The present invention relates to a fabricating method of semiconductor elements, and more particularly, to a fabricating method of semiconductor elements for integrated circuits.
Metal oxide semiconductors are very common circuit elements in integrated circuits (ICs). As the semiconductor fabricating processes reach into a sub-micro level, high-k gate dielectrics/metal gates become important elements in metal oxide semiconductors. Usually, the high-k gate dielectric and the metal gate are formed after finishing a self-aligned silicidation process for forming metal silicide layers on source/drain electrodes. However, metal silicide layers formed by the self-aligned silicidation process usually can't endure high temperature, and thus easily be damaged by the high temperature environment in the process for forming the high k gate dielectric. To overcome this disadvantage, through contact self-aligned silicidation process is developed.
In short, through contacts above the source/drain electrodes are firstly formed, and then self-aligned silicidation process is performed using the exposed through contacts as self-aligned mask and the reactants for producing the metal silicide layer can be intruded onto the source/drain electrodes from the through contacts. This process is the so-called through contact self-aligned silicidation process. However, as the size of semiconductors are becoming smaller and smaller, a diameter of the through contacts also becomes smaller and smaller. As a result, the silicidation process is very difficult to implement in the through contacts. Accordingly, the performance of metal oxide semiconductors is difficult to improve. Therefore, there is a desire to overcome the aforementioned disadvantages.
A fabricating method of a semiconductor element includes the following steps. First, a substrate is provided. A metal gate structure and source/drain electrodes are already formed on the substrate. An amorphization process is performed in the source/drain electrodes to form an amorphous portion. An interlayer dielectric layer is formed on surfaces of the source/drain electrodes and a through hole contact is formed within the interlayer dielectric layer. A silicidation process is performed with the through hole contact and the amorphous portion of the source/drain electrodes to form a metal silicide layer.
In the above fabricating method, the amorphization process only needs the amorphization process and the following thermal process to finish the formation of metal silicide layers. The fabricating method is capable of finishing the formation of the metal silicide layer in the condition that diameters of the through hole contact is becoming smaller and smaller.
The above objects and advantages of the present invention will become more readily apparent to those ordinarily skilled in the art after reviewing the following detailed description and accompanying drawings, in which:
The present invention will now be described more specifically with reference to the following embodiments. It is to be noted that the following descriptions of preferred embodiments of this invention are presented herein for purpose of illustration and description only. It is not intended to be exhaustive or to be limited to the precise form disclosed.
Referring to
As shown in
Besides, the above amorphization process to the source/drain electrodes 11 can also be performed at other time points, for example, prior to forming the ILD layer 12 and the amorphous portion 110 can also be obtained from this modified process. In another embodiment, the PAI process is performed both prior to the ILD layer 12 is formed and after the through contacts 13 are formed. All the above described manners can overcome the shortages of the know process.
In the present embodiment, the amorphization process only needs the PAI process and the following thermal process to finish the formation of metal silicide layers. The fabricating method is capable of finishing the formation of the metal silicide layer in the condition that diameters of the through hole contact is becoming smaller and smaller.
While the invention has been described in terms of what is presently considered to be the most practical and preferred embodiments, it is to be understood that the invention needs not be limited to the disclosed embodiment. On the contrary, it is intended to cover various modifications and similar arrangements included within the spirit and scope of the appended claims which are to be accorded with the broadest interpretation so as to encompass all such modifications and similar structures.