The present invention relates to systems, apparatuses, and methods utilizing expandable or stretchable integrated circuitry, and more particularly to extremely stretchable integrated circuitry.
The field of stretchable electronics continues to grow due to the demand of high performance and mechanically unconstrained applications of the future. However, stretchable electronics have been thus far limited in stretchability. This has limited the ability of stretchable electronics to accommodate applications that require more extreme stretchability. Therefore a need exists for extremely stretchable electronics.
This invention is for extremely stretchable electrical interconnects and methods of making the same. In embodiments, the invention comprises a method of making stretchable electronics, which in some embodiments can be out of high quality single crystal semiconductor materials or other semiconductor materials, that are typically rigid. For example, single crystal semiconductor materials are brittle and cannot typically withstand strains of greater than about +/−2%. This invention describes a method of electronics that are capable of stretching and compressing while withstanding high translational strains, such as in the range of −100,000% to +100,000%, and/or high rotational strains, such as to an extent greater than 180°, while maintaining electrical performance found in their unstrained state.
In embodiments, the stretching and compressing may be accomplished by fabricating integrated circuits (ICs) out of thin membrane single crystal semiconductors, which are formed into “islands” that are mechanically and electrically connected by “interconnects,” and transferring said ICs onto an elastomeric substrate capable of stretching and compressing. The islands are regions of non-stretchable/compressible ICs, while the interconnects are regions of material formed in a way to be highly stretchable/compressible. The underlying elastomeric substrate is much more compliant than the islands, so that minimal strain is transferred into the islands while the majority of the strain is transferred to the interconnects, which only contain electrical connections and not ICs. Each interconnect attaches one island to another island, and is capable of accommodating strain between the two aforementioned islands, including translation, rotation, or a combination of translation with rotation of one island relative to another. Even though the interconnects may be made of a rigid material, they act like weak springs rather than rigid plates or beams. This configuration thereby allows for the making of extremely stretchable electronics.
These and other systems, methods, objects, features, and advantages of the present invention will be apparent to those skilled in the art from the following detailed description of the preferred embodiment and the drawings. All documents mentioned herein are hereby incorporated in their entirety by reference.
The invention and the following detailed description of certain embodiments thereof may be understood by reference to the following figures:
While the invention has been described in connection with certain preferred embodiments, other embodiments would be understood by one of ordinary skill in the art and are encompassed herein.
All documents referenced herein are hereby incorporated by reference.
The present invention accomplishes extremely stretchable electronics by forming the electronics on discrete islands 102 of silicon.
With reference to the present invention, the term “stretchable”, and roots and derivations thereof, when used to modify circuitry or components thereof is meant to encompass circuitry that comprises components having soft or elastic properties capable of being made longer or wider without tearing or breaking, and it is also meant to encompass circuitry having components (whether or not the components themselves are individually stretchable as stated above) that are configured in such a way so as to accommodate and remain functional when applied to a stretchable, inflatable, or otherwise expandable surface. The term “expandable”, and roots and derivations thereof, when used to modify circuitry or components thereof is also meant to have the meaning ascribed above. Thus, “stretch” and “expand”, and all derivations thereof, may be used interchangeably when referring to the present invention.
In embodiments, the discrete islands mention above are discrete operative (in embodiments, arranged in a “device island” arrangement) and are themselves capable of performing the functionality described herein, or portions thereof. In embodiments, such functionality of the operative devices can include integrated circuits, physical sensors (e.g. temperature, pH, light, radiation etc), biological and/or chemical sensors, amplifiers, A/D and D/A converters, optical collectors, electro-mechanical transducers, piezo-electric actuators, light emitting electronics which include LEDs, and combinations thereof. The purpose and advantage of using standard ICs (in embodiments, CMOS, on single crystal silicon) is to have and use high quality, high performance, and high functioning circuit components that are also already commonly mass-produced with well known processes, and which provide a range of functionality and generation of data far superior to that produced by a passive means.
In an example, the discrete islands 102 may range from about, but not limited to, 10-100 μm in size measured on an edge or by diameter, and connecting said islands 102A-B with one or more extremely stretchable interconnects 104. The novel geometry of the interconnects 104 is what makes them extremely compliant. Each interconnect 104 is patterned and etched so that its structural form has width and thickness dimensions that may be of comparable size (such as their ratio or inverse ratio not exceeding about a factor of 10); and may be preferably equal in size. In embodiments, the dimensions may not be greater than about Sum (e.g. where both dimensions are about 1 μm or less). The interconnect 104 may be formed in a boustrophedonic style such that it effectively comprises long bars 108 and short bars 110 as shown in
In addition, because the interconnect 104 may be formed out of rigid materials, after being stretched it may have a restorative force which helps prevent its wire-like form from getting tangled or knotted when re-compressing to the unstretched state. Another advantage of the boustrophedonic geometry is that it minimizes the initial separation distance between the islands 102A-B. This is illustrated in
In embodiments, the connection point of the interconnect 104 to the device island 102 may be anywhere along the device island edge, or may be at a point on the surface of the device island 102 (in which case the interconnect may be located just above the plane of the device island).
In embodiments, device islands 102 may be made on any suitable material substrate, provided that a top membrane layer of said substrate that contains the ICs can be freed from the bulk of the substrate and transfer printed onto an elastomeric substrate.
In the present invention, the interconnects 104 (as described herein) may be formed either monolithically (i.e., out of the same semiconductor material as the device islands) or may be formed out of another material. In one non-limiting example embodiment, the stretchable electronics are fabricated on a silicon-on-insulator (SOI) wafer, having a 1 μm thick top silicon layer and a 1 μm thick buried oxide layer. Devices are formed on the top silicon wafer, and arranged into a square pattern of islands 102A-D and interconnects 104 of the general form shown in
In another embodiment the elastomeric substrate 602 may comprise two layers separated by a height. The top “contact” layer contacts the device island 102 as in the embodiment illustrated in
In another embodiment, the PDMS in the lower layer may be designed with periodic sinusoidal ripples 702B. In embodiments, this ripple configuration may be achieved by bonding Si nanoribbons on the surface of pre-strained PDMS in a uniform parallel pattern. The release of the prestrain in the PDMS substrate generates sinusoidal waves along the thin Si-nanoribbons (caused by buckling) and the surface of the PDMS substrate. The amplitude and wavelength of these waves 702B may depend on the extent of uniaxial pre-strain exerted on the PDMS and on the mechanical properties of the Si-nanoribbons. The wavy surface on the PDMS may be used as a transfer mold. Two-part liquid plastic solution can be poured over the wavy PDMS substrate and cured at room temperature over time (˜2 hrs). Once the plastic hardens, the plastic substrate can be peeled away from the PDMS. This new plastic transfer substrate with wavy surface features can be used to produce more PDMS substrates containing wave features. The wavy PDMS may serve as the lower layer of PDMS as in the previous embodiment. To produce a two layer PDMS structure, a top layer of PDMS can be plasma bonded to this lower layer of PDMS using oxygen plasma surface activation to produce the substrate illustrated in
In another embodiment, the PDMS transfer stamp is stretched after the islands 102A-B and interconnects 104 are picked up. A subsequent transfer to another elastomeric substrate 602 may place these pre-stretched devices in a configuration, which allows the new elastomeric substrate to undergo compression. The devices may be able to accommodate that compression because the interconnects are pre-stretched.
