The disclosed embodiments of the present invention relate to a flip chip scheme and a method of forming the flip chip scheme, and more particularly, to a flip chip scheme and a method of forming the flip chip scheme which can fit power domains, reduce IR drops, shift bumps to enhance signal routing, and have a maximum bump number in every power domain.
Applications of using regular inline-bumps or stagger-bumps have already been disclosed and discussed in various literatures, such as U.S. Pat. No. 8,350,375 and U.S. Pat. No. 7,081,672. Please refer to
Please refer to
In accordance with exemplary embodiments of the present invention, a flip chip scheme and a method of forming the flip chip scheme which can fit power domains, reduce IR drops, shift bumps to enhance signal routing, and have a maximum bump number in every power domain are proposed to solve the above-mentioned problem.
According to a first aspect of the present invention, an exemplary flip chip scheme is disclosed. The flip chip scheme comprises: a plurality of bumps, some of the bumps arranged in a first pattern, respectively, and some of the bumps arranged in a second pattern different from the first pattern, respectively; wherein the first pattern is an equilateral triangle arranged by three bumps, and the second pattern is a square arranged by four bumps.
According to a second aspect of the present invention, another exemplary flip chip scheme is disclosed. The flip chip scheme comprises: a non-uniform power domain; and a non-uniform bump map, formed by a plurality of bumps to fit the non-uniform power domain.
According to a third aspect of the present invention, an exemplary method of forming a flip chip scheme comprising a plurality of bumps is disclosed. The method comprises: arranging some of the bumps in a first pattern, respectively, and arranging some of the bumps in a second pattern different from the first pattern, respectively; wherein the first pattern is an equilateral triangle arranged by three bumps, and the second pattern is a square arranged by four bumps.
According to a fourth aspect of the present invention, an exemplary method of forming a flip chip scheme is disclosed. The method comprises: forming a non-uniform power domain; and forming a non-uniform bump map by a plurality of bumps to fit the non-uniform power domain.
Briefly summarized, the present invention can place the bumps non-uniformly based on power distributions in the flip chip scheme, and comparing with the conventional bump patterns, the present invention has advantages of fitting the power domains, reducing IR drops, shifting the bumps to enhance the signal routing, and having a maximum bump number in every power domain.
These and other objectives of the present invention will no doubt become obvious to those of ordinary skill in the art after reading the following detailed description of the preferred embodiment that is illustrated in the various figures and drawings.
Certain terms are used throughout the description and following claims to refer to particular components. As one skilled in the art will appreciate, manufacturers may refer to a component by different names. This document does not intend to distinguish between components that differ in name but not function. In the following description and in the claims, the terms “include” and “comprise” are used in an open-ended fashion, and thus should be interpreted to mean “include, but not limited to . . . ”.
Please refer to
As shown in
Please refer to
As shown in
Please refer to
Step 700: Start.
Step 702: Arrange some of the bumps in a first pattern, respectively.
Step 704: Arrange some of the bumps in a second pattern different from the first pattern, respectively; wherein the first pattern is an equilateral triangle arranged by three bumps, and the second pattern is a square arranged by four bumps.
In addition, the above method can further comprise: forming a bump map by a plurality of first patterns and a plurality of second patterns, and the above method can also further comprise: deleting at least one of the bumps when there is no enough bump spacing. Or, the above method can further comprise: deleting at least one of the bumps when the bump is out of the chip boundary. Or, the above method can further comprise: shifting at least one of the bumps when there is a signal routing near the shifted bump.
Please refer to
Step 800: Start.
Step 802: Form a non-uniform power domain.
Step 804: Form a non-uniform bump map by a plurality of bumps to fit the non-uniform power domain.
In addition, the above method can further comprise: arranging some of the bumps in a first pattern, respectively, and arranging some of the bumps in a second pattern different from the first pattern, respectively, wherein the first pattern is an equilateral triangle arranged by three bumps, and the second pattern is a square arranged by four bumps, and the above method can further comprise: forming a bump map by a plurality of first patterns and a plurality of second patterns. Moreover, the above method can further comprise: deleting at least one of the bumps when there is no enough bump spacing. Or, the above method can further comprise: deleting at least one of the bumps when the bump is out of the chip boundary. Or, the above method can further comprise: shifting at least one of the bumps when there is a signal routing near the shifted bump.
Briefly summarized, the present invention can place the bumps non-uniformly based on power distributions in the flip chip scheme, and comparing with the conventional bump patterns, the present invention has advantages of fitting the power domains, reducing IR drops, shifting the bumps to enhance the signal routing, and having a maximum bump number in every power domain.
Those skilled in the art will readily observe that numerous modifications and alterations of the device and method may be made while retaining the teachings of the invention. Accordingly, the above disclosure should be construed as limited only by the metes and bounds of the appended claims.
This application claims the benefit of U.S. Provisional Application No. 62/097,137, filed on Dec. 29, 2014 and included herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
7081672 | Govind | Jul 2006 | B1 |
8350375 | Ali | Jan 2013 | B2 |
8873209 | Blanc | Oct 2014 | B2 |
20060163715 | Pendse | Jul 2006 | A1 |
20070278688 | Lin | Dec 2007 | A1 |
20090283904 | Ali | Nov 2009 | A1 |
20130087366 | Michael | Apr 2013 | A1 |
20130155555 | Blanc | Jun 2013 | A1 |
20150206857 | Tan | Jul 2015 | A1 |
Entry |
---|
He, L., Elassaad, S., “Introduction to Chip-Package Co-Design” International Symposium of Quality Electronic Design, (ISEQD) 2005. |
Number | Date | Country | |
---|---|---|---|
62097137 | Dec 2014 | US |