1. The Field of the Invention
The present invention relates to fluid mixing systems and, more specifically, fluid mixing systems that control lateral movement of the impeller and/or drive shaft.
2. The Relevant Technology
The biopharmaceutical industry uses a broad range of mixing systems for a variety of processes such as in the preparation of media and buffers and in the growing, mixing and suspension of cells and microorganisms. Some conventional mixing systems, including bioreactors and fermenters, comprise a flexible bag disposed within a rigid support housing. An impeller is disposed within the flexible bag and is coupled with the drive shaft. Rotation of the drive shaft and impeller facilitates mixing and/or suspension of the fluid contained within flexible bag.
To achieve optimal mixing/suspension, the impeller is typically located near the bottom of the bag. This positioning of the impeller typically necessitates the use of a relatively long drive shaft. As the volume of the bag increases, the length of a drive shaft and/or the speed of rotation of the drive shaft and impeller also typically increase. By increasing the length of the drive shaft and the speed of rotation of the drive shaft and impeller, there is a greater chance that the impeller/drive shaft will laterally walk or be displaced within the bag. Unwanted lateral movement of the impeller can potentially cause a number of problems. For example, lateral movement of the impeller can decrease optimal mixing and/or suspension of the fluid which can damage delicate cells and microorganisms. The lateral movement can also potentially cause the impeller/drive shaft to strike the side of the flexible bag which can rupture the bag and/or damage the impeller. Where the mixing system is part of a bioreactor or fermenter or where the solution otherwise needs to remain sterile, rupturing the bag would result in a complete loss of the product being processed. In addition, lateral movement of the impeller/drive shaft can place unwanted stresses on the mixing system which can cause failure.
Accordingly, what is needed in the art are mixing systems as discussed above wherein lateral movement of the impeller/drive shaft can be controlled.
Various embodiments of the present invention will now be discussed with reference to the appended drawings. It is appreciated that these drawings depict only typical embodiments of the invention and are therefore not to be considered limiting of its scope.
As used in the specification and appended claims, directional terms, such as “top,” “bottom,” “left,” “right,” “up,” “down,” “upper,” “lower,” “proximal,” “distal” and the like are used herein solely to indicate relative directions and are not otherwise intended to limit the scope of the invention or claims.
The present invention relates to systems and methods for mixing fluids such as solutions or suspensions. The systems can be commonly used as bioreactors or fermenters for culturing cells or microorganisms. By way of example and not by limitation, the inventive systems can be used in culturing bacteria, fungi, algae, plant cells, animal cells, protozoan, nematodes, and the like. The systems can accommodate cells and microorganisms that are aerobic or anaerobic and are adherent or non-adherent. The systems can also be used in association with the formation and/or treatment of solutions and/or suspensions that are for biological purposes, such as media, buffers, or reagents. For example, the systems can be used in the formation of media where sparging is used to control the pH of the media through adjustment of the carbonate/bicarbonate levels with controlled gaseous levels of carbon dioxide. The systems can also be used for mixing powders or other components into a liquid where sparging is not required and/or where the solution/suspension is not for biological purposes.
Depicted in
As depicted in
In one embodiment, container 18 can comprise a two-dimensional pillow style bag. In another embodiment, container 18 can be formed from a continuous tubular extrusion of polymeric material that is cut to length. The ends can be seamed closed or panels can be sealed over the open ends to form a three-dimensional bag. Three-dimensional bags not only have an annular side wall but also a two dimensional top end wall and a two dimensional bottom end wall. Three dimensional containers can comprise a plurality of discrete panels, typically three or more, and more commonly four or six. Each panel is substantially identical and comprises a portion of the side wall, top end wall, and bottom end wall of the container. Corresponding perimeter edges of each panel are seamed together. The seams are typically formed using methods known in the art such as heat energies, RF energies, sonics, or other sealing energies.
In alternative embodiments, the panels can be formed in a variety of different patterns. Further disclosure with regard to one method of manufacturing three-dimensional bags is disclosed in United States Patent Publication No. US 2002-0131654 A1, published Sep. 19, 2002 which is incorporated herein by specific reference in its entirety.
It is appreciated that container 18 can be manufactured to have virtually any desired size, shape, and configuration. For example, container 18 can be formed having a compartment sized to 10 liters, 30 liters, 100 liters, 250 liters, 500 liters, 750 liters, 1,000 liters, 1,500 liters, 3,000 liters, 5,000 liters, 10,000 liters or other desired volumes. The size of the compartment can also be in the range between any two of the above volumes. Although container 18 can be any shape, in one embodiment container 18 is specifically configured to be generally complementary to the chamber on container station 14 in which container 18 is received so that container 18 is properly supported within the chamber.