In another embodiment, the interconnects 104 are not made out of the same material as the device islands 102. In this case, the islands 102A-B are completely isolated from each other by etching, with no interconnects in between. In an example, a layer of polyimide may then be deposited, contact vias etched to various locations on the surface of the device island 102, and then metal interconnects 104 deposited and patterned into a boustrophedonic pattern, followed by another layer of polyimide. Both layers of polyimide may now be patterned and etched to leave a small border around the interconnects 104 (thereby fully encapsulating the interconnects). These interconnects may have the advantage that they are already fully encapsulated in polyimide and will not adhere as well to the elastomeric substrate as the device islands will. The other advantage is that these interconnects may not be limited to only connecting along the edge of an island. The contact via may be etched anywhere on the surface of the island 102, including near the center. This may allow for easier connections to devices, more connections than possible only along an edge, increased strain compliance, decreased strain at the contact vias, and multiple layers of interconnects made with polymer passivation layers in between, allowing even more interconnects, or allowing one device island 102A to connect to a non-neighboring device island 102B.
In another embodiment of the invention, the device islands 102 are fabricated and transfer printed onto the elastomeric substrate 602, or substrate comprising a polymeric release layer and polymeric non-release layer. After transfer printing, the interconnects 104 are formed as described above, which may be possible because they do not require any high temperature processing, and then in the latter case, the release layer is etched and the devices that are on the non-release layer, are transfer printed onto another elastomeric substrate 602. In the former case, the islands 102 may be transferred onto the elastomeric substrate using pick and place technology so that islands 102 that are initially fabricated very close to each other are spread apart when they are transfer printed. This allows the interconnects 104 to be fabricated in a pattern that resembles their stretched configuration (if desired), to allow compression.
In embodiments, the present invention may comprise a stretchable electrical interconnect 104, including an electrical interconnect 104 for connecting two electrical contacts 102A-B (e.g. device islands 102A-B), where the electrical interconnect 104 may be arranged boustrophedonicially to define rungs 108 (i.e. long bars 108) between the contacts 102A-B, and where the rungs 108 may be substantially parallel with one another and where a plurality of rungs 108 may have substantially the same length and displacement therebetween. In addition, the ratio of the length of the plurality of rungs 108 and the displacement between the plurality of rungs 108 may be large, such as at least 10:1, 100:1, 1000:1, and the like. The electrical integrity of the electrical interconnect 104 may be maintained as stretched, such as to displacements that are increased to 1000%, 10000%, 100000%, and the like during stretching. In embodiments, the rungs 108 may be substantially perpendicular to the contacts 102A-B, the interconnection 104 may have a trace width and/or inter-rung spacing ranging between 0.1-10 microns. In embodiments, the two electrical contacts 102A-B may be located on an elastomeric substrate 602, the electrical contacts 102A-B may be bonded to the substrate 602 and the interconnection 104 not bonded to the substrate 602, the electrical contacts 102A-B may be semiconductor circuits, metal contacts, and the like.
In embodiments, the present invention may comprise a stretchable electrical interconnect 104, including an electrical interconnect 104 for connecting two electrical contacts 102A-B, where the electrical interconnect 104 is arranged boustrophedonicially to define rungs 108 between the contacts 102A-B, and where the interconnect 104 maintains electrical conductivity and electrical integrity when a displacement between the contacts 102A-B is increased, such as by 1000%, 10000%, 100000%, and the like.
In embodiments, the present invention may electrically interconnect two electrical contacts 102A-B with a stretchable interconnection 104 that has the ability to twist between the two electrical contacts 102A-B by up to approximately 180 degrees while maintaining electrical integrity of the stretchable interconnection 104.
In embodiments, the present invention may be a device including a body having a stretchable surface (e.g. an elastomeric substrate 602), and a stretchable electronic circuit including (i) a first discrete operative device 102A, (ii) a second discrete operative device 102B, and (iii) a stretchable interconnect 104 connecting the first discrete operative device 102A to the second discrete operative device 102B, where the interconnect 104 may have a substantially boustrophedonic pattern and be able to maintain electrical conductivity when stretched, such as up to 1000%, 10000%, 100000%, and the like. The stretchable electronic circuit may be affixed to the stretchable surface of the body. In embodiments, the connection may be to a metal contact, to a semiconductor device, and the like. The first discrete operative device 102A, the second discrete operative device 102B, and the stretchable interconnect 104 may all be made from the same material, and that material may be a semiconductor material.
In embodiments, the present invention may attach at least two isolated electronic components (which in embodiments may be discrete operative devices) 102A-B to an elastomeric substrate 602, and arrange an electrical interconnection 104 between the components 102A-B in a boustrophedonic pattern interconnecting the two isolated electronic components 102A-B with the electrical interconnection 104. The elastomeric substrate 602 may then be stretched such that components 102A-B separate relative to one another, where the electrical interconnection 104 maintains substantially identical electrical performance characteristics that the electrical interconnection 104 had in a pre-stretched form. In embodiments, the stretching may be a translational stretching, where the separation between the isolated electronic components 102A-B increases by a percent as a result of the stretching, such as 10%, 100%, 1000%, 10000%, 100000%, and the like. The stretching may be a rotational stretching, where the rotation may be greater than a certain rotation angle, such as 90°, 180°, 270°, 360°, and the like, where the stretching may be in all three axes. In embodiments, the electrical interconnection 104 may be made from semiconductive material. The electrical interconnection 104 may be made from the same semiconductor material as the isolated electronic components 102A-B, fabricated at the same time as the isolated electronic components 102A-B, and the like. The semiconductor material may be a single crystal semiconductor material. The electrical interconnection 104 may made of a different material than the isolated electronic components 102A-B, such as a metal. In embodiments, the interconnect material 104 may be loosely bound to the elastomeric substrate 602, not connected at all, raised above the surface of the elastomeric substrate 602, and the like. In embodiments, the at least two isolated semiconductor circuits may be fabricated on an upper surface 604 of the elastomeric substrate 602 separated by a lower surface 608 of the elastomeric substrate 602, and the electrical interconnection 104 may be fabricated at the level of the upper surface 604 of the elastomeric substrate 602. In this way, the electrical interconnection 104 may have no direct contact with the lower level 608, and thereby be substantially free from adhesion to the lower level 608 during stretching. In addition, the lower surface 608 of the elastomeric substrate 602 may include a wavy form 702, where the wavy form 704 may allow the elastomeric substrate 602 to expand during stretching.
While the invention has been described in connection with certain preferred embodiments, other embodiments would be understood by one of ordinary skill in the art and are encompassed herein.
All documents referenced herein are hereby incorporated by reference.
