The present disclosure relates to electronic devices that include overvoltage and current surge protection.
Gallium nitride (GaN) is commonly cited as a superior material for high-voltage power devices due to its wide bandgap and associated high electric field required for avalanche breakdown. Ideal bulk GaN crystals have critical fields in excess of 3,000,000 V per centimeter. However, in practice, a high electric field needed for avalanche breakdown is lowered by non-idealities that are present within the structure of a GaN device. During high voltage operation of a GaN device, electrical breakdown will typically occur at defects and/or at locations with a concentrated electric field. An example of such a breakdown location is a corner of a Schottky gate. An ideal structure comprising a bulk crystal such as silicon carbide (SiC) or GaN will avalanche uniformly in a high electric field region. As a result, avalanche energy is distributed uniformly, which greatly enhances the survivability of a device made up of an ideal bulk crystal. For example, vertical p-n junctions fabricated in SiC homoepitaxial layers demonstrate avalanche breakdown ruggedness. However, breakdown in defective GaN layers will typically occur at defects within defective GaN layers. A resulting high energy density typically causes irreversible damage to a device that includes defective GaN layers.
Another factor impacting breakdown ruggedness is the nature of the metal semiconductor contacts that carry a breakdown current. Previous work with SiC Schottky diodes has demonstrated that Schottky contacts can be degraded by avalanche current. In response to this problem, junction barrier Schottky diodes have been developed to urge avalanche breakdown to occur across a bulk p-n junction with ohmic contacts rather than Schottky contacts. Thus, the breakdown ruggedness of GaN high electron mobility transistors (HEMTs) may be limited by breakdown events in highly localized areas within a semiconductor due to crystal defects and/or electric field concentration. Moreover, the breakdown ruggedness of GaN HEMTs may be limited by an electrical breakdown of adjacent dielectric layers and/or high current flow through the Schottky gate electrode during breakdown events. Thus, there is a need to provide overvoltage protection for a GaN device to ensure that the GaN device handles a typically destructive breakdown voltage without being damaged.
A gallium nitride (GaN) device with leakage current-based over-voltage protection is disclosed. The GaN device includes a drain and a source disposed on a semiconductor substrate. The GaN device also includes a first channel region within the semiconductor substrate and between the drain and the source. The GaN device further includes a second channel region within the semiconductor substrate and between the drain in the source. The second channel region has an enhanced drain induced barrier lowering (DIBL) that is greater than the DIBL of the first channel region. As a result, a drain voltage will be safely clamped below a destructive breakdown voltage once a substantial drain current begins to flow through the second channel region.
Those skilled in the art will appreciate the scope of the disclosure and realize additional aspects thereof after reading the following detailed description in association with the accompanying drawings.
The accompanying drawings incorporated in and forming a part of this specification illustrate several aspects of the disclosure, and together with the description serve to explain the principles of the disclosure.
The embodiments set forth below represent the necessary information to enable those skilled in the art to practice the disclosure and illustrate the best mode of practicing the disclosure. Upon reading the following description in light of the accompanying drawings, those skilled in the art will understand the concepts of the disclosure and will recognize applications of these concepts not particularly addressed herein. It should be understood that these concepts and applications fall within the scope of the disclosure and the accompanying claims.
It will be understood that when an element such as a layer, region, or substrate is referred to as being “over,” “on,” “in,” or extending “onto” another element, it can be directly over, directly on, directly in, or extend directly onto the other element or intervening elements may also be present. In contrast, when an element is referred to as being “directly over,” “directly on,” “directly in,” or extending “directly onto” another element, there are no intervening elements present. It will also be understood that when an element is referred to as being “connected” or “coupled” to another element, it can be directly connected or coupled to the other element or intervening elements may be present. In contrast, when an element is referred to as being “directly connected” or “directly coupled” to another element, there are no intervening elements present.
Relative terms such as “below” or “above” or “upper” or “lower” or “horizontal” or “vertical” may be used herein to describe a relationship of one element, layer, or region to another element, layer, or region as illustrated in the Figures. It will be understood that these terms and those discussed above are intended to encompass different orientations of the device in addition to the orientation depicted in the Figures.
