The present application is based on Japanese patent application No. 2005-258387, the entire contents of which are incorporated herein by reference.
1. Field of the Invention
This invention relates to a group III-V nitride-based semiconductor substrate and, in particular, to a group III-V nitride-based semiconductor substrate that is suited for a substrate of a nitride-based semiconductor device such as a laser diode (LD) and light emitting diode (LD), and a method of making the same.
2. Description of the Related Art
Group III-V nitride-based semiconductor materials such as gallium nitride (GaN) have a wide bandgap and are of direct transition type. Therefore, they attract attention as a material for ultraviolet to blue light emitting device.
Thus far, a hetero-epitaxial substrate such as a sapphire substrate is used to make a GaN-based semiconductor light emitting device. However, it is not possible to grow a GaN single crystal film even directly on the sapphire substrate since the sapphire substrate has a lattice constant different from GaN.
JP-A-4-297023 discloses a method that an AlN or GaN buffer layer is in advance grown on a sapphire substrate at a low temperature, thereby reducing the lattice distortion, and then GaN is grown on the buffer layer. With such a low temperature growth buffer layer, it becomes possible to obtain an epitaxially grown single-crystal GaN. However, even in this method, lattice mismatch between the sapphire substrate and the grown crystal cannot be eliminated and GaN thus obtained has a number of defects.
In recent years, ELO (e.g., OK-Hyun Nam et al., “Lateral Epitaxy of Low Defect Density GaN Layers via Organometallic Vapor Phase Epitaxy”, Appl. Phys. Lett. 71 (18) p 2638 (1997)) and FIELO (e.g., Akira Usui et al., “Thick GaN Epitaxial Growth with Low Dislocation Density by Hydride Vapor Phase Epitaxy”, Jpn. J. Appl. Phys. Vol. 36, pp. L899-902 (1997)) are reported that are methods for reducing a defect density caused by lattice mismatch between sapphire and GaN. In these methods, a mask material such as SiO2 is by photolithography formed partially on an underlying GaN single crystal film which is grown on a sapphire substrate by MOVPE (metalorganic vapor phase epitaxy), and GaN is subsequently grown thereon. Thereby, the propagation of dislocation from the underlying layer can be suppressed. Further, the high-quality GaN thick film thus obtained is separated by laser separation or etching etc. to have a GaN self-standing substrate.
However, the GaN self-standing substrate thus made is warped into a concave form in as-grown state. Such a warping is essential in the GaN growth method using the heteroepitaxy of Volmer-Weber growth mode. For example, when GaN is grown on a hetero-substrate such as sapphire, microscopic GaN islands are densely formed at the initial step of growth, and then they are enlarged according to the growth, combined with each other, finally forming a flattened plane, and transferred into two-dimensional growth. The islands attract each other to minimize the surface energy when being combined, and a tensile stress is generated thereby. Further, even after the combination, contraction in volume occurs due to elimination of grain boundary along with the growth. It is assumed that these cause the concave warping. Although the warping can be lessened to some degree by control at the initial step of the growth, it is difficult to reduce the warping to zero thereby.
It is found by the inventors that a kind of doping in the growth of GaN functions to increase the warping.
The correlation between the doping and the warping as shown in
As described, due to the GaN growth mechanism and the doping, the GaN self-standing substrate is warped into the concave form in as-grown state.
Even when both surfaces of the substrate being concave-warped in as-grown state are apparently polished to be flattened, the substrate must have a distribution in crystal orientation since the outer shape thereof is only corrected.
Therefore, when a light emitting device is fabricated on such a substrate, the emission wavelength will be distributed according to the orientation distribution of the substrate. This is assumed because the step density varies due to the difference of surface orientation and, therefore, amount of In taken in varies when an active layer of InGaN etc. is grown thereon. This causes a decrease in device yield eventually.
It is an object of the invention to provide a group III-V nitride-based semiconductor substrate that can have a reduced crystal orientation distribution by controlling the impurity profile in a group III-V nitride-based semiconductor thick film.
It is a further object of the invention to provide a method of making the group III-V nitride-based semiconductor substrate.
