Various applications may include a sealed chamber formed in a semiconductor structure. In one particular application, a chip-scale atomic clock may include a selected vapor at a low pressure in a sealed chamber. Forming such structures can be a challenge.
In one embodiment, a method includes etching a cavity in a first substrate (e.g., a semiconductor wafer), forming a first metal layer on a first surface of the first substrate and in the cavity, and forming a second metal layer on a non-conductive structure (e.g., glass). The method also may include removing a portion of the second metal layer to form an iris to expose a portion of the non-conductive structure, forming a bond between the first metal layer and the second metal layer to thereby attach the non-conductive structure to the first substrate, sealing an interface between the non-conductive structure and the first substrate, and patterning an antenna on a surface of the non-conductive structure. The method also may include the deposition or bonding of further dielectric and metal layers and their subsequent patterning on the topmost surface to improve the radio frequency (RF) performance of antenna, transmission line structures, and electromagnetic bandgap structures.
In another embodiment, a device includes a first substrate attached to a non-conductive structure. The first substrate includes a cavity which is covered by the non-conductive structure. A first metal layer is provided on a surface of the first substrate and in the cavity. Further, a second metal layer is provided on a surface of non-conductive structure. The second metal layer includes an iris exposing the non-conductive structure; and. A first antenna is patterned on a surface of the non-conductive structure opposite the first substrate.
In yet another embodiment, a device includes a semiconductor substrate attached to a glass sheet. The semiconductor substrate includes a cavity which is covered by the glass sheet. A first metal layer is provided on a surface of the semiconductor substrate and in the cavity, and a second metal layer is provided on a surface of the glass sheet. The second metal layer includes an iris exposing a portion of the glass sheet. First and second antennas are patterned on a surface of the glass sheet opposite the semiconductor substrate. The device also may include a transceiver electrically coupled to the first and second antennas and configured to inject a transmit signal into the cavity through the first antenna, generate an error signal based on the transmit signal and a receive signal from the second antenna, and dynamically adjust a frequency of the transmit signal based on the error signal. The cavity may contain dipolar molecules and has an internal pressure of less than 0.15 mbars.
For a detailed description of various examples, reference will now be made to the accompanying drawings in which:
Certain terms are used throughout the following description and claims to refer to particular system components. As one skilled in the art will appreciate, different parties may refer to a component by different names. This document does not intend to distinguish between components that differ in name but not function. In the following discussion and in the claims, the terms “including” and “comprising” are used in an open-ended fashion, and thus should be interpreted to mean “including, but not limited to . . . .” Also, the term “couple” or “couples” is intended to mean either an indirect or direct wired or wireless connection. Thus, if a first device couples to a second device, that connection may be through a direct connection or through an indirect connection via other devices and connections. The recitation “based on” is intended to mean “based at least in part on.” Therefore, if X is based on Y, X may be a function of Y and any number of other factors.
The disclosed embodiments of the present disclosure include techniques to fabricate a hermetically sealed cavity in a substrate. A structure containing a substrate with the cavity may be used in numerous applications. One illustrative use is as a millimeter wave chip scale atomic clock. The cavity may contain a plurality of dipolar molecules (e.g., water molecules) at a relatively low pressure. For some embodiments, the pressure may be approximately 0.1 mbarr for water molecules. If argon molecules were used, the pressure may be several atmospheres. The hermetically sealed cavity may contain selected dipolar molecules at a pressure chosen to optimize the amplitude of a signal absorption peak of the molecules detected at an output of the cavity. An electromagnetic signal may be injected through aperture into the cavity. Through closed-loop control, the frequency of the signal is dynamically adjusted to match the frequency corresponding to the absorption peak of the molecules in the cavity. The frequency produced by quantum rotation of the selected dipolar molecules may be unaffected by circuit aging and may not vary with temperature or other environmental factors.
While a variety of materials and manufacturing operations can be employed, one illustrative method may include etching a cavity in a first substrate (e.g., a semiconductor wafer), forming a first metal layer on a first surface of the first substrate and in the cavity, forming a second metal layer on a non-conductive structure (e.g., glass such as a glass sheet), removing a portion of the second metal layer to form an iris to expose a portion of the non-conductive structure, forming a bond between the first metal layer and the second metal layer to thereby attach the non-conductive structure to the first substrate, sealing an interface between the non-conductive structure and the first substrate, and patterning an antenna on a surface of the non-conductive structure.