In exemplary embodiments, the DIBL of the second channel region 14 is enhanced by segmenting a gate G1 near the second channel region 14, and/or decreasing the gate length, and/or changing the dimensions of a field plate near the second channel region 14, and/or changing the spacing between the gate G1 and the drain D1 near the second channel region 14, and/or altering an epitaxial layer stack including doping near the second channel region 14. The present disclosure may, however, be embodied in many different forms and should not be construed as limited to the exemplary embodiments set forth therein. Rather, these exemplary embodiments are provided so that the present disclosure will be thorough and complete, and will fully convey the scope of the present disclosure to those skilled in the art. As such, details of well-known features and techniques may be omitted to avoid unnecessarily obscuring the presented embodiments.
Referring back to
In each of the four exemplary segmented gate embodiments, the first channel region 12 extends into the semiconductor substrate 20 adjacent to both the first gate segment G1A and the second gate segment G1B. The second channel region 14 extends into the semiconductor substrate 20 and being sandwiched between the first channel region 12. Each of the four exemplary segmented gate embodiments depicted in
Those skilled in the art will recognize improvements and modifications to the embodiments of the present disclosure. All such improvements and modifications are considered within the scope of the concepts disclosed herein and the claims that follow.
This application claims the benefit of U.S. provisional patent application No. 61/692,768, filed Aug. 24, 2012, the disclosure of which is incorporated herein by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
4317055 | Yoshida et al. | Feb 1982 | A |
4540954 | Apel | Sep 1985 | A |
4543535 | Ayasli | Sep 1985 | A |
4620207 | Calviello | Oct 1986 | A |
4788511 | Schindler | Nov 1988 | A |
5028879 | Kim | Jul 1991 | A |
5046155 | Beyer et al. | Sep 1991 | A |
5047355 | Huber et al. | Sep 1991 | A |
5107323 | Knolle et al. | Apr 1992 | A |
5118993 | Yang | Jun 1992 | A |
5208547 | Schindler | May 1993 | A |
5227734 | Schindler et al. | Jul 1993 | A |
5306656 | Williams et al. | Apr 1994 | A |
5361038 | Allen et al. | Nov 1994 | A |
5365197 | Ikalainen | Nov 1994 | A |
5389571 | Takeuchi et al. | Feb 1995 | A |
5414387 | Nakahara et al. | May 1995 | A |
5485118 | Chick | Jan 1996 | A |
5608353 | Pratt | Mar 1997 | A |
5629648 | Pratt | May 1997 | A |
5698870 | Nakano et al. | Dec 1997 | A |
5742205 | Cowen et al. | Apr 1998 | A |
5764673 | Kawazu et al. | Jun 1998 | A |
5834326 | Miyachi et al. | Nov 1998 | A |
5843590 | Miura et al. | Dec 1998 | A |
5864156 | Juengling | Jan 1999 | A |
5874747 | Redwing et al. | Feb 1999 | A |
5880640 | Dueme | Mar 1999 | A |
5914501 | Antle et al. | Jun 1999 | A |
5949140 | Nishi et al. | Sep 1999 | A |
6049250 | Kintis et al. | Apr 2000 | A |
6064082 | Kawai et al. | May 2000 | A |
6110757 | Udagawa et al. | Aug 2000 | A |
6130579 | Iyer et al. | Oct 2000 | A |
6133589 | Krames et al. | Oct 2000 | A |
6177685 | Teraguchi et al. | Jan 2001 | B1 |
6191656 | Nadler | Feb 2001 | B1 |
