Fabrication of a wavelength locker within a semiconductor structure

Abstract
High quality epitaxial layers of monocrystalline materials can be grown overlying monocrystalline substrates such as large silicon wafers by forming a compliant substrate for growing the monocrystalline layers. An accommodating buffer layer comprises a layer of monocrystalline oxide spaced apart from a silicon wafer by an amorphous interface layer of silicon oxide. The amorphous interface layer dissipates strain and permits the growth of a high quality monocrystalline oxide accommodating buffer layer. The accommodating buffer layer is lattice matched to both the underlying silicon wafer and the overlying monocrystalline material layer. Any lattice mismatch between the accommodating buffer layer and the underlying silicon substrate is taken care of by the amorphous interface layer. In addition, formation of a compliant substrate may include utilizing surfactant enhanced epitaxy, epitaxial growth of single crystal silicon onto single crystal oxide, and epitaxial growth of Zintl phase materials. A wavelength locker for stabilizing a wavelength of an optical output signal from an optical transmitter is formed overlying the silicon wafer.
Description
FIELD OF THE INVENTION

This invention relates generally to semiconductor structures and devices and to a method for their fabrication, and more specifically to semiconductor structures and devices and to the fabrication and use of semiconductor structures, devices, and integrated circuits that include a monocrystalline material layer comprised of semiconductor material, compound semiconductor material, and/or other types of material such as metals and non-metals.


BACKGROUND OF THE INVENTION

Semiconductor devices often include multiple layers of conductive, insulating, and semiconductive layers. Often, the desirable properties of such layers improve with the crystallinity of the layer. For example, the electron mobility and band gap of semiconductive layers improves as the crystallinity of the layer increases. Similarly, the free electron concentration of conductive layers and the electron charge displacement and electron energy recoverability of insulative or dielectric films improves as the crystallinity of these layers increases.


For many years, attempts have been made to grow various monolithic thin films on a foreign substrate such as silicon (Si). To achieve optimal characteristics of the various monolithic layers, however, a monocrystalline film of high crystalline quality is desired. Attempts have been made, for example, to grow various monocrystalline layers on a substrate such as germanium, silicon, and various insulators. These attempts have generally been unsuccessful because lattice mismatches between the host crystal and the grown crystal have caused the resulting layer of monocrystalline material to be of low crystalline quality.


If a large area thin film of high quality monocrystalline material was available at low cost, a variety of semiconductor devices could advantageously be fabricated in or using that film at a low cost compared to the cost of fabricating such devices beginning with a bulk wafer of semiconductor material or in an epitaxial film of such material on a bulk wafer of semiconductor material. In addition, if a thin film of high quality monocrystalline material could be realized beginning with a bulk wafer such as a silicon wafer, an integrated device structure could be achieved that took advantage of the best properties of both the silicon and the high quality monocrystalline material.


Accordingly, a need exists for a semiconductor structure that provides a high quality monocrystalline film or layer over another monocrystalline material and for a process for making such a structure. In other words, there is a need for providing the formation of a monocrystalline substrate that is compliant with a high quality monocrystalline material layer so that true two-dimensional growth can be achieved for the formation of quality semiconductor structures, devices (e.g., a wavelength locker) and integrated circuits having grown monocrystalline film having the same crystal orientation as an underlying substrate. This monocrystalline material layer may be comprised of a semiconductor material, a compound semiconductor material, and other types of material such as metals and non-metals.





BRIEF DESCRIPTION OF THE DRAWINGS

The present invention is illustrated by way of example and not limitation in the accompanying figures, in which like references indicate similar elements, and in which:



FIGS. 1, 2, and 3 illustrate schematically, in cross section, device structures in accordance with various embodiments of the invention;



FIG. 4 illustrates graphically the relationship between maximum attainable film thickness and lattice mismatch between a host crystal and a grown crystalline overlayer;



FIG. 5 illustrates a high resolution Transmission Electron Micrograph of a structure including a monocrystalline accommodating buffer layer;



FIG. 6 illustrates an x-ray diffraction spectrum of a structure including a monocrystalline accommodating buffer layer;



FIG. 7 illustrates a high resolution Transmission Electron Micrograph of a structure including an amorphous oxide layer;



FIG. 8 illustrates an x-ray diffraction spectrum of a structure including an amorphous oxide layer;



FIGS. 9–12 illustrate schematically, in cross-section, the formation of a device structure in accordance with another embodiment of the invention;



FIGS. 13–16 illustrate a probable molecular bonding structure of the device structures illustrated in FIGS. 9–12;



FIGS. 17–20 illustrate schematically, in cross-section, the formation of a device structure in accordance with still another embodiment of the invention;



FIGS. 21–23 illustrate schematically, in cross-section, the formation of yet another embodiment of a device structure in accordance with the invention;



FIGS. 24, 25 illustrate schematically, in cross section, device structures that can be used in accordance with various embodiments of the invention;



FIGS. 26–30 include illustrations of cross-sectional views of a portion of an integrated circuit that includes a compound semiconductor portion, a bipolar portion, and an MOS portion in accordance with what is shown herein;



FIGS. 31–37 include illustrations of cross-sectional views of a portion of another integrated circuit that includes a semiconductor laser and a MOS transistor in accordance with what is shown herein;



FIG. 38 illustrates a block diagram of a first wavelength locker that can be employed within various embodiments of the invention;



FIG. 39 illustrates schematically, in cross section, an additional device structure that can be used to employ the FIG. 38 wavelength locker in accordance with various embodiments of the invention;



FIG. 40 illustrates a block diagram of a second wavelength locker that can be employed within various embodiments of the invention; and



FIG. 41 illustrates schematically, in cross section, an additional device structure that can be used to employ the FIG. 40 wavelength locker in accordance with various embodiments of the invention.





Skilled artisans will appreciate that elements in the figures are illustrated for simplicity and clarity and have not necessarily been drawn to scale. For example, the dimensions of some of the elements in the figures may be exaggerated relative to other elements to help to improve understanding of embodiments of the present invention.


DETAILED DESCRIPTION OF THE DRAWINGS


FIG. 1 illustrates schematically, in cross section, a portion of a semiconductor structure 20 in accordance with an embodiment of the invention. Semiconductor structure 20 includes a monocrystalline substrate 22, accommodating buffer layer 24 comprising a monocrystalline material, and a monocrystalline material layer 26. In this context, the term “monocrystalline” shall have the meaning commonly used within the semiconductor industry. The term shall refer to materials that are a single crystal or that are substantially a single crystal and shall include those materials having a relatively small number of defects such as dislocations and the like as are commonly found in substrates of silicon or germanium or mixtures of silicon and germanium and epitaxial layers of such materials commonly found in the semiconductor industry.


In accordance with one embodiment of the invention, structure 20 also includes an amorphous intermediate layer 28 positioned between substrate 22 and accommodating buffer layer 24. Structure 20 may also include a template layer 30 between the accommodating buffer layer and monocrystalline material layer 26. As will be explained more fully below, the template layer helps to initiate the growth of the monocrystalline material layer on the accommodating buffer layer. The amorphous intermediate layer helps to relieve the strain in the accommodating buffer layer and by doing so, aids in the growth of a high crystalline quality accommodating buffer layer.


Substrate 22, in accordance with an embodiment of the invention, is a monocrystalline semiconductor or compound semiconductor wafer, preferably of large diameter. The wafer can be of, for example, a material from Group IV of the periodic table. Examples of Group IV semiconductor materials include silicon, germanium, mixed silicon and germanium, mixed silicon and carbon, mixed silicon, germanium and carbon, and the like. Preferably substrate 22 is a wafer containing silicon or germanium, and most preferably is a high quality monocrystalline silicon wafer as used in the semiconductor industry. Accommodating buffer layer 24 is preferably a monocrystalline oxide or nitride material epitaxially grown on the underlying substrate. In accordance with one embodiment of the invention, amorphous intermediate layer 28 is grown on substrate 22 at the interface between substrate 22 and the growing accommodating buffer layer by the oxidation of substrate 22 during the growth of layer 24. The amorphous intermediate layer serves to relieve strain that might otherwise occur in the monocrystalline accommodating buffer layer as a result of differences in the lattice constants of the substrate and the buffer layer. As used herein, lattice constant refers to the distance between atoms of a cell measured in the plane of the surface. If such strain is not relieved by the amorphous intermediate layer, the strain may cause defects in the crystalline structure of the accommodating buffer layer. Defects in the crystalline structure of the accommodating buffer layer, in turn, would make it difficult to achieve a high quality crystalline structure in monocrystalline material layer 26 which may comprise a semiconductor material, a compound semiconductor material, or another type of material such as a metal or a non-metal.


Accommodating buffer layer 24 is preferably a monocrystalline oxide or nitride material selected for its crystalline compatibility with the underlying substrate and with the overlying material layer. For example, the material could be an oxide or nitride having a lattice structure closely matched to the substrate and to the subsequently applied monocrystalline material layer. Materials that are suitable for the accommodating buffer layer include metal oxides such as the alkaline earth metal titanates, alkaline earth metal zirconates, alkaline earth metal hafnates, alkaline earth metal tantalates, alkaline earth metal ruthenates, alkaline earth metal niobates, alkaline earth metal vanadates, alkaline earth metal tin-based perovskites, lanthanum aluminate, lanthanum scandium oxide, and gadolinium oxide. Additionally, various nitrides such as gallium nitride, aluminum nitride, and boron nitride may also be used for the accommodating buffer layer. Most of these materials are insulators, although strontium ruthenate, for example, is a conductor. Generally, these materials are metal oxides or metal nitrides, and more particularly, these metal oxide or nitrides typically include at least two different metallic elements. In some specific applications, the metal oxides or nitrides may include three or more different metallic elements.


Amorphous interface layer 28 is preferably an oxide formed by the oxidation of the surface of substrate 22, and more preferably is composed of a silicon oxide. The thickness of layer 28 is sufficient to relieve strain attributed to mismatches between the lattice constants of substrate 22 and accommodating buffer layer 24. Typically, layer 28 has a thickness in the range of approximately 0.5–5 nm.


The material for monocrystalline material layer 26 can be selected, as desired, for a particular structure or application. For example, the monocrystalline material of layer 26 may comprise a compound semiconductor which can be selected, as needed for a particular semiconductor structure, from any of the Group IIIA and VA elements (III–V semiconductor compounds), mixed III–V compounds, Group II(A or B) and VIA elements (II–VI semiconductor compounds), and mixed II–VI compounds. Examples include gallium arsenide (GaAs), gallium indium arsenide (GaInAs), gallium aluminum arsenide (GaAlAs), indium phosphide (InP), cadmium sulfide (CdS), cadmium mercury telluride (CdHgTe), zinc selenide (ZnSe), zinc sulfur selenide (ZnSSe), and the like. However, monocrystalline material layer 26 may also comprise other semiconductor materials, metals, or non-metal materials which are used in the formation of semiconductor structures, devices and/or integrated circuits.


Appropriate materials for template 30 are discussed below. Suitable template materials chemically bond to the surface of the accommodating buffer layer 24 at selected sites and provide sites for the nucleation of the epitaxial growth of monocrystalline material layer 26. When used, template layer 30 has a thickness ranging from about 1 to about 10 monolayers.



FIG. 2 illustrates, in cross section, a portion of a semiconductor structure 40 in accordance with a further embodiment of the invention. Structure 40 is similar to the previously described semiconductor structure 20, except that an additional buffer layer 32 is positioned between accommodating buffer layer 24 and monocrystalline material layer 26. Specifically, the additional buffer layer is positioned between template layer 30 and the overlying layer of monocrystalline material. The additional buffer layer, formed of a semiconductor or compound semiconductor material when the monocrystalline material layer 26 comprises a semiconductor or compound semiconductor material, serves to provide a lattice compensation when the lattice constant of the accommodating buffer layer cannot be adequately matched to the overlying monocrystalline semiconductor or compound semiconductor material layer.



FIG. 3 schematically illustrates, in cross section, a portion of a semiconductor structure 34 in accordance with another exemplary embodiment of the invention. Structure 34 is similar to structure 20, except that structure 34 includes an amorphous layer 36, rather than accommodating buffer layer 24 and amorphous interface layer 28, and an additional monocrystalline layer 38.


As explained in greater detail below, amorphous layer 36 may be formed by first forming an accommodating buffer layer and an amorphous interface layer in a similar manner to that described above. Monocrystalline layer 38 is then formed (by epitaxial growth) overlying the monocrystalline accommodating buffer layer. The accommodating buffer layer is then exposed to an anneal process to convert the monocrystalline accommodating buffer layer to an amorphous layer. Amorphous layer 36 formed in this manner comprises materials from both the accommodating buffer and interface layers, which amorphous layers may or may not amalgamate. Thus, layer 36 may comprise one or two amorphous layers. Formation of amorphous layer 36 between substrate 22 and additional monocrystalline layer 26 (subsequent to layer 38 formation) relieves stresses between layers 22 and 38 and provides a true compliant substrate for subsequent processing—e.g., monocrystalline material layer 26 formation.


The processes previously described above in connection with FIGS. 1 and 2 are adequate for growing monocrystalline material layers over a monocrystalline substrate. However, the process described in connection with FIG. 3, which includes transforming a monocrystalline accommodating buffer layer to an amorphous oxide layer, may be better for growing monocrystalline material layers because it allows any strain in layer 26 to relax.


Additional monocrystalline layer 38 may include any of the materials described throughout this application in connection with either of monocrystalline material layer 26 or additional buffer layer 32. For example, when monocrystalline material layer 26 comprises a semiconductor or compound semiconductor material, layer 38 may include monocrystalline Group IV or monocrystalline compound semiconductor materials.


In accordance with one embodiment of the present invention, additional monocrystalline layer 38 serves as an anneal cap during layer 36 formation and as a template for subsequent monocrystalline layer 26 formation. Accordingly, layer 38 is preferably thick enough to provide a suitable template for layer 26 growth (at least one monolayer) and thin enough to allow layer 38 to form as a substantially defect free monocrystalline material.


In accordance with another embodiment of the invention, additional monocrystalline layer 38 comprises monocrystalline material (e.g., a material discussed above in connection with monocrystalline layer 26) that is thick enough to form devices within layer 38. In this case, a semiconductor structure in accordance with the present invention does not include monocrystalline material layer 26. In other words, the semiconductor structure in accordance with this embodiment only includes one monocrystalline layer disposed above amorphous oxide layer 36.


The following non-limiting, illustrative examples illustrate various combinations of materials useful in structures 20, 40, and 34 in accordance with various alternative embodiments of the invention. These examples are merely illustrative, and it is not intended that the invention be limited to these illustrative examples.


EXAMPLE 1

In accordance with one embodiment of the invention, monocrystalline substrate 22 is a silicon substrate oriented in the (100) direction. The silicon substrate can be, for example, a silicon substrate as is commonly used in making complementary metal oxide semiconductor (CMOS) integrated circuits having a diameter of about 200–300 mm. In accordance with this embodiment of the invention, accommodating buffer layer 24 is a monocrystalline layer of SrzBa1-zTiO3 where z ranges from 0 to 1 and the amorphous intermediate layer is a layer of silicon oxide (SiOx) formed at the interface between the silicon substrate and the accommodating buffer layer. The value of z is selected to obtain one or more lattice constants closely matched to corresponding lattice constants of the subsequently formed layer 26. The accommodating buffer layer can have a thickness of about 2 to about 100 nanometers (nm) and preferably has a thickness of about 5 nm. In general, it is desired to have an accommodating buffer layer thick enough to isolate the monocrystalline material layer 26 (because the fact that it is a compound semiconductor material is not stated until line 21); from the substrate to obtain the desired electrical and optical properties. Layers thicker than 100 nm usually provide little additional benefit while increasing cost unnecessarily; however, thicker layers may be fabricated if needed. The amorphous intermediate layer of silicon oxide can have a thickness of about 0.5–5 nm, and preferably a thickness of about 1 to 2 nm.