The inventors studied the doping position and concentration, kind of dopant, doping profile etc. in view of the problem that the doping causes a further increase of the warping. As a result, the inventors can find that the warping can be reduced by (a) minimizing the doped region, (b) doping a second impurity that can compensate the lattice reduction due to the doping of a first impurity, and (c) controlling the doping profile to cancel the warping etc.
(1) According to one aspect of the invention, a group III-V nitride-based semiconductor substrate comprises:
a group III-V nitride-based semiconductor thick film comprising a same composition in the entire film,
wherein the thick film comprises a first region with a predetermined impurity concentration and a second region with an impurity concentration lower than the first region.
In the above invention, the following modifications and changes can be made.
(i) The thick film comprises a GaN thick film, the first region is doped with Si at a concentration of 1×1018 cm−3 or more and 7×1018 cm−3or less, and the second region is undoped.
(2) According to another aspect of the invention, a group III-V nitride-based semiconductor substrate comprises:
a group III-V nitride-based semiconductor thick film comprising a same composition in the entire film,
wherein the thick film comprises a first impurity to adjust a resistivity thereof and a second impurity to compensate a lattice distortion thereof caused by the first impurity.
In the above invention, the following modifications and changes can be made.
(ii) The first impurity and the second impurity are doped together into a predetermined region in the thick film.
(iii) The first impurity and the second impurity are doped separately into different regions in the thick film.
(iv) The thick film comprises a first region formed on an upper surface side thereof, a second region formed on a lower surface side thereof and a third region formed between the first region and the second region, the first region comprises the first impurity, the second region comprises the second impurity, and the third region comprises the first impurity and the second impurity each of which changes gradually in concentration.
(3) According to another aspect of the invention, a group III-V nitride-based semiconductor substrate comprises:
a group III-V nitride-based semiconductor thick film comprising a same composition in the entire film,
wherein the thick film comprises a first region with a predetermined impurity concentration, a second region with an impurity concentration lower than the first region, and a third region formed between the first region and the second region, and
the third region comprises an impurity concentration greater than the first region.
In the above invention, the following modifications and changes can be made.
(v) The first region is formed on an upper surface side of the thick film, the first region comprising a thickness of 100 μm or more, the second region is formed on an lower surface side of the thick film, and the third region comprises a thickness of 50 μm or less.
(4) According to another aspect of the invention, a method of making a group, III-V nitride-based semiconductor substrate comprises the steps of:
epitaxially growing a group III-V nitride-based semiconductor thick film on a substrate;
separating the thick film from the substrate; and
polishing one or both surfaces of the thick film to have the group III-V nitride-based semiconductor substrate,
wherein the epitaxial growth step comprises a first step of forming a first region with no impurity doped thereinto, and a second step of forming a second region with an impurity doped thereinto at a predetermined concentration, and
the epitaxial growth step is conducted to satisfy 0.01≦t2/t1≦1.5, where t1 is a thickness of the first region and t2 is a thickness of the second region.
In the above invention, the following modifications and changes can be made.
(vi) t1 is 300 μm or more and 500 μm or less, and t2 is 300 μm or less.
(5) According to another aspect of the invention, a method of making a group III-V nitride-based semiconductor substrate comprises the steps of:
epitaxially growing a group III-V nitride-based semiconductor thick film on a substrate;
separating the thick film from the substrate; and
polishing one or both surfaces of the thick film to have the group III-V nitride-based semiconductor substrate,
wherein the epitaxial growth step comprises a first step of forming a first region with no impurity doped thereinto, and a second step of forming a second region into which a first impurity to adjust a resistivity thereof and a second impurity different than the first impurity to compensate a lattice distortion thereof caused by the first impurity are doped together.
(6) According to another aspect of the invention, a method of making a group III-V nitride-based semiconductor substrate comprises the steps of:
epitaxially growing a group III-V nitride-based semiconductor thick film on a substrate;
separating the thick film from the substrate; and
polishing one or both surfaces of the thick film to have the group III-V nitride-based semiconductor substrate,
wherein the epitaxial growth step comprises a first step of forming a first region into which a first impurity to compensate a lattice distortion thereof caused by a second impurity different than the first impurity is doped, and a second step of forming a second region into which the second impurity to adjust a resistivity thereof is doped.
