Frozen/chilled fluid for pipelines and for storage facilities

Abstract
Methods of, and apparatus for, storing and transporting a hazardous fluid, such as a combustible fuel, include methods and means, respectively, for: (a) treating the fluid to reduce its hazardous condition;(b) storing and/or transporting the treated fluid in such a manner that the risk of its hazardous condition remains reduced;(c) thereafter retreating the fluid to restore it to its original hazardous condition so that the fluid may be used in its restored condition. The hazardous fluid may be treated by adding a substance to, or removing a substance from, the fluid, or by changing the state of the fluid. For example, if the fluid is a fuel, it may be treated by cooling it to near or below its freezing temperature to reduce its combustibility, volatility, explosivity and/or ease of ignition.
Description
BACKGROUND OF THE INVENTION

The storage and transport of hazardous fluid substances poses challenges because of potential or actual damage to persons, equipment or the environment. Fluid substances pose a greater risk than solid ones, because a fluid, whether liquid or gas, is likely to disseminate more rapidly than a solid. Furthermore, if the fluid is a fuel or potential fuel, the failure to contain the fluid (whether intentional or accidental), may lead to detonation or ignition, resulting in explosion or fire.


The act of freezing a hazardous fluid fuel, thereby to render it a solid fuel, is known to increase the stability of the fuel, reducing the risk of fire and/or explosion; Chilling a fuel may have a similar effect. Freezing a hazardous substance will make it easier to contain in the event of a breach of the container. To the extent that chilling a hazardous substance increases its viscosity/decreases its fluidity, the chilling process will lessen the consequences of a breach of the substance container, by decreasing the rate at which the substance emerges from the compromised container.


SUMMARY OF THE INVENTION

Hereinbelow, the term “hazardous substance” is intended to include both the fluid state of the substance (whether liquid or gas), and the solid state of the substance.


The purpose of the invention described herein, is to minimize the risk posed by a hazardous fluid, during storage or transport of the fluid, by freezing or chilling the fluid.


The risk posed by the fluid may entail:


a) risk to persons, equipment or the environment in the vicinity of the pipeline or storage facility, because of toxic effects of the fluid;


b) risk to persons, equipment or the environment not in the vicinity of the pipeline or storage facility, because of wide ranging toxic effects of even very small amounts of the fluid; and


c) risks to persons, equipment, the environment, the pipeline or storage facility itself, one or more adjacent pipelines or storage facilities, or the contents of the pipeline; because of blast, heat, or fire which may result from ignition or explosion of a substance within a pipeline or storage facility.


In one embodiment of the invention, the fluid is a fuel. The use of chilled and/or frozen fuel may:


1) minimize the risk of a terrorist action on a fuel pipeline or fuel storage depot; and


2) minimize the risk, in the event of an accidental breach of the pipeline, resulting in a leak.


In another embodiment of the invention, the fluid may be a toxic chemical, or a radioactive substance.


Embodiments of the invention are described in which the toxicity of a hazardous fluid is minimized (i) by chilling the fluid, and (ii) by freezing the fluid.


Embodiments of the invention are described in which the propulsive device which causes movement of a frozen hazardous substance through a pipeline is (i) largely within a pipeline; and (ii) largely outside of the pipeline.


Embodiments of the invention are described in which an emergency condition—e.g. in which the pipeline or storage facility is subject to a breach, fire, explosion, etc—is dealt with by isolating the compromised storage facility or segment of pipeline by closing one or more valves. The valves may be controlled locally or from a remotely located station.


Embodiments of the invention are described in which an emergency condition—e.g. in which a pipeline or storage facility containing a hazardous fluid is subject to a breach, fire, explosion, etc—is dealt with by rapidly freezing the fluid. The rapid freezing process is accomplished by rapidly dumping or injecting an extremely cold substance. Valves to control the release of the cold substance may be controlled locally or from a remotely located station.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a representational diagram of a pipeline for carrying hazardous substances and of a storage facility for storing hazardous substances, with cooling apparatus and a control system for the cooling apparatus.



FIG. 2 is a schematic block diagram showing an embodiment of the control apparatus for the cooling apparatus of FIG. 1.



FIG. 3A is a representational diagram of a pipeline for moving units of a frozen hazardous substance, showing apparatus disposed between the frozen units, which causes the movement of the units within the pipeline.



FIG. 3B is another representational diagram of a pipeline similar to that shown in FIG. 3A.



FIG. 3C is a representational diagram of a tubular structure with a refrigeration unit and a conveyance device for cooling and conveying a hazardous substance.



FIG. 4 is a representational diagram of a pipeline for moving units of a frozen hazardous substance, showing alternative embodiments of apparatus which causes the movement of the frozen units within the pipeline.



FIG. 5A is a representational diagram of a pipeline for carrying substantially spherical elements, each of which contains a frozen hazardous substance.



FIG. 5B is a representational diagram showing a detailed view of one of the substantially spherical elements shown in FIG. 5A.



FIG. 6 is a representational diagram of a pipeline containing valves which may be used to isolate a compromised segment of a pipeline.



FIG. 7A is a representational diagram of a pipeline or storage facility for a hazardous fluid, containing apparatus for rapidly cooling the hazardous fluid, if necessary.



FIG. 7B is another representational diagram of the apparatus shown in FIG. 7A, which is orthogonal to the view shown in FIG. 7A.





DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

In the specification hereinbelow, the word “fuel” is intended to refer to any hazardous fluid.


Pipelines:


Methods of handling fuel in a pipeline to decrease the risk of fire, explosion, detonation, ignition or leakage—whether accidental or intentional—include:


I) Using Chilled Fuel:


A) at a cold temperature, not specified;


B) at a cold temperature in the range of pour point to a specified value above the pour point, e.g.:

    • 1) a temperature ranging from approximately the pour point to 10 degrees C. above the pour point;
    • 2) a temperature ranging from approximately the pour point to 20 degrees C. above the pour point;
    • 3) a temperature ranging from approximately the pour point to 25 degrees C. above the pour point;
    • 4) a temperature ranging from approximately the pour point to 30 degrees C. above the pour point.


