Meyerson et al., “Cooperative Growth Phenomena in Silicon/Germanium Low-Temperature Epitaxy,” Applied Physics Letters, vol. 53, No. 25 (Dec. 19, 1988) pp. 2555-2557. |
Garone et al., “Silicon vapor phase epitaxial growth catalysis by the presence of germane,” Applied Physics Letters, vol. 56, No. 13 (Mar. 26, 1990) pp. 1275-1277. |
Robbins et al., “A model for heterogeneous growth of Si1-xGex films for hydrides,” Journal of Applied Physics, vol. 69, No. 6 (Mar. 15, 1991) pp. 3729-3732. |
“2 Bit/Cell EEPROM Cell Using Band-to-Band Tunneling for Data Read-Out,” IBM Technical Disclosure Bulletin, vol. 35, No. 4B (Sep. 1992) pp. 136-140. |
Wesler et al., “NMOS and PMOS Transistors Fabricated in Strained/Relaxed Silicon-Germanium Structures,” Electron Devices Meeting, 1992. Technical Digest (Dec. 13, 1992) pp. 31.7.1-31.7.3. |
Grützmacher et al., “Ge segregation in SiGe/Si heterostructures and its dependence on deposition technique and growth atmosphere,” Applied Physics Letters, vol. 63, No. 18 (Nov. 1, 1993) pp. 2531-2533. |
Welser et al., “Evidence of Real-Space Hot-Electron Transfer in High Mobility, Strained-Si Multilayer MOSFETs,” Electron Devices meetings, 1993. Technical Digest (Dec. 1993) pp. 21.3.1-21.3.4. |
Cullis et al, “Growth ripples upon strained SiGe epitaxial layers on Si and misfit dislocation interactions,” Journal of Vacuum Science and Technology A, vol. 12, No. 4 (Jul./Aug. 1994) pp. 1924-1931. |
Tweet et al., “Factors determining the composition of strained GeSi layers grown with disilane and germane,” Applied Physics Letters, vol. 65, No. 20 (Nov. 14, 1994) pp. 2579-2581. |
Armstrong et al., “Design of Si/SiGe Heterojunction Complementary Metal-Oxide-Semiconductor Transistors,” IEDM Technical Digest (1995) pp. 761-764. |
König et al., “SiGe HBTs and HFETs,” Solid-State Electronics, vol. 38, No. 9 (1995) pp. 1595-1602. |
Rim et al., “Enhanced Hole Mobilities in Surface-Channel Strained-Si p-MOSFETs,” Solid State Electronics Laboratory, Stanford University, Stanford, CA 94305 (1995) pp. 20.3.1-20.3.4. |
Welser, “The Application of Strained Silicon/Relaxed Silicon Germanium Heterostructures to Metal-Oxide-Semiconductor Field-Effect Transistors,” Ph.D. Thesis, Stanford University (1995) pp. 1-205. |
Sadek et al., “Design of Si/SiGe Heterojunction Complementary Metal-Oxide-Semiconductor Transistors,” IEEE Transactions on Electron Devices, vol. 43, No. 8 (Aug. 1996) pp. 1224-1232. |
Nayak et al., “High Mobility Strained-Si PMOSFET's,” IEEE Transactions on Electron Devices, vol. 43, No. 10 (Oct. 1996) pp. 1709-1716. |
Schäfler, “High-mobility Si and Ge structures,” Semicond. Sci. Technol., vol. 12 (1997) pp. 1515-1549. |
Usami et al., “Spectroscopic study of Si-based quantum wells with neighboring confinement structure,” Semicon. Sci. Technol. (1997) (abstract). |
König et al., “Design Rules for n-Type SiGe Hetero FETs,” Solid State Electronics, vol. 41, No. 10 (1997), pp. 1541-1547. |
Höck et al., “Carrier mobilities in modulation doped Si1-xGex heterostructures with respect to FET applications,” Thin Solid Films, vol. 336 (1998) pp. 141-144. |
Maiti et al., “Strained-Si heterostructure field effect transistors,” Semicond. Sci. Technol., vol. 13 (1998) pp. 1225-1246. |
Hackbarth et al., “Strain relieved SiGe buffers for Si-based field-effect transistors,” Journal of Crystal Growth, vol. 201 (1999) pp. 734-738. |
Armstrong, “Technology for SiGe Heterostructure-Based CMOS Devices,” Submitted to the Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science on Jun. 30, 1999, pp. 1-154. |
O'Neill et al., “SiGe Virtual substrate N-channel heterojunction MOSFETs,” Semicond. Sci. Technol., vol. 14 (1999) pp. 784-789. |
Rim, “Application of Silicon Based Heterostrucutres to Enhanced Mobility Metal-Oxide-Semiconductor Field-Effect Transistors,” Ph.D. Thesis, Stanford University (Jul. 1999) pp. 1-184. |
Parker et al., “SiGe heterostructure CMOS circuits and applications,” Solid State Electronics, vol. 43, No. 8, (Aug. 1999) pp. 1497-1506. |