An antenna 158 is shown in
At 202, the method includes etching a cavity in a first substrate (e.g., a semiconductor wafer or other suitable material). The etching process may comprise a wet etching process as explained above. At 204, the method includes forming a first metal layer (e.g., copper) on a first surface of the first substrate and in the cavity. At 206, the method further includes forming a second metal layer on a non-conductive structure (e.g., glass) and, at 208, the method includes removing a portion of the second metal layer to form an iris (e.g., iris 135) to expose a portion of the non-conductive structure. At 210, the method also includes forming a bond between the first metal layer and the second metal layer to thereby attach the non-conductive structure to the first substrate. The interface between the non-conductive structure and the first substrate is then sealed at 212, and an antenna is patterned on a surface of the non-conductive structure at 214.
An electronic bandgap structure also may be formed on the non-conductive structure 130. In operation, an electronic bandgap structure may help to attenuate electromagnetic waves along the outer surface of the non-conductive structure 130 between the antennas. The electronic bandgap structure helps to force the energy from the input signal received through an antenna (e.g., antenna 158) into the cavity 125.
The clock generator 500 of
The sealed cavity 508 includes a conductive interior cavity surface, as well as first and second non-conductive apertures 515 and 517 formed in the interior cavity surface for providing an electromagnetic field entrance and an electromagnetic field exit, respectively. In one example, the apertures 515, 517 magnetically couple into the TE10 mode of the cavity 508. In other examples, the apertures 515, 517 excite higher order modes. First and second conductive coupling structure 520 and 525 are formed on an outer surface of the vapor cell 505 proximate the first and second non-conductive aperture 515 and 517, respectively. The coupling structures 520, 525 may be the antenna(s) described above and may comprise a conductive strip formed on a surface of one of the substrates forming the cell 505. Each coupling structure 520, 525 may overlie and cross over the corresponding non-conductive aperture 515, 517 for providing an electromagnetic interface to couple a magnetic field in to (based on the transmit signal TX from the transceiver output 633) the cavity 508 or from the cavity to the transceiver RX input 638 The proximate location of the conductive coupling structures 520, 525 and the corresponding non-conductive apertures 515, 525 advantageously provides electromagnetically transmissive paths through the second or upper substrate 106, which can be any electromagnetically transmissive material.
The transceiver circuit 600 in certain implementations is implemented on or in an integrated circuit (not shown), to which the vapor cell 505 is electrically coupled for transmission of the TX signal via the output 633 and for receipt of the RX signal via the input 638. The transceiver 600 is operable when powered for providing an alternating electrical output signal TX to the first conductive coupling structure 520 for coupling an electromagnetic field to the interior of the cavity 508, as well as for receiving the alternating electrical input signal RX from the second conductive coupling structure 525 representing the electromagnetic field received from the cavity 508. The transceiver circuit 600 is operable for selectively adjusting the frequency of the electrical output signal TX in order to reduce the electrical input signal RX by interrogation to operate the clock generator 500 at a frequency which substantially maximizes the molecular absorption through rotational motor state transitions, and for providing a reference clock signal REF_CLK at the frequency of the TX output signal.
In certain examples, the transceiver 600 includes a signal generator 602 with an output 633 electrically coupled with the first conductive coupling structure 520 for providing the alternating electrical output signal TX, and for providing the reference clock signal REF_CLK at the corresponding transmit output frequency. The transceiver 600 also includes a lock-in amplifier circuit 606 with an input 638 coupled from the second conductive coupling structure 525 for receiving the RX signal. The lock-in amplifier operates to provide an error signal ERR representing a difference between the RX signal and the electrical output signal TX. In one example, the lock-in amplifier 606 provides the error signal ERR as an in-phase output, and the error signal ERR is used as an input by a loop filter 604 to provide a control output signal (CO) to the signal generator 602 for selectively adjusting the TX output signal frequency to maintain this frequency at a peak absorption frequency of the dipolar molecular gas inside the sealed interior of the cavity 508. In some examples, the RF power of the TX and RX loop is controlled so as to avoid or mitigate stark shift affects.