This application is a continuation of U.S. application Ser. No. 14/488,544, filed Sep. 17, 2014, now issued as U.S. Pat. No. 9,516,758, which is a continuation of U.S. application Ser. No. 13/767,262, filed Feb. 14, 2013, now issued as U.S. Pat. No. 9,012,784, which is a continuation of U.S. application Ser. No. 12/616,922, filed Nov. 12, 2009, now issued as U.S. Pat. No. 8,389,862, which claims priority to and the benefit of U.S. Provisional Application No. 61/113,622, entitled “Extremely Stretchable Interconnects,” filed on Nov. 12, 2008; U.S. application Ser. No. 12/616,922 is a continuation-in-part of U.S. application Ser. No. 12/575,008, entitled “Catheter Balloon Having Stretchable Integrated Circuitry and Sensor Array,” filed on Oct. 7, 2009, now issued as U.S. Pat. No. 9,289,132, which claims priority to and the benefits of U.S. Provisional Application Nos. 61/103,361, filed Oct. 7, 2008, and 61/113,007, filed Nov. 10, 2008; all of the foregoing applications are hereby incorporated by reference herein in their entireties.
Number | Name | Date | Kind |
---|---|---|---|
3716861 | Root | Feb 1973 | A |
3805427 | Epstein | Apr 1974 | A |
3838240 | Schelhorn | Sep 1974 | A |
4278474 | Blakeslee | Jul 1981 | A |
4304235 | Kaufman | Dec 1981 | A |
4416288 | Freeman | Nov 1983 | A |
4658153 | Brosh | Apr 1987 | A |
4911169 | Ferrari | Mar 1990 | A |
5059424 | Cartmell | Oct 1991 | A |
5272375 | Belopolsky | Dec 1993 | A |
5306917 | Black | Apr 1994 | A |
5326521 | East | Jul 1994 | A |
5331966 | Bennett | Jul 1994 | A |
5360987 | Shibib | Nov 1994 | A |
5471982 | Edwards | May 1995 | A |
5454270 | Brown | Oct 1995 | A |
5491651 | Janic | Feb 1996 | A |
5567975 | Walsh | Oct 1996 | A |
5580794 | Allen | Dec 1996 | A |
5617870 | Hastings | Apr 1997 | A |
5811790 | Endo | Sep 1998 | A |
5817008 | Rafert | Oct 1998 | A |
5907477 | Tuttle | May 1999 | A |
6063046 | Allum | May 2000 | A |
6265090 | Nishide | Jul 2001 | B1 |
6282960 | Samuels | Sep 2001 | B1 |
6343514 | Smith | Feb 2002 | B1 |
6387052 | Quinn | May 2002 | B1 |
6410971 | Otey | Jun 2002 | B1 |
6421016 | Phillips | Jul 2002 | B1 |
6450026 | Desarnaud | Sep 2002 | B1 |
6455931 | Hamilton | Sep 2002 | B1 |
6567158 | Falcial | May 2003 | B1 |
6626940 | Crowley | Sep 2003 | B2 |
6628987 | Hill | Sep 2003 | B1 |
6641860 | Kaiserman | Nov 2003 | B1 |
6775906 | Silverbrook | Aug 2004 | B1 |
6784844 | Boakes | Aug 2004 | B1 |
6965160 | Cobbley | Nov 2005 | B2 |
6987314 | Yoshida | Jan 2006 | B1 |
7259030 | Daniels | Aug 2007 | B2 |
7265298 | Maghribi | Sep 2007 | B2 |
7302751 | Hamburgen | Dec 2007 | B2 |
7337012 | Maghribi | Feb 2008 | B2 |
7487587 | Vanfleteren | Feb 2009 | B2 |
7491892 | Wagner | Feb 2009 | B2 |
7521292 | Rogers | Apr 2009 | B2 |
7557367 | Rogers | Jul 2009 | B2 |
7618260 | Daniel | Nov 2009 | B2 |
7622367 | Nuzzo | Nov 2009 | B1 |
7727228 | Abboud | Jun 2010 | B2 |
7739791 | Brandenburg | Jun 2010 | B2 |
7759167 | Vanfleteren | Jul 2010 | B2 |
7815095 | Fujisawa | Oct 2010 | B2 |
7960246 | Flamand | Jun 2011 | B2 |
7982296 | Nuzzo | Jul 2011 | B2 |
8097926 | De Graff | Jan 2012 | B2 |
8198621 | Rogers | Jun 2012 | B2 |
8207473 | Axisa | Jun 2012 | B2 |
8217381 | Rogers | Jul 2012 | B2 |
8332053 | Patterson | Dec 2012 | B1 |
8372726 | De Graff | Feb 2013 | B2 |
8389862 | Arora | Mar 2013 | B2 |
8431828 | Vanfleteren | Apr 2013 | B2 |
8440546 | Nuzzo | May 2013 | B2 |
8536667 | De Graff | Sep 2013 | B2 |
8552299 | Rogers | Oct 2013 | B2 |
8618656 | Oh | Dec 2013 | B2 |
8664699 | Nuzzo | Mar 2014 | B2 |
8679888 | Rogers | Mar 2014 | B2 |
8729524 | Rogers | May 2014 | B2 |
8754396 | Rogers | Jun 2014 | B2 |
8865489 | Rogers | Oct 2014 | B2 |
8886334 | Ghaffari | Nov 2014 | B2 |
8905772 | Rogers | Dec 2014 | B2 |
9012784 | Arora | Apr 2015 | B2 |
9082025 | Fastert | Jul 2015 | B2 |
9105555 | Rogers | Aug 2015 | B2 |
9105782 | Rogers | Aug 2015 | B2 |
9119533 | Ghaffari | Sep 2015 | B2 |
9123614 | Graff | Sep 2015 | B2 |
9159635 | Elolampi | Oct 2015 | B2 |
9168094 | Lee | Oct 2015 | B2 |
9171794 | Rafferty | Oct 2015 | B2 |
9186060 | De Graff | Nov 2015 | B2 |
9226402 | Hsu | Dec 2015 | B2 |
9247637 | Hsu | Jan 2016 | B2 |
9289132 | Ghaffari | Mar 2016 | B2 |
9295842 | Ghaffari | Mar 2016 | B2 |
9324733 | Rogers | Apr 2016 | B2 |
9372123 | Li | Jun 2016 | B2 |
9408305 | Hsu | Aug 2016 | B2 |
20010012918 | Swanson | Aug 2001 | A1 |
20010021867 | Kordis | Sep 2001 | A1 |
20020000813 | Hirono | Jan 2002 | A1 |
20020026127 | Balbierz | Feb 2002 | A1 |
20020082515 | Campbell | Jun 2002 | A1 |
20020094701 | Biegelsen | Jul 2002 | A1 |
20020113739 | Howard | Aug 2002 | A1 |
20020128700 | Cross, Jr. | Sep 2002 | A1 |
20020145467 | Minch | Oct 2002 | A1 |
20020151934 | Levine | Oct 2002 | A1 |
20020158330 | Moon | Oct 2002 | A1 |
20020173730 | Pottgen | Nov 2002 | A1 |
20020193724 | Stebbings | Dec 2002 | A1 |
20030017848 | Engstrom | Jan 2003 | A1 |
20030045025 | Coyle | Mar 2003 | A1 |
20030097165 | Krulevitch | May 2003 | A1 |
20030120271 | Burnside | Jun 2003 | A1 |