In accordance with this embodiment of the invention, monocrystalline material layer 26 is a compound semiconductor layer of gallium arsenide (GaAs) or aluminum gallium arsenide (AlGaAs) having a thickness of about 1 nm to about 100 micrometers (μm) and preferably a thickness of about 0.5 μm to 10 μm. The thickness generally depends on the application for which the layer is being prepared. To facilitate the epitaxial growth of the gallium arsenide or aluminum gallium arsenide on the monocrystalline oxide, a template layer is formed by capping the oxide layer. The template layer is preferably 1–10 monolayers of Ti—As, Sr—O—As, Sr—Ga—O, or Sr—Al—O. By way of a preferred example, 1–2 monolayers of Ti—As or Sr—Ga—O have been illustrated to successfully grow GaAs layers.


EXAMPLE 2

In accordance with a further embodiment of the invention, monocrystalline substrate 22 is a silicon substrate as described above. The accommodating buffer layer is a monocrystalline oxide of strontium or barium zirconate or hafnate in a cubic or orthorhombic phase with an amorphous intermediate layer of silicon oxide formed at the interface between the silicon substrate and the accommodating buffer layer. The accommodating buffer layer can have a thickness of about 2–100 nm and preferably has a thickness of at least 5 nm to ensure adequate crystalline and surface quality and is formed of a monocrystalline SrZrO3, BaZrO3, SrHfO3, BaSnO3 or BaHfO3. For example, a monocrystalline oxide layer of BaZrO3 can grow at a temperature of about 700 degrees C. The lattice structure of the resulting crystalline oxide exhibits a 45 degree rotation with respect to the substrate silicon lattice structure.


An accommodating buffer layer formed of these zirconate or hafnate materials is suitable for the growth of a monocrystalline material layer which comprises compound semiconductor materials in the indium phosphide (InP) system. In this system, the compound semiconductor material can be, for example, indium phosphide (InP), indium gallium arsenide (InGaAs), aluminum indium arsenide, (AlInAs), or aluminum gallium indium arsenic phosphide (AlGaInAsP), having a thickness of about 1.0 nm to 10 μm. A suitable template for this structure is 1–10 monolayers of zirconium-arsenic (Zr—As), zirconium-phosphorus (Zr—P), hafnium-arsenic (Hf—As), hafnium-phosphorus (Hf—P), strontium-oxygen-arsenic (Sr—O—As), strontium-oxygen-phosphorus (Sr—O—P), barium-oxygen-arsenic (Ba—O—As), indium-strontium-oxygen (In—Sr—O), or barium-oxygen-phosphorus (Ba—O—P), and preferably 1–2 monolayers of one of these materials. By way of an example, for a barium zirconate accommodating buffer layer, the surface is terminated with 1–2 monolayers of zirconium followed by deposition of 1–2 monolayers of arsenic to form a Zr—As template. A monocrystalline layer of the compound semiconductor material from the indium phosphide system is then grown on the template layer. The resulting lattice structure of the compound semiconductor material exhibits a 45 degree rotation with respect to the accommodating buffer layer lattice structure and a lattice mismatch to (100) InP of less than 2.5%, and preferably less than about 1.0%.


EXAMPLE 3

In accordance with a further embodiment of the invention, a structure is provided that is suitable for the growth of an epitaxial film of a monocrystalline material comprising a II–VI material overlying a silicon substrate. The substrate is preferably a silicon wafer as described above. A suitable accommodating buffer layer material is SrxBa1−xTiO3, where x ranges from 0 to 1, having a thickness of about 2–100 nm and preferably a thickness of about 5–15 nm. Where the monocrystalline layer comprises a compound semiconductor material, the II–VI compound semiconductor material can be, for example, zinc selenide (ZnSe) or zinc sulfur selenide (ZnSSe). A suitable template for this material system includes 1–10 monolayers of zinc-oxygen (Zn—O) followed by 1–2 monolayers of an excess of zinc followed by the selenidation of zinc on the surface. Alternatively, a template can be, for example, 1–10 monolayers of strontium-sulfur (Sr—S) followed by the ZnSeS.


EXAMPLE 4

This embodiment of the invention is an example of structure 40 illustrated in FIG. 2. Substrate 22, accommodating buffer layer 24, and monocrystalline material layer 26 can be similar to those described in example 1. In addition, an additional buffer layer 32 serves to alleviate any strains that might result from a mismatch of the crystal lattice of the accommodating buffer layer and the lattice of the monocrystalline material. Buffer layer 32 can be a layer of germanium or a GaAs, an aluminum gallium arsenide (AlGaAs), an indium gallium phosphide (InGaP), an aluminum gallium phosphide (AlGaP), an indium gallium arsenide (InGaAs), an aluminum indium phosphide (AlInP), a gallium arsenide phosphide (GaAsP), or an indium gallium phosphide (InGaP) strain compensated superlattice. In accordance with one aspect of this embodiment, buffer layer 32 includes a GaAsxP1-x superlattice, wherein the value of x ranges from 0 to 1. In accordance with another aspect, buffer layer 32 includes an InyGa1-yP superlattice, wherein the value of y ranges from 0 to 1. By varying the value of x or y, as the case may be, the lattice constant is varied from bottom to top across the superlattice to create a match between lattice constants of the underlying oxide and the overlying monocrystalline material which in this example is a compound semiconductor material. The compositions of other compound semiconductor materials, such as those listed above, may also be similarly varied to manipulate the lattice constant of layer 32 in a like manner. The superlattice can have a thickness of about 50–500 nm and preferably has a thickness of about 100–200 nm. The template for this structure can be the same of that described in example 1. Alternatively, buffer layer 32 can be a layer of monocrystalline germanium having a thickness of 1–50 nm and preferably having a thickness of about 2–20 nm. In using a germanium buffer layer, a template layer of either germanium-strontium (Ge—Sr) or germanium-titanium (Ge—Ti) having a thickness of about one monolayer can be used as a nucleating site for the subsequent growth of the monocrystalline material layer which in this example is a compound semiconductor material. The formation of the oxide layer is capped with either a monolayer of strontium or a monolayer of titanium to act as a nucleating site for the subsequent deposition of the monocrystalline germanium. The monolayer of strontium or titanium provides a nucleating site to which the first monolayer of germanium can bond.


EXAMPLE 5

This example also illustrates materials useful in a structure 40 as illustrated in FIG. 2. Substrate material 22, accommodating buffer layer 24, monocrystalline material layer 26 and template layer 30 can be the same as those described above in example 2. In addition, additional buffer layer 32 is inserted between the accommodating buffer layer and the overlying monocrystalline material layer. The buffer layer, a further monocrystalline material which in this instance comprises a semiconductor material, can be, for example, a graded layer of indium gallium arsenide (InGaAs) or indium aluminum arsenide (InAlAs). In accordance with one aspect of this embodiment, additional buffer layer 32 includes InGaAs, in which the indium composition varies from 0 to about 50%. The additional buffer layer 32 preferably has a thickness of about 10–30 nm. Varying the composition of the buffer layer from GaAs to InGaAs serves to provide a lattice match between the underlying monocrystalline oxide material and the overlying layer of monocrystalline material which in this example is a compound semiconductor material. Such a buffer layer is especially advantageous if there is a lattice mismatch between accommodating buffer layer 24 and monocrystalline material layer 26.


EXAMPLE 6

This example provides exemplary materials useful in structure 34, as illustrated in FIG. 3. Substrate material 22, template layer 30, and monocrystalline material layer 26 may be the same as those described above in connection with example 1.


Amorphous layer 36 is an amorphous oxide layer which is suitably formed of a combination of amorphous intermediate layer materials (e.g., layer 28 materials as described above) and accommodating buffer layer materials (e.g., layer 24 materials as described above). For example, amorphous layer 36 may include a combination of SiOx and SrzBa1-zTiO3 (where z ranges from 0 to 1),which combine or mix, at least partially, during an anneal process to form amorphous oxide layer 36.


The thickness of amorphous layer 36 may vary from application to application and may depend on such factors as desired insulating properties of layer 36, type of monocrystalline material comprising layer 26, and the like. In accordance with one exemplary aspect of the present embodiment, layer 36 thickness is about 2 nm to about 100 nm, preferably about 2–10 nm, and more preferably about 5–6 nm.


Layer 38 comprises a monocrystalline material that can be grown epitaxially over a monocrystalline oxide material such as material used to form accommodating buffer layer 24. In accordance with one embodiment of the invention, layer 38 includes the same materials as those comprising layer 26. For example, if layer 26 includes GaAs, layer 38 also includes GaAs. However, in accordance with other embodiments of the present invention, layer 38 may include materials different from those used to form layer 26. In accordance with one exemplary embodiment of the invention, layer 38 is about 1 monolayer to about 100 nm thick.


Referring again to FIGS. 1–3, substrate 22 is a monocrystalline substrate such as a monocrystalline silicon or gallium arsenide substrate. The crystalline structure of the monocrystalline substrate is characterized by a lattice constant and by a lattice orientation. In similar manner, accommodating buffer layer 24 is also a monocrystalline material and the lattice of that monocrystalline material is characterized by a lattice constant and a crystal orientation. The lattice constants of the accommodating buffer layer and the monocrystalline substrate must be closely matched or, alternatively, must be such that upon rotation of one crystal orientation with respect to the other crystal orientation, a substantial match in lattice constants is achieved. In this context the terms “substantially equal” and “substantially matched” mean that there is sufficient similarity between the lattice constants to permit the growth of a high quality crystalline layer on the underlying layer.



FIG. 4 illustrates graphically the relationship of the achievable thickness of a grown crystal layer of high crystalline quality as a function of the mismatch between the lattice constants of the host crystal and the grown crystal. Curve 42 illustrates the boundary of high crystalline quality material. The area to the right of curve 42 represents layers that have a large number of defects. With no lattice mismatch, it is theoretically possible to grow an infinitely thick, high quality epitaxial layer on the host crystal. As the mismatch in lattice constants increases, the thickness of achievable, high quality crystalline layer decreases rapidly. As a reference point, for example, if the lattice constants between the host crystal and the grown layer are mismatched by more than about 2%, monocrystalline epitaxial layers in excess of about 20 nm cannot be achieved.


In accordance with one embodiment of the invention, substrate 22 is a (100) or (111) oriented monocrystalline silicon wafer and accommodating buffer layer 24 is a layer of strontium barium titanate. Substantial matching of lattice constants between these two materials is achieved by rotating the crystal orientation of the titanate material by 45° with respect to the crystal orientation of the silicon substrate wafer. The inclusion in the structure of amorphous interface layer 28, a silicon oxide layer in this example, if it is of sufficient thickness, serves to reduce strain in the titanate monocrystalline layer that might result from any mismatch in the lattice constants of the host silicon wafer and the grown titanate layer. As a result, in accordance with an embodiment of the invention, a high quality, thick, monocrystalline titanate layer is achievable.


Still referring to FIGS. 1–3, layer 26 is a layer of epitaxially grown monocrystalline material and that crystalline material is also characterized by a crystal lattice constant and a crystal orientation. In accordance with one embodiment of the invention, the lattice constant of layer 26 differs from the lattice constant of substrate 22. To achieve high crystalline quality in this epitaxially grown monocrystalline layer, the accommodating buffer layer must be of high crystalline quality. In addition, in order to achieve high crystalline quality in layer 26, substantial matching between the crystal lattice constant of the host crystal, in this case, the monocrystalline accommodating buffer layer, and the grown crystal is desired. With properly selected materials this substantial matching of lattice constants is achieved as a result of rotation of the crystal orientation of the grown crystal with respect to the orientation of the host crystal. For example, if the grown crystal is gallium arsenide, aluminum gallium arsenide, zinc selenide, or zinc sulfur selenide and the accommodating buffer layer is monocrystalline SrxBa1-xTiO3, substantial matching of crystal lattice constants of the two materials is achieved, wherein the crystal orientation of the grown layer is rotated by 45° with respect to the orientation of the host monocrystalline oxide. Similarly, if the host material is a strontium or barium zirconate or a strontium or barium hafnate or barium tin oxide and the compound semiconductor layer is indium phosphide or gallium indium arsenide or aluminum indium arsenide, substantial matching of crystal lattice constants can be achieved by rotating the orientation of the grown crystal layer by 45° with respect to the host oxide crystal. In some instances, a crystalline semiconductor buffer layer between the host oxide and the grown monocrystalline material layer can be used to reduce strain in the grown monocrystalline material layer that might result from small differences in lattice constants. Better crystalline quality in the grown monocrystalline material layer can thereby be achieved.


The following example illustrates a process, in accordance with one embodiment of the invention, for fabricating a semiconductor structure such as the structures depicted in FIGS. 1–3. The process starts by providing a monocrystalline semiconductor substrate comprising silicon or germanium. In accordance with a preferred embodiment of the invention, the semiconductor substrate is a silicon wafer having a (100) orientation. The substrate is preferably oriented on axis or, at most, about 4° off axis. At least a portion of the semiconductor substrate has a bare surface, although other portions of the substrate, as described below, may encompass other structures. The term “bare” in this context means that the surface in the portion of the substrate has been cleaned to remove any oxides, contaminants, or other foreign material. As is well known, bare silicon is highly reactive and readily forms a native oxide. The term “bare” is intended to encompass such a native oxide. A thin silicon oxide may also be intentionally grown on the semiconductor substrate, although such a grown oxide is not essential to the process in accordance with the invention. In order to epitaxially grow a monocrystalline oxide layer overlying the monocrystalline substrate, the native oxide layer must first be removed to expose the crystalline structure of the underlying substrate. The following process is preferably carried out by molecular beam epitaxy (MBE), although other epitaxial processes may also be used in accordance with the present invention. The native oxide can be removed by first thermally depositing a thin layer of strontium, barium, a combination of strontium and barium, or other alkaline earth metals or combinations of alkaline earth metals in an MBE apparatus. In the case where strontium is used, the substrate is then heated to a temperature of about 750° C. to cause the strontium to react with the native silicon oxide layer. The strontium serves to reduce the silicon oxide to leave a silicon oxide-free surface. The resultant surface, which exhibits an ordered 2×1 structure, includes strontium, oxygen, and silicon. The ordered 2×1 structure forms a template for the ordered growth of an overlying layer of a monocrystalline oxide. The template provides the necessary chemical and physical properties to nucleate the crystalline growth of an overlying layer.


In accordance with an alternate embodiment of the invention, the native silicon oxide can be converted and the substrate surface can be prepared for the growth of a monocrystalline oxide layer by depositing an alkaline earth metal oxide, such as strontium oxide, strontium barium oxide, or barium oxide, onto the substrate surface by MBE at a low temperature and by subsequently heating the structure to a temperature of about 750° C. At this temperature a solid state reaction takes place between the strontium oxide and the native silicon oxide causing the reduction of the native silicon oxide and leaving an ordered 2×1 structure with strontium, oxygen, and silicon remaining on the substrate surface. Again, this forms a template for the subsequent growth of an ordered monocrystalline oxide layer.


Following the removal of the silicon oxide from the surface of the substrate, in accordance with one embodiment of the invention, the substrate is cooled to a temperature in the range of about 200–800° C. and a layer of strontium titanate is grown on the template layer by molecular beam epitaxy. The MBE process is initiated by opening shutters in the MBE apparatus to expose strontium, titanium and oxygen sources. The ratio of strontium and titanium is approximately 1:1. The partial pressure of oxygen is initially set at a minimum value to grow stoichiometric strontium titanate at a growth rate of about 0.3–0.5 nm per minute. After initiating growth of the strontium titanate, the partial pressure of oxygen is increased above the initial minimum value. The overpressure of oxygen causes the growth of an amorphous silicon oxide layer at the interface between the underlying substrate and the growing strontium titanate layer. The growth of the silicon oxide layer results from the diffusion of oxygen through the growing strontium titanate layer to the interface where the oxygen reacts with silicon at the surface of the underlying substrate. The strontium titanate grows as an ordered (100) monocrystal with the (100) crystalline orientation rotated by 45° with respect to the underlying substrate. Strain that otherwise might exist in the strontium titanate layer because of the small mismatch in lattice constant between the silicon substrate and the growing crystal is relieved in the amorphous silicon oxide intermediate layer.