The temperature along the length of the pipeline may be relatively constant, or may vary within any of the ranges described hereinabove, or within another range.


II) Using Frozen Fuel:


The temperature may range:

    • A) from the pour point down to the temperature at which substantially all of the fuel is no longer a liquid;
    • B) from the pour point down to an unspecified temperature;
    • C) from the pour point down to a specific temperature; e.g.
      • 1) 20 degrees C. below the pour point;
      • 2) 30 degrees C. below the pour point, etc.


The temperature along the length of the pipeline may be relatively constant, or may vary within any of the ranges described hereinabove, or within another range.


Fuel may be inserted into the pipeline:

    • A) already frozen;
    • B) as a liquid, to then be frozen when the fuel is within the pipeline;


III) Using Hybrids Involving Both Chilled and Frozen Fuel:


A) of I) and II) above, in which some segments of the pipeline carry frozen fuel and other segments carry chilled fuel;


B) in which some segments of the pipeline carry non-chilled fuel, and others carry chilled fuel;


C) in which some segments of the pipeline carry non-chilled fuel, and others frozen fuel; and


D) in which some segments of the pipeline carry non-chilled fuel, others carry chilled fuel, and still others carry fuel which is neither chilled nor frozen.


In a preferred embodiment of the invention, the hybrid approach would use the coldest fuel for the highest risk pipeline segments, and less cold fuel for lower risk segments. Embodiments of the invention with one, two, three, four or more fuel temperatures, each in a different segment of the pipeline, are possible. High risk segments might be defined as the most vulnerable pipeline segments, either because they are above the ground surface, near the surface, or in areas which are difficult to patrol/observe.


Storage Facilities


Similar protective methods for storing and handling fuel in a storage facility or depot to decrease the risk of fire, explosion, detonation, ignition or leakage—whether accidental or intentional—parallel the approach to pipeline protection.


The depot consists of one or more storage tanks. The tanks may be:


I) above ground;


II) below ground; or


III) some above and some below ground.


The depot may contain frozen fuel, chilled fuel or hybrid situations, as described above for pipelines. A depot may contain mixtures of chilled and frozen fuel such that:


I) Some tanks are at one temperature, and one or more other tanks are each at another temperature; and


II) There may be more than one fuel temperature in different regions of the same tank.


Tanks may be filled by either:


I) filling the tank with chilled fuel, and freezing the fuel after it is contained within the tank;


II) first freezing the fuel in smaller parcels (sticks, etc.), and then stacking sticks (or another shape which wastes only small amounts of space) in a large common storage chamber;


III) filling the tank with chilled fuel, and maintaining the fuel in a chilled state within the tank.


If the depot contains fuel which is below the pour point, and in particular if it contains fuel which is substantially or completely solid, it will need to contain means for moving that non-liquid fuel from the depot into the pipeline. Examples of such means (e.g. shaving pieces off of a rectangular solid) parallel the discussion of loading frozen fuel onto an aircraft, or moving it on the aircraft as discussed in U.S. Pat. No. 7,222,821.


The Storage Depot/Pipeline Interface


If the state of the fuel in the pipeline is to differ from that of the depot, means will be required to convert the depot fuel to pipeline fuel. For example, if the depot is to contain frozen fuel and the pipeline is to contain chilled liquid fuel, then melting means will need to be placed at the junction between the depot and the pipeline. Similarly, if the depot is to contain chilled liquid fuel and the pipeline is to contain frozen fuel, then freezing means will need to be placed at the junction between the depot and the pipeline.


Since the majority of pipeline and depot protection apparatus and methods are conceptually similar, hereinbelow, the word “pipeline” is intended to refer to each of A) an actual pipeline and B) a storage depot. In instances where a distinction needs to be made between pipelines and depots (or between pipelines and tanks), the terms “actual pipeline” will be used.


Pipeline Construction Issues:


I) The pipeline may have 2 or more layers of skin to minimize

    • A) fuel leakage;
    • B) accidental damage to pipeline; and
    • C) intentional damage to pipeline.


II) The pipeline may be monitored by placing temperature sensors between each layer of pipeline skin (see figure and see specification hereinbelow), as well as sensors within the pipeline and external to the pipeline.


III) The pipeline may contain outer insulation or a “thermos-like” outer layer to minimize cold temperature loss;


IV) “Firewall valves” may be placed:

    • A) between segments of an actual pipeline;
    • B) between a storage tank and an actual pipeline; and
    • C) between tanks (though conceptually this is largely similar to A) immediately above, since the likelihood is that two tanks would be connected by an actual pipeline).


Firewall valves may placed along a fuel route to minimize the chance of widespread pipeline destruction, in the event of a terrorist or accidental fire.


In the event of a fire/explosion involving an actual pipeline, the valve on each side of the fire/explosion would be closed. Furthermore, fuel may be evacuated from the pipeline segments adjacent to the fire/explosion by pumping/moving the downstream fuel further downstream, and by pumping/moving the upstream fuel further upstream.


In the event of a fire/explosion involving a tank, the valve which lets fuel out of the tank would be closed. Furthermore, fuel may be evacuated from the pipeline segment(s) adjacent to the involved tank by pumping/moving the downstream fuel further downstream.


Fuel Transport Issues:


Possible transport methodologies for frozen fuel include:


I) freezing it into rectangular sticks (like sticks of butter), and moving it on a continuously moving conveyor belt (or series of such belts)


II) the same as I) above but moving the sticks on rollers


III) the same as I) above but placing the sticks in “railroad car”-like apparatuses

    • A) wherein each one has an engine to propel it
    • B) wherein one engine pulls (or pushes or both) many such cars
    • C) wherein the cars are moved by rotating wheels within the pipeline
    • D) wherein the cars are moved by alternating magnetic fields, including a variant where the apparatus is like a “mag-lev” train.


IV) putting the fuel into round objects with holes (size may range from be-be's to volley balls), and then freezing the fuel in the round objects. The principle is that the fuel-containing objects can roll through the pipeline. They may be propelled either

    • A) magnetically;
    • B) by a pushing device;
    • C) by gravity,
      • 1) in a downhill section of actual pipeline; or
      • 2) when moving from a tank to an actual pipeline, when the center of gravity of the fuel within the tank is above the level of the actual pipeline.