Although in the above discussed embodiment container 18 is in the configuration of a flexible bag, in alternative embodiments it is appreciated that container 18 can comprise any form of collapsible container or semi-rigid container. Container 18 can also be transparent or opaque.
Continuing with
Ports 30-32 can also be used for coupling probes and/or sensors to container 18. For example, when container 18 is used as a bioreactor or fermenter for growing cells or microorganisms, ports 30-32 can be used for coupling probes such as temperatures probes, pH probes, dissolved oxygen probes, and the like. Various optical sensors and other types of sensors can also be attached to ports 30-32. Examples of ports 30-32 and how various probes, sensors, and lines can be coupled thereto is disclosed in United States Patent Publication No. 2006-0270036, published Nov. 30, 2006 and United States Patent Publication No. 2006-0240546, published Oct. 26, 2006, which are incorporated herein in their entirety by specific reference. Ports 30-32 can also be used for coupling container 18 to secondary containers, to condenser systems, and to other desired fittings.
Centrally mounted on lower end wall 34 of container 18 is a retainer 120. As depicted in
Radially outwardly projecting from lower end 126 of post 122 is an annular flange 136. Flange 136 is welded or otherwise secured to lower end wall 34 of container 18 so that post 122 projects into compartment 28 of container 18. For example, an opening 128 can centrally extend through lower end wall 34 of container 18. Post 122 can be advanced through opening 128 and then flange 136 welded to the exterior surface of container 18 encircling opening 128. As a result, cavity 130 is sealed within compartment 28 of container 18. In an alternative embodiment, opening 128 can be eliminated and flange 136 can be welded or otherwise secured to interior surface 26 of lower end wall 34 so that cavity 130 is sealed within compartment 28. Flange 136 can also be eliminated and the lower end surface of post 122 could be secured to interior surface 26.
As shown in
Rotational assembly 48 is mounted to first end 44 of tubular connector 42. As depicted in
Hub 54 has an interior surface 56 that bounds an opening 58 extending therethrough. As will be discussed below in greater detail, interior surface 56 includes an engaging portion 146 having a polygonal or other non-circular transverse cross section so that a driver portion 380 of drive shaft 362 (
Impeller 64 comprises a central hub 66 having a plurality of blades 68 radially outwardly projecting therefrom. In the embodiment depicted, blades 68 are integrally formed as a unitary structure with hub 66. In other embodiments, blades 68 can be separately attached to hub 66. It is appreciated that a variety of different numbers and configurations of blades 68 can be mounted on hub 66. Hub 66 has a first end 70 with a blind socket 72 formed thereat. Socket 72 typically has a noncircular transverse cross section, such as polygonal, so that it can engage a driver portion 378 of drive shaft 362. Accordingly, as will be discussed below in greater detail, when driver portion 378 is received within socket 72, driver portion 378 engages with impeller 64 such that rotation of drive shaft 362 facilitates rotation of impeller 64.
Turning to
In one embodiment, hub 66, blades 68 and steady support 150 of impeller 64 are molded from a polymeric material. In alternative embodiments, impeller 64 can be made of metal, composite, or a variety of other materials. If desired, a tubular insert 154 can be positioned within socket 72 to help reinforce hub 66. For example, insert 154 can be comprised of metal or other material having a strength property greater than the material from which hub 66 is comprised.
Returning to
Turning to
As depicted in
Formed at second end 370 of drive shaft 362 is driver portion 378. Driver portion 378 has a non-circular transverse cross section so that it can facilitate locking engagement within hub 66 of impeller 64. In the embodiment depicted, driver portion 378 has a polygonal transverse cross section. However, other non-circular shapes can also be used. Driver portion 380 is also formed along drive shaft 362 toward first end 368. Driver portion 380 also has a non-circular transverse cross section and is positioned so that it can facilitate locking engagement within engaging portion 146 (
During use, as will be discussed below in further detail, drive shaft 362 is advanced down through hub 54 of rotational assembly 48, through tubular connector 42 and into hub 66 of impeller 64. As a result of the interlocking engagement of driver portions 378 and 380 with hubs 66 and 54, respectively, rotation of drive shaft 362 by a drive motor assembly facilitates rotation of hub 54, tubular connector 42 and impeller 64 relative to outer casing 50 of rotational assembly 48. As a result of the rotation of impeller 64, fluid within container 18 is mixed.