20030162507 | Vatt | Aug 2003 | A1 |
20030214408 | Grajales | Nov 2003 | A1 |
20030236455 | Swanson | Dec 2003 | A1 |
20040006264 | Mojarradi | Jan 2004 | A1 |
20040085469 | Johnson | May 2004 | A1 |
20040092806 | Sagon | May 2004 | A1 |
20040106334 | Suzuki | Jun 2004 | A1 |
20040118831 | Martin | Jun 2004 | A1 |
20040135094 | Niigaki | Jul 2004 | A1 |
20040138558 | Dunki-Jacobs | Jul 2004 | A1 |
20040149921 | Smyk | Aug 2004 | A1 |
20040178466 | Merrill | Sep 2004 | A1 |
20040192082 | Wagner | Sep 2004 | A1 |
20040201134 | Kawai | Oct 2004 | A1 |
20040203486 | Shepherd | Oct 2004 | A1 |
20040221370 | Hannula | Nov 2004 | A1 |
20040243204 | Maghribi | Dec 2004 | A1 |
20050021103 | DiLorenzo | Jan 2005 | A1 |
20050029680 | Jung | Feb 2005 | A1 |
20050067293 | Naito | Mar 2005 | A1 |
20050070778 | Lackey | Mar 2005 | A1 |
20050096513 | Ozguz | May 2005 | A1 |
20050113744 | Donoghue | May 2005 | A1 |
20050139683 | Yi | Jun 2005 | A1 |
20050171524 | Stern | Aug 2005 | A1 |
20050203366 | Donoghue | Sep 2005 | A1 |
20050248312 | Cao | Nov 2005 | A1 |
20050261617 | Hall | Nov 2005 | A1 |
20050258050 | Bruce | Dec 2005 | A1 |
20050285262 | Knapp | Dec 2005 | A1 |
20060003709 | Wood | Jan 2006 | A1 |
20060038182 | Rogers | Feb 2006 | A1 |
20060071349 | Tokushige | Apr 2006 | A1 |
20060084394 | Engstrom | Apr 2006 | A1 |
20060106321 | Lewinsky | May 2006 | A1 |
20060122298 | Menon | Jun 2006 | A1 |
20060128346 | Yasui | Jun 2006 | A1 |
20060154398 | Qing | Jul 2006 | A1 |
20060160560 | Josenhans | Jul 2006 | A1 |
20060248946 | Howell | Nov 2006 | A1 |
20060257945 | Masters | Nov 2006 | A1 |
20060264767 | Shennib | Nov 2006 | A1 |
20060270135 | Chrysler | Nov 2006 | A1 |
20060286785 | Rogers | Dec 2006 | A1 |
20070027514 | Gerber | Feb 2007 | A1 |
20070031283 | Davis | Feb 2007 | A1 |
20070108389 | Makela | May 2007 | A1 |
20070113399 | Kumar | May 2007 | A1 |
20070123756 | Kitajima | May 2007 | A1 |
20070139451 | Somasiri | Jun 2007 | A1 |
20070179373 | Pronovost | Aug 2007 | A1 |
20070190880 | Dubrow | Aug 2007 | A1 |
20070270672 | Hayter | Nov 2007 | A1 |
20070270674 | Kane | Nov 2007 | A1 |
20080036097 | Ito | Feb 2008 | A1 |
20080046080 | Vanden Bulcke | Feb 2008 | A1 |
20080074383 | Dean | Mar 2008 | A1 |
20080096620 | Lee | Apr 2008 | A1 |
20080139894 | Szydlo-Moore | Jun 2008 | A1 |
20080157235 | Rogers | Jul 2008 | A1 |
20080185534 | Simon | Aug 2008 | A1 |
20080188912 | Stone | Aug 2008 | A1 |
20080193749 | Thompson | Aug 2008 | A1 |
20080200973 | Mallozzi | Aug 2008 | A1 |
20080204021 | Leussler | Aug 2008 | A1 |
20080211087 | Mueller-Hipper | Sep 2008 | A1 |
20080237840 | Alcoe | Oct 2008 | A1 |
20080259576 | Johnson | Oct 2008 | A1 |
20080262381 | Kolen | Oct 2008 | A1 |
20080287167 | Caine | Nov 2008 | A1 |
20080313552 | Buehler | Dec 2008 | A1 |
20090000377 | Shipps | Jan 2009 | A1 |
20090001550 | Yonggang | Jan 2009 | A1 |
20090015560 | Robinson | Jan 2009 | A1 |
20090017884 | Rotschild | Jan 2009 | A1 |
20090048556 | Durand | Feb 2009 | A1 |
20090076363 | Bly | Mar 2009 | A1 |
20090088750 | Hushka | Apr 2009 | A1 |
20090107704 | Vanfleteren | Apr 2009 | A1 |
20090154736 | Lee | Jun 2009 | A1 |
20090184254 | Miura | Jul 2009 | A1 |
20090204168 | Kallmeyer | Aug 2009 | A1 |
20090215385 | Waters | Aug 2009 | A1 |
20090225751 | Koenck | Sep 2009 | A1 |
20090261828 | Nordmeyer-Massner | Oct 2009 | A1 |
20090273909 | Shin | Nov 2009 | A1 |
20090283891 | Dekker | Nov 2009 | A1 |
20090291508 | Babu | Nov 2009 | A1 |
20090294803 | Nuzzo | Dec 2009 | A1 |
20090322480 | Benedict | Dec 2009 | A1 |
20100002402 | Rogers | Jan 2010 | A1 |
20100030167 | Thirstrup | Feb 2010 | A1 |
20100059863 | Rogers | Mar 2010 | A1 |
20100072577 | Nuzzo | Mar 2010 | A1 |
20100073669 | Colvin | Mar 2010 | A1 |
20100087782 | Ghaffari | Apr 2010 | A1 |
20100090781 | Yamamoto | Apr 2010 | A1 |
20100090824 | Rowell | Apr 2010 | A1 |
20100116526 | Arora | May 2010 | A1 |
20100117660 | Douglas | May 2010 | A1 |
20100178722 | De Graff | Jul 2010 | A1 |
20100245011 | Chatzopoulos | Sep 2010 | A1 |
20100271191 | De Graff | Oct 2010 | A1 |
20100298895 | Ghaffari | Nov 2010 | A1 |
20100317132 | Rogers | Dec 2010 | A1 |
20100321161 | Isabell | Dec 2010 | A1 |
20100327387 | Kasai | Dec 2010 | A1 |
20110011179 | Gustafsson | Jan 2011 | A1 |
20110034912 | De Graff | Feb 2011 | A1 |
20110051384 | Kriechbaum | Mar 2011 | A1 |
20110054583 | Litt | Mar 2011 | A1 |
20110071603 | Moore | Mar 2011 | A1 |
20110098583 | Pandia | Apr 2011 | A1 |
20110101789 | Salter | May 2011 | A1 |
20110121822 | Parsche | May 2011 | A1 |
20110140856 | Downie | Jun 2011 | A1 |
20110140897 | Purks | Jun 2011 | A1 |
20110175735 | Forster | Jul 2011 | A1 |
20110184320 | Shipps | Jul 2011 | A1 |
20110213559 | Pollack | Sep 2011 | A1 |
20110215931 | Callsen | Sep 2011 | A1 |
20110218756 | Callsen | Sep 2011 | A1 |
20110218757 | Callsen | Sep 2011 | A1 |
20110220890 | Nuzzo | Sep 2011 | A1 |
20110222375 | Tsubata | Sep 2011 | A1 |
20110263950 | Larson | Oct 2011 | A1 |
20110277813 | Rogers | Nov 2011 | A1 |
