRGGGC



2A > G (p.Gly1068_Pro1085del)


CCTGCTGGCCCTGCTGGTGCT′]





4669
NM_000090.3(COL3A1): c.1762 −
1281
COL3A1
[′AGTAAATACCGACCACTTCTTCTTTRGGGT



2A > G (p.Gly588_Gln605del)


GCTCCTGGTAAGAATGGAGAA′]





4670
NM_003611.2(OFD1): c.935 + 706A >
8481
OFD1
[′CTTTTTGGCAATAATGAAAAGGTAARTTGA



G


TCAAGAGAGAGGAAATAGGCA′]





4671
NM_014740.3(EIF4A3): c.809A > G
9775
EIF4A3
[′AGTGATGGTCAGTGTGTCGTAGAGGYCAC



(p.Asp270Gly)


ACAGAGTGTCAAATTTCCACTC′]





4672
NM_001040436.2(YARS2): c.1303A >
51067
YARS2
[′TTTGTTACTTGTTGGTGATTTATGCYGACT



G (p.Ser435Gly)


CCGCCTTCTGTTATCATTCGA′]





4673
NM_000277.1(PAH): c.1157A > G
5053
PAH
[′ACTGTCACGGAGTTCCAGCCCCTCTRTTAC



(p.Tyr386Cys)


GTGGCAGAGAGTTTTAATGAT′]





4674
NM_000277.1(PAH): c.812A > G
5053
PAH
[′TTCCACTGCACACAGTACATCAGACDTGG



(p.His271Arg)


ATCCAAGCCCATGTATACCCCC′]





4675
NM_004820.3(CYP7B1): c.889A > G
9420
CYP7B1
[′ATTGCCCAGAACATAGTTGGAATAGYGTT



(p.Thr297Ala)


TGCCACAGAGGCCCAGAGAAAG′]





4676
NM_024301.4(FKRP): c.1A > G
79147
FKRP
[′CCAGCTAGCCCCAGACTTCGGCCCCRTGCG



(p.Met1Val)


GCTCACCCGCTGCCAGGCTGC′]





4677
NM_001955.4(EDN1): c.271A > G
1906
EDN1
[′GTATGGACTTGGAAGCCCTAGGTCCRAGA



(p.Lys91Glu)


GAGCCTTGGAGAATTTACTTCC′]





4678
NM_198947.3(FAM111B): c.1879A >
374393
FAM111B
[′TAATGTATACTGTATGTTTACCCAARGAAG



G (p.Arg627Gly)


TTTCCTATCAGAGGTTTGGAA′]





4679
NM_001282227.1(CECR1): c.1232A >
51816
CECR1
[′GCCCATGAAGACCTCATAGAAATCAYAGG



G (p.Tyr411Cys)


ACAAGCCTTTGGCACCAAACAT′]





4680
NM_033419.4(PGAP3): c.914A > G
93210
PGAP3
[′TGATTCCTTCAGCAGGTACAGGCTGYCATC



(p.Asp305Gly)


TTCCAGAAAGCTGTGGGCCAA′]





4681
NM_007294.3(BRCA1): c.135 −
672
BRCA1
[′TGTTCTTTCTTTCTTTATAATTTATRGATTT



2A > G


TGCATGCTGAAACTTCTCAA′]





4682
NM_007294.3(BRCA1): c.4676 −
672
BRCA1
[′AAATTAAACTTCTCCCATTCCTTTCRGAGG



2A > G


GAACCCCTTACCTGGAATCTG′]





4683
NM_015474.3(SAMHD1): c.1153A >
25939
SAMHD1
[′GGAAATGACAATCAAGTTTCTTACAYTGT



G (p.Met385Val)


ATCAATAATGTTGCCAACTTTG′]





4684
NM_015474.3(SAMHD1): c.1411 −
25939
SAMHD1
[′TTTTGGAAGAGATTCATAGTCCTCCYGGAA



2A > G


AACACAAGACTCCCCATGTTA′]





4685
NM_000097.5(CPDX): c.980A > G
1371
CPDX
[′ACCAATGCCCCGCCGTTCTCCACGAYGGG



(p.His327Arg)


CTATAAAGAAGTAATCATCACA′]





4686
NM_012338.3(TSPAN12): c.413A >
23554
TSPAN12
[′AAGCCACCGATATCTAGGTAATCCAYAAT



G (p.Tyr138Cys)


TTGTCATCCTGGCTTTCAAAGT′]





4687
NM_000406.2(GNRHR): c.94A > G
2798
GNRHR
[′GTCACTCGGATCTTTCCAGACAAGGYCAG



(p.Thr32Ala)


AGTGGGGAGGTTGCCCTGCATC′]





4688
NM_199189.2(MATR3): c.1864A >
9782
MATR3
[′TGGTTCCCAGAAGACTGAGAGTTCARCCG



G (p.Thr622Ala)


AAGGTAAAGAACAAGAAGAGAA′]





4689
NM_003181.3(T): c.512A > G
6862
T
[′CTGTGGACCCCCAACTCTCACTATGYGGAT



(p.His171Arg)


TCGAGGCTCATACTTATGCAA′]





4690
NM_000321.2(RB1): c.1927A > G
5925
RB1
[′AGCCTTCCAGACCCAGAAGCCATTGRAAT



(p.Lys643 Glu)


CTACCTCTCTTTCACTGTTTTA′]





4691
NM_002234.3(KCNA5): c.143A > G
3741
KCNA5
[′GCTGGGCTCAGCGATGGGCCCAAGGRGCC



(p.Glu48Gly)


GGCGCCAAAGGGGCGCGGCGCG′]





4692
NM_178014.3(TUBB): c.895A > G
203068
TUBB
[′CCAGCAGGTCTTCGATGCCAAGAACRTGA



(p.Met299Val)


TGGCTGCCTGTGACCCCCGCCM





4693
NM_000136.2(FANCC): c.-78 −
2176
FANCC
[′TGCTTCTATTTGTTCCCTTTCTTACRGATTT



2A > G


AATGTGTGCCGACCATTTCC′]





4694
NM_000546.5(TP53): c.488A > G
7157
TP53
[′CTCCGTCATGTGCTGTGACTGCTTGYAGAT



(p.Tyr163Cys)


GGCCATGGCGCGGACGCGGGT′]





4695
NM_000546.5(TP53): c.659A > G
7157
TP53
[′TTTCGACATAGTGTGGTGGTGCCCTVTGAG



(p.Tyr220Cys)


CCGCCTGAGGTCTGGTTTGCA′]





4696
NM_000546.5(TP53): c.701A > G
7157
TP53
[′GGCTCTGACTGTACCACCATCCACTRCAAC



(p.Tyr234Cys)


TACATGTGTAACAGTTCCTGC′]





4697
NM_002878.3(RAD51D): c.1A > G
−1

[′CACAGTCCGACCCTGAGCACGCCCAYGTT



(p.Met1Val)


CCCCGCAGGCCGGAACAGCCCC′]





4698
NM_058216.2(RAD51C): c.706 −
5889
RAD51C
[′ATCTAATATTATCTCTTCTGTATTTRGGTTC



2A > G


GACTAGTGATAGTGGATGGT′]





4699
NM_015713.4(RRM2B): c.556A > G
50484
RRM2B
[′TCTACAGCAGCAAAGGCCACCACTCYTTC



(p.Arg186Gly)


CCCTGGGAGACATAAAATCGTT′]





4700
NM_015713.4(RRM2B): c.581A > G
50484
RRM2B
[′AAAAGATCCTGAGAAGAAAACTCCTYCTA



(p.Glu194Gly)


CAGCAGCAAAGGCCACCACTCT′]





4701
NM_000219.5(KCNE1): c.242A > G
3753
KCNE1
[′CACTCGAACGACCCATTCAACGTCTDCATC



(p.Tyr81Cys)


GAGTCCGATGCCTGGCAAGAG′]





4702
NM_000271.4(NPC1): c.1832A > G
4864
NPC1
[′TTCACTGCTGAACGAAGTATTGAAGRTGA



(p.Asp611Gly)


ACTAAATCGTGAAAGTGACAGT′]





4703
NM_000257.3(MYH7): c.1952A > G
4625
MYH7
[′CTGGGGCTGTGTCCCACTCACCCTGYGCAG



(p.His651Arg)


AGCTGACACAGTCTGAAAGGA′]





4704
NM_000540.2(RYR1): c.7043A > G
6261
RYR1
[′GGGTGGCCAGGCGAGAGCGTGGAGGRGA



(p.Glu2348Gly)


ACGCCAATGTGGTGGTGCGGCTG′]





4705
NM_058216.2(RAD51C): c.1027 −
5889
RAD51C
[′TTTGTATATATATTTTTTATCTTTCRGCCTC



2A > G


AGGGATTTAGAGATACTGTT′]





4706
NM_130838.1(UBE3A): c.1694 −
7337
UBE3A
[′TGTATTTTTAAAAATCATTTCTTATRGGTA



2A > G


TGTTCACATACGATGAATCTA′]





4707
NM_022168.3(IFIH1): c.1009A > G
64135
IFIH1
[′TCCTTGGCAATGTAAACAGCCACTCYGGTT



(p.Arg337Gly)


TTTCCACTCCCTGTAGGGAGG′]





4708
NM_022068.3(PIEZO2): c.2134A >
63895
PIEZO2
[′GCCACACAGAACAGGAACAGCACCAYGTA



G (p.Met712Val)


GATGATTTTGTACATTACGATT′]





4709
NM_001164342.2(ZBTB20): c.1787A >
26137
ZBTB20
[′ACCGCCAAACAGAACTACGTCAAGCRCAT



G (p.His596Arg)


GTTCGTACACACAGGTGAGTGT′]





4710
NM_001128159.2(VPS53): c.2084A >
55275
VPS53
[′TGCCTGATACTACGTCCATCTCACCYGTTC



G (p.Gln695Arg)


TGCTCCCACCATGCTAATTGG′]





4711
NM_003108.3(SOX11): c.347A > G
6664
SOX11
[′AAGCACATGGCCGACTACCCCGACTRCAA



(p.Tyr116Cys)


GTACCGGCCCCGGAAAAAGCCC′]





4712
NM_020435.3(GJC2): c.-170A > G
57165
GJC2
[′TTCAGACCCTGAGGCCGAGGGGGGARCAA






TGGGGCCCTTGAGGGCCCCTCC′]





4713
NM_004817.3(TJP2): c.1992 − 2A > G
9414
TJP2
[′GATTTACTTCCCGTGGTTTCTTCTCRGAGC






TGAACAAATGGCCAGTGTTCA′]





4714
NM_017565.3(FAM20A): c.720 −
−1

[′GGTGTCTCCTCATCTCGCTGCTGTCYGGAA



2A > G


GGAAGGAAGGAATCACGCCCT′]





4715
NM_002764.3(PRPS1): c.343A > G
5631
PRPS1
[′AATCTCAGCCAAGCTTGTTGCAAATRTGCT



(p.Met115Val)


ATCTGTAGCAGGTGCAGATCA′]





4716
NM_000216.2(ANOS1): c.1A > G
3730
ANOS1
[′TCGCCCTCGCCCTCGACCCGCAGCCRTGGT



(p.Met1Val)


GCCCGGGGTGCCCGGCGCGGT′]





4717
NM_031229.2(RBCK1): c.1160A >
10616
RBCK1
[′TGGTGCTTCTTTGAGGATGATGTCARTGAG



G (p.Asn387Ser)


TTCACCTGCCCTGTGTGTTTC′]





4718
NM_015599.2(PGM3): c.737A > G
5238
PGM3
[′CACAAAGTCAGCTCCACATAAATGAYTGA



(p.Asn246Ser)


GTTTGCCCTTGGACCCATCATT′]





4719
NM_015599.2(PGM3): c.1352A > G
5238
PGM3
[′TTTCTCTCACACCTGAACTTTAAGTYGTCT



(p.Gln451Arg)


GTTTGGAAGATCTGTATAGAG′]





4720
NM_000535.5(PMS2): c.904 − 2A > G
5395
PMS2
[′CTTTTCTACTCCTTGTATTTTGTGCRGGTCT






GCAGACTCGTGAATGAGGTC′]





4721
NM_000546.5(TP53): c.358A > G
7157
TP53
[′GGGCTTCTTGCATTCTGGGACAGCCDAGTC



(p.Lys120Glu)


TGTGACTTGCACGGTCAGTTG′]





4722
NM_000546.5(TP53): c.842A > G
7157
TP53
[′CGTGTTTGTGCCTGTCCTGGGAGAGDCCGG



(p.Asp281Gly)


CGCACAGAGGAAGAGAATCTC′]





4723
NM_001128425.1(MUTYH): c.1187 −
4595
MUTYH
[′CCCCTGCCTGGCTGCCCTCCCTCTCRGGTC



2A > G


TGCTGGCAGGACTGTGGGAGT′]





4724
NM_000546.5(TP53): c.1101 − 2A > G 
7157
TP53
[′TCTCCTCCCTGCTTCTGTCTCCTACRGCCAC






CTGAAGTCCAAAAAGGGTCA′]





4725
NM_000314.6(PTEN): c.493  − 2A > G
5728
PTEN
[′GGCTTCTCTTTTTTTTCTGTCCACCRGGGA






GTAACTATTCCCAGTCAGAGG′]





4726
NM_000051.3(ATM): c.3994 − 2A > G
472
ATM
[′ATATATTTTAATTTTGTGCCCTTGCRGATT






GATCACTTATTCATTAGTAAT′]





4727
NM_000314.6(PTEN): c.403A > G
5728
PTEN
[′TGGAAAGGGACGAACTGGTGTAATGRTAT



(p.Ile135Val)


GTGCATATTTATTACATCGGGG′]





4728
NM_000249.3(MLH1): c.117 − 2A > G
4292
MLH1
[′TAAATTATTTTCTGTTTGATTTGCCDGTTTA






GATGCAAAATCCACAAGTAT′]





4729
NM_025150.4(TARS2): c.695 + 3A >
80222
TARS2
[′GGTCCAACAGCAACAGTATATGGGTRAGA



G


GTTGTCAAGATTAAGGCAAACA′]





4730
NM_206933.2(USH2A): c.10544A >
7399
USH2A
[′TGGACCAAAATAGACAATCTTGAAGVTAC



G (p.Asp3515Gly)


AATTGTCTTAAACTGGAGAAAA′]





4731
NM_000834.3(GRIN2B): c.1238A >
2904
GRIN2B
[′CATCTGAGCATTGTGACCCTGGAGGRGGC



G (p.Glu413Gly)


ACCATTTGTCATTGTGGAAAGT′]





4732
NM_004830.3(MED23): c.3638A >
9439
MED23
[′TGTAGCTATACGTTAGCTCTTGCACRTGCT



G (p.His1213Arg)


GTGTGGCACCATTCTAGCATC′]





4733
NM_003159.2(CDKL5): c.125A > G
6792
CDKL5
[′GAAACACATGAAATTGTGGCGATCARGAA



(p.Lys42Arg)


ATTCAAGGACAGTGAAGGTAGA′]





4734
NM_003159.2(CDKL5): c.380A > G
6792
CDKL5
[′CTAATCAAGGCTATTCACTGGTGCCRTAAG



(p.His127Arg)


AATGATATTGTCCATCGAGGT′]





4735
NM_003159.2(CDKL5): c.578A > G
6792
CDKL5
[′AGCGCTCCCTATGGAAAGTCCGTGGRCAT



(p.Asp193Gly)


GTGGTCGGTGGGCTGTATTCTT′]





4736
NM_198282.3(TMEM173): c.461A <
340061
TMEM173
[′TGACCATGCCAGCCCATGGGCCACGYTGA



G (p.Asn154Ser)


AATTCCCTTTTTCACACACTGC′]





4737
NM_032018.6(SPRTN): c.350A > G
83932
SPRTN
[′CTCCTGCATGAAATGATACATGCCTRTTTA



(p.Tyr117Cys)


TTTGTCACTAATAACGACAAA′]





4738
NM_001759.3(CCND2): c.838A > G
894
CCND2
[′GGAGGATGAACTGGACCAAGCCAGCRCCC



(p.Thr280Ala)


CTACAGACGTGCGGGATATCGA′]





4739
NM_007315.3(STAT1): c.854A > G
6772
STAT1
[′AGGGTCATGTTCGTAGGTGTATTTCYGTTC



(p.Gln285Arg)


CAATTCCTCCAACTTTTTAAG′]





4740
NM_139276.2(STAT3): c.1175A > G
6774
STAT3
[′GTTGGATTCTTCCATGTTCATCACTYTTGT



(p.Lys392Arg)


GTTTGTGCCCAGAATGTTAAA′]





4741
NM_001037811.2(HSD17B10): c.257A >
3028
HSD17B10
[′GATGCCTGCACAGTTGACAGCTACAYCCA



G (p.Asp86Gly)


CACGGCCAAACTTTCCTTTTGC′]





4742
NM_005726.5(TSFM): c.57 + 4A > G
10102
TSFM
[′CGCGCGGACCGGGAGCTACCCGGTGRGAA






GTCCTGGTGCTGGTACCGACCT′]





4743
NM_000166.5(GJB1): c.580A > G
2705
GJB1
[′CGAGAAAACCGTCTTCACCGTCTTCRTGCT



(p.Met194Val)


AGCTGCCTCTGGCATCTGCAT′]





4744
NM_001077494.3(NFKB2): c.2594A >
4791
NFKB2
[′TTACCCCCAGCAGAGGTGAAGGAAGRCAG



G (p.Asp865Gly)


TGCGTACGGGAGCCAGTCAGTG′]





4745
NC_012920.1: m.5559A > G
4578
MT-TW
[′TGTTACAGAAATTAAGTATTGCAACYTACT






GAGGGCTTTGAAGGCTCTTGG′]





4746
NC_012920.1: m.13514A > G
4540
MT-NDS
[′TTCCTCACAGGTTTCTACTCCAAAGRCCAC






ATCATCGAAACCGCAAACATA′]





4747
NM_007315.3(STAT1): c.2018A > G
6772
STAT1
[′GTAATACTTTCCAAAGGCATGGTCTYTGTC



(p.Lys673Arg)


AATATTTGGATACAGATACTT′]





4748
NM_007315.3(STAT1): c.1909A > G
6772
STAT1
[′GGGAAAGTAACAGCAGAAAGTTCTTYCTT



(p.Lys637 Glu)


CGTGTAGGGTTCAACCGCATGG′]





4749
NM_000060.3(BTD): c.683A > G
686
BTD
[′GCATTCGATGTTCCTCTTAAAGTGGRTCTC



(p.Asp228Gly)


ATCACCTTTGATACCCCCTTT′]





4750
NM_004992.3(MECP2): c.27 − 2A > G
4204
MECP2
[′TACTTACATACTTGTTTAACACTTCRGGGA






AGAAAAGTCAGAAGACCAGGA′]





4751
NM_004992.3(MECP2): c.378 −
4204
MECP2
[′CTTGTGTCTTTCTGTTTGTCCCCACNGTCCC



2A > G


CAGGGAAAAGCCTTTCGCTC′]





4752
NM_003159.2(CDKL5): c.100 −
6792
CDKL5
[′TTTCCTTCTGCTTCTTTTCCCTTGCRGGAAA



2A > G


CACATGAAATTGTGGCGATC′]





4753
NM_003159.2(CDKL5): c.464 −
6792
CDKL5
[′ACAACTTTGGACTTTGCTATCTTTCRGGTT



2A > G


TTGCTCGTAATCTGTCAGAAG′]





4754
NM_003159.2(CDKL5): c.978 −
6792
CDKL5
[′GATATACTTCTTTTGTTTTTAACATRGAAA



2A > G


CCAAGCCGGCAAAAGTACTGC′]





4755
NM_032492.3(JAGN1): c.485A > G
84522
JAGN1
[′TTGGCAGTGCAAGTGCATGCCTGGCRGTTG



(p.Gln162Arg)


TACTACAGCAAGAAGCTCCTA′]





4756
NM_178517.3(PIGW): c.499A > G
284098
PIGW
[′AACTGAGCTCTATGGGACAGGAGCARTGG



(p.Met167Val)


ATTTTGGAGTAGGTGGCTTTGT′]





4757
NM_004387.3(NKX2-5): c.461A > G
1482
NKX2-5
[′TCGCAGGCGCAGGTCTATGAGCTGGRGCG



(p.Glu154Gly)


GCGCTTCAAGCAGCAGCGGTAC′]





4758
NM_005859.4(PURA): c.289A > G
5813
PURA
[′CGCCGAGGTGGGCGCGGGCGGCAACRAGA



(p.Lys97Glu)


GCCGCCTTACTCTCTCCATGTC′]





4759
NM_004046.5(ATP5A1): c.962A > G
498
ATP5A1
[′GCGGAGCAACAGAGACATCTGACGGHAAG



(p.Tyr321Cys)


CAACAGCCTATGGTACAGAATA′]





4760
NM_000038.5(APC): c.1744 − 2A > G
324
APC
[′GATGACCCATATTCTGTTTCTTACTRGGAA






TCAACCCTCAAAAGCGTATTG′]





4761
NM_000751.2(CHRND): c.1319A >
1144
CHRND
[′TTCAATGAGCTGAAGCCAGCTGTGGWTGG



G (p.Asp440Gly)


GGCAAACTTCATTGTTAACCAC′]





4762
NM_130466.3(UBE3B): c.1A > G
89910
UBE3B
[′GCAGGGTTTGTGCAAGTTTGCAAACRTGTT



(p.Met1Val)


CACCCTGTCTCAGACCTCGAG′]





4763
NM_003159.2(CDKL5): c.211A > G
6792
CDKL5
[′AATGCTTCGGACTCTCAAGCAGGAARACA



(p.Asn7lAsp)


TTGTGGAGTTGAAGGAAGCATT′]





4764
NM_003159.2(CDKL5): c.404 −
6792
CDKL5
[′AATTTTTTTTTTATCTTGACACTCCRGATAT



2A > G


AAAACCAGAAAATCTCTTAA′]





4765
NM_003159.2(CDKL5): c.449A > G
6792
CDKL5
[′TTAATCAGCCACAATGATGTCCTAARACTG



(p.Lys150Arg)


TGTGACTTTGGTAAGTTAAAA′]





4766
NM_001813.2(CENPE): c.4063A > G
1062
CENPE
[′ACTTCAAGGGCTTCTTTTATCGTTTYAAGG



(p.Lys1355Glu)


TTGTCTCTTTCCTTGGTTAGA′]





4767
NM_023073.3(C5orf42): c.3290 −
65250
C5orf42
[′ATTTTACCAAATTTTTGTATTTGATRGATC



2A > G


CCATTGAAGAGGAAGATGCAA′]





4768
NM_002977.3(SCN9A): c.2215A > G
−1

[′GTGTTTAAAACTATGCAAATGGTAAYTGC



(p.Ile739Val)


AAGATCTACAAAAGGATCCATT′]





4769
NM_002354.2(EPCAM): c.556 −
4072
EPCAM
[′TATTAGTATTAATTTGTATTATTCANTTTTT



14A > G


TTCCCCAGTATGAGAATAAT′]





4770
NM_002354.2(EPCAM): c.492 −
4072
EPCAM
[′TTAATACAGATTTTAAATTCTTTACRGTGC



2A > G


ACTTCAGAAGGAGATCACAAC′]





4771
NM_000053.3(ATP7B): c.122A > G
540
ATP7B
[′ATCCAGACCACCTTCATAGCCAACAYTGTC



(p.Asn41Ser)


AAAAGCAAAACTCTTCTTCAT′]





4772
NM_022455.4(NSD1): c.4498 −
64324
NSD1
[′ATGTGGGACATTATTTTTTCTTTGCRAGGG



3A > G


AGAACTAATGCCTCACAGGAC′]





4773
NM_022455.4(NSD1): c.5893 −
64324
NSD1
[′TAAGTCAGGAGGTATTTCTTGTTCTRGGGT



2A > G


GAATTTGTGAATGAGTATGTG′]





4774
NM_022455.4(NSD1): c.6059A > G
64324
NSD1
[′AAAGGAAACTATGCTCGGTTCATGARTCA



(p.Asn2020Ser)


TTGCTGCCAGCCCAACTGTGAA′]





4775
NM_022455.4(NSD1): c.6356A > G
64324
NSD1
[′GGTGAAATCACAAAGGAGCGAGAAGRTGA



(p.Asp2119Gly)


GTGTTTTAGTTGTGGGGATGCT′]





4776
NM_133433.3(NIPBL): c.737A > G
25836
NIPBL
[′AATCCTAGACATGGTTCAAGTGAGGRCTA



(p.Asp246 Gly)


CCTACACATGGTGCACAGGCTA′]





4777
NM_133433.3(NIPBL): c.5428 −
25836
NIPBL
[′TGTTTTTTTCTCTTCATTTTTCTTTRGCTTG



2A > G


ATATGCAACGAGGTGTTCAT′]





4778
NM_005249.4(FOXG1): c.757A > G
2290
FOXG1
[′CCACTACGACGACCCGGGCAAGGGCRACT



(p.Asn253Asp)


ACTGGATGCTGGACCCGTCGAG′]





4779
NM_004380.2(CREBBP): c.4508A >
1387
CREBBP
[′AAGCCAAAACGACTGCAGGAGTGGTRCAA



G (p.Tyr1503Cys)


AAAGATGCTGGACAAGGCGTTT′]





4780
NM_004380.2(CREBBP): c.3983 −
1387
CREBBP
[′CTCACCTGCTCCTTCTGGACTTCCTRGGGC



2A > G


TGCAGACCACAAGACTGGGAA′]





4781
NM_001083962.1(TCF4): c.991 −
6925
TCF4
[′TTTTTTTTTTCTCCTTATTGTTTTARGATCT



2A > G


ATTCTCCAGATCACACTAAC′]





4782
NM_178151.2(DCX): c.1027 − 2A > G
1641
DCX
[′TTAACTTTGTCTCTTCTCTTCTTATRGGACC






TGTACCTGCCTCTGTCCTTG′]





4783
NM_178151.2(DCX): c.607A > G
1641
DCX
[′TGTGCGTGTGCTTCTGAACAAGAAGRCAG



(p.Thr203Ala)


CCCACTCTTTTGAGCAAGTCCT′]





4784
NM_178151.2(DCX): c.538A > G
1641
DCX
[′GGAGAACAAGGACTTTGTGCGCCCCRAGC



(p.Lys180Glu)


TGGTTACCATCATCCGCAGTGG′]





4785
NM_178151.2(DCX): c.520A > G
1641
DCX
[′CAACAGTGCACAGGCCAGGGAGAACRAGG



(p.Lys174Glu)


ACTTTGTGCGCCCCAAGCTGGT′]





4786
NM_178151.2(DCX): c.451A > G
1641
DCX
[′CAATCCCAACTGGTCTGTCAACGTADAAA



(p.Lys151Glu)


CATCTGCCAATATGAAAGCCCC′]





4787
NM_178151.2(DCX): c.413A > G
1641
DCX
[′GACAACTTCTTTAAAAAGGTGGAGTRCAC



(p.Tyr138Cys)


CAAGAATGTCAATCCCAACTGG′]





4788
NM_000252.2(MTM1): c.301A > G
4534
MTM1
[′AATTGAAAAAATGGGAGGCGCGACARGTA



(p.Ser101Gly)


GAGGAGAAAATTCCTATGGTCT′]





4789
NM_000252.2(MTM1): c.343 −
4534
MTM1
[′ACTGTCATACTTCTCCTTTGCCCCCRGGAC



2A > G


ATGAGAAACCTGAGGTTCGCT′]





4790
NM_000252.2(MTM1): c.529 −
4534
MTM1
[′GACTTGAATTTCTTTTTTTCCTCACRGGGCT



2A > G


TGCCCAATCACCATTGGAGA′]





4791
NM_000252.2(MTM1): c.550A > G
4534
MTM1
[′ACAGGGCTTGCCCAATCACCATTGGRGAA



(p.Arg184Gly)


TAACTTTTATTAATAAGTGCTA′]





4792
NM_000252.2(MTM1): c.629A > G
4534
MTM1
[′TTGGTGGTTCCGTATCGTGCCTCAGRTGAT



(p.Asp210Gly)


GACCTCCGGAGAGTTGCAACT′]





4793
NM_000252.2(MTM1): c.1406A > G
4534
MTM1
[′CAATTTTTGATTATAATTTTGGATCRTCTGT



(p.His469Arg)


ATAGTTGCCGATTTGGTACT′]





4794
NM_003159.2(CDKL5): c.62A > G
6792
CDKL5
[′TTTGAGATCCTTGGGGTTGTAGGTGRAGGT



(p.Glu21Gly)


AAGTTGGAATTTTTGCGTTCC′]





4795
NM_006306.3(SMC1A): c.3254A >
8243
SMC1A
[′GTGGCTACCAACATTGATGAGATCTRTAA



G (p.Tyr1085Cys)


GGCCCTGTCCCGCAATAGCAGT′]





4796
NM_006306.3(SMC1A): c.616 −
8243
SMC1A
[′CCTGCCACCATTCCCCTGTTTGCACRGGCT



2A > G


GACCGGTACCAGCGCCTGAAG′]





4797
NM_003937.2(KYNU): c.592A > G
8942
KYNU
[′GCCTAACTTGATTTAGGGGGAAGAARCCT



(p.Thr198Ala)


TAAGAATAGAGGATATCCTTGA′]





4798
NM_005343.2(HRAS): c.182A > G
−1

[′TTGGACATCCTGGATACCGCCGGCCNGGA



(p.Gln6lArg)


GGAGTACAGCGCCATGCGGGAC′]





4799
NM_012275.2(IL36RN): c.104A > G
26525
IL36RN
[′CTAGCTGGAGGGCTGCATGCAGGGARGGT



(p.Lys35Arg)


CATTAAAGGTTGGTGATGAAAC′]





4800
NM_152296.4(ATP1A3): c.2318A >
478
ATP1A3
[′TCCATTGCCTACACCCTGACCAGCADTATC



G (p.Asn773Ser)


CCGGAGATCACGCCCTTCCTG′]





4801
NM_000891.2(KCNJ2): c.953A > G
3759
KCNJ2
[′CAGTGCCGTAGCTCTTATCTAGCAARTGAA



(p.Asn318Ser)


ATCCTGTGGGGCCACCGCTAT]





4802
NM_017909.3(RMND1): c.713A > G
55005
RMND1
[′TACACTTACAGTTTTGTCTTTCACAYTCCA



(p.Asn238Ser)


AAACACAGCAGCTCCTTCCCT]





4803
NM_005154.4(USP8): c.2150A > G
9101
USP8
[′GAACCTTCCAAACTGAAGCGCTCCTDCTCC



(p.Tyr717Cys)


TCCCCAGATATAACCCAGGCT′]





4804
NM_014191.3(SCN8A): c.667A > G
6334
SCN8A
[′CAATGTTTCAGCTCTACGCACTTTCRGGGT



(p.Arg223Gly)


ACTGAGGGCTTTGAAAACTAT′]





4805
NM_021830.4(C10orf2): c.1754A >
56652
C10orf2
[′CCCCAGGCAAGCCAGGAAGCAGACARTGT



G (p.Asn585Ser)


TCTGATCCTGCAGGACAGGAAG′]





4806
NM_001164405.1(BHLHA9): c.211A >
727857
BHLHA9
[′GTCCAAGGCGCGGCGCATGGCCGCCRACG



G (p.Asn7lAsp)


TGCGGGAGCGCAAGCGCATCCT′]





4807
NM_002887.3(RARS): c.5A > G
5917
RARS
[′GAGTGAGACGCTGATGGGAGGATGGRCGT



(p.Asp2 Gly)


ACTGGTGTCTGAGTGCTCCGCG′]





4808
NM_002887.3(RARS): c.1A > G
5917
RARS
[′TGGCGAGTGAGACGCTGATGGGAGGRTGG



(p.Met1Val)


ACGTACTGGTGTCTGAGTGCTC′]





4809
NM_005861.3(STUB1): c.194A > G
10273
STUB1
[′CCGCTGGTGGCCGTGTATTACACCARCCGG



(p.Asn65Ser)


GCCTTGTGCTACCTGAAGATG′]





4810
NM_005211.3(CSF1R): c.2655 −
1436
CSF1R
[′ATGGGCATCCTCTGTCCTATCTCCCRGATA



2A > G


CAGCATCATGCAGGCCTGCTG′]





4811
NM_032228.5(FAR1): c.1094A > G
84188
FAR1
[′CATAAGGCCCCAGCATTCCTGTATGRTATC



(p.Asp365Gly)


TACCTCAGGATGACTGGAAGA′]



















4812
NM_020461.3(TUBGCP6): c.2546A >
85378
TUBGCP6
[′GCCATCCCAGGCAGGCGAGTGTTGCYCTG



G (p.Glu849Gly)


CAGACCCAGAATCACAGCCTTG′]





4813
NM_014305.3(TGDS): c.269A > G
23483
TGDS
[′TTTGTGAAACTGCTTTTTGAAACAGRGAAA



(p.Glu90Gly)


ATAGATATAGTACTACATTTT′]





4814
NM_014305.3(TGDS): c.892A > G
23483
TGDS
[′TCTGTTTTGTTTTCCAAGACCCACCRATGA



(p.Asn298Asp)


CATGAGATACCCAATGAAGTC′]





4815
NM_000118.3(ENG): c.1273 − 2A > G
2022
ENG
[′GCTCGACAGGATATTGACCACCGCCYGCG






GGGATAAAGCCAGGGAGCTGGT′]





4816
NM_005360.4(MAF): c.172A > G
4094
MAF
[′CATCGCCGGGGGCTCGCTGTCCTCCRCCCC



(p.Thr58Ala)


CATGAGCACGCCGTGCAGCTC′]





4817
NM_002238.3(KCNH1): c.1399A >
3756
KCNH1
[′ACCTCTAGCACTTCTCTATGCCACCRTCTT



G (p.Ile467Val)


CGGGAATGTGACGACTATTTT′]





4818
NM_172362.2(KCNH1): c.1508A >
3756
KCNH1
[′TTCGGGAATGTGACGACTATTTTCCRACAG



G (p.Gln503Arg)


ATGTATGCCAACACCAACAGA′]





4819
NM_003392.4(WNT5A): c.257A > G
7474
WNT5A
[′GGACAGAAGAAACTGTGCCACTTGTRTCA



(p.Tyr86Cys)


GGACCACATGCAGTACATCGGA′]





4820
NM_001199252.2(SGOL1): c.67A >
−1

[GCCAAGTTTTTATTCCTTTTCTCTTYCATTC



G (p.Lys23Glu)


GCTTCTTTATGTCTTCAAGA′]





4821
NM_000256.3(MYBPC3): c.2906 −
4607
MYBPC3
[′ACTTAGCTACCCACTCTATACCCACRGAAC



2A > G


GGCCACGGCTTCAGCTGCCCA′]





4822
NM_000256.3(MYBPC3): c.1213A >
4607
MYBPC3
[′GCTCAAGAATGGCCAGGAGATCCAGRTGA



G (p.Met405Val)


GCGGCAGGTGCAGCCTGGGGTG′]





4823
NM_005188.3(CBL): c.1228 − 2A > G
867
CBL
[′TGTTACTATCTTTTGCTTCTTCTGCRGGAAT






CAGAAGGTCAGGGCTGTCCT′]





4824
NM_000257.3(MYH7): c.5326A > G
4625
MYH7
[′TTCTTCATGCGCTCCAGGTGGGCGCYGGTG



(p.Ser1776Gly)


TCCTGCTCCTTCTTCAGCTCC′]





4825
NM_000257.3(MYH7): c.2708A > G
4625
MYH7
[′CAAGACAACCTGGCAGATGCTGAGGRGCG



(p.Glu903Gly)


CTGTGATCAGCTGATCAAAAAC′]





4826
NM_000257.3(MYH7): c.1727A > G
4625
MYH7
[′AATATCAAGGGGAAGCCTGAAGCCCRCTT



(p.His576Arg)


CTCCCTGATCCACTATGCCGGC′]





4827
NM_000257.3(MYH7): c.1496A > G
4625
MYH7
[′CACCACATGTTTGTGCTGGAGCAGGRGGA



(p.Glu499Gly)


GTACAAGAAGGAGGGCATCGAG′]





4828
NM_000257.3(MYH7): c.2539A > G
4625
MYH7
[′GCTGCTGAAGAGTGCAGAAAGAGAGRAGG



(p.Lys847Glu)


AGATGGCCTCCATGAAGGAGGA′]





4829
NM_000257.3(MYH7): c.1954A > G
4625
MYH7
[′CTTTCAGACTGTGTCAGCTCTGCACRGGGT



(p.Arg652Gly)


GAGTGGGACACAGCCCCAGCC′]





4830
NM_000257.3(MYH7): c.1157A > G
4625
MYH7
[′CTTCCAGAGGCTGACAAGTCTGCCTRCCTC



(p.Tyr386Cys)


ATGGGGCTGAACTCAGCCGAC′]





4831
NM_000501.3(ELN): c.800 − 2A > G
2006
ELN
[′TACATTGCACTGTCCCCATCTCAACRGGTG






CTGGAGCAGCCGGAGTCCTCC′]





4832
NM_000117.2(EMD): c.266 − 2A > G
2010
EMD
[′TCTGCTACCGCTGCCCCCCTTCCCARGGCT






ACAATGACGACTACTATGAAG′]





4833
NM_000191.2(HMGCL): c.698A > G
3155
HMGCL
[′GTGCCTCTGGCTGCCCTGGCTGTCCRCTGC



(p.His233Arg)


CATGACACCTATGGTCAAGCC′]





4834
NM_207352.3(CYP4V2): c.1393A >
285440
CYP4V2
[′CTACGTGCCCTTCTCTGCTGGCCCCRGGAA



G (p.Arg465Gly)


CTGTATAGGTTTGTATCCATC′]





4835
NM_013382.5(POMT2): c.1726 −
29954
POMT2
[′GTCAGCAGGGTGGTCTCTATTCCACRGGGC



2A > G


CTACGCTTCTCAGGGGTCAAT′]





4836
NM_000169.2(GLA): c.802 − 2A > G
−1

[′TTTGAATTATTTCATTCTTTTTCTCRGTTAG






TGATTGGCAACTTTGGCCTC′]





4837
NM_020166.4(MCCC1): c.137 −
56922
MCCC1
[′GTGTGATTTTCATGGTGTTTTAAACRGGAA



2A > G


GAAACATTACCAAGGTCCTCA′]





4838
NM_006920.4(SCN1A): c.2557 −
6323
SCN1A
[′AATATATATTAATCTTTCATTTTCCRGCTG



2A > G


CGAGTTTTCAAGTTGGCAAAA′]





4839
NM_000501.3(ELN): c.890 − 2A > G
2006
ELN
[′CCTCACCCTCTGTGGCTGTGTTTTCRGGCG






TTGGGACTCCAGCTGCAGCTG′]





4840
NM_006306.3(SMC1A): c.2974 −
8243
SMC1A
[′TGACATTGCTGGGCCTGGGGCTTACRGGAT



2A > G


GCCCAGGCTGAGGAAGAGATC′]





4841
NM_001110792.1(MECP2): c.520A >
4204
MECP2
[′TGATTTTGACTTCACGGTAACTGGGRGAGG



G (p.Arg174Gly)


GAGCCCCTCCCGGCGAGAGCA′]





4842
NM_004646.3(NPHS1): c.1756A > G
4868
NPHS1
[′CTTGTCCTGGGACAAGGAAGGGGAGRGGT



(p.Arg586Gly)


GGGAGTGCGAGGGATCCCTCCC′]





4843
NM_003002.3(SDHD): c.275A > G
6392
SDHD
[′TATTTGAATCCTTGCTCTGCGATGGRCTAT



(p.Asp92 Gly)


TCCCTGGCTGCAGCCCTCACT′]





4844
NM_004793.3(LONP1): c.2353A > G
9361
LONP1
[′CACGCTGTTTGTGGAGACATCCCTGRGACG



(p.Arg785Gly)


GCCACAGGACAAGGATGCCAA′]





4845
NC_012920.1: m.4279A > G
4565
MT-TI
[′TCAAACCTAAGAAATATGTCTGATARAAG






AGTTACTTTGATAGAGTAAATA′]





4846
NM_005633.3(SOS1): c.1430A > G
6654
SOS1
[′ATTTGCTGTAAATCAAATCATGGGCRGCCA



(p.Gln477Arg)


AGACTTCCTGGTGCTAGCAAT′]





4847
NM_000256.3(MYBPC3): c.1227 −
4607
MYBPC3
[′TGCCACTTCCCTGCGGCCCCCACCCRGGTA



2A > G


CATCTTTGAGTCCATCGGTGC′]





4848
NM_002834.3(PTPN11): c.661A > G
5781
PTPN11
[′CGATCAGCCCCTTAACACGACTCGTDTAA



(p.Ile221Val)


ATGCTGCTGAAATAGAAAGCAG′]





4849
NM_000257.3(MYH7): c.4664A > G
−1

[′TCCCAGGCCTCCCTGGAGCACGAGGRGGG



(p.Glu1555Gly)


CAAGATCCTCCGGGCCCAGCTG′]





4850
NM_000257.3(MYH7): c.2792A > G
4625
MYH7
[′AACGAGAGGCTGGAGGATGAGGAGGRGA



(p.Glu931Gly)


TGAATGCTGAGCTCACTGCCAAG′]





4851
NM_000257.3(MYH7): c.2087A > G
4625
MYH7
[′CTGGTCATGCACCAGCTGCGCTGCARTGGT



(p.Asn696Ser)


GTGCTGGAGGGCATCCGCATC′]





4852
NM_000257.3(MYH7): c.1805A > G
4625
MYH7
[′CTGCAGAAGAACAAGGATCCTCTCARTGA



(p.Asn602Ser)


GACTGTCGTGGGCTTGTATCAG′]





4853
NM_000257.3(MYH7): c.1615A > G
4625
MYH7
[′CATGTCCATCCTGGAAGAGGAGTGCRTGTT



(p.Met539Val)


CCCCAAGGCCACCGACATGAC′]





4854
NM_000257.3(MYH7): c.1477A > G
4625
MYH7
[′GCTGCAGCAGTTCTTCAACCACCACRTGTT



(p.Met493Val)


TGTGCTGGAGCAGGAGGAGTA′]





4855
NM_000257.3(MYH7): c.1331A > G
4625
MYH7
[′TTCAACTGGATGGTGACGCGCATCAVTGC



(p.Asn444Ser)


CACCCTGGAGACCAAGCAGCCA′]





4856
NM_000257.3(MYH7): c.1315A > G
4625
MYH7
[′AGGGTGGCATTGATGCGCGTCACCAHCCA



(p.Met439Val)


GTTGAACATCCTCTCATACACT′]





4857
NM_000257.3(MYH7): c.1051A > G
4625
MYH7
[′TTCAGAGGAGAAAAACTCCATGTATRAGC



(p.Lys351Glu)


TGACAGGCGCCATCATGCACTT′]





4858
NM_000257.3(MYH7): c.789A > G
4625
MYH7
[′CAGGAAAGTTGGCATCTGCAGACATRGAG



(p.Ile263Met)


ACCTGTGAGTGCCATGAATCTG′]





4859
NM_000257.3(MYH7): c.617A > G
4625
MYH7
[′ATTGCAGCCATTGGGGACCGCAGCARGAA



(p.Lys206Arg)


GGACCAGAGCCCGGGCAAGGTA′]





4860
NM_000363.4(TNNI3): c.616A > G
7137
TNNI3
[′ACTGAGTGGAATGGAGGGCCGCAAGVAAA



(p.Lys206Glu)


AGTTTGAGAGCTGAGCCTTCCT]





4861
NM_000363.4(TNNI3): c.547A > G
7137
TNNI3
[′GCAGGTGAAGAAGGAGGACACCGAGRAG



(p.Lys183Glu)


GTGAGTGTGGGCTAAGGCCAGGA′]





4862
NM_000169.2(GLA): c.370 − 2A > G
−1

[′TGACTCTTTTCCTCCCTCTCATTTCRGGTTC






ACAGCAAAGGACTGAAGCTA′]





4863
NM_000051.3(ATM): c.1A > G
472
ATM
[′GATGTGTGTTCTGAAATTGTGAACCVTGAG



(p.Met1Val)


TCTAGTACTTAATGATCTGCT′]





4864
NM_000051.3(ATM): c.3154 − 2A > G
472
ATM
[′TATTTAACCACAGTTCTTTTCCCGTRGGCT






GATCCTTATTCAAAATGGGCC′]





4865
NM_024675.3(PALB2): c.212 −
79728
PALB2
[′AGTTATATACATTTTTTTCCTCCTCRGAAC



2A > G


CTAAAAATAAAATATGTGTTT′]





4866
NM_024675.3(PALB2): c.109 −
79728
PALB2
[′TTCTGGGGCTGTTTTTGTCTCCTCTRGCGTG



2A > G


CCCAAAGAGCTGAAAAGATT′]





4867
NM_000546.5(TP53): c.709A > G
7157
TP53
[′CTGTACCACCATCCACTACAACTACRTGTG



(p.Met237Val)


TAACAGTTCCTGCATGGGCGG′]





4868
NM_000455.4(STK11): c.889A > G
6794
STK11
[′GATGCTTGAGTACGAACCGGCCAAGRGGT



(p.Arg297Gly)


TCTCCATCCGGCAGATCCGGCA′]





4869
NM_017777.3(MKS1): c.1382A > G
54903
MKS1
[′TCTCTGGAACTGGAGGACCTCTCCTRTGTA



(p.Tyr461Cys)


CGGATACCAGGATCCTTCAAG′]





4870
NM_001231.4(CASQ1): c.731A > G
844
CASQ1
[′ATGGAAGAGCCTGTGACCATCCCAGRCAA



(p.Asp244Gly)


GCCCAATAGCGAAGAGGAGATT′]





4871
NM_001242896.1(DEPDC5): c.2355 −
9681
DEPDC5
[′GTATGAGCAATCATCTGTTGTTTTCRGGAG



2A > G (p.Arg785_Gly839del)


GGACGAAGATGGTGTGCAGAT′]





4872
NM_001039550.1(DNAJB2): c.14A >
3300
DNAJB2
[′TGACCAGTTGCCATGGCATCCTACTRCGAG



G (p.Tyr5Cys)


ATCCTAGACGTGCCGCGAAGT′]





4873
NM_007294.3(BRCA1): c.5057A >
672
BRCA1
[′AATCTAATTACTGAAGAGACTACTCRTGTT



G (p.His1686Arg)


GTTATGAAAACAGGTATACCA′]





4874
NM_006888.4(CALM1): c.389A > G
801
CALM1
[′GTAGATGAAATGATCAGAGAAGCAGRTAT



(p.Asp130Gly)


TGATGGAGACGGACAAGTCAAC′]





4875
NM_001082538.2(TCTN1): c.342 −
79600
TCTN1
[′TTGTATTATTATTTTTTTAATTTTCRGGGGC



2A > G


GACAGCCAGTTTTGTAGTCA′]





4876
NM_003000.2(SDHB): c.541 − 2A > G
6390
SDHB
[′TCCTGCCTCTCTTTTCTCCCCATACRGGAC






GGGCTCTACGAGTGCATTCTC′]





4877
NM_000143.3(FH): c.700A > G
2271
FH
[′AGTGGAACAGCATCCTGAGTATGAGYACG



(p.Thr234Ala)


TCCAATCTTGATGATCTGTGCA′]





4878
NM_000038.5(APC): c.221 − 2A > G
324
APC
[′ATAAAAACTTGTTTCTATTTTATTTRGAGC






TTAACTTAGATAGCAGTAATT′]





4879
NM_000314.6(PTEN): c.527A > G
5728
PTEN
[′ATTCCCAGTCAGAGGCGCTATGTGTRTTAT



(p.Tyr176Cys)


TATAGCTACCTGTTAAAGAAT′]





4880
NM_030813.5(CLPB): c.1850A > G
81570
CLPB
[′CTGGTCGACGGCTACAATGTGCACTRTGGC



(p.Tyr617Cys)


GCCCGCTCCATCAAACATGAG′]





4881
NM_030813.5(CLPB): c.1222A > G
81570
CLPB
[′TCCTGGAACTCGGACATGTCCAGCCHGAT



(p.Arg408Gly)


GAAGCCCTGTGTGGAAACAAGC′]





4882
NM_016069.9(PAM16): c.226A > G
−1

[′CTCACCCGTCCCCTCTCCTCTGCAGRACTA



(p.Asn76Asp)


TGAACACTTATTTAAGGTGAA′]





4883
NM_058163.1(TSR2): c.191A > G
90121
TSR2
[′TACTTAGCTGACTTGGAGCTAGATGRGGTG



(p.Glu64Gly)


GAAGACTTCCTTGGAGAGCTG′]





4884
NM_001031.4(RPS28): c.1A > G
6234
RPS28
[′ATAGGCTGCACACGGCTGGTGTCCAYGAT



(p.Met1Val)


GGCGGCGCGGCGGCGGTCTGGC′]





4885
NM_005957.4(MTHFR): c.1114A >
4524
MTHFR
[′TCCCATCTTCTGGGCCTCCAGACCARAGAG



G (p.Lys372Glu)


TTACATCTACCGTACCCAGGA′]





4886
NM_014946.3(SPAST): c.1165A > G
6683
SPAST
[′CTTTGGTCCACCTGGGAATGGGAAGRCAA



(p.Thr389Ala)


TGCTGGTAAGGGTTCTCTTCAA′]





4887
NM_000228.2(LAMB3): c.565 −
3914
LAMB3
[′TAAATCCATAAGGTTAAGTTGGACCYACA



2A > G


GAGGGAAGGGAAAGAGAAGCGC′]





4888
NM_000492.3(CFTR): c.3368 −
1080
CFTR
[′TCATTTACGTCTTTTGTGCATCTATDGGAG



2A > G


AAGGAGAAGGAAGAGTTGGTA′]





4889
NM_006785.3(MALT1): c.1019 −
10892
MALT1
[′AACACCCCCTTTCTTTTTTTTTCAARGCGA



2A > G


AGGACAAGGTTGCCCTTTTGA′]





4890
NM_004771.3(MMP20): c.611A > G
9313
MMP20
[′GGAGAAGGCCTGGGAGGAGATACACRTTT



(p.His204Arg)


CGACAATGCTGAGAAGTGGACT′]





4891
NM_000918.3(P4HB): c.1178A > G
5034
P4HB
[′CACCCTAGAACTGCTTTCTTTTCAGRTGCC



(p.Tyr393Cys)


CCATGGTGTGGTCACTGCAAA′]





4892
NM_177405.2(CECR1): c.355A > G
51816
CECR1
[′TGCTCGCATCCCGCAGGCTCACCTGYTTCT



(p.Thr119Ala)


CCGGCGTGGAAGAAGTAAGGC′]





4893
NM_004990.3(MARS): c.1031A > G
4141
MARS
[′TACCACATCATCCATGCTGACATCTRCCGC



(p.Tyr344Cys)


TGGTTTAACATTTCGTTTGAT′]





4894
NM_025132.3(WDR19): c.407 −
57728
WDR19
[′TCTGTATAAAAATAATCTCTTTTTCRGGAA



2A > G


AACATACTAAGAGAATCACTT′]





4895
NM_000314.6(PTEN): c.139A > G
5728
PTEN
[′TGCAGAAAGACTTGAAGGCGTATACRGGA



(p.Arg47Gly)


ACAATATTGATGATGTAGTAAG′]





4896
NM_000314.6(PTEN): c.182A > G
5728
PTEN
[′GTTTTAAGGTTTTTGGATTCAAAGCDTAAA



(p.His61Arg)


AACCATTACAAGATATACAAT′]





4897
NM_000314.6(PTEN): c.254 − 2A > G
5728
PTEN
[′TATTCTGAGGTTATCTTTTTACCACRGTTG






CACAATATCCTTTTGAAGACC′]





4898
NM_000314.6(PTEN): c.320A > G
5728
PTEN
[′GAACTTATCAAACCCTTTTGTGAAGRTCTT



(p.Asp107Gly)


GACCAATGGCTAAGTGAAGAT′]





4899
NM_000314.6(PTEN): c.512A > G
5728
PTEN
[′CACCAGGGAGTAACTATTCCCAGTCRGAG



(p.Gln171Arg)


GCGCTATGTGTATTATTATAGC′]





4900
NM_000314.6(PTEN): c.802 − 2A > G
5728
PTEN
[′TTTTCTTTTCTTTTTTTTTTTTTTTDGGACAA






AATGTTTCACTTTTGGGTA′]





4901
NM_001103.3(ACTN2): c.1883A >
88
ACTN2
[′ATCCGCGATCAATCCCTGCAGGAGGRGCT



G (p.Glu628Gly)


GGCTCGCCAGCATGCTAACGAG′]





4902
NM_003159.2(CDKL5): c.462 −
6792
CDKL5
[′GCTTTTAATTGTGTTTGTTTTTTTCRGGGAG



2A > G


TCATTTAATACTTCATGATT′]





4903
NM_003159.2(CDKL5): c.91A > G
6792
CDKL5
[′AGCCTATGGAGTTGTACTTAAATGCRGAC



(p.Arg31Gly)


ACAAGGCAAGTACATTATTTTT′]





4904
NM_003159.2(CDKL5): c.458A > G
6792
CDKL5
[′CACAATGATGTCCTAAAACTGTGTGRCTTT



(p.Asp153Gly)


GGTAAGTTAAAAAGAAATTAA′]





4905
NM_003159.2(CDKL5): c.2277 −
6792
CDKL5
[′ATATGATAAAAATGTCTTCTCATTTRGGAA



2A > G


AAGTCCTGAAAATATTAGTCA′]





4906
NM_021098.2(CACNA1H): c.4645A >
8912
CACNA1H
[′CATCGTCAGCTTCTTCGTGCTCAACRTGTT



G (p.Met1549Val)


CGTGGGCGTCGTGGTCGAGAA′]





4907
NM_003816.2(ADAM9): c.1396 −
8754
ADAM9
[′TGTTTAATTTGAATTCTATTTCACTRGTTCC



2A > G


TTCCAGGAGGTACTTTATGC′]





4908
NM_212472.2(PRKAR1A): c.177 + 3A >
5573
PRKAR1A
[′AATACTTTGAGAGGTTGGAGAAGGTRAAA



G


ATAAATGTGGGGAGATGATGAG′]





4909
NM_001204830.1(LIPT1): c.535A >
−1

[′CCGGACTACTGCCTATCACCATTGCRCTTT



G (p.Thr179Ala)


ATTATGTAGTACTGATGGGAC′]





4910
NM_001165963.1(SCN1A): c.5264A >
−1

[′AACCCTGGAAGCTCAGTTAAGGGAGRCTG



G (p.Asp1755Gly)


TGGGAACCCATCTGTTGGAATT′]





4911
NM_001165963.1(SCN1A): c.3880 −
−1

[′TAATTGTTATTATTTTTGTGTGTGCRGGTTT



2A > G


CATTGGTCAGTTTAACAGCA′]





4912
NM_001165963.1(SCN1A): c.2537A >
6323
SCN1A
[′TTTATTGTGACGCTTAGCCTGGTAGRACTT



G (p.Glu846Gly)


GGACTCGCCAATGTGGAAGGA′]





4913
NM_001165963.1(SCN1A): c.2353A >
6323
SCN1A
[′GTCATTGGATAGTGCTCCATGGCCAHGAA



G (p.Met785Val)


AAGAGTATTTAAGACAATACAG′]





4914
NM_001165963.1(SCN1A): c.1662 +
6323
SCN1A
[′AGAGGTACTCCTCCCCACACCAGGTRTGG



3A > G


CACTGCTGAGTTTACTGATGCA′]





4915
NM_001165963.1(SCN1A): c.1076A >
6323
SCN1A
[′TGTGTGAAAGCTGGTAGAAATCCCADTTA



G (p.Asn359Ser)


TGGCTACACAAGCTTTGATACC]





4916
NM_001165963.1(SCN1A): c.1048A >
6323
SCN1A
[′TTGCAGCCAATGTCCAGAGGGATATRTGT



G (p.Met350Val)


GTGTGAAAGCTGGTAGAAATCC′]





4917
NM_001165963.1(SCN1A): c.1046A >
6323
SCN1A
[′ACTTGCAGCCAATGTCCAGAGGGATRTAT



G (p.Tyr349Cys)


GTGTGTGAAAGCTGGTAGAAAT′]





4918
NM_001165963.1(SCN1A): c.433A >
6323
SCN1A
[′CACTATTTTGACAAACTGTGTGTTTRTGAC



G (p.Met145Val)


AATGAGTAACCCTCCTGATTG′]





4919
NM_001165963.1(SCN1A): c.383 +
6323
SCN1A
[′TAGCTATTAAGATTTTGGTACATTCRTATC



1A > G


CTTTTTCAAGTGATTAATATT′]





4920
NM_001605.2(AARS): c.2251A > G
16
AARS
[′TCGGCACCTGTGACAGCCACAATCCYCCG



(p.Arg751Gly)


GATACCCTTGGCAATGGCTTCT′]





4921
NM_000124.3(ERCC6): c.2830 −
2074
ERCC6
[′TATTCTCCATGCTCGCTCCCGGGCCYGCAA



2A > G


CAGAGAGAGAGAGACCTCTCA′]





4922
NM_000124.3(ERCC6): c.2599 −
2074
ERCC6
[′ACTGGGAATGTGTATTTGCTTTGCAVACTC



26A > G


CTATCCCCCACCTCCAAACAG′]





4923
NM_001110556.1(FLNA): c.1829 −
2316
FLNA
[′ACTGAGGGGACTGGTGGCTGTTGTCRGGC



2A > G


TTCTCGGTGGAAGGGCCATCGC′]





4924
NM_006129.4(BMP1): c.808A > G
649
BMP1
[′GGAGACCTATGACTTCGACAGCATCRTGC



(p.Met270Val)


ATTACGCTCGGAACACATTCTC′]





4925
NM_001987.4(ETV6): c.1252A > G
2120
ETV6
[′GGAGCCAGGACAAAGGCTTTTGTTCRGGT



(p.Arg418Gly)


AGCACTTCCTTTTTCTCCTTTC′]





4926
NM_014423.3(AFF4): c.760A > G
27125
AFF4
[′GTCCAATTCAATGTTACAGAAACCCRCTGC



(p.Thr254Ala)


CTATGTGCGGCCCATGGACGG′]





4927
NM_002055.4(GFAP): c.1085A > G
2670
GFAP
[′AATGTCAAGCTGGCCCTGGACATCGRGAT



(p.Glu362Gly)


CGCCACCTACAGGAAGCTGCTA′]





4928
NM_002055.4(GFAP): c.256A > G
2670
GFAP
[′TGACCGCTTTGCCAGCTACATCGAGRAGGT



(p.Lys86Glu)


TCGCTTCCTGGAACAGCAAAA′]





4929
NM_006017.2(PROM1): c.2077 −
8842
PROM1
[′ATTTGCTGTTCTTCACAGCTTTAGGRTATG



521A > G


TATCCAATGTTTTCTTCAGGT′]





4930
NM_002755.3(MAP2K1): c.305A >
5604
MAP2K1
[′ACCTTTCTCCAGCTAATTCATCTGGRGATC



G (p.Glu102Gly)


AAACCCGCAATCCGGAACCAG′]





4931
NM_001288953.1(TTC7A): c.1715A >
57217
TTC7A
[′CGTCCCCACAGCCTGATGTTCACCARGGTG



G (p.Lys572Arg)


AAGCTGGAGCAGGTGCTGAAA′]





4932
NM_016218.2(POLK): c.181A > G
51426
POLK
[′TGAGCTCAAGAAAGAAAAGCAAGTCRACC



(p.Asn6lAsp)


AACGAATTGAAAATATGATGCA′]





4933
NM_016218.2(POLK): c.1385A > G
51426
POLK
[′AGAACTGTTACCATTAAGTTGAAGARTGT



(p.Asn462Ser)


GAATTTTGAAGTAAAAACTCGT′]





4934
NM_016218.2(POLK): c.1477A > G
51426
POLK
[′ATTTGCCATTGCTAAGGAATTGCTARAAAC



(p.Lys493Glu)


AGAAATTGATGCTGATTTTCC′]





4935
NM_001040431.2(COA3): c.215A >
28958
COA3
[′GGAAATCGAGTAGAAGGTGTAACCAYCTG



G (p.Tyr72Cys)


GGGAGGTAGGTTCAGGAAACCA′]





4936
NM_000891.2(KCNJ2): c.901A > G
3759
KCNJ2
[′TGAAATCGTGGTCATACTGGAAGGCRTGG



(p.Met301Val)


TGGAAGCCACTGCCATGACGAC′]





4937
NM_144499.2(GNAT1): c.386A > G
2779
GNAT1
[′GACATCATCCAGCGGCTGTGGAAGGRCTC



(p.Asp129Gly)


CGGTATCCAGGCCTGTTTTGAG′]





4938
NM_018965.3(TREM2): c.113A > G
54209
TREM2
[′CAGTCCCTGCAGGTGTCTTGCCCCTRTGAC



(p.Tyr38Cys)


TCCATGAAGCACTGGGGGAGG′]





4939
NM_194277.2(FRMD7): c.556A > G
90167
FRMD7
[′ACTGGACATAGCAAGGAAGCTGGATRTGT



(p.Met186Val)


ATGGCATCAGGCCTCACCCCGC′]





4940
NM_001003811.1(TEX11): c.511A >
56159
TEX11
[′TCACTCTCAACAGTAATCTTCTCCAYGGTC



G (p.Met171Val)


AAGTCAGCCTCAGGGGAGCTC′]





4941
NM_000921.4(PDE3A): c.1333A > G
5139
PDE3A
[′AGTTTCTTCCACTTGGACCACCACCRCCTC



(p.Thr445Ala)


GGCCACAGGTCTACCCACCTT′]





4942
NM_000033.3(ABCD1): c.887A > G
215
ABCD1
[′GCCAACTCGGAGGAGATCGCCTTCTRTGG



(p.Tyr296Cys)


GGGCCATGAGGTGGGGCAGGTT′]





4943
NM_000169.2(GLA): c.137A > G
−1

[′AGGACGCCTACCATGGGCTGGCTGCDCTG



(p.His46Arg)


GGAGCGCTTCATGTGCAACCTT′]





4944
NM_000033.3(ABCD1): c.1992 −
215
ABCD1
[′CCCTGACCCTGTCCCTCTCCTGGCCRGGAA



2A > G


ATACCACACACACTTGCTACA′]





4945
NM_000182.4(HADHA): c.919 −
3030
HADHA
[′TTGCTCAATTCCAGTCTTTACCACCYAAAA



2A > G


AACATATAAAGCACTTGCTCA′]





4946
NM_000159.3(GCDH): c.1213A > G
2639
GCDH
[′CGAGTATCACGTGATCCGGCACGCCRTGA



(p.Met405Val)


ACCTGGAGGCCGTGAACACCTA′]





4947
NM_004006.2(DMD): c.1150 − 2A > G
1756
DMD
[′ACAATTGTTAACTTCCTTCTTTGTCRGGGG






TACATGATGGATTTGACAGCC′]





4948
NM_019109.4(ALG1): c.1188 −
56052
ALG1
[′CTCAGGCTCCCTTGGTTCTCTCTGCRGTTT



2A > G


ACATGAGCTGGTGAAACATGA′]





4949
NM_004463.2(FGD1): c.2016 −
2245
FGD1
[′TCTTTCTTTTTTATTCCCCACCCCARGGACT



2A > G


GAGGAGGAGAAGAAAGACTG′]





4950
NM_198525.2(KIF7): c.2981A > G
374654
KIF7
[′CTGCTGCTGGCTCTGGGCGCTGCCCYGCCG



(p.Gln994Arg)


CAGCTGCCCGCTCTTCTCGGA′]





4951
NM_020366.3(RPGRIP1): c.3749 −
57096
RPGRIP1
[′ATGCTGTTTTTTTCCCTTTCCCAACRGTTGT



2A > G


TAGCCCTGAAGATCTGGCTA′]





4952
NM_003494.3(DYSF): c.3041A > G
8291
DYSF
[′GTTCCCCCTCCCCCAGGCTGGGAGTRTAGC



(p.Tyr1014Cys)


ATCACCATCCCCCCGGAGCGG′]





4953
NM_003494.3(DYSF): c.3349 −
8291
DYSF
[′CTGCCATAACCAGCTTCGTGTCTCCRGGGC



2A > G


GGCGTGATGGATGACAAGAGT′]





4954
NM_004006.2(DMD): c.4675 − 2A > G
1756
DMD
[′ATTACATTTCATTATAATTCTTTTCRGGTA






ACAGAAAGAAAGCAACAGTTG′]





4955
NM_000169.2(GLA): c.620A > G
−1

[′GTGTACTCCTGTGAGTGGCCTCTTTRTATG



(p.Tyr207Cys)


TGGCCCTTTCAAAAGGTGAGA′]





4956
NM_022124.5(CDH23): c.146 −
−1

[′CTCTGCTCTCTCCCTTGGCTACTCCRGGTTC



2A > G


TTCTGTGACCCAGTTGCTGG′]





4957
NM_000169.2(GLA): c.801 + 3A > G
−1

[′GGGGTTGGAATGACCCAGATATGGTRAAA






ACTTGAGCCCTCCTTGTTCAAG′]





4958
NM_000019.3(ACAT1): c.473A > G
38
ACAT1
[′GCAGGTGGGATGGAGAGCATGTCCARTGT



(p.Asn158Ser)


TCCATATGTAATGAACAGAGGA′]





4959
NM_000553.4(WRN): c.561A > G
7486
WRN
[′GTCTGGTTAAACACCTCTTAGGTAARCAGC



(p.Lys187=)


TCCTGAAAGACAAGTCTATCC′]





4960
NM_000050.4(ASS1): c.421 − 2A > G
445
ASS1
[′GGCTCTGACCCCTTGTCCTATGTCCDGGTC






ATTGCTCCCTGGAGGATGCCT′]





4961
NM_020166.4(MCCC1): c.640 −
56922
MCCC1
[′TTCTGATCTAACAATCCTCATTCCCYAAGA



2A > G


GAGAAAAGATGATTATGACTA′]





4962
NM_004006.2(DMD): c.10554 −
1756
DMD
[′TCTTTTTTACTTTTTTGATGCCAATRGGAAT



2A > G


CTGCAAGCAGAATATGACCG′]





4963
NM_017653.3(DYM): c.621 − 2A > G
54808
DYM
[′ACAAGTTTGCTGGTGTATGGAAGACYATA






CAAAAAGGAAAAAAAAATCAAA′]





4964
NM_001098398.1(COPA): c.728A >
−1

[′TCAGAATCAAAGGCATGGGAGGTTGRTAC



G (p.Asp243Gly)


CTGCCGGGGCCATTACAACAAT′]





4965
NM_005045.3(RELN): c.2288A > G
5649
RELN
[′CGTCAGCTAATTACATCTTTCCTTGRCAGC



(p.Asp763Gly)


TCACAATCCAGGTGAGTGAAG′]





4966
NM_207111.3(RNF216): c.1616A >
54476
RNF216
[′TGCCATCTCTTTGATTTTCTGCTCAHAGAA



G (p.Tyr539Cys)


CTCCTGCTCTTGTTGCACAGC′]





4967
NM_001035.2(RYR2): c.568A > G
6262
RYR2
[′CATCTTAGTTAGCGTGTCCTCTGAARGGTA



(p.Arg190Gly)


CTTGGTAAGTGTGGAAAGTAG′]





4968
NM_001035.2(RYR2): c.11965A > G
6262
RYR2
[′AAATGCAACTGCTTTACCACCAGGTVATGT



(p.Asn3989Asp)


TGTTAATGGAACGATTGGCAA′]





4969
NM_001035.2(RYR2): c.12290A > G
6262
RYR2
[′GAACCTGCGAAGGACATCGGCTTCARCGT



(p.Asn4097Ser)


CGCCGTCCTTCTGACAAACCTC′]





4970
NM_001035.2(RYR2): c.12533A > G
6262
RYR2
[′AGACAGTTCATATTTGACGTGGTCARCGA



(p.Asn4178Ser)


AGGCGGAGAGAAAGAGAAGATG′]





4971
NM_000090.3(COL3A1): c.2338 −
1281
COL3A1
[′ACAGTGACATGGCTTCTCTTTTTCCRGGGT



2A > G


GAAGGTGGTGCCCCCGGACTT′]





4972
NM_198056.2(SCN5A): c.4462A > G
6331
SCN5A
[′CTTAGGGGGCCAGGACATCTTCATGRCAG



(p.Thr1488Ala)


AGGAGCAGAAGAAGTACTACAA′]





4973
NM_198056.2(SCN5A): c.4453A > G
6331
SCN5A
[′CTCTTTGCACTTAGGGGGCCAGGACRTCTT



(p.Ile1485Val)


CATGACAGAGGAGCAGAAGAA′]





4974
NM_198056.2(SCN5A): c.2788 −
6331
SCN5A
[′GGTGAGCCTGACCCATTATCTCGACRGGTC



2A > G


CTGAATCTCTTCCTGGCCTTG′]





4975
NM_198056.2(SCN5A): c.1247A > G
6331
SCN5A
[′GATGGTGGCTTGGTTTTGCTCCTCAYAGGC



(p.Tyr416Cys)


CATTGCGACCACGGCCAGGAT′]





4976
NM_004415.2(DSP): c.1141 − 2A > G
1832
DSP
[′TTCACTGATCACTCTCATCCTTCACRGTTTT






TTGAAGAGGCGCAGTCTACT′]





4977
NM_000238.3(KCNH2): c.2582A >
3757
KCNH2
[′TGGTCCAGCCTGGAGATCACCTTCANCCTG



G (p.Asn861Ser)


CGAGATGTGAGTTGGCTGCCC′]





4978
NM_000238.3(KCNH2): c.1913A >
3757
KCNH2
[′GTCTCTCCCAACACCAACTCAGAGARGAT



G (p.Lys638Arg)


CTTCTCCATCTGCGTCATGCTC′]





4979
NM_000238.3(KCNH2): c.1904A >
3757
KCNH2
[′TTCGGCAACGTCTCTCCCAACACCADCTCA



G (p.Asn635Ser)


GAGAAGATCTTCTCCATCTGC′]





4980
NM_000238.3(KCNH2): c.1900A >
3757
KCNH2
[′GGGCTTCGGCAACGTCTCTCCCAACRCCAA



G (p.Thr634Ala)


CTCAGAGAAGATCTTCTCCAT′]





4981
NM_000238.3(KCNH2): c.1129 −
3757
KCNH2
[′CCACACCTCCGCCTTCCCCGGGTGCRGGTC



2A > G


CTGTCCCTGGGCGCCGACGTG′]





4982
NM_000238.3(KCNH2): c.296A > G
3757
KCNH2
[′GAGCGCAAAGTGGAAATCGCCTTCTVCCG



(p.Tyr99Cys)


GAAAGATGGTAGGAGCGGGCCG′]





4983
NM_000238.3(KCNH2): c.133A > G
3757
KCNH2
[′GGAGAACTGCGCCGTCATCTACTGCDACG



(p.Asn45Asp)


ACGGCTTCTGCGAGCTGTGCGG′]





4984
NM_001613.2(ACTA2): c.1A > G
59
ACTA2
[′AGAATCCTGTGAAGCAGCTCCAGCTRTGT



(p.Met1Val)


GTGAAGAAGAGGACAGCACTGC′]





4985
NM_000218.2(KCNQ1): c.605A > G
3784
KCNQ1
[′GCTCCCCCTCTCCTGCACTCCACAGRCCTC



(p.Asp202Gly)


ATCGTGGTCGTGGCCTCCATG′]





4986
NM_000218.2(KCNQ1): c.1033 −
3784
KCNQ1
[′GGGAGCCTCCTGTCCATTCCTTCCCVGGGG



2A > G


ATTCTTGGCTCGGGGTTTGCC′]





4987
NM_000218.2(KCNQ1): c.1515 −
3784
KCNQ1
[′CAATCTCCTCTCCTCTCTCCACTGCRGGCT



2A > G


GCGGGAACACCATCGGGCCAC′]





4988
NM_000218.2(KCNQ1): c.1787A >
3784
KCNQ1
[′ATCGGCGCCCGCCTGAACCGAGTAGRAGA



G (p.Glu596Gly)


CAAGGTAGGCTCACGCGCCGGC′]





4989
NM_000138.4(FBN1): c.7916A > G
2200
FBN1
[′TGCATGTGTCCCGCCGGCTTCCAGTRTGAA



(p.Tyr2639Cys)


CAGTTCAGTGGAGGATGCCAA′]





4990
NM_000138.4(FBN1): c.4337 −
2200
FBN1
[′TTTTGCTTTTTTCTCCCTCCCCCCARGATAT



2A > G


TGATGAGTGCTCCCTTCCGA′]





4991
NM_000138.4(FBN1): c.3344A > G
2200
FBN1
[′GGTCATTTCCATTTTGCAGATATTGRTGAG



(p.Asp1115Gly)


TGTCAGAGAGATCCTCTCCTA′]





4992
NM_001943.3(DSG2): c.880A > G
1829
DSG2
[′AGTCAACGTAGAAGTTACGCGCATARAAG



(p.Lys294Glu)


TGTTCGATGCAGATGAAATAGG′]





4993
NM_001927.3(DES): c.1324A > G
1674
DES
[′TGAGCAAAGGGGTTCTGAGGTCCATRCCA



(p.Thr442Ala)


AGAAGACGGTGATGATCAAGAC′]





4994
NM_004572.3(PKP2): c.1171 − 2A > G
5318
PKP2
[′AGAAATATGCATCTGCTTCTTCCCCRGGTT






AACCAGCTTCGTGGCATCCTC′]





4995
NM_001256850.1(TTN): c.45629 −
−1

[′GATATGAATATTTCACTCTTTTCTCRGGTC



2A > G


CTCCCTCACCACCCCTTGACC′]





4996
NM_013254.3(TBK1): c.1201A > G
29110
TBK1
[′ACTTCATATTTCAGTTTCCCTCCCTRAAGT



(p.Lys401Glu)


ACATCCACGTTATGATTTAGA′]





4997
NM_030973.3(MED25): c.116A > G
81857
MED25
[′TACTTCGAGGGGCTCCGCAAGCACTRCCTG



(p.Tyr39Cys)


CTCCCGGCCATCGAGTGAGTG′]





4998
NM_145207.2(SPATA5): c.1883A >
166378
SPATA5
[′TCTATTTTTCAGGTATCCTGGTCAGRTATA



G (p.Asp628Gly)


GGAGGACTGGAAAGTATCAAA′]





4999
NM_000016.5(ACADM): c.329A >
34
ACADM
[′ACTTTTGATGCTTGTTTAATTAGTGRAGAA



G (p.Glu110Gly)


TTGGCTTATGGATGTACAGGG′]





5000
NM_000016.5(ACADM): c.797A >
34
ACADM
[′CCTAAAGAAAATGTTTTAATTGGTGRCGG



G (p.Asp266Gly)


AGCTGGTTTCAAAGTTGCAATG′]





5001
NM_000532.4(PCCB): c.655 − 2A > G
5096
PCCB
[′GACTGTTCTGGAAATCTTTTATTTCRGGAC






ACCTCCTACCTGTTCATCACT′]





5002
NM_004453.3(ETFDH): c.929A > G
2110
ETFDH
[′CATACCTATGGAGGATCTTTCCTCTRTCAT



(p.Tyr310Cys)