It is appreciated that impeller assembly 40, drive shaft 362 and the discrete components thereof can have a variety of different sonfigurations and can be made of a variety of different materials. Alternative embodiments of and further disclosure with respect to impeller assembly 40, drive shaft 362, and the components thereof are disclosed in U.S. Pat. No. 7,384,783, issued Jun. 10, 2008 and US Patent Publication No. 2011/0188928, published Aug. 4, 2011 which are incorporated herein in their entirety by specific reference.
Returning to
Although support housing 78 is shown as having a substantially cylindrical configuration, in alternative embodiments support housing 78 can have any desired shape capable of at least partially bounding a compartment. For example, sidewall 82 need not be cylindrical but can have a variety of other transverse, cross sectional configurations such as polygonal, elliptical, or irregular. Furthermore, it is appreciated that support housing 78 can be scaled to any desired size. For example, it is envisioned that support housing 78 can be sized so that chamber 92 can hold a volume of less than 50 liters, more than 1,000 liters or any of the other volumes or range of volumes as discussed above with regard to container 18. Support housing 78 is typically made of metal, such as stainless steel, but can also be made of other materials capable of withstanding the applied loads of the present invention.
With continued reference to
In one embodiment of the present invention means are provided for regulating the temperature of the fluid that is contained within container 18 when container 18 is disposed within support housing 78. By way of example and not by limitation, sidewall 82 can be jacketed so as to bound one or more fluid channels that encircle sidewall 82 and that communicate with an inlet port 184 and an outlet port 186. A fluid, such as water or propylene glycol, can be pumped into the fluid channel through inlet port 184. The fluid then flows in a pattern around sidewall 82 and then exits out through outlet port 184.
By heating or otherwise controlling the temperature of the fluid that is passed into the fluid channel, the temperature of support housing 78 can be regulated which in turn regulates the temperature of the fluid within container 18 when container 18 is disposed within support housing 78. In an alternative embodiment, electrical heating elements can be mounted on or within support housing 78. The heat from the heating elements is transferred either directly or indirectly to container 18. Alternatively, other conventional means can also be used such as by applying gas burners to support housing 78 or pumping the fluid out of container 18, heating the fluid and then pumping the fluid back into container 18. When using container 18 as part of a bioreactor or fermenter, the means for heating can be used to heat the culture within container 18 to a temperature in a range between about 30° C. to about 40° C. Other temperatures can also be used.
As depicted in
Arm assembly 302 is used to adjust the position of drive motor assembly 300 and thereby also adjust the position of drive shaft 362. As depicted in
During use, container station 14 and docking station 12 are securely coupled together, as shown in
Specifically, as depicted in
Once rotational assembly 48 is secured to drive motor assembly 300, drive shaft 362 can be advanced down through drive motor assembly 300 and into impeller assembly 40 so as to engage impeller 64. During the advancement of drive shaft 362, container 18 can be manipulated, such as through door 106 on support housing 78 (
Either before or after inserting drive shaft 362 into impeller assembly 40, container 18 can be at least partially filled with fluid. The fluid helps to stabilize retainer 120 on floor 88 of support housing 78 to help facilitate alignment with steady support 150.
Once drive shaft 362 is properly positioned, container 18 can be filed with media or other processing fluids. Where container 18 is functioning as a bioreactor or fermenter, cells or microorganisms along with nutrients and other standard components can be added to container. Before or after adding the different components, drive motor assembly 300 can activated causing drive shaft 362 to rotate impeller 64 and thereby mix or suspend the fluid within container 18. As a result of the engagement between steady support 150 and retainer 120, drive shaft 362 and impeller 64 can be rotated at high speeds without concern for lateral displacement of drive shaft 362 or impeller 64.
In mixing system 10, docking station 12 is used which includes arm assembly 302. In this design, docking station 12 can be coupled with any number of different container stations 14 having a container assembly 16 therein. In an alternative embodiment, however, docking station 12 can be eliminated and arm assembly 302 can be mounted directly onto support housing 78. Alternative examples of arm assembles and how they can be mounted onto support housing 78 is disclosed in U.S. patent application Ser. No. 13/659,616, filed Oct. 24, 2012, which is incorporate herein in its entirety by specific reference.
The above described mixing system 10 is one embodiment of how to prevent unwanted lateral movement of drive shaft 362 and impeller 64. It is appreciated, however, that there are a variety of other ways in which the drive shaft and impeller can be retained. For example, depicted in
Mounted at the opposing end of tube section 165B is a steady support 150A. Steady support 150A includes body 152 having rounded nose 153. However, in contrast to steady support 150 which forms part of impeller 64, steady support 150A has a tapered first end 168 that is coupled with the end of tube section 165B. A socket 170 is formed at first end 168 and has a non-circular engaging surface for engaging with driver portion 378 on drive shaft 362A.