Emergency Apparatus and Method for Rapidly Lowering the Temperature of a Jeopardized Pipeline:


In order to further protect a pipeline which is threatened, damaged or attacked, further cooling of the fuel within it, on a rapid basis, may be advantageous. This may be accomplished by having a source of cold temperature substance either within it, or immediately adjacent to it.


Examples of the cold substance are:


I) frozen fuel (in the case of a pipeline containing chilled liquid fuel);


II) dry ice (i.e. frozen carbon dioxide) (in the case of a pipeline containing chilled liquid fuel); and


III) a very cold liquid (e.g. liquid nitrogen, or another liquid which is chemically highly stable, such as a liquefied form of a noble element) in the case of a pipeline carrying either a solid or liquid fuel.


The substance may be stored:


I) within the pipeline; or


II) outside of the pipeline (but in its vicinity).


Pipeline Monitoring:


The monitoring may be:


I) automatic, i.e. by microprocessors within or in the vicinity of the pipeline;


II) by humans, either in the vicinity of the pipeline, or remotely located; and


III) by combinations of I) and II), immediately above.


The monitoring may be used to:


I) control the flow of fuel under non-emergency conditions;


II) detect pipeline damage;


III) divert fuel during emergency conditions; and


IV) activate the emergency apparatus for rapidly lowering temperature during an emergency.


Referring to the figures:



FIG. 1 shows a segment of a pipeline 10. Fuel would be contained in the space 12 within the pipeline. (Although the contents of the figure resembles a segment of actual pipeline, nothing contained within the figure or the discussion of the figure is inconsistent with or inapplicable to the case of 10 also constituting the walls of a fuel storage tank, and 12 being the space within the tank.)


The pipeline has an inner layer 9 and an outer layer 11. The space between the inner and outer layers may contain:


I) insulating material (which may be solid, liquid, gas, or a mixture of these);


II) may consist of the same material of one or more of 9 or 11; or


III) may be a vacuum, or a highly evacuated region with “near vacuum” conditions.



14 is a temperature sensor outside of the pipeline, or at its outer edge. 16 is a temperature sensor situated between the inner and the outer pipeline walls. 18 is a temperature sensor inside of the fuel containing segment of the pipeline. Though only one each of 14, 16 and 18 are shown in the figure, it is to be understood that such elements may be placed at intervals axially (rightwards or leftwards in the figure) and radially (in the figure, e.g., associated with the pipeline wall segment “below” that containing 14, 16 and 18 [i.e. in the segment between elements 22]). In the case of a tank, they may be anywhere along its walls.



14, 16 and 18 could also be pressure sensors. Alternatively 14, 16 and 18 could represent a mixture of temperature, pressure and possibly other sensors. (The other sensors could include chemical detectors for either the fuel or for whatever substance [e.g. air] surrounds 11.)



20 represents equipment which receives information from sensors 14, 16 and 18. It includes a microprocessor. The information can be used to control refrigeration elements 22 directly. In an alternative embodiment, 20 sends a signal to a remote station, not shown. A person, a computer, a bank of computers, a microprocessor, multiple microprocessors or a combination of the aforementioned at the remote station then receives the signal, analyzes/processes it, and sends a return signal which is used to control 22.


The figure shows no hardwire connections between the sensors and 20, and shows no such connections between 20 and 22. The connections could be using conventional wireless technology, as is known in the art, or could be hardwired, as is shown in reference to FIG. 2 (see below), or could be a mixture of hardwired and wireless.


The pipeline may contain one or more additional concentric layers (e.g. one or more layers outside of 11). In the case of one additional layer, for example, the result would be the creation of a space between 11 and the additional outer layer. This space could have the same or different properties as the space between 9 and 11. 14 could, in this exemplary case be considered a sensor within the space defined by 11 and the outer layer. Additional sensors analogous to 14 and 16 could be placed to monitor the outer layer.



FIG. 2 shows an embodiment of the invention in which the pipeline monitoring apparatus is connected by hardwire connections. Element 20 of FIG. 1 is replaced in FIG. 2 by elements 19 (a microprocessor plus interface apparatus [as is known in the art] to render 19 able to exchange signals with 21 and 22) and 21 (a transmitter/receiver device). In an alternate embodiment of the invention, one or more of the connections between 19 and the remote station may be hardwired. Embodiments of the invention are possible in which:


I) multiple 14s, 16s and 18s connect to each 19;


II) multiple 19s connect to a single 21; and


III) multiple 22s are controlled by a single 19.


Many other alternate embodiments, where the alternations involve the number of connections between the types of elements shown in FIG. 2, will be obvious to those skilled in the art.



FIG. 3A shows an embodiment of the invention in which portions of fuel 112A and 112B are pushed through actual pipeline 110. In the figure, fuel movement is from left to right, and pushing apparatus 114 pushes fuel element 112B. Cooling apparatus 115 is provided to keep the contents of the pipeline cold.



112A and 112B (referred to collectively as 112) may be:


I) a block of solid fuel;


II) a container which contains solid fuel; or


III) a container which contains liquid fuel.


The movement of 112 is passive, i.e. in response to pushing element 114. 112 may shaped as a rectangular block, or, as shown in FIG. 3B, which is a cross sectional view of the same apparatus as is shown in FIG. 3A, or 112 may be cylindrical.



114 may push 112B:


I) with an energy supply contained within 114 (and replenished from time to time);


II) with an energy supply external to 114, e.g.

    • A) by rotating elements 118 (rotating clockwise when viewed above the plane of the paper);
    • B) by an externally applied varying magnetic field (as is known in the art—e.g. so-called “mag-lev” trains) such as may be supplied by elements 116; or
    • C) by energy transfer to 114, e.g. by electromagnetic induction or radiofrequency means, with elements 116 serving as the source of such energy.


In embodiments of the invention with a self contained power source within 114, elements 116 may be unnecessary. In embodiments of the invention with magnetic levitation, elements 118 may be unnecessary. Numerous other methods of pushing fuel containing elements 112 will be obvious to those skilled in the art.