6229395 | Kay | May 2001 | B1 |
6265943 | Dening et al. | Jul 2001 | B1 |
6271727 | Schmukler | Aug 2001 | B1 |
6285239 | Iyer et al. | Sep 2001 | B1 |
6306709 | Miyagi et al. | Oct 2001 | B1 |
6307364 | Augustine | Oct 2001 | B1 |
6313705 | Dening et al. | Nov 2001 | B1 |
6329809 | Dening et al. | Dec 2001 | B1 |
6333677 | Dening | Dec 2001 | B1 |
6342815 | Kobayashi | Jan 2002 | B1 |
6356150 | Spears et al. | Mar 2002 | B1 |
6369656 | Dening et al. | Apr 2002 | B2 |
6369657 | Dening et al. | Apr 2002 | B2 |
6373318 | Dohnke et al. | Apr 2002 | B1 |
6376864 | Wang | Apr 2002 | B1 |
6377125 | Pavio et al. | Apr 2002 | B1 |
6384433 | Barratt et al. | May 2002 | B1 |
6387733 | Holyoak et al. | May 2002 | B1 |
6392487 | Alexanian | May 2002 | B1 |
6400226 | Sato | Jun 2002 | B2 |
6404287 | Dening et al. | Jun 2002 | B2 |
6448793 | Barratt et al. | Sep 2002 | B1 |
6455877 | Ogawa et al. | Sep 2002 | B1 |
6475916 | Lee et al. | Nov 2002 | B1 |
6477682 | Cypher | Nov 2002 | B2 |
6521998 | Teraguchi et al. | Feb 2003 | B1 |
6525611 | Dening et al. | Feb 2003 | B1 |
6528983 | Augustine | Mar 2003 | B1 |
6560452 | Shealy | May 2003 | B1 |
6566963 | Yan et al. | May 2003 | B1 |
6589877 | Thakur | Jul 2003 | B1 |
6593597 | Sheu | Jul 2003 | B2 |
6608367 | Gibson et al. | Aug 2003 | B1 |
6614281 | Baudelot et al. | Sep 2003 | B1 |
6621140 | Gibson et al. | Sep 2003 | B1 |
6624452 | Yu et al. | Sep 2003 | B2 |
6627552 | Nishio et al. | Sep 2003 | B1 |
6633073 | Rezvani et al. | Oct 2003 | B2 |
6633195 | Baudelot et al. | Oct 2003 | B2 |
6639470 | Andrys et al. | Oct 2003 | B1 |
6656271 | Yonehara et al. | Dec 2003 | B2 |
6657592 | Dening et al. | Dec 2003 | B2 |
6660606 | Miyabayashi et al. | Dec 2003 | B2 |
6701134 | Epperson | Mar 2004 | B1 |
6701138 | Epperson et al. | Mar 2004 | B2 |
6706576 | Ngo et al. | Mar 2004 | B1 |
6720831 | Dening et al. | Apr 2004 | B2 |
6723587 | Cho et al. | Apr 2004 | B2 |
6724252 | Ngo et al. | Apr 2004 | B2 |
6727762 | Kobayashi | Apr 2004 | B1 |
6748204 | Razavi et al. | Jun 2004 | B1 |
6750158 | Ogawa et al. | Jun 2004 | B2 |
6750482 | Seaford et al. | Jun 2004 | B2 |
6759907 | Orr et al. | Jul 2004 | B2 |
6802902 | Beaumont et al. | Oct 2004 | B2 |
6815722 | Lai et al. | Nov 2004 | B2 |
6815730 | Yamada | Nov 2004 | B2 |
6822842 | Friedrichs et al. | Nov 2004 | B2 |
6861677 | Chen | Mar 2005 | B2 |
6943631 | Scherrer et al. | Sep 2005 | B2 |
7015512 | Park et al. | Mar 2006 | B2 |
7026665 | Smart et al. | Apr 2006 | B1 |
7033961 | Smart et al. | Apr 2006 | B1 |
7042150 | Yasuda | May 2006 | B2 |
7052942 | Smart et al. | May 2006 | B1 |
7211822 | Nagahama et al. | May 2007 | B2 |
7408182 | Smart et al. | Aug 2008 | B1 |
7449762 | Singh | Nov 2008 | B1 |
7459356 | Smart et al. | Dec 2008 | B1 |
7557421 | Shealy et al. | Jul 2009 | B1 |
7719055 | McNutt et al. | May 2010 | B1 |
7768758 | Maier et al. | Aug 2010 | B2 |
7804262 | Schuster et al. | Sep 2010 | B2 |
7935983 | Saito et al. | May 2011 | B2 |
7968391 | Smart et al. | Jun 2011 | B1 |
7974322 | Ueda et al. | Jul 2011 | B2 |
8017981 | Sankin et al. | Sep 2011 | B2 |
8405068 | O'Keefe | Mar 2013 | B2 |
8502258 | O'Keefe | Aug 2013 | B2 |
8633518 | Suh et al. | Jan 2014 | B2 |
8692294 | Chu et al. | Apr 2014 | B2 |
