HETEROLOGOUS EXPRESSION OF NEISSERIAL PROTEINS

Abstract
Alternative and improved approaches to the heterologous expression of the proteins of Neisseria meningitidis and Neisseria gonorrhoeae are disclosed. These approaches typically affect the level of expression, the ease of purification, the cellular localization, and/or the immunological properties of the expressed protein.
Description
TECHNICAL FIELD

This invention is in the field of protein expression. In particular, it relates to the heterologous expression of proteins from Neisseria (e.g. N. gonorrhoeae or, preferably, N. meningitidis).


SUBMISSION OF SEQUENCE LISTING ON ASCII TEXT FILE

The content of the following submission on ASCII text file is incorporated herein by reference in its entirety: a computer readable form (CRF) of the Sequence Listing (file name: 223002099801SeqList.txt, date recorded: Apr. 3, 2014, size: 503 KB).


BACKGROUND

International patent applications WO99/24578, WO99/36544, WO99/57280 and WO00/22430 disclose proteins from Neisseria meningitidis and Neisseria gonorrhoeae. These proteins are typically described as being expressed in E. coli (i.e. heterologous expression) as either N-terminal GST-fusions or C-terminal His-tag fusions, although other expression systems, including expression in native Neisseria, are also disclosed.


It is an object of the present invention to provide alternative and improved approaches for the heterologous expression of these proteins. These approaches will typically affect the level of expression, the ease of purification, the cellular localisation of expression, and/or the immunological properties of the expressed protein.


DISCLOSURE
Nomenclature Herein

The 2166 protein sequences disclosed in WO99/24578, WO99/36544 and WO99/57280 are referred to herein by the following SEQ# numbers:

















Application
Protein sequences
SEQ# herein









WO99/24578
Even SEQ IDs 2-892
SEQ#s 1-446



WO99/36544
Even SEQ IDs 2-90
SEQ#s 447-491



WO99/57280
Even SEQ IDs 2-3020
SEQ#s 492-2001




Even SEQ IDs 3040-3114
SEQ#s 2002-2039




SEQ IDs 3115-3241
SEQ#s 2040-2166










In addition to this SEQ# numbering, the naming conventions used in WO99/24578, WO99/36544 and WO99/57280 are also used (e.g. ‘ORF4’, ‘ORF40’, ‘ORF40-1’ etc. as used in WO99/24578 and WO99/36544; ‘m919’, ‘g919’ and ‘a919’ etc. as used in WO99/57280).


The 2160 proteins NMB0001 to NMB2160 from Tettelin et al. [Science (2000) 287:1809-1815] are referred to herein as SEQ#s 2167-4326 [see also WO00/66791].


The term ‘protein of the invention’ as used herein refers to a protein comprising:

    • (a) one of sequences SEQ#s 1-4326; or
    • (b) a sequence having sequence identity to one of SEQ#s 1-4326; or
    • (c) a fragment of one of SEQ#s 1-4326.


The degree of ‘sequence identity’ referred to in (b) is preferably greater than 50% (eg. 60%, 70%, 80%, 90%, 95%, 99% or more). This includes mutants and allelic variants [e.g. see WO00/66741]. Identity is preferably determined by the Smith-Waterman homology search algorithm as implemented in the MPSRCH program (Oxford Molecular), using an affine gap search with parameters gap open penalty=12 and gap extension penalty=1. Typically, 50% identity or more between two proteins is considered to be an indication of functional equivalence.


The ‘fragment’ referred to in (c) should comprise at least n consecutive amino acids from one of SEQ#s 1-4326 and, depending on the particular sequence, n is 7 or more (eg. 8, 10, 12, 14, 16, 18, 20, 25, 30, 35, 40, 50, 60, 70, 80, 90, 100 or more). Preferably the fragment comprises an epitope from one of SEQ#s 1-4326. Preferred fragments are those disclosed in WO00/71574 and WO01/04316.


Preferred proteins of the invention are found in N. meningitidis serogroup B.


Preferred proteins for use according to the invention are those of serogroup B N. meningitidis strain 2996 or strain 394/98 (a New Zealand strain). Unless otherwise stated, proteins mentioned herein are from N. meningitidis strain 2996. It will be appreciated, however, that the invention is not in general limited by strain. References to a particular protein (e.g. ‘287’, ‘919’ etc.) may be taken to include that protein from any strain.


Non-Fusion Expression

In a first approach to heterologous expression, no fusion partner is used, and the native leader peptide (if present) is used. This will typically prevent any ‘interference’ from fusion partners and may alter cellular localisation and/or post-translational modification and/or folding in the heterologous host.


Thus the invention provides a method for the heterologous expression of a protein of the invention, in which (a) no fusion partner is used, and (b) the protein's native leader peptide (if present) is used.


The method will typically involve the step of preparing an vector for expressing a protein of the invention, such that the first expressed amino acid is the first amino acid (methionine) of said protein, and last expressed amino acid is the last amino acid of said protein (i.e. the codon preceding the native STOP codon).


This approach is preferably used for the expression of the following proteins using the native leader peptide: 111, 149, 206, 225-1, 235, 247-1, 274, 283, 286, 292, 401, 406, 502-1, 503, 519-1, 525-1, 552, 556, 557, 570, 576-1, 580, 583, 664, 759, 907, 913, 920-1, 936-1, 953, 961, 983, 989, Orf4, Orf7-1, Orf9-1, Orf23, Orf25, Orf37, Orf38, Orf40, Orf40.1, Orf40.2, Orf72-1, Orf76-1, Orf85-2, Orf91, Orf97-1, Orf119, Orf143.1, NMB0109 and NMB2050. The suffix ‘L’ used herein in the name of a protein indicates expression in this manner using the native leader peptide.


Proteins which are preferably expressed using this approach using no fusion partner and which have no native leader peptide include: 008, 105, 117-1, 121-1, 122-1, 128-1, 148, 216, 243, 308, 593, 652, 726, 926, 982, Orf83-1 and Orf143-1.


Advantageously, it is used for the expression of ORF25 or ORF40, resulting in a protein which induces better anti-bactericidal antibodies than GST- or His-fusions.


This approach is particularly suited for expressing lipoproteins.


Leader-Peptide Substitution

In a second approach to heterologous expression, the native leader peptide of a protein of the invention is replaced by that of a different protein. In addition, it is preferred that no fusion partner is used. Whilst using a protein's own leader peptide in heterologous hosts can often localise the protein to its ‘natural’ cellular location, in some cases the leader sequence is not efficiently recognised by the heterologous host. In such cases, a leader peptide known to drive protein targeting efficiently can be used instead.


Thus the invention provides a method for the heterologous expression of a protein of the invention, in which (a) the protein's leader peptide is replaced by the leader peptide from a different protein and, optionally, (b) no fusion partner is used.


The method will typically involve the steps of: obtaining nucleic acid encoding a protein of the invention; manipulating said nucleic acid to remove nucleotides that encode the protein's leader peptide and to introduce nucleotides that encode a different protein's leader peptide. The resulting nucleic acid may be inserted into an expression vector, or may already be part of an expression vector. The expressed protein will consist of the replacement leader peptide at the N-terminus, followed by the protein of the invention minus its leader peptide.


The leader peptide is preferably from another protein of the invention (e.g. one of SEQ#s 1-4326), but may also be from an E. coli protein (e.g. the OmpA leader peptide) or an Erwinia carotovora protein (e.g. the PelB leader peptide), for instance.


A particularly useful replacement leader peptide is that of ORF4. This leader is able to direct lipidation in E. coli, improving cellular localisation, and is particularly useful for the expression of proteins 287, 919 and ΔG287. The leader peptide and N-terminal domains of 961 are also particularly useful.


Another useful replacement leader peptide is that of E. coli OmpA. This leader is able to direct membrane localisation of E. coli. It is particularly advantageous for the expression of ORF1, resulting in a protein which induces better anti-bactericidal antibodies than both fusions and protein expressed from its own leader peptide.


Another useful replacement leader peptide is MKKYLFSAA. This can direct secretion into culture medium, and is extremely short and active. The use of this leader peptide is not restricted to the expression of Neisserial proteins—it may be used to direct the expression of any protein (particularly bacterial proteins).


Leader-Peptide Deletion

In a third approach to heterologous expression, the native leader peptide of a protein of the invention is deleted. In addition, it is preferred that no fusion partner is used


Thus the invention provides a method for the heterologous expression of a protein of the invention, in which (a) the protein's leader peptide is deleted and, optionally, (b) no fusion partner is used.


The method will typically involve the steps of: obtaining nucleic acid encoding a protein of the invention; manipulating said nucleic acid to remove nucleotides that encode the protein's leader peptide. The resulting nucleic acid may be inserted into an expression vector, or may already be part of an expression vector. The first amino acid of the expressed protein will be that of the mature native protein.


This method can increase the levels of expression. For protein 919, for example, expression levels in E. coli are much higher when the leader peptide is deleted. Increased expression may be due to altered localisation in the absence of the leader peptide.


The method is preferably used for the expression of 919, ORF46, 961, 050-1, 760 and 287.


Domain-Based Expression

In a fourth approach to heterologous expression, the protein is expressed as domains. This may be used in association with fusion systems (e.g. GST or His-tag fusions).


Thus the invention provides a method for the heterologous expression of a protein of the invention, in which (a) at least one domain in the protein is deleted and, optionally, (b) no fusion partner is used.


The method will typically involve the steps of: obtaining nucleic acid encoding a protein of the invention; manipulating said nucleic acid to remove at least one domain from within the protein. The resulting nucleic acid may be inserted into an expression vector, or may already be part of an expression vector. Where no fusion partners are used, the first amino acid of the expressed protein will be that of a domain of the protein.


A protein is typically divided into notional domains by aligning it with known sequences in databases and then determining regions of the protein which show different alignment patterns from each other.


The method is preferably used for the expression of protein 287. This protein can be notionally split into three domains, referred to as A B & C (see FIG. 5). Domain B aligns strongly with IgA proteases, domain C aligns strongly with transferrin-binding proteins, and domain A shows no strong alignment with database sequences. An alignment of polymorphic forms of 287 is disclosed in WO00/66741.


Once a protein has been divided into domains, these can be (a) expressed singly (b) deleted from with the protein e.g. protein ABCD→ABD, ACD, BCD etc. or (c) rearranged e.g. protein ABC→ACB, CAB etc. These three strategies can be combined with fusion partners is desired.


ORF46 has also been notionally split into two domains—a first domain (amino acids 1-433) which is well-conserved between species and serogroups, and a second domain (amino acids 433-608) which is not well-conserved. The second domain is preferably deleted. An alignment of polymorphic forms of ORF46 is disclosed in WO00/66741.


Protein 564 has also been split into domains (FIG. 8), as have protein 961 (FIG. 12) and protein 502 (amino acids 28-167 of the MC58 protein).


Hybrid Proteins

In a fifth approach to heterologous expression, two or more (e.g. 3, 4, 5, 6 or more) proteins of the invention are expressed as a single hybrid protein. It is preferred that no non-Neisserial fusion partner (e.g. GST or poly-His) is used.


This offers two advantages. Firstly, a protein that may be unstable or poorly expressed on its own can be assisted by adding a suitable hybrid partner that overcomes the problem. Secondly, commercial manufacture is simplified—only one expression and purification need be employed in order to produce two separately-useful proteins.


Thus the invention provides a method for the simultaneous heterologous expression of two or more proteins of the invention, in which said two or more proteins of the invention are fused (i.e. they are translated as a single polypeptide chain).


The method will typically involve the steps of: obtaining a first nucleic acid encoding a first protein of the invention; obtaining a second nucleic acid encoding a second protein of the invention; ligating the first and second nucleic acids. The resulting nucleic acid may be inserted into an expression vector, or may already be part of an expression vector.


Preferably, the constituent proteins in a hybrid protein according to the invention will be from the same strain.


The fused proteins in the hybrid may be joined directly, or may be joined via a linker peptide e.g. via a poly-glycine linker (i.e. Gn where n=3, 4, 5, 6, 7, 8, 9, 10 or more) or via a short peptide sequence which facilitates cloning. It is evidently preferred not to join a AG protein to the C-terminus of a poly-glycine linker.


The fused proteins may lack native leader peptides or may include the leader peptide sequence of the N-terminal fusion partner.


The method is well suited to the expression of proteins orf1, orf4, orf25, orf40, Orf46/46.1, orf83, 233, 287, 292L, 564, 687, 741, 907, 919, 953, 961 and 983.


The 42 hybrids indicated by ‘X’ in the following table of form NH2-A-B-COOH are preferred:

















B
















A
ORF46.1
287
741
919
953
961
983







ORF46.1

X
X
X
X
X
X



287
X

X
X
X
X
X



741
X
X

X
X
X
X



919
X
X
X

X
X
X



953
X
X
X
X

X
X



961
X
X
X
X
X

X



983
X
X
X
X
X
X










Preferred proteins to be expressed as hybrids are thus ORF46.1, 287, 741, 919, 953, 961 and 983. These may be used in their essentially full-length form, or poly-glycine deletions (AG) forms may be used (e.g. AG-287, ΔGTbp2, ΔG741, ΔG983 etc.), or truncated forms may be used (e.g. Δ1-287, Δ2-287 etc.), or domain-deleted versions may be used (e.g. 287B, 287C, 287BC, ORF461-433, ORF46433-608, ORF46, 961c etc.).


Particularly preferred are: (a) a hybrid protein comprising 919 and 287; (b) a hybrid protein comprising 953 and 287; (c) a hybrid protein comprising 287 and ORF46.1; (d) a hybrid protein comprising ORF1 and ORF46.1; (e) a hybrid protein comprising 919 and ORF46.1; (f) a hybrid protein comprising ORF46.1 and 919; (g) a hybrid protein comprising ORF46.1, 287 and 919; (h) a hybrid protein comprising 919 and 519; and (1) a hybrid protein comprising ORF97 and 225. Further embodiments are shown in FIG. 14.


Where 287 is used, it is preferably at the C-terminal end of a hybrid; if it is to be used at the N-terminus, if is preferred to use a ΔG form of 287 is used (e.g. as the N-terminus of a hybrid with ORF46.1, 919, 953 or 961).


Where 287 is used, this is preferably from strain 2996 or from strain 394/98.


Where 961 is used, this is preferably at the N-terminus. Domain forms of 961 may be used.


Alignments of polymorphic forms of ORF46, 287, 919 and 953 are disclosed in WO00/66741. Any of these polymorphs can be used according to the present invention.


Temperature

In a sixth approach to heterologous expression, proteins of the invention are expressed at a low temperature.


Expressed Neisserial proteins (e.g. 919) may be toxic to E. coli, which can be avoided by expressing the toxic protein at a temperature at which its toxic activity is not manifested.


Thus the present invention provides a method for the heterologous expression of a protein of the invention, in which expression of a protein of the invention is carried out at a temperature at which a toxic activity of the protein is not manifested.


A preferred temperature is around 30° C. This is particularly suited to the expression of 919.


Mutations

As discussed above, expressed Neisserial proteins may be toxic to E. coli. This toxicity can be avoided by mutating the protein to reduce or eliminate the toxic activity. In particular, mutations to reduce or eliminate toxic enzymatic activity can be used, preferably using site-directed mutagenesis.


In a seventh approach to heterologous expression, therefore, an expressed protein is mutated to reduce or eliminate toxic activity.


Thus the invention provides a method for the heterologous expression of a protein of the invention, in which protein is mutated to reduce or eliminate toxic activity.


The method is preferably used for the expression of protein 907, 919 or 922. A preferred mutation in 907 is at Glu-117 (e.g. Glu→Gly); preferred mutations in 919 are at Glu-255 (e.g. Glu→Gly) and/or Glu-323 (e.g. Glu→Gly); preferred mutations in 922 are at Glu-164 (e.g. Glu→Gly), Ser-213 (e.g. Ser→Gly) and/or Asn-348 (e.g. Asn→Gly).


Alternative Vectors

In a eighth approach to heterologous expression, an alternative vector used to express the protein. This may be to improve expression yields, for instance, or to utilise plasmids that are already approved for GMP use.


Thus the invention provides a method for the heterologous expression of a protein of the invention, in which an alternative vector is used. The alternative vector is preferably pSM214, with no fusion partners. Leader peptides may or may not be included.


This approach is particularly useful for protein 953. Expression and localisation of 953 with its native leader peptide expressed from pSM214 is much better than from the pET vector.


pSM214 may also be used with: ΔG287, Δ2-287, Δ3-287, Δ4-287, Orf46.1, 961L, 961, 961(MC58), 961c, 961c-L, 919, 953 and ΔG287-Orf46.1.


Another suitable vector is pET-24b (Novagen; uses kanamycin resistance), again using no fusion partners. pET-24b is preferred for use with: ΔG287K, Δ2-287K, Δ3-287K, Δ4-287K, Orf46.1-K, Orf46A-K, 961-K (MC58), 961a-K, 961b-K, 961c-K, 961c-L-K, 961d-K, ΔG287-919-K, ΔG287-Orf46.1-K and ΔG287-961-K.


Multimeric Form

In a ninth approach to heterologous expression, a protein is expressed or purified such that it adopts a particular multimeric form.


This approach is particularly suited to protein 953. Purification of one particular multimeric form of 953 (the monomeric form) gives a protein with greater bactericidal activity than other forms (the dimeric form).


Proteins 287 and 919 may be purified in dimeric form.


Protein 961 may be purified in a 180 kDa oligomeric form (e.g. a tetramer).


Lipidation

In a tenth approach to heterologous expression, a protein is expressed as a lipidated protein.


Thus the invention provides a method for the heterologous expression of a protein of the invention, in which the protein is expressed as a lipidated protein.


This is particularly useful for the expression of 919, 287, ORF4, 406, 576-1, and ORF25. Polymorphic forms of 919, 287 and ORF4 are disclosed in WO00/66741.


The method will typically involve the use of an appropriate leader peptide without using an N-terminal fusion partner.


C-Terminal Deletions


In an eleventh approach to heterologous expression, the C-terminus of a protein of the invention is mutated. In addition, it is preferred that no fusion partner is used.


Thus the invention provides a method for the heterologous expression of a protein of the invention, in which (a) the protein's C-terminus region is mutated and, optionally, (b) no fusion partner is used.


The method will typically involve the steps of: obtaining nucleic acid encoding a protein of the invention; manipulating said nucleic acid to mutate nucleotides that encode the protein's C-terminus portion. The resulting nucleic acid may be inserted into an expression vector, or may already be part of an expression vector. The first amino acid of the expressed protein will be that of the mature native protein.


The mutation may be a substitution, insertion or, preferably, a deletion.


This method can increase the levels of expression, particularly for proteins 730, ORF29 and ORF46. For protein 730, a C-terminus region of around 65 to around 214 amino acids may be deleted; for ORF46, the C-terminus region of around 175 amino acids may be deleted; for ORF29, the C-terminus may be deleted to leave around 230-370 N-terminal amino acids.


Leader Peptide Mutation

In a twelfth approach to heterologous expression, the leader peptide of the protein is mutated. This is particularly useful for the expression of protein 919.


Thus the invention provides a method for the heterologous expression of a protein of the invention, in which the protein's leader peptide is mutated.


The method will typically involve the steps of: obtaining nucleic acid encoding a protein of the invention; and manipulating said nucleic acid to mutate nucleotides within the leader peptide. The resulting nucleic acid may be inserted into an expression vector, or may already be part of an expression vector.


Poly-Glycine Deletion

In a thirteenth approach to heterologous expression, poly-glycine stretches in wild-type sequences are mutated. This enhances protein expression.


The poly-glycine stretch has the sequence (Gly)n, where n≧4 (e.g. 5, 6, 7, 8, 9 or more). This stretch is mutated to disrupt or remove the (Gly). This may be by deletion (e.g. CGGGGS→CGGGS, CGGS, CGS or CS), by substitution (e.g. CGGGGS→CGXGGS, CGXXGS, CGXGXS etc.), and/or by insertion (e.g. CGGGGS→CGGXGGS, CGXGGGS, etc.).


This approach is not restricted to Neisserial proteins—it may be used for any protein (particularly bacterial proteins) to enhance heterologous expression. For Neisserial proteins, however, it is particularly suitable for expressing 287, 741, 983 and Tbp2. An alignment of polymorphic forms of 287 is disclosed in WO00/66741.


Thus the invention provides a method for the heterologous expression of a protein of the invention, in which (a) a poly-glycine stretch within the protein is mutated.


The method will typically involve the steps of: obtaining nucleic acid encoding a protein of the invention; and manipulating said nucleic acid to mutate nucleotides that encode a poly-glycine stretch within the protein sequence. The resulting nucleic acid may be inserted into an expression vector, or may already be part of an expression vector.


Conversely, the opposite approach (i.e. introduction of poly-glycine stretches) can be used to suppress or diminish expression of a given heterologous protein.


Heterologous Host

Whilst expression of the proteins of the invention may take place in the native host (i.e. the organism in which the protein is expressed in nature), the present invention utilises a heterologous host. The heterologous host may be prokaryotic or eukaryotic. It is preferably E. coli, but other suitable hosts include Bacillus subtilis, Vibrio cholerae, Salmonella typhi, Salmonenna typhimurium, Neisseria meningitidis, Neisseria gonorrhoeae, Neisseria lactamica, Neisseria cinerea, Mycobateria (e.g. M. tuberculosis), yeast etc.


Vectors Etc.

As well as the methods described above, the invention provides (a) nucleic acid and vectors useful in these methods (b) host cells containing said vectors (c) proteins expressed or expressable by the methods (d) compositions comprising these proteins, which may be suitable as vaccines, for instance, or as diagnostic reagents, or as immunogenic compositions (e) these compositions for use as medicaments (e.g. as vaccines) or as diagnostic reagents (f) the use of these compositions in the manufacture of (1) a medicament for treating or preventing infection due to Neisserial bacteria (2) a diagnostic reagent for detecting the presence of Neisserial bacteria or of antibodies raised against Neisserial bacteria, and/or (3) a reagent which can raise antibodies against Neisserial bacteria and (g) a method of treating a patient, comprising administering to the patient a therapeutically effective amount of these compositions.


Sequences

The invention also provides a protein or a nucleic acid having any of the sequences set out in the following examples. It also provides proteins and nucleic acid having sequence identity to these. As described above, the degree of ‘sequence identity’ is preferably greater than 50% (eg. 60%, 70%, 80%, 90%, 95%, 99% or more).


Furthermore, the invention provides nucleic acid which can hybridise to the nucleic acid disclosed in the examples, preferably under “high stringency” conditions (eg. 65° C. in a 0.1×SSC, 0.5% SDS solution).


The invention also provides nucleic acid encoding proteins according to the invention.


It should also be appreciated that the invention provides nucleic acid comprising sequences complementary to those described above (eg. for antisense or probing purposes).


Nucleic acid according to the invention can, of course, be prepared in many ways (eg. by chemical synthesis, from genomic or cDNA libraries, from the organism itself etc.) and can take various forms (eg. single stranded, double stranded, vectors, probes etc.).


In addition, the term “nucleic acid” includes DNA and RNA, and also their analogues, such as those containing modified backbones, and also peptide nucleic acids (PNA) etc.





BRIEF DESCRIPTION OF DRAWINGS


FIGS. 1 and 2 show constructs used to express proteins using heterologous leader peptides.



FIG. 3 shows expression data for ORF1, and



FIG. 4 shows similar data for protein 961.



FIG. 5 shows domains of protein 287, and



FIGS. 6 & 7 show deletions within domain A.



FIG. 8 shows domains of protein 564.



FIG. 9 shows the PhoC reporter gene driven by the 919 leader peptide, and



FIG. 10 shows the results obtained using mutants of the leader peptide.



FIG. 11 shows insertion mutants of protein 730 (A: 730-C1; B: 730-C2).



FIG. 12 shows domains of protein 961.



FIG. 13 shows SDS-PAGE of ΔG proteins. Dots show the main recombinant product.



FIG. 14 shows 26 hybrid proteins according to the invention.





MODES FOR CARRYING OUT THE INVENTION
Example 1-919 and its Leader Peptide

Protein 919 from N. meningitidis (serogroup B, strain 2996) has the following sequence:










1

MKKYLFRAALYGIAAAILAA CQSKSIQTFP QPDTSVINGP




DRPVGIPDPA





51
GTTVGGGGAV YTVVPHLSLP HWAAQDFAKS LQSFRLGCAN



LKNRQGWQDV





101
CAQAFQTPVH SFQAKQFFER YFTPWQVAGN GSLAGTVTGY



YEPVLKGDDR





151
RTAQARFPIY GIPDDFISVP LPAGLRSGKA LVRIRQTGRN



SGTIDNTGGT





201
HTADLSRFPI TARTTAIKGR FEGSRFLPYR TRNQINGGAL



DGKAPILGYA





251
EDPVELFFMH IQGSGRLKTP SGKYIRIGYA DKNEHPYVSI



GRYMADKGYL





301
KLGQTSMQGI KAYMRQNPQR LAEVLGQNPS YIFFRELAGS



SNDGPVGALG





351
TPLMGEYAGA VDRHYITLGA PLFVATAHPV TRKALNRLIM



AQDTGSAIKG





401
AVRVDYFWGY GDEAGELAGK QKTTGYVWQL



LPNGMKPEYR P*






The leader peptide is underlined.


The sequences of 919 from other strains can be found in FIGS. 7 and 18 of WO00/66741.


Example 2 of WO99/57280 discloses the expression of protein 919 as a His-fusion in E. coli. The protein is a good surface-exposed immunogen.


Three alternative expression strategies were used for 919:

    • 1) 919 without its leader peptide (and without the mature N-terminal cysteine) and without any fusion partner (‘919untagged’):










1
 QSKSIQTFP QPDTSVINGP DRPVGIPDPA GTTVGGGGAV



YTVVPHLSLP





50
HWAAQDFAKS LQSFRLGCAN LKNRQGWQDV CAQAFQTPVH



SFQAKQFFER





100
YFTPWQVAGN GSLAGTVTGY YEPVLKGDDR RTAQARFPIY



GIPDDFISVP





150
LPAGLRSGKA LVRIRQTGKN SGTIDNTGGT HTADLSRFPI



TARTTAIKGR





200
FEGSRFLPYH TRNQINGGAL DGKAPILGYA EDPVELFFMH



IQGSGRLKTP





250
SGKYIRIGYA DKNEHPYVSI GRYMADKGYL KLGQTSMQGI



KAYMRQNPQR





300
LAEVLGQNPS YIFFRELAGS SNDGPVGALG TPLMGEYAGA



VDRHYITLGA





350
PLFVATAHPV TRKALNRLIM AQDTGSAIKG AVRVDYFWGY



GDEAGELAGK





400
QKTTGYVWQL LPNGMKPEYR P*










      • The leader peptide and cysteine were omitted by designing the 5′-end amplification primer downstream from the predicted leader sequence.



    • 2) 919 with its own leader peptide but without any fusion partner (‘919L’); and

    • 3) 919 with the leader peptide (MKTFFKTLSAAALALILAA) from ORF4 (‘919LOrf4’).













1
MKTFFKTLSAAALALILAA CQSKSIQTFP QPDTSVINGP



DRPVGIPDPA





50
GTTVGGGGAV YTVVPHLSLP HWAAQDFAKS LQSFRLGCAN



LKNRQGWQDV





100
CAQAFQTPVH SFQAKQFFER YFTPWQVAGN GSLAGTVTGY



YEPVLKGDDR





150
RTAQARFPIY GIPDDFISVP LPAGLRSGKA LVRIRQTGKN



SGTIDNTGGT





200
HTADLSRFPI TARTTAIKGR FEGSRFLPYH TRNQINGGAL



DGKAPILGYA





250
EDPVELFFMH IQGSGRLKTP SGKYIRIGYA DKNEHPYVSI



GRYMADKGYL





300
KLGQTSMQGI KSYMRQNPQR LAEVLGQNPS YIFFRELAGS



SNDGPVGALG





350
TPLMGEYAGA VDRHYITLGA PLFVATAHPV TRKALNRLIM



AQDTGSAIKG





400
AVRVDYFWGY GDEAGELAGK QKTTGYVWQL



LPNGMKPEYR P*










      • To make this construct, the entire sequence encoding the ORF4 leader peptide was included in the 5′-primer as a tail (primer 919Lorf4 For). A NheI restriction site was generated by a double nucleotide change in the sequence coding for the ORF4 leader (no amino acid changes), to allow different genes to be fused to the ORF4 leader peptide sequence. A stop codon was included in all the 3′-end primer sequences.







All three forms of the protein were expressed and could be purified.


The ‘919L’ and ‘919LOrf4’ expression products were both lipidated, as shown by the incorporation of [3H]-palmitate label. 919untagged did not incorporate the 3H label and was located intracellularly.


919LOrf4 could be purified more easily than 919L. It was purified and used to immunise mice. The resulting sera gave excellent results in FACS and ELISA tests, and also in the bactericidal assay. The lipoprotein was shown to be localised in the outer membrane.


919untagged gave excellent ELISA titres and high serum bactericidal activity. FACS confirmed its cell surface location.


Example 2-919 and Expression Temperature

Growth of E. coli expressing the 919LOrf4 protein at 37° C. resulted in lysis of the bacteria. In order to overcome this problem, the recombinant bacteria were grown at 30° C. Lysis was prevented without preventing expression.


Example 3
Mutation of 907, 919 and 922

It was hypothesised that proteins 907, 919 and 922 are murein hydrolases, and more particularly lytic transglycosylases. Murein hydrolases are located on the outer membrane and participate in the degradation of peptidoglycan.


The purified proteins 919tagged, 919Lorf4, 919-His (i.e. with a C-terminus His-tag) and 922-His were thus tested for murein hydrolase activity [Ursinus & Holtje (1994) J. Bact. 176:338-343]. Two different assays were used, one determining the degradation of insoluble murein sacculus into soluble muropeptides and the other measuring breakdown of poly(MurNAc-GlcNAc)n>30 glycan strands.


The first assay uses murein sacculi radiolabelled with meso-2,6-diamino-3,4,5-[3H]pimelic acid as substrate. Enzyme (3-10 μg total) was incubated for 45 minutes at 37° C. in a total volume of 100 μl comprising 10 mM Tris-maleate (pH 5.5), 10 mM MgCl2, 0.2% v/v Triton X-100 and [3H]A2 pm labelled murein sacculi (about 10000 cpm). The assay mixture was placed on ice for 15 minutes with 100 μl of 1% w/v N-acetyl-N,N,N-trimethylanunonium for 15 minutes and precipitated material pelleted by centrifugation at 10000 g for 15 minutes. The radioactivity in the supernatant was measured by liquid scintillation counting. E. coli soluble lytic transglycosylase Slt70 was used as a positive control for the assay; the negative control comprised the above assay solution without enzyme.


All proteins except 919-His gave positive results in the first assay.


The second assay monitors the hydrolysis of poly(MurNAc-GlcNAc)glycan strands. Purified strands, poly(MurNAc-GlcNAc)n>30 labelled with N-acetyl-D-1-[3H]glucosamine were incubated with 3 μg of 919L in 10 mM Tris-maleate (pH 5.5), 10 mM. MgCl2 and 0.2% v/v Triton X-100 for 30 min at 37° C. The reaction was stopped by boiling for 5 minutes and the pH of the sample adjusted to about 3.5 by addition of 10 μl of 20% v/v phosphoric acid. Substrate and product were separated by reversed phase HPLC on a Nucleosil 300 C18 column as described by Harz et. al. [Anal. Biochem. (1990) 190:120-128]. The E. coli lytic transglycosylase Mlt A was used as a positive control in the assay. The negative control was performed in the absence of enzyme.


By this assay, the ability of 919LOrf4 to hydrolyse isolated glycan strands was demonstrated when anhydrodisaccharide subunits were separated from the oligosaccharide by HPLC.


Protein 919Lorf4 was chosen for kinetic analyses. The activity of 919Lorf4 was enhanced 3.7-fold by the addition of 0.2% v/v Triton X-100 in the assay buffer. The presence of Triton X-100 had no effect on the activity of 919untagged. The effect of pH on enzyme activity was determined in Tris-Maleate buffer over a range of 5.0 to 8.0. The optimal pH for the reaction was determined to be 5.5. Over the temperature range 18° C. to 42° C., maximum activity was observed at 37° C. The effect of various ions on murein hydrolase activity, was determined by performing the reaction in the presence of a variety of ions at a final concentration of 10 mM. Maximum activity was found with Mg2+, which stimulated activity 2.1-fold. Mn2+ and Ca2+ also stimulated enzyme activity to a similar extent while the addition Ni2+ and EDTA had no significant effect. In contrast, both Fe2+ and Zn2+ significantly inhibited enzyme activity.