Embodiments of the invention in which 114 pushes 112B for long distances or even for the length of the actual pipeline are possible. In an alternate embodiment of the invention, 114 is larger than 112, and contains collapsible elements 120A and 120B (collectively referred to as 120). The collapse of 120 allows 114 to slide over 112. In such an embodiment,


I) 114 may (with 120 non-collapsed) push 112B along a segment of actual pipeline (left to right in the figure);


II) Simultaneous with I), an element similar to 114 pushes 112A from left to right;


III) Then 120 collapses, allowing 114 to move from right to left, over 112A, thereby to return to the position occupied by 114 at the start of I) above.


The process of I), II), III) then repeats.


In an alternative embodiment, 114 may be a pulling device, which pulls 112A, instead of pushing 112B. The discussion hereinabove about the functional possibilities of 114 (in terms of power source and in terms of continuous or cyclical motion) are identical for the “pulling” as for the pushing case.


In yet another alternative embodiment, 114 may serve the dual purpose of both pushing 112B and pulling 112A. Again, the above details apply.


The collapse of 120 may be analogous to the opening of an iris in a camera lens. Other means of achieving the collapse of 120 will be obvious to those skilled in the art. In yet another alternative embodiment, 114 may collapse in a way which allows it to intermittently pass adjacent to 112A, moving in the direction opposite to that of 112A.



FIG. 3B shows a cross sectional view of the actual pipeline shown in FIG. 3A. Although the figure shows an example with a circular cross section, embodiments of the invention with non-circular cross sections are possible. The figure shows an example in which 114 is capable of sliding over 112, so that 114 motion may be cyclical, as discussed hereinabove.



FIG. 3C shows apparatus which could be used to supply the apparatus of FIG. 3A with frozen fuel. A tubular structure 52, which for example may be circular, square, rectangular or triangular in cross-section, is provided with a refrigeration device 50. The refrigeration device receives liquid fuel at its inlet and passes frozen fuel out its outlet to the inlet end of the tubular structure. A conveyance device 54 is provided within the tubular structure to convey the frozen fuel from left to right (in the sense of the drawing), to the outlet end of the structure.



FIG. 4 shows an actual pipeline example in which fuel elements 122A and 122B (collectively referred to as 122) are not separated by a pushing and or pulling element analogous to 114. Among the possibilities for such an approach are embodiments in which:


I) apparatus with pushing and/or pulling capability (and the energy source for the motion) is contained within 122; and 122 consists of a vehicle which both contains the fuel and contains apparatus for moving the vehicle;


II) apparatus with pushing and/or pulling capability (which depends on an externally supplied energy source for the motion) is contained within 122; and 122 consists of a vehicle which both contains the fuel and contains apparatus for moving the vehicle; and


III) apparatus in which each of 128 rotates, and thereby propels 122, i.e. by friction between 128 and 122. (Each similarly shaped circular element in the figure is considered 128.)


Elements 126 (Each similarly shaped square element in the figure is considered 126.) in FIG. 4 are analogous to 116 in FIG. 3A, i.e. a source of external energy for either the rotation of elements 128, for the movement generating apparatus within 122, or both.



FIG. 5A shows actual pipeline 130 containing spherical elements 132. Each similarly shaped round element in the figure is considered 132. 132 would contain the fuel, encased in an apparatus with a relatively low coefficient of friction, such that it can roll through actual pipeline 130. As indicated hereinabove, the fuel containing balls may be propelled either:

    • A) magnetically;
    • B) by a pushing device; or
    • C) by gravity.


      Furthermore, as indicated hereinabove, this propulsion system may apply to actual pipelines and to fuel moving from a tank to a pipeline. Indeed the concepts embodied by the propulsion systems shown in FIGS. 3A and 4 could also be applied to fuel exiting a tank and entering an actual pipeline, or to fuel moving within a tank. In these cases, the geometric constraint implied by the structure of 110, 121 and 130 would be altered, due to a less constrained tank structure.



FIG. 5B shows an example of a hollow ball 140 with holes 142 which allow fuel ingress and egress. Each similarly shaped small round element in the figure is considered 142. The storage process is as follows:


1) Fuel in the liquid state passes into the core of 140 through holes 142.


2) The temperature is then lowered, causing the solidification of the fuel within 140.


3) 140 is then moved, taking advantage of its rounded outer contour. (Holes 142 do not project outside of the spherical exterior of 140; That they appear to in the figure is simply a case of artistic license.)


4) When fuel-containing 140 reaches its destination, the temperature is raised, the fuel melts, and flows out of 140.



FIG. 6 shows an example of two valves 152 and 156 within actual pipeline 150 (consisting of elements 150A, 150B and 150C); The purpose of the valves is containment of a problem within actual pipeline segment 150B. During ordinary pipeline operation (i.e. no threat or problem), valves 152 and 156 are open, allowing the passage of a hazardous substance, e.g. a fuel, from 150A to 150B to 150C. In the event of threat or problem involving segment 150B, both valves are closed, in an attempt to restrict the problem to segment 150B. In a preferred embodiment of the invention, a valve closure signal is sent electronically to valve 152 via wires 154, and to valve 156 via wires 158. The source of the signal is the monitoring and control apparatus shown in FIGS. 1 and 2. In the automatic case, microprocessor 20 (via interface apparatus) would signal 152 and 156 to close. In the case where an external person or apparatus is in control, the valve closure signal would be received by 21, and be sent from 19 to 152 and 156.


As indicated hereinabove, additional protection results by pumping/moving fuel away from the problem segment:

    • Pump 153 may pump the fuel out of segment 150A;
    • Pump 157 may pump the fuel out of segment 150C.


An “all clear” signal, sent out if the problem situation which caused valve closure had resolved, could later be sent to open 152 and 156 in a procedure analogous to that of their closure.


Cooling apparatus 155 is provided to cool the contents of the pipeline.