(7) According to another aspect of the invention, a method of making a group III-V nitride-based semiconductor substrate comprises the steps of:
epitaxially growing a group III-V nitride-based semiconductor thick film on a substrate;
separating the thick film from the substrate; and
polishing one or both surfaces of the thick film to have the group III-V nitride-based semiconductor substrate,
wherein the epitaxial growth step comprises a first step of forming a first region into which a first impurity to compensate a lattice distortion thereof caused by a second impurity different than the first impurity is doped, a second step of forming a second region in which the first impurity decreases gradually toward a third region and the second impurity to adjust a resistivity thereof increases toward the third region, and a third step of forming the third region into which the second impurity is doped.
(8) According to another aspect of the invention, a method of making a group III-V nitride-based semiconductor substrate comprises the steps of:
epitaxially growing a group III-V nitride-based semiconductor thick film on a substrate;
separating the thick film from the substrate; and
polishing one or both surfaces of the thick film to have the group III-V nitride-based semiconductor substrate,
wherein the epitaxial growth step comprises a first step of forming a first region with no impurity doped thereinto, a second step of forming a second region into which an impurity is doped at a predetermined concentration, and a third step of forming a third region into which the impurity is doped at a concentration lower than the impurity concentration of the second region.
In the above invention, the following modifications and changes can be made.
(vii) The second region comprises a thickness of 50 μm or less, and the third region comprises a thickness of 100 μm or more.
(viii) The substrate comprises a sapphire substrate.
The preferred embodiments according to the invention will be explained below referring to the drawings, wherein:
Composition of the First Embodiment
The Si-doped GaN thick film 12 has a whole thickness of 600 μm and comprises an undoped portion 13 (with thickness t1 of 300 μm) into which no dopant is doped, and a Si-doped portion 14 (with a thickness t2 of 300 μm) which is formed thereon and into which Si is doped at a predetermined concentration.
It is desired that the undoped portion 13 has a thickness t1 of 300 μm or more and 500 μm or less. This is because, as shown in
It is desired that the Si-doped portion 14 has a thickness t2 of 300 μm or less. This is because, as shown in
In the structure as shown in
Doping Concentration, Resistivity
It is preferred that the Si-doped portion 14 has a Si concentration of 1×1018 or more and 7×1018 or less cm−3 (or a resistivity of 0.02 or less Ωcm). If less than 1×1018 cm−3, an electrode with a sufficiently low contact resistance cannot be formed at the bottom of the device. If more than 7×1018 cm−3, the warping or crystalline quality will be badly affected.
The Si-doped GaN thick film 12 is formed by epitaxially growing, in sequence, the undoped portion 13 and the Si-doped portion 14 on a sapphire substrate (not shown), and then removing them from the sapphire substrate. In the epitaxial growth, since the thicknesses t1, t2 and the ratio t2/t1 are set as described earlier, the Si-doped GaN thick film 12 with the warping reduced can be obtained after the sapphire substrate is removed.
The GaN self-standing substrate 15 may be made such that, after growing 600 μm in advance as shown in
Absorption Coefficient
When a GaN self-standing substrate is used for a light emitting device, it is advantageous that the substrate has a lower light absorption to an emission wavelength.
In view of this graph, it is found that the substrate absorption coefficient to light with energy of 3.4, which is the bandgap energy of GaN, or less eV increases as the Si doping concentration increases.
In fabricating a light emitting device, the GaN self-standing substrate 15 is lapped back up to a thickness of 100 to 200 μm. In this embodiment, the lapped-back portion is the undoped portion 13 (with a thickness of 200 μm) without Si doping as shown in
Substrate Thermal Conductivity
In view of this graph, it is found that the substrate thermal conductivity decreases as the Si doping concentration increases. If the thermal conductivity decreases, the temperature uniformity of the substrate during the epitaxial growth will be badly affected. This problem becomes serious as the substrate increases in surface area.
