Not applicable.
Circuits include one or more active and/or passive electrical components connected together by way of electrical conductors. On circuit boards, such conductors may include traces fabricated as part of the circuit board itself, wires, or deposited conductive material. Miniaturization necessitates smaller components that are in close proximity to each other.
In the evolution of electronic device manufacturing, the fabrication techniques used to print or otherwise deposit electronic wiring has ongoing challenges in advancing towards higher density electrically conductive lines and patterns. Methods to produce narrower conductive line widths and conductive patterns are of particular importance in the fabrication of, for example, semiconductor devices, electronic panels to drive optical displays (e.g., liquid crystal displays (LCDs)), and solar cell panels.
Conductive material may be deposited to form an electrically conductive line or an electrically conductive pattern. For example, a conductive line may be an electrical trace that extends between two electronic devices. A conductive pattern comprises conductive material deposited in or around a three dimensional structure, for example, conductive material in a three dimensional (3D) trench or around a 3D protrusion.
For sub-micron scale electrical conductive wiring deposition, conductive material is typically deposited onto substrates by conventional semiconductor processing techniques that include metal deposition, photolithography, and etching processes. Although effective for fabricating sub-micron electronic conductive lines, these techniques are expensive and limited to the processing of substrate sizes less than about 300 mm. In other words, semiconductor processing techniques cannot be scaled up for large area devices (>300 mm) such as LCD panels and solar panels having size dimensions that frequently exceed 1 meter. Another drawback conductive line deposition by semiconductor processing techniques is that such techniques require exposing the substrate to high processing temperatures typically in a range of about 100° C. to 250° C. As such, suitable substrate materials are limited to those substrate materials (e.g., glass, Si) that can withstand the high processing temperatures without detrimental effects (e.g., dimensional distortion such as warping, etc.). Another drawback is that conductive patterning of conductive material around or in 3D structures by semiconductor processing techniques is very difficult and often avoided due to the complexity introduced by 3D surface structures.
For macro level electrical conductive wiring or pattern deposition, conductors are printed by an Inkjet process wherein droplets of conductive ink are deposited onto the substrate surface of interest, such as the surface of a glass substrate, an indium-tin-oxide (ITO) surface (e.g., ITO on glass), silicon (Si), silicon oxides (e.g., SiOx on Si), silicon nitrides (SiNx on Si), etc., to form the desired conductive patterns. Most known aqueous or non-aqueous media inks wet rapidly or are very easily absorbed by most surfaces. Such wetting/absorption causes the deposited ink to spread wider than the initial deposited droplet which makes it difficult if not impossible to achieve narrow line widths less. Thus, although this technique can be used to deposit conductive lines on large area substrates, one drawback of this technique is that the minimum line width is usually greater than about 100 micrometers (microns, μm). Attempts to use this technique to fabricate conductive lines having widths less than about 100 μm commonly results in non-uniform conductive line-widths (e.g., conductive trace with ragged edges) and varying conductor thicknesses (i.e., non-uniform conductive trace heights) which undesirably causes resistance to vary within an electrical trace and hence poor performance. Another drawback of conventional inkjet processing using commercial liquid media is that conductive line/pattern deposition requires exposing the substrate to high temperatures (>120° C.) to cure the ink so as to drive off solvent(s) in the ink, and to sinter the nanoparticles to leave behind the desired conductive line/pattern. In such cases, the sheet resistance of the metal lines is related to and controlled by the sintering temperature, and high temperatures (>150° C.) are required for achieving lower resistance (a few ohms/sq). As such, suitable substrate materials are limited to those substrate materials (e.g., glass, Si) that can withstand the high processing temperatures without detrimental effects (e.g., dimensional distortion such as warping, etc.).
Selective coating of conductors on 3D surfaces is only achievable by ink jet printing of specific designs. As such, the minimum conductive pattern or line width of about 100 μm limits the applications. Wide interconnect lines having widths greater than about 100 μm also limits the spacing or pitch between lines to about 75 μm or more. Thus, packing density of the lines is low. Likewise, selective printing of conductive material in the recessed areas (valleys) between regular or randomized 3D structures having a pitch of less than about 75 μm, or printing of conductive material on the top of the 3D structures, generally is not possible.