8785976 | Nakajima et al. | Jul 2014 | B2 |
8988097 | Ritenour | Mar 2015 | B2 |
20010040246 | Ishii | Nov 2001 | A1 |
20010054848 | Baudelot et al. | Dec 2001 | A1 |
20020031851 | Linthicum et al. | Mar 2002 | A1 |
20020048302 | Kimura | Apr 2002 | A1 |
20020079508 | Yoshida | Jun 2002 | A1 |
20030003630 | Iimura et al. | Jan 2003 | A1 |
20030122139 | Meng et al. | Jul 2003 | A1 |
20030160307 | Gibson et al. | Aug 2003 | A1 |
20030160317 | Sakamoto et al. | Aug 2003 | A1 |
20030206440 | Wong | Nov 2003 | A1 |
20030209730 | Gibson et al. | Nov 2003 | A1 |
20030218183 | Micovic et al. | Nov 2003 | A1 |
20040070003 | Gaska et al. | Apr 2004 | A1 |
20040130037 | Mishra et al. | Jul 2004 | A1 |
20040241916 | Chau et al. | Dec 2004 | A1 |
20050139868 | Anda | Jun 2005 | A1 |
20050189559 | Saito et al. | Sep 2005 | A1 |
20050189562 | Kinzer et al. | Sep 2005 | A1 |
20050194612 | Beach | Sep 2005 | A1 |
20050212049 | Onodera | Sep 2005 | A1 |
20050225912 | Pant et al. | Oct 2005 | A1 |
20050271107 | Murakami et al. | Dec 2005 | A1 |
20060043385 | Wang et al. | Mar 2006 | A1 |
20060068601 | Lee et al. | Mar 2006 | A1 |
20060124960 | Hirose et al. | Jun 2006 | A1 |
20060205161 | Das et al. | Sep 2006 | A1 |
20060243988 | Narukawa et al. | Nov 2006 | A1 |
20070093009 | Baptist et al. | Apr 2007 | A1 |
20070295985 | Weeks, Jr. et al. | Dec 2007 | A1 |
20080023706 | Saito et al. | Jan 2008 | A1 |
20080073752 | Asai et al. | Mar 2008 | A1 |
20080112448 | Ueda et al. | May 2008 | A1 |
20080121875 | Kim | May 2008 | A1 |
20080142837 | Sato et al. | Jun 2008 | A1 |
20080179737 | Haga et al. | Jul 2008 | A1 |
20080190355 | Chen et al. | Aug 2008 | A1 |
20080272382 | Kim et al. | Nov 2008 | A1 |
20080272422 | Min | Nov 2008 | A1 |
20080283821 | Park et al. | Nov 2008 | A1 |
20080308813 | Suh et al. | Dec 2008 | A1 |
20090072269 | Suh et al. | Mar 2009 | A1 |
20090090984 | Khan et al. | Apr 2009 | A1 |
20090146185 | Suh et al. | Jun 2009 | A1 |
20090146186 | Kub et al. | Jun 2009 | A1 |
20090166677 | Shibata et al. | Jul 2009 | A1 |
20090273002 | Chiou et al. | Nov 2009 | A1 |
20090278137 | Sheridan et al. | Nov 2009 | A1 |
20100025657 | Nagahama et al. | Feb 2010 | A1 |
20100133567 | Son | Jun 2010 | A1 |
20100187575 | Baumgartner et al. | Jul 2010 | A1 |
20100207164 | Shibata et al. | Aug 2010 | A1 |
20100230656 | O'Keefe | Sep 2010 | A1 |
20100230717 | Saito | Sep 2010 | A1 |
20100258898 | Lahreche | Oct 2010 | A1 |
20110017972 | O'Keefe | Jan 2011 | A1 |
20110025422 | Marra et al. | Feb 2011 | A1 |
20110031633 | Hsu et al. | Feb 2011 | A1 |
20110095337 | Sato | Apr 2011 | A1 |
20110101300 | O'Keefe | May 2011 | A1 |
20110115025 | Okamoto | May 2011 | A1 |
20110127586 | Bobde et al. | Jun 2011 | A1 |
20110163342 | Kim et al. | Jul 2011 | A1 |
20110175142 | Tsurumi et al. | Jul 2011 | A1 |
20110199148 | Iwamura | Aug 2011 | A1 |
20110211289 | Kosowsky et al. | Sep 2011 | A1 |
20110242921 | Tran et al. | Oct 2011 | A1 |
20110290174 | Leonard et al. | Dec 2011 | A1 |
20120018735 | Ishii | Jan 2012 | A1 |
20120086497 | Vorhaus | Apr 2012 | A1 |
20120126240 | Won | May 2012 | A1 |
20120199875 | Bhalla et al. | Aug 2012 | A1 |
20120211802 | Tamari | Aug 2012 | A1 |
20120218783 | Imada | Aug 2012 | A1 |