Xie, “SiGe Field effect transistors,” Materials Science and Engineering, vol. 25 (1999) pp. 89-121. |
Hackbarth et al., “Alternatives to thick MBE-grown relaxed SiGe buffers,” Thin Solid Films, vol. 369, No. 1-2 (2000) pp. 148-151. |
Herzog et al., “SiGe-based FETs: buffer issues and device results,” Thin Solid Films, vol. 380 (2000) pp. 36-41. |
Mizuno et al., “Electron and Hole Mobility Enhancement in Strained-Si MOSFET's on SiGe-on-Insulator Substrates Fabricated by SIMOX Technology,” IEEE Electron Device Letters, vol. 21, No. 5 (May 2000) pp. 230-232. |
Höck et al., “High hole mobility in Si0.17 Ge0.83 channel metal-oxide-semiconductor field-effect transistors grown by plasma-enhanced chemical vapor deposition,” Applied Physics Letters, vol. 76, No. 26 (Jun. 26, 2000) pp. 3920-3922. |
Rim et al., “Fabrication and Analysis of Deep Submicron Strained-Si N-MOSFET's,” IEEE Transactions on Electron Devices, vol. 47, No. 7 (Jul. 2000) pp. 1406-1415. |
Barradas et al., “RBS analysis of MBE-grown Si/Ge/(001) Si heterostructures with thin, high Ge content SiGe channels for HMOS transistors,” Modern Physics Letters B (2001) (abstract). |
Cheng et al., “Relaxed Silicon-Germanium on Insulator Substrate by Layer Transfer,” Journal of Electronic Materials, vol. 30, No. 12 (2001) pp. L37-L39. |
Lee et al., “Strained Ge channel p-type metal-oxide-semiconductor field-effect transistors grown on Si1-xGex/Si virtual substrates,” Applied Physics Letters, vol. 79, No. 20 (Nov. 12, 2001) pp. 3344-3346. |
Leitz et al., “Hole mobility enhancements in strained Si/Si1-yGey p-type metal-oxide-semiconductor field-effect transistors grown on relaxed Si1-xGex (x<y) virtual substrates,” Applied Physics Letters, vol. 79, No. 25 (Dec. 17, 2001) pp. 4246-4248. |
Canaperi et al., “Preparation of a relaxed Si-Ge layer on an insulator in fabricating high-speed semiconductor devices with strained epitaxial films,” Intern. Business Machines Corporation, USA (2002) (abstract). |
Lee et al., “Strained Ge channel p-type MOSFETs fabricated on Si1-xGex/Si virtual substrates,” Mat. Res. Soc. Symp. Proc., vol. 686 (2002) pp. Al.9.1-A1.9.5. |
Leitz et al., “Channel Engineering of SiGe-Based Heterostructures for High Mobility MOSFETs,” Mat. Res. Soc. Symp. Proc., vol. 686 (2002) pp. A3.10.1-A3.10.6. |
Li et al., “Design of high speed Si/SiGe heterojunction complementary metal-oxide-semiconductor field effect transistors with reduced short-channel effects,” J. Vac. Sci. Technol., A 20(3) (May/Jun. 2002) pp. 1030-1033. |
Eaglesham et al., “Dislocation-Free Stranski-Krastanow Growth of Ge on Si(100),” Physical Review Letters, vol. 64, No. 16 (Apr. 16, 1990) pp. 1943-1946. |
Fitzgerald et al., “Totally relaxed GexSi1-x layers with low threading dislocation densities grown on Si substrates,” Appl. Phys. Lett., vol. 59, No. 7 (Aug. 12, 1991) pp. 811-813. |
Fitzgerald et al., “Relaxed GexSi1-x structures for III-V integration with Si and high mobility two-dimensional electron gases in Si,” J. Vac. Sci. Technol. B, vol. 10, No. 4 (Jul./Aug. 1992) pp. 1807-1819. |
Xie et al., “Very high mobility two-dimensional hole gas in Si/ GexSi1-xGe structures grown by molecular beam epitaxy,” Appl. Phys. Lett., vol. 63, No. 16 (Oct. 18, 1993) pp. 2263-2264. |
Wesler et al., “Electron Mobility Enhancement in Strained-Si N-Type Metal-Oxide-Semiconductor Field-Effect Transistors,” IEEE Electron Device Letters, vol. 15, No. 3 (Mar. 1994) pp. 100-102. |
Ismail et al., “Modulation-doped n-type Si/SiGe with inverted interface,” Appl. Phys. Lett., vol. 65, No. 10 (Sep. 5, 1994) pp. 1248-1250. |
Xie et al., “Semiconductor Surface Roughness: Dependence on Sign and Magnitude of Bulk Strain,” The Physical Review Letters, vol. 73, No. 22 (Nov. 28, 1994) pp. 3006-3009. |
Bouillon et al., “Search for the optimal channel architecture for 0.18/0.12 μm bulk CMOS Experimental study,” IEEE, (1996) pp. 21.2.1-21.2.4. |