After the strontium titanate layer has been grown to the desired thickness, the monocrystalline strontium titanate is capped by a template layer that is conducive to the subsequent growth of an epitaxial layer of a desired monocrystalline material. For example, for the subsequent growth of a monocrystalline compound semiconductor material layer of gallium arsenide, the MBE growth of the strontium titanate monocrystalline layer can be capped by terminating the growth with 1–2 monolayers of titanium, 1–2 monolayers of titanium-oxygen or with 1–2 monolayers of strontium-oxygen. Following the formation of this capping layer, arsenic is deposited to form a Ti—As bond, a Ti—O—As bond or a Sr—O—As. Any of these form an appropriate template for deposition and formation of a gallium arsenide monocrystalline layer. Following the formation of the template, gallium is subsequently introduced to the reaction with the arsenic and gallium arsenide forms. Alternatively, gallium can be deposited on the capping layer to form a Sr—O—Ga bond, and arsenic is subsequently introduced with the gallium to form the GaAs.



FIG. 5 is a high resolution Transmission Electron Micrograph (TEM) of semiconductor material manufactured in accordance with one embodiment of the present invention. Single crystal SrTiO3 accommodating buffer layer 24 was grown epitaxially on silicon substrate 22. During this growth process, amorphous interfacial layer 28 is formed which relieves strain due to lattice mismatch. GaAs compound semiconductor layer 26 was then grown epitaxially using template layer 30.



FIG. 6 illustrates an x-ray diffraction spectrum taken on a structure including GaAs monocrystalline layer 26 comprising GaAs grown on silicon substrate 22 using accommodating buffer layer 24. The peaks in the spectrum indicate that both the accommodating buffer layer 24 and GaAs compound semiconductor layer 26 are single crystal and (100) orientated.


The structure illustrated in FIG. 2 can be formed by the process discussed above with the addition of an additional buffer layer deposition step. The additional buffer layer 32 is formed overlying the template layer before the deposition of the monocrystalline material layer. If the buffer layer is a monocrystalline material comprising a compound semiconductor superlattice, such a superlattice can be deposited, by MBE for example, on the template described above. If instead the buffer layer is a monocrystalline material layer comprising a layer of germanium, the process above is modified to cap the strontium titanate monocrystalline layer with a final layer of either strontium or titanium and then by depositing germanium to react with the strontium or titanium. The germanium buffer layer can then be deposited directly on this template.


Structure 34, illustrated in FIG. 3, may be formed by growing an accommodating buffer layer, forming an amorphous oxide layer over substrate 22, and growing semiconductor layer 38 over the accommodating buffer layer, as described above. The accommodating buffer layer and the amorphous oxide layer are then exposed to an anneal process sufficient to change the crystalline structure of the accommodating buffer layer from monocrystalline to amorphous, thereby forming an amorphous layer such that the combination of the amorphous oxide layer and the now amorphous accommodating buffer layer form a single amorphous oxide layer 36. Layer 26 is then subsequently grown over layer 38. Alternatively, the anneal process may be carried out subsequent to growth of layer 26.


In accordance with one aspect of this embodiment, layer 36 is formed by exposing substrate 22, the accommodating buffer layer, the amorphous oxide layer, and monocrystalline layer 38 to a rapid thermal anneal process with a peak temperature of about 700° C. to about 1000° C. and a process time of about 5 seconds to about 10 minutes. However, other suitable anneal processes may be employed to convert the accommodating buffer layer to an amorphous layer in accordance with the present invention. For example, laser annealing, electron beam annealing, or “conventional” thermal annealing processes (in the proper environment) may be used to form layer 36. When conventional thermal annealing is employed to form layer 36, an overpressure of one or more constituents of layer 30 may be required to prevent degradation of layer 38 during the anneal process. For example, when layer 38 includes GaAs, the anneal environment preferably includes an overpressure of arsenic to mitigate degradation of layer 38.


As noted above, layer 38 of structure 34 may include any materials suitable for either of layers 32 or 26. Accordingly, any deposition or growth methods described in connection with either layer 32 or 26, may be employed to deposit layer 38.



FIG. 7 is a high resolution TEM of semiconductor material manufactured in accordance with the embodiment of the invention illustrated in FIG. 3. In accordance with this embodiment, a single crystal SrTiO3 accommodating buffer layer was grown epitaxially on silicon substrate 22. During this growth process, an amorphous interfacial layer forms as described above. Next, additional monocrystalline layer 38 comprising a compound semiconductor layer of GaAs is formed above the accommodating buffer layer and the accommodating buffer layer is exposed to an anneal process to form amorphous oxide layer 36.



FIG. 8 illustrates an x-ray diffraction spectrum taken on a structure including additional monocrystalline layer 38 comprising a GaAs compound semiconductor layer and amorphous oxide layer 36 formed on silicon substrate 22. The peaks in the spectrum indicate that GaAs compound semiconductor layer 38 is single crystal and (100) orientated and the lack of peaks around 40 to 50 degrees indicates that layer 36 is amorphous.


The process described above illustrates a process for forming a semiconductor structure including a silicon substrate, an overlying oxide layer, and a monocrystalline material layer comprising a gallium arsenide compound semiconductor layer by the process of molecular beam epitaxy. The process can also be carried out by the process of chemical vapor deposition (CVD), metal organic chemical vapor deposition (MOCVD), migration enhanced epitaxy (MEE), atomic layer epitaxy (ALE), physical vapor deposition (PVD), chemical solution deposition (CSD), pulsed laser deposition (PLD), or the like. Further, by a similar process, other monocrystalline accommodating buffer layers such as alkaline earth metal titanates, zirconates, hafnates, tantalates, vanadates, ruthenates, and niobates, alkaline earth metal tin-based perovskites, lanthanum aluminate, lanthanum scandium oxide, and gadolinium oxide can also be grown. Further, by a similar process such as MBE, other monocrystalline material layers comprising other III–V and II–VI monocrystalline compound semiconductors, semiconductors, metals and non-metals can be deposited overlying the monocrystalline oxide accommodating buffer layer.


Each of the variations of monocrystalline material layer and monocrystalline oxide accommodating buffer layer uses an appropriate template for initiating the growth of the monocrystalline material layer. For example, if the accommodating buffer layer is an alkaline earth metal zirconate, the oxide can be capped by a thin layer of zirconium. The deposition of zirconium can be followed by the deposition of arsenic or phosphorus to react with the zirconium as a precursor to depositing indium gallium arsenide, indium aluminum arsenide, or indium phosphide respectively. Similarly, if the monocrystalline oxide accommodating buffer layer is an alkaline earth metal hafnate, the oxide layer can be capped by a thin layer of hafnium. The deposition of hafnium is followed by the deposition of arsenic or phosphorous to react with the hafnium as a precursor to the growth of an indium gallium arsenide, indium aluminum arsenide, or indium phosphide layer, respectively. In a similar manner, strontium titanate can be capped with a layer of strontium or strontium and oxygen and barium titanate can be capped with a layer of barium or barium and oxygen. Each of these depositions can be followed by the deposition of arsenic or phosphorus to react with the capping material to form a template for the deposition of a monocrystalline material layer comprising compound semiconductors such as indium gallium arsenide, indium aluminum arsenide, or indium phosphide.


The formation of a device structure in accordance with another embodiment of the invention is illustrated schematically in cross-section in FIGS. 9–12. Like the previously described embodiments referred to in FIGS. 1–3, this embodiment of the invention involves the process of forming a compliant substrate utilizing the epitaxial growth of single crystal oxides, such as the formation of accommodating buffer layer 24 previously described with reference to FIGS. 1 and 2 and amorphous layer 36 previously described with reference to FIG. 3, and the formation of a template layer 30. However, the embodiment illustrated in FIGS. 9–12 utilizes a template that includes a surfactant to facilitate layer-by-layer monocrystalline material growth.


Turning now to FIG. 9, an amorphous intermediate layer 58 is grown on substrate 52 at the interface between substrate 52 and a growing accommodating buffer layer 54, which is preferably a monocrystalline crystal oxide layer, by the oxidation of substrate 52 during the growth of layer 54. Layer 54 is preferably a monocrystalline oxide material such as a monocrystalline layer of SrzBa1-zTiO3 where z ranges from 0 to 1. However, layer 54 may also comprise any of those compounds previously described with reference layer 24 in FIGS. 1–2 and any of those compounds previously described with reference to layer 36 in FIG. 3 which is formed from layers 24 and 28 referenced in FIGS. 1 and 2.


Layer 54 is grown with a strontium (Sr) terminated surface represented in FIG. 9 by hatched line 55 which is followed by the addition of a template layer 60 which includes a surfactant layer 61 and capping layer 63 as illustrated in FIGS. 10 and 11. Surfactant layer 61 may comprise, but is not limited to, elements such as Al, In and Ga, but will be dependent upon the composition of layer 54 and the overlying layer of monocrystalline material for optimal results. In one exemplary embodiment, aluminum (Al) is used for surfactant layer 61 and functions to modify the surface and surface energy of layer 54. Preferably, surfactant layer 61 is epitaxially grown, to a thickness of one to two monolayers, over layer 54 as illustrated in FIG. 10 by way of molecular beam epitaxy (MBE), although other epitaxial processes may also be performed including chemical vapor deposition (CVD), metal organic chemical vapor deposition (MOCVD), migration enhanced epitaxy (MEE), atomic layer epitaxy (ALE), physical vapor deposition (PVD), chemical solution deposition (CSD), pulsed laser deposition (PLD), or the like.


Surfactant layer 61 is then exposed to a Group V element such as arsenic, for example, to form capping layer 63 as illustrated in FIG. 11. Surfactant layer 61 may be exposed to a number of materials to create capping layer 63 such as elements which include, but are not limited to, As, P, Sb and N. Surfactant layer 61 and capping layer 63 combine to form template layer 60.


Monocrystalline material layer 66, which in this example is a compound semiconductor such as GaAs, is then deposited via MBE, CVD, MOCVD, MEE, ALE, PVD, CSD, PLD, and the like to form the final structure illustrated in FIG. 12.



FIGS. 13–16 illustrate possible molecular bond structures for a specific example of a compound semiconductor structure formed in accordance with the embodiment of the invention illustrated in FIGS. 9–12. More specifically, FIGS. 13–16 illustrate the growth of GaAs (layer 66) on the strontium terminated surface of a strontium titanate monocrystalline oxide (layer 54) using a surfactant containing template (layer 60).


The growth of a monocrystalline material layer 66 such as GaAs on an accommodating buffer layer 54 such as a strontium titanium oxide over amorphous interface layer 58 and substrate layer 52, both of which may comprise materials previously described with reference to layers 28 and 22, respectively in FIGS. 1 and 2, illustrates a critical thickness of about 1000 Angstroms where the two-dimensional (2D) and three-dimensional (3D) growth shifts because of the surface energies involved. In order to maintain a true layer by layer growth (Frank Van der Mere growth), the following relationship must be satisfied:

δSTO>(δINTGaAs)

where the surface energy of the monocrystalline oxide layer 54 must be greater than the surface energy of the amorphous interface layer 58 added to the surface energy of the GaAs layer 66. Since it is impracticable to satisfy this equation, a surfactant containing template was used, as described above with reference to FIGS. 10–12, to increase the surface energy of the monocrystalline oxide layer 54 and also to shift the crystalline structure of the template to a diamond-like structure that is in compliance with the original GaAs layer.



FIG. 13 illustrates the molecular bond structure of a strontium terminated surface of a strontium titanate monocrystalline oxide layer. An aluminum surfactant layer is deposited on top of the strontium terminated surface and bonds with that surface as illustrated in FIG. 14, which reacts to form a capping layer comprising a monolayer of Al2Sr having the molecular bond structure illustrated in FIG. 14 which forms a diamond-like structure with an sp3 hybrid terminated surface that is compliant with compound semiconductors such as GaAs. The structure is then exposed to As to form a layer of AlAs as shown in FIG. 15. GaAs is then deposited to complete the molecular bond structure illustrated in FIG. 16 which has been obtained by 2D growth. The GaAs can be grown to any thickness for forming other semiconductor structures, devices, or integrated circuits. Alkaline earth metals such as those in Group IIA are those elements preferably used to form the capping surface of the monocrystalline oxide layer 54 because they are capable of forming a desired molecular structure with aluminum.


In this embodiment, a surfactant containing template layer aids in the formation of a compliant substrate for the monolithic integration of various material layers including those comprised of Group III–V compounds to form high quality semiconductor structures, devices and integrated circuits. For example, a surfactant containing template may be used for the monolithic integration of a monocrystalline material layer such as a layer comprising Germanium (Ge), for example, to form high efficiency photocells.


Turning now to FIGS. 17–20, the formation of a device structure in accordance with still another embodiment of the invention is illustrated in cross-section. This embodiment utilizes the formation of a compliant substrate which relies on the epitaxial growth of single crystal oxides on silicon followed by the epitaxial growth of single crystal silicon onto the oxide.


An accommodating buffer layer 74 such as a monocrystalline oxide layer is first grown on a substrate layer 72, such as silicon, with an amorphous interface layer 78 as illustrated in FIG. 17. Monocrystalline oxide layer 74 may be comprised of any of those materials previously discussed with reference to layer 24 in FIGS. 1 and 2, while amorphous interface layer 78 is preferably comprised of any of those materials previously described with reference to the layer 28 illustrated in FIGS. 1 and 2. Substrate 72, although preferably silicon, may also comprise any of those materials previously described with reference to substrate 22 in FIGS. 1–3.


Next, a silicon layer 81 is deposited over monocrystalline oxide layer 74 via MBE, CVD, MOCVD, MEE, ALE, PVD, CSD, PLD, and the like as illustrated in FIG. 18 with a thickness of a few hundred Angstroms but preferably with a thickness of about 50 Angstroms. Monocrystalline oxide layer 74 preferably has a thickness of about 20 to 100 Angstroms.


Rapid thermal annealing is then conducted in the presence of a carbon source such as acetylene or methane, for example at a temperature within a range of about 800° C. to 1000° C. to form capping layer 82 and silicate amorphous layer 86. However, other suitable carbon sources may be used as long as the rapid thermal annealing step functions to amorphize the monocrystalline oxide layer 74 into a silicate amorphous layer 86 and carbonize the top silicon layer 81 to form capping layer 82 which in this example would be a silicon carbide (SiC) layer as illustrated in FIG. 19. The formation of amorphous layer 86 is similar to the formation of layer 36 illustrated in FIG. 3 and may comprise any of those materials described with reference to layer 36 in FIG. 3 but the preferable material will be dependent upon the capping layer 82 used for silicon layer 81.


Finally, a compound semiconductor layer 96, such as gallium nitride (GaN) is grown over the SiC surface by way of MBE, CVD, MOCVD, MEE, ALE, PVD, CSD, PLD, or the like to form a high quality compound semiconductor material for device formation. More specifically, the deposition of GaN and GaN based systems such as GaInN and AlGaN will result in the formation of dislocation nets confined at the silicon/amorphous region. The resulting nitride containing compound semiconductor material may comprise elements from groups III, IV and V of the periodic table and is defect free.


Although GaN has been grown on SiC substrate in the past, this embodiment of the invention possesses a one step formation of the compliant substrate containing a SiC top surface and an amorphous layer on a Si surface. More specifically, this embodiment of the invention uses an intermediate single crystal oxide layer that is amorphosized to form a silicate layer which adsorbs the strain between the layers. Moreover, unlike past use of a SiC substrate, this embodiment of the invention is not limited by wafer size which is usually less than 50 mm in diameter for prior art SiC substrates.


The monolithic integration of nitride containing semiconductor compounds containing group III–V nitrides and silicon devices can be used for high temperature RF applications and optoelectronics. GaN systems have particular use in the photonic industry for the blue/green and UV light sources and detection. High brightness light emitting diodes (LEDs) and lasers may also be formed within the GaN system.



FIGS. 21–23 schematically illustrate, in cross-section, the formation of another embodiment of a device structure in accordance with the invention. This embodiment includes a compliant layer that functions as a transition layer that uses clathrate or Zintl type bonding. More specifically, this embodiment utilizes an intermetallic template layer to reduce the surface energy of the interface between material layers thereby allowing for two dimensional layer by layer growth.