FIG. 7A shows an apparatus for rapidly cooling the fuel 162 within pipeline 160. 160 contains pipeline 164 (which therefore may be a) an actual pipeline within an actual pipeline, b) an actual pipeline within a tank, or c) a tank within a tank. 164 contains cold liquid or solid 166 as described hereinabove. In the event of threat or disaster, valves 168 and 170 are caused to open, allowing 166 to mix with 162. In the embodiment in which 166 is a solid, means for moving 166 out of 164 and into the fuel-containing space of 160 would improve operation of the invention. The valves are controlled as described in conjunction with FIG. 6 hereinabove.



FIG. 7B shows a cross sectional view of the apparatus shown in FIG. 7A. In both FIGS. 7A and 7B, the pipeline 160 is shown as having a refrigeration unit 165 to cool its contents 162. Although a circular configuration for each of 160 and 164 are shown, neither need be circular. Furthermore, the position of 164 within 160 need not be central; off-center locations are possible, including locations at or near the outer wall of 160. In an alternative embodiment of the invention, locations in which 164 is outside of 160, are possible; In such instances, passageways allowing the movement of coolant 166 into the interior of 160 would be necessary.


There is thus described herein a method of reducing the risk of accidental or intentional widespread pipeline damage, for fuel containing pipelines (including actual pipelines and tanks).


The apparatus and methods described herein would also be usable in situations for pipelines which contain:


I) a gaseous fuel (in which case causing the fuel to change state to either a liquid or a solid could increase the safety of transport);


II) a hazardous chemical in gaseous state (in which case causing the chemical to change state to either a liquid or a solid could increase the safety of transport);


III) a hazardous chemical in liquid state (in which case causing the chemical to change state to a solid could increase the safety of transport);


IV) a radiation emitting substance in gaseous state (in which case causing the substance to change state to either a liquid or a solid could increase the safety of transport); and


V) a radiation emitting substance in liquid state (in which case causing the substance to change state to a solid could increase the safety of transport).


Numerous variations in the apparatus and methods of fuel transport within an actual pipeline and within a tank or between tanks, of pipeline construction, of pipeline monitoring and of pipeline management during an emergency—each based on the fundamental principles presented herein—will be obvious to those skilled in the art.