Kearney et al., “The effect of alloy scattering on the mobility of holes in a Si1-xGex quantum well,” Semicond. Sci. Technol., vol. 13 (1998) pp. 174-180. |
Höck et al., “High performance 0.25 μm p-type Ge/SiGe MODFETs,” Electronic Letters, vol. 34, No. 19 (Sep. 17, 1998) pp. 1888-1889. |
Bufler et al., “Hole transport in strained Si1-xGex alloys on Si1-yGey substrates,” Journal of Applied Physics, vol. 84, No. 10 (Nov. 15, 1998) pp. 5597-5602. |
Fitzgerald et al., “Dislocation dynamics in relaxed graded composition semiconductors,” Materials Science and Engineering B67, (1999) pp. 53-61. |
Fischetti, “Long-range Coulomb interactions in small Si devices. Part II. Effective electronmobility in thin-oxide structures,” Journal of Applied Physics, vol. 89, No. 2 (Jan. 15, 2001) pp. 1232-1250. |
Cheng et al., “Electron Mobility Enhancement in Strained-Si n-MOSFETs Fabricated on SiGe-on-Insulator (SGOI) Substrates,” IEEE Electron Device Letters, vol. 22, No. 7 (Jul. 2001) pp. 321-323. |
Leitz et al., “Dislocation glide and blocking kinetics in compositionally graded SiGe/Si,” Journal of Applied Physics, vol. 90, No. 6 (Sep. 15, 2001) pp. 2730-2736. |
Currie et al., “Carrier mobilities and process stability of strained S in- and p-MOSFETs on SiGe virtual substrates,” J. Vac. Sci. Technol. B., vol. 19, No. 6 (Nov./Dec. 2001) pp. 2268-2279. |
Ransom et al., “Gate-Self-Aligned n-channel and p-channel Germanium MOSFET's,” IEEE Transactions on Electron Devices, vol. 38, No. 12 (Dec. 1991) pp. 2695. |
König et al., “p-Type Ge-Channel MODFET's with High Transconductance Grown on Si Substrates,” IEEE Electron Device Letters, vol. 14, No. 4 (Apr. 1993) pp. 205-207. |
Fischetti et al., “Brand structure, deformation potentials, and carrier mobility in strained Si, Ge, and SiGe alloys,” J. Appl. Phys., vol. 80, No. 4 (Aug. 15, 1996) pp. 2234-2252. |
Currie et al., “Controlling threading dislocation in Ge on Si using graded SiGe layers and chemical-mechanical polishing,” Applied Physics Letters, vol. 72, No. 14 (Apr. 6, 1998) pp 1718-1720. |
Reinking et al., “Fabrication of high-mobility Ge p-channel MOSFETs on Si substrates,” Electronics Letters, vol. 35, No. 6 (Mar. 18, 1999) pp. 503-504. |
Koester et al., “Extremely High Transconductance Ge/Si0.4Ge0.6 p-MODFET's Grown by UHV-CVD,” IEEE Electron Device Letters, vol. 21, No. 3 (Mar. 2000) pp. 110-112. |
Carlin et al., “High Efficiency GaAs-on-Si Solar Cells with High Voc Using Graded GeSi Buffers,” IEEE, (2000) pp. 1006-1011. |
Rosenblad et al., “Virtual Substrates for the n- and p-type Si-MODFET Grown at Very High Rates,” Materials Science and Engineering, vol. B74 (2000) pp. 113-117. |
Ueno et al., “Low Temperature Buffer Growth for Modulation Doped SiGe/Ge/SiGe Heterostructures with High Hole Mobility,” Thin Solid Films, vol. 369 (2000) pp. 320-323. |
Yousif et al., “Recent Critical Issues in Si/Si1-xGexSi Heterostructure FET Devices,” Solid-State Electronics, vol. 45, No. 11 (2001) pp. 1931-1937. |
Anonymous, “Germanium P-Channel Mosfet,” IBM Technical Disclosure Bulletin, vol. 28, No. 2 (Jul. 1, 1985) p. 500. |
Aigouy et al., “MOVPE Growth and optical characterization of ZnSe/ZnS strained layer superlattices,” Superlattices and Microstructures, vol. 16, No. 1 (1994) pp. 71-76. |
Kikkawa et al., “Effect of strained InGaAs step bunching on mobility and device performance in n-InGaP/InGaAs/GaAs pseudomorphic heterostructures grown by metalorganic vapor phase epitaxy,” Journal of Crystal Growth, vol. 145 (1994) pp. 799-807. |
Pelekanos et al., “Interface roughness correlation in CdTe/CdZnTe strained quantum wells,” Journal of Crystal Growth, vol. 184/185 (1998) pp. 886-889. |
Srolovitz, “On the Stability of Surfaces of Stressed Solids,” Acta metall., vol. 37, No. 2 (1989) pp. 621-625. |
Cullis et al, “The characteristics of strain-modulated surface undulations formed upon epitaxial Si1-xGex alloy layers on Si,” Journal of Crystal Growth, vol. 123 (1992) pp. 333-343. |
Wolf et al., “Silicon Processing for the VLSI Era, vol. 1: Process Technology” (1986) pp. 201. |