The structures of the reaction products resulting from the digestion of unlabelled E. coli murein sacculus were analysed by reversed-phase HPLC as described by Glauner [Anal. Biochem. (1988) 172:451-464]. Murein sacculi digested with the muramidase Cellosyl were used to calibrate and standardise the Hypersil ODS column. The major reaction products were 1,6 anhydrodisaccharide tetra and tri peptides, demonstrating the formation of 1,6 anhydromuraminic acid intramolecular bond.


These results demonstrate experimentally that 919 is a murein hydrolase and in particular a member of the lytic transglycosylase family of enzymes. Furthermore the ability of 922-His to hydrolyse murein sacculi suggests this protein is also a lytic transglycosylase.


This activity may help to explain the toxic effects of 919 when expressed in E. coli.


In order to eliminate the enzymatic activity, rational mutagenesis was used. 907, 919 and 922 show fairly low homology to three membrane-bound lipidated murein lytic transglycosylases from E. coli:

    • 919 (441aa) is 27.3% identical over 440aa overlap to E. coli MLTA (P46885);
    • 922 (369aa) is 38.7% identical over 310aa overlap to E. coli MLTB (P41052); and
    • 907-2 (207aa) is 26.8% identical over 149aa overlap to E. coli MLTC (P52066).


907-2 also shares homology with E. coli MLTD (P23931) and Slt70 (P03810), a soluble lytic transglycosylase that is located in the periplasmic space. No significant sequence homology can be detected among 919, 922 and 907-2, and the same is true among the corresponding MLTA, MLTB and MLTC proteins.


Crystal structures are available for Slt70 [1QTEA; 1QTEB; Thunnissen et al. (1995) Biochemistry 34:12729-12737] and for Slt35 [1LTM; 1QUS; 1QUT; van Asselt et al. (1999) Structure Fold Des 7:1167-80] which is a soluble form of the 40 kDa MLTB.


The catalytic residue (a glutamic acid) has been identified for both Slt70 and MLTB.


In the case of Slt70, mutagenesis studies have demonstrated that even a conservative substitution of the catalytic Glu505 with a glutamine (Gln) causes the complete loss of enzymatic activity. Although Slt35 has no obvious sequence similarity to Slt70, their catalytic domains shows a surprising similarity. The corresponding catalytic residue in MLTB is Glu162.


Another residue which is believed to play an important role in the correct folding of the enzymatic cleft, is a well-conserved glycine (Gly) downstream of the glutamic acid. Recently, Terrak et al. [Mol. Microbiol. (1999) 34:350-64] have suggested the presence of another important residue which is an aromatic amino acid located around 70-75 residues downstream of the catalytic glutamic acid.


Sequence alignment of Slt70 with 907-2 and of MLTB with 922 were performed in order to identify the corresponding catalytic residues in the MenB antigens.


The two alignments in the region of the catalytic domain are reported below:




embedded image


From these alignments, it results that the corresponding catalytic glutamate in 907-2 is Glu117, whereas in 922 is Glu164. Both antigens also share downstream glycines that could have a structural role in the folding of the enzymatic cleft (in bold), and 922 has a conserved aromatic residue around 70aa downstream (in bold).


In the case of protein 919, no 3D structure is available for its E. coli homologue MLTA, and nothing is known about a possible catalytic residue. Nevertheless, three amino acids in 919 are predicted as catalytic residues by alignment with MLTA:




embedded image


The three possible catalytic residues are shown by the symbol ▾:

  • 1) Glu255 (Asp in MLTA), followed by three conserved glycines (Gly263, Gly265 and Gly272) and three conserved aromatic residues located approximately 75-77 residues downstream. These downstream residues are shown by □.
  • 2) Glu323 (conserved in MLTA), followed by 2 conserved glycines (Gly347 and Gly355) and two conserved aromatic residues located 84-85 residues downstream (Tyr406 or Phe407). These downstream residues are shown by ⋄.
  • 3) Asp362 (instead of the expected Glu), followed by one glycine (Gly369) and a conserved aromatic residue (Trp428). These downstream residues are shown by ∘.


Alignments of polymorphic forms of 919 are disclosed in WO00/66741.


Based on the prediction of catalytic residues, three mutants of the 919 and one mutant of 907, containing each a single amino acid substitution, have been generated. The glutamic acids in position 255 and 323 and the aspartic acids in position 362 of the 919 protein and the glutamic acid in position 117 of the 907 protein, were replaced with glycine residues using PCR-based SDM. To do this, internal primers containing a codon change from Glu or Asp to Gly were designed:
















Codon


Primers
Sequences
change







919-E255 for
CGAAGACCCCGTCGgtCTTTTTTTTATG
GAA → Ggt


919-E255 rev
GTGCATAAAAAAAAGacCGACGGGGTCT






919-E323 for
AACGCCTCGCCGgtGTTTTGGGTCA
GAA → Ggt


919-E323 rev
TTTGACCCAAAACacCGGCGAGGCG






919-D362 for
TGCCGGCGCAGTCGgtCGGCACTACA
GAC → Ggt


919-D362 rev
TAATGTAGTGCCGacCGACTGCGCCG






907-E117 for
TGATTGAGGTGGgtAGCGCGTTCCG
GAA → Ggt


907-E117 rev
GGCGGAACGCGCTacCCACCTCAAT











    • Underlined nucleotides code for glycine; the mutated nucleotides are in lower case.





To generate the 919-E255, 919-E323 and 919-E362 mutants, PCR was performed using 20 ng of the pET 919-LOrf4 DNA as template, and the following primer pairs:

    • 1) Orf4L for/919-E255 rev
    • 2) 919-E255 for/919L rev
    • 3) Orf4L for/919-E323 rev
    • 4) 919-E323 for/919L rev
    • 5) Orf4L for/919-D362 rev
    • 6) 919-D362 for/919L rev


The second round of PCR was performed using the product of PCR 1-2, 3-4 or 5-6 as template, and as forward and reverse primers the “Orf4L for” and “919L rev” respectively.


For the mutant 907-E117, PCR have been performed using 200 ng of chromosomal DNA of the 2996 strain as template and the following primer pairs:

    • 7) 907L for/907-E117 rev
    • 8) 907-E117 for/907L rev


The second round of PCR was performed using the products of PCR 7 and 8 as templates and the oligos “907L for” and “907L rev” as primers.


The PCR fragments containing each mutation were processed following the standard procedure, digested with NdeI and XhoI restriction enzymes and cloned into pET-21b+ vector. The presence of each mutation was confirmed by sequence analysis.


Mutation of Glu117 to Gly in 907 is carried out similarly, as is mutation of residues Glu164, Ser213 and Asn348 in 922.


The E255G mutant of 919 shows a 50% reduction in activity; the E323G mutant shows a 70% reduction in activity; the E362G mutant shows no reduction in activity.


Example 4
Multimeric Form

287-GST, 919untagged and 953-His were subjected to gel filtration for analysis of quaternary structure or preparative purposes. The molecular weight of the native proteins was estimated using either FPLC Superose 12 (H/R 10/30) or Superdex 75 gel filtration columns (Pharmacia). The buffers used for chromatography for 287, 919 and 953 were 50 mM Tris-HCl (pH 8.0), 20 mM Bicine (pH 8.5) and 50 mM Bicine (pH 8.0), respectively.


Additionally each buffer contained 150-200 mM NaCl and 10% v/v glycerol. Proteins were dialysed against the appropriate buffer and applied in a volume of 2004 Gel filtration was performed with a flow rate of 0.5-2.0 ml/min and the eluate monitored at 280 nm. Fractions were collected and analysed by SDS-PAGE. Blue dextran 2000 and the molecular weight standards ribonuclease A, chymotrypsin A ovalbumin, albumin (Pharmacia) were used to calibrate the column. The molecular weight of the sample was estimated from a calibration curve of Kav vs. log Mr of the standards. Before gel filtration, 287-GST was digested with thrombin to cleave the GST moiety.


The estimated molecular weights for 287, 919 and 953-His were 73 kDa, 47 kDa and 43 kDa respectively. These results suggest 919 is monomeric while both 287 and 953 are principally dimeric in their nature. In the case of 953-His, two peaks were observed during gel filtration. The major peak (80%) represented a dimeric conformation of 953 while the minor peak (20%) had the expected size of a monomer. The monomeric form of 953 was found to have greater bactericidal activity than the dimer.


Example 5
pSM214 and pET-24b Vectors

953 protein with its native leader peptide and no fusion partners was expressed from the pET vector and also from pSM214 [Velati Bellini et al. (1991) J. Biotechnol. 18, 177-192].


The 953 sequence was cloned as a full-length gene into pSM214 using the E. coli MM4294-1 strain as a host. To do this, the entire DNA sequence of the 953 gene (from ATG to the STOP codon) was amplified by PCR using the following primers:











953L for/2
CCGGAATTCTTATGAAAAAAATCATC
Eco RI






TTCGCCGC






953L rev/2
GCCCAAGCTTTTATTGTTTGGCTGCC
Hind III






TCGATT








which contain EcoRI and HindIII restriction sites, respectively. The amplified fragment was digested with EcoRI and HindIII and ligated with the pSM214 vector digested with the same two enzymes. The ligated plasmid was transformed into E. coli MM294-1 cells (by incubation in ice for 65 minutes at 37° C.) and bacterial cells plated on LB agar containing 20 μg/ml of chloramphenicol.


Recombinant colonies were grown over-night at 37° C. in 4 ml of LB broth containing 20 μg/ml of chloramphenicol; bacterial cells were centrifuged and plasmid DNA extracted as and analysed by restriction with EcoRI and HindIII. To analyse the ability of the recombinant colonies to express the protein, they were inoculated in LB broth containing 20 μg/ml of chloramphenicol and let to grown for 16 hours at 37° C. Bacterial cells were centrifuged and resuspended in PBS. Expression of the protein was analysed by SDS-PAGE and Coomassie Blue staining.


Expression levels were unexpectedly high from the pSM214 plasmid.


Oligos used to clone sequences into pSM-214 vectors were as follows:

















ΔG287
Fwd
CCGGAATTCTTATG-
EcoRI


(pSM-214)

TCGCCCGATGTTAAATCGGCGGA




Rev
GCCCAAGCTT-
HindIII





TCAATCCTGCTCTTTTTTGCCG







Δ2 287
Fwd
CCGGAATTCTTATG-
EcoRI


(pSM-214)

AGCCAAGATATGGCGGCAGT




Rev
GCCCAAGCTT-
HindIII





TCAATCCTGCTCTTTTTTGCCG







Δ3 287
Fwd
CCGGAATTCTTATG-
EcoRI


(pSM-214)

TCCGCCGAATCCGCAAATCA




Rev
GCCCAAGCTT-
HindIII





TCAATCCTGCTCTTTTTTGCCG







Δ4 287
Fwd
CCGGAATTCTTATG-
EcoRI


(pSM-214)

GGAAGGGTTGATTTGGCTAATG




Rev
GCCCAAGCTT-
HindIII





TCAATCCTGCTCTTTTTTGCCG







Orf46.1
Fwd
CCGGAATTCTTATG-
EcoRI


(pSM-214)

TCAGATTTGGCAAACGATTCTT




Rev
GCCCAAGCTT-
HindIII





TTACGTATCATATTTCACGTGCTTC







ΔG287-
Fwd
CCGGAATTCTTATG-
EcoRI


OrF46.1

TCGCCCGATGTTAAATCGGCGGA



(pSM-214)
Rev
GCCCAAGCTT-
HindIII





TTACGTATCATATTTCACGTGCTTC







919
Fwd
CCGGAATTCTTATG-
EcoRI


(pSM-214)

CAAAGCAAGAGCATCCAAACCT




Rev
GCCCAAGCTT-
HindIII





TTACGGGCGGTATTCGGGCT







961L
Fwd
CCGGAATTCATATG-
EcoRI


(pSM-214)

AAACACTTTCCATCC




Rev
GCCCAAGCTT-
HindIII





TTACCACTCGTAATTGAC







961
Fwd
CCGGAATTCATATG-
EcoRI


(pSM-214)

GCCACAAGCGACGAC




Rev
GCCCAAGCTT-
HindIII





TTACCACTCGTAATTGAC







961c L
Fwd
CCGGAATTCTTATG-
EcoRI


pSM-214

AAACACTTTCCATCC




Rev
GCCCAAGCTT-
HindIII





TCAACCCACGTTGTAAGGTTG







961c
Fwd
CCGGAATTCTTATG-
EcoRI


pSM-214

GCCACAAACGACGACG




Rev
GCCCAAGCTT-
HindIII





TCAACCCACGTTGTAAGGTTG







953
Fwd
CCGGAATTCTTATG-
EcoRI


(pSM-214)

GCCACCTACAAAGTGGACGA




Rev
GCCCAAGCTT-
HindIII





TTATTGTTTGGCTGCCTCGATT










These sequences were manipulated, cloned and expressed as described for 953L.


For the pET-24 vector, sequences were cloned and the proteins expressed in pET-24 as described below for pET21. pET2 has the same sequence as pET-21, but with the kanamycin resistance cassette instead of ampicillin cassette.


Oligonucleotides used to clone sequences into pET-24b vector were:

















ΔG 287 K
Fwd
CGCGGATCCGCTAGC-
NheI




CCCGATGTTAAATCGGC §




Rev
CCCGCTCGAG-
XhoI





TCAATCCTGCTCTTTTTTGCC *







Δ2 287 K
Fwd
CGCGGATCCGCTAGC-
NheI




CAAGATATGGCGGCAGT §






Δ3 287 K
Fwd
CGCGGATCCGCTAGC-
NheI




GCCGAATCCGCAAATCA §






Δ4 287 K
Fwd
CGCGCTAGC-
NheI




GGAAGGGTTGATTTGGCTAATGG §






Orf46.1 K
Fwd
GGGAATTCCATATG-
NdeI




GGCATTTCCCGCAAAATATC




Rev
CCCGCTCGAG-
XhoI





TTACGTATCATATTTCACGTGC







Orf46A K
Fwd
GGGAATTCCATATG-
NdeI




GGCATTTCCCGCAAAATATC




Rev
CCCGCTCGAG-
XhoI





TTATTCTATGCCTTGTGCGGCAT







961 K
Fwd
CGCGGATCCCATATG-
NdeI


(MC58)

GCCACAAGCGACGACGA




Rev
CCCGCTCGAG-
XhoI





TTACCACTCGTAATTGAC







961a K
Fwd
CGCGGATCCCATATG-
NdeI




GCCACAAACGACG




Rev
CCCGCTCGAG-
XhoI





TCATTTAGCAATATTATCTTTGTTC







961b K
Fwd
CGCGGATCCCATATG-
NdeI




AAAGCAAACAGTGCCGAC




Rev
CCCGCTCGAG-
XhoI





TTACCACTCGTAATTGAC







961c K
Fwd
CGCGGATCCCATATG-
NdeI




GCCACAAACGACG




Rev
CCCGCTCGAG-
XhoI





TTAACCCACGTTGTAAGGT







961cL K
Fwd
CGCGGATCCCATATG-
NdeI




ATGAAACACTTTCCATCC




Rev
CCCGCTCGAG-
XhoI





TTAACCCACGTTGTAAGGT







961d K
Fwd
CGCGGATCCCATATG-
NdeI




GCCACAAACGACG




Rev
CCCGCTCGAG-
XhoI





TCAGTCTGACACTGTTTTATCC







ΔG 287-
Fwd
CGCGGATCCGCTAGC-
NheI


919 K

CCCGATGTTAAATCGGC




Rev
CCCGCTCGAG-
XhoI





TTACGGGCGGTATTCGG







ΔG 287-
Fwd
CGCGGATCCGCTAGC-
NheI


Orf46.1 K

CCCGATGTTAAATCGGC




Rev
CCCGCTCGAG-
XhoI





TTACGTATCATATTTCACGTGC







ΔG 287-
Fwd
CGCGGATCCGCTAGC-
NheI


961 K

CCCGATGTTAAATCGGC




Rev
CCCGCTCGAG-
XhoI





TTACCACTCGTAATTGAC






* This primer was used as a Reverse primer for all the 287 forms.



§ Forward primers used in combination with the ΔG278 K reverse primer.







Example 6
ORF1 and its Leader Peptide

ORF1 from N. meningitidis (serogroup B, strain MC58) is predicted to be an outer membrane or secreted protein. It has the following sequence:










1

MKTTDKRTTETHRKAPKTGRIRFSPAYLAI





CLSFGILPQAWAGHTYFGIN






51
YQYYRDFAEN KGKFAVGAKD IEVYNKKGEL



VGKSMTKAPM IDFSVVSRNG





101
VAALVGDQYI VSVAHNGGYN NVDFGAEGRN



PDQHRFTYKI VKRNNYKAGT





151
KGHPYGGDYH MPRLHKFVTD AEPVEMTSYM



DGRKYIDQNN YPDRVRIGAG





201
RQYWRSDEDE PNNRESSYHI ASAYSWLVGG



NTFAQNGSGG GTVNLGSEKI





251
KHSPYGFLPT GGSFGDSGSP MFIYDAQKQK



WLINGVLQTG NPYIGKSNGF





301
QLVRKDWFYD EIFAGDTHSV FYEPRQNGKY



SFNDDNNGTG KINAKHEHNS





351
LPNRLKTRTV QLFNVSLSET AREPVYHAAG



GVNSYRPRLN NGENISFIDE





401
GKGELILTSN INQGAGGLYF QGDFTVSPEN



NETWQGAGVH ISEDSTVTWK





451
VNGVANDRLS KIGKGTLHVQ AKGENQGSIS



VGDGTVILDQ QADDKGKKQA





501
FSEIGLVSGR GTVQLNADNQ FNPDKLYFGF



RGGRLDLNGH SLSFHRIQNT





551
DEGAMIVNHN QDKESTVTIT GNKDIATTGN



NNSLDSKKEI AYNGWFGEKD





601
TTKTNGRLNL VYQPAAEDRT LLLSGGTNLN



GNITQTNGKL FFSGRPTPHA





651
YNHLNDHWSQ KEGIPRGEIV WDNDWINRTF



KAENFQIKGG QAVVSRNVAK





701
VKGDWHLSNH AQAVFGVAPH QSHTICTRSD



WTGLTNCVEK TITDDKVIAS





751
LTKTDISGNV DLADHAHLNL TGLATLNGNL



SANGDTRYTV SHNATQNGNL





801
SLVGNAQATF NQATLNGNTS ASGNASFNLS



DHAVQNGSLT LSGNAKANVS





851
HSALNGNVSL ADKAVFHFES SRFTGQISGG



KDTALHLKDS EWTLPSGTEL





901
GNLNLDNATI TLNSAYRHDA AGAQTGSATD



APRRRSRRSR RSLLSVTPPT





951
SVESRFNTLT VNGKLNGQGT FREMSELFGY



RSDKLKLAES SEGTYTLAVN





1001
NTGNEPASLE QLTVVEGKDN KPLSENLNFT



LQNEHVDAGA WRYQLIRKDG





1051
EFRLHNPVKE QELSDKLGKA EAKKQAEKDN



AQSLDALIAA GRDAVEKTES





1101
VAEPARQAGG ENVGIMQAEE EKKRVQADKD



TALAKQREAE TRPATTAFPR





1151
ARRARRDLPQ LQPQPQPQPQ RDLISRYANS



GLSEFSATLN SVFAVQDELD





1201
RVFAEDRRNA VWTSGIRDTK HYRSQDFRAY



RQQTDLRQIG MQKNLGSGRV





1251
GILFSHNRTE NTFDDGIGNS ARLAHGAVFG



QYGIDRFYIG ISAGAGFSSG





1301
SLSDGIGGKI RRRVLHYGIQ ARYRAGFGGF



GIEPHIGATR YFVQKADYRY





1351
ENVNIATPGL AFNRYRAGIK ADYSFKPAQH



ISITPYLSLS YTDAASGKVR





1401
TRVNTAVLAQ DFGKTRSAEW GVNAEIKGFT



LSLHAAAAKG PQLEAQHSAG





1451
IKLGYRW*






The leader peptide is underlined.


A polymorphic form of ORF1 is disclosed in WO99/55873.


Three expression strategies have been used for ORF1:

    • 1) ORF1 using a His tag, following WO99/24578 (ORF1-His);
    • 2) ORF1 with its own leader peptide but without any fusion partner (‘ORF1L’); and
    • 3) ORF1 with the leader peptide (MKKTAIAIAVALAGFATVAQA) from E. coli OmpA (‘Orf1LOmpA’):











MKKTAIAIAVALAGFATVAQAASAGHTYFGINYQYYRDFAENKGKFAVGAKDIEVYNKKGELVGKSMTKAPMIDFSV







VSRNGVAALVGDQYIVSVAHNGGYNNVDFGAEGRNPDQHRFTYKIVKRNNYKAGTKGHPYGGDYHMPRLHKFVTDAE





PVEMTSYMDGRKYIDQNNYPDRVRIGAGRQYWRSDEDEPNNRESSYHIASAYSWLVGGNTFAQNGSGGGTVNLGSEK





IKHSPYGFLPTGGSFGDSGSPMFIYDAQKQKWLINGVLQTGNPYIGKSNGFQLVRKDWFYDEIFAGDTHSVFYEPRQ





NGKYSFNDDNNGTGKINAKHEHNSLPNRLKTRTVQLFNVSLSETAREPVYHAAGGVNSYRPRLNNGENISFIDEGKG





ELILTSNINQGAGGLYFQGDFTVSPENNETWQGAGVHISEDSTVTWKVNGVANDRLSKIGKGTLHVQAKGENQGSIS





VGDGTVILDQQADDKGKKQAFSEIGLVSGRGTVQLNADNQFNPDKLYFGFRGGRLDLNGHSLSFHRIQNTDEGAMIV





NHNQDKESTVTITGNKDIATTGNNNSLDSKKEIAYNGWFGEKDTTKTNGRLNLVYQPAAEDRTLLLSGGTNLNGNIT





QTNGKLFFSGRPTPHAYNHLNDHWSQKEGIPRGEIVWDNDWINRTFKAENFQIKGGQAVVSRNVAKVKGDWHLSNHA





QAVFGVAPHQSHTICTRSDWTGLTNCVEKTITDDKVIASLTKTDISGNVDLADHAHLNLTGLATLNGNLSANGDTRY





TVSHNATQNGNLSLVGNAQATFNQATLNGNTSASGNASFNLSDHAVQNGSLTLSGNAKANVSHSALNGNVSLADKAV





FHFESSRFTGQISGGKDTALHLKDSEWTLPSGTELGNLNLDNATITLNSAYRHDAAGAQTGSATDAPRRRSRRSRRS





LLSVTPPTSVESRFNTLTVNGKLNGQGTFRFMSELFGYRSDKLKLAESSEGTYTLAVNNTGNEPASLEQLTVVEGKD





NKPLSENLNFTLQNEHVDAGAWRYQLIRKDGEFRLHNPVKEQELSDKLGKAEAKKQAEKDNAQSLDALIAAGRDAVE





KTESVAEPARQAGGENVGIMQAEEEKKRVQADKDTALAKQREAETRPATTAFPRARRARRDLPQLQPQPQPQPQRDL





ISRYANSGLSEFSATLNSVFAVQDELDRVFAEDRRNAVWTSGIRDTKHYRSQDFRAYRQQTDLRQIGMQKNLGSGRV





GILFSHNRTENTFDDGIGNSARLAHGAVFGQYGIDRFYIGISAGAGFSSGSLSDGIGGKIRRRVLHYGIQARYRAGF





GGFGIEPHIGATRYFVQKADYRYENVNIATPGLAFNRYRAGIKADYSFKPAQHISITPYLSLSYTDAASGKVRTRVN





TAVLAQDFGKTRSAEWGVNAEIKGFTLSLHAAAAKGPQLEAQHSAGIKLGYRW*










      • To make this construct, the clone pET911LOmpA (see below) was digested with the NheI and XhoI restriction enzymes and the fragment corresponding to the vector carrying the OmpA leader sequence was purified (pETLOmpA). The ORF1 gene coding for the mature protein was amplified using the oligonucleotides ORF1-For and ORF1-Rev (including the NheI and XhoI restriction sites, respectively), digested with NheI and XhoI and ligated to the purified pETOmpA fragment (see FIG. 1). An additional AS dipeptide was introduced by the NheI site.







All three forms of the protein were expressed. The His-tagged protein could be purified and was confirmed as surface exposed, and possibly secreted (see FIG. 3). The protein was used to immunise mice, and the resulting sera gave excellent results in the bactericidal assay.


ORF1LOmpA was purified as total membranes, and was localised in both the inner and outer membranes. Unexpectedly, sera raised against ORF1LOmpA show even better ELISA and anti-bactericidal properties than those raised against the His-tagged protein.


ORF1L was purified as outer membranes, where it is localised.


Example 7
Protein 911 and its Leader Peptide

Protein 911 from N. meningitidis (serogroup B, strain MC58) has the following sequence:










  1

MKKNILEFWV GLFVLIGAAA VAFLAFRVAG QAAFGGSDKT




YAVYADFGDI





 51
GGLKVNAPVK SAGVLVGRVG AIGLDPKSYQ ARVRLDLDGK



YQFSSDVSAQ





101
ILTSGLLGEQ YIGLQQGGDT ENLAAGDTIS VTSSAMVLEN



LIGKFMTSFA





151
EKNADGGNAE KAAE*






The leader peptide is underlined.


Three expression strategies have been used for 911:

    • 1) 911 with its own leader peptide but without any fusion partner (‘911L’);
    • 2) 911 with the leader peptide from E. coli OmpA (‘911LOmpA’).
      • To make this construct, the entire sequence encoding the OmpA leader peptide was included in the 5′-primer as a tail (primer 911LOmpA Forward). A NheI restriction site was inserted between the sequence coding for the OmpA leader peptide and the 911 gene encoding the predicted mature protein (insertion of one amino acid, a serine), to allow the use of this construct to clone different genes downstream the OmpA leader peptide sequence.
    • 3) 911 with the leader peptide (MKYLLPTAAAGLLLAAQPAMA) from Erwinia carotovora PelB (‘911LpelB’).
      • To make this construct, the 5′-end PCR primer was designed downstream from the leader sequence and included the NcoI restriction site in order to have the 911 fused directly to the PelB leader sequence; the 3′-end primer included the STOP codon. The expression vector used was pET22b+(Novagen), which carries the coding sequence for the PelB leader peptide. The NcoI site introduces an additional methionine after the PelB sequence.


All three forms of the protein were expressed. ELISA titres were highest using 911L, with 919LOmpA also giving good results.


Example 8
ORF46

The complete ORF46 protein from N. meningitidis (serogroup B, strain 2996) has the following sequence:










  1

LGISRKISLILSILAVCLPMHAHASDLAND SFIRQVLDRQ




HFEPDGKYHL





 51
FGSRGELAER SGHIGLGKIQ SHQLGNLMIQ QAAIKGNIGY



IVRFSDHGHE





101
VHSPFDNHAS HSDSDEAGSP VDGFSLYRIH WDGYEHHPAD



GYDGPQGGGY





151
PAPKGARDIY SYDIKGVAQN IRLNLTDNRS TGQRLADRFH



NAGSMLTQGV





201
GDGFKRATRY SPELDRSGNA AEAFNGTADI VKNIIGAAGE



IVGAGDAVQG





251
ISEGSNIAVM HGLGLLSTEN KMARINDLAD MAQLKDYAAA



AIRDWAVQNP





301
NAAQGIEAVS NIFMAAIPIK GIGAVRGKYG LGGITAHPIK



RSQMGAIALP





351
KGKSAVSDNF ADAAYAKYPS PYHSRNIRSN LEQRYGKENI



TSSTVPPSNG





401
KNVKLADQRH PKTGVPFDGK GFPNFEKHVK YDTKLDIQEL



SGGGIPKAKP





451
VSDAKPRWEV DRKLNKLTTR EQVEKNVQEI RNGNKNSNFS



QHAQLEREIN





501
KLKSADEINF ADGMGKFTDS MNDKAFSRLV KSVKENGFTN



PVVEYVEING





551
KAYIVRGNNR VFAAEYLGRI HELKFKKVDF PVPNTSWKNP



TDVLNESGNV





601
KRPRYRSK*






The leader peptide is underlined.


The sequences of ORF46 from other strains can be found in WO00/66741.


Three expression strategies have been used for ORF46:

    • 1) ORF46 with its own leader peptide but without any fusion partner (‘ORF46-2L’);
    • 2) ORF46 without its leader peptide and without any fusion partner (‘ORF46-2’), with the leader peptide omitted by designing the 5′-end amplification primer downstream from the predicted leader sequence:










  1
SDLANDSFIR QVLDRQHFEP DGKYHLFGSR GELAERSGHI



GLGKIQSHQL





 51
GNLMIQQAAI KGNIGYIVRF SDHGHEVHSP FDNHASHSDS



DEAGSPVDGF





101
SLYRIHWDGY EHHPADGYDG PQGGGYPAPK GARDIYSYDI



KGVAQNIRLN





151
LTDNRSTGQR LADRFHNAGS MLTQGVGDGF KRATRYSPEL



DRSGNAAEAF





201
NGTADIVKNI IGAAGEIVGA GDAVQGISEG SNIAVMHGLG



LLSTENKMAR





251
INDLADMAQL KDYAAAAIRD WAVQNPNAAQ GIEAVSNIFM



AAIPIKGIGA





301
VRGKYGLGGI TAHPIKRSQM GAIALPKGKS AVSDNFADAA



YAKYPSPYHS





351
RNIRSNLEQR YGKENITSST VPPSNGKNVK LADQRHPKTG



VPFDGKGFPN





401
FEKHVKYDTK LDIQELSGGG IPKAKPVSDA KPRWEVDRKL



NKLTTREQVE





451
KNVQEIRNGN KNSNFSQHAQ LEREINKLKS ADEINFADGM



GKFTDSMNDK





501
AFSRLVKSVK ENGFTNPVVE YVEINGKAYI VRGNNRVFAA



EYLGRIHELK





551
FKKVDFPVPN TSWKNPTDVL NESGNVKRPR YRSK*








    • 3) ORF46 as a truncated protein, consisting of the first 433 amino acids (‘ORF46.1L’), constructed by designing PCR primers to amplify a partial sequence corresponding to as 1-433.
      • A STOP codon was included in the 3′-end primer sequences.





ORF46-2L is expressed at a very low level to E. colii. Removal of its leader peptide (ORF46-2) does not solve this problem. The truncated ORF46.1L form (first 423 amino acids, which are well conserved between serogroups and species), however, is well-expressed and gives excellent results in ELISA test and in the bactericidal assay.


ORF46.1 has also been used as the basis of hybrid proteins. It has been fused with 287, 919, and ORF1. The hybrid proteins were generally insoluble, but gave some good ELISA and bactericidal results (against the homologous 2996 strain):

















Protein
ELISA
Bactericidal Ab




















Orf1-Orf46.1-His
850
256



919-Orf46.1-His
12900
512



919-287-Orf46-His
n.d.
n.d.



Orf46.1-287His
150
8192



Orf46.1-919His
2800
2048



Orf46.1-287-919His
3200
16384










For comparison, ‘triple’ hybrids of ORF46.1, 287 (either as a GST fusion, or in ΔG287 form) and 919 were constructed and tested against various strains (including the homologous 2996 strain) versus a simple mixture of the three antigens. FCA was used as adjuvant



















2996
BZ232
MC58
NGH38
F6124
BZ133





















Mixture
8192
256
512
1024
>2048
>2048


ORF46.1-287-
16384
256
4096
8192
8192
8192


919his








ΔG287-919-
8192
64
4096
8192
8192
16384


ORF46.1his








ΔG287-ORF46.1-
4096
128
256
8192
512
1024


919his









Again, the hybrids show equivalent or superior immunological activity.


Hybrids of two proteins (strain 2996) were compared to the individual proteins against various heterologous strains:



















1000
MC58
F6124 (MenA)





















OR46.1-His
<4
4096
<4



ORF1-His
8
256
128



ORF1-ORF46.1-His
1024
512
1024










Again, the hybrid shows equivalent or superior immunological activity.