In this embodiment, the portion lapped back in the device fabricating process is the undoped portion 13 (with a thickness of 200 μm) without Si doping as shown in
Effects of the First Embodiment
(1) If the entire GaN thick film is doped as in the conventional method, the warping increases as the doping concentration increases, thereby causing a large dispersion in crystal orientation. In contrast, in this embodiment, the warping can be reduced since the thicknesses t1, t2 and the ratio t2/t1 during the epitaxial growth are set so as to dope only the predetermined portion of the GAN thick film. Thus, the dispersion in crystal orientation distribution can be reduced for the same doping concentration, and the doping concentration can be increased for the same dispersion in crystal orientation distribution. For example, a GaN self-standing substrate can be made such that it is 25 mm or more in diameter and its crystal orientation dispersion is reduced as small as ±0.3 degrees or less in crystal orientation distribution. Therefore, when a light emitting device is fabricated thereon, the in-plane distribution of emission wavelength can be significantly improved. As a result, a high process yield can be obtained.
(2) Its device formation layer (i.e., its surface layer) can have an electrical resistivity of 0.02 Ωcm or less. The device operating voltage can be sufficiently lowered and the electrode can be formed in good ohmic contact.
(3) Since the portion lapped back in the device forming process is not doped and the minimum portion is doped, the absorption coefficient to light with a wavelength of 380 nm or more can be kept as low as 5 cm−1 or less. Thus, a light emitting device can be fabricated that allows reduced light absorption to emission wavelength to have good energy efficiency.
(4) Since the portion lapped back in the device forming process is not doped and the minimum portion is doped, the entire GaN self-standing substrate 15 can have an average thermal conductivity of 1.9 W/cmK or more. Thus, in epitaxially growing GaN etc. on the substrate, the temperature distribution of the substrate can be uniformed to form a uniform epitaxial layer thereon.
Composition of the Second Embodiment
The Si, Tl-doped GaN thick film 22 has a whole thickness of 600 μm and comprises an undoped portion 23 (with thickness of 300 μm) into which no dopant is doped, and a Si, Tl-doped portion 24 (with a thickness of 300 μm) which is formed thereon and into which Si and Tl are doped at a predetermined concentration.
It is assumed that warping is affected by doping since a lattice mismatch to its underlying substrate varies when Ga or N is replaced by an ion with a different bond radius. In this embodiment, the doped layer is structured such that Si as a first dopant is doped together with a second dopant Tl for compensating the lattice distortion. Thus, the lattice mismatch can be compensated by doping a different kind of dopant with a different bond radius to reduce the warping.
It is preferred that, like the first embodiment, the first dopant, Si is doped at a concentration of 1×1018 or more and 7×1018 or less cm−3 (or a resistivity of 0.02 Ωcm or less). On the other hand, it is preferred that the second dopant, Tl for compensating the lattice distortion is doped at a concentration of 1×1018 or more and 3×1018 or less cm−3; although the doping concentration varies depending on the kind (ionization radius) of the second dopant. If less than 1×1018 cm−3, the effect of compensating the lattice distortion cannot be obtained. If more than 3×1018 cm, the crystalline quality will be badly affected.
The Si, Tl-doped GaN thick film 22 is formed by epitaxially growing, in sequence, the undoped portion 23 and the Si, Tl-doped portion 24 on a sapphire substrate (not shown), and then removing them from the sapphire substrate. In the epitaxial growth, since Si and Tl for compensating the lattice distortion due to Si doping are doped only into the predetermined portion as described earlier, the Si, Tl-doped GaN thick film 22 with the warping reduced can be obtained after the sapphire substrate is removed.
Effects of the Second Embodiment
Like the GaN self-standing substrate 15 of the first embodiment, the GaN self-standing substrate 25 of this embodiment can be made such that it is 25 mm or more in diameter and its crystal orientation dispersion is reduced as small as ±0.3 degrees or less in crystal orientation distribution, its device formation layer (i.e., its surface layer) can have an electrical resistivity of 0.02 Ωcm or less, its absorption coefficient to light with a wavelength of 380 nm or more is kept as low as 5 cm−1 or less, and the entire substrate has an average thermal conductivity of 1.9 W/cmK or more.
Composition of the Third Embodiment
The Si, B-doped GaN thick film 32 has a whole thickness of 600 μm and comprises a B-doped portion 33 (with a thickness of 300 μm) into which B is doped at a predetermined concentration, and a Si-doped portion 34 (with a thickness of 300 μm) which is formed thereon and into which Si is doped at a predetermined concentration.
