The present invention relates generally to exposure methods and apparatuses that expose a pattern of a reticle (mask) to a target, such as a wafer and a glass target, and more particularly to a calibration for an alignment and focusing of an exposure apparatus, and the like. The present invention is suitable, for example, for an alignment for a so-called immersion exposure apparatus that fills, in liquid, a surface of a target and a final surface of a projection optical system, and exposes to the target via the projection optical system and the liquid.
A conventionally used projection exposure apparatus has a projection optical system and exposes a reticle pattern onto a wafer. Recently, a step-and-scan projection exposure apparatus has been mainly used. The exposure apparatus includes a reticle stage for driving a reticle, a wafer stage for driving a wafer, and a calibration system for an alignment and focusing. A precise calibration is required to improve a resolution and overlay accuracy.
Calibration optical systems include a through-the-reticle (“TTR”) optical system or a through-the-lens (“TTL”) optical system that uses the projection optical system. The TTR (Through The Reticle) calibration system is classified into two types according to measurement methods, and these types are common in driving the wafer stage in the XYZ directions at the measurement time.
A first TTR calibration system is of a light intensity detection type, which detects a light intensity that has transmitted an alignment mark (hereinafter called “an R mark”) on a reticle-side reference plate provided on the reticle or reticle stage and an alignment mark (hereinafter called “a W mark”) on a wafer-side reference plate provided on a wafer or wafer stage. A second TTR calibration system is of an image detection type, which uses an alignment scope (having a CCD) provided above the reticle to observe an image of the W mark via the reticle and the projection optical system.
Prior art includes, for example, Japanese Patent Applications, Publication Nos. 08-298238 and 2004-193160.
Both conventional TTR calibration systems have driven the wafer stage at the measurement time, but this approach come to have difficulties in satisfying the accuracy level required for the recent calibration. The wafer stage is driven during exposure in the step-and-scan method, but it is driven much faster during calibration than during exposure to prevent the throughput degradation. The fast movement fluctuates air between the final surface of the projection optical system and the wafer, degrading the measurement accuracy. In particular, an immersion type projection exposure apparatus that fills, in liquid, a space between the final surface of the projection optical system and the wafer suffers for substantially lowered measurement accuracy by the liquid turbulence. Even with no fluctuations of air or liquid between the final surface of the projection optical system and the wafer, the need still exists to enhance the calibration accuracy of the TTR calibration system.
The present invention is directed to an exposure apparatus and method that enhances the TTR calibration accuracy.
An exposure apparatus according to one aspect of the present invention includes a projection optical system for projecting an image of a first pattern of a reticle onto a target, a detecting system for detecting a mark via the projection optical system to focus the projection optical system on the target or to align the reticle and the target, and a controller for controlling driving of a component that is located closer to the reticle than the projection optical system when the detecting system detects.
An exposure method according to another aspect of the present invention includes the steps of detecting a mark via a projection optical system while driving a component, located closer to a reticle than the projection optical system in focusing the projection optical system on a target or aligning the reticle and the target in an exposure apparatus for projecting onto the target a pattern of the reticle supported and driven by a reticle stage via the projection optical system, moving the target based on a detected result, and exposing the target.
A device manufacturing method according to still another aspect of the present invention includes the steps of exposing a target using the above exposure apparatus, and developing the target exposed. Claims for a device manufacturing method for performing operations similar to that of the above exposure apparatus cover devices as intermediate and final products. Such devices include semiconductor chips like an LSI and VLSI, CCDs, LCDs, magnetic sensors, thin film magnetic heads, and the like.
Other objects and further features of the present invention will become readily apparent from the following description of the preferred embodiments with reference to the accompanying drawings.
Referring now to the accompanying drawings, a description will be given of the embodiments of the present invention.
Referring now to
The exposure apparatus 100 includes, as shown in
The exposure apparatus 100 provides a wafer-side reference plate 142 on the wafer stage 140, forms a reference mark (reticle-side pattern) 124 on the surface as a reference for an alignment between the reticle RC and the wafer W, and fills, in liquid F, the space between the wafer-side reference plate 142 and the projection optical system 130. This structure sets the R mark 124 on the reticle RC or reticle-side reference plate 122 and the W mark 144 in an imaging relationship via the projection optical system 130. This configuration detects a positional relationship between the R mark 124 and the W mark 144 via the projection optical system 130 and through use of the exposure light, thus carrying out a calibration such as a baseline measurement.
The illumination apparatus 110 illuminates the reticle RC on which a circuit pattern to be transferred is formed, and includes a light source section and an illumination optical system.