The electromagnetic coupling via the non-conductive apertures 520, 525 and corresponding conductive coupling structures 515, 517 facilitates electromagnetic interrogation of the dipolar gas within the cell cavity 508. In one non-limiting form of operation, the clock generator 500 operates with the signal generator 602 transmitting alternating current (AC) TX signals at full transmission power at various frequencies within a defined band around a suspected quantum absorption frequency at which the transmission efficiency of the vapor cell 505 is minimal (absorption is maximal). For example, the quantum absorption frequency associated with the dipolar water molecule is 183.31 GHz. When the system operates at the quantum frequency, a null or minima is detected at the receiver via the lock-in amplifier 606, which provides the error signal ERR to the loop filter 604 for regulation of the TX output signal frequency via the control output CO signal provided to the signal generator 602. The rotational quantum frequency of the dipolar molecule gas in the vapor cell cavity 508 is generally stable with respect to time (does not degrade or drift over time), and is largely independent of temperature and a number of other variables.
In one embodiment, the signal generator 602 initially sweeps the transmission output frequency through a band known to include the quantum frequency of the cell 505 (e.g., transitioning upward from an initial frequency below the suspected quantum frequency, or initially transitioning downward from an initial frequency above the suspected quantum frequency, or other suitable sweeping technique or approach). The transceiver 600 monitors the received energy via the input 638 coupled with (e.g., electrically connected to) the second conductive coupling structure 525 in order to identify the transmission frequency associated with peak absorption by the gas in the cell cavity 508 (e.g., minimal reception at the receiver). Once the quantum absorption frequency is identified, the loop filter 604 moves the source signal generator transmission frequency close to that absorption frequency (e.g., 183.31 GHz), and modulates the signal at a very low frequency to regulate operation around the null or minima in the transmission efficiency representing the ratio of the received energy to the transmitted energy. The loop filter 604 provides negative feedback in a closed loop operation to maintain the signal generator 602 operating at a TX frequency corresponding to the quantum frequency of the cavity dipolar molecule gas.
In steady state operation, the lock-in amplifier 606 and the loop filter 604 maintain the transmitter frequency at the peak absorption frequency of the cell gas. In one non-limiting example, the loop filter 604 provides proportional-integral-derivative (PID) control using a derivative of the frequency error as a control factor for lock-in detection and closed loop regulation. At the bottom of the null in a transmission coefficient curve, the derivative is zero and the loop filter 604 provides the derivative back as a direct current (DC) control output signal CO to the signal generator 602. This closed loop operates to keep the signal generator transmission output frequency at the peak absorption frequency of the cell gas using lock-in differentiation based on the RX signal received from the cell 508. The REF_CLK signal from the signal generator 602 is the TX signal clock and can be provided to other circuitry such as frequency dividers and other control circuits requiring use of a clock.
The above discussion is meant to be illustrative of the principles and various embodiments of the present invention. Numerous variations and modifications will become apparent to those skilled in the art once the above disclosure is fully appreciated. It is intended that the following claims be interpreted to embrace all such variations and modifications.