20120262220 | Springett | Oct 2012 | A1 |
20130277687 | Kobayashi et al. | Oct 2013 | A1 |
20130280877 | Kobayashi et al. | Oct 2013 | A1 |
20140015609 | Vetury et al. | Jan 2014 | A1 |
20140054585 | Ritenour | Feb 2014 | A1 |
20140054596 | Ritenour | Feb 2014 | A1 |
20140054597 | Ritenour et al. | Feb 2014 | A1 |
20140054602 | Johnson | Feb 2014 | A1 |
20140054604 | Ritenour | Feb 2014 | A1 |
20140055192 | Ritenour et al. | Feb 2014 | A1 |
20140057372 | Ritenour | Feb 2014 | A1 |
20140117559 | Zimmerman et al. | May 2014 | A1 |
20140118074 | Levesque et al. | May 2014 | A1 |
20150155222 | Shealy et al. | Jun 2015 | A1 |
Number | Date | Country |
---|---|---|
1187229 | Mar 2002 | EP |
1826041 | Aug 2007 | EP |
10242584 | Sep 1998 | JP |
2000031535 | Jan 2000 | JP |
2003332618 | Nov 2003 | JP |
2008148511 | Jun 2008 | JP |
2008258419 | Oct 2008 | JP |
20070066051 | Jun 2007 | KR |
2004051707 | Jun 2004 | WO |
2011162243 | Dec 2011 | WO |
2014035794 | Mar 2014 | WO |
Entry |
---|
Cho, H., et al., “High Density Plasma Via Hole Etching in SiC,” Journal of Vacuum Science & Technology A: Surfaces, and Films, vol. 19, No. 4, Jul./Aug. 2001, pp. 1878-1881. |
Krüger, Olaf, et al., “Laser-Assisted Processing of VIAs for AlGaN/GaN HEMTs on SiC Substrates,” IEEE Electron Device Letters, vol. 27, No. 6, Jun. 2006, pp. 425-427. |
Chang, S.J. et al., “Improved ESD protection by combining InGaN—GaN MQW LEDs with GaN Schottky diodes,” IEEE Electron Device Letters, Mar. 2003, vol. 24, No. 3, pp. 129-131. |
Chao, C-H., et al., “Theoretical demonstration of enhancement of light extraction of flip-chip GaN light-emitting diodes with photonic crystals,” Applied Physics Letters, vol. 89, 2006, 4 pages. |
Han, D.S. et al., “Improvement of Light Extraction Efficiency of Flip-Chip Light Emitting Diode by Texturing the Bottom Side Surface of Sapphire Substrate,” IEEE Photonics Technology Letters, Jul. 1, 2006, vol. 18, No. 13, pp. 1406-1408. |
Shchekin, O.B. et al., “High performance thin-film flip-chip InGaN—GaN light-emitting diodes,” Applied Physics Letters, vol. 89, 071109, Aug. 2006, 4 pages. |
Wierer, J. et al., “High-power AlGaInN flip-chip light-emitting diodes,” Applied Physics Letters, vol. 78 No. 22, May 28, 2001, pp. 3379-3381. |
Final Office Action for U.S. Appl. No. 131973,482, mailed Nov. 5, 2014, 9 pages. |
Fath, P. et al., “Mechanical wafer engineering for high efficiency solar cells: An investigation of the induced surface damage,” Conference Record of the Twenty-Fourth IEEE Photovoltaic Specialists Conference, Dec. 5-9, 1994, vol. 2, pp. 1347-1350. |
Han, D.S. et al., “Improvement of Light Extraction Efficiency of Flip-Chip Light-Emitting Diode by Texturing the Bottom Side Surface of Sapphire Substrate,” IEEE Photonics Technology Letters, Jul. 1, 2006, vol. 18, No. 13, pp. 1406-1408. |
Fath, P. et al., “Mechanical wafer engineering for high efficiency solar cells: an investigation of the induced surface damage,” Conference Record of the Twenty-Fourth IEEE Photovoltaic Specialists Conference, 5-9 Dec. 1994, vol. 2, pp. 1347-1350. |
Han, D.S. et al., “Improvement of Light Extraction Efficiency of Flip-Chip Light-Emitting Diode by Texturing the Bottom Side Surface of Sapphire Substrate,” IEEE Photonics Technology Letters, Jul. 1, 2006 |