Example 9
Protein 961

The complete 961 protein from N. meningitidis (serogroup B, strain MC58) has the following sequence:










  1

MSMKHFPAKV LTTAILATFC SGALAATSDD DVKKAATVAI




VAAYNNGQEI





 51
NGFKAGETIY DIGEDGTITQ KDATAADVEA DDFKGLGLKK



VVTNLTKTVN





101
ENKQNVDAKV KAAESEIEKL TTKLADTDAA LADTDAALDE



TTNALNKLGE





151
NITTFAEETK TNIVKIDEKL EAVADTVDKH AEAFNDIADS



LDETNTKADE





201
AVKTANEAKQ TAEETKQNVD AKVKAAETAA GKAEAAAGTA



NTAADKAEAV





251
AAKVTDIKAD IATNKADIAK NSARIDSLDK NVANLRKETR



QGLAEQAALS





301
GLFQPYNVGR FNVTAAVGGY KSESAVAIGT GFRFTENFAA



KAGVAVGTSS





351
GSSANYHVGV NYEW*






The leader peptide is underlined.


Three approaches to 961 expression were used:

    • 1) 961 using a GST fusion, following WO99/57280 (‘GST961’);
    • 2) 961 with its own leader peptide but without any fusion partner (‘961L’); and
    • 3) 961 without its leader peptide and without any fusion partner (‘961ungtagged’), with the leader peptide omitted by designing the 5′-end PCR primer downstream from the predicted leader sequence.


All three forms of the protein were expressed. The GST-fusion protein could be purified and antibodies against it confirmed that 961 is surface exposed (FIG. 4). The protein was used to immunise mice, and the resulting sera gave excellent results in the bactericidal assay. 961L could also be purified and gave very high ELISA titres.


Protein 961 appears to be phase variable. Furthermore, it is not found in all strains of N. meningitidis.


Example 10
Protein 287

Protein 287 from N. meningitidis (serogroup B, strain 2996) has the following sequence:










  1

MFERSVIAMACIFALSACGG GGGGSPDVKS ADTLSKPAAP




VVAEKETEVK





 51
EDAPQAGSQG QGAPSTQGSQ DMAAVSAENT GNGGAATTDK



PKNEDEGPQN





101
DMPQNSAESA NQTGNNQPAD SSDSAPASNP APANGGSNFG



RVDLANGVLI





151
DGPSQNITLT HCKGDSCNGD NLLDEEAPSK SEFENLNESE



RIEKYKKDGK





201
SDKFTNLVAT AVQANGTNKY VIIYKDRSAS SSSARFRRSA



RSRRSLPAEM





251
PLIPVNQADT LIVDGEAVSL TGHSGNIFAP EGNYRYLTYG



AEKLPGGSYA





301
LRVQGEPAKG EMLAGTAVYN GEVLHFHTEN GRPYPTRGRF



AAKVDFGSKS





351
VDGIIDSGDD LHMGTQKFKA AIDGNGFKGT WTENGGGDVS



GRFYGPAGEE





401
VAGKYSYRPT DAEKGGFGVF AGKKEQD*






The leader peptide is shown underlined.


The sequences of 287 from other strains can be found in FIGS. 5 and 15 of WO00/66741.


Example 9 of WO99/57280 discloses the expression of 287 as a GST-fusion in E. coli.


A number of further approaches to expressing 287 in E. coli have been used, including:

    • 1) 287 as a His-tagged fusion (‘287-His’);
    • 2) 287 with its own leader peptide but without any fusion partner (‘287L’);
    • 3) 287 with the ORF4 leader peptide and without any fusion partner (‘287LOrf4’); and
    • 4) 287 without its leader peptide and without any fusion partner (‘287untagged’):










  1
CGGGGGGSPD VKSADTLSKP AAPVVAEKET EVKEDAPQAG



SQGQGAPSTQ





 51
GSQDMAAVSA ENTGNGGAAT TDKPRNEDEG PQNDMPQNSA



ESANQTGNNQ





101
PADSSDSAPA SNPAPANGGS NFGRVDLANG VLIDGPSQNI



TLTHCKGDSC





151
NGDNLLDEEA PSKSEFENLN ESERIEKYKK DGKSDKFTNL



VATAVQANGT





201
NKYVIIYKDK SASSSSARFR RSARSRRSLP AEMPLIPVNQ



ADTLIVDGEA





251
VSLTGHSGNI FAPEGNYRYL TYGAEKLPGG SYALRVQGEP



AKGEMLAGTA





301
VYNGEVLHFH TENGRPYPTR GRFAAKVDFG SKSVDGIIDS



GDDLHMGTQK





351
FKAAIDGNGF KGTWTENGGG DVSGRFYGPA GEEVAGKYSY



RPTDAEKGGF





401
GVFAGKKEQD *






All these proteins could be expressed and purified.


‘287L’ and ‘287LOrf4’ were confirmed as lipoproteins.


As shown in FIG. 2, ‘287LOrf4’ was constructed by digesting 919LOrf4 with NheI and XhoI. The entire ORF4 leader peptide was restored by the addition of a DNA sequence coding for the missing amino acids, as a tail, in the 5′-end primer (287LOrf4 for), fused to 287 coding sequence. The 287 gene coding for the mature protein was amplified using the oligonucleotides 287LOrf4 For and Rev (including the NheI and XhoI sites, respectively), digested with NheI and XhoI and ligated to the purified pETOrf4 fragment.


Example 11
Further Non-Fusion Proteins with/without Native Leader Peptides

A similar approach was adopted for E. coli expression of further proteins from WO99/24578, WO99/36544 and WO99/57280.


The following were expressed without a fusion partner: 008, 105, 117-1, 121-1, 122-1, 128-1, 148, 216, 243, 308, 593, 652, 726, 982, and Orf143-1. Protein 117-1 was confirmed as surface-exposed by FACS and gave high ELISA titres.


The following were expressed with the native leader peptide but without a fusion partner: 111, 149, 206, 225-1, 235, 247-1, 274, 283, 286, 292, 401, 406, 502-1, 503, 519-1, 525-1, 552, 556, 557, 570, 576-1, 580, 583, 664, 759, 907, 913, 920-1, 926, 936-1, 953, 961, 983, 989, Orf4, Orf7-1, Orf9-1, Orf23, Orf25, Orf37, Orf38, Orf40, Orf40.1, Orf40.2, Orf72-1, Orf76-1, Orf85-2, Orf91, Orf97-1, Orf119, Orf143.1. These proteins are given the suffix ‘L’.


His-tagged protein 760 was expressed with and without its leader peptide. The deletion of the signal peptide greatly increased expression levels. The protein could be purified most easily using 2M urea for solubilisation.


His-tagged protein 264 was well-expressed using its own signal peptide, and the 30 kDa protein gave positive Western blot results.


All proteins were successfully expressed.


The localisation of 593, 121-1, 128-1, 593, 726, and 982 in the cytoplasm was confirmed.


The localisation of 920-1L, 953L, ORF9-1L, ORF85-2L, ORF97-1L, 570L, 580L and 664L in the periplasm was confirmed.


The localisation of ORF40L in the outer membrane, and 008 and 519-1L in the inner membrane was confirmed. ORF25L, ORF4L, 406L, 576-1L were all confirmed as being localised in the membrane.


Protein 206 was found not to be a lipoprotein.


ORF25 and ORF40 expressed with their native leader peptides but without fusion partners, and protein 593 expressed without its native leader peptide and without a fusion partner, raised good anti-bactericidal sera. Surprisingly, the forms of ORF25 and ORF40 expressed without fusion partners and using their own leader peptides (i.e. ‘ORF25L’ and ‘ORF40L’) give better results in the bactericidal assay than the fusion proteins.


Proteins 920L and 953L were subjected to N-terminal sequencing, giving HRVWVETAH and ATYKVDEYHANARFAF, respectively. This sequencing confirms that the predicted leader peptides were cleaved and, when combined with the periplasmic location, confirms that the proteins are correctly processed and localised by E. coli when expressed from their native leader peptides.


The N-terminal sequence of protein 519.1L localised in the inner membrane was MEFFIILLA, indicating that the leader sequence is not cleaved. It may therefore function as both an uncleaved leader sequence and a transmembrane anchor in a manner similar to the leader peptide of PBP1 from N. gonorrhoeae [Ropp & Nicholas (1997) J. Bact. 179:2783-2787.]. Indeed the N-terminal region exhibits strong hydrophobic character and is predicted by the Tmpred. program to be transmembrane.


Example 12
Lipoproteins

The incorporation of palmitate in recombinant lipoproteins was demonstrated by the method of Kraft et. al. [J. Bact. (1998) 180:3441-3447.]. Single colonies harbouring the plasmid of interest were grown overnight at 37° C. in 20 ml of LB/Amp (100 μg/ml) liquid culture. The culture was diluted to an OD550 of 0.1 in 5.0 ml of fresh medium LB/Amp medium containing 5 μC/ml [3H]palmitate (Amersham). When the OD550 of the culture reached 0.4-0.8, recombinant lipoprotein was induced for 1 hour with IPTG (final concentration 1.0 mM). Bacteria were harvested by centrifugation in a bench top centrifuge at 2700 g for 15 min and washed twice with 1.0 ml cold PBS. Cells were resuspended in 120 μl of 20 mM Tris-HCl (pH 8.0), 1 mM EDTA, 1.0% w/v SDS and lysed by boiling for 10 min. After centrifugation at 13000 g for 10 min the supernatant was collected and proteins precipitated by the addition of 1.2 ml cold acetone and left for 1 hour at −20° C. Protein was pelleted by centrifugation at 13000 g for 10 min and resuspended in 20-50 μl (calculated to standardise loading with respect to the final OD of the culture) of 1.0% w/v SDS. An aliquot of 15 μl was boiled with 5 μl of SDS-PAGE sample buffer and analysed by SDS-PAGE. After electrophoresis gels were fixed for 1 hour in 10% v/v acetic acid and soaked for 30 minutes in Amplify solution (Amersham). The gel was vacuum-dried under heat and exposed to Hyperfilm (Kodak) overnight −80° C.


Incorporation of the [3H]palmitate label, confirming lipidation, was found for the following proteins: Orf4L, Orf25L, 287L, 287LOrf4, 406.L, 576L, 926L, 919L and 919LOrf4.


Example 13
Domains in 287

Based on homology of different regions of 287 to proteins that belong to different functional classes, it was split into three ‘domains’, as shown in FIG. 5. The second domain shows homology to IgA proteases, and the third domain shows homology to transferrin-binding proteins.


Each of the three ‘domains’ shows a different degree of sequence conservation between N. meningitidis strains—domain C is 98% identical, domain A is 83% identical, whilst domain B is only 71% identical. Note that protein 287 in strain MC58 is 61 amino acids longer than that of strain 2996. An alignment of the two sequences is shown in FIG. 7, and alignments for various strains are disclosed in WO00/66741 (see FIGS. 5 and 15 therein).


The three domains were expressed individually as C-terminal His-tagged proteins. This was done for the MC58 and 2996 strains, using the following constructs:

    • 287a-MC58 (aa 1-202), 287b-MC58 (aa 203-288), 287c-MC58 (aa 311-488).
    • 287a-2996 (aa 1-139), 287b-2996 (aa 140-225), 287c-2996 (aa 250-427).


To make these constructs, the stop codon sequence was omitted in the 3′-end primer sequence. The 5′ primers included the NheI restriction site, and the 3′ primers included a XhoI as a tail, in order to direct the cloning of each amplified fragment into the expression vector pET21b+ using NdeI-XhoI, NheI-XhoI or NdeI-HindIII restriction sites.


All six constructs could be expressed, but 287b-MC8 required denaturation and refolding for solubilisation.


Deletion of domain A is described below (‘Δ4 287-His’).


Immunological data (serum bactericidal assay) were also obtained using the various domains from strain 2996, against the homologous and heterologous MenB strains, as well as MenA (F6124 strain) and MenC (BZ133 strain):




















2996
BZ232
MC58
NGH38
394/98
MenA
MenC






















287-His
32000
16
4096
4096
512
8000
16000


287 (B)-His
256




16



287 (C)-His
256

32
512
32
2048
>2048


287 (B-C)-His
64000
128
4096
64000
1024
64000
32000









Using the domains of strain MC58, the following results were obtained:




















MC58
2996
BZ232
NGH38
394/98
MenA
MenC






















287-His
4096
32000
16
4096
512
8000
16000


287 (B)-His
128
128




128


287 (C)-His

16

1024

512



287 (B-C)-His
16000
64000
128
64000
512
64000
>8000









Example 14
Deletions in 287

As well as expressing individual domains, 287 was also expressed (as a C-terminal His-tagged protein) by making progressive deletions within the first domain. These


Four deletion mutants of protein 287 from strain 2996 were used (FIG. 6):

    • 1) ‘287-His’, consisting of amino acids 18-427 (i.e. leader peptide deleted);
    • 2) ‘Δ1 287-His’, consisting of amino acids 26-427;
    • 3) ‘Δ2 287-His’, consisting of amino acids 70-427;
    • 4) ‘Δ3 287-His’, consisting of amino acids 107-427; and
    • 5) ‘Δ4 287-His’, consisting of amino acids 140-427 (=287-bc).


The ‘Δ4’ protein was also made for strain MC58 (‘Δ4 287MC58-His’; an 203-488).


The constructs were made in the same way as 287a/b/c, as described above.


All six constructs could be expressed and protein could be purified. Expression of 287-His was, however, quite poor.


Expression was also high when the C-terminal His-tags were omitted.


Immunological data (serum bactericidal assay) were also obtained using the deletion mutants, against the homologous (2996) and heterologous MenB strains, as well as MenA (F6124 strain) and MenC (BZ133 strain):




















2996
BZ232
MC58
NGH38
394/98
MenA
MenC






















287-his
32000
16
4096
4096
512
8000
16000


Δ1 287-His
16000
128
4096
4096
1024
8000
16000


Δ2 287-His
16000
128
4096
>2048
512
16000
>8000


Δ3 287-His
16000
128
4096
>2048
512
16000
>8000


Δ4 287-His
64000
128
4096
64000
1024
64000
32000









The same high activity for the Δ4 deletion was seen using the sequence from strain MC58.


As well as showing superior expression characteristics, therefore, the mutants are immunologically equivalent or superior.


Example 15
Poly-Glycine Deletions

The ‘Δ1 287-His’ construct of the previous example differs from 287-His and from ‘287untagged’ only by a short N-terminal deletion (GGGGGGS). Using an expression vector which replaces the deleted serine with a codon present in the Nhe cloning site, however, this amounts to a deletion only of (Gly)6. Thus, the deletion of this (Gly)6 sequence has been shown to have a dramatic effect on protein expression.


The protein lacking the N-terminal amino acids up to GGGGGG is called ‘ΔG 287’. In strain MC58, its sequence (leader peptide underlined) is:











→ ΔG287


  1

MFKRSVIAMA CIFALSACGG GGGGSPDVKS ADTLSKPAAP




VVSEKETEAK





 51
EDAPQAGSQG QGAPSAQGSQ DMAAVSEENT GNGGAVTADN



PKNEDEVAQN





101
DMPQNAAGTD SSTPNHTPDP NMLAGNMENQ ATDAGESSQP



ANQPDMANAA





151
DGMQGDDPSA GGQNAGNTAA QGANQAGNNQ AAGSSDPIPA



SNPAPANGGS





201
NFGRVDLANG VLIDGPSQNI TLTHCKGDSC SGNNFLDEEV



QLKSEFEKLS





251
DADKISNYKK DGKNDKFVGL VADSVQMKGI NQYIIFYKPK



PTSFARFRRS





301
ARSRRSLPAE MPLIPVNQAD TLIVDGEAVS LTGHSGNIFA



PEGNYRYLTY





351
GAEKLPGGSY ALRVQGEPAK GEMLAGAAVY NGEVLHFHTE



NGRPYPTRGR





401
FAAKVDFGSK SVDGIIDSGD DLHMGTQKFK AAIDGNGFKG



TWTENGSGDV





451
SGKFYGPAGE EVAGKYSYRP TDAEKGGFGV FAGKKEQD*






ΔG287, with or without His-tag (‘ΔG287-His’ and ‘ΔG287K’, respectively), are expressed at very good levels in comparison with the ‘287-His’ or ‘287untagged’.


On the basis of gene variability data, variants of ΔG287-His were expressed in E. coli from a number of MenB strains, in particular from strains 2996, MC58, 1000, and BZ232. The results were also good.


It was hypothesised that poly-Gly deletion might be a general strategy to improve expression. Other MenB lipoproteins containing similar (Gly)n, motifs (near the N-terminus, downstream of a cysteine) were therefore identified, namely Tbp2 (NMB0460), 741 (NMB 1870) and 983 (NMB 1969):










TBP2
→ ΔGTbp2


   1

MNNPLVNQAA MVLPVFLLSA CLGGGGSFDL DSVDTEAPRP




APKYQDVFSE





  51
KPQAQKDQGG YGFAMRLKRR NWYPQAKEDE VKLDESDWEA



TGLPDEPKEL





 101
PKRQKSVIEK VETDSDNNIY SSPYLKPSNH QNGNTGNGIN



QPKNQAKDYE





 151
NFKYVYSGWF YKHAKREFNL KVEPKSAKNG DDGYIFYHGK



EPSRQLPASG





 201
KITYKGVWHF ATDTKKGQKF REIIQPSKSQ GDRYSGFSGD



DGEEYSNKNK





 251
STLTDGQEGY GFTSNLEVDF HNKKLTGKLI RNNANTDNNQ



ATTTQYYSLE





 301
AQVTGNRFNG KATATDKPQQ NSETKEHPFV SDSSSLSGGF



FGPQGEELGF





 351
RFLSDDQKVA VVGSAKTKDK PANGNTAAAS GGTDAAASNG



AAGTSSENGK





 401
LTTVLDAVEL KLGDKEVQKL ENFSNAAQLV VDGLMIPLLP



EASESGNNQA





 451
NQGTNGGTAF TRKFDHTPES DKKDAQAGTQ TNGAQTASNT



AGDTNGKTKT





 501
YEVEVCCSNL NYLKYGMLTR KNSKSAMQAG ESSSQADAKT



EQVEQSMFLQ





 551
GERTDEKEIP SEQNIVYRGS WYGYIANDKS TSWSGNASNA



TSGNRAEFTV





 601
NFADKKITGT LTADNRQEAT FTIDGNIKDN GFEGTAKTAE



SGFDLDQSNT





 651
TRTPKAYITD AKVQGGFYGP KAEELGGWFA YPGDKQTKNA



TNASGNSSAT





 701
VVFGAKRQQP VR*





 741
→ ΔG741


   1

VNRTAFCCLS LTTALILTAC SSGGGGVAAD IGAGLADALT




APLDHKDKGL





  51
QSLTLDQSVR KNEKLKLAAQ GAEKTYGNGD SLNTGKLKND



KVSRFDFIRQ





 101
IEVDGQLITL ESGEFQVYKQ SHSALTAFQT EQIQDSEHSG



KMVAKRQFRI





 151
GDIAGEHTSF DKLPEGGRAT YRGTAFGSDD AGGKLTYTID



FAAKQGNGKI





 201
EHLKSPELNV DLAAADIKPD GKRHAVISGS VLYNQAEKGS



YSLGIFGGKA





 251
QEVAGSAEVK TVNGIRHIGL AAKQ*





 983
→ ΔG983


   1

MRTTPTFPTK TFKPTAMALA VATTLSACLG GGGGGTSAPD




FNAGGTGIGS





  51
NSRATTAKSA AVSYAGIKNE MCKDRSMLCA GRDDVAVTDR



DAKINAPPPN





 101
LHTGDFPNPN DAYKNLINLK PAIEAGYTGR GVEVGIVDTG



ESVGSISFPE





 151
LYGRKEHGYN ENYKNYTAYM RKEAPEDGGG KDIEASFDDE



AVIETEAKPT





 201
DIRHVKEIGH IDLVSHIIGG RSVDGRPAGG IAPDATLHIM



NTNDETKNEM





 251
MVAAIRNAWV KLGERGVRIV NNSFGTTSRA GTADLFQIAN



SEEQYRQALL





 301
DYSGGDETDE GIRLMQQSDY GNLSYHIRNK NMLFIFSTGN



DAQAQPNTYA





 351
LLPFYEKDAQ KGIITVAGVD RSGEKFKREM YGEPGTEPLE



YGSNHCGITA





 401
MWCLSAPYEA SVRFTRTNPI QIAGTSFSAP IVTGTAALLL



QKYPWMSNDN





 451
LRTTLLTTAQ DIGAVGVDSK FGWGLLDAGK AMNGPASFPF



GDFTADTKGT





 501
SDIAYSFRND ISGTGGLIKK GGSQLQLHGN NTYTGKTIIE



GGSLVLYGNN





 551
KSDMRVETKG ALIYNGAASG GSLNSDGIVY LADTDQSGAN



ETVHIKGSLQ





 601
LDGKGTLYTR LGKLLKVDGT AIIGGKLYMS ARGKGAGYLN



STGRRVPFLS





 651
AAKIGQDYSF FTNIETDGGL LASLDSVEKT AGSEGDTLSY



YVRRGNAART





 701
ASAAAHSAPA GLKHAVEQGG SNLENLMVEL DASESSATPE



TVETAAADRT





 751
DMPGIRPYGA TFRAAAAVQH ANAADGVRIF NSLAATVYAD



STAAHADMQG





 801
RRLKAVSDGL DHNGTGLRVI AQTQQDGGTW EQGGVEGKMR



GSTQTVGIAA





 851
KTGENTTAAA TLGMGRSTWS ENSANAKTDS ISLFAGIRHD



AGDIGYLKGL





 901
FSYGRYKNSI SRSTGADEHA EGSVNGTLMQ LGALGGVNVP



FAATGDLTVE





 951
GGLRYDLLKQ DAFAEKGSAL GWSGNSLTEG TLVGLAGLKL



SQPLSDKAVL





1001
FATAGVERDL NGRDYTVTGG FTGATAATGK TGARNMPHTR



LVAGLGADVE





1051
FGNGWNGLAR YSYAGSKQYG NHSGRVGVGY RF*






Tbp2 and 741 genes were from strain MC58; 983 and 287 genes were from strain 2996. These were cloned in pET vector and expressed in E. coli without the sequence coding for their leader peptides or as “ΔG forms”, both fused to a C-terminal His-tag. In each case, the same effect was seen—expression was good in the clones carrying the deletion of the poly-glycine stretch, and poor or absent if the glycines were present in the expressed protein:


















ORF
Express.
Purification
Bact. Activity









287-His(2996)
+/−
+
+



‘287untagged’(2996)
+/−
nd
nd



ΔG287-His(2996)
+
+
+



ΔG287K(2996)
+
+
+



ΔG287-His(MC58)
+
+
+



ΔG287-His(1000)
+
+
+



ΔG287-His(BZ232)
+
+
+



Tbp2-His(MC58)
+/−
nd
nd



ΔGTbp2-His(MC58)
+
+




741-His(MC58)
+/−
nd
nd



ΔG741-His(MC58)
+
+




983-His (2996)






ΔG983-His (2996)
+
+










SDS-PAGE of the proteins is shown in FIG. 13.


ΔG287 and hybrids


ΔG287 proteins were made and purified for strains MC58, 1000 and BZ232. Each of these gave high ELISA titres and also serum bactericidal titres of >8192. ΔG287K, expressed from pET-24b, gave excellent titres in ELISA and the serum bactericidal assay. ΔG287-ORF46.1K may also be expressed in pET-24b.


Δ3287 was also fused directly in-frame upstream of 919, 953, 961 (sequences shown below) and ORF46.1:









ΔG287-919








   1
ATGGCTAGCC CCGATGTTAA ATCGGCGGAC ACGCTGTCAA



AACCGGCCGC





  51
TCCTGTTGTT GCTGAAAAAG AGACAGAGGT AAAAGAAGAT



GCGCCACAGG





 101
CAGGTTCTCA AGGACAGGGC GCGCCATCCA CACAAGGCAG



CCAAGATATG





 151
GCGGCAGTTT CGGCAGAAAA TACAGGCAAT GGCGGTGCGG



CAACAACGGA





 201
CAAACCCAAA AATGAAGACG AGGGACCGCA AAATGATATG



CCGCAAAATT





 251
CCGCCGAATC CGCAAATCAA ACAGGGAACA ACCAACCCGC



CGATTCTTCA





 301
GATTCCGCCC CCGCGTCAAA CCCTGCACCT GCGAATGGCG



GTAGCAATTT





 351
TGGAAGGGTT GATTTGGCTA ATGGCGTTTT GATTGATGGG



CCGTCGCAAA





 401
ATATAACGTT GACCCACTGT AAAGGCGATT CTTGTAATGG



TGATAATTTA





 451
TTGGATGAAG AAGCACCGTC AAAATCAGAA TTTGAAAATT



TAAATGAGTC





 501
TGAACGAATT GAGAAATATA AGAAAGATGG GAAAAGCGAT



AAATTTACTA





 551
ATTTGGTTGC GACAGCAGTT CAAGCTAATG GAACTAACAA



ATATGTCATC





 601
ATTTATAAAG ACAAGTCCGC TTCATCTTCA TCTGCGCGAT



TCAGGCGTTC





 651
TGCACGGTCG AGGAGGTCGC TTCCTGCCGA GATGCCGCTA



ATCCCCGTCA





 701
ATCAGGCGGA TACGCTGATT GTCGATGGGG AAGCGGTCAG



CCTGACGGGG





 751
CATTCCGGCA ATATCTTCGC GCCCGAAGGG AATTACCGGT



ATCTGACTTA





 801
CGGGGCGGAA AAATTGCCCG GCGGATCGTA TGCCCTCCGT



GTGCAAGGCG





 851
AACCGGCAAA AGGCGAAATG CTTGCTGGCA CGGCCGTGTA



CAACGGCGAA





 901
GTGCTGCATT TTCATACGGA AAACGGCCGT CCGTACCCGA



CTAGAGGCAG





 951
GTTTGCCGCA AAAGTCGATT TCGGCAGCAA ATCTGTGGAC



GGCATTATCG





1001
ACAGCGGCGA TGATTTGCAT ATGGGTACGC AAAAATTCAA



AGCCGCCATC





1051
GATGGAAACG GCTTTAAGGG GACTTGGACG GAAAATGGCG



GCGGGGATGT





1101
TTCCGGAAGG TTTTACGGCC CGGCCGGCGA GGAAGTGGCG



GGAAAATACA





1151
GCTATCGCCC GACAGATGCG GAAAAGGGCG GATTCGGCGT



GTTTGCCGGC





1201
AAAAAAGAGC AGGATGGATC CGGAGGAGGA GGATGCCAAA



GCAAGAGCAT





1251
CCAAACCTTT CCGCAACCCG ACACATCCGT CATCAACGGC



CCGGACCGGC





1301
CGGTCGGCAT CCCCGACCCC GCCGGAACGA CGGTCGGCGG



CGGCGGGGCC





1351
GTCTATACCG TTGTACCGCA CCTGTCCCTG CCCCACTGGG



CGGCGCAGGA





1401
TTTCGCCAAA AGCCTGCAAT CCTTCCGCCT CGGCTGCGCC



AATTTGAAAA





1451
ACCGCCAAGG CTGGCAGGAT GTGTGCGCCC AAGCCTTTCA



AACCCCCGTC





1501
CATTCCTTTC AGGCAAAACA GTTTTTTGAA CGCTATTTCA



CGCCGTGGCA





1551
GGTTGCAGGC AACGGAAGCC TTGCCGGTAC GGTTACCGGC



TATTACGAGC





1601
CGGTGCTGAA GGGCGACGAC AGGCGGACGG CACAAGCCCG



CTTCCCGATT





1651
TACGGTATTC CCGACGATTT TATCTCCGTC CCCCTGCCTG



CCGGTTTGCG





1701
GAGCGGAAAA GCCCTTGTCC GCATCAGGCA GACGGGAAAA



AACAGCGGCA





1751
CAATCGACAA TACCGGCGGC ACACATACCG CCGACCTCTC



CCGATTCCCC





1801
ATCACCGCGC GCACAACGGC AATCAAAGGC AGGTTTGAAG



GAAGCCGCTT





1851
CCTCCCCTAC CACACGCGCA ACCAAATCAA CGGCGGCGCG



CTTGACGGCA





1901
AAGCCCCGAT ACTCGGTTAC GCCGAAGACC CCGTCGAACT



TTTTTTTATG





1951
CACATCCAAG GCTCGGGCCG TCTGAAAACC CCGTCCGGCA



AATACATCCG





2001
CATCGGCTAT GCCGACAAAA ACGAACATCC CTACGTTTCC



ATCGGACGCT





2051
ATATGGCGGA CAAAGGCTAC CTCAAGCTCG GGCAGACCTC



GATGCAGGGC





2101
ATCAAAGCCT ATATGCGGCA AAATCCGCAA CGCCTCGCCG



AAGTTTTGGG





2151
TCAAAACCCC AGCTATATCT TTTTCCGCGA GCTTGCCGGA



AGCAGCAATG





2201
ACGGTCCCGT CGGCGCACTG GGCACGCCGT TGATGGGGGA



ATATGCCGGC





2251
GCAGTCGACC GGCACTACAT TACCTTGGGC GCGCCCTTAT



TTGTCGCCAC





2301
CGCCCATCCG GTTACCCGCA AAGCCCTCAA CCGCCTGATT



ATGGCGCAGG





2351
ATACCGGCAG CGCGATTAAA GGCGCGGTGC GCGTGGATTA



TTTTTGGGGA





2401
TACGGCGACG AAGCCGGCGA ATATGCCGGC AAACAGAAAA



CCACGGGTTA





2451
CGTCTGGCAG CTCCTACCCA ACGGTATGAA GCCCGAATAC



CGCCCGTAAC





2501
TCGAG





   1
MASPDVKSAD TLSKPAAPVV AEKETEVKRD APQAGSQGQG



APSTQGSQDM





  51
AAVSAENTGN GGAATTDKPK NEDEGPQNDM PQNSAESANQ



TGNNQPADSS





 101
DSAPASNPAP ANGGSNFGRV DLANGVLIDG PSQNITLTHC



KGDSCNGDNL





 151
LDEEAPSKSE FENLNESERI EKYKKDGKSD KFTNLVATAV



QANGTNKYVI





 201
IYKDKSASSS SARFRRSARS RRSLPAEMPL IPVNQADTLI



VDGEAVSLTG





 251
HSGNIFAPEG NYRYLTYGAE KLPGGSYALR VQGEPAKGEM



LAGTAVYNGE





 301
VLHFHTENGR PYPTRGRFAA KVDFGSKSVD GIIDSGDDLH



MGTQKFKAAI





 351
DGNGFKGTWT ENGGGDVSGR FYGPAGEEVA GKYSYRPTDA



EKGGFGVFAG





 401
KKEQDGSGGG GCQSKSIQTF PQPDTSVING PDRPVGIPDP



AGTTVGGGGA





 451
VYTVVPHLSL PHWAAQDFAK SLQSFRLGCA NLKNRQGWQD



VCAQAFQTPV





 501
HSFQAKQFFE RYFTPWQVAG NGSLAGTVTG YYEPVLKGDD



RRTAQARFPI





 551
YGIPDDFISV PLPAGLRSGK ALVRIRQTGK NSGTIDNTGG



THTADLSRFP





 601
ITARTTAIKG RFEGSRFLPY HTRNQINGGA LDGKAPILGY



AFDPVELFFM





 651
HIQGSGRLKT PSGKYIRIGY ADKNEHPYVS IGRYMADKGY



LKLGQTSMQG





 701
IKAYMRQNPQ RLAEVLGQNP SYIFFRELAG SSNDGPVGAL



GTPLMGEYAG





 751
AVDRHYITLG APLFVATAHP VTRKALNRLI MAQDTGSAIK



GAVRVDYFWG





 801
YGDEAGELAG KQKTTGYVWQ LLPNGMKPEY RP*










ΔG287-953








   1
ATGGCTAGCC CCGATGTTAA ATCGGCGGAC ACGCTGTCAA



AACCGGCCGC





  51
TCCTGTTGTT GCTGAAAAAG AGACAGAGGT AAAAGAAGAT



GCGCCACAGG





 101
CAGGTTCTCA AGGACAGGGC GCGCCATCCA CACAAGGCAG



CCAAGATATG





 151
GCGGCAGTTT CGGCAGAAAA TACAGGCAAT GGCGGTGCGG



CAACAACGGA





 201
CAAACCCAAA AATGAAGACG AGGGACCGCA AAATGATATG



CCGCAAAATT





 251
CCGCCGAATC CGCAAATCAA ACAGGGAACA ACCAACCCGC



CGATTCTTCA





 301
GATTCCGCCC CCGCGTCAAA CCCTGCACCT GCGAATGGCG



GTAGCAATTT





 351
TGGAAGGGTT GATTTGGCTA ATGGCGTTTT GATTGATGGG



CCGTCGCAAA





 401
ATATAACGTT GACCCACTGT AAAGGCGATT CTTGTAATGG



TGATAATTTA





 451
TTGGATGAAG AAGCACCGTC AAAATCAGAA TTTGAAAATT



TAAATGAGTC





 501
TGAACGAATT GAGAAATATA AGAAAGATGG GAAAAGCGAT



AAATTTACTA





 551
ATTTGGTTGC GACAGCAGTT CAAGCTAATG GAACTAACAA



ATATGTCATC





 601
ATTTATAAAG ACAAGTCCGC TTCATCTTCA TCTGCGCGAT



TCAGGCGTTC





 651
TGCACGGTCG AGGAGGTCGC TTCCTGCCGA GATGCCGCTA



ATCCCCGTCA





 701
ATCAGGCGGA TACGCTGATT GTCGATGGGG AAGCGGTCAG



CCTGACGGGG





 751
CATTCCGGCA ATATCTTCGC GCCCGAAGGG AATTACCGGT



ATCTGACTTA





 801
CGGGGCGGAA AAATTGCCCG GCGGATCGTA TGCCCTCCGT



GTGCAAGGCG





 851
AACCGGCAAA AGGCGAAATG CTTGCTGGCA CGGCCGTGTA



CAACGGCGAA





 901
GTGCTGCATT TTCATACGGA AAACGGCCGT CCGTACCCGA



CTAGAGGCAG





 951
GTTTGCCGCA AAAGTCGATT TCGGCAGCAA ATCTGTGGAC



GGCATTATCG





1001
ACAGCGGCGA TGATTTGCAT ATGGGTACGC AAAAATTCAA



AGCCGCCATC





1051
GATGGAAACG GCTTTAAGGG GACTTGGACG GAAAATGGCG



GCGGGGATGT





1101
TTCCGGAAGG TTTTACGGCC CGGCCGGCGA GGAAGTGGCG



GGAAAATACA





1151
GCTATCGCCC GACAGATGCG GAAAAGGGCG GATTCGGCGT



GTTTGCCGGC





1201
AAAAAAGAGC AGGATGGATC CGGAGGAGGA GGAGCCACCT



ACAAAGTGGA





1251
CGAATATCAC GCCAACGCCC GTTTCGCCAT CGACCATTTC



AACACCAGCA





1301
CCAACGTCGG CGGTTTTTAC GGTCTGACCG GTTCCGTCGA



GTTCGACCAA





1351
GCAAAACGCG ACGGTAAAAT CGACATCACC ATCCCCGTTG



CCAACCTGCA





1401
AAGCGGTTCG CAACACTTTA CCGACCACCT GAAATCAGCC



GGCATCTTCG





1451
ATGCCGCCCA ATATCCGGAC ATCCGCTTTG TTTCCACCAA



ATTCAACTTC





1501
AACGGCAAAA AACTGGTTTC CGTTGACGGC AACCTGACCA



TGCACGGCAA





1551
AACCGCCCCC GTCAAACTCA AAGCCGAAAA ATTCAACTGC



TACCAAAGCC





1601
CGATGGCGAA AACCGAAGTT TGCGGCGGCG ACTTCAGCAC



CACCATCGAC





1651
CGCACCAAAT GGGGCGTGGA CTACCTCGTT AACGTTGGTA



TGACCAAAAG





1701
CGTCCGCATC GACATCCAAA TCGAGGCAGC CAAACAATAA



CTCGAG





   1
MASPDVKSAD TLSKPAAPVV AEKETEVKED APQAGSQGQG



APSTQGSQDM





  51
AAVSAENTGN GGAATTDKPK NEDEGPQNDM PQNSAESANQ



TGNNQPADSS





 101
DSAPASNPAP ANGGSNFGRV DLANGVLIDG PSQNITLTHC



KGDSCNGDNL





 151
LDEEAPSKSE FENLNESERI EKYKKEGKSD KFTNLVATAV



QANGTNKYVI





 201
IYKDKSASSS SARFRRSARS RRSLPAEMPL IPVNQADTLI



VDGEAVSLTG





 251
HSGNIFAPEG NYRYLTYGAE KLPGGSYALR VQGEPAKGEM



LAGTAVYNGE





 301
VLHFHTENGR PYPTRGRFAA KVDFGSKSVD GIIDSGDDLH



MGTQKFKAAI





 351
DGNGFKGTWT ENGGGDVSGR FYGPAGEEVA GKYSYRPTDA



EKGGFGVFAG





 401
KKEQDGSGGG GATYKVDEYH ANARFAIDHF NTSTNVGGFY



GLTGSVEFDQ





 451
AKRDGKIDIT IPVANLQSGS QHFTDHLKSA DIFDAAQYPD



IRFVSTKFNF





 501
NGKKLVSVDG NLTMHGKTAP VKLKAEKFNC YQSPMAKTEV



CGGDFSTTID





 551
RTKWGVDYLV NVGMTKSVRI DIQIEAAKQ*










ΔG287-961








   1
ATGGCTAGCC CCGATGTTAA ATCGGCGGAC ACGCTGTCAA



AACCGGCCGC





  51
TCCTGTTGTT GCTGAAAAAG AGACAGAGGT AAAAGAAGAT



GCGCCACAGG





 101
CAGGTTCTCA AGGACAGGGC GCGCCATCCA CACAAGGCAG



CCAAGATATG





 151
GCGGCAGTTT CGGCAGAAAA TACAGGCAAT GGCGGTGCGG



CAACAACGGA





 201
CAAACCCAAA AATGAAGACG AGGGACCGCA AAATGATATG



CCGCAAAATT





 251
CCGCCGAATC CGCAAATCAA ACAGGGAACA ACCAACCCGC



CGATTCTTCA





 301
GATTCCGCCC CCGCGTCAAA CCCTGCACCT GCGAATGGCG



GTAGCAATTT





 351
TGGAAGGGTT GATTTGGCTA ATGGCGTTTT GATTGATGGG



CCGCGTCAAA





 401
ATATAACGTT GACCCACTGT AAAGGCGATT CTTGTAATGG



TGATAATTTA





 451
TTGGATGAAG AAGCACCGTC AAAATCAGAA TTTGAAAATT



TAAATGAGTC





 501
TGAACGAATT GAGAAATATA AGAAAGATGG GAAAAGCGAT



AAATTTACTA





 551
ATTTGGTTGC GACAGCAGTT CAAGCTAATG GAACTAACAA



ATATGTCATC





 601
ATTTATAAAG ACAAGTCCGC TTCATCTTCA TCTGCGCGAT



TCAGGCGTTC





 651
TGCACGGTCG AGGAGGTCGC TTCCTGCCGA GATGCCGCTA



ATCCCCGTCA





 701
ATCAGGCGGA TACGCTGATT GTCGATGGGG AAGCGGTCAG



CCTGACGGGG





 751
CATTCCGGCA ATATCTTCGC GCCCGAAGGG AATTACCGGT



ATCTGACTTA





 801
CGGGGCGGAA AAATTGCCCG GCGGATCGTA TGCCCTCCGT



GTGCAAGGCG





 851
AACCGGCAAA AGGCGAAATG CTTGCTGGCA CGGCCGTGTA



CAACGGCGAA





 901
GTGCTGCATT TTCATACGGA AAACGGCCGT CCGTACCCGA



CTAGAGGCAG





 951
GTTTGCCGCA AAAGTCGATT TCGGCAGCAA ATCTGTGGAC



GGCATTATCG





1001
ACAGCGGCGA TGATTTGCAT ATGGGTACGC AAAAATTCAA



AGCCGCCATC





1051
GATGGAAACG GCTTTAAGGG GACTTGGACG GAAAATGGCG



GCGGGGATGT





1101
TTCCGGAAGG TTTTACGGCC CGGCCGGCGA GGAAGTGGCG



GGAAAATACA





1151
GCTATCGCCC GACAGATGCG GAAAAGGGCG GATTCGGCGT



GTTTGCCGGC





1201
AAAAAAGAGC AGGATGGATC CGGAGGAGGA GGAGCCACAA



ACGACGACGA





1251
TGTTAAAAAA GCTGCCACTG TGGCCATTGC TGCTGCCTAC



AACAATGGCC





1301
AAAAATTCAA CGGTTTCAAA GCTGGAGAGA CCATCTACGA



CATTGATGAA





1351
GACGGCACAA TTACCAAAAA AGACGCAACT GCAGCCGATG



TTGAAGCCGA





1401
CGACTTTAAA GGTCTGGGTC TGAAAAAAGT CGTGACTAAC



CTGACCAAAA





1451
CCGTCAATGA AAACAAACAA AACGTCGATG CCAAAGTAAA



AGCTGCAGAA





1501
TCTGAAATAG AAAAGTTAAC AACCAAGTTA GCAGACACTG



ATGCCGCTTT





1551
AGCAGATACT GATGCCGCTC TGGATGCAAC CACCAACGCC



TTGAATAAAT





1601
TGGGAGAAAA TATAACGACA TTTGCTGAAG AGACTAAGAC



AAATATCGTA





1651
AAAATTGATG AAAAATTAGA AGCCGTGGCT GATACCGTCG



ACAAGCATGC





1701
CGAAGCATTC AACGATATCG CCGATTCATT GGATGAAACC



AACACTAAGG





1751
CAGACGAAGC CGTCAAAACC GCCAATGAAG CCAAACAGAC



GGCCGAAGAA





1801
ACCAAACAAA ACGTCGATGC CAAAGTAAAA GCTGCAGAAA



CTGCAGCAGG





1851
CAAAGCCGAA GCTGCCGCTG GCACAGCTAA TACTGCAGCC



GACAAGGCCG





1901
AAGCTGTCGC TGCLAAAGTT ACCGACATCA AAGCTGATAT



CGCTACGAAC





1951
AAAGATAATA TTGCTAAAAA AGCAAACAGT GCCGACGTGT



ACACCAGAGA





2001
AGAGTCTGAC AGCAAATTTG TCAGAATTGA TGGTCTGAAC



GCTACTACCG





2051
AAAAATTGGA CACACGCTTG GCTGCCGCTG AAAAATCCAT



TGCCGATCAC





2101
GATACTCGCC TGAACGGTTT GGATAAAACA GTGTCAGACC



TGCGCAAAGA





2151
AACCCGCCAA GGCCTTGCAG AACAAGCCGC GCTCTCCGGT



CTGTTCCAAC





2201
CTTACAACGT GGGTCGGTTC AATGTAACGG CTGCAGTCGG



CGGCTACAAA





2251
TCCGAATCGG CAGTCGCCAT CGGTACCGGC TTCCGCTTTA



CCGAAAACTT





2301
TGCCGCCAAA GCAGGCGTGo CAGTCGGCAC TTCGTCCGGT



TCTTCCGCAG





2351
CCTACCATGT CGGCGTCAAT TACGAGTGGT AACTCGAG





   1
MASPDVKSAD TLSKPAAPVV AEKETEVKED APQAGSQGQG



APSTQGSQDM





  51
AAVSAENTGN GGAATTDKPK NEDEGPQNDM PQNSAESANQ



TGNNQPADSS





 101
DSAPASNPAP ANGGSNFGRV DLANGVLIDG PSQNITLTHC



KGDSCNGDNL





 151
LDEEAPSKSE FENLNESERI EKYKKDGKSD KFTNLVATAV



QANGTNKYVI





 201
IYKDKSASSS SARFRRSARS RRSLPAEMPL IPVNQADTLI



VDGEAVSLTG





 251
HSGNIFAPEG NYRYLTYGAE KLPGGSYALR VQGEPAKGEM



LAGTAVYNGE





 301
VLHFHTENGR PYPTRGRFAA KVDFGSKSVD GIIDSGDDLH



MGTQKFKAAI





 351
DGNGFKGTWT ENGGGDVSGR FYGPAGEEVA GKYSYRPTDA



EKGGFGVFAG





 401
KREQDGSGGG GATNDDDVKK AATVAIAAAY NNGQEINGFK



AGETIYDIDE





 451
DGTITKKDAT AADVEADDFK GLGLKKVVTN LTKTVNENKQ



NVDAKVKAAE





 501
SEIEKLTTKL ADTDAALADT DAALDAFTNA LNKLGENITT



FAEETKTNIV





 551
KIDEKLEAVA DTVDKHAEAF NDIADSLDET NTKADEAVKT



ANEAKQTAEE





 601
TKQNVDAKVK AAETAAGKAE AAAGTANTAA DKAEAVAAKV



TDIKADIATN





 651
KDNIAKKANS ADVYTREESD SKFVRIDGLN ATTEKLDTRL



ASAEKSIADH





 701
DTRLNGLDKT VSDLRKETRQ GLAEQAALSG LFQPYNVGRF



NVTAAVGGYK





 751
SESAVAIGTG FRFTENFAAK AGVAVGTSSG SSAAYHVGVN



YEW*



















ELISA
Bactericidal

















ΔG287-953-His
3834
65536


ΔG287-961-His
108627
65536









The bactericidal efficacy (homologous strain) of antibodies raised against the hybrid proteins was compared with antibodies raised against simple mixtures of the component antigens (using 287-GST) for 919 and ORF46.1:















Mixture with 287
Hybrid with ΔG287

















919
32000
128000


ORF46.1
128
16000









Data for bactericidal activity against heterologous MenB strains and against serotypes A and C were also obtained:


















919
ORF46.1













Strain
Mixture
Hybrid
Mixture
Hybrid

















NGH38
1024
32000

16384



MC58
512
8192

512



BZ232
512
512





MenA (F6124)
512
32000

8192



MenC (C11)
>2048
>2048





MenC (BZ133)
>4096
64000

8192










The hybrid proteins with ΔG287 at the N-terminus are therefore immunologically superior to simple mixtures, with ΔG287-ORF46.1 being particularly effective, even against heterologous strains. ΔG287-ORF46.1K may be expressed in pET-24b.


The same hybrid proteins were made using New Zealand strain 394/98 rather than 2996:









ΔG287NZ-919








   1
ATGGCTAGCC CCGATGTCAA GTCGGCGGAC ACGCTGTCAA



AACCTGCCGC





  51
CCCTGTTGTT TCTGAAAAAG AGACAGAGGC AAAGGAAGAT



GCGCCACAGG





 101
CAGGTTCTCA AGGACAGGGC GCGCCATCCG CACAAGGCGG



TCAAGATATG





 151
GCGGCGGTTT CGGAAGAAAA TACAGGCAAT GGCGGTGCGG



CAGCAACGGA





 201
CAAACCCAAA AATGAAGACG AGGGGGCGCA AAATGATATG



CCGCAAAATG





 251
CCGCCGATAC AGATAGTTTG ACACCGAATC ACACCCCGGC



TTCGAATATG





 301
CCGGCCGGAA ATATGGAAAA CCAAGCACCG GATGCCGGGG



AATCGGAGCA





 351
GCCGGCAAAC CAACCGGATA TGGCAAATAC GGCGGACGGA



ATGCAGGGTG





 401
ACGATCCGTC GGCAGGCGGG GAAAATGCCG GCAATACGGC



TGCCCAAGGT





 451
ACAAATCAAG CCGAAAACAA TCAAACCGCC GGTTCTCAAA



ATCCTGCCTC





 501
TTCAACCAAT CCTAGCGCCA CGAATAGCGG TGGTGATTTT



GGAAGGACGA





 551
ACGTGGGCAA TTCTGTTGTG ATTGACGGGC CGTCGCAAAA



TATAACGTTG





 601
ACCCACTGTA AAGGCGATTC TTGTAGTGGC AATAATTTCT



TGGATGAAGA





 651
AGTACAGCTA AAATCAGAAT TTGAAAAATT AAGTGATGCA



GACAAAATAA





 701
GTAATTACAA GAAAGATGGG AAGAATGACG GGAAGAATGA



TAAATTTGTC





 751
GGTTTGGTTG CCGATAGTGT GCAGATGAAG GGAATCAATC



AATATATTAT





 801
CTTTTATAAA CCTAAACCCA CTTCATTTGC GCGATTTAGG



CGTTCTGCAC





 851
GGTCGAGGCG GTCGCTTCCG GCCGAGATGC CGCTGATTCC



CGTCAATCAG





 901
GCGGATACGC TGATTGTCGA TGGGGAAGCG GTCAGCCTGA



CGGGGCATTC





 951
CGGCAATATC TTCGCGCCCG AAGGGAATTA CCGGTATCTG



ACTTACGGGG





1001
CGGAAAAATT GCCCGGCGGA TCGTATGCCC TCCGTGTTCA



AGGCGAACCT





1051
TCAAAAGGCG AAATGCTCGC GGGCACGGCA GTGTACAACG



GCGAAGTGCT





1101
GCATTTTCAT ACGGAAAACG GCCGTCCGTC CCCGTCCAGA



GGCAGGTTTG





1151
CCGCAAAAGT CGATTTCGGC AGCAAATCTG TGGACGGCAT



TATCGACAGC





1201
GGCGATGGTT TGCATATGGG TACGCAAAAA TTCAAAGCCG



CCATCGATGG





1251
AAACGGCTTT AAGGGGACTT GGACGGAAAA TGGCGGCGGG



GATGTTTCCG





1301
GAAAGTTTTA CGGCCCGGCC GGCGAGGAAG TGGCGGGAAA



ATACAGCTAT





1351
CGCCCAACAG ATGCGGAAAA GGGCGGATTC GGCGTGTTTG



CCGGCAAAAA





1401
AGAGCAGGAT GGATCCGGAG GAGGAGGATG CCAAAGCAAG



AGCATCCAAA





1451
CCTTTCCGCA ACCCGACACA TCCGTCATCA ACGGCCCGGA



CCGGCCGGTC





1501
GGCATCCCCG ACCCCGCCGG AACGACGGTC GGCGGCGGCG



GGGCCGTCTA





1551
TACCGTTGTA CCGCACCTGT CCCTGCCCCA CTGGGCGGCG



CAGGATTTCG





1601
CCAAAAGCCT GCAATCCTTC CGCCTCGGCT GCGCCAATTT



GAAAAACCGC





1651
CAAGGCTGGC AGGATGTGTG CGCCCAAGCC TTTCAAACCC



CCGTCCATTC





1701
CTTTCAGGCA AAACAGTTTT TTGAACGCTA TTTCACGCCG



TGGCAGGTTG





1751
CAGGCAACGG AAGCCTTGCC GGTACGGTTA CCGGCTATTA



CGAGCCGGTG





1801
CTGAAGGGCG ACGACAGGCG GACGGCACAA GCCCGCTTCC



CGATTTACGG





1851
TATTCCCGAC GATTTTATCT CCGTCCCCCT GCCTGCCGGT



TTGCGGAGCG





1901
GAAAAGCCCT TGTCCGCATC AGGCAGACGG GAAAAAACAG



CGGCACAATC





1951
GACAATACCG GCGGCACACA TACCGCCGAC CTCTCCCGAT



TCCCCATCAC





2001
CGCGCGCACA ACGGCAATCA AAGGCAGGTT TGAAGGAAGC



CGCTTCCTCC





2051
CCTACCACAC GCGCAACCAA ATCAACGGCG GCGCGCTTGA



CGGCAAAGCC





2101
CCGATACTCG GTTACGCCGA AGACCCCGTC GAACTTTTTT



TTATGCACAT





2151
CCAAGGCTCG GGCCGTCTGA AAACCCCGTC CGGCAAATAC



ATCCGCATCG





2201
GCTATGCCGA CAAAAACGAA CATCCCTACG TTTCCATCGG



ACGCTATATG





2251
GCGGACAAAG GCTACCTCAA GCTCGGGCAG ACCTCGATGC



AGGGCATCAA





2301
AGCCTATATG CGGCAAAATC CGCAACGCCT CGCCGAAGTT



TTGGGTCAAA





2351
ACCCCAGCTA TATCTTTTTC CGCGAGCTTG CCGGAAGCAG



CAATGACGGT





2401
CCCGTCGGCG CACTGGGCAC GCCGTTGATG GGGGAATATG



CCGGCGCAGT





2451
CGACCGGCAC TACATTACCT TGGGCGCGCC CTTATTTGTC



GCCACCGCCC





2501
ATCCGGTTAC CCGCAAAGCC CTCAACCGCC TGATTATGGC



GCAGGATACC





2551
GGCAGCGCGA TTAAAGGCGC GGTGCGCGTG GATTATTTTT



GGGGATACGG





2601
CGACGAAGCC GGCGAACTTG CCGGCAAACA GAAAACCACG



GGTTACGTCT





2651
GGCAGCTCCT ACCCAACGGT ATGAAGCCCG AATACCGCCC



GTAAAAGCTT





   1
MASPDVKSAD TLSKPAAPVV SEKETEAKED APQAGSQGQG



APSAQGGQDM





  51
AAVSEENTGN GGAAATDKPK NEDEGAQNDM PQNAADTDSL



TPNHTPASNM





 101
PAGNMENQAP DAGESEQPAN QPDMANTADG MQGDDPSAGG



ENAGNTAAQG





 151
TNQAENNQTA GSQNPASSTN PSATNSGGDF GRTNVGNSVV



IDGPSQNITL





 201
THCKGDSCSG NNFLDEEVQL KSEFERLSDA DKISNYKKDG



KNDGKNDKFV





 251
GLVADSVQMK GINQYIIFYK PKPTSFARFR RSARSRRSLP



AEMPLIPVNQ





 301
ADTLIVDGEA VSLTGHSGNI FAPEGNYRYL TYGAEKLPGG



SYALRVQGEP





 351
SKGEMLAGTA VYNGEVLHFH TENGRPSPSR GRFAAKVDFG



SKSVDGIIDS





 401
GDGLHMGTQK FRAAIDGNGF KGTWTENGGG DVSGKFYGPA



GEEVAGKYSY





 451
RPTDAEKGGF GVFAGKKEQD GSGGGGCQSK SIQTFPQPDT



SVINGPDRPV





 501
GIPDPAGTTV GGGGAVYTVV PHLSLPHWAA QDFAKSLQSF



RLGCANLKNR





 551
QGWQDVCAQA FQTPVHSFQA KQFFERYFTP WQVAGNGSLA



GTVTGYYEPV





 601
LKGDDRRTAQ ARFPIYGIPD DFISVPLPAG LRSGKALVRI



RQTGKNSGTI





 651
DNTGGTHTAD LSRFPITART TAIKGRFEGS RFLPYHTRNQ



INGGALDGKA





 701
PILGYAEDPV ELFFMHIQGS GRLKTPSGKY IRIGYADKNE



HPYVSIGRYM





 751
ADKGYLKLGQ TSMQGIKAYM RQNPQRLAEV LGQNPSYIFF



RELAGSSNDG





 801
PVGALGTPLM GEYAGAVDRH YITLGAPLFV ATAHPVTRKA



LNRLIMAQDT





 851
GSAIKGAVRV DYFWGYGDEA GELAGKQKTT GYVWQLLPNG



MKPEYRP*










ΔG287NZ-953








   1
ATGGCTAGCC CCGATGTCAA GTCGGCGGAC ACGCTGTCAA



AACCTGCCGC





  51
CCCTGTTGTT TCTGAAAAAG AGACAGAGGC AAAGGAAGAT



GCGCCACAGG





 101
CAGGTTCTCA AGGACAGGGC GCGCCATCCG CACAAGGCGG



TCAAGATATG





 151
GCGGCGGTTT CGGAAGAAAA TACAGGCAAT GGCGGTGCGG



CAGCAACGGA





 201
CAAACCCAAA AATGAAGACG AGGGGGCGCA AAATGATATG



CCGCAAAATG





 251
CCGCCGATAC AGATAGTTTG ACACCGAATC ACACCCCGGC



TTCGAATATG





 301
CCGGCCGGAA ATATGGAAAA CCAAGCACCG GATGCCGGGG



AATCGGAGCA





 351
GCCGGCAAAC CAACCGGATA TGGCAAATAC GGCGGACGGA



ATGCAGGGTG





 401
ACGATCCGTC GGCAGGCGGG GAAAATGCCG GCAATACGGC



TGCCCAAGGT





 451
ACAAATCAAG CCGAAAACAA TCAAACCGCC GGTTCTCAAA



ATCCTGCCTC





 501
TTCAACCAAT CCTAGCGCCA CGAATAGCGG TGGTGATTTT



GGAAGGACGA





 551
ACGTGGGCAA TTCTGTTGTG ATTGACGGGC CGTCGCAAAA



TATAACGTTG





 601
ACCCACTGTA AAGGCGATTC TTGTAGTGGC AATAATTTCT



TGGATGAAGA





 651
AGTACAGCTA AAATCAGAAT TTGAAAAATT AAGTGATGCA



GACAAAATAA





 701
GTAATTACAA GAAAGATGGG AAGAATGACG GGAAGAATGA



TAAATTTGTC





 751
GGTTTGGTTG CCGATAGTGT GCAGATGAAG GGAATCAATC



AATATATTAT





 801
CTTTTATAAA CCTAAACCCA CTTCATTTGC GCGATTTAGG



CGTTCTGCAC





 851
GGTCGAGGCG GTCGCTTCCG GCCGAGATGC CGCTGATTCC



CGTCAATCAG





 901
GCGGATACGC TGATTGTCGA TGGGGAAGCG GTCAGCCTGA



CGGGGCATTC





 951
CGGCAATATC TTCGCGCCCG AAGGGAATTA CCGGTATCTG



ACTTACGGGG





1001
CGGAAAAATT GCCCGGCGGA TCGTATGCCC TCCGTGTTCA



AGGCGAACCT





1051
TCAAAAGGCG AAATGCTCGC GGGCACGGCA GTGTACAACG



GCGAAGTGCT





1101
GCATTTTCAT ACGGAAAACG GCCGTCCGTC CCCGTCCAGA



GGCAGGTTTG





1151
CCGCAAAAGT CGATTTCGGC AGCAAATCTG TGGACGGCAT



TATCGACAGC





1201
GGCGATGGTT TGCATATGGG TACGCAAAAA TTCAAAGCCG



CCATCGATGG





1251
AAACGGCTTT AAGGGGACTT GGACGGAAAA TGGCGGCGGG



GATGTTTCCG





1301
GAAAGTTTTA CGGCCCGGCC GGCGAGGAAG TGGCGGGAAA



ATACAGCTAT





1351
CGCCCAACAG ATGCGGAAAA GGGCGGATTC GGCGTGTTTG



CCGGCAAAAA





1401
AGAGCAGGAT GGATCCGGAG GAGGAGGAGC CACCTACAAA



GTGGACGAAT





1451
ATCACGCCAA CGCCCGTTTC GCCATCGACC ATTTCAACAC



CAGCACCAAC





1501
GTCGGCGGTT TTTACGGTCT GACCGGTTCC GTCGAGTTCG



ACCAAGCAAA





1551
ACGCGACGGT AAAATCGACA TCACCATCCC CGTTGCCAAC



CTGCAAAGCG





1601
GTTCGCAACA CTTTACCGAC CACCTGAAAT CAGCCGACAT



CTTCGATGCC





1651
GCCCAATATC CGGACATCCG CTTTGTTTCC ACCAAATTCA



ACTTCAACGG





1701
CAAAAAACTG GTTTCCGTTG ACGGCAACCT GACCATGCAC



GGCAAAACCG





1751
CCCCCGTCAA ACTCAAAGCC GAAAAATTCA ACTGCTACCA



AAGCCCGATG





1801
GCGAAAACCG AAGTTTGCGG CGGCGACTTC AGCACCACCA



TCGACCGCAC





1851
CAAATGGGGC GTGGACTACC TCGTTAACGT TGGTATGACC



AAAAGCGTCC





1901
GCATCGACAT CCAAATCGAG GCAGCCAAAC AATAAAAGCT



T





   1
MASPDVKSAD TLSKPAAPVV SEKETEAKED APQAGSQGQG



APSAQGGQDM





  51
AAVSEENTGN GGAAATDKPK NEDEGAQNDM PQNAADTDSL



TPNHTPASNM





 101
PAGNMENQAP DAGESEQPAN QPDMANTADG MQGDDPSAGG



ENAGNTAAQG





 151
TNQAENNQTA GSQNPASSTN PSATNSGGDF GRTNVGNSVV



IDGPSQNITL





 201
THCKGDSCSG NNFLDEEVQL KSEFEKLSDA DKISNYKKDG



KNDGKNDKFV





 251
GLVADSVQMK GINQYIIFYK PKPTSFARFR RSARSRRSLP



AEMPLIPVNQ





 301
ADTLIVDGEA VSLTGHSGNI FAPEGNYRYL TYGAEKLPGG



SYALRVQGEP





 351
SKGEMLAGTA VYNGEVLHFH TENGRPSPSR GRFAAKVDFG



SKSVDGIIDS





 401
GDGLHMGTQK FKAAIDGNGF KGTWTENGGG DVSGKFYGPA



GEEVAGKYSY





 451
RPTDAEKGGF GVFAGKKEQD GSGGGGATYK VDEYHANARF



AIDHFNTSTN





 501
VGGFYGLTGS VEFDQAKRDG KIDITIPVAN LQSGSQHFTD



HLKSADIFDA





 551
AQYPDIRFVS TKFNFNGKKL VSVDGNLTMH GKTAPVKLKA



EKFNCYQSPM





 601
AKTEVCGGDF STTIDRTKWG VDYLVNVGMT KSVRIDIQIE



AAKQ*










ΔG287NZ-961








   1
ATGGCTAGCC CCGATGTCAA GTCGGCGGAC ACGCTGTCAA



AACCTGCCGC





  51
CCCTGTTGTT TCTGAAAAAG AGACAGAGGC AAAGGAAGAT



GCGCCACAGG





 101
CAGGTTCTCA AGGACAGGGC GCGCCATCCG CACAAGGCGG



TCAAGATATG





 151
GCGGCGGTTT CGGAAGAAAA TACAGGCAAT GGCGGTGCGG



CAGCAACGGA





 201
CAAACCCAAA AATGAAGACG AGGGGGCGCA AAATGATATG



CCGCAAAATG





 251
CCGCCGATAC AGATAGTTTG ACACCGAATC ACACCCCGGC



TTCGAATATG





 301
CCGGCCGGAA ATATGGAAAA CCAAGCACCG GATGCCGGGG



AATCGGAGCA





 351
GCCGGCAAAC CAACCGGATA TGGCAAATAC GGCGGACGGA



ATGCAGGGTG





 401
ACGATCCGTC GGCAGGCGGG GAAAATGCCG GCAATACGGC



TGCCCAAGGT





 451
ACAAATCAAG CCGAAAACAA TCAAACCGCC GGTTCTCAAA



ATCCTGCCTC





 501
TTCAACCAAT CCTAGCGCCA CGAATAGCGG TGGTGATTTT



GGAAGGACGA





 551
ACGTGGGCAA TTCTGTTGTG ATTGACGGGC CGTCGCAAAA



TATAACGTTG





 601
ACCCACTGTA AAGGCGATTC TTGTAGTGGC AATAATTTCT



TGGATGAAGA





 651
AGTACAGCTA AAATCAGAAT TTGAAAAATT AAGTGATGCA



GAAAATATAA





 701
GTAATTACAA GAAAGATGGG AAGAATGACG GGAAGAATGA



TAAATTTGTC





 751
GGTTTGGTTG CCGATAGTGT GCAGATGAAG GGAATCAATC



AATATATTAT





 801
CTTTTATAAA CCTAAACCCA CTTCATTTGC GCGATTTAGG



CGTTCTGCAC





 851
GGTCGAGGCG GTCGCTTCCG GCCGAGATGC CGCTGATTCC



CGTCAATCAG





 901
GCGGATACGC TGATTGTCGA TGGGGAAGCG GTCAGCCTGA



CGGGGCATTC





 951
CGGCAATATC TTCGCGCCCG AAGGGAATTA CCGGTATCTG



ACTTACGGGG





1001
CGGAAAAATT GCCCGGCGGA TCGTATGCCC TCCGTGTTCA



ACGGCAACCT





1051
TCAAAAGGCG AAATGCTCGC GGGCACGGCA GTGTACAACG



GCGAAGTGCT





1101
GCATTTTCAT ACGGAAAACG GCCGTCCGTC CCCGTCCAGA



GGCAGGTTTG





1151
CCGCAAAAGT CGATTTCGGC AGCAAATCTG TGGACGGCAT



TATCGACAGC





1201
GGCGATGGTT TGCATATGGG TACGCAAAAA TTCAAAGCCG



CCATCGATGG





1251
AAACGGCTTT AAGGGGACTT GGACGGAAAA TGGCGGCGGG



GATGTTTCCG





1301
GAAAGTTTTA CGGCCCGGCC GGCGAGGAAG TGGCGGGAAA



ATACAGCTAT





1351
CGCCCAACAG ATGCGGAAAA GGGCGGATTC GGCGTGTTTG



CCGGCAAAAA





1401
AGAGCAGGAT GGATCCGGAG GAGGAGGAGC CACAAACGAC



GACGATGTTA





1451
AAAAAGCTGC CACTGTGGCC ATTGCTGCTG CCTACAACAA



TGGCCAAGAA





1501
ATCAACGGTT TCAAAGCTGG AGAGACCATC TACGACATTG



ATGAAGACGG





1551
CACAATTACC AATGAAGACG CAACTGCAGC CGATGTTGAA



GCCGACGACT





1601
TTAAAGGTCT GGGTCTGAAA AAAGTCGTGA CTAACCTGAC



CAAAACCGTC





1651
AATGAAAACA AACAAAACGT CGATGCCAAA GTAAAAGCTG



CAGAATCTGA





1701
AATAGAAAAG TTAACAACCA AGTTAGCAGA CACTGATGCC



GCTTTAGCAG





1751
ATACTGATGC CGCTCTGGAT GCAACCACCA ACGCCTTGAA



TAAATTGGGA





1801
GAAAATATAA CGACATTTGC TGAAGAGACT AAGACAAATA



TCGTAAAAAT





1851
TGATGAAAAA TTAGAAGCCG TGGCAAATAC CGTCGACAAG



CATGCCGAAG





1901
CATTCAACGA TATCGCCGAT TCATTGGATG AAACCAACAC



TAAGGCAGAC





1951
GAAGCCGTCA AAACCGCCAA TGAAGCCAAA CAGACGGCCG



AAGAAACCAA





2001
ACAAAACGTC GATGCCAAAG TAAAAGCTGC AGAAACTGCA



GCAGGCAAAG





2051
CCGAAGCTGC CGCTGGCACA GCTAATACTG CAGCCGACAA



GGCCGAAGCT





2101
GTCGCTGCAA AAGTTACCGA CATCAAAGCT GATATCGCTA



CGAACAAAGA





2151
TAATATTGCT AAAAAAGCAA ACAGTGCCGA CGTGTACACC



AGAGAAGAGT





2201
CTGACAGCAA ATTTGTCAGA ATTGATGGTC TGAACGCTAC



TACCGAAAAA





2251
TTGGACACAC GCTTGGCTTC TGCTGAAAAA TCCATTGCCG



ATCACGATAC





2301
TCGCCTGAAC GGTTTGGATA AAACAGTGTC AGACCTGCGC



AAAGAAACCC





2351
GCCAAGGCCT TGCAGAACAA GCCGCGCTCT CCGGTCTGTT



CCAACCTTAC





2401
AACGTGGGTC GGTTCAATGT AACGGCTGCA GTCGGCGGCT



ACAAATCCGA





2451
ATCGGCAGTC GCCATCGGTA CCGGCTTCCG CTTTACCGAA



AACTTTGCCG





2501
CCAAAGCAGG CGTGGCAGTC GGCACTTCGT CCGGTTCTTC



CGCAGCCTAC





2551
CATGTCGGCG TCAATTACGA GTGGTAAAAG CTT





   1
MASPDVKSAD TLSKPAAPVV SEKETEAKED APQAGSQGQG



APSAQGGQDM





  51
AAVSEENTGN GGAAATDKPK NEDEGAQNDM PQNAADTDSL



TPNHTPASNM





 101
PAGNMENQAP DAGESEQPAN QPDMANTADG MQGDDPSAGG



ENAGNTAAQG





 151
TNQAENNQTA GSQNPASSTN PSATNSGGDF GRTNVGNSVV



IDGPSQNITL





 201
THCKGDSCSG NNFLDEEVQL KSEFEKLSDA DKISNYKKDG



KNDGKNDKFV





 251
GLVADSVQMK GINQYIIFYK PKPTSFARFR RSARSRRSLP



AEMPLIPVNQ





 301
ADTLIVDGEA VSLTGHSGNI FAPEGNYRYL TYGAEKLPGG



SVALRVQGEP





 351
SKGEMLAGTA VYNGEVLHFH TENGRPSPSR GRFAAKVDFG



SKSVDGIIDS





 401
GDGLHMGTQK FKAAIDGNGF KGTWTENGGG DVSGKFYGPA



GEEVAGKYSY





 451
RPTDAEKGGF GVFAGKKEQD GSGGGGATND DDVKKAATVA



IAAAYNNGQE





 501
INGFKAGETI YDIDEDGTIT KKDATAADVE ADDFKGLGLK



KVVTNLTKTV





 551
NENKQNVDAK VKAAESEIEK LTTKLADTDA ALADTDAALD



ATTNALNKLG





 601
EMITTFAEET KTNIVKIDEK LEAVADTVDK HAEAFNDIAD



SLDETNTKAD





 651
EAVKTANEAK QTAEETKQNV DAKVKAAETA AGKAEAAAGT



ANTAADKAEA





 701
VAAKVTDIKA DIATNKDNIA KKANSADVYT REESDSKFVR



IDGLNATTEK





 751
LDTRLASAEK SIADHDTRLN GLDKTVSDLR KETRQGLAEQ



AALSGLFQPY





 801
NVGRFNVTAA VGGYKSESAV AIGTGFRFTE NFAAKAGVAV



GTSSGSSAAY





 851
HVGVNYEW*






ΔG983 and Hybrids

Bactericidal titres generated in response to ΔG983 (His-fusion) were measured against various strains, including the homologous 2996 strain:



















2996
NGH38
BZ133





















ΔG983
512
128
128










ΔG983 was also expressed as a hybrid, with ORF46.1, 741, 961 or 961c at its C-terminus:









ΔG983-ORF46.1








   1
ATGACTTCTG CGCCCGACTT CAATGCAGGC GGTACCGGTA



TCGGCAGCAA





  51
CAGCAGAGCA ACAACAGCGA AATCAGCAGC AGTATCTTAC



GCCGGTATCA





 101
AGAACGAAAT GTGCAAAGAC AGAAGCATGC TCTGTGCCGG



TCGGGATGAC





 151
GTTGCGGTrA CAGACAGGGA TGCCAAAATC AATGCCCCCC



CCCCGAATCT





 201
GCATACCGGA GACTTTCCAA ACCCAAATGA CGCATACAAG



AATTTGATCA





 251
ACCTCAAACC TGCAATTGAA GCAGGCTATA CAGGACGCGG



GGTAGAGGTA





 301
GGTATCGTCG ACACAGGCGA ATCCGTCGGC AGCATATCCT



TTCCCGAACT





 351
GTATGGCAGA AAAGAACACG GCTATAACGA AAATTACAAA



AACTATACGG





 401
CGTATATGCG GAAGGAAGCG CCTGAAGACG GAGGCGGTAA



AGACATTGAA





 451
GCTTCTTTCG ACGATGAGGC CGTTATAGAG ACTGAAGCAA



AGCCGACGGA





 501
TATCCGCCAC GTAAAAGAAA TCGGACACAT CGATTTGGTC



TCCCATATTA





 551
TTGGCGGGCG TTCCGTGGAC GGCAGACCTG CAGGCGGTAT



TGCGCCCGAT





 601
GCGACGCTAC ACATAATGAA TACGAATGAT GAAACCAAGA



ACGAAATGAT





 651
GGTTGCAGCC ATCCGCAATG CATGGGTCAA GCTGGGCGAA



CGTGGCGTGC





 701
GCATCGTCAA TAACAGTTTT GGAACAACAT CGAGGGCAGG



CACTGCCGAC





 751
CTTTTCCAAA TAGCCAATTC GGAGGAGCAG TACCGCCAAG



CGTTGCTCGA





 801
CTATTCCGGC GGTGATAAAA CAGACGAGGG TATCCGCCTG



ATGCAACAGA





 851
GCGATTACGG CAACCTGTCC TACCACATCC GTAATAAAAA



CATGCTTTTC





 901
ATCTTTTCGA CAGGCAATGA CGCACAAGCT CAGCCCAACA



CATATGCCCT





 951
ATTGCCATTT TATGAAAAAG ACGCTCAAAA AGGCATTATC



ACAGTCGCAG





1001
GCGTAGACCG CAGTGGAGAA AAGTTCAAAC GGGAAATGTA



TGGAGAACCG





1051
GGTACAGAAC CGCTTGAGTA TGGCTCCAAC CATTGCGGAA



TTACTGCCAT





1101
GTGGTGCCTG TCGGCACCCT ATGAAGCAAG CGTCCGTTTC



ACCCGTACAA





1151
ACCCGATTCA AATTGCCGGA ACATCCTTTT CCGCACCCAT



CGTAACCGGC





1201
ACGGCGGCTC TGCTGCTGCA GAAATACCCG TGGATGAGCA



ACGACAACCT





1251
GCGTACCACG TTGCTGACGA CGGCTCAGGA CATCGGTGCA



GTCGGCGTGG





1301
ACAGCAAGTT CGGCTGGGGA CTGCTGGATG CGGGTAAGGC



CATGAACGGA





1351
CCCGCGTCCT TTCCGTTCGG CGACTTTACC GCCGATACGA



AAGGTACATC





1401
CGATATTGCC TACTCCTTCC GTAACGACAT TTCAGGCACG



GGCGGCCTGA





1451
TCAAAAAAGG CGGCAGCCAA CTGCAACTGC ACGGCAACAA



CACCTATACG





1501
GGCAAAACCA TTATCGAAGG CGGTTCGCTG GTGTTGTACG



GCAACAACAA





1551
ATCGGATATG CGCGTCGAAA CCAAAGGTGC GCTGATTTAT



AACGGGGCGG





1601
CATCCGGCGG CAGCCTGAAC AGCGACGGCA TTGTCTATCT



GGCAGATACC





1651
GACCAATCCG GCGCAAACGA AACCGTACAC ATCAAAGGCA



GTCTGCAGCT





1701
GGACGCAGCA GGCAAGCTGT ACACACGTTT GGGCAACCTG



CTGAAAGTGG





1751
ACGGTACGGC GATTATCGGC GGCAAGCTGT ACATGTCGGC



ACGCGGCAAG





1801
GGGGCAGGCT ATCTCAACAG TACCGGACGA CGTGTTCCCT



TCCTGAGTGC





1851
CGCCAAAATC GGGCAGGATT ATTCTTTCTT CACAAACATC



GAAACCGACG





1901
GCGGCCTGCT GGCTTCCCTC GACAGCGTCG AAAAAACAGC



GGGCAGTGAA





1951
GGCGACACGC TGTCCTATTA TGTCCGTCGC GGCAATGCGG



CACGGACTGC





2001
TTCGGCAGCG GCACATTCCG CGCCCGCCGG TCTGAAACAC



GGCGTGGAAC





2051
AGGGCGGCAG CAATCTGGAA AACCTGATGG TCGAACTGGA



TGCCTCCGAA





2101
TCATCCGCAA CACCCGAGAC GGTTGAAACT GCGGCAGCCG



ACCGCACAGA





2151
TATGCCGGGC ATCCGCCCCT ACGGCGCAAC TTTCCGCGCA



GCGGCAGCCG





2201
TACAGCATGC GAATGCCGCC GACGGTGTAC GCATCTTCAA



CAGTCTCGCC





2251
GCTACCGTCT ATGCCGACAG TACCGCCGCC CATGCCGATA



TGCAGGGACG





2301
CCGCCTGAAA GoCGTATCGG ACGGGTTGGA CCACAACGGC



ACGGGTCTGC





2351
GCGTCATCGC GCAAACCCAA CAGGACGGTG GAACGTGGGA



ACAGGGCGGT





2401
GTTGAAGGCA AAATGCGCGG CAGTACCCAA ACCGTCGGCA



TTGCCGCGAA





2451
AACCGGCGAA AATACGACAG CAGCCGCCAC ACTGGGCATG



GGACGCAGCA





2501
CATGGAGCGA AAACAGTGCA AATGCAAAAA CCGACAGCAT



TAGTCTGTTT





2551
GCAGGCATAC GGCACGATGC GGGCGATATC GGCTATCTCA



AAGGCCTGTT





2601
CTCCTACGGA CGCTACAAAA ACAGCATCAG CCGCAGCACC



GGTGCGGACG





2651
AACATGCGGA AGGCAGCGTC AACGGCACGC TGATGCAGCT



GGGCGCACTG





2701
GGCGGTGTCA ACGTTCCGTT TGCCGCAACG GGAGATTTGA



CGGTCGAAGG





2751
CGGTCTGCGC TACGACCTGC TCAAACGGCA TGCATTCGCC



GAAAAAGGCA





2801
GTGCTTTGGG CTGGAGCGGC AACAGCCTCA CTGAAGGCAC



GCTGGTCGGA





2851
CTCGCGGGTC TGAAGCTGTC GCAACCCTTG AGCGATAAAG



CCGTCCTGTT





2901
TGCAACGGCG GGCGTGGAAC GCGACCTGAA CGGACGCGAC



TACACGGTAA





2951
CGGGCGGCTT TACCGGCGCG ACTGCAGCAA CCGGCAAGAC



GGGGGCACGC





3001
AATATGCCGC ACACCCGTCT GGTTGCCGGC CTGGGCGCGG



ATGTCGAATT





3051
CGGCAACGGC TGGAACGGCT TGGCACGTTA CAGCTACGCC



GGTTCCAAAC





3101
AGTACGGCAA CCACAGCGGA CGAGTCGGCG TAGGCTACCG



GTTCCTCGAC





3151
GGTGGCGGAG GCACTGGATC CTCAGATTTG GCAAACGATT



CTTTTATCCG





3201
GCAGGTTCTC GACCGTCAGC ATTTCGAACC CGACGGGAAA



TACCACCTAT





3251
TCGGCAGCAG GGGGGAACTT GCCGAGCGCA GCGGCCATAT



CGGATTGGGA





3301
AAAATACAAA GCCATCAGTT GGGCAACCTG ATGATTCAAC



AGGCGGCCAT





3351
TAAAGGAAAT ATCGGCTACA TTGTCCGCTT TTCCGATCAC



GGGCACGAAG





3401
TCCATTCCCC CTTCGACAAC CATGCCTCAC ATTCCGATTC



TGATGAAGCC





3451
GGTAGTCCCG TTGACGGATT TAGCCTTTAC CGCATCCATT



GGGACGGATA





3501
CGAACACCAT CCCGCCGACG GCTATGACGG GCCACAGGGC



GGCGGCTATC





3551
CCGCTCCCAA AGGCGCGAGG GATATATACA GCTACGACAT



AAAAGGCGTT





3601
GCCCAAAATA TCCGCCTCAA CCTGACCGAC AACCGCAGCA



CCGGACAACG





3651
GCTTGCCGAC CGTTTCCACA ATGCCGGTAG TATGCTGACG



CAAGGAGTAG





3701
GCGACGGATT CAAACGCGCC ACCCGATACA GCCCCGAGCT



GGACAGATCG





3751
GGCAATGCCG CCGAAGCCTT CAACGGCACT GCAGATATCG



TTAAAAACAT





3801
CATCGGCGCG GCAGGAGAAA TTGTCGGCGC AGGCGATGCC



GTGCAGGGCA





3851
TAAGCGAAGG CTCAAACATT GCTGTCATGC ACGGCTTGGG



TCTGCTTTCC





3901
ACCGAAAACA AGATGGCGCG CATCAACGAT TTGGCAGATA



TGGCGCAACT





3951
CAAAGACTAT GCCGCAGCAG CCATCCGCGA TTGGGCAGTC



CAAAACCCCA





4001
ATGCCGCACA AGGCATAGAA GCCGATACGA ATATCTTTAT



GGCAGCCATC





4051
CCCATCAAAG GGATTGGAGC TGTTCGGGGA AAATACGGCT



TGGGCGGCAT





4101
CACGGCACAT CCTATCAAGC GGTCGCAGAT GGGCGCGATC



GCATTGCCGA





4151
AAGGTACATC CGCCGTCAGC GACAATTTTG CCGATGCGGC



ATACGCCAAA





4201
TACCCGTCCC CTTACCATTC CCGAAATATC CGTTCAAACT



TGGAGCAGCG





4251
TTACGGCAAA GAAAACATCA CCTCCTCAAC CGTGCCGCCG



TCAAACGGCA





4301
AAAATGTCAA ACTGGCAGAC CAACGCCACC CGAAGACAGG



CGTACCGTTT





4351
GACGGTAAAG GGTTTCCGAA TTTTGAGAAG CACGTGAAAT



ATGATACGCT





4401
CGAGCACCAC CACCACCACC ACTGA





   1
MTSAPDFNAG GTGIGSNSRA TTAKSAAVSY AGIKNEMCKD



RSMLCAGRDD





  51
VAVTDRDAKI NAPPPNLHTG DFPNPNDAYK NLINLKPAIE



AGYTGRGVEV





 101
GIVDTGESVG SISFPELYGR KEHGYNENYK NYTAYMRKEA



PEDGGGKDIE





 151
ASFDDEAVIE TEAKPTDIRH VKEIGHIDLV SHIIGGRSVD



GRPAGGIAPD





 201
ATLHIMNTND ETKNEMMVAA IRNAWVKLGE RGVRIVNNSF



GTTSRAGTAD





 251
LFQIANSEEQ YRQALLDYSG GDKTDEGIRL MQQSDYGNLS



YHIRNKNMLF





 301
IFSTGNDAQA QPNTYALLPF YEKDAQKGII TVAGVDRSGE



KFKREMYGEP





 351
GTEPLEYGSN HCGITAMWCL SAPYEASVRF TRTNPIQIAG



TSFSAPIVTG





 401
TAALLLQKYP WMSNDNLRTT LLTTAQDIGA VGVDSKFGWG



LLDAGKAMNG





 451
PASFPFGDFT ADTKGTSDIA YSFRNDISGT GGLIKKGGSQ



LQLHGNNTYT





 501
GKTIIEGGSL VLYGNNKSDM RVETKGALIY NGAASGGSLN



SDGIVYLADT





 551
DQSGANETVH IKGSLQLDGK GTLYTRLGKL LKVDGTAIIG



GKLYMSARGK





 601
GAGYLNSTGR RVPFLSAAKI GQDYSFFTNI ETDGGLLASL



DSVEKTAGSE





 651
GDTLSYYVRR GNAARTASAA ANSAPAGLKH AVEQGGSNLE



NLMVELDASE





 701
SSATPETVET AAADRTDMPG IRPYGATFRA AAAVQHANAA



DGVRIFNSLA





 751
ATVYADSTAA HADMQGRRLK AVSDGLDHNG TGLRVIAQTQ



QDGGTWEQGG





 801
VEGKMRGSTQ TVGIAAKTGE NTTAAATLGM GRSTWSENSA



NAKTDSISLF





 851
AGIRHIMGDI GYLKGLFSYG RYKNSISRST GADEHAEGSV



NGTLMQLGAL





 901
GGVNVPFAAT GDLTVEGGLR YDLLKQDAFA EKGSALGWSG



NSLTEGTLVG





 951
LAGLKLSQPL SDKAVLFATA GVERDLNGRD YTVTGGFTGA



TAATGKTGAR





1001
NMPHTRLVAG LGADVEFGNG WNGLARYSYA GSKQYGNHSG



RVGVGYRFLD





1051
GGGGTGSSDL ANDSFIRQVL DRQHFEPDGK YHLFGSRGEL



AERSGHIGLG





1101
KIQSHQLGNL MIQQAAIKGN IGYIVRFSDH GHEVHSPFDN



HASHSDSDEA





1151
GSPVDGFSLY RIHWDGYEHH PADGYDGPQG GGYPAPKGAR



DIYSYDIKGV





1201
AQNIRLNLTD NRSTGQRLAD RFMNAGSMLT QGVGDGFKRA



TRYSPELDRS





1251
GNAAEAFNGT ADIVKNIIGA AGEIVGAGDA VQGISEGSNI



AVMHGLGLLS





1301
TENKMARIND LADMAQLKDY AAAAIRDWAV QNPNAAQGIE



AVSNIFMAAI





1351
PIKGIGAVRG KYGLGGITAH PIKRSQMGAI ALPKGKSAVS



DNFADAAYAK





1401
YPSPYHSRNI RSNLEQRYGK ENITSSTVPP SNGKNVKLAD



QRHPKTGVPF





1451
DGKGFPNFEK HVKYDTLEHH HHHH*










ΔG983-741








   1
ATGACTTCTG CGCCCGACTT CAATGCAGGC GGTACCGGTA



TCGGCAGCAA





  51
CAGCAGAGCA ACAACAGCGA AATCAGCAGC AGTATCTTAC



GCCGGTATCA





 101
AGAACGAAAT GTGCAAAGAC AGAAGCATGC TCTGTGCCGG



TCGGGATGAC





 151
GTTGCGGTTA CAGACAGGGA TGCCAAAATC AATGCCCCCC



CCCCGAATCT





 201
GCATACCGGA.GACTTTCCAA ACCCAAATGA CGCATACAAG



AATTTGATCA





 251
ACCTCAAACC TGCAMPTGAA GCAGGCTATA CAGGACGCGG



GGTACCGGTA





 301
GGTATCGTCG ACACAGGCGA ATCCGTCGGC AGCATATCCT



TTCCCGAACT





 351
GTATGGCAGA AAAGAACACG GCTATAACGA AAATTACAAA



AACTATACGG





 401
CGTATATGCG GAAGGAAGCG CCTGAAGACG GAGGCGGTAA



AGACATTGAA





 451
GCTTCTTTCG ACGATGAGGC CGTTATAGAG ACTGAAGCAA



AGCCGACGGA





 501
TATCCGCCAC GTAAANGAAA TCGGACACAT CGATTTGGTC



TCCCATATTA





 551
TTGGCGGGCG TTCCGTGGAC GGCAGACCTG CAGGCGGTAT



TGCGCCCGAT





 601
GCGACGCTAC ACATAATGAA TACGAATGAT GAAACCAAGA



ACGAAATGAT





 651
GGTTGCAGCC ATCCGCAATG CATGGGTCAA GCTGGGCGAA



CGTGGCGTGC





 701
GCATCGTCAA TAACAGTTTT GGAACAACAT CGAGGGCAGG



CACTGCCGAC





 751
CTTTTCCAAA TAGCCAATTC GGAGGAGCAG TACCGCCAAG



CGTTGCTCGA





 801
CTATTCCGGC GGTGATAAAA CAGACGAGGG TATCCGCCTG



ATGCAACAGA





 851
GCGATTACGG CAACCTGTCC TACCACATCC GTAATAAAAA



CATGCTTTTC





 901
ATCTTTTCGA CAGGCAATGA CGCACAAGCT CAGCCCAACA



CATATGCCCT





 951
ATTGCCATTT TATGAAAAAG ACGCTCAAAA AGGCATTATC



ACAGTCGCAG





1001
GCGTAGACCG CAGTGGAGAA AAGTTCAAAC GGGAAATGTA



TGGAGAACCG





1051
GGTACAGAAC CGCTTGAGTA TGGCTCCAAC CATTGCGGAA



TTACTGCCAT





1101
GTGGTGCCTG TCGGCACCCT ATGAAGCAAG CGTCCGTTTC



ACCCGTACAA





1151
ACCCGAaTCA AATTGCCGGA ACATCCTTTT CCGCACCCAT



CGTAACCGGC





1201
ACGGCGGCTC TGCTGCTGCA GAAATACCCG TGGATGAGCA



ACGACAACCT





1251
GCGTACCACG TTGCTGACGA CGGCTCAGGA CATCGGTGCA



GTCGGCGTGG





1301
ACAGCAAGTT CGGCTGGGGA CTGCTGGATG CGGGTAAGGC



CATGAACGGA





1351
CCCGCGTCCT TTCCGTTCGG CGACTTTACC GCCGATACGA



AAGGTACATC





1401
CGATATTGCC TACTCCTTCC GTAACGACAT TTCAGGCACG



GGCGGCCTGA





1451
TCAAAAAAGG CGGCAGCCAA CTGCAACTGC ACGGCAACAA



CACCTATACG





1501
GGCAAAACCA TTATCGAAGG CGGTTCGCTG GTGTTGTACG



GCAACAACAA





1551
ATCGGATATG CGCGTGGAAA CCAAAGGTGC GCTGATTTAT



AACGGGGCGG





1601
CATCCGGCGG CAGCCTGAAC AGCGACGGCA TTGTCTATCT



GGCAGATACC





1651
GACCAATCCG GCGCAAACGA AACCGTACAC ATCAAAGGCA



GTCTGCAGCT





1701
GGACGGCAAA GGTACGCTGT ACACACGTTT GGGCAAACTG



CTGAAAGTGG





1751
ACGGTACGGC GATTATCGGC GGCAAGCTGT ACATGTCGGC



ACGCGGCAAG





1801
GGGGCAGGCT ATCTCAACAG TACCGGACGA CGTGTTCCCT



TCCTGAGTGC





1851
CGCCAAAATC GGGCAGGATT ATTCTTTCTT CACAAACATC



GAAACCGACG





1901
GCGGCCTGCT GGCTTCCCTC GACAGCGTCG AAAAAACAGC



GGGCAGTGAA





1951
GGCGACACGC TGTCCTATTA TGTCCGTCGC GGCAATGCGG



CACGGACTGC





2001
TTCGGCAGCG GCACATTCCG CGCCCGCCGG TCTGAAACAC



GCCGTAGAAC





2051
AGGGCGGCAG CAATCTGGAA AACCTGATGG TCGAACTGGA



TGCCTCCGAA





2101
TCATCCGCAA CACCCGAGAC GGTTGAAACT GCGGCAGCCG



ACCGCACAGA





2151
TATGCCGGGC ATCCGCCCCT ACGGCGCAAC TTTCCGCGCA



GCGGCAGCCG





2201
TACAGCATGC GAATGCCGCC GACGGTGTAC GCATCTTCAA



CAGTCTCGCC





2251
GCTACCGTCT ATGCCGACAG TACCGCCGCC CATGCCGATA



TGCAGGGACG





2301
CCGCCTGAAA GCCGTATCGG ACGGGTTGGA CCACAACGGC



ACGGGTCTGC





2351
GCGTCATCGC GCAAACCCAA CAGGACGGTG GAACGTGGGA



ACAGGGCGGT





2401
GTTGAAGGCA AAATGCGCGG CAGTACCCAA ACCGTCGGCA



TTGCCGCGAA





2451
AACCGGCGAA AATACGACAG CAGCCGCCAC ACTGGGCATG



GGACGCAGCA





2501
CATGGAGCGA AAACAGTGCA AATGCAAAAA CCGACAGCAT



TAGTCTGTTT





2551
GCAGGCATAC GGCACGATGC GGGCGATATC GGCTATCTCA



AAGGCCTGTT





2601
CTCCTACGGA CGCTACAAAA ACAGCATCAG CCGCAGCACC



GGTGCGGACG





2651
AACATGCGGA AGGCAGCGTC AACGGCACGC TGATGCAGCT



GGGCAAACTG





2701
GGCGGTGTCA ACGTTCCGTT TGCCGCAACG GGAGATTTGA



CGGTCGAAGG





2751
CGGTCTGCGC TACGACCTGC TCAAACAGGA TGCATTCGCC



GAAAAAGGCA





2801
GTGCTTTGGG CTGGAGCGGC AACAGCCTCA CTGAAGGCAC



GCTGGTCGGA





2851
CTCGCGGGTC TGAAGCTGTC GCAACCCTTG AGCGATAAAG



CCGTCCTGTT





2901
TGCAACGGCG GGCGTGGAAC GCGACCTGAA CGGACGCGAC



TACACGGTAA





2951
CGGGCGGCTT TACCGGCGCG ACTGCAGCAA CCGGCAAGAC



GGGGGCACGC





3001
AATATGCCGC ACACCCGTCT GGTTGCCGGC CTGGGCGCGG



ATGTCGAATT





3051
CCACAACGGC TGGAACGGCT TGGCACGTTA CAGCTACGCC



GGTTCCAAAC





3101
AGTACGGCAA CCACAGCGGA CGAGTCGGCG TAGGCTACCG



GTTCCTCGAG





3151
GGATCCGGAG GGGGTGGTGT CGCCGCCGAC ATCGGTGCGG



GGCTTGCCGA





3201
TGCACTAACC GCACCGCTCG ACCATAAAGA CAAAGGTTTG



CAGTCTTTGA





3251
CGCTGGATCA GTCCGTCAGG AAAAACGAGA AACTGAAGCT



GGCGGCACAA





3301
GGTGCGGAAA AAACTTATGG AAACGGTGAC AGCCTCAATA



CGGGCAAATT





3351
GAAGAACGAC AAGGTCAGCC GTTTCGACTT TATCCGCCAA



ATCGAAGTGG





3401
ACGGGCAGCT CATTACCTTG GAGAGTGGAG AGTTCCAAGT



ATACAAACAA





3451
AGCCATTCCG CCTTAACCGC CTTTCAGACC GAGCAAATAC



AAGATTCGGA





3501
GCATTCCGGG AAGATGGTTG CGAAACGCCA GTTCAGAATC



GGCGACATAG





3551
CGGGCGAACA TACATCTTTT GACAAGCTTC CCGAAGGCGG



CAGGGCGACA





3601
TATCGCGGGA CGGCGTTCGG TTCAGACGAT GCCGGCGGAA



AACTGACCTA





3651
CACCATAGAM TTCGCCGCCA AGCAGGGAAA CGGCAAAATC



GAACATTTGA





3701
AATCGCCAGA ACTCAATGTC GACCTGGCCG CCGCCGATAT



CAAGCCGGAT





3751
GGAAAACGCC ATGCCGTCAT CAGCGGTTCC GTCCTTTACA



ACCAAGCCGA





3801
GAAAGGCAGT TACTCCCTCG GTATCTTTGG CGGAAAAGCC



CAGGACGGTG





3851
CCGGCAGCGC GGAAGTGAAA ACCGTAAACG GCATACGCCA



TATCGGCCTT





3901
GCCGCCAAGC AACTCGAGCA CCACCACCAC CACCACTGA





   1
MTSAPDFNAG GTGIGSNSRA TTAKSAAVSY AGIKNEMCKD



RSMLCAGRDD





  51
VAVTDRDAKI NAPPPNLHTG DFPNPNDAYK NLINLKPAIE



AGYTGRGVEV





 101
GIVDTGESVG SISFPELYGR KEHGYNENYK NYTAYMRKEA



PEDGGGKDIE





 151
ASFDDEAVIE TEAKPTDIRH VKEIGHIDLV SHIIGGRSVD



GRPAGGIAPD





 201
ATLHIMNTND ETKNEMMVAA IRNAWVKLGE RGVRIVNNSF



GTTSRAGTAD





 251
LFQIANSEEQ YRQALLDYSG GDKTDEGIRL MQQSDYGNLS



YHIRNKNMLF





 301
IFSTGNDAQA QPNTYALLPF YEKDAQKGII TVAGVDRSGE



KFKREMYGEP





 351
GTEPLEYGSN HCGITAMWCL SAPYEASVRF TRTNPIQIAG



TSFSAPIVTG





 401
TAALLLQKYP WMSNDNLRTT LLTTAQDIGA VGVDSKFGWG



LLDAGKAMNG





 451
PASFPFGDFT ADTKGTSDIA YSFRNDISGT GGLIKKGGSQ



LQLHGNNTYT





 501
GKTIIEGGSL VLYGNNKSDM RVETKGALIY NGAASGGSLN



SDGIVYLADT





 551
DQSGANETVH IKGSLQLDGK GTLYTRLGKL LKVDGTAIIG



GKLYMSARGK





 601
GAGYLNSTGR RVPFLSAAKI GQDYSFFTNI ETDGGLLASL



DSVEKTAGSE





 651
GDTLSYYVRR GNAARTASAA AHSAPAGLKH AVEQGGSNLE



NLMVELDASE





 701
SSATPETVET AAADRTDMPG IRPYGATFRA AAAVQHANAA



DGVRIFNSLA





 751
ATVYADSTAA HADMQGRRLK AVSDGLDHNG TGLRVIAQTQ



QDGGTWEQGG





 801
VEGKMRGSTQ TVGIAAKTGE NTTAAATLGM GRSTWSENSA



NAKTDSISLF





 851
AGIRHDAGDI GYLKGLFSYG RYKNSISRST GADEHAEGSV



NGTLMQLGAL





 901
GGVNVVFAAT GDLTVEGGLR YDLLKQDAFA EKGSALGWSG



NSLTEGTLVG





 951
LAGLKLSQPL SDKAVLFATA GVERDLNGRD YTVTGGFTGA



TAATGKTGAR





1001
NMPHTRLVAG LGADVEFGNG WNGLARYSYA GSKQYGNHSG



RVGVGYRFLE





1051
GSGGGGVAAD IGAGLADALT APLDHKDKGL QSLTLDQSVR



KNEKLKLAAQ





1101
GAEKTYGNGD SLNTGKLKND KVSRFDFIRQ IEVDGQLITL



ESGEFQVYKQ





1151
SHSALTAFQT EQIQDSEHSG KMVAKRQFRI GDIAGEHTSF



DKLPEGGRAT





1201
YRGTAFGSDD AGGKLTYTID FAAKQGNGKI EHLKSPELNV



DLAAADIKPD





1251
GKRHAVISGS VLYNQAEKGS YSLGIFGGKA QEVAGSAEVK



TVNGIRHIGL





1301
AAKQLEHHHH HH*










ΔG983-961








   1
ATGACTTCTG CGCCCGACTT CAATGCAGGC GGTACCGGTA



TCGGCAGCAA





  51
CAGCAGAGCA ACAACAGCGA AATCAGCAGC AGTATCTTAC



GCCGGTATCA





 101
AGAACGAAAT GTGCAAAGAC AGAAGCATGC TCTGTGCCGG



TCGGGATGAC





 151
GTTGCGGTTA CAGACAGGGA TGCCAAAATC AATGCCCCCC



CCCCGAATCT





 201
GCATACCGGA GACTTTCCAA ACCCAAATGA CGCATACAAG



AATTTGATCA





 251
ACCTCAAACC TGCAATTGAA GCAGGCTATA CAGGACGCGG



GGTAGAGGTA





 301
GGTATCGTCG ACACAGGCGA ATCCGTCGGC AGCATATCCT



TTCCCGAACT





 351
GTATGGCAGA AAAGAACACG GCTATAACGA AAATTACAAA



AACTATACGG





 401
CGTATATGCG GAAGGAAGCG CCTGAAGACG GAGGCGGTAA



AGACATTGAA





 451
GCTTCTTTCG ACGATGAGGC CGTTATAGAG ACTGAAGCAA



AGCCGACGGA





 501
TATCCGCCAC GTAAAAGAAA TCGGACACAT CGATTTGGTC



TCCCATATTA





 551
TTGGCGGGCG TTCCGTGGAC GGCAGACCTG CAGGCGGTAT



TGCGCCCGAT





 601
GCGACGCTAC ACATAATGAA TACGAATGAT GAAACCAAGA



ACGAAATGAT





 651
GGTTGCAGCC ATCCGCAATG CATGGGTCAA GCTGGGCGAA



CGTGGCGTGC





 701
GCATCGTCAA TAACAGTTTT GGAACAACAT CGAGGGCAGG



CACTGCCGAC





 751
CTTTTCCAAA TAGCCAATTC GGAGGAGCAG TACCGCCAAG



CGTTGCTCGA





 801
CTATTCCGGC GGTGATAAAA CAGACGAGGG TATCCGCCTG



ATGCAACAGA





 851
GCGATTACGG CAACCTGTCC TACCACATCC GTAATAAAAA



CATGCTTTTC





 901
ATCTTTTCGA CAGGCAATGA CGCACAAGCT CAGCCCAACA



CATATGCCCT





 951
ATTGCCATTT TATGAAAAAG ACGCTCAAAA AGGCATTATC



ACAGTCGCAG





1001
GCGTAGACCG CAGTGGAGAA AAGTTCAAAC GGGAAATGTA



TGGAGAACCG





1051
GGTACAGAAC CGCTTGAGTA TGGCTCCAAC CATTGCGGAA



TTACTGCCAT





1101
GTGGTGCCTG TCGGCACCCT ATGAAGCAAG CGTCCGTTTC



ACCCGTACAA





1151
ACCCGATTCA AATTGCCGGA ACATCCTTTT CCGCACCCAT



CGTAACCGGC





1201
ACGGCGGCTC TGCTGCTGCA GAAATACCCG TGGATGAGCA



ACGACAACCT





1251
GCGTACCACG TTGCTGACGA CGGCTCAGGA CATCGGTGCA



GTCGGCGTGG





1301
ACAGCAAGTT CGGCTGGGGA CTGCTGGATG CGGGTAAGGC



CATGAACGGA





1351
CCCGCGTCQT TTCCGTTCGG CGACTTTACC GCCGATACGA



AAGGTACATC





1401
CGATATTGCC TACTCCTTCC GTAACGACAT TTCAGGCACG



GGCGGCCTGA





1451
TCAAAAAAGG CGGCAGCCAA CTGCAACTGC ACGGCAACAA



CACCTATACG





1501
GGCAAAACCA TTATCGAAGG CGGTTCGCTG GTGTTGTACG



GCAACAACAA





1551
ATCGGATATG CGCGTCGAAA CCAAAGGTGC GCTGATTTAT



AACGGGGCGG





1601
CATCCGGCGG CAGCCTGAAC AGCGACGGCA TTGTCTATCT



GGCAGATACC





1651
GACCAATCCG GCGCAAACGA AACCGTACAC ATCAAAGGCA



GTCTGCAGCT





1701
GGACGGCAAA GGTACGCTGT ACACACGTTT GGGCAAACTG



CTGAAAGTGG





1751
ACGGTACGGC GATTATCGGC GGCAAGCTGT ACATGTCGGC



ACGCGGCAAG





1801
GGGGCAGGCT ATCTCAACAG TACCGGACGA CGTGTTCCCT



TCCTGAGTGC





1851
CGCCAAAATC GGGCAGGATT ATTCTTTCTT CACAAACATC



GAAACCGACG





1901
GCGGCCTGCT GGCTTCCCTC GACAGCGTCG AAAAAACAGC



GGGCAGTGAA





1951
GGCGACACGC TGTCCTATTA TGTCCGTCGC GGCAATGCGG



CACGGACTGC





2001
TTCGGCAGCG GCACATTCCG CGCCCGCCGG TCTGAAACAC



GCCGTAGAAC





2051
AGGGCGGCAG CAATCTGGAA AACCTGATGG TCGAACTGGA



TGCCTCCGAA





2101
TCATCCGCAA CACCCGAGAC GGTTGAAACT GCGGCAGCCG



ACCGCACAGA





2151
TATGCCGGGC ATCCGCCCCT ACGGCGCAAC TTTCCGCGCA



GCGGCAGCCG





2201
TACAGCATGC GAATGCCGCC GACGGTGTAC GCATCTTCAA



CAGTCTCGCC





2251
GCTACCGTCT ATGCCGACAG TACCGCCGCC CATGCCGATA



TGCAGGGACG





2301
CCGCCTGAAA GCCGTATCGG ACGGGTTGGA CCACAACGGC



ACGGGTCTGC





2351
GCGTCATCGC GCAAACCCAA CAGGACGGTG GAACGTGGGA



ACAGGGCGGT





2401
GTTGAAGGCA AAATGCGCGG CAGTACCCAA ACCGTCGGCA



TTGCCGCGAA





2451
AACCGGCGAA AATACGACAG CAGCCGCCAC ACTGGGCATG



GGACGCAGCA





2501
CATGGAGCGA AAACAGTGCA AATGCAAAAA CCGACAGCAT



TAGTCTGTTT





2551
GCAGGCATAC GGCACGATGC GGGCGATATC GGCTATCTCA



AAGGCCTGTT





2601
CTCCTACGGA CGCTACAAAA ACAGCATCAG CCGCAGCACC



GGTGCGGACG





2651
AACATGCGGA AGGCAGCGTC AACGGCACGC TGATGCAGCT



GGGCGCACTG





2701
GGCGGTGTCA ACGTTCCGTT TGCCGCAACG GGAGATTTGA



CGGTCGAAGG





2751
CGGTCTGCGC TACGACCTGC TCAAACAGGA TGCATTCGCC



GAAAAAGGCA





2801
GTGCTTTGGG CTGGAGCGGC AACAGCCTCA CTGAAGGCAC



GCTGGTCGGA





2851
CTCGCGGGTC TGAAGCTGTC GCAACCCTTG AGCGATAAAG



CCGTCCTGTT





2901
TGCAACGGCG GGCGTGGAAC GCGACCTGAA CGGACGCGAC



TACACGGTAA





2951
CGGGCGGCTT TACCGGCGCG ACTGCAGCAA CCGGCAAGAC



GGGGGCACGC





3001
AATATGCCGC ACACCCGTCT GGTTGCCGGC CTGGGCGCGG



ATGTCGAATT





3051
CGGCAACGGC TGGAACGGCT TGGCACGTTA CAGCTACGCC



GGTTCCAAAC





3101
AGTACGGCAA CCACAGCGGA CGAGTCGGCG TAGGCTACCG



GTTCCTCGAG





3151
GGTGGCGGAG GCACTGGATC CGCCACAAAC GACGACGATG



TTAAAAAAGC





3201
TGCCACTGTG GCCATTGCTG CTGCCTACAA CAATGGCCAA



GAAATCAACG





3251
GTTTCAAAGC TGGAGAGACC ATCTACGACA TTGATGAAGA



CGGCACAATT





3301
ACCAAAAAAG ACGCAACTGC AGCCGATGTT GAAGCCGACG



ACTTTAAAGG





3351
TCTGGGTCTG AAAAAAGTCG TGACTAACCT GACCAAAACC



GTCAATGAAA





3401
ACAAACAAAA CGTCGATGCC AAAGTAAAAG CTGCAGAATC



TGAAATAGAA





3451
AAGTTAACAA CCAAGTTAGC AGACACTGAT GCCGCTTTAG



CAGATACTGA





3501
TGCCGCTCTG GATGCAACCA CCAACGCCTT GAATAAATTG



GGAGAAAATA





3551
TAACGACATT TGCTGAAGAG ACTAAGACAA ATATCGTAAA



AATTGATGAA





3601
AAATTAGAAG CCGTGGCTGA TACCGTCGAC AAGCATGCCG



AAGCATTCAA





3651
CGATATCGCC GATTCATTGG ATGAAACCAA CACTAAGGCA



GACGAAGCCG





3701
TCAAAACCGC CAATGAAGCC AAACAGACGG CCGAAGAAAC



CAAACAAAAC





3751
GTCGATGCCA AAGTAAAAGC TGCAGAAACT GCAGCAGGCA



AAGCCGAAGC





3801
TGCCGCTGGC ACAGCTAATA CTGCAGCCGA CAAGGCCGAA



GCTGTCGCTG





3851
CAAAAGTTAC CGACATCAAA GCTGATATCG CTACGAACAA



AGATAATATT





3901
GCTAAAAAAG CAAACAGTGC CGACGTGTAC ACCAGAGAAG



AGTCTGACAG





3951
CAAATTTGTC AGAATTGATG GTCTGAACGC TACTACCGAA



AAATTGGACA





4001
CACGCTTGGC TTCTGCTGAA AAATCCATTG CCGATCACGA



TACTCGCCTG





4051
AACGGTTTGG ATAAAACAGT GTCAGACCTG CGCAAAGAAA



CCCGCCAAGG





4101
CCTTGCAGAA CAAGCCGCGC TCTCCGGTCT GTTCCAACCT



TACAACGTGG





4151
GTCGGTTCAA TGTAACGGCT GCAGTCGGCG GCTACAAATC



CGAATCGGCA





4201
GTCGCCATCG GTACCGGCTT CCGCTTTACC GAAAACTTTG



CCGCCAAAGC





4251
AGGCGTGGCA GTCGGCACTT CGTCCGGTTC TTCCGCAGCC



TACCATGTCG





4301
GCGTCAATTA CGAGTGGCTC GAGCACCACC ACCACCACCA



CTGA





   1
MTSAPDFNAG GTGIGSNSRA TTAKSAAVSY AGIKNEMCKD



RSNLCAGRDD





  51
VAVTDRDAKI NAPPPNLHTG DFPNPNDAYK NLINLKPAIE



AGYTGRGVEV





 101
GIVDTGESVG SISFPELYGR KEHGYNENYK NYTAYMRKEA



PEDGGGKDIE





 151
ASFDDEAVIE TEAKPTDIRH VKEIGHIDLV SHIIGGRSVD



GRPAGGIAPD





 201
ATLHIMNTND ETKNEMMVAA IRNAWVKLGE RGVRIVNNSF



GTTSRAGTAD





 251
LFQIANSEEQ YRQALLDYSG GDKTDEGIRL MQQSDYGNLS



YHIRNKNMLF





 301
IFSTGNDAQA QPNTYALLPF YEKDAQKGII TVAGVDRSGE



KFKREMYGEP





 351
GTEPLEYGSN HCGITAMWCL SAPYEASVRF TRTNPIQIAG



TSFSAPIVTG





 401
TAALLLQKYP WMSNDNLRTT LLTTAQDIGA VGVDSKFGWG



LLDAGKAMNG





 451
PASFPFGDFT ADTKGTSDIA YSFRNDISGT GGLIKKGGSQ



LQLHGNNTYT





 501
GKTIIEGGSL VLYGNNKSDM RVETKGALIY NGAASGGSLN



SDGIVYLADT





 551
DQSGANETVH IKGSLQLDGK GTLYTRLGKL LKVDGTAIIG



GKLYMSARGK





 601
GAGYLNSTGR RVPFLSAAKI GQDYSFFTNI ETDGGLLASL



DSVEKTAGSE





 651
GDTLSYYVRR GNAARTASAA AHSAPAGLKH AVEQGGSNLE



NLMVELDASE





 701
SSATPETVET AAADRTDMPG IRPYGATFRA AAAVQHANAA



DGVRIFNSLA





 751
ATVYADSTAA HADMQGRRLK AVSDGLDHNG TGLRVIAQTQ



QDGGTWEQGG





 801
VEGKMRGSTQ TVGIAAKTGE NTTAAATLGM GRSTWSENSA



NAKTDSISLF





 851
AGIRHDAGDI GYLKGLFSYG RYKNSISRST GADEHAEGSV



NGTLMQLGAL





 901
GGVNVPFAAT GDLTVEGGLR YDLLKQDAFA EKGSALGWSG



NSLTEGTLVG





 951
LAGLKLSQPL SDKAVLFATA GVERDLNGRD YTVTGGFTGA



TAATGKTGAR





1001
NMPHTRLVAG LGADVEFGNG WNGLARYSYA GSKQYGNHSG



RVGVGYRFLE





1051
GGGGTGSATN DDDVKKAATV AIAAAYNNGQ EINGFKAGET



IYDIDEDGTI





1101
TKKDATAADV EADDFKGLGL KKVVTNLTKT VNENKQNVDA



KVKAAESEIE





1151
KLTTKLADTD AALADTDAAL DATTNALNKL GENITTFAEE



TKTNIVKIDE





1201
KLEAVADTVD KHAEAFNDIA DSLDETNTKA DEAVKTANEA



KQTAEETKQN





1251
VDAKVKAAET AAGKAEAAAG TANTAADKAE AVAAKVTDIK



ADIATNKDNI





1301
AKKANSADVY TREESDSKFV RIDGLNATTE KLDTRLASAE



KSIADEDTRL





1351
NGLDKTVSDL RKETRQGLAE QAALSGLFQP YNVGRFNVTA



AVGGYKSESA





1401
VAIGTGFRFT ENFAAKAGVA VGTSSGSSAA YHVGVNYEWL



EHHHHEH*










ΔG983-961c








   1
ATGACTTCTG CGCCCGACTT CAATGCAGGC GGTACCGGTA



TCGGCAGCAA





  51
CAGCAGAGCA ACAACAGCGA AATCAGCAGC AGTATCTTAC



GCCGGTATCA





 101
AGAACGAAAT GTGCAAAGAC AGAAGCATGC TCTGTGCCGG



TCGGGATGAC





 151
GTTGCGGTTA CAGACAGGGA TGCCAAAATC AATGCCCCCC



CCCCGAATCT





 201
GCATACCGGA GACTTTCCAA ACCCAAATGA CGCATACAAG



AATTTGATCA





 251
ACCTCAAACC TGCAATTGAA GCAGGCTATA CAGGACGCGG



GGTAGAGGTA





 301
GGTATCGTCG ACACAGGCGA ATCCGTCGGC AGCATATCCT



TTCCCGAACT





 351
GTATGGCAGA AAAGAACACG GCTATAACGA AAATTACAAA



AACTATACGG





 401
CGTATATGCG GAAGGAAGCG CCTGAAGACG GAGGCGGTAA



AGACATTGAA





 451
GCTTCTTTCG ACGATGAGGC CGTTATAGAG ACTGAAGCAA



AGCCGACGGA





 501
TATCCGCCAC GTAAAAGAAA TCGGACACAT CGATTTGGTC



TCCCATATTA





 551
TTGGCGGGCG TTCCGTGGAC GGCAGACCTG CAGGCGGTAT



TGCGCCCGAT





 601
GCGACGCTAC ACATAATGAA TACGAATGAT GAAACCAAGA



ACGAAATGAT





 651
GGTTGCAGCC ATCCGCAATG CATGGGTCAA GCTGGGCGAA



CGTGGCGTGC





 701
GCATCGTCAA TAACAGTTTT GGAACAACAT CGAGGGCAGG



CACTGCCGAC





 751
CTTTTCCAAA TAGCCAATTC GGAGGAGCAG TACCGCCAAG



CGTTGCTCGA





 801
CTATTCCGGC GGTGATAAAA CAGACGAGGG TATCCGCCTG



ATGCAACAGA





 851
GCGATTACGG CAACCTGTCC TACCACATCC GTAATAAAAA



CATGCTTTTC





 901
ATCTTTTCGA CAGGCAATGA CGCACAAGCT CAGCCCAACA



CATATGCCCT





 951
ATTGCCATTT TATGAAAAAG ACGCTCAAAA AGGCATTATC



ACAGTCGCAG





1001
GCGTAGACCG CAGTGGAGAA AAGTTCAAAC GGGAAATGTA



TGGAGAACCG





1051
GGTACAGAAC CGCTTGAGTA TGGCTCCAAC CATTGCGGAA



TTACTGCCAT





1101
GTGGTGCCTG TCGGCACCCT ATGAAGCAAG CGTCCGTTTC



ACCCGTACAA





1151
ACCCGATTCA AATTGCCGGA ACATCCTTTT CCGCACCCAT



CGTAACCGGC





1201
ACGGCGGCTC TGCTGCTGCA GAAATACCCG TGGATGAGCA



ACGACAACCT





1251
GCGTACCACG TTGCTGACGA CGGCTCAGGA CATCGGTGCA



GTCGGCGTGG





1301
ACAGCAAGTT CGGCTGGGGA CTGCTGGATG CGGGTAAGGC



CATGAACGGA





1351
CCCGCGTCCT TTCCGTTCGG CGACTTTACC GCCGATACGA



AAGGTACATC





1401
CGATATTGCC TACTCCTTCC GTAACGACAT TTCAGGCACG



GGCGGCCTGA





1451
TCAAAAAAGG CGGCAGCCAA CTGCAACTGC ACGGCAACAA



CACCTATACG





1501
GGCAAAACCA TTATCGAAGG CGGTTCGCTG GTGTTGTACG



GCAACAACAA





1551
ATCGGATATG CGCGTCGAAA CCAAAGGTGC GCTGATTTAT



AACGGGGCGG





1601
CATCCGGCGG CAGCCTGAAC AGGGACGGCA TTGTCTATCT



GGCAGATACC





1651
GACCAATCCG GCGCAAACGA AACCGTACAC ATCAAAGGCA



GTCTGCAGCT





1701
GGACGGCAAA GGTACGCTGT ACACACGTTT GGGCAAACTG



CTGAAAGTGG





1751
ACGGTACGGC GATTATCGGC GGCAAGCTGT ACATGTCGGC



ACGCGGCAAG





1801
GGGGCAGGCT ATCTCAACAG TACCGGACGA CGTGTTCCCT



TCCTGAGTGC





1851
CGCCAAAATC GGGCAGGATT ATTCTTTCTT CACAAACATC



GAAGCCGACG





1901
GCGGCCTGCT GGCTTCCCTC GACAGCGTCG AAAAAACAGC



GGGCAGTGAA





1951
GGCGACACGC TGTCCTATTA TGTCCGTCGC GGCAATGCGG



CACGGACTGC





2001
TTCGGCAGCG GCACATTCCG CGCCCGCCGG TCTGAAACAC



GCCGTAGAAC





2051
AGGGCGGCAG CAATCTGGAA AACCTGATGG TCGAACTGGA



TGCCTCCGAA





2101
TCATCCGCAA CACCCGAGAC GGTTGAAACT GCGGCAGCCG



ACCGCACAGA





2151
TATGCCGGGC ATCCGCCCCT ACGGCGCAAC TTTCCGCGCA



GCGGCAGCCG





2201
TACAGCATGC GAATGCCGCC GACGGTGTAC GCATCGTCAA



CAGTCTCGCC





2251
GCTACCGTCT ATGCCGACAG TACCGCCGCC CATGCCGATA



TGCAGGGACG





2301
CCGCCTGAAA GCCGTATCGG ACGGGTTGGA CCACAACGGC



ACGGGTCTGC





2351
GCGTCATCGC GCAAACCCAA CAGGACGGTG GAACGTGGGA



ACAGGGCGGT





2401
GTTGAAGGCA AAATGCGCGG CAGTACCCAA ACCGTCGGCA



TTGCCGCGAA





2451
AACCGGCGAA AATACGACAG CAGCCGCCAC ACTGGGCATG



GGACGCAGCA





2501
CATGGAGCGA AAACAGTGCA AATGCAAAAA CCGACAGCAT



TAGTCTGTTT





2551
GCAGGCATAC GGCACGATGC GGGCGATATC GGCTATCTCA



AAGGCCTGTT





2601
CTCCTACGGA CGCTACAAAA ACAGCATCAG CCGCAGCACC



GGTGCGGACG





2651
AACATGCGGA AGGCAGCGTC AACGGCACGC TGATGCAGCT



GGGCGCACTG





2701
GGCGGTGTCA ACGTTCCGTT TGCCGCAACG GGAGATTTGA



CGGTCGAAGG





2751
CGGTCTGCGC TACGACCTGC TCAAACAGGA TGCATTCGCC



GAAAAAGGCA





2801
GTGCTTTGGG CTGGAGCGGC AACAGCCTCA CTGAAGGCAC



GCTGGTCGGA





2851
CTCGCGGGTC TGAAGCTGTC GCAACCCTTG AGCGATAAAG



CCGTCCTGTT





2901
TGCAACGGCG GGCGTGGAAC GCGACCTGAA CGGACGCGAC



TACACGGTAA





2951
CGGGCGGCTT TACCGGCGCG ACTGCAGCAA CCGGCAAGAC



GGGGGCACGC





3001
AATATGCCGC ACACCCGTCT GGTTGCCGGC CTGGGCGCGG



ATGTCGAATT





3051
CGGCAACGGC TGGAACGGCT TGGCACGTTA CAGCTACGCC



GGTTCCAAAC





3101
AGTACGGCAA CCACAGCGGA CGAGTGGGCG TAGGCTACCG



GTTCCTCGAG





3151
GGTGGCGGAG GCACTGGATC CGCCACAAAC GACGACGATG



TTAAAAAAGC





3201
TGCCACTGTG GCCATTGCTG CTGCCTACAA CAATGGCCAA



GAAATCAACG





3251
GTTTCAAAGC TGGAGAGACC ATCTACGACA TTGATGAAGA



CGGCACAATT





3301
ACCAAAAAAG ACGCAACTGC AGCCGATGTT GAAGCCGACG



ACTTTAAAGG





3351
TCTGGGTCTG AAAAAAGTCG TGACTAACCT GACCAAAACC



GTCAATGAAA





3401
ACAAACAAAA CGTCGATGCC AAAGTAAAAG CTGCAGAATC



TGAAATAGAA





3451
AAGTTAACAA CCAAGTTAGC AGACACTGAT GCCGCTTTAG



CAGATACTGA





3501
TGCCGCTGTG GATGCAACCA CCAACGCCTT GAATAAATTG



GGAGAAAATA





3551
TAACGACATT TGCTGAAGAG ACTAAGACAA ATATCGTAAA



AATTGATGAA





3601
AAATTAGAAG CCGTGGCTGA TACCGTCGAC AAGCATGCCG



AAGCATTCAA





3651
CGATATCGCC GATTCATTGG ATGAAACCAA CACTAAGGCA



GACGAAGCCG





3701
TCAAAACCGC CAATGAAGCC AAACAGACGG CCGAAGAAAC



CAAACAAAAC





3751
GTCGATGCCA AAGTAAAAGC TGCAGAAACT GCASCAGGCA



AAGCCGAAGC





3801
TGCCGCTGGC ACAGCTAATA CTGCAGCCGA CAAGGCCGAA



GCTGTCGCTG





3851
CAAAAGTTAC CGACATCAAA GCTGATATCG CTACGAACAA



AGATAATATT





3901
GCTAAAAAAG CAAACAGTGC CGACGTGTAC ACCAGAGAAG



AGTCTGACAG





3951
CAAATTTGTC AGAATTGATG GTCTGAACGC TACTACCGAA



AAATTGGACA





4001
CACGCTTGGC TTCTGCTGAA AAATCCATTG CCGATCACGA



TACTCGCCTG





4051
AACGGTTTGG ATAAAACAGT GTCAGACCTG CGCAAAGAAA



CCCGCCAAGG





4101
CCTTGCAGAA CAAGCCGCGC TCTCCGGTCT GTTCCAACCT



TACAACGTGG





4151
GTCTCGAGCA CCACCACCAC CACCACTGA





   1
MTSAPDFNAG GTGIGSNSRA TTAKSAAVSY AGIKNEMCKD



RSMLCAGRDD





  51
VAVTDRDAKI NAPPRNLHTG DFPNPNDAYK NLINLKPAIE



AGYTGRGVEV





 101
GIVDTGESVG SISFPELYGR KEHGYNENYK NYTAYMRKEA



PEDGGGKDIE





 151
ASFDDEAVIE TEAKPTDIRH VKEIGHIDLV SHIIGGRSVD



GRPAGGIAPD





 201
ATLHIMNTND ETKNEMMVAA IRNAWVKLGE RGVRIVNNSF



GTTSRAGTAD





 251
LFQIANSEEQ YRQALLDYSG GDKTDEGIRL MQQSDYGNLS



YHIRNKNMLF





 301
IFSTGNDAQA QPNTYALLPF YEEDAQKGII TVAGVDRSGE



KFKREMYGEP





 351
GTEPLEYGSN HCGITAMWCL SAPYEASVRF TRTNPIQIAG



TSFSAPIVTG





 401
TAALLLQKYP WMSNDNLRTT LLTTAQDIGA VGVDSKFGWG



LLDAGKMANG





 451
PASFPFGDFT ADTKGTSDIA YSFRNDISGT GGLIKKGGSQ



LQLHGNNTYT





 501
GKTIIEGGSL VLYGNNKSDM RVETKGALIY NGAASGGSLN



SDGIVYLADT





 551
DQSGANETVH IKGSLQLDGK GTLYTRLGKL LKVDGTAIIG



GKLYMSARGK





 601
GAGYLNSTGR RVPFLSAAKI GQDYSFFTNI ETDGGLLASL



DSVEKTAGSE





 651
GDTLSYYVRR GNAARTASAA AHSAPAGLKH AVEQGGSNLE



NLMVELDASE





 701
SSATPETVET AAADRTDMPG IRPYGATFRA AAAVQHANAA



DGVRIFNSLA





 751
ATVYADSTAA HADMQGRRLK AVSDGLDHNG TGLRVIAQTQ



QDGGTWEQGG





 801
VEGKMRGSTQ TVGIAAKTGE NTTAAATLGM GRSTWSENSA



NAKTDSISLF





 851
AGIRHDAGDI GYLEGLFSYG RYKNSISRST GADEHAEGSV



NGTLMQLGAL





 901
GGVNVPFAAT GDLTVEGGLR YDLLKQDAFA EKGSALGWSG



NSLTEGTLVG





 951
LAGLKLSQPL SDKAVLFATA GVERDLNGRD YTVTGGFTGA



TAATGKTGAR





1001
NMPHTRLVAG LGADVEFGNG WNGLARYSYA GSKQYGNHSG



RVGVGYRFLE





1051
GGGGTGSATN DDDVKKAATV AIAAAYNNGQ EINGFKAGET



IYDIDEDGTI





1101
TKKDATAADV EADDFKGLGL KKVVTNLTKT VNENKQNVDA



KVKAAESEIE





1151
KLTTKLADTD AALADTDAAL DATTNALNKL GENITTFAKE



TKTNIVKIDE





1201
KLEAVADTVD KHAFAENDLA DSLDETNTKA DEAVKTANEA



KQTAEETKQN





1251
VDAKVKAAET AAGKAEAAAG TANTAADKAE AVAAKVTDIK



ADIATNKDNI





1301
AKKANSADVY TREESDSKFV RIDGLNATTE KLDTRLASAE



KSIADHDTRL





1351
NGLDKTVSDL REETRQGLAE QAALSGLFQP YNVGLEHHHH



HH*






ΔG741 and Hybrids

Bactericidal titres generated in response to ΔG741 (His-fusion) were measured against various strains, including the homologous 2996 strain:





















2996
MC58
NGH38
F6124
BZ133























ΔG741
512
131072
>2048
16384
>2048










As can be seen, the ΔG741-induced anti-bactericidal titre is particularly high against heterologous strain MC58.