The Si, B-doped GaN thick film 32 is composed such that the first dopant, Si and the second dopant, B for compensating the lattice distortion are doped into the Si-doped portion 34 and the B-doped portion 33, respectively to compensate the lattice mismatch to reduce the warping. Thus, since the dopants are not doped together into one portion but separately doped into the two portions, the Si-doped portion 34 and the B-doped portion 33, respectively. Therefore, as compared to the case of doping together the dopants into one portion, dislocation density can be reduced to have good electrical, optical and thermal characteristics.
It is preferred that, like the first embodiment, the first dopant, Si is doped at a concentration of 1×1018 or more and 7×1018 or less cm−3 (or a resistivity of 0.02 Ωcm or less). On the other hand, it is preferred that the second dopant, B for, compensating the lattice distortion is doped at a concentration of 1×1018 or more and 7×1018 or less cm−3, although the doping concentration varies depending on the kind (ionization radius) of the, second dopant. If less than 1×1018 cm−3, the effect of compensating the lattice distortion cannot be obtained. If more than 7×1018 cm−3, the crystalline quality will be badly affected.
The Si, B-doped GaN thick film 32 is formed by epitaxially growing, in sequence, the B-doped portion 33 and the Si-doped portion 34 on a sapphire substrate (not shown), and then removing them from the sapphire substrate. In the epitaxial growth, since Si and B for compensating the lattice distortion due to Si doping are doped into the separate portions as described earlier, the Si, B-doped GaN thick film 32 with the warping reduced can be obtained after the sapphire substrate is removed.
In the GaN self-standing substrate 35 of this embodiment, the substrate back portion to be lapped back in the device fabricating process is the B-doped portion 33 for compensating the warping as shown in
Like the GaN self-standing substrate 15 of the first embodiment, the GaN self-standing substrate 35 of this embodiment can be made such that it is 25 mm or more in diameter and its crystal orientation dispersion is reduced as small as ±0.3 degrees or less in crystal orientation distribution, its device formation layer (i.e., its surface layer) can have an electrical resistivity of 0.02 Ωcm or less, its absorption coefficient to light with a wavelength of 380 nm or more is kept as low as 5 cm−1 or less, and the entire substrate has an average thermal conductivity of 1.9 W/cmK or more.
Composition of the Fourth Embodiment
The Ge, B-doped GaN thick film 42 has a whole thickness of 600 μm and comprises a B-doped portion 43 (with a thickness of 250 μm) into which B is doped at a predetermined concentration, a gradation portion 44 (with a thickness of 50 μm) which is formed thereon and B and Ge are doped at a concentration gradually changed in the thickness direction, and a Ge-doped portion 45 (with a thickness of 300 μm) which is formed thereon and into which Ge is doped at a predetermined concentration.
The gradation portion 44 is composed such that the Ge concentration is gradually changed to be the highest, i.e., the same as the Ge-doped portion 45, at a region adjacent to the Ge-doped portion 45 and to be zero at a region adjacent to the opposite B-doped portion 43. On the other hand, the B concentration is gradually changed to be the highest, i.e., the same as the B-doped portion 43, at a region adjacent to the B-doped portion 43 and to be zero at a region adjacent to the opposite Ge-doped portion 45.
It is preferred that the first dopant, Ge is doped at a concentration of 1×1018 or more and 7×1018 or less cm−3 in the Ge-doped portion 45. On the other hand, it is preferred that the second dopant, B for compensating the lattice distortion is doped at a concentration of 1×1018 or more and 7×1018 or less cm−3 in the B-doped portion 43, although the doping concentration varies depending on the kind (ionization radius) of the second dopant. If less than 1×1018 cm−3, the effect of compensating the lattice distortion cannot be obtained. If more than 7×1018 cm−3 the crystalline quality will be badly affected.
This embodiment is, like the third embodiment, provided with a multilayer structure that has a doping profile to cancel the warping. Furthermore, by changing the dopant concentration gradually, additional generation of dislocation at the interface can be reduced to have good electrical, optical and thermal characteristics.
The Ge, B-doped GaN thick film 42 is formed by epitaxially growing, in sequence, the B-doped portion 43, the gradation portion 44 and the Ge-doped portion 45 on a sapphire substrate (not shown), and then removing them from the sapphire substrate. In the epitaxial growth, since Ge and B for compensating the lattice distortion are doped into the separate portions as described earlier, the Ge, B-doped GaN thick film 42 with the warping reduced can be obtained after the sapphire substrate is removed.
