1. Field of the Invention
The present invention generally relates to heat dissipation devices, and more particularly to a heat dissipation device having a fan holder for cooling an electronic component, such as an integrated circuit package.
2. Description of Related Art
Electronic components, such as central processing units (CPUs), comprise numerous circuits operating at high speed and generating substantial heat. Under most circumstances, it is necessary to cool the CPUs in order to maintain safe operating conditions and assure that the CPUs function properly and reliably. In the past, various approaches have been used to cool electronic components. Typically, a heat dissipation device is attached to an outer surface of a CPU to remove the heat therefrom.
A typical heat dissipation device generally comprises a heat sink for absorbing heat from an electronic component mounted on a fan mounted on the heat sink. An airflow generated by the fan flows through the heat sink to help a quick removal of the heat from the heat sink. However, the airflow will flow to exterior of the heat sink quickly and the heat in the heat sink cannot be timely dissipated.
Accordingly, what is needed is a heat dissipation device which overcomes the above-mentioned problems and shortcomings is desired.
According to an embodiment of the present invention, a heat dissipation device includes a heat sink assembly, a fan holder and two fans mounted on the two sides of the fan holder. The heat sink assembly includes a heat spreader for contacting with a heat-generating electronic component, and a fin assembly thermally connecting with the heat spreader. The fin assembly has a plurality of channels therein. The fan holder includes a top plate mounted on a top of the fin assembly and a pair of vertical baffle walls extending from two opposite ends of the top plate. The baffle walls of the fan holder are located at two lateral ends of the fin assembly and sandwich the fin assembly therebetween. The two fans respectively abut against inlets and outlets of the channels of the fin assembly. An airflow generated by one fan flows through the fin assembly and is sucked by the other fan.
Other advantages and novel features will become more apparent from the following detailed description of preferred embodiment when taken in conjunction with the accompanying drawings.
Many aspects of the present heat dissipation device can be better understood with reference to the following drawings. The components in the drawings are not necessarily drawn to scale, the emphasis instead being placed upon clearly illustrating the principles of the present heat dissipation device. Moreover, in the drawings, like reference numerals designate corresponding parts throughout the several views.
Referring to
Referring to
The heat spreader 12 has a rectangular configuration. The heat spreader 12 has a bottom face (not labeled) for contacting the CPU to absorb heat therefrom. The heat spreader 12 defines three grooves 124 at the bottom thereof. Two mounting brackets 13 each with a pair of ears 132 are attached to opposite bottom sides of the heat spreader 12 via four screws 133 extending through the mounting brackets 13 to engage with the heat spreader 12. The heat spreader 12 thermally engages with the CPU mounted on the printed circuit board by bringing four fasteners (not shown) to extend through the four ears 132 to threadedly engage with a retainer (not shown) attached to a bottom side of the printed circuit board.
Each heat pipe 16 comprises a horizontal evaporation portion 160 and a pair of vertical condensation portions 162 parallel to each other. The condensation portions 162 extend from two opposite ends of the evaporation portion 160. The evaporation portions 160 of the heat pipes 16 are soldered in the grooves 124 of the heat spreader 12. Bottom faces (not labeled) of the evaporation portions 160 are coplanar with the bottom face of the heat spreader 12 for cooperatively contacting the CPU. The condensation portions 162 upwardly extend through the fin assembly 14.
The fin assembly 14 consists of a plurality of parallel fins 140. Each fin 140 has a slightly waved configuration and is approximately parallel to the heat spreader 12. The fins 140 are perforated with three pairs of through holes 142, corresponding to the condensing portions 162 of the three heat pipes 16. Each of the through holes 142 has its respective annular sidewall 146 that is formed during punching of its respective through hole 142. The condensing portions 162 of the heat pipes 16 are received in the through holes 142 and soldered to the sidewalls 146 so that the fins 140 are combined with the condensation portions 162 of the heat pipes 16 and form a plurality of horizontal channels (not labeled) therebetween. Each fin 140 defines four through holes 144 between the through holes 142.
The mounting plate 18 has a rectangular configuration and is smaller than the heat spreader 12. The mounting plate 18 defines four through holes 180 in four corners (not labeled) thereof, corresponding to the through holes 144 of the fin assembly 14. Four screws 19 extend through the mounting plate 18 and are engaged in the through holes 144 of the fins 140. The mounting plate 18 defines two thread holes 185 in the central portion thereof.
Referring to
Each fan 30 has a square configuration and comprises a pair of parallel plates 32, 34. The plate 32 of one fan 30 is oriented to the fin assembly 14 and the plate 34 of the other fan 30 is oriented to the fin assembly 14. Four screws 30 extend through four corners of each fan 30 and threadedly engaged in the threaded holes 260 of the tabs 26 of the fan holder 20, thus attaching the fans 30 on two sides of the fan holder 20.
Referring to
In used, the fin assembly 14 absorbs the heat from the CPU. When the fans 30 operates, airflow generated by one fan 30 flows into the channels of the fin assembly 14, and the other fan 30 sucks the heat air in the channels to take heat away therefrom. Accordingly, the heat generated by the CPU can be quickly dissipated. In the present invention, the two baffle walls 24 of the fan holder 20 sandwich the fin assembly 14 therebetween such that the airflow generated by the fans 30 can effectively flow through the fin assembly 14. Thus the heat of the heat sink assembly 10 can be timely dissipated. In addition, by the mounting plate 18 and the knurled screws 50, the fan holder 20 can be firmly and easily mounted to the top of the heat sink assembly. Thus, the assembly of the heat dissipation device is convenient.
It is believed that the present embodiments and their advantages will be understood from the foregoing description, and it will be apparent that various changes may be made thereto without departing from the spirit and scope of the invention or sacrificing all of its material advantages, the examples hereinbefore described merely being preferred or exemplary embodiments of the invention.
Number | Name | Date | Kind |
---|---|---|---|
5936836 | Scholder | Aug 1999 | A |
6542364 | Lai et al. | Apr 2003 | B2 |
6556442 | Lin | Apr 2003 | B2 |
6717814 | Li | Apr 2004 | B2 |
6768641 | Li | Jul 2004 | B2 |
6938682 | Chen et al. | Sep 2005 | B2 |
6940716 | Korinsky et al. | Sep 2005 | B1 |
7156158 | Ueda et al. | Jan 2007 | B2 |
7180740 | Li et al. | Feb 2007 | B2 |
7228889 | Tian et al. | Jun 2007 | B1 |
7248476 | Holmes et al. | Jul 2007 | B2 |
7256997 | Chen et al. | Aug 2007 | B2 |
7277281 | Lu et al. | Oct 2007 | B1 |
7414841 | Chen et al. | Aug 2008 | B2 |
20050087329 | Zhang et al. | Apr 2005 | A1 |
20060137861 | Wang et al. | Jun 2006 | A1 |
20060238979 | Liu | Oct 2006 | A1 |
20070035926 | Xia et al. | Feb 2007 | A1 |
20070121301 | Tan et al. | May 2007 | A1 |
20070151711 | Chen et al. | Jul 2007 | A1 |
Number | Date | Country | |
---|---|---|---|
20090168350 A1 | Jul 2009 | US |