The structure illustrated in FIG. 21 includes a monocrystalline substrate 102, an amorphous interface layer 108 and an accommodating buffer layer 104. Amorphous interface layer 108 is formed on substrate 102 at the interface between substrate 102 and accommodating buffer layer 104 as previously described with reference to FIGS. 1 and 2. Amorphous interface layer 108 may comprise any of those materials previously described with reference to amorphous interface layer 28 in FIGS. 1 and 2. Substrate 102 is preferably silicon but may also comprise any of those materials previously described with reference to substrate 22 in FIGS. 1–3.


A template layer 130 is deposited over accommodating buffer layer 104 as illustrated in FIG. 22 and preferably comprises a thin layer of Zintl type phase material composed of metals and metalloids having a great deal of ionic character. As in previously described embodiments, template layer 130 is deposited by way of MBE, CVD, MOCVD, MEE, ALE, PVD, CSD, PLD, or the like to achieve a thickness of one monolayer. Template layer 130 functions as a “soft” layer with non-directional bonding but high crystallinity which absorbs stress build up between layers having lattice mismatch. Materials for template 130 may include, but are not limited to, materials containing Si, Ga, In, and Sb such as, for example, AlSr2, (MgCaYb)Ga2, (Ca,Sr,Eu,Yb)In2, BaGe2As, and SrSn2As2.


A monocrystalline material layer 126 is epitaxially grown over template layer 130 to achieve the final structure illustrated in FIG. 23. As a specific example, an SrAl2 layer may be used as template layer 130 and an appropriate monocrystalline material layer 126 such as a compound semiconductor material GaAs is grown over the SrAl2. The Al—Ti (from the accommodating buffer layer of layer of SrzBa1-zTiO3 where z ranges from 0 to 1) bond is mostly metallic while the Al—As (from the GaAs layer) bond is weakly covalent. The Sr participates in two distinct types of bonding with part of its electric charge going to the oxygen atoms in the lower accommodating buffer layer 104 comprising SrzBa1-zTiO3 to participate in ionic bonding and the other part of its valence charge being donated to Al in a way that is typically carried out with Zintl phase materials. The amount of the charge transfer depends on the relative electronegativity of elements comprising the template layer 130 as well as on the interatomic distance. In this example, Al assumes an sp3 hybridization and can readily form bonds with monocrystalline material layer 126, which in this example, comprises compound semiconductor material GaAs.


The compliant substrate produced by use of the Zintl type template layer used in this embodiment can absorb a large strain without a significant energy cost. In the above example, the bond strength of the Al is adjusted by changing the volume of the SrAl2 layer thereby making the device tunable for specific applications which include the monolithic integration of III–V and Si devices and the monolithic integration of high-k dielectric materials for CMOS technology.


Clearly, those embodiments specifically describing structures having compound semiconductor portions and Group IV semiconductor portions, are meant to illustrate embodiments of the present invention and not limit the present invention. There are a multiplicity of other combinations and other embodiments of the present invention. For example, the present invention includes structures and methods for fabricating material layers which form semiconductor structures, devices and integrated circuits including other layers such as metal and non-metal layers. More specifically, the invention includes structures and methods for forming a compliant substrate which is used in the fabrication of semiconductor structures, devices and integrated circuits and the material layers suitable for fabricating those structures, devices, and integrated circuits. By using embodiments of the present invention, it is now simpler to integrate devices that include monocrystalline layers comprising semiconductor and compound semiconductor materials as well as other material layers that are used to form those devices with other components that work better or are easily and/or inexpensively formed within semiconductor or compound semiconductor materials. This allows a device to be shrunk, the manufacturing costs to decrease, and yield and reliability to increase.


In accordance with one embodiment of this invention, a monocrystalline semiconductor or compound semiconductor wafer can be used in forming monocrystalline material layers over the wafer. In this manner, the wafer is essentially a “handle” wafer used during the fabrication of semiconductor electrical components within a monocrystalline layer overlying the wafer. Therefore, electrical components can be formed within semiconductor materials over a wafer of at least approximately 200 millimeters in diameter and possibly at least approximately 300 millimeters.


By the use of this type of substrate, a relatively inexpensive “handle” wafer overcomes the fragile nature of compound semiconductor or other monocrystalline material wafers by placing them over a relatively more durable and easy to fabricate base material. Therefore, an integrated circuit can be formed such that all electrical components, and particularly all active electronic devices, can be formed within or using the monocrystalline material layer even though the substrate itself may include a monocrystalline semiconductor material. Fabrication costs for compound semiconductor devices and other devices employing non-silicon monocrystalline materials should decrease because larger substrates can be processed more economically and more readily compared to the relatively smaller and more fragile substrates (e.g. conventional compound semiconductor wafers).



FIG. 24 illustrates schematically, in cross section, a device structure 50 in accordance with a further embodiment. Device structure 50 includes a monocrystalline semiconductor substrate 52, preferably a monocrystalline silicon wafer. Monocrystalline semiconductor substrate 52 includes two regions, 53 and 57. An electrical semiconductor component generally indicated by the dashed line 56 is formed, at least partially, in region 53. Electrical component 56 can be a resistor, a capacitor, an active semiconductor component such as a diode or a transistor or an integrated circuit such as a CMOS integrated circuit. For example, electrical semiconductor component 56 can be a CMOS integrated circuit configured to perform digital signal processing or another function for which silicon integrated circuits are well suited. The electrical semiconductor component in region 53 can be formed by conventional semiconductor processing as well known and widely practiced in the semiconductor industry. A layer of insulating material 59 such as a layer of silicon dioxide or the like may overlie electrical semiconductor component 56.


Insulating material 59 and any other layers that may have been formed or deposited during the processing of semiconductor component 56 in region 53 are removed from the surface of region 57 to provide a bare silicon surface in that region. As is well known, bare silicon surfaces are highly reactive and a native silicon oxide layer can quickly form on the bare surface. A layer of barium or barium and oxygen is deposited onto the native oxide layer on the surface of region 57 and is reacted with the oxidized surface to form a first template layer (not shown). In accordance with one embodiment, a monocrystalline oxide layer is formed overlying the template layer by a process of molecular beam epitaxy. Reactants including barium, titanium and oxygen are deposited onto the template layer to form the monocrystalline oxide layer. Initially during the deposition the partial pressure of oxygen is kept near the minimum necessary to fully react with the barium and titanium to form monocrystalline barium titanate layer. The partial pressure of oxygen is then increased to provide an overpressure of oxygen and to allow oxygen to diffuse through the growing monocrystalline oxide layer. The oxygen diffusing through the barium titanate reacts with silicon at the surface of region 57 to form an amorphous layer of silicon oxide 62 on second region 57 and at the interface between silicon substrate 52 and the monocrystalline oxide layer 65. Layers 65 and 62 may be subject to an annealing process as described above in connection with FIG. 3 to form a single amorphous accommodating layer.


In accordance with an embodiment, the step of depositing the monocrystalline oxide layer 65 is terminated by depositing a second template layer 64, which can be 1–10 monolayers of titanium, barium, barium and oxygen, or titanium and oxygen. A layer 66 of a monocrystalline compound semiconductor material is then deposited overlying second template layer 64 by a process of molecular beam epitaxy. The deposition of layer 66 is initiated by depositing a layer of arsenic onto template 64. This initial step is followed by depositing gallium and arsenic to form monocrystalline gallium arsenide 66. Alternatively, strontium can be substituted for barium in the above example.


In accordance with a further embodiment, a semiconductor component, generally indicated by a dashed line 68 is formed in compound semiconductor layer 66. Semiconductor component 68 can be formed by processing steps conventionally used in the fabrication of gallium arsenide or other III–V compound semiconductor material devices. Semiconductor component 68 can be any active or passive component, and preferably is a semiconductor laser, light emitting diode, photodetector, heterojunction bipolar transistor (HBT), high frequency MESFET, or other component that utilizes and takes advantage of the physical properties of compound semiconductor materials. A metallic conductor schematically indicated by the line 70 can be formed to electrically couple device 68 and device 56, thus implementing an integrated device that includes at least one component formed in silicon substrate 52 and one device formed in monocrystalline compound semiconductor material layer 66. Although illustrative structure 50 has been described as a structure formed on a silicon substrate 52 and having a barium (or strontium) titanate layer 65 and a gallium arsenide layer 66, similar devices can be fabricated using other substrates, monocrystalline oxide layers and other compound semiconductor layers as described elsewhere in this disclosure.



FIG. 25 illustrates a semiconductor structure 71 in accordance with a further embodiment. Structure 71 includes a monocrystalline semiconductor substrate 73 such as a monocrystalline silicon wafer that includes a region 75 and a region 76. An electrical component schematically illustrated by the dashed line 79 is formed in region 75 using conventional silicon device processing techniques commonly used in the semiconductor industry. Using process steps similar to those described above, a monocrystalline oxide layer 80 and an intermediate amorphous silicon oxide layer 83 are formed overlying region 76 of substrate 73. A template layer 84 and subsequently a monocrystalline semiconductor layer 87 are formed overlying monocrystalline oxide layer 80. In accordance with a further embodiment, an additional monocrystalline oxide layer 88 is formed overlying layer 87 by process steps similar to those used to form layer 80, and an additional monocrystalline semiconductor layer 90 is formed overlying monocrystalline oxide layer 88 by process steps similar to those used to form layer 87. In accordance with one embodiment, at least one of layers 87 and 90 are formed from a compound semiconductor material. Layers 80 and 83 may be subject to an annealing process as described above in connection with FIG. 3 to form a single amorphous accommodating layer.


A semiconductor component generally indicated by a dashed line 92 is formed at least partially in monocrystalline semiconductor layer 87. In accordance with one embodiment, semiconductor component 92 may include a field effect transistor having a gate dielectric formed, in part, by monocrystalline oxide layer 88. In addition, monocrystalline semiconductor layer 90 can be used to implement the gate electrode of that field effect transistor. In accordance with one embodiment, monocrystalline semiconductor layer 87 is formed from a group III–V compound and semiconductor component 92 is a radio frequency amplifier that takes advantage of the high mobility characteristic of group III–V component materials. In accordance with yet a further embodiment, an electrical interconnection schematically illustrated by the line 94 electrically interconnects component 79 and component 92. Structure 71 thus integrates components that take advantage of the unique properties of the two monocrystalline semiconductor materials.


Attention is now directed to a method for forming exemplary portions of illustrative composite semiconductor structures or composite integrated circuits like 50 or 71. In particular, the illustrative composite semiconductor structure or integrated circuit 103 shown in FIGS. 26–30 includes a compound semiconductor portion 1022, a bipolar portion 1024, and a MOS portion 1026. In FIG. 26, a p-type doped, monocrystalline silicon substrate 110 is provided having a compound semiconductor portion 1022, a bipolar portion 1024, and an MOS portion 1026. Within bipolar portion 1024, the monocrystalline silicon substrate 110 is doped to form an N+ buried region 1102. A lightly p-type doped epitaxial monocrystalline silicon layer 1104 is then formed over the buried region 1102 and the substrate 110. A doping step is then performed to create a lightly n-type doped drift region 1117 above the N+ buried region 1102. The doping step converts the dopant type of the lightly p-type epitaxial layer within a section of the bipolar region 1024 to a lightly n-type monocrystalline silicon region. A field isolation region 1106 is then formed between and around the bipolar portion 1024 and the MOS portion 1026. A gate dielectric layer 1110 is formed over a portion of the epitaxial layer 1104 within MOS portion 1026, and the gate electrode 1112 is then formed over the gate dielectric layer 1110. Sidewall spacers 1115 are formed along vertical sides of the gate electrode 1112 and gate dielectric layer 1110.


A p-type dopant is introduced into the drift region 1117 to form an active or intrinsic base region 1114. An n-type, deep collector region 1108 is then formed within the bipolar portion 1024 to allow electrical connection to the buried region 1102. Selective n-type doping is performed to form N+ doped regions 1116 and the emitter region 1120. N+ doped regions 1116 are formed within layer 1104 along adjacent sides of the gate electrode 1112 and are source, drain, or source/drain regions for the MOS transistor. The N+ doped regions 1116 and emitter region 1120 have a doping concentration of at least 1E19 atoms per cubic centimeter to allow ohmic contacts to be formed. A p-type doped region is formed to create the inactive or extrinsic base region 1118 which is a P+ doped region (doping concentration of at least 1E19 atoms per cubic centimeter).


In the embodiment described, several processing steps have been performed but are not illustrated or further described, such as the formation of well regions, threshold adjusting implants, channel punchthrough prevention implants, field punchthrough prevention implants, as well as a variety of masking layers. The formation of the device up to this point in the process is performed using conventional steps. As illustrated, a standard N-channel MOS transistor has been formed within the MOS region 1026, and a vertical NPN bipolar transistor has been formed within the bipolar portion 1024. Although illustrated with a NPN bipolar transistor and a N-channel MOS transistor, device structures and circuits in accordance with various embodiments may additionally or alternatively include other electronic devices formed using the silicon substrate. As of this point, no circuitry has been formed within the compound semiconductor portion 1022.


After the silicon devices are formed in regions 1024 and 1026, a protective layer 1122 is formed overlying devices in regions 1024 and 1026 to protect devices in regions 1024 and 1026 from potential damage resulting from device formation in region 1022. Layer 1122 may be formed of, for example, an insulating material such as silicon oxide or silicon nitride.


All of the layers that have been formed during the processing of the bipolar and MOS portions of the integrated circuit, except for epitaxial layer 1104 but including protective layer 1122, are now removed from the surface of compound semiconductor portion 1022. A bare silicon surface is thus provided for the subsequent processing of this portion, for example in the manner set forth above.


An accommodating buffer layer 124 is then formed over the substrate 110 as illustrated in FIG. 27. The accommodating buffer layer will form as a monocrystalline layer over the properly prepared (i.e., having the appropriate template layer) bare silicon surface in portion 1022. The portion of layer 124 that forms over portions 1024 and 1026, however, may be polycrystalline or amorphous because it is formed over a material that is not monocrystalline, and therefore, does not nucleate monocrystalline growth. The accommodating buffer layer 124 typically is a monocrystalline metal oxide or nitride layer and typically has a thickness in a range of approximately 2–100 nanometers. In one particular embodiment, the accommodating buffer layer is approximately 5–15 nm thick. During the formation of the accommodating buffer layer, an amorphous intermediate layer 122 is formed along the uppermost silicon surfaces of the integrated circuit 103. This amorphous intermediate layer 122 typically includes an oxide of silicon and has a thickness and range of approximately 1–5 nm. In one particular embodiment, the thickness is approximately 2 nm. Following the formation of the accommodating buffer layer 124 and the amorphous intermediate layer 122, a template layer 125 is then formed and has a thickness in a range of approximately one to ten monolayers of a material. In one particular embodiment, the material includes titanium-arsenic, strontium-oxygen-arsenic, or other similar materials as previously described with respect to FIGS. 1–5.


A monocrystalline compound semiconductor layer 132 is then epitaxially grown overlying the monocrystalline portion of accommodating buffer layer 124 as shown in FIG. 28. The portion of layer 132 that is grown over portions of layer 124 that are not monocrystalline may be polycrystalline or amorphous. The compound semiconductor layer can be formed by a number of methods and typically includes a material such as gallium arsenide, aluminum gallium arsenide, indium phosphide, or other compound semiconductor materials as previously mentioned. The thickness of the layer is in a range of approximately 1–5,000 nm, and more preferably 100–2000 nm. Furthermore, additional monocrystalline layers may be formed above layer 132, as discussed in more detail below in connection with FIGS. 31–32.


In this particular embodiment, each of the elements within the template layer is also present in the accommodating buffer layer 124, the monocrystalline compound semiconductor material 132, or both. Therefore, the delineation between the template layer 125 and its two immediately adjacent layers disappears during processing. Therefore, when a transmission electron microscopy (TEM) photograph is taken, an interface between the accommodating buffer layer 124 and the monocrystalline compound semiconductor layer 132 is seen.