In the GaN self-standing substrate 46 of this embodiment, the substrate back portion to be lapped back in the device fabricating process is the B-doped portion 43 for compensating the warping as shown in
Like the GaN self-standing substrate 15 of the first embodiment, the GaN self-standing substrate 46 of this embodiment can be made such that it is 25 mm or more in diameter and its crystal orientation dispersion is reduced as small as ±0.3 degrees or less in crystal orientation distribution, its device formation layer (i.e., its surface layer) can have an electrical resistivity of 0.02 Ωcm or less, its absorption coefficient to light with a wavelength of 380 nm or more is kept as low as 5 cm−1 or less, and the entire substrate has an average thermal conductivity of 1.9 W/cmK or more.
Composition of the Fifth Embodiment
The Ge-doped GaN thick film 52 has a whole thickness of 600 μm and comprises an undoped portion 53 (with a thickness of 200 μm) into which no dopant is doped, a high Ge-doped portion 54 (with a thickness of 10 μm) which is formed thereon and Ge is doped at a high concentration, and a Ge-doped portion 55 (with a thickness of 390 μm) which is formed thereon and into which Ge is doped at a low concentration.
It is preferred that Ge is doped at a concentration of 1×1018 or more and 4×1018 or less cm−3 in the Ge-doped portion 55. On the other hand, it is preferred that Ge is doped at a concentration of 4×1018 or more and 7×1018 or less cm−3 in the high Ge-doped portion 54.
The Ge-doped GaN thick film 52 is formed by epitaxially growing, in sequence, the undoped portion 53, the high Ge-doped portion 54 and the Ge-doped portion 55 on a sapphire substrate (not shown), and then removing them from the sapphire substrate. In the epitaxial-growth, since Ge is doped only into the predetermined portion, the Ge-doped GaN thick film 52 with the warping reduced can be obtained after the sapphire substrate is removed.
In the GaN self-standing substrate 56 of this embodiment, only the near-back face portion to form a back electrode thereon after being lapped back in the device fabricating process is the high Ge-doped portion 54 to increase the doping concentration as shown in
Therefore, like the GaN self-standing substrate 15 of the first embodiment, the GaN self-standing substrate 56 of this embodiment can be made such that it is 25 mm or more in diameter and its crystal orientation dispersion is reduced as small as ±0.3 degrees or less in crystal orientation distribution, its device formation layer (i.e., its surface layer) can have an electrical resistivity of 0.02 Ωcm or less, its absorption coefficient to light with a wavelength of 380 nm or more is kept as low as 5 cm−1 or less, and the entire substrate has an average thermal conductivity of 1.9 W/cmK or more.
Examples of the invention will be described below comparing with a conventional example.
(Example of doping Si into entire region of GaN thick film)
First, a Si-doped GaN thick film 2 with a thickness of 600 μm is grown on a C-face single crystal sapphire substrate 1 with a diameter of 2 inches by HVPE (hydride vapor phase epitaxy) (
In the HVPE, a HVPE furnace used is an apparatus that is operable to carry GaCl3 as a halogenide of group III to the substrate, and GaCl3 is produced by reacting Ga metal with HCl supplied with carrier gas such as H2, N2. In substrate region, GaCl3 is mixed and reacted with NH3 to grow GaN in vapor phase on the substrate. Temperature in the substrate region is set to be 1050° C. by an electric oven. The partial pressures of GaCl3 and NH3 as source materials in the substrate region are set to be 5×10−4 atm and 5×10−3 atm, respectively. Si is doped with SiH2Cl2. The doping is conducted from the start until the end of the growth to the entire thickness. By SIMS analysis after the growth, it is found that the Si concentration is 7×1018 cm−3.
After the growth, GaN at the interface is decomposed by irradiating YAG laser thereto from the side of the sapphire substrate 1 to separate the Si-doped GaN thick film 2 from the sapphire substrate 1. A GaN self-standing substrate 3 separated is extremely warped in concave form (
Then, by mirror-polishing both sides thereof, a GaN self-standing substrate 4 apparently having no warping is obtained (
Then, the substrate is placed in a MOVPE apparatus, and a blue LED epitaxial layer including an InGaN active layer is grown subsequently thereon. It is found by photoluminescence that the in-plane distribution of emission wavelengths to the central wavelength is as much as ±30 nm.