The light source section uses, e.g., a laser as a light source. The laser can use a beam from pulse laser such as an ArF excimer laser with a wavelength of about 193 nm, a KrF excimer laser with a wavelength of about 248 nm, and an F2 excimer laser with a wavelength of about 157 nm. A kind of laser and the number of laser units are not limited, and a kind of a light source section is not limited.
The illumination optical system is an optical system that guides the light from the light source section to the reticle RC, and includes a lens, a mirror, a light integrator, a stop, and the like. The light integrator may include a fly-eye lens or an integrator formed by stacking two sets of cylindrical lens array plates (or lenticular lenses), and be replaced with an optical rod or a diffraction optical element. The illumination optical system can use any light whether it is axial light or non-axial light.
The reticle RC, on which a circuit pattern (or an image) to be transferred is formed, is made, for example, of quartz, and is supported and driven by the reticle stage 120. The diffracted lights through the reticle RC are projected onto the wafer W via the projection optical system 130. The reticle RC and wafer W are located in a conjugate relationship. Since the exposure apparatus 100 is a scanner, it transfers a pattern on the reticle RC onto the wafer W by scanning the reticle RC and plate W. If the exposure apparatus 100 is a stepper, it exposes while keeping the reticle RC and wafer W stationary.
The reticle stage 120 supports the reticle RC, is connected to a drive mechanism (not shown), and drives and controls the reticle RC. The reticle stage 120 and the projection optical system 130 are installed on a barrel stool supported via a damper, for example, to the base frame placed on the floor and the like. The drive mechanism (not shown) includes a linear motor and the like, and drives the reticle stage 120 in the XY directions, thus moving the reticle RC.
A reticle-side reference plate 122 is fixed within a specific range near the reticle RC on the reticle stage 120 such that the reticle-side reference plate 122's pattern surface is approximately level with that of the reticle RC's pattern surface. The reticle-side reference plate 122 has a plurality of R marks 124 for alignments on the pattern surface. The R mark 124 is different in size from the W mark 144 shown in
The projection optical system 130 serves to image the diffracted light that has passed a pattern of the reticle RC onto the wafer W. The projection optical system 130 can use a dioptric optical system consisting of a plurality of lens units, and a catadioptric optical system that includes a plurality of lens units and at least one concave mirror. Any necessary correction of a chromatic aberration may use a plurality of lens units made from glass materials having different dispersion values (Abbe values), or arranges a diffraction optical element such that it disperses in a direction opposite to that of the lens unit.
The wafer W is a plate to be exposed, and a photoresist is applied onto the plate. An alternate embodiment replaces the wafer W with a liquid crystal substrate or another plate to be exposed. The wafer W is supported by the wafer stage 140.
The wafer stage 140 supports the wafer W, and drives and controls the wafer W. The wafer stage 140 uses a linear motor to move the wafer W in the XYZ directions. The reticle RC and the wafer W are, for example, scanned synchronously, and the positions of the reticle stage 120 and wafer stage 140 are monitored, for example, by a laser interferometer and the like, so that both are driven at a constant speed ratio. The wafer stage 140 is installed on a stage stool supported on the floor and the like, for example, via a damper.
A wafer-side reference plate 142 is fixed within a specific range near the wafer W on the wafer stage 140 such that the wafer-side reference plate 142's pattern surface is approximately level with that of the wafer W's top surface (i.e., the projection optical system 130's imaging surface).
The wafer-side reference plate 142 has multiple W marks 144 for position alignment on the pattern surface. As shown in
The liquid F in which the final surface of the projection optical system 130 is immersed adopts a material that has a good transmittance to the exposure wavelength, does not contaminate the projection optical system 130, and is well matched with the resist process. In order to make large the NA of the projection optical system 130, the liquid F uses the material having a refractive index larger than 1. The refractive element (or a lens) of the projection optical system 130 is protected with coating on the final surface that contacts the liquid F.
As stated above, the liquid F fills the space between the final surface of the projection optical system 130 and the W mark 144 on the wafer-side reference plate 142, and serves to set the R mark 124 and the W mark 144 in an imaging relationship via the projection optical system 130.
In projecting and exposing a pattern on the reticle RC onto the wafer W, the exposure apparatus 100 should align the reticle RC with the wafer W, and thus includes an alignment mechanism. The alignment mechanism includes the off-axis alignment optical system 160 that detects the W mark 144 on the wafer W or the wafer-side reference plate 142, and a light intensity detection type calibration system that detects, via the projection optical system 130, the position of the W mark 144 on the wafer W 144 or the wafer-side reference plate 142 corresponding to the R mark 124 on the reticle RC or the reticle-side reference plate 122.
The off-axis alignment optical system 160 serves to detect the position of the wafer W, and includes an alignment light source (not shown), a fiber 161, an illumination section 162, an objective lens 163, a relay lens 164, and an image sensor 165.
The off-axis alignment optical system 160 uses the fiber 161 to guide a non-exposure light emitted from the alignment light source to the illumination section 162, and illuminates the W mark. The illuminated W mark is enlarged using the objective lens 163 and the relay lens 164, and imaged on the image sensor 165 such as a CCD. The off-axis alignment optical system 160 detects the position of the wafer W by utilizing a fact that an image position on the image sensor 165 changes as the W mark's position changes. However, when the off-axis alignment optical system 160 aligns the wafer W at a non-exposure position, it cannot provide an accurate alignment if the relationship (baseline) between the exposure position and the alignment position changes due to environmental changes and so forth.
To perform alignment with higher precision than the baseline stability, the calibration system measures the baseline. At first, the illumination apparatus 110 irradiates the exposure light onto the R mark that is located on the reticle-side reference plate 122 or the reticle RC, and has a guaranteed position relative to the reticle RC, and the projection optical system 130 projects it onto the W mark 144 on the wafer stage 140.
The light receiving element 170 receives the light that has transmitted the W mark 144, and is located on a backside 142b of the surface that has the W mark 144 of the wafer-side reference plate 142. This embodiment configures the light receiving element 170 as a light intensity sensor, such as a photodiode, which detects the intensity of the light that has transmitted the W mark 144. In projecting the R mark 124 onto the W mark 144 via the projection optical system 130, the light receiving element 170 detects the light intensity that has passed the wafer-side reference plate 142.
The control system includes a main control system 150, a reticle stage driving control system 152, a focus control system 154, and a wafer-stage driving control system 158. The main control system 150 communicates with and controls each control system. For example, the main control system 150 controls synchronous scanning between the reticle stage 120 and the wafer stage 140 during scan exposure of a reticle pattern onto the wafer W, including control over an exposure plane position based on an output of the focus control system 155. The main control system 150 directs the illumination optical system 110 to illuminate the R mark 124 with the exposure light, and to project it via the projection optical system 130 onto the W mark. The main control system 150 also calculates a calibration value. The reticle-stage driving control system 152 controls driving of the reticle stage 120. The focus control system 154 controls the focus measuring system 155. The focus measuring system 155 irradiates an obliquely light onto a plane to be measured, and calculate the height and inclination of the plane using the light reflected from the plane. The wafer-stage driving control system 158 controls driving of the wafer stage 140.
The R mark 124 is projected onto the W mark 144 via the projection optical system 130, and while the reticle stage 120 is moved in an X direction, the light receiving element 170 detects a light intensity having transmitted the W mark 144. This is different from a conventional exposure apparatus in that the reticle stage 120 is driven instead of the wafer stage 140. Since the liquid F does not fluctuate, this configuration implements a precise calibration of a light intensity detection type.
Next, when the wafer stage 140 is driven and the off-axis alignment optical system 160 detects a position of the W mark 144, a distance (baseline) between the R mark 124 and the off-axis alignment optical system 160 can be calculated for an alignment between the reticle RC and the wafer W. In place of the W mark 144, the off-axis alignment optical system 160 may detect another pattern having a guaranteed position with the W mark 144.
In detecting the W mark 144 using the off-axis alignment optical system 160, it is optional to fill, in the liquid F, the space between the off-axis alignment optical system 160 and the W mark 144. However, if filled, it is preferable that the space between the off-axis alignment optical system 160 and the wafer W be also filled. If not filled, the space between the off-axis alignment optical system 160 and the wafer W is preferably not filed. In other words, it is preferable to detect the position of the wafer-side reference plate 142 under the same condition as that of detecting the position of the wafer W using the off-axis alignment optical system 160.
The light receiving element 170 can also obtain the intensity change of the light that has transmitted the W mark 144, when the wafer stage 140 is driven in the axial direction (Z direction) of the projection optical system 130 while the calibration system aligns the R mark 124's image with the W mark 144 in the XY directions. Since the light intensity becomes maximum at the best focus position where the R mark 124 is focused on the W mark 144, the projection optical system 130's focusing position can be detected.
Further, the projection optical system 130's aberration (imaging performance) can also be calculated by measuring a change of a light intensity in detail as the wafer stage 140 is driven. For example, when the projection optical system 130 has a spherical aberration, a change in the light intensity shows asymmetry as shown in
When the wafer-side reference plate 142 is provided on the wafer stage 140, and the liquid F is filled in the space between the projection optical system 130 and the W mark 144 (wafer-side reference plate 142), the R mark 124 can be imaged on the W mark successfully, providing a precise calibration in the same way as the conventional. In order to fill, in the liquid F, the space between the wafer-side reference plate 142 and the projection optical system 130 in the same condition as the space between the wafer W and the projection optical system 130, a liquid holding plate LP may be provided on the wafer stage 140. The liquid holding plate LP serves to fill a gap between the wafer W and the wafer-side reference plate 142, and is made of a material that levels the wafer-side reference plate 142's pattern surface to the wafer W's top surface. To eliminate the gap between the wafer W and the wafer-side reference plate 142, the wafer-side reference plate 142 may be located close to the wafer W.
The exposure apparatus 100 maintains an imaging relationship between the R mark 124 and the W mark 144, and provides a precise calibration by setting the wafer-side reference plate 142 on the wafer stage 140, and filling, in the liquid F, the space between the projection optical system 130 and the wafer-side reference plate 142.
However, the exposure apparatus 100 has a air or vacuum region having a refractive index of 1 between the wafer-side reference plate 142 and the light receiving element 170. When the light with an NA larger than 1 images the R mark 124 on the reticle-side reference plate 122 onto the W mark 144 on the wafer-side reference plate 142, the lights with the NA greater than 1 are totally reflected on the backside 142b of the wafer-side reference plate 142, thus being unable to enter the light receiving element 170. As a consequence, a measurement value becomes incorrect due to an offset in it and degraded reproducibility of the measurement. Especially, in detecting a focal position of the projection optical system 130 by moving the wafer-side reference plate 142 in the axial direction of the projection optical system 130 (Z direction), the light with a high NA, which is most sensitive to the focus changes, does not enter the light receiving element 170, lowering the measurement precision. It is therefore preferable to fill, in liquid, a space between the backside 142b of the wafer-side reference plate 142 and the light receiving element 170. The liquid may use the same as or different from the liquid F as long as the exposure light is not totally reflected on the backside 142b.
The exposure apparatus 100 is replaceable with an exposure apparatus 100A shown in
As described above, the light intensity detection type calibration is implemented by driving the reticle stage 120 instead of driving the wafer stage 140, thus successfully detecting the R mark and W mark without fluctuations of the liquid F and precisely calibrating the exposure apparatuses 100 and 100A.
Referring now to
The exposure apparatus 100B is different from the exposure apparatuses 100 and 100A in that it uses an alignment scope 180 such as an objective lens 182 and a relay lens 183 to image the R mark 122 and the W mark 144 onto an image sensor 184, and drives the reticle stage 120 to detect a positional relationship between the R mark 124 and the W mark 144 by an image detection method. The liquid F does not fluctuate during measurements by the calibration system, and a precise image detection calibration can be implemented.
A light source for the alignment scope 180 preferably uses the same wavelength as the exposure wavelength, or typically the exposure light source. The light from the exposure light source (not shown) is guided by the fiber 171 to the light irradiator 172, which, in turn, illuminates the W mark 145. The illuminated W mark 145 is enlarged by using the projection optical system 130, the mirror 181, the objective lens 182, and the relay lens 183, and then imaged onto the image sensor, such as a CCD.
For measurement precision, it is preferable that a calibration system of an image observation type measure while the R mark 125's image and the W mark 145's image are each focused on the image sensor. Changing of the position of the relay lens 183 enables the focal points of the R mark 125's image and the W mark 145's image to be observed on the image sensor. The acquired relationship between the reticle-side and wafer-side focal points enables the R mark 125 to be successfully imaged on the wafer-side reference plate 124 for a precise calibration.
The R mark 125 can be focused on the image sensor 184 by moving the reticle stage 120 in the Z direction. The R mark 125 and W mark 145 each can be focused on the image sensor 184 by a combination of driving of the relay lens 183 and driving of the reticle stage 120 in the Z direction.
The image detection type calibration system, after the R mark 125 and the W mark 145 are focused on the image sensor 184, can basically measure an alignment between the W mark 145 and the R mark 125 without driving the wafer stage 140 and the reticle stage 120. However, when the R mark 125 and the W mark are located out of a sensing range of the image sensor, or a more precise measurement is required, the W mark 145 and the R mark 125 are moved to the image sensor's fine sensing range before the alignment measurement is carried out. At that time, instead of moving the wafer stage 140, the reticle stage 120, the image sensor 184, or the alignment scope 180 is moved in a direction perpendicular to the Z direction. This enables the W mark 145 and the R mark 125 to be observed within the fine sensing range of the image sensor, and provides a precise calibration without stirring the liquid F.
After the calibration, the wafer stage 140 is driven similarly to the first embodiment, and the off-axis alignment detection system 160 detects a position of the W mark 144. This guarantees the baseline, and aligns the reticle RC with the wafer W.
The imaging performance of the projection optical system 130 can be evaluated when the projected images of the R mark 125 and the W mark 145 on the image sensor 184 are thoroughly measured. In other words, the imaging performance of the TTR alignment system 180 can be observed by the detected image of the R mark 125, and the imaging performance of the projection optical system 130 via the TTR alignment system 180 can be observed by the detected image of the W mark 145. By calculating the optical performance of the R mark 125 and W mark 145 from their detected images, the optical performance of the projection optical system 130 alone can be calculated. For example, as the projection optical system 130 and the TTR alignment system 180 have a spherical aberration, a minimum output value in the light intensity distribution on the image sensor 184 increases for each light transmitting part of the R mark 125 and W mark 145. The spherical aberration of the projection optical system 130 can be measured by evaluating a change of this image sensor 184's minimum output value. A coma can also be measured by evaluating an asymmetry of the intensity distribution on the image sensor 184 for each transmitting part of the R mark 125 and W mark 145.
Referring now to
A light from an exposure light source (not shown) is guided by the fiber 171 to the light irradiator 172 that is installed in the TTR alignment optical system, transmits a half-mirror 185, and illuminates the R mark 125. The light reflected on the illuminated R mark 125 is enlarged by the half-mirror 185, the objective lens 182, and the relay lens 183, and imaged to the image sensor 184. In addition to the objective lens 182 and the relay lens 183, another optical system may be added to improve the magnification. In place of the half-mirror 185, a polarized beam splitter and the like may be used.
This embodiment uses detection marks 145 and 125. 145a and 145b in
While the above embodiments relate to the illustrative immersion exposure apparatus, the present invention is effectively applicable to dry exposure as well. A calibration for the dray exposure apparatus can use an oblique incidence type photo-detecting wafer-stage surface-position measuring system or an interferometer-type wafer-stage control system to drive and control a wafer stage. The wafer-stage surface-position measuring system and the control system are susceptible to air fluctuations in the optical path. When the air around the wafer stage is stirred when it is driven, the calibration accuracy deteriorates. The calibration system of this embodiment drives the reticle stage instead of the wafer stage, and does not stir the air near the wafer stage, realizing a precise calibration. When the reticle stage and wafer stage have similar driving and control errors, the reticle stage's driving error and control error are less influential to the calibration precision by the magnification of a projection optical system. When only a driving system is addressed after a similar driving system to that for the wafer stage is applied to the reticle stage, the calibration becomes more precise by an inverse of the reduction of the projection optical system (e.g., four times). Thus, the dry exposure apparatus can obtain a precise calibration through a reticle-stage driving calibration system. The step-and-scan method is expected to reduce influence by the liquid and air fluctuations in driving the wafer stage. This embodiment intends to maintain the calibration precision by stabilizing the wafer stage during calibration that requires the stage to be driven faster than during exposure.
When the above calibration system detects an optimal position of the wafer W, the main control system 150 returns the reticle RC and the relay lens 183 (or the alignment scope 180) to the exposure position, and instead drives the wafer stage 140 by the reduction of the projection optical system 130 times the detected amount. The throughput is maintained by driving the reticle stage and the relay lens 184 (or the alignment scope 180) simultaneously with driving of the wafer stage 140.
The main control system 150 now carries out exposure. In exposure, the exposure light emitted from the illumination apparatus 110 Koehler-illuminates the reticle RC. The light that passes the reticle RC and reflects the reticle pattern is imaged via the projection optical system onto the wafer W. Due to the precise calibration, the exposure apparatuses 100 etc. precisely align the reticle RC and the wafer W, focus the projection optical system 130 on the wafer W, correct an aberration of the projection optical system 130, and provide higher quality devices than ever (such as semiconductor devices, LCD devices, image sensors (CCD and the like), and thin-film magnetic heads).
Referring now to
Further, the present invention is not limited to these preferred embodiments, and various variations and modifications may be made without departing from the scope of the present invention.
This application claims a foreign priority benefit based on Japanese Patent Applications No. 2005-136676, filed on May 9, 2005, which is hereby incorporated by reference herein in its entirety as if fully set forth herein.
Number | Date | Country | Kind |
---|---|---|---|
2005-136676 | May 2005 | JP | national |