Due to high processing temperatures typically in excess of about 120° C., semiconductor and conventional inkjet processing techniques are not suitable techniques to deposit conductive line/patterns onto flexible polymeric membranes (e.g., polymeric membranes utilized in various types of optical displays) or onto flexible polymeric substrates utilized in flexible electronics applications. Substrate exposure to such high processing temperatures limits the substrate materials to those materials (e.g., glass, Si) that can withstand the high processing temperatures without detrimental effects such as dimensional distortion due to warping, melting, micro-cracking, etc. Polymeric materials used to fabricate flexible plastic substrates are not suitable substrate materials for conductive line/pattern deposition using either semiconductor or inkjet processing techniques because high temperature processing of flexible polymer material typically causes undesirable micro-cracking and/or diffusion of conductive material into the flexible polymer material.
For a detailed description of exemplary embodiments of the invention, reference will now be made to the accompanying drawings in which:
The following discussion is directed to various embodiments of the invention. Although one or more of these embodiments may be preferred, the embodiments disclosed should not be interpreted, or otherwise used, as limiting the scope of the disclosure, including the claims. In addition, one skilled in the art will understand that the following description has broad application, and the discussion of any embodiment is meant only to be exemplary of that embodiment, and not intended to intimate that the scope of the disclosure, including the claims, is limited to that embodiment.
In the embodiments disclosed herein, the surface energy of a substrate is modified before depositing a conductive liquid (e.g., an ink) thereon. The term “surface energy” refers to a property of a material that draws surface molecules inward. In some embodiment, the surface energy of the substrate surface in regions on which the conductive liquid is to be deposited is modified so as to approximately match the surface energy (surface tension) of the conductive liquid itself. By approximately matching the surface's surface energy to that of the conductive liquid, the conductive liquid adheres to the desired regions and does not adhere to the remaining regions which may have a much lower surface energy. In other embodiments, the surface energy of the regions on which the conductive liquid is not to adhere is modified to reduce its surface energy in an “inverted pattern” of where the conductive liquid is to adhere. Then, when the conductive liquid coats the substrate surface, the liquid adheres only to the regions whose surface energy was not reduced. These embodiments are described in greater detail below.
The embodiments described herein permit thin conductive lines and 3-D geometries (e.g., as thin as 1 μm or smaller) to be formed on a substrate and formed so at much lower temperatures than those noted above. For example, the processes described herein can be performed at temperatures lower than 45° C. (the temperature of the plating bath discussed below). Further, the substrate material used may include silicon, glass, acrylate, kapton, polycarbonate, Mylar, polyethylene terephthalate (PET), and the like. The substrate may be flexible if desired.
As used herein, the term “pattern” is generally used to refer to the desired pattern of the conductive material formed by the conductive liquid. The pattern may include straight lines (e.g., a set of spaced, parallel lines) or any arbitrary pattern or 3-D formation of conductive material.
At 102, the method comprises altering the surface energy of the desired areas of the substrate surface (i.e., the areas in which conductive material is desired to be formed). This action can be performed by depositing, on the substrate surface, a substance having a surface energy in the range of 20 to 50 dynes/cm. In some embodiments, the deposited material has a surface energy in the range of 25 to 35 dynes/cm. A suitable material to deposit on the substrate surface includes acrylate. Altering the surface energy of the desired areas may entail increasing the surface energy of those areas of the substrate surface by at least 20%.
At 104, the method comprises depositing three-dimensional (3-D) structures on the surface of the substrate. Such structures may be of any shape or size. In some embodiments, such structures are transparent and function to cause light to be extracted from a light guide to which the substrate is coupled. The use of a light guide is described below with regard to
The 3-D structures 132 comprise raised or protruding structures that delimit the width and shape of the desired conductive pattern. In some embodiments, the structures 132 may have a height (H1) of 6 μm, a width of 6 μm, and a distance (D1) between ridges of 12 μm. The structures may also have a height of a few nanometers to several microns (100 nm to 100 μm). The distance D1 defines the pitch of the conductive pattern.