After at least a portion of layer 132 is formed in region 1022, layers 122 and 124 may be subject to an annealing process as described above in connection with FIG. 3 to form a single amorphous accommodating layer. If only a portion of layer 132 is formed prior to the anneal process, the remaining portion may be deposited onto structure 103 prior to further processing.


At this point in time, sections of the compound semiconductor layer 132 and the accommodating buffer layer 124 (or of the amorphous accommodating layer if the annealing process described above has been carried out) are removed from portions overlying the bipolar portion 1024 and the MOS portion 1026 as shown in FIG. 29. After the section of the compound semiconductor layer and the accommodating buffer layer 124 are removed, an insulating layer 142 is formed over protective layer 1122. The insulating layer 142 can include a number of materials such as oxides, nitrides, oxynitrides, low-k dielectrics, or the like. As used herein, low-k is a material having a dielectric constant no higher than approximately 3.5. After the insulating layer 142 has been deposited, it is then polished or etched to remove portions of the insulating layer 142 that overlie monocrystalline compound semiconductor layer 132.


A transistor 144 is then formed within the monocrystalline compound semiconductor portion 1022. A gate electrode 148 is then formed on the monocrystalline compound semiconductor layer 132. Doped regions 146 are then formed within the monocrystalline compound semiconductor layer 132. In this embodiment, the transistor 144 is a metal-semiconductor field-effect transistor (MESFET). If the MESFET is an n-type MESFET, the doped regions 146 and at least a portion of monocrystalline compound semiconductor layer 132 are also n-type doped. If a p-type MESFET were to be formed, then the doped regions 146 and at least a portion of monocrystalline compound semiconductor layer 132 would have just the opposite doping type. The heavier doped (N+) regions 146 allow ohmic contacts to be made to the monocrystalline compound semiconductor layer 132. At this point in time, the active devices within the integrated circuit have been formed. Although not illustrated in the drawing figures, additional processing steps such as formation of well regions, threshold adjusting implants, channel punchthrough prevention implants, field punchthrough prevention implants, and the like may be performed in accordance with the present invention. This particular embodiment includes an n-type MESFET, a vertical NPN bipolar transistor, and a planar n-channel MOS transistor. Many other types of transistors, including P-channel MOS transistors, p-type vertical bipolar transistors, p-type MESFETs, and combinations of vertical and planar transistors, can be used. Also, other electrical components, such as resistors, capacitors, diodes, and the like, may be formed in one or more of the portions 1022, 1024, and 1026.


Processing continues to form a substantially completed integrated circuit 103 as illustrated in FIG. 30. An insulating layer 152 is formed over the substrate 110. The insulating layer 152 may include an etch-stop or polish-stop region that is not illustrated in FIG. 30. A second insulating layer 154 is then formed over the first insulating layer 152. Portions of layers 154, 152, 142, 124, and 1122 are removed to define contact openings where the devices are to be interconnected. Interconnect trenches are formed within insulating layer 154 to provide the lateral connections between the contacts. As illustrated in FIG. 30, interconnect 1562 connects a source or drain region of the n-type MESFET within portion 1022 to the deep collector region 1108 of the NPN transistor within the bipolar portion 1024. The emitter region 1120 of the NPN transistor is connected to one of the doped regions 1116 of the n-channel MOS transistor within the MOS portion 1026. The other doped region 1116 is electrically connected to other portions of the integrated circuit that are not shown. Similar electrical connections are also formed to couple regions 1118 and 1112 to other regions of the integrated circuit.


A passivation layer 156 is formed over the interconnects 1562, 1564, and 1566 and insulating layer 154. Other electrical connections are made to the transistors as illustrated as well as to other electrical or electronic components within the integrated circuit 103 but are not illustrated in the FIGS. Further, additional insulating layers and interconnects may be formed as necessary to form the proper interconnections between vying the various components within the integrated circuit 103.


As can be seen from the previous embodiment, active devices for both compound semiconductor and Group IV semiconductor materials can be integrated into a single integrated circuit. Because there is some difficulty in incorporating both bipolar transistors and MOS transistors within a same integrated circuit, it may be possible to move some of the components within bipolar portion 1024 into the compound semiconductor portion 1022 or the MOS portion 1026. Therefore, the requirement of special fabricating steps solely used for making a bipolar transistor can be eliminated. Therefore, there would only be a compound semiconductor portion and a MOS portion to the integrated circuit.


In still another embodiment, an integrated circuit can be formed such that it includes an optical laser in a compound semiconductor portion and an optical interconnect (waveguide) to a MOS transistor within a Group IV semiconductor region of the same integrated circuit. FIGS. 31–37 include illustrations of one embodiment.



FIG. 31 includes an illustration of a cross-section view of a portion of an integrated circuit 160 that includes a monocrystalline silicon wafer 161. An amorphous intermediate layer 162 and an accommodating buffer layer 164, similar to those previously described, have been formed over wafer 161. Layers 162 and 164 may be subject to an annealing process as described above in connection with FIG. 3 to form a single amorphous accommodating layer. In this specific embodiment, the layers needed to form the optical laser will be formed first, followed by the layers needed for the MOS transistor. In FIG. 31, the lower mirror layer 166 includes alternating layers of compound semiconductor materials. For example, the first, third, and fifth films within the optical laser may include a material such as gallium arsenide, and the second, fourth, and sixth films within the lower mirror layer 166 may include aluminum gallium arsenide or vice versa. Layer 168 includes the active region that will be used for photon generation. Upper mirror layer 170 is formed in a similar manner to the lower mirror layer 166 and includes alternating films of compound semiconductor materials. In one particular embodiment, the upper mirror layer 170 may be p-type doped compound semiconductor materials, and the lower mirror layer 166 may be n-type doped compound semiconductor materials.


Another accommodating buffer layer 172, similar to the accommodating buffer layer 164, is formed over the upper mirror layer 170. In an alternative embodiment, the accommodating buffer layers 164 and 172 may include different materials. However, their function is essentially the same in that each is used for making a transition between a compound semiconductor layer and a monocrystalline Group IV semiconductor layer. Layer 172 may be subject to an annealing process as described above in connection with FIG. 3 to form an amorphous accommodating layer. A monocrystalline Group IV semiconductor layer 174 is formed over the accommodating buffer layer 172. In one particular embodiment, the monocrystalline Group IV semiconductor layer 174 includes germanium, silicon germanium, silicon germanium carbide, or the like.


In FIG. 32, the MOS portion is processed to form electrical components within this upper monocrystalline Group IV semiconductor layer 174. As illustrated in FIG. 32, a field isolation region 171 is formed from a portion of layer 174. A gate dielectric layer 173 is formed over the layer 174, and a gate electrode 175 is formed over the gate dielectric layer 173. Doped regions 177 are source, drain, or source/drain regions for the transistor 181, as shown. Sidewall spacers 179 are formed adjacent to the vertical sides of the gate electrode 175. Other components can be made within at least a part of layer 174. These other components include other transistors (n-channel or p-channel), capacitors, transistors, diodes, and the like.


A monocrystalline Group IV semiconductor layer is epitaxially grown over one of the doped regions 177. An upper portion 184 is P+ doped, and a lower portion 182 remains substantially intrinsic (undoped) as illustrated in FIG. 32. The layer can be formed using a selective epitaxial process. In one embodiment, an insulating layer (not shown) is formed over the transistor 181 and the field isolation region 171. The insulating layer is patterned to define an opening that exposes one of the doped regions 177. At least initially, the selective epitaxial layer is formed without dopants. The entire selective epitaxial layer may be intrinsic, or a p-type dopant can be added near the end of the formation of the selective epitaxial layer. If the selective epitaxial layer is intrinsic, as formed, a doping step may be formed by implantation or by furnace doping. Regardless how the P+ upper portion 184 is formed, the insulating layer is then removed to form the resulting structure shown in FIG. 32.


The next set of steps is performed to define the optical laser 180 as illustrated in FIG. 33. The field isolation region 171 and the accommodating buffer layer 172 are removed over the compound semiconductor portion of the integrated circuit. Additional steps are performed to define the upper mirror layer 170 and active layer 168 of the optical laser 180. The sides of the upper mirror layer 170 and active layer 168 are substantially coterminous.


Contacts 186 and 188 are formed for making electrical contact to the upper mirror layer 170 and the lower mirror layer 166, respectively, as shown in FIG. 33. Contact 186 has an annular shape to allow light (photons) to pass out of the upper mirror layer 170 into a subsequently formed optical waveguide.


An insulating layer 190 is then formed and patterned to define optical openings extending to the contact layer 186 and one of the doped regions 177 as shown in FIG. 34. The insulating material can be any number of different materials, including an oxide, nitride, oxynitride, low-k dielectric, or any combination thereof. After defining the openings 192, a higher refractive index material 202 is then formed within the openings to fill them and to deposit the layer over the insulating layer 190 as illustrated in FIG. 35. With respect to the higher refractive index material 202, “higher” is in relation to the material of the insulating layer 190 (i.e., material 202 has a higher refractive index compared to the insulating layer 190). Optionally, a relatively thin lower refractive index film (not shown) could be formed before forming the higher refractive index material 202. A hard mask layer 204 is then formed over the high refractive index layer 202. Portions of the hard mask layer 204, and high refractive index layer 202 are removed from portions overlying the opening and to areas closer to the sides of FIG. 35.


The balance of the formation of the optical waveguide, which is an optical interconnect, is completed as illustrated in FIG. 36. A deposition procedure (possibly a dep-etch process) is performed to effectively create sidewalls sections 212. In this embodiment, the sidewall sections 212 are made of the same material as material 202. The hard mask layer 204 is then removed, and a low refractive index layer 214 (low relative to material 202 and layer 212) is formed over the higher refractive index material 212 and 202 and exposed portions of the insulating layer 190. The dash lines in FIG. 36 illustrate the border between the high refractive index materials 202 and 212. This designation is used to identify that both are made of the same material but are formed at different times.


Processing is continued to form a substantially completed integrated circuit as illustrated in FIG. 37. A passivation layer 220 is then formed over the optical laser 180 and MOSFET transistor 181. Although not shown, other electrical or optical connections are made to the components within the integrated circuit but are not illustrated in FIG. 37. These interconnects can include other optical waveguides or may include metallic interconnects.


In other embodiments, other types of lasers can be formed. For example, another type of laser can emit light (photons) horizontally instead of vertically. If light is emitted horizontally, the MOSFET transistor could be formed within the substrate 161, and the optical waveguide would be reconfigured, so that the laser is properly coupled (optically connected) to the transistor. In one specific embodiment, the optical waveguide can include at least a portion of the accommodating buffer layer. Other configurations are possible.


Clearly, these embodiments of integrated circuits having compound semiconductor portions and Group IV semiconductor portions, are meant to illustrate what can be done and are not intended to be exhaustive of all possibilities or to limit what can be done. There is a multiplicity of other possible combinations and embodiments. For example, the compound semiconductor portion may include light emitting diodes, photodetectors, diodes, or the like, and the Group IV semiconductor can include digital logic, memory arrays, and most structures that can be formed in conventional MOS integrated circuits. By using what is shown and described herein, it is now simpler to integrate devices that work better in compound semiconductor materials with other components that work better in Group IV semiconductor materials. This allows a device to be shrunk, the manufacturing costs to decrease, and yield and reliability to increase.


Although not illustrated, a monocrystalline Group IV wafer can be used in forming only compound semiconductor electrical components over the wafer. In this manner, the wafer is essentially a “handle” wafer used during the fabrication of the compound semiconductor electrical components within a monocrystalline compound semiconductor layer overlying the wafer. Therefore, electrical components can be formed within III–V or II–VI semiconductor materials over a wafer of at least approximately 200 millimeters in diameter and possibly at least approximately 300 millimeters.


By the use of this type of substrate, a relatively inexpensive “handle” wafer overcomes the fragile nature of the compound semiconductor wafers by placing them over a relatively more durable and easy to fabricate base material. Therefore, an integrated circuit can be formed such that all electrical components, and particularly all active electronic devices, can be formed within the compound semiconductor material even though the substrate itself may include a Group IV semiconductor material. Fabrication costs for compound semiconductor devices should decrease because larger substrates can be processed more economically and more readily, compared to the relatively smaller and more fragile, conventional compound semiconductor wafers.


A composite integrated circuit may include components that provide electrical isolation when electrical signals are applied to the composite integrated circuit. The composite integrated circuit may include a pair of optical components, such as an optical source component and an optical detector component. An optical source component may be a light generating semiconductor device, such as an optical laser (e.g., the optical laser illustrated in FIG. 33), a photo emitter, a diode, etc. An optical detector component may be a light-sensitive semiconductor junction device, such as a photodetector, a photodiode, a bipolar junction, a transistor, etc.


A composite integrated circuit may include processing circuitry that is formed at least partly in the Group IV semiconductor portion of the composite integrated circuit. The processing circuitry is configured to communicate with circuitry external to the composite integrated circuit. The processing circuitry may be electronic circuitry, such as a microprocessor, RAM, logic device, decoder, etc.


For the processing circuitry to communicate with external electronic circuitry, the composite integrated circuit may be provided with electrical signal connections with the external electronic circuitry. The composite integrated circuit may have internal optical communications connections for connecting the processing circuitry in the composite integrated circuit to the electrical connections with the external circuitry. Optical components in the composite integrated circuit may provide the optical communications connections which may electrically isolate the electrical signals in the communications connections from the processing circuitry. Together, the electrical and optical communications connections may be for communicating information, such as data, control, timing, etc.


A pair of optical components (an optical source component and an optical detector component) in the composite integrated circuit may be configured to pass information. Information that is received or transmitted between the optical pair may be from or for the electrical communications connection between the external circuitry and the composite integrated circuit. The optical components and the electrical communications connection may form a communications connection between the processing circuitry and the external circuitry while providing electrical isolation for the processing circuitry. If desired, a plurality of optical component pairs may be included in the composite integrated circuit for providing a plurality of communications connections and for providing isolation. For example, a composite integrated circuit receiving a plurality of data bits may include a pair of optical components for communication of each data bit.


In operation, for example, an optical source component in a pair of components may be configured to generate light (e.g., photons) based on receiving electrical signals from an electrical signal connection with the external circuitry. An optical detector component in the pair of components may be optically connected to the source component to generate electrical signals based on detecting light generated by the optical source component. Information that is communicated between the source and detector components may be digital or analog.


If desired the reverse of this configuration may be used. An optical source component that is responsive to the on-board processing circuitry may be coupled to an optical detector component to have the optical source component generate an electrical signal for use in communications with external circuitry. A plurality of such optical component pair structures may be used for providing two-way connections. In some applications where synchronization is desired, a first pair of optical components may be coupled to provide data communications and a second pair may be coupled for communicating synchronization information.


For clarity and brevity, optical detector components that are discussed below are discussed primarily in the context of optical detector components that have been formed in a compound semiconductor portion of a composite integrated circuit. In application, the optical detector component may be formed in many suitable ways (e.g., formed from silicon, etc.).


A composite integrated circuit will typically have an electric connection for a power supply and a ground connection. The power and ground connections are in addition to the communications connections that are discussed above. Processing circuitry in a composite integrated circuit may include electrically isolated communications connections and include electrical connections for power and ground. In most known applications, power supply and ground connections are usually wellprotected by circuitry to prevent harmful external signals from reaching the composite integrated circuit. A communications ground may be isolated from the ground signal in communications connections that use a ground communications signal.



FIG. 38 illustrates a wavelength locker 301 for facilitating a stable transmission by a conventional optical transmitter 300 (e.g., a Distributed Feedback laser diode, a Distributed Bragg Reflector laser diode, a Fabry-Perot laser diode, and a vertical cavity surface emitting laser (VCSEL) of an optical output signal POUT at an operating wavelength. Wavelength locker 301 includes a conventional reference filter 302, such as, for example, an Etalon filter or a grating filter (e.g., a fiber Bragg filter) for generating and transmitting an error signal in the form of an optical signal PERR as an indication of any drift of optical output signal POUT from the operating wavelength. Reference filter 302 utilizes a reference wavelength as a baseline for generating optical signal PERR as would occur to those having ordinary skill in the art.


