1. Technical Field
The present disclosure relates generally to a heat sink, and more particularly to a heat sink having a base and a cover securing heads of columned fins therebetween.
2. Description of Related Art
Generally, in order to ensure the normal running of an electronic device, a heat sink is used to dissipate heat generated by the electronic device. A conventional heat sink includes a base and a plurality of fins integrally extending from the base. However, lengths of the fins are limited by a material performance. Thus, a surface area of the fins is restricted, which impacts heat dissipation effect of the heat sink. For increasing the surface area of the fins, the base and the fins are separated first and then combined by solder or other means. Nevertheless, a cost of manufacturing the heat sink increases.
What is need therefore is a heat sink having a good heat dissipating capability and convenient and easy to manufacture.
Many aspects of the present embodiments can be better understood with reference to the following drawings. The components in the drawings are not necessarily drawn to scale, the emphasis instead being placed upon clearly illustrating the principles of the present embodiments. Moreover, in the drawings, like reference numerals designate corresponding parts throughout the several views.
Also referring to
The cover 20 has a plate shape and a thickness equal to that of the base 10. A plurality of through holes (not labeled) extend through the cover 20, in which each through hole has a circular recess 21 defined in a bottom of the cover 20 and a circular passage 23 defined in a top of the cover 20 and communicating with the recess 21. The passage 23 is smaller than the recess 21. A plurality of orifices 22 is defined in the cover 20 corresponding to the studs 12 of the base 10. A diameter of each orifice 22 is slightly larger than that of each stud 12.
Each columned fin 30 comprises a head 31 and a body 32 extending therefrom. Understandably the columned fins 30 can be square, prism or other shape in alternative embodiments. The head 31 is bigger than the body 32; that is to say, the head 31 has a diameter larger than that of the body 32, and the columned fin 30 has a T-shaped profile in lengthwise cross-section (see
The plate fins 40 are parallel to each other. A plurality of holes 42 are defined in the plate fins 40 to allow the bodies 32 of the columned fins 30. The bodies 32 of the columned fins 30 interferentially extend through the holes 42, thereby securing the plate fins 40 on the bodies 32 of the columned fins 30.
In assembly, the bodies 32 extend through the passages 23 of the cover 20 from the bottom of the cover 20, and the heads 31 are received in the recesses 21 of the cover 20. Since each head 31 has a diameter smaller than that of the recess 21, an annular gap is defined between the head 31 and the cover 20. Since each head 31 is slightly higher than the recess 21, the bottom end of the head 31 extends out of the recess 21. The base 10 is pressed upwardly toward the cover 20 whereby the base 10 contacts the bottom ends of the heads 31. Each of the heads 31 is pressed to deform and expands to form an annular deforming part 310 which fills in the gap, and to have a bottom surface coplanar to a bottom surface of the cover 20; thus, the base 10 intimately contacts the bottoms of the cover 20 and the heads 31 of the columned fin 30. Simultaneously, the studs 12 of the base 10 are received in the orifices 22 of the cover 20. Also referring to
A heat conducting grease can be filled between the heads 31 of the columned fins 30 and the recesses 21 of the cover 20 to reduce heat resistance therebetween.
It is believed that the present embodiments and their advantages will be understood from the foregoing description, and it will be apparent that various changes may be made thereto without departing from the spirit and scope of the disclosure or sacrificing all of its material advantages, the examples hereinbefore described merely being preferred or exemplary embodiments of the disclosure.
Number | Date | Country | Kind |
---|---|---|---|
200910301386.9 | Apr 2009 | CN | national |