(Example of doping Si into the predetermined region of the GaN thick film)
As shown in
After the growth, the Si-doped GaN thick film 12 is separated from the sapphire substrate 11 like the conventional example (
Thus, Si is doped only into up to 200 μm from the upper surface of the GaN self-standing substrate 15.
It is found by measuring the orientation distribution of this substrate by X-ray that only an orientation distribution of ±0.2 degrees at the maximum exists in φ2″ plane and is significantly improved as compared to the conventional example. substrates made under the same conditions have a C-axis directional optical absorption coefficient of 4.4 cm−1 (λ=382 nm) and a thermal conductivity of 1.94 W/cmK, which are also improved as compared to the conventional example. Further, the doped portion has an electrical resistivity of 0.004 Ωcm, which is equal to the conventional example.
Then, the substrate is placed in the MOVPE apparatus, and a blue LED epitaxial layer including an InGaN active layer is grown subsequently thereon. It is found by photoluminescence that the in-plane distribution of emission wavelengths to the central wavelength lowers to ±5 nm.
(Example of doping Si and Tl together into the predetermined region of the GaN thick film)
As shown in
After the growth, the Si, Tl-doped GaN thick film 22 is separated from the sapphire substrate 21 like the conventional example (
Thus, Si and Tl are doped only into up to 200 μm from the upper surface of the GaN self-standing substrate 25.
It is found by measuring the orientation distribution of this substrate by X-ray that only an orientation distribution of ±0.05 degrees at the maximum exists in φ2″ plane and is significantly improved as compared to the conventional example. substrates made under the same conditions have a C-axis directional optical absorption coefficient of 4.8 cm−1 (λ=382 nm) and a thermal conductivity of 1.92 W/cmK, which are also improved as compared to the conventional example. Further, the doped portion has an electrical resistivity of 0.007 Ωcm, which is sufficient low.
Then, the substrate is placed in the MOVPE apparatus, and a blue LED epitaxial layer including an InGaN active layer is grown subsequently thereon. It is found by photoluminescence that the in-plane distribution of emission wavelengths to the central wavelength lowers to ±2 nm.
(Example of forming separately the, Si-doped portion and the B-doped portion in the GaN thick film)
As shown in
After the growth, the Si, B-doped GaN thick film 32 is separated from the sapphire substrate 31 like the conventional example (
Thus, Si is doped into up to 200 μm from the upper surface of the GaN self-standing substrate 35 and B is doped into up to 200 μm from the lower surface of the GaN self-standing substrate 35.
It is found by measuring the orientation distribution of this substrate by X-ray that only an orientation distribution of ±0.05 degrees at the maximum exists in φ2″ plane and is significantly improved as compared to the conventional example. substrates made under the same conditions have a C-axis directional optical absorption coefficient of 4.7 cm−1 (λ=382 nm) and a thermal conductivity of 1.93 W/cmK, which are also improved as compared to the conventional example. Further, the Si-doped portion has an electrical resistivity of 0.004 Ωcm, which is equal to the conventional example.
Then, the substrate is placed in the MOVPE apparatus, and a blue LED epitaxial layer including an InGaN active layer is grown subsequently thereon. It is found by photoluminescence that the in-plane distribution of emission wavelengths to the central wavelength lowers to ±2 nm.
(Example of changing gradually the Ge concentration and the B concentration in the GaN thick film)
As shown in
After the growth, the Ge, B-doped GaN thick film 42 is separated from the sapphire substrate 41 like the conventional example (
It is found by measuring the orientation distribution of this substrate by X-ray that only an orientation distribution of ±0.03 degrees at the maximum exists in φ2″ plane and is significantly improved as compared to the conventional example. substrates made under the same conditions have a C-axis directional optical absorption coefficient of 4.7 cm−1 (λ=382 nm) and a thermal conductivity of 1.93 W/cmK, which are also improved as compared to the conventional example. Further, the Ge-doped portion has an electrical resistivity of 0.004 Ωcm, which is equal to the conventional example.