Wavelength locker 301 further includes a conventional signal converter 303, such as, for example, a photodetector, for converting optical signal PERR into a voltage signal VERR. Wavelength locker 301 further includes a conventional controller 304 for generating a feedback signal to optical transmitter 300 in the form of either a voltage signal VFB or a current signal IFB to facilitate a stable transmission of optical output signal POUT at the operating wavelength. Those having ordinary skill in the art will appreciate the appropriate form of the feedback signal corresponds to the functionality of optical transmitter 300 (e.g., the feedback signal is voltage signal VFB to thereby control an electric field of a grating region of particular types of optical transmitters 300 and the feedback signal is current signal IFB to thereby inject current to or control a temperature of a gain medium of particular types of optical transmitters 300). Controller 304 is preferably a CMOS integrated circuit configured to generate the appropriate feedback signal based upon a comparison of an intensity of optical signal PERR as represented by voltage signal VERR to a reference intensity corresponding to the reference wavelength of reference filter 302 as would occur to those having ordinary skill in the art. Controller 304 can also be configured to perform any signal conditioning on voltage signal VERR and/or the feedback signal, such as for example, signal amplification, signal filtering, log conversion, error correction, signal encoding, signal decoding and other conditioning functions as would occur to those having ordinary skill in the art.


Those having ordinary skill in the art will appreciate a benefit of wavelength locker 301 is the minimization of cross-talk penalties due to channel interference as well as a compensation for an aging of optical transmitter 300. Consequently, an operational lifetime of optical transmitter 300 over a significant number of years (e.g., twenty-five years) is attainable.



FIG. 39 illustrates schematically, in cross section, a device structure 310 having a formation of wavelength locker 301 (FIG. 38) therein. Device structure 310 includes a monocrystalline semiconductor substrate 311, preferably a monocrystalline silicon wafer. Monocrystalline semiconductor substrate 311 includes two regions, 312 and 313. Controller 304 is formed, at least partially, in region 312, by conventional semiconductor processing as well known and widely practiced in the semiconductor industry. A layer of insulating material 318 such as a layer of silicon dioxide or the like may overlie controller 304.


Insulating material 318 and any other layers that may have been formed or deposited during the processing of controller 304 in region 312 are removed from the surface of region 313 to provide a bare silicon surface in that region. As is well known, bare silicon surfaces are highly reactive and a native silicon oxide layer can quickly form on the bare surface. A layer of barium or barium and oxygen is deposited onto the native oxide layer on the surface of region 313 and is reacted with the oxidized surface to form a first template layer (not shown). In accordance with one embodiment, a monocrystalline oxide layer 315 is formed overlying the template layer by a process of molecular beam epitaxy. Reactants including barium, titanium and oxygen are deposited onto the template layer to form the monocrystalline oxide layer 315. Initially during the deposition the partial pressure of oxygen is kept near the minimum necessary to fully react with the barium and titanium to form monocrystalline barium titanate layer 315. The partial pressure of oxygen is then increased to provide an overpressure of oxygen and to allow oxygen to diffuse through the growing monocrystalline oxide layer 315. The oxygen diffusing through the barium titanate reacts with silicon at the surface of region 313 to form an amorphous layer 314 of silicon oxide on second region 313 and at the interface between silicon substrate 311 and the monocrystalline oxide layer 315. Layers 314 and 315 may be subject to an annealing process as described above in connection with FIG. 3 to form a single amorphous accommodating layer.


In accordance with an embodiment, the step of depositing the monocrystalline oxide layer 315 is terminated by depositing a second template layer 316 which can be comprised of any of the material previously discussed with reference to layer 24 in FIGS. 1 and 2. A layer 317 of a monocrystalline compound semiconductor material is then deposited overlying second template layer 316 via MBE, CVD, MOCVD, MEE, ALE, PVD, CSD, PLD, and the like. The deposition of layer 317 is initiated by depositing a layer of arsenic onto template 316. This initial step is followed by depositing gallium and arsenic to form monocrystalline gallium arsenide 317.


Optical transmitter 300, reference filter 302, and signal converter 303 are fabricated by conventional methods on monocrystalline compound semiconductor material layer 317. Metallic conductors schematically indicated by lines 320 and 321 can be formed to electrically couple optical transmitter 300 and controller 304, and signal converter 303 and controller 304, respectively, thus implementing an integrated device that includes at least one component formed in silicon substrate 311 and several components formed on monocrystalline compound semiconductor material layer 317.


Although illustrative structure 310 has been described as a structure formed on a silicon substrate 311 and having a barium (or strontium) titanate layer 315 and a gallium arsenide layer 317, wavelength locker 301 as well as optical transmitter 300 can be fabricated using other substrates, monocrystalline oxide layers and other compound semiconductor layers as described elsewhere in this disclosure as would occur to those having ordinary skill in the art. Additionally, in modified versions of device structure 310, optical transmitter 300 and/or reference filter 302 can be remotely located therefrom as would occur to those having ordinary skill in the art.


Controller 304 has an electric connection (not shown) for a power supply and a ground connection. The power and ground connections are in addition to the communications connections that are discussed above. Processing circuitry in controller 304 may include electrically isolated communications connections and include electrical connections for power and ground. In most known applications, power supply and ground connections are usually well-protected by circuitry to prevent harmful external signals from reaching controller 304. A communications ground may be isolated from the ground signal in communications connections that use a ground communications signal.



FIG. 40 illustrates a wavelength locker 330 for facilitating a stable transmission by a conventional optical transmitter 300 of optical output signal POUT at an operating wavelength. Wavelength locker 330 includes a conventional splitter 331, a conventional signal converter 332 (e.g., a photodetector), a conventional reference filter 333 (e.g., an Etalon filter), a conventional signal converter 334 (e.g., a photodetector), and a controller 335. Splitter 331 splits (e.g., equally) optical output signal POUT into an optical signal PSS1 and an optical signal PSS2. Signal converter 332 provides an reference signal in the form of voltage signal VREF indicative of a reference wavelength in response to a reception of optical signal PSS1. Reference filter 333 generates and transmits an error signal in the form of an optical signal PERR as an indication of any drift of optical output signal POUT from the operating wavelength. Reference filter 333 utilizes a reference wavelength as a baseline for generating optical signal PERR as would occur to those having ordinary skill in the art. Signal converter 334 converts optical signal PERR into a voltage signal VERR.


Controller 335 generates a feedback signal to optical transmitter 300 in the form of either a voltage signal VFB or a current signal IFB to facilitate a stable transmission of optical output signal POUT at the operating wavelength. Those having ordinary skill in the art will appreciate the appropriate form of the feedback signal corresponds to the functionality of optical transmitter 300 (e.g., the feedback signal is voltage signal VFB to thereby control an electric field of a grating region of particular types of optical transmitters 330 and the feedback signal is current signal IFB to thereby inject current to or control a temperature of a gain medium of particular types of optical transmitters 330). Controller 335 is preferably a CMOS integrated circuit configured to generate the appropriate feedback signal based upon a comparison of voltage signal VREF and voltage signal VERR as would occur to those having ordinary skill in the art. Controller 34 can also be configured to perform any signal conditioning on voltage signal VREF, voltage signal VERR, and/or the feedback signal, such as for example, signal amplification, signal filtering, log conversion, error correction, signal encoding, signal decoding and other conditioning functions as would occur to those having ordinary skill in the art.


Those having ordinary skill in the art will appreciate a benefit of wavelength locker 330 is the minimization of cross-talk penalties due to channel interference as well as a compensation for an aging of optical transmitter 300. Consequently, an operational lifetime of optical transmitter 300 over a significant number of years (e.g., twenty-five years) is attainable.



FIG. 41 illustrates schematically, in cross section, a device structure 340 having a formation of wavelength locker 330 (FIG. 40) therein. Device structure 340 includes a monocrystalline semiconductor substrate 341, preferably a monocrystalline silicon wafer. Monocrystalline semiconductor substrate 341 includes two regions, 342 and 343. Controller 335 is formed, at least partially, in region 342, by conventional semiconductor processing as well known and widely practiced in the semiconductor industry. A layer of insulating material 348 such as a layer of silicon dioxide or the like may overlie controller 335.


Insulating material 348 and any other layers that may have been formed or deposited during the processing of controller 335 in region 342 are removed from the surface of region 343 to provide a bare silicon surface in that region. As is well known, bare silicon surfaces are highly reactive and a native silicon oxide layer can quickly form on the bare surface. A layer of barium or barium and oxygen is deposited onto the native oxide layer on the surface of region 343 and is reacted with the oxidized surface to form a first template layer (not shown). In accordance with one embodiment, a monocrystalline oxide layer 345 is formed overlying the template layer by a process of molecular beam epitaxy. Reactants including barium, titanium and oxygen are deposited onto the template layer to form the monocrystalline oxide layer 345. Initially during the deposition the partial pressure of oxygen is kept near the minimum necessary to fully react with the barium and titanium to form monocrystalline barium titanate layer 345. The partial pressure of oxygen is then increased to provide an overpressure of oxygen and to allow oxygen to diffuse through the growing monocrystalline oxide layer 345. The oxygen diffusing through the barium titanate reacts with silicon at the surface of region 343 to form an amorphous layer 344 of silicon oxide on second region 343 and at the interface between silicon substrate 341 and the monocrystalline oxide layer 345. Layers 344 and 345 may be subject to an annealing process as described above in connection with FIG. 3 to form a single amorphous accommodating layer.


In accordance with an embodiment, the step of depositing the monocrystalline oxide layer 345 is terminated by depositing a second template layer 346 which can be comprised of any of the material previously discussed with reference to layer 24 in FIGS. 1 and 2. A layer 347 of a monocrystalline compound semiconductor material is then deposited overlying second template layer 346 via MBE, CVD, MOCVD, MEE, ALE, PVD, CSD, PLD, and the like. The deposition of layer 347 is initiated by depositing a layer of arsenic onto template 346. This initial step is followed by depositing gallium and arsenic to form monocrystalline gallium arsenide 347.


Optical transmitter 300, splitter 331, signal converter 332, reference filter 333, and signal converter 334 are fabricated by conventional methods in monocrystalline compound semiconductor material layer 347. Optical transmitter 300, splitter 331, signal converter 332, reference filter 333, and signal converter 334 are shown as aligned for purposes of simplifying FIG. 41. However, those having ordinary skill in the art will appreciate that signal converter 332 and reference filter 333 will typically be adjacent splitter 331. Metallic conductors schematically indicated by lines 360362 can be formed to electrically couple signal converter 332 and controller 335, signal converter 334 and controller 335, and optical transmitter 300 and controller 335, respectively, thus implementing an integrated device that includes at least one component formed in silicon substrate 341 and several components formed on monocrystalline compound semiconductor material layer 347.


Although illustrative structure 340 has been described as a structure formed on a silicon substrate 341 and having a barium (or strontium) titanate layer 345 and a gallium arsenide layer 347, wavelength locker 330 as well as optical transmitter 300 can be fabricated using other substrates, monocrystalline oxide layers and other compound semiconductor layers as described elsewhere in this disclosure as would occur to those having ordinary skill in the art. Additionally, in modified versions of device structure 340, optical transmitter 300, splitter 331, and/or reference filter 333 can be remotely located therefrom as would occur to those having ordinary skill in the art.


Controller 335 has an electric connection (not shown) for a power supply and a ground connection. The power and ground connections are in addition to the communications connections that are discussed above. Processing circuitry in controller 335 may include electrically isolated communications connections and include electrical connections for power and ground. In most known applications, power supply and ground connections are usually well-protected by circuitry to prevent harmful external signals from reaching controller 335. A communications ground may be isolated from the ground signal in communications connections that use a ground communications signal.


In the foregoing specification, the invention has been described with reference to specific embodiments. However, one of ordinary skill in the art appreciates that various modifications and changes can be made without departing from the scope of the present invention as set forth in the claims below. Accordingly, the specification and figures are to be regarded in an illustrative rather than a restrictive sense, and all such modifications are intended to be included within the scope of present invention.


Benefits, other advantages, and solutions to problems have been described above with regard to specific embodiments. However, the benefits, advantages, solutions to problems, and any element(s) that may cause any benefit, advantage, or solution to occur or become more pronounced are not to be construed as a critical, required, or essential features or elements of any or all the claims. As used herein, the terms “comprises,” “comprising,” or any other variation thereof, are intended to cover a non-exclusive inclusion, such that a process, method, article, or apparatus that comprises a list of elements does not include only those elements but may include other elements not expressly listed or inherent to such process, method, article, or apparatus.