Claims
  • 1. A method of transporting a hazardous fluid through a pipeline comprising the steps of: (a) treating the fluid to change its hazardous condition so as to substantially reduce the risk posed by its original hazardous condition to at least one of (i) said pipeline and (ii) the environment;(b) transporting the treated fluid through said pipeline in such a manner that the risk of its hazardous condition remains reduced;(c) after transportation, retreating the fluid to restore it to its original hazardous condition; and(d) using the fluid in its restored condition;thereby to reduce the danger to the pipeline and the environment.
  • 2. The method defined in claim 1, wherein in step (c) said hazardous fluid is restored to its original hazardous condition prior to its treatment in step (a).
  • 3. The method defined in claim 1, wherein said fluid is a fuel and said hazardous condition is at least one of (i) combustibility of said fuel, (ii) volatility of said fuel, (iii) explosivity of said fuel, and (iv) ease of ignition of said fuel.
  • 4. The method defined in claim 3, wherein said fluid is a fuel in the liquid state.
  • 5. The method defined in claim 4, wherein said fluid is a petroleum based fuel.
  • 6. The method defined in claim 3, wherein said fluid is a fuel is a gaseous state.
  • 7. The method defined in claim 6, wherein said fluid is a natural gas.
  • 8. The method defined in claim 3, wherein step (a) includes the step of reducing at least one of (i) vapor pressure, (ii) temperature, and (iii) fluidity of said hazardous fluid, to reduce its combustibility.
  • 9. The method defined in claim 3, wherein step (a) includes the step of freezing the fluid, wherein the fluid is maintained in a solid state.
  • 10. The method defined in claim 3, wherein said fluid is maintained in the pipeline in the form of frozen units, and wherein step (b) includes the step of moving said frozen units through said pipeline.
  • 11. The method defined in claim 9, wherein step (c) includes heating said hazardous fluid.
  • 12. The method defined in claim 9, wherein step (a) includes the step of reducing the temperature of the fluid to colder than 15 degrees C. below the freezing temperature.
  • 13. The method defined in claim 9, wherein step (a) includes the step of reducing the temperature of the fluid to colder than 25 degrees C. below the freezing temperature.
  • 14. The method defined in claim 3, wherein step (a) includes the step of cooling the fluid to its freezing temperature or above, wherein the fluid is maintained in a liquid state.
  • 15. The method defined in claim 3, wherein step (a) includes the step of cooling the fluid to its pour point or above, wherein the fluid is maintained in a liquid state.
  • 16. The method defined in claim 3, wherein step (a) includes the step of cooling the fluid to a temperature between its freezing temperature and its pour point.
  • 17. The method defined in claim 14, wherein the step (a) includes the step of cooling the fluid to a temperature between its freezing temperature and a temperature about 40 degrees C. above its freezing temperature, wherein the fluid remains is maintained in a liquid state.
  • 18. The method defined in claim 14, wherein the step (a) includes the step of cooling the fluid to a temperature between its freezing temperature and a temperature about 25 degrees C. above its freezing temperature, wherein the fluid is maintained in a liquid state.
  • 19. The method defined in claim 14, wherein the step of treating the fluid includes cooling the fluid to a temperature between its freezing temperature and a temperature about 10 degrees C. above its freezing temperature, wherein the fluid is maintained in a liquid state.
  • 20. The method defined in claim 14, wherein the step of treating the fluid includes cooling the fluid to a temperature between its freezing temperature and a temperature about 1 degree C. above its freezing temperature, wherein the fluid is maintained in a liquid state.
  • 21. The method defined in claim 14, wherein the step of treating the fluid includes cooling the fluid to about its freezing temperature, wherein the fluid is maintained in a liquid state.
  • 22. The method defined in claim 3, wherein the step of treating the fluid includes cooling the fluid to about its freezing temperature.
  • 23. The method defined in claim 3, wherein the step of increasing at least one of (i) combustibility of said fuel, (ii) volatility of said fuel, (iii) explosivity of said fuel, and (iv) ease of ignition of said fuel, includes heating said fluid.
  • 24. A method of supplying fuel to a storage facility, said method comprising the steps of: (a) freezing the fuel before loading the fuel into the storage facility; and(b) loading the fuel into the storage facility in the frozen state;thereby to reduce at least one of (i) combustibility of said fuel, (ii) volatility of said fuel, (iii) explosivity of said fuel, and (iv) ease of ignition of said fuel.
  • 25. The method defined in claim 24, further comprising the step of: (c) heating a portion of the frozen fuel to form liquid fuel, as needed when it is to be removed from said storage facility;whereby the fuel in the storage facility remains in the frozen state until needed.
  • 26. The method defined in claim 24, further comprising the step of: (c) maintaining the fuel in a frozen state when it is to be removed from said storage facility;whereby the fuel in the storage facility remains in the frozen state at all times.
  • 27. The method defined in claim 25, wherein the fuel in said storage facility is maintained as a solid, below its freezing point, prior to heating.
  • 28. The method defined in claim 25, wherein the fuel in said storage facility is maintained at approximately its freezing point, prior to heating.
  • 29. A method of supplying fuel to a storage facility, said method comprising the steps of: (a) loading the fuel into the storage facility in the liquid state; and(b) freezing the fuel inside of said storage facility;thereby to reduce at least one of (i) combustibility of said fuel, (ii) volatility of said fuel, (iii) explosivity of said fuel, and (iv) ease of ignition of said fuel.
  • 30. The method defined in claim 29, further comprising the step of: (c) heating a portion of the frozen fuel to form liquid fuel, as needed when it is to be removed from said storage facility;whereby the fuel in the storage facility remains in the frozen state until needed.
  • 31. The method defined in claim 29, further comprising the step of: (c) maintaining the fuel in a frozen state when it is to be removed from said storage facility;whereby the fuel in the storage facility remains in the frozen state at all times.
  • 32. The method defined in claim 30, wherein the fuel in said storage facility is maintained as a solid, below its freezing point, prior to heating.
  • 33. The method defined in claim 30, wherein the fuel in said storage facility is maintained at approximately its freezing point, prior to heating.
  • 34. A method of supplying fuel to a storage facility, said method comprising the steps of: (a) cooling the fuel before loading the fuel into the storage facility, wherein said cooled fuel is in a liquid state;(b) loading the cooled fuel into said storage facility in the liquid state at a temperature between its freezing temperature and a temperature about 40 degrees C. above its freezing temperature, wherein the fuel remains a liquid; and(c) maintaining the fuel in said storage facility at a temperature between its freezing temperature and a temperature about 40 degrees C. above its freezing temperature wherein the fuel remains a liquid,thereby to reduce at least one of (i) combustibility of said fuel, (ii) volatility of said fuel, (iii) explosivity of said fuel, and (iv) ease of ignition of said fuel.
  • 35. A method of supplying fuel to storage facility, said method comprising the steps of: (a) loading the fuel into the storage facility in the liquid state at or about ambient temperature; and(b) cooling the fuel in the storage facility to a temperature between its freezing temperature and a temperature about 40 degrees C. above its freezing temperature, wherein the fuel remains a liquid;(c) maintaining the fuel in said storage facility at a temperature between its freezing temperature and a temperature about 40 degrees C. above its freezing temperature, wherein the fuel remains a liquid;thereby to reduce at least one of (i) combustibility of said fuel, (ii) volatility of said fuel, (iii) explosivity of said fuel, and (iv) ease of ignition of said fuel.