ΔG741 was also fused directly in-frame upstream of proteins 961, 961c, 983 and ORF46.1:









ΔG741-961








   1
ATGGTCGCCG CCGACATCGG TGCGGGGCTT GCCGATGCAC 



TAACCGCACC





  51
GCTCGACCAT AAAGACAAAG GTTTGCAGTC TTTGACGCTG



GATCAGTCCG





 101
TCAGGAAAAA CGAGAAACTG AAGCTGGCGG CACAAGGTGC



GGAAAAAACT





 151
TATGGAAACG GTGACAGCCT CAATACGGGC AAATTGAAGA



ACGACAAGGT





 201
CAGCCGTTTC GACTTTATCC GCCAAATCGA AGTGGACGGG



CAGCTCATTA





 251
CCTTGGAGAG TGGAGAGTTC CAAGTATACA AACAAAGCCA



TTCCGCCTTA





 301
ACCGCCTTTC AGACCGAGCA AATACAAGAT TCGGAGCATT



CCGGGAAGAT





 351
GGTTGCGAAA CGCCAGTTCA GAATCGGCGA CATAGCGGGC



GAACATACAT





 401
CTTTTGACAA GCTTCCCGAA GGCGGCAGGG CGACATATCG



CGGGACGGCG





 451
TTCGGTTCAG ACGATGCCGG CGGAAAACTG ACCTACACCA



TAGATTTCGC





 501
CGCCAAGCAG GGAAACGGCA AAATCGAACA TTTGAAATCG



CCAGAACTCA





 551
ATGTCGACCT GGCCGCCGCC GATATCAAGC CGGATGGAAA



ACGCCATGCC





 601
GTCATCAGCG GTTCCGTCCT TTACAACCAA GCCGAGAAAG



GCAGTTACTC





 651
CCTCGGTATC TTTGGCGGAA AAGCCCAGGA AGTTGCCGGC



AGCGCGGAAG





 701
TGAAAACCGT AAACGGCATA CGCCATATCG GCCTTGCCGC



CAAGCAACTC





 751
GAGGGTGGCG GAGGCACTGG ATCCGCCACA AACGACGACG



ATGTTAAAAA





 801
AGCTGCCACT GTGGCCATTG CTGCTGCCTA CAACAATGGC



CAAGAAATCA





 851
ACGGTTTCAA AGCTGGAGAG ACCATCTACG ACATTGATGA



AGACGGCACA





 901
ATTACCAAAA AAGACGCAAC TGCAGCCGAT GTTGAAGCCG



ACGACTTTAA





 951
AGGTCTGGGT CTGAAAAAAG TCGTGACTAA CCTGACCAAA



ACCGTCAATG





1001
AAAACAAACA AAACGTCGAT GCCAAAGTAA AAGCTGCAGA



ATCTGAAATA





1051
GAAAAGTTAA CAACCAAGTT AGCAGACACT GATGCCGCTT



TAGCAGATAC





1101
TGATGCCGCT CTGGATGCAA CCACCAACGC CTTGAATAAA



TTGGGAGAAA





1151
ATATAACGAC ATTTGCTGAA GAGACTAAGA CAAATATCGT



AAAAATTGAT





1201
GAAAAATTAG AAGCCGTGGC TGATACCGTC GACAAGCATG



CCGAAGCATT





1251
CAACGATATC GCCGATTCAT TGGATGAAAC CAACACTAAG



GCAGACGAAG





1301
CCGTCAAAAC CGCCAATGAA GCCAAACAGA CGGCCGAAGA



AACCAAACAA





1351
AACGTCGATG CCAAAGTAAA AGCTGCAGAA ACTGCAGCAG



GCAAAGCCGA





1401
AGCTGCCGCT GGCACAGCTA ATACTGCAGC CGACAAGGCC



GAAGCTGTCG





1451
CTGCAAAAGT TACCGACATC AAAGCTGATA TCGCTACGAA



CAAAGATAAT





1501
ATTGCTAAAA AAGCAAACAG TGCCGACGTG TACACCAGAG



AAGAGTCTGA





1551
CAGCAAATTT GTCAGAATTG ATGGTCTGAA CGCTACTACC



GAAAAATTGG





1601
ACACACGCTT GGCTTCTGCT GAAAAATCCA TTGCCGATCA



CGATACTCGC





1651
CTGAACGGTT TGGATAAAAC AGTGTCAGAC CTGCGCAAAG



AAACCCGCCA





1701
AGGCCTTGCA GAACAAGCCG CGCTCTCCGG TCTGTTCCAA



CCTTACAACG





1751
TGGGTCGGTT CAATGTAACG GCTGCAGTCG GCGGCTACAA



ATCCGAATCG





1801
GCAGTCGCCA TCGGTACCGG CTTCCGCTTT ACCGAAAACT



TTGCCGCCAA





1851
AGCAGGCGTG GCAGTCGGCA CTTCGTCCGG TTCTTCCGCA



GCCTACCATG





1901
TCGGCGTCAA TTACGAGTGG CTCGAGCACC ACCACCACCA



CCACTGA





   1
MVAADIGAGL ADALTAPLDH KDKGLQSLTL DQSVRKNEKL



KLAAQGAEKT





  51
YGNGDSLNTG KLKNDKVSRF DFIRQIEVDG QLITLESGEF



QVYKQSHSAL





 101
TAFQTEQIQD SEHSGKHVAK RQFRIGDIAG EHTSFDKLPE



GGRATYRGTA





 151
FGSDDAGGKL TYTIDFAAKQ GNGKIEHLKS PELNVDLAAA



DIKPDGKRHA





 201
VISGSVLYNQ AEKGSYSLGI FGGKAQEVAG SAEVKTVNGI



RHIGLAAKQL





 251
EGGGGTGSAT NDDDVKKAAT VAIAAAYNNG QEINGFKAGE



TIYDIDEDGT





 301
ITKKDATAAD VEADDFKGLG LKKVVTNLTK TVNENKQNVD



AKVKAAESEI





 351
EKLTTKLADT DAALADTDAA LDATTNALNK LGENITTFAE



ETKTNIVKID





 401
EKLEAVADTV DKHAEAFNDI ADSLDETNTK ADEAVKTANE



AKQTAEETKQ





 451
NVDAKVKAAE TAAGKAEAAA GTANTAADKA EAVAAKVTDI



KADIATNRDN





 501
IAKKANSADV YTREESDSKF VRIDGLNATT EKLDTRLASA



EKSIADHDTR





 551
LNGLDKTVSD LRKETRQGLA EQAALSGLFQ PYNVGRFNVT



AAVGGYKSES





 601
AVAIGTGFRF TENFAAKAGV AVGTSSGSSA AYHVGVNYEW



LEHHHHHH*










ΔG741-961c








   1
ATGGTCGCCG CCGACATCGG TGCGGGGCTT GCCGATGCAC



TAACCGCACC





  51
GCTCGACCAT AAAGACAAAG GTTTGCAGTC TTTGACGCTG



GATCAGTCCG





 101
TCAGGAAAAA CGAGAAACTG AAGCTGGCGG CACAAGGTGC



GGAAAAAACT





 151
TATGGAAACG GTGACAGCCT CAATACGGGC AAATTGAAGA



ACGACAAGGT





 201
CAGCCGTTTC GACTTTATCC GCCAAATCGA AGTGGACGGG



CAGCTCATTA





 251
CCTTGGAGAG TGGAGAGTTC CAAGTATACA AACAAAGCCA



TTCCGCCTTA





 301
ACCGCCTTTC AGACCGAGCA AATACAAGAT TCGGAGCATT



CCGGGAAGAT





 351
GGTTGCGAAA CGCCAGTTCA GAATCGGCGA CATAGCGGGC



GAACATACAT





 401
CTTTTGACAA GCTTCCCGAA GGCGGCAGGG CGACATATCG



CGGGACGGCG





 451
TTCGGTTCAG ACGATGCCGG CGGAAAACTG ACCTACACCA



TAGATTTCGC





 501
CGCCAAGCAG GGAAACGGCA AAAACAAACA TTTGAAATCG



CCAGAACTCA





 551
ATGTCGACCT GGCCGCCGCC GATATCAAGC CGGATGGAAA



ACGCCATGCC





 601
GTCATCAGCG GTTCCGTCCT TTACAACCAA GCCGAGAAAG



GCAGTTACTC





 651
CCTCGGTATC TTTGGCGGAA AAGCCCAGGA AGTTGCCGGC



AGCGCGGAAG





 701
TGAAAACCGT AAACGGCATA CGCCATATCG GCCTTGCCGC



CAAGCAACTC





 751
GAGGGTGGCG GAGGCACTGG ATCCGCCACA AACGACGACG



ATGTTAAAAA





 801
AGCTGCCACT GTGGCCATTG CTGCTGCCTA CAACAATGGC



CAAGAAATCA





 851
ACGGTTTCAA AGCTGGAGAG ACCATCTACG ACATTGATGA



AGACGGCACA





 901
ATTACCAAAA AAGACGCAAC TGCAGCCGAT GTTGAAGCCG



ACGACTTTAA





 951
AGGTCTGGGT CTGAAAAAAG TCGTGACTAA CCTGACCAAA



ACCGTCAATG





1001
AAAACAAACA AAACGTCGAT GCCAAAGTAA AAGCTGCAGA



ATCTGAAATA





1051
GAAAAGTTAA CAACCAAGTT AGCAGACACT GATGCCGCTT



TAGCAGATAC





1101
TGATGCCGCT CTGGATGCAA CCACCAACGC CTTGAATAAA



TTGGGAGAAA





1151
ATATAACGAC ATTTGCTGAA GAGACTAAGA CAAATATCGT



AAAAATTGAT





1201
GAAAAATTAG AAGCCGTGGC TGATACCGTC GACAAGCATG



CCGAAGCATT





1251
CAACGATATC GCCGATTCAT TGGATGAAAC CAACACTAAG



GCAGACGAAG





1301
CCGTCAAAAC CGCCAATGAA GCCAAATCGA CGGCCGAAGA



AACCAAACAA





1351
AACGTCGATG CCAAAGTAAA AGCTGCAGAA ACTGCAGCAG



GCAAAGCCGA





1401
AGCTGCCGCT GGCACAGCTA ATACTGCAGC CGACAAGGCC



GAAGCTGTCG





1451
CTGCAAAAGT TACCGACATC AAAGCTGATA TCGCTACGAA



CAAAGATAAT





1501
ATTGCTAAAA AAGCAAACAG TGCCGACGTG TACACCAGAG



AAGAGTCTGA





1551
CAGCAAATTT GTCAGAATTG ATGGTCTGAA CGCTACTACC



GAAAAATTGG





1601
ACACACGCTT GGCTTCTGCT GAAAAATCCA TTGCCGATCA



CGATACTCGC





1651
CTGAACGGTT TGGATAAAAC AGTGTCAGAC CTGCGCAAAG



AAACCCGCCA





1701
AGGCCTTGCA GAACAAGCCG CGCTCTCCGG TCTGTTCCAA



CCTTACAACG





1751
TGGGTCTCGA GCACCACCAC CACCACCACT GA





   1
MVAADIGAGL ADALTAPLDH KDKGLQSLTL DQSVRKNEKL



KLAAQGAEKT





  51
YGNGDSLNTG KLKNDKVSRF DFIRQIEVDG QLITLESGEF



QVYKQSHSAL





 101
TAFQTEQIQD SEHSGKMVAK RQFRIGDIAG EHTSFDKLPE



GGRATYRGTA





 151
FGSDDAGGKL TYTIDFAAKQ GNGKIEHLKS PELNVDLAAA



DIKPDGKRHA





 201
VISGSVLYNQ AEKGSTELGI FGGKAQEVAG SAEVKTVNGI



RHIGLAAKQL





 251
EGGGGTGSAT NDDDVKKAAT VAIAAAYNNG QEINGFKAGE



TIYDIDEDGT





 301
ITKKDATAAD VEADDFKGLG LKKVVTNLTK TVNENKQNVD



AKVKAAESEI





 351
EKLTTKLADT DAALADTDAA LDATTNALNK LGENITTFAE



ETKTNIVKID





 401
EKLEAVADTV DKHAEAFNDI ADSLDETNTK ADEAVKTANE



AKQTAEETKQ





 451
NVDAKVKAAB TAAGKAEAAA GTANTAADKA EAVAAKVTDI



RADIATNKDN





 501
IAKKANSADV YTREESDSKF VRIDGLNATT EKLDTRLASA



EKSIADHDTR





 551
LNGLDKTVSD LRKETRQGLA EQAALSGLFQ FYNVGLEHHH



NHH*










ΔG741-983








   1
ATGGTCGCCG CCGACATCGG TGCGGGGCTT GCCGATGCAC



TAACCGCACC





  51
GCTCGACCAT AAAGACAAAG GTTTGCAGTC TTTGACGCTG



GATCAGTCCG





 101
TCAGGAAAAA CGAGAAACTG AAGCTGGCGG CACAAGGTGC



GGAAAAAACT





 151
TATGGAAACG GTGACAGCCT CAATACGGGC AAATTGAAGA



ACGACAAGGT





 201
CAGCCGTTTC GACTTTATCC GCCAAATCGA AGTGGACGGG



CAGCTCATTA





 251
CCTTGGAGAG TGGAGAGTTC CAAGTATACA AACAAAGCCA



TTCCGCCTTA





 301
ACCGCCTTTC AGACCGAGCA AATACAAGAT TCGGAGCATT



CCGGGAAGAT





 351
GGTTGCGAAA CGCCAGTTCA GAATCGGCGA CATAGCGGGC



GAACATACAT





 401
CTTTTGACAA GCTTCCCGAA GGCGGCAGGG CGACATATCG



CGGGACGGCG





 451
TTCGGTTCAG ACGATGCCGG CGGAAAACTG ACCTACACCA



TAGATTTCGC





 501
CGCCAAGCAG GGAAACGGCA AAATCGAACA TTTGAAATCG



CAAGAAATCA





 551
ATGTCGACCT GGCCGCCGCC GATATCAAGC CGGATGGAAA



ACGCCATGCC





 601
GTCATCAGCG GTTCCGTCCT TTACAACCAA GCCGAGAAAG



GCAGTTACTC





 651
CCTCGGTATC TTTGGCGGAA AAGCCCAGGA AGTTGCCGGC



AGCGCGGAAG





 701
TGAAAACCGT AAACGGCATA CGCCATATCG GCCTTGCCGC



CAAGCAACTC





 751
GAGGGATCCG GCGGAGGCGG CACTTCTGCG CCCGACTTCA



ATGCAGGCGG





 801
TACCGGTATC GGCAGCAACA GCAGAGCAAC AACAGCGAAA



TCAGCAGCAG





 851
TATCTTACGC CGGTATCAAG AACGAAATGT GCAAAGACAG



AAGCATGCTC





 901
TGTGCCGGTC GGGATGACGT TGCGGTTACA GACAGGGATG



CCAAAATCAA





 951
TGCCCCCCCC CCGAATCTGC ATACCGGAGA CTTTCCAAAC



CCAAATGACG





1001
CATACAAGAA TTTGATCAAC CTCAAACCTG CAATTGAAGC



AGGCTATACA





1051
GGACGCGGGG TAGAGGTAGG TATCGTCGAC ACAGGCGAAT



CCGTCGGCAG





1101
CATATCCTTT CCCGAACTGT ATGGCAGAAA AGAACACGGC



TATAACGAAA





1151
ATTACCAAAA CTATACGGCG TATATGCGGA AGGAAGCGCC



TGAAGACGGA





1201
GGCGGTAAAG ACATTGAAGC TTCTTTCGAC GATGAGGCCG



TTATAGAGAC





1251
TGAAGCAAAG CCGACGGATA TCCGCCACGT AAAAGAAATC



GGACACATCG





1301
ATTTGGTCTC CCATATTATT GGCGGGCGTT CCGTGGACGG



CAGACCTGCA





1351
GGCGGTATTG CGCCCGATGC GACGCTACAC ATAATGAATA



CGAATGATGA





1401
AACCAAGAAC GAAATGATGG TTGCAGCCAT CCGCAATGCA



TGGGTCAAGC





1451
TGGGCGAACG TGGCGTGCGC ATCGTCAATA ACAGTTTTGG



AACAACATCG





1501
AGGGCAGGCA CTGCCGACCT TTTCCAAATA GCCAATTCGG



AGGAGCAGTA





1551
CCGCCAAGCG TTGCTCGACT ATTCCGGCGG TGATAAAACA



GACGAGGGTA





1601
TCCGCCTGAT GCAACAGAGC GATTACGGCA ACCTGTCCTA



CCACATCCGT





1651
AATAAAAACA TGCTTTTCAT CTTTTCGACA GGCAATGACG



CACAAGCTCA





1701
GCCCAACACA TATGCCCTAT TGCCATTTTA TGAAAAAGAC



GCTCAAAAAG





1751
GCATTATCAC AGTCGCAGGC GTAGACCGCA GTGGAGAAAA



GTTCAAACGG





1801
GAAATGTATG GAGAACCGGG TACAGAACCG CTTGAGTATG



GCTCCAACCA





1851
TTGCGGAATT ACTGCCATGT GGTGCCTGTC GGCACCCTAT



GAAGCAAGCG





1901
TCCGTTTCAC CCGTACAAAC CCGATTCAAA TTGCCGGAAC



ATCCTTTTCC





1951
GCACCCATCG TAACCGGCAC GGCGGCTCTG CTGCTGCAGA



AATACCCGTG





2001
GATGAGCAAC GACAACCTGC GTACCACGTT GCTGACGACG



GCTCAGGACA





2051
TCGGTGCAGT CGGCGTGGAC AGCAAGTTCG GCTGGGGACT



GCTGGATGCG





2101
GGTAAGGCCA TGAACGGACC CGCGTCCTTT CCGTTCGGCG



ACTTTACCGC





2151
CGATACGAAA GGTACATCCG ATATTGCCTA CTCCTTCCGT



AACGACATTT





2201
CAGGCACGGG CGGCCTGATC AAAAAAGGCG GCAGCCAACT



GCAACTGCAC





2251
GGCAACAACA CCTATACGGG CAAAACCATT ATCGAAGGCG



GTTCGCTGGT





2301
GTTGTACGGC AACAACAAAT CGGATATGCG CGTCGAAACC



AAAGGTGCGC





2351
TGATTTATAA CGGGGCGGCA TCCGGCGGCA GCCTGAACAG



CGACGGCATT





2401
GTCTATCTGG CAGATACCGA CCAATCCGGC GCAAACGAAA



CCGTACACAT





2451
CAAAGGCAGT CTGCAGCTGG ACGGCAAAGG TACGCTGTAC



ACACGTTTGG





2501
GCAAACTGCT GAAAGTGGAC GGTACGGCGA TTATCGGCGG



CAAGCTGTAC





2551
ATGTCGGCAC GCGGCAAGGG GGCAGGCTAT CTCAACAGTA



CCGGACGACG





2601
TGTTCCCTTC CTGAGTGCCG CCAAAATCGG GCAGGATTAT



TCTTTCTTCA





2651
CAAACATCGA AACCGACGGC GGCCTGCTGG CTTCCCTCGA



CAGCGTCGAA





2701
AAAACAGCGG GCAGTGAAGG CGACACGCTG TCCTATTATG



TCCGTCGCGG





2751
CAATGCGGCA CGGACTGCTT CGGCAGCGGC ACATTCCGCG



CCCGCCGGTC





2801
TGAAACACGC CGTAGAACAG GGCGGCAGCA ATCTGGAAAA



CCTGATGGTC





2851
GAACTGGATG CCTCCGAATC ATCCGCAACA CCCGAGACGG



TTGAAACTGC





2901
GGCAGCCGAC CGCACAGATA TGCCGGGCAT CCGCCCCTAC



GGCGCAACTT





2951
TCCGCGCAGC GGCAGCCGTA CAGCATGCGA ATGCCGCCGA



CGGTGTACGC





3001
ATCTTCAACA GTCTCGCCGC TACCGTCTAT GCCGACAGTA



CCGCCGCCCA





3051
TGCCGATATG CAGGGACGCC GCCTGAAAGC CGTATCGGAC



GGGTTGGACC





3101
ACAACGGCAC GGGTCTGCGC GTCATCGCGC AAACCCAACA



GGACGGTGGA





3151
ACGTGGGAAC AGGGCGGTGT TGAAGGCAAA ATGCGCGGCA



GTACCCAAAC





3201
CGTCGGCATT GCCGCGAAAA CCGGCGAAAA TACGACAGCA



GCCGCCACAC





3251
TGGGCATGGG ACGCAGCACA TGGAGCGAAA ACAGTGCAAA



TGCAAAAACC





3301
GACAGCATTA GTCTGTTTGC AGGCATACGG CACGATGCGG



GCGATATCGG





3351
CTATCTCAAA GGCCTGTTCT CCTACGGACG CTACAAAAAC



AGCATCAGCC





3401
GCAGCACCGG TGCGGACGAA CATGCGGAAG GCAGCGTCAA



CGGCACGCTG





3451
ATGCAGCTGG GCGCACTGGG CGGTGTCAAC GTTCCGTTTG



CCGCAACGGG





3501
AGATTTGACG GTCGAAGGCG GTCTGCGCTA CGACCTGCTC



AAACAGGATG





3551
CATTCGCCGA AAAAGGCAGT GCTTTGGGCT GGAGCGGCAA



CAGCCTCACT





3601
GAAGGCACGC TGGTCGGACT CGCGGGTCTG AAGCTGTCGC



AACCCTTGAG





3651
CGATAAAGCC GTCCTGTTTG CAACGGCGGG CGTGGAACGC



GACCTGAACG





3701
GACGCGACTA CACGGTAACG GGCGGCTTTA CCGGCGCGAC



TGCAGCAACC





3751
GGCAAGACGG GGGCACGCAA TATGCCGCAC ACCCGTCTGG



TTGCCGGCCT





3801
GGGCGCGGAT GTCGAATTCG GCAACGGCTG GAACGGCTTG



GCACGTTACA





3851
GCTACGCCGG TTCCAAACAG TACGGCAACC ACAGCGGACG



AGTCGGCGTA





3901
GGCTACCGGT TCCTCGAGAA CCACCACCAC CACCACTGA





   1
MVAADIGAGL ADALTAPLDH KDKGLQSLTL DQSVRKNEKL



KLAAQGAEKT





  51
YGNGDSLNTG KLKNDKVSRF DFIRQIEVDG QLITLESGEF



QVYKQSHSAL





 101
TAFQTEQIQD SEHSGKMVAK RQFRIGDIAG EHTSFDKLPE



GGRATYRGTA





 151
FGSDDAGGKL TYTIDFAAKQ GNGKIEHLKS PELNVDLAAA



DIKPDGKRHA





 201
VISGSVLYNQ AEKGSYSLGI FGGKAQEVAG SAEVKTVNGI



RHIGLAAKQL





 251
EGSGGGGTSA PDFNAGGTGI GSNSRATTAK SAAVSYAGIK



NEMCKDRSML





 301
CAGRDDVAVT DRDAKINAPP PNLHTGDFPN PNDAYKNLIN



LKPAIEAGYT





 351
GRGVEVGIVD TGESVGSISF PELYGRKEHG YNENYKNYTA



YMRKEAPEDG





 401
GGKDIEASFD DEAVIETEAK PTDIRHVKEI GHIDLVSHII



GGRSVDGRPA





 451
GGIAPDATLH IMNTEDETKN EEMVAAIRNA WVKLGERGVR



IVNNSFGTTS





 501
RAGTADLFQI ANSEEQYRQA LLDYSGGDKT DEGIRLMQQS



DYGNLSYHIR





 551
NKNMLFIFST GNDAQAQPNT YALLPFYEKD AQKGIITVAG



VDRSGEKFKR





 601
EMYGEPGTEP LEYGSNHCGI TAMWCLSAPY EASVRFTRTN



PIQIAGTSFS





 651
APIVTGTAAL LLQKYPWMSN DNLRTTLLTT AQDIGAVGVD



SKFGWGLLDA





 701
GKAMNGPASF PPGDFTADTK GTSDIAYSFR NDISGTGGLI



KKGGSQLQLH





 751
GNNTYTGKTI IEGGSLVLYG NNKSDMRVET KGALIYNGAA



SGGSLNSDGI





 801
VYLADTDQSG ANETVHIKGS LQLDGKGTLY TRLGKLLKVD



GTAIIGGKLY





 851
MSARGKGAGY LNSTGRRVPF LSAAKIGQDY SFFTNIETDG



GLLASLDSVE





 901
KTAGSEGDTL SYYVRRGNAA RTASAAAHSA PAGLKHAVEQ



GGSNLENLMV





 951
ELDASESSAT PETVETAAAD RTDMPGIRPY GATFRAAAAV



QHANAADGVR





1001
IFNSLAATVY ADSTAAHADM QGRRLKAVSD GLDHNGTGLR



VIAQTQQDGG





1051
TWEQGGVEGK MRGSTQTVGI AAKTGENTTA AATLGMGRST



WSENSANAKT





1101
DSISLFAGIR HDAGDIGYLK GLFSYGRYKN SISRSTGADE



HAEGSVNGTL





1151
MQLGALGGVN VPFAATGDLT VEGGLRYDLL KQDAFAEKGS



ALGWSGNSLT





1201
EGTLVGLAGL KLSQPLSDKA VLFATAGVER DLNGRDYTVT



GGFTGATAAT





1251
GKTGARNMPH TRLVAGLGAD VEFGNGWNGL ARYSYAGSKQ



YGNHSGRVGV





1301
GYRFLEHHHH HH*










ΔG741-0RF46.1








   1
ATGGTCGCCG CCGACATCGG TGCGGGGCTT GCCGATGCAC



TAACCGCACC





  51
GCTCGACCAT AAAGACAAAG GTTTGCAGTC TTTGACGCTG



GATCAGTCCG





 101
TCAGGAAAAA CGAGAAACTG AAGCTGGCGG CACAAGGTGC



GGAAAAAACT





 151
TATGGAAACG GTGACAGCCT CAATACGGGC AAATCGAACA



ACGACAAGGT





 201
CAGCCGTTTC GACTTTATCC GCCAAATCGA AGTGGACGGG



CAGCTCATTA





 251
CCTTGGAGAG TGGAGAGTTC CAAGTATACA AACAAAGCCA



TTCCGCCTTA





 301
ACCGCCTTTC AGACCGAGCA AATACAAGAT TCGGAGCATT



CCGGGAAGAT





 351
GGTTGCGAAA CGCCAGTTCA GAATCGGCGA CATAGCGGGC



GAACATACAT





 401
CTTTTGACAA GCTTCCCGAA GGCGGCAGGG CGACATATCG



CGGGACGGCG





 451
TTCGGTTCAG ACGATGCCGG CGAGAAACTG ACCTACACCA



TAGATTTCGC





 501
CGCCAAGCAG GGAAACGGCA AAATCGAACA TTTGAAATCG



CCAGAACTCA





 551
ATGTCGACCT GGCCGCCGCC GATATCAAGC CGGATGGAAA



ACGCCATGCC





 601
GTCATCAGCG GTTCCGTCCT TTACAACCAA GCCGAGAAAG



GCAGTTACTC





 651
CCTCGGTATC TTTGGCGGAA AAGCCCAGGA AGTTGCCGGC



AGCGCGGAAG





 701
TGAAAACCGT AAACGGCATA CGCCATATCG GCCTTGCCGC



CAAGCAACTC





 751
GACGGTGGCG GAGGCACTGG ATCCTCAGAT TTGGCAAACG



ATTCTTTTAT





 801
CCGGCAGGTT CTCGACCGTC AGCATTTCGA ACCCGACGGG



AAATACCACC





 851
TATTCGGCAG CAGGGGGGAA CTTGCCGAGC GCAGCGGCCA



TATCGGATTG





 901
GGAAAAATAC AAAGCCATCA GTTGGGCAAC CTGATGATTC



AACAGGCGGC





 951
CATTAAAGGA AATATCGGCT ACATTGTCCG CTTTTCCGAT



CACGGGCACG





1001
AAGTCCATTC CCCCTTCGAC AACCATGCCT CACATTCCGA



TTCTGATGAA





1051
GCCGGTAGTC CCGTTGACGG ATTTAGCCTT TACCGCATCC



ATTGGGACGG





1101
ATACGAACAC CATCCCGCCG ACGGCTATGA CGGGCCACAG



GGCGGCGGCT





1151
ATCCCGCTCC CAAAGGCGCG AGGGATATAT ACAGCTACGA



CATAAAAGGC





1201
GTTGCCCAAA ATATCCGCCT CAACCTGACC GACAACCGCA



GCACCGGACA





1251
ACGGCTTGCC GACGGTTTCC ACAATGCCGG TAGTATGCTG



ACGCAAGGAG





1301
TAGGCGACGG ATTCAAACGC GCCACCCGAT ACAGCCCCGA



GCTGGACAGA





1351
TCGGGCAATG CCGCCGAAGC CTTCAACGGC ACTGCAGATA



TCGTTAAAAA





1401
CATCATCGGC GCGGCAGGAG AAATTGTCGG CGCAGGCGAT



GCCGTGCAGG





1451
GCATAAGCGA AGGCTCAAAC ATTGCTGTCA TGCACGGCTT



GGGTCTGCTT





1501
TCCACCGAAA ACAAGATGGC GCGCATCAAC GATTTGGCAG



ATATGGCGCA





1551
ACTCAAAGAC TATGCCGCAG CAGCCATCCG CGATTGGGCA



GTCCAAAACC





1601
CCAATGCCGC ACAAGGCATA GAAGCCGTCA GCAATATCTT



TATGGCAGCC





1651
ATCCCCATCA AAGGGATTGG AGCTGTTCGG GGAAAATACG



GCTTGGGCGG





1701
CATCACGGCA CATCCTATCA AGCGGTCGCA GATGGGCGCG



ATCGCATTGC





1751
CGAAAGGGAA ATCCGCCGTC AGCGACAATT TTGCCGATGC



GGCATACGCC





1801
AAATACCCGT CCCCTTACCA TTCCCGAAAT ATCCGTTCAA



ACTTGGAGCA





1851
GCGTTACGGC AAAGAAAACA TCACCTCCTC AACCGTGCCG



CCGTCAAACG





1901
GCAAAAATGT CAAACTGGCA GACCAACGCC ACCCGAAGAC



AGGCGTACCG





1951
TTTGACGGTA AAGGGTTTCC GAATTTTGAG AAGCACGTGA



AATATGATAC





2001
GCTCGAGCAC CACCACCACC ACCACTGA





   1
MVAADIGAGL ADALTAPLDH KURGLQSLTL DQSVRKNEKL



KLAAQGAEKT





  51
YGNGDSLNTG KLKNDKVSAF DFIRQIEVDG QLITLESGEF



QVYKQSHSAL





 101
TAFQTEQIQD SEHSGKMVAK RQFRIGDIAG EHTSFDKLPE



GGRATYAGTA





 151
FGSDDAGGKL TYTIDFAAKQ GNGKIEHLKS PELNVDLAAA



DIKPDGKRHA





 201
VISGSVLYNQ AEKGSYSLGI FGGKAQEVAG SAEVKTVNGI



RHIGLAAKQL





 251
DGGGGTGSSD LANDSFIRQV LDRQHFEPDG KYHLFGSRGE



LAERSGHIGL





 301
GKIQSHQLGN LMIQQAAIKG NIGYIVRFSD HGHEVHSPFD



NHASHSDSDE





 351
AGSPVDGFSL YRIHWDGYEH HPADGYDGPQ GGGYPAPKGA



RDIYSYDIKG





 401
VAQNIRLNLT DNRSTGQRLA DRFHNAGSEL TQGVGDGFKR



ATRYSPELDR





 451
SGNAAEAFNG TADIVKNIIG AAGEIVGAGD AVQGISEGSN



IAVMHGLGLL





 501
STENKMARIN DLADMAQIED YAAAAIRDWA VQNPNAAQGI



EAVSNIFMAA





 551
IPIKGIGAVR GKYGLGGITA HPIKRSQMGA IALPKGKSAV



SDNFADANYA





 601
KYPSPYHSRN IRSNLEQRYG KENITSSTVP PSNGXNVKLA



DQRHPKTGVP





 651
FDGKGFPNFE KHVKYDTLEH HHHHH*






Example 16
C-Terminal Fusions (‘Hybrids’) with 287/ΔG287

According to the invention, hybrids of two proteins A & B may be either NH2-A-B-COOH or NH2-B-A-COOH. The effect of this difference was investigated using protein 287 either C-terminal (in ‘287-His’ form) or N-terminal (in ΔG287 form—sequences shown above) to 919, 953 and ORF46.1. A panel of strains was used, including homologous strain 2996. FCA was used as adjuvant:
















287 & 919
287 & 953
287 & ORF46.1













Strain
ΔG287-919
919-287
ΔG287-953
953-287
ΔG287-46.1
46.1-287
















2996
128000
16000
65536
8192
16384
8192


BZ232
256
128
128
<4
<4
<4


1000
2048
<4
<4
<4
<4
<4


MC58
8192
1024
16384
1024
512
128


NGH38
32000
2048
>2048
4096
16384
4096


394/98
4096
32
256
128
128
16


MenA (F6124)
32000
2048
>2048
32
8192
1024


MenC (B2133)
64000
>8192
>8192
<16
8192
2048









Better bactericidal titres are generally seen with 287 at the N-terminus (in the ΔG form)


When fused to protein 961 [NH2-ΔG287-961-COOH—sequence shown above], the resulting protein is insoluble and must be denatured and renatured for purification. Following renaturation, around 50% of the protein was found to remain insoluble. The soluble and insoluble proteins were compared, and much better bactericidal titres were obtained with the soluble protein (FCA as adjuvant):



















2996
BZ232
MC58
NGH38
F6124
BZ133





















Soluble
65536
128
4096
>2048
>2048
4096


Insoluble
8192
<4
<4
16
n.d.
n.d.









Titres with the insoluble form were, however, improved by using alum adjuvant instead:




















Insoluble
32768
128
4096
>2048
>2048
2048









Example 17
N-Terminal Fusions (‘Hybrids’) to 287

Expression of protein 287 as full-length with a C-terminal His-tag, or without its leader peptide but with a C-terminal His-tag, gives fairly low expression levels. Better expression is achieved using a N-terminal GST-fusion.


As an alternative to using GST as an N-terminal fusion partner, 287 was placed at the C-terminus of protein 919 (‘919-287’), of protein 953 (‘953-287’), and of proteins ORF46.1 (‘ORF46.1-287’). In both cases, the leader peptides were deleted, and the hybrids were direct in-frame fusions.


To generate the 953-287 hybrid, the leader peptides of the two proteins were omitted by designing the forward primer downstream from the leader of each sequence; the stop codon sequence was omitted in the 953 reverse primer but included in the 287 reverse primer. For the 953 gene, the 5′ and the 3′ primers used for amplification included a NdeI and a BamHI restriction sites respectively, whereas for the amplification of the 287 gene the 5′ and the 3′ primers included a BamHI and a XhoI restriction sites respectively. In this way a sequential directional cloning of the two genes in pET21b+, using NdeI-BamHI (to clone the first gene) and subsequently BamHI-XhoI (to clone the second gene) could be achieved.


The 919-287 hybrid was obtained by cloning the sequence coding for the mature portion of 287 into the XhoI site at the 3′-end of the 919-His clone in pET21b-E. The primers used for amplification of the 287 gene were designed for introducing a SalI restriction site at the 5′- and a XhoI site at the 3′-of the PCR fragment. Since the cohesive ends produced by the SalI and XhoI restriction enzymes are compatible, the 287 PCR product digested with SalI XhoI could be inserted in the pET21b-919 clone cleaved with XhoI


The ORF46.1-287 hybrid was obtained similarly.