Impeller assembly 40A includes rotational assembly 48 at its first end and is coupled to container 18 in the same manner as impeller assembly 40. Impeller assembly 40A also operates in the same manner and in the same cooperation with retainer 120 as impeller assembly 40, except that steady support 150A is now spaced apart from impeller 64A. It is appreciated that impeller assembly 40A can include any number of spaced apart impellers 64A, such as 1, 2, 3, 4, 5 or more, along tubular connector 44A. Tube sections 165 of tubular connector 44A can extend between each of impellers 64A.
Depicted in
Turning to
Hub 54A has a first end 180 that connects with tube section 165D and has an opposing second end 182. Hub 54A has an interior surface 56A that bounds an opening 58A. In the present embodiment, opening 58A is a blind socket that is open at first end 180 but is closed by a floor 184 at second end 182. Interior surface 56A includes an engaging portion 146A having a polygonal or other non-circular transverse cross section so that driver portion 378 of drive shaft 362A (
During assembly, as depicted in
In alternative embodiments, it is appreciated that drive shaft 362A need not directly engage each of the hubs and impellers. For example, drive shaft 362A could engage hubs 54 and 54A but not impellers 176A-C. In this embodiment, rotation of hubs 54 and 54A would cause rotation of tube sections 165A and 165D which would then indirectly cause rotation of impellers 176A-C. Likewise, drive shaft 362A need not engage with hubs 54 and/or 54A. In this example, if drive shaft 362A engages with and rotates impellers 176A-C, this rotation causes rotation of tube sections 165A and 165D which then indirectly causes rotation of hubs 54 and 54A. As such, drive shaft 362A can be configured to engage any combination of hubs and impellers or other sections along tube sections 165. In another embodiment, tubular connector 42B can comprise one continuous tube that extends between rotational assembly 48 and retainer 174A. Any number of impellers can then be mounted along the exterior surface of tubular connector 42B.
Depicted in
With regard to previously discussed impeller assemblies 40B and 40C, it is envisioned that a cavity or hole may need to be formed in floor 88 (
In yet another alternative embodiment, retainer 174A can be replaced by a retainer 174C as shown in
The above discussed embodiments use a tubular connector in conjunction with a drive shaft. In alternative embodiments, it is appreciated that the tubular connector can be eliminated. For example, depicted in
Depicted in
Depicted in
The present invention may be embodied in other specific forms without departing from its spirit or essential characteristics. The described embodiments are to be considered in all respects only as illustrative and not restrictive. The scope of the invention is, therefore, indicated by the appended claims rather than by the foregoing description. All changes which come within the meaning and range of equivalency of the claims are to be embraced within their scope.
This application is a continuation of U.S. application Ser. No. 13/849,361, filed Mar. 22, 2013, which claims the benefit of U.S. Provisional Application No. 61/614,682, filed Mar. 23, 2012, which are incorporated herein by specific reference.
Number | Name | Date | Kind |
---|---|---|---|
522909 | Lobree | Jul 1894 | A |
688201 | Scopes | Dec 1901 | A |
702248 | Russell | Jun 1902 | A |
921796 | Chambers, Jr. | May 1909 | A |
1519533 | Dingle | Dec 1924 | A |
1733244 | Smith | Oct 1929 | A |
2082769 | Moritz | Jun 1937 | A |
2592904 | Jackson | Apr 1952 | A |
2858117 | Girton | Oct 1958 | A |
2864594 | Martinek | Dec 1958 | A |