  • 36. The method defined in claim 34, wherein the step of maintaining the fuel in the storage facility at a reduced temperature includes cooling the fuel to a temperature between its freezing temperature and a temperature about 25 degrees C. above its freezing temperature to reduce at least one of (i) combustibility of said fuel, (ii) volatility of said fuel, (iii) explosivity of said fuel, and (iv) ease of ignition of said fuel, while said fuel remains a liquid.
  • 37. The method defined in claim 34, wherein the step of maintaining the fuel in the storage facility at a reduced temperature includes cooling the fuel to a temperature between its freezing temperature and a temperature about 10 degrees C. above its freezing temperature to reduce at least one of (i) combustibility of said fuel, (ii) volatility of said fuel, (iii) explosivity of said fuel, and (iv) ease of ignition of said fuel, wherein said fuel remains a liquid.
  • 38. The method defined in claim 34, wherein the step of maintaining the fuel in the storage facility at a reduced temperature includes cooling the fuel to about its freezing temperature to reduce at least one of (i) combustibility of said fuel, (ii) volatility of said fuel, (iii) explosivity of said fuel, and (iv) ease of ignition of said fuel, wherein said fuel remains a liquid.
  • 39. The method defined in claim 35, wherein the step of cooling the fuel in said storage facility includes cooling the fuel to a temperature between its freezing temperature and a temperature about 25 degrees C. above its freezing temperature to reduce at least one of (i) combustibility of said fuel, (ii) volatility of said fuel, (iii) explosivity of said fuel, and (iv) ease of ignition of said fuel, wherein said fuel remains a liquid.
  • 40. The method defined in claim 35, wherein the step of cooling the fuel in said storage facility includes cooling the fuel to a temperature between its freezing temperature and a temperature about 10 degrees C. above its freezing temperature to reduce at least one of (i) combustibility of said fuel, (ii) volatility of said fuel, (iii) explosivity of said fuel, and (iv) ease of ignition of said fuel, wherein said fuel remains a liquid.
  • 41. The method defined in claim 35, wherein the step of cooling the fuel in said storage facility includes cooling the fuel to about its freezing temperature to reduce at least one of (i) combustibility of said fuel, (ii) volatility of said fuel, (iii) explosivity of said fuel, and (iv) ease of ignition of said fuel, wherein said fuel remains a liquid.
  • 42. The method defined in claim 24, wherein said fuel is frozen by conducting heat away using a substance selected from the group consisting of liquid nitrogen, liquid carbon dioxide, solid carbon dioxide, and a liquid noble element from Group VIII of the Periodic Table.
  • 43. The method defined in claim 29, wherein said fuel is frozen by conducting heat away using a pressurized liquid selected from the group consisting of nitrogen, carbon dioxide, and a noble element from Group VIII of the Periodic Table.
  • 44. The method defined in claim 34, wherein said fuel is cooled by conducting heat away using a pressurized liquid selected from the group consisting of liquid nitrogen, liquid carbon dioxide, and a liquid noble element from Group VIII of the Periodic Table.
  • 45. The method defined in claim 35, wherein said fuel is cooled by conducting heat away using a pressurized liquid selected from the group consisting of liquid nitrogen, liquid carbon dioxide, and a liquid noble element from Group VIII of the Periodic Table.
  • 46. The method defined in claim 25, wherein said portion of the fuel is heated by means selected from the group consisting of electrical heating elements, electromagnetic energy, heat exchange with engine oil, heat exchange with engine exhaust and heat exchange with ambient air.
  • 47. The method defined in claim 30, wherein said portion of the fuel is heated by means selected from the group consisting of electrical heating elements, electromagnetic energy, heat exchange with engine oil, heat exchange with engine exhaust and heat exchange with ambient air.
  • 48. The method defined in claim 24, further comprising the step of shaving off a portion of said frozen fuel prior to heating said portion.
  • 49. The method defined in claim 29, further comprising the step of shaving off a portion of said frozen fuel prior to heating said portion.
  • 50. The method defined in claim 25, further comprising the step of rapidly cooling said portion of the liquid fuel in case of an emergency.
  • 51. The method defined in claim 30, further comprising the step of rapidly cooling said portion of the liquid fuel in case of an emergency.
  • 52. The method defined in claim 50, wherein said step of rapidly cooling includes injecting a cooling liquid into said portion of fuel.
  • 53. The method defined in claim 51, wherein said step of rapidly cooling includes injecting a cooling liquid into said portion of fuel.
  • 54. A method of loading and transporting fuel in a pipeline, said method comprising the steps of: (a) freezing the fuel before loading the fuel into the pipeline;(b) loading the fuel into said pipeline in the frozen state; and(c) transporting the fuel through said pipeline in the frozen state;thereby to reduce at least one of (i) combustibility of said fuel, (ii) volatility of said fuel, (iii) explosivity of said fuel, and (iv) ease of ignition of said fuel.
  • 55. A method of loading and transporting fuel in a pipeline, said method comprising the steps of: (a) loading the fuel into said pipeline in the liquid state;(b) freezing the fuel inside of said pipeline; and(c) transporting the fuel through said pipeline in the frozen state;thereby to reduce at least one of (i) combustibility of said fuel, (ii) volatility of said fuel, (iii) explosivity of said fuel, and (iv) ease of ignition of said fuel.
  • 56. A method of loading and transporting fuel in a pipeline, said method comprising the steps of: (a) cooling the fuel before loading the fuel into the storage facility, wherein said cooled fuel is in a liquid state;(b) loading the fuel into said pipeline in the liquid state at a temperature between its freezing temperature and a temperature about 40 degrees C. above its freezing temperature, wherein the fuel remains a liquid; and(c) maintaining the fuel in said pipeline at a temperature between its freezing temperature and a temperature about 40 degrees C. above its freezing temperature, wherein the fuel remains a liquid;thereby to reduce at least one of (i) combustibility of said fuel, (ii) volatility of said fuel, (iii) explosivity of said fuel, and (iv) ease of ignition of said fuel.
  • 57. A method of loading and transporting fuel in a pipeline, said method comprising the steps of: (a) loading the fuel into said pipeline in the liquid state at or about ambient temperature; and(b) cooling the fuel in said pipeline to a temperature between its freezing temperature and a temperature about 40 degrees C. above its freezing temperature, wherein the fuel remains a liquid;(c) maintaining the fuel in said pipeline at a temperature between its freezing temperature and a temperature about 40 degrees C. above its freezing temperature, wherein the fuel remains a liquid;thereby to reduce at least one of (i) combustibility of said fuel, (ii) volatility of said fuel, (iii) explosivity of said fuel, and (iv) ease of ignition of said fuel.
  • 58. The method of temporarily reducing a hazardous condition of a fluid in a storage facility, comprising the steps of: (a) treating the fluid to change its hazardous condition so as to substantially reduce the risk posed by its original hazardous condition to at least one of (i) said storage facility and (ii) the environment;(b) storing the treated fluid; and(c) treating at least a portion of the previously treated fluid to restore the condition of the fluid to that prior to step (a);thereby to reduce the danger to the storage facility and the environment.
  • 59. The method defined in claim 58, wherein the fluid is a fuel and said hazardous condition is at least one of (i) combustibility of said fuel, (ii) volatility of said fuel, (iii) explosivity of said fuel, and (iv) ease of ignition of said fuel, and wherein the method further comprises the step of utilizing said portion of the fuel whose condition has been restored, in an exothermic reaction to yield energy.