Examination Report for British Patent Application No. GB090255.6, issued Feb. 28, 2013, 2 pages. |
Final Office Action for U.S. Appl. No. 12/841,225, mailed Feb. 1, 2012, 9 pages. |
Non-Final Office Action for U.S. Appl. No. 12/841,2525, mailed May 2, 2012, 10 pages. |
Boutros, K.S., et al., “5W GaN MMIC for Millimeter-Wave Applications,” 2006 Compound Semiconductor Integrated Circuit Symposium, Nov. 2006, pp. 93-95. |
Cho, H., et al., “High Density Plasma Via Hole Etching in SiC,” Journal of Vacuum Science & Technology A: Surfaces, and Films, vol. 19, No. 4, Jul.-Aug. 2001, pp. 1878-1881. |
Darwish, A.M., et al., “Dependence of GaN HEMT Millimeter-Wave Performance on Temperature,” IEEE Transactions on Microwave Theory and Techniques, vol. 57, No. 12, Dec. 2009, pp. 3205-3211. |
Krüger, Olaf, et al., “Laser-Assisted Processing of VIAs for AIGaN/GaN HEMTs on SiC Substrates,” IEEE Electron Device Letters, vol. 27, No. 6, Jun. 2006, pp. 425-427. |
Sheppard, S.T., et al., “High Power Demonstration at 10 GHz with GaN/AlGaN HEMT Hybrid Amplifiers,” 2000 Device Research Conference, Conference Digest, Jun. 2000, pp. 37-38. |
Non-Final Office Action for U.S. Appl. No. 13/795,926, mailed Dec. 19, 2014, 14 pages. |
Non-Final Office Action for U.S. Appl. No. 13/942,998, mailed Nov. 19, 2014, 9 pages. |
Non-Final Office Action for U.S. Appl. No. 13/871,526, mailed Dec. 16, 2014, 17 pages. |
Final Office Action for U.S. Appl. No. 13/910,202, mailed Jan. 20, 2015, 10 pages. |
Notice of Allowance for U.S. Appl. No. 13/914,060, mailed Nov. 13, 2014, 8 pages. |
Final Office Action for U.S. Appl. No. 13/966,400, mailed Dec. 3, 2014, 8 pages. |
Final Office Action for U.S. Appl. No. 13/795,986, mailed Dec. 5, 2014, 16 pages. |
Author Unknown, “CGHV1J006D: 6 W, 18.0 GHz, GaN HEMT Die,” Cree, Inc., 2014, 9 pages. |
Chang, S.J. et al, “Improved ESD protection by combining InGaN-GaN Mqw LEDs with GaN Schottky diodes,” IEEE Electron Device Letters, Mar. 2003, vol. 24, No. 3, pp. 129-131. |
Chao, C-H., et aL, “Theoretical demonstration of enhancement of light extraction of flip-chip GaN light-emitting diodes with photonic crystals,” Applied Physics Letters, vol. 89, 2006, 4 pages. |
Fath, P. et al., “Mechanical wafer engineering for high efficiency solar cells: An investigation of the induced surface damage,” Conference Record of the Twenty-Fourth IEEE Photovoltaic Specialists Conference, Dec. 5-9 1994, vol. 2, pp. 1347-1350. |
Han, D.S. et al., “Improvement of Light Extraction Efficiency of Flip-Chip Lighting-Emitting Diode by Texturing the Bottom Side Surface of Sapphire Substrate,” IEEE Photonics Technology Letters, Jul. 1, 2006, vol. 18, No. 13, pp. 1406-1408. |
Hibbard, D.L. et al., “Low Resistance High Reflectance Contacts to p-GaN Using Oxidized Ni/Au and Al or Ag,” Applied Physics Letters, vol. 83 No. 2, Jul. 14, 2003, pp. 311-313. |
Lee, S.J., “Study of photon extraction efficiency in InGaN light-emitting diodes depending on chip structures and chip-mount schemes,” Optical Engineering, SPIE, Jan. 2006, vol. 45, No. 1, 14 pages. |
Shchekin, O.B. et al., “High performance thin-film flip-chip InGaN-GaN light-emitting diodes,” Applied Physics Letters, vol. 89, 071109, Aug. 2006, 4 pages. |