The bactericidal efficacy (homologous strain) of antibodies raised against the hybrid proteins was compared with antibodies raised against simple mixtures of the component antigens:















Mixture with 287
Hybrid with 287

















919
32000
16000


953
8192
8192


ORF46.1
128
8192









Data for bactericidal activity against heterologous MenB strains and against serotypes A and C were also obtained for 919-287 and 953-287:
















919
953
ORF46.1













Strain
Mixture
Hybrid
Mixture
Hybrid
Mixture
Hybrid
















MC58
512
1024
512
1024

1024


NGH38
1024
2048
2048
4096

4096


BZ232
512
128
1024
16




MenA (F6124)
512
2048
2048
32

1024


MenC (C11)
>2048
n.d.
>2048
n.d.

n.d.


MenC (BZ133)
>4096
>8192
>4096
<16

2048









Hybrids of ORF46.1 and 919 were also constructed. Best results (four-fold higher titre) were achieved with 919 at the N-terminus.


Hybrids 919-519H is, ORF97-225His and 225-ORF97H is were also tested. These gave moderate ELISA titres and bactericidal antibody responses.


Example 18
The Leader Peptide from ORF4

As shown above, the leader peptide of ORF4 can be fused to the mature sequence of other proteins (e.g. proteins 287 and 919). It is able to direct lipidation in E. coli.


Example 19
Domains in 564

The protein ‘564’ is very large (2073aa), and it is difficult to clone and express it in complete form. To facilitate expression, the protein has been divided into four domains, as shown in FIG. 8 (according to the MC58 sequence):



















Domain
A
B
C
D









Amino Acids
79-360
361-731
732-2044
2045-2073










These domains show the following homologies:

    • Domain A shows homology to other bacterial toxins:















gb|AAG03431.1|AE004443_9
probable hemagglutinin



[Pseudomonasaeruginosa] (33%)


gb|AAC31981.1| (139897)
HecA [Pectobacteriumchrysanthemi] (45%)


emb|CAA36409.1| (X52156)
filamentous hemagglutinin



[Bordetellapertussis] (31%)


gb|AAC79757.1| (AF057695)
large supernatant protein1



[Haemophilusducreyi] (26%)


gb|AAA25657.1| (M30186)
HpmA precursor [Proteusmirabilis] (29%)











    • Domain B shows no homology, and is specific to 564.

    • Domain C shows homology to:


















gb|AAF84995.1|AE004032
HA-like secreted protein [Xylellafastidiosa]



(33%)


gb|AAG05850.1|AE004673
hypothetical protein



[Pseudomonasaeruginosa] (27%)


gb|AAF68414.1AF237928
putative FHA [Pasteurellamultocisida] (23%)


gb|AAC79757.1|(AF057695)
large supernatant protein1



[Haemophilusducreyi] (23%)


pir| |S21010
FHA B precursor [Bordetellapertussis] (20%)











    • Domain D shows homology to other bacterial toxins:
      • gb|AAF84995.1|AE00403214 HA-like secreted protein [Xylella fastidiosa] (29%)





Using the MC58 strain sequence, good intracellular expression of 564ab was obtained in the form of GST-fusions (no purification) and his-tagged protein; this domain-pair was also expressed as a lipoprotein, which showed moderate expression in the outer membrane/supernatant fraction.


The b domain showed, moderate intracellular expression when expressed as a his-tagged product (no purification), and good expression as a GST-fusion.


The c domain showed good intracellular expression as a GST-fusion, but was insoluble. The d domain showed moderate intracellular expression as a his-tagged product (no purification). The cd protein domain-pair showed moderate intracellular expression (no purification) as a GST-fusion,


Good bactericidal assay titres were observed using the c domain and the bc pair.


Example 20
The 919 Leader Peptide

The 20 mer leader peptide from 919 is discussed in example 1 above:











MKKYLFRAAL YGIAAAILAA






As shown in example 1, deletion of this leader improves heterologous expression, as does substitution with the ORF4 leader peptide. The influence of the 919 leader on expression was investigated by fusing the coding sequence to the PhoC reporter gene from Morganella morganii [Thaller et al. (1994) Microbiology 140:1341-1350]. The construct was cloned in the pET21-b plasmid between the NdeI and XhoI sites (FIG. 9):










  1

MKKYLFRAAL YGIAAAILAA AIPAGNDATT KPDLYYLKNE




QAIDSLKLLP





 51
PPPEVGSIQF LNDQAMYEKG RMLRNTERGK QAQADADLAA



GGVATAFSGA





101
FGYPITEKDS PELYELLTNM IEDAGDLATR SAKEHYMRIR



PFAFYGTETC





151
NTKDQKKLST NGSYPSGHTS IGWATALVLA EVNPANQDAI



LERGYQLGQS





201
RVICGYHWQS DVDAARIVGS AAVATLHSDP AFQAQLAKAK



QEFAQKSQK*






The level of expression of PhoC from this plasmid is >200-fold lower than that found for the same construct but containing the native PhoC signal peptide. The same result was obtained even after substitution of the T7 promoter with the E. coli Plac promoter. This means that the influence of the 919 leader sequence on expression does not depend on the promoter used.


In order to investigate if the results observed were due to some peculiarity of the 919 signal peptide nucleotide sequence (secondary structure formation, sensitivity to RNAases, etc.) or to protein instability induced by the presence of this signal peptide, a number of mutants were generated. The approach used was a substitution of nucleotides of the 919 signal peptide sequence by cloning synthetic linkers containing degenerate codons. In this way, mutants were obtained with nucleotide and/or amino acid substitutions.


Two different linkers were used, designed to produce mutations in two different regions of the 919 signal peptide sequence, in the first 19 base pairs (L1) and between bases 20-36 (S1).










L1: 5′ T ATG AAa/g TAc/t c/tTN TTt/c a/cGC GCC GCC CTG TAC GGC ATC GCC GCC






GCC ATC CTC GCC GCC GCG ATC CC 3′





S1: 5′ T ATG AAA AAA TAC CTA TTC CGa/g GCN GCN c/tTa/g TAc/t GGc/g ATC GCC





GCC GCC ATC CTC GCC GCC GCG ATC CC 3′






The alignment of some of the mutants obtained is given below.










L1 mutants:










9L1-a
ATGAAGAAGTACCTTTTCAGCGCCGCC~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~






9L1-e
ATGAAAAAATACTTTTTCCGCGCCGCC~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~





9L1-d
ATGAAAAAATACTTTTTCCGCGCCGCC~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~





9L1-f
ATGAAAAAATATCTCTTTAGCGCCGCCCTGTACGGCATCGCCGCCGCCATCCTCGCCGCC





919sp
ATGAAAAAATACCTATTCCGCGCCGCCCTGTACGGCATCGCCGCCGCCATCCTCGCCGCC





9L1a
MKKYLFSAA~~~~~~~~~~~





9L1e
MKKYFFRAA~~~~~~~~~~~





9L1d
MKKYFFRAA~~~~~~~~~~~





9L1f
MKKYLFSAALYGIAAAILAA





919sp
MKKYLFRAALYGIAAAILAA (i.e. native signal peptide)











S1 mutants:










9S1-e
ATGAAAAAATACCTATTC..................ATCGCCGCCGCCATCCTCGCCGCC






9S1-c
ATGAAAAAATACCTATTCCGAGCTGCCCAATACGGCATCGCCGCCGCCATCCTCGCCGCC





9S1-b
ATGAAAAAATACCTATTCCGGGCCGCCCAATACGGCATCGCCGCCGCCATCCTCGCCGCC





9S1-i
ATGAAAAAATACCTATTCCGGGCGGCTTTGTACGGGATCGCCGCCGCCATCCTCGCCGCC





919sp
ATGAAAAAATACCTATTCCGCGCCGCCCTGTACGGCATCGCCGCCGCCATCCTCGCCGCC





9S1e
MKKYLF......IAAAILAA





9S1c
MKKYLFRAAQYGIAAAILAA





9S1b
MKKYLFRAAQYGIAAAILAA





9S1i
MKKYLFRAALYGIAAAILAA





919sp
MKKTLFRAALYGIAAAILAA






As shown in the sequences alignments, most of the mutants analysed contain in-frame deletions which were unexpectedly produced by the host cells.


Selection of the mutants was performed by transforming E. coli BL21(DE3) cells with DNA prepared from a mixture of L1 and S1 mutated clones. Single transformants were screened for high PhoC activity by streaking them onto LB plates containing 100 μg/ml ampicillin, 50 μg/ml methyl green, 1 mg/ml PDP (phenolphthaleindiphosphate). On this medium PhoC-producing cells become green (FIG. 10).


A quantitative analysis of PhoC produced by these mutants was carried out in liquid medium using pNPP as a substrate for PhoC activity. The specific activities measured in cell extracts and supernatants of mutants grown in liquid medium for 0, 30, 90, 180 min. were:












CELL EXTRACTS












0
30
90
180














control
0.00
0.00
0.00
0.00


9phoC
1.11
1.11
3.33
4.44


9S1e
102.12
111.00
149.85
172.05


9L1a
206.46
111.00
94.35
83.25


9L1d
5.11
4.77
4.00
3.11


9L1f
27.75
94.35
82.14
36.63


9S1b
156.51
111.00
72.15
28.86


9S1c
72.15
33.30
21.09
14.43


9S1i
156.51
83.25
55.50
26.64


phoCwt
194.25
180.93
149.85
142.08



















SUPERNATANTS












0
30
90
180














control
0.00
0.00
0.00
0.00


9phoC
0.33
0.00
0.00
0.00


9S1e
0.11
0.22
0.44
0.89


9L1a
4.88
5.99
5.99
7.22


9L1d
0.11
0.11
0.11
0.11


9L1f
0.11
0.22
0.11
0.11


9S1b
1.44
1.44
1.44
1.67


9S1c
0.44
0.78
0.56
0.67


9S1i
0.22
0.44
0.22
0.78


phoCwt
34.41
43.29
87.69
177.60









Some of the mutants produce high amounts of PhoC and in particular, mutant 9L1a can secrete PhoC in the culture medium. This is noteworthy since the signal peptide sequence of this mutant is only 9 amino acids long. This is the shortest signal peptide described to date.


Example 21
C-Terminal Deletions of Maf-Related Proteins

MafB-related proteins include 730, ORF46 and ORF29.


The 730 protein from MC58 has the following sequence:










  1

VKPLRRLTNL LAACAVAAAA LIQPALAADL AQDPFITDNA




QRQHYEPGGK





 51
YHLFGDPRGS VSDRTGKINV IQDYTHQMGN LLIQQANING



TIGYHTRFSG





101
HGHEEHAPFD NHAADSASEE KGNVDEGFTV YRLNWEGHEH



HPADAYDGPK





151
GGNYPKPTGA RDEYTYHVNG TARSIKLNPT DTRSIRQRIS



DNYSNLGSNF





201
SDRADEANRK MFEHNAKLDR WGNSMEFING VAAGALNPFI



SAGEALGIGD





251
ILYGTRYAID KAAMRNIAPL PAEGKFAVIG GLGSVAGFEK



NTREAVDRWI





301
QENPNAAETV EAVFNVAAAA KVAKLAKAAK PGKAAVSGDF



ADSYKKKLAL





351
SDSARQLYQN AKYREALDIH YEDLIRRKTD GSSKFINGRE



IDAVTNDALI





401
QAKRTISAID KPKNFLNQKN RKQIKATIEA ANQQGKRAEF



WFKYGVHSQV





451
KSYIESKGGI VKTGLGD*






The leader peptide is underlined.


730 shows similar features to ORF46 (see example 8 above):

    • as for Orf46, the conservation of the 730 sequence among MenB, MenA and gonococcus is high (>80%) only for the N-terminal portion. The C-terminus, from ˜340, is highly divergent.
    • its predicted secondary structure contains a hydrophobic segment spanning the central region of the molecule (aa. 227-247).
    • expression of the full-length gene in E. coli gives very low yields of protein. Expression from tagged or untagged constructs where the signal peptide sequence has been omitted has a toxic effect on the host cells. In other words, the presence of the full-length mature protein in the cytoplasm is highly toxic for the host cell while its translocation to the periplasm (mediated by the signal peptide) has no detectable effect on cell viability. This “intracellular toxicity” of 730 is particularly high since clones for expression of the leaderless 730 can only be obtained at very low frequency using a recA genetic background (E. coli strains: HB101 for cloning; HMS174(DE3) for expression).


To overcome this toxicity, a similar approach was used for 730 as described in example 8 for ORF46. Four C-terminal truncated forms were obtained, each of which is well expressed. All were obtained from intracellular expression of His-tagged leaderless 730.


Form A consists of the N-terminal hydrophilic region of the mature protein (aa. 28-226). This was purified as a soluble His-tagged product, having a higher-than-expected MW.


Form B extends to the end of the region conserved between serogroups (aa. 28-340). This was purified as an insoluble His-tagged product.


The C-terminal truncated forms named C1 and C2 were obtained after screening for clones expressing high levels of 730-His clones in strain HMS174(DE3). Briefly, the pET21b plasmid containing the His-tagged sequence coding for the full-length mature 730 protein was used to transform the recA strain HMS174(DE3). Transformants were obtained at low frequency which showed two phenotypes: large colonies and very small colonies. Several large and small colonies were analysed for expression of the 730-His clone. Only cells from large colonies over-expressed a protein recognised by anti-730A antibodies. However the protein over-expressed in different clones showed differences in molecular mass. Sequencing of two of the clones revealed that in both cases integration of an E. coli IS sequence had occurred within the sequence coding for the C terminal region of 730. The two integration events have produced in-frame fusion with 1 additional codon in the case of C1, and 12 additional codons in the case of C2 (FIG. 11). The resulting “mutant” forms of 730 have the following sequences:









730-C1 (due to an IS1 insertion - FIG. 11h)








  1
MADLAQDPFI TDNAQRQHYE PGGKYHLFGD PRGSVSDRTG



KINVIQDYTH





 51
QMGNLLIQQA NINGTIGYHT RFSGHGHEEH APFDNHAADS



ASEEKGNVDE





101
GFTVYRLNWE GHEHHPADAY DGPKGGNYPK PTGARDEYTY



HVNGTARSIK





151
LNPTDTRSIR QRISDNYSNL GSNFSDRADE ANRKMFEHNA



KLDRWGNSME





201
FINGVAAGAL NPFISAGEAL GIGDILYGTR YAIDKAAMRN



IAPLPAEGKF





251
AVIGGLGSVA GFEKNTREAV DRWIQENPNA AETVEAVFNV



AAAAKVAKLA





301
KAAKPGKAAV SGDFADSYKK KLALSDSARQ LYANAKYREA



LDIHYEDLIR





351
RKTDGSSKFI NGREIDAVTN DALIQAR*






The additional amino acid produced by the insertion is underlined.









730-C2 (due to an IS5 insertion - FIG. 11B)








  1
MADLAQDPFI TDNAQRQHYE PGGKYHLFGD PRGSVSDRTG



KINVIQDYTH





 51
QMGNLLIQQA NINGTIGYHT RFSGEGHEEH APFDNHAADS



ASEEKGNVDE





101
GFTVYRLNWE GHEHHPADAY DGPKGGNYPK PTGARDEYTY



HVNGTARSIK





151
LNPTDTRSIR QRISDNYSNL GSNFSDRADE ANRKMFEHNA



KLDRWGNSME





201
FINGVAAGAL NPFISAGEAL GIGDILYGTR YAIDKAAMRN



IAPLPAEGKF





251
AVIGGLGSVA GFEKNTREAV DRWIQENPNA AETVEAVFNV



AAAAKVAKLA





301
KAAKPGKAAV SGDFADSYKK KLALSDSARQ LYQNAKYREA



LGKVRISGEI





351

LLG*







The additional amino acids produced by the insertion are underlined.


In conclusion, intracellular expression of the 730-C1 form gives very high level of protein and has no toxic effect on the host cells, whereas the presence of the native C-terminus is toxic. These data suggest that the “intracellular toxicity” of 730 is associated with the C-terminal 65 amino acids of the protein.


Equivalent truncation of ORF29 to the first 231 or 368 amino acids has been performed, using expression with or without the leader peptide (amino acids 1-26; deletion gives cytoplasmic expression) and with or without a His-tag.


Example 22
Domains in 961

As described in example 9 above, the GST-fusion of 961 was the best-expressed in E. coli. To improve expression, the protein was divided into domains (FIG. 12).


The domains of 961 were designed on the basis of YadA (an adhesin produced by Yersinia which has been demonstrated to be an adhesin localized on the bacterial surface that forms oligomers that generate surface projection [Hoiczyk et al. (2000) EMBO J. 19:5989-99]) and are: leader peptide, head domain, coiled-coil region (stalk), and membrane anchor domain.


These domains were expressed with or without the leader peptide, and optionally fused either to C-terminal His-tag or to N-terminal GST. E. coli clones expressing different domains of 961 were analyzed by SDS-PAGE and western blot for the production and localization of the expressed protein, from over-night (o/n) culture or after 3 hours induction with IPTG. The results were:

















Total lysate
Periplasm
Supernatant
OMV



(Western
(Western
(Western
SDS-



Blot)
Blot)
Blot)
PAGE



















961 (o/n)






961 (IPTG)
+/−





961-L (o/n)
+


+


961-L (IPTG)
+


+


961c-L (o/n)






961c-L (IPTG)
+
+
+



961Δ1-L (o/n)






961Δ1-L (IPTG)
+


+









The results show that in E. coli:

    • 961-L is highly expressed and localized on the outer membrane. By western blot analysis two specific bands have been detected: one at ˜45 kDa (the predicted molecular weight) and one at ˜180 kDa, indicating that 961-L can form oligomers. Additionally, these aggregates are more expressed in the over-night culture (without IPTG induction). OMV preparations of this clone were used to immunize mice and serum was obtained. Using overnight culture (predominantly by oligomeric form) the serum was bactericidal; the IPTG-induced culture (predominantly monomeric) was not bactericidal.
    • 961Δ1-L (with a partial deletion in the anchor region) is highly expressed and localized on the outer membrane, but does not form oligomers;
    • the 961c-L (without the anchor region) is produced in soluble form and exported in the supernatant.


Titres in ELISA and in the serum bactericidal assay using His-fusions were as follows:















ELISA
Bactericidal

















961a (aa 24-268)
24397
4096


961b (aa 269-405)
7763
64


961c-L
29770
8192


961c (2996)
30774
>65536


961c (MC58)
33437
16384


961d
26069
>65536










E. coli clones expressing different forms of 961 (961, 961-L, 961Δ1-L and 961c-L) were used to investigate if the 961 is an adhesin (c.f. YadA). An adhesion assay was performed using (a) the human epithelial cells and (b) E. coli clones after either over-night culture or three hours IPTG induction. 961-L grown over-night (961Δ1-L) and IPTG-induced 961c-L (the clones expressing protein on surface) adhere to human epithelial cells.


961c was also used in hybrid proteins (see above). As 961 and its domain variants direct efficient expression, they are ideally suited as the N-terminal portion of a hybrid protein.


Example 23
Further Hybrids

Further hybrid proteins of the invention are shown below (see also FIG. 14). These are advantageous when compared to the individual proteins:









ORF46.1-741








   1
ATGTCAGATT TGGCAAACGA TTCTTTTATC CGGCAGGTTC



TCGACCGTCA





  51
GCATTTCGAA CCCGACGGGA AATACCACCT ATTCGGCAGC



AGGGGGGAAC





 101
TTGCCGAGCG CAGCGGCCAT ATCGGATTGG GAAAAATACA



AAGCCATCAG





 151
TTGGGCAACC TGATGATTCA ACAGGCGGCC ATTAAAGGAA



ATATCGGCTA





 201
CATTGTCCGC TTTTCCGATC ACGGGCACGA AGTCCATTCC



CCCTTCGACA





 251
ACCATGCCTC ACATTCCGAT TCTGATGAAG CCGGTAGTCC



CGTTGACGGA





 301
TTTAGCCTTT ACCGCATCCA TTGGGACGGA TACGAACACC



ATCCCGCCGA





 351
CGGCTATGAC GGGCCACAGG GCGGCGGCTA TCCCGCTCCC



AAAGGCGCGA





 401
GGGATATATA CAGCTACGAC ATAAAAGGCG TTGCCCAAAA



TATCCGCCTC





 451
AACCTGACCG ACAACCGCAG CACCGGACAA CGGCTTGCCG



ACCGTTTCCA





 501
CAATGCCGGT AGTATGCTGA CGCAAGGAGT AGGCGACGGA



TTCAAACGCG





 551
CCACCCGATA CAGCCCCGAG CTGGACAGAT CGGGCAATGC



CGCCGAAGCC





 601
TTCAACGGCA CTGCAGATAT CGTTAAAAAC ATCATCGGCG



CGGCAGGAGA





 651
AATTGTCGGC GCAGGCGATG CCGTGCAGGG CATAAGCGAA



GGCTCAAACA





 701
TTGCTGTCAT GCACCGCTCG GGTCTGCTTT CCACCGAAAA



CAAGATGGCG





 751
CGCATCAACG ATTTGGCAGA TATGGCGCAA CTCAAAGACT



ATGCCGCAGC





 801
AGCCATCCGC GATTGGGCAG TCCAAAACCC CAATGCCGCA



CAAGGCATAG





 851
AAGCCGTCAG CAATATCTTT ATGGCAGCCA TCCCCATCAA



AGGGATTGGA





 901
GCTGTTCGGG GAAAATACGG CTTGGGCGGC ATCACGGCAC



ATCCTATCAA





 951
GCGGTCGCAG ATGGGCGCGA TCGCATTGCC GAAAGGGAAA



TCCGCCGTCA





1001
GCGACAATTT TGCCGATGCG GCATACGCCA AATACCCGTC



CCCTTACCAT





1051
TCCCGAAATA TCCGTTCAAA CTTGGAGCAG CGTTACGGCA



AAGAAAACAT





1101
CACCTCCTCA ACCGTGCCGC CGTCAAACGG CAAAAATGTC



AAACTGGCAG





1151
ACCAACGCCA CCCGAAGACA GGCGTACCGT TTGACGGTAA



AGGGTTTCCG





1201
AATTTTGAGA AGCACGTGAA ATATGATACG GGATCCGGAG



GGGGTGGTGT





1251
CGCCGCCGAC ATCGGTGCGG GGCTTGCCGA TGCACTAACC



GCACCGCTCG





1301
ACCATAAAGA CAAAGGTTTG CAGTCTTTGA CGCTGGATCA



GTCCGTCAGG





1351
AAAAACGAGA AACTGAAGCT GGCGGCACAA GGTGCGGAAA



AAACTTATGG





1401
AAACGGTGAC AGCCTCAATA CGGGCAAATT GAAGAACGAC



AAGGTCAGCC





1451
GTTTCGACTT TATCCGCCAA ATCGAAGTGG ACGGGCAGCT



CATTACCTTG





1501
GAGAGTGGAG AGTTCCAAGT ATACAAACAA AGCCATTCCG



CCTTAACCGC





1551
CTTTCAGACC GAGCAAATAC AAGATTCGGA GCATTCCGGG



AAGATGGTTG





1601
CGAAACGCCA GTTCAGAATC GGCGACATAG CGGGCGAACA



TACATCTTTT





1651
GACAAGCTTC CCGAAGGCGG CAGGGCGACA TATCGCGGGA



CGGCGTTCGG





1701
TTCAGACGAT GCCGGCGGAA AACTGACCTA CACCATAGAT



TTCGCCGCCA





1751
AGCAGGGAAA CGGCAAAATC GAACATTTGA AATCGCCAGA



ACTCAATGTC





1801
GACCTGGCCG CCGCCGATAT CAAGCCGGAT GGAAAACGCC



ATGCCGTCAT





1851
CAGCGGTTCC GTCCTTTACA ACCAAGCCGA GAAAGGCAGT



TACTCCCTCG





1901
GTATCTTTGG CGGAAAAGCC CAGGAAGTTG CCGGCAGCGC



GGAAGTGAAA





1951
ACCGTAAACG GCATACGCCA TATCGGCCTT GCCGCCAAGC



AACTCGAGCA





2001
CCACCACCAC CACCACTGA





   1
MSDLANDSFI RQVLDRQHFE PDGKYHLFGS RGELAERSGH



IGLGKIQSHQ





  51
LGNLMIQQAA IKGNIGYIVR FSDHGHEVHS PFDNHASHSD



SDEAGSPVDG





 101
FSLYRIHWDG YEHHPADGYD GPQGGGYPAP KGARDIYSYD



IKGVAQNIRL





 151
NLTDNRSTGQ RLADRFHNAG SMLTQGVGDG FKRATRYSPE



LDRSGNAAEA





 201
FNGTADIVKN IIGAAGEIVG AGDAVQGISE GSNIAVMHGL



GLLSTENKMA





 251
RINDLADMAQ LKDYAAAAIR DWAVQNPNAA QGIEAVSNIF



MAAIPIKGIG





 301
AVRGKYGLGG ITAHPIKRSQ MGAIALPKGK SAVSDNFADA



AYAKYPSPYH





 351
SRNIRSNLEQ RYGKENITSS TVPPSNGKNV KLADQRHPKT



GVPFDGKGFP





 401
NFEKHVKYDT GSGGGGVAAD IGAGLADALT APLDHKDKGL



QSLTLDQSVR





 451
KNEKLKLAAQ GAEKTYGNGD SLNTGKLKND KVSRFDFIRQ



IEVDGQLITL





 501
ESGEFQVYKQ SHSALTAFQT EQIQDSEHSG RMVAKRQFRI



GDIAGEHTSF





 551
DKLPEGGRAT YRGTAFGSDD AGGKLTYTID FAAKQGNGKI



EHLKSPELNV





 601
DLAAADIKPD GKRHAVISGS VLYNQAEKGS YSLGIFGGKA



QEVAGSAEVK





 651
TVNGIRHIGL AAKQLEHHHH HH*










ORF46.1-961








   1
ATGTCAGATT TGGCAAACGA TTCTTTTATC CGGCAGGTTC



TCGACCGTCA





  51
GCATTTCGAA CCCGACGGGA AATACCACCT ATTCGGCAGC



AGGGGGGAAC





 101
TTGCCGAGCG CAGCGGCCAT ATCGGATTGG GAAAAATACA



AAGCCATCAG





 151
TTGGGCAACC TGATGATTCA ACAGGCGGCC ATTAAAGGAA



ATATCGGCTA





 201
CATTGTCCGC TTTTCCGATC ACGGGCACGA AGTCCATTCC



CCCTTCGACA





 251
ACCATGCCTC ACATTCCGAT TCTGATGAAG CCGGTAGTCC



CGTTGACGGA





 301
TTTAGCCTTT ACCGCATCCA TTGGGACGGA TACGAACACC



ATCCCGCCGA





 351
CGGCTATGAC GGGCCACAGG GCGGCGGCTA TCCCGCTCCC



AAAGGCGCGA





 401
GGGATATATA CAGCTACGAC ATAAAAGGCG TTGCCCAAAA



TATCCGCCTC





 451
AACCTGACCG ACAACCGCAG CACCGGACAA CGGCTTGCCG



ACCGTTTCCA





 501
CAATGCCGGT AGTATGCTGA CGCAAGGAGT AGGCGACGGA



TTCAAACGCG





 551
CCACCCGATA CAGCCCCGAG CTGGACAGAT CGGGCAATGC



CGCCGAAGCC





 601
TTCAACGGCA CTGCAGATAT CGTTAAAAAC ATCATCGGCG



CGGCAGGAGA





 651
AATTGTCGGC GCAGGCGATG CCGTGCAGGG CATAAGCGAA



GGCTCAAACA





 701
TTGCTGTCAT GCACGGCTTG GGTCTGCTTT CCACCGAAAA



CAAGATGGCG





 751
CGCATCAACG ATTTGGCAGA TATGGCGCAA CTCAAAGACT



ATGCCGCAGC





 801
AGCCATCCGC GATTGGGCAG TCCAAAACCC CAATGCCGCA



CAAGGCATAG





 851
AAGCCGTCAG CAATATCTTT ATGGCAGCCA TCCCCATCAA



AGGGATTGGA





 901
GCTGTTCGGG GAAAATACGG CTTGGGCGGC ATCACGGCAC



ATCCTATCAA





 951
GCGGTCGCAG ATGGGCGCGA TCGCATTGCC GAAAGGGAAA



TCCGCCGTCA





1001
GCGACAATTT TGCCGATGCG GCATACGCCA AATACCCGTC



CCCTTACCAT





1051
TCCCGAAATA TCCGTTCAAA CTTGGAGCAG CGTTACGGCA



AAGAAAACAT





1101
CACCTCCTCA ACCGTGCCGC CGTCAAACGG CAAAAATGTC



AAACTGGCAG





1151
ACCAACGCCA CCCGAAGACA GGCGTACCGT TTGACGGTAA



AGGGTTTCCG





1201
AATTTTGAGA AGCACGTGAA ATATGATACG GGATCCGGAG



GAGGAGGAGC





1251
CACAAACGAC GACGATGTTA AAAAAGCTGC CACTGTGGCC



ATTGCTGCTG





1301
CCTACAACAA TGGCCAAGAA ATCAACGGTT TCAAAGCTGG



AGAGACCATC





1351
TACGACATTG ATGAAGACGG CACAATTACC AAAAAAGACG



CAACTGCAGC





1401
CGATGTTGAA GCCGACGACT TTAAAGGTCT GGGTCTGAAA



AAAGTCGTGA





1451
CTAACCTGAC CAAAACCGTC AATGAAAACA AACAAAACGT



CGATGCCAAA





1501
GTAAAAGCTG CAGAATCTGA AATAGAAAAG TTAACAACCA



AGTTAGCAGA





1551
CACTGATGCC GCTTTAGCAG ATACTGATGC CGCTCTGGAT



GCAACCACCA





1601
ACGCCTTGAA TAAATTGGGA GAAAATATAA CGACATTTGC



TGAAGAGACT





1651
AAGACAAATA TCGTAAAAAT TGATGAAAAA TTAGAAGCCG



TGGCTGATAC





1701
CGTCGACAAG CATGCCGAAG CATTCAACGA TATCGCCGAT



TCATTGGATG





1751
AAACCAACAC TAAGGCAGAC GAAGCCGTCA AAACCGCCAA



TGAAGCCAAA





1801
CAGACGGCCG AAGAAACCAA ACAAAACGTC GATGCCAAAG



TAAAAGCTGC





1851
AGAAACTGCA GCAGGCAAAG CCGAAGCTGC CGCTGGCACA



GCTAATACTG





1901
CAGCCGACAA GGCCGAAGCT GTCGCTGCAA AAGTTACCGA



CATCAAAGCT





1951
GATATCGCTA CGAACAAAGA TAATATTGCT AAAAAAGCAA



ACAGTGCCGA





2001
CGTGTACACC AGAGAAGAGT CTGACAGCAA ATTTGTCAGA



ATTGATGGTC





2051
TGAACGCTAC TACCGAAAAA TTGGACACAC GCTTGGCTTC



TGCTGAAAAA





2101
TCCATTGCCG ATCACGATAC TCGCCTGAAC GGTTTGGATA



AAACAGTGTC





2151
AGACCTGCGC AAAGAAACCC GCCAAGGCCT TGCAGAACAA



GCCGCGCTCT





2201
CCGGTCTGTT CCAACCTTAC AACGTGGGTC GGTTCAATGT



AACGGCTGCA





2251
GTCGGCGGCT ACAAATCCGA ATCGGCAGTC GCCATCGGTA



CCGGCTTCCG





2301
CTTTACCGAA AACTTTGCCG CCAAAGCAGG CGTGGCAGTC



GGCACTTCGT





2351
CCGGTTCTTC CGCAGCCTAC CATGTCGGCG TCAATTACGA



GTGGCTCGAG





2401
CACCACCACC ACCACCACTG A





   1
MSDLANDSFI RQVLDRQHFE PDGKYHLFGS RGELAERSGH



IGLGKIQSHQ





  51
LGNLMIQQAA IKGNIGYIVR FSDHGHEVHS PFDNHASHSD



SDEAGSPVDG





 101
FSLYRIHWDG YEHHPADGYD GPQGGGYPAP KGARDIYSYD



IKGVAQNIRL





 151
NLTDNRSTGQ RLADRFHNAG SMLTQGVGDG FKRATRYSPE



LDRSGNAAEA





 201
FNGTADIVKN IIGAAGEIVG AGDAