The invention relates to a flexible printed board, in particular for the spatial connection of electronic components.
Printed boards are known as carriers made of insulating material with firmly adhering conductive connections, wherein a printed board serves to mechanically attach and electrically connect electronic components. It is also known that the freedom of the designing of printed boards can be increased by using a flexible carrier material. So-called flexible printed boards can be arranged in a space-saving manner by folding them in an available limited installation space.
For establishing connections to electronic components, bonding surfaces and soldering surfaces are arranged on a flexible printed board. The bonding surfaces and the soldering surfaces are attached to a top of a flexible printed board in an expensive manufacturing process. The increasing miniaturization of electronic devices and a reduced available installation space for flexible printed boards that results from said miniaturization as well as new mounting and joining methods require flexible printed boards that are designed in such a manner that the top and a bottom arranged opposite the top are contactable.
It is also known that a flexible printed board can be contacted on both sides by bending a flexible printed board contacted on one side by 180° and by subsequent conglutination. Such flexible printed boards are expensive on account of the bending operation and the cold-bonding operation that have to be carried out manually. Furthermore, the durability of the cold-bonded joint in the bent region of the flexible printed board is not guaranteed, particularly under the influence of temperature. A highly reliable flexible printed board contacted on both sides will be achieved by a double-layer design of two flexible printed boards each of them being contactable on one side thereof, wherein a non-contactable surface of the first board and a non-contactable surface of the second board are conglutinated. Such a flexible printed board is expensive since two flexible printed boards each of them being contactable on one side thereof are used for the manufacturing of said flexible printed board.
The object of the present invention is to provide a flexible printed board reliably and cost-effectively in such a manner that electronic components can be contacted on both sides of the flexible printed board.
This object is achieved according to the invention by a flexible printed board with the features indicated in claim 1.
According to the invention it was realized that a flexible printed board can be contacted on both sides when soldering surfaces are arranged on a solder side of a carrier foil of the flexible printed board and bonding surfaces are arranged on a bonding side of the carrier foil, which bonding side is arranged opposite the solder side. Such a design of the flexible printed board enables the flexible printed board to be manufactured cost-effectively and reliably since expensive material and manufacturing as well as a stability-critical bending process can be avoided.
A carrier foil according to claim 2 ensures a protection of an electrically conductive layer by means of covering layers attached to both sides thereof.
A design of a covering layer according to claim 3 allows, on the one hand, a good connection of the covering layer to an electrically conductive layer and guarantees, on the other hand, a sufficient protection of the electrically conductive layer.
A protective layer according to claim 4 can be manufactured in a cost-effective manner.
An electrically conductive layer according to claim 5 is characterized by a high electrical conductivity.
A flexible printed board according to claim 6 allows an improved freedom of the designing of the arrangement of the flexible printed board.
A flexible printed board according to claim 7 allows the connection of electrical contacts that are not arranged level with each other.
A removal of the covering layers according to claim 8 serves to connect a contacting layer to an electrically conductive layer.
A contacting layer according to claim 9 is insensitive to thermal stress and resistant to moisture.
A flexible printed board according to claim 10 facilitates a connection of electronic components to a flexible printed board by means of soldering.
A check of the properties of a flexible printed board is possible by the arrangement of test surfaces according to claim 11.
A flexible printed board according to claim 12 has a symmetric design with respect to its contact surfaces.
In the following, exemplary embodiments of the invention will be explained in greater detail on the basis of the drawing in which:
Number | Date | Country | Kind |
---|---|---|---|
10 2008 052 244.9 | Oct 2008 | DE | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/DE09/01409 | 10/9/2009 | WO | 00 | 5/27/2011 |