Claims
  • 1. A semiconductor structure comprising: a monocrystalline silicon substrate;an amorphous oxide material in contact with the monocrystalline silicon substrate;a monocrystalline metal oxide selected from the group consisting of alkaline earth metal titanates, alkaline earth metal zirconates, alkaline earth metal hafnates, alkaline earth metal tantalates, alkaline earth metal ruthenates, alkaline earth metal niobates, alkaline earth metal vanadates, alkaline earth metal tin-based perovskites, lanthanum aluminate, lanthanum scandium oxide, gadolinium oxide and mixtures thereof contacting the amorphous oxide material;a monocrystalline compound semiconductor material overlying the monocrystalline metal oxide; anda wavelength locker overlying the monocrystalline silicon substrate, the wavelength locker operable to provide a feedback signal to an optical transmitter in response to a reception of an optical output signal from the optical transmitter, the feedback signal to stabilize a transmission of the optical output signal by the optical transmitter.
  • 2. The semiconductor structure of claim 1, wherein the wavelength locker comprises a reference filter formed in the monocrystalline compound semiconductor material.
  • 3. The semiconductor structure of claim 1, wherein the wavelength locker comprises a signal converter formed in the monocrystalline compound semiconductor material.
  • 4. The semiconductor structure of claim 1, wherein the wavelength locker comprises a splitter formed in the monocrystalline compound semiconductor material.
  • 5. The semiconductor structure of claim 1, wherein the wavelength locker comprises a controller formed in monocrystalline silicon substrate.
US Referenced Citations (585)
Number Name Date Kind
3617951 Anderson Nov 1971 A
3670213 Nakawaga et al. Jun 1972 A
3758199 Thaxter Sep 1973 A
3766370 Walther Oct 1973 A
3802967 Ladany et al. Apr 1974 A
3818451 Coleman Jun 1974 A
3914137 Huffman et al. Oct 1975 A
3935031 Adler Jan 1976 A
4006989 Andringa Feb 1977 A
4084130 Holton Apr 1978 A
4120588 Chaum Oct 1978 A
4146297 Alferness et al. Mar 1979 A
4174422 Matthews et al. Nov 1979 A
4174504 Chenausky et al. Nov 1979 A
4177094 Kroon Dec 1979 A
4242595 Lehovec Dec 1980 A
4284329 Smith et al. Aug 1981 A
4289920 Hovel Sep 1981 A
4297656 Pan Oct 1981 A
4298247 Michelet et al. Nov 1981 A
4378259 Hasegawa et al. Mar 1983 A
4392297 Little Jul 1983 A
4398342 Pitt et al. Aug 1983 A
4404265 Manasevit Sep 1983 A
4424589 Thomas et al. Jan 1984 A
4439014 Stacy et al. Mar 1984 A
4442590 Stockton et al. Apr 1984 A
4447116 King et al. May 1984 A
4452720 Harada et al. Jun 1984 A
4459325 Nozawa et al. Jul 1984 A
4482422 McGinn et al. Nov 1984 A
4482906 Hovel et al. Nov 1984 A
4484332 Hawrylo Nov 1984 A
4503540 Nakashima et al. Mar 1985 A
4523211 Morimoto et al. Jun 1985 A
4525871 Foyt et al. Jun 1985 A
4594000 Falk et al. Jun 1986 A
4626878 Kuwano et al. Dec 1986 A
4629821 Bronstein-Bonte et al. Dec 1986 A
4661176 Manasevit Apr 1987 A
4667088 Kramer May 1987 A
4667212 Nakamura May 1987 A
4681982 Yoshida Jul 1987 A
4695120 Holder Sep 1987 A
4723321 Saleh Feb 1988 A
4748485 Vasudev May 1988 A
4756007 Qureshi et al. Jul 1988 A
4772929 Manchester et al. Sep 1988 A
4773063 Hunsperger et al. Sep 1988 A
4774205 Choi et al. Sep 1988 A
4777613 Shahan et al. Oct 1988 A
4793872 Meunier et al. Dec 1988 A
4801184 Revelli Jan 1989 A
4802182 Thornton et al. Jan 1989 A
4804866 Akiyama Feb 1989 A
4815084 Scifres et al. Mar 1989 A
4841775 Ikeda et al. Jun 1989 A
4843609 Ohya et al. Jun 1989 A
4845044 Ariyoshi et al. Jul 1989 A
4846926 Kay et al. Jul 1989 A
4855249 Akasaki et al. Aug 1989 A
4866489 Yokogawa et al. Sep 1989 A
4868376 Lessin et al. Sep 1989 A
4872046 Morkoc et al. Oct 1989 A
4876208 Gustafson et al. Oct 1989 A
4876218 Pessa et al. Oct 1989 A
4876219 Eshita et al. Oct 1989 A
4882300 Inoue et al. Nov 1989 A
4885376 Verkade Dec 1989 A
4888202 Murakami et al. Dec 1989 A
4889402 Reinhart Dec 1989 A
4891091 Shastry Jan 1990 A
4896194 Suzuki Jan 1990 A
4901133 Curran et al. Feb 1990 A
4910164 Shichijo Mar 1990 A
4912087 Aslam et al. Mar 1990 A
4928154 Umeno et al. May 1990 A
4934777 Jou et al. Jun 1990 A
4952420 Walters Aug 1990 A
4959702 Moyer et al. Sep 1990 A
4963508 Umeno et al. Oct 1990 A
4963949 Wanlass et al. Oct 1990 A
4965649 Zanio et al. Oct 1990 A
4981714 Ohno et al. Jan 1991 A
4984043 Vinal Jan 1991 A
4999842 Huang et al. Mar 1991 A
5018816 Murray et al. May 1991 A
5028563 Feit et al. Jul 1991 A
5028976 Ozaki et al. Jul 1991 A
5051790 Hammer Sep 1991 A
5053835 Horikawa et al. Oct 1991 A
5055445 Belt et al. Oct 1991 A
5055835 Sutton Oct 1991 A
5057694 Idaka et al. Oct 1991 A
5060031 Abrokwah et al. Oct 1991 A
5063081 Cozzette et al. Nov 1991 A
5063166 Mooney et al. Nov 1991 A
5064781 Cambou et al. Nov 1991 A
5067809 Tsubota Nov 1991 A
5073981 Giles et al. Dec 1991 A
5075743 Behfar-Rad Dec 1991 A
5081062 Vasudev et al. Jan 1992 A
5081519 Nishimura et al. Jan 1992 A
5087829 Ishibashi et al. Feb 1992 A
5103494 Mozer Apr 1992 A
5116461 Lebby et al. May 1992 A
5119448 Schaefer et al. Jun 1992 A
5122679 Ishii et al. Jun 1992 A
5122852 Chang et al. Jun 1992 A
5127067 Delcoco et al. Jun 1992 A
5130762 Kulick Jul 1992 A
5132648 Trinh et al. Jul 1992 A
5140387 Okazaki et al. Aug 1992 A
5140651 Soref et al. Aug 1992 A
5141894 Bisaro et al. Aug 1992 A
5143854 Pirrung et al. Sep 1992 A
5144409 Ma Sep 1992 A
5148504 Levi et al. Sep 1992 A
5155658 Inam et al. Oct 1992 A
5159413 Calviello et al. Oct 1992 A
5163118 Lorenzo et al. Nov 1992 A
5166761 Olson et al. Nov 1992 A
5173474 Connell et al. Dec 1992 A
5173835 Cornett et al. Dec 1992 A
5181085 Moon et al. Jan 1993 A
5185589 Krishnaswamy et al. Feb 1993 A
5188976 Kume et al. Feb 1993 A
5191625 Gustavsson Mar 1993 A
5194397 Cook et al. Mar 1993 A
5194917 Regener Mar 1993 A
5198269 Swartz et al. Mar 1993 A
5208182 Narayan et al. May 1993 A
5210763 Lewis et al. May 1993 A
5216359 Makki et al. Jun 1993 A
5216729 Berger et al. Jun 1993 A
5221367 Chisholm et al. Jun 1993 A
5225031 McKee et al. Jul 1993 A
5227196 Itoh Jul 1993 A
5238877 Russell Aug 1993 A
5244818 Jokers et al. Sep 1993 A
5248564 Ramesh Sep 1993 A
5260394 Tazaki et al. Nov 1993 A
5262659 Grudkowski et al. Nov 1993 A
5266355 Wernberg et al. Nov 1993 A
5268327 Vernon Dec 1993 A
5270298 Ramesh Dec 1993 A
5280013 Newman et al. Jan 1994 A
5281834 Cambou et al. Jan 1994 A
5283462 Stengel Feb 1994 A
5286985 Taddiken Feb 1994 A
5293050 Chapple-Sokol et al. Mar 1994 A
5306649 Hebert Apr 1994 A
5310707 Oishi et al. May 1994 A
5312765 Kanber May 1994 A
5313058 Friederich et al. May 1994 A
5314547 Heremans et al. May 1994 A
5315128 Hunt et al. May 1994 A
5323023 Fork Jun 1994 A
5326721 Summerfelt Jul 1994 A
5334556 Guldi Aug 1994 A
5352926 Andrews Oct 1994 A
5356509 Terranova et al. Oct 1994 A
5356831 Calviello et al. Oct 1994 A
5357122 Okubora et al. Oct 1994 A
5358925 Neville Connell et al. Oct 1994 A
5362972 Yazawa et al. Nov 1994 A
5362998 Iwamura et al. Nov 1994 A
5365477 Cooper, Jr. et al. Nov 1994 A
5371621 Stevens Dec 1994 A
5371734 Fischer Dec 1994 A
5372992 Itozaki et al. Dec 1994 A
5373166 Buchan et al. Dec 1994 A
5387811 Saigoh Feb 1995 A
5391515 Kao et al. Feb 1995 A
5393352 Summerfelt Feb 1995 A
5394489 Koch Feb 1995 A
5395663 Tabata et al. Mar 1995 A
5397428 Stoner et al. Mar 1995 A
5399898 Rostoker Mar 1995 A
5404581 Honjo Apr 1995 A
5405802 Yamagata et al. Apr 1995 A
5406202 Mehrgardt et al. Apr 1995 A
5410622 Okada et al. Apr 1995 A
5418216 Fork May 1995 A
5418389 Watanabe May 1995 A
5420102 Harshavardhan et al. May 1995 A
5427988 Sengupta et al. Jun 1995 A
5430397 Itoh et al. Jul 1995 A
5436759 Dijaii et al. Jul 1995 A
5438584 Paoli et al. Aug 1995 A
5441577 Sasaki et al. Aug 1995 A
5442191 Ma Aug 1995 A
5442561 Yoshizawa et al. Aug 1995 A
5444016 Abrokwah et al. Aug 1995 A
5446719 Yoshida et al. Aug 1995 A
5450812 McKee et al. Sep 1995 A
5452118 Maruska Sep 1995 A
5453727 Shibasaki et al. Sep 1995 A
5466631 Ichikawa et al. Nov 1995 A
5473047 Shi Dec 1995 A
5473171 Summerfelt Dec 1995 A
5477363 Matsuda Dec 1995 A
5478653 Guenzer Dec 1995 A
5479033 Baca et al. Dec 1995 A
5479317 Ramesh Dec 1995 A
5480829 Abrokwah et al. Jan 1996 A
5481102 Hazelrigg, Jr. Jan 1996 A
5482003 McKee et al. Jan 1996 A
5484664 Kitahara et al. Jan 1996 A
5486406 Shi Jan 1996 A
5491461 Partin et al. Feb 1996 A
5492859 Sakaguchi et al. Feb 1996 A
5494711 Takeda et al. Feb 1996 A
5504035 Rostoker et al. Apr 1996 A
5504183 Shi Apr 1996 A
5508554 Takatani et al. Apr 1996 A
5510665 Conley Apr 1996 A
5511238 Bayraktaroglu Apr 1996 A
5512773 Wolf et al. Apr 1996 A
5514484 Nashimoto May 1996 A
5514904 Onga et al. May 1996 A
5515047 Yamakido et al. May 1996 A
5515810 Yamashita et al. May 1996 A
5516725 Chang et al. May 1996 A
5519235 Ramesh May 1996 A
5523602 Horiuchi et al. Jun 1996 A
5528057 Yanagase et al. Jun 1996 A
5528067 Farb et al. Jun 1996 A
5528209 Macdonald et al. Jun 1996 A
5528414 Oakley Jun 1996 A
5530235 Stefik et al. Jun 1996 A
5538941 Findikoglu et al. Jul 1996 A
5540785 Dennard et al. Jul 1996 A
5541422 Wolf et al. Jul 1996 A
5548141 Morris et al. Aug 1996 A
5549977 Jin et al. Aug 1996 A
5551238 Prueitt Sep 1996 A
5552547 Shi Sep 1996 A
5553089 Seki et al. Sep 1996 A
5556463 Guenzer Sep 1996 A
5559368 Hu et al. Sep 1996 A
5561305 Smith Oct 1996 A
5569953 Kikkawa et al. Oct 1996 A
5570226 Ota Oct 1996 A
5572052 Kashihara et al. Nov 1996 A
5574296 Park et al. Nov 1996 A
5574589 Feuer et al. Nov 1996 A
5574744 Gaw et al. Nov 1996 A
5576879 Nashimoto Nov 1996 A
5578162 D'Asaro et al. Nov 1996 A
5585167 Satoh et al. Dec 1996 A
5585288 Davis et al. Dec 1996 A
5588995 Sheldon Dec 1996 A
5589284 Summerfelt et al. Dec 1996 A
5596205 Reedy et al. Jan 1997 A
5596214 Endo Jan 1997 A
5602418 Imai et al. Feb 1997 A
5603764 Matsuda et al. Feb 1997 A
5606184 Abrokwah et al. Feb 1997 A
5608046 Cook et al. Mar 1997 A
5610744 Ho et al. Mar 1997 A
5614739 Abrokwah et al. Mar 1997 A
5619051 Endo Apr 1997 A
5621227 Joshi Apr 1997 A
5623439 Gotoh et al. Apr 1997 A
5623552 Lane Apr 1997 A
5629534 Inuzuka et al. May 1997 A
5633724 King et al. May 1997 A
5635433 Sengupta Jun 1997 A
5635453 Pique et al. Jun 1997 A
5640267 May et al. Jun 1997 A
5642371 Tohyama et al. Jun 1997 A
5650646 Summerfelt Jul 1997 A
5656382 Nashimoto Aug 1997 A
5659180 Shen et al. Aug 1997 A
5661112 Hatta et al. Aug 1997 A
5666376 Cheng Sep 1997 A
5667586 Ek et al. Sep 1997 A
5668048 Kondo et al. Sep 1997 A
5670798 Schetzina Sep 1997 A
5670800 Nakao et al. Sep 1997 A
5674366 Hayashi et al. Oct 1997 A
5674813 Nakamura et al. Oct 1997 A
5679947 Doi et al. Oct 1997 A
5679965 Schetzina Oct 1997 A
5682046 Takahashi et al. Oct 1997 A
5684302 Wersing et al. Nov 1997 A
5686741 Ohori et al. Nov 1997 A
5689123 Major et al. Nov 1997 A
5693140 McKee et al. Dec 1997 A
5696392 Char et al. Dec 1997 A
5719417 Roeder et al. Feb 1998 A
5725641 MacLeod Mar 1998 A
5729394 Sevier et al. Mar 1998 A
5729641 Chandonnet et al. Mar 1998 A
5731220 Tsu et al. Mar 1998 A
5733641 Fork et al. Mar 1998 A
5734672 McMinn et al. Mar 1998 A
5735949 Mantl et al. Apr 1998 A
5741724 Ramdani et al. Apr 1998 A
5745631 Reinker Apr 1998 A
5753300 Wessels et al. May 1998 A
5753928 Krause May 1998 A
5753934 Yano et al. May 1998 A
5754319 Van De Voorde et al. May 1998 A
5754714 Suzuki et al. May 1998 A
5760426 Marx et al. Jun 1998 A
5760427 Onda Jun 1998 A
5760740 Blodgett Jun 1998 A
5764676 Paoli et al. Jun 1998 A
5767543 Ooms et al. Jun 1998 A
5770887 Tadatomo et al. Jun 1998 A
5772758 Collins et al. Jun 1998 A
5776359 Schultz et al. Jul 1998 A
5776621 Nashimoto Jul 1998 A
5777350 Nakamura et al. Jul 1998 A
5777762 Yamamoto Jul 1998 A
5778018 Yoshikawa et al. Jul 1998 A
5778116 Tomich Jul 1998 A
5780311 Beasom et al. Jul 1998 A
5789733 Jachimowicz et al. Aug 1998 A
5789845 Wadaka et al. Aug 1998 A
5790583 Ho Aug 1998 A
5792569 Sun et al. Aug 1998 A
5792679 Nakato Aug 1998 A