20110284268 | Palaniswamy | Nov 2011 | A1 |
20110306851 | Wang | Dec 2011 | A1 |
20120016258 | Webster | Jan 2012 | A1 |
20120051005 | Vanfleteren | Mar 2012 | A1 |
20120052268 | Axisa | Mar 2012 | A1 |
20120065937 | De Graff | Mar 2012 | A1 |
20120074546 | Chong | Mar 2012 | A1 |
20120087216 | Keung | Apr 2012 | A1 |
20120091594 | Landesberger | Apr 2012 | A1 |
20120092178 | Callsen | Apr 2012 | A1 |
20120092222 | Kato | Apr 2012 | A1 |
20120101413 | Beetel | Apr 2012 | A1 |
20120101538 | Ballakur | Apr 2012 | A1 |
20120108012 | Yasuda | May 2012 | A1 |
20120126418 | Feng | May 2012 | A1 |
20120150072 | Revol-Cavalier | Jun 2012 | A1 |
20120157804 | Rogers | Jun 2012 | A1 |
20120172697 | Urman | Jul 2012 | A1 |
20120178367 | Matsumoto | Jul 2012 | A1 |
20120226130 | De Graff | Sep 2012 | A1 |
20120244848 | Ghaffari | Sep 2012 | A1 |
20120256308 | Helin | Oct 2012 | A1 |
20120316455 | Rahman | Dec 2012 | A1 |
20120327608 | Rogers | Dec 2012 | A1 |
20130041235 | Rogers | Feb 2013 | A1 |
20130085552 | Mandel | Apr 2013 | A1 |
20130099358 | Elolampi | Apr 2013 | A1 |
20130100618 | Rogers | Apr 2013 | A1 |
20130116520 | Roham | May 2013 | A1 |
20130118255 | Callsen | May 2013 | A1 |
20130123587 | Sarrafzadeh | May 2013 | A1 |
20130150693 | D'Angelo | Jun 2013 | A1 |
20130185003 | Carbeck | Jul 2013 | A1 |
20130192356 | De Graff | Aug 2013 | A1 |
20130197319 | Monty | Aug 2013 | A1 |
20130200268 | Rafferty | Aug 2013 | A1 |
20130211761 | Brandsma | Aug 2013 | A1 |
20130214300 | Lerman | Aug 2013 | A1 |
20130215467 | Fein | Aug 2013 | A1 |
20130225965 | Ghaffari | Aug 2013 | A1 |
20130237150 | Royston | Sep 2013 | A1 |
20130245388 | Rafferty | Sep 2013 | A1 |
20130253285 | Bly | Sep 2013 | A1 |
20130274562 | Ghaffari | Oct 2013 | A1 |
20130313713 | Arora | Nov 2013 | A1 |
20130316442 | Meurville | Nov 2013 | A1 |
20130316487 | De Graff | Nov 2013 | A1 |
20130316645 | Li | Nov 2013 | A1 |
20130320503 | Nuzzo | Dec 2013 | A1 |
20130321373 | Yoshizumi | Dec 2013 | A1 |
20130328219 | Chau | Dec 2013 | A1 |
20130331914 | Lee | Dec 2013 | A1 |
20140001058 | Ghaffari | Jan 2014 | A1 |
20140012160 | Ghaffari | Jan 2014 | A1 |
20140012242 | Lee | Jan 2014 | A1 |
20140022746 | Hsu | Jan 2014 | A1 |
20140039290 | De Graff | Feb 2014 | A1 |
20140097944 | Fastert | Apr 2014 | A1 |
20140110859 | Rafferty | Apr 2014 | A1 |
20140125458 | Bachman | May 2014 | A1 |
20140140020 | Rogers | May 2014 | A1 |
20140188426 | Fastert | Jul 2014 | A1 |
20140191236 | Nuzzo | Jul 2014 | A1 |
20140206976 | Thompson | Jul 2014 | A1 |
20140216524 | Rogers | Aug 2014 | A1 |
20140240932 | Hsu | Aug 2014 | A1 |
20140249520 | Ghaffari | Sep 2014 | A1 |
20140303452 | Ghaffari | Oct 2014 | A1 |
20140303680 | Donnelly | Oct 2014 | A1 |
20140308930 | Tran | Oct 2014 | A1 |
20140340857 | Hsu | Nov 2014 | A1 |
20140374872 | Rogers | Dec 2014 | A1 |
20140375465 | Fenuccio | Dec 2014 | A1 |
20150001462 | Rogers | Jan 2015 | A1 |
20150019135 | Kacyvenski | Jan 2015 | A1 |
20150025394 | Hong | Jan 2015 | A1 |
20150035680 | Li | Feb 2015 | A1 |
20150069617 | Arora | Mar 2015 | A1 |
20150099976 | Ghaffari | Apr 2015 | A1 |
20150100135 | Ives | Apr 2015 | A1 |
20150194817 | Lee | Jul 2015 | A1 |
20150237711 | Rogers | Aug 2015 | A1 |
20150241288 | Keen | Aug 2015 | A1 |
20150260713 | Ghaffari | Sep 2015 | A1 |
20150272652 | Ghaffari | Oct 2015 | A1 |
20150286913 | Fastert | Oct 2015 | A1 |
20150320472 | Ghaffari | Nov 2015 | A1 |
20150335254 | Elolampi | Nov 2015 | A1 |
20150342036 | Fastert | Nov 2015 | A1 |
20160027834 | de Graff | Jan 2016 | A1 |
20160045162 | De Graff | Feb 2016 | A1 |
20160081192 | Hsu | Mar 2016 | A1 |
20160086909 | Garlock | Mar 2016 | A1 |
20160095652 | Lee | Apr 2016 | A1 |
20160099214 | Dalal | Apr 2016 | A1 |
20160099227 | Dalal | Apr 2016 | A1 |
20160111353 | Rafferty | Apr 2016 | A1 |
20160135740 | Ghaffari | May 2016 | A1 |
20160178251 | Johnson | Jun 2016 | A1 |
20160213262 | Ghaffari | Jul 2016 | A1 |
20160213424 | Ghaffari | Jul 2016 | A1 |
20160228640 | Pindado | Aug 2016 | A1 |
20160232807 | Ghaffari | Aug 2016 | A1 |
20160240061 | Li | Aug 2016 | A1 |
20160249174 | Patel | Aug 2016 | A1 |
20160256070 | Murphy | Sep 2016 | A1 |
20160287177 | Huppert | Oct 2016 | A1 |
20160293794 | Nuzzo | Oct 2016 | A1 |
20160309594 | Hsu | Oct 2016 | A1 |
20160322283 | McMahon | Nov 2016 | A1 |
20160338646 | Lee | Nov 2016 | A1 |
Number | Date | Country |
---|---|---|
202068986 | Dec 2011 | CN |
10 2007 046 886 | Apr 2009 | DE |
0585670 | Mar 1994 | EP |
0779059 | Jun 1997 | EP |
1808124 | Jul 2007 | EP |
2259062 | Dec 2010 | EP |
05-087511 | Apr 1993 | JP |
2005-052212 | Mar 2005 | JP |
2009-170173 | Jul 2009 | JP |
WO 1999038211 | Jul 1999 | WO |
WO 2005076452 | Aug 2005 | WO |
WO 2005122285 | Dec 2005 | WO |
WO 2003021679 | Mar 2006 | WO |
WO 2007003019 | Jan 2007 | WO |
WO 2007024983 | Mar 2007 | WO |
WO 2007116344 | Oct 2007 | WO |
WO 2007136726 | Nov 2007 | WO |
WO 2008030960 | Mar 2008 | WO |
WO 2009111641 | Sep 2009 | WO |
WO 2009114689 | Sep 2009 | WO |
WO 2010036807 | Apr 2010 | WO |