2905451 | Thomas et al. | Sep 1959 | A |
3092678 | Ernst | Jun 1963 | A |
3149888 | Lennon | Sep 1964 | A |
3322401 | Mersch | May 1967 | A |
3327953 | Krumholz, Sr. | Jun 1967 | A |
3559962 | Enssle et al. | Feb 1971 | A |
3692427 | Risse | Sep 1972 | A |
4083653 | Stiffler | Apr 1978 | A |
4722608 | Salzman et al. | Feb 1988 | A |
5549386 | Pardo et al. | Aug 1996 | A |
5568976 | Gabriele | Oct 1996 | A |
5618107 | Bartsch | Apr 1997 | A |
5885001 | Thomas | Mar 1999 | A |
5941636 | Lu | Aug 1999 | A |
6083587 | Smith et al. | Jul 2000 | A |
6089746 | Martin | Jul 2000 | A |
6494613 | Terentiev | Dec 2002 | B2 |
6670171 | Carll | Dec 2003 | B2 |
7252429 | Yungbiut | Aug 2007 | B2 |
7384783 | Kunas et al. | Jun 2008 | B2 |
7441940 | Vanek | Oct 2008 | B2 |
7487688 | Goodwin | Feb 2009 | B2 |
7682067 | West et al. | Mar 2010 | B2 |
7878099 | Loibl | Feb 2011 | B2 |
7879599 | Goodwin et al. | Feb 2011 | B2 |
7980500 | Jenni et al. | Jul 2011 | B2 |
8057092 | Ryan et al. | Nov 2011 | B2 |
8123395 | Baumfalk et al. | Feb 2012 | B2 |
8293533 | Friedmann et al. | Oct 2012 | B2 |
8342737 | Greller et al. | Jan 2013 | B2 |
8455242 | Staheli et al. | Jun 2013 | B2 |
8506198 | West et al. | Aug 2013 | B2 |
8603805 | Goodwin et al. | Dec 2013 | B2 |
8641314 | Thacker et al. | Feb 2014 | B2 |
9669366 | Reif | Jun 2017 | B2 |
9700857 | Larsen | Jul 2017 | B1 |
9839886 | Staheli | Dec 2017 | B2 |
9855537 | Williams | Jan 2018 | B2 |
20020105856 | Terentiev | Aug 2002 | A1 |
20020131654 | Smith et al. | Sep 2002 | A1 |
20020176322 | Kupidlowski | Nov 2002 | A1 |
20030077466 | Smith et al. | Apr 2003 | A1 |
20040228209 | Bielozer | Nov 2004 | A1 |
20050239199 | Kunas | Oct 2005 | A1 |
20060215488 | Blakley | Sep 2006 | A1 |
20060240546 | Goodwin et al. | Oct 2006 | A1 |
20060270036 | Goodwin et al. | Nov 2006 | A1 |
20060280028 | West | Dec 2006 | A1 |
20080208234 | Jenni | Aug 2008 | A1 |
20100177593 | Takenaka | Jul 2010 | A1 |
20100178685 | Kloss | Jul 2010 | A1 |
20100278007 | Tanguy et al. | Nov 2010 | A1 |
20110013473 | Ludwig et al. | Jan 2011 | A1 |
20110013474 | Ludwig et al. | Jan 2011 | A1 |
20110026360 | Greller | Feb 2011 | A1 |
20110058447 | Reif | Mar 2011 | A1 |
20110058448 | Reif | Mar 2011 | A1 |
20110113473 | Corda et al. | May 2011 | A1 |
20110188928 | West et al. | Aug 2011 | A1 |
20110229963 | Fatherazi et al. | Sep 2011 | A1 |
20110310696 | Goodwin et al. | Dec 2011 | A1 |
20120175012 | Goodwin | Jul 2012 | A1 |
20120282688 | Knight | Nov 2012 | A1 |
20130044562 | Selenius | Feb 2013 | A1 |
20140086006 | Shramo | Mar 2014 | A1 |
20140106453 | Kunas et al. | Apr 2014 | A1 |
20150117138 | Pozzan et al. | Apr 2015 | A1 |
20150117142 | Staheli | Apr 2015 | A1 |
20150151261 | Isailovic | Jun 2015 | A1 |
20160151749 | Seitz | Jun 2016 | A1 |
20160193576 | Larsen | Jul 2016 | A1 |
20160333300 | Kronenberg | Nov 2016 | A1 |
20170107471 | Forsberg | Apr 2017 | A1 |
20170183617 | Jones | Jun 2017 | A1 |
20170312713 | Schob | Nov 2017 | A1 |
20170362555 | Damren | Dec 2017 | A1 |
Number | Date | Country |
---|---|---|
202009005407 | Sep 2009 | DE |
102008058338 | May 2010 | DE |
1764154 | Mar 2007 | EP |
2296795 | Mar 2011 | EP |
2274084 | Dec 2012 | EP |
782935 | Sep 1934 | FR |
6285353 | Oct 1994 | JP |
2009115926 | Sep 2009 | WO |
WO 2009122310 | Oct 2009 | WO |
2011139209 | Nov 2011 | WO |
Entry |
---|
Prionics, Efficient New Homogenization System, published at least as early as Mar. 1, 2012, 2 pages. |
Number | Date | Country | |
---|---|---|---|
20160193576 A1 | Jul 2016 | US |
Number | Date | Country | |
---|---|---|---|
61614682 | Mar 2012 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 13849361 | Mar 2013 | US |
Child | 15066751 | US |