Then, the substrate is placed in the MOVPE apparatus, and a blue LED epitaxial layer including an InGaN active layer is grown subsequently thereon. It is found by photoluminescence that the in-plane distribution of emission wavelengths to the central wavelength lowers to ±1 nm.
(Example of doping Ge at a high concentration into the predetermined region in the GaN thick film)
As shown in
After the growth, the Ge-doped GaN thick film 52 is separated from the sapphire substrate 51 like the conventional example (
It is found by measuring the orientation distribution of this substrate by X-ray that only an orientation distribution of ±0.05 degrees at the maximum exists in φ2″ plane and is significantly improved as compared to the conventional example. substrates made under the same conditions have a C-axis directional optical absorption coefficient of 4.2 cm−1 (λ=382 nm) and a thermal conductivity of 1.97 W/cmK, which are also improved as compared to the conventional example. Further, the Ge-doped portion has an electrical resistivity of 0.01 Ωcm, which is sufficiently low.
Then, the substrate is placed in the MOVPE apparatus, and a blue LED epitaxial layer 57 (
Then, the undoped portion 53 on the bottom side of the GaN self-standing substrate 56 is removed 100 μm to expose the high Ge-doped portion 54 (
Then, it is cut into 300 μm square chips by dicing and electrodes are formed on both surfaces of the chip. The operating voltage of the chip is 4 V, which can be reduced about 30% as compared to the case without the high Ge-doped portion.
(Example of doping As on the bottom side of the GaN thick film to further reduce the warping as well as doping Ge at a high concentration into the predetermined region in the GaN thick film)
As shown in
After the growth, the Ge-doped GaN thick film 62 is separated from the sapphire substrate 61 like, the conventional example (
It is found by measuring the orientation distribution of this substrate by X-ray that only an orientation distribution of ±0.03 degrees at the maximum exists in φ2″ plane and is significantly improved as compared to the conventional example. substrates made under the same conditions have a C-axis directional optical absorption coefficient of 5.5 cm−1 (λ=382 nm) and a thermal conductivity of 1.92 W/cmK, which are also improved as compared to the conventional example. Further, the Ge-doped portion has an electrical resistivity of 0.01 Ωcm, which is sufficiently low.
Then, the substrate is placed in the MOVPE apparatus, and a blue LED epitaxial layer 67 (
Then, the As-doped portion 63 on the bottom side of the GaN self-standing substrate 66 is removed 100 μm to expose the high Ge-doped portion 64 (
Then, it is cut into 300 μm square chips by dicing and electrodes are formed on both surfaces of the chip. The operating voltage of the chip is 4 V, which can be reduced about 30% as compared to the case without the high Ge-doped portion.
Although in the above embodiments the nitride-based semiconductor crystal (GaN thick film) is grown by HVPE, it can be grown by the other vapor-phase growth method such as MOVPE, MBE and sublimation. The dopant exemplified in the above embodiments can be replaced by various dopants such as O2, C and Sn according to the object and a combination thereof. Further, the invention can be applied to all nitride-based semiconductors such as AlGaN other than GaN.
The substrate for the crystal growth can be various substrates such as SiC, GaN, Si, ZrB2, ZnO, LiAlO2, NdGaO3 and GaAs other than that exemplified in the above embodiments. These substrates can be used in combination with any dislocation reducing methods such as VAS, ELO, PENDEO and anti-surfactant.
Although the invention has been described with respect to the specific embodiments for complete and clear disclosure, the appended claims are not to be thus limited but are to be construed as embodying all modifications and alternative constructions that may occur to one skilled in the art which fairly fall within the basic teaching herein set forth.
Number | Date | Country | Kind |
---|---|---|---|
2005-258387 | Sep 2005 | JP | national |
Number | Name | Date | Kind |
---|---|---|---|
5290393 | Nakamura | Mar 1994 | A |
6121634 | Saito et al. | Sep 2000 | A |
20060001352 | Maruta et al. | Jan 2006 | A1 |
20060175600 | Sato et al. | Aug 2006 | A1 |
Number | Date | Country |
---|---|---|
04-297023 | Oct 1992 | JP |
Number | Date | Country | |
---|---|---|---|
20070051969 A1 | Mar 2007 | US |