Number | Name | Date | Kind |
---|---|---|---|
4147431 | Mann | Apr 1979 | A |
4826616 | Tanino | May 1989 | A |
5107231 | Knox | Apr 1992 | A |
5198786 | Russell et al. | Mar 1993 | A |
5218373 | Heckaman et al. | Jun 1993 | A |
5412186 | Gale | May 1995 | A |
5459324 | Fima | Oct 1995 | A |
5821836 | Katehi et al. | Oct 1998 | A |
6131256 | Dydyk et al. | Oct 2000 | A |
6236366 | Yamamoto et al. | May 2001 | B1 |
6362706 | Song et al. | Mar 2002 | B1 |
6498550 | Miller et al. | Dec 2002 | B1 |
6630359 | Caillat et al. | Oct 2003 | B1 |
6670866 | Ella et al. | Dec 2003 | B2 |
6842088 | Yamada et al. | Jan 2005 | B2 |
6989723 | Komuro et al. | Jan 2006 | B2 |
6998691 | Baugh | Feb 2006 | B2 |
7388454 | Ruby et al. | Jun 2008 | B2 |
7408428 | Larson, III | Aug 2008 | B2 |
8098208 | Ficker et al. | Jan 2012 | B2 |
8268642 | Yoshitomi et al. | Sep 2012 | B2 |
8293661 | Yamazaki | Oct 2012 | B2 |
8586178 | Schwanke et al. | Nov 2013 | B2 |
9436902 | Koepp et al. | Sep 2016 | B1 |
9529334 | Herbsommer et al. | Dec 2016 | B2 |
9735754 | Shin et al. | Aug 2017 | B2 |
20020038989 | Larson, III | Apr 2002 | A1 |
20020068018 | Pepper et al. | Jun 2002 | A1 |
20020098611 | Chang et al. | Jul 2002 | A1 |
20030015707 | Bosco et al. | Jan 2003 | A1 |
20030048500 | Fala | Mar 2003 | A1 |
20030107459 | Takahashi et al. | Jun 2003 | A1 |
20040142484 | Berlin et al. | Jul 2004 | A1 |
20040166577 | Storek et al. | Aug 2004 | A1 |
20050023932 | Inoue et al. | Feb 2005 | A1 |
20060022761 | Abeles | Feb 2006 | A1 |
20060076632 | Palmateer et al. | Apr 2006 | A1 |
20060144150 | Wu | Jul 2006 | A1 |
20070189359 | Chen et al. | Aug 2007 | A1 |
20080319285 | Hancock | Dec 2008 | A1 |
20100182102 | Kuypers et al. | Jul 2010 | A1 |
20100259334 | Briggs | Oct 2010 | A1 |
20100327701 | Grannen et al. | Dec 2010 | A1 |
20110140971 | Schwanke et al. | Jun 2011 | A1 |
20120266681 | Baumann et al. | Oct 2012 | A1 |
20130176703 | Hopper et al. | Jul 2013 | A1 |
20140155295 | Hindson et al. | Jun 2014 | A1 |
20140210835 | Hong et al. | Jul 2014 | A1 |
20140347074 | Nadeau | Nov 2014 | A1 |
20140368376 | Nadeau et al. | Dec 2014 | A1 |
20140368377 | Nadeau et al. | Dec 2014 | A1 |
20140373599 | Trombley et al. | Dec 2014 | A1 |
20150144297 | Toivonen et al. | May 2015 | A1 |
20150123748 | Stevenson | Jul 2015 | A1 |
20150277386 | Passilly | Oct 2015 | A1 |
20160091663 | Taylor | Mar 2016 | A1 |
20160233178 | Lamy et al. | Aug 2016 | A1 |
20170073223 | Nasiri et al. | Mar 2017 | A1 |
20170125660 | Stephanou et al. | May 2017 | A1 |
20170130102 | Campbell et al. | May 2017 | A1 |
20180159547 | Herbsommer et al. | Jun 2018 | A1 |
Number | Date | Country |
---|---|---|
6428974 | Jan 1989 | JP |
2014037016 | Mar 2014 | WO |
2016161215 | Oct 2016 | WO |
Entry |
---|
International Search Report for PCT/US2018/049513 dated Nov. 15, 2018. |
International Search report for PCT/US 2018/049940 dated Dec. 13, 2018. |
International Search report for PCT/US 2018/049949 dated Dec. 13, 2018. |
International Search Report for PCT/US2018/049949 dated Dec. 27, 2018. |
International Search Report for PCT/US2018/047105 dated Dec. 27, 2018. |
International Search Report for PCT/US2018/050253 dated Jan. 10, 2019. |
Alvarez, A.L. et al; “The Application of Microencapsulation Techniques in the Treatment of Endodontic and Periodontal Diseases” Pharmaceutics; 2011 abstract pp. 540-548. |
Steinberg, D. et al; “A New Degradable Controlled Release Device for Treatment of Periodontal Disease: In Vitro Release Study”; J. Periodontology; 1990; p. 393 lines 1-17; p. 394 col. 1 lines 5-14. |
Kiong, R. et al.; “Towards Theranostic Multicompartment Microcapsules: in situ Diagnostics and Laser-induced Treatment”, Theranostics; 2013; pp. 145-149. |
Number | Date | Country | |
---|---|---|---|
20190071306 A1 | Mar 2019 | US |