TTGAATGAAGGTGAACCCCTA′]





5003
NM_000255.3(MUT): c.1885A > G
4594
MUT
[′AAAAATGGGACAAGATGGCCATGACRGAG



(p.Arg629Gly)


GAGCAAAAGTTATTGCTACAGG′]





5004
NM_000255.3(MUT): c.329A > G
4594
MUT
[′TTTAGGCCCTGGACCATCCGCCAGTRTGCT



(p.Tyr110Cys)


GGTTTTAGTACTGTGGAAGAA′]





5005
NM_000017.3(ACADS): c.1108A >
35
ACADS
[′TCAGGCCATCCAGATCCTGGGCGGCRTGG



G (p.Met370Val)


GCTACGTGACAGAGATGCCGGC′]





5006
NM_174917.4(ACSF3): c.1A > G
197322
ACSF3
[′TCCAGCTCGGCCGCCTGTCAGTGCARTGCT



(p.Met1Val)


GCCCCATGTGGTGCTCACCTT′]





5007
NM_000531.5(OTC): c.919A > G
5009
OTC
[′GACATTTTTACACTGCTTGCCCAGARAGCC



(p.Lys307Glu)


AGAAGAAGTGGATGATGAAGT′]





5008
NM_000030.2(AGXT): c.248A > G
189
AGXT
[′ACACTGGTCATCTCTGGCTCGGGACRCTGT



(p.His83Arg)


GCCCTGGAGGCCGCCCTGGTC′]





5009
NM_000030.2(AGXT): c.424 − 2A > G
189
AGXT
[′CACCCACAGCCGTCCCTGCTTCCTCRGGGC



(p.Gly_142Gln145del)


CTGGCCCAGCACAAGCCAGTG′]





5010
NM_000030.2(AGXT): c.596 − 2A > G
189
AGXT
[′CGTCCCGAGCAAACCACCCATCTACRGGC






ATCGACATCCTGTACTCGGGCT′]





5011
NM_000030.2(AGXT): c.777 − 2A > G
189
AGXT
[′TGGACCAAGCCCCCTCGTGTCTTCCRGGTA






CCATCACACAATCCCCGTCAT′]





5012
NM_012203.1(GRHPR): c.84 − 2A > G
9380
GRHPR
[′CTCCTGAGGGCCTCCCTTTCCCCGCRGCTG






TGAGGTGGAGCAGTGGGACTC′]





5013
NM_012203.1(GRHPR): c.934A > G
9380
GRHPR
[′CACCATGTCCTTGTTGGCAGCTAACRACTT



(p.Asn312Asp)


GCTGGCTGGCCTGAGAGGGGA′]





5014
NM_203290.2(POLR1C): c.221A >
9533
POLR1C
[′GTGGGAATTGACGCAGCCATTGCCARTGC



G (p.Asn74Ser)


TTTTCGACGAATTCTGCTAGCT′]





5015
NM_006516.2(SLC2A1): c.848A > G
6513
SLC2A1
[′GCTGTGGTGCTGCAGCTGTCCCAGCRGCTG



(p.Gln283Arg)


TCTGGCATCAACGCTGTGAGT′]





5016
NM_006516.2(SLC2A1): c.19 −
6513
SLC2A1
[′ATAACAGTGTGGTTTGTTTCTCCGCRGAAG



2A > G


CTGACGGGTCGCCTCATGCTG′]





5017
NM_021007.2(SCN2A): c.387 −
6326
SCN2A
[′ACTTTGTCTTCCTTGACGATATTCTRCTTTA



2A > G


TTCAATATGCTCATTATGTG′]





5018
NM_021007.2(SCN2A): c.851A > G
6326
SCN2A
[′AATAAATGTTTGCAATGGCCTCCAGRTAAT



(p.Asp284Gly)


TCTTCCTTTGAAATAAATATC′]





5019
NM_021007.2(SCN2A): c.4036A > G
6326
SCN2A
[′CATGAATGTACTTCTGGTTTGTCTGRTCTTT



(p.Ile1346Val)


TGGCTAATATTCAGTATCAT′]





5020
NM_001165963.1(SCN1A): c.4476 +
−1

[′TAATTTCAACCAGCAGAAAAAGAAGDTAA



1A > G


GTATTTCTAATATTTTCTCTCC′]





5021
NM_001165963.1(SCN1A): c.1277A >
6323
SCN1A
[′ATCCTGGCTGTGGTGGCCATGGCCTRCGAG



G (p.Tyr426Cys)


GAACAGAATCAGGCCACCTTG′]





5022
NM_000391.3(TPP1): c.833A > G
1200
TPP1
[′GGGATTGAGGCCAGTCTAGATGTGCRGTA



(p.Gln278Arg)


CCTGATGAGTGCTGGTGCCAAC′]





5023
NM_017882.2(CLN6): c.767A > G
54982
CLN6
[′GGAGAAGAGGAAGAGGCCGTTGCTGYCCA



(p.Asp256Gly)


GGAAGAGGCGCTTGCGCTTCTG′]





5024
NM_002693.2(POLG): c.3470A > G
5428
POLG
[′GGGCCCCGCATACCTGGTCAAGAGGYTGG



(p.Asn1157Ser)


TGATCTGCAAGGCCAGGGCAGC′]





5025
NM_002693.2(POLG): c.2840A > G
5428
POLG
[′GTGGGCATCAGCCGTGAGCATGCCARAAT



(p.Lys947Arg)


CTTCAACTACGGCCGCATCTAT′]





5026
NM_002693.2(POLG): c.2636A > G
5428
POLG
[′CACAAGGGTGTAGCCAGGTGGGGCCYGCA



(p.Gln879Arg)


CCATGGCTTTCAACTCACTGCC′]





5027
NM_000833.4(GRIN2A): c.2449A >
2903
GRIN2A
[′GAGCAGCCAGCTGGACATTGACAACRTGG



G (p.Met817Val)


CGGGCGTATTCTACATGCTGGC′]





5028
NM_000833.4(GRIN2A): c.1930A >
2903
GRIN2A
[′CTTCTTCGCTGTCATATTCCTGGCTRGCTA



G (p.Ser644Gly)


CACAGCCAATCTGGCTGCCTT′]





5029
NM_000156.5(GAMT): c.1A > G
2593
GAMT
[′GTCGGGTCGCCGTCCAGCCTGCAGCRTGA



(p.Met1Val)


GCGCCCCCAGCGCGACCCCCAT′]





5030
NM_172107.2(KCNQ2): c.848A > G
3785
KCNQ2
[′CTGACCACCATTGGCTACGGGGACARGTA



(p.Lys283Arg)


CCCCCAGACCTGGAACGGCAGG′]





5031
NM_172107.2(KCNQ2): c.611A > G
3785
KCNQ2
[′GCGCTCCGGAGCCTGCGCTTCCTGCRGATT



(p.Gln204Arg)


CTGCGGATGATCCGCATGGAC′]





5032
NM_172107.2(KCNQ2): c.297 −
3785
KCNQ2
[′CTGAGAGCGCGCGTTCCCTGCCCCCRGGTT



2A > G


CCTCCTGGTTTTCTCCTGCCT′]





5033
NM_001105243.1(PCDH19): c.1019A >
57526
PCDH19
[′GTCACCGTCAGCGTGCTGGACACCARTGA



G (p.Asn340Ser)


CAATCCGCCGGTCATCAACCTG′]





5034
NM_001105243.1(PCDH19): c.695A >
57526
PCDH19
[′CTTAGTATCAAGGTGACCGACTCCADTGA



G (p.Asn232Ser)


CAACAACCCGGTGTTTAGCGAG′]





5035
NM_052859.3(RFT1): c.454A > G
91869
RFT1
[′TTCACAGCAGAAGGTGCACTGACCTBGAG



(p.Lys152Glu)


CTTCACAAACATATGTGCTTGT′]





5036
NM_052859.3(RFT1): c.1222A > G
91869
RFT1
[′TCTCCTCCCCAGGTACAATTTTGTGRTGCT



(p.Met408Val)


GGCCCTGTCCTCCTCATTCCT′]





5037
NM_020533.2(MCOLN1): c.1406A >
57192
MCOLN1
[′TCTGAGTGCCTGTTCTCGCTCATCARTGGG



G (p.Asn469Ser)


GACGACATGTTTGTGACGTTC′]





5038
NM_004456.4(EZH2): c.458A > G
2146
EZH2
[′TTCATTGAAGAACTAATAAAAAATTRTGAT



(p.Tyr153Cys)


GGGAAAGTACACGGGGATAGA′]





5039
NM_005045.3(RELN): c.2168A > G
5649
RELN
[′ACCACGGATAGAGTAAAAGTTATGGYAAG



(p.Tyr723Cys)


AGGAGAGCCTGGAACTGCCAAA]





5040
NM_006772.2(SYNGAP1): c.388 −
8831
SYNGAP1
[′CCCACCCCATCCCCATTTCCCCCCCRGCAA



2A > G


GGCTTCCTGAGCCGACGGCTA′]





5041
NM_001080508.2(TBX18): c.487A >
9096
TBX18
[′GATAGGCACTGAGATGATCATCACCRAGG



G (p.Lys163Glu)


CCGGCAGGTAATGGGCAAGCTG′]





5042
NM_004964.2(HDAC1): c.461A > G
3065
HDAC1
[′GAGGCATCTGGCTTCTGTTACGTCARTGAT



(p.Asn154Ser)


ATCGTCTTGGCCATCCTGGAA′]





5043
NM_014946.3(SPAST): c.1168A > G
6683
SPAST
[′TGGTCCACCTGGGAATGGGAAGACARTGC



(p.Met390Val)


TGGTAAGGGTTCTCTTCAAATT′]





5044
NM_000314.6(PTEN): c.71A > G
5728
PTEN
[′TATCAAGAGGATGGATTCGACTTAGRCTTG



(p.Asp24Gly)


ACCTGTATCCATTTCTGCGGC′]





5045
NM_004380.2(CREBBP): c.4409A >
1387
CREBBP
[′GGGTCCTGCAGGTATGTGACAGGGCRCAT



G (p.His1470Arg)


CTGGGCCTGTCCTCCAAGTGAA′]





5046
NM_018206.4(VPS35): c.1463A > G
55737
VPS35
[′GATCCAGAAGATTTTGCTGATGAGCRGAG



(p.Gln488Arg)


CCTTGTGGGCCGCTTCATTCAT′]





5047
NM_152296.4(ATP1A3): c.971A > G
478
ATP1A3
[′GGCATCATCGTGGCCAATGTCCCAGRGGG



(p.Glu324Gly)


TCTGCTGGCCACTGTCACTGTA′]





5048
NM_172107.2(KCNQ2): c.710A > G
3785
KCNQ2
[′TCTCAGGAGCTGGTCACTGCCTGGTRCATC



(p.Tyr237Cys)


GGCTTCCTTTGTCTCATCCTG′]





5049
NM_001017980.3(VMA21): c.163 +
203547
VMA21
[′ACTAAATCTTACATATTTGAAGGTARTCTT



4A > G


AGACCCATTAAAACAAGATGT′]





5050
NM_000489.4(ATRX): c.740A > G
546
ATRX
[′TTCTGCAAGAAATGCATTCTACGCARCCTT



(p.Asn247Ser)


GGTCGAAAGGAGTTGTCCACA′]





5051
NM_021147.4(CCNO): c.716A > G
10309
CCNO
[′CCCACCATTAGCTTCTTCCTGGAGCRTTTC



(p.His239Arg)


ACGCACGCTCGCGTGGAGGCG′]





5052
NM_031924.4(RSPH3): c.631 −
83861
RSPH3
[′CTCTAGAGAATCAGGCCGTCCGAGCYAAC



2A > G


AGTGATAGAAAATACTTCTAGA′]





5053
NM_000069.2(CACNA1S): c.3526 −
779
CACNA1S
[′TCGCTTTCCCATCCTTTTCCTTCCCRGGGCT



2A > G


ACTTTGGAGACCCCTGGAAT′]





5054
NM_000533.4(PLP1): c.1A > G
5354
PLP1
[′CAATTGGAGTCAGAGTCCCAAAGACRTGG



(p.Met1Val)


GTAAGTTTCAAAAACTTTAGCA′]





5055
NM_207352.3(CYP4V2): c.1396A >
285440
CYP4V2
[′CGTGCCCTTCTCTGCTGGCCCCAGGRACTG



G (p.Asn466Asp)


TATAGGTTTGTATCCATCTGA′]





5056
NM_033409.3(SLC52A3): c.403A >
113278
SLC52A3
[′ACAAAGAAGGTGGTGAGGTAGTAGGYGG



G (p.Thr135Ala)


GCAGCCGGCTCATGAACGGCAGG′]





5057
NM_033409.3(SLC52A3): c.62A > G
113278
SLC52A3
[′CAGGGGCAGCTCTACCCAGAGCCCAYTGA



(p.Asn21Ser)


TGGTCACCCAGGAGCCCATTCC′]





5058
NM_017662.4(TRPM6): c.3173A >
140803
TRPM6
[′CAAGCTGTCTACCTCTTCGTGCAATRTATC



G (p.Tyr1058Cys)


ATCATGGTGAACCTGTTGATT′]





5059
NM_006642.3(SDCCAG8): c.221 −
10806
SDCCAG8
[′AATAAACCCTCTGCTTTTGCTCTATRGTTA



2A > G


ATCAGCTCAAAGATTTGTTGC′]





5060
NM_022455.4(NSD1): c.5990A > G
64324
NSD1
[′CAAGAACATGATATCACTAATTTCTRTATG



(p.Tyr1997Cys)


CTCACCCTAGACAAAGTAAGT′]





5061
NM_000352.4(ABCC8): c.563A > G
6833
ABCC8
[′GGGATGCTGCTCCTCGTGGAGGTCARTGTC



(p.Asn188Ser)


ATCAGGGTGAGGGTAAGCAGG]





5062
NM_000275.2(OCA2): c.1427A > G
4948
OCA2
[′GATGGCAGTGGCAGCTCCTCCAATGYTTGT



(p.Asn476Ser)


GAAGATCACTTCTGCAATCAG′]





5063
NM_001848.2(COL6A1): c.1003 −
1291
COL6A1
[′ATTTTCTAGTTTTCTTCCTCTTTCCRGGGGG



2A > G


AGATGGGGTACCCAGGCCTG′]





5064
NM_003560.2(PLA2G6): c.1349 −
8398
PLA2G6
[′CAGCATGCCCTGCTCTGTGCCTCACRGAAC



2A > G


TACAGGATCTCATGCACATCT′]





5065
NM_178151.2(DCX): c.280A > G
1641
DCX
[′TGACCTGACGCGATCTCTGTCTGACRACAT



(p.Asn94Asp)


CAACCTGCCTCAGGGAGTGCG′]





5066
NM_000425.4(L1CAM): c.2351A >
3897
L1CAM
[′TCCAACACGTCCACCTTCGTGCCCTRTGAG



G (p.Tyr784Cys)


ATCAAAGTCCAGGCCGTCAAC′]





5067
NM_000052.6(ATP7A): c.2173 −
538
ATP7A
[′TCAATGATTATCATTCCTATATTGCRGTTTT



2A > G


TCGGAGGCTGGTACTTCTAC′]





5068
NM_020247.4(ADCK3): c.1286A >
56997
ADCK3
[′CTGCTGAAGGGCCACCCCTTCTTCTRTGTG



G (p.Tyr429Cys)


CCTGAGATTGTGGATGAGCTC′]





5069
NM_000143.3(FH): c.554A > G
2271
FH
[′AAACAGCAAAGCTCACATACTGACCYGGC



(p.Gln185Arg)


TTTTATTAACATGATCGTTGGG′]





5070
NM_033109.4(PNPT1): c.1453A > G
87178
PNPT1
[′AAACTTCCGCCACATGCAGATGCCAKAGA



(p.Met485Val)


AGATGACCCTATAGAAAGAAAA′]





5071
NM_005888.3(SLC25A3): c.158 −
5250
SLC25A3
[′TACTTACTTGATTTTTTTTTTTCCARTCAAA



9A > G


CAGAGCAGTATAGCTGTGAC′]





5072
NM_181426.1(CCDC39): c.610 −
339829
CCDC39
[′TTGTGCTGCTTTATCCAATTCTAACYGTCA



2A > G


AACAGAGAGCAAAGAACATTT′]





5073
NM_153704.5(TMEM67): c.725A >
91147
TMEM67
[′ATTGTTCTGTTGTAGGTATATGCCARTCTA



G (p.Asn242Ser)


ACATCTTGTCAAGCTCTTGGA′]





5074
NM_000166.5(GJB1): c.305A > G
2705
GJB1
[′CACGTGGCTCACCAGCAACACATAGRGAA



(p.Glu102Gly)


GAAAATGCTACGGCTTGAGGGC′]





5075
NM_019098.4(CNGB3): c.1193A >
54714
CNGB3
[′AATTAAAGTTCGAACTGCCCAATAAYAAC



G (p.Tyr398Cys)


ATCTCAGATACCTGTGAAAACA′]





5076
NM_000070.2(CAPN3): c.1194 −
825
CAPN3
[′CCATATGGCTCTCTCTCTTCTTCCARCCTCT



9A > G


CAGGATGTCCTATGAGGATT′]





5077
NM_002860.3(ALDH18A1): c.2345A >
5832
ALDH18A1
[′AGGAATAGGGAGGTTCTCATGAAGABATT



G (p.Tyr782Cys)


TTAAACTTCCATGCTCTGAGAA′]





5078
NM_001414.3(EIF2B1): c.824A > G
1967
EIF2B1
[′CAGAGTGATTAAGGAAGGGGCAGTGYAGT



(p.Tyr275Cys)


CGACCCACGGATGCTCCTCTTT′]





5079
NM_182896.2(ARL13B): c.461A > G
200894
ARL13B
[′TGTCTATCTCTGGAAAAATTGGTCARTGAG



(p.Asn154Ser)


CACAAGTGCCTGTGTCAGATA′]





5080
NM_001134831.1(AHI1): c.1152 −
54806
AHI1
[′TAGTAAGATGAAACAGGCCGTCCACYGTA



2A > G


CAAAAAAAGATACTTCCATTAA′]





5081
NM_153704.5(TMEM67): c.978 + 3A >
91147
TMEM67
[′TCAGTTTTAAAGGAGAAAACCAGGTRAAA



G


GTGTCTAATATCATTAGAGGAT′]





5082
NM_015681.3(B9D1): c.95A > G
27077
B9D1
[′CCAGTCCTGGCCGTACACAAAGCAGYACT



(p.Tyr32Cys)


TGCAGTAGAGGTCATCATACTC′]





5083
NM_014049.4(ACAD9): c.1A > G
28976
ACAD9
[′CTGAGGCTGGGGAACATCGGGCAGCWTGA



(p.Met1Val)


GCGGCTGCGGGCTCTTCCTGCG′]
















TABLE 8







xCas9v3 Mutations (K294R/Q1256K Series)













xCas9 3.0
xCas9 3.1
xCas9 3.2
xCas9 3.3
xCas9 3.4









N175T





P230F










D257N




S267G

S267G
S267G




K294R
K294R
K294R
K294R
K294R






T466A




E480K
E480K
E480K
E480K
E480K



E543D
E543D
E543D
E543D
E543D




A711E







E1207G

I1063V




E1219V
E1219V
E1219V
E1219V
E1219V



Q1256K
Q1256K
Q1256K
Q1256K
Q1256K

















TABLE 9







xCas9v3 Mutations (A262T/S409I Series)














xCas9 3.5
xCas9 3.6
xCas9 3.7
xCas9 3.8
xCas9 3.9
xCas9 3.10
xCas9 3.11
xCas9 3.12





E108G
E108G




E108G
E108G



S217A


A262T
A262T
A262T
A262T
A262T
A262T
A262T
A262T




R324L


S409I
S409I
S409I
S409I
S409I
S409I
S409I
S409I


E480K
E480K
E480K
E480K
E480K
E480K
E480K
E480K


E543D
E543D
E543D
E543D
E543D
E543D
E543D
E543D





D605D
D605D


K673E





K673E


M694I
M694I
M694I
M694I
M694I
M694I
M694I
M694I


E1219V
E1219V
E1219V
E1219V
E1219V
E1219V
E1219V
E1219V





H1264Y


L1365I
L1365I



L1365I

L1365I
















TABLE 10







PAM Depletion Scores (xCas9v3.0-3.6 Mutations)















22-4
22-10
22-11
22-14
22-21
22-65
22-66



xCas9 3.0
xCas9 3.1
xCas9 3.2
xCas9 3.3
xCas9 3.4
xCas9 3.5
xCas9 3.6





AAA
0.61
0.69
1.38
0.90
0.98
1.29
1.47


AAC
0.67
0.77
0.78
0.71
0.93
0.80
1.55


AAG
13.88
15.70
32.70
28.75
22.79
48.60
92.02


AAT
0.52
0.59
0.87
0.63
0.76
0.87
0.84


ACA
0.52
0.52
0.48
0.51
0.57
0.59
0.72


ACC
0.54
0.50
0.48
0.48
0.47
0.46
0.55


ACG
10.15
30.07
41.38
108.50
32.19
25.52
158.44


ACT
0.46
0.47
0.39
0.41
0.44
0.40
0.50


AGA
13.22
28.30
34.42
57.31
38.26
31.93
170.85


AGC
7.55
5.84
11.17
8.69
7.63
13.13
5.54


AGG
12.23
188.82
37.97
182.49
194.93
82.99
355.32


AGT
13.19
9.75
17.03
16.09
10.90
19.84
22.47


ATA
0.58
0.56
0.51
0.52
0.51
0.53
0.49


ATC
0.52
0.50
0.45
0.45
0.47
0.42
0.38


ATG
11.38
14.85
23.55
40.11
20.48
30.27
108.77


ATT
0.48
0.46
0.43
0.42
0.43
0.41
0.39


CAA
1.55
2.00
6.63
5.06
3.42
6.29
4.66


CAC
0.57
0.65
0.99
0.75
0.86
0.93
3.20


CAG
15.05
11.83
26.90
26.86
22.15
32.07
137.31


CAT
4.41
6.06
17.67
7.55
6.30
8.13
7.87


CCA
0.48
0.46
0.41
0.43
0.42
0.40
0.39


CCC
0.53
0.51
0.46
0.45
0.45
0.43
0.44


CCG
3.35
2.67
6.87
6.98
4.69
8.56
5.44


CCT
0.53
0.50
0.45
0.49
0.46
0.43
0.38


CGA
9.23
49.45
43.50
106.20
62.04
27.17
116.32


CGC
13.79
8.59
17.62
15.06
12.16
21.40
11.61


CGG
16.85
223.84
46.41
346.14
96.28
90.82
252.73


CGT
12.66
23.87
36.06
42.02
20.18
27.33
179.69


CTA
0.54
0.50
0.45
0.47
0.47
0.45
0.49


CTC
0.51
0.48
0.43
0.44
0.45
0.42
0.38


CTG
5.39
3.40
6.92
8.28
5.95
11.34
4.20


CTT
0.52
0.52
0.46
0.46
0.44
0.44
0.82


GAA
10.98
7.67
14.45
11.25
9.75
11.86
6.86


GAC
0.88
1.35
4.85
2.92
2.40
5.25
4.15


GAG
11.85
55.33
39.91
118.83
109.84
85.83
390.44


GAT
7.69
5.68
10.55
9.22
6.41
11.03
9.53


GCA
0.49
0.49
0.47
0.52
0.53
0.59
0.61


GCC
0.53
0.52
0.50
0.50
0.49
0.46
0.52


GCG
13.68
13.44
22.56
46.72
32.75
35.86
97.69


GCT
0.51
0.50
0.45
0.48
0.46
0.45
0.61


GGA
9.74
82.32
39.45
172.39
102.30
85.53
77.46


GGC
12.21
10.04
17.84
15.18
14.04
27.07
17.46


GGG
18.90
381.76
70.36
281.12
164.21
111.87
718.40


GGT
10.87
22.11
32.25
88.31
40.66
40.16
257.92


GTA
0.56
0.59
0.77
0.72
0.76
1.03
1.55


GTC
0.52
0.51
0.46
0.52
0.49
0.45
0.58


GTG
11.43
16.42
28.54
72.25
33.31
47.65
382.48


GTT
0.48
0.45
0.41
0.43
0.43
0.42
0.76


TAA
0.58
0.67
1.59
0.99
1.04
1.69
1.53


TAC
0.56
0.54
0.51
0.51
0.52
0.50
0.44


TAG
11.34
10.19
15.99
22.04
15.24
27.89
35.59


TAT
0.56
0.64
1.26
0.85
0.89
1.21
2.60


TCA
0.50
0.48
0.43
0.45
0.46
0.45
0.44


TCC
0.50
0.48
0.43
0.46
0.44
0.42
0.47


TCG
10.38
8.24
14.95
15.64
9.96
15.57
34.80


TCT
0.52
0.50
0.45
0.44
0.46
0.41
0.46


TGA
9.68
61.64
44.45
188.12
99.42
46.89
186.41


TGC
13.64
9.07
15.11
11.69
11.22
15.01
8.15


TGG
12.90
223.88
63.67
259.65
115.56
80.51
210.65


TGT
11.53
18.90
31.99
36.30
18.72
21.90
122.87


TTA
0.61
0.57
0.52
0.54
0.51
0.52
0.30


TTC
0.53
0.50
0.44
0.45
0.44
0.43
0.27


TTG
13.57
6.61
10.15
13.27
7.38
14.26
12.24


TTT
0.53
0.49
0.44
0.45
0.48
0.44
0.28











PAM Depletion Scores (xCas9v3.7-3.12 Mutations)















22-68
22-75
22-78
22-82
22-87
22-90



xCas9 3.7
xCas9 3.8
xCas9 3.9
xCas9 3.10
xCas9 3.11
xCas9 3.12





AAA
0.92
1.00
4.30
0.63
0.48
1.67


AAC
8.72
3.59
1.55
1.59
0.94
1.34


AAG
23.44
20.16
16.46
10.63
26.46
22.44


AAT
1.03
0.89
1.22
1.07
0.76
0.96


ACA
0.80
0.92
0.52
0.68
1.09
0.83


ACC
0.42
1.37
0.32
1.03
0.81
0.53


ACG
11.20
6.65
21.80
1.38
1.23
0.88


ACT
0.27
0.38
0.24
0.88
0.54
0.66


AGA
11.63
11.95
14.60
0.89
1.42
1.78


AGC
1.03
11.25
8.05
1.54
1.77
2.39


AGG
8.05
11.61
21.28
1.37
33.28
113.98


AGT
11.10
6.85
12.73
0.39
2.70
0.91


ATA
0.73
0.79
0.58
1.04
0.70
0.94


ATC
0.43
0.47
0.28
0.63
0.86
0.87


ATG
15.46
13.03
4.76
2.21
2.39
1.73


ATT
0.62
0.30
0.53
0.59
0.91
0.74


CAA
8.96
6.08
1.97
1.46
0.53
0.67


CAC
1.65
1.31
0.81
0.60
0.75
0.73


CAG
3.46
1.99
1.44
23.50
9.51
13.76


CAT
20.52
44.57
18.70
16.29
15.96
0.36


CCA
0.40
0.31
0.64
0.87
0.55
0.64


CCC
0.35
0.54
0.55
1.12
0.56
0.69


CCG
4.35
5.28
5.57
1.37
0.94
0.83


CCT
0.40
1.04
0.36
1.22
0.67
0.59


CGA
4.47
7.60
5.26
1.35
1.36
2.02


CGC
13.35
10.98
5.45
4.03
5.37
3.66


CGG
6.06
5.52
25.23
31.85
19.44
34.65


CGT
17.13
7.41
17.31
0.63
1.44
0.66


CTA
0.76
0.50
0.50
1.97
1.45
1.05


CTC
0.40
0.26
0.65
0.58
0.45
0.81


CTG
5.64
9.49
6.82
1.35
1.41
2.11


CTT
0.50
0.63
0.68
0.54
0.73
0.88


GAA
9.81
6.07
4.68
2.07
0.87
1.09


GAC
3.91
3.95
2.82
0.44
0.86
0.56


GAG
23.26
21.32
9.88
16.93
18.42
40.73


GAT
5.06
9.85
1.07
0.75
1.06
0.63


GCA
0.56
0.81
0.79
1.46
0.44
0.89


GCC
0.35
0.52
0.71
0.65
3.67
0.73


GCG
16.11
12.53
9.43
1.59
1.98
2.22


GCT
0.42
0.88
0.27
0.66
1.14
0.76


GGA
3.01
18.40
33.07
27.28
16.20
46.82


GGC
6.03
3.83
11.69
8.03
22.56
3.92


GGG
12.16
10.26
15.08
17.30
25.85
128.03


GGT
11.25
13.77
2.94
12.71
16.11
16.22


GTA
1.38
1.08
1.24
0.75
3.52
1.09


GTC
0.96
0.31
0.50
0.93
0.72
0.81


GTG
6.68
17.93
26.86
9.93
9.61
2.72


GTT
0.45
0.33
0.99
0.65
1.61
1.01


TAA
3.04
2.16
1.84
1.21
1.08
0.68


TAC
0.61
0.52
0.68
0.95
0.68
0.86


TAG
4.76
15.71
1.10
8.15
8.25
8.87


TAT
1.62
2.10
1.01
0.73
0.74
0.66


TCA
0.41
0.66
0.58
0.46
0.77
0.68


TCC
0.54
0.29
0.38
1.36
0.86
0.82


TCG
1.41
4.20
9.11
0.84
0.46
0.69


TCT
0.47
0.44
0.38
0.60
1.00
0.94


TGA
22.42
5.39
15.72
1.78
3.13
3.69


TGC
6.78
6.81
11.35
2.41
6.55
4.08


TGG
20.36
11.36
11.56
9.97
21.64
19.87


TGT
10.32
8.82
21.17
0.94
0.79
0.73


TTA
0.65
0.29
0.77
0.94
1.35
0.75


TTC
0.62
1.07
0.55
0.86
1.07
0.58


TTG
8.41
6.07
9.07
0.67
0.56
0.72


TTT
0.43
0.56
0.44
0.68
0.60
0.75









REFERENCES



  • 1. Humbert O, Davis L, Maizels N. Targeted gene therapies: tools, applications, optimization. Crit Rev Biochem Mol. 2012; 47(3):264-81. PMID: 22530743.

  • 2. Perez-Pinera P, Ousterout D G, Gersbach C A. Advances in targeted genome editing. Curr Opin Chem Biol. 2012; 16(3-4):268-77. PMID: 22819644.

  • 3. Urnov F D, Rebar E J, Holmes M C, Zhang H S, Gregory P D. Genome editing with engineered zinc finger nucleases. Nat Rev Genet. 2010; 11(9):636-46. PMID: 20717154.

  • 4. Joung J K, Sander J D. TALENs: a widely applicable technology for targeted genome editing. Nat Rev Mol Cell Biol. 2013; 14(1):49-55. PMID: 23169466.

  • 5. Charpentier E, Doudna J A. Biotechnology: Rewriting a genome. Nature. 2013; 495, (7439):50-1. PMID: 23467164.

  • 6. Pan Y, Xia L, Li A S, Zhang X, Sirois P, Zhang J, Li K. Biological and biomedical applications of engineered nucleases. Mol Biotechnol. 2013; 55(1):54-62. PMID: 23089945.

  • 7. De Souza, N. Primer: genome editing with engineered nucleases. Nat Methods. 2012; 9(1):27. PMID: 22312638.

  • 8. Santiago Y, Chan E, Liu P Q, Orlando S, Zhang L, Urnov F D, Holmes M C, Guschin D, Waite A, Miller J C, Rebar E J, Gregory P D, Klug A, Collingwood T N. Targeted gene knockout in mammalian cells by using engineered zinc-finger nucleases. Proc Natl Acad Sci USA. 2008; 105(15):5809-14. PMID: 18359850.

  • 9. Cargill M, Altshuler D, Ireland J, Sklar P, Ardlie K, Patil N, Lane C R, Lim E P, Kalyanaraman N, Nemesh J, Ziaugra L, Friedland L, Rolfe A, Warrington J, Lipshutz R, Daley G Q, Lander E S. Characterization of single-nucleotide polymorphisms in coding regions of human genes. Nat Genet. 1999; 22(3):231-8. PMID: 10391209.

  • 10. Jansen R, van Embden J D, Gaastra W, Schouls L M. Identification of genes that are associated with DNA repeats in prokaryotes. Mol Microbiol. 2002; 43(6):1565-75. PMID: 11952905.

  • 11. Mali P, Esvelt K M, Church G M. Cas9 as a versatile tool for engineering biology. Nat Methods. 2013; 10(10):957-63. PMID: 24076990.

  • 12. Jore M M, Lundgren M, van Duijin E, Bultema J B, Westra E R, Waghmare S P, Wiedenheft B, Pul U, Wurm R, Wagner R, Beijer M R, Barendregt A, Shou K, Snijders A P, Dickman M J, Doudna J A, Boekema E J, Heck A J, van der Oost J, Brouns S J. Structural basis for CRISPR RNA-guided DNA recognition by Cascade. Nat Struct Mol Biol. 2011; 18(5):529-36. PMID: 21460843.

  • 13. Horvath P, Barrangou R. CRISPR/Cas, the immune system of bacteria and archaea. Science. 2010; 327(5962):167-70. PMID: 20056882.

  • 14. Wiedenheft B, Sternberg S H, Doudna J A. RNA-guided genetic silencing systems in bacteria and archaea. Nature. 2012; 482(7385):331-8. PMID: 22337052.

  • 15. Gasiunas G, Siksnys V. RNA-dependent DNA endonuclease Cas9 of the CRISPR system: Holy Grail of genome editing? Trends Microbiol. 2013; 21(11):562-7. PMID: 24095303.

  • 16. Qi L S, Larson M H, Gilbert L A, Doudna J A, Weissman J S, Arkin A P, Lim W A. Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression. Cell. 2013; 152(5):1173-83. PMID: 23452860.

  • 17. Perez-Pinera P, Kocak D D, Vockley C M, Adler A F, Kabadi A M, Polstein L R, Thakore P I, Glass K A, Ousterout D G, Leong K W, Guilak F, Crawford G E, Reddy T E, Gersbach C A. RNA-guided gene activation by CRISPR-Cas9-based transcription factors. Nat Methods. 2013; 10(10):973-6. PMID: 23892895.

  • 18. Mali P, Aach J, Stranges P B, Esvelt K M, Moosburner M, Kosuri S, Yang L, Church G M. CAS9 transcriptional activators for target specificity screening and paired nickases for cooperative genome engineering. Nat Biotechnol. 2013; 31(9):833-8. PMID: 23907171.

  • 19. Gilbert L A, Larson M H, Morsut L, Liu Z, Brar G A, Torres S E, Stern-Ginossar N, Brandman O, Whitehead E H, Doudna J A, Lim W A, Weissman J S, Qi L S. CRISPR-mediated modular RNA-guided regulation of transcription in eukaryotes. Cell. 2013; 154(2):442-51. PMID: 23849981.

  • 20. Larson M H, Gilbert L A, Wang X, Lim W A, Weissman J S, Qi L S. CRISPR interference (CRISPRi) for sequence-specific control of gene expression. Nat Protoc. 2013; 8(11):2180-96. PMID: 24136345.

  • 21. Mali P, Yang L, Esvelt K M, Aach J, Guell M, DiCarlo J E, Norville J E, Church G M. RNA-guided human genome engineering via Cas9. Science. 2013; 339(6121):823-6. PMID: 23287722.

  • 22. Cole-Strauss A, Yoon K, Xiang Y, Byrne B C, Rice M C, Gryn J, Holloman W K, Kmiec E B. Correction of the mutation responsible for sickle cell anemia by an RNA-DNA oligonucleotide. Science. 1996; 273(5280):1386-9. PMID: 8703073.

  • 23. Tagalakis A D, Owen J S, Simons J P. Lack of RNA-DNA oligonucleotide (chimeraplast) mutagenic activity in mouse embryos. Mol Reprod Dev. 2005; 71(2):140-4. PMID: 15791601.

  • 24. Ray A, Langer M. Homologous recombination: ends as the means. Trends Plant Sci. 2002; 7(10):435-40. PMID 12399177.

  • 25. Britt A B, May G D. Re-engineering plant gene targeting. Trends Plant Sci. 2003; 8(2):90-5. PMID: 12597876.

  • 26. Vagner V, Ehrlich S D. Efficiency of homologous DNA recombination varies along the Bacillus subtilis chromosome. J Bacteriol. 1988; 170(9):3978-82. PMID: 3137211.

  • 27. Saleh-Gohari N, Helleday T. Conservative homologous recombination preferentially repairs DNA double-strand breaks in the S phase of the cell cycle in human cells. Nucleic Acids Res. 2004; 32(12):3683-8. PMID: 15252152.

  • 28. Lombardo A, Genovese P, Beausejour C M, Colleoni S, Lee Y L, Kim K A, Ando D, Urnov F D, Galli C, Gregory P D, Holmes M C, Naldini L. Gene editing in human stem cells using zinc finger nucleases and integrase-defective lentiviral vector delivery. Nat Biotechnol. 2007; 25(11):1298-306. PMID: 17965707.

  • 29. Conticello S G. The AID/APOBEC family of nucleic acid mutators. Genome Biol. 2008; 9(6):229. PMID: 18598372.

  • 30. Reynaud C A, Aoufouchi S, Faili A, Weill J C. What role for AID: mutator, or assembler of the immunoglobulin mutasome? Nat Immunol. 2003; 4(7):631-8.

  • 31. Bhagwat A S. DNA-cytosine deaminases: from antibody maturation to antiviral defense. DNA Repair (Amst). 2004; 3(1):85-9. PMID: 14697763.

  • 32. Navaratnam N, Sarwar R. An overview of cytidine deaminases. Int J Hematol. 2006; 83(3):195-200. PMID: 16720547.

  • 33. Holden L G, Prochnow C, Chang Y P, Bransteitter R, Chelico L, Sen U, Stevens R C, Goodman M F, Chen X S. Crystal structure of the anti-viral APOBEC3G catalytic domain and functional implications. Nature. 2008; 456(7218):121-4. PMID: 18849968.

  • 34. Chelico L, Pham P, Petruska J, Goodman M F. Biochemical basis of immunological and retroviral responses to DNA-targeted cytosine deamination by activation-induced cytidine deaminase and APOBEC3G. J Biol Chem. 2009; 284(41). 27761-5. PMID: 19684020.

  • 35. Pham P, Bransteitter R, Goodman M F. Reward versus risk: DNA cytidine deaminases triggering immunity and disease. Biochemistry. 2005; 44(8):2703-15. PMID 15723516.

  • 36. Chen X, Zaro J L, Shen W C. Fusion protein linkers: property, design and functionality. Adv Drug Deliv Rev. 2013; 65(10):1357-69. PMID: 23026637.

  • 37. Slaymaker, I. M. et al. Rationally engineered Cas9 nucleases with improved specificity. Science, doi:10.1126/science.aad5227 (2015).

  • 38. Kleinstiver, B. P. et al. Engineered CRISPR-Cas9 nucleases with altered PAM specificities. Nature 523, 481-485, doi:10.1038/nature14592 (2015).

  • 39. Pattanayak, V. et al. High-throughput profiling of off-target DNA cleavage reveals RNA-programmed Cas9 nuclease specificity. Nature Biotechnology 31, 839-843, doi:10.1038/nbt.2673 (2013).

  • 40. Shcherbakova, D. M. & Verkhusha, V. V. Near-infrared fluorescent proteins for multicolor in vivo imaging. Nature Methods 10, 751-754, doi:10.1038/nmeth.2521 (2013).

  • 41. Kleinstiver, et al., High-fidelity CRISPR-Cas9 nucleases with no detectable genome-wide off-target effects. Nature 529, 490-495 doi:10.1038/nature16526 (2016).



All publications, patents, patent applications, publication, and database entries (e.g., sequence database entries) mentioned herein, e.g., in the Background, Summary, Detailed Description, Examples, and/or References sections, are hereby incorporated by reference in their entirety as if each individual publication, patent, patent application, publication, and database entry was specifically and individually incorporated herein by reference. In case of conflict, the present application, including any definitions herein, will control.


EQUIVALENTS AND SCOPE

Those skilled in the art will recognize, or be able to ascertain using no more than routine experimentation, many equivalents of the embodiments described herein. The scope of the present disclosure is not intended to be limited to the above description, but rather is as set forth in the appended claims.


Articles such as “a,” “an,” and “the” may mean one or more than one unless indicated to the contrary or otherwise evident from the context. Claims or descriptions that include “or” between two or more members of a group are considered satisfied if one, more than one, or all of the group members are present, unless indicated to the contrary or otherwise evident from the context. The disclosure of a group that includes “or” between two or more group members provides embodiments in which exactly one member of the group is present, embodiments in which more than one members of the group are present, and embodiments in which all of the group members are present. For purposes of brevity those embodiments have not been individually spelled out herein, but it will be understood that each of these embodiments is provided herein and may be specifically claimed or disclaimed.


It is to be understood that the invention encompasses all variations, combinations, and permutations in which one or more limitation, element, clause, or descriptive term, from one or more of the claims or from one or more relevant portion of the description, is introduced into another claim. For example, a claim that is dependent on another claim can be modified to include one or more of the limitations found in any other claim that is dependent on the same base claim. Furthermore, where the claims recite a composition, it is to be understood that methods of making or using the composition according to any of the methods of making or using disclosed herein or according to methods known in the art, if any, are included, unless otherwise indicated or unless it would be evident to one of ordinary skill in the art that a contradiction or inconsistency would arise.


Where elements are presented as lists, e.g., in Markush group format, it is to be understood that every possible subgroup of the elements is also disclosed, and that any element or subgroup of elements can be removed from the group. It is also noted that the term “comprising” is intended to be open and permits the inclusion of additional elements or steps. It should be understood that, in general, where an embodiment, product, or method is referred to as comprising particular elements, features, or steps, embodiments, products, or methods that consist, or consist essentially of, such elements, features, or steps, are provided as well. For purposes of brevity those embodiments have not been individually spelled out herein, but it will be understood that each of these embodiments is provided herein and may be specifically claimed or disclaimed.


Where ranges are given, endpoints are included. Furthermore, it is to be understood that unless otherwise indicated or otherwise evident from the context and/or the understanding of one of ordinary skill in the art, values that are expressed as ranges can assume any specific value within the stated ranges in some embodiments, to the tenth of the unit of the lower limit of the range, unless the context clearly dictates otherwise. For purposes of brevity, the values in each range have not been individually spelled out herein, but it will be understood that each of these values is provided herein and may be specifically claimed or disclaimed. It is also to be understood that unless otherwise indicated or otherwise evident from the context and/or the understanding of one of ordinary skill in the art, values expressed as ranges can assume any subrange within the given range, wherein the endpoints of the subrange are expressed to the same degree of accuracy as the tenth of the unit of the lower limit of the range.


In addition, it is to be understood that any particular embodiment of the present invention may be explicitly excluded from any one or more of the claims. Where ranges are given, any value within the range may explicitly be excluded from any one or more of the claims. Any embodiment, element, feature, application, or aspect of the compositions and/or methods of the invention, can be excluded from any one or more claims. For purposes of brevity, all of the embodiments in which one or more elements, features, purposes, or aspects is excluded are not set forth explicitly herein.

Claims
  • 1. A Cas9 protein comprising an amino acid sequence that is at least 90% identical to the amino acid sequence of a Cas9 protein as provided by SEQ ID NO: 9, wherein the amino acid sequence of the Cas9 protein comprises an A262T substitution, and further comprises at least one substitution selected from the group consisting of S267G, K294R, F405I, S409I, E480K, E543D, M694I, E1219V, N1224K, 01256K, and L1362P of the amino acid sequence provided in SEQ ID NO: 9, andwherein the amino acid sequence of the Cas9 protein is not identical to the amino acid sequence of a naturally occurring Cas9 protein.
  • 2. The Cas9 protein of claim 1 comprising an amino acid sequence that is at least 95% identical to the amino acid sequence of a Cas9 protein as provided by SEQ ID NO: 9.
  • 3. The Cas9 protein of claim 1, wherein the amino acid sequence of the Cas9 protein comprises at least two substitutions selected from the group consisting of S267G, K294R, F405I, S409I, E480K, E543D, M694I, E1219V, N1224K, Q1256K, and L1362P of the amino acid sequence provided in SEQ ID NO: 9.
  • 4. A fusion protein comprising the Cas9 protein of claim 1, wherein the Cas9 protein is fused to an effector domain.
  • 5. The fusion protein of claim 4, wherein the effector domain comprises an enzyme domain.
  • 6. The fusion protein of claim 4, wherein the effector domain comprises a nuclease domain, a nickase domain, a recombinase domain, a deaminase domain, a methyltransferase domain, a methylase domain, an acetylase domain, an acetyltransferase domain, a transcriptional activator domain, or a transcriptional repressor domain.
  • 7. The fusion protein of claim 5, wherein the enzyme domain is a nuclease domain.
  • 8. A dimer of the fusion protein of claim 7.
  • 9. A fusion protein comprising a first Cas9 protein fused to a second Cas9 protein, wherein the first Cas9 protein is the Cas9 protein of claim 1.
  • 10. A complex comprising the Cas9 protein of claim 1 and a guide RNA bound to the Cas9 protein.
  • 11. A complex comprising the fusion protein of claim 9, a first guide RNA bound to the first Cas9 protein of the fusion protein, anda second guide RNA bound to the second Cas9 protein of the fusion protein.
  • 12. A method comprising contacting a DNA molecule with the Cas9 protein of claim 1 and a guide RNA, wherein the guide RNA is about 15-100 nucleotides long and comprises a sequence of at least 10 contiguous nucleotides that is complementary to a target sequence.
  • 13. A polynucleotide encoding the Cas9 protein of claim 1.
  • 14. A vector comprising the polynucleotide of claim 13.
  • 15. A cell comprising the Cas9 protein of claim 1, wherein the cell is not in a human being.
  • 16. The Cas9 protein of claim 1, wherein the Cas9 protein recognizes a non-canonical PAM sequence.
  • 17. The Cas9 protein of claim 16, wherein the non-canonical PAM sequence is selected from the group consisting of AAA, AAC, AAG, AAT, CAA, CAC, CAG, CAT, GAA, GAC, GAG, GAT, TAA, TAC, TAG, TAT, ACA, ACC, ACG, ACT, CCA, CCC, CCG, CCT, GCA, GCC, GCG, GCT, TCA, TCC, TCG, TCT, AGA, AGC, AGT, CGA, CGC, CGT, GGA, GGC, GGT, TGA, TGC, TGT, ATA, ATC, ATG, ATT, CTA, CTC, CTG, CTT, GTA, GTC, GTG, GTT, TTA, TTC, TTG, and TTT.
  • 18. The Cas9 protein of claim 1, wherein the Cas9 protein further comprises at least one mutation at an amino acid residue selected from the group consisting of amino acid residues 122, 137, 182, 294, 409, 480, 543, 660, 694, 1219, and 1329 of the amino acid sequence provided in SEQ ID NO: 9.
  • 19. The Cas9 protein of claim 1, wherein the Cas9 protein further comprises at least one mutation at an amino acid residue selected from the group consisting of amino acid residues 23, 108, 115, 141, 180, 230, 257, 267, 284, 294, 324, 409, 455, 466, 474, 480, 543, 554, 654, 694, 711, 727, 763, 1063, 1100, 1219, 1244, 1256, 1289, and 1323 of the amino acid sequence provided in SEQ ID NO: 9.
  • 20. The Cas9 protein of claim 1, wherein the Cas9 protein comprises at least one amino acid substitution selected from the group consisting of D23N, E108G, R115H, K141Q, D180N, P230S, D257N, S267G, D284N, K294R, R324L, S409I, L455F, T466A, T474I, E480K, E543D, K554R, R654L, M694I, A711E, L727P, M7631, 11063V, V1100I, E1219V, K1244N, Q1256K, K1289Q, and A1323S in the amino acid sequence provided in SEQ ID NO: 9.
  • 21. The Cas9 protein of claim 1, wherein the Cas9 protein further comprises at least one mutation at an amino acid residue selected from the group consisting of amino acid residues 108, 217, 324, 409, 480, 543, 673, 694, 1219, 1264, and 1365 of the amino acid sequence provided in SEQ ID NO: 9.
  • 22. The Cas9 protein of claim 1, wherein the Cas9 protein comprises any one of the following groups of mutations: A262T, S409I, E480K, E543D, M694I, and E1219V;A262T, F405I, S409I, E480K, E543D, M694I, and E1219V;D23N, E108G, A262T, S409I, E480K, E543D, M694I, L727P, E1219V, and K1289Q;E108G, A262T, S409I, E480K, E543D, K673E, M694I, E1219V, and L1365I;E108G, S217A, A262T, S409I, E480K, E543D, M694I, E1219V, and L1365I;A262T, R324L, S409I, E480K, E543D, M694I, and E1219V;A262T, S409I, E480K, E543D, M694I, E1219V, and H1264Y;A262T, S409I, E480K, E543D, M694I, E1219V, and L1365I;E108G, A262T, S409I, E480K, E543D, K673E, and E1219V; andE108G, A262T, S409I, E480K, E543D, M694I, E1219V, and L1365I
RELATED APPLICATIONS

This application is a national stage filing under 35 U.S.C. § 371 of international PCT application, PCT/US2016/058345, filed Oct. 22, 2016, which claims priority under 35 U.S.C. § 119(e) to U.S. provisional patent applications, U.S. Ser. No. 62/245,828 filed Oct. 23, 2015, U.S. Ser. No. 62/279,346 filed Jan. 15, 2016, U.S. Ser. No. 62/311,763 filed Mar. 22, 2016, U.S. Ser. No. 62/322,178 filed Apr. 13, 2016, U.S. Ser. No. 62/357,352 filed Jun. 30, 2016, U.S. Ser. No. 62/370,700 filed Aug. 3, 2016, U.S. Ser. No. 62/398,490 filed Sep. 22, 2016, U.S. Ser. No. 62/408,686 filed Oct. 14, 2016, and U.S. Ser. No. 62/357,332 filed Jun. 30, 2016; each of which is incorporated herein by reference.

PCT Information
Filing Document Filing Date Country Kind
PCT/US2016/058345 10/22/2016 WO
Publishing Document Publishing Date Country Kind
WO2017/070633 4/27/2017 WO A
US Referenced Citations (627)
Number Name Date Kind
4182449 Kozlow Jan 1980 A
4186183 Steck et al. Jan 1980 A
4217344 Vanlerberghe et al. Aug 1980 A
4235871 Papahadjopoulos et al. Nov 1980 A
4261975 Fullerton et al. Apr 1981 A
4485054 Mezei et al. Nov 1984 A
4501728 Geho et al. Feb 1985 A
4663290 Weis et al. May 1987 A
4737323 Martin et al. Apr 1988 A
4774085 Fidler Sep 1988 A
4797368 Carter et al. Jan 1989 A
4837028 Allen Jun 1989 A
4873316 Meade et al. Oct 1989 A
4880635 Janoff et al. Nov 1989 A
4889818 Gelfand et al. Dec 1989 A
4897355 Eppstein et al. Jan 1990 A
4906477 Kurono et al. Mar 1990 A
4911928 Wallach Mar 1990 A
4917951 Wallach Apr 1990 A
4920016 Allen et al. Apr 1990 A
4921757 Wheatley et al. May 1990 A
4946787 Eppstein et al. Aug 1990 A
4965185 Grischenko et al. Oct 1990 A
5017492 Kotewicz et al. May 1991 A
5047342 Chatterjee Sep 1991 A
5049386 Eppstein et al. Sep 1991 A
5057432 Wangersky et al. Oct 1991 A
5079352 Gelfand et al. Jan 1992 A
5139941 Muzyczka et al. Aug 1992 A
5173414 Lebkowski et al. Dec 1992 A
5223409 Ladner et al. Jun 1993 A
5244797 Kotewicz et al. Sep 1993 A
5270179 Chatterjee Dec 1993 A
5374553 Gelfand et al. Dec 1994 A
5405776 Kotewicz et al. Apr 1995 A
5436149 Barnes Jul 1995 A
5449639 Wei et al. Sep 1995 A
5496714 Comb et al. Mar 1996 A
5512462 Cheng Apr 1996 A
5580737 Polisky et al. Dec 1996 A
5614365 Tabor et al. Mar 1997 A
5652094 Usman et al. Jul 1997 A
5658727 Barbas et al. Aug 1997 A
5668005 Kotewicz et al. Sep 1997 A
5677152 Birch et al. Oct 1997 A
5712089 Borrebaeck et al. Jan 1998 A
5767099 Harris et al. Jun 1998 A
5780053 Ashley et al. Jul 1998 A
5821047 Garrard et al. Oct 1998 A
5830430 Unger et al. Nov 1998 A
5834247 Comb et al. Nov 1998 A
5835699 Kimura Nov 1998 A
5844075 Kawakami et al. Dec 1998 A
5849548 Haseloff et al. Dec 1998 A
5851548 Dattagupta et al. Dec 1998 A
5855910 Ashley et al. Jan 1999 A
5856463 Blankenborg et al. Jan 1999 A
5880275 Fischhoff et al. Mar 1999 A
5962313 Podsakoff et al. Oct 1999 A
5965124 Feinberg et al. Oct 1999 A
5981182 Jacobs, Jr. et al. Nov 1999 A
6015794 Haseloff et al. Jan 2000 A
6033874 Baum et al. Mar 2000 A
6057153 George et al. May 2000 A
6063608 Kotewicz et al. May 2000 A
6077705 Duan et al. Jun 2000 A
6156509 Schellenberger Dec 2000 A
6183998 Ivanov et al. Feb 2001 B1
6355415 Wagner et al. Mar 2002 B1
6429298 Ellington et al. Aug 2002 B1
6453242 Eisenberg et al. Sep 2002 B1
6479264 Louwrier Nov 2002 B1
6503717 Case et al. Jan 2003 B2
6534261 Cox, III et al. Mar 2003 B1
6589768 Kotewicz et al. Jul 2003 B1
6599692 Case et al. Jul 2003 B1
6607882 Cox, III et al. Aug 2003 B1
6610522 Kotewicz et al. Aug 2003 B1
6689558 Case Feb 2004 B2
6713063 Malvar et al. Mar 2004 B1
6716973 Baskerville et al. Apr 2004 B2
6824978 Cox, III et al. Nov 2004 B1
6933113 Case et al. Aug 2005 B2
6962705 Malvar et al. Nov 2005 B2
6969731 Tang et al. Nov 2005 B1
6979539 Cox, III et al. Dec 2005 B2
7013219 Case et al. Mar 2006 B2
7045337 Schultz et al. May 2006 B2
7064249 Corbin et al. Jun 2006 B2
7067650 Tanaka Jun 2006 B1
7070928 Liu et al. Jul 2006 B2
7070982 Malvar et al. Jul 2006 B2
7078208 Smith et al. Jul 2006 B2
7083970 Schultz et al. Aug 2006 B2
7163824 Cox, III et al. Jan 2007 B2
7192739 Liu et al. Mar 2007 B2
7223545 Liu et al. May 2007 B2
7354761 Schultz et al. Apr 2008 B2
7368275 Schultz et al. May 2008 B2
7442160 Liu et al. Oct 2008 B2
7476500 Liu et al. Jan 2009 B1
7476734 Liu Jan 2009 B2
7479573 Chu et al. Jan 2009 B2
7491494 Liu et al. Feb 2009 B2
7541450 Liu et al. Jun 2009 B2
7557068 Liu et al. Jul 2009 B2
7595179 Chen et al. Sep 2009 B2
7638300 Schultz et al. Dec 2009 B2
7670807 Lampson et al. Mar 2010 B2
7678554 Liu et al. Mar 2010 B2
7713721 Schultz et al. May 2010 B2
7771935 Liu et al. Aug 2010 B2
7794931 Breaker et al. Sep 2010 B2
7807408 Liu et al. Oct 2010 B2
7851658 Liu et al. Dec 2010 B2
7915025 Schultz et al. Mar 2011 B2
7919277 Russell et al. Apr 2011 B2
7993672 Huang et al. Aug 2011 B2
7998904 Liu et al. Aug 2011 B2
8012739 Schultz et al. Sep 2011 B2
8017323 Liu et al. Sep 2011 B2
8017755 Liu et al. Sep 2011 B2
8030074 Schultz et al. Oct 2011 B2
8067556 Hogrefe et al. Nov 2011 B2
8114648 Schultz et al. Feb 2012 B2
8173364 Schultz et al. May 2012 B2
8173392 Schultz et al. May 2012 B2
8183012 Schultz et al. May 2012 B2
8183178 Liu et al. May 2012 B2
8206914 Liu et al. Jun 2012 B2
8361725 Russell et al. Jan 2013 B2
8394604 Liu et al. Mar 2013 B2
8440431 Voytas et al. May 2013 B2
8440432 Voytas et al. May 2013 B2
8450471 Voytas et al. May 2013 B2
8492082 De Franciscis et al. Jul 2013 B2
8546553 Terns et al. Oct 2013 B2
8569256 Heyes et al. Oct 2013 B2
8586363 Voytas et al. Nov 2013 B2
8680069 de Fougerolles et al. Mar 2014 B2
8691729 Liu et al. Apr 2014 B2
8691750 Constien et al. Apr 2014 B2
8697359 Zhang Apr 2014 B1
8697853 Voytas et al. Apr 2014 B2
8709466 Coady et al. Apr 2014 B2
8728526 Heller May 2014 B2
8748667 Budzik et al. Jun 2014 B2
8758810 Okada et al. Jun 2014 B2
8759103 Kim et al. Jun 2014 B2
8759104 Unciti-Broceta et al. Jun 2014 B2
8771728 Huang et al. Jul 2014 B2
8790664 Pitard et al. Jul 2014 B2
8795965 Zhang Aug 2014 B2
8822663 Schrum et al. Sep 2014 B2
8835148 Janulaitis et al. Sep 2014 B2
8846578 McCray et al. Sep 2014 B2
8871445 Cong et al. Oct 2014 B2
8889418 Zhang et al. Nov 2014 B2
8900814 Yasukawa et al. Dec 2014 B2
8945839 Zhang Feb 2015 B2
8975232 Liu et al. Mar 2015 B2
8993233 Zhang et al. Mar 2015 B2
8999641 Zhang et al. Apr 2015 B2
9023594 Liu et al. May 2015 B2
9023649 Mali et al. May 2015 B2
9034650 Padidam May 2015 B2
9068179 Liu et al. Jun 2015 B1
9150626 Liu et al. Oct 2015 B2
9163271 Schultz et al. Oct 2015 B2
9163284 Liu et al. Oct 2015 B2
9181535 Liu et al. Nov 2015 B2
9200045 Liu et al. Dec 2015 B2
9221886 Liu et al. Dec 2015 B2
9228207 Liu et al. Jan 2016 B2
9234213 Wu Jan 2016 B2
9243038 Liu et al. Jan 2016 B2
9267127 Liu et al. Feb 2016 B2
9322006 Liu et al. Apr 2016 B2
9322037 Liu et al. Apr 2016 B2
9340799 Liu et al. May 2016 B2
9340800 Liu et al. May 2016 B2
9359599 Liu et al. Jun 2016 B2
9388430 Liu et al. Jul 2016 B2
9394537 Liu et al. Jul 2016 B2
9434774 Liu et al. Sep 2016 B2
9458484 Ma et al. Oct 2016 B2
9512446 Joung et al. Dec 2016 B1
9526724 Oshlack et al. Dec 2016 B2
9526784 Liu et al. Dec 2016 B2
9534210 Park et al. Jan 2017 B2
9567589 Jin et al. Feb 2017 B2
9580698 Xu et al. Feb 2017 B1
9610322 Liu et al. Apr 2017 B2
9637739 Siksnys et al. May 2017 B2
9663770 Rogers et al. May 2017 B2
9737604 Liu et al. Aug 2017 B2
9738693 Telford et al. Aug 2017 B2
9753340 Saitou Sep 2017 B2
9766216 Wada et al. Sep 2017 B2
9771574 Liu et al. Sep 2017 B2
9783791 Hogrefe et al. Oct 2017 B2
9816093 Donohoue et al. Nov 2017 B1
9840538 Telford et al. Dec 2017 B2
9840690 Karli et al. Dec 2017 B2
9840699 Liu et al. Dec 2017 B2
9840702 Collingwood et al. Dec 2017 B2
9850521 Braman et al. Dec 2017 B2
9873907 Zeiner et al. Jan 2018 B2
9879270 Hittinger et al. Jan 2018 B2
9914939 Church et al. Mar 2018 B2
9932567 Xu et al. Apr 2018 B1
9938288 Kishi et al. Apr 2018 B1
9944933 Storici et al. Apr 2018 B2
9982279 Gill et al. May 2018 B1
9999671 Liu et al. Jun 2018 B2
10011868 Liu et al. Jul 2018 B2
10053725 Liu et al. Aug 2018 B2
10059940 Zhong Aug 2018 B2
10077453 Liu et al. Sep 2018 B2
10113163 Liu et al. Oct 2018 B2
10150955 Lambowitz et al. Dec 2018 B2
10167457 Liu et al. Jan 2019 B2
10179911 Liu et al. Jan 2019 B2
10189831 Arrington et al. Jan 2019 B2
10202593 Liu et al. Feb 2019 B2
10202658 Parkin et al. Feb 2019 B2
10227581 Liu et al. Mar 2019 B2
10323236 Liu et al. Jun 2019 B2
10336997 Liu et al. Jul 2019 B2
10358670 Janulaitis et al. Jul 2019 B2
10392674 Liu et al. Aug 2019 B2
10407474 Liu et al. Sep 2019 B2
10407697 Doudna et al. Sep 2019 B2
10465176 Liu et al. Nov 2019 B2
10508298 Liu et al. Dec 2019 B2
10583201 Chen et al. Mar 2020 B2
10597679 Liu et al. Mar 2020 B2
10612011 Liu et al. Apr 2020 B2
10640767 Maianti et al. May 2020 B2
10682410 Liu et al. Jun 2020 B2
10704062 Liu et al. Jul 2020 B2
10745677 Maianti et al. Aug 2020 B2
10858639 Liu et al. Dec 2020 B2
10912833 Liu et al. Feb 2021 B2
10920208 Liu et al. Feb 2021 B2
10930367 Zhang et al. Feb 2021 B2
10947530 Liu et al. Mar 2021 B2
10954548 Liu et al. Mar 2021 B2
11046948 Liu et al. Jun 2021 B2
11053481 Liu et al. Jul 2021 B2
11124782 Liu et al. Sep 2021 B2
11214780 Liu et al. Jan 2022 B2
11268082 Liu et al. Mar 2022 B2
11299755 Liu et al. Apr 2022 B2
11306324 Liu et al. Apr 2022 B2
11319532 Liu et al. May 2022 B2
11447770 Liu et al. Sep 2022 B1
11542496 Liu et al. Jan 2023 B2
11542509 Maianti et al. Jan 2023 B2
11560566 Liu et al. Jan 2023 B2
11578343 Liu et al. Feb 2023 B2
11643652 Liu et al. May 2023 B2
11661590 Liu et al. May 2023 B2
11702651 Liu et al. Jul 2023 B2
20020132327 Hay et al. Sep 2002 A1
20030082575 Schultz et al. May 2003 A1
20030087817 Cox et al. May 2003 A1
20030096337 Hillman et al. May 2003 A1
20030108885 Schultz et al. Jun 2003 A1
20030119764 Loeb et al. Jun 2003 A1
20030167533 Yadav et al. Sep 2003 A1
20030203480 Kovesdi et al. Oct 2003 A1
20040003420 Kuhn et al. Jan 2004 A1
20040115184 Smith et al. Jun 2004 A1
20040203109 Lal et al. Oct 2004 A1
20050100973 Steward et al. May 2005 A1
20050136429 Guarente et al. Jun 2005 A1
20050222030 Allison Oct 2005 A1
20050260626 Lorens et al. Nov 2005 A1
20060088864 Smolke et al. Apr 2006 A1
20060104984 Littlefield et al. May 2006 A1
20060112447 Bogdanova et al. May 2006 A1
20060160222 Rozwadowski et al. Jul 2006 A1
20060166319 Chan et al. Jul 2006 A1
20060246568 Honjo et al. Nov 2006 A1
20070015238 Snyder et al. Jan 2007 A1
20070264692 Liu et al. Nov 2007 A1
20070269817 Shapero Nov 2007 A1
20080008697 Mintier et al. Jan 2008 A1
20080051317 Church et al. Feb 2008 A1
20080124725 Barrangou et al. May 2008 A1
20080182254 Hall et al. Jul 2008 A1
20080220502 Schellenberger et al. Sep 2008 A1
20080241917 Akita et al. Oct 2008 A1
20080268516 Perreault et al. Oct 2008 A1
20090130718 Short May 2009 A1
20090215110 Gibson et al. Aug 2009 A1
20090215878 Tan et al. Aug 2009 A1
20090227463 Reif et al. Sep 2009 A1
20090234109 Han et al. Sep 2009 A1
20100076057 Sontheimer et al. Mar 2010 A1
20100093617 Barrangou et al. Apr 2010 A1
20100104690 Barrangou et al. Apr 2010 A1
20100273857 Thakker et al. Oct 2010 A1
20100297180 Shone Nov 2010 A1
20100305197 Che Dec 2010 A1
20100316643 Eckert et al. Dec 2010 A1
20110016540 Weinstein et al. Jan 2011 A1
20110059160 Essner et al. Mar 2011 A1
20110059502 Chalasani Mar 2011 A1
20110104787 Church et al. May 2011 A1
20110177495 Liu et al. Jul 2011 A1
20110189775 Ainley et al. Aug 2011 A1
20110189776 Terns et al. Aug 2011 A1
20110217739 Terns et al. Sep 2011 A1
20110301073 Gregory et al. Dec 2011 A1
20120128649 Chaddock et al. May 2012 A1
20120129759 Liu et al. May 2012 A1
20120141523 Castado et al. Jun 2012 A1
20120244601 Bertozzi et al. Sep 2012 A1
20120270273 Zhang et al. Oct 2012 A1
20120322861 Byrne et al. Dec 2012 A1
20130022980 Nelson et al. Jan 2013 A1
20130059931 Petersen-Mahrt et al. Mar 2013 A1
20130117869 Duchateau et al. May 2013 A1
20130130248 Haurwitz et al. May 2013 A1
20130158245 Russell et al. Jun 2013 A1
20130165389 Schellenberger et al. Jun 2013 A1
20130212725 Kuhn et al. Aug 2013 A1
20130309720 Schultz et al. Nov 2013 A1
20130344117 Mirosevich et al. Dec 2013 A1
20130345064 Liu et al. Dec 2013 A1
20130345065 Hassibi et al. Dec 2013 A1
20140004280 Loomis Jan 2014 A1
20140005269 Ngwuluka et al. Jan 2014 A1
20140017214 Cost Jan 2014 A1
20140018404 Chen et al. Jan 2014 A1
20140044793 Goll et al. Feb 2014 A1
20140065711 Liu et al. Mar 2014 A1
20140068797 Doudna et al. Mar 2014 A1
20140127752 Zhou et al. May 2014 A1
20140141094 Smyth et al. May 2014 A1
20140141487 Feldman et al. May 2014 A1
20140179770 Zhang et al. Jun 2014 A1
20140186843 Zhang et al. Jul 2014 A1
20140186919 Zhang et al. Jul 2014 A1
20140186958 Zhang et al. Jul 2014 A1
20140201858 Ostertag et al. Jul 2014 A1
20140234289 Liu et al. Aug 2014 A1
20140248702 Zhang et al. Sep 2014 A1
20140273037 Wu Sep 2014 A1
20140273226 Wu Sep 2014 A1
20140273230 Chen et al. Sep 2014 A1
20140273234 Zhang et al. Sep 2014 A1
20140283156 Zador et al. Sep 2014 A1
20140295556 Joung et al. Oct 2014 A1
20140295557 Joung et al. Oct 2014 A1
20140342456 Mali et al. Nov 2014 A1
20140342457 Mali et al. Nov 2014 A1
20140342458 Mali et al. Nov 2014 A1
20140349400 Jakimo et al. Nov 2014 A1
20140356867 Peter et al. Dec 2014 A1
20140356956 Church et al. Dec 2014 A1
20140356958 Mali et al. Dec 2014 A1
20140356959 Church et al. Dec 2014 A1
20140357523 Zeiner et al. Dec 2014 A1
20140377868 Joung et al. Dec 2014 A1
20150010526 Liu et al. Jan 2015 A1
20150031089 Lindstrom Jan 2015 A1
20150031132 Church et al. Jan 2015 A1
20150031133 Church et al. Jan 2015 A1
20150044191 Liu et al. Feb 2015 A1
20150044192 Liu et al. Feb 2015 A1
20150044772 Zhao Feb 2015 A1
20150050699 Siksnys et al. Feb 2015 A1
20150056177 Liu et al. Feb 2015 A1
20150056629 Guthrie-Honea Feb 2015 A1
20150064138 Lu et al. Mar 2015 A1
20150064789 Paschon et al. Mar 2015 A1
20150071898 Liu et al. Mar 2015 A1
20150071899 Liu et al. Mar 2015 A1
20150071900 Liu et al. Mar 2015 A1
20150071901 Liu et al. Mar 2015 A1
20150071902 Liu et al. Mar 2015 A1
20150071903 Liu et al. Mar 2015 A1
20150071906 Liu et al. Mar 2015 A1
20150079680 Bradley et al. Mar 2015 A1
20150079681 Zhang Mar 2015 A1
20150098954 Hyde et al. Apr 2015 A1
20150118216 Liu et al. Apr 2015 A1
20150128300 Warming et al. May 2015 A1
20150132269 Orkin et al. May 2015 A1
20150140664 Byrne et al. May 2015 A1
20150159172 Miller et al. Jun 2015 A1
20150165054 Liu et al. Jun 2015 A1
20150166980 Liu et al. Jun 2015 A1
20150166981 Liu et al. Jun 2015 A1
20150166982 Liu et al. Jun 2015 A1
20150166983 Liu et al. Jun 2015 A1
20150166984 Liu et al. Jun 2015 A1
20150166985 Liu et al. Jun 2015 A1
20150191744 Wolfe et al. Jul 2015 A1
20150197759 Xu et al. Jul 2015 A1
20150211058 Carstens Jul 2015 A1
20150218573 Loque et al. Aug 2015 A1
20150225773 Farmer et al. Aug 2015 A1
20150252358 Maeder et al. Sep 2015 A1
20150259721 Van Brunt et al. Sep 2015 A1
20150275202 Liu et al. Oct 2015 A1
20150291965 Zhang et al. Oct 2015 A1
20150307889 Petolino et al. Oct 2015 A1
20150315252 Haugwitz et al. Nov 2015 A1
20150344549 Muir et al. Dec 2015 A1
20160002301 Je et al. Jan 2016 A1
20160015682 Cawthorne et al. Jan 2016 A2
20160017393 Jacobson et al. Jan 2016 A1
20160017396 Cann et al. Jan 2016 A1
20160032292 Storici et al. Feb 2016 A1
20160032353 Braman et al. Feb 2016 A1
20160040155 Maizels et al. Feb 2016 A1
20160046952 Hittinger et al. Feb 2016 A1
20160046961 Jinek et al. Feb 2016 A1
20160046962 May et al. Feb 2016 A1
20160053272 Wurtzel et al. Feb 2016 A1
20160053304 Wurtzel et al. Feb 2016 A1
20160074535 Ranganathan et al. Mar 2016 A1
20160076093 Shendure et al. Mar 2016 A1
20160090603 Carnes et al. Mar 2016 A1
20160090622 Liu et al. Mar 2016 A1
20160115488 Zhang et al. Apr 2016 A1
20160138046 Wu May 2016 A1
20160153003 Joung et al. Jun 2016 A1
20160186214 Brouns et al. Jun 2016 A1
20160200779 Liu et al. Jul 2016 A1
20160201040 Liu et al. Jul 2016 A1
20160201089 Gersbach et al. Jul 2016 A1
20160206566 Lu et al. Jul 2016 A1
20160208243 Zhang et al. Jul 2016 A1
20160208288 Liu et al. Jul 2016 A1
20160215275 Zhong Jul 2016 A1
20160215276 Liu et al. Jul 2016 A1
20160215300 May et al. Jul 2016 A1
20160244784 Jacobson et al. Aug 2016 A1
20160244829 Bang et al. Aug 2016 A1
20160264934 Giallourakis et al. Sep 2016 A1
20160272593 Ritter et al. Sep 2016 A1
20160272965 Zhang et al. Sep 2016 A1
20160281072 Zhang Sep 2016 A1
20160298136 Chen et al. Oct 2016 A1
20160304846 Liu et al. Oct 2016 A1
20160304855 Stark et al. Oct 2016 A1
20160312304 Sorrentino et al. Oct 2016 A1
20160319262 Doudna et al. Nov 2016 A1
20160333389 Liu et al. Nov 2016 A1
20160340622 Abdou Nov 2016 A1
20160340662 Zhang et al. Nov 2016 A1
20160345578 Barrangou et al. Dec 2016 A1
20160346360 Quake et al. Dec 2016 A1
20160346361 Quake et al. Dec 2016 A1
20160346362 Quake et al. Dec 2016 A1
20160348074 Quake et al. Dec 2016 A1
20160348096 Liu et al. Dec 2016 A1
20160350476 Quake et al. Dec 2016 A1
20160355796 Davidson et al. Dec 2016 A1
20160369262 Reik et al. Dec 2016 A1
20170009224 Liu et al. Jan 2017 A1
20170009242 McKinley et al. Jan 2017 A1
20170014449 Bangera et al. Jan 2017 A1
20170020922 Wagner et al. Jan 2017 A1
20170029844 Ball et al. Feb 2017 A1
20170037432 Donohoue et al. Feb 2017 A1
20170044520 Liu et al. Feb 2017 A1
20170044592 Peter et al. Feb 2017 A1
20170053729 Kotani et al. Feb 2017 A1
20170058271 Joung et al. Mar 2017 A1
20170058272 Carter et al. Mar 2017 A1
20170058298 Kennedy et al. Mar 2017 A1
20170073663 Wang et al. Mar 2017 A1
20170073670 Nishida et al. Mar 2017 A1
20170087224 Quake Mar 2017 A1
20170087225 Quake Mar 2017 A1
20170088587 Quake Mar 2017 A1
20170088828 Quake Mar 2017 A1
20170107536 Zhang et al. Apr 2017 A1
20170107560 Peter et al. Apr 2017 A1
20170114367 Hu et al. Apr 2017 A1
20170121693 Liu et al. May 2017 A1
20170145394 Yeo et al. May 2017 A1
20170145405 Tang et al. May 2017 A1
20170145438 Kantor May 2017 A1
20170152528 Zhang Jun 2017 A1
20170152787 Kubo et al. Jun 2017 A1
20170159033 Kamtekar et al. Jun 2017 A1
20170166928 Vyas et al. Jun 2017 A1
20170175104 Doudna et al. Jun 2017 A1
20170175142 Zhang et al. Jun 2017 A1
20170191047 Terns et al. Jul 2017 A1
20170191078 Zhang et al. Jul 2017 A1
20170198269 Zhang et al. Jul 2017 A1
20170198277 Kmiec et al. Jul 2017 A1
20170198302 Feng et al. Jul 2017 A1
20170211061 Weiss et al. Jul 2017 A1
20170226522 Hu et al. Aug 2017 A1
20170233703 Xie et al. Aug 2017 A1
20170233708 Liu et al. Aug 2017 A1
20170233756 Begemann et al. Aug 2017 A1
20170247671 Yung et al. Aug 2017 A1
20170247703 Sloan et al. Aug 2017 A1
20170268022 Liu et al. Sep 2017 A1
20170275648 Barrangou Sep 2017 A1
20170275665 Silas et al. Sep 2017 A1
20170283797 Robb et al. Oct 2017 A1
20170283831 Zhang et al. Oct 2017 A1
20170306306 Potter et al. Oct 2017 A1
20170314016 Kim et al. Nov 2017 A1
20170362635 Chamberlain et al. Dec 2017 A1
20180023062 Lamb et al. Jan 2018 A1
20180057545 Liu et al. Mar 2018 A9
20180064077 Dunham et al. Mar 2018 A1
20180066258 Powell Mar 2018 A1
20180068062 Zhang et al. Mar 2018 A1
20180073012 Liu et al. Mar 2018 A1
20180080051 Sheikh et al. Mar 2018 A1
20180087046 Badran et al. Mar 2018 A1
20180100147 Yates et al. Apr 2018 A1
20180105867 Xiao et al. Apr 2018 A1
20180119118 Lu et al. May 2018 A1
20180127759 Lu et al. May 2018 A1
20180127780 Liu et al. May 2018 A1
20180155708 Church et al. Jun 2018 A1
20180155720 Donohoue et al. Jun 2018 A1
20180163213 Aneja et al. Jun 2018 A1
20180170984 Harris et al. Jun 2018 A1
20180179503 Maianti et al. Jun 2018 A1
20180179547 Zhang et al. Jun 2018 A1
20180201921 Malcolm Jul 2018 A1
20180230464 Zhong Aug 2018 A1
20180230471 Storici et al. Aug 2018 A1
20180236081 Liu et al. Aug 2018 A1
20180237758 Liu et al. Aug 2018 A1
20180237787 Maianti et al. Aug 2018 A1
20180245066 Yao et al. Aug 2018 A1
20180245075 Khalil et al. Aug 2018 A1
20180258418 Kim Sep 2018 A1
20180265864 Li et al. Sep 2018 A1
20180273939 Yu et al. Sep 2018 A1
20180282722 Jakimo et al. Oct 2018 A1
20180298391 Jakimo et al. Oct 2018 A1
20180305688 Zhong Oct 2018 A1
20180305704 Zhang Oct 2018 A1
20180312822 Lee et al. Nov 2018 A1
20180312825 Liu et al. Nov 2018 A1
20180312828 Liu et al. Nov 2018 A1
20180312835 Yao et al. Nov 2018 A1
20180327756 Zhang et al. Nov 2018 A1
20180346927 Doudna et al. Dec 2018 A1
20180371497 Gill et al. Dec 2018 A1
20190010481 Joung et al. Jan 2019 A1
20190055543 Tran et al. Feb 2019 A1
20190093099 Liu et al. Mar 2019 A1
20190185883 Liu et al. Jun 2019 A1
20190218547 Lee et al. Jul 2019 A1
20190219575 Gray et al. Jul 2019 A1
20190225955 Liu et al. Jul 2019 A1
20190233847 Savage et al. Aug 2019 A1
20190241633 Fotin-Mleczek et al. Aug 2019 A1
20190256842 Liu et al. Aug 2019 A1
20190264202 Church et al. Aug 2019 A1
20190276816 Liu et al. Sep 2019 A1
20190276873 Dong et al. Sep 2019 A1
20190309290 Neuteboom et al. Oct 2019 A1
20190322992 Liu et al. Oct 2019 A1
20190352632 Liu et al. Nov 2019 A1
20190367891 Liu et al. Dec 2019 A1
20200010818 Liu et al. Jan 2020 A1
20200010835 Maianti et al. Jan 2020 A1
20200063127 Lu et al. Feb 2020 A1
20200071722 Liu et al. Mar 2020 A1
20200109398 Rubens et al. Apr 2020 A1
20200172931 Liu et al. Jun 2020 A1
20200181619 Tang et al. Jun 2020 A1
20200190493 Liu et al. Jun 2020 A1
20200216833 Liu et al. Jul 2020 A1
20200255868 Liu et al. Aug 2020 A1
20200277587 Liu et al. Sep 2020 A1
20200323984 Liu et al. Oct 2020 A1
20200399619 Maianti et al. Dec 2020 A1
20200399626 Liu et al. Dec 2020 A1
20210054416 Liu et al. Feb 2021 A1
20210115428 Maianti et al. Apr 2021 A1
20210196809 Maianti et al. Jul 2021 A1
20210198330 Liu et al. Jul 2021 A1
20210214698 Liu et al. Jul 2021 A1
20210230577 Liu et al. Jul 2021 A1
20210254127 Liu et al. Aug 2021 A1
20210315994 Liu et al. Oct 2021 A1
20210317440 Liu et al. Oct 2021 A1
20220033785 Liu et al. Feb 2022 A1
20220119785 Liu et al. Apr 2022 A1
20220170013 Liu et al. Jun 2022 A1
20220177877 Church et al. Jun 2022 A1
20220204975 Liu et al. Jun 2022 A1
20220213507 Liu et al. Jul 2022 A1
20220220462 Liu et al. Jul 2022 A1
20220238182 Shen et al. Jul 2022 A1
20220249697 Liu et al. Aug 2022 A1
20220282275 Liu et al. Sep 2022 A1
20220290115 Liu et al. Sep 2022 A1
20220307001 Liu et al. Sep 2022 A1
20220307003 Liu et al. Sep 2022 A1
20220315906 Liu et al. Oct 2022 A1
20220356469 Liu et al. Nov 2022 A1
20220380740 Liu et al. Dec 2022 A1
20220389395 Liu et al. Dec 2022 A1
20230002745 Liu et al. Jan 2023 A1
20230021641 Liu et al. Jan 2023 A1
20230056852 Liu et al. Feb 2023 A1
20230058176 Liu et al. Feb 2023 A1
20230078265 Liu et al. Mar 2023 A1
20230086199 Liu et al. Mar 2023 A1
20230090221 Liu et al. Mar 2023 A1
20230108687 Liu et al. Apr 2023 A1
20230123669 Liu et al. Apr 2023 A1
20230127008 Liu et al. Apr 2023 A1
20230159913 Liu et al. May 2023 A1
20230193295 Maianti et al. Jun 2023 A1
20230220374 Liu et al. Jul 2023 A1
Foreign Referenced Citations (1693)
Number Date Country
2012244264 Nov 2012 AU
2012354062 Jul 2014 AU
2015252023 Nov 2015 AU
2015101792 Jan 2016 AU
112015013786 Jul 2017 BR
2894668 Jun 2014 CA
2894681 Jun 2014 CA
2894684 Jun 2014 CA
2 852 593 Nov 2015 CA
1069962 Mar 1993 CN
101460619 Jun 2009 CN
101873862 Oct 2010 CN
102892777 Jan 2013 CN
103224947 Jul 2013 CN
103233028 Aug 2013 CN
103388006 Nov 2013 CN
103614415 Mar 2014 CN
103642836 Mar 2014 CN
103668472 Mar 2014 CN
103820441 May 2014 CN
103820454 May 2014 CN
105602987 May 2014 CN
103911376 Jul 2014 CN
103923911 Jul 2014 CN
103088008 Aug 2014 CN
103981211 Aug 2014 CN
103981212 Aug 2014 CN
104004778 Aug 2014 CN
104004782 Aug 2014 CN
104017821 Sep 2014 CN
104109687 Oct 2014 CN
104178461 Dec 2014 CN
104342457 Feb 2015 CN
104404036 Mar 2015 CN
104450774 Mar 2015 CN
104480144 Apr 2015 CN
104498493 Apr 2015 CN
104504304 Apr 2015 CN
104531704 Apr 2015 CN
104531705 Apr 2015 CN
104560864 Apr 2015 CN
104561095 Apr 2015 CN
104593418 May 2015 CN
104593422 May 2015 CN
104611370 May 2015 CN
104651392 May 2015 CN
104651398 May 2015 CN
104651399 May 2015 CN
104651401 May 2015 CN
104673816 Jun 2015 CN
104725626 Jun 2015 CN
104726449 Jun 2015 CN
104726494 Jun 2015 CN
104745626 Jul 2015 CN
104762321 Jul 2015 CN
104805078 Jul 2015 CN
104805099 Jul 2015 CN
104805118 Jul 2015 CN
104846010 Aug 2015 CN
104894068 Sep 2015 CN
104894075 Sep 2015 CN
104928321 Sep 2015 CN
105039339 Nov 2015 CN
105039399 Nov 2015 CN
105063061 Nov 2015 CN
105087620 Nov 2015 CN
105112422 Dec 2015 CN
105112445 Dec 2015 CN
105112519 Dec 2015 CN
105121648 Dec 2015 CN
105132427 Dec 2015 CN
105132451 Dec 2015 CN
105177038 Dec 2015 CN
105177126 Dec 2015 CN
105210981 Jan 2016 CN
105219799 Jan 2016 CN
105238806 Jan 2016 CN
105255937 Jan 2016 CN
105274144 Jan 2016 CN
105296518 Feb 2016 CN
105296537 Feb 2016 CN
105316324 Feb 2016 CN
105316327 Feb 2016 CN
105316337 Feb 2016 CN
105331607 Feb 2016 CN
105331608 Feb 2016 CN
105331609 Feb 2016 CN
105331627 Feb 2016 CN
105400773 Mar 2016 CN
105400779 Mar 2016 CN
105400810 Mar 2016 CN
105441451 Mar 2016 CN
105462968 Apr 2016 CN
105463003 Apr 2016 CN
105463027 Apr 2016 CN
105492608 Apr 2016 CN
105492609 Apr 2016 CN
105505976 Apr 2016 CN
105505979 Apr 2016 CN
105518134 Apr 2016 CN
105518135 Apr 2016 CN
105518137 Apr 2016 CN
105518138 Apr 2016 CN
105518139 Apr 2016 CN
105518140 Apr 2016 CN
105543228 May 2016 CN
105543266 May 2016 CN
105543270 May 2016 CN
105567688 May 2016 CN
105567689 May 2016 CN
105567734 May 2016 CN
105567735 May 2016 CN
105567738 May 2016 CN
105593367 May 2016 CN
105594664 May 2016 CN
105624146 Jun 2016 CN
105624187 Jun 2016 CN
105646719 Jun 2016 CN
105647922 Jun 2016 CN
105647962 Jun 2016 CN
105647968 Jun 2016 CN
105647969 Jun 2016 CN
105671070 Jun 2016 CN
105671083 Jun 2016 CN
105695485 Jun 2016 CN
105779448 Jul 2016 CN
105779449 Jul 2016 CN
105802980 Jul 2016 CN
105821039 Aug 2016 CN
105821040 Aug 2016 CN
105821049 Aug 2016 CN
105821072 Aug 2016 CN
105821075 Aug 2016 CN
105821116 Aug 2016 CN
105838733 Aug 2016 CN
105861547 Aug 2016 CN
105861552 Aug 2016 CN
105861554 Aug 2016 CN
105886498 Aug 2016 CN
105886534 Aug 2016 CN
105886616 Aug 2016 CN
105907758 Aug 2016 CN
105907785 Aug 2016 CN
105925608 Sep 2016 CN
105934516 Sep 2016 CN
105950560 Sep 2016 CN
105950626 Sep 2016 CN
105950633 Sep 2016 CN
105950639 Sep 2016 CN
105985985 Oct 2016 CN
106011104 Oct 2016 CN
106011150 Oct 2016 CN
106011167 Oct 2016 CN
106011171 Oct 2016 CN
106032540 Oct 2016 CN
106047803 Oct 2016 CN
106047877 Oct 2016 CN
106047930 Oct 2016 CN
106086008 Nov 2016 CN
106086028 Nov 2016 CN
106086061 Nov 2016 CN
106086062 Nov 2016 CN
106109417 Nov 2016 CN
106119275 Nov 2016 CN
106119283 Nov 2016 CN
106148286 Nov 2016 CN
106148370 Nov 2016 CN
106148416 Nov 2016 CN
106167525 Nov 2016 CN
106167808 Nov 2016 CN
106167810 Nov 2016 CN
106167821 Nov 2016 CN
106172238 Dec 2016 CN
106190903 Dec 2016 CN
106191057 Dec 2016 CN
106191061 Dec 2016 CN
106191062 Dec 2016 CN
106191064 Dec 2016 CN
106191071 Dec 2016 CN
106191099 Dec 2016 CN
106191107 Dec 2016 CN
106191113 Dec 2016 CN
106191114 Dec 2016 CN
106191116 Dec 2016 CN
106191124 Dec 2016 CN
106222177 Dec 2016 CN
106222193 Dec 2016 CN
106222203 Dec 2016 CN
106244555 Dec 2016 CN
106244557 Dec 2016 CN
106244591 Dec 2016 CN
106244609 Dec 2016 CN
106282241 Jan 2017 CN
106318934 Jan 2017 CN
106318973 Jan 2017 CN
106350540 Jan 2017 CN
106367435 Feb 2017 CN
106399306 Feb 2017 CN
106399311 Feb 2017 CN
106399360 Feb 2017 CN
106399367 Feb 2017 CN
106399375 Feb 2017 CN
106399377 Feb 2017 CN
106434651 Feb 2017 CN
106434663 Feb 2017 CN
106434688 Feb 2017 CN
106434737 Feb 2017 CN
106434748 Feb 2017 CN
106434752 Feb 2017 CN
106434782 Feb 2017 CN
106446600 Feb 2017 CN
106479985 Mar 2017 CN
106480027 Mar 2017 CN
106480036 Mar 2017 CN
106480067 Mar 2017 CN
106480080 Mar 2017 CN
106480083 Mar 2017 CN
106480097 Mar 2017 CN
106544351 Mar 2017 CN
106544353 Mar 2017 CN
106544357 Mar 2017 CN
106554969 Apr 2017 CN
106566838 Apr 2017 CN
106701763 May 2017 CN
106701808 May 2017 CN
106701818 May 2017 CN
106701823 May 2017 CN
106701830 May 2017 CN
106754912 May 2017 CN
106755026 May 2017 CN
106755077 May 2017 CN
106755088 May 2017 CN
106755091 May 2017 CN
106755097 May 2017 CN
106755424 May 2017 CN
106801056 Jun 2017 CN
106834323 Jun 2017 CN
106834341 Jun 2017 CN
106834347 Jun 2017 CN
106845151 Jun 2017 CN
106868008 Jun 2017 CN
106868031 Jun 2017 CN
106906240 Jun 2017 CN
106906242 Jun 2017 CN
106916820 Jul 2017 CN
106916852 Jul 2017 CN
106939303 Jul 2017 CN
106947750 Jul 2017 CN
106947780 Jul 2017 CN
106957830 Jul 2017 CN
106957831 Jul 2017 CN
106957844 Jul 2017 CN
106957855 Jul 2017 CN
106957858 Jul 2017 CN
106967697 Jul 2017 CN
106967726 Jul 2017 CN
106978428 Jul 2017 CN
106987570 Jul 2017 CN
106987757 Jul 2017 CN
107012164 Aug 2017 CN
107012174 Aug 2017 CN
107012213 Aug 2017 CN
107012250 Aug 2017 CN
107022562 Aug 2017 CN
107034188 Aug 2017 CN
107034218 Aug 2017 CN
107034229 Aug 2017 CN
107043775 Aug 2017 CN
107043779 Aug 2017 CN
107043787 Aug 2017 CN
107058320 Aug 2017 CN
107058328 Aug 2017 CN
107058358 Aug 2017 CN
107058372 Aug 2017 CN
107083392 Aug 2017 CN
107099533 Aug 2017 CN
107099850 Aug 2017 CN
107119053 Sep 2017 CN
107119071 Sep 2017 CN
107129999 Sep 2017 CN
107130000 Sep 2017 CN
107142272 Sep 2017 CN
107142282 Sep 2017 CN
107177591 Sep 2017 CN
107177595 Sep 2017 CN
107177625 Sep 2017 CN
107177631 Sep 2017 CN
107190006 Sep 2017 CN
107190008 Sep 2017 CN
107217042 Sep 2017 CN
107217075 Sep 2017 CN
107227307 Oct 2017 CN
107227352 Oct 2017 CN
107236737 Oct 2017 CN
107236739 Oct 2017 CN
107236741 Oct 2017 CN
107245502 Oct 2017 CN
107254485 Oct 2017 CN
107266541 Oct 2017 CN
107267515 Oct 2017 CN
107287245 Oct 2017 CN
107298701 Oct 2017 CN
107299114 Oct 2017 CN
107304435 Oct 2017 CN
107312785 Nov 2017 CN
107312793 Nov 2017 CN
107312795 Nov 2017 CN
107312798 Nov 2017 CN
107326042 Nov 2017 CN
107326046 Nov 2017 CN
107354156 Nov 2017 CN
107354173 Nov 2017 CN
107356793 Nov 2017 CN
107362372 Nov 2017 CN
107365786 Nov 2017 CN
107365804 Nov 2017 CN
107384894 Nov 2017 CN
107384922 Nov 2017 CN
107384926 Nov 2017 CN
107400677 Nov 2017 CN
107418974 Dec 2017 CN
107435051 Dec 2017 CN
107435069 Dec 2017 CN
107446922 Dec 2017 CN
107446923 Dec 2017 CN
107446924 Dec 2017 CN
107446932 Dec 2017 CN
107446951 Dec 2017 CN
107446954 Dec 2017 CN
107460196 Dec 2017 CN
107474129 Dec 2017 CN
107475300 Dec 2017 CN
107488649 Dec 2017 CN
107502608 Dec 2017 CN
107502618 Dec 2017 CN
107513531 Dec 2017 CN
107519492 Dec 2017 CN
107523567 Dec 2017 CN
107523583 Dec 2017 CN
107541525 Jan 2018 CN
107557373 Jan 2018 CN
107557378 Jan 2018 CN
107557381 Jan 2018 CN
107557390 Jan 2018 CN
107557393 Jan 2018 CN
107557394 Jan 2018 CN
107557455 Jan 2018 CN
107574179 Jan 2018 CN
107586777 Jan 2018 CN
107586779 Jan 2018 CN
107604003 Jan 2018 CN
107619829 Jan 2018 CN
107619837 Jan 2018 CN
107630006 Jan 2018 CN
107630041 Jan 2018 CN
107630042 Jan 2018 CN
107630043 Jan 2018 CN
107641631 Jan 2018 CN
107653256 Feb 2018 CN
107686848 Feb 2018 CN
206970581 Feb 2018 CN
107760652 Mar 2018 CN
107760663 Mar 2018 CN
107760684 Mar 2018 CN
107760715 Mar 2018 CN
107784200 Mar 2018 CN
107794272 Mar 2018 CN
107794276 Mar 2018 CN
107815463 Mar 2018 CN
107828738 Mar 2018 CN
107828794 Mar 2018 CN
107828826 Mar 2018 CN
107828874 Mar 2018 CN
107858346 Mar 2018 CN
107858373 Mar 2018 CN
107880132 Apr 2018 CN
107881184 Apr 2018 CN
107893074 Apr 2018 CN
107893075 Apr 2018 CN
107893076 Apr 2018 CN
107893080 Apr 2018 CN
107893086 Apr 2018 CN
107904261 Apr 2018 CN
107937427 Apr 2018 CN
107937432 Apr 2018 CN
107937501 Apr 2018 CN
107974466 May 2018 CN
107988229 May 2018 CN
107988246 May 2018 CN
107988256 May 2018 CN
107988268 May 2018 CN
108018316 May 2018 CN
108034656 May 2018 CN
108048466 May 2018 CN
108102940 Jun 2018 CN
108103090 Jun 2018 CN
108103092 Jun 2018 CN
108103098 Jun 2018 CN
108103586 Jun 2018 CN
108148835 Jun 2018 CN
108148837 Jun 2018 CN
108148873 Jun 2018 CN
108192956 Jun 2018 CN
108251423 Jul 2018 CN
108251451 Jul 2018 CN
108251452 Jul 2018 CN
108342480 Jul 2018 CN
108359691 Aug 2018 CN
108359712 Aug 2018 CN
108384784 Aug 2018 CN
108396027 Aug 2018 CN
108410877 Aug 2018 CN
108410906 Aug 2018 CN
108410907 Aug 2018 CN
108410911 Aug 2018 CN
108424931 Aug 2018 CN
108441520 Aug 2018 CN
108486108 Sep 2018 CN
108486111 Sep 2018 CN
108486145 Sep 2018 CN
108486146 Sep 2018 CN
108486154 Sep 2018 CN
108486159 Sep 2018 CN
108486234 Sep 2018 CN
108504657 Sep 2018 CN
108504685 Sep 2018 CN
108504693 Sep 2018 CN
108546712 Sep 2018 CN
108546717 Sep 2018 CN
108546718 Sep 2018 CN
108559730 Sep 2018 CN
108559732 Sep 2018 CN
108559745 Sep 2018 CN
108559760 Sep 2018 CN
108570479 Sep 2018 CN
108588071 Sep 2018 CN
108588123 Sep 2018 CN
108588128 Sep 2018 CN
108588182 Sep 2018 CN
108610399 Oct 2018 CN
108611364 Oct 2018 CN
108624622 Oct 2018 CN
108642053 Oct 2018 CN
108642055 Oct 2018 CN
108642077 Oct 2018 CN
108642078 Oct 2018 CN
108642090 Oct 2018 CN
108690844 Oct 2018 CN
108707604 Oct 2018 CN
108707620 Oct 2018 CN
108707621 Oct 2018 CN
108707628 Oct 2018 CN
108707629 Oct 2018 CN
108715850 Oct 2018 CN
108728476 Nov 2018 CN
108728486 Nov 2018 CN
108753772 Nov 2018 CN
108753783 Nov 2018 CN
108753813 Nov 2018 CN
108753817 Nov 2018 CN
108753832 Nov 2018 CN
108753835 Nov 2018 CN
108753836 Nov 2018 CN
108795902 Nov 2018 CN
108822217 Nov 2018 CN
108823248 Nov 2018 CN
108823249 Nov 2018 CN
108823291 Nov 2018 CN
108841845 Nov 2018 CN
108853133 Nov 2018 CN
108866093 Nov 2018 CN
108893529 Nov 2018 CN
108913664 Nov 2018 CN
108913691 Nov 2018 CN
108913714 Nov 2018 CN
108913717 Nov 2018 CN
208034188 Nov 2018 CN
109517841 Mar 2019 CN
0264166 Apr 1988 EP
0289479 Nov 1988 EP
0321201 Jun 1989 EP
0519463 Dec 1992 EP
2 604 255 Jun 2013 EP
2840140 Feb 2015 EP
2877490 Jun 2015 EP
2 966 170 Jan 2016 EP
3 009 511 Apr 2016 EP
3031921 Jun 2016 EP
3045537 Jul 2016 EP
3 115 457 Jan 2017 EP
3144390 Mar 2017 EP
3199632 Aug 2017 EP
3216867 Sep 2017 EP
3252160 Dec 2017 EP
3450553 Dec 2019 EP
2740248 Feb 2020 ES
2 528 177 Jan 2016 GB
2531454 Apr 2016 GB
2531454 Apr 2016 GB
2542653 Mar 2017 GB
1208045 Feb 2016 HK
H0937764 Feb 1997 JP
2007-501626 Feb 2007 JP
2008-515405 May 2008 JP
2010-033344 Feb 2010 JP
2010-535744 Nov 2010 JP
2010-539929 Dec 2010 JP
2011-081011 Apr 2011 JP
2011-523353 Aug 2011 JP
2012-525146 Oct 2012 JP
2012-210172 Nov 2012 JP
2012-531909 Dec 2012 JP
2015-523856 Aug 2015 JP
2015-532654 Nov 2015 JP
2016-525888 Sep 2016 JP
2016-534132 Nov 2016 JP
2017-500035 Jan 2017 JP
2018-521045 Aug 2018 JP
6629734 Jan 2020 JP
101584933 Jan 2016 KR
2016-0050069 May 2016 KR
20160133380 Nov 2016 KR
20170037025 Apr 2017 KR
20170037028 Apr 2017 KR
101748575 Jun 2017 KR
20170128137 Nov 2017 KR
2018-0022465 Mar 2018 KR
2016104674 Aug 2017 RU
2634395 Oct 2017 RU
2652899 May 2018 RU
2015128057 Mar 2019 RU
2015128098 Mar 2019 RU
2687451 May 2019 RU
2019112514 Jun 2019 RU
2019127300 Sep 2019 RU
2701850 Oct 2019 RU
10201707569 Oct 2017 SG
10201710486 Jan 2018 SG
10201710487 Jan 2018 SG
10201710488 Jan 2018 SG
I608100 Dec 2017 TW
2018-29773 Aug 2018 TW
WO 1990002809 Mar 1990 WO
WO 1991003162 Mar 1991 WO
WO 1991016024 Oct 1991 WO
WO 1991017271 Nov 1991 WO
WO 1991017424 Nov 1991 WO
WO 1992001047 Jan 1992 WO
WO 1992006188 Apr 1992 WO
WO 1992006200 Apr 1992 WO
WO 1992007065 Apr 1992 WO
WO 1992009690 Jun 1992 WO
WO 1992015679 Sep 1992 WO
WO 1992018619 Oct 1992 WO
WO 1992020791 Nov 1992 WO
WO 1993001288 Jan 1993 WO
WO 1993015187 Aug 1993 WO
WO 1993024641 Dec 1993 WO
WO 1994018316 Aug 1994 WO
WO 1994026877 Nov 1994 WO
WO 1996004403 Feb 1996 WO
WO 1996010640 Apr 1996 WO
WO 1998032845 Jul 1998 WO
WO 0071694 Nov 2000 WO
WO 0105950 Jan 2001 WO
WO 2001036452 May 2001 WO
WO 200138547 May 2001 WO
WO 0161049 Aug 2001 WO
WO 2002059296 Aug 2002 WO
WO 2002068676 Sep 2002 WO
WO 2002103028 Dec 2002 WO
WO 2004007684 Jan 2004 WO
WO 2005014791 Feb 2005 WO
WO 2005019415 Mar 2005 WO
WO 2005081632 Sep 2005 WO
WO 2006002547 Jan 2006 WO
WO 2006042112 Apr 2006 WO
WO 2007025097 Mar 2007 WO
WO 2007037444 Apr 2007 WO
WO 2007066923 Jun 2007 WO
WO 2007136815 Nov 2007 WO
WO 2007143574 Dec 2007 WO
WO 2008005529 Jan 2008 WO
WO 2008108989 Sep 2008 WO
WO 2009002418 Dec 2008 WO
WO 2009082488 Jul 2009 WO
WO 2009098290 Aug 2009 WO
WO 2009108180 Sep 2009 WO
WO 2009134808 Nov 2009 WO
WO 2010011961 Jan 2010 WO
WO 2010012902 Feb 2010 WO
WO 2010028347 Mar 2010 WO
WO 2010054108 May 2010 WO
WO 2010054154 May 2010 WO
WO 2010068289 Jun 2010 WO
WO 2010075424 Jul 2010 WO
WO 2010102257 Sep 2010 WO
WO 2010104749 Sep 2010 WO
WO 2010129019 Nov 2010 WO
WO 2010129023 Nov 2010 WO
WO 2010132092 Nov 2010 WO
WO 2010144150 Dec 2010 WO
WO 2011002503 Jan 2011 WO
WO 2011017293 Feb 2011 WO
WO 2011039518 Apr 2011 WO
WO 2011053868 May 2011 WO
WO 2011053982 May 2011 WO
WO 2011066747 Jun 2011 WO
WO 2011068810 Jun 2011 WO
WO 2011075627 Jun 2011 WO
WO 2011091311 Jul 2011 WO
WO 2011091396 Jul 2011 WO
WO 2011109031 Sep 2011 WO
WO 2011143124 Nov 2011 WO
WO 2011147590 Dec 2011 WO
WO 2011159369 Dec 2011 WO
WO 2012054726 Apr 2012 WO
WO 2012065043 May 2012 WO
WO 2012088381 Jun 2012 WO
WO 2012125445 Sep 2012 WO
WO 2012138927 Oct 2012 WO
WO 2012149470 Nov 2012 WO
WO 2012158985 Nov 2012 WO
WO 2012158986 Nov 2012 WO
WO 2012164565 Dec 2012 WO
WO 2012170930 Dec 2012 WO
WO 2013012674 Jan 2013 WO
WO 2013013105 Jan 2013 WO
WO 2013039857 Mar 2013 WO
WO 2013039861 Mar 2013 WO
WO 2013045632 Apr 2013 WO
WO 2013047844 Apr 2013 WO
WO 2013066438 May 2013 WO
WO 2013086441 Jun 2013 WO
WO 2013086444 Jun 2013 WO
WO 2013098244 Jul 2013 WO
WO 2013119602 Aug 2013 WO
WO 2013126794 Aug 2013 WO
WO 2013130824 Sep 2013 WO
WO 2013141680 Sep 2013 WO
WO 2013142578 Sep 2013 WO
WO 2013142578 Sep 2013 WO
WO 2013152359 Oct 2013 WO
WO 2013160230 Oct 2013 WO
WO 2013166315 Nov 2013 WO
WO 2013169398 Nov 2013 WO
WO 2013169802 Nov 2013 WO
WO 2013176772 Nov 2013 WO
WO 2013176772 Nov 2013 WO
WO 2013176915 Nov 2013 WO
WO 2013176916 Nov 2013 WO
WO 2013181440 Dec 2013 WO
WO 2013186754 Dec 2013 WO
WO 2013188037 Dec 2013 WO
WO 2013188522 Dec 2013 WO
WO 2013188638 Dec 2013 WO
WO 2013192278 Dec 2013 WO
WO 2013142378 Jan 2014 WO
WO 2014004336 Jan 2014 WO
WO 2014005042 Jan 2014 WO
WO 2014011237 Jan 2014 WO
WO 2014011901 Jan 2014 WO
WO 2014018423 Jan 2014 WO
WO 2014020608 Feb 2014 WO
WO 2014022120 Feb 2014 WO
WO 2014022702 Feb 2014 WO
WO 2014036219 Mar 2014 WO
WO 2014039513 Mar 2014 WO
WO 2014039523 Mar 2014 WO
WO 2014039585 Mar 2014 WO
WO 2014039684 Mar 2014 WO
WO 2014039692 Mar 2014 WO
WO 2014039702 Mar 2014 WO
WO 2014039872 Mar 2014 WO
WO 2014039970 Mar 2014 WO
WO 2014041327 Mar 2014 WO
WO 2014043143 Mar 2014 WO
WO 2014047103 Mar 2014 WO
WO 2014055782 Apr 2014 WO
WO 2014059173 Apr 2014 WO
WO 2014059255 Apr 2014 WO
WO 2014065596 May 2014 WO
WO 2014066505 May 2014 WO
WO 2014068346 May 2014 WO
WO 2014070887 May 2014 WO
WO 2014071006 May 2014 WO
WO 2014071219 May 2014 WO
WO 2014071235 May 2014 WO
WO 2014072941 May 2014 WO
WO 2014081729 May 2014 WO
WO 2014081730 May 2014 WO
WO 2014081855 May 2014 WO
WO 2014082644 Jun 2014 WO
WO 2014085261 Jun 2014 WO
WO 2014085593 Jun 2014 WO
WO 2014085830 Jun 2014 WO
WO 2014089212 Jun 2014 WO
WO 2014089290 Jun 2014 WO
WO 2014089348 Jun 2014 WO
WO 2014089513 Jun 2014 WO
WO 2014089533 Jun 2014 WO
WO 2014089541 Jun 2014 WO
WO 2014093479 Jun 2014 WO
WO 2014093595 Jun 2014 WO
WO 2014093622 Jun 2014 WO
WO 2014093635 Jun 2014 WO
WO 2014093655 Jun 2014 WO
WO 2014093661 Jun 2014 WO
WO 2014093694 Jun 2014 WO
WO 2014093701 Jun 2014 WO
WO 2014093709 Jun 2014 WO
WO 2014093712 Jun 2014 WO
WO 2014093718 Jun 2014 WO
WO 2014093736 Jun 2014 WO
WO 2014093768 Jun 2014 WO
WO 2014093852 Jun 2014 WO
WO 2014096972 Jun 2014 WO
WO 2014099744 Jun 2014 WO
WO 2014099750 Jun 2014 WO
WO 2014104878 Jul 2014 WO
WO 2014110006 Jul 2014 WO
WO 2014110552 Jul 2014 WO
WO 2014113493 Jul 2014 WO
WO 2014123967 Aug 2014 WO
WO 2014124226 Aug 2014 WO
WO 2014125668 Aug 2014 WO
WO 2014127287 Aug 2014 WO
WO 2014128324 Aug 2014 WO
WO 2014128659 Aug 2014 WO
WO 2014130706 Aug 2014 WO
WO 2014130955 Aug 2014 WO
WO 2014131833 Sep 2014 WO
WO 2014138379 Sep 2014 WO
WO 2014143381 Sep 2014 WO
WO 2014144094 Sep 2014 WO
WO 2014144155 Sep 2014 WO
WO 2014144288 Sep 2014 WO
WO 2014144592 Sep 2014 WO
WO 2014144761 Sep 2014 WO
WO 2014144951 Sep 2014 WO
WO 2014145599 Sep 2014 WO
WO 2014145736 Sep 2014 WO
WO 2014150624 Sep 2014 WO
WO 2014152432 Sep 2014 WO
WO 2014152940 Sep 2014 WO
WO 2014153118 Sep 2014 WO
WO 2014153470 Sep 2014 WO
WO 2014157820 Oct 2014 WO
WO 2014158593 Oct 2014 WO
WO 2014161821 Oct 2014 WO
WO 2014164466 Oct 2014 WO
WO 2014165177 Oct 2014 WO
WO 2014165349 Oct 2014 WO
WO 2014165612 Oct 2014 WO
WO 2014165707 Oct 2014 WO
WO 2014165825 Oct 2014 WO
WO 2014172458 Oct 2014 WO
WO 2014172470 Oct 2014 WO
WO 2014172489 Oct 2014 WO
WO 2014173955 Oct 2014 WO
WO 2014182700 Nov 2014 WO
WO 2014183071 Nov 2014 WO
WO 2014184143 Nov 2014 WO
WO 2014184741 Nov 2014 WO
WO 2014184744 Nov 2014 WO
WO 2014186585 Nov 2014 WO
WO 2014186686 Nov 2014 WO
WO 2014190181 Nov 2014 WO
WO 2014191128 Dec 2014 WO
WO 2014191518 Dec 2014 WO
WO 2014191521 Dec 2014 WO
WO 2014191525 Dec 2014 WO
WO 2014191527 Dec 2014 WO
WO 2014193583 Dec 2014 WO
WO 2014194190 Dec 2014 WO
WO 2014197568 Dec 2014 WO
WO 2014199358 Dec 2014 WO
WO 2014200659 Dec 2014 WO
WO 2014201015 Dec 2014 WO
WO 2014204578 Dec 2014 WO
WO 2014204723 Dec 2014 WO
WO 2014204724 Dec 2014 WO
WO 2014204725 Dec 2014 WO
WO 2014204726 Dec 2014 WO
WO 2014204727 Dec 2014 WO
WO 2014204728 Dec 2014 WO
WO 2014204729 Dec 2014 WO
WO 2014205192 Dec 2014 WO
WO 2014207043 Dec 2014 WO
WO 2014197748 Dec 2014 WO
WO 2015002780 Jan 2015 WO
WO 2015004241 Jan 2015 WO
WO 2015006290 Jan 2015 WO
WO 2015006294 Jan 2015 WO
WO 2015006437 Jan 2015 WO
WO 2015006498 Jan 2015 WO
WO 2015007194 Jan 2015 WO
WO 2015010114 Jan 2015 WO
WO 2015011483 Jan 2015 WO
WO 2015013583 Jan 2015 WO
WO 2015006747 Jan 2015 WO
WO 2015017866 Feb 2015 WO
WO 2015018503 Feb 2015 WO
WO 2015021353 Feb 2015 WO
WO 2015021426 Feb 2015 WO
WO 2015021990 Feb 2015 WO
WO 2015024017 Feb 2015 WO
WO 2015024986 Feb 2015 WO
WO 2015026883 Feb 2015 WO
WO 2015026885 Feb 2015 WO
WO 2015026886 Feb 2015 WO
WO 2015026887 Feb 2015 WO
WO 2015027134 Feb 2015 WO
WO 2015028969 Mar 2015 WO
WO 2015030881 Mar 2015 WO
WO 2015031619 Mar 2015 WO
WO 2015031775 Mar 2015 WO
WO 2015032494 Mar 2015 WO
WO 2015033293 Mar 2015 WO
WO 2015034872 Mar 2015 WO
WO 2015034885 Mar 2015 WO
WO 2015035136 Mar 2015 WO
WO 2015035139 Mar 2015 WO
WO 2015035162 Mar 2015 WO
WO 2015040075 Mar 2015 WO
WO 2015040402 Mar 2015 WO
WO 2015042393 Mar 2015 WO
WO 2015042585 Mar 2015 WO
WO 2015048577 Apr 2015 WO
WO 2015048690 Apr 2015 WO
WO 2015048707 Apr 2015 WO
WO 2015048801 Apr 2015 WO
WO 2015049897 Apr 2015 WO
WO 2015051191 Apr 2015 WO
WO 2015052133 Apr 2015 WO
WO 2015052231 Apr 2015 WO
WO 2015052335 Apr 2015 WO
WO 2015053995 Apr 2015 WO
WO 2015054253 Apr 2015 WO
WO 2015054315 Apr 2015 WO
WO 2015057671 Apr 2015 WO
WO 2015057834 Apr 2015 WO
WO 2015057852 Apr 2015 WO
WO 2015057976 Apr 2015 WO
WO 2015057980 Apr 2015 WO
WO 2015059265 Apr 2015 WO
WO 2015065964 May 2015 WO
WO 2015066119 May 2015 WO
WO 2015066634 May 2015 WO
WO 2015066636 May 2015 WO
WO 2015066637 May 2015 WO
WO 2015066638 May 2015 WO
WO 2015066643 May 2015 WO
WO 2015069682 May 2015 WO
WO 2015070083 May 2015 WO
WO 2015070193 May 2015 WO
WO 2015070212 May 2015 WO
WO 2015071474 May 2015 WO
WO 2015073683 May 2015 WO
WO 2015073867 May 2015 WO
WO 2015073990 May 2015 WO
WO 2015075056 May 2015 WO
WO 2015075175 May 2015 WO
WO 2015075195 May 2015 WO
WO 2015075557 May 2015 WO
WO 2015077058 May 2015 WO
WO 2015077290 May 2015 WO
WO 2015077318 May 2015 WO
WP 2015075154 May 2015 WO
WO 2015079056 Jun 2015 WO
WO 2015079057 Jun 2015 WO
WO 2015086795 Jun 2015 WO
WO 2015086798 Jun 2015 WO
WO 2015088643 Jun 2015 WO
WO 2015089046 Jun 2015 WO
WO 2015089077 Jun 2015 WO
WO 2015089277 Jun 2015 WO
WO 2015089351 Jun 2015 WO
WO 2015089354 Jun 2015 WO
WO 2015089364 Jun 2015 WO
WO 2015089406 Jun 2015 WO
WO 2015089419 Jun 2015 WO
WO 2015089427 Jun 2015 WO
WO 2015089462 Jun 2015 WO
WO 2015089465 Jun 2015 WO
WO 2015089473 Jun 2015 WO
WO 2015089486 Jun 2015 WO
WO 2015095804 Jun 2015 WO
WO 2015099850 Jul 2015 WO
WO 2015100929 Jul 2015 WO
WO 2015103057 Jul 2015 WO
WO 2015103153 Jul 2015 WO
WO 2015105928 Jul 2015 WO
WO 2015108993 Jul 2015 WO
WO 2015109752 Jul 2015 WO
WO 2015110474 Jul 2015 WO
WO 2015112790 Jul 2015 WO
WO 2015112896 Jul 2015 WO
WO 2015113063 Jul 2015 WO
WO 2015114365 Aug 2015 WO
WO 2015115903 Aug 2015 WO
WO 2015116686 Aug 2015 WO
WO 2015116969 Aug 2015 WO
WO 2015117021 Aug 2015 WO
WO 2015117041 Aug 2015 WO
WO 2015117081 Aug 2015 WO
WO 2015118156 Aug 2015 WO
WO 2015119941 Aug 2015 WO
WO 2015121454 Aug 2015 WO
WO 2015122967 Aug 2015 WO
WO 2015123339 Aug 2015 WO
WO 2015124715 Aug 2015 WO
WO 2015124718 Aug 2015 WO
WO 2015126927 Aug 2015 WO
WO 2015127428 Aug 2015 WO
WO 2015127439 Aug 2015 WO
WO 2015129686 Sep 2015 WO
WO 2015131101 Sep 2015 WO
WO 2015133554 Sep 2015 WO
WO 2015134121 Sep 2015 WO
WO 2015134812 Sep 2015 WO
WO 2015136001 Sep 2015 WO
WO 2015138510 Sep 2015 WO
WO 2015138739 Sep 2015 WO
WO 2015138855 Sep 2015 WO
WO 2015138870 Sep 2015 WO
WO 2015139008 Sep 2015 WO
WO 2015139139 Sep 2015 WO
WO 2015143046 Sep 2015 WO
WO 2015143177 Sep 2015 WO
WO 2015145417 Oct 2015 WO
WO 2015148431 Oct 2015 WO
WO 2015148670 Oct 2015 WO
WO 2015148680 Oct 2015 WO
WO 2015148761 Oct 2015 WO
WO 2015148860 Oct 2015 WO
WO 2015148863 Oct 2015 WO
WO 2015153760 Oct 2015 WO
WO 2015153780 Oct 2015 WO
WO 2015153789 Oct 2015 WO
WO 2015153791 Oct 2015 WO
WO 2015153889 Oct 2015 WO
WO 2015153940 Oct 2015 WO
WO 2015155341 Oct 2015 WO
WO 2015155686 Oct 2015 WO
WO 2015157070 Oct 2015 WO
WO 2015157534 Oct 2015 WO
WO 2015159068 Oct 2015 WO
WO 2015159086 Oct 2015 WO
WO 2015159087 Oct 2015 WO
WO 2015160683 Oct 2015 WO
WO 2015161276 Oct 2015 WO
WO 2015163733 Oct 2015 WO
WO 2015164740 Oct 2015 WO
WO 2015164748 Oct 2015 WO
WO 2015165274 Nov 2015 WO
WO 2015165275 Nov 2015 WO
WO 2015165276 Nov 2015 WO
WO 2015166272 Nov 2015 WO
WO 2015167766 Nov 2015 WO
WO 2015167956 Nov 2015 WO
WO 2015168125 Nov 2015 WO
WO 2015168158 Nov 2015 WO
WO 2015168404 Nov 2015 WO
WO 2015168547 Nov 2015 WO
WO 2015168800 Nov 2015 WO
WO 2015171603 Nov 2015 WO
WO 2015171894 Nov 2015 WO
WO 2015171932 Nov 2015 WO
WO 2015172128 Nov 2015 WO
WO 2015173436 Nov 2015 WO
WO 2015175642 Nov 2015 WO
WO 2015179540 Nov 2015 WO
WO 2015183025 Dec 2015 WO
WO 2015183026 Dec 2015 WO
WO 2015183885 Dec 2015 WO
WO 2015184259 Dec 2015 WO
WO 2015184262 Dec 2015 WO
WO 2015184268 Dec 2015 WO
WO 2015188056 Dec 2015 WO
WO 2015188065 Dec 2015 WO
WO 2015188094 Dec 2015 WO
WO 2015188109 Dec 2015 WO
WO 2015188132 Dec 2015 WO
WO 2015188135 Dec 2015 WO
WO 2015188191 Dec 2015 WO
WO 2015189693 Dec 2015 WO
WO 2015191693 Dec 2015 WO
WO 2015191899 Dec 2015 WO
WO 2015191911 Dec 2015 WO
WO 2015193858 Dec 2015 WO
WO 2015193897 Dec 2015 WO
WO 2015195547 Dec 2015 WO
WO 2015195621 Dec 2015 WO
WO 2015195798 Dec 2015 WO
WO 2015198020 Dec 2015 WO
WO 2015200334 Dec 2015 WO
WO 2015200378 Dec 2015 WO
WO 2015200555 Dec 2015 WO
WO 2015200805 Dec 2015 WO
WO 2016001978 Jan 2016 WO
WO 2016004010 Jan 2016 WO
WO 2016004318 Jan 2016 WO
WO 2016007347 Jan 2016 WO
WO 2016007604 Jan 2016 WO
WO 2016007948 Jan 2016 WO
WO 2016011080 Jan 2016 WO
WO 2016011210 Jan 2016 WO
WO 2016011428 Jan 2016 WO
WO 2016012544 Jan 2016 WO
WO 2016012552 Jan 2016 WO
WO 2016014409 Jan 2016 WO
WO 2016014565 Jan 2016 WO
WO 2016014794 Jan 2016 WO
WO 2016014837 Jan 2016 WO
WO 2016016119 Feb 2016 WO
WO 2016016358 Feb 2016 WO
WO 2016019144 Feb 2016 WO
WO 2016020399 Feb 2016 WO
WO 2016021972 Feb 2016 WO
WO 2016021973 Feb 2016 WO
WO 2016022363 Feb 2016 WO
WO 2016022866 Feb 2016 WO
WO 2016022931 Feb 2016 WO
WO 2016025131 Feb 2016 WO
WO 2016025469 Feb 2016 WO
WO 2016025759 Feb 2016 WO
WO 2016026444 Feb 2016 WO
WO 2016028682 Feb 2016 WO
WO 2016028843 Feb 2016 WO
WO 2016028887 Feb 2016 WO
WO 2016033088 Mar 2016 WO
WO 2016033230 Mar 2016 WO
WO 2016033246 Mar 2016 WO
WO 2016033298 Mar 2016 WO
WO 2016035044 Mar 2016 WO
WO 2016036754 Mar 2016 WO
WO 2016037157 Mar 2016 WO
WO 2016040030 Mar 2016 WO
WO 2016040594 Mar 2016 WO
WO 2016044182 Mar 2016 WO
WO 2016044416 Mar 2016 WO
WO 2016046635 Mar 2016 WO
WO 2016049024 Mar 2016 WO
WO 2016049163 Mar 2016 WO
WO 2016049230 Mar 2016 WO
WO 2016049251 Mar 2016 WO
WO 2016049258 Mar 2016 WO
WO 2016053397 Apr 2016 WO
WO 2016054326 Apr 2016 WO
WO 2016057061 Apr 2016 WO
WO 2016057821 Apr 2016 WO
WO 2016057835 Apr 2016 WO
WO 2016057850 Apr 2016 WO
WO 2016057951 Apr 2016 WO
WO 2016057961 Apr 2016 WO
WO 2016061073 Apr 2016 WO
WO 2016061374 Apr 2016 WO
WO 2016061481 Apr 2016 WO
WO 2016061523 Apr 2016 WO
WO 2016064894 Apr 2016 WO
WO 2016065364 Apr 2016 WO
WO 2016069282 May 2016 WO
WO 2016069283 May 2016 WO
WO 2016069591 May 2016 WO
WO 2016069774 May 2016 WO
WO 2016069910 May 2016 WO
WO 2016069912 May 2016 WO
WO 2016070037 May 2016 WO
WO 2016070070 May 2016 WO
WO 2016070129 May 2016 WO
WO 2016072399 May 2016 WO
WO 2016072936 May 2016 WO
WO 2016073433 May 2016 WO
WO 2016073559 May 2016 WO
WO 2016073990 May 2016 WO
WO 2016075662 May 2016 WO
WO 2016076672 May 2016 WO
WO 2016077273 May 2016 WO
WO 2016077350 May 2016 WO
WO 2016080097 May 2016 WO
WO 2016080795 May 2016 WO
WO 2016081923 May 2016 WO
WO 2016081924 May 2016 WO
WO 2016082135 Jun 2016 WO
WO 2016083811 Jun 2016 WO
WO 2016084084 Jun 2016 WO
WO 2016084088 Jun 2016 WO
WO 2016086177 Jun 2016 WO
WO 2016089433 Jun 2016 WO
WO 2016089866 Jun 2016 WO
WO 2016089883 Jun 2016 WO
WO 2016090385 Jun 2016 WO
WO 2016094679 Jun 2016 WO
WO 2016094845 Jun 2016 WO
WO 2016094867 Jun 2016 WO
WO 2016094872 Jun 2016 WO
WO 2016094874 Jun 2016 WO
WO 2016094880 Jun 2016 WO
WO 2016094888 Jun 2016 WO
WO 2016097212 Jun 2016 WO
WO 2016097231 Jun 2016 WO
WO 2016097751 Jun 2016 WO
WO 2016099887 Jun 2016 WO
WO 2016100272 Jun 2016 WO
WO 2016100389 Jun 2016 WO
WO 2016100568 Jun 2016 WO
WO 2016100571 Jun 2016 WO
WO 2016100951 Jun 2016 WO
WO 2016100955 Jun 2016 WO
WO 2016100974 Jun 2016 WO
WO 2016103233 Jun 2016 WO
WO 2016104716 Jun 2016 WO
WO 2016106236 Jun 2016 WO
WO 2016106239 Jun 2016 WO
WO 2016106244 Jun 2016 WO
WO 2016106338 Jun 2016 WO
WO 2016108926 Jul 2016 WO
WO 2016109255 Jul 2016 WO
WO 2016109840 Jul 2016 WO
WO 2016110214 Jul 2016 WO
WO 2016110453 Jul 2016 WO
WO 2016110511 Jul 2016 WO
WO 2016110512 Jul 2016 WO
WO 2016111546 Jul 2016 WO
WO 2016112242 Jul 2016 WO
WO 2016112351 Jul 2016 WO
WO 2016112963 Jul 2016 WO
WO 2016113357 Jul 2016 WO
WO 2016114972 Jul 2016 WO
WO 2016115179 Jul 2016 WO
WO 2016115326 Jul 2016 WO
WO 2016115355 Jul 2016 WO
WO 2016116032 Jul 2016 WO
WO 2016120480 Aug 2016 WO
WO 2016123071 Aug 2016 WO
WO 2016123230 Aug 2016 WO
WO 2016123243 Aug 2016 WO
WO 2016123578 Aug 2016 WO
WO 2016126747 Aug 2016 WO
WO 2016130600 Aug 2016 WO
WO 2016130697 Aug 2016 WO
WO 2016131009 Aug 2016 WO
WO 2016132122 Aug 2016 WO
WO 2016133165 Aug 2016 WO
WO 2016077052 Sep 2016 WO
WO 2016135507 Sep 2016 WO
WO 2016135557 Sep 2016 WO
WO 2016135558 Sep 2016 WO
WO 2016135559 Sep 2016 WO
WO 2016137774 Sep 2016 WO
WO 2016137949 Sep 2016 WO
WO 2016141224 Sep 2016 WO
WO 2016141893 Sep 2016 WO
WO 2016142719 Sep 2016 WO
WO 2016145150 Sep 2016 WO
WO 2016148994 Sep 2016 WO
WO 2016149484 Sep 2016 WO
WO 2016149547 Sep 2016 WO
WO 2016150336 Sep 2016 WO
WO 2016150855 Sep 2016 WO
WO 2016154016 Sep 2016 WO
WO 2016154579 Sep 2016 WO
WO 2016154596 Sep 2016 WO
WO 2016155482 Oct 2016 WO
WO 2016161004 Oct 2016 WO
WO 2016161207 Oct 2016 WO
WO 2016161260 Oct 2016 WO
WO 2016161380 Oct 2016 WO
WO 2016161446 Oct 2016 WO
WO 2016164356 Oct 2016 WO
WO 2016164797 Oct 2016 WO
WO 2016166340 Oct 2016 WO
WO 2016167300 Oct 2016 WO
WO 2016168631 Oct 2016 WO
WO 2016170484 Oct 2016 WO
WO 2016172359 Oct 2016 WO
WO 2016172727 Oct 2016 WO
WO 2016174056 Nov 2016 WO
WO 2016174151 Nov 2016 WO
WO 2016174250 Nov 2016 WO
WO 2016176191 Nov 2016 WO
WO 2016176404 Nov 2016 WO
WO 2016176690 Nov 2016 WO
WO 2016177682 Nov 2016 WO
WO 2016178207 Nov 2016 WO
WO 2016179038 Nov 2016 WO
WO 2016179112 Nov 2016 WO
WO 2016181357 Nov 2016 WO
WO 2016182893 Nov 2016 WO
WO 2016182917 Nov 2016 WO
WO 2016182959 Nov 2016 WO
WO 2016183236 Nov 2016 WO
WO 2016183298 Nov 2016 WO
WO 2016183345 Nov 2016 WO
WO 2016183402 Nov 2016 WO
WO 2016183438 Nov 2016 WO
WO 2016183448 Nov 2016 WO
WO 2016184955 Nov 2016 WO
WO 2016184989 Nov 2016 WO
WO 2016185411 Nov 2016 WO
WO 2016186745 Nov 2016 WO
WO 2016186772 Nov 2016 WO
WO 2016186946 Nov 2016 WO
WO 2016186953 Nov 2016 WO
WO 2016187717 Dec 2016 WO
WO 2016187904 Dec 2016 WO
WO 2016191684 Dec 2016 WO
WO 2016191869 Dec 2016 WO
WO 2016196273 Dec 2016 WO
WO 2016196282 Dec 2016 WO
WO 2016196308 Dec 2016 WO
WO 2016196361 Dec 2016 WO
WO 2016196499 Dec 2016 WO
WO 2016196539 Dec 2016 WO
WO 2016196655 Dec 2016 WO
WO 2016196805 Dec 2016 WO
WO 2016196887 Dec 2016 WO
WO 2016197132 Dec 2016 WO
WO 2016197133 Dec 2016 WO
WO 2016197354 Dec 2016 WO
WO 2016197355 Dec 2016 WO
WO 2016197356 Dec 2016 WO
WO 2016197357 Dec 2016 WO
WO 2016197358 Dec 2016 WO
WO 2016197359 Dec 2016 WO
WO 2016197360 Dec 2016 WO
WO 2016197361 Dec 2016 WO
WO 2016197362 Dec 2016 WO
WO 2016198361 Dec 2016 WO
WO 2016198500 Dec 2016 WO
WO 2016200263 Dec 2016 WO
WO 2016201047 Dec 2016 WO
WO 2016201138 Dec 2016 WO
WO 2016201152 Dec 2016 WO
WO 2016201153 Dec 2016 WO
WO 2016201155 Dec 2016 WO
WO 2016205276 Dec 2016 WO
WO 2016205613 Dec 2016 WO
WO 2016205623 Dec 2016 WO
WO 2016205680 Dec 2016 WO
WO 2016205688 Dec 2016 WO
WO 2016205703 Dec 2016 WO
WO 2016205711 Dec 2016 WO
WO 2016205728 Dec 2016 WO
WO 2016205745 Dec 2016 WO
WO 2016205749 Dec 2016 WO
WO 2016205759 Dec 2016 WO
WO 2016205764 Dec 2016 WO
WO 2017001572 Jan 2017 WO
WO 2017001988 Jan 2017 WO
WO 2017004261 Jan 2017 WO
WO 2017004279 Jan 2017 WO
WO 2017004616 Jan 2017 WO
WO 2017005807 Jan 2017 WO
WO 2017009399 Jan 2017 WO
WO 2017010556 Jan 2017 WO
WO 2017011519 Jan 2017 WO
WO 2017011721 Jan 2017 WO
WO 2017011804 Jan 2017 WO
WO 2017015015 Jan 2017 WO
WO 2017015101 Jan 2017 WO
WO 2017015545 Jan 2017 WO
WO 2017015559 Jan 2017 WO
WO 2017015567 Jan 2017 WO
WO 2017015637 Jan 2017 WO
WO 2017017016 Feb 2017 WO
WO 2017019867 Feb 2017 WO
WO 2017019895 Feb 2017 WO
WO 2017023803 Feb 2017 WO
WO 2017023974 Feb 2017 WO
WO 2017024047 Feb 2017 WO
WO 2017024319 Feb 2017 WO
WO 2017024343 Feb 2017 WO
WO 2017024602 Feb 2017 WO
WO 2017025323 Feb 2017 WO
WO 2017027423 Feb 2017 WO
WO 2017028768 Feb 2017 WO
WO 2017029664 Feb 2017 WO
WO 2017031360 Feb 2017 WO
WO 2017031483 Feb 2017 WO
WO 2017035416 Mar 2017 WO
WO 2017035416 Mar 2017 WO
WO 2017040348 Mar 2017 WO
WO 2017040511 Mar 2017 WO
WO 2017040709 Mar 2017 WO
WO 2017040786 Mar 2017 WO
WO 2017040793 Mar 2017 WO
WO 2017040813 Mar 2017 WO
WO 2017043573 Mar 2017 WO
WO 2017043656 Mar 2017 WO
WO 2017044419 Mar 2017 WO
WO 2017044776 Mar 2017 WO
WO 2017044857 Mar 2017 WO
WO 2017048390 Mar 2017 WO
WO 2017049129 Mar 2017 WO
WO 2017050963 Mar 2017 WO
WO 2017053312 Mar 2017 WO
WO 2017053431 Mar 2017 WO
WO 2017053713 Mar 2017 WO
WO 2017053729 Mar 2017 WO
WO 2017053753 Mar 2017 WO
WO 2017053762 Mar 2017 WO
WO 2017053879 Mar 2017 WO
WO 2017054721 Apr 2017 WO
WO 2017058658 Apr 2017 WO
WO 2017059241 Apr 2017 WO
WO 2017062605 Apr 2017 WO
WO 2017062723 Apr 2017 WO
WO 2017062754 Apr 2017 WO
WO 2017062855 Apr 2017 WO
WO 2017062886 Apr 2017 WO
WO 2017062983 Apr 2017 WO
WO 2017064439 Apr 2017 WO
WO 2017064546 Apr 2017 WO
WO 2017064566 Apr 2017 WO
WO 2017066175 Apr 2017 WO
WO 2017066497 Apr 2017 WO
WO 2017066588 Apr 2017 WO
WO 2017066707 Apr 2017 WO
WO 2017066781 Apr 2017 WO
WO 2017068077 Apr 2017 WO
WO 2017068377 Apr 2017 WO
WO 2017069829 Apr 2017 WO
WO 2017070029 Apr 2017 WO
WO 2017070032 Apr 2017 WO
WO 2017070169 Apr 2017 WO
WO 2017070284 Apr 2017 WO
WO 2017070598 Apr 2017 WO
WO 2017070605 Apr 2017 WO
WO 2017070632 Apr 2017 WO
WO 2017070633 Apr 2017 WO
WO 2017072590 May 2017 WO
WO 2017074526 May 2017 WO
WO 2017074962 May 2017 WO
WO 2017075261 May 2017 WO
WO 2017075335 May 2017 WO
WO 2017075475 May 2017 WO
WO 2017077135 May 2017 WO
WO 2017077329 May 2017 WO
WO 2017078751 May 2017 WO
WO 2017079400 May 2017 WO
WO 2017079428 May 2017 WO
WO 2017079673 May 2017 WO
WO 2017079724 May 2017 WO
WO 2017081097 May 2017 WO
WO 2017081288 May 2017 WO
WO 2017083368 May 2017 WO
WO 2017083722 May 2017 WO
WO 2017083766 May 2017 WO
WO 2017087395 May 2017 WO
WO 2017090724 Jun 2017 WO
WO 2017091510 Jun 2017 WO
WO 2017091630 Jun 2017 WO
WO 2017092201 Jun 2017 WO
WO 2017093370 Jun 2017 WO
WO 2017093969 Jun 2017 WO
WO 2017095111 Jun 2017 WO
WO 2017096041 Jun 2017 WO
WO 2017096237 Jun 2017 WO
WO 2017100158 Jun 2017 WO
WO 2017100431 Jun 2017 WO
WO 2017104404 Jun 2017 WO
WO 2017105251 Jun 2017 WO
WO 2017105350 Jun 2017 WO
WO 2017105991 Jun 2017 WO
WO 2017106414 Jun 2017 WO
WO 2017106528 Jun 2017 WO
WO 2017106537 Jun 2017 WO
WO 2017106569 Jun 2017 WO
WO 2017106616 Jun 2017 WO
WO 2017106657 Jun 2017 WO
WO 2017106767 Jun 2017 WO
WO 2017109134 Jun 2017 WO
WO 2017109757 Jun 2017 WO
WO 2017112620 Jun 2017 WO
WO 2017115268 Jul 2017 WO
WO 2017117395 Jul 2017 WO
WO 2017118598 Jul 2017 WO
WO 2017118720 Jul 2017 WO
WO 2017123609 Jul 2017 WO
WO 2017123910 Jul 2017 WO
WO 2017124086 Jul 2017 WO
WO 2017124100 Jul 2017 WO
WO 2017124652 Jul 2017 WO
WO 2017126987 Jul 2017 WO
WO 2017127807 Jul 2017 WO
WO 2017131237 Aug 2017 WO
WO 2017132112 Aug 2017 WO
WO 2017132580 Aug 2017 WO
WO 2017136520 Aug 2017 WO
WO 2017136629 Aug 2017 WO
WO 2017136794 Aug 2017 WO
WO 2017139264 Aug 2017 WO
WO 2017139505 Aug 2017 WO
WO 2017141173 Aug 2017 WO
WO 2017142835 Aug 2017 WO
WO 2017142999 Aug 2017 WO
WO 2017143042 Aug 2017 WO
WO 2017147056 Aug 2017 WO
WO 2017147278 Aug 2017 WO
WO 2017147432 Aug 2017 WO
WO 2017147446 Aug 2017 WO
WO 2017147555 Aug 2017 WO
WO 2017151444 Sep 2017 WO
WO 2017151719 Sep 2017 WO
WO 2017152015 Sep 2017 WO
WO 2017155717 Sep 2017 WO
WO 2017157422 Sep 2017 WO
WO 2017158153 Sep 2017 WO
WO 2017160689 Sep 2017 WO
WO 2017160752 Sep 2017 WO
WO 2017160890 Sep 2017 WO
WO 2017161068 Sep 2017 WO
WO 2017165826 Sep 2017 WO
WO 2017165862 Sep 2017 WO
WO 2017167712 Oct 2017 WO
WO 2017172644 Oct 2017 WO
WO 2017172645 Oct 2017 WO
WO 2017172860 Oct 2017 WO
WO 2017173004 Oct 2017 WO
WO 2017173054 Oct 2017 WO
WO 2017173092 Oct 2017 WO
WO 2017174329 Oct 2017 WO
WO 2017176529 Oct 2017 WO
WO 2017176806 Oct 2017 WO
WO 2017178590 Oct 2017 WO
WO 2017180694 Oct 2017 WO
WO 2017180711 Oct 2017 WO
WO 2017180915 Oct 2017 WO
WO 2017180926 Oct 2017 WO
WO 2017181107 Oct 2017 WO
WO 2017181735 Oct 2017 WO
WO 2017182468 Oct 2017 WO
WO 2017184334 Oct 2017 WO
WO 2017184768 Oct 2017 WO
WO 2017184786 Oct 2017 WO
WO 2017186550 Nov 2017 WO
WO 2017189308 Nov 2017 WO
WO 2017189336 Nov 2017 WO
WO 2017190041 Nov 2017 WO
WO 2017190257 Nov 2017 WO
WO 2017190664 Nov 2017 WO
WO 2017191210 Nov 2017 WO
WO 2017191274 Nov 2017 WO
WO 2017192172 Nov 2017 WO
WO 2017192512 Nov 2017 WO
WO 2017192544 Nov 2017 WO
WO 2017192573 Nov 2017 WO
WO 2017193029 Nov 2017 WO
WO 2017193053 Nov 2017 WO
WO 2017196768 Nov 2017 WO
WO 2017197038 Nov 2017 WO
WO 2017197238 Nov 2017 WO
WO 2017197301 Nov 2017 WO
WO 2017201476 Nov 2017 WO
WO 2017205290 Nov 2017 WO
WO 2017205423 Nov 2017 WO
WO 2017207589 Dec 2017 WO
WO 2017208247 Dec 2017 WO
WO 2017209809 Dec 2017 WO
WO 2017213896 Dec 2017 WO
WO 2017213898 Dec 2017 WO
WO 2017214460 Dec 2017 WO
WO 2017216392 Dec 2017 WO
WO 2017216771 Dec 2017 WO
WO 2017218185 Dec 2017 WO
WO 2017219027 Dec 2017 WO
WO 2017219033 Dec 2017 WO
WO 2017220751 Dec 2017 WO
WO 2017222370 Dec 2017 WO
WO 2017222773 Dec 2017 WO
WO 2017222834 Dec 2017 WO
WO 2017223107 Dec 2017 WO
WO 2017223330 Dec 2017 WO
WO 2018000657 Jan 2018 WO
WO 2018002719 Jan 2018 WO
WO 2018005117 Jan 2018 WO
WO 2018005289 Jan 2018 WO
WO 2018005691 Jan 2018 WO
WO 2018005782 Jan 2018 WO
WO 2018005873 Jan 2018 WO
WO 201806693 Jan 2018 WO
WO 2018009520 Jan 2018 WO
WO 2018009562 Jan 2018 WO
WO 2018009822 Jan 2018 WO
WO 2018009903 Jan 2018 WO
WO 2018013821 Jan 2018 WO
WO 2018013932 Jan 2018 WO
WO 2018013990 Jan 2018 WO
WO 2018014384 Jan 2018 WO
WO 2018015444 Jan 2018 WO
WO 2018015936 Jan 2018 WO
WO 2018017754 Jan 2018 WO
WO 2018018979 Feb 2018 WO
WO 2018020248 Feb 2018 WO
WO 2018021878 Feb 2018 WO
WO 2018022480 Feb 2018 WO
WO 2018022634 Feb 2018 WO
WO 2018025206 Feb 2018 WO
WO 2018026723 Feb 2018 WO
WO 2018026976 Feb 2018 WO
WO 2018027078 Feb 2018 WO
WO 2018030608 Feb 2018 WO
WO 2018031683 Feb 2018 WO
WO 2018035250 Feb 2018 WO
WO 2018035300 Feb 2018 WO
WO 2018035423 Feb 2018 WO
WO 2018035503 Feb 2018 WO
WO 2018039145 Mar 2018 WO
WO 2018039438 Mar 2018 WO
WO 2018039440 Mar 2018 WO
WO 2018039448 Mar 2018 WO
WO 2018045630 Mar 2018 WO
WO 2018048827 Mar 2018 WO
WO 2018049073 Mar 2018 WO
WO 2018049168 Mar 2018 WO
WO 2018051347 Mar 2018 WO
WO 2018058064 Mar 2018 WO
WO 2018062866 Apr 2018 WO
WO 2018064352 Apr 2018 WO
WO 2018064371 Apr 2018 WO
WO 2018064516 Apr 2018 WO
WO 2018067546 Apr 2018 WO
WO 2018067846 Apr 2018 WO
WO 2018068053 Apr 2018 WO
WO 2018069474 Apr 2018 WO
WO 2018071623 Apr 2018 WO
WO 2018071663 Apr 2018 WO
WO 2018071868 Apr 2018 WO
WO 2018071892 Apr 2018 WO
WO 2018074979 Apr 2018 WO
WO 2018079134 May 2018 WO
WO 2018080573 May 2018 WO
WO 2018081504 May 2018 WO
WO 2018081535 May 2018 WO
WO 2018081728 May 2018 WO
WO 2018083128 May 2018 WO
WO 2018083606 May 2018 WO
WO 2018085288 May 2018 WO
WO 2018085414 May 2018 WO
WO 2018086623 May 2018 WO
WO 2018089664 May 2018 WO
WO 2018093990 May 2018 WO
WO 2018098383 May 2018 WO
WO 2018098480 May 2018 WO
WO 2018098587 Jun 2018 WO
WO 2018099256 Jun 2018 WO
WO 2018103686 Jun 2018 WO
WO 2018106268 Jun 2018 WO
WO 2018107028 Jun 2018 WO
WO 2018107103 Jun 2018 WO
WO 2018107129 Jun 2018 WO
WO 2018108272 Jun 2018 WO
WO 2018109101 Jun 2018 WO
WO 2018109447 Jun 2018 WO
WO 2018111946 Jun 2018 WO
WO 2018111947 Jun 2018 WO
WO 2018112336 Jun 2018 WO
WO 2018112446 Jun 2018 WO
WO 2018119354 Jun 2018 WO
WO 2018119359 Jun 2018 WO
WO 2018120283 Jul 2018 WO
WO 2018130830 Jul 2018 WO
WO 2018135838 Jul 2018 WO
WO 2018136396 Jul 2018 WO
WO 2018136939 Jul 2018 WO
WO 2018138385 Aug 2018 WO
WO 2018142364 Aug 2018 WO
WO 2018148246 Aug 2018 WO
WO 2018148256 Aug 2018 WO
WO 2018148647 Aug 2018 WO
WO 2018149418 Aug 2018 WO
WO 2018149888 Aug 2018 WO
WO 2018149915 Aug 2018 WO
WO 2018152197 Aug 2018 WO
WO 2018152418 Aug 2018 WO
WO 2018154380 Aug 2018 WO
WO 2018154387 Aug 2018 WO
WO 2018154412 Aug 2018 WO
WO 2018154413 Aug 2018 WO
WO 2018154418 Aug 2018 WO
WO 2018154439 Aug 2018 WO
WO 2018154459 Aug 2018 WO
WO 2018154462 Aug 2018 WO
WO 2018156372 Aug 2018 WO
WO 2018156824 Aug 2018 WO
WO 2018161009 Sep 2018 WO
WO 2018165504 Sep 2018 WO
WO 2018165629 Sep 2018 WO
WO 2018170015 Sep 2018 WO
WO 2018170340 Sep 2018 WO
WO 2018175502 Sep 2018 WO
WO 2018176009 Sep 2018 WO
WO 2018177351 Oct 2018 WO
WO 2018179578 Oct 2018 WO
WO 2018183403 Oct 2018 WO
WO 2018189184 Oct 2018 WO
WO 2018191388 Oct 2018 WO
WO 2018195402 Oct 2018 WO
WO 2018195545 Oct 2018 WO
WO 2018195555 Oct 2018 WO
WO 2018197020 Nov 2018 WO
WO 2018197495 Nov 2018 WO
WO 2018202800 Nov 2018 WO
WO 2018204493 Nov 2018 WO
WO 2018208755 Nov 2018 WO
WO 2018208998 Nov 2018 WO
WO 2018209158 Nov 2018 WO
WO 2018209320 Nov 2018 WO
WO 2018213351 Nov 2018 WO
WO 2018213708 Nov 2018 WO
WO 2018213726 Nov 2018 WO
WO 2018213771 Nov 2018 WO
WO 2018213791 Nov 2018 WO
WO 2018217852 Nov 2018 WO
WO 2018217981 Nov 2018 WO
WO 2018218166 Nov 2018 WO
WO 2018218188 Nov 2018 WO
WO 2018218206 Nov 2018 WO
WO 2019005884 Jan 2019 WO
WO 2019005886 Jan 2019 WO
WO 2019010384 Jan 2019 WO
WO 2019023680 Jan 2019 WO
WO 2019040935 Feb 2019 WO
WO 2019051097 Mar 2019 WO
WO 2019067815 Apr 2019 WO
WO 2019079347 Apr 2019 WO
WO 2019084062 May 2019 WO
WO 2019090367 May 2019 WO
WO 2019118949 Jun 2019 WO
WO 2019123430 Jun 2019 WO
WO 2019139645 Jul 2019 WO
WO 2019139951 Jul 2019 WO
WO 2019147014 Aug 2019 WO
WO 2019161251 Aug 2019 WO
WO 2019168953 Sep 2019 WO
WO 2019217942 Nov 2019 WO
WO 2019226953 Nov 2019 WO
WO 2019236566 Dec 2019 WO
WO 2019241649 Dec 2019 WO
WO 2020014261 Jan 2020 WO
WO 2020028555 Feb 2020 WO
WO 2020028823 Feb 2020 WO
WO 2020041751 Feb 2020 WO
WO 2020047124 Mar 2020 WO
WO 2020051360 Mar 2020 WO
WO 2020086908 Apr 2020 WO
WO 2020092453 May 2020 WO
WO 2020102659 May 2020 WO
WO 2020154500 Jul 2020 WO
WO 2020157008 Aug 2020 WO
WO 2020160071 Aug 2020 WO
WO 2020180975 Sep 2020 WO
WO 2020181178 Sep 2020 WO
WO 2020181180 Sep 2020 WO
WO 2020181193 Sep 2020 WO
WO 2020181195 Sep 2020 WO
WO 2020181202 Sep 2020 WO
WO 2020191153 Sep 2020 WO
WO 2020191171 Sep 2020 WO
WO 2020191233 Sep 2020 WO
WO 2020191234 Sep 2020 WO
WO 2020191239 Sep 2020 WO
WO 2020191241 Sep 2020 WO
WO 2020191242 Sep 2020 WO
WO 2020191243 Sep 2020 WO
WO 2020191245 Sep 2020 WO
WO 2020191246 Sep 2020 WO
WO 2020191248 Sep 2020 WO
WO 2020191249 Sep 2020 WO
WO 2020210751 Oct 2020 WO
WO 2020214842 Oct 2020 WO
WO 2020236982 Nov 2020 WO
WO 2021022043 Feb 2021 WO
WO 2021025750 Feb 2021 WO
WO 2021030666 Feb 2021 WO
WO 2021042062 Mar 2021 WO
WO 2021072328 Apr 2021 WO
WO 2021081264 Apr 2021 WO
WO 2021087182 May 2021 WO
WO 2021108717 Jun 2021 WO
WO 2021138469 Jul 2021 WO
WO 2021155065 Aug 2021 WO
WO 2021158921 Aug 2021 WO
WO 2021158995 Aug 2021 WO
WO 2021158999 Aug 2021 WO
WO 2021178709 Sep 2021 WO
WO 2021178717 Sep 2021 WO
WO 2021178720 Sep 2021 WO
WO 2021178898 Sep 2021 WO
WO 2021222318 Nov 2021 WO
WO 2021226558 Nov 2021 WO
Non-Patent Literature Citations (1856)
Entry
Fonfara et al (NAR Feb. 2014: vol. 42. No 4: pp. 2577-2590; IDS reference). (Year: 2014).
Hu et al, (“Evolved Cas9 variants with broad PAM compatibility and high DNA specificity” Nature vol. 556, Apr. 5, 2018: pp. 57-63 and Extended/Supplemental data), (Year: 2018).
Kleinstiver et al in “Engineered CRISPR-Cas9 nucleases with altered PAM specificities” (Nature; Jul. 23, 2015; vol. 523 No. 7561: pp. 481-485 and Supplementary Materials (aka pp. 1-27), published online Jun. 22, 2015). (Year: 2015).
Kleinstiver et al (Nature Biotechnology Dec. 2015; vol. 33, No. 12: pp. 1293-1298, published online Nov. 2, 2015). (Year: 2015).
Score result for Shimomura et al in “Complete genome sequencing and analysis of a Lancefield group G RT Streptococcus dysgalactiae subsp. equisimilis strain causing streptococcal RT toxic shock syndrome (STSS).”; RL BMC Genomics 12:17-17(2011). (Year: 2011).
Score result for Luetticken et al “Complete genome sequence of a Streptococcus dysgalactiae subsp. RT equisimilis strain possessing Lancefield's group A antigen.”; RL Submitted (May 2012) to the EMBL/GenBank/DDBJ databases. (Year: 2012).
Score result for Okumura et al “Evolutionary paths of streptococcal and staphylococcal superantigens.”; RL BMC Genomics 13:404-404(2012). (Year: 2012).
Kleinstiver et al: “Engineered CRISPR-Cas9 nucleases with altered PAM specificities”, Nature, vol. 523, No. 7561, Jun. 22, 2015 (Jun. 22, 2015), pp. 481-485. (Year: 2015).
[No Author Listed], EMBL Accession No. Q99ZW2. Nov. 2012. 2 pages.
[No Author Listed], Invitrogen Lipofectamine™ 2000 product sheets, 2002. 2 pages.
[No Author Listed], Invitrogen Lipofectamine™ 2000 product sheets, 2005. 3 pages.
[No Author Listed], Invitrogen Lipofectamine™ LTX product sheets, 2011. 4 pages.
[No Author Listed], Thermo Fisher Scientific—How Cationic Lipid Mediated Transfection Works, retrieved from the internet Aug. 27, 2015. 2 pages.
Abudayyeh et al., C2c2 is a single-component programmable RNA-guided RNA-targeting CRISPR effector. Science Aug. 2016;353(6299):aaf5573. DOI: 10.1126/science.aaf5573.
Addgene Plasmid # 44246. pdCas9-humanized, 2017, Stanley Qi.
Addgene Plasmid # 73021. PCMV-BE3, 2017, David Liu.
Addgene Plasmid # 79620. pcDNA3.1_pCMV-nCas-PmCDA1-ugi pH1-gRNA(HPRT), 2017, Akihiko Kondo.
Alexandrov et al., Signatures of mutational processes in human cancer. Nature. Aug. 22, 2013;500(7463):415-21. doi: 10.1038/nature12477. Epub Aug. 14, 2013.
Anders et al., Structural basis of PAM-dependent target DNA recognition by the Cas9 endonuclease. Nature. Sep. 25, 2014;513(7519):569-73. doi: 10.1038/nature13579. Epub Jul. 27, 2014.
Arnold et al., Mutants of Tn3 resolvase which do not require accessory binding sites for recombination activity. EMBO J. Mar. 1, 1999;18(5):1407-14.
Barnes et al., Repair and genetic consequences of endogenous DNA base damage in mammalian cells. Annu Rev Genet. 2004;38:445-76.
Barrangou et al., CRISPR provides acquired resistance against viruses in prokaryotes. Science. Mar. 23, 2007;315(5819):1709-12.
Barrangou, RNA-mediated programmable DNA cleavage. Nat Biotechnol. Sep. 2012;30(9):836-8. doi: 10.1038/nbt.2357.
Basha et al., Influence of cationic lipid composition on gene silencing properties of lipid nanoparticle formulations of siRNA in antigen-presenting cells. Mol Ther. Dec. 2011;19(12):2186-200. doi: 10.1038/mt.2011.190. Epub Oct. 4, 2011.
Beale et al., Comparison of the differential context-dependence of DNA deamination by APOBEC enzymes: correlation with mutation spectra in vivo. J Mol Biol. Mar. 26, 2004;337(3):585-96.
Bedell et al., In vivo genome editing using a high-efficiency TALEN system. Nature. Nov. 1, 2012;491(7422):114-8. Doi: 10.1038/nature11537. Epub Sep. 23, 2012.
Begley, Scientists unveil the ‘most clever CRISPR gadget’ so far. STAT, Apr. 20, 2016. https://www.statnews.com/2016/04/20/clever-crispr-advance-unveiled/.
Beumer et al., Efficient gene targeting in Drosophila with zinc-finger nucleases. Genetics. Apr. 2006;172(4):2391-403. Epub Feb. 1, 2006.
Billon et al., CRISPR-Mediated Base Editing Enables Efficient Disruption of Eukaryotic Genes through Induction of STOP Codons. Mol Cell. Sep. 21, 2017;67(6):1068-1079.e4. doi: 10.1016/j.molcel.2017.08.008. Epub Sep. 7, 2017.
Birling et al., Site-specific recombinases for manipulation of the mouse genome. Methods Mol Biol. 2009;561:245-63. doi: 10.1007/978-1-60327-019-9_16.
Bitinaite et al., FokI dimerization is required for DNA cleavage. Proc Natl Acad Sci U S A. Sep. 1, 1998;95(18):10570-5.
Boch, TALEs of genome targeting. Nat Biotechnol. Feb. 2011;29(2):135-6. Doi: 10.1038/nbt.1767.
Boeckle et al., Melittin analogs with high lytic activity at endosomal pH enhance transfection with purified targeted PEI polyplexes. J Control Release. May 15, 2006;112(2):240-8. Epub Mar. 20, 2006.
Bolotin et al., Clustered regularly interspaced short palindrome repeats (CRISPRs) have spacers of extrachromosomal origin. Microbiology. Aug. 2005;151(Pt 8):2551-61.
Borman, Improved route to single-base genome editing. Chemical & Engineering News, Apr. 25, 2016;94(17)p. 5. http://cen.acs.org/articles/94/i17/Improved-route-single-base-genome.html.
Branden and Tooze, Introduction to Protein Structure. 1999; 2nd edition. Garland Science Publisher: 3-12.
Briner et al., Guide RNA functional modules direct Cas9 activity and orthogonality. Mol Cell. Oct. 23, 2014;56(2):333-339. doi: 10.1016/j.molcel.2014.09.019.
Britt et al., Re-engineering plant gene targeting. Trends Plant Sci. Feb. 2003;8(2):90-5.
Brouns et al., Small CRISPR RNAs guide antiviral defense in prokaryotes. Science. Aug. 15, 2008;321(5891):960-4. doi: 10.1126/science.1159689.
Brown et al., Serine recombinases as tools for genome engineering. Methods. Apr. 2011;53(4):372-9. doi: 10.1016/j.ymeth.2010.12.031. Epub Dec. 30, 2010.
Brusse et al., Spinocerebellar ataxia associated with a mutation in the fibroblast growth factor 14 gene (SCA27): A new phenotype. Mov Disord. Mar. 2006;21(3):396-401.
Buchholz et al., Alteration of Cre recombinase site specificity by substrate-linked protein evolution. Nat Biotechnol. Nov. 2001;19(11):1047-52.
Buchwald et al., Long-term, continuous intravenous heparin administration by an implantable infusion pump in ambulatory patients with recurrent venous thrombosis. Surgery. Oct. 1980;88(4):507-16.
Bulow et al., Multienzyme systems obtained by gene fusion. Trends Biotechnol. Jul. 1991;9(7):226-31.
Burstein et al., New CRISPR-Cas systems from uncultivated microbes. Nature Feb. 2017;542(7640):237-240.
Cade et al., Highly efficient generation of heritable zebrafish gene mutations using homo- and heterodimeric TALENs. Nucleic Acids Res. Sep. 2012;40(16):8001-10. Doi: 10.1093/nar/gks518. Epub Jun. 7, 2012.
Caldecott et al., Single-strand break repair and genetic disease. Nat Rev Genet. Aug. 2008;9(8):619-31. doi: 10.1038/nrg2380.
Cameron, Recent advances in transgenic technology. Mol Biotechnol. Jun. 1997;7(3):253-65.
Cargill et al.,Characterization of single-nucleotide polymorphisms in coding regions of human genes. Nat Genet. Jul. 1999;22(3):231-8.
Caron et al., Intracellular delivery of a Tat-eGFP fusion protein into muscle cells. Mol Ther. Mar. 2001;3(3):310-8.
Carroll et al., Gene targeting in Drosophila and Caenorhabditis elegans with zinc-finger nucleases. Methods Mol Biol. 2008;435:63-77. doi: 10.1007/978-1-59745-232-8_5.
Carroll et al., Progress and prospects: zinc-finger nucleases as gene therapy agents. Gene Ther. Nov. 2008;15(22):1463-8. doi: 10.1038/gt.2008.145. Epub Sep. 11, 2008.
Carroll, A CRISPR approach to gene targeting. Mol Ther. Sep. 2012;20(9):1658-60. doi: 10.1038/mt.2012.171.
Cermak et al., Efficient design and assembly of custom TALEN and other TAL effector-based constructs for DNA targeting. Nucleic Acids Res. Jul. 2011;39(12):e82. Doi: 10.1093/nar/gkr218. Epub Apr. 14, 2011.
Chadwick et al., In Vivo Base Editing of PCSK9 (Proprotein Convertase Subtilisin/Kexin Type 9) as a Therapeutic Alternative to Genome Editing. Arterioscler Thromb Vasc Biol. Sep. 2017;37(9):1741-1747. doi: 10.1161/ATVBAHA.117.309881. Epub Jul. 27, 2017.
Chaikind et al., A programmable Cas9-serine recombinase fusion protein that operates on DNA sequences in mammalian cells. Nucleic Acids Res. Nov. 16, 2016;44(20):9758-9770. Epub Aug. 11, 2016.
Charpentier et al., Biotechnology: Rewriting a genome. Nature. Mar. 7, 2013;495(7439):50-1. doi: 10.1038/495050a.
Chavez et al., Highly efficient Cas9-mediated transcriptional programming. Nat Methods. Apr. 2015;12(4):326-8. doi: 10.1038/nmeth.3312. Epub Mar. 2, 2015.
Chavez et al., Precise Cas9 targeting enables genomic mutation prevention. Proc Natl Acad Sci U S A. Apr. 3, 2018;115(14):3669-3673. doi: 10.1073/pnas.1718148115. Epub Mar. 19, 2018.
Chelico et al., Biochemical basis of immunological and retroviral responses to DNA-targeted cytosine deamination by activation-induced cytidine deaminase and APOBEC3G. J Biol Chem. Oct. 9, 2009;284(41):27761-5. doi: 10.1074/jbc.R109.052449. Epub Aug. 13, 2009.
Chelico et al., Stochastic properties of processive cytidine DNA deaminases AID and APOBEC3G. Philos Trans R Soc Lond B Biol Sci. Mar. 12, 2009;364(1517):583-93. doi: 10.1098/rstb.2008.0195.
Chen et al., Structure of the DNA deaminase domain of the HIV-1 restriction factor APOBEC3G. Nature. Mar. 6, 2008;452(7183):116-9. doi: 10.1038/nature06638. Epub Feb. 20, 2008.
Chesnoy et al., Structure and function of lipid-DNA complexes for gene delivery. Annu Rev Biophys Biomol Struct. 2000;29:27-47.
Chew et al., A multifunctional AAV-CRISPR-Cas9 and its host response. Nat Methods. Oct. 2016;13(10):868-74. doi: 10.1038/nmeth.3993. Epub Sep. 5, 2016.
Chichili et al., Linkers in the structural biology of protein-protein interactions. Protein Science. 2013;22:153-67.
Chipev et al., A leucine-proline mutation in the H1 subdomain of keratin 1 causes epidermolytic hyperkeratosis. Cell. Sep. 4, 1992;70(5):821-8.
Cho et al., Analysis of off-target effects of CRISPR/Cas-derived RNA-guided endonucleases and nickases. Genome Res. Jan. 2014;24(1):132-41. doi: 10.1101/gr.162339.113. Epub Nov. 19, 2013.
Cho et al., Targeted genome engineering in human cells with the Cas9 RNA-guided endonuclease. Nat Biotechnol. Mar. 2013;31(3):230-2. doi: 10.1038/nbt.2507. Epub Jan. 29, 2013.
Christian et al., Targeting G with TAL effectors: a comparison of activities of TALENs constructed with NN and NK repeat variable di-residues. PLoS One. 2012;7(9):e45383. doi: 10.1371/journal.pone.0045383. Epub Sep. 24, 2012.
Christian et al., Targeting DNA double-strand breaks with TAL effector nucleases. Genetics. Oct. 2010;186(2):757-61. Doi: 10.1534/genetics.110.120717. Epub Jul. 26, 2010.
Chu et al., Increasing the efficiency of homology-directed repair for CRISPR-Cas9-induced precise gene editing in mammalian cells. Nat Biotech. Feb. 13, 2015;33:543-8.
Chung-Il et al., Artificial control of gene expression in mammalian cells by modulating RNA interference through aptamer-small molecule interaction. RNA. May 2006;12(5):710-6. Epub Apr. 10, 2006.
Chylinski et al., The tracrRNA and Cas9 families of type II CRISPR-Cas immunity systems. RNA Biol. May 2013;10(5):726-37. doi: 10.4161/rna.24321. Epub Apr. 5, 2013.
Cole-Strauss et al., Correction of the mutation responsible for sickle cell anemia by an RNA-DNA oligonucleotide. Science. Sep. 6, 1996;273(5280):1386-9.
Cong et al., Multiplex genome engineering using CRISPR/Cas systems. Science. Feb. 15, 2013;339(6121):819-23. doi: 10.1126/science.1231143. Epub Jan. 3, 2013.
Conticello, The AID/APOBEC family of nucleic acid mutators. Genome Biol. 2008;9(6):229. doi: 10.1186/gb-2008-9-6-229. Epub Jun. 17, 2008.
Covino et al., The CCL2/CCR2 Axis in the Pathogenesis of HIV-1 Infection: A New Cellular Target for Therapy? Current Drug Targets Dec. 2016;17(1):76-110. DOI : 10.2174/138945011701151217110917.
Cox et al., Conditional gene expression in the mouse inner ear using Cre-loxP. J Assoc Res Otolaryngol. Jun. 2012;13(3):295-322. doi: 10.1007/s10162-012-0324-5. Epub Apr. 24, 2012.
Cox et al., Therapeutic genome editing: prospects and challenges. Nat Med. Feb. 2015;21(2):121-31. doi: 10.1038/nm.3793.
Cradick et al., CRISPR/Cas9 systems targeting β-globin and CCR5 genes have substantial off-target activity. Nucleic Acids Res. Nov. 1, 2013;41(20):9584-92. doi: 10.1093/nar/gkt714. Epub Aug. 11, 2013.
Cradick et al., ZFN-site searches genomes for zinc finger nuclease target sites and off-target sites. BMC Bioinformatics. May 13, 2011;12:152. doi: 10.1186/1471-2105-12-152.
Cradick et al., Zinc-finger nucleases as a novel therapeutic strategy for targeting hepatitis B virus DNAs. Mol Ther. May 2010;18(5):947-54. Doi: 10.1038/mt.2010.20. Epub Feb. 16, 2010.
Cui et al., Targeted integration in rat and mouse embryos with zinc-finger nucleases. Nat Biotechnol. Jan. 2011;29(1):64-7. Doi: 10.1038/nbt.1731. Epub Dec. 12, 2010.
Cunningham et al., Ensembl 2015. Nucleic Acids Res. Jan. 2015;43(Database issue):D662-9. doi: 10.1093/nar/gku1010. Epub Oct. 28, 2014.
Dahlem et al., Simple methods for generating and detecting locus-specific mutations induced with TALENs in the zebrafish genome. PLoS Genet. 2012;8(8):e1002861. doi: 10.1371/journal.pgen.1002861. Epub Aug. 16, 2012.
Davis et al., DNA double strand break repair via non-homologous end-joining. Transl Cancer Res. Jun. 2013;2(3):130-143.
Davis et al., Small molecule-triggered Cas9 protein with improved genome-editing specificity. Nat Chem Biol. May 2015;11(5):316-8. doi: 10.1038/nchembio.1793. Epub Apr. 6, 2015.
De Souza, Primer: genome editing with engineered nucleases. Nat Methods. Jan. 2012;9(1):27.
Deltcheva et al., CRISPR RNA maturation by trans-encoded small RNA and host factor RNase III. Nature. Mar. 31, 2011;471(7340):602-7. doi: 10.1038/nature09886.
Dicarlo et al., Genome engineering in Saccharomyces cerevisiae using CRISPR-Cas systems. Nucleic Acids Research Apr. 2013;41(7):4336-43.
Ding et al., A Talen genome-editing system for generating human stem cell-based disease models. Cell Stem Cell. Feb. 7, 2013;12(2):238-51. Doi: 10.1016/j.stem.2012.11.011. Epub Dec. 13, 2012.
Ding et al., Permanent alteration of PCSK9 with in vivo CRISPR-Cas9 genome editing. Circ Res. Aug. 15, 2014;115(5):488-92. doi: 10.1161/CIRCRESAHA.115.304351. Epub Jun. 10, 2014.
Doench et al., Optimized sgRNA design to maximize activity and minimize off-target effects of CRISPR-Cas9. Nat Biotechnol. Feb. 2016;34(2):184-191. doi: 10.1038/nbt.3437.
Dormiani et al., Long-term and efficient expression of human β-globin gene in a hematopoietic cell line using a new site-specific integrating non-viral system. Gene Ther. Aug. 2015;22(8):663-74. doi: 10.1038/gt.2015.30. Epub Apr. 1, 2015.
Doudna et al., Genome editing. The new frontier of genome engineering with CRISPR-Cas9. Science. Nov. 28, 2014;346(6213):1258096. doi: 10.1126/science.1258096.
Doyon et al., Heritable targeted gene disruption in zebrafish using designed zinc-finger nucleases. Nat Biotechnol. Jun. 2008;26(6):702-8. Doi: 10.1038/nbt1409. Epub May 25, 2008.
Dunaime, Breakthrough method means CRISPR just got a lot more relevant to human health. The Verge. Apr. 20, 2016. http://www.theverge.com/2016/4/20/11450262/crispr-base-editing-single-nucleotides-dna-gene-liu-harvard.
During et al., Controlled release of dopamine from a polymeric brain implant: in vivo characterization. Ann Neurol. Apr. 1989;25(4):351-6.
East-Seletsky et al., Two distinct RNase activities of CRISPR-C2c2 enable guide-RNA processing and RNA detection. Nature Oct. 2016;538(7624):270-3.
Eltoukhy et al., Nucleic acid-mediated intracellular protein delivery by lipid-like nanoparticles. Biomaterials. Aug. 2014;35(24):6454-61. doi: 10.1016/j.biomaterials.2014.04.014. Epub May 13, 2014.
Esvelt et al., Genome-scale engineering for systems and synthetic biology. Mol Syst Biol. 2013;9:641. doi: 10.1038/msb.2012.66.
Esvelt et al., Orthogonal Cas9 proteins for RNA-guided gene regulation and editing. Nat Methods. Nov. 2013;10(11):1116-21. doi: 10.1038/nmeth.2681. Epub Sep. 29, 2013.
Extended European Search Report for EP 15830407.1, mailed Mar. 2, 2018.
Fine et al., Trans-spliced Cas9 allows cleavage of HBB and CCR5 genes in human cells using compact expression cassettes. Scientific Reports 2015;5(1):Article No. 10777. doi: 10.1038/srep10777. With Supplementary Information.
Fonfara et al., Phylogeny of Cas9 determines functional exchangeability of dual-RNA and Cas9 among orthologous type II CRISPR-Cas systems. Nucleic Acids Res. Feb. 2014;42(4):2577-90. doi: 10.1093/nar/gkt1074. Epub Nov. 22, 2013.
Freshney, Culture of Animal Cells. A Manual of Basic Technique. Alan R. Liss, Inc. New York. 1983;4.
Fu et al., Improving CRISPR-Cas nuclease specificity using truncated guide RNAs. Nat Biotechnol. Mar. 2014;32(3):279-84. doi: 10.1038/nbt.2808. Epub Jan. 26, 2014.
Fu et al., High-frequency off-target mutagenesis induced by CRISPR-Cas nucleases in human cells. Nat Biotechnol. Sep. 2013;31(9):822-6. doi: 10.1038/nbt.2623. Epub Jun. 23, 2013.
Fuchs et al., Polyarginine as a multifunctional fusion tag. Protein Sci. Jun. 2005;14(6):1538-44.
Fujisawa et al., Disease-associated mutations in CIAS1 induce cathepsin B-dependent rapid cell death of human THP-1 monocytic cells. Blood. Apr. 1, 2007;109(7):2903-11.
Fukui et al., DNA Mismatch Repair in Eukaryotes and Bacteria. J Nucleic Acids. Jul. 27, 2010;2010. pii: 260512. doi: 10.4061/2010/260512.
Fung et al., Repair at single targeted DNA double-strand breaks in pluripotent and differentiated human cells. PLoS One. 2011;6(5):e20514. doi: 10.1371/journal.pone.0020514. Epub May 25, 2011.
Gaj et al., A comprehensive approach to zinc-finger recombinase customization enables genomic targeting in human cells. Nucleic Acids Res. Feb. 6, 2013;41(6):3937-46.
Gaj et al., Enhancing the specificity of recombinase-mediated genome engineering through dimer interface redesign. J Am Chem Soc. Apr. 2, 2014;136(13):5047-56. doi: 10.1021/ja4130059. Epub Mar. 20, 2014.
Gaj et al., Expanding the scope of site-specific recombinases for genetic and metabolic engineering. Biotechnol Bioeng. Jan. 2014;111(1):1-15. doi: 10.1002/bit.25096. Epub Sep. 13, 2013.
Gaj et al., ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering. Trends Biotechnol. Jul. 2013;31(7):397-405. doi: 10.1016/j.tibtech.2013.04.004. Epub May 9, 2013.
Gallo et al., A novel pathogenic PSEN1 mutation in a family with Alzheimer's disease: phenotypical and neuropathological features. J Alzheimers Dis. 2011;25(3):425-31. doi: 10.3233/JAD-2011-110185.
Gao et al., DNA-guided genome editing using the Natronobacterium gregoryi Argonaute. Nat Biotechnol. Jul. 2016;34(7):768-73. doi: 10.1038/nbt.3547. Epub May 2, 2016.
Gardlik et al., Vectors and delivery systems in gene therapy. Med Sci Monit. Apr. 2005;11(4):RA110-21. Epub Mar. 24, 2005.
Garneau et al., The CRISPR/Cas bacterial immune system cleaves bacteriophage and plasmid DNA. Nature. Nov. 4, 2010;468(7320):67-71. doi: 10.1038/nature09523.
Gasiunas et al., Cas9-crRNA ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria. Proc Natl Acad Sci U S A. Sep. 25, 2012;109(39):E2579-86. Epub Sep. 4, 2012. Supplementary materials included.
Gasiunas et al., RNA-dependent DNA endonuclease Cas9 of the CRISPR system: Holy Grail of genome editing? Trends Microbiol. Nov. 2013;21(11):562-7. doi: 10.1016/j.tim.2013.09.001. Epub Oct. 1, 2013.
GenBank Submission; NIH/NCBI, Accession No. J04623. Kita et al., Apr. 26, 1993. 2 pages.
GenBank Submission; NIH/NCBI, Accession No. NC_002737.1. Ferretti et al., Jun. 27, 2013. 1 page.
GenBank Submission; NIH/NCBI, Accession No. NC_015683.1. Trost et al., Jul. 6, 2013. 1 page.
GenBank Submission; NIH/NCBI, Accession No. NC_016782.1. Trost et al., Jun. 11, 2013. 1 page.
GenBank Submission; NIH/NCBI, Accession No. NC_016786.1. Trost et al., Aug. 28, 2013. 1 page.
GenBank Submission; NIH/NCBI, Accession No. NC_017053.1. Fittipaldi et al., Jul. 6, 2013. 1 page.
GenBank Submission; NIH/NCBI, Accession No. NC_017317.1. Trost et al., Jun. 11, 2013. 1 page.
GenBank Submission; NIH/NCBI, Accession No. NC_017861.1. Heidelberg et al., Jun. 11, 2013. 1 page.
GenBank Submission; NIH/NCBI, Accession No. NC_018010.1. Lucas et al., Jun. 11, 2013. 2 pages.
GenBank Submission; NIH/NCBI, Accession No. NC_018721.1. Feng et al., Jun. 11, 2013. 1 pages.
GenBank Submission; NIH/NCBI, Accession No. NC_021284.1. Ku et al., Jul. 12, 2013. 1 page.
GenBank Submission; NIH/NCBI, Accession No. NC_021314.1. Zhang et al., Jul. 15, 2013. 1 page.
GenBank Submission; NIH/NCBI, Accession No. NC_021846.1. Lo et al., Jul. 22, 2013. 1 page.
GenBank Submission; NIH/NCBI, Accession No. NP_472073.1. Glaser et al., Jun. 27, 2013. 2 pages.
GenBank Submission; NIH/NCBI, Accession No. P42212. Prasher et al., Mar. 19, 2014. 7 pages.
GenBank Submission; NIH/NCBI, Accession No. YP_002342100.1. Bernardini et al., Jun. 10, 2013. 2 pages.
GenBank Submission; NIH/NCBI, Accession No. YP_002344900.1. Gundogdu et al., Mar. 19, 2014. 2 pages.
GenBank Submission; NIH/NCBI, Accession No. YP_820832.1. Makarova et al., Aug. 27, 2013. 2 pages.
Gerber et al., RNA editing by base deamination: more enzymes, more targets, new mysteries. Trends Biochem Sci. Jun. 2001;26(6):376-84.
Gersbach et al., Directed evolution of recombinase specificity by split gene reassembly. Nucleic Acids Res. Jul. 2010;38(12):4198-206. doi: 10.1093/nar/gkq125. Epub Mar. 1, 2010.
Gersbach et al., Targeted plasmid integration into the human genome by an engineered zinc-finger recombinase. Nucleic Acids Res. Sep. 1, 2011;39(17):7868-78. doi: 10.1093/nar/gkr421. Epub Jun. 7, 2011.
Gilbert et al., CRISPR-mediated modular RNA-guided regulation of transcription in eukaryotes. Cell. 2013 154(2):442-51.
Gilleron et al., Image-based analysis of lipid nanoparticle-mediated siRNA delivery, intracellular trafficking and endosomal escape. Nat Biotechnol. Jul. 2013;31(7):638-46. doi: 10.1038/nbt.2612. Epub Jun. 23, 2013.
Gonzalez et al., An iCRISPR platform for rapid, multiplexable, and inducible genome editing in human pluripotent stem cells. Cell Stem Cell. Aug. 7, 2014;15(2):215-26. doi: 10.1016/j.stem.2014.05.018. Epub Jun. 12, 2014.
Guilinger et al., Broad specificity profiling of TALENs results in engineered nucleases with improved DNA-cleavage specificity. Nat Methods. Apr. 2014;11(4):429-35. doi: 10.1038/nmeth.2845. Epub Feb. 16, 2014.
Guilinger et al., Fusion of catalytically inactive Cas9 to FokI nuclease improves the specificity of genome modification. Nat Biotechnol. Jun. 2014;32(6):577-82. doi: 10.1038/nbt.2909. Epub Apr. 25, 2014.
Guo et al., Protein tolerance to random amino acid change. Proc Natl Acad Sci U S A. Jun. 22, 2004;101(25):9205-10. Epub Jun. 14, 2004.
Haeussler et al., Evaluation of off-target and on-target scoring algorithms and integration into the guide RNA selection tool CRISPOR. Genome Biol. Jul. 5, 2016;17(1):148. doi: 10.1186/s13059-016-1012-2.
Hale et al., RNA-guided RNA cleavage by a CRISPR RNA-Cas protein complex. Cell. Nov. 25, 2009;139(5):945-56. doi: 10.1016/j.cell.2009.07.040.
Han, New CRISPR/Cas9-based Tech Edits Single Nucleotides Without Breaking DNA. Genome Web, Apr. 20, 2016. https://www.genomeweb.com/gene-silencinggene-editing/new-crisprcas9-based-tech-edits-single-nucleotides-without-breaking-dna.
Harris et al., RNA editing enzyme APOBEC1 and some of its homologs can act as DNA mutators. Mol Cell. Nov. 2002;10(5):1247-53.
Hartung et al., Correction of metabolic, craniofacial, and neurologic abnormalities in MPS I mice treated at birth with adeno-associated virus vector transducing the human alpha-L-iduronidase gene. Mol Ther. Jun. 2004;9(6):866-75.
Hasadsri et al., Functional protein delivery into neurons using polymeric nanoparticles. J Biol Chem. Mar. 13, 2009;284(11):6972-81. doi: 10.1074/jbc.M805956200. Epub Jan. 7, 2009.
Heller et al., Replisome assembly and the direct restart of stalled replication forks. Nat Rev Mol Cell Biol. Dec. 2006;7(12):932-43. Epub Nov. 8, 2006.
Hess et al., Directed evolution using dCas9-targeted somatic hypermutation in mammalian cells. Nat Methods. Dec. 2016;13(12):1036-1042. doi: 10.1038/nmeth.4038. Epub Oct. 31, 2016.
Hill et al., Functional analysis of conserved histidines in ADP-glucose pyrophosphorylase from Escherichia coli.Biochem Biophys Res Commun. Mar. 17, 1998;244(2):573-7.
Hilton et al., Enabling functional genomics with genome engineering. Genome Res. Oct. 2015;25(10):1442-55. doi: 10.1101/gr.190124.115.
Hockemeyer et al., Efficient targeting of expressed and silent genes in human ESCs and iPSCs using zinc-finger nucleases. Nat Biotechnol. Sep. 2009;27(9):851-7. doi: 10.1038/nbt. 1562. Epub Aug. 13, 2009.
Hockemeyer et al., Genetic engineering of human pluripotent cells using TALE nucleases. Nat Biotechnol. Jul. 7, 2011;29(8):731-4. doi: 10.1038/nbt.1927.
Holden et al., Crystal structure of the anti-viral APOBEC3G catalytic domain and functional implications. Nature. Nov. 6, 2008;456(7218):121-4. doi: 10.1038/nature07357. Epub Oct. 12, 2008.
Hondares et al., Peroxisome Proliferator-activated Receptor α (PPARα) Induces PPAR65 Coactivator 1α (PGC-1α) Gene Expression and Contributes to Thermogenic Activation of Brown Fat. J Biol. Chem Oct. 2011; 286(50):43112-22. doi: 10.1074/jbc.M111.252775.
Horvath et al., CRISPR/Cas, the immune system of bacteria and archaea. Science. Jan. 8, 2010;327(5962):167-70. doi: 10.1126/science.1179555.
Hou et al., Efficient genome engineering in human pluripotent stem cells using Cas9 from Neisseria meningitidis. Proc Natl Acad Sci U S A. Sep. 24, 2013;110(39):15644-9. doi: 10.1073/pnas.1313587110. Epub Aug. 12, 2013.
Houdebine, The methods to generate transgenic animals and to control transgene expression. J Biotechnol. Sep. 25, 2002;98(2-3):145-60.
Howard et al., Intracerebral drug delivery in rats with lesion-induced memory deficits. J Neurosurg. Jul. 1989;71(1):105-12.
Hower et al., Shape-based peak identification for ChIP-Seq. BMC Bioinformatics. Jan. 12, 2011;12:15. doi: 10.1186/1471-2105-12-15.
Hsu et al., DNA targeting specificity of RNA-guided Cas9 nucleases. Nat Biotechnol. Sep. 2013;31(9):827-32. doi: 10.1038/nbt.2647. Epub Jul. 21, 2013.
Hu et al., Chemical Biology Approaches to Genome Editing: Understanding, Controlling, and Delivering Programmable Nucleases. Cell Chem Biol. Jan. 21, 2016;23(1):57-73. doi: 10.1016/j.chembiol.2015.12.009.
Huang et al., Heritable gene targeting in zebrafish using customized TALENs. Nat Biotechnol. Aug. 5, 2011;29(8):699-700. doi: 10.1038/nbt.1939.
Humbert et al., Targeted gene therapies: tools, applications, optimization. Crit Rev Biochem Mol Biol. May-Jun. 2012;47(3):264-81. doi: 10.3109/10409238.2012.658112.
Hurt et al., Highly specific zinc finger proteins obtained by directed domain shuffling and cell-based selection. Proc Natl Acad Sci U S A. Oct. 14, 2003;100(21): 12271-6. Epub Oct. 3, 2003.
Hwang et al., Efficient genome editing in zebrafish using a CRISPR-Cas system. Nat Biotechnol. Mar. 2013;31(3):227-9. doi: 10.1038/nbt.2501. Epub Jan. 29, 2013.
Hwang et al., Efficient In Vivo Genome Editing Using RNA-Guided Nucleases. Nat Biotechnol. Mar. 2013; 31(3): 227-229. doi: 10.1038/nbt.2501. Epub Jan. 29, 2013.
Ikediobi et al., Mutation analysis of 24 known cancer genes in the NCI-60 cell line set. Mol Cancer Ther. Nov. 2006;5(11):2606-12. Epub Nov. 6, 2006.
International Preliminary Report on Patentability for PCT/US2016/058344, mailed May 3, 2018.
International Preliminary Report on Patentability for PCT/US2012/047778, mailed Feb. 6, 2014.
International Preliminary Report on patentability for PCT/US2014/050283, mailed Feb. 18, 2016.
International Preliminary Report on Patentability for PCT/US2014/052231, mailed Mar. 3, 2016.
International Preliminary Report on Patentability for PCT/US2014/054247, mailed Mar. 17, 2016.
International Preliminary Report on Patentability for PCT/US2014/054291, mailed Mar. 17, 2016.
International Preliminary Report on Patentability for PCT/US2014/070038, mailed Jun. 23, 2016.
International Preliminary Report on Patentability for PCT/US2015/042770, mailed Dec. 19, 2016.
International Preliminary Report on Patentability for PCT/US2015/058479, mailed May 11, 2017.
International Preliminary Report on Patentability or PCT/US2014/054252, mailed Mar. 17, 2016.
International Search Report and Written Opinion for PCT/US2012/047778, mailed May 30, 2013.
International Search Report and Written Opinion for PCT/US2014/050283, mailed Nov. 6, 2014.
International Search Report and Written Opinion for PCT/US2014/052231, mailed Dec. 4, 2014.
International Search Report and Written Opinion for PCT/US2014/054247, mailed Mar. 27, 2015.
International Search Report and Written Opinion for PCT/US2014/054252, mailed Mar. 5, 2015.
International Search Report and Written Opinion for PCT/US2014/054291, mailed Mar. 27, 2015.
International Search Report and Written Opinion for PCT/US2014/070038, mailed Apr. 14, 2015.
International Search Report and Written Opinion for PCT/US2015/042770, mailed Feb. 23, 2016.
International Search Report and Written Opinion for PCT/US2015/058479, mailed Feb. 11, 2016.
International Search Report and Written Opinion for PCT/US2016/044546, mailed Dec. 28, 2016.
International Search Report and Written Opinion for PCT/US2016/058344, mailed Apr. 20, 2017.
International Search Report and Written Opinion for PCT/US2017/045381, mailed Oct. 26, 2017.
International Search Report and Written Opinion for PCT/US2017/046144, mailed Oct. 10, 2017.
International Search Report and Written Opinion for PCT/US2017/056671, mailed Feb. 20, 2018.
International Search Report and Written Opinion for PCT/US2017/068105, mailed Apr. 4, 2018.
International Search Report and Written Opinion for PCT/US2017/068114, mailed Mar. 20, 2018.
International Search Report and Written Opinion for PCT/US2017/48390, mailed Jan. 9, 2018.
International Search Report for PCT/US2013/032589, mailed Jul. 26, 2013.
Invitation to Pay Additional Fees for PCT/US2014/054291, mailed Dec. 18, 2014.
Invitation to Pay Additional Fees for PCT/US2016/058344, mailed Mar. 1, 2017.
Invitation to Pay Additional Fees for PCT/US2017/056671, mailed Dec. 21, 2017.
Invitation to Pay Additional Fees for PCT/US2017/48390, mailed Nov. 7, 2017.
Irrthum et al., Congenital hereditary lymphedema caused by a mutation that inactivates VEGFR3 tyrosine kinase. Am J Hum Genet. Aug. 2000;67(2):295-301. Epub Jun. 9, 2000.
Ishino et al., Nucleotide sequence of the iap gene, responsible for alkaline phosphatase isozyme conversion in Escherichia coli, and identification of the gene product. J Bacteriol. Dec. 1987;169(12):5429-33.
Jamieson et al., Drug discovery with engineered zinc-finger proteins. Nat Rev Drug Discov. May 2003;2(5):361-8.
Jansen et al., Backbone and nucleobase contacts to glucosamine-6-phosphate in the glmS ribozyme. Nat Struct Mol Biol. Jun. 2006;13(6):517-23. Epub May 14, 2006.
Jansen et al., Identification of genes that are associated with DNA repeats in prokaryotes. Mol Microbiol. Mar. 2002;43(6):1565-75.
Jenkins et al., Comparison of a preQ1 riboswitch aptamer in metabolite-bound and free states with implications for gene regulation. J Biol Chem. Jul. 15, 2011;286(28):24626-37. doi: 10.1074/jbc.M111.230375. Epub May 18, 2011.
Jiang et al., RNA-guided editing of bacterial genomes using CRISPR-Cas systems. Nat Biotechnol. Mar. 2013;31(3):233-9. doi: 10.1038/nbt.2508. Epub Jan. 29, 2013.
Jiang et al., Structures of a CRISPR-Cas9 R-loop complex primed for DNA cleavage. Science. Feb. 19, 2016;351(6275):867-71. doi: 10.1126/science.aad8282. Epub Jan. 14, 2016.
Jinek et al., A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science. Aug. 17, 2012;337(6096):816-21. doi: 10.1126/science.1225829. Epub Jun. 28, 2012.
Jinek et al., RNA-programmed genome editing in human cells. Elife. Jan. 29, 2013;2:e00471. doi: 10.7554/eLife.00471.
Jinek et al., Structures of Cas9 endonucleases reveal RNA-mediated conformational activation. Science. Mar. 14, 2014;343(6176):1247997. doi: 10.1126/science.1247997. Epub Feb. 6, 2014.
Jore et al., Structural basis for CRISPR RNA-guided DNA recognition by Cascade. Nat Struct Mol Biol. May 2011;18(5):529-36. doi: 10.1038/nsmb.2019. Epub Apr. 3, 2011.
Joung et al., TALENs: a widely applicable technology for targeted genome editing. Nat Rev Mol Cell Biol. Jan. 2013;14(1):49-55. doi: 10.1038/nrm3486. Epub Nov. 21, 2012.
Kaiser et al., Gene therapy. Putting the fingers on gene repair. Science. Dec. 23, 2005;310(5756):1894-6.
Kandavelou et al., Targeted manipulation of mammalian genomes using designed zinc finger nucleases. Biochem Biophys Res Commun. Oct. 9, 2009;388(1):56-61. doi: 10.1016/j.bbrc.2009.07.112. Epub Jul. 25, 2009.
Kappel et al., Regulating gene expression in transgenic animals.Curr Opin Biotechnol. Oct. 1992;3(5):548-53.
Karpenshif et al., From yeast to mammals: recent advances in genetic control of homologous recombination. DNA Repair (Amst). Oct. 1, 2012;11(10):781-8. doi: 10.1016/j.dnarep.2012.07.001. Epub Aug. 11, 2012. Review.
Karpinsky et al., Directed evolution of a recombinase that excises the provirus of most HIV-1 primary isolates with high specificity. Nat Biotechnol. Apr. 2016;34(4):401-9. doi: 10.1038/nbt.3467. Epub Feb. 22, 2016.
Kaya et al., A bacterial Argonaute with noncanonical guide RNA specificity. Proc. Natl. Acad. Sci. USA Apr. 2016;113(15):4057-62.
Kellendonk et al., Regulation of Cre recombinase activity by the synthetic steroid RU 486. Nucleic Acids Res. Apr. 15, 1996;24(8):1404-11.
Kim et al., A library of TAL effector nucleases spanning the human genome. Nat Biotechnol. Mar. 2013;31(3):251-8. Doi: 10.1038/nbt.2517. Epub Feb. 17, 2013.
Kim et al., Genome-wide target specificities of CRISPR RNA-guided programmable deaminases. Nat Biotechnol. May 2017;35(5):475-480. doi: 10.1038/nbt.3852. Epub Apr. 10, 2017.
Kim et al., Highly efficient RNA-guided base editing in mouse embryos. Nat Biotechnol. May 2017;35(5):435-437. doi: 10.1038/nbt.3816. Epub Feb. 27, 2017.
Kim et al., Highly efficient RNA-guided genome editing in human cells via delivery of purified Cas9 ribonucleoproteins. Genome Res. Jun. 2014;24(6):1012-9. doi: 10.1101/gr.171322.113. Epub Apr. 2, 2014.
Kim et al., Increasing the genome-targeting scope and precision of base editing with engineered Cas9-cytidine deaminase fusions. Nat Biotechnol. Apr. 2017;35(4):371-376. doi: 10.1038/nbt.3803. Epub Feb. 13, 2017.
Kim et al., TALENs and ZFNs are associated with different mutationsignatures. Nat Methods. Mar. 2013;10(3):185. doi: 10.1038/nmeth.2364. Epub Feb. 10, 2013.
Kim et al., Targeted genome editing in human cells with zinc finger nucleases constructed via modular assembly. Genome Res. Jul. 2009;19(7):1279-88. doi: 10.1101/gr.089417.108. Epub May 21, 2009.
Kim et al., The role of apolipoprotein E in Alzheimer's disease. Neuron. Aug. 13, 2009;63(3):287-303. doi: 10.1016/j.neuron.2009.06.026.
Kim et al., Transcriptional repression by zinc finger peptides. Exploring the potential for applications in gene therapy. J Biol Chem. Nov. 21, 1997;272(47):29795-800.
Kitamura et al., Uracil DNA glycosylase counteracts APOBEC3G-induced hypermutation of hepatitis B viral genomes: excision repair of covalently closed circular DNA. PLoS Pathog. 2013;9(5):e1003361. doi: 10.1371/journal.ppat.1003361. Epub May 16, 2013.
Klauser et al., An engineered small RNA-mediated genetic switch based on a ribozyme expression platform. Nucleic Acids Res. May 1, 2013;41(10):5542-52. doi: 10.1093/nar/gkt253. Epub Apr. 12, 2013.
Kleinstiver et al., Broadening the targeting range of Staphylococcus aureus CRISPR-Cas9 by modifying PAM recognition. Nat Biotechnol. Dec. 2015;33(12):1293-1298. doi: 10.1038/nbt.3404. Epub Nov. 2, 2015.
Kleinstiver et al., Engineered CRISPR-Cas9 nucleases with altered PAM specificities. Nature. Jul. 23, 2015;523(7561):481-5. doi: 10.1038/nature14592. Epub Jun. 22, 2015.
Kleinstiver et al., High-fidelity CRISPR-Cas9 nucleases with no detectable genome-wide off-target effects. Nature. Jan. 28, 2016;529(7587):490-5. doi: 10.1038/nature16526. Epub Jan. 6, 2016.
Kleinstiver et al., Monomeric site-specific nucleases for genome editing. Proc Natl Acad Sci U S A. May 22, 2012;109(21):8061-6. doi: 10.1073/pnas.1117984109. Epub May 7, 2012.
Klippel et al., Isolation and characterization of unusual gin mutants. EMBO J. Dec. 1, 1988;7(12):3983-9.
Klippel et al., The DNA invertase Gin of phage Mu: formation of a covalent complex with DNA via a phosphoserine at amino acid position 9. EMBO J. Apr. 1988;7(4):1229-37.
Kohli et al., Local sequence targeting in the AID/APOBEC family differentially impacts retroviral restriction and antibody diversification. J Biol Chem. Dec. 24, 2010;285(52):40956-64. doi: 10.1074/jbc.M110.177402. Epub Oct. 6, 2010.
Komor et al., CRISPR-Based Technologies for the Manipulation of Eukaryotic Genomes. Cell. Jan. 12, 2017;168(1-2):20-36. doi: 10.1016/j.cell.2016.10.044.
Komor et al., Improved base excision repair inhibition and bacteriophage Mu Gam protein yields C:G-to-T:A base editors with higher efficiency and product purity. Sci Adv. Aug. 30, 2017;3(8):eaao4774. doi: 10.1126/sciadv.aao4774. eCollection Aug. 2017.
Komor et al., Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage. Nature. Apr. 20, 2016;533(7603):420-4. doi: 10.1038/nature17946.
Kouzminova et al., Patterns of chromosomal fragmentation due to uracil-DNA incorporation reveal a novel mechanism of replication-dependent double-stranded breaks. Mol Microbiol. Apr. 2008;68(1):202-15. doi: 10.1111/j.1365-2958.2008.06149.x.
Kumar et al., Structural and functional consequences of the mutation of a conserved arginine residue in alphaA and alphaB crystallins. J Biol Chem. Aug. 20, 1999;274(34):24137-41.
Kundu et al., Leucine to proline substitution by SNP at position 197 in Caspase-9 gene expression leads to neuroblastoma: a bioinformatics analysis. 3 Biotech. 2013; 3:225-34.
Kunz et al., DNA Repair in mammalian cells: Mismatched repair: variations on a theme. Cell Mol Life Sci. Mar. 2009;66(6):1021-38. doi: 10.1007/s00018-009-8739-9.
Kuscu et al., CRISPR-STOP: gene silencing through base-editing-induced nonsense mutations. Nat Methods. Jul. 2017;14(7):710-712. doi: 10.1038/nmeth.4327. Epub Jun. 5, 2017.
Kuscu et al., Genome-wide analysis reveals characteristics of off-target sites bound by the Cas9 endonuclease. Nat Biotechnol. Jul. 2014;32(7):677-83. doi: 10.1038/nbt.2916. Epub May 18, 2014.
Landrum et al., ClinVar: public archive of interpretations of clinically relevant variants. Nucleic Acids Res. Jan. 4, 2016;44(D1):D862-8. doi: 10.1093/nar/gkv1222. Epub Nov. 17, 2015.
Langer et al., Chemical and Physical Structure of Polymers as Carriers for Controlled Release of Bioactive Agents: A Review. Journal of Macromolecular Science, 2006;23(1):61-126. DOI: 10.1080/07366578308079439.
Langer et al., New methods of drug delivery. Science. Sep. 28, 1990;249(4976):1527-33.
Larson et al., CRISPR interference (CRISPRi) for sequence-specific control of gene expression. Nat Protoc. Nov. 2013;8(11):2180-96. doi: 10.1038/nprot.2013.132. Epub Oct. 17, 2013.
Lau et al., Molecular basis for discriminating between normal and damaged bases by the human alkyladenine glycosylase, AAG. Proc Natl Acad Sci U S A. Dec. 5, 2000;97(25):13573-8.
Lavergne et al., Defects in type IIA von Willebrand disease: a cysteine 509 to arginine substitution in the mature von Willebrand factor disrupts a disulphide loop involved in the interaction with platelet glycoprotein Ib-IX. Br J Haematol. Sep. 1992;82(1):66-72.
Lawrence et al., Supercharging proteins can impart unusual resilience. J Am Chem Soc. Aug. 22, 2007;129(33): 10110-2. Epub Aug. 1, 2007.
Lazar et al., Transforming growth factor alpha: mutation of aspartic acid 47 and leucine 48 results in different biological activities. Mol Cell Biol. Mar. 1988;8(3):1247-52.
Ledford, Gene-editing hack yields pinpoint precision. Nature, Apr. 20, 2016. http://www.nature.com/news/gene-editing-hack-yields-pinpoint-precision-1.19773.
Lee et al., A chimeric thyroid hormone receptor constitutively bound to DNA requires retinoid X receptor for hormone-dependent transcriptional activation in yeast. Mol Endocrinol. Sep. 1994;8(9):1245-52.
Lee et al., Failure to detect DNA-guided genome editing using Natronobacterium gregoryi Argonaute. Nat Biotechnol. Nov. 28, 2016;35(1):17-18. doi: 10.1038/nbt.3753.
Lee et al., PIK3CA gene is frequently mutated in breast carcinomas and hepatocellular carcinomas. Oncogene. Feb. 17, 2005;24(8):1477-80.
Lee et al., Recognition of liposomes by cells: in vitro binding and endocytosis mediated by specific lipid headgroups and surface charge density. Biochim Biophys Acta. Jan. 31, 1992;1103(2):185-97.
Lei et al., Efficient targeted gene disruption in Xenopus embryos using engineered transcription activator-like effector nucleases (TALENs). Proc Natl Acad Sci U S A. Oct. 23, 2012;109(43):17484-9. Doi: 10.1073/pnas.1215421109. Epub Oct. 8, 2012.
Lenk et al., Pathogenic mechanism of the FIG4 mutation responsible for Charcot-Marie-Tooth disease CMT4J. PLoS Genet. Jun. 2011;7(6):e1002104. doi: 10.1371/journal.pgen.1002104. Epub Jun. 2, 2011.
Levy et al., Inhibition of calcification of bioprosthetic heart valves by local controlled-release diphosphonate. Science. Apr. 12, 1985;228(4696):190-2.
Lewis et al., A serum-resistant cytofectin for cellular delivery of antisense oligodeoxynucleotides and plasmid DNA. Proc Natl Acad Sci U S A. Apr. 16, 1996;93(8):3176-81.
Lewis et al., Codon 129 polymorphism of the human prion protein influences the kinetics of amyloid formation. J Gen Virol. Aug. 2006;87(Pt 8):2443-9.
Li et al., Base editing with a Cpf1-cytidine deaminase fusion. Nat Biotechnol. Apr. 2018;36(4):324-327. doi: 10.1038/nbt.4102. Epub Mar. 19, 2018.
Li et al., Current approaches for engineering proteins with diverse biological properties. Adv Exp Med Biol. 2007;620:18-33.
Li et al., Generation of Targeted Point Mutations in Rice by a Modified CRISPR/Cas9 System. Mol Plant. Mar. 6, 2017;10(3):526-529. doi: 10.1016/j.molp.2016.12.001. Epub Dec. 8, 2016.
Li et al., Highly efficient and precise base editing in discarded human tripronuclear embryos. Protein Cell. Aug. 19, 2017. doi: 10.1007/s13238-017-0458-7. [Epub ahead of print].
Li et al., Modularly assembled designer TAL effector nucleases for targeted gene knockout and gene replacement in eukaryotes. Nucleic Acids Res. Aug. 2011;39(14):6315-25. doi: 10.1093/nar/gkr188. Epub Mar. 31, 2011.
Li et al., Multiplex and homologous recombination-mediated genome editing in Arabidopsis and Nicotiana benthamiana using guide RNA and Cas9. Nat Biotechnol. Aug. 2013;31(8):688-91. doi: 10.1038/nbt.2654.
Li et al., TAL nucleases (TALNs): hybrid proteins composed of TAL effectors and FokI DNA-cleavage domain. Nucleic Acids Res. Jan. 2011;39(1):359-72. doi: 10.1093/nar/gkq704. Epub Aug. 10, 2010.
Liang et al., Rapid and highly efficient mammalian cell engineering via Cas9 protein transfection. Send to; J Biotechnol. Aug. 20, 2015;208:44-53. doi: 10.1016/j.jbiotec.2015.04.024.
Lieber et al., Mechanism and regulation of human non-homologous DNA end-joining. Nat Rev Mol Cell Biol. Sep. 2003;4(9):712-20.
Lin et al., Enhanced homology-directed human genome engineering by controlled timing of CRISPR/Cas9 delivery. Elife. Dec. 15, 2014;3:e04766. doi: 10.7554/eLife.04766.
Liu et al., C2c1-sgRNA Complex Structure Reveals RNA-Guided DNA Cleavage Mechanism. Molecular Cell Jan. 2017;65(2):310-22.
Liu et al., Apolipoprotein E and Alzheimer disease: risk, mechanisms and therapy. Nat Rev Neurol. Feb. 2013;9(2):106-18. doi: 10.1038/nrneurol.2012.263. Epub Jan. 8, 2013.
Liu et al., Balancing AID and DNA repair during somatic hypermutation. Trends Immunol. Apr. 2009;30(4):173-81. doi: 10.1016/j.it.2009.01.007.
Liu et al., Cell-penetrating peptide-mediated delivery of TALEN proteins via bioconjugation for genome engineering. PLoS One. Jan. 20, 2014;9(1):e85755. doi: 10.1371/journal.pone.0085755. eCollection 2014.
Liu et al., Design of polydactyl zinc-finger proteins for unique addressing within complex genomes. Proc Natl Acad Sci U S A. May 27, 1997;94(11):5525-30.
Liu et al., Distance determination by GIY-YIG intron endonucleases: discrimination between repression and cleavage functions. Nucleic Acids Res. Mar. 31, 2006;34(6): 1755-64. Print 2006.
Liu et al., Fast Colorimetric Sensing of Adenosine and Cocaine Based on a General Sensor Design Involving Aptamers and Nanoparticles. Angew Chem. 2006;118(1):96-100.
Lombardo et al., Gene editing in human stem cells using zinc finger nucleases and integrase-defective lentiviral vector delivery. Nat Biotechnol. Nov. 2007;25(11):1298-306. Epub Oct. 28, 2007.
Losey et al., Crystal structure of Staphylococcus sureus tRNA adenosine deaminase tadA in complex with RNA. Nature Struct. Mol. Biol. Feb. 2006;13(2):153-9.
Lu et al., Precise Editing of a Target Base in the Rice Genome Using a Modified CRISPR/Cas9 System. Mol Plant. Mar. 6, 2017;10(3):523-525. doi: 10.1016/j.molp.2016.11.013. Epub Dec. 6, 2016.
Lundberg et al., Delivery of short interfering RNA using endosomolytic cell-penetrating peptides. FASEB J. Sep. 2007;21(11):2664-71. Epub Apr. 26, 2007.
Lundquist et al., Site-directed mutagenesis and characterization of uracil-DNA glycosylase inhibitor protein. Role of specific carboxylic amino acids in complex formation with Escherichia coli uracil-DNA glycosylase. J Biol Chem. Aug. 22, 1997;272(34):21408-19.
Lyons et al., Efficient Recognition of an Unpaired Lesion by a DNA Repair Glycosylase. J. Am. Chem. Soc., 2009;131(49):17742-3. DOI: 10.1021/ja908378y.
Ma et al., Targeted AID-mediated mutagenesis (TAM) enables efficient genomic diversification in mammalian cells. Nature Methods. Oct. 2016;13:1029-35. doi: 10.1038/nmeth.4027.
Maeder et al., CRISPR RNA-guided activation of endogenous human genes. Nat Methods. Oct. 2013;10(10):977-9. doi: 10.1038/nmeth.2598. Epub Jul. 25, 2013.
Maeder et al., Rapid “open-source” engineering of customized zinc-finger nucleases for highly efficient gene modification. Mol Cell. Jul. 25, 2008;31(2):294-301. doi:10.1016/j.molcel.2008.06.016.
Maeder et al., Robust, synergistic regulation of human gene expression using TALE activators. Nat Methods. Mar. 2013;10(3):243-5. doi: 10.1038/nmeth.2366. Epub Feb. 10, 2013.
Mahfouz et al., De novo-engineered transcription activator-like effector (TALE) hybrid nuclease with novel DNA binding specificity creates double-strand breaks. Proc Natl Acad Sci U S A. Feb. 8, 2011;108(6):2623-8. doi: 10.1073/pnas.1019533108. Epub Jan. 24, 2011.
Makarova et al., Prokaryotic homologs of Argonaute proteins are predicted to function as key components of a novel system of defense against mobile genetic elements. Biology Direct 2009;4:29.
Makarova et al., An updated evolutionary classification of CRISPR-Cas systems. Nat Rev Microbiol. Nov. 2015;13(11):722-36. doi: 10.1038/nrmicro3569. Epub Sep. 28, 2015.
Makarova et al., Evolution and classification of the CRISPR-Cas systems. Nat Rev Microbiol. Jun. 2011;9(6):467-77. doi: 10.1038/nrmicro2577. Epub May 9, 2011.
Mali et al., Cas9 as a versatile tool for engineering biology. Nat Methods. Oct. 2013;10(10):957-63. doi: 10.1038/nmeth.2649.
Mali et al., CAS9 transcriptional activators for target specificity screening and paired nickases for cooperative genome engineering. Nat Biotechnol. Sep. 2013;31(9):833-8. doi: 10.1038/nbt.2675. Epub Aug. 1, 2013.
Mali et al., RNA-guided human genome engineering via Cas9. Science. Feb. 15, 2013;339(6121):823-6. doi: 10.1126/science.1232033. Epub Jan. 3, 2013.
Mani et al., Design, engineering, and characterization of zinc finger nucleases. Biochem Biophys Res Commun. Sep. 23, 2005;335(2):447-57.
Marioni et al., DNA methylation age of blood predicts all-cause mortality in later life. Genome Biol. Jan. 30, 2015;16:25. doi: 10.1186/s13059-015-0584-6.
Marraffini et al., CRISPR interference limits horizontal gene transfer in staphylococci by targeting DNA. Science. Dec. 19, 2008;322(5909):1843-5. doi: 10.1126/science.1165771.
Maruyama et al., Increasing the efficiency of precise genome editing with CRISPR-Cas9 by inhibition of nonhomologous end joining. Nat Biotechnol. May 2015;33(5):538-42. doi: 10.1038/nbt.3190. Epub Mar. 23, 2015.
Mei et al., Recent Progress in CRISPR/Cas9 Technology. J Genet Genomics. Feb. 20, 2016;43(2):63-75. doi: 10.1016/j.jgg.2016.01.001. Epub Jan. 18, 2016.
Meng et al., Targeted gene inactivation in zebrafish using engineered zinc-finger nucleases. Nat Biotechnol. Jun. 2008;26(6):695-701. doi: 10.1038/nbt1398. Epub May 25, 2008.
Mercer et al., Chimeric TALE recombinases with programmable DNA sequence specificity. Nucleic Acids Res. Nov. 2012;40(21):11163-72. doi: 10.1093/nar/gks875. Epub Sep. 26, 2012.
Meyer et al., Breathing life into polycations: functionalization with pH-responsive endosomolytic peptides and polyethylene glycol enables siRNA delivery. J Am Chem Soc. Mar. 19, 2008;130(11):3272-3. doi: 10.1021/ja710344v. Epub Feb. 21, 2008.
Midoux et al., Chemical vectors for gene delivery: a current review on polymers, peptides and lipids containing histidine or imidazole as nucleic acids carriers. Br J Pharmacol. May 2009;157(2):166-78. doi: 10.1111/j.1476-5381.2009.00288.x.
Miller et al., A TALE nuclease architecture for efficient genome editing. Nat Biotechnol. Feb. 2011;29(2):143-8. doi:10.1038/nbt.1755. Epub Dec. 22, 2010.
Miller et al., An improved zinc-finger nuclease architecture for highly specific genome editing. Nat Biotechnol. Jul. 2007;25(7):778-85. Epub Jul. 1, 2007.
Minoche et al., Evaluation of genomic high-throughput sequencing data generated on Illumina HiSeq and genome analyzer systems. Genome Biol. Nov. 8, 2011;12(11):R112. doi: 10.1186/GB-2011-12-11-r112.
Minoretti et al., A W148R mutation in the human FOXD4 gene segregating with dilated cardiomyopathy, obsessive-compulsive disorder, and suicidality. Int J Mol Med. Mar. 2007;19(3):369-72.
Mojica et al., Intervening sequences of regularly spaced prokaryotic repeats derive from foreign genetic elements. J Mol Evol. Feb. 2005;60(2):174-82.
Mol et al., Crystal structure of human uracil-DNA glycosylase in complex with a protein inhibitor: protein mimicry of DNA. Cell. Sep. 8, 1995;82(5):701-8.
Moore et al., Improved somatic mutagenesis in zebrafish using transcription activator-like effector nucleases (TALENs). PloS One. 2012;7(5):e37877. Doi: 10.1371/journal.pone.0037877. Epub May 24, 2012.
Morbitzer et al., Assembly of custom TALE-type DNA binding domains by modular cloning. Nucleic Acids Res. Jul. 2011;39(13):5790-9. doi: 10.1093/nar/gkr151. Epub Mar. 18, 2011.
Morris et al., A peptide carrier for the delivery of biologically active proteins into mammalian cells. Nat Biotechnol. Dec. 2001;19(12):1173-6.
Moscou et al., A simple cipher governs DNA recognition by TAL effectors. Science. Dec. 11, 2009;326(5959):1501. doi: 10.1126/science.1178817.
Mullins et al., Transgenesis in nonmurine species. Hypertension. Oct. 1993;22(4):630-3.
Mussolino et al., A novel TALE nuclease scaffold enables high genome editing activity in combination with low toxicity. Nucleic Acids Res. Nov. 2011;39(21):9283-93. Doi: 10.1093/nar/gkr597. Epub Aug. 3, 2011.
Mussolino et al., TALE nucleases: tailored genome engineering made easy. Curr Opin Biotechnol. Oct. 2012;23(5):644-50. doi: 10.1016/j.copbio.2012.01.013. Epub Feb. 17, 2012.
Nahvi et al., Coenzyme B12 riboswitches are widespread genetic control elements in prokaryotes. Nucleic Acids Res. Jan. 2, 2004;32(1):143-50.
Narayanan et al., Clamping down on weak terminal base pairs: oligonucleotides with molecular caps as fidelity-enhancing elements at the 5′- and 3′-terminal residues. Nucleic Acids Res. May 20, 2004;32(9):2901-11. Print 2004.
Navaratnam et al., An overview of cytidine deaminases. Int J Hematol. Apr. 2006;83(3):195-200.
NCBI Reference Sequence: NM_002427.3. Wu et al., May 3, 2014. 5 pages.
Nishida et al., Targeted nucleotide editing using hybrid prokaryotic and vertebrate adaptive immune systems. Science. Sep. 16, 2016;353(6305):1248. pii: aaf8729. doi: 10.1126/science.aaf8729. Epub Aug. 4, 2016.
Nishimasu et al., Crystal structure of Cas9 in complex with guide RNA and target DNA. Cell. Feb. 27, 2014;156(5):935-49. doi: 10.1016/j.cell.2014.02.001. Epub Feb. 13, 2014.
Nomura et al., Synthetic mammalian riboswitches based on guanine aptazyme. Chem Commun (Camb). Jul. 21, 2012;48(57):7215-7. doi: 10.1039/c2cc33140c. Epub Jun. 13, 2012.
Noris et al., A phenylalanine-55 to serine amino-acid substitution in the human glycoprotein IX leucine-rich repeat is associated with Bernard-Soulier syndrome. Br J Haematol. May 1997;97(2):312-20.
O'Connell et al., Programmable RNA recognition and cleavage by CRISPR/Cas9. Nature. Dec. 11, 2014;516(7530):263-6. doi: 10.1038/nature13769. Epub Sep. 28, 2014.
Offord, Advances in Genome Editing. The Scientist, Apr. 20, 2016. http://www.the-scientist.com/?articles.view/articleNo/45903/title/Advances-in-Genome-Editing/.
Osborn et al., TALEN-based gene correction for epidermolysis bullosa. Mol Ther. Jun. 2013;21(6):1151-9. doi: 10.1038/mt.2013.56. Epub Apr. 2, 2013.
Pan et al., Biological and biomedical applications of engineered nucleases. Mol Biotechnol. Sep. 2013;55(1):54-62. doi: 10.1007/s12033-012-9613-9.
Parker et al., Admixture mapping identifies a quantitative trait locus associated with FEV1/FVC in the COPDGene Study. Genet Epidemiol. Nov. 2014;38(7):652-9. doi: 10.1002/gepi.21847. Epub Aug. 11, 2014.
Partial Supplementary European Search Report for Application No. EP 12845790.0, mailed Mar. 18, 2015.
Pattanayak et al., Determining the specificities of TALENs, Cas9, and other genome-editing enzymes. Methods Enzymol. 2014;546:47-78. doi: 10.1016/B978-0-12-801185-0.00003-9.
Pattanayak et al., High-throughput profiling of off-target DNA cleavage reveals RNA-programmed Cas9 nuclease specificity. Nat Biotechnol. Sep. 2013;31(9):839-43. doi: 10.1038/nbt.2673. Epub Aug. 11, 2013.
Pattanayak et al., Revealing off-target cleavage specificities of zinc-finger nucleases by in vitro selection. Nat Methods. Aug. 7, 2011;8(9):765-70. doi: 10.1038/nmeth.1670.
Pavletich et al., Zinc finger-DNA recognition: crystal structure of a Zif268-DNA complex at 2.1 A. Science. May 10, 1991;252(5007):809-17.
Pearl, Structure and function in the uracil-DNA glycosylase superfamily. Mutat Res. Aug. 30, 2000;460(3-4):165-81.
Pennisi et al., The CRISPR craze. Science. Aug. 23, 2013;341(6148):833-6. doi: 10.1126/science.341.6148.833.
Pennisi et al., The tale of the TALEs. Science. Dec. 14, 2012;338(6113):1408-11. doi: 10.1126/science.338.6113.1408.
Perez et al., Establishment of HIV-1 resistance in CD4+ T cells by genome editing using zinc-finger nucleases. Nat Biotechnol. Jul. 2008;26(7):808-16. Doi: 10.1038/nbt1410. Epub Jun. 29, 2008.
Perez-Pinera et al., Advances in targeted genome editing. Curr Opin Chem Biol. Aug. 2012; 16(3-4):268-77. doi: 10.1016/j.cbpa.2012.06.007. Epub Jul. 20, 2012.
Perez-Pinera et al., RNA-guided gene activation by CRISPR-Cas9-based transcription factors. Nat Methods. Oct. 2013;10(10):973-6. doi: 10.1038/nmeth.2600. Epub Jul. 2 2013.
Petek et al., Frequent endonuclease cleavage at off-target locations in vivo. Mol Ther. May 2010;18(5):983-6. Doi: 10.1038/mt.2010.35. Epub Mar. 9, 2010.
Petolino et al., Editing Plant Genomes: a new era of crop improvement. Plant Biotechnol J. Feb. 2016;14(2):435-6. doi: 10.1111/pbi.12542.
Phillips, The challenge of gene therapy and DNA delivery. J Pharm Pharmacol. Sep. 2001;53(9):1169-74.
Plasterk et al., DNA inversions in the chromosome of Escherichia coli and in bacteriophage Mu: relationship to other site-specific recombination systems. Proc Natl Acad Sci U S A. Sep. 1983;80(17):5355-8.
Pluciennik et al., PCNA function in the activation and strand direction of MutLα endonuclease in mismatch repair. Proc Natl Acad Sci U S A. Sep. 14, 2010;107(37):16066-71. doi: 10.1073/pnas.1010662107. Epub Aug. 16, 2010.
Poller et al., A leucine-to-proline substitution causes a defective alpha 1-antichymotrypsin allele associated with familial obstructive lung disease. Genomics. Sep. 1993;17(3):740-3.
Porteus, Design and testing of zinc finger nucleases for use in mammalian cells. Methods Mol Biol. 2008;435:47-61. doi: 10.1007/978-1-59745-232-8_4.
Pourcel et al., CRISPR elements in Yersinia pestis acquire new repeats by preferential uptake of bacteriophage DNA, and provide additional tools for evolutionary studies. Microbiology. Mar. 2005;151(Pt 3):653-63.
Prashant et al., CAS9 transcriptional activators for target specificity screening and paired nickases for cooperative genome engineering. Nature Biotechnology 2013;31(9):833-8.
Prorocic et al., Zinc-finger recombinase activities in vitro. Nucleic Acids Res. Nov. 2011;39(21):9316-28. doi: 10.1093/nar/gkr652. Epub Aug. 17, 2011.
Proudfoot et al., Zinc finger recombinases with adaptable DNA sequence specificity. PLoS One. Apr. 29, 2011;6(4):e19537. doi: 10.1371/journal.pone.0019537.
Prykhozhij et al., CRISPR multitargeter: a web tool to find common and unique CRISPR single guide RNA targets in a set of similar sequences. PLoS One. Mar. 5, 2015;10(3):e0119372. doi: 10.1371/journal.pone.0119372. eCollection 2015.
Putnam et al., Protein mimicry of DNA from crystal structures of the uracil-DNA glycosylase inhibitor protein and its complex with Escherichia coli uracil-DNA glycosylase. J Mol Biol. Mar. 26, 1999;287(2):331-46.
Qi et al., Engineering naturally occurring trans-acting non-coding RNAs to sense molecular signals. Nucleic Acids Res. Jul. 2012;40(12):5775-86. doi: 10.1093/nar/gks168. Epub Mar. 1, 2012.
Qi et al., Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression. Cell. Feb. 28, 2013;152(5):1173-83. doi: 10.1016/j.cell.2013.02.022.
Ramakrishna et al., Gene disruption by cell-penetrating peptide-mediated delivery of Cas9 protein and guide RNA. Genome Res. Jun. 2014;24(6):1020-7. doi: 10.1101/gr.171264.113. Epub Apr. 2, 2014.
Ramirez et al., Engineered zinc finger nickases induce homology-directed repair with reduced mutagenic effects. Nucleic Acids Res. Jul. 2012;40(12):5560-8. doi: 10.1093/nar/gks179. Epub Feb. 28, 2012.
Ramirez et al., Unexpected failure rates for modular assembly of engineered zinc fingers. Nat Methods. May 2008;5(5):374-5. Doi: 10.1038/nmeth0508-374.
Ran et al., Double nicking by RNA-guided CRISPR Cas9 for enhanced genome editing specificity. Cell. Sep. 12, 2013;154(6):1380-9. doi: 10.1016/j.cell.2013.08.021. Epub Aug. 29, 2013.
Ran et al., Genome engineering using the CRISPR-Cas9 system. Nat Protoc. Nov. 2013;8(11):2281-308. doi: 10.1038/nprot.2013.143. Epub Oct. 24, 2013.
Ran et al., In vivo genome editing using Staphylococcus aureus Cas9. Nature. Apr. 9, 2015;520(7546): 186-91. doi: 10.1038/nature14299. Epub Apr. 1, 2015.
Rath et al., Fidelity of end joining in mammalian episomes and the impact of Metnase on joint processing. BMC Mol Biol. Mar. 22, 2014;15:6. doi: 10.1186/1471-2199-15-6.
Ravishankar et al., X-ray analysis of a complex of Escherichia coli uracil DNA glycosylase (EcUDG) with a proteinaceous inhibitor. The structure elucidation of a prokaryotic UDG. Nuclei Acids Res. 26 (21): 4880-4887 (1998).
Ray et al., Homologous recombination: ends as the means. Trends Plant Sci. Oct. 2002;7(10):435-40.
Rebuzzini et al., New mammalian cellular systems to study mutations introduced at the break site by non-homologous end-joining. DNA Repair (Amst). May 2, 2005;4(5):546-55.
Rees et al., Improving the DNA specificity and applicability of base editing through protein engineering and protein delivery. Nat Commun. Jun. 6, 2017;8:15790. doi: 10.1038/ncomms15790.
Reyon et al., FLASH assembly of TALENs for high-throughput genome editing. Nat Biotechnol. May 2012;30(5):460-5. doi: 10.1038/nbt.2170.
Richardson et al., Enhancing homology-directed genome editing by catalytically active and inactive CRISPR-Cas9 using asymmetric donor DNA. Nat Biotechnol. Mar. 2016;34(3): 339-44. doi: 10.1038/nbt.3481. Epub Jan. 20, 2016.
Richter et al., Function and regulation of clustered regularly interspaced short palindromic repeats (CRISPR) / CRISPR associated (Cas) systems. Viruses. Oct. 19, 2012;4(10):2291-311. doi: 10.3390/v4102291.
Rong et al., Homologous recombination in human embryonic stem cells using CRISPR/Cas9 nickase and a long DNA donor template. Protein Cell. Apr. 2014;5(4):258-60. doi: 10.1007/s13238-014-0032-5.
Rowland et al., Regulatory mutations in Sin recombinase support a structure-based model of the synaptosome. Mol Microbiol. Oct. 2009;74(2):282-98. doi: 10.1111/j.1365- 2958.2009.06756.x. Epub Jun. 8, 2009.
Sadelain et al., Safe harbours for the integration of new DNA in the human genome. Nat Rev Cancer. Dec. 1, 2011;12(1):51-8. doi: 10.1038/nrc3179.
Sage et al., Proliferation of functional hair cells in vivo in the absence of the retinoblastoma protein. Science. Feb. 18, 2005;307(5712):1114-8. Epub Jan. 13, 2005.
Samal et al., Cationic polymers and their therapeutic potential. Chem Soc Rev. Nov. 7, 2012;41(21):7147-94. doi: 10.1039/c2cs35094g. Epub Aug. 10, 2012.
Sander et al., CRISPR-Cas systems for editing, regulating and targeting genomes. Nat Biotechnol. Apr. 2014;32(4):347-55. doi: 10.1038/nbt.2842. Epub Mar. 2, 2014.
Sander et al., In silico abstraction of zinc finger nuclease cleavage profiles reveals an expanded landscape of off-target sites. Nucleic Acids Res. Oct. 2013;41(19):e181. doi: 10.1093/nar/gkt716. Epub Aug. 14, 2013.
Sander et al., Targeted gene disruption in somatic zebrafish cells using engineered TALENs. Nat Biotechnol. Aug. 5, 2011;29(8):697-8. doi: 10.1038/nbt.1934.
Sang, Prospects for transgenesis in the chick. Mech Dev. Sep. 2004;121(9):1179-86.
Sanjana et al., A transcription activator-like effector toolbox for genome engineering. Nat Protoc. Jan. 5, 2012;7(1):171-92. doi: 10.1038/nprot.2011.431.
Santiago et al., Targeted gene knockout in mammalian cells by using engineered zinc-finger nucleases. Proc Natl Acad Sci U S A. Apr. 15, 2008;105(15):5809-14. doi: 10.1073/pnas.0800940105. Epub Mar. 21, 2008.
Sapranauskas et al., The Streptococcus thermophilus CRISPR/Cas system provides immunity in Escherichia coli. Nucleic Acids Res. Nov. 2011;39(21):9275-82. doi: 10.1093/nar/gkr606. Epub Aug. 3, 2011.
Saraconi et al., The RNA editing enzyme APOBEC1 induces somatic mutations and a compatible mutational signature is present in esophageal adenocarcinomas. Genome Biol. Jul. 31, 2014;15(7):417. doi: 10.1186/s13059-014-0417-z.
Sashital et al., Mechanism of foreign DNA selection in a bacterial adaptive immune system. Mol Cell. Jun. 8, 2012;46(5):606-15. doi: 10.1016/j.molcel.2012.03.020. Epub Apr. 19, 2012.
Saudek et al., A preliminary trial of the programmable implantable medication system for insulin delivery. N Engl J Med. Aug. 31, 1989;321(9):574-9.
Schriefer et al., Low pressure DNA shearing: a method for random DNA sequence analysis. Nucleic Acids Res. Dec. 25, 1990;18(24):7455-6.
Schwank et al., Functional repair of CFTR by CRISPR/Cas9 in intestinal stem cell organoids of cystic fibrosis patients. Cell Stem Cell. Dec. 5, 2013;13(6):653-8. doi:10.1016/j.stem.2013.11.002.
Schwartz et al., Post-translational enzyme activation in an animal via optimized conditional protein splicing. Nat Chem Biol. Jan. 2007;3(1):50-4. Epub Nov. 26, 2006.
Schwarze et al., In vivo protein transduction: delivery of a biologically active protein into the mouse. Science. Sep. 3, 1999;285(5433):1569-72.
Sclimenti et al., Directed evolution of a recombinase for improved genomic integration at a native human sequence. Nucleic Acids Res. Dec. 15, 2001;29(24):5044-51.
Sefton et al., Implantable pumps. Crit Rev Biomed Eng. 1987;14(3):201-40.
Segal et al., Toward controlling gene expression at will: selection and design of zinc finger domains recognizing each of the 5′-GNN-3′ DNA target sequences. Proc Natl Acad Sci U S A. Mar. 16, 1999;96(6):2758-63.
Sells et al., Delivery of protein into cells using polycationic liposomes. Biotechniques. Jul. 1995;19(1):72-6, 78.
Semenova et al., Interference by clustered regularly interspaced short palindromic repeat (CRISPR) RNA is governed by a seed sequence. Proc Natl Acad Sci U S A. Jun. 21, 2011;108(25):10098-103. doi: 10.1073/pnas.1104144108. Epub Jun. 6, 2011.
Semple et al., Rational design of cationic lipids for siRNA delivery. Nat Biotechnol. Feb. 2010;28(2):172-6. doi: 10.1038/nbt.1602. Epub Jan. 17, 2010.
Seripa et al., The missing ApoE allele. Ann Hum Genet. Jul. 2007;71(Pt 4):496-500. Epub Jan. 22, 2007.
Shah et al., Inteins: nature's gift to protein chemists. Chem Sci. 2014;5(1):446-461.
Shah et al., Kinetic control of one-pot trans-splicing reactions by using a wild-type and designed split intein. Angew Chem Int Ed Engl. Jul. 11, 2011;50(29):6511-5. doi: 10.1002/anie.201102909. Epub Jun. 8, 2011.
Shah et al., Target-specific variants of Flp recombinase mediate genome engineering reactions in mammalian cells. FEBS J. Sep. 2015;282(17):3323-33. doi: 10.1111/febs.13345. Epub Jul. 1, 2015.
Shalem et al., Genome-scale CRISPR-Cas9 knockout screening in human cells. Science. Jan. 3, 2014;343(6166):84-7. doi: 10.1126/science.1247005. Epub Dec. 12, 2013.
Sharbeen et al., Ectopic restriction of DNA repair reveals that UNG2 excises AID-induced uracils predominantly or exclusively during G1 phase. J Exp Med. May 7, 2012;209(5):965-74. doi: 10.1084/jem.20112379. Epub Apr. 23, 2012.
Shcherbakova et al., Near-infrared fluorescent proteins for multicolor in vivo imaging. Nat Methods. Aug. 2013;10(8):751-4. doi: 10.1038/nmeth.2521. Epub Jun. 16, 2013.
Shee et al., Engineered proteins detect spontaneous DNA breakage in human and bacterial cells. Elife. Oct. 29, 2013;2:e01222. doi: 10.7554/eLife.01222.
Sheridan, First CRISPR-Cas patent opens race to stake out intellectual property. Nat Biotechnol. 2014;32(7):599-601.
Sheridan, Gene therapy finds its niche. Nat Biotechnol. Feb. 2011;29(2):121-8. doi: 10.1038/nbt.1769.
Shimantani et al., Targeted base editing in rice and tomato using a CRISPR-Cas9 cytidine deaminase fusion. Nat Biotechnol. May 2017;35(5):441-443. doi: 10.1038/nbt.3833. Epub Mar. 27, 2017.
Shimojima et al., Spinocerebellar ataxias type 27 derived from a disruption of the fibroblast growth factor 14 gene with mimicking phenotype of paroxysmal non-kinesigenic dyskinesia. Brain Dev. Mar. 2012;34(3):230-3. doi: 10.1016/j.braindev.2011.04.014. Epub May 19, 2011.
Shmakov et al., Discovery and Functional Characterization of Diverse Class 2 CRISPR Cas Systems. Molecular Cell Nov. 2015;60(3):385-97.
Siebert et al., An improved PCR method for walking in uncloned genomic DNA. Nucleic Acids Res. Mar. 25, 1995;23(6):1087-8.
Simonelli et al., Base excision repair intermediates are mutagenic in mammalian cells. Nucleic Acids Res. Aug. 2, 2005;33(14):4404-11. Print 2005.
Sirk et al., Expanding the zinc-finger recombinase repertoire: directed evolution and mutational analysis of serine recombinase specificity determinants. Nucleic Acids Res. Apr. 2014;42(7):4755-66. doi: 10.1093/nar/gkt1389. Epub Jan. 21, 2014.
Sjoblom et al., The consensus coding sequences of human breast and colorectal cancers. Science. Oct. 13, 2006;314(5797):268-74. Epub Sep. 7, 2006.
Slaymaker et al., Rationally engineered Cas9 nucleases with improved specificity. Science. Jan. 1, 2016;351(6268):84-8. doi: 10.1126/science.aad5227. Epub Dec. 1, 2015.
Smith et al., Expression of a dominant negative retinoic acid receptor γ in Xenopus embryos leads to partial resistance to retinoic acid. Roux Arch Dev Biol. Mar. 1994;203(5):254-265. doi: 10.1007/BF00360521.
Stenglein et al., APOBEC3 proteins mediate the clearance of foreign DNA from human cells. Nat Struct Mol Biol. Feb. 2010;17(2):222-9. doi: 10.1038/nsmb.1744. Epub Jan. 10, 2010.
Stephens et al., The landscape of cancer genes and mutational processes in breast cancer. Nature Jun. 2012;486:400-404. doi:10.1038/nature11017.
Sternberg et al., DNA interrogation by the CRISPR RNA-guided endonuclease Cas9. Nature.Mar. 6, 2014;507(7490):62-7. doi: 10.1038/nature13011. Epub Jan. 29, 2014.
Stevens et al., Design of a Split Intein with Exceptional Protein-Splicing Activity. J Am Chem Soc. Feb. 24, 2016;138(7):2162-5. doi: 10.1021/jacs.5b13528. Epub Feb. 8, 2016.
Sun et al., Optimized TAL effector nucleases (TALENs) for use in treatment of sickle cell disease. Mol Biosyst. Apr. 2012;8(4):1255-63. doi: 10.1039/c2mb05461b. Epub Feb. 3, 2012.
Supplementary European Search Report for Application No. EP 12845790.0, mailed Oct. 12, 2015.
Swarts et al., Argonaute of the archaeon Pyrococcus furiosus is a DNA-guided nuclease that targets cognate DNA. Nucleic Acids Res. May 26, 2015;43(10):5120-9. doi: 10.1093/nar/gkv415. Epub Apr. 29, 2015.
Swarts et al., DNA-guided DNA interference by a prokaryotic Argonaute. Nature. Mar. 13, 2014;507(7491):258-61. doi: 10.1038/nature12971. Epub Feb. 16, 2014.
Swarts et al., The evolutionary journey of Argonaute proteins. Nat Struct Mol Biol. Sep. 2014;21(9):743-53. doi: 10.1038/nsmb.2879.
Szczepek et al., Structure-based redesign of the dimerization interface reduces the toxicity of zinc-finger nucleases. Nat Biotechnol. Jul. 2007;25(7):786-93. Epub Jul. 1, 2007.
Tagalakis et al., Lack of RNA-DNA oligonucleotide (chimeraplast) mutagenic activity in mouse embryos. Mol Reprod Dev. Jun. 2005;71(2):140-4.
Tang et al., Aptazyme-embedded guide RNAs enable ligand-responsive genome editing and transcriptional activation. Nat Commun. Jun. 28, 2017;8:15939. doi: 10.1038/ncomms15939.
Tebas et al., Gene editing of CCR5 in autologous CD4 T cells of persons infected with HIV. N Engl J Med. Mar. 6, 2014;370(10):901-10. doi: 10.1056/NEJMoa1300662.
Tessarollo et al., Targeted mutation in the neurotrophin-3 gene results in loss of muscle sensory neurons. Proc Natl Acad Sci U S A. Dec. 6, 1994;91(25):11844-8.
Tesson et al., Knockout rats generated by embryo microinjection of TALENs. Nat Biotechnol. Aug. 5, 2011;29(8):695-6. doi: 10.1038/nbt.1940.
Thompson et al., Cellular uptake mechanisms and endosomal trafficking of supercharged proteins. Chem Biol. Jul. 27, 2012;19(7):831-43. doi: 10.1016/j.chembiol.2012.06.014.
Thompson et al., Engineering and identifying supercharged proteins for macromolecule delivery into mammalian cells. Methods Enzymol. 2012;503:293-319. doi: 10.1016/B978-0-12-396962-0.00012-4.
Thorpe et al., Functional correction of episomal mutations with short DNA fragments and RNA-DNA oligonucleotides. J Gene Med. Mar.-Apr. 2002;4(2):195-204.
Thyagarajan et al., Mammalian genomes contain active recombinase recognition sites. Gene. Feb. 22, 2000;244(1-2):47-54.
Thyagarajan et al., Site-specific genomic integration in mammalian cells mediated by phage phiC31 integrase. Mol Cell Biol. Jun. 2001;21(12):3926-34.
Tirumalai et al., Recognition of core-type DNA sites by lambda integrase. J Mol Biol. Jun. 12, 1998;279(3):513-27.
Truong et al., Development of an intein-mediated split-Cas9 system for gene therapy. Nucleic Acids Res. Jul. 27, 2015;43(13):6450-8. doi: 10.1093/nar/gkv601. Epub Jun. 16, 2015. With Supplementary Data.
Tsai et al., Dimeric CRISPR RNA-guided FokI nucleases for highly specific genome editing. Nat Biotechnol. Jun. 2014;32(6):569-76. doi: 10.1038/nbt.2908. Epub Apr. 25, 2014.
Tsai et al., GUIDE-seq enables genome-wide profiling of off-target cleavage by CRISPR-Cas nucleases. Nat Biotechnol. Feb. 2015;33(2):187-97. doi: 10.1038/nbt.3117. Epub Dec. 16, 2014.
Turan et al., Recombinase-mediated cassette exchange (RMCE)—a rapidly-expanding toolbox for targeted genomic modifications. Gene. Feb. 15, 2013;515(1):1-27. doi: 10.1016/j.gene.2012.11.016. Epub Nov. 29, 2012.
Turan et al., Recombinase-mediated cassette exchange (RMCE): traditional concepts and current challenges. J Mol Biol. Mar. 25, 2011;407(2):193-221. doi: 10.1016/j.jmb.2011.01.004. Epub Jan. 15, 2011.
Turan et al., Site-specific recombinases: from tag-and-target-to tag-and-exchange-based genomic modifications. FASEB J. Dec. 2011;25(12):4088-107. doi: 10.1096/fj.11-186940. Epub Sep. 2, 2011. Review.
UniProt Submission; UniProt, Accession No. P01011. Last modified Jun. 11, 2014, version 2. 15 pages.
UniProt Submission; UniProt, Accession No. P01011. Last modified Sep. 18, 2013, version 2. 15 pages.
UniProt Submission; UniProt, Accession No. P04264. Last modified Jun. 11, 2014, version 6. 15 pages.
UniProt Submission; UniProt, Accession No. P04275. Last modified Jul. 9, 2014, version 107. 29 pages.
Urnov et al., Genome editing with engineered zinc finger nucleases. Nat Rev Genet. Sep. 2010;11(9):636-46. doi: 10.1038/nrg2842.
Urnov et al., Highly efficient endogenous human gene correction using designed zinc-finger nucleases. Nature. Jun. 2, 2005;435(7042):646-51. Epub Apr. 3, 2005.
Vagner et al., Efficiency of homologous DNA recombination varies along the Bacillus subtilis chromosome. J Bacteriol. Sep. 1988;170(9):3978-82.
Van Duyne et al., Teaching Cre to follow directions. Proc Natl Acad Sci U S A. Jan. 6, 2009;106(1):4-5. doi: 10.1073/pnas.0811624106. Epub Dec. 31, 2008.
Van Swieten et al., A mutation in the fibroblast growth factor 14 gene is associated with autosomal dominant cerebellar ataxia [corrected]. Am J Hum Genet. Jan. 2003;72(1):191-9. Epub Dec. 13, 2002.
Vanamee et al., FokI requires two specific DNA sites for cleavage. J Mol Biol. May 25, 2001;309(1):69-78.
Vitreschak et al., Regulation of the vitamin B12 metabolism and transport in bacteria by a conserved RNA structural element. RNA. Sep. 2003;9(9):1084-97.
Wacey et al., Disentangling the perturbational effects of amino acid substitutions in the DNA-binding domain of p53. Hum Genet. Jan. 1999;104(1):15-22.
Wadia et al., Modulation of cellular function by TAT mediated transduction of full length proteins. Curr Protein Pept Sci. Apr. 2003;4(2):97-104.
Wadia et al., Transducible TAT-HA fusogenic peptide enhances escape of TAT-fusion proteins after lipid raft macropinocytosis. Nat Med. Mar. 2004;10(3):310-5. Epub Feb. 8, 2004.
Wah et al., Structure of FokI has implications for DNA cleavage. Proc Natl Acad Sci U S A. Sep. 1, 1998;95(18):10564-9.
Wang et al., CRISPR-Cas9 Targeting of PCSK9 in Human Hepatocytes In Vivo-Brief Report. Arterioscler Thromb Vasc Biol. May 2016;36(5):783-6. doi: 10.1161/ATVBAHA.116.307227. Epub Mar. 3, 2016.
Wang et al., Efficient delivery of genome-editing proteins using bioreducible lipid nanoparticles. Proc Natl Acad Sci U S A. Feb. 29, 2016. pii: 201520244. [Epub ahead of print].
Wang et al., Genetic screens in human cells using the CRISPR-Cas9 system. Science. Jan. 3, 2014;343(6166):80-4. doi: 10.1126/science.1246981. Epub Dec. 12, 2013.
Wang et al., Nucleation, propagation and cleavage of target RNAs in Ago silencing complexes. Nature. Oct. 8, 2009;461(7265):754-61. doi: 10.1038/nature08434.
Wang et al., One-step generation of mice carrying mutations in multiple genes by CRISPR/Cas-mediated genome engineering. Cell. May 9, 2013;153(4):910-8. doi: 10.1016/j.cell.2013.04.025. Epub May 2, 2013.
Wang et al., Recombinase technology: applications and possibilities. Plant Cell Rep. Mar. 2011;30(3):267-85. doi: 10.1007/s00299-010-0938-1. Epub Oct. 24, 2010.
Wang et al., Riboswitches that sense S-adenosylhomocysteine and activate genes involved in coenzyme recycling. Mol Cell. Mar. 28, 2008;29(6):691-702. doi: 10.1016/j.molcel.2008.01.012.
Wang et al., Targeted gene addition to a predetermined site in the human genome using a ZFN-based nicking enzyme. Genome Res. Jul. 2012;22(7):1316-26. doi: 10.1101/gr.122879.111. Epub Mar. 20, 2012.
Wang et al., Uracil-DNA glycosylase inhibitor gene of bacteriophage PBS2 encodes a binding protein specific for uracil-DNA glycosylase. J Biol Chem. Jan. 15, 1989;264(2):1163-71.
Warren et al., A chimeric Cre recombinase with regulated directionality. Proc Natl Acad Sci USA. Nov. 25, 2008;105(47):18278-83. doi: 10.1073/pnas.0809949105. Epub Nov. 14, 2008.
Warren et al., Mutations in the amino-terminal domain of lambda-integrase have differential effects on integrative and excisive recombination. Mol Microbiol. Feb. 2005;55(4):1104-12.
Weber et al., Assembly of designer TAL effectors by Golden Gate cloning. PLoS One. 2011;6(5):e19722. doi:10.1371/journal.pone.0019722. Epub May 19, 2011.
Weinberger et al., Disease-causing mutations C277R and C277Y modify gating of human CIC-1 chloride channels in myotonia congenita. J Physiol. Aug. 1, 2012;590(Pt 15):3449-64. doi: 0.1113/jphysiol.2012.232785. Epub May 28, 2012.
Wiedenheft et al., RNA-guided genetic silencing systems in bacteria and archaea. Nature. Feb. 15, 2012;482(7385):331-8. doi: 10.1038/nature10886. Review.
Wijnker et al., Managing meiotic recombination in plant breeding. Trends Plant Sci. Dec. 2008;13(12):640-6. doi: 10.1016/j.tplants.2008.09.004. Epub Oct. 22, 2008.
Wolf et al., tadA, an essential tRNA-specific adenosine deaminase from Escherichia coli. J. Jul. 15, 2002;21(14):3841-51.
Wolfe et al., Analysis of zinc fingers optimized via phage display: evaluating the utility of a recognition code. J Mol Biol. Feb. 5, 1999;285(5):1917-34.
Wood et al., Targeted genome editing across species using ZFNs and TALENs. Science. Jul. 15, 2011;333(6040):307. doi: 10.1126/science.1207773. Epub Jun. 23, 2011.
Wu et al., Correction of a genetic disease in mouse via use of CRISPR-Cas9. Cell Stem Cell. Dec. 5, 2013;13(6):659-62. doi: 10.1016/j.stem.2013.10.016.
Wu et al., Genome-wide binding of the CRISPR endonuclease Cas9 in mammalian cells. Nat Biotechnol. Jul. 2014;32(7):670-6. doi: 10.1038/nbt.2889. Epub Apr. 20, 2014.
Xu et al., Sequence determinants of improved CRISPR sgRNA design. Genome Res. Aug. 2015;25(8):1147-57. doi: 10.1101/gr.191452.115. Epub Jun. 10, 2015.
Yamano et al., Crystal Structure of Cpf1 in Complex with Guide RNA and Target DNA. Cell May 2016;165(4)949-62.
Yang et al., Engineering and optimising deaminase fusions for genome editing. Nat Commun. Nov. 2, 2016;7:13330. doi: 10.1038/ncomms13330.
Yang et al., Genome editing with targeted deaminases. BioRxiv. Preprint. First posted online Jul. 28, 2016.
Yang et al., PAM-dependent Target DNA Recognition and Cleavage by C2C1 CRISPR-Cas endonuclease. Cell Dec. 2016;167(7):1814-28.
Yanover et al., Extensive protein and DNA backbone sampling improves structure-based specificity prediction for C2H2 zinc fingers. Nucleic Acids Res. Jun. 2011;39(11):4564-76. doi: 10.1093/nar/gkr048. Epub Feb. 22, 2011.
Yazaki et al., Hereditary systemic amyloidosis associated with a new apolipoprotein AII stop codon mutation Stop78Arg. Kidney Int. Jul. 2003;64(1):11-6.
Yin et al., Genome editing with Cas9 in adult mice corrects a disease mutation and phenotype. Nat Biotechnol. Jun. 2014;32(6):551-3. doi: 10.1038/nbt.2884. Epub Mar. 30, 2014.
Yuan et al., Tetrameric structure of a serine integrase catalytic domain. Structure. Aug. 6, 2008;16(8):1275-86. doi: 10.1016/j.str.2008.04.018.
Yuen et al., Control of transcription factor activity and osteoblast differentiation in mammalian cells using an evolved small-molecule-dependent intein. J Am Chem Soc. Jul. 12, 2006;128(27):8939-46.
Zelphati et al., Intracellular delivery of proteins with a new lipid-mediated delivery system. J Biol Chem. Sep. 14, 2001;276(37):35103-10. Epub Jul. 10, 2001.
Zetsche et al., A split-Cas9 architecture for inducible genome editing and transcription modulation. Nat Biotechnol. Feb. 2015;33(2):139-42. doi: 10.1038/nbt.3149.
Zetsche et al., Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR-Cas system. Cell. Oct. 22, 2015;163(3):759-71. doi: 10.1016/j.cell.2015.09.038. Epub Sep. 25, 2015.
Zhang et al., Comparison of non-canonical PAMs for CRISPR/Cas9-mediated DNA cleavage in human cells. Sci Rep. Jun. 2014;4:5405.
Zhang et al., Conditional gene manipulation: Cre-ating a new biological era. J Zhejiang Univ Sci B. Jul. 2012;13(7):511-24. doi: 10.1631/jzus.B1200042. Review.
Zhang et al., CRISPR/Cas9 for genome editing: progress, implications and challenges. Hum Mol Genet. Sep. 15, 2014;23(R1):R40-6. doi: 10.1093/hmg/ddu125. Epub Mar. 20, 2014.
Zhang et al., Efficient construction of sequence-specific TAL effectors for modulating mammalian transcription. Nat Biotechnol. Feb. 2011;29(2):149-53. doi: 10.1038/nbt. 1775. Epub Jan. 19, 2011.
Zhang et al., Programmable base editing of zebrafish genome using a modified CRISPR-Cas9 system. Nat Commun. Jul. 25, 2017;8(1):118. doi: 10.1038/s41467-017-00175-6.
Zhang et al., Stabilized plasmid-lipid particles for regional gene therapy: formulation and transfection properties. Gene Ther. Aug. 1999;6(8):1438-47.
Zheng et al., DNA editing in DNA/RNA hybrids by adenosine deaminases that act on RNA. Nucleic Acids Res. Apr. 7, 2017;45(6):3369-3377. doi: 10.1093/nar/gkx050.
Zong et al., Precise base editing in rice, wheat and maize with a Cas9-cytidine deaminase fusion. Nat Biotechnol. May 2017;35(5):438-440. doi: 10.1038/nbt.3811. Epub Feb. 27, 2017.
Zorko et al., Cell-penetrating peptides: mechanism and kinetics of cargo delivery. Adv Drug Deliv Rev. Feb. 28, 2005;57(4):529-45. Epub Jan. 22, 2005.
Zou et al., Gene targeting of a disease-related gene in human induced pluripotent stem and embryonic stem cells. Cell Stem Cell. Jul. 2, 2009;5(1):97-110. doi: 10.1016/j.stem.2009.05.023. Epub Jun. 18, 2009.
Zuris et al., Cationic lipid-mediated delivery of proteins enables efficient protein-based genome editing in vitro and in vivo. Nat Biotechnol. 2015;33:73-80.
U.S. Appl. No. 61/838,178, filed Jun. 21, 2013, Joung et al.
U.S. Appl. No. 62/357,332, filed Jun. 30, 2016, Liu et al.
U.S. Appl. No. 62/288,661, filed Jan. 29, 2016, Muir et al.
[No Author Listed] Score result for SEQ 355 to W02017032580. Muir et al. 2016.
Aihara et al., A conformational switch controls the DNA cleavage activity of lambda integrase. Mol Cell. Jul. 2003;12(1):187-98.
Ames et al., A eubacterial riboswitch class that senses the coenzyme tetrahydrofolate. Chem Biol. Jul. 30, 2010;17(7):681-5. doi: 10.1016/j.chembiol.2010.05.020.
Batey et al., Structure of a natural guanine-responsive riboswitch complexed with the metabolite hypoxanthine. Nature. Nov. 18, 2004;432(7015):411-5.
Bershtein et al., Advances in laboratory evolution of enzymes. Curr Opin; Chem Biol. Apr. 2008;12(2):151-8. doi: 10.1016/j.cbpa.2008.01.027. Epub Mar. 7, 2008. Review.
Bogdanove et al., TAL effectors: customizable proteins for DNA targeting. Science. Sep. 30, 2011;333(6051):1843-6. doi: 10.1126/science.1204094.
Bohlke et al., Sense codon emancipation for proteome-wide incorporation of noncanonical amino acids: rare isoleucine codon AUA as a target for genetic code expansion. FEMS Microbiol Lett. Feb. 2014;351(2):133-44. doi: 10.1111/1574-6968.12371. Epub Jan. 27, 2014.
Budisa et al., Residue-specific bioincorporation of non-natural, biologically active amino acids into proteins as possible drug carriers: structure and stability of the per-thiaproline mutant of annexin V. Proc Natl Acad Sci U S A. Jan. 20, 1998;95(2):455-9.
Buskirk et al., Directed evolution of ligand dependence: small-molecule-activated protein splicing. Proc Natl Acad Sci U S A. Jul. 20, 2004;101(29):10505-10. Epub Jul. 9, 2004.
Böck et al., Selenocysteine: the 21st amino acid. Mol Microbiol. Mar. 1991;5(3):515-20.
Carroll, Genome engineering with zinc-finger nucleases. Genetics. Aug. 2011;188(4):773-82. doi: 10.1534/genetics.111.131433. Review.
Chavez et al., Precise Cas9 targeting enables genomic mutation prevention. . bioRxiv. Jun. 14, 2016. doi:https://doi.org/10.1101/058974. [Preprint].
Chen et al., Fusion protein linkers: property, design and functionality. Adv Drug Deliv Rev. Oct. 2013;65(10):1357-69. doi:10.1016/j.addr.2012.09.039. Epub Sep. 29, 2012.
Cobb et al., Directed evolution as a powerful synthetic biology tool. Methods. Mar. 15, 2013;60(1):81-90. doi: 10.1016/j.ymeth.2012.03.009. Epub Mar. 23, 2012.
D'Adda di Fagagna et al., The Gam protein of bacteriophage Mu is an orthologue of eukaryotic Ku. EMBO Rep. Jan. 2003;4(1):47-52.
Dixon et al., Reengineering orthogonally selective riboswitches. Proc Natl Acad Sci U S A. Feb. 16, 2010;107(7):2830-5. doi: 10.1073/pnas.0911209107. Epub Jan. 26, 2010.
Dumas et al., Designing logical codon reassignment - Expanding the chemistry in biology. Chem Sci. Jan. 1, 2015;6(1):50-69. doi: 10.1039/c4sc01534g. Epub Jul. 14, 2014. Review.
Edwards et al., An Escherichia coli tyrosine transfer RNA is a leucine-specific transfer RNA in the yeast Saccharomyces cerevisiae. Proc Natl Acad Sci U S A. Feb. 15, 1991;88(4):1153-6.
Edwards et al., Crystal structures of the thi-box riboswitch bound to thiamine pyrophosphate analogs reveal adaptive RNA-small molecule recognition. Structure. Sep. 2006;14(9):1459-68.
Endo et al., Toward establishing an efficient and versatile gene targeting system in higher plants. Biocatalysis and Agricultural Biotechnology 2014;3,(1):2-6.
Esvelt et al., A system for the continuous directed evolution of biomolecules. Nature. Apr. 28, 2011;472(7344):499-503. doi: 10.1038/nature09929. Epub Apr. 10, 2011.
Fagerlund et al., The Cpf1 CRISPR-Cas protein expands genome-editing tools. Genome Biology Nov. 17, 2015;16:251. https://doi.org/10.1186/s13059-015-0824-9.
Fang et al., Synthetic Studies Towards Halichondrins: Synthesis of the Left Halves of Norhalichondrins and Homohalichondrins. Tetrahedron Letters 1992;33(12):1557-1560.
Farhood et al., Codelivery to mammalian cells of a transcriptional factor with cis-acting element using cationic liposomes. Anal Biochem. Feb. 10, 1995;225(1):89-93.
Ferry et al., Rational design of inducible CRISPR guide RNAs for de novo assembly of transcriptional programs. Nat Commun. Mar. 3, 2017;8:14633. doi: 10.1038/ncomms14633.
Fischer et al., Cryptic epitopes induce high-titer humoral immune response in patients with cancer. J Immunol. Sep. 1, 2010;185(5):3095-102. doi: 10.4049/jimmunol.0902166. Epub Jul. 26, 2010.
Hamano-Takaku et al., A mutant Escherichia coli tyrosyl-tRNA synthetase utilizes the unnatural amino acid azatyrosine more efficiently than tyrosine. J Biol Chem. Dec. 22, 2000;275(51):40324-8.
Hayes et al., Stop codons preceded by rare arginine codons are efficient determinants of SsrA tagging in Escherichia coli. Proc Natl Acad Sci U S A. Mar. 19, 2002;99(6):3440-5. Epub Mar. 12, 2002.
Hickford et al., Antitumour polyether macrolides: four new halichondrins from the New Zealand deep-water marine sponge Lissodendoryx sp. Bioorg Med Chem. Mar. 15, 2009;17(6):2199-203. doi: 10.1016/j.bmc.2008.10.093. Epub Nov. 19, 2008.
Hida et al., Directed evolution for drug and nucleic acid; delivery. Adv Drug Deliv Rev. Dec. 22, 2007;59(15):1562-78. Epub Aug. 28, 2007.; Review.
Hirano et al., Structural Basis for the Altered PAM Specificities of Engineered CRISPR-Cas9. Mol Cell. Mar. 17, 2016;61(6):886-94. doi: 10.1016/j.molcel.2016.02.018.
Husimi, Selection and evolution of bacteriophages in cellstat. Adv Biophys. ; 1989;25:1-43. Review.
Kakiyama et al., A peptide release system using a photo-cleavable linker in a cell array format for cell-toxicity analysis. Polymer J. Feb. 27, 2013;45:535-9.
Kang et al., Structural Insights into riboswitch control of the biosynthesis of queuosine, a modified nucleotide found in the anticodon of tRNA. Mol Cell. Mar. 27, 2009;33(6):784-90. doi: 10.1016/j.molcel.2009.02.019. Epub Mar. 12, 2009.
Kiga et al., An engineered Escherichia coli tyrosyl-tRNA synthetase for site-specific incorporation of an unnatural amino acid into proteins in eukaryotic translation and its application in a wheat germ cell-free system. Proc Natl Acad Sci U S A. Jul. 23, 2002;99(15):9715-20. Epub Jul. 3, 2002.
Klein et al., Cocrystal structure of a class I preQ1 riboswitch reveals a pseudoknot recognizing an essential hypermodified nucleobase. Nat Struct Mol Biol. Mar. 2009;16(3):343-4. doi: 10.1038/nsmb.1563.Epub Feb. 22, 2009.
Kowal et al., Exploiting unassigned codons in Micrococcus luteus for tRNA-based amino acid mutagenesis. Nucleic Acids Res. Nov. 15, 1997;25(22):4685-9.
Kury et al., De Novo Disruption of the Proteasome Regulatory Subunit PSMD12 Causes a Syndromic Neurodevelopmental Disorder. Am J Hum Genet. Feb. 2, 2017;100(2):352-363. doi: 10.1016/j.ajhg.2017.01.003. Epub Jan. 26, 2017.
Kwon et al., Chemical basis of glycine riboswitch cooperativity. RNA. Jan. 2008;14(1):25-34. Epub Nov. 27, 2007.
Köhrer et al., A possible approach to site-specific insertion of two different unnatural amino acids into proteins in mammalian cells via nonsense suppression. Chem Biol. Nov. 2003;10(11):1095-102.
Köhrer et al., Complete set of orthogonal 21st aminoacyl-tRNA synthetase-amber, ochre and opal suppressor tRNA pairs: concomitant suppression of three different termination codons in an mRNA in mammalian cells. Nucleic Acids Res. Dec. 1, 2004;32(21):6200-11. Print 2004.
Lee et al., An allosteric self-splicing ribozyme triggered by a bacterial second messenger. Science. Aug. 13, 2010;329(5993):845-8. doi: 10.1126/science.1190713.
Lee et al., Ribozyme Mediated gRNA Generation for In Vitro and In Vivo CRISPR/Cas9 Mutagenesis. PLoS One. Nov. 10, 2016;11(11):e0166020. doi: 10.1371/journal.pone.0166020. eCollection 2016.
Lewis et al., Building the Class 2 CRISPR-Cas Arsenal. Mol Cell 2017;65(3);377-379.
Link et al., Engineering ligand-responsive gene-control elements: lessons learned from natural riboswitches. Gene Ther. Oct. 2009;16(10):1189-201. doi: 10.1038/gt.2009.81. Epub Jul. 9, 2009. Review.
Liu et al., Engineering a tRNA and aminoacyl-tRNA synthetase for the site-specific incorporation of unnatural amino acids into proteins in vivo. Proc Natl Acad Sci U S A. Sep. 16, 1997;94(19):10092-7.
Liu et al., Fast Colorimetric Sensing of Adenosine and Cocaine Based on a General Sensor Design Involving Aptamers and Nanoparticles. Angew Chem. Dec. 16, 2006;45(1):90-4. DOI: 10.1002/anie.200502589.
Meyer et al., Confirmation of a second natural preQ1 aptamer class in Streptococcaceae bacteria. RNA. Apr. 2008;14(4):685-95. doi: 10.1261/rna.937308. Epub Feb. 27, 2008.
Monahan et al., Site-specific incorporation of unnatural amino acids into receptors expressed in Mammalian cells. Chem Biol. Jun. 2003;10(6):573-80.
Montange et al., Structure of the S-adenosylmethionine riboswitch regulatory mRNA element. Nature. Jun. 29, 2006;441(7097):1172-5.
Mootz et al., Conditional protein splicing: a new tool to control protein structure and function in vitro and in vivo. J Am Chem Soc. Sep. 3, 2003;125(35):10561-9.
Mootz et al., Protein splicing triggered by a small molecule. J Am Chem Soc. Aug. 7, 2002;124(31):9044-5.
Neel et al., Riboswitches: Classification, function and in silico approach, International Journal of Pharma Sciences and Research. 2010;1(9):409-420.
Nelson et al., Filamentous phage DNA cloning vectors: a noninfective mutant with a nonpolar deletion in gene III. Virology. 1981; 108(2): 338-50.
Ni et al., Nucleic acid aptamers: clinical applications and promising new horizons. Curr Med Chem. 2011;18(27):4206-14. Review.
Oakes et al., Protein engineering of Cas9 for enhanced function. Methods Enzymol. 2014;546:491-511.
Peck et al., Directed evolution of a small-molecule-triggered intein with improved splicing properties in mammalian cells. Chem Biol. May 27, 2011;18(5):619-30. doi: 10.1016/j.chembiol.2011.02.014.
Pelletier, CRISPR-Cas systems for the study of the immune function. Nov. 15, 2016. https://doi.org/10.1002/9780470015902.a0026896.
Plosky et al., CRISPR-Mediated Base Editing without DNA Double-Strand Breaks. Mol Cell. May 19, 2016;62(4):477-8. doi: 10.1016/j.molcel.2016.05.006.
Rakonjac et al., Roles of PIII in filamentous phage assembly. J Mol Biol. 1998; 282(1)25-41.
Riechmann et al.,. The C-terminal domain of TolA is the coreceptor for filamentous phage infection of E. coli. Cell. 1997; 90(2):351-60. PMID:9244308.
Rudolph et al., Synthetic riboswitches for the conditional control of gene expression in Streptomyces coelicolor. Microbiology. Jul. 2013;159(Pt 7):1416-22. doi: 10.1099/mic.0.067322-0. Epub May 15, 2013.
Saleh-Gohari et al., Conservative homologous recombination preferentially repairs DNA double-strand breaks in the S phase of the cell cycle in human cells. Nucleic Acids Res. Jul. 13, 2004;32(12):3683-8. Print 2004.
Serganov et al., Coenzyme recognition and gene regulation by a flavin mononucleotide riboswitch. Nature. Mar. 12, 2009;458(7235):233-7. doi: 10.1038/nature07642. Epub Jan. 25, 2009.
Serganov et al., Structural basis for discriminative regulation of gene expression by adenine- and guanine-sensing mRNAs. Chem Biol. Dec. 2004;11(12):1729-41.
Serganov et al., Structural basis for gene regulation by a thiamine pyrophosphate-sensing riboswitch. Nature. Jun. 29, 2006;441(7097): 1167-71. Epub May 21, 2006.
Sharma et al., Efficient introduction of aryl bromide functionality into proteins in vivo. FEBS Lett. Feb. 4, 2000;467(1):37-40.
Skretas et al., Regulation of protein activity with small-molecule-controlled inteins. Protein Sci. Feb. 2005;14(2):523-32. Epub Jan. 4, 2005.
Smith, Filamentous fusion phage: novel expression vectors that display cloned antigens on the virion surface. Science. Jun. 14, 1985;228(4705): 1315-7.
Sudarsan et al., An mRNA structure in bacteria that controls gene expression by binding lysine. Genes Dev. Nov. 1, 2003;17(21):2688-97.
Suess et al., A theophylline responsive riboswitch based on helix slipping controls gene expression in vivo. Nucleic Acids Res. Mar. 5, 2004;32(4):1610-4.
Tourdot et al., A general strategy to enhance immunogenicity of low-affinity HLA-A2. 1-associated peptides: implication in the identification of cryptic tumor epitopes. Eur J Immunol. Dec. 2000;30(12):3411-21.
Trausch et al., The structure of a tetrahydrofolate-sensing riboswitch reveals two ligand binding sites in a single aptamer. Structure. Oct. 12, 2011;19(10):1413-23. doi: 10.1016/j.str.2011.06.019. Epub Sep. 8, 2011.
Wals et al., Unnatural amino acid incorporation in E. coli: current and future applications in the design of therapeutic proteins. Front Chem. Apr. 1, 2014;2:15. doi: 10.3389/fchem.2014.00015. eCollection 2014.
Weinberg et al., The aptamer core of SAM-IV riboswitches mimics the ligand-binding site of SAM-I riboswitches. RNA. May 2008;14(5):822-8. doi: 10.1261/rna.988608. Epub Mar. 27, 2008.
Winkler et al., An mRNA structure that controls gene expression by binding FMN. Proc Natl Acad Sci U S A. Dec. 10, 2002;99(25):15908-13. Epub Nov. 27, 2002.
Winkler et al., Control of gene expression by a natural metabolite-responsive ribozyme. Nature. Mar. 18, 2004;428(6980):281-6.
Winkler et al., Thiamine derivatives bind messenger RNAs directly to regulate bacterial gene expression. Nature. Oct. 31, 2002;419(6910):952-6. Epub Oct. 16, 2002.
Yahata et al., Unified, Efficient, and Scalable Synthesis of Halichondrins: Zirconium/Nickel-Mediated One-Pot Ketone Synthesis as the Final Coupling Reaction. Angew Chem Int Ed Engl. Aug. 28, 2017;56(36):10796-10800. doi: 10.1002/anie.201705523. Epub Jul. 28, 2017.
Yamamoto et al., Virological and immunological bases for HIV-1 vaccine design. Uirusu 2007;57(2):133-139. https://doi.org/10.2222/jsv.57.133.
Yang et al., APOBEC: From mutator to editor. J Genet Genomics. Sep. 20, 2017;44(9):423-437. doi: 10.1016/j.jgg.2017.04.009. Epub Aug. 7, 2017.
Yang et al., New CRISPR-Cas systems discovered. Cell Res. Mar. 2017;27(3):313-314. doi: 10.1038/cr.2017.21. Epub Feb. 21, 2017.
Young et al., Beyond the canonical 20 amino acids: expanding the genetic lexicon. J Biol Chem. Apr. 9, 2010;285(15):11039-44. doi: 10.1074/jbc.R109.091306. Epub Feb. 10, 2010.
Yuan et al., Laboratory-directed protein evolution. Microbiol Mol Biol Rev. 2005; 69(3):373-92. PMID: 16148303.
Zimmermann et al., Molecular interactions and metal binding in the theophylline-binding core of an RNA aptamer. RNA. May 2000;6(5):659-67.
International Preliminary Report on Patentability for PCT/US2018/048969, mailed Mar. 12, 2020.
[No Author Listed], “Lambda DNA” from Catalog & Technical Reference. New England Biolabs Inc. 2002/2003. pp. 133 and 270-273.
Baba et al., Construction of Escherichia coli K-12 in-frame, single-gene knockout mutants: the Keio collection. Mol Syst Biol. 2006;2:2006.0008. doi: 10.1038/msb4100050. Epub Feb. 21, 2006.
Bass, B.L., Rna editing by adenosine deaminases that act on RNA. Annu Rev Biochem. 2002;71:817-46. doi: 10.1146/annurev.biochem.71.110601.135501. Epub Nov. 9, 2001.
Blauw et al., SMN1 gene duplications are associated with sporadic ALS. Neurology. Mar. 13, 2012;78(11):776-80. doi: 10.1212/WNL.0b013e318249f697. Epub Feb. 8, 2012.
Bothmer et al., Characterization of the interplay between DNA repair and CRISPR/Cas9-induced DNA lesions at an endogenous locus. Nat Commun. Jan. 9, 2017;8:13905. doi: 10.1038/ncomms13905.
Brutlag et al., Improved sensitivity of biological sequence database searches. Comput Appl Biosci. Jul. 1990;6(3):237-45. doi: 10.1093/bioinformatics/6.3.237.
Canny et al., Inhibition of 53BP1 Favors Homology-Dependent DNA Repair and Increases CRISPR-Cas9 Genome-Editing Efficiency. Nat Biotechnol. Jan. 2018;36(1):95-102. doi: 10.1038/nbt.4021. Epub Nov. 27, 2017.
Cao et al., Rapamycin reverses cellular phenotypes and enhances mutant protein clearance in Hutchinson-Gilford progeria syndrome cells. Sci Transl Med. Jun. 29, 2011;3(89):89ra58. doi: 10.1126/scitranslmed.3002346.
Cartegni et al., Determinants of exon 7 splicing in the spinal muscular atrophy genes, SMN1 and SMN2. Am J Hum Genet. Jan. 2006;78(1):63-77. doi: 10.1086/498853. Epub Nov. 16, 2005.
Chang et al., Degradation of survival motor neuron (SMN) protein is mediated via the ubiquitin/proteasome pathway. Neurochem Int. Dec. 2004;45(7):1107-12. doi: 10.1016/j.neuint.2004.04.005.
Cho et al., A degron created by SMN2 exon 7 skipping is a principal contributor to spinal muscular atrophy severity. Genes Dev. Mar. 1, 2010;24(5):438-42. doi: 10.1101/gad.1884910.
Corcia et al., The importance of the SMN genes in the genetics of sporadic ALS. Amyotroph Lateral Scler. Oct.-Dec. 2009;10(5-6):436-40. doi: 10.3109/17482960902759162.
Corti et al., Genetic correction of human induced pluripotent stem cells from patients with spinal muscular atrophy. Sci Transl Med. Dec. 19, 2012;4(165): 165ra162. doi: 10.1126/scitranslmed.3004108.
Cucchiarini et al., Enhanced expression of the central survival of motor neuron (SMN) protein during the pathogenesis of osteoarthritis. J Cell Mol Med. Jan. 2014;18(1):115-24. doi: 10.1111/jcmm.12170. Epub Nov. 17, 2013.
D'Ydewalle et al., The Antisense Transcript SMN-AS1 Regulates SMN Expression and Is a Novel Therapeutic Target for Spinal Muscular Atrophy. Neuron. Jan. 4, 2017;93(1):66-79 and Supplemental Information. doi: 10.1016/j.neuron.2016.11.033. Epub Dec. 22, 2016.
Davis et al., Assaying Repair at DNA Nicks. Methods Enzymol. 2018;601:71-89. doi: 10.1016/bs.mie.2017.12.001. Epub Feb. 1, 2018.
Davis et al., Homology-directed repair of DNA nicks via pathways distinct from canonical double-strand break repair. Proc Natl Acad Sci U S A. Mar. 11, 2014;111(10):E924-32. doi: 10.1073/pnas.1400236111. Epub Feb. 20, 2014.
Davis et al., Two Distinct Pathways Support Gene Correction by Single-Stranded Donors at DNA Nicks. Cell Rep. Nov. 8, 2016;17(7):1872-1881. doi: 10.1016/j.celrep.2016.10.049.
De Sandre-Giovannoli et al., Lamin a truncation in Hutchinson-Gilford progeria. Science. Jun. 27, 2003;300(5628):2055. doi: 10.1126/science.1084125. Epub Apr. 17, 2003.
Drenth et al., Mutations in sodium-channel gene SCN9A cause a spectrum of human genetic pain disorders. J Clin Invest. Dec. 2007;117(12):3603-9. doi: 10.1172/JCI33297.
Drost et al., Inactivation of DNA mismatch repair by variants of uncertain significance in the PMS2 gene. Hum Mutat. Nov. 2013;34(11):1477-80. doi: 10.1002/humu.22426. Epub Sep. 11, 2013.
Dugar et al., CRISPR RNA-Dependent Binding and Cleavage of Endogenous RNAs by the Campylobacter jejuni Cas9. Mol Cell. Mar. 1, 2018;69(5):893-905.e7. doi: 10.1016/j.molcel.2018.01.032.
Eisenberg et al., A-to-I RNA editing—immune protector and transcriptome diversifier. Nat Rev Genet. Aug. 2018;19(8):473-490. doi: 10.1038/s41576-018-0006-1.
Ekstrand et al., Frequent alterations of the PI3K/AKT/mTOR pathways in hereditary nonpolyposis colorectal cancer. Fam Cancer. Jun. 2010;9(2):125-9. doi: 10.1007/s10689-009- 9293-1.
Entin-Meer et al., The role of phenylalanine-119 of the reverse transcriptase of mouse mammary tumour virus in DNA synthesis, ribose selection and drug resistance. Biochem J. Oct. 15, 2002;367(Pt 2):381-91. doi: 10.1042/BJ20020712.
Friedman, J. H., Greedy function approximation: A gradient boosting machine. Ann. Statist. Oct. 2001;29(5):1189-232. doi: 10.1214/aos/1013203451.
GenBank Submission; NIH/NCBI, Accession No. NG_008692.2. McClintock et al., Aug. 27, 2018. 33 pages.
GenBank Submission; NIH/NCBI, Accession No. NP_001075493.1. Schiaffella et al., Jun. 24, 2018. 2 pages.
GenBank Submission; NIH/NCBI, Accession No. NP_001157741.1. Zeng et al., Sep. 17, 2018. 3 pages.
GenBank Submission; NIH/NCBI, Accession No. NP_001157742.1. Zeng et al., Oct. 21, 2018. 3 pages.
GenBank Submission; NIH/NCBI, Accession No. NP_033040.2. Liu et al., Jun. 23, 2018. 2 pages.
GenBank Submission; NIH/NCBI, Accession No. XP_003314669.1. No Author Listed, Mar. 20, 2018. 2 pages.
GenBank Submission; NIH/NCBI, Accession No. XP_026671085.1. No Author Listed, Oct. 17, 2018. 1 page.
Gutschner et al., Post-translational Regulation of Cas9 during G1 Enhances Homology-Directed Repair. Cell Rep. Feb. 16, 2016;14(6):1555-1566. doi: 10.1016/j.celrep.2016.01.019. Epub Feb. 4, 2016.
Hart et al., High-Resolution CRISPR Screens Reveal Fitness Genes and Genotype-Specific Cancer Liabilities. Cell. Dec. 3, 2015;163(6):1515-26. doi: 10.1016/j.cell.2015.11.015. Epub Nov. 25, 2015.
Hendel et al., Chemically modified guide RNAs enhance CRISPR-Cas genome editing in human primary cells. Nat Biotechnol. Sep. 2015;33(9):985-989. doi: 10.1038/nbt.3290. Epub Jun. 29, 2015. Author Manuscript. 14 pages.
Huang et al., Gain-of-function mutations in sodium channel Na(v)1.9 in painful neuropathy. Brain. Jun. 2014;137(Pt 6):1627-42. doi: 10.1093/brain/awu079. Epub Apr. 27, 2014.
Iyama et al., DNA repair mechanisms in dividing and non-dividing cells. DNA Repair (Amst). Aug. 2013;12(8):620-36. doi: 10.1016/j.dnarep.2013.04.015. Epub May 16, 2013.
Kan et al., Mechanisms of precise genome editing using oligonucleotide donors. Genome Res. Jul. 2017;27(7):1099-1111. doi: 10.1101/gr.214775.116. Epub Mar. 29, 2017.
Kim et al., RAD51 mutants cause replication defects and chromosomal instability. Mol Cell Biol. Sep. 2012;32(18):3663-80. doi: 10.1128/MCB.00406-12. Epub Jul. 9, 2012.
Knott et al., CRISPR-Cas guides the future of genetic engineering. Science. Aug. 31, 2018;361(6405):866-869. doi: 10.1126/science.aat5011.
Konishi et al., Amino acid substitutions away from the RNase H catalytic site increase the thermal stability of Moloney murine leukemia virus reverse transcriptase through RNase H inactivation. Biochem Biophys Res Commun. Nov. 14, 2014;454(2):269-74. doi: 10.1016/j.bbrc.2014.10.044. Epub Oct. 17, 2014.
Le et al., SMNDelta7, the major product of the centromeric survival motor neuron (SMN2) gene, extends survival in mice with spinal muscular atrophy and associates with full-length SMN. Hum Mol Genet. Mar. 15, 2005;14(6):845-57. doi: 10.1093/hmg/ddi078. Epub Feb. 9, 2005.
Lefebvre et al., Identification and characterization of a spinal muscular atrophy-determining gene. Cell. Jan. 13, 1995;80(1):155-65. doi: 10.1016/0092-8674(95)90460-3.
Lesinski et al., The potential for targeting the STAT3 pathway as a novel therapy for melanoma. Future Oncol. Jul. 2013;9(7):925-7. doi: 10.2217/fon.13.83. Author Manuscript. 4 pages.
Lin et al., [Construction and evaluation of DnaB split intein high expression vector and a six amino acids cyclic peptide library]. Sheng Wu Gong Cheng Xue Bao. Nov. 2008;24(11):1924-30. Chinese.
Lindahl, T., Instability and decay of the primary structure of DNA. Nature. Apr. 22, 1993;362(6422):709-15. doi: 10.1038/362709a0.
Liu et al., Human BRCA2 protein promotes RAD51 filament formation on RPA-covered single-stranded DNA. Nat Struct Mol Biol. Oct. 2010;17(10):1260-2. doi: 10.1038/nsmb.1904. Epub Aug. 22, 2010.
Liu et al., Intrinsic Nucleotide Preference of Diversifying Base Editors Guides Antibody Ex Vivo Affinity Maturation. Cell Rep. Oct. 23, 2018;25(4):884-892.e3. doi: 10.1016/j.celrep.2018.09.090.
Lorson et al., A single nucleotide in the SMN gene regulates splicing and is responsible for spinal muscular atrophy. Proc Natl Acad Sci U S A. May 25, 1999;96(11):6307-11. doi: 10.1073/pnas.96.11.6307.
Lutz et al., Postsymptomatic restoration of SMN rescues the disease phenotype in a mouse model of severe spinal muscular atrophy. J Clin Invest. Aug. 2011;121(8):3029-41. doi: 10.1172/JCI57291. Epub Jul. 25, 2011.
Ma et al., Human RAD52 interactions with replication protein A and the RAD51 presynaptic complex. J Biol Chem. Jul. 14, 2017;292(28):11702-11713. doi: 10.1074/jbc.M117.794545. Epub May 27, 2017.
Marsden et al., The Tumor-Associated Variant RAD51 G151D Induces a Hyper-Recombination Phenotype. PLoS Genet. Aug. 11, 2016;12(8):e1006208. doi: 10.1371/journal.pgen.1006208.
Mendell et al., Single-Dose Gene-Replacement Therapy for Spinal Muscular Atrophy. N Engl J Med. Nov. 2, 2017;377(18): 1713-1722. doi: 10.1056/NEJMoa1706198.
Monani et al., A single nucleotide difference that alters splicing patterns distinguishes the SMA gene SMN1 from the copy gene SMN2. Hum Mol Genet. Jul. 1999;8(7):1177-83. doi: 10.1093/hmg/8.7.1177.
Murray et al., Selective vulnerability of motor neurons and dissociation of pre- and post-synaptic pathology at the neuromuscular junction in mouse models of spinal muscular atrophy. Hum Mol Genet. Apr. 1, 2008;17(7):949-62. doi: 10.1093/hmg/ddm367. Epub Dec. 8, 2007.
Murugan et al., The Revolution Continues: Newly Discovered Systems Expand the CRISPR-Cas Toolkit. Mol Cell. Oct. 5, 2017;68(1):15-25. doi: 10.1016/j.molcel.2017.09.007.
Nelson et al., In vivo genome editing improves muscle function in a mouse model of Duchenne muscular dystrophy. Science. Jan. 22, 2016;351(6271):403-7. doi: 10.1126/science.aad5143. Epub Dec. 31, 2015.
Nelson et al., The unstable repeats—three evolving faces of neurological disease. Neuron. Mar. 6, 2013;77(5):825-43. doi: 10.1016/j.neuron.2013.02.022.
Noack et al., Epitranscriptomics: A New Regulatory Mechanism of Brain Development and Function. Front Neurosci. Feb. 20, 2018;12:85. doi: 10.3389/fnins.2018.00085. 9 pages.
Ottesen, ISS-N1 makes the First FDA-approved Drug for Spinal Muscular Atrophy. Transl Neurosci. Jan. 26, 2017;8:1-6. doi: 10.1515/tnsci-2017-0001.
Parente et al., Advances in spinal muscular atrophy therapeutics. Ther Adv Neurol Disord. Feb. 5, 2018;11:1756285618754501. doi: 10.1177/1756285618754501. 13 pages.
Passini et al., Antisense oligonucleotides delivered to the mouse CNS ameliorate symptoms of severe spinal muscular atrophy. Sci Transl Med. Mar. 2, 2011;3(72):72ra18. doi: 10.1126/scitranslmed.3001777.
Pellegrini et al., Insights into DNA recombination from the structure of a RAD51-BRCA2 complex. Nature. Nov. 21, 2002;420(6913):287-93. doi: 10.1038/nature01230. Epub Nov. 10, 2002.
Porensky et al., A single administration of morpholino antisense oligomer rescues spinal muscular atrophy in mouse. Hum Mol Genet. Apr. 1, 2012;21(7):1625-38. doi: 10.1093/hmg/ddr600. Epub Dec. 20, 2011.
Prasad et al., Visualizing the assembly of human Rad51 filaments on double-stranded DNA. J Mol Biol. Oct. 27, 2006;363(3):713-28. doi: 10.1016/j.jmb.2006.08.046. Epub Aug. 22, 2006.
Rajagopal et al., High-throughput mapping of regulatory DNA. Nat Biotechnol. Feb. 2016;34(2):167-74. doi: 10.1038/nbt.3468. Epub Jan. 25, 2016.
Richardson et al., CRISPR-Cas9 genome editing in human cells occurs via the Fanconi anemia pathway. Nat Genet. Aug. 2018;50(8):1132-1139. doi: 10.1038/s41588-018-0174-0. Epub Jul. 27, 2018.
Richardson et al., Frequent chromosomal translocations induced by DNA double-strand breaks. Nature. Jun. 8, 2000;405(6787):697-700. doi: 10.1038/35015097.
Rodriguez-Muela et al., Single-Cell Analysis of SMN Reveals Its Broader Role in Neuromuscular Disease. Cell Rep. Feb. 7, 2017;18(6):1484-1498 and Supplemental Information. doi: 10.1016/j.celrep.2017.01.035.
San Filippo et al., Mechanism of eukaryotic homologous recombination. Annu Rev Biochem. 2008;77:229-57. doi: 10.1146/annurev.biochem.77.061306.125255.
Schlacher et al., Double-strand break repair-independent role for BRCA2 in blocking stalled replication fork degradation by MRE11. Cell. May 13, 2011;145(4):529-42. doi: 10.1016/j.cell.2011.03.041. Erratum in: Cell. Jun. 10, 2011;145(6):993.
Schrank et al., Inactivation of the survival motor neuron gene, a candidate gene for human spinal muscular atrophy, leads to massive cell death in early mouse embryos. Proc Natl Acad Sci USA. Sep. 2, 1997;94(18):9920-5. doi: 10.1073/pnas.94.18.9920.
Shen et al., Efficient genome modification by CRISPR-Cas9 nickase with minimal off-target effects. Nat Methods. Apr. 2014;11(4):399-402. doi: 10.1038/nmeth.2857. Epub Mar. 2, 2014.
Singh et al., Splicing of a critical exon of human Survival Motor Neuron is regulated by a unique silencer element located in the last intron. Mol Cell Biol. Feb. 2006;26(4):1333-46. doi: 10.1128/MCB.26.4.1333-1346.2006.
Song et al., RS-1 enhances CRISPR/Cas9- and TALEN-mediated knock-in efficiency. Nat Commun. Jan. 28, 2016;7:10548. doi: 10.1038/ncomms10548.
Stark et al., ATP hydrolysis by mammalian RAD51 has a key role during homology-directed DNA repair. J Biol Chem. Jun. 7, 2002;277(23):20185-94. doi: 10.1074/jbc.M112132200. Epub Mar. 28, 2002.
Sumner et al., Two breakthrough gene-targeted treatments for spinal muscular atrophy: challenges remain. J Clin Invest. Aug. 1, 2018;128(8):3219-3227. doi: 10.1172/JCI121658. Epub Jul. 9, 2018.
Talbot et al., Spinal muscular atrophy. Semin Neurol. Jun. 2001;21(2):189-97. doi: 10.1055/s-2001-15264.
Vakulskas et al., A high-fidelity Cas9 mutant delivered as a ribonucleoprotein complex enables efficient gene editing in human hematopoietic stem and progenitor cells. Nat Med. Aug. 2018;24(8):1216-1224. doi: 10.1038/s41591-018-0137-0. Epub Aug. 6, 2018.
Van Den Oord et al., Pixel Recurrent Neural Networks. Proceedings of the 33rd International Conference on Machine Learning. Journal of Machine Learning Research. Aug. 19, 2016. vol. 48. 11 pages.
Wirth et al., Mildly affected patients with spinal muscular atrophy are partially protected by an increased SMN2 copy number. Hum Genet. May 2006;119(4):422-8. doi: 10.1007/s00439-006-0156-7. Epub Mar. 1, 2006.
Woo et al., Gene activation of SMN by selective disruption of IncRNA-mediated recruitment of PRC2 for the treatment of spinal muscular atrophy. Proc Natl Acad Sci U S A. Feb. 21, 2017;114(8):E1509-E1518. doi:10.1073/pnas.1616521114. Epub Feb. 13, 2017.
Wu et al., A novel SCN9A mutation responsible for primary erythromelalgia and is resistant to the treatment of sodium channel blockers. PLoS One. 2013;8(1):e55212. doi: 10.1371/journal.pone.0055212. Epub Jan. 31, 2013. 15 pages.
Yamane et al., Deep-sequencing identification of the genomic targets of the cytidine deaminase AID and its cofactor RPA in B lymphocytes. Nat Immunol. Jan. 2011;12(1):62-9. doi: 10.1038/ni.1964. Epub Nov. 28, 2010.
Yang et al., BRCA2 function in DNA binding and recombination from a BRCA2-DSS1-ssDNA structure. Science. Sep. 13, 2002;297(5588):1837-48. doi: 10.1126/science.297.5588.1837.
Yang et al., The BRCA2 homologue Brh2 nucleates RAD51 filament formation at a dsDNA-ssDNA junction. Nature. Feb. 10, 2005;433(7026):653-7. doi: 10.1038/nature03234.
Yu et al., Dynamic control of Rad51 recombinase by self-association and interaction with BRCA2. Mol Cell. Oct. 2003;12(4):1029-41. doi: 10.1016/s1097-2765(03)00394-0.
Zhang et al., Efficient precise knockin with a double cut HDR donor after CRISPR/Cas9-mediated double-stranded DNA cleavage. Genome Biol. Feb. 20, 2017;18(1):35. doi: 10.1186/s13059-017-1164-8.
Zhang et al., Large genomic fragment deletions and insertions in mouse using CRISPR/Cas9. PLOS One. Mar. 24, 2015;10(3):e0120396. doi: 10.1371/journal.pone.0120396. 14 pages.
U.S. Appl. No. 61/836,080.
U.S. Appl. No. 62/498,686.
[No Author Listed] “FokI” from New England Biolabs Inc. Last accessed online via https://www.neb.com/products/r0109-foki#Product%20Information on Mar. 19, 2021. 1 page.
[No Author Listed] “Nucleic Acids Sizes and Molecular Weights.” Printed Mar. 19, 2021. 2 pages.
[No Author Listed] “Zinc Finger Nuclease” from Wikipedia. Retrieved from https://en.wikipedia.org/w/index.php?title=Zinc_finger_nuclease&oldid=1007053318. Page last edited Feb. 16, 2021. Printed on Mar. 19, 2021.
[No Author Listed] Beast2: Bayesian evolutionary analysis by sampling trees. http://www.beast2.org/ Last accessed Apr. 28, 2021.
[No Author Listed] HyPhy—Hypothesis testing using Phylogenies. Last modified Apr. 21, 2017. Accessed online via http://hyphy.org/w/index.php/Main_Page on Apr. 28, 2021.
[No Author Listed] Ncbi Accession No. XP_015843220.1. C→U editing enzyme APOBEC-1 [Peromyscus maniculatus bairdii], XP002793540. Mar. 21, 2016.
[No Author Listed] Ncbi Accession No. XP_021505673.1. C→U editing enzyme APOBEC-1 [Meriones unguiculatus], XP002793541. Jun. 27, 2017.
[No Author Listed] NCBI Reference Sequence: WP_00087959824.1. Oct. 9, 2019. 2 pages.
[No Author Listed] NCBI Reference Sequence: WP_001516895.1. Mar. 13, 2021. 2 pages.
[No Author Listed] Nucleic Acid Data from New England Biolabs. Printed Sep. 28, 2021. 1 page.
[No Author Listed] Theoretical Biochemistry Group. Institute for Theoretical Chemistry. The ViennaRNA Package. Universitat Wien. https://www.tbi.univie.ac.at/RNA/. Last accessed Apr. 28, 2021.
[No Author Listed] Transcription activator-like effector nuclease. Wikipedia. Last edited Sep. 27, 2021. Accessed via https://en.wikipedia.org/w/index.php?title=Transcription_activator-like_effector_nuclease&oldid=1046813325 on Sep. 28, 2021. 9 pages.
[No Author Listed], “Human genome.” Encyclopedia Britannica. Encyclopedia Brittanica, Inc. Published Feb. 15, 2019. Last accessed online via https://www.britannica.com/science/human-genome on Mar. 19, 2021. 2 pages.
[No Author Listed], Mus musculus (Mouse). UniProtKB Accession No. P51908 (ABEC1_MOUSE). Oct. 1, 1996. 10 pages.
Abremski et al., Bacteriophage P1 site-specific recombination. Purification and properties of the Cre recombinase protein. J Biol Chem. Feb. 10, 1984;259(3): 1509-14.
Abudayyeh et al., A cytosine deaminase for programmable single-base RNA editing. Science. Jul. 26, 2019;365(6451):382-386. doi: 10.1126/science.aax7063. Epub Jul. 11, 2019.
Abudayyeh et al., RNA targeting with CRISPR-Cas13. Nature. Oct. 12, 2017;550(7675):280-284. doi: 10.1038/nature24049. Epub Oct. 4, 2017.
Ada et al., Carbohydrate-protein conjugate vaccines. Clin Microbiol Infect. Feb. 2003;9(2):79-85. doi: 10.1046/j.1469-0691.2003.00530.x.
Adamala et al., Programmable RNA-binding protein composed of repeats of a single modular unit. Proc Natl Acad Sci U S A. May 10, 2016;113(19):E2579-88. doi: 10.1073/pnas.1519368113. Epub Apr. 26, 2016.
Adams et al., New biarsenical ligands and tetracysteine motifs for protein labeling in vitro and in vivo: synthesis and biological applications. J Am Chem Soc. May 29, 2002;124(21):6063-76. doi: 10.1021/ja017687n.
Adli, The CRISPR tool kit for genome editing and beyond. Nat Commun. May 15, 2018;9(1):1911. doi: 10.1038/s41467-018-04252-2.
Aguilo et al., Coordination of m(6)A mRNA Methylation and Gene Transcription by ZFP217 Regulates Pluripotency and Reprogramming. Cell Stem Cell. Dec. 3, 2015;17(6):689-704. doi: 10.1016/j.stem.2015.09.005. Epub Oct. 29, 2015.
Ahmad et al., Antibody-mediated specific binding and cytotoxicity of liposome-entrapped doxorubicin to lung cancer cells in vitro. Cancer Res. Sep. 1, 1992;52(17):4817-20.
Aida et al., Prime editing primarily incudes undesired outcomes in mice. bioRxiv preprint and Supplemental Information. Aug. 6, 2020. Retrieved from www.biorxiv.org. doi: 10.1101/2020.08.06.239723. 40 pages.
Aik et al., Structure of human RNA ?-methyladenine demethylase ALKBH5 provides insights into its mechanisms of nucleic acid recognition and demethylation. Nucleic Acids Res. Apr. 2014;42(7):4741-54. doi: 10.1093/nar/gku085. Epub Jan. 30, 2014.
Aird et al., Increasing Cas9-mediated homology-directed repair efficiency through covalent tethering of DNA repair template. Commun Biol. May 31, 2018;1:54. doi: 10.1038/s42003-018-0054-2.
Akcakaya et al., In vivo CRISPR editing with No. detectable genome-wide off-target mutations. Nature. Sep. 2018;561(7723):416-419. doi: 10.1038/s41586-018-0500-9. Epub Sep. 12, 2018. PMID: 30209390; Pmcid: PMC6194229.
Akins et al., Mitochondrial plasmids of Neurospora: integration into mitochondrial DNA and evidence for reverse transcription in mitochondria. Cell. Nov. 21, 1986;47(4):505-16. doi: 10.1016/0092-8674(86)90615-x.
Akinsheye et al., Fetal hemoglobin in sickle cell anemia. Blood. Jul. 7, 2011;118(1):19-27. doi: 10.1182/blood-2011-03-325258. Epub Apr. 13, 2011.
Alarcón et al., HNRNPA2B1 Is a Mediator of m(6)A-Dependent Nuclear RNA Processing Events. Cell. Sep. 10, 2015;162(6):1299-308. doi: 10.1016/j.cell.2015.08.011. Epub Aug. 27, 2015.
Alarcón et al., N6-methyladenosine marks primary microRNAs for processing. Nature. Mar. 26, 2015;519(7544):482-5. doi: 10.1038/nature14281. Epub Mar. 18, 2015.
Alexander, HFE-associated hereditary hemochromatosis. Genet Med. May 2009;11(5):307-13. doi: 10.1097/GIM.0b013e31819d30f2.
Altschul et al., Basic local alignment search tool. J Mol Biol. Oct. 5, 1990;215(3):403-10. doi: 10.1016/S0022-2836(05)80360-2.
Amato et al., Interpreting elevated fetal hemoglobin in pathology and health at the basic laboratory level: new and known γ-gene mutations associated with hereditary persistence of fetal hemoglobin. Int J Lab Hematol. Feb. 2014;36(1):13-9. doi: 10.1111/ijlh.12094. Epub Apr. 29, 2013.
Amrann et al., Tightly regulated tac promoter vectors useful for the expression of unfused and fused proteins in Escherichia coli. Gene. Sep. 30, 1988;69(2):301-15.
Anders et al., Chapter One: In Vitro Enzymology of Cas9. in Methods in Enzymology, eds Doudna et al. 2014: 546:1-20.
Anders et al., Structural basis of PAM-dependent target DNA recognition by the Cas9 endonuclease. Nature. Sep. 25, 2014;513(7519):569-73. doi: 10.1038/nature13579. Epub Jul. 27, 2014. Europe PMC Funders Group. Author manuscript. Available OMC Mar. 25, 2015.
Anderson, Human gene therapy. Science. May 8, 1992;256(5058):808-13. doi: 10.1126/science.1589762.
André et al., Axotomy-induced expression of calcium-activated chloride current in subpopulations of mouse dorsal root ganglion neurons. J Neurophysiol. Dec. 2003;90(6):3764-73. doi: 10.1152/jn.00449.2003. Epub Aug. 27, 2003.
Anzalone et al., Genome editing with CRISPR-Cas nucleases, base editors, transposases and prime editors. Nat Biotechnol. Jul. 2020;38(7):824-844. doi: 10.1038/s41587-020-0561-9. Epub Jun. 22, 2020.
Anzalone et al., Reprogramming eukaryotic translation with ligand-responsive synthetic RNA switches. Nat Methods. May 2016;13(5):453-8. doi: 10.1038/nmeth.3807. Epub Mar. 21, 2016.
Anzalone et al., Search-and-replace genome editing without double-strand breaks or donor DNA. Nature. Dec. 2019;576(7785):149-157. doi: 10.1038/s41586-019-1711-4. Epub Oct. 21, 2019.
Aplan, Causes of oncogenic chromosomal translocation. Trends Genet. Jan. 2006;22(1):46-55. doi: 10.1016/j.tig.2005.10.002. Epub Oct. 28, 2005.
Arakawa et al., A method to convert mRNA into a gRNA library for CRISPR/Cas9 editing of any organism. Sci Adv. Aug. 24, 2016;2(8):e1600699. doi: 10.1126/sciadv.1600699.
Araki et al., Comparative analysis of right element mutant lox sites on recombination efficiency in embryonic stem cells. BMC Biotechnol. Mar. 31, 2010;10:29. doi: 10.1186/1472-6750-10-29.
Araki et al., Site-specific recombinase, R, encoded by yeast plasmid pSR1. J Mol Biol. May 5, 1992;225(1):25-37. doi: 10.1016/0022-2836(92)91023-i.
Araki et al., Targeted integration of DNA using mutant lox sites in embryonic stem cells. Nucleic Acids Res. Feb. 15, 1997;25(4):868-72. doi: 10.1093/nar/25.4.868.
Arambula et al., Surface display of a massively variable lipoprotein by a Legionella diversity-generating retroelement. Proc Natl Acad Sci U S A. May 14, 2013;110(20):8212-7. doi: 10.1073/pnas.1301366110. Epub Apr. 30, 2013.
Arazoe et al., Targeted Nucleotide Editing Technologies for Microbial Metabolic Engineering. Biotechnol J. Sep. 2018;13(9):e1700596. doi: 10.1002/biot.201700596. Epub Jun. 19, 2018.
Arbab et al., Cloning-free CRISPR. Stem Cell Reports. Nov. 10, 2015;5(5):908-917. doi: 10.1016/j.stemcr.2015.09.022. Epub Oct. 29, 2015.
Arbab et al., Determinants of Base Editing Outcomes from Target Library Analysis and Machine Learning. Cell. Jul. 23, 2020;182(2):463-480.e30. doi: 10.1016/j.cell.2020.05.037. Epub Jun. 12, 2020.
Arezi et al., Novel mutations in Moloney Murine Leukemia Virus reverse transcriptase increase thermostability through tighter binding to template-primer. Nucleic Acids Res. Feb. 2009;37(2):473-81. doi: 10.1093/nar/gkn952. Epub Dec. 4, 2008.
Asante et al., A naturally occurring variant of the human prion protein completely prevents prion disease. Nature. Jun. 25, 2015;522(7557):478-81. doi: 10.1038/nature14510. Epub Jun. 10, 2015.
Asokan et al., The AAV vector toolkit: poised at the clinical crossroads. Mol Ther. Apr. 2012;20(4):699-708. doi: 10.1038/mt.2011.287. Epub Jan. 24, 2012.
Atkins et al., Ribosomal frameshifting and transcriptional slippage: From genetic steganography and cryptography to adventitious use. Nucleic Acids Res. Sep. 6, 2016;44(15):7007-78. doi: 10.1093/nar/gkw530. Epub Jul. 19, 2016.
Auer et al., Highly efficient CRISPR/Cas9-mediated knock-in in zebrafish by homology-independent DNA repair. Genome Res. Jan. 2014;24(1):142-53. doi: 10.1101/gr.161638.113. Epub Oct. 31, 2013.
Auricchio et al., Exchange of surface proteins impacts on viral vector cellular specificity and transduction characteristics: the retina as a model. Hum Mol Genet. Dec. 15, 2001;10(26):3075-81. doi: 10.1093/hmg/10.26.3075.
Autieri et al., IRT-1, a novel interferon-gamma-responsive transcript encoding a growth-suppressing basic leucine zipper protein. J Biol Chem. Jun. 12, 1998;273(24):14731-7. doi: 10.1074/jbc.273.24.14731.
Avidan et al., The processivity and fidelity of DNA synthesis exhibited by the reverse transcriptase of bovine leukemia virus. Eur J Biochem. Feb. 2002;269(3):859-67. doi: 10.1046/j.0014-2956.2001.02719.x.
Babacic et al., CRISPR-cas gene-editing as plausible treatment of neuromuscular and nucleotide-repeat-expansion diseases: A systematic review. PLoS One. Feb. 22, 2019;14(2):e0212198. doi: 10.1371/journal.pone.0212198.
Bacman et al., Specific elimination of mutant mitochondrial genomes in patient-derived cells by mitoTALENs. Nat Med. Sep. 2013;19(9):1111-3. doi: 10.1038/nm.3261. Epub Aug. 4, 2013.
Badran et al., Continuous evolution of Bacillus thuringiensis toxins overcomes insect resistance. Nature. May 5, 2016;533(7601):58-63. doi: 10.1038/nature17938. Epub Apr. 27, 2016.
Badran et al., Development of potent in vivo mutagenesis plasmids with broad mutational spectra. Nat Commun. Oct. 7, 2015;6:8425. doi: 10.1038/ncomms9425.
Bae et al., Cas-OFFinder: a fast and versatile algorithm that searches for potential off-target sites of Cas9 RNA-guided endonucleases. Bioinformatics. May 15, 2014;30(10):1473-5. doi: 10.1093/bioinformatics/btu048. Epub Jan. 24, 2014.
Bae et al., Microhomology-based choice of Cas9 nuclease target sites. Nat Methods. Jul. 2014;11(7):705-6. doi: 10.1038/nmeth.3015.
Bagal et al., Recent progress in sodium channel modulators for pain. Bioorg Med Chem Lett. Aug. 15, 2014;24(16):3690-9. doi: 10.1016/j.bmcl.2014.06.038. Epub Jun. 21, 2014.
Bagyinszky et al., Characterization of mutations in PRNP (prion) gene and their possible roles in neurodegenerative diseases. Neuropsychiatr Dis Treat. Aug. 14, 2018;14:2067-2085. doi: 10.2147/NDT.S165445.
Balakrishnan et al., Flap endonuclease 1. Annu Rev Biochem. 2013;82:119-38. doi: 10.1146/annurev-biochem-072511-122603. Epub Feb. 28, 2013.
Baldari et al., A novel leader peptide which allows efficient secretion of a fragment of human interleukin 1 beta in Saccharomyces cerevisiae. EMBO J. Jan. 1987;6(1):229-34.
Banerjee et al., Cadmium inhibits mismatch repair by blocking the ATPase activity of the MSH2-MSH6 complex [published correction appears in Nucleic Acids Res. 2005;33(5):1738]. Nucleic Acids Res. 2005;33(4):1410-1419. Published Mar. 3, 2005. doi: 10.1093/nar/gki291.
Banerji et al., A lymphocyte-specific cellular enhancer is located downstream of the joining region in immunoglobulin heavy chain genes. Cell. Jul. 1983;33(3):729-40. doi: 10.1016/0092-8674(83)90015-6.
Bannert et al., Retroelements and the human genome: new perspectives on an old relation. Proc Natl Acad Sci U S A. Oct. 5, 2004;101 Suppl 2(Suppl 2):14572-9. doi: 10.1073/pnas.0404838101. Epub Aug. 13, 2004.
Banno et al., Deaminase-mediated multiplex genome editing in Escherichia coli. Nat Microbiol. Apr. 2018;3(4):423-429. doi: 10.1038/s41564-017-0102-6. Epub Feb. 5, 2018.
Baranauskas et al., Generation and characterization of new highly thermostable and processive M-MuLV reverse transcriptase variants. Protein Eng Des Sel. Oct. 2012;25(10):657-68. doi: 10.1093/protein/gzs034. Epub Jun. 12, 2012.
Barmania et al., C-C chemokine receptor type five (CCR5): An emerging target for the control of HIV infection. Appl Transl Genom. May 26, 2013;2:3-16. doi: 10.1016/j.atg.2013.05.004.
Barnes et al., The fidelity of Taq polymerase catalyzing PCR is improved by an-terminal deletion. Gene. Mar. 1, 1992;112(1):29-35. doi: 10.1016/0378-1119(92)90299-5.
Bartlett et al., Efficient expression of protein coding genes from the murine U1 small nuclear RNA promoters. Proc Natl Acad Sci U S A. Aug. 20, 1996;93(17):8852-7. doi: 10.1073/pnas.93.17.8852.
Bartosovic et al., N6-methyladenosine demethylase FTO targets pre-mRNAs and regulates alternative splicing and 3′-end processing. Nucleic Acids Res. Nov. 2, 2017;45(19):11356-11370. doi: 10.1093/nar/gkx778.
Basturea et al., Substrate specificity and properties of the Escherichia coli 16S rRNA methyltransferase, RsmE. RNA. Nov. 2007;13(11):1969-76. doi: 10.1261/rna.700507. Epub Sep. 13, 2007.
Beaudry et al., Directed evolution of an RNA enzyme. Science. Jul. 31, 1992;257(5070):635-41. doi: 10.1126/science.1496376.
Bebenek et al., Error-prone polymerization by HIV-1 reverse transcriptase. Contribution of template-primer misalignment, miscoding, and termination probability to mutational hot spots. J Biol Chem. May 15, 1993;268(14):10324-34.
Behr, Gene transfer with synthetic cationic amphiphiles: prospects for gene therapy. Bioconjug Chem. Sep.-Oct. 1994;5(5):382-9. doi: 10.1021/bc00029a002.
Bell et al., Ribozyme-catalyzed excision of targeted sequences from within RNAs. Biochemistry. Dec. 24, 2002;41(51):15327-33. doi: 10.1021/bi0267386.
Belshaw et al., Controlling programmed cell death with a cyclophilin-cyclosporin-based chemical inducer of dimerization. Chem Biol. Sep. 1996;3(9):731-8. doi: 10.1016/s1074-5521(96)90249-5.
Belshaw et al., Controlling protein association and subcellular localization with a synthetic ligand that induces heterodimerization of proteins. Proc Natl Acad Sci U S A. May 14, 1996;93(10):4604-7. doi: 10.1073/pnas.93.10.4604.
Benarroch, Hcn channels: function and clinical implications. Neurology. Jan. 15, 2013;80(3):304-10. doi: 10.1212/WNL.0b013e31827dec42.
Bennett et al., Painful and painless channelopathies. Lancet Neurol. Jun. 2014;13(6):587-99. doi: 10.1016/S1474-4422(14)70024-9. Epub May 6, 2014.
Bentin, T., A ribozyme transcribed by a ribozyme. Artif DNA PNA XNA. Apr. 2011;2(2):40-42. doi: 10.4161/adna.2.2.16852.
Berger et al., Reverse transcriptase and its associated ribonuclease H: interplay of two enzyme activities controls the yield of single-stranded complementary deoxyribonucleic acid. Biochemistry. May 10, 1983;22(10):2365-72. doi: 10.1021/bi00279a010.
Berges et al., Transduction of brain by herpes simplex virus vectors. Mol Ther. Jan. 2007;15(1):20-9. doi: 10.1038/sj.mt.6300018.
Berkhout et al., Identification of an active reverse transcriptase enzyme encoded by a human endogenous HERV-K retrovirus. J Virol. Mar. 1999;73(3):2365-75. doi: 10.1128/JVI.73.3.2365-2375.1999.
Bernhart et al., Local RNA base pairing probabilities in large sequences. Bioinformatics. Mar. 1, 2006;22(5):614-5. doi: 10.1093/bioinformatics/btk014. Epub Dec. 20, 2005.
Bernstein et al., Role for a bidentate ribonuclease in the initiation step of RNA interference. Nature. Jan. 18, 2001;409(6818):363-6. doi: 10.1038/35053110.
Bertolotti et al., Toward genosafe endonuclease-boosted gene targeting using breakthrough CRISP/Cas9 for next generation stem cell gene therapy culminating in efficient ex VIVO in VIVO gene repair/genomic editing. Molecular Therapy. May 2015;23(Suppl1):S139. Abstract 350. 18th Ann Meeting of the American Society of Gene and Cell Therapy. ASGCT 2015. New Orleans, LA. May 13, 2015-May 16, 2015.
Bertrand et al., Localization of ASH1 mRNA particles in living yeast. Mol Cell. Oct. 1998;2(4):437-45. doi: 10.1016/s1097-2765(00)80143-4.
Bessen et al., High-resolution specificity profiling and off-target prediction for site-specific DNA recombinases. Nat Commun. Apr. 26, 2019;10(1):1937. doi: 10.1038/s41467-019-09987-0.
Bi et al., Pseudo attP sites in favor of transgene integration and expression in cultured porcine cells identified by Streptomyces phage phiC31 integrase. BMC Mol Biol. Sep. 8, 2013;14:20. doi: 10.1186/1471-2199-14-20.
Bibb et al., Integration and excision by the large serine recombinase phiRv1 integrase. Mol Microbiol. Mar. 2005;55(6):1896-910. doi: 10.1111/j.1365-2958.2005.04517.x.
Biehs et al., DNA Double-Strand Break Resection Occurs during Non-homologous End Joining in G1 but Is Distinct from Resection during Homologous Recombination. Mol Cell. Feb. 16, 2017;65(4):671-684.e5. doi: 10.1016/j.molcel.2016.12.016. Epub Jan. 26, 2017.
Biswas et al., A structural basis for allosteric control of DNA recombination by lambda integrase. Nature. Jun. 23, 2005;435(7045):1059-66. doi: 10.1038/nature03657.
Blaese et al., Vectors in cancer therapy: how will they deliver? Cancer Gene Ther. Dec. 1995;2(4):291-7.
Blain et al., Nuclease activities of Moloney murine leukemia virus reverse transcriptase. Mutants with altered substrate specificities. J Biol Chem. Nov. 5, 1993;268(31):23585-92.
Blaisonneau et al., A circular plasmid from the yeast Torulaspora delbrueckii. Plasmid. 1997;38(3):202-9. doi: 10.1006/plas.1997.1315.
Blau et al., A proliferation switch for genetically modified cells. PNAS Apr. 1, 1997 94 (7) 3076-3081; https://doi.org/10.1073/pnas.94.7.3076.
Bloom et al., Evolving strategies for enzyme engineering. Curr Opin Struct Biol. Aug. 2005;15(4):447-52.
Bodi et al., Yeast m6A Methylated mRNAs Are Enriched on Translating Ribosomes during Meiosis, and under Rapamycin Treatment. PLoS One. Jul. 17, 2015;10(7):e0132090. doi: 10.1371/journal.pone.0132090.
Boersma et al., Selection strategies for improved biocatalysts. FEBS J. May 2007;274(9):2181-95.
Bogdanove et al., Engineering altered protein-DNA recognition specificity. Nucleic Acids Res. Jun. 1, 2018;46(10):4845-4871. doi: 10.1093/nar/gky289.
Bolusani et al., Evolution of variants of yeast site-specific recombinase Flp that utilize native genomic sequences as recombination target sites. Nucleic Acids Res. 2006;34(18):5259-69. Epub Sep. 26, 2006.
Bondeson et al., Inversion of the IDS gene resulting from recombination with IDS-related sequences is a common cause of the Hunter syndrome. Hum Mol Genet. Apr. 1995;4(4):615-21. doi: 10.1093/hmg/4.4.615.
Borchardt et al., Controlling mRNA stability and translation with the CRISPR endoribonuclease Csy4. RNA. Nov. 2015;21(11):1921-30. doi: 10.1261/rna.051227.115. Epub Sep. 9, 2015.
Bourinet et al., Silencing of the Cav3.2 T-type calcium channel gene in sensory neurons demonstrates its major role in nociception. EMBO J. Jan. 26, 2005;24(2):315-24. doi: 10.1038/sj.emboj.7600515. Epub Dec. 16, 2004.
Boutabout et al., DNA synthesis fidelity by the reverse transcriptase of the yeast retrotransposon Ty1. Nucleic Acids Res. Jun. 1, 2001;29(11):2217-22. doi: 10.1093/nar/29.11.2217.
Box et al., A multi-domain protein system based on the HC fragment of tetanus toxin for targeting DNA to neuronal cells. J Drug Target. Jul. 2003;11(6):333-43. doi: 10.1080/1061186310001634667.
Braun et al., Immunogenic duplex nucleic acids are nuclease resistant. J Immunol. Sep. 15, 1988;141(6):2084-9.
Brierley et al., Viral RNA pseudoknots: versatile motifs in gene expression and replication. Nat Rev Microbiol. Aug. 2007;5(8):598-610. doi: 10.1038/nrmicro1704.
Brown et al., A mammalian protein targeted by G1-arresting rapamycin-receptor complex. Nature. Jun. 30, 1994;369(6483):756-8. doi: 10.1038/369756a0.
Brown et al., Characterization of the genetic elements required for site-specific integration of plasmid pSE211 in Saccharopolyspora erythraea. J Bacteriol. Apr. 1990;172(4):1877-88. doi: 10.1128/jb.172.4.1877-1888.1990.
Brown et al., Structural insights into the stabilization of MALAT1 noncoding RNA by a bipartite triple helix. Nat Struct Mol Biol. Jul. 2014;21(7):633-40. doi: 10.1038/nsmb.2844. Epub Jun. 22, 2014.
Brzezicha et al., Identification of human tRNA:m5C methyltransferase catalysing intron-dependent m5C formation in the first position of the anticodon of the pre-tRNA Leu (CAA). Nucleic Acids Res. 2006;34(20):6034-43. doi: 10.1093/nar/gk1765. Epub Oct. 27, 2006.
Buchschacher et al., Human immunodeficiency virus vectors for inducible expression of foreign genes. J Virol. May 1992;66(5):2731-9. doi: 10.1128/JVI.66.5.2731-2739.1992.
Buckley et al., Targeting the von Hippel-Lindau E3 ubiquitin ligase using small molecules to disrupt the VHL/HIF-1? interaction. J Am Chem Soc. Mar. 14, 2012;134(10):4465-8. doi: 10.1021/ja209924v. Epub Feb. 27, 2012.
Budker et al., Protein/amphipathic polyamine complexes enable highly efficient transfection with minimal toxicity. Biotechniques. Jul. 1997;23(1):139, 142-7. doi: 10.2144/97231rr02.
Budworth et al., A brief history of triplet repeat diseases. Methods Mol Biol. 2013;1010:3-17. doi: 10.1007/978-1-62703-411-1_1.
Burke et al., RNA Aptamers to the Adenosine Moiety of S-adenosyl Methionine: Structural Inferences From Variations on a Theme and the Reproducibility of SELEX. Nucleic Acids Res. May 15, 1997;25(10):2020-4. doi: 10.1093/nar/25.10.2020.
Burton et al., Gene delivery using herpes simplex virus vectors. DNA Cell Biol. Dec. 2002;21(12):915-36. doi: 10.1089/104454902762053864.
Buskirk et al., In vivo evolution of an RNA-based transcriptional activator. Chem Biol. Jun. 2003;10(6):533-40. doi: 10.1016/s1074-5521(03)00109-1.
Butt et al., Efficient CRISPR/Cas9-Mediated Genome Editing Using a Chimeric Single-Guide RNA Molecule. Front Plant Sci. Aug. 24, 2017;8:1441(1-8). doi: 10.3389/fpls.2017.01441.
Byrne et al., Multiplex gene regulation: a two-tiered approach to transgene regulation in transgenic mice. Proc Natl Acad Sci U S A. Jul. 1989;86(14):5473-7. doi: 10.1073/pnas.86.14.5473.
Cadwell et al., Randomization of genes by PCR mutagenesis. PCR Methods Appl. Aug. 1992;2(1):28-33. doi: 10.1101/gr.2.1.28.
Cai et al., Reconstruction of ancestral protein sequences and its applications. BMC Evol Biol. Sep. 17, 2004;4:33. doi: 10.1186/1471-2148-4-33.
Calame et al., Transcriptional controlling elements in the immunoglobulin and T cell receptor loci. Adv Immunol. 1988;43:235-75. doi: 10.1016/s0065-2776(08)60367-3.
Camarero et al., Biosynthesis of a Head-to-Tail Cyclized Protein with Improved Biological Activity. J. Am. Chem. Soc. May 29, 1999; 121(23):5597-5598. https://doi.org/10.1021/ja990929n.
Camper et al., Postnatal repression of the alpha-fetoprotein gene is enhancer independent. Genes Dev. Apr. 1989;3(4):537-46. doi: 10.1101/gad.3.4.537.
Camps et al., Targeted gene evolution in Escherichia coli using a highly error-prone DNA polymerase I. Proc Natl Acad Sci U S A. Aug. 19, 2003;100(17):9727-32. Epub Aug. 8, 2003.
Canchaya et al., Genome analysis of an inducible prophage and prophage remnants integrated in the Streptococcus pyogenes strain SF370. Virology. Oct. 25, 2002;302(2):245-58. doi: 10.1006/viro.2002.1570.
Canver et al., Customizing the genome as therapy for the ?-hemoglobinopathies. Blood. May 26, 2016;127(21):2536-45. doi: 10.1182/blood-2016-01-678128. Epub Apr. 6, 2016.
Carlier et al., Burkholderia cenocepacia H111 Rhy-family protein. Apr. 16, 2015. Retrieved from the Internet via https://www.ebi.ac.uk/ena/browser/api/embl/CDN65395.1?lineLimit=1000. Last retrieved Apr. 26, 2021.
Carlson et al., Negative selection and stringency modulation in phage-assisted continuous evolution. Nat Chem Biol. Mar. 2014;10(3):216-22. doi: 10.1038/nchembio.1453. Epub Feb. 2, 2014. With Supplementary Results.
Carr et al., Genome engineering. Nat Biotechnol. Dec. 2009;27(12):1151-62. doi: 10.1038/nbt.1590.
Carvalho et al., Evolution in health and medicine Sackler colloquium: Genomic disorders: a window into human gene and genome evolution. Proc Natl Acad Sci U S A. Jan. 26, 2010;107 Suppl 1(Suppl 1):1765-71. doi: 10.1073/pnas.0906222107. Epub Jan. 13, 2010.
Caspi et al., Distribution of split DnaE inteins in cyanobacteria. Mol Microbiol. Dec. 2003;50(5):1569-77. doi: 10.1046/j.1365-2958.2003.03825.x.
Cattaneo et al., SEL1L affects human pancreatic cancer cell cycle and invasiveness through modulation of PTEN and genes related to cell-matrix interactions. Neoplasia. 2005;7(11):1030-1038.
Ceccaldi et al., Repair Pathway Choices and Consequences at the Double-Strand Break. Trends Cell Biol. Jan. 2016;26(1):52-64. doi: 10.1016/j.tcb.2015.07.009. Epub Oct. 1, 2015.
Chadalavada et al., Wild-type is the optimal sequence of the HDV ribozyme under cotranscriptional conditions. RNA. Dec. 2007; 13(12):2189-201. doi: 10.1261/rna.778107. Epub Oct. 23, 2007.
Chalberg et al., Integration specificity of phage phiC31 integrase in the human genome. J Mol Biol. Mar. 17, 2006;357(1):28-48. doi: 10.1016/j.jmb.2005.11.098. Epub Dec. 22, 2005.
Chalberg et al., phiC31 integrase confers genomic integration and long-term transgene expression in rat retina. Invest Ophthalmol Vis Sci. Jun. 2005;46(6):2140-6. doi: 10.1167/iovs.04-1252.
Chan et al., Molecular recording of mammalian embryogenesis. Nature. Jun. 2019;570(7759):77-82. doi: 10.1038/s41586-019-1184-5. Epub May 13, 2019.
Chan et al., Novel selection methods for DNA-encoded chemical libraries. Curr Opin Chem Biol. 2015;26:55-61. doi:10.1016/j.cbpa.2015.02.010.
Chan et al., The choice of nucleotide inserted opposite abasic sites formed within chromosomal DNA reveals the polymerase activities participating in translesion DNA synthesis. DNA Repair (Amst). Nov. 2013;12(11):878-89. doi: 10.1016/j.dnarep.2013.07.008. Epub Aug. 26, 2013.
Chapman et al., Playing the end game: DNA double-strand break repair pathway choice. Mol Cell. Aug. 24, 2012;47(4):497-510. doi: 10.1016/j.molcel.2012.07.029.
Chari et al., Unraveling CRISPR-Cas9 genome engineering parameters via a library-on-library approach. Nat Methods. Sep. 2015;12(9):823-6. doi: 10.1038/nmeth.3473. Epub Jul. 13, 2015.
Chaturvedi et al., Stabilization of triple-stranded oligonucleotide complexes: use of probes containing alternating phosphodiester and stereo-uniform cationic phosphoramidate linkages. Nucleic Acids Res. Jun. 15, 1996;24(12):2318-23.
Chavez et al., Precise Cas9 targeting enables genomic mutation prevention. Jun. 14, 2016. doi:https://doi.org/10.1101/058974. [Preprint].
Chavez et al., Therapeutic applications of the PhiC31 integrase system. Curr Gene Ther. Oct. 2011;11(5):375-81. Review.
Chawla et al., An atlas of RNA base pairs involving modified nucleobases with optimal geometries and accurate energies. Nucleic Acids Res. Aug. 18, 2015;43(14):6714-29. doi: 10.1093/nar/gkv606. Epub Jun. 27, 2015.
Chen et al., Enhanced proofreading governs CRISPR-Cas9 targeting accuracy. Nature. Oct. 19, 2017;550(7676):407-410. doi: 10.1038/nature24268. Epub Sep. 20, 2017.
Chen et al., A general strategy for the evolution of bond-forming enzymes using yeast display. Proc Natl Acad Sci U S A. Jul. 12, 2011;108(28):11399-404. doi: 10.1073/pnas.1101046108. Epub Jun. 22, 2011.
Chen et al., Alterations in PMS2, MSH2 and MLH1 expression in human prostate cancer. Int J Oncol. May 2003;22(5):1033-43.
Chen et al., Enhanced prime editing systems by manipulating cellular determinants of editing outcomes. Cell. Oct. 28, 2021;184(22):5635-5652.e29. doi: 10.1016/j.cell.2021.09.018. Epub Oct. 14, 2021.
Chen et al., Genome-wide CRISPR screen in a mouse model of tumor growth and metastasis. Cell. Mar. 12, 2015;160(6):1246-60. doi: 10.1016/j.cell.2015.02.038. Epub Mar. 5, 2015.
Chen et al., Highly Efficient Mouse Genome Editing by CRISPR Ribonucleoprotein Electroporation of Zygotes. J Biol Chem. Jul. 8, 2016;291(28):14457-67. doi: 10.1074/jbc.M116.733154. Epub May 5, 2016.
Chen et al., m(6)A RNA methylation is regulated by microRNAs and promotes reprogramming to pluripotency. Cell Stem Cell. Mar. 5, 2015;16(3):289-301. doi: 10.1016/j.stem.2015.01.016. Epub Feb. 12, 2015.
Chen et al., Targeting genomic rearrangements in tumor cells through Cas9-mediated insertion of a suicide gene. Nat Biotechnol. Jun. 2017;35(6):543-550. doi: 10.1038/nbt.3843. Epub May 1, 2017.
Cheng et al., Multiplexed activation of endogenous genes by CRISPR-on, an RNA-guided transcriptional activator system. Cell Res. Oct. 2013;23(10):1163-71. doi: 10.1038/cr.2013.122. Epub Aug. 27, 2013.
Chester et al., The apolipoprotein B mRNA editing complex performs a multifunctional cycle and suppresses nonsense-mediated decay. Embo J. Aug. 1, 2003;22(15):3971-82. doi: 10.1093/emboj/cdg369.
Chew et al., A multifunctional AAV-CRISPR-Cas9 and its host response. Nat Methods. Oct. 2016;13(10):868-74. doi: 10.1038/nmeth.3993. Epub Sep. 5, 2016. Supplementary Information.
Chin, Expanding and reprogramming the genetic code of cells and animals. Annu Rev Biochem. 2014;83:379-408. doi: 10.1146/annurev-biochem-060713-035737. Epub Feb. 10, 2014.
Cho et al., Site-specific recombination of bacteriophage P22 does not require integration host factor. J Bacteriol. Jul. 1999;181(14):4245-9. doi: 10.1128/JB.181.14.4245-4249.1999.
Cho et al., The calcium-activated chloride channel anoctamin 1 acts as a heat sensor in nociceptive neurons. Nat Neurosci. May 27, 2012;15(7):1015-21. doi: 10.1038/nn.3111.
Choe et al., Forging Ahead through Darkness: PCNA, Still the Principal Conductor at the Replication Fork. Mol Cell. Feb. 2, 2017;65(3):380-392. doi: 10.1016/j.molcel.2016.12.020.
Choi et al., (6)-methyladenosine in mRNA disrupts tRNA selection and translation-elongation dynamics. Nat Struct Mol Biol. Feb. 2016;23(2):110-5. doi: 10.1038/nsmb.3148. Epub Jan. 11, 2016.
Choi et al., Protein trans-splicing and characterization of a split family B-type DNA polymerase from the hyperthermophilic archaeal parasite Nanoarchaeum equitans. J Mol Biol. Mar. 10, 2006;356(5):1093-106. doi: 10.1016/j.jmb.2005.12.036. Epub Dec. 27, 2005.
Choi et at al., Translesion synthesis across abasic lesions by human B-family and Y-family DNA polymerases ?, ?, ?, ?, ?, and REV1. J Mol Biol. Nov. 19, 2010;404(1):34-44. doi: 10.1016/j.jmb.2010.09.015. Epub Oct. 1, 2010.
Chong et al., Modulation of protein splicing of the Saccharomyces cerevisiae vacuolar membrane ATPase intein. J Biol Chem. Apr. 24, 1998;273(17):10567-77. doi: 10.1074/jbc.273.17.10567.
Chong et al., Utilizing the C-terminal cleavage activity of a protein splicing element to purify recombinant proteins in a single chromatographic step. Nucleic Acids Res. Nov. 15, 1998;26(22):5109-15. doi: 10.1093/nar/26.22.5109.
Chong et al., Protein splicing involving the Saccharomyces cerevisiae VMA intein. The steps in the splicing pathway, side reactions leading to protein cleavage, and establishment of an in vitro splicing system. J Biol Chem. Sep. 6, 1996;271(36):22159-68. doi: 10.1074/jbc.271.36.22159.
Chong et al., Protein splicing of the Saccharomyces cerevisiae VMA intein without the endonuclease motifs. J Biol Chem. Jun. 20, 1997;272(25):15587-90. doi: 10.1074/jbc.272.25.15587.
Chong et al., Single-column purification of free recombinant proteins using a self-cleavable affinity tag derived from a protein splicing element. Gene. Jun. 19, 1997;192(2):271-81. doi: 10.1016/s0378-1119(97)00105-4.
Choudhury et al., CRISPR-dCas9 mediated TET1 targeting for selective DNA demethylation at BRCA1 promoter. Oncotarget. Jul. 19, 2016;7(29):46545-46556. doi: 10.18632/oncotarget.10234.
Choudhury et al., CRISPR/Cas9 recombineering-mediated deep mutational scanning of essential genes in Escherichia coli. Mol Syst Biol. Mar. 2020;16(3):e9265. doi: 10.15252/msb.20199265.
Choudhury et al., Engineering RNA endonucleases with customized sequence specificities. Nat Commun. 2012;3:1147. doi: 10.1038/ncomms2154.
Choulika et al., Induction of homologous recombination in mammalian chromosomes by using the I-SceI system of Saccharomyces cerevisiae. Mol Cell Biol. Apr. 1995;15(4):1968-73. doi: 10.1128/MCB.15.4.1968.
Christiansen et al., Characterization of the lactococcal temperate phage TP901-1 and its site-specific integration. J Bacteriol. Feb. 1994;176(4):1069-76. doi: 10.1128/jb.176.4.1069-1076.1994.
Chuai et al., DeepCRISPR: optimized CRISPR guide RNA design by deep learning. Genome Biol. Jun. 26, 2018;19(1):80. doi: 10.1186/s13059-018-1459-4.
Chuai et al., In Silico Meets In Vivo: Towards Computational CRISPR-Based sgRNA Design. Trends Biotechnol. Jan. 2017;35(1):12-21. doi: 10.1016/j.tibtech.2016.06.008. Epub Jul. 11, 2016.
Chuang et al., Novel Heterotypic Rox Sites for Combinatorial Dre Recombination Strategies. G3 (Bethesda). Dec. 29, 2015;6(3):559-71. doi: 10.1534/g3.115.025841.
Chujo et al., Trmt61B is a methyltransferase responsible for 1-methyladenosine at position 58 of human mitochondrial tRNAs. RNA. Dec. 2012;18(12):2269-76. doi: 10.1261/rna.035600.112. Epub Oct. 24, 2012.
Clackson et al., Redesigning an FKBP-ligand interface to generate chemical dimerizers with novel specificity. Proc Natl Acad Sci U S A. Sep. 1, 1998;95(18):10437-42. doi: 10.1073/pnas.95.18.10437.
Clement et al., CRISPResso2 provides accurate and rapid genome editing sequence analysis. Nat Biotechnol. Mar. 2019;37(3):224-226. doi: 10.1038/s41587-019-0032-3.
Coffey et al., The Economic Impact of BSE on the U.S. Beef Industry: Product Value Losses, Regulatory Costs, and Consumer Reactions. Kansas State University Agricultural Experiment Station and Cooperative Extension Service. MF-2678. May 2005. 68 pages. Accessed via https://bookstore.ksre.ksu.edu/pubs/MF2678.pdf.
Cokol et al., Finding nuclear localization signals. EMBO Rep. Nov. 2000;1(5):411-5. doi: 10.1093/embo-reports/kvd092.
Cole et al., Reconstructing evolutionary adaptive paths for protein engineering. Methods Mol Biol. 2013;978:115-25. doi: 10.1007/978-1-62703-293-3_8.
Collinge, Prion diseases of humans and animals: their causes and molecular basis. Annu Rev Neurosci. 2001;24:519-50. doi: 10.1146/annurev.neuro.24.1.519.
Conrad et al., A Kaposi's sarcoma virus RNA element that increases the nuclear abundance of intronless transcripts. EMBO J. May 18, 2005;24(10):1831-41. doi: 10.1038/sj.emboj.7600662. Epub Apr. 28, 2005.
Cornu et al., Refining strategies to translate genome editing to the clinic. Nat Med. Apr. 3, 2017;23(4):415-423. doi: 10.1038/nm.4313.
Costa et al., Frequent use of the same tertiary motif by self-folding RNAs. EMBO J. Mar. 15, 1995;14(6):1276-85.
Cotton et al., Insertion of a Synthetic Peptide into a Recombinant Protein Framework: A Protein Biosensor. J. Am. Chem. Soc. Jan. 22, 1999; 121(5):1100-1. https://doi.org/10.1021/ja983804b.
Cox et al., An SCN9A channelopathy causes congenital inability to experience pain. Nature. Dec. 14, 2006;444(7121):894-8. doi: 10.1038/nature05413.
Cox et al., Congenital insensitivity to pain: novel SCN9A missense and in-frame deletion mutations. Hum Mutat. Sep. 2010;31(9):E1670-86. doi: 10.1002/humu.21325.
Cox et al., RNA editing with CRISPR-Cas13. Science. Nov. 24, 2017;358(6366):1019-1027. doi: 10.1126/science.aaq0180. Epub Oct. 25, 2017.
Cox, Proteins pinpoint double strand breaks. Elife. Oct. 29, 2013;2:e01561. doi: 10.7554/eLife.01561.
Crabtree et al., Three-part inventions: intracellular signaling and induced proximity. Trends Biochem Sci. Nov. 1996;21(11):418-22. doi: 10.1016/s0968-0004(96)20027-1.
Crick, On protein synthesis. Symp Soc Exp Biol. 1958;12:138-63.
Crystal, Transfer of genes to humans: early lessons and obstacles to success. Science. Oct. 20, 1995;270(5235):404-10. doi: 10.1126/science.270.5235.404.
Cui et al., Consequences of Cas9 cleavage in the chromosome of Escherichia coli. Nucleic Acids Res. May 19, 2016;44(9):4243-51. doi: 10.1093/nar/gkw223. Epub Apr. 8, 2016.
Cui et al., m6A RNA Methylation Regulates the Self-Renewal and Tumorigenesis of Glioblastoma Stem Cells. Cell Rep. Mar. 14, 2017;18(11):2622-2634. doi: 10.1016/j.celrep.2017.02.059.
Cui et al., Review of CRISPR/Cas9 sgRNA Design Tools. Interdiscip Sci. Jun. 2018;10(2):455-465. doi: 10.1007/s12539-018-0298-z. Epub Apr. 11, 2018.
Cupples et al., A set of lacZ mutations in Escherichia coli that allow rapid detection of each of the six base substitutions. Proc Natl Acad Sci U S A. Jul. 1989;86(14):5345-9.
Dahlgren et al., A novel mutation in ribosomal protein S4 that affects the function of a mutated RF1. Biochimie. Aug. 2000;82(8):683-91.
Dahlman et al., Orthogonal gene knockout and activation with a catalytically active Cas9 nuclease. Nat Biotechnol. Nov. 2015;33(11):1159-61. doi: 10.1038/nbt.3390.
Dandage et al., beditor: A Computational Workflow for Designing Libraries of Guide RNAs for CRISPR-Mediated Base Editing. Genetics. Jun. 2019;212(2):377-385. doi: 10.1534/genetics.119.302089. Epub Apr. 1, 2019.
Dang et al., Optimizing sgRNA structure to improve CRISPR-Cas9 knockout efficiency. Genome Biol. Dec. 15, 2015;16:280. doi: 10.1186/s13059-015-0846-3.
Das et al., The crystal structure of the monomeric reverse transcriptase from Moloney murine leukemia virus. Structure. May 2004;12(5):819-29. doi: 10.1016/j.str.2004.02.032.
Dassa et al., Fractured genes: a novel genomic arrangement involving new split inteins and a new homing endonuclease family. Nucleic Acids Res. May 2009;37(8):2560-73. doi: 10.1093/nar/gkp095. Epub Mar. 5, 2009.
Dassa et al., Trans protein splicing of cyanobacterial split inteins in endogenous and exogenous combinations. Biochemistry. Jan. 9, 2007;46(1):322-30. doi: 10.1021/bi0611762.
Database EBI Accession No. ADE34233 Jan. 29, 2004.
Database EBI Accession No. BFF09785. May 31, 2018. 2 pages.
Database EBI Accession No. BGE38086. Jul. 25, 2019. 2 pages.
Database UniProt Accession No. G8I3E0. Jan. 14, 2012.
Datsenko et al., One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc Natl Acad Sci U S A. Jun. 6, 2000;97(12):6640-5.
Davidson et al., Viral vectors for gene delivery to the nervous system. Nat Rev Neurosci. May 2003;4(5):353-64. doi: 10.1038/nrn1104.
De Felipe et al., Co-translational, intraribosomal cleavage of polypeptides by the foot-and-mouth disease virus 2A peptide. J Biol Chem. Mar. 28, 2003;278(13):11441-8. doi: 10.1074/jbc.M211644200. Epub Jan. 8, 2003.
De La Peña et al., The Hammerhead Ribozyme: A Long History for a Short RNA. Molecules. Jan. 4, 2017;22(1):78. doi: 10.3390/molecules22010078.
De Wit et al., The Human CD4+ T Cell Response against Mumps Virus Targets a Broadly Recognized Nucleoprotein Epitope. J Virol. Mar. 5, 2019;93(6):e01883-18. doi: 10.1128/JVI.01883-18.
Dean et al., Genetic restriction of HIV-1 infection and progression to AIDS by a deletion allele of the CKR5 structural gene. Hemophilia Growth and Development Study, Multicenter AIDS Cohort Study, Multicenter Hemophilia Cohort Study, San Francisco City Cohort, ALIVE Study. Science. Sep. 27, 1996;273(5283):1856-62. doi: 10.1126/science.273.5283.1856.
Dekosky et al., Large-scale sequence and structural comparisons of human naive and antigen-experienced antibody repertoires. Proc Natl Acad Sci U S A. May 10, 2016;113(19):E2636-45. doi: 10.1073/pnas.1525510113. Epub Apr. 25, 2016.
Delebecque et al., Organization of intracellular reactions with rationally designed RNA assemblies. Science. Jul. 22, 2011;333(6041):470-4. doi: 10.1126/science.1206938. Epub Jun. 23, 2011.
Deng et al., Widespread occurrence of N6-methyladenosine in bacterial mRNA. Nucleic Acids Res. Jul. 27, 2015;43(13):6557-67. doi: 10.1093/nar/gkv596. Epub Jun. 11, 2015.
Denizio et al., Harnessing natural DNA modifying activities for editing of the genome and epigenome. Curr Opin Chem Biol. Aug. 2018;45:10-17. doi: 10.1016/j.cbpa.2018.01.016. Epub Feb. 13, 2018.
Deriano et al., Modernizing the nonhomologous end-joining repertoire: alternative and classical NHEJ share the stage. Annu Rev Genet. 2013;47:433-55. doi: 10.1146/annurev-genet-110711-155540. Epub Sep. 11, 2013.
Deussing, Targeted mutagenesis tools for modelling psychiatric disorders. Cell Tissue Res. Oct. 2013;354(1):9-25. doi: 10.1007/s00441-013-1708-5. Epub Sep. 10, 2013.
Dever et al., CRISPR/Cas9 ?-globin gene targeting in human haematopoietic stem cells. Nature. Nov. 17, 2016;539(7629):384-389. doi: 10.1038/nature20134. Epub Nov. 7, 2016.
Deverman et al., Cre-dependent selection yields AAV variants for widespread gene transfer to the adult brain. Nat Biotechnol. Feb. 2016;34(2):204-9. doi: 10.1038/nbt.3440. Epub Feb. 1, 2016.
Devigili et al., Paroxysmal itch caused by gain-of-function Nav1.7 mutation. Pain. Sep. 2014;155(9):1702-1707. doi: 10.1016/j.pain.2014.05.006. Epub May 10, 2014.
Dianov et al., Mammalian base excision repair: the forgotten archangel. Nucleic Acids Res. Apr. 1, 2013;41(6):3483-90. doi: 10.1093/nar/gkt076. Epub Feb. 13, 2013.
Dicarlo et al., Genome engineering in Saccharomyces cerevisiae using CRISPR-Cas systems. Nucleic Acids Res. Apr. 2013;41(7):4336-43. doi: 10.1093/nar/gkt135. Epub Mar. 4, 2013.
Dicarlo et al., Safeguarding CRISPR-Cas9 gene drives in yeast. Nat Biotechnol. Dec. 2015;33(12):1250-1255. doi: 10.1038/nbt.3412. Epub Nov. 16, 2015.
Dickey et al., Single-stranded DNA-binding proteins: multiple domains for multiple functions. Structure. Jul. 2, 2013;21(7):1074-84. doi: 10.1016/j.str.2013.05.013.
Dickinson et al., Experimental interrogation of the path dependence and stochasticity of protein evolution using phage-assisted continuous evolution. Proc Natl Acad Sci USA. May 2013;110(22):9007-12.
Dillon, Regulating gene expression in gene therapy. Trends Biotechnol. May 1993;11(5):167-73. doi: 10.1016/0167-7799(93)90109-M.
Dingwall et al., Nuclear targeting sequences—a consensus? Trends Biochem Sci. Dec. 1991;16(12):478-81. doi: 10.1016/0968-0004(91)90184-w.
Diver et al., Single-Step Synthesis of Cell-Permeable Protein Dimerizers That Activate Signal Transduction and Gene Expression. J. Am. Chem. Soc. Jun. 4, 1997;119(22):5106-5109. https://doi.org/10.1021/ja963891c.
Doench et al., Rational design of highly active sgRNAs for CRISPR-Cas9-mediated gene inactivation. Nat Biotechnol. Dec. 2014;32(12):1262-7. doi: 10.1038/nbt.3026. Epub Sep. 3, 2014.
Dolan et al., Trans-splicing with the group I intron ribozyme from Azoarcus. RNA. Feb. 2014;20(2):202-13. doi: 10.1261/rna.041012.113. Epub Dec. 16, 2013.
Doman et al., Evaluation and minimization of Cas9-independent off-target DNA editing by cytosine base editors. Nat Biotechnol. May 2020;38(5):620-628. doi: 10.1038/s41587-020-0414-6. Epub Feb. 10, 2020.
Dominissini et al., Topology of the human and mouse m6A RNA methylomes revealed by m6A-seq. Nature. Apr. 29, 2012;485(7397):201-6. doi: 10.1038/nature11112.
Dorgan et al., An enzyme-coupled continuous spectrophotometric assay for S-adenosylmethionine-dependent methyltransferases. Anal Biochem. Mar. 15, 2006;350(2):249-55. doi: 10.1016/j.ab.2006.01.004. Epub Feb. 7, 2006.
Dorr et al., Reprogramming the specificity of sortase enzymes. Proc Natl Acad Sci U S A. Sep. 16, 2014;111(37):13343-8. doi: 10.1073/pnas.1411179111. Epub Sep. 3, 2014.
Doudna, The promise and challenge of therapeutic genome editing. Nature. Feb. 2020;578(7794):229-236. doi: 10.1038/s41586-020-1978-5. Epub Feb. 12, 2020.
Dove et al., Conversion of the omega subunit of Escherichia coli RNA polymerase into a transcriptional activator or an activation target. Genes Dev. Mar. 1, 1998;12(5):745-54.
Doyon et al., Directed evolution and substrate specificity profile of homing endonuclease I-SceI. J Am Chem Soc. Feb. 22, 2006;128(7):2477-84.
Drake, A constant rate of spontaneous mutation in DNA-based microbes. Proc Natl Acad Sci USA. Aug. 15, 1991;88(16):7160-4.
Duan et al., Enhancement of muscle gene delivery with pseudotyped adeno-associated virus type 5 correlates with myoblast differentiation. J Virol. Aug. 2001;75(16):7662-71. doi: 10.1128/JVI.75.16.7662-7671.2001.
Dubois et al., Retroviral RNA Dimerization: From Structure to Functions. Front Microbiol. Mar. 22, 2018;9:527. doi: 10.3389/fmicb.2018.00527.
Dunbar et al., Gene therapy comes of age. Science. Jan. 12, 2018;359(6372):eaan4672. doi: 10.1126/science.aan4672.
Dupuy et al., Le syndrome de De La Chapelle [De La Chapelle syndrome]. Presse Med. Mar. 3, 2001;30(8):369-72. French.
Durai et al., A bacterial one-hybrid selection system for interrogating zinc finger-DNA interactions. Comb Chem High Throughput Screen. May 2006;9(4):301-11.
Durai et al., Zinc finger nucleases: custom-designed molecular scissors for genome engineering of plant and mammalian cells. Nucleic Acids Res. Oct. 26, 2005;33(18):5978-90. doi: 10.1093/nar/gki912.
Edlund et al., Cell-specific expression of the rat insulin gene: evidence for role of two distinct 5′ flanking elements. Science. Nov. 22, 1985;230(4728):912-6. doi: 10.1126/science.3904002.
Eick et al., Robustness of Reconstructed Ancestral Protein Functions to Statistical Uncertainty. Mol Biol Evol. Feb. 1, 2017;34(2):247-261. doi: 10.1093/molbev/msw223.
Eiler et al., Structural Basis for the Fast Self-Cleavage Reaction Catalyzed by the Twister Ribozyme. Proc Natl Acad Sci U S A. Sep. 9, 2014;111(36):13028-33. doi: 10.1073/pnas.1414571111. Epub Aug. 25, 2014.
Emery et al., HCN2 ion channels play a central role in inflammatory and neuropathic pain. Science. Sep. 9, 2011;333(6048):1462-6. doi: 10.1126/science.1206243.
Engel et al., The emerging role of mRNA methylation in normal and pathological behavior. Genes Brain Behav. Mar. 2018;17(3):e12428. doi: 10.1111/gbb.12428. Epub Nov. 17, 2017.
Engelward et al., Base excision repair deficient mice lacking the Aag alkyladenine DNA glycosylase. Proc Natl Acad Sci U S A. Nov. 25, 1997;94(24):13087-92.
England, Unnatural amino acid mutagenesis: a precise tool for probing protein structure and function. Biochemistry. Sep. 21, 2004;43(37):11623-9.
Enyeart et al., Biotechnological applications of mobile group II introns and their reverse transcriptases: gene targeting, RNA-seq, and non-coding RNA analysis. Mobile DNA 5, 2 (2014). https://doi.org/10.1186/1759-8753-5-2. https://doi.org/10.1186/1759-8753-5-2.
Epstein, HSV-1-based amplicon vectors: design and applications. Gene Ther. Oct. 2005;12 Suppl 1:S154-8. doi: 10.1038/sj.gt.3302617.
Eriksson et al., Recurrent de novo point mutations in lamin A cause Hutchinson-Gilford progeria syndrome. Nature. May 15, 2003;423(6937):293-8. doi: 10.1038/nature01629. Epub Apr. 25, 2003. PMID: 12714972.
Estacion et al., A sodium channel gene SCN9A polymorphism that increases nociceptor excitability. Ann Neurol. Dec. 2009;66(6):862-6. doi: 10.1002/ana.21895.
Evans et al., Protein trans-splicing and cyclization by a naturally split intein from the dnaE gene of Synechocystis species PCC6803. J Biol Chem. Mar. 31, 2000;275(13):9091-4. doi: 10.1074/jbc.275.13.9091.
Evans et al., Semisynthesis of cytotoxic proteins using a modified protein splicing element. Protein Sci. Nov. 1998;7(11):2256-64. doi: 10.1002/pro.5560071103.
Evans et al., The cyclization and polymerization of bacterially expressed proteins using modified self-splicing inteins. J Biol Chem. Jun. 25, 1999;274(26):18359-63. doi: 10.1074/jbc.274.26.18359.
Evans et al., The in vitro ligation of bacterially expressed proteins using an intein from Methanobacterium thermoautotrophicum. J Biol Chem. Feb. 12, 1999;274(7):3923-6. doi: 10.1074/jbc.274.7.3923.
Evers et al., CRISPR knockout screening outperforms shRNA and CRISPRi in identifying essential genes. Nat Biotechnol. Jun. 2016;34(6):631-3. doi: 10.1038/nbt.3536. Epub Apr. 25, 2016.
Extended European Search Report for EP 19181479.7, mailed Oct. 31, 2019.
Extended European Search Report for EP 19187331.4, mailed Mar. 25, 2020.
Extended European Search Report for EP18199195.1, mailed Feb. 12, 2019.
Falnes et al., DNA repair by bacterial AlkB proteins. Res Microbiol. Oct. 2003;154(8):531-8. doi: 10.1016/S0923-2508(03)00150-5.
Falnes et al., Repair of methyl lesions in DNA and RNA by oxidative demethylation. Neuroscience. Apr. 14, 2007;145(4):1222-32. doi: 10.1016/j.neuroscience.2006.11.018. Epub Dec. 18, 2006.
Farboud et al., Dramatic enhancement of genome editing by CRISPR/Cas9 through improved guide RNA design. Genetics. Apr. 2015;199(4):959-71. doi: 10.1534/genetics.115.175166. Epub Feb. 18, 2015.
Fawcett et al., Transposable elements controlling I-R hybrid dysgenesis in D. melanogaster are similar to mammalian LINEs. Cell. Dec. 26, 1986;47(6):1007-15. doi: 10.1016/0092-8674(86)90815-9.
Feldstein et al., Two sequences participating in the autolytic processing of satellite tobacco ringspot virus complementary RNA. Gene. Oct. 15, 1989;82(1):53-61. doi: 10.1016/0378-1119(89)90029-2.
Felletti et al., Twister Ribozymes as Highly Versatile Expression Platforms for Artificial Riboswitches. Nat Commun. Sep. 27, 2016;7:12834. doi: 10.1038/ncomms12834.
Feng et al., Crystal structures of the human RNA demethylase Alkbh5 reveal basis for substrate recognition. J Biol Chem. Apr. 25, 2014;289(17):11571-11583. doi: 10.1074/jbc.M113.546168. Epub Mar. 10, 2014.
Feng et al., Human L1 retrotransposon encodes a conserved endonuclease required for retrotransposition. Cell. Nov. 29, 1996;87(5):905-16. doi: 10.1016/s0092-8674(00)81997-2.
Ferreira Da Silva et al., Prime editing efficiency and fidelity are enhanced in the absence of mismatch repair. Nat Commun. Feb. 9, 2022;13(1):760. doi: 10.1038/s41467-022-28442-1.
Feuk, Inversion variants in the human genome: role in disease and genome architecture. Genome Med. Feb. 12, 2010;2(2):11. doi: 10.1186/gm132.
Filippov et al., A novel type of RNase III family proteins in eukaryotes. Gene. Mar. 7, 2000;245(1):213-21. doi: 10.1016/s0378-1119(99)00571-5.
Filippova et al., Guide RNA modification as a way to improve CRISPR/Cas9-based genome-editing systems. Biochimie. Dec. 2019;167:49-60. doi: 10.1016/j.biochi.2019.09.003. Epub Sep. 4, 2019.
Fire et al., Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature. Feb. 19, 1998;391(6669):806-11. doi: 10.1038/35888.
Fischbach et al., Directed evolution can rapidly improve the activity of chimeric assembly-line enzymes. Proc Natl Acad Sci U S A. Jul. 17, 2007;104(29):11951-6. doi: 10.1073/pnas.0705348104. Epub Jul. 9, 2007.
Fitzjohn, Diversitree: comparative phylogenetic analyses of diversification in R. Methods in Evology and Evolution. Dec. 2012;3(6):1084-92 .doi: 10.1111/j.2041-210X.2012.00234.x.
Flajolet et al., Woodchuck hepatitis virus enhancer I and enhancer II are both involved in—myc2 activation in woodchuck liver tumors. J Virol. Jul. 1998;72(7):6175-80. doi: 10.1128/JVI.72.7.6175-6180.1998.
Flaman et al., A rapid PCR fidelity assay. Nucleic Acids Res. Aug. 11, 1994;22(15):3259-60. doi: 10.1093/nar/22.15.3259.
Flynn et al., CRISPR-mediated genotypic and phenotypic correction of a chronic granulomatous disease mutation in human iPS cells. Exp Hematol. Oct. 2015;43(10):838-848.e3. doi: 10.1016/j.exphem.2015.06.002. Epub Jun. 19, 2015. Including supplementary figures and data.
Fogg et al., New applications for phage integrases. J Mol Biol. Jul. 29, 2014;426(15):2703-16. doi: 10.1016/j.jmb.2014.05.014. Epub May 22, 2014.
Fogg et al., Genome Integration and Excision by a New Streptomyces Bacteriophage, ?Joe. Appl Environ Microbiol. Feb. 15, 2017;83(5):e02767-16. doi: 10.1128/AEM.02767-16.
Forster et al., Self-cleavage of virusoid RNA is performed by the proposed 55-nucleotide active site. Cell. Jul. 3, 1987;50(1):9-16. doi: 10.1016/0092-8674(87)90657-x.
Fortini et al., Different DNA polymerases are involved in the short- and long-patch base excision repair in mammalian cells. Biochemistry. Mar. 17, 1998;37(11):3575-80. doi: 10.1021/bi972999h.
Fouts et al., Sequencing Bacillus anthracis typing phages gamma and cherry reveals a common ancestry. J Bacteriol. May 2006;188(9):3402-8. doi: 10.1128/JB.188.9.3402-3408.2006.
Freitas et al., Mechanisms and signals for the nuclear import of proteins. Curr Genomics. Dec. 2009;10(8):550-7. doi: 10.2174/138920209789503941.
Fu et al., Promises and Pitfalls of Intracellular Delivery of Proteins. Bioconjugate Chemistry. Aug. 2014;25:1602-8.
Furukawa et al., In vitro selection of allosteric ribozymes that sense the bacterial second messenger c-di-GMP. Methods Mol Biol. 2014;1111:209-20. doi: 10.1007/978-1-62703-755-6_15.
Fusi et al., In Silico Predictive Modeling of CRISPR/Cas9 guide efficiency. Jun. 26, 2015; bioRxiv. http://dx.doi.org/10.1101/021568.
Gaj et al., 3rd. Genome engineering with custom recombinases. Methods Enzymol. 2014;546:79-91. doi: 10.1016/B978-0-12-801185-0.00004-0.
Gajula, Designing an Elusive CoG?GoC CRISPR Base Editor. Trends Biochem Sci. Feb. 2019;44(2):91-94. doi: 10.1016/j.tibs.2018.10.004. Epub Nov. 13, 2018.
Gangopadhyay et al., Precision Control of CRISPR-Cas9 Using Small Molecules and Light. Biochemistry. Jan. 29, 2019;58(4):234-244. doi: 10.1021/acs.biochem.8b01202. Epub Jan. 22, 2019.
Gao et al., Cationic liposome-mediated gene transfer. Gene Ther. Dec. 1995;2(10):710-22.
Gao et al., Prime editing in mice reveals the essentiality of a single base in driving tissue-specific gene expression. Genome Biol. Mar. 16, 2021;22(1):83. doi: 10.1186/s13059-021-02304-3.
Gao et al., Self-processing of ribozyme-flanked RNAs into guide RNAs in vitro and in vivo for CRISPR-mediated genome editing. J Integr Plant Biol. Apr. 2014;56(4):343-9. doi: 10.1111/jipb.12152. Epub Mar. 6, 2014.
Gao et al., Treatment of autosomal dominant hearing loss by in vivo delivery of genome editing agents. Nature. Jan. 11, 2018;553(7687):217-221. doi: 10.1038/nature25164. Epub Dec. 20, 2017.
Gapinske et al., CRISPR-SKIP: programmable gene splicing with single base editors. Genome Biol. Aug. 15, 2018;19(1):107. doi: 10.1186/s13059-018-1482-5.
Garcia et al., Transglycosylation: a mechanism for RNA modification (and editing?). Bioorg Chem. Jun. 2005;33(3):229-51. doi: 10.1016/j.bioorg.2005.01.001. Epub Feb. 23, 2005.
Garibyan et al., Use of the rpoB gene to determine the specificity of base substitution mutations on the Escherichia coli chromosome. DNA Repair (Amst). May 13, 2003;2(5):593-608.
Gaudelli et al., Programmable base editing of AoT to GoC in genomic DNA without DNA cleavage. Nature. Nov. 23, 2017;551(7681):464-471. doi: 10.1038/nature24644. Epub Oct. 25, 2017. Erratum in: Nature. May 2, 2018.
Gearing, Addgene blog. CRISPR 101: Cas9 nickase design and homology directed repair. 2018. pp. 1-12. https://blog.addgene.org/crispr-101-cas9-nickase-design-and-homlogy-directed-repair. Last retrieved online Jun. 25, 2021.
Gehrke et al., An APOBEC3A-Cas9 base editor with minimized bystander and off-target activities. Nat Biotechnol. Nov. 2018;36(10):977-982. doi: 10.1038/nbt.4199. Epub Jul. 30, 2018.
GenBank Accession No. J01600.1. Brooks et al., E.coli dam gene coding for DNA adenine methylase. Apr. 26, 1993.
GenBank Accession No. U07651.1. Lu, Escherichia coli K12 negative regulator of replication initiation (seqA) gene, complete cds. Jul. 19, 1994.
GenBank Submission; NIH/NCBI Accession No. 4UN5_B. Anders et al., Jul. 23, 2014. 5 pages.
GenBank Submission; NIH/NCBI Accession No. NM_001319224.2. Umar et al., Apr. 21, 2021. 7 pages.
GenBank Submission; NIH/NCBI Accession No. NM_006027.4. Umar et al., Apr. 10, 2021. 7 pages.
GenBank Submission; NIH/NCBI, Accession No. AAA66622.1. Martinelli et al., May 18, 1995. 2 pages.
GenBank Submission; NIH/NCBI, Accession No. AGT42196. Farzadfar et al., Nov. 2, 2013. 2 pages.
GenBank Submission; NIH/NCBI, Accession No. AIT42264.1. Hyun et al., Oct. 15, 2014. 2 pages.
GenBank Submission; NIH/NCBI, Accession No. AKA60242.1. Tong et al., Apr. 5, 2015. 1 page.
GenBank Submission; NIH/NCBI, Accession No. AKQ21048.1. Gilles et al., Jul. 19, 2015. 1 page.
GenBank Submission; NIH/NCBI, Accession No. AKS40380.1. Nodvig et al., Aug. 2, 2015. 1 page.
GenBank Submission; NIH/NCBI, Accession No. APG80656.1. Burstein et al., Dec. 10, 2016. 1 pages.
GenBank Submission; NIH/NCBI, Accession No. AYD60528.1. Ram et al., Oct. 2, 2018. 1 page.
GenBank Submission; NIH/NCBI, Accession No. BDB43378. Zhang et al., Aug. 11, 2016. 2 pages.
GenBank Submission; NIH/NCBI, Accession No. KR710351.1. Sahni et al., Jun. 1, 2015. 2 pages.
GenBank Submission; NIH/NCBI, Accession No. NC 002737.2. Nasser et al., Feb. 7, 2021. 2 pages.
GenBank Submission; NIH/NCBI, Accession No. NM_000311.5. Alves et al., Mar. 7, 2021. 5 pages.
GenBank Submission; NIH/NCBI, Accession No. NM_001319224. Umar et al., Apr. 21, 2021. 7 pages.
GenBank Submission; NIH/NCBI, Accession No. NM_002945.3. Weiser et al., Sep. 3, 2017. 5 pages.
GenBank Submission; NIH/NCBI, Accession No. NM_002946.5. Kavli et al., Jun. 26, 2021. 5 pages.
GenBank Submission; NIH/NCBI, Accession No. NM_002947.4. Xiao et al., May 1, 2019. 4 pages.
GenBank Submission; NIH/NCBI, Accession No. NM_003686. Umar et al., Apr. 9, 2021. 7 pages.
GenBank Submission; NIH/NCBI, Accession No. NM_003686.4. Umar et al., Apr. 9, 2021. 7 pages.
GenBank Submission; NIH/NCBI, Accession No. NM_006027. Umar et al., Apr. 10, 2021. 7 pages.
GenBank Submission; NIH/NCBI, Accession No. NM_174936. Guo et al., Oct. 28, 2015. 6 pages.
GenBank Submission; NIH/NCBI, Accession No. NP_000302.1. Alves et al., Mar. 7, 2021. 4 pages.
GenBank Submission; NIH/NCBI, Accession No. NP_001243439.1. Lee et al., Jul. 26, 2021. 4 pages.
GenBank Submission; NIH/NCBI, Accession No. NP_076161.2. Wade et al., Jun. 20, 2021. 4 pages.
GenBank Submission; NIH/NCBI, Accession No. NP_358988.1. Hoskins et al., Jan. 11, 2017. 2 pages.
GenBank Submission; NIH/NCBI, Accession No. NP_391970.1. Borriss et al., Feb. 12, 2021. 3 pages.
GenBank Submission; NIH/NCBI, Accession No. NP_628093.1. Hsiao et al., Aug. 3, 2016. 2 pages.
GenBank Submission; NIH/NCBI, Accession No. NP_955579.1. Chen et al., Aug. 13, 2018. 5 pages.
GenBank Submission; NIH/NCBI, Accession No. QBJ66766. Duan et al. Aug. 12, 2020. 2 pages.
GenBank Submission; NIH/NCBI, Accession No. RFF81513.1. Zhou et al., Aug. 21, 2018. 2 pages.
GenBank Submission; NIH/NCBI, Accession No. SNX31424.1. Weckx, S., Feb. 16, 2018. 2 pages.
GenBank Submission; NIH/NCBI, Accession No. TGH57013. Xu et al., Apr. 9, 2019. 2 pages.
GenBank Submission; NIH/NCBI, Accession No. WP_002989955.1. No Author Listed, May 6, 2013. 1 page.
GenBank Submission; NIH/NCBI, Accession No. WP_010922251.1. No Author Listed, May 15, 2013. 1 page.
GenBank Submission; NIH/NCBI, Accession No. WP_011054416.1. No Author Listed, May 15, 2013. 1 page.
GenBank Submission; NIH/NCBI, Accession No. WP_011284745.1. No Author Listed, May 16, 2013. 1 page.
GenBank Submission; NIH/NCBI, Accession No. WP_011285506.1. No Author Listed, May 16, 2013. 1 page.
GenBank Submission; NIH/NCBI, Accession No. WP_011527619.1. No Author Listed, May 16, 2013. 1 page.
GenBank Submission; NIH/NCBI, Accession No. WP_012560673.1. No Author Listed, May 17, 2013. 1 page.
GenBank Submission; NIH/NCBI, Accession No. WP_014407541.1. No Author Listed, May 18, 2013. 1 page.
GenBank Submission; NIH/NCBI, Accession No. WP_016631044.1. Haft et al., Sep. 22, 2020. 1 page.
GenBank Submission; NIH/NCBI, Accession No. WP_020905136.1. No Author Listed, Jul. 25, 2013. 1 page.
GenBank Submission; NIH/NCBI, Accession No. WP_023080005.1. No Author Listed, Oct. 27, 2013. 1 page.
GenBank Submission; NIH/NCBI, Accession No. WP_023610282.1. No Author Listed, Nov. 27, 2013. 1 page.
GenBank Submission; NIH/NCBI, Accession No. WP_030125963.1. No Author Listed, Jul. 9, 2014. 1 page.
GenBank Submission; NIH/NCBI, Accession No. WP_030126706.1. No Author Listed, Jul. 9, 2014. 1 page.
GenBank Submission; NIH/NCBI, Accession No. WP_031386437. No Author Listed., Sep. 23, 2019. 1 page.
GenBank Submission; NIH/NCBI, Accession No. WP_031386437.1. No Author Listed., Sep. 23, 2019. 1 page.
GenBank Submission; NIH/NCBI, Accession No. WP_031488318.1. No Author Listed., Aug. 5, 2014. 1 page.
GenBank Submission; NIH/NCBI, Accession No. WP_031589969.1. Haft et al., Oct. 9, 2019. 2 pages.
GenBank Submission; NIH/NCBI, Accession No. WP_032460140.1. No Author Listed, Oct. 4, 2014. 1 page.
GenBank Submission; NIH/NCBI, Accession No. WP_032461047.1. No Author Listed, Oct. 4, 2014. 1 page.
GenBank Submission; NIH/NCBI, Accession No. WP_032462016.1. Haft et al., Oct. 4, 2014. 1 page.
GenBank Submission; NIH/NCBI, Accession No. WP_032462936.1. No Author Listed, Oct. 4, 2014. 1 page.
GenBank Submission; NIH/NCBI, Accession No. WP_032464890.1. No Author Listed, Oct. 4, 2014. 1 page.
GenBank Submission; NIH/NCBI, Accession No. WP_038431314.1. No Author Listed, Dec. 26, 2014. 1 page.
GenBank Submission; NIH/NCBI, Accession No. WP_038432938.1. No Author Listed, Dec. 26, 2014. 1 page.
GenBank Submission; NIH/NCBI, Accession No. WP_038434062.1. No Author Listed, Dec. 26, 2014. 1 page.
GenBank Submission; NIH/NCBI, Accession No. WP_044924278.1. Haft et al., Oct. 9, 2019. 2 pages.
GenBank Submission; NIH/NCBI, Accession No. WP_047338501.1. Haft et al., Oct. 9, 2019. 2 pages.
GenBank Submission; NIH/NCBI, Accession No. WP_048327215.1. No Author Listed, Jun. 26, 2015. 1 page.
GenBank Submission; NIH/NCBI, Accession No. WP_049519324.1. No Author Listed, Jul. 20, 2015. 1 page.
GenBank Submission; NIH/NCBI, Accession No. WP_060798984.1. Haft et al., Oct. 9, 2019. 2 pages.
GenBank Submission; NIH/NCBI, Accession No. WP_062913273.1. Haft et al., Oct. 9, 2019, 2 pages.
GenBank Submission; NIH/NCBI, Accession No. WP_072754838. No Author Listed., Sep. 23, 2019. 1 page.
GenBank Submission; NIH/NCBI, Accession No. WP_095142515.1. No Author Listed., Sep. 23, 2019. 1 page.
GenBank Submission; NIH/NCBI, Accession No. WP_118538418.1. No Author Listed., Oct. 13, 2019. 1 page.
GenBank Submission; NIH/NCBI, Accession No. WP_119223642.1. No Author Listed., Oct. 13, 2019. 1 page.
GenBank Submission; NIH/NCBI, Accession No. WP_119227726.1. No Author Listed., Oct. 13, 2019. 1 page.
GenBank Submission; NIH/NCBI, Accession No. WP_119623382.1. No Author Listed., Oct. 13, 2019. 1 page.
GenBank Submission; NIH/NCBI, Accession No. WP_132221894.1. No Author Listed., Sep. 23, 2019. 1 page.
GenBank Submission; NIH/NCBI, Accession No. WP_133478044.1. Haft et al., Oct. 9, 2019. 2 pages.
GenBank Submission; NIH/NCBI, Accession No. YP_002004532.1. Villegas et al., Oct. 11, 2021. 2 pages.
GenBank Submission; NIH/NCBI, Accession No. YP_006589943.1. Lynch et al., Oct. 15, 2021. 2 pages.
GenBank Submission; NIH/NCBI, Accession No. YP_009137104.1. Davison, Aug. 13, 2018. 2 pages.
GenBank Submission; NIH/NCBI, Accession No. YP_009283008.1. Bernardini et al., Sep. 23, 2016. 2 pages.
George et al., Adenosine deaminases acting on RNA, RNA editing, and interferon action. J Interferon Cytokine Res. Jan. 2011;31(1):99-117. doi: 10.1089/jir.2010.0097. Epub Dec. 23, 2010. PMID: 21182352; PMCID: PMC3034097.
Gerard et al., Influence on stability in Escherichia coli of the carboxy-terminal structure of cloned Moloney murine leukemia virus reverse transcriptase. DNA. Aug. 1986;5(4):271-9. doi: 10.1089/dna.1986.5.271.
Gerard et al., Purification and characterization of the DNA polymerase and RNase H activities in Moloney murine sarcoma-leukemia virus. J Virol. Apr. 1975;15(4):785-97. doi: 10.1128/JVI.15.4.785-797.1975.
Gerard et al., The role of template-primer in protection of reverse transcriptase from thermal inactivation. Nucleic Acids Res. Jul. 15, 2002;30(14):3118-29. doi: 10.1093/nar/gkf417.
Gerber et al., An adenosine deaminase that generates inosine at the wobble position of tRNAs. Science. Nov. 5, 1999;286(5442):1146-9. doi: 10.1126/science.286.5442.1146.
Gete et al., Mechanisms of angiogenic incompetence in Hutchinson-Gilford progeria via downregulation of endothelial NOS. Aging Cell. Jul. 2021;20(7):e13388. doi: 10.1111/acel.13388. Epub Jun. 4, 2021.
Ghahfarokhi et al., Blastocyst Formation Rate and Transgene Expression are Associated with Gene Insertion into Safe and Non-Safe Harbors in the Cattle Genome. Sci Rep. Nov. 13, 2017;7(1): 15432. doi: 10.1038/s41598-017-15648-3.
Gibson et al., Enzymatic assembly of DNA molecules up to several hundred kilobases. Nat Methods. May 2009;6(5):343-5. doi: 10.1038/nmeth.1318. Epub Apr. 12, 2009.
Gil, Position-dependent sequence elements downstream of AAUAAA are required for efficient rabbit beta-globin mRNA 3′ end formation. Cell. May 8, 1987;49(3):399-406. doi: 10.1016/0092-8674(87)90292-3.
Glasgow et al.,DNA-binding properties of the Hin recombinase. J Biol Chem. Jun. 15, 1989;264(17):10072-82.
Glassner et al., Generation of a strong mutator phenotype in yeast by imbalanced base excision repair. Proc Natl Acad Sci U S A. Aug. 18, 1998;95(17):9997-10002.
Goldberg et al., Epigenetics: a landscape takes shape. Cell. Feb. 23, 2007;128(4):635-8. doi: 10.1016/j.cell.2007.02.006.
Goldberg et al., Loss-of-function mutations in the Nav1.7 gene underlie congenital indifference to pain in multiple human populations. Clin Genet. Apr. 2007;71(4):311-9. doi: 10.1111/j.1399-0004.2007.00790.x.
Gong et al., Active DNA demethylation by oxidation and repair. Cell Res. Dec. 2011;21(12):1649-51. doi: 10.1038/cr.2011.140. Epub Aug. 23, 2011.
Goodnough et al., Development of a delivery vehicle for intracellular transport of botulinum neurotoxin antagonists. FEBS Lett. Feb. 27, 2002;513(2-3):163-8.
Gou et al., Designing single guide RNA for CIRSPR-Cas9 base editor by deep learning. Peer reviewed Thesis/Dissertation. UCLA Electronic Theses and Dissertations. Jan. 1, 2019. Retrieved from the Internet via https://escholarship.org/uc/item/7vf9z54t. Last accessed on Apr. 29, 2021.
Grainge et al., The integrase family of recombinase: organization and function of the active site. Mol Microbiol. Aug. 1999;33(3):449-56.
Gregory et al., Integration site for Streptomyces phage phiBT1 and development of site- specific integrating vectors. J Bacteriol. Sep. 2003;185(17):5320-3. doi: 10.1128/jb.185.17.5320-5323.2003.
Griffiths, Endogenous retroviruses in the human genome sequence. Genome Biol. 2001;2(6):Reviews1017. doi: 10.1186/GB-2001-2-6-reviews1017. Epub Jun. 5, 2001.
Grindley et al., Mechanisms of site-specific recombination. Annu Rev Biochem. 2006;75:567-605. doi: 10.1146/annurev.biochem.73.011303.073908.
Grishok et al., Genes and Mechanisms Related to RNA Interference Regulate Expression of the Small Temporal RNAs that Control C. elegans Developmental Timing. Jul. 13, 2001:106(1):P23-4.
Groher et al., Synthetic riboswitches—A tool comes of age. Biochim Biophys Acta. Oct. 2014;1839(10):964-973. doi: 10.1016/j.bbagrm.2014.05.005. Epub May 17, 2014.
Groth et al., Construction of transgenic Drosophila by using the site-specific integrase from phage phiC31. Genetics. Apr. 2004;166(4):1775-82. doi: 10.1534/genetics.166.4.1775.
Gruber et al., Strategies for measuring evolutionary conservation of RNA secondary structures. BMC Bioinformatics. Feb. 26, 2008;9:122. doi: 10.1186/1471-2105-9-122.
Gruber et al., The Vienna RNA websuite. Nucleic Acids Res. Jul. 1, 2008;36(Web Server issue):W70-4. doi: 10.1093/nar/gkn188. Epub Apr. 19, 2008.
Grunebaum et al., Recent advances in understanding and managing adenosine deaminase and purine nucleoside phosphorylase deficiencies. Curr Opin Allergy Clin Immunol. Dec. 2013;13(6):630-8. doi: 10.1097/ACI.0000000000000006.
Grünewald et al., Transcriptome-wide off-target RNA editing induced by CRISPR-guided DNA base editors. Nature. May 2019;569(7756):433-437. doi: 10.1038/s41586-019-1161-z. Epub Apr. 17, 2019.
Guedon et al., Current gene therapy using viral vectors for chronic pain. Mol Pain. May 13, 2015;11:27. doi: 10.1186/s12990-015-0018-1.
Gumulya et al., Exploring the past and the future of protein evolution with ancestral sequence reconstruction: the ‘retro’ approach to protein engineering. Biochem J. Jan. 1, 2017;474(1):1-19. doi: 10.1042/BCJ20160507.
Guo et al., Designing single guide RNA for CIRSPR-Cas9 base editor by deep learning. Peer reviewed Thesis/Dissertation. UCLA Electronic Theses and Dissertations. Jan. 1, 2019. Retrieved from the Internet via https://escholarship.org/uc/item/7vf9z54t. Last accessed on Apr. 29, 2021.
Guo et al., Evolution of Tetrahymena ribozyme mutants with increased structural stability. Nat Struct Biol. Nov. 2002;9(11):855-61. doi: 10.1038/nsb850.
Guo et al., Facile functionalization of FK506 for biological studies by the thiol-ene ‘click’ reaction. RSC Advances. 2014;22:11400-3.
Gupta et al., Cross-talk between cognate and noncognate RpoE sigma factors and Zn(2+)-binding anti-sigma factors regulates photooxidative stress response in Azospirillum brasilense. Antioxid Redox Signal. Jan. 1, 2014;20(1):42-59. doi: 10.1089/ars.2013.5314. Epub Jul. 19, 2013.
Gupta et al., Sequences in attB that affect the ability of phiC31 integrase to synapse and to activate DNA cleavage. Nucleic Acids Res. 2007;35(10):3407-19. doi: 10.1093/nar/gkm206. Epub May 3, 2007.
Guzman et al., Tight regulation, modulation, and high-level expression by vectors containing the arabinose PBAD promoter. J Bacteriol. 1995;177(14):4121-4130.
Haapaniemi et al., CRISPR-Cas9 genome editing induces a p53-mediated DNA damage response. Nat Med. Jul. 2018;24(7):927-930. doi: 10.1038/s41591-018-0049-z. Epub Jun. 11, 2018.
Haddada et al., Gene therapy using adenovirus vectors. Curr Top Microbiol Immunol. 1995;199 ( Pt 3):297-306. doi: 10.1007/978-3-642-79586-2_14.
Halbert et al., Repeat transduction in the mouse lung by using adeno-associated virus vectors with different serotypes. J Virol. Feb. 2000;74(3):1524-32. doi: 10.1128/jvi.74.3.1524-1532.2000.
Halmai et al., Targeted CRIPSR/dCas9-mediated reactivation of epigenetically silenced genes suggests limited escape from the inactive X chromosome. 2nd Intl Conf on Epigenetics and Bioengineering. Oct. 4, 2018; Retrieved from the Internet: https://aiche.confex.com/aiche/epibio18/webprogram/paper544785.html. Retrieved Jun. 29, 2020.
Halperin et al., CRISPR-guided DNA polymerases enable diversification of all nucleotides in a tunable window. Nature. Aug. 2018;560(7717):248-252. doi: 10.1038/s41586-018-0384-8. Epub Aug. 1, 2018.
Halvas et al., Role of murine leukemia virus reverse transcriptase deoxyribonucleoside triphosphate-binding site in retroviral replication and in vivo fidelity. J Virol. Nov. 2000;74(22):10349-58. doi: 10.1128/jvi.74.22.10349-10358.2000.
Handa et al., Template-assisted synthesis of adenine-mutagenized cDNA by a retroelement protein complex. Nucleic Acids Res. Oct. 12, 2018;46(18):9711-9725. doi: 10.1093/nar/gky620.
Hanna et al., Massively parallel assessment of human variants with base editor screens. Cell. Feb. 15, 2021;184(4):1064-1080.e20. doi: 10.1016/j.cell.2021.01.012.
Hanson et al., Codon optimality, bias and usage in translation and mRNA decay. Nat Rev Mol Cell Biol. Jan. 2018;19(1):20-30. doi: 10.1038/nrm.2017.91. Epub Oct. 11, 2017.
Hardt et al.,Missense variants in hMLH1 identified in patients from the German HNPCC consortium and functional studies. Fam Cancer. Jun. 2011;10(2):273-84. doi: 10.1007/s10689-011-9431-4.
Harms et al., Evolutionary biochemistry: revealing the historical and physical causes of protein properties. Nat Rev Genet. Aug. 2013;14(8):559-71. doi: 10.1038/nrg3540.
Harmsen et al., DNA mismatch repair and oligonucleotide end-protection promote base-pair substitution distal from a CRISPR/Cas9-induced DNA break. Nucleic Acids Res. Apr. 6, 2018;46(6):2945-2955. doi: 10.1093/nar/gky076.
Harrington et al., A thermostable Cas9 with increased lifetime in human plasma. Nat Commun. Nov. 10, 2017;8(1):1424. doi: 10.1038/s41467-017-01408-4.
Harrington et al., A thermostable Cas9 with increased lifetime in human plasma. Nat Commun. Nov. 10, 2017;8(1):1424. doi: 10.1038/s41467-017-01408-4. Posted May 16, 2017 as bioRxiv preprint. Doi.org/10.1101/138867.
Hasegawa et al., Spontaneous mutagenesis associated with nucleotide excision repair in Escherichia coli. Genes Cells. May 2008;13(5):459-69. doi: 10.1111/j.1365-2443.2008.01185.x.
Hector et al., CDKL5 variants: Improving our understanding of a rare neurologic disorder. Neurol Genet. Dec. 15, 2017;3(6):e200. doi: 10.1212/NXG.0000000000000200.
Heidenreich et al., Non-homologous end joining as an important mutagenic process in cell cycle-arrested cells. EMBO J. May 1, 2003;22(9):2274-83. doi: 10.1093/emboj/cdg203.
Held et al., In vivo correction of murine hereditary tyrosinemia type I by phiC31 integrase-mediated gene delivery. Mol Ther. Mar. 2005;11(3):399-408. doi: 10.1016/j.ymthe.2004.11.001.
Hendricks et al., The S. cerevisiae Mag1 3-methyladenine DNA glycosylase modulates susceptibility to homologous recombination. DNA Repair (Amst). 2002;1(8):645-659.
Hermonat et al., Use of adeno-associated virus as a mammalian DNA cloning vector: transduction of neomycin resistance into mammalian tissue culture cells. Proc Natl Acad Sci U S A. Oct. 1984;81(20):6466-70. doi: 10.1073/pnas.81.20.6466.
Herschhorn et al., Retroviral reverse transcriptases. Cell Mol Life Sci. Aug. 2010;67(16):2717-47. doi: 10.1007/s00018-010-0346-2. Epub Apr. 1, 2010.
Herzig et al., A Novel Leu92 Mutant of HIV-1 Reverse Transcriptase with a Selective Deficiency in Strand Transfer Causes a Loss of Viral Replication. J Virol. Aug. 2015;89(16):8119-29. doi: 10.1128/JVI.00809-15. Epub May 20, 2015.
Higgs et al., Genetic complexity in sickle cell disease. Proc Natl Acad Sci U S A. Aug. 19, 2008;105(33):11595-6. doi: 10.1073/pnas.0806633105. Epub Aug. 11, 2008.
Hilbers et al., New developments in structure determination of pseudoknots. Biopolymers. 1998;48(2-3):137-53. doi: 10.1002/(SICI)1097-0282(1998)48:2<137::AID-BIP4>3.0.CO;2-H.
Hille et al., The Biology of CRISPR-Cas: Backward and Forward. Cell. Mar. 8, 2018;172(6):1239-1259. doi: 10.1016/j.cell.2017.11.032.
Hoang et al., UFBoot2: Improving the Ultrafast Bootstrap Approximation. Mol Biol Evol. Feb. 1, 2018;35(2):518-522. doi: 10.1093/molbev/msx281.
Hoernes et al., Translating the epitranscriptome. Wiley Interdiscip Rev RNA. Jan. 2017;8(1):e1375. doi: 10.1002/wrna.1375. Epub Jun. 27, 2016.
Hoess et al., DNA specificity of the Cre recombinase resides in the 25 kDa carboxyl domain of the protein. J Mol Biol. Dec. 20, 1990;216(4):873-82. doi: 10.1016/S0022-2836(99)80007-2.
Hollis et al., Phage integrases for the construction and manipulation of transgenic mammals. Reprod Biol Endocrinol. Nov. 7, 2003;1:79. doi: 10.1186/1477-7827-1-79.
Holsinger et al., Signal transduction in T lymphocytes using a conditional allele of Sos. Proc Natl Acad Sci U S A. Oct. 10, 1995;92(21):9810-4. doi: 10.1073/pnas.92.21.9810.
Holt et al., Human hematopoietic stem/progenitor cells modified by zinc-finger nucleases targeted to CCR5 control HIV-1 in vivo. Nat Biotechnol. Aug. 2010;28(8):839-47. doi: 10.1038/nbt.1663. Epub Jul. 2, 2010.
Hoogenboom et al., Natural and designer binding sites made by phage display technology. Immunol Today. Aug. 2000;21(8):371-8.
Horvath et al., Diversity, Activity, and Evolution of CRISPR Loci in Streptococcus thermophilus. J Bacteriol. Feb. 2008;190(4):1401-12. doi: 10.1128/JB.01415-07. Epub Dec. 7, 2007.
Hotta et al., [Neurotropic viruses—classification, structure and characteristics]. Nihon Rinsho. Apr. 1997;55(4):777-82. Japanese.
Housden et al., Identification of potential drug targets for tuberous sclerosis complex by synthetic screens combining CRISPR-based knockouts with RNAi. Sci Signal. Sep. 8, 2015;8(393):rs9. doi: 10.1126/scisignal.aab3729.
Hsu et al., DNA targeting specificity of RNA-guided Cas9 nucleases. Nat Biotechnol. Sep. 2013;31(9):827-32. doi: 10.1038/nbt.2647. Epub Jul. 21, 2013. Supplementary Information. 27 pages.
Hsu et al., PrimeDesign software for rapid and simplified design of prime editing guide RNAs. Nat Commun. Feb. 15, 2021;12(1):1034. doi: 10.1038/s41467-021-21337-7.
Hu et al., Evolved Cas9 variants with broad PAM compatibility and high DNA specificity. Nature. Apr. 5, 2018;556(7699):57-63 and Extended/Supplementary Data. doi: 10.1038/nature26155. Epub Feb. 28, 2018. 21 pages.
Hu et al., Evolved Cas9 variants with broad PAM compatibility and high DNA specificity. Nature. Apr. 5, 2018;556(7699):57-63. doi: 10.1038/nature26155. Epub Feb. 28, 2018.
Hua et al., Expanding the base editing scope in rice by using Cas9 variants. Plant Biotechnol J. Feb. 2019;17(2):499-504. doi: 10.1111/pbi.12993. Epub Oct. 5, 2018.
Hua et al., Precise A⋅T to G⋅C Base Editing in the Rice Genome. Mol Plant. Apr. 2, 2018;11(4):627-630. doi: 10.1016/j.molp.2018.02.007. Epub Feb. 21, 2018.
Huang et al., Circularly permuted and PAM-modified Cas9 variants broaden the targeting scope of base editors. Nat Biotechnol. Jun. 2019;37(6):626-631. doi: 10.1038/s41587-019-0134-y. Epub May 20, 2019. Including Supplementary Information.
Huang et al., Precision genome editing using cytosine and adenine base editors in mammalian cells. Nat Protoc. Feb. 2021;16(2):1089-1128. doi: 10.1038/s41596-020-00450-9. Epub Jan. 18, 2021.
Huggins et al., Flap endonuclease 1 efficiently cleaves base excision repair and DNA replication intermediates assembled into nucleosomes. Mol Cell. Nov. 2002;10(5):1201-11. doi: 10.1016/s1097-2765(02)00736-0.
Hung et al., Protein localization in disease and therapy. J Cell Sci. Oct. 15, 2011;124(Pt 20):3381-92. doi: 10.1242/jcs.089110.
Hwang et al., Web-based design and analysis tools for CRISPR base editing. BMC Bioinformatics. Dec. 27, 2018;19(1):542. doi: 10.1186/s12859-018-2585-4.
Ibba et al., Relaxing the substrate specificity of an aminoacyl-tRNA synthetase allows in vitro and in vivo synthesis of proteins containing unnatural amino acids. FEBS Lett. May 15, 1995;364(3):272-5.
Ibba et al., Substrate specificity is determined by amino acid binding pocket size in Escherichia coli phenylalanyl-tRNA synthetase. Biochemistry. Jun. 14, 1994;33(23):7107-12.
Ihry et al., p53 inhibits CRISPR-Cas9 engineering in human pluripotent stem cells. Nat Med. Jul. 2018;24(7):939-946. doi: 10.1038/s41591-018-0050-6. Epub Jun. 11, 2018.
Iida et al., A site-specific, conservative recombination system carried by bacteriophage P1. Mapping the recombinase gene cin and the cross-over sites cix for the inversion of the C segment. EMBO J. 1982;1(11):1445-53.
Iida et al., The Min DNA inversion enzyme of plasmid p15B of Escherichia coli 15T-: a new member of the Din family of site-specific recombinases. Mol Microbiol. Jun. 1990;4(6):991-7. doi: 10.1111/j.1365-2958.1990.tb00671.x.
Imanishi et al., Detection of N6-methyladenosine based on the methyl-sensitivity of MazF RNA endonuclease. Chem Commun (Camb). Nov. 30, 2017;53(96):12930-12933. doi: 10.1039/c7cc07699a.
Imburgio et al., Studies of promoter recognition and start site selection by T7 RNA polymerase using a comprehensive collection of promoter variants. Biochemistry. Aug. 29, 2000;39(34):10419-30.
Ingram, A specific chemical difference between the globins of normal human and sickle-cell anaemia haemoglobin. Nature. Oct. 13, 1956;178(4537):792-4. doi: 10.1038/178792a0.
International Preliminary Report on Patentability for PCT/US2014/048390, mailed on Mar. 7, 2019.
International Preliminary Report on Patentability for PCT/US2017/045381, mailed Feb. 14, 2019.
International Preliminary Report on Patentability for PCT/US2017/046144, mailed Feb. 21, 2019.
International Preliminary Report on Patentability for PCT/US2017/056671, mailed on Apr. 25, 2019.
International Preliminary Report on Patentability for PCT/US2017/068105, mailed on Jul. 4, 2019.
International Preliminary Report on Patentability for PCT/US2017/068114, mailed on Jul. 4, 2019.
International Preliminary Report on Patentability for PCT/US2018/021664, mailed on Sep. 19, 2019.
International Preliminary Report on Patentability for PCT/US2018/021878, mailed on Sep. 19, 2019.
International Preliminary Report on Patentability for PCT/US2018/021880, mailed on Sep. 19, 2019.
International Preliminary Report on Patentability for PCT/US2018/024208, mailed on Oct. 3, 2019.
International Preliminary Report on Patentability for PCT/US2018/032460, mailed Nov. 21, 2019.
International Preliminary Report on Patentability for PCT/US2018/044242, mailed Feb. 6, 2020.
International Prelminary Report on Patentability for PCT/US2018/048969, mailed Mar. 12, 2020.
International Search Report and Written Opinion for PCT/US2014/052231, mailed Jan. 30, 2015 (Corrected Version).
International Search Report and Written Opinion for PCT/US2018/044242, mailed Nov. 21, 2019.
International Search Report for PCT/US2018/021664, mailed Jun. 21, 2018.
International Search Report for PCT/US2018/021878, mailed Aug. 20, 2018.
International Search Report for PCT/US2018/021880, mailed Jun. 20, 2018.
International Search Report for PCT/US2018/024208, mailed Aug. 23, 2018.
International Search Report for PCT/US2018/025887, mailed Jun. 21, 2018.
International Search Report for PCT/US2018/032460, mailed Jul. 11, 2018.
International Search Report for PCT/US2018/048969, mailed Jul. 31, 2019.
Invitation to Pay Additional Fees for PCT/US2018/021878, mailed Jun. 8, 2018.
Irion et al., Identification and targeting of the ROSA26 locus in human embryonic stem cells. Nat Biotechnol. Dec. 2007;25(12):1477-82. doi: 10.1038/nbt1362. Epub Nov. 25, 2007.
Isaacs et al., Engineered riboregulators enable post-transcriptional control of gene expression. Nat Biotechnol. Jul. 2004;22(7):841-7. doi: 10.1038/nbt986. Epub Jun. 20, 2004.
Iwai et al., Circular beta-lactamase: stability enhancement by cyclizing the backbone. FEBS Lett. Oct. 8, 1999;459(2):166-72. doi: 10.1016/s0014-5793(99)01220-x.
Iwai et al., Highly efficient protein trans-splicing by a naturally split DnaE intein from Nostoc punctiforme. FEBS Lett. Mar. 20, 2006;580(7):1853-8. doi: 10.1016/j.febslet.2006.02.045. Epub Feb. 24, 2006.
Jaffrey et al., Emerging links between m6A and misregulated mRNA methylation in cancer. Genome Med. Jan. 12, 2017;9(1):2. doi: 10.1186/s13073-016-0395-8.
Jardine et al., HIV-1 Vaccines. Priming a broadly neutralizing antibody response to HIV-1 using a germline-targeting immunogen. Science. Jul. 10, 2015;349(6244):156-61. doi: 10.1126/science.aac5894. Epub Jun. 18, 2015.
Jasin et al., Repair of strand breaks by homologous recombination. Cold Spring Harb Perspect Biol. Nov. 1, 2013;5(11):a012740. doi: 10.1101/cshperspect.a012740.
Jeggo, DNA breakage and repair. Adv Genet. 1998;38:185-218. doi: 10.1016/s0065-2660(08)60144-3.
Jemielity et al., Novel “anti-reverse” cap analogs with superior translational properties. RNA. Sep. 2003;9(9):1108-22. doi: 10.1261/rna.5430403.
Jeong et al., Measurement of deoxyinosine adduct: Can it be a reliable tool to assess oxidative or nitrosative DNA damage? Toxicol Lett. Oct. 17, 2012;214(2):226-33. doi: 10.1016/j.toxlet.2012.08.013. Epub Aug. 23, 2012.
Jia et al., The MLH1 ATPase domain is needed for suppressing aberrant formation of interstitial telomeric sequences. DNA Repair (Amst). May 2018;65:20-25. doi: 10.1016/j.dnarep.2018.03.002. Epub Mar. 7, 2018.
Jiang et al., CRISPR-Cas9 Structures and Mechanisms. Annu Rev Biophys. May 22, 2017;46:505-529. doi: 10.1146/annurev-biophys-062215-010822. Epub Mar. 30, 2017.
Jiang et al., Structural Biology. A Cas9-guide RNA Complex Preorganized for Target DNA Recognition. Science. Jun. 26, 2015;348(6242):1477-81. doi: 10.1126/science.aab1452.
Jiricny, The multifaceted mismatch-repair system. Nat Rev Mol Cell Biol. May 2006;7(5):335-46. doi: 10.1038/nrm1907.
Johann et al., GLVR1, a receptor for gibbon ape leukemia virus, is homologous to a phosphate permease of Neurospora crassa and is expressed at high levels in the brain and thymus. J Virol. Mar. 1992;66(3):1635-40. doi: 10.1128/JVI.66.3.1635-1640.1992.
Johansson et al., RNA Recognition by the MS2 Phage Coat Protein. Seminars in Virology. 1997;8(3):176-85. https://doi.org/10.1006/smvy.1997.0120.
Johansson et al., Selenocysteine in proteins-properties and biotechnological use. Biochim Biophys Acta. Oct. 30, 2005;1726(1):1-13. Epub Jun. 1, 2005.
Johns et al., The promise and peril of continuous in vitro evolution. J Mol Evol. Aug. 2005;61(2):253-63. Epub Jun. 27, 2005.
Johnson et al., Trans insertion-splicing: ribozyme-catalyzed insertion of targeted sequences into RNAs. Biochemistry. Aug. 9, 2005;44(31):10702-10. doi: 10.1021/bi0504815.
Joho et al., Identification of a region of the bacteriophage T3 and T7 RNA polymerases that determines promoter specificity. J Mol Biol. Sep. 5, 1990;215(1):31-9.
Joyce et al., Amplification, mutation and selection of catalytic RNA. Gene. Oct. 15, 1989;82(1):83-7. doi: 10.1016/0378-1119(89)90033-4.
Jyothy et al., Translocation Down syndrome. Indian J Med Sci. Mar. 2002;56(3):122-6.
Kacian et al., Purification of the DNA polymerase of avian myeloblastosis virus. Biochim Biophys Acta. Sep. 24, 1971;246(3):365-83. doi: 10.1016/0005-2787(71)90773-8.
Kaczmarczyk et al., Manipulating the Prion Protein Gene Sequence and Expression Levels with CRISPR/Cas9. PLoS One. Apr. 29, 2016;11(4):e0154604. doi: 10.1371/journal.pone.0154604.
Kadoch et al., Reversible disruption of mSWI/SNF (BAF) complexes by the SS18-SSX oncogenic fusion in synovial sarcoma. Cell. Mar. 28, 2013;153(1):71-85. doi: 10.1016/j.cell.2013.02.036.
Kahmann et al., G inversion in bacteriophage Mu DNA is stimulated by a site within the invertase gene and a host factor. Cell. Jul. 1985;41(3):771-80. doi: 10.1016/s0092-8674(85)80058-1.
Kalyaanamoorthy et al., ModelFinder: fast model selection for accurate phylogenetic estimates. Nat Methods. Jun. 2017;14(6):587-589. doi: 10.1038/nmeth.4285. Epub May 8, 2017.
Kang et al., Precision genome engineering through adenine base editing in plants. Nat Plants. Jul. 2018;4(7):427-431. doi: 10.1038/s41477-018-0178-x. Epub Jun. 4, 2018. Erratum in: Nat Plants. Sep. 2018;4(9):730.
Kao et al., Cleavage specificity of Saccharomyces cerevisiae flap endonuclease 1 suggests a double-flap structure as the cellular substrate. J Biol Chem. Apr. 26, 2002;277(17):14379-89. doi: 10.1074/jbc.M110662200. Epub Feb. 1, 2002.
Karimova et al., Discovery of Nigri/nox and Panto/pox site-specific recombinase systems facilitates advanced genome engineering. Sci Rep. Jul. 22, 2016;6:30130. doi: 10.1038/srep30130.
Karimova et al., Vika/vox, a novel efficient and specific Cre/loxP-like site-specific recombination system. Nucleic Acids Res. Jan. 2013;41(2):e37. doi: 10.1093/nar/gks1037. Epub Nov. 9, 2012.
Katafuchi et al., DNA polymerases involved in the incorporation of oxidized nucleotides into DNA: their efficiency and template base preference. Mutat Res. Nov. 28, 2010;703(1):24-31. doi: 10.1016/j.mrgentox.2010.06.004. Epub Jun. 11, 2010.
Kato et al., Improved purification and enzymatic properties of three forms of reverse transcriptase from avian myeloblastosis virus. J Virol Methods. Dec. 1984;9(4):325-39. doi: 10.1016/0166-0934(84)90058-2.
Katoh et al., MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol. Apr. 2013;30(4):772-80. doi: 10.1093/molbev/mst010. Epub Jan. 16, 2013.
Kaufman et al., Translational efficiency of polycistronic mRNAs and their utilization to express heterologous genes in mammalian cells. EMBO J. Jan. 1987;6(1):187-93.
Kavli et al., Excision of cytosine and thymine from DNA by mutants of human uracil-DNA glycosylase. EMBO J. Jul. 1, 1996;15(13):3442-7.
Kawarasaki et al., Enhanced crossover SCRATCHY: construction and high-throughput screening of a combinatorial library containing multiple non-homologous crossovers. Nucleic Acids Res. Nov. 1, 2003;31(21):e126.
Keijzers et al., Human exonuclease 1 (EXO1) activity characterization and its function on flap structures. Biosci Rep. Apr. 25, 2015;35(3):e00206. doi: 10.1042/BSR20150058.
Kelman, PCNA: structure, functions and interactions. Oncogene. Feb. 13, 1997;14(6):629-40. doi: 10.1038/sj.onc.1200886.
Keravala et al., A diversity of serine phage integrases mediate site-specific recombination in mammalian cells. Mol Genet Genomics. Aug. 2006;276(2):135-46. doi: 10.1007/s00438-006-0129-5. Epub May 13, 2006.
Kessel et al., Murine developmental control genes. Science. Jul. 27, 1990;249(4967):374-9. doi: 10.1126/science.1974085.
Kessler et al., Gene delivery to skeletal muscle results in sustained expression and systemic delivery of a therapeutic protein. Proc Natl Acad Sci U S A. Nov. 26, 1996;93(24):14082-7. doi: 10.1073/pnas.93.24.14082.
Ketha et al., Application of bioinformatics-coupled experimental analysis reveals a new transport-competent nuclear localization signal in the nucleoprotein of Influenza A virus strain. BMC Cell Biol. Apr. 28, 2008; 9:22. https://doi.org/10.1186/1471-2121-9-22.
Kilcher et al., Brochothrix thermosphacta bacteriophages feature heterogeneous and highly mosaic genomes and utilize unique prophage insertion sites. J Bacteriol. Oct. 2010;192(20):5441-53. doi: 10.1128/JB.00709-10. Epub Aug. 13, 2010.
Kim et al., DJ-1, a novel regulator of the tumor suppressor PTEN. Cancer Cell. 2005;7(3):263-273.
Kim et al., High cleavage efficiency of a 2A peptide derived from porcine teschovirus-1 in human cell lines, zebrafish and mice. PLoS One. 2011;6(4):e18556. doi: 10.1371/journal.pone.0018556. Epub Apr. 29, 2011.
Kim et al., In vivo genome editing with a small Cas9 orthologue derived from Campylobacter jejuni. Nat Commun. Feb. 21, 2017;8:14500. doi: 10.1038/ncomms14500. PMID: 28220790; PMCID: PMC5473640.
Kim et al., In vivo high-throughput profiling of CRISPR-Cpf1 activity. Nat Methods. Feb. 2017;14(2):153-159. doi: 10.1038/nmeth.4104. Epub Dec. 19, 2016.
Kim et al., Mycobacteriophage Bxb1 integrates into the Mycobacterium smegmatis groEL1 gene. Mol Microbiol. Oct. 2003;50(2):463-73. doi: 10.1046/j.1365-2958.2003.03723.x.
Kim et al., Rescue of high-specificity Cas9 variants using sgRNAs with matched 5′ nucleotides. Genome Biol. Nov. 15, 2017;18(1):218. doi: 10.1186/s13059-017-1355-3.
Kim et al., Structural and kinetic characterization of Escherichia coli TadA, the wobble-specific tRNA deaminase. Biochemistry. May 23, 2006;45(20):6407-16. doi: 10.1021/bi0522394. PMID: 16700551.
King et al., No gain, No pain: NaV1.7 as an analgesic target. ACS Chem Neurosci. Sep. 17, 2014;5(9):749-51. doi: 10.1021/cn500171p. Epub Aug. 11, 2014.
Klapacz et al., Frameshift mutagenesis and microsatellite instability induced by human alkyladenine DNA glycosylase. Mol Cell. Mar. 26, 2010;37(6):843-53. doi: 10.1016/j.molcel.2010.01.038.
Kleiner et al., In vitro selection of a DNA-templated small-molecule library reveals a class of macrocyclic kinase inhibitors. J Am Chem Soc. Aug. 25, 2010;132(33):11779-91. doi: 10.1021/ja104903x.
Kleinstiver et al., Engineered CRISPR-Cas9 nucleases with altered PAM specificities. Nature. Jul. 23, 2015;523(7561):481-5 and Supplementary Materials. doi: 10.1038/nature14592. Epub Jun. 22, 2015. 27 pages.
Klement et al., Discrimination between bacteriophage T3 and T7 promoters by the T3 and T7 RNA polymerases depends primarily upon a three base-pair region located 10 to 12 base-pairs upstream from the start site. J Mol Biol. Sep. 5, 1990;215(1):21-9.
Klompe et al., Transposon-encoded CRISPR-Cas systems direct RNA-guided DNA integration. Nature. Jul. 2019;571(7764):219-225. doi: 10.1038/s41586-019-1323-z. Epub Jun. 12, 2019.
Knott et al., Guide-bound structures of an RNA-targeting A-cleaving CRISPR-Cas13a enzyme. Nat Struct Mol Biol. Oct. 2017;24(10):825-833. doi: 10.1038/nsmb.3466. Epub Sep. 11, 2017.
Koblan et al., Improving cytidine and adenine base editors by expression optimization and ancestral reconstruction. Nat Biotechnol. Oct. 2018;36(9):843-846. doi: 10.1038/nbt.4172. Epub May 29, 2018.
Kobori et al., Deep Sequencing Analysis of Aptazyme Variants Based on a Pistol Ribozyme. ACS Synth Biol. Jul. 2, 20171;6(7):1283-1288. doi: 10.1021/acssynbio.7b00057. Epub Apr. 14, 2017.
Kohli et al., A portable hot spot recognition loop transfers sequence preferences from APOBEC family members to activation-induced cytidine deaminase. J Biol Chem. Aug. 21, 2009;284(34):22898-904. doi: 10.1074/jbc.M109.025536. Epub Jun. 26, 2009.
Koike-Yusa et al., Genome-wide recessive genetic screening in mammalian cells with a lentiviral CRISPR-guide RNA library. Nat Biotechnol. Mar. 2014;32(3):267-73. doi: 10.1038/nbt.2800. Epub Dec. 23, 2013.
Kolot et al., Site promiscuity of coliphage HK022 integrase as a tool for gene therapy. Gene Ther. Jul. 2015;22(7):521-7. doi: 10.1038/gt.2015.9. Epub Mar. 12, 2015.
Kolot et al., Site-specific recombination in mammalian cells expressing the Int recombinase of bacteriophage HK022. Mol Biol Rep. Aug. 1999;26(3):207-13. doi: 10.1023/a:1007096701720.
Komor, Editing the Genome Without Double-Stranded DNA Breaks. ACS Chem Biol. Feb. 16, 2018;13(2):383-388. doi: 10.1021/acschembio.7b00710. Epub Oct. 9, 2017.
Konermann et al., Genome-scale transcriptional activation by an engineered CRISPR-Cas9 complex. Nature. Jan. 29, 2015;517(7536):583-8. doi: 10.1038/nature14136. Epub Dec. 10, 2014.
Koonin et al., Diversity, classification and evolution of CRISPR-Cas systems. Curr Opin Microbiol. 2017;37:67?78. doi:10.1016/j.mib.2017.05.008.
Kosicki et al., Repair of double-strand breaks induced by CRISPR-Cas9 leads to large deletions and complex rearrangements. Nat Biotechnol. Sep. 2018;36(8):765-771. doi: 10.1038/nbt.4192. Epub Jul. 16, 2018.
Kotewicz et al., Cloning and overexpression of Moloney murine leukemia virus reverse transcriptase in Escherichia coli. Gene. 1985;35(3):249-58. doi: 10.1016/0378-1119(85)90003-4.
Kotewicz et al., Isolation of cloned Moloney murine leukemia virus reverse transcriptase lacking ribonuclease H activity. Nucleic Acids Res. Jan. 11, 1988;16(1):265-77. doi: 10.1093/nar/16.1.265.
Kotin, Prospects for the use of adeno-associated virus as a vector for human gene therapy. Hum Gene Ther. Jul. 1994;5(7):793-801. doi: 10.1089/hum.1994.5.7-793.
Kowalski et al., Delivering the Messenger: Advances in Technologies for Therapeutic mRNA Delivery. Mol Ther. Apr. 10, 2019;27(4):710-728. doi: 10.1016/j.ymthe.2019.02.012. Epub Feb. 19, 2019.
Kozak, An analysis of 5′-noncoding sequences from 699 vertebrate messenger RNAs. Nucleic Acids Res. Oct. 26, 1987;15(20):8125-48. doi: 10.1093/nar/15.20.8125.
Kraft et al., Deletions, Inversions, Duplications: Engineering of Structural Variants using CRISPR/Cas in Mice. Cell Rep. Feb. 10, 2015;10(5):833-839. doi: 10.1016/j.celrep.2015.01.016. Epub Feb. 7, 2015.
Kremer et al., Adenovirus and adeno-associated virus mediated gene transfer. Br Med Bull. Jan. 1995;51(1):31-44. doi: 10.1093/oxfordjournals.bmb.a072951.
Krokan et al., Uracil in DNA—occurrence, consequences and repair. Oncogene. Dec. 16, 2002;21(58):8935-48. doi: 10.1038/sj.onc.1205996.
Krokan et al., Base excision repair. Cold Spring Harb Perspect Biol. Apr. 1, 2013;5(4):a012583. doi: 10.1101/cshperspect.a012583.
Krzywkowski et al., Limited reverse transcriptase activity of phi29 DNA polymerase. Nucleic Acids Res. Apr. 20, 2018;46(7):3625-3632. doi: 10.1093/nar/gky190.
Kumar et al., Gene therapy for chronic neuropathic pain: how does it work and where do we stand today? Pain Med. May 2011;12(5):808-22. doi: 10.1111/j.1526-4637.2011.01120.x.
Kunkel et al., Eukaryotic Mismatch Repair in Relation to DNA Replication. Annu Rev Genet. 2015;49:291-313. doi: 10.1146/annurev-genet-112414-054722.
Kurjan et al., Structure of a yeast pheromone gene (MF alpha): a putative alpha-factor precursor contains four tandem copies of mature alpha-factor. Cell. Oct. 1982;30(3):933-43. doi: 10.1016/0092-8674(82)90298-7.
Kuscu et al., CRISPR-Cas9-AID base editor is a powerful gain-of-function screening tool. Nat Methods. Nov. 29, 2016;13(12):983-984. doi: 10.1038/nmeth.4076.
Kwart et al., Precise and efficient scarless genome editing in stem cells using CORRECT. Nat Protoc. Feb. 2017;12(2):329-354. doi: 10.1038/nprot.2016.171. Epub Jan. 19, 2017.
Kweon et al., Fusion guide RNAs for orthogonal gene manipulation with Cas9 and Cpf1. Nat Commun. Nov. 23, 2017;8(1):1723. doi: 10.1038/s41467-017-01650-w. Erratum in: Nat Commun. Jan. 16, 2018;9(1):303.
Kügler et al., Human synapsin 1 gene promoter confers highly neuron-specific long-term transgene expression from an adenoviral vector in the adult rat brain depending on the transduced area. Gene Ther. Feb. 2003;10(4):337-47. doi: 10.1038/sj.gt.3301905.
Lada et al., Mutator effects and mutation signatures of editing deaminases produced in bacteria and yeast. Biochemistry (Mosc). Jan. 2011;76(1):131-46.
Lakich et al., Inversions disrupting the factor VIII gene are a common cause of severe haemophilia A. Nat Genet. Nov. 1993;5(3):236-41. doi: 10.1038/ng1193-236.
Lancaster et al., Limited trafficking of a neurotropic virus through inefficient retrograde axonal transport and the type I interferon response. PLoS Pathog. Mar. 5, 2010;6(3):e1000791. doi: 10.1371/journal.ppat.1000791.
Landrum et al., ClinVar: public archive of relationships among sequence variation and human phenotype. Nucleic Acids Res. Jan. 2014;42(Database issue):D980-5. doi: 10.1093/nar/gkt1113. Epub Nov. 14, 2013.
Lauer et al., Construction, characterization, and use of two Listeria monocytogenes site-specific phage integration vectors. J Bacteriol. Aug. 2002;184(15):4177-86. doi: 10.1128/jb.184.15.4177-4186.2002.
Lawyer et al., High-level expression, purification, and enzymatic characterization of full-length Thermus aquaticus DNA polymerase and a truncated form deficient in 5′ to 3′ exonuclease activity. PCR Methods Appl. May 1993;2(4):275-87. doi: 10.1101/gr.2.4.275.
Lazarevic et al., Nucleotide sequence of the Bacillus subtilis temperate bacteriophage SPbetac2. Microbiology (Reading). May 1999;145 ( Pt 5):1055-1067. doi: 10.1099/13500872-145-5-1055.
Le Grice et al., Purification and characterization of recombinant equine infectious anemia virus reverse transcriptase. J Virol. Dec. 1991;65(12):7004-7. doi: 10.1128/JVI.65.12.7004-7007.1991.
Leaver-Fay et al., ROSETTA3: an object-oriented software suite for the simulation and design of macromolecules. Methods Enzymol. 2011;487:545-74. doi: 10.1016/B978-0-12-381270-4.00019-6.
Leconte et al., A population-based experimental model for protein evolution: effects of mutation rate and selection stringency on evolutionary outcomes. Biochemistry. Feb. 26, 2013;52(8): 1490-9. doi: 10.1021/bi3016185. Epub Feb. 14, 2013.
Lee et al., A monoclonal antibody that targets a NaV1.7 channel voltage sensor for pain and itch relief. Cell. Jun. 5, 2014;157(6):1393-1404. doi: 10.1016/j.cell.2014.03.064. Epub May 22, 2014. Retraction in: Cell. Jun. 25, 2020;181(7):1695.
Lee et al., Group I Intron-Based Therapeutics Through Trans-Splicing Reaction. Prog Mol Biol Transl Sci. 2018;159:79-100. doi: 10.1016/bs.pmbts.2018.07.001. Epub Aug. 9, 2018.
Lee et al., Site-specific integration of mycobacteriophage L5: integration-proficient vectors for Mycobacterium smegmatis, Mycobacterium tuberculosis, and bacille Calmette-Guérin. Proc Natl Acad Sci U S A. Apr. 15, 1991;88(8):3111-5. doi: 10.1073/pnas.88.8.3111.
Lee et al., Synthetically modified guide RNA and donor DNA are a versatile platform for CRISPR-Cas9 engineering. Elife. May 2, 2017;6:e25312. doi: 10.7554/eLife.25312.
Lee et al., Targeted chromosomal deletions in human cells using zinc finger nucleases. Genome Res. Jan. 2010 20: 81-89; Published in Advance Dec. 1, 2009, doi:10.1101/gr.099747.109.
Lee et al., Transcriptional regulation and its misregulation in disease. Cell. Mar. 14, 2013;152(6):1237-51. doi: 10.1016/j.cell.2013.02.014.
Lei et al., Site-specificity of serine integrase demonstrated by the attB sequence preference of ?BT1 integrase. FEBS Lett. Apr. 2018;592(8):1389-1399. doi: 10.1002/1873-3468.13023. Epub Mar. 25, 2018.
Leipold et al., A de novo gain-of-function mutation in SCN11A causes loss of pain perception. Nat Genet. Nov. 2013;45(11):1399-404. doi: 10.1038/ng.2767. Epub Sep. 15, 2013.
Lemos et al., CRISPR/Cas9 cleavages in budding yeast reveal templated insertions and strand-specific insertion/deletion profiles. Proc Natl Acad Sci U S A. Feb. 27, 2018;115(9):E2040-E2047. doi: 10.1073/pnas.1716855115. Epub Feb. 13, 2018.
Levy et al., Cytosine and adenine base editing of the brain, liver, retina, heart and skeletal muscle of mice via adeno-associated viruses. Nat Biomed Eng. 2020;4(1):97-110. doi:10.1038/s41551-019-0501-5.
Levy et al., Membrane-associated guanylate kinase dynamics reveal regional and developmental specificity of synapse stability. J Physiol. Mar. 1, 2017;595(5):1699-1709. doi: 10.1113/JP273147. Epub Jan. 18, 2017.
Lew et al., Protein splicing in vitro with a semisynthetic two-component minimal intein. J Biol Chem. Jun. 26, 1998;273(26):15887-90. doi: 10.1074/jbc.273.26.15887.
Lewis et al., Cytosine deamination and the precipitous decline of spontaneous mutation during Earth's history. Proc Natl Acad Sci U S A. Jul. 19, 2016;113(29):8194-9. doi: 10.1073/pnas.1607580113. Epub Jul. 5, 2016.
Lewis et al., RNA modifications and structures cooperate to guide RNA-protein interactions. Nat Rev Mol Cell Biol. Mar. 2017;18(3):202-210. doi: 10.1038/nrm.2016.163. Epub Feb. 1, 2017.
Li et al., A Radioactivity-Based Assay for Screening Human m6A-RNA Methyltransferase, METTL3-METTL14 Complex, and Demethylase ALKBH5. J Biomol Screen. Mar. 2016;21(3):290-7. doi: 10.1177/1087057115623264. Epub Dec. 23, 2015.
Li et al., Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics. Jul. 15, 2009;25(14):1754-60. doi: 10.1093/bioinformatics/btp324. Epub May 18, 2009.
Li et al., Lagging strand DNA synthesis at the eukaryotic replication fork involves binding and stimulation of FEN-1 by proliferating cell nuclear antigen. J Biol Chem. Sep. 22, 1995;270(38):22109-12. doi: 10.1074/jbc.270.38.22109.
Li et al., Loss of post-translational modification sites in disease. Pac Symp Biocomput. 2010:337-47. doi: 10.1142/9789814295291_0036.
Li et al., Programmable Single and Multiplex Base-Editing in Bombyx mori Using RNA-Guided Cytidine Deaminases. G3 (Bethesda). May 4, 2018;8(5):1701-1709. doi: 10.1534/g3.118.200134.
Li et al., Protein trans-splicing as a means for viral vector-mediated in vivo gene therapy. Hum Gene Ther. Sep. 2008;19(9):958-64. doi: 10.1089/hum.2008.009.
Li et al., RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinformatics. Aug. 4, 2011;12:323. doi: 10.1186/1471-2105-12-323.
Li, Mechanisms and functions of DNA mismatch repair. Cell Res. Jan. 2008;18(1):85-98. doi: 10.1038/cr.2007.115.
Liang et al., Correction of ?-thalassemia mutant by base editor in human embryos. Protein Cell. Nov. 2017;8(11):811-822. doi: 10.1007/s13238-017-0475-6. Epub Sep. 23, 2017.
Liang et al., Homology-directed repair is a major double-strand break repair pathway in mammalian cells. Proc Natl Acad Sci U S A. Apr. 28, 1998;95(9):5172-7. doi: 10.1073/pnas.95.9.5172.
Liao et al., One-step assembly of large CRISPR arrays enables multi-functional targeting and reveals constraints on array design. bioRxiv. May 2, 2018. doi: 10.1101/312421. 45 pages.
Liefke et al., The oxidative demethylase ALKBH3 marks hyperactive gene promoters in human cancer cells. Genome Med. Jun. 30, 2015;7(1):66. doi: 10.1186/s13073-015-0180-0.
Lienert et al., Two- and three-input TALE-based AND logic computation in embryonic stem cells. Nucleic Acids Res. Nov. 2013;41(21):9967-75. doi: 10.1093/nar/gkt758. Epub Aug. 27, 2013.
Lilley, D.M. The Varkud Satellite Ribozyme. RNA. Feb. 2004;10(2):151-8.doi: 10.1261/rna.5217104.
Lim et al., Crystal structure of the moloney murine leukemia virus RNase H domain. J Virol. Sep. 2006;80(17):8379-89. doi: 10.1128/JVI.00750-06.
Lim et al., Viral vectors for neurotrophic factor delivery: a gene therapy approach for neurodegenerative diseases of the CNS. Pharmacol Res. Jan. 2010;61(1):14-26. doi: 10.1016/j.phrs.2009.10.002. Epub Oct. 17, 2009.
Lin et al., The human REV1 gene codes for a DNA template-dependent dCMP transferase. Nucleic Acids Res. Nov. 15, 1999;27(22):4468-75. doi: 10.1093/nar/27.22.4468.
Liu et al., Split dnaE genes encoding multiple novel inteins in Trichodesmium erythraeum. J Biol Chem. Jul. 18, 2003;278(29):26315-8. doi: 10.1074/jbc.C300202200. Epub May 24, 2003.
Liu et al., A METTL3-METTL14 complex mediates mammalian nuclear RNA N6-adenosine methylation. Nat Chem Biol. Feb. 2014;10(2):93-5. doi: 10.1038/nchembio.1432. Epub Dec. 6, 2013.
Liu et al., Adding new chemistries to the genetic code. Annu Rev Biochem. 2010;79:413-44. doi: 10.1146/annurev.biochem.052308.105824.
Liu et al., Calcineurin is a common target of cyclophilin-cyclosporin A and FKBP-FK506 complexes. Cell. Aug. 23, 1991;66(4):807-15. doi: 10.1016/0092-8674(91)90124-h.
Liu et al., CasX enzymes comprise a distinct family of RNA-guided genome editors. Nature. Feb. 2019;566(7743):218-223. doi: 10.1038/s41586-019-0908-x. Epub Feb. 4, 2019. Author manuscript entitled CRISPR-CasX is an RNA-dominated enzyme active for human genome editing.
Liu et al., Direct Promoter Repression by BCL11A Controls the Fetal to Adult Hemoglobin Switch. Cell. Apr. 5, 2018;173(2):430-442.e17. doi: 10.1016/j.cell.2018.03.016. Epub Mar. 29, 2018.
Liu et al., Editing DNA Methylation in the Mammalian Genome. Cell. Sep. 22, 2016;167(1):233- 247.e17. doi: 10.1016/j.cell.2016.08.056.
Liu et al., Flap endonuclease 1: a central component of DNA metabolism. Annu Rev Biochem. 2004;73:589-615. doi:10.1146/annurev.biochem.73.012803.092453.
Liu et al., Functional Nucleic Acid Sensors. Chem Rev. May 2009; 109(5):1948-98. doi: 10.1021/cr030183i.
Liu et al., Genetic incorporation of unnatural amino acids into proteins in mammalian cells. Nat Methods. Mar. 2007;4(3):239-44. Epub Feb. 25, 2007.
Liu et al., Highly efficient RNA-guided base editing in rabbit. Nat Commun. Jul. 13, 2018;9(1):2717. doi: 10.1038/s41467-018-05232-2.
Liu et al., (6)-methyladenosine-dependent RNA structural switches regulate RNA-protein interactions. Nature. Feb. 26, 2015;518(7540):560-4. doi: 10.1038/nature14234.
Liu et al., Probing N6-methyladenosine RNA modification status at single nucleotide resolution in mRNA and long noncoding RNA. RNA. Dec. 2013;19(12):1848-56. doi: 10.1261/rna.041178.113. Epub Oct. 18, 2013.
Liu et al., Reverse transcriptase of foamy virus. Purification of the enzymes and immunological identification. Arch Virol. 1977;55(3):187-200. doi: 10.1007/BF01319905.
Liu et al., Reverse transcriptase-mediated tropism switching in Bordetella bacteriophage. Science. Mar. 15, 2002;295(5562):2091-4. doi: 10.1126/science.1067467.
Liu et al., Saccharomyces cerevisiae flap endonuclease 1 uses flap equilibration to maintain triplet repeat stability. Mol Cell Biol. May 2004;24(9):4049-64. doi: 10.1128/MCB.24.9.4049-4064.2004.
Liu et al., The Molecular Architecture for RNA-Guided RNA Cleavage by Cas13a. Cell. Aug. 10, 2017;170(4):714-726.e10. doi: 10.1016/j.cell.2017.06.050. Epub Jul. 27, 2017.
Loessner et al., Complete nucleotide sequence, molecular analysis and genome structure of bacteriophage A118 of Listeria monocytogenes: implications for phage evolution. Mol Microbiol. Jan. 2000;35(2):324-40. doi: 10.1046/j.1365-2958.2000.01720.x.
Long et al., Postnatal genome editing partially restores dystrophin expression in a mouse model of muscular dystrophy. Science. Jan. 22, 2016;351(6271):400-3. doi: 10.1126/science.aad5725. Epub Dec. 31, 2015.
Lopez-Girona et al., Cereblon is a direct protein target for immunomodulatory and antiproliferative activities of lenalidomide and pomalidomide. Leukemia. Nov. 2012;26(11):2326-35. doi: 10.1038/leu.2012.119. Epub May 3, 2012.
Lorenz et al., ViennaRNA Package 2.0. Algorithms Mol Biol. Nov. 24, 2011;6:26. doi: 10.1186/1748-7188-6-26.
Luan et al., Reverse transcription of R2Bm RNA is primed by a nick at the chromosomal target site: a mechanism for non-LTR retrotransposition. Cell. Feb. 26, 1993;72(4):595-605. doi: 10.1016/0092-8674(93)90078-5.
Luckow et al., High level expression of nonfused foreign genes with Autographa californica nuclear polyhedrosis virus expression vectors. Virology. May 1989;170(1):31-9. doi: 10.1016/0042-6822(89)90348-6.
Lukacsovich et al., Repair of a specific double-strand break generated within a mammalian chromosome by yeast endonuclease I-SceI. Nucleic Acids Res. Dec. 25, 1994;22(25):5649-57. doi: 10.1093/nar/22.25.5649.
Lynch, Evolution of the mutation rate. Trends Genet. Aug. 2010;26(8):345-52. doi: 10.1016/j.tig.2010.05.003. Epub Jun. 30, 2010.
Lüke et al., Partial purification and characterization of the reverse transcriptase of the simian immunodeficiency virus TYO-7 isolated from an African green monkey. Biochemistry. Feb. 20, 1990;29(7):1764-9. doi: 10.1021/bi00459a015.
Ma et al., Identification of pseudo attP sites for phage phiC31 integrase in bovine genome. Biochem Biophys Res Commun. Jul. 7, 2006;345(3):984-8. doi: 10.1016/j.bbrc.2006.04.145. Epub May 3, 2006.
Ma et al., In vitro protein engineering using synthetic tRNA(Ala) with different anticodons. Biochemistry. Aug. 10, 1993;32(31):7939-45.
Ma et al., PhiC31 integrase induces efficient site-specific recombination in the Capra hircus genome. DNA Cell Biol. Aug. 2014;33(8):484-91. doi: 10.1089/dna.2013.2124. Epub Apr. 22, 2014.
Ma et al., Single-Stranded DNA Cleavage by Divergent CRISPR-Cas9 Enzymes. Mol Cell. Nov. 5, 2015;60(3):398-407. doi: 10.1016/j.molcel.2015.10.030.
Maas et al., Identification and characterization of a human tRNA-specific adenosine deaminase related to the ADAR family of pre-mRNA editing enzymes. Proc Natl Acad Sci U S A. Aug. 3, 1999;96(16):8895-900. doi: 10.1073/pnas.96.16.8895.
Macbeth et al., Inositol hexakisphosphate is bound in the ADAR2 core and required for RNA editing. Science. Sep. 2, 2005;309(5740):1534-9. doi: 10.1126/science.1113150.
Macrae et al., Ribonuclease revisited: structural insights into ribonuclease III family enzymes. Curr Opin Struct Biol. Feb. 2007;17(1):138-45. doi: 10.1016/j.sbi.2006.12.002. Epub Dec. 27, 2006.
Madura et al., Structural basis for ineffective T-cell responses to MHC anchor residue-improved “heteroclitic” peptides. Eur J Immunol. Feb. 2015;45(2):584-91. doi: 10.1002/eji.201445114. Epub Dec. 28, 2014.
Magin et al., Corf, the Rev/Rex homologue of HTDV/HERV-K, encodes an arginine-rich nuclear localization signal that exerts a trans-dominant phenotype when mutated. Virology. Aug. 15, 2000;274(1):11-6. doi: 10.1006/viro.2000.0438.
Maizels et al., Initiation of homologous recombination at DNA nicks. Nucleic Acids Res. Aug. 21, 2018;46(14):6962-6973. doi: 10.1093/nar/gky588.
Makarova et al., Classification and Nomenclature of CRISPR-Cas Systems: Where from Here? Crispr J. Oct. 2018;1(5):325-336. doi: 10.1089/crispr.2018.0033.
Makeyev et al., Evolutionary potential of an RNA virus. J Virol. Feb. 2004;78(4):2114-20.
Malashkevich et al., Crystal structure of tRNA adenosine deaminase TadA from Escherichia coli. Deposited: Mar. 10, 2005 Released: Feb. 21, 2006 doi:10.2210/pdb1z3a/pdb (2006).
Malito et al., Structural basis for lack of toxicity of the diphtheria toxin mutant CRM197. Proc Natl Acad Sci U S A. Apr. 3, 2012;109(14):5229-34. doi: 10.1073/pnas.1201964109. Epub Mar. 19, 2012.
Mandal et al., Efficient ablation of genes in human hematopoietic stem and effector cells using CRISPR/Cas9. Cell Stem Cell. Nov. 6, 2014;15(5):643-52. doi: 10.1016/j.stem.2014.10.004. Epub Nov. 6, 2014.
Mandal et al., Riboswitches Control Fundamental Biochemical Pathways in Bacillus Subtilis and Other Bacteria. Cell. May 30, 2003;113(5):577-86. doi: 10.1016/s0092-8674(03)00391-x.
Marceau, Functions of single-strand DNA-binding proteins in DNA replication, recombination, and repair. Methods Mol Biol. 2012;922:1-21. doi: 10.1007/978-1-62703-032-8_1.
Maresca et al., Obligate ligation-gated recombination (ObLiGaRe): custom-designed nuclease-mediated targeted integration through nonhomologous end joining. Genome Res. Mar. 2013;23(3):539-46. Doi: 10.1101/gr.145441.112. Epub Nov. 14, 2012.
Martinez et al., Hypermutagenesis of RNA using human immunodeficiency virus type 1 reverse transcriptase and biased dNTP concentrations. Proc Natl Acad Sci U S A. Dec. 6, 1994;91(25):11787-91. doi: 10.1073/pnas.91.25.11787.
Martsolf et al., Complete trisomy 17p a relatively new syndrome. Ann Genet. 1988;31(3):172-4.
Martz, L., Nav-i-gating antibodies for pain. Science-Business eXchange. Jun. 12, 2014;7(662):1-2. doi: 10.1038/scibx.2014.662.
Mascola et al., HIV-1 neutralizing antibodies: understanding nature's pathways. Immunol Rev. Jul. 2013;254(1):225-44. doi: 10.1111/imr.12075.
Mathys et al., Characterization of a self-splicing mini-intein and its conversion into autocatalytic- and C-terminal cleavage elements: facile production of protein building blocks for protein ligation. Gene. Apr. 29, 1999;231(1-2):1-13. doi: 10.1016/s0378-1119(99)00103-1.
Matsuura et al., A gene essential for the site-specific excision of actinophage r4 prophage genome from the chromosome of a lysogen. J Gen Appl Microbiol. 1995;41(1):53-61.
Matthews, Structures of human ADAR2 bound to dsRNA reveal base-flipping mechanism and basis for site selectivity. Nat Struct Mol Biol. May 2016;23(5):426-33. doi: 10.1038/nsmb.3203. Epub Apr. 11, 2016.
May et al., Emergent lineages of mumps virus suggest the need for a polyvalent vaccine. Int J Infect Dis. Jan. 2018;66:1-4. doi: 10.1016/j.ijid.2017.09.024. Epub Oct. 4, 2017.
McCarroll et al., Copy-number variation and association studies of human disease. Nat Genet. Jul. 2007;39(7 Suppl):S37-42. doi: 10.1038/ng2080.
Mconald et al., Characterization of mutations at the mouse phenylalanine hydroxylase locus. Genomics. Feb. 1, 1997;39(3):402-5. doi: 10.1006/geno.1996.4508.
Mcinerney et al., Error Rate Comparison during Polymerase Chain Reaction by DNA Polymerase. Mol Biol Int. 2014;2014:287430. doi: 10.1155/2014/287430. Epub Aug. 17, 2014.
Mckenna et al., Recording development with single cell dynamic lineage tracing. Development. Jun. 27, 2019;146(12):dev169730. doi: 10.1242/dev.169730.
Mckenna et al., Whole-organism lineage tracing by combinatorial and cumulative genome editing. Science. Jul. 29, 2016;353(6298):aaf7907. doi: 10.1126/science.aaf7907. Epub May 26, 2016.
Mcvey et al., MMEJ repair of double-strand breaks (director's cut): deleted sequences and alternative endings. Trends Genet. Nov. 2008;24(11):529-38. doi: 10.1016/j.tig.2008.08.007. Epub Sep. 21, 2008.
Mead et al., A novel protective prion protein variant that colocalizes with kuru exposure. Engl J Med. Nov. 19, 2009;361(21):2056-65. doi: 10.1056/NEJMoa0809716.
Meinke et al., Cre Recombinase and Other Tyrosine Recombinases. Chem Rev. Oct. 26, 2016;116(20):12785-12820. doi: 10.1021/acs.chemrev.6b00077. Epub May 10, 2016.
Menéndez-Arias, Mutation rates and intrinsic fidelity of retroviral reverse transcriptases. Viruses. Dec. 2009;1(3):1137-65. doi: 10.3390/v1031137. Epub Dec. 4, 2009.
Mertens et al., Site-specific recombination in bacteriophage Mu: characterization of binding sites for the DNA invertase Gin. EMBO J. Apr. 1988;7(4):1219-27.
Meyer et al., Comprehensive analysis of mRNA methylation reveals enrichment in 3′ UTRs and near stop codons. Cell. Jun. 22, 2012;149(7):1635-46. doi: 10.1016/j.cell.2012.05.003. Epub May 17, 2012.
Meyer et al., Library generation by gene shuffling. Curr Protoc Mol Biol. Jan. 6, 2014;105:Unit 15.12.. doi: 10.1002/0471142727.mb1512s105.
Meyer et al., Ribosome biogenesis factor Tsr3 is the aminocarboxypropyl transferase responsible for 18S rRNA hypermodification in yeast and humans. Nucleic Acids Res. May 19, 2016;44(9):4304-16. doi: 10.1093/nar/gkw244. Epub Apr. 15, 2016.
Meyer et al., The dynamic epitranscriptome: N6-methyladenosine and gene expression control. Nat Rev Mol Cell Biol. May 2014;15(5):313-26. doi: 10.1038/nrm3785. Epub Apr. 9, 2014.
Michel et al., Mitochondrial class II introns encode proteins related to the reverse transcriptases of retroviruses. Nature. Aug. 15-21, 1985;316(6029):641-3. doi: 10.1038/316641a0.
Mihai et al., PTEN inhibition improves wound healing in lung epithelia through changes in cellular mechanics that enhance migration. Am J Physiol Lung Cell Mol Physiol. 2012;302(3):L287-L299.
Mijakovic et al., Bacterial single-stranded DNA-binding proteins are phosphorylated on tyrosine. Nucleic Acids Res. Mar. 20, 2006;34(5):1588-96. doi: 10.1093/nar/gkj514.
Miller et al., Construction and properties of retrovirus packaging cells based on gibbon ape leukemia virus. J Virol. May 1991;65(5):2220-4. doi: 10.1128/JVI.65.5.2220-2224.1991.
Miller, Human gene therapy comes of age. Nature. Jun. 11, 1992;357(6378):455-60. doi: 10.1038/357455a0.
Mills et al., Protein splicing in trans by purified- and C-terminal fragments of the Mycobacterium tuberculosis RecA intein. Proc Natl Acad Sci U S A. Mar. 31, 1998;95(7):3543-8. doi: 10.1073/pnas.95.7.3543.
Mir et al., Two Active Site Divalent Ions in the Crystal Structure of the Hammerhead Ribozyme Bound to a Transition State Analogue. Biochemistry. . Feb. 2, 2016;55(4):633-6. doi: 10.1021/acs.biochem.5b01139. Epub Jan. 19, 2016.
Mir et al., Type II-C CRISPR-Cas9 Biology, Mechanism, and Application. ACS Chem Biol. Feb. 16, 2018;13(2):357-365. doi: 10.1021/acschembio.7b00855. Epub Dec. 20, 2017.
Mishina et al., Conditional gene targeting on the pure C57BL/6 genetic background. Neurosci Res. Jun. 2007;58(2):105-12. doi: 10.1016/j.neures.2007.01.004. Epub Jan. 18, 2007.
Mitani et al., Delivering therapeutic genes—matching approach and application. Trends Biotechnol. May 1993;11(5):162-6. doi: 10.1016/0167-7799(93)90108-L.
Mitton-Fry et al., Poly(A) tail recognition by a viral RNA element through assembly of a triple helix. Science. Nov. 26, 2010;330(6008): 1244-7. doi: 10.1126/science.1195858.
Miyaoka et al., Systematic quantification of HDR and NHEJ reveals effects of locus, nuclease, and cell type on genome-editing. Sci Rep. Mar. 31, 2016;6:23549. doi: 10.1038/srep23549.
Moede et al., Identification of a nuclear localization signal, RRMKWKK, in the homeodomain transcription factor PDX-1. FEBS Lett. Nov. 19, 1999;461(3):229-34. doi: 10.1016/s0014-5793(99)01446-5.
Mohr et al., A Reverse Transcriptase-Cas1 Fusion Protein Contains a Cas6 Domain Required for Both Crispr RNA Biogenesis and RNA Spacer Acquisition. Mol Cell. Nov. 15, 2018;72(4):700-714.e8. doi: 10.1016/j.molcel.2018.09.013. Epub Oct. 18, 2018.
Mohr et al., A Reverse Transcriptase-Cas1 Fusion Protein Contains a Cas6 Domain Required for Both Crispr RNA Biogenesis and RNA Spacer Acquisition. Mol Cell. Nov. 15, 2018;72(4):700-714.e8. doi: 10.1016/j.molcel.2018.09.013. Epub Oct. 18, 2018. Including Supplemental Information.
Mohr et al., Thermostable group II intron reverse transcriptase fusion proteins and their use in cDNA synthesis and next-generation RNA sequencing. RNA. Jul. 2013;19(7):958-70. doi: 10.1261/rna.039743.113. Epub May 22, 2013.
Mol et al., Crystal structure and mutational analysis of human uracil-DNA glycosylase: structural basis for specificity and catalysis. Cell. Mar. 24, 1995;80(6):869-78. doi: 10.1016/0092-8674(95)90290-2.
Monot et al., The specificity and flexibility of 11 reverse transcription priming at imperfect T-tracts. PLoS Genet. May 2013;9(5):e1003499. doi: 10.1371/journal.pgen.1003499. Epub May 9, 2013.
Mootz et al., Protein splicing triggered by a small molecule. J Am Chem Soc. Aug. 7, 2002;124(31):9044-5 and Supporting Information. doi: 10.1021/ja0267690. 4 pages.
Moreno-Mateos et al., CRISPRscan: designing highly efficient sgRNAs for CRISPR-Cas9 targeting in vivo. Nat Methods. Oct. 2015;12(10):982-8. doi: 10.1038/nmeth.3543. Epub Aug. 31, 2015.
Morita et al., The site-specific recombination system of actinophage TG1. FEMS Microbiol Lett. Aug. 2009;297(2):234-40. doi: 10.1111/j.1574-6968.2009.01683.x.
Mougiakos et al., Characterizing a thermostable Cas9 for bacterial genome editing and silencing. Nat Commun. Nov. 21, 2017;8(1):1647. doi: 10.1038/s41467-017-01591-4.
Muir et al., Expressed protein ligation: a general method for protein engineering. Proc Natl Acad Sci U S A. Jun. 9, 1998;95(12):6705-10. doi: 10.1073/pnas.95.12.6705.
Muller et al., Nucleotide exchange and excision technology (NExT) DNA shuffling: a robust method for DNA fragmentation and directed evolution. Nucleic Acids Res. Aug. 1, 2005;33(13):e117. doi: 10.1093/nar/gni116. PMID: 16061932; PMCID: PMC1182171.
Muller, U.F., Design and Experimental Evolution of trans-Splicing Group I Intron Ribozymes. Molecules. Jan. 2, 2017;22(1):75. doi: 10.3390/molecules22010075.
Mumtsidu et al., Structural features of the single-stranded DNA-binding protein of Epstein-Barr virus. J Struct Biol. Feb. 2008;161(2):172-87. doi: 10.1016/j.jsb.2007.10.014. Epub Nov. 1, 2007.
Muzyczka et al., Adeno-associated virus (AAV) vectors: will they work? J Clin Invest. Oct. 1994;94(4):1351. doi: 10.1172/JCI117468.
Myerowitz et al., The major defect in Ashkenazi Jews with Tay-Sachs disease is an insertion in the gene for the alpha-chain of beta-hexosaminidase. J Biol Chem. Dec. 15, 1988;263(35):18587-9.
Myers et al., Insulin signal transduction and the IRS proteins. Annu Rev Pharmacol Toxicol. 1996;36:615-58. doi: 10.1146/annurev.pa.36.040196.003151.
Nabel et al., Direct gene transfer for immunotherapy and immunization. Trends Biotechnol. May 1993;11(5):211-5. doi: 10.1016/0167-7799(93)90117-R.
Nahar et al., A G-quadruplex motif at the 3′ end of sgRNAs improves CRISPR-Cas9 based genome editing efficiency. Chem Commun (Camb). Mar. 7, 2018;54(19):2377-2380. doi: 10.1039/c7cc08893k. Epub Feb. 16, 2018.
Nakade et al., Microhomology-mediated end-joining-dependent integration of donor DNA in cells and animals using TALENs and CRISPR/Cas9. Nat Commun. Nov. 20, 2014;5:5560. doi: 10.1038/ncomms6560.
Nakamura et al., Codon usage tabulated from international DNA sequence databases: status for the year 2000. Nucleic Acids Res. Jan. 1, 2000;28(1):292. doi: 10.1093/nar/28.1.292.
Naorem et al., DGR mutagenic transposition occurs via hypermutagenic reverse transcription primed by nicked template RNA. Proc Natl Acad Sci U S A. Nov. 21, 2017;114(47):E10187-E10195. doi: 10.1073/pnas.1715952114. Epub Nov. 6, 2017.
Nern et al., Multiple new site-specific recombinases for use in manipulating animal genomes. Proc Natl Acad Sci U S A. Aug. 23, 2011;108(34):14198-203. doi: 10.1073/pnas.1111704108. Epub Aug. 9, 2011.
Nguyen et al., Evolutionary drivers of thermoadaptation in enzyme catalysis. Science. Jan. 20, 2017;355(6322):289-294. doi: 10.1126/science.aah3717. Epub Dec. 22, 2016.
Nguyen et al., IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol Biol Evol. Jan. 2015;32(1):268-74. doi: 10.1093/molbev/msu300. Epub Nov. 3, 2014.
Ni et al., A PCSK9-binding antibody that structurally mimics the EGF(A) domain of LDL-receptor reduces LDL cholesterol in vivo. J Lipid Res. 2011;52:76-86.
Nishida et al., Targeted nucleotide editing using hybrid prokaryotic and vertebrate adaptive immune systems. Science. Sep. 16, 2016;353(6305). pii: aaf8729. doi: 10.1126/science.aaf8729. Epub Aug. 4, 2016.
Nishikura, Functions and regulation of RNA editing by ADAR deaminases. Annu Rev Biochem. 2010;79:321-349. doi:10.1146/annurev-biochem-060208-105251.
Nishimasu et al., Crystal Structure of Staphylococcus aureus Cas9. Cell. Aug. 27, 2015;162(5): 1113-26. doi: 10.1016/j.cell.2015.08.007.
Nishimasu et al., Engineered CRISPR-Cas9 nuclease with expanded targeting space. Science. Sep. 21, 2018;361(6408):1259-1262. doi: 10.1126/science.aas9129. Epub Aug. 30, 2018.
Nomura et al., Controlling Mammalian Gene Expression by Allosteric Hepatitis Delta Virus Ribozymes. ACS Synth Biol. Dec. 20, 2013;2(12):684-9. doi: 10.1021/sb400037a. Epub May 22, 2013.
Nottingham et al., RNA-seq of human reference RNA samples using a thermostable group II intron reverse transcriptase. RNA. Apr. 2016;22(4):597-613. doi: 10.1261/rna.055558.115. Epub Jan. 29, 2016.
Nowak et al., Characterization of single-stranded DNA-binding proteins from the psychrophilic bacteria Desulfotalea psychrophila, Flavobacterium psychrophilum, Psychrobacter arcticus, Psychrobacter cryohalolentis, Psychromonas ingrahamii, Psychroflexus torquis, and Photobacterium profundum. BMC Microbiol. Apr. 14, 2014;14:91. doi: 10.1186/1471-2180-14-91.
Nowak et al., Guide RNA Engineering for Versatile Cas9 Functionality. Nucleic Acids Res. Nov. 16, 2016;44(20):9555-9564. doi: 10.1093/nar/gkw908. Epub Oct. 12, 2016.
Nowak et al., Structural analysis of monomeric retroviral reverse transcriptase in complex with an RNA/DNA hybrid. Nucleic Acids Res. Apr. 1, 2013;41(6):3874-87. doi: 10.1093/nar/gkt053. Epub Feb. 4, 2013.
Numrych et al., A comparison of the effects of single-base and triple-base changes in the integrase arm-type binding sites on the site-specific recombination of bacteriophage lambda. Nucleic Acids Res. Jul. 11, 1990;18(13):3953-9. doi: 10.1093/nar/18.13.3953.
Nyerges et al., A highly precise and portable genome engineering method allows comparison of mutational effects across bacterial species. Proc Natl Acad Sci U S A. Mar. 1, 2016;113(9):2502-7. doi: 10.1073/pnas.1520040113. Epub Feb. 16, 2016.
O'Maille et al., Structure-based combinatorial protein engineering (SCOPE). J Mol Biol. Aug. 23, 2002;321(4):677-91.
Oakes et al., CRISPR-Cas9 Circular Permutants as Programmable Scaffolds for Genome Modification. Cell. Jan. 10, 2019;176(1-2):254-267.e16. doi: 10.1016/j.cell.2018.11.052.
Oakes et al., Profiling of engineering hotspots identifies an allosteric CRISPR-Cas9 switch. Nat Biotechnol. Jun. 2016;34(6):646-51. doi: 10.1038/nbt.3528. Epub May 2, 2016.
Odsbu et al., Specific -terminal interactions of the Escherichia coli SeqA protein are required to form multimers that restrain negative supercoils and form foci. Genes Cells. Nov. 2005;10(11):1039-49.
Oeemig et al., Solution structure of DnaE intein from Nostoc punctiforme: structural basis for the design of a new split intein suitable for site-specific chemical modification. FEBS Lett. May 6, 2009;583(9):1451-6.
Oh et al., Positional cloning of a gene for Hermansky-Pudlak syndrome, a disorder of cytoplasmic organelles. Nat Genet. Nov. 1996;14(3):300-6. doi: 10.1038/ng1196-300.
Ohe et al., Purification and properties of xanthine dehydrogenase from Streptomyces cyanogenus. J Biochem. Jul. 1979;86(1):45-53.
Olivares et al., Site-specific genomic integration produces therapeutic Factor IX levels in mice. Nat Biotechnol. Nov. 2002;20(11):1124-8. doi: 10.1038/nbt753. Epub Oct. 15, 2002.
Olorunniji et al., Purification and In Vitro Characterization of Zinc Finger Recombinases. Methods Mol Biol. 2017;1642:229-245. doi: 10.1007/978-1-4939-7169-5_15.
Olorunniji et al., Site-specific recombinases: molecular machines for the Genetic Revolution. Biochem J. Mar. 15, 2016;473(6):673-84. doi: 10.1042/BJ20151112.
Olorunniji et al., Synapsis and catalysis by activated Tn3 resolvase mutants. Nucleic Acids Res. Dec. 2008;36(22):7181-91. doi: 10.1093/nar/gkn885. Epub Nov. 10, 2008.
Orlando et al., Zinc-finger nuclease-driven targeted integration into mammalian genomes using donors with limited chromosomal homology. Nucleic Acids Res. Aug. 2010;38(15):e152. doi: 10.1093/nar/gkq512. Epub Jun. 8, 2010.
Orthwein et al., A mechanism for the suppression of homologous recombination in G1 cells. Nature. Dec. 17, 2015;528(7582):422-6. doi: 10.1038/nature16142. Epub Dec. 9, 2015.
Ortiz-Urda et al., Stable nonviral genetic correction of inherited human skin disease. Nat Med. Oct. 2002;8(10):1166-70. doi: 10.1038/nm766. Epub Sep. 16, 2002. Erratum in: Nat Med. Feb. 2003;9(2):237.
Ostermeier et al., A combinatorial approach to hybrid enzymes independent of DNA homology. Nat Biotechnol. Dec. 1999;17(12):1205-9.
Ostertag et al., Biology of mammalian L1 retrotransposons. Annu Rev Genet. 2001;35:501-38. doi: 10.1146/annurev.genet.35.102401.091032.
Otomo et al., Improved segmental isotope labeling of proteins and application to a larger protein. J Biomol NMR. Jun. 1999;14(2):105-14. doi: 10.1023/a:1008308128050.
Otomo et al., NMR observation of selected segments in a larger protein: central-segment isotope labeling through intein-mediated ligation. Biochemistry. Dec. 7, 1999;38(49):16040-4. doi: 10.1021/bi991902j.
Otto et al., The probability of fixation in populations of changing size. Genetics. Jun. 1997;146(2):723-33.
Packer et al., Methods for the directed evolution of proteins. Nat Rev Genet. Jul. 2015;16(7):379-94. doi: 10.1038/nrg3927. Epub Jun. 9, 2015.
Packer et al., Phage-assisted continuous evolution of proteases with altered substrate specificity. Nat Commun. Oct. 16, 2017;8(1):956. doi: 10.1038/s41467-017-01055-9.
Paige et al., RNA mimics of green fluorescent protein. Science. Jul. 29, 2011;333(6042):642-6. doi:10.1126/science.1207339.
Paquet et al., Efficient introduction of specific homozygous and heterozygous mutations using CRISPR/Cas9. Nature. May 5, 2016;533(7601):125-9. doi: 10.1038/nature17664. Epub Apr. 27, 2016.
Park et al., Digenome-seq web tool for profiling CRISPR specificity. Nat Methods. May 30, 2017;14(6):548-549. doi: 10.1038/nmeth.4262.
Park et al., Highly efficient editing of the ?-globin gene in patient-derived hematopoietic stem and progenitor cells to treat sickle cell disease. Nucleic Acids Res. Sep. 5, 2019;47(15):7955-7972. doi: 10.1093/nar/gkz475.
Park et al., Sendai virus, an RNA virus with no risk of genomic integration, delivers CRISPR/Cas9 for efficient gene editing. Mol Ther Methods Clin Dev. Aug. 24, 2016;3:16057. doi: 10.1038/mtm.2016.57.
Partial European Search Report for Application No. EP 19187331.4, mailed Dec. 19, 2019.
Patel et al., Flap endonucleases pass 5′-flaps through a flexible arch using a disorder-thread-order mechanism to confer specificity for free 5′-ends. Nucleic Acids Res. May 2012;40(10):4507-19. doi: 10.1093/nar/gks051. Epub Feb. 8, 2012.
Pawson et al., Protein phosphorylation in signaling—50 years and counting. Trends Biochem Sci. Jun. 2005;30(6):286-90. doi: 10.1016/j.tibs.2005.04.013.
Pellenz et al., New human chromosomal safe harbor sites for genome engineering with CRISPR/Cas9, TAL effector and homing endonucleases. Aug. 20, 2018. bioRxiv doi: https://doi.org/10.1101/396390.
Perach et al., Catalytic features of the recombinant reverse transcriptase of bovine leukemia virus expressed in bacteria. Virology. Jun. 20, 1999;259(1):176-89. doi: 10.1006/viro.1999.9761.
Perler et al., Protein splicing and autoproteolysis mechanisms. Curr Opin Chem Biol. Oct. 1997;1(3):292-9. doi: 10.1016/s1367-5931(97)80065-8.
Perler et al., Protein splicing elements: inteins and exteins—a definition of terms and recommended nomenclature. Nucleic Acids Res. Apr. 11, 1994;22(7):1125-7. doi: 10.1093/nar/22.7.1125.
Perler, InBase, the New England Biolabs Intein Database. Nucleic Acids Res. Jan. 1, 1999;27(1):346-7. doi: 10.1093/nar/27.1.346.
Perler, Protein splicing of inteins and hedgehog autoproteolysis: structure, function, and evolution. Cell. Jan. 9, 1998;92(1):1-4. doi: 10.1016/s0092-8674(00)80892-2.
Perreault et al., Mixed deoxyribo- and ribo-oligonucleotides with catalytic activity. Nature. Apr. 5, 1990;344(6266):565-7. doi: 10.1038/344565a0.
Petersen-Mahrt et al., AID mutates E. coli suggesting a DNA deamination mechanism for antibody diversification. Nature. Jul. 4, 2002;418(6893):99-103.
Peyrottes et al., Oligodeoxynucleoside phosphoramidates (P-NH2): synthesis and thermal stability of duplexes with DNA and RNA targets. Nucleic Acids Res. May 15, 1996;24(10):1841- 8.
Pfeiffer et al., Mechanisms of DNA double-strand break repair and their potential to induce chromosomal aberrations. Mutagenesis. Jul. 2000;15(4):289-302. doi: 10.1093/mutage/15.4.289.
Pickart et al., Ubiquitin: structures, functions, mechanisms. Biochim Biophys Acta. Nov. 29, 2004;1695(1-3):55-72. doi: 10.1016/j.bbamcr.2004.09.019.
Pieken et al., Kinetic characterization of ribonuclease-resistant 2′-modified hammerhead ribozymes. Science. Jul. 19, 1991;253(5017):314-7. doi: 10.1126/science.1857967.
Pinkert et al., An albumin enhancer located 10 kb upstream functions along with its promoter to direct efficient, liver-specific expression in transgenic mice. Genes Dev. May 1987;1(3):268-76. doi: 10.1101/gad.1.3.268.
Pirakitikulr et al., PCRless library mutagenesis via oligonucleotide recombination in yeast. Protein Sci. Dec. 2010;19(12):2336-46. doi: 10.1002/pro.513.
Popp et al., Sortagging: a versatile method for protein labeling. Nat Chem Biol. Nov. 2007;3(11):707-8. doi: 10.1038/nchembio.2007.31. Epub Sep. 23, 2007.
Posnick et al., Imbalanced base excision repair increases spontaneous mutation and alkylation sensitivity in Escherichia coli. J Bacteriol. Nov. 1999;181(21):6763-71.
Pospísilová et al., Hydrolytic cleavage of N6-substituted adenine derivatives by eukaryotic adenine and adenosine deaminases. Biosci Rep. 2008;28(6):335-347. doi:10.1042/BSR20080081.
Prasad et al., Rev1 is a base excision repair enzyme with 5′-deoxyribose phosphate lyase activity. Nucleic Acids Res. Dec. 15, 2016;44(22):10824-10833. doi: 10.1093/nar/gkw869. Epub Sep. 28, 2016.
Pruschy et al., Mechanistic studies of a signaling pathway activated by the organic dimerizer FK1012. Chem Biol. Nov. 1994;1(3):163-72. doi: 10.1016/1074-5521(94)90006-x.
Pu et al., Evolution of a split RNA polymerase as a versatile biosensor platform. Nat Chem Biol. Apr. 2017;13(4):432-438. doi: 10.1038/nchembio.2299. Epub Feb. 13, 2017.
Qu et al., Global mapping of binding sites for phic31 integrase in transgenic maden-darby bovine kidney cells using ChIP-seq. Hereditas. Jan. 14, 2019;156:3. doi: 10.1186/s41065-018-0079-z.
Queen et al., Immunoglobulin gene transcription is activated by downstream sequence elements. Cell. Jul. 1983;33(3):741-8. doi: 10.1016/0092-8674(83)90016-8.
Radany et al., Increased spontaneous mutation frequency in human cells expressing the phage PBS2-encoded inhibitor of uracil-DNA glycosylase. Mutat Res. Sep. 15, 2000;461(1):41-58. doi: 10.1016/s0921-8777(00)00040-9.
Raghavan et al., Abstract 27: Therapeutic Targeting of Human Lipid Genes with in vivo CRISPR-Cas9 Genome Editing. Oral Abstract Presentations: Lipoprotein Metabolism and Therapeutic Targets. Arterioscler THromb Vasc Biol. 2015;35(Suppl. 1):Abstract 27. 5 pages.
Raillard et al., Targeting sites within HIV-1 cDNA with a DNA-cleaving ribozyme. Biochemistry. Sep. 10, 1996;35(36):11693-701. doi: 10.1021/bi960845g.
Raina et al., PROTAC-induced BET protein degradation as a therapy for castration-resistant prostate cancer. Proc Natl Acad Sci U S A. Jun. 28, 2016;113(26):7124-9. doi: 10.1073/pnas.1521738113. Epub Jun. 6, 2016.
Ranzau et al., Genome, Epigenome, and Transcriptome Editing via Chemical Modification of Nucleobases in Living Cells. Biochemistry. Feb. 5, 2019;58(5):330-335. doi: 10.1021/acs.biochem.8b00958. Epub Dec. 12, 2018.
Rashel et al., A novel site-specific recombination system derived from bacteriophage phiMR11. Biochem Biophys Res Commun. Apr. 4, 2008;368(2):192-8. doi: 10.1016/j.bbrc.2008.01.045. Epub Jan. 22, 2008.
Rasila et al., Critical evaluation of random mutagenesis by error-prone polymerase chain reaction protocols, Escherichia coli mutator strain, and hydroxylamine treatment. Anal Biochem. May 1, 2009;388(1):71-80. doi: 10.1016/j.ab.2009.02.008. Epub Feb. 10, 2009.
Raskin et al., Substitution of a single bacteriophage T3 residue in bacteriophage T7 RNA polymerase at position 748 results in a switch in promoter specificity. J Mol Biol. Nov. 20, 1992;228(2):506-15.
Raskin et al., T7 RNA polymerase mutants with altered promoter specificities. Proc Natl Acad Sci U S A. Apr. 15, 1993;90(8):3147-51.
Rauch et al., Programmable RNA Binding Proteins for Imaging and Therapeutics. Biochemistry. Jan. 30, 2018;57(4):363-364. doi: 10.1021/acs.biochem.7b01101. Epub Nov. 17, 2017.
Ray et al., A compendium of RNA-binding motifs for decoding gene regulation. Nature. Jul. 11, 2013;499(7457):172-7. doi: 10.1038/nature12311.
Rebar et al., Phage display methods for selecting zinc finger proteins with novel DNA-binding specificities. Methods Enzymol. 1996;267:129-49.
Rees et al., Analysis and minimization of cellular RNA editing by DNA adenine base editors. Sci Adv. May 8, 2019;5(5):eaax5717. doi: 10.1126/sciadv.aax5717.
Rees et al., Base editing: precision chemistry on the genome and transcriptome of living cells. Nat Rev Genet. Dec. 2018;19(12):770-788. doi: 10.1038/s41576-018-0059-1.
Rees et al., Development of hRad51-Cas9 nickase fusions that mediate HDR without double-stranded breaks. Nat Commun. May 17, 2019;10(1):2212. doi: 10.1038/s41467-019-09983-4.
Relph et al., Recent developments and current status of gene therapy using viral vectors in the United Kingdom. BMJ. 2004;329(7470):839-842. doi:10.1136/bmj.329.7470.839.
Remy et al., Gene transfer with a series of lipophilic DNA-binding molecules. Bioconjug Chem. Nov.-Dec. 1994;5(6):647-54. doi: 10.1021/bc00030a021.
Ren et al., In-line Alignment and Mg2? Coordination at the Cleavage Site of the env22 Twister Ribozyme. Nat Commun. Nov. 20, 2014;5:5534. doi: 10.1038/ncomms6534.
Ren et al., Pistol Ribozyme Adopts a Pseudoknot Fold Facilitating Site-Specific In-Line Cleavage. Nat Chem Biol. Sep. 2016;12(9):702-8. doi: 10.1038/nchembio.2125. Epub Jul. 11, 2016.
Ribeiro et al., Protein Engineering Strategies to Expand CRISPR-Cas9 Applications. Int J Genomics. Aug. 2, 2018;2018:1652567. doi: 10.1155/2018/1652567.
Ringrose et al., The Kw recombinase, an integrase from Kluyveromyces waltii. Eur J Biochem. Sep. 15, 1997;248(3):903-12. doi: 10.1111/j.1432-1033.1997.00903.x.
Risso et al., Hyperstability and substrate promiscuity in laboratory resurrections of Precambrian ?-lactamases. J Am Chem Soc. Feb. 27, 2013;135(8):2899-902. doi: 10.1021/ja311630a. Epub Feb. 14, 2013.
Ritchie et al., limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. Apr. 20, 2015;43(7):e47. doi: 10.1093/nar/gkv007. Epub Jan. 20, 2015.
Robertson et al., DNA repair in mammalian cells: Base excision repair: the long and short of it. Cell Mol Life Sci. Mar. 2009;66(6):981-93. doi: 10.1007/s00018-009-8736-z.
Robertson et al., Selection in vitro of an RNA enzyme that specifically cleaves single-stranded DNA. Nature. Mar. 29, 1990;344(6265):467-8. doi: 10.1038/344467a0.
Robinson et al., The protein tyrosine kinase family of the human genome. Oncogene. Nov. 20, 2000;19(49):5548-57. doi: 10.1038/sj.onc.1203957.
Rogozin et al., Evolution and diversification of lamprey antigen receptors: evidence for involvement of an AID-APOBEC family cytosine deaminase. Nat Immunol. Jun. 2007;8(6):647-56. doi: 10.1038/ni1463. Epub Apr. 29, 2007.
Roth et al., A widespread self-cleaving ribozyme class is revealed by bioinformatics. Nat Chem Biol. Jan. 2014;10(1):56-60. doi: 10.1038/nchembio.1386. Epub Nov. 17, 2013.
Roth et al., Purification and characterization of murine retroviral reverse transcriptase expressed in Escherichia coli. J Biol Chem. Aug. 5, 1985;260(16):9326-35.
Rouet et al., Expression of a site-specific endonuclease stimulates homologous recombination in mammalian cells. Proc Natl Acad Sci U S A. Jun. 21, 1994;91(13):6064-8. doi: 10.1073/pnas.91.13.6064.
Rouet et al., Introduction of double-strand breaks into the genome of mouse cells by expression of a rare-cutting endonuclease. Mol Cell Biol. Dec. 1994;14(12):8096-106. doi: 10.1128/mcb.14.12.8096.
Rouet et al., Receptor-Mediated Delivery of CRISPR-Cas9 Endonuclease for Cell-Type-Specific Gene Editing. J Am Chem Soc. May 30, 2018;140(21):6596-6603. doi: 10.1021/jacs.8b01551. Epub May 18, 2018.
Roundtree et al., YTHDC1 mediates nuclear export of N6-methyladenosine methylated mRNAs. Elife. Oct. 6, 2017;6:e31311. doi: 10.7554/eLife.31311.
Rowland et al., Sin recombinase from Staphylococcus aureus: synaptic complex architecture and transposon targeting. Mol Microbiol. May 2002;44(3):607-19. doi: 10.1046/j.1365-2958.2002.02897.x.
Rowley, Chromosome translocations: dangerous liaisons revisited. Nat Rev Cancer. Dec. 2001;1(3):245-50. doi: 10.1038/35106108.
Rubio et al., An adenosine-to-inosine tRNA-editing enzyme that can perform C-to-U deamination of DNA. Proc Natl Acad Sci U S A. May 8, 2007;104(19):7821-6. doi: 10.1073/pnas.0702394104. Epub May 1, 2007. PMID: 17483465; PMCID: PMC1876531.
Rubio et al., Transfer RNA travels from the cytoplasm to organelles. Wiley Interdiscip Rev RNA. Nov.-Dec. 2011;2(6):802-17. doi: 10.1002/wrna.93. Epub Jul. 11, 2011.
Rutherford et al., Attachment site recognition and regulation of directionality by the serine integrases. Nucleic Acids Res. Sep. 2013;41(17):8341-56. doi: 10.1093/nar/gkt580. Epub Jul. 2, 2013.
Ryu et al., Adenine base editing in mouse embryos and an adult mouse model of Duchenne muscular dystrophy. Nat Biotechnol. Jul. 2018;36(6):536-539. doi: 10.1038/nbt.4148. Epub Apr. 27, 2018.
Rüfer et al., Non-contact positions impose site selectivity on Cre recombinase. Nucleic Acids Res. Jul. 1, 2002;30(13):2764-71. doi: 10.1093/nar/gkf399.
Sadowski, The Flp recombinase of the 2-microns plasmid of Saccharomyces cerevisiae. Prog Nucleic Acid Res Mol Biol. 1995;51:53-91.
Sakuma et al., MMEJ-assisted gene knock-in using TALENs and CRISPR-Cas9 with the PITCh systems. Nat Protoc. Jan. 2016;11(1):118-33. doi: 10.1038/nprot.2015.140. Epub Dec. 17, 2015.
Sale et al., Y-family DNA polymerases and their role in tolerance of cellular DNA damage. Nat Rev Mol Cell Biol. Feb. 23, 2012;13(3):141-52. doi: 10.1038/nrm3289.
Samanta et al., A reverse transcriptase ribozyme. Elife. Sep. 26, 2017;6:e31153. doi: 10.7554/eLife.31153.
Samulski et al., Helper-free stocks of recombinant adeno-associated viruses: normal integration does not require viral gene expression. J Virol. Sep. 1989;63(9):3822-8. doi: 10.1128/JVI.63.9.3822-3828.1989.
Sang et al., A unique uracil-DNA binding protein of the uracil DNA glycosylase superfamily. Nucleic Acids Res. Sep. 30, 2015;43(17):8452-63. doi: 10.1093/nar/gkv854. Epub Aug. 24, 2015.
Santoro et al., Directed evolution of the site specificity of Cre recombinase. Proc Natl Acad Sci U S A. Apr. 2, 2002;99(7):4185-90. Epub Mar. 19, 2002.
Saparbaev et al., Excision of hypoxanthine from DNA containing dIMP residues by the Escherichia coli, yeast, rat, and human alkylpurine DNA glycosylases. Proc Natl Acad Sci U S A. Jun. 21, 1994;91(13):5873-7. doi: 10.1073/pnas.91.13.5873.
Sapunar et al., Dorsal root ganglion—a potential new therapeutic target for neuropathic pain. J Pain Res. 2012;5:31-8. doi: 10.2147/JPR.S26603. Epub Feb. 16, 2012.
Sarkar et al., HIV-1 proviral DNA excision using an evolved recombinase. Science. Jun. 29, 2007;316(5833):1912-5. doi: 10.1126/science.1141453.
Sasidharan et al., The selection of acceptable protein mutations. PNAS; Jun. 12, 2007;104(24):10080-5. www.pnas.org/cgi/doi/10.1073.pnas.0703737104.
Satomura et al., Precise genome-wide base editing by the CRISPR Nickase system in yeast. Sci Rep. May 18, 2017;7(1):2095. doi: 10.1038/s41598-017-02013-7.
Sauer et al., DNA recombination with a heterospecific Cre homolog identified from comparison of the pac-c1 regions of P1-related phages. Nucleic Acids Res. Nov. 18, 2004;32(20):6086-95. doi: 10.1093/nar/gkh941.
Savic et al., Covalent linkage of the DNA repair template to the CRISPR-Cas9 nuclease enhances homology-directed repair. Elife. May 29, 2018;7:e33761. doi: 10.7554/eLife.33761.
Saville et al., A site-specific self-cleavage reaction performed by a novel RNA in Neurospora mitochondria. Cell. May 18, 1990;61(4):685-96. doi: 10.1016/0092-8674(90)90480-3.
Savva et al., The structural basis of specific base-excision repair by uracil-DNA glycosylase. Nature. Feb. 9, 1995;373(6514):487-93. doi: 10.1038/373487a0.
Schaaper et al., Base selection, proofreading, and mismatch repair during DNA replication in Escherichia coli. J Biol Chem. Nov. 15, 1993;268(32):23762-5.
Schaaper et al., Spectra of spontaneous mutations in Escherichia coli strains defective in mismatch correction: the nature of in vivo DNA replication errors. Proc Natl Acad Sci U S A. Sep. 1987;84(17):6220-4.
Schaefer et al., Understanding RNA modifications: the promises and technological bottlenecks of the ‘epitranscriptome’. Open Biol. May 2017;7(5):170077. doi: 10.1098/rsob.170077.
Schechner et al., Multiplexable, locus-specific targeting of long RNAs with CRISPR-Display. Nat Methods. Jul. 2015; 12(7):664-70. doi: 10.1038/nmeth.3433. Epub Jun. 1, 2015.
Schechner et al., Multiplexable, locus-specific targeting of long RNAs with CRISPR-Display. Nat Methods. Jul. 2015;12(7):664-70. doi: 10.1038/nmeth.3433. Epub Jun. 1, 2015. Author manuscript entitled CRISPR Display: A modular method for locus-specific targeting of long noncoding RNAs and synthetic RNA devices in vivo.
Schek et al., Definition of the upstream efficiency element of the simian virus 40 late polyadenylation signal by using in vitro analyses. Mol Cell Biol. Dec. 1992;12(12):5386-93. doi: 10.1128/mcb.12.12.5386.
Schenk et al., MPDU1 mutations underlie a novel human congenital disorder of glycosylation, designated type If. J Clin Invest. Dec. 2001;108(11):1687-95. doi: 10.1172/JCI13419.
Schmitz et al., Behavioral abnormalities in prion protein knockout mice and the potential relevance of PrP(C) for the cytoskeleton. Prion. 2014;8(6):381-6. doi: 10.4161/19336896.2014.983746.
Schultz et al., Expression and secretion in yeast of a 400-kDa envelope glycoprotein derived from Epstein-Barr virus. Gene. 1987;54(1):113-23. doi: 10.1016/0378-1119(87)90353-2.
Schultz et al., Oligo-2′-fluoro-2′-deoxynucleotide N3′→P5′ phosphoramidates: synthesis and properties. Nucleic Acids Res. Aug. 1, 1996;24(15):2966-73.
Schöller et al., Interactions, localization, and phosphorylation of the m6A generating METTL3-METTL14-WTAP complex. RNA. Apr. 2018;24(4):499-512. doi: 10.1261/rna.064063.117. Epub Jan. 18, 2018.
Score Results for Luetticken et al., Complete genome sequence of a Streptococcus dysgalactiae subsp. RT equisimilis strain possessing Lancefield's group A antigen. RL Submitted to the EMBL/GenBank/DDBJ databases. May 2012. 3 pages.
Score Results for Okumura et al., Evolutionary paths of streptococcal and staphylococcal superantigens. RL BMC Genomics. 2012;13:404-404. 3 pages.
Score Results for Shimomura et al., Complete Genome Sequencing and Analysis of a Lancefield Group G RT Streptococcus dysagalactiae Subsp. equisimilis Strain Causing Streptococcal RT Toxic Shock Syndrome (Stss). RL BMC Genomics. 2011;12:17-17. 3 pages.
Scott et al., Production of cyclic peptides and proteins in vivo. Proc Natl Acad Sci U S A. Nov. 23, 1999;96(24):13638-43. doi: 10.1073/pnas.96.24.13638.
Sebastían-Martín et al., Transcriptional inaccuracy threshold attenuates differences in RNA-dependent DNA synthesis fidelity between retroviral reverse transcriptases. Sci Rep. Jan. 12, 2018;8(1):627. doi: 10.1038/s41598-017-18974-8.
Seed, An LFA-3 cDNA encodes a phospholipid-linked membrane protein homologous to its receptor CD2. Nature. Oct. 29-Nov. 4, 1987;329(6142):840-2. doi: 10.1038/329840a0.
Serrano-Heras et al., Protein p56 from the Bacillus subtilis phage phi29 inhibits DNA-binding ability of uracil-DNA glycosylase. Nucleic Acids Res. 2007;35(16):5393-401. Epub Aug. 13, 2007.
Severinov et al., Expressed protein ligation, a novel method for studying protein-protein interactions in transcription. J Biol Chem. Jun. 26, 1998;273(26):16205-9. doi: 10.1074/jbc.273.26.16205.
Sha et al., Monobodies and other synthetic binding proteins for expanding protein science. Protein Sci. May 2017;26(5):910-924. doi: 10.1002/pro.3148. Epub Mar. 24, 2017.
Shah et al., Protospacer recognition motifs: mixed identities and functional diversity. RNA Biol. May 2013;10(5):891-9. doi: 10.4161/rna.23764. Epub Feb. 12, 2013.
Shalem et al., High-throughput functional genomics using CRISPR-Cas9. Nat Rev Genet. May 2015;16(5):299-311. doi: 10.1038/nrg3899. Epub Apr. 9, 2015.
Sharer et al., The ARF-like 2 (ARL2)-binding protein, BART. Purification, cloning, and initial characterization. J Biol Chem. Sep. 24, 1999;274(39):27553-61. doi: 10.1074/jbc.274.39.27553.
Sharma et al., Identification of novel methyltransferases, Bmt5 and Bmt6, responsible for the m3U methylations of 25S rRNA in Saccharomyces cerevisiae. Nucleic Acids Res. Mar. 2014;42(5):3246-60. doi: 10.1093/nar/gkt1281. Epub Dec. 11, 2013.
Sharon et al., Functional Genetic Variants Revealed by Massively Parallel Precise Genome Editing. Cell. Oct. 4, 2018;175(2):544-557.e16. doi: 10.1016/j.cell.2018.08.057. Epub Sep. 20, 2018.
Shaw et al., Implications of human genome architecture for rearrangement-based disorders: the genomic basis of disease. Hum Mol Genet. Apr. 1, 2004;13 Spec No. 1:R57-64. doi: 10.1093/hmg/ddh073. Epub Feb. 5, 2004.
Shechner et al., Multiplexable, locus-specific targeting of long RNAs with CRISPR-Display. Nat Methods. Jul. 2015;12(7):664-70. doi: 10.1038/nmeth.3433. Epub Jun. 1, 2015.
Shen et al., Herpes simplex virus 1 (HSV-1) for cancer treatment. Cancer Gene Ther. Nov. 2006;13(11):975-92. doi: 10.1038/sj.cgt.7700946. Epub Apr. 7, 2006.
Shen et al., Predictable and precise template-free CRISPR editing of pathogenic variants. Nature. Nov. 2018;563(7733):646-651. doi: 10.1038/s41586-018-0686-x. Epub Nov. 7, 2018. Erratum in: Nature. Mar. 2019;567(7746):E1-E2.
Shen, Data processing, Modeling and Analysis scripts for CRISPR-inDelphi. GitHub—maxwshen/indelphi-dataprocessinganalysis at 6b68e3cec73c9358fef6e5f178a935f3c2a4118f. Apr. 10, 2018. Retrieved online via https://github.com/maxwshen/indelphi-sataprocessinganalysis/tree/6b68e3cec73c9358fef6e5f178a935f3c2a4118f Last retrieved on Jul. 26, 2021. 2 pages.
Sherwood et al., Discovery of directional and nondirectional pioneer transcription factors by modeling DNase profile magnitude and shape. Nat Biotechnol. Feb. 2014;32(2):171-178. doi: 10.1038/nbt.2798. Epub Jan. 19, 2014.
Shi et al., Structural basis for targeted DNA cytosine deamination and mutagenesis by APOBEC3A and APOBEC3B. Nat Struct Mol Biol. Feb. 2017;24(2):131-139. doi: 10.1038/nsmb.3344. Epub Dec. 19, 2016.
Shi et al., YTHDF3 facilitates translation and decay of N6-methyladenosine-modified RNA. Cell Res. Mar. 2017;27(3):315-328. doi: 10.1038/cr.2017.15. Epub Jan. 20, 2017.
Shin et al., CRISPR/Cas9 targeting events cause complex deletions and insertions at 17 sites in the mouse genome. Nat Commun. May 31, 2017;8:15464. doi: 10.1038/ncomms15464.
Shindo et al., A Comparison of Two Single-Stranded DNA Binding Models by Mutational Analysis of APOBEC3G. Biology (Basel). Aug. 2, 2012;1(2):260-76. doi: 10.3390/biology1020260.
Shingledecker et al., Molecular dissection of the Mycobacterium tuberculosis RecA intein: design of a minimal intein and of a trans-splicing system involving two intein fragments. Gene. Jan. 30, 1998;207(2):187-95. doi: 10.1016/s0378-1119(97)00624-0.
Shmakov et al., Diversity and evolution of class 2 CRISPR-Cas systems. Nat Rev Microbiol. Mar. 2017;15(3):169-182. doi: 10.1038/nrmicro.2016.184. Epub Jan. 23, 2017.
Shultz et al., A genome-wide analysis of FRT-like sequences in the human genome. PLoS One. Mar. 23, 2011;6(3):e18077. doi: 10.1371/journal.pone.0018077.
Silas et al., Direct CRISPR spacer acquisition from RNA by a natural reverse transcriptase-Cas1 fusion protein. Science. Feb. 26, 2016;351(6276):aad4234. doi: 10.1126/science.aad4234.
Silva et al., Selective disruption of the DNA polymerase III α-β complex by the umuD gene products. Nucleic Acids Res. Jul. 2012;40(12):5511-22. doi: 10.1093/nar/gks229. Epub Mar. 9, 2012.
Singh et al., Cross-talk between diverse serine integrases. J Mol Biol. Jan. 23, 2014;426(2):318-31. doi: 10.1016/j.jmb.2013.10.013. Epub Oct. 22, 2013.
Singh et al., Real-time observation of DNA recognition and rejection by the RNA-guided endonuclease Cas9. Nat Commun. Sep. 14, 2016;7:12778. doi: 10.1038/ncomms12778.
Singh et al., Real-time observation of DNA target interrogation and product release by the RNA-guided endonuclease CRISPR Cpf1 (Cas12a). Proc Natl Acad Sci U S A. May 22, 2018;115(21):5444-5449. doi: 10.1073/pnas.1718686115. Epub May 7, 2018.
Sivalingam et al., Biosafety assessment of site-directed transgene integration in human umbilical cord-lining cells. Mol Ther. Jul. 2010;18(7):1346-56. doi: 10.1038/mt.2010.61. Epub Apr. 27, 2010.
Sledz et al., Structural insights into the molecular mechanism of the m(6)A writer complex. Elife. Sep. 14, 2016;5:e18434. doi: 10.7554/eLife.18434.
Slupphaug et al., A nucleotide-flipping mechanism from the structure of human uracil-DNA glycosylase bound to DNA. Nature. Nov. 7, 1996;384(6604):87-92. doi: 10.1038/384087a0.
Smargon et al., Cas13b Is a Type VI-B CRISPR-Associated RNA-Guided RNase Differentially Regulated by Accessory Proteins Csx27 and Csx28. Mol Cell. Feb. 16, 2017;65(4):618-630.e7. doi: 10.1016/j.molcel.2016.12.023. Epub Jan. 5, 2017.
Smith et al., Herpesvirus transport to the nervous system and back again. Annu Rev Microbiol. 2012;66:153-76. doi: 10.1146/annurev-micro-092611-150051. Epub Jun. 15, 2012.
Smith et al., Production of human beta interferon in insect cells infected with a baculovirus expression vector. Mol Cell Biol. Dec. 1983;3(12):2156-65. doi: 10.1128/mcb.3.12.2156.
Smith et al., Single-step purification of polypeptides expressed in Escherichia coli as fusions with glutathione S-transferase. Gene. Jul. 15, 1988;67(1):31-40. doi: 10.1016/0378-1119(88)90005-4.
Smith, Phage-encoded Serine Integrases and Other Large Serine Recombinases. Microbiol Spectr. Aug. 2015;3(4). doi: 10.1128/microbiolspec.MDNA3-0059-2014.
Somanathan et al., AAV vectors expressing LDLR gain-of-function variants demonstrate increased efficacy in mouse models of familial hypercholesterolemia. Circ Res. Aug. 29, 2014;115(6):591-9. doi: 10.1161/CIRCRESAHA.115.304008. Epub Jul. 14, 2014.
Sommerfelt et al., Receptor interference groups of 20 retroviruses plating on human cells. Virology. May 1990;176(1):58-69. doi: 10.1016/0042-6822(90)90230-o.
Southworth et al., Control of protein splicing by intein fragment reassembly. EMBO J. Feb. 16, 1998;17(4):918-26. doi: 10.1093/emboj/17.4.918.
Southworth et al., Purification of proteins fused to either the amino or carboxy terminus of the Mycobacterium xenopi gyrase A intein. Biotechniques. Jul. 1999;27(1):110-4, 116, 118-20. doi: 10.2144/99271st04.
Spencer et al., A general strategy for producing conditional alleles of Src-like tyrosine kinases. Proc Natl Acad Sci U S A. Oct. 10, 1995;92(21):9805-9. doi: 10.1073/pnas.92.21.9805.
Spencer et al., Controlling signal transduction with synthetic ligands. Science. Nov. 12, 1993;262(5136):1019-24. doi: 10.1126/science.7694365.
Spencer et al., Functional analysis of Fas signaling in vivo using synthetic inducers of dimerization. Curr Biol. Jul. 1, 1996;6(7):839-47. doi: 10.1016/s0960-9822(02)00607-3.
Srivastava et al., An inhibitor of nonhomologous end-joining abrogates double-strand break repair and impedes cancer progression. Cell. Dec. 21, 2012;151(7):1474-87. doi: 10.1016/j.cell.2012.11.054.
Stadtman, Selenocysteine. Annu Rev Biochem. 1996;65:83-100.
Stamos et al., Structure of a Thermostable Group II Intron Reverse Transcriptase with Template-Primer and Its Functional and Evolutionary Implications. Mol Cell. Dec. 7, 2017;68(5):926-939.e4. doi: 10.1016/j.molcel.2017.10.024. Epub Nov. 16, 2017.
Steele et al., The prion protein knockout mouse: a phenotype under challenge. Prion. Apr.-Jun. 2007;1(2):83-93. doi: 10.4161/pri.1.2.4346. Epub Apr. 25, 2007.
Steiner et al., The neurotropic herpes viruses: herpes simplex and varicella-zoster. Lancet Neurol. Nov. 2007;6(11):1015-28. doi: 10.1016/S1474-4422(07)70267-3.
Stella et al., Structure of the Cpf1 endonuclease R-loop complex after target DNA cleavage. Nature. Jun. 22, 2017;546(7659):559-563. doi: 10.1038/nature22398. Epub May 31, 2017.
Stenson et al., The Human Gene Mutation Database: towards a comprehensive repository of inherited mutation data for medical research, genetic diagnosis and next-generation sequencing studies. Hum Genet. Jun. 2017;136(6):665-677. doi: 10.1007/s00439-017-1779-6. Epub Mar. 27, 2017.
Sternberg et al., Conformational control of DNA target cleavage by CRISPR-Cas9. Nature. Nov. 5, 2015;527(7576):110-3. doi: 10.1038/nature15544. Epub Oct. 28, 2015.
Sterne-Weiler et al., Exon identity crisis: disease-causing mutations that disrupt the splicing code. Genome Biol. Jan. 23, 2014;15(1):201. doi: 10.1186/gb4150.
Stevens et al., A promiscuous split intein with expanded protein engineering applications. Proc Natl Acad Sci U S A. Aug. 8, 2017;114(32):8538-8543. doi: 10.1073/pnas.1701083114. Epub Jul. 24, 2017.
Stockwell et al., Probing the role of homomeric and heteromeric receptor interactions in TGF-beta signaling using small molecule dimerizers. Curr Biol. Jun. 18, 1998;8(13):761-70. doi: 10.1016/s0960-9822(98)70299-4.
Strecker et al., RNA-guided DNA insertion with CRISPR-associated transposases. Science. Jul. 5, 2019;365(6448):48-53. doi: 10.1126/science.aax9181. Epub Jun. 6, 2019.
Strutt et al., RNA-dependent RNA targeting by CRISPR-Cas9. Elife. Jan. 5, 2018;7:e32724. doi: 10.7554/eLife.32724.
Su et al., Human DNA polymerase η has reverse transcriptase activity in cellular environments. J Biol Chem. Apr. 12, 2019;294(15):6073-6081. doi: 10.1074/jbc.RA119.007925. Epub Mar. 6, 2019.
Sullenger et al., Ribozyme-mediated repair of defective mRNA by targeted, trans-splicing. Nature. Oct. 13, 1994;371(6498):619-22. doi: 10.1038/371619a0.
Sun et al., The CRISPR/Cas9 system for gene editing and its potential application in pain research. Transl Periop & Pain Med. Aug. 3, 2016;1(3):22-33.
Surun et al., High Efficiency Gene Correction in Hematopoietic Cells by Donor-Template-Free CRISPR/Cas9 Genome Editing. Mol Ther Nucleic Acids. Mar. 2, 2018;10:1-8. doi: 10.1016/j.omtn.2017.11.001. Epub Nov. 10, 2017.
Suzuki et al., Crystal structures reveal an elusive functional domain of pyrrolysyl-tRNA synthetase. Nat Chem Biol. Dec. 2017;13(12):1261-1266. doi: 10.1038/nchembio.2497. Epub Oct. 16, 2017.
Suzuki et al., In vivo genome editing via CRISPR/Cas9 mediated homology-independent targeted integration. Nature. Dec. 1, 2016;540(7631):144-149. doi: 10.1038/nature20565. Epub Nov. 16, 2016.
Suzuki et al., VCre/VloxP and SCre/SloxP: new site-specific recombination systems for genome engineering. Nucleic Acids Res. Apr. 2011;39(8):e49. doi: 10.1093/nar/gkq1280. Epub Feb. 1, 2011.
Tabebordbar et al., In vivo gene editing in dystrophic mouse muscle and muscle stem cells. Science. Jan. 22, 2016;351(6271):407-411. doi: 10.1126/science.aad5177. Epub Dec. 31, 2015.
Tahara et al., Potent and Selective Inhibitors of 8-Oxoguanine DNA Glycosylase. J Am Chem Soc. Feb. 14, 2018;140(6):2105-2114. doi: 10.1021/jacs.7b09316. Epub Feb. 5, 2018.
Tajiri et al., Functional cooperation of MutT, MutM and MutY proteins in preventing mutations caused by spontaneous oxidation of guanine nucleotide in Escherichia coli. Mutat Res. May 1995;336(3):257-67. doi: 10.1016/0921-8777(94)00062-b.
Takimoto et al., Stereochemical basis for engineered pyrrolysyl-tRNA synthetase and the efficient in vivo incorporation of structurally divergent non-native amino acids. ACS Chem Biol. Jul. 15, 2011;6(7):733-43. doi: 10.1021/cb200057a. Epub May 5, 2011.
Tambunan et al., Vaccine Design for H5N1 Based on B- and T-cell Epitope Predictions. Bioinform Biol Insights. Apr. 28, 2016;10:27-35. doi: 10.4137/BBI.S38378.
Tanenbaum et al., A protein-tagging system for signal amplification in gene expression and fluorescence imaging. Cell. Oct. 23, 2014;159(3):635-46. doi: 10.1016/j.cell.2014.09.039. Epub Oct. 9, 2014.
Tanese et al., Expression of enzymatically active reverse transcriptase in Escherichia coli. Proc Natl Acad Sci U S A. Aug. 1985;82(15):4944-8. doi: 10.1073/pnas.82.15.4944.
Tang et al., Evaluation of Bioinformatic Programmes for the Analysis of Variants within Splice Site Consensus Regions. Adv Bioinformatics. 2016;2016:5614058. doi: 10.1155/2016/5614058. Epub May 24, 2016.
Tang et al., Rewritable multi-event analog recording in bacterial and mammalian cells. Science. Apr. 13, 2018;360(6385):eaap8992. doi: 10.1126/science.aap8992. Epub Feb. 15, 2018.
Tassabehji, Williams-Beuren syndrome: a challenge for genotype-phenotype correlations. Hum Mol Genet. Oct. 15, 2003;12 Spec No. 2:R229-37. doi: 10.1093/hmg/ddg299. Epub Sep. 2, 2003.
Taube et al., Reverse transcriptase of mouse mammary tumour virus: expression in bacteria, purification and biochemical characterization. Biochem J. Feb. 1, 1998;329 ( Pt 3)(Pt 3):579-87. doi: 10.1042/bj3290579. Erratum in: Biochem J Jun. 15, 1998;332(Pt 3):808.
Tee et al., Polishing the craft of genetic diversity creation in directed evolution. Biotechnol Adv. Dec. 2013;31(8):1707-21. doi: 10.1016/j.biotechadv.2013.08.021. Epub Sep. 6, 2013.
Telenti et al., The Mycobacterium xenopi GyrA protein splicing element: characterization of a minimal intein. J Bacteriol. Oct. 1997;179(20):6378-82. doi: 10.1128/jb.179.20.6378-6382.1997.
Telesnitsky et al., RNase H domain mutations affect the interaction between Moloney murine leukemia virus reverse transcriptase and its primer-template. Proc Natl Acad Sci U S A. Feb. 15, 1993;90(4):1276-80. doi: 10.1073/pnas.90.4.1276.
Teng et al., Mutational analysis of apolipoprotein B mRNA editing enzyme (APOBEC1). structure-function relationships of RNA editing and dimerization. J Lipid Res. Apr. 1999;40(4):623-35.
Thompson et al., The Future of Multiplexed Eukaryotic Genome Engineering. ACS Chem Biol. Feb. 16, 2018;13(2):313-325. doi: 10.1021/acschembio.7b00842. Epub Dec. 28, 2017.
Thomson et al., Mutational analysis of loxP sites for efficient Cre-mediated insertion into genomic DNA. Genesis. Jul. 2003;36(3):162-7. doi: 10.1002/gene.10211.
Thuronyi et al., Continuous evolution of base editors with expanded target compatibility and improved activity. Nat Biotechnol. Sep. 2019;37(9):1070-1079. doi: 10.1038/s41587-019-0193-0. Epub Jul. 22, 2019.
Thyagarajan et al., Creation of engineered human embryonic stem cell lines using phiC31 integrase. Stem Cells. Jan. 2008;26(1):119-26. doi: 10.1634/stemcells.2007-0283. Epub Oct. 25, 2007.
Tinland et al., The T-DNA-linked VirD2 protein contains two distinct functional nuclear localization signals. Proc Natl Acad Sci U S A. Aug. 15, 1992;89(16):7442-6. doi: 10.1073/pnas.89.16.7442.
Tom et al., Mechanism whereby proliferating cell nuclear antigen stimulates flap endonuclease 1. J Biol Chem. Apr. 7, 2000;275(14):10498-505. doi: 10.1074/jbc.275.14.10498.
Tone et al., Single-stranded DNA binding protein Gp5 of Bacillus subtilis phage ?29 is required for viral DNA replication in growth-temperature dependent fashion. Biosci Biotechnol Biochem. 2012;76(12):2351-3. doi: 10.1271/bbb.120587. Epub Dec. 7, 2012.
Toor et al., Crystal structure of a self-spliced group II intron. Science. Apr. 4, 2008;320(5872):77-82. doi: 10.1126/science.1153803.
Toro et al., On the Origin and Evolutionary Relationships of the Reverse Transcriptases Associated With Type III CRISPR-Cas Systems. Front Microbiol. Jun. 15, 2018;9:1317. doi: 10.3389/fmicb.2018.01317.
Toro et al., The Reverse Transcriptases Associated with CRISPR-Cas Systems. Sci Rep. Aug. 2, 2017;7(1):7089. doi: 10.1038/s41598-017-07828-y.
Torres et al., Non-integrative lentivirus drives high-frequency cre-mediated cassette exchange in human cells. PLoS One. 2011;6(5):e19794. doi: 10.1371/journal.pone.0019794. Epub May 23, 2011.
Townsend et al., Role of HFE in iron metabolism, hereditary haemochromatosis, anaemia of chronic disease, and secondary iron overload. Lancet. Mar. 2, 2002;359(9308):786-90. doi: 10.1016/S0140-6736(02)07885-6.
Townsend et al., Role of HFE in iron metabolism, hereditary haemochromatosis, anaemia of chronic disease, and secondary iron overload. Lancet. Mar. 2, 2002;359(9308):786-90. doi: 10.1016/S0140-6736(02)07885-6. Erratum in: Lancet Jul. 13, 2002;360(9327):176.
Tracewell et al., Directed enzyme evolution: climbing fitness peaks one amino acid at a time. Curr Opin Chem Biol. Feb. 2009;13(1):3-9. doi: 10.1016/j.cbpa.2009.01.017. Epub Feb. 25, 2009.
Tratschin et al., A human parvovirus, adeno-associated virus, as a eucaryotic vector: transient expression and encapsidation of the procaryotic gene for chloramphenicol acetyltransferase. Mol Cell Biol. Oct. 1984;4(10):2072-81. doi: 10.1128/mcb.4.10.2072.
Tratschin et al., Adeno-associated virus vector for high-frequency integration, expression, and rescue of genes in mammalian cells. Mol Cell Biol. Nov. 1985;5(11):3251-60. doi: 10.1128/mcb.5.11.3251.
Traxler et al., A genome-editing strategy to treat ?-hemoglobinopathies that recapitulates a mutation associated with a benign genetic condition. Nat Med. Sep. 2016;22(9):987-90. doi: 10.1038/nm.4170. Epub Aug. 15, 2016.
Trojan et al., Functional analysis of hMLH1 variants and HNPCC-related mutations using a human expression system. Gastroenterology. Jan. 2002;122(1):211-9. doi: 10.1053/gast.2002.30296.
Trudeau et al., On the Potential Origins of the High Stability of Reconstructed Ancestral Proteins. Mol Biol Evol. Oct. 2016;33(10):2633-41. doi: 10.1093/molbev/msw138. Epub Jul. 12, 2016.
Truong et al., Development of an intein-mediated split-Cas9 system for gene therapy. Nucleic Acids Res. Jul. 27, 2015;43(13):6450-8. doi: 10.1093/nar/gkv601. Epub Jun. 16, 2015.
Tsai et al., CIRCLE-seq: a highly sensitive in vitro screen for genome-wide CRISPR-Cas9 nuclease off-targets. Nat Methods. Jun. 2017;14(6):607-614. doi: 10.1038/nmeth.4278. Epub May 1, 2017.
Tsang et al., Specialization of the DNA-cleaving activity of a group I ribozyme through in vitro evolution. J Mol Biol. Sep. 13, 1996;262(1):31-42. doi: 10.1006/jmbi.1996.0496.
Tsutakawa et al., Human flap endonuclease structures, DNA double-base flipping, and a unified understanding of the FEN1 superfamily. Cell. Apr. 15, 2011;145(2):198-211. doi: 10.1016/j.cell.2011.03.004.
Tycko et al., Pairwise library screen systematically interrogates Staphylococcus aureus Cas9 specificity in human cells. bioRxiv. doi: https://doi.org/10.1101/269399 Posted Feb. 22, 2018.
UniProt Consortium, UniProt: the universal protein knowledgebase. Nucleic Acids Res. Mar. 16, 2018;46(5):2699. doi: 10.1093/nar/gky092.
UniProtKB Submission; Accession No. F0NH53. May 3, 2011. 4 pages.
UniProtKB Submission; Accession No. F0NN87. May 3, 2011. 4 pages.
UniProtKB Submission; Accession No. G3ECR1.2. No Author Listed., Aug. 12, 2020, 8 pages.
UniProtKB Submission; Accession No. P04264. No Author Listed., Apr. 7, 2021. 12 pages.
UniProtKB Submission; Accession No. P0DOC6. No Author Listed., Oct. 5, 2016. 5 pages.
UniProtKB Submission; Accession No. T0D7A2. Oct. 16, 2013. 10 pages.
UniProtKB Submission; Accession No. U2UMQ6. No Author Listed., Apr. 7, 2021, 11 pages.
Urasaki et al., Functional dissection of the Tol2 transposable element identified the minimal cis-sequence and a highly repetitive sequence in the subterminal region essential for transposition. Genetics. Oct. 2006;174(2):639-49. doi: 10.1534/genetics.106.060244. Epub Sep. 7, 2006.
Usman et al., Exploiting the chemical synthesis of RNA. Trends Biochem Sci. Sep. 1992;17(9):334-9. doi: 10.1016/0968-0004(92)90306-t.
Van Brunt et al., Genetically Encoded Azide Containing Amino Acid in Mammalian Cells Enables Site-Specific Antibody-Drug Conjugates Using Click Cycloaddition Chemistry. Bioconjug Chem. Nov. 18, 2015;26(11):2249-60. doi: 10.1021/acs.bioconjchem.5b00359. Epub Sep. 11, 2015.
Van Brunt et al., Molecular Farming: Transgenic Animals as Bioreactors. Biotechnology (Y). 1988;6(10):1149-1154. doi: 10.1038/nbt1088-1149.
Van Overbeek et al., DNA Repair Profiling Reveals Nonrandom Outcomes at Cas9-Mediated Breaks. Mol Cell. Aug. 18, 2016;63(4):633-646. doi: 10.1016/j.molcel.2016.06.037. Epub Aug. 4, 2016.
Van Wijk et al., Identification of 51 novel exons of the Usher syndrome type 2A (USH2A) gene that encode multiple conserved functional domains and that are mutated in patients with Usher syndrome type II. Am J Hum Genet. Apr. 2004;74(4):738-44. doi: 10.1086/383096. Epub Mar. 10, 2004.
Varga et al., Progressive vascular smooth muscle cell defects in a mouse model of Hutchinson-Gilford progeria syndrome. Proc Natl Acad Sci U S A. Feb. 28, 2006;103(9):3250-5. doi: 10.1073/pnas.0600012103. Epub Feb. 21, 2006.
Vellore et al., A group II intron-type open reading frame from the thermophile Bacillus (Geobacillus) stearothermophilus encodes a heat-stable reverse transcriptase. Appl Environ Microbiol. Dec. 2004;70(12):7140-7. doi: 10.1128/AEM.70.12.7140-7147.2004.
Venken et al., Genome-wide manipulations of Drosophila melanogaster with transposons, Flp recombinase, and FC31 integrase. Methods Mol Biol. 2012;859:203-28. doi: 10.1007/978-1-61779-603-6_12.
Verma, The reverse transcriptase. Biochim Biophys Acta. Mar. 21, 1977;473(1):1-38. doi: 10.1016/0304-419x(77)90005-1.
Vigne et al., Third-generation adenovectors for gene therapy. Restor Neurol Neurosci. Jan. 1, 1995;8(1):35-6. doi: 10.3233/RNN-1995-81208.
Vik et al., Endonuclease V cleaves at inosines in RNA. Nat Commun. 2013;4:2271. doi: 10.1038/ncomms3271.
Vilenchik et al., Endogenous DNA double-strand breaks: production, fidelity of repair, and induction of cancer. Proc Natl Acad Sci U S A. Oct. 28, 2003;100(22):12871-6. doi: 10.1073/pnas.2135498100. Epub Oct. 17, 2003.
Villiger et al., Treatment of a metabolic liver disease by in vivo genome base editing in adult mice. Nat Med. Oct. 2018;24(10):1519-1525. doi: 10.1038/s41591-018-0209-1. Epub Oct. 8, 2018.
Voigt et al., Rational evolutionary design: the theory of in vitro protein evolution. Adv Protein Chem. 2000;55:79-160.
Vriend et al., Nick-initiated homologous recombination: Protecting the genome, one strand at a time. DNA Repair (Amst). Feb. 2017;50:1-13. doi: 10.1016/j.dnarep.2016.12.005. Epub Dec. 29, 2016.
Wang et al. CRISPR-Cas9 and CRISPR-Assisted Cytidine Deaminase Enable Precise and Efficient Genome Editing in Klebsiella pneumoniae. Appl Environ Microbiol. 2018;84(23):e01834-18. Published Nov. 15, 2018. doi:10.1128/AEM.01834-18.
Wang et al., AID upmutants isolated using a high-throughput screen highlight the immunity/cancer balance limiting DNA deaminase activity. Nat Struct Mol Biol. Jul. 2009;16(7):769-76. doi: 10.1038/nsmb.1623. Epub Jun. 21, 2009.
Wang et al., Continuous directed evolutions of proteins with improved soluble expression. Nature Chemical Biology. Nat Publishing Group. Aug. 20, 2018; 14(10):972-980.
Wang et al., Enhanced base editing by co-expression of free uracil DNA glycosylase inhibitor. Cell Res. Oct. 2017;27(1):1289-92. doi: 10.1038/cr.2017.111. Epub Aug. 29, 2017.
Wang et al., Evolution of new nonantibody proteins via iterative somatic hypermutation. Proc Natl Acad Sci U S A. Nov. 30, 2004;101(48):16745-9. Epub Nov. 19, 2004.
Wang et al., Expanding the genetic code. Annu Rev Biophys Biomol Struct. 2006;35:225-49. Review.
Wang et al., Highly efficient CRISPR/HDR-mediated knock-in for mouse embryonic stem cells and zygotes. Biotechniques. 2015:59,201-2;204;206-8.
Wang et al., (6)-methyladenosine Modulates Messenger RNA Translation Efficiency. Cell. Jun. 4, 2015;161(6):1388-99. doi: 10.1016/j.cell.2015.05.014.
Wang et al., N6-methyladenosine-dependent regulation of messenger RNA stability. Nature. Jan. 2, 2014;505(7481):117-20. doi: 10.1038/nature12730. Epub Nov. 27, 2013.
Wang et al., Optimized paired-sgRNA/Cas9 cloning and expression cassette triggers high-efficiency multiplex genome editing in kiwifruit. Plant Biotechnol J. Aug. 2018;16(8):1424-1433. doi: 10.1111/pbi.12884. Epub Feb. 6, 2018.
Wang et al., Programming cells by multiplex genome engineering and accelerated evolution. Nature. Aug. 13, 2009;460(7257):894-8. Epub Jul. 26, 2009.
Wang et al., Reading RNA methylation codes through methyl-specific binding proteins. RNA Biol. 2014;11(6):669-72. doi: 10.4161/rna.28829. Epub Apr. 24, 2014.
Wang et al., Staphylococcus aureus protein SAUGI acts as a uracil-DNA glycosylase inhibitor. Nucleic Acids Res. Jan. 2014;42(2):1354-64. doi: 10.1093/nar/gkt964. Epub Oct. 22, 2013.
Wang et al., Structural basis of (6)-adenosine methylation by the METTL3-METTL14 complex. Nature. Jun. 23, 2016;534(7608):575-8. doi: 10.1038/nature18298. Epub May 25, 2016.
Watowich, The erythropoietin receptor: molecular structure and hematopoietic signaling pathways. J Investig Med. Oct. 2011;59(7):1067-72. doi: 10.2310/JIM.0b013e31820fb28c.
Waxman et al., Regulating excitability of peripheral afferents: emerging ion channel targets. Nat Neurosci. Feb. 2014;17(2):153-63. doi: 10.1038/nn.3602. Epub Jan. 28, 2014.
Weill et al., DNA polymerases in adaptive immunity. Nat Rev Immunol. Apr. 2008;8(4):302-12. doi: 10.1038/nri2281. Epub Mar. 14, 2008.
Weinberg et al., New Classes of Self-Cleaving Ribozymes Revealed by Comparative Genomics Analysis. Nat Chem Biol. Aug. 2015;11(8):606-10. doi: 10.1038/nchembio.1846. Epub Jul. 13, 2015.
Weiss et al., Loss-of-function mutations in sodium channel Nav1.7 cause anosmia. Nature. Apr. 14, 2011;472(7342):186-90. doi: 10.1038/nature09975. Epub Mar. 23, 2011.
Wen et al., Inclusion of a universal tetanus toxoid CD4(+) T cell epitope P2 significantly enhanced the immunogenicity of recombinant rotavirus ?VP8 subunit parenteral vaccines. Vaccine. Jul. 31, 2014;32(35):4420-4427. doi: 10.1016/j.vaccine.2014.06.060. Epub Jun. 21, 2014.
West et al., Gene expression in adeno-associated virus vectors: the effects of chimeric mRNA structure, helper virus, and adenovirus VA1 RNA. Virology. Sep. 1987;160(1):38-47. doi: 10.1016/0042-6822(87)90041-9.
Wharton et al., A new-specificity mutant of 434 repressor that defines an amino acid-base pair contact. Nature. Apr. 30-May 6, 1987;326(6116):888-91.
Wharton et al., Changing the binding specificity of a repressor by redesigning an alpha-helix. Nature. Aug. 15-21, 1985;316(6029):601-5.
Wheeler et al., The thermostability and specificity of ancient proteins. Curr Opin Struct Biol. Jun. 2016;38:37-43. doi: 10.1016/j.sbi.2016.05.015. Epub Jun. 9, 2016.
Wienert et al., KLF1 drives the expression of fetal hemoglobin in British HPFH. Blood. Aug. 10, 2017;130(6):803-807. doi: 10.1182/blood-2017-02-767400. Epub Jun. 28, 2017.
Wijesinghe et al., Efficient deamination of 5-methylcytosines in DNA by human APOBEC3A, but not by AID or APOBEC3G. Nucleic Acids Res. Oct. 2012;40(18):9206-17. doi: 10.1093/nar/gks685. Epub Jul. 13, 2012.
Williams et al., Assessing the accuracy of ancestral protein reconstruction methods. PLoS Comput Biol. Jun. 23, 2006;2(6):e69. doi: 10.1371/journal.pcbi.0020069. Epub Jun. 23, 2006.
Wills et al., Pseudoknot-dependent read-through of retroviral gag termination codons: importance of sequences in the spacer and loop 2. EMBO J. Sep. 1, 1994;13(17):4137-44. doi: 10.1002/j.1460-2075.1994.tb06731.x.
Wilson et al., Assessing annotation transfer for genomics: quantifying the relations between protein sequence, structure and function through traditional and probabilistic scores. J Mol Biol 2000;297:233-49.
Wilson et al., Formation of infectious hybrid virions with gibbon ape leukemia virus and human T-cell leukemia virus retroviral envelope glycoproteins and the gag and pol proteins of Moloney murine leukemia virus. J Virol. May 1989;63(5):2374-8. doi: 10.1128/JVI.63.5.2374-2378.1989.
Wilson et al., In Vitro Selection of Functional Nucleic Acids. Annu Rev Biochem. 1999;68:611-47. doi: 10.1146/annurev.biochem.68.1.611.
Wilson et al., Kinase dynamics. Using ancient protein kinases to unravel a modern cancer drug's mechanism. Science. Feb. 20, 2015;347(6224):882-6. doi: 10.1126/science.aaa1823.
Winoto et al., A novel, inducible and T cell-specific enhancer located at the 3′ end of the T cell receptor alpha locus. EMBO J. Mar. 1989;8(3):729-33.
Winter et al., Drug Development. Phthalimide conjugation as a strategy for in vivo target protein degradation. Science. Jun. 19, 2015;348(6241):1376-81. doi:; 10.1126/science.aab1433. Epub May 21, 2015.
Wold, Replication protein A: a heterotrimeric, single-stranded DNA-binding protein required for eukaryotic DNA metabolism. Annu Rev Biochem. 1997;66:61-92. doi: 10.1146/annurev.biochem.66.1.61.
Wong et al., A statistical analysis of random mutagenesis methods used for directed protein evolution. J Mol Biol. Jan. 27, 2006;355(4):858-71. Epub Nov. 17, 2005.
Wong et al., The Diversity Challenge in Directed Protein Evolution. Comb Chem High Throughput Screen. May 2006;9(4):271-88.
Wood et al., A genetic system yields self-cleaving inteins for bioseparations. Nat Biotechnol. Sep. 1999;17(9):889-92. doi: 10.1038/12879.
Woods et al., The phenotype of congenital insensitivity to pain due to the NaV1.9 variant p.L811P. Eur J Hum Genet. May 2015;23(5):561-3. doi: 10.1038/ejhg.2014.166. Epub Aug. 13, 2014.
Wright et al., Continuous in vitro evolution of catalytic function. Science. Apr. 25, 1997;276(5312):614-7.
Wright et al., Rational design of a split-Cas9 enzyme complex. Proc Natl Acad Sci U S A. Mar. 10, 2015;112(10):2984-9. doi: 10.1073/pnas.1501698112. Epub Feb. 23, 2015.
Wu et al., Human single-stranded DNA binding proteins: guardians of genome stability. Acta Biochim Biophys Sin (Shanghai). Jul. 2016;48(7):671-7. doi: 10.1093/abbs/gmw044. Epub May 23, 2016.
Wu et al., Protein trans-splicing and functional mini-inteins of a cyanobacterial dnaB intein. Biochim Biophys Acta. Sep. 8, 1998;1387(1-2):422-32. doi: 10.1016/s0167-4838(98)00157-5.
Wu et al., Protein trans-splicing by a split intein encoded in a split DnaE gene of Synechocystis sp. PCC6803. Proc Natl Acad Sci U S A. Aug. 4, 1998;95(16):9226-31. doi: 10.1073/pnas.95.16.9226.
Wu et al., Readers, writers and erasers of N6-methylated adenosine modification. Curr Opin Struct Biol. Dec. 2017;47:67-76. doi: 10.1016/j.sbi.2017.05.011. Epub Jun. 16, 2017.
Xiang et al., RNA m6A methylation regulates the ultraviolet-induced DNA damage response. Nature. Mar. 23, 2017;543(7646):573-576. doi: 10.1038/nature21671. Epub Mar. 15, 2017.
Xiao et al., Genetic incorporation of multiple unnatural amino acids into proteins in mammalian cells. Angew Chem Int Ed Engl. Dec. 23, 2013;52(52):14080-3. doi: 10.1002/anie.201308137. Epub Nov. 8, 2013.
Xiao et al., Nuclear m(6)A Reader YTHDC1 Regulates mRNA Splicing. Mol Cell. Feb. 18, 2016;61(4):507-519. doi: 10.1016/j.molcel.2016.01.012. Epub Feb. 11, 2016.
Xie et al., Adjusting the attB site in donor plasmid improves the efficiency of ?C31 integrase system. DNA Cell Biol. Jul. 2012;31(7):1335-40. doi: 10.1089/dna.2011.1590. Epub Apr. 10, 2012.
Xiong et al., Origin and evolution of retroelements based upon their reverse transcriptase sequences. EMBO J. Oct. 1990;9(10):3353-62.
Xu et al., Accuracy and efficiency define Bxb1 integrase as the best of fifteen candidate serine recombinases for the integration of DNA into the human genome. BMC Biotechnol. Oct. 20, 2013;13:87. doi: 10.1186/1472-6750-13-87.
Xu et al., Chemical ligation of folded recombinant proteins: segmental isotopic labeling of domains for NMR studies. Proc Natl Acad Sci U S A. Jan. 19, 1999;96(2):388-93. doi: 10.1073/pnas.96.2.388.
Xu et al., Protein splicing: an analysis of the branched intermediate and its resolution by succinimide formation. EMBO J. Dec. 1, 1994;13(23):5517-22.
Xu et al., PTMD: A Database of Human Disease-associated Post-translational Modifications. Genomics Proteomics Bioinformatics. Aug. 2018;16(4):244-251. doi: 10.1016/j.gpb.2018.06.004. Epub Sep. 21, 2018.
Xu et al., Structures of human ALKBH5 demethylase reveal a unique binding mode for specific single-stranded N6-methyladenosine RNA demethylation. J Biol Chem. Jun. 20, 2014;289(25):17299-311. doi: 10.1074/jbc.M114.550350. Epub Apr. 28, 2014.
Xu et al., The mechanism of protein splicing and its modulation by mutation. EMBO J. Oct. 1, 1996;15(19):5146-53.
Yamada et al., Crystal Structure of the Minimal Cas9 from Campylobacter jejuni Reveals the Molecular Diversity in the CRISPR-Cas9 Systems. Mol Cell. Mar. 16, 2017;65(6):P1109-1121./doi.org/10.1016/j.molcel.2017.02.007.
Yamamoto et al., The ons and offs of inducible transgenic technology: a review. Neurobiol Dis. Dec. 2001;8(6):923-32.
Yamano et al., Crystal Structure of Cpf1 in Complex with Guide RNA and Target DNA. Cell. May 5, 2016;165(4):949-62 and Supplemental Info. doi: 10.1016/j.cell.2016.04.003. Epub Apr. 21, 2016.
Yamazaki et al., Segmental Isotope Labeling for Protein NMR Using Peptide Splicing. J. Am. Chem. Soc. May 22, 1998; 120(22):5591-2. https://doi.org/10.1021/ja9807760.
Yan et al., Cas13d Is a Compact RNA-Targeting Type VI CRISPR Effector Positively Modulated by a WYL-Domain-Containing Accessory Protein. Mol Cell. Apr. 19, 2018;70(2):327-339.e5. doi: 10.1016/j.molcel.2018.02.028. Epub Mar. 15, 2018.
Yan et al., Highly Efficient A⋅T to G⋅C Base Editing by Cas9n-Guided tRNA Adenosine Deaminase in Rice. Mol Plant. Apr. 2, 2018;11(4):631-634. doi: 10.1016/j.molp.2018.02.008. Epub Feb. 22, 2018.
Yang et al., Construction of an integration-proficient vector based on the site-specific recombination mechanism of enterococcal temperate phage phiFC1. J Bacteriol. Apr. 2002;184(7):1859-64. doi: 10.1128/jb.184.7.1859-1864.2002.
Yang et al., Genome-wide inactivation of porcine endogenous retroviruses (PERVs). Science. Nov. 27, 2015;350(6264):1101-4. doi: 10.1126/science.aad1191. Epub Oct. 11, 2015.
Yang et al., Increasing targeting scope of adenosine base editors in mouse and rat embryos through fusion of TadA deaminase with Cas9 variants. Protein Cell. Sep. 2018;9(9):814-819. doi: 10.1007/s13238-018-0568-x.
Yang et al., Mutations in SCN9A, encoding a sodium channel alpha subunit, in patients with primary erythermalgia. J Med Genet. Mar. 2004;41(3):171-4. doi: 10.1136/jmg.2003.012153.
Yang et al., One-step generation of mice carrying reporter and conditional alleles by CRISPR/Cas-mediated genome engineering. Cell. Sep. 12, 2013;154(6):1370-9. doi: 10.1016/j.cell.2013.08.022. Epub Aug. 29, 2013.
Yang et al., Permanent genetic memory with >1-byte capacity. Nat Methods. Dec. 2014;11(12):1261-6. doi: 10.1038/nmeth.3147. Epub Oct. 26, 2014.
Yang et al., Preparation of RNA-directed DNA polymerase from spleens of Balb-c mice infected with Rauscher leukemia virus. Biochem Biophys Res Commun. Apr. 28, 1972;47(2):505-11. doi: 10.1016/0006-291x(72)90743-7.
Yang et al., Small-molecule control of insulin and PDGF receptor signaling and the role of membrane attachment. Curr Biol. Jan. 1, 1998;8(1):11-8. doi: 10.1016/s0960-9822(98)70015-6.
Yang, Development of Human Genome Editing Tools for the Study of Genetic Variations and Gene Therapies. Doctoral Dissertation. Harvard University. 2013. Accessible via nrs.harvard.edu/urn-3:HUL.InstRepos: 11181072. 277 pages.
Yang, Nucleases: diversity of structure, function and mechanism. Q Rev Biophys. Feb. 2011;44(1):1-93. doi: 10.1017/S0033583510000181. Epub Sep. 21, 2010.
Yang, PAML 4: phylogenetic analysis by maximum likelihood. Mol Biol Evol. Aug. 2007;24(8): 1586-91. doi: 10.1093/molbev/msm088. Epub May 4, 2007.
Yang, Phylogenetic Analysis by Maximum Likelihood (PAML). //abacus.gene.ucl.ac.uk/software/paml.html Last accessed Apr. 28, 2021.
Yasui et al., Miscoding Properties of 2′-Deoxyinosine, a Nitric Oxide-Derived DNA Adduct, during Translesion Synthesis Catalyzed by Human DNA Polymerases. J Molec Biol. Apr. 4, 2008;377(4):1015-23.
Yasui, Alternative excision repair pathways. Cold Spring Harb Perspect Biol. Jun. 1, 2013;5(6):a012617. doi: 10.1101/cshperspect.a012617.
Yasukawa et al., Characterization of Moloney murine leukaemia virus/avian myeloblastosis virus chimeric reverse transcriptases. J Biochem. Mar. 2009;145(3):315-24. doi: 10.1093/jb/mvn166. Epub Dec. 6, 2008.
Yeh et al., In vivo base editing of post-mitotic sensory cells. Nat Commun. Jun. 5, 2018;9(1):2184. doi: 10.1038/s41467-018-04580-3.
Yokoe et al., Spatial dynamics of GFP-tagged proteins investigated by local fluorescence enhancement. Nat Biotechnol. Oct. 1996;14(10):1252-6. doi: 10.1038/nbt1096-1252.
Yu et al., Circular permutation: a different way to engineer enzyme structure and function. Trends Biotechnol. Jan. 2011;29(1):18-25. doi: 10.1016/j.tibtech.2010.10.004. Epub Nov. 17, 2010.
Yu et al., Liposome-mediated in vivo E1A gene transfer suppressed dissemination of ovarian cancer cells that overexpress HER-2/neu. Oncogene. Oct. 5, 1995;11(7):1383-8.
Yu et al., Progress towards gene therapy for HIV infection. Gene Ther. Jan. 1994;1(1):13-26.
Yu et al., Small molecules enhance CRISPR genome editing in pluripotent stem cells. Cell Stem Cell. Feb. 5, 2015;16(2):142-7. doi: 10.1016/j.stem.2015.01.003.
Yu et al., Synthesis-dependent microhomology-mediated end joining accounts for multiple types of repair junctions. Nucleic Acids Res. Sep. 2010;38(17):5706-17. doi: 10.1093/nar/gkq379. Epub May 11, 2010.
Zakas et al., Enhancing the pharmaceutical properties of protein drugs by ancestral sequence reconstruction. Nat Biotechnol. Jan. 2017;35(1):35-37. doi: 10.1038/nbt.3677. Epub Sep. 26, 2016.
Zalatan et al., Engineering complex synthetic transcriptional programs with CRISPR RNA scaffolds. Cell. Jan. 15, 2015;160(1-2):339-50. doi: 10.1016/j.cell.2014.11.052. Epub Dec. 18, 2014.
Zetsche et al., Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR-Cas system. Cell. Oct. 22, 2015;163(3):759-71 and Supplemental Info. doi: 10.1016/j.cell.2015.09.038. Epub Sep. 25, 2015.
Zettler et al., The naturally split Npu DnaE intein exhibits an extraordinarily high rate in the protein trans-splicing reaction. FEBS Lett. Mar. 4, 2009;583(5):909-14. doi: 10.1016/j.febslet.2009.02.003. Epub Feb. 10, 2009.
Zhang et al., Π-Clamp-mediated cysteine conjugation. Nat Chem. Feb. 2016;8(2):120-8. doi: 10.1038/nchem.2413. Epub Dec. 21, 2015.
Zhang et al., A new strategy for the site-specific modification of proteins in vivo. Biochemistry. Jun. 10, 2003;42(22):6735-46.
Zhang et al., Circular intronic long noncoding RNAs. Mol Cell. Sep. 26, 2013;51(6):792-806. doi: 10.1016/j.molcel.2013.08.017. Epub Sep. 12, 2013
Zhang et al., Copy number variation in human health, disease, and evolution. Annu Rev Genomics Hum Genet. 2009;10:451-81. doi: 10.1146/annurev.genom.9.081307.164217.
Zhang et al., Global analysis of small RNA and mRNA targets of Hfq. Mol Microbiol. Nov. 2003;50(4):1111-24. doi: 10.1046/j.1365-2958.2003.03734.x.
Zhang et al., Myoediting: Toward Prevention of Muscular Dystrophy by Therapeutic Genome Editing. Physiol Rev. Jul. 1, 2018;98(3):1205-1240. doi: 10.1152/physrev.00046.2017.
Zhang et al., Reversible RNA Modification N1-methyladenosine (m1A) in mRNA and tRNA. Genomics Proteomics Bioinformatics. Jun. 2018;16(3):155-161. doi: 10.1016/j.gpb.2018.03.003. Epub Jun. 14, 2018.
Zhang et al., Ribozymes and Riboswitches: Modulation of RNA Function by Small Molecules. Biochemistry. Nov. 2, 2010;49(43):9123-31. doi: 10.1021/bi1012645.
Zhao et al., An ultraprocessive, accurate reverse transcriptase encoded by a metazoan group II intron. RNA. Feb. 2018;24(2):183-195. doi: 10.1261/rna.063479.117. Epub Nov. 6, 2017.
Zhao et al., Crystal structures of a group II intron maturase reveal a missing link in spliceosome evolution. Nat Struct Mol Biol. Jun. 2016;23(6):558-65. doi: 10.1038/nsmb.3224. Epub May 2, 2016.
Zhao et al., Post-transcriptional gene regulation by mRNA modifications. Nat Rev Mol Cell Biol. Jan. 2017;18(1):31-42. doi: 10.1038/nrm.2016.132. Epub Nov. 3, 2016.
Zheng et al., ALKBH5 is a mammalian RNA demethylase that impacts RNA metabolism and mouse fertility. Mol Cell. Jan. 10, 2013;49(1):18-29. doi: 10.1016/j.molcel.2012.10.015. Epub Nov. 21, 2012.
Zheng et al., Highly efficient base editing in bacteria using a Cas9-cytidine deaminase fusion. Commun Biol. Apr. 19, 2018;1:32. doi: 10.1038/s42003-018-0035-5.
Zheng et al., Structural basis for the complete resistance of the human prion protein mutant G127V to prion disease. Sci Rep. Sep. 4, 2018;8(1):13211. doi: 10.1038/s41598-018-31394-6.
Zhong et al., Rational Design of Aptazyme Riboswitches for Efficient Control of Gene Expression in Mammalian Cells. Elife. Nov. 2, 2016;5:e18858. doi: 10.7554/eLife.18858.
Zhou et al., Dynamic m(6)A mRNA methylation directs translational control of heat shock response. Nature. Oct. 22, 2015;526(7574):591-4. doi: 10.1038/nature15377. Epub Oct. 12, 2015.
Zhou et al., GISSD: Group I Intron Sequence and Structure Database. Nucleic Acids Res. Jan. 2008;36(Database issue):D31-7. doi: 10.1093/nar/gkm766. Epub Oct. 16, 2007.
Zhou et al., Protective V127 prion variant prevents prion disease by interrupting the formation of dimer and fibril from molecular dynamics simulations. Sci Rep. Feb. 24, 2016;6:21804. doi: 10.1038/srep21804.
Zhou et al., Seamless Genetic Conversion of SMN2 to SMN1 via CRISPR/Cpf1 and Single-Stranded Oligodeoxynucleotides in Spinal Muscular Atrophy Patient-Specific Induced Pluripotent Stem Cells. Hum Gene Ther. Nov. 2018;29(11):1252-1263. doi: 10.1089/hum.2017.255. Epub May 9, 2018.
Zielenski, Genotype and phenotype in cystic fibrosis. Respiration. 2000;67(2):117-33. doi: 10.1159/000029497.
Zimmerly et al., An Unexplored Diversity of Reverse Transcriptases in Bacteria. Microbiol Spectr. Apr. 2015;3(2):MDNA3-0058-2014. doi: 10.1128/microbiolspec.MDNA3-0058-2014.
Zimmerly et al., Group II intron mobility occurs by target DNA-primed reverse transcription. Cell. Aug. 25, 1995;82(4):545-54. doi: 10.1016/0092-8674(95)90027-6.
Zolotukhin et al., Production and purification of serotype 1, 2, and 5 recombinant adeno-associated viral vectors. Methods. Oct. 2002;28(2):158-67. doi: 10.1016/s1046-2023(02)00220-7.
Zufferey et al., Woodchuck hepatitis virus posttranscriptional regulatory element enhances expression of transgenes delivered by retroviral vectors. J Virol. Apr. 1999;73(4):2886-92. doi: 10.1128/JVI.73.4.2886-2892.1999.
Zuker et al., Optimal computer folding of large RNA sequences using thermodynamics and auxiliary information. Nucleic Acids Res. Jan. 10, 1981;9(1):133-48. doi: 10.1093/nar/9.1.133.
Zuo et al., Cytosine base editor generates substantial off-target single-nucleotide variants in mouse embryos. Science. Apr. 19, 2019;364(6437):289-292. doi: 10.1126/science.aav9973. Epub Feb. 28, 2019.
Ai et al., C-terminal Loop Mutations Determine Folding and Secretion Properties of PCSK9. iMedPub J: Biochem Mol Biol J. Nov. 5, 2016;2(3):17. doi: 10.21767/2471-8084.100026. 12 pages.
Basila et al., Minimal 2′-O-methyl phosphorothioate linkage modification pattern of synthetic guide RNAs for increased stability and efficient CRISPR-Cas9 gene editing avoiding cellular toxicity. PLOS One. Nov. 27, 2017;12(11):e0188593. doi: 10.1371/journal.pone.0188593.
Bertsimas et al., Simulated annealing. Statistical Science. Feb. 1993;8(1):10-15. doi: 10.1214/ss/1177011077.
Bibikova et al., Targeted chromosomal cleavage and mutagenesis in Drosophila using zinc-finger nucleases. Genetics. Jul. 2002;161(3):1169-75. doi: 10.1093/genetics/161.3.1169.
Carlier et al., Genome Sequence of Burkholderia cenocepacia H111, a Cystic Fibrosis Airway Isolate. Genome Announc. Apr. 10, 2014;2(2):e00298-14. doi: 10.1128/genomeA.00298-14.
Chen et al., Dynamic imaging of genomic loci in living human cells by an optimized CRISPR/Cas system. Cell. Dec. 19, 2013;155(7):1479-91. doi: 10.1016/j.cell.2013.12.001. Erratum in: Cell. Jan. 16, 2014;156(1-2):373.
Cheng et al., [Cloning,expression and activity identification of human innate immune protein apolipoprotein B mRNA editing enzyme catalytic subunit 3A(APOBEC3A)]. Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi. Chinese Journal of Cellular and Molecular Immunology, Feb. 2017;33(2):179-84. Chinese.
Dickinson et al., A system for the continuous directed evolution of proteases rapidly reveals drug-resistance mutations. Nat Commun. Oct. 30, 2014;5:5352. doi: 10.1038/ncomms6352.
Fang et al., The Menu of Features that Define Primary MicroRNAs and Enable De Novo Design of MicroRNA Genes. Mol Cell. Oct. 1, 2015;60(1):131-45. doi: 10.1016/j.molcel.2015.08.015. Epub Sep. 24, 2015.
Feng et al., Efficient genome editing in plants using a CRISPR/Cas system. Cell Res. Oct. 2013;23(10):1229-32. doi: 10.1038/cr.2013.114. Epub Aug. 20, 2013.
Fu et al., Targeted genome editing in human cells using CRISPR/Cas nucleases and truncated guide RNAs. Methods Enzymol. 2014;546:21-45. doi: 10.1016/B978-0-12-801185-0.00002-7.
Geisberg et al., Global analysis of mRNA isoform half-lives reveals stabilizing and destabilizing elements in yeast. Cell. Feb. 13, 2014;156(4):812-24. doi: 10.1016/j.cell.2013.12.026.
GenBank Submission; NIH/NCBI, Accession No. NC_000001.11. Gregory et al., Jun. 6, 2016. 3 pages.
GenBank Submission; NIH/NCBI, Accession No. NM_206933.2. Khalaileh et al., Sep. 16, 2018. 12 pages.
Grati et al., Localization of PDZD7 to the stereocilia ankle-link associates this scaffolding protein with the Usher syndrome protein network. J Neurosci. Oct. 10, 2012;32(41):14288-93. doi: 10.1523/JNEUROSCI.3071-12.2012.
Green et al., Characterization of the mechanical unfolding of RNA pseudoknots. J Mol Biol. Jan. 11, 2008;375(2):511-28. doi: 10.1016/j.jmb.2007.05.058. Epub May 26, 2007.
Hänsel-Hertsch et al., DNA G-quadruplexes in the human genome: detection, functions and therapeutic potential. Nat Rev Mol Cell Biol. May 2017;18(5):279-284. doi: 10.1038/nrm.2017.3. Epub Feb. 22, 2017.
Hawley-Nelson et al., Transfection of Cultured Eukaryotic Cells Using Cationic Lipid Reagents. Curr Prot Mol Biol. Jan. 2008;9.4.1-9.4.17. doi: 10.102/0471142727.mb0904s81. 17 pages.
Heyer et al., Regulation of homologous recombination in eukaryotes. Annu Rev Genet. 2010;44:113-39. doi: 10.1146/annurev-genet-051710-150955. Author Manuscript. 33 pages.
Houck-Loomis et al., An equilibrium-dependent retroviral mRNA switch regulates translational recoding. Nature. Nov. 27, 2011;480(7378):561-4. doi: 10.1038/nature10657.
Houseley et al., The many pathways of RNA degradation. Cell. Feb. 20, 2009;136(4):763-76. doi: 10.1016/j.cell.2009.01.019.
Ibrahim et al., RNA recognition by 3′-to-5′ exonucleases: the substrate perspective. Biochim Biophys Acta. Apr. 2008;1779(4):256-65. doi: 10.1016/j.bbagrm.2007.11.004. Epub Dec. 3, 2007.
Jakimo et al., A Cas9 with Complete PAM Recognition for Adenine Dinucleotides. bioRxiv preprint. Sep. 27, 2018. doi.org/10.1101/429654. 29 pages.
Ku et al., Nucleic Acid Aptamers: An Emerging Tool for Biotechnology and Biomedical Sensing. Sensors (Basel). Jul. 6, 2015;15(7):16281-313. doi: 10.3390/s150716281.
Kuan et al., A systematic evaluation of nucleotide properties for CRISPR sgRNA design. BMC Bioinformatics. Jun. 6, 2017;18(1):297. doi: 10.1186/s12859-017-1697-6.
Kwok et al., G-Quadruplexes: Prediction, Characterization, and Biological Application. Trends Biotechnol. Oct. 2017;35(10):997-1013. doi: 10.1016/j.tibtech.2017.06.012. Epub Jul. 26, 2017.
Liu et al., Usherin is required for maintenance of retinal photoreceptors and normal development of cochlear hair cells. Proc Natl Acad Sci U S A. Mar. 13, 2007;104(11):4413-8. doi: 10.1073/pnas.0610950104. Epub Mar. 5, 2007.
Macfadden et al., Mechanism and structural diversity of exoribonuclease-resistant RNA structures in flaviviral RNAs. Nat Commun. Jan. 9, 2018;9(1):119. doi: 10.1038/s41467-017-02604-y.
Maerker et al., A novel Usher protein network at the periciliary reloading point between molecular transport machineries in vertebrate photoreceptor cells. Hum Mol Genet. Jan. 1, 2008;17(1):71-86. doi: 10.1093/hmg/ddm285. Epub Sep. 28, 2007.
Mahoney et al., The Next Immune-Checkpoint Inhibitors: PD-1/PD-L1 Blockade in Melanoma. Clin Ther. Apr. 1, 2015;37(4):764-82. doi: 10.1016/j.clinthera.2015.02.018. Epub Mar. 29, 2015.
Mali et al., CAS9 transcriptional activators for target specificity screening and paired nickases for cooperative genome engineering. Nat Biotechnol. Sep. 2013;31(9):833-8, Supplemental Info. doi: 10.1038/nbt.2675. Epub Aug. 1, 2013.
Marcovitz et al., Frustration in protein-DNA binding influences conformational switching and target search kinetics. Proc Natl Acad Sci U S A. Nov. 1, 2011;108(44):17957-62. doi: 10.1073/pnas.1109594108. Epub Oct. 14, 2011.
Micozzi et al., Human cytidine deaminase: a biochemical characterization of its naturally occurring variants. Int J Biol Macromol. Feb. 2014;63:64-74. doi: 10.1016/j.ijbiomac.2013.10.029. Epub Oct. 29, 2013. Erratum in: Int J Biol Macromol. Feb. 2014;63:262.
Millevoi et al., G-quadruplexes in RNA biology. Wiley Interdiscip Rev RNA. Jul.-Aug. 2012;3(4):495-507. doi: 10.1002/wrna.1113. Epub Apr. 4, 2012.
Min et al., Deep learning in bioinformatics. Brief Bioinform. Sep. 1, 2017;18(5):851-869. doi: 10.1093/bib/bbw068.
Ousterout et al., Multiplex CRISPR/Cas9-based genome editing for correction of dystrophin mutations that cause Duchenne muscular dystrophy. Nat Commun. Feb. 18, 2015;6:6244. doi: 10.1038/ncomms7244.
Pandey et al., Effect of loops and G-quartets on the stability of RNA G-quadruplexes. J Phys Chem B. Jun. 13, 2013;117(23):6896-905. doi: 10.1021/jp401739m. Epub May 29, 2013. Supplementary Information, 21 pages.
Petit et al., Powerful mutators lurking in the genome. Philos Trans R Soc Lond B Biol Sci. Mar. 12, 2009;364(1517):705-15. doi: 10.1098/rstb.2008.0272.
Piotukh et al., Directed evolution of sortase A mutants with altered substrate selectivity profiles. J Am Chem Soc. Nov. 9, 2011;133(44):17536-9. doi: 10.1021/ja205630g. Epub Oct. 13, 2011.
Reiners et al., Scaffold protein harmonin (USH1C) provides molecular links between Usher syndrome type 1 and type 2. Hum Mol Genet. Dec. 15, 2005;14(24):3933-43. doi: 10.1093/hmg/ddi417. Epub Nov. 21, 2005.
Robert et al., Virus-Like Particles Derived from HIV-1 for Delivery of Nuclear Proteins: Improvement of Production and Activity by Protein Engineering. Mol Biotechnol. Jan. 2017;59(1):9-23. doi: 10.1007/s12033-016-9987-1.
Saayman et al., The therapeutic application of CRISPR/Cas9 technologies for HIV. Expert Opin Biol Ther. Jun. 2015;15(6):819-30. doi: 10.1517/14712598.2015.1036736. Epub Apr. 12, 2015.
Sorusch et al., Characterization of the ternary Usher syndrome SANS/ush2a/whirlin protein complex. Hum Mol Genet. Mar. 15, 2017;26(6):1157-1172. doi: 10.1093/hmg/ddx027.
Steckelberg et al., A folded viral noncoding RNA blocks host cell exoribonucleases through a conformationally dynamic RNA structure. Proc Natl Acad Sci U S A. Jun. 19, 2018;115(25):6404-6409. doi: 10.1073/pnas. 1802429115. Epub Jun. 4, 2018.
Svitashev et al., Targeted Mutagenesis, Precise Gene Editing, and Site-Specific Gene Insertion in Maize Using Cas9 and Guide RNA. Plant Physiol. Oct. 2015;169(2):931-45. doi: 10.1104/p. 15.00793. Epub Aug. 12, 2015.
Vidal et al., Yeast forward and reverse ‘n’-hybrid systems. Nucleic Acids Res. Feb. 15, 1999;27(4):919-29. doi: 10.1093/nar/27.4.919.
Wu et al., MLV based viral-like-particles for delivery of toxic proteins and nuclear transcription factors. Biomaterials. Sep. 2014;35(29):8416-26. doi: 10.1016/j.biomaterials.2014.06.006. Epub Jul. 3, 2014.
Wu et al., Widespread Influence of 3′-End Structures on Mammalian mRNA Processing and Stability. Cell. May 18, 2017;169(5):905-917.e11. doi: 10.1016/j.cell.2017.04.036.
Yi et al., Engineering of TEV protease variants by yeast ER sequestration screening (YESS) of combinatorial libraries. Proc Natl Acad Sci U S A. Apr. 30, 2013;110(18):7229-34. doi: 10.1073/pnas.1215994110. Epub Apr. 15, 2013.
Zhu et al., Novel Thrombotic Function of a Human SNP in STXBP5 Revealed by CRISPR/Cas9 Gene Editing in Mice. Arterioscler Thromb Vasc Biol. Feb. 2017;37(2):264-270. doi: 10.1161/ATVBAHA.116.308614. Epub Dec. 29, 2016.
Related Publications (1)
Number Date Country
20190225955 A1 Jul 2019 US
Provisional Applications (9)
Number Date Country
62408686 Oct 2016 US
62398490 Sep 2016 US
62370700 Aug 2016 US
62357332 Jun 2016 US
62357352 Jun 2016 US
62322178 Apr 2016 US
62311763 Mar 2016 US
62279346 Jan 2016 US
62245828 Oct 2015 US