WO 2010042653 | Apr 2010 | WO |
WO 2010042957 | Apr 2010 | WO |
WO 2010046883 | Apr 2010 | WO |
WO 2010056857 | May 2010 | WO |
WO 2010081137 | Jul 2010 | WO |
WO 2010082993 | Jul 2010 | WO |
WO 2010102310 | Sep 2010 | WO |
WO 2010132552 | Nov 2010 | WO |
WO 2011003181 | Jan 2011 | WO |
WO 2011041727 | Apr 2011 | WO |
WO 2011084450 | Jul 2011 | WO |
WO 2011084709 | Jul 2011 | WO |
WO 2011124898 | Oct 2011 | WO |
WO 2011127331 | Oct 2011 | WO |
WO 2012125494 | Sep 2012 | WO |
WO 2012166686 | Dec 2012 | WO |
WO 2013010171 | Jan 2013 | WO |
WO 2013022853 | Feb 2013 | WO |
WO 2013033724 | Mar 2013 | WO |
WO 2013034987 | Mar 2013 | WO |
WO 2013049716 | Apr 2013 | WO |
WO 2013052919 | Apr 2013 | WO |
WO 2013170032 | Nov 2013 | WO |
WO 2014007871 | Jan 2014 | WO |
WO 2014058473 | Apr 2014 | WO |
WO 2014059032 | Apr 2014 | WO |
WO 2014106041 | Jul 2014 | WO |
WO 2014110176 | Jul 2014 | WO |
WO 2014130928 | Aug 2014 | WO |
WO 2014130931 | Aug 2014 | WO |
WO 2014186467 | Nov 2014 | WO |
WO 2014197443 | Dec 2014 | WO |
WO 2014205434 | Dec 2014 | WO |
WO 2015021039 | Feb 2015 | WO |
WO 2015054312 | Apr 2015 | WO |
WO 2015077559 | May 2015 | WO |
WO 2015080991 | Jun 2015 | WO |
WO 2015102951 | Jul 2015 | WO |
WO 2015103483 | Jul 2015 | WO |
WO 2015103580 | Jul 2015 | WO |
WO 2015127458 | Aug 2015 | WO |
WO 2015134588 | Sep 2015 | WO |
WO 2015138712 | Sep 2015 | WO |
WO 2015145471 | Oct 2015 | WO |
WO 2016048888 | Mar 2016 | WO |
WO 2016054512 | Apr 2016 | WO |
WO 2016057318 | Apr 2016 | WO |
WO 2016081244 | May 2016 | WO |
WO 20160127050 | Aug 2016 | WO |
WO 2016134306 | Aug 2016 | WO |
WO 2016-140961 | Sep 2016 | WO |
Entry |
---|
U.S. Appl. No. 12/968,637, filed Dec. 15, 2010, J. Rogers, High-Speed, High-Resolution Electrophysiology In-Vivo Using Conformal Electronics. |
U.S. Appl. No. 13/492,636, filed Jun. 8, 2012, J. Rogers, Flexible and Stretchable Electronic Systems for Epidermal Electronics. |
U.S. Appl. No. 14/155,010, filed Jan. 14, 2014, R. Nuzzo, Methods and Devices for Fabricating and Assembling Printable Semiconductor Elements. |
U.S. Appl. No. 14/479,100, filed Sep. 5, 2014, J. Rogers, Printed Assemblies of Ultrathin, Microscale Inorganic Light Emitting Diodes for Deformable and Semitransparent Displays. |
U.S. Appl. No. 14/521,319, filed Oct. 22, 2014, J. Rogers, Stretchable and Foldable Electronic Devices. |
U.S. Appl. No. 14/706,733, filed May 7, 2015, J. Rogers, Stretchable and Foldable Electronic Devices. |
U.S. Appl. No. 15/084,211, filed Mar. 29, 2016, R. Nuzzo, Methods and Devices for Fabricating and Assembling Printable Semiconductor Elements. |
U.S. Appl. No. 15/084,091, filed Mar. 29, 2016, R. Nuzzo, Methods and Devices for Fabricating and Assembling Printable Semiconductor Elements. |
U.S. Appl. No. 15/339,338, filed Oct. 31, 2016, J. Rogers, A Stretchable Form of Single Crystal Silicon for High Performance Electronics on Rubber. |
U.S. Appl. No. 15/084,112, filed Mar. 29, 2016, J. Rogers, Controlled Buckling Structures in Semiconductor Interconnects and Nanomembranes for Stretchable Electronics. |
U.S. Appl. No. 15/217,121, filed Jul. 22, 2016, B. Litt, Flexible and Scalable Sensor Arrays for Recording and Modulating Physiologic Activity. |
U.S. Appl. No. 14/004,408, filed Mar. 9, 2012, R. Ghaffari et al., Integrated Devices to Facilitate Quantitative Assays and Diagnostics. |
U.S. Appl. No. 13/481,843, filed May 27, 2012, B. Elolampi et al., Electronic, Optical and/or Mechanical Apparatus and Systems and Methods for Fabricating Same. |
U.S. Appl. No. 13/499,626, filed Jun. 12, 2012, R. Ghaffari et al., Protective Cases With Integrated Electronics. |
U.S. Appl. No. 13/568,022, filed Aug. 6, 2012, R. D'angelo et al., Catheter Balloon Methods and Apparatus Employing Sensing Elements. |
U.S. Appl. No. 13/603,290, filed Sep. 4, 2012, C. Rafferty et al., Electronics for Detection of a Condition of Tissue. |
U.S. Appl. No. 13/631,739, filed Sep. 28, 2012, C. Rafferty et al., Electronics for Detection of a Property of a Surface. |
U.S. Appl. No. 13/646,613, filed Oct. 5, 2012, R. Ghaffari et al., Cardiac Catheter Employing Conformal Electronics for Mapping. |
U.S. Appl. No. 13/844,399, filed Mar. 15, 2013, S. Fastert et al., Conformal Electronics Integrated with Apparel. |
U.S. Appl. No. 13/844,508, filed Mar. 15, 2013, S. Fastert et al., Monitoring Hit Count for Impact Events. |
U.S. Appl. No. 13/844,635, filed Mar. 15, 2013, R. Ghaffari et al., Catheter Balloon Having Stretchable Integrated Circuitry and Sensor Array. |
U.S. Appl. No. 13/844,638, filed Mar. 15, 2013, C. Rafferty et al., Embedding Thin Chips in Polymer. |
U.S. Appl. No. 13/844,677, filed Mar. 15, 2013, S. Lee et al., Catheter Device Including Flow Sensing. |
U.S. Appl. No. 13/844,767, filed Mar. 15, 2013, R. Ghaffari et al., Catheter Balloon Employing Force Sensing Elements. |
U.S. Appl. No. 14/276,413, filed May 13, 2014, Y. Hsu et al., Conformal Electronics Including Nested Serpentine Interconnects. |
U.S. Appl. No. 14/294,808, filed Jun. 3, 2014, I. Kacyvenski et al., Motion Sensor and Analysis. |