The structures 132 may be formed via any of a variety of techniques. In at least one embodiment, the patterning and fabrication of the structures 132 is performed using ultraviolet (UV)-embossing of photoacrylates or hot embossing on polyurethane, polycarbonate, etc. In the case, discussed below with regard to
At 106, the method comprises depositing a catalyst-doped conductive liquid (e.g., an ink) on to the desired areas. The conductive liquid chosen in this step should have a surface energy (surface tension) approximately equal to the surface energy of the altered regions of the substrate 130. In some embodiments, the conductive liquid has a surface energy in the range of 20 to 50 dynes/cm. In some embodiments, the liquid's surface energy may be in the narrower range of 25 to 35 dynes/cm, or further still in the range of 29 to 33 dynes/cm. The conductive liquid preferably is a metal catalyst-doped liquid (e.g., palladium (Pd) catalyst-doped liquid) such as an ink. For example, the liquid may be a Pd acetate mixed in ethyl lactate. In some embodiments, the depositing (printing) of the conductive liquid is performed using a Xennia Inkjet printer (based on Xaar Printhead Technology). The print gap, ink volume, print speed, etc. are adjustable based on the application at hand and thus may be varied as desired.
At 108 in
At 110, the method comprises plating the seed layer to form the desired conductive pattern. This action can be performed by depositing a desired metal, such as copper, onto the surface of the seed layer by way of a plating process such as electroless plating or electrochemical plating. The temperature of the plating bath may at or less than 45° C. Using such plating processes, the metal (e.g., copper) will selectively plate onto the metallic seed layer thereby forming the desired electrically conductive pattern. For example, the substrate 130 may be submerged in a copper bath. Upon removing the substrate, only those portions of the surface having the metallic seed layer are coated with copper. With regard to
At 202, the method of
At 204, the method comprises depositing a catalyst-doped conductive liquid (e.g., an ink) on to the desired areas. The conductive liquid chosen in this step should have a surface energy (surface tension) substantially greater than the surface energy of the regions of the substrate that are part of the inverted pattern. In some embodiments, the conductive liquid has a surface energy in the range of 20 to 50 dynes/cm. In some embodiments, the liquid's surface energy may be in the range of 25 to 35 dynes/cm, or more particularly in the range of 29 to 33 dynes/cm. The conductive liquid preferably is a metal catalyst-doped liquid (e.g., palladium catalyst-doped liquid) such as an ink.
The conductive fluid settles into the higher surface energy areas only and not in the inverted pattern which has a lower surface energy. The substrate can be coated with such a conductive liquid, but the liquid will not adhere to the region of the inverted pattern due to its low surface energy. Instead, the conductive liquid will adhere to the remaining regions which comprise the regions in which conductive material is desired.
At 206, the method comprises forming a seed layer using the deposited conductive liquid. This action can be performed by allowing the deposited conductive liquid to dry on the substrate (201) and curing the remaining material with, for example, ultraviolet (UV) radiation (212).
At 208, the method comprises plating the seed layer to form the desired conductive pattern. This action can be performed by depositing a desired metal, such as copper, onto the surface of the seed layer by way of a plating process such as electroless plating or electrochemical plating. Using such plating processes, the metal (e.g., copper) will selectively plate onto the metallic seed layer thereby forming the desired electrically conductive pattern. For example, the substrate may be submerged in a copper bath. Upon removing the substrate, only those portions of the surface having the metallic seed layer are coated with copper. The method described herein is not limited to copper but other platable metals such as nickel may also be coated using the compatible catalyst-incorporated liquid ink.
The microlens film 310 is positioned adjacent the light guide 320 by way of standoffs 318 which separate the 3-D structures 338 formed on the microlens film from the light guide.
A sufficient electrical potential difference placed across the pixel causes the pixel to bend and snap across the gap H3 due to electrostatic attraction. The conductive material 340 embedded in the valleys between the structures 338 is formed by one or more of the techniques described above. The structures 338 must remain transparent and the techniques described herein help ensue the conductive material does not remain coated on the structures 338. Instead, the conductive liquid falls into the valleys between the structures as a result of surface energy modification of the substrate. Reference numeral 342 refers to the conductor on the opposite side of the gap to which the voltage is applied.
The above discussion is meant to be illustrative of the principles and various embodiments of the present invention. Numerous variations and modifications will become apparent to those skilled in the art once the above disclosure is fully appreciated. It is intended that the following claims be interpreted to embrace all such variations and modifications.
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/US2010/054641 | 10/29/2010 | WO | 00 | 10/8/2012 |
Number | Date | Country | |
---|---|---|---|
61264234 | Nov 2009 | US |