Wierer, J. et al., “High-power AIGaInN flip-chip light-emitting diodes,” Applied Physics Letters, vol. 78 No. 22, May 28, 2001, pp. 3379-3381. |
Windisch, R. et al., “40% Efficient Thin-Film Surface-Textured Light-Emitting Diodes by Optimization of Natural Lithography,” IEEE Transactions on Electron Devices, Jul. 2000, vol. 47, No. 7, pp. 1492-1498. |
Windisch, R. et al., “Impact of texture-enhanced transmission on high-efficiency surface-textured light-emitting diodes,” Applied Physics Letters, Oct. 8, 2001, vol. 79, No. 15, pp. 2315-2317. |
Advisory Action for U.S. Appl. No. 10/620,205, mailed Feb. 15, 2005, 2 pages. |
Final Office Action for U.S. Appl. No. 10/620,205, mailed Dec. 16, 2004, 9 pages. |
Non-Final Office Action for U.S. Appl. No. 10/620,205, mailed Jul. 23, 2004, 7 pages. |
Non-Final Office Action for U.S. Appl. No. 10/620,205, mailed May 3, 2005, 10 pages. |
Notice of Allowance for U.S. Appl. No. 10/620,205, mailed Dec. 8, 2005, 4 pages. |
Non-Final Office Action for U.S. Appl. No. 10/689,980, mailed Jan. 26, 2005, 7 pages. |
Non-Final Office Action for U.S. Appl. No. 10/689,980, mailed May 12, 2005, 8 pages. |
Non-Final Office Action for U.S. Appl. No. 12/841,225 mailed Dec. 22, 2011, 8 pages. |
Non-Final Office Action for U.S. Appl. No. 11/397,279, mailed Oct. 31, 2007, 7 pages. |
Notice of Allowance for U.S. Appl. No. 11/397,279, mailed Apr. 17, 2008, 7 pages. |
Final Office Action for U.S. Appl. No. 10/689,979, mailed Jun. 29, 2005, 16 pages. |
Non-Final Office Action for U.S. Appl. No. 10/689,979, mailed Jan. 11, 2005, 14 pages. |
Notice of Allowance for U.S. Appl. No. 10/689,979, mailed Oct. 26, 2005, 6 pages. |
Notice of Allowance for U.S. Appl. No. 12/841,225, mailed Nov. 9, 2012, 5 pages. |
Non-Final Office Action for U.S. Appl. No. 11/360,734, mailed Jan. 18, 2008, 10 pages. |
Notice of Allowance for U.S. Appl. No. 11/360,734, mailed Aug. 7, 2008, 6 pages. |
Non-Final Office Action for U.S. Appl. No. 12/841,257 mailed Jan. 5, 2012, 13 pages. |
Advisory Action for U.S. Appl. No. 11/937,207, mailed Feb. 2, 2010, 2 pages. |
Final Office Action for U.S. Appl. No. 11/937,207, mailed Nov. 19, 2009, 9 pages. |
Non-Final Office Action for U.S. Appl. No. 11/937,207, mailed Mar. 18, 2010, 10 pages. |
Non-Final Office Action for U.S. Appl. No. 11/937,207, mailed May 29, 2009, 11 pages. |
Notice of Allowance for U.S. Appl. No. 11/937,207, mailed Feb. 28, 2011, 8 pages. |
Quayle Action for U.S. Appl. No. 11/937,207, mailed Nov. 24, 2010, 4 pages. |
Final Office Action for U.S. Appl. No. 11/458,833, mailed Dec. 15, 2008, 13 pages. |
Non-Final Office Action for U.S. Appl. No. 11/458,833, mailed Apr. 1, 2008, 10 pages. |
Notice of Allowance for U.S. Appl. No. 11/458,833, mailed Mar. 9, 2009, 7 pages. |
Invitation to Pay Fees for PCT/US2013/056105, mailed Nov. 5, 2013, 7 pages. |
International Search Report and Written Opinion for PCT/US2013/056126, mailed Oct. 25, 2013, 10 pages. |
International Search Report and Written Opinion for PCT/US2013/056132, mailed Oct. 10, 2013, 11 pages. |
International Search Report and Written Opinion for PCT/US2013/056187, mailed Oct. 10, 2013, 11 pages. |
International Search Report for GB0902558.6, issued Jun. 15, 2010, by the UK Intellectual Property Office, 2 pages. |