U.S. Appl. No. 14/311,686, filed Jun. 23, 2014, J. Fenuccio et al., Band with Conformable Electronics. |
U.S. Appl. No. 14/488,544, filed Sep. 17, 2014, W. Arora et al., Extremely Stretchable Electronics. |
U.S. Appl. No. 14/510,868, filed Oct. 9, 2014, B. Ives, Utility Gear Including Conformal Sensors. |
U.S. Appl. No. 29/506,439, filed Oct. 15, 2014, X. Li et al., Electronic Device Having Antenna. |
U.S. Appl. No. 14/518,856, filed Oct. 20, 2014, R. Ghaffari et al., Systems, Methods, and Devices Using Stretchable or Flexible Electronics for Medical Applications. |
U.S. Appl. No. 14/524,817, filed Oct. 27, 2014, X. Li et al., Conformal Electronic Devices. |
U.S. Appl. No. 14/588,765, filed Jan. 2, 2015, S. Lee et al., Integrated Devices for Low Power Quantitative Measurements. |
U.S. Appl. No. 14/630,335, filed Feb. 24, 2015, B. Keen, Conformal Electronics with Deformation Indicators. |
U.S. Appl. No. 14/656,046, filed Mar. 12, 2015, R. Ghaffari et al., Quantification of a Change in Assay. |
U.S. Appl. No. 14/726,136, filed May 29, 2015, R. Ghaffari et al., Catheter Balloon Methods and Apparatus Employing Sensing Elements. |
U.S. Appl. No. 14/726,142, filed May 29, 2015, R. Ghaffari et al., Cardiac Catheter Employing Conformal Electronics for Mapping. |
U.S. Appl. No. 14/746,659, filed Jun. 22, 2015, S. Fastert et al., Conformal Electronics Integrated With Apparel. |
U.S. Appl. No. 14/758,946, filed Jul. 1, 2015, S. Fastert et al., Application for Monitoring a Property of a Surface. |
U.S. Appl. No. 14/812,197, filed Jul. 29, 2015, B. De Graff et al., Methods and Applications of Non-Planar Imaging Arrays. |
U.S. Appl. No. 14/819,040, filed Aug. 5, 2015, Elolampi et al., A Method for Fabricating a Flexible Electronic Structure and a Flexible Electronic Structure. |
U.S. Appl. No. 14/838,196, filed Aug. 27, 2015, G. Callsen et al., Methods and Apparatus for Conformal Sensing of Force and/or Acceleration at a Person's Head. |
U.S. Appl. No. 14/859,112, filed Sep. 18, 2015, C. Rafferty et al., Embedded Thin Chips in Polymer. |
U.S. Appl. No. 14/859,680, filed Sep. 21, 2015, D. Garlock, Methods and Apparatuses for Shaping and Looping Bonding Wires That Serve as Stretchable and Bendable Interconnects. |
U.S. Appl. No. 14/870,719, filed Sep. 30, 2015, M. Dalal et al., Flexible Electronic Circuits with Embedded Integrated Circuit Die and Methods of Making and Using the Same. |
U.S. Appl. No. 14/870,802, filed Sep. 30, 2015, M. Dalal et al., Flexible Interconnects for Modules of Integrated Circuits and Methods of Making and Using the Same. |
U.S. Appl. No. 14/874,148, filed Oct. 2, 2015, Stephen P. Lee, Catheter Device Including Flow Sensing. |
U.S. Appl. No. 14/924,440, filed Oct. 27, 2015, Bassel De Graff, Systems, Methods, and Devices Having Stretchable Integrated Circuitry for Sensing and Delivering Therapy. |
U.S. Appl. No. 15/003,644, filed Jan. 21, 2016, Roozbeh Ghaffari et al., Methods of Detecting Parameters of a Lumen. |
U.S. Appl. No. 15/016,937, filed Feb. 5, 2016, Jesus Pindado et al., Method and System for Interacting with an Environment. |
U.S. Appl. No. 15/047,314, filed Feb. 18, 2016, Roozbeh Ghaffari et al., Catheter or Guidewire Device Including Flow Sensing and Use Thereof. |
U.S. Appl. No. 15/047,333, filed Feb. 18, 2016, Roozbeh Ghaffari et al., Catheter or Guidewire Device Including Flow Sensing and Use Thereof. |
U.S. Appl. No. 15/048,576, filed Feb. 19, 2016, Shyamal Patel et al., Automated Detection and Configuration of Wearable Devices Based on-Body Status, Location, and/or Orientation. |
U.S. Appl. No. 15/057,762, filed Mar. 1, 2016, Brian Murphy et al., Perspiration Sensor. |
U.S. Appl. No. 15/023,556, filed Mar. 21, 2016, Roozbeh Ghaffari, Conformal Sensor Systems for Sensing and Analysis. |
U.S. Appl. No. 15/139,256, filed Apr. 26, 2016, Xia Li et al., Flexible Temperature Sensor Including Conformable Electronics. |
U.S. Appl. No. 15/038,401, filed May 20, 2016, Huppert et al., Conformal Sensor Systems for Sensing and Analysis of Cardiac Activity. |
U.S. Appl. No. 15/183,513, filed Jun. 15, 2016, Wang et al., Moisture Wicking Adhesives for Skin-Mounted Devices. |
U.S. Appl. No. 15/194,995, filed Jun. 28, 2016, Hsu et al., Strain Isolation Structures for Stretchable Electronics. |
U.S. Appl. No. 15/208,444, filed Jul. 12, 2016, McGrane et al., Conductive Stiffener, Method of Making a Conductive Stiffener, and Conductive Adhesive and Encapsulation Layers. |
U.S. Appl. No. 15/238,488, filed Aug. 16, 2016, Sun et al., Wearable Heat Flux Devices and Methods of Use. |
U.S. Appl. No. 15/272,816, filed Sep. 22, 2016, Pindado et al., Method and System for Crowd-Sourced Algorithm Development. |
U.S. Appl. No. 15/281,960, filed Sep. 30, 2016, Ghaffari et al., Method and System for Interacting with a Virtual Environment. |
U.S. Appl. No. 15/286,129, filed Oct. 5, 2016, Ghaffari et al., Method and System for Neuromodulation and Stimulation. |