5796648 Kawakubo et al. Aug 1998 A
5801072 Barber Sep 1998 A
5801105 Yano et al. Sep 1998 A
5807440 Kubota et al. Sep 1998 A
5810923 Yano et al. Sep 1998 A
5812272 King et al. Sep 1998 A
5814583 Itozaki et al. Sep 1998 A
5825055 Summerfelt Oct 1998 A
5825799 Ho et al. Oct 1998 A
5827755 Yonchara et al. Oct 1998 A
5828080 Yano et al. Oct 1998 A
5830270 McKee et al. Nov 1998 A
5831960 Jiang et al. Nov 1998 A
5833603 Kovacs et al. Nov 1998 A
5834362 Miyagaki et al. Nov 1998 A
5838035 Ramesh Nov 1998 A
5838053 Bevan et al. Nov 1998 A
5844260 Ohori Dec 1998 A
5846846 Suh et al. Dec 1998 A
5852687 Wickham Dec 1998 A
5857049 Beranek et al. Jan 1999 A
5858814 Goossen et al. Jan 1999 A
5861966 Ortel Jan 1999 A
5863326 Nause et al. Jan 1999 A
5864171 Yamamoto et al. Jan 1999 A
5869845 Vander Wagt et al. Feb 1999 A
5872493 Ella Feb 1999 A
5873977 Desu et al. Feb 1999 A
5874860 Brunel et al. Feb 1999 A
5878175 Sonoda et al. Mar 1999 A
5879956 Seon et al. Mar 1999 A
5880452 Plesko Mar 1999 A
5882948 Jewell Mar 1999 A
5883564 Partin Mar 1999 A
5883996 Knapp et al. Mar 1999 A
5886867 Chivukula et al. Mar 1999 A
5888296 Ooms et al. Mar 1999 A
5889296 Imamura et al. Mar 1999 A
5896476 Wisseman et al. Apr 1999 A
5905571 Butler et al. May 1999 A
5907792 Droopad et al. May 1999 A
5912068 Jia Jun 1999 A
5919515 Yano et al. Jul 1999 A
5919522 Baum et al. Jul 1999 A
5926493 O'Brien et al. Jul 1999 A
5926496 Ho et al. Jul 1999 A
5937115 Domash Aug 1999 A
5937274 Kondow et al. Aug 1999 A
5937285 Abrokwah et al. Aug 1999 A
5948161 Kizuki Sep 1999 A
5953468 Finnila et al. Sep 1999 A
5955591 Imbach et al. Sep 1999 A
5959308 Shichijo et al. Sep 1999 A
5959879 Koo Sep 1999 A
5962069 Schindler et al. Oct 1999 A
5963291 Wu et al. Oct 1999 A
5966323 Chen et al. Oct 1999 A
5976953 Zavracky et al. Nov 1999 A
5977567 Verdiell Nov 1999 A
5981400 Lo Nov 1999 A
5981976 Murasato Nov 1999 A
5981980 Miyajima et al. Nov 1999 A
5984190 Nevill Nov 1999 A
5985404 Yano et al. Nov 1999 A
5986301 Fukushima et al. Nov 1999 A
5987011 Toh Nov 1999 A
5987196 Noble Nov 1999 A
5990495 Ohba Nov 1999 A
5995359 Klee et al. Nov 1999 A
5995528 Fukunaga et al. Nov 1999 A
5997638 Copel et al. Dec 1999 A
5998781 Vawter et al. Dec 1999 A
5998819 Yokoyama et al. Dec 1999 A
6002375 Corman et al. Dec 1999 A
6008762 Nghiem Dec 1999 A
6011641 Shin et al. Jan 2000 A
6011646 Mirkarimi et al. Jan 2000 A
6013553 Wallace et al. Jan 2000 A
6020222 Wollesen Feb 2000 A
6022140 Fraden et al. Feb 2000 A
6022410 Yu et al. Feb 2000 A
6022671 Binkley et al. Feb 2000 A
6022963 McGall et al. Feb 2000 A
6023082 McKee et al. Feb 2000 A
6028853 Haartsen Feb 2000 A
6039803 Fitzgerald et al. Mar 2000 A
6045626 Yano et al. Apr 2000 A
6046464 Schetzina Apr 2000 A
6048751 D'Asaro et al. Apr 2000 A
6049110 Koh Apr 2000 A
6049702 Tham et al. Apr 2000 A
6051858 Uchida et al. Apr 2000 A
6051874 Masuda Apr 2000 A
6055179 Koganei et al. Apr 2000 A
6058131 Pan May 2000 A
6059895 Chu et al. May 2000 A
6064078 Northrup et al. May 2000 A
6064092 Park May 2000 A
6064783 Congdon et al. May 2000 A
6078717 Nashimoto et al. Jun 2000 A
6080378 Yokota et al. Jun 2000 A
6083697 Beecher et al. Jul 2000 A
6087681 Shakuda Jul 2000 A
6088216 Laibowitz et al. Jul 2000 A
6090659 Laibowitz et al. Jul 2000 A
6093302 Montgomery Jul 2000 A
6096584 Ellis-Monaghan et al. Aug 2000 A
6100578 Suzuki Aug 2000 A
6103008 McKee et al. Aug 2000 A
6103403 Grigorian et al. Aug 2000 A
6107653 Fitzgerald Aug 2000 A
6107721 Lakin Aug 2000 A
6108125 Yano Aug 2000 A
6110813 Ota et al. Aug 2000 A
6110840 Yu Aug 2000 A
6113225 Miyata et al. Sep 2000 A
6113690 Yu et al. Sep 2000 A
6114996 Nghiem Sep 2000 A
6121642 Newns Sep 2000 A
6121647 Yano et al. Sep 2000 A
6128178 Newns Oct 2000 A
6134114 Ungermann et al. Oct 2000 A
6136666 So Oct 2000 A
6137603 Henmi Oct 2000 A
6139483 Seabaugh et al. Oct 2000 A
6140746 Miyashita et al. Oct 2000 A
6143072 McKee et al. Nov 2000 A
6143366 Lu Nov 2000 A
6146906 Inoue et al. Nov 2000 A
6150239 Goesele et al. Nov 2000 A
6151240 Suzuki Nov 2000 A
6153010 Kiyoku et al. Nov 2000 A
6153454 Krivokapic Nov 2000 A
6156581 Vaudo et al. Dec 2000 A
6173474 Conrad Jan 2001 B1
6174755 Manning Jan 2001 B1
6175497 Tseng et al. Jan 2001 B1
6175555 Hoole Jan 2001 B1
6180252 Farrell et al. Jan 2001 B1
6180486 Leobandung et al. Jan 2001 B1
6181920 Dent et al. Jan 2001 B1
6184044 Sone et al. Feb 2001 B1
6184144 Lo Feb 2001 B1
6191011 Gilboa et al. Feb 2001 B1
6194753 Seon et al. Feb 2001 B1
6197503 Vo-Dinh et al. Mar 2001 B1
6198119 Nabatame et al. Mar 2001 B1
6204525 Sakurai et al. Mar 2001 B1
6204737 Ella Mar 2001 B1
6208453 Wessels et al. Mar 2001 B1
6210988 Howe et al. Apr 2001 B1
6211096 Allman et al. Apr 2001 B1
6222654 Frigo Apr 2001 B1
6224669 Yi et al. May 2001 B1
6225051 Sugiyama et al. May 2001 B1
6229159 Suzuki May 2001 B1
6232242 Hata et al. May 2001 B1
6232806 Woeste et al. May 2001 B1
6232910 Bell et al. May 2001 B1
6233435 Wong May 2001 B1
6235145 Li et al. May 2001 B1
6235649 Kawahara et al. May 2001 B1
6238946 Ziegler May 2001 B1
6239012 Kinsman May 2001 B1
6239449 Fafard et al. May 2001 B1
6241821 Yu et al. Jun 2001 B1
6242686 Kishimoto et al. Jun 2001 B1
6248459 Wang et al. Jun 2001 B1
6248621 Wilk et al. Jun 2001 B1
6252261 Usui et al. Jun 2001 B1
6255198 Linthicum et al. Jul 2001 B1
6256426 Duchet Jul 2001 B1
6265749 Gardner et al. Jul 2001 B1
6268269 Lee et al. Jul 2001 B1
6271619 Yamada et al. Aug 2001 B1
6275122 Speidell et al. Aug 2001 B1
6277436 Stauf et al. Aug 2001 B1
6278137 Shimoyama et al. Aug 2001 B1
6278138 Suzuki Aug 2001 B1
6278523 Gorecki Aug 2001 B1
6278541 Baker Aug 2001 B1
6291319 Yu et al. Sep 2001 B1
6291866 Wallace Sep 2001 B1
6297598 Wang et al. Oct 2001 B1
6297842 Koizumi et al. Oct 2001 B1
6300615 Shinohara et al. Oct 2001 B1
6306668 McKee et al. Oct 2001 B1
6307996 Nashimoto et al. Oct 2001 B1
6312819 Jia et al. Nov 2001 B1
6313486 Kencke et al. Nov 2001 B1
6316785 Nunoue et al. Nov 2001 B1
6316832 Tsuzuki et al. Nov 2001 B1
6319730 Ramdani et al. Nov 2001 B1
6320238 Kizilyalli et al. Nov 2001 B1
6326637 Parkin et al. Dec 2001 B1
6326645 Kadota Dec 2001 B1
6326667 Sugiyama et al. Dec 2001 B1
6329277 Liu et al. Dec 2001 B1
6338756 Dietze Jan 2002 B1
6339664 Farjady et al. Jan 2002 B1
6340788 King et al. Jan 2002 B1
6341851 Takayama et al. Jan 2002 B1
6343171 Yoshimura et al. Jan 2002 B1
6345424 Hasegawa et al. Feb 2002 B1
6348373 Ma et al. Feb 2002 B1
6355945 Kadota et al. Mar 2002 B1
6359330 Goudard Mar 2002 B1
6362017 Manabe et al. Mar 2002 B1
6362558 Fukui Mar 2002 B1
6367699 Ackley Apr 2002 B1
6372356 Thornton et al. Apr 2002 B1
6372813 Johnson et al. Apr 2002 B1
6376337 Wang et al. Apr 2002 B1
6389209 Suhir May 2002 B1
6391674 Ziegler May 2002 B1
6392253 Saxena May 2002 B1
6392257 Ramdani et al. May 2002 B1
6393167 Davis et al. May 2002 B1
6404027 Hong et al. Jun 2002 B1
6410941 Taylor et al. Jun 2002 B1
6410947 Wada Jun 2002 B1
6411756 Sadot et al. Jun 2002 B1
6415140 Benjamin et al. Jul 2002 B1
6417059 Huang Jul 2002 B1
6419849 Qiu et al. Jul 2002 B1
6427066 Grube Jul 2002 B1
6432546 Ramesh et al. Aug 2002 B1
6438281 Tsukamoto et al. Aug 2002 B1
6445724 Abeles Sep 2002 B1
6452232 Adan Sep 2002 B1
6461927 Mochizuki et al. Oct 2002 B1
6462360 Higgins, Jr. et al. Oct 2002 B1
6477285 Shanley Nov 2002 B1
6496469 Uchizaki Dec 2002 B1
6498358 Lach et al. Dec 2002 B1
6501121 Yu et al. Dec 2002 B1
6504189 Matsuda et al. Jan 2003 B1
6524651 Gan et al. Feb 2003 B1
6528374 Bojarczuk, Jr. et al. Mar 2003 B1
6538359 Hiraku et al. Mar 2003 B1
6589887 Dalton et al. Jul 2003 B1
20010013313 Droopad et al. Aug 2001 A1
20010020278 Saito Sep 2001 A1
20010036142 Kadowaki et al. Nov 2001 A1
20010055820 Sakurai et al. Dec 2001 A1
20020006245 Kubota et al. Jan 2002 A1
20020008234 Emrick Jan 2002 A1
20020021855 Kim Feb 2002 A1
20020030246 Eisenbeiser et al. Mar 2002 A1
20020047123 Ramdani et al. Apr 2002 A1
20020047143 Ramdani et al. Apr 2002 A1
20020052061 Fitzgerald May 2002 A1
20020072245 Ooms et al. Jun 2002 A1
20020076878 Wasa et al. Jun 2002 A1
20020079576 Seshan Jun 2002 A1
20020131675 Litvin Sep 2002 A1
20020140012 Droopad Oct 2002 A1
20020145168 Bojarczuk, Jr. et al. Oct 2002 A1
20020179000 Lee et al. Dec 2002 A1
20020195610 Klosowiak Dec 2002 A1
Foreign Referenced Citations (162)
Number Date Country
196 07 107 Aug 1997 DE
197 12 496 Oct 1997 DE
198 29 609 Jan 2000 DE
100 17 137 Oct 2000 DE
0 247 722 Dec 1987 EP
0 250 171 Dec 1987 EP
0 300 499 Jan 1989 EP
0 309 270 Mar 1989 EP
0 331 338 Sep 1989 EP
0 331 467 Sep 1989 EP
0 342 937 Nov 1989 EP
0 392 714 Oct 1990 EP
0 412 002 Feb 1991 EP
0 455 526 Jun 1991 EP
0 483 993 May 1992 EP
0 494 514 Jul 1992 EP
0 514 018 Nov 1992 EP
0 538 611 Apr 1993 EP
0 581 239 Feb 1994 EP
0 600 658 Jun 1994 EP
0 602 568 Jun 1994 EP
0 607 435 Jul 1994 EP
0 614 256 Sep 1994 EP
0 619 283 Oct 1994 EP
0 630 057 Dec 1994 EP
0 661 561 Jul 1995 EP
0 860 913 Aug 1995 EP
0 682 266 Nov 1995 EP
0 711 853 May 1996 EP
0 766 292 Apr 1997 EP
0 777 379 Jun 1997 EP
0 810 666 Dec 1997 EP
0 828 287 Mar 1998 EP
0 852 416 Jul 1998 EP
0 875 922 Nov 1998 EP
0 881 669 Dec 1998 EP
0 884 767 Dec 1998 EP
0 926 739 Jun 1999 EP
0 957 522 Nov 1999 EP
0 964 259 Dec 1999 EP
0 964 453 Dec 1999 EP
0 993 027 Apr 2000 EP
0 999 600 May 2000 EP
1 001 468 May 2000 EP
1 035 759 Sep 2000 EP
1 037 272 Sep 2000 EP
1 043 426 Oct 2000 EP
1 043 427 Oct 2000 EP
1 043 765 Oct 2000 EP
1 054 442 Nov 2000 EP
1 069 605 Jan 2001 EP
1 069 606 Jan 2001 EP
1 085 319 Mar 2001 EP
1 089 338 Apr 2001 EP
1 109 212 Jun 2001 EP
1 176 230 Jan 2002 EP
2 779 843 Dec 1999 FR
1 319 311 Jun 1970 GB
2 152 315 Jul 1985 GB
2 335 792 Sep 1999 GB
52-88354 Jul 1977 JP
52-89070 Jul 1977 JP
52-135684 Nov 1977 JP
54-134554 Oct 1979 JP
55-87424 Jul 1980 JP
58-078568 May 1983 JP
58-213412 Dec 1983 JP
59-044004 Mar 1984 JP
59-073498 Apr 1984 JP
59068183 Apr 1984 JP
60-161635 Aug 1985 JP
60-210018 Oct 1985 JP
60-212018 Oct 1985 JP
61-36981 Feb 1986 JP
61-63015 Apr 1986 JP
61-108187 May 1986 JP
62-245205 Oct 1987 JP
63-34994 Feb 1988 JP
63-131104 Jun 1988 JP
63-198365 Aug 1988 JP
63-289812 Nov 1988 JP
64-50575 Feb 1989 JP
64-52329 Feb 1989 JP
1-102435 Apr 1989 JP
1-179411 Jul 1989 JP
01-196809 Aug 1989 JP
03-149882 Nov 1989 JP
HEI 2-391 Jan 1990 JP
02051220 Feb 1990 JP
3-41783 Feb 1991 JP
03046384 Feb 1991 JP
3-171617 Jul 1991 JP
03-188619 Aug 1991 JP
5-48072 Feb 1993 JP
5-086477 Apr 1993 JP
5-152529 Jun 1993 JP
05150143 Jun 1993 JP
05 221800 Aug 1993 JP
5-232307 Sep 1993 JP
5-238894 Sep 1993 JP
5-243525 Sep 1993 JP
5-291299 Nov 1993 JP
06-069490 Mar 1994 JP
6-232126 Aug 1994 JP
6-291299 Oct 1994 JP
6-334168 Dec 1994 JP
0812494 Jan 1996 JP
9-67193 Mar 1997 JP
9-82913 Mar 1997 JP
10-256154 Sep 1998 JP
10-269842 Oct 1998 JP
10-303396 Nov 1998 JP
10-321943 Dec 1998 JP
11135614 May 1999 JP
11-238683 Aug 1999 JP
11-260835 Sep 1999 JP
01 294594 Nov 1999 JP
11340542 Dec 1999 JP
2000-068466 Mar 2000 JP
2 000 1645 Jun 2000 JP
2000-278085 Oct 2000 JP
2000-349278 Dec 2000 JP
2000-351692 Dec 2000 JP
2001-196892 Jul 2001 JP
2002-9366 Jan 2002 JP
WO 9210875 Jun 1992 WO
WO 9307647 Apr 1993 WO
WO 9403908 Feb 1994 WO
WO 9502904 Jan 1995 WO
WO 9745827 Dec 1997 WO
WO 9805807 Jan 1998 WO
WO 9820606 May 1998 WO
WO 9914797 Mar 1999 WO
WO 9914804 Mar 1999 WO
WO 9919546 Apr 1999 WO
WO 9963580 Dec 1999 WO
WO 9967882 Dec 1999 WO
WO 0006812 Feb 2000 WO
WO 0016378 Mar 2000 WO
WO 0033363 Jun 2000 WO
WO 0048239 Aug 2000 WO
WO 0104943 Jan 2001 WO
WO 0116395 Mar 2001 WO
WO 0133585 May 2001 WO
WO 0137330 May 2001 WO
WO 0159814 Aug 2001 WO
WO 0159820 Aug 2001 WO
WO 0159821 Aug 2001 WO
WO 0159837 Aug 2001 WO
WO 02 01648 Jan 2002 WO
WO 0203113 Jan 2002 WO
WO 0203467 Jan 2002 WO
WO 0203480 Jan 2002 WO
WO 0208806 Jan 2002 WO
WO 02009150 Jan 2002 WO
WO 0209160 Jan 2002 WO
WO 0211254 Feb 2002 WO
WO 0233385 Apr 2002 WO
WO 0247127 Jun 2002 WO
WO 0250879 Jun 2002 WO
WO 02099885 Dec 2002 WO
WO 03012874 Feb 2003 WO
Related Publications (1)
Number Date Country
20030015710 A1 Jan 2003 US