  • 60. The method defined in claim 58, wherein step (a) includes the step of reducing at least one of (i) vapor pressure (ii) temperature, and (iii) fluidity of the fuel to reduce its combustibility in open air.
  • 61. The method defined in claim 58, wherein step (a) includes the step of cooling the fuel to a temperature in the range of 25° C. above to 25° C. below its freezing temperature.
  • 62. The method defined in claim 61, wherein step (c) includes the step of heating said portion of the fuel.
  • 63. The method defined in claim 58, wherein step (a) includes the step of adding to the fuel a first chemical composition.
  • 64. The method defined in claim 63, wherein the chemical composition is a polymer.
  • 65. The method defined in claim 63, wherein the chemical composition is a gel.
  • 66. The method defined in claim 65, wherein the gel is an aerogel.
  • 67. The method defined in claim 64, wherein the polymer is bonded to the inner surfaces of the fuel tank.
  • 68. The method defined in claim 64, wherein the polymer is bonded to small beads.
  • 69. The method defined in claim 65, wherein the gel is bonded to the inner surfaces of the fuel tank.
  • 70. The method defined in claim 65, wherein the gel is bonded to small beads.
  • 71. The method defined in claim 64, wherein step (c) includes the step of removing the polymer by filtration.
  • 72. The method defined in claim 65, wherein step (c) includes the step of removing the gel by filtration.
  • 73. The method defined in claim 68, wherein step (c) includes the step of removing the small beads by filtration.
  • 74. The method defined in claim 63, wherein step (c) includes the step of removing the first composition by at least one of electro-deposition, electrostatic deposition and electro-precipitation.
  • 75. The method defined in claim 63, wherein step (c) includes the step of adding a second chemical composition to said portion of the fuel.
  • 76. The method defined in claim 1, wherein the step of treating the fluid includes cooling the fluid to its freezing temperature or above, wherein the fluid remains a liquid.
  • 77. A pipeline for transporting a hazardous fluid, said pipeline comprising: (a) a hollow pipe having an inlet end and an outlet end;(b) a plurality of sensors arranged along said pipe at spaced intervals between said inlet end and said outlet end, said sensors being operative to sense when said hazardous fluid is likely to escape from said pipe;(c) a plurality injectors, responsive to said sensors, for injecting a cooling liquid into the pipe at spaced intervals between said inlet end and said outlet end; whereby(i) said sensors, upon detection of said likelihood of escape, cause said injectors to inject said cooling liquid; and(ii) said cooling liquid renders said fluid less hazardous.
  • 78. The apparatus defined in claim 77, further comprising cooling apparatus, disposed on said pipe, for cooling said hazardous fluid within said pipe, whereby the fluid is transported through said pipe in a cooled state thereby to render said fluid less hazardous.
  • 79. A pipeline for transporting a hazardous fluid, said pipeline comprising: (a) a first hollow pipe having an inlet end and an outlet end;(b) a plurality of sensors arranged along said pipe at spaced intervals between said inlet end and said outlet end, said sensors being operative to sense when said hazardous fluid is likely to escape from said pipe;(c) a first valve, disposed at said inlet end, for controlling the entry of fluid into said pipe;(d) a second valve, disposed at said outlet end, for controlling the exit of fluid from said pipe; and(e) at least one control device, responsive to said sensors, for closing at least one of the first valve and the second valve; whereby(i) upon detection of said likelihood of escape by one or more of said sensors, at least one of said first valve and said second valve is closed by said control device; and(ii) said at least one closed valve restricts the access of said hazardous fluid to said pipe thereby to render said fluid less hazardous.
  • 80. The apparatus defined in claim 79, further comprising (i) a second hollow pipe, having an inlet end coupled to the outlet end of the first hollow pipe and located downstream from said first hollow pipe, and having an outlet end, and (ii) a distal pump, coupled to said second hollow pipe; wherein, following the closing of said second valve, said distal pump is operative to drain said second hollow pipe, by pumping said hazardous fluid out of said second hollow pipe,thereby to secure the hazardous fluid that is present in the second hollow pipe.
  • 81. The apparatus defined in claim 79, further comprising (i) a third hollow pipe, having an outlet end coupled to said inlet end of said first hollow pipe and located upstream from said first hollow pipe, and having an inlet end, and (ii) a proximal pump, coupled to said third hollow pipe; wherein, following the closing of said first valve, said proximal pump is operative to drain said third hollow pipe, by pumping said hazardous fluid out of said third hollow pipe;thereby to secure the hazardous fluid that is present in the third hollow pipe.
  • 82. The apparatus defined in claim 79, further comprising cooling apparatus, disposed on said pipe, for cooling said hazardous fluid within said pipe, whereby the fluid is transported through said pipe in a cooled state thereby to render said fluid less hazardous.
  • 83. Apparatus for freezing and transporting a hazardous fluid substance through a tube, said apparatus comprising: (a) a refrigeration device for freezing said substance, having an inlet for receiving said substance in a fluid state, and an outlet for discharging of said substance in a frozen state;(b) a tubular structure having an inlet end coupled to the outlet of said refrigeration device, and an outlet end;(c) a conveyance device, operative to (i) move within said tubular structure, between the inlet end and the outlet end of said tubular structure; and (ii) transport said substance in said frozen state from the inlet end to the outlet end; wherein(i) said refrigeration device freezes said fluid substance; and(ii) said conveyance device moves said frozen substance from said refrigeration apparatus through said tubular structure to the outlet end of said tubular structure; thereby to decrease the risk of transporting said hazardous substance.
  • 84. The apparatus defined in claim 83, further comprising a plurality of (X) serially connected tubular extensions, each Nth such tubular extension having an Nth inlet and an Nth outlet, and each Nth such tubular extension consisting of an Nth extension conveyance device, operative to: (i) move within an Nth tubular structure, between an inlet end of said Nth tubular structure and an outlet end of said Nth tubular structure; and(ii) transport said substance in said frozen state, through said Nth tubular structure; wherein(i) N is an integer which is at least the number (1), and at most the number (X);(ii) said first tubular extension inlet is coupled to said outlet end of said tubular structure;(iii) each other Nth tubular extension inlet end is coupled to the outlet end of the (N−1)th tubular extension;(iv) each Nth tubular extension outlet end, except for the outlet end of the Xth tubular extension, is coupled to the inlet end of the (N+1)th tubular extension;(v) each Nth extension conveyance device moves said frozen substance from said (N−1)th tubular extension outlet through said Nth tubular extension, thence to said (N+1)th tubular extension inlet;(vi) the Xth tubular extension outlet provides the frozen substance at a destination.
  • 85. The apparatus defined in claim 84, wherein at least one of said plurality of tubular extensions further comprises tubular extension refrigeration apparatus, disposed to maintain the temperature inside at least said at least one tubular extension, below the freezing point of said hazardous fluid; thereby to maintain said hazardous fluid in the frozen state as it is moved through said tubular extension.
CROSS-REFERENCE TO RELATED APPLICATION

This application claims priority from provisional patent application No. 60/933,033 filed Jun. 4, 2007. The subject matter of this application is related to that of U.S. Pat. No. 7,222,821, U.S. patent application Ser. No. 11/318,180, filed Dec. 24, 2005, and U.S. patent application of Ser. No. 11/805,963, filed on May 25, 2007. The subject matter of this patent and these two patent applications is incorporated herein by reference.

Provisional Applications (1)
Number Date Country
60933033 Jun 2007 US