U.S. Appl. No. 15/337,389, filed Oct. 28, 2016, Arora et al, Extremely Stretchable Electronics. |
U.S. Appl. No. 15/108,861, filed Jun. 29, 2016, McMahon et al, Encapsulated Conformal Electronic Systems and Devices, and Methods of Making and Using the Same. |
Carvalhal et al., “Electrochemical Detection in a Paper-Based Separation Device”, Analytical Chemistry, vol. 82, No. 3, (1162-1165) (4 pages) (Jan. 7, 2010). |
Demura et al., “Immobilization of Glucose Oxidase with Bombyx mori Silk Fibroin by Only Stretching Treatment and its Application to Glucose Sensor,” Biotechnology and Bioengineering, vol. 33, 598-603 (6 pages) (1989). |
Ellerbee et al., “Quantifying Colorimetric Assays in Paper-Based Microfluidic Devices by Measuring the Transmission of Light through Paper,” Analytical Chemistry, vol. 81, No. 20 8447-8452, (6 pages) (Oct. 15, 2009). |
Halsted, “Ligature and Suture Material,” Journal of the American Medical Association, vol. LX. No. 15, 1119-1126. (8 pages) (Apr. 12, 1913). |
Kim et al., “Complementary Metal Oxide Silicon Integrated Circuits Incorporating Monolithically Integrated Stretchable Wavy Interconnects,” Applied Physics Letters, vol. 93, 044102-044102.3 (3 pages) (Jul. 31, 2008). |
Kim et al., “Dissolvable Films of Silk Fibroin for Ultrathin Conformal Bio-Integrated Electronics,” Nature, 1-8 (8 pages) (Apr. 18, 2010). |
Kim et al., “Materials and Noncoplanar Mesh Designs for Integrated Circuits with Linear Elastic Responses to Extreme Mechanical Deformations,” PNAS, vol. 105, No. 48, 18675-18680 (6 pages) (Dec. 2, 2008). |
Kim et al., “Stretchable and Foldable Silicon Integrated Circuits,” Science, vol. 320, 507-511 (5 pages) (Apr. 25, 2008). |
Kim et al., “Electrowetting on Paper for Electronic Paper Display,” ACS Applied Materials & Interfaces, vol. 2, No. 11, (3318-3323) (6 pages) (Nov. 24, 2010). |
Ko et al., “A Hemispherical Electronic Eye Camera Based on Compressible Silicon Optoelectronics,” Nature, vol. 454, 748-753 (6 pages) (Aug. 7, 2008). |
Lawrence et al., “Bioactive Silk Protein Biomaterial Systems for Optical Devices,” Biomacromolecules, vol. 9, 1214-1220 (7 pages) (Nov. 4, 2008). |
Mehl et al., “Transfer Printing by Kinetic Control of Adhesion to an Elastomeric Stamp,” Nature, vol. 5, 33-38 (6 pages) (Jan. 2006). |
Omenetto et al., “A New Route for Silk,” Nature Photonics, vol. 2, 641-643 (3 pages) (Nov. 2008). |
Omenetto et al., “New Opportunities for an Ancient Material,” Science, vol. 329, 528-531 (5 pages) (Jul. 30, 2010). |
Siegel et al., “Foldable Printed Circuit Boards on Paper Substrates,” Advanced Functional Materials, vol. 20, No. 1, 28-35, (8 pages) (Jan. 8, 2010). |
Tsukada et al., “Structural Changes of Silk Fibroin Membranes Induced by Immersion in Methanol Aqueous Solutions,” Journal of Polymer Science, vol. 32, 961-968 (8 pages) (1994). |
Wang et al., “Controlled Release From Multilayer Silk Biomaterial Coatings to Modulate Vascular Cell Responses” Biomaterials, 29, 894-903 (10 pages) (Nov. 28, 2008). |
Wikipedia, “Ball bonding” article [online]. Cited in PCT/US2015/051210 search report dated Mar. 1, 2016 with the following information “Jun. 15, 2011 [retrieved on Nov. 15, 2015}. Retrieved 12-18, 29 from the Internet: <URL: https://web.archive.org/web/20110615221003/http://en.wikipedia.org/wiki/Ball—bonding>., entire document, especially para 1, 4, 5, 6,” 2 pages, last page says (“last modified on May 11, 2011”). |
Bossuyt et al., “Stretchable Electronics Technology for Large Area Applications: Fabrication and Mechanical Characterizations”, vol. 3, pp. 229-235 (7 pages) (Feb. 2013). |
Jones et al., “Stretchable Interconnects for Elastic Electronic Surfaces”. vol. 93, pp. 1459-1467 (9 pages) (Aug. 2005). |
Lin et al., “Design and Fabrication of Large-Area, Redundant, Stretchable Interconnect Meshes Using Excimer Laser Photoablation and in Situ Masking”, (10 pages) (Aug. 2010). |
Kim et al., “A Biaxial Stretchable Interconnect With Liquid-Alloy-Covered Joints on Elastomeric Substrate”, vol. 18, pp. 138-146 (9 pages) (Feb. 2009). |
European Search Report corresponding to co-pending European Patent Application Application Serial No. EP 15157473.8, European Patent Office, dated Sep. 15, 2015; (7 pages). |
European Search Report corresponding to co-pending European Patent Application Serial No. EP 15157469.6, European Patent Office, dated Sep. 15, 2015; (6 pages). |
Canadian Office Action corresponding to co-pending Canadian Patent Application Serial No. CA 2,780,747, Canadian Patent Office, dated Jan. 11, 2016; (7 pages). |
Number | Date | Country | |
---|---|---|---|
20170110417 A1 | Apr 2017 | US |
Number | Date | Country | |
---|---|---|---|
61113622 | Nov 2008 | US | |
61103361 | Oct 2008 | US | |
61113007 | Nov 2008 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 14488544 | Sep 2014 | US |
Child | 15337389 | US | |
Parent | 13767262 | Feb 2013 | US |
Child | 14488544 | US | |
Parent | 12616922 | Nov 2009 | US |
Child | 13767262 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 12575008 | Oct 2009 | US |
Child | 12616922 | US |