Examination Report for British Patent Application No. 0902558.6, mailed Nov. 16, 2012, 5 pages. |
Examination Report for British Patent Application No. GB0902558.6, issued Feb. 28, 2013, 2 pages. |
Non-Final Office Action for U.S. Appl. No. 12/705,869, mailed Feb. 9, 2012, 10 pages. |
Notice of Allowance for U.S. Appl. No. 12/705,869, mailed Apr. 4, 2013, 9 pages. |
Notice of Allowance for U.S. Appl. No. 12/705,869, mailed Jul. 19, 2012, 8 pages. |
Advisory Action for U.S. Appl. No. 12/841,225, mailed Apr. 16, 2012, 3 pages. |
Final Office Action for U.S. Appl. No. 12/841,225 mailed Feb. 1, 2012, 9 pages. |
Non-Final Office Action for U.S. Appl. No. 12/841,225, mailed May 2, 2012, 10 pages. |
International Preliminary Report on Patentability for PCT/US2013/056105, mailed Mar. 5, 2015, 12 pages. |
International Preliminary Report on Patentability for PCT/US2013/056126, mailed Mar. 5, 2015, 7 pages. |
International Preliminary Report on Patentability for PCT/US2013/056132, mailed Mar. 5, 2015, 9 pages. |
International Preliminary Report on Patentability for PCT/US2013/056187, mailed Mar. 12, 2015, 9 pages. |
Advisory Action for U.S. Appl. No. 13/910,202, mailed Apr. 6, 2015, 3 pages. |
Final Office Action for U.S. Appl. No. 13/974,488, mailed Feb. 20, 2015, 8 pages. |
Notice of Allowance for U.S. Appl. No. 13/966,400, mailed Feb. 20, 2015, 8 pages. |
Notice of Allowance for U.S. Appl. No. 13/795,986, mailed Mar. 6, 2015, 8 pages. |
Non-Final Office Action for U.S. Appl. No. 14/067,019, mailed Mar. 25, 2015, 7 pages. |
International Search Report and Written Opinion for PCT/US2013/056105, mailed Feb. 12, 2014, 15 pages. |
Notice of Allowance for U.S. Appl. No. 13/795,926, mailed Apr. 27, 2015, 8 pages. |
Notice of Allowance for U.S. Appl. No. 13/942,998, mailed Apr. 27, 2015, 8 pages. |
Final Office Action for U.S. Appl. No. 13/871,526, mailed Jun. 17, 2015, 11 pages. |
Notice of Allowance for U.S. Appl. No. 13/910,202, mailed May 14, 2015, 9 pages. |
Notice of Allowance for U.S. Appl. No. 13/974,488, mailed May 29, 2015, 9 pages. |
Notice of Allowance for U.S. Appl. No. 13/973,482, mailed May 4, 2015, 7 pages. |
Non-Final Office Action for U.S. Appl. No. 13/927,182, mailed May 1, 2014, 7 pages. |
Non-Final Office Action for U.S. Appl. No. 13/973,482, mailed May 23, 2014, 8 pages. |
Non-Final Office Action for U.S. Appl. No. 13/795,986, mailed Apr. 24, 2014, 13 pages. |
Non-Final Office Action for U.S. Appl. No. 13/910,202, mailed Sep. 25, 2014, 9 pages. |
Final Office Action for U.S. Appl. No. 13/927,182, mailed Sep. 17, 2014, 10 pages. |
Non-Final Office Action for U.S. Appl. No. 13/974,488, mailed Oct. 28, 2014, 8 pages. |
Non-Final Office Action for U.S. Appl. No. 13/966,400, mailed Sep. 3, 2014, 9 pages. |
Final Office Action for U.S. Appl. No. 13/973,482, mailed Nov. 5, 2014, 9 pages. |
Advisory Action for U.S. Appl. No. 13/871,526, mailed Sep. 3, 2015, 3 pages. |
Non-Final Office Action for U.S. Appl. No. 14/557,940, mailed Aug. 31, 2015, 8 pages. |
Notice of Allowance for U.S. Appl. No. 14/067,019, mailed Oct. 13, 2015, 6 pages. |
Number | Date | Country | |
---|---|---|---|
20140054601 A1 | Feb 2014 | US |
Number | Date | Country | |
---|---|---|---|
61692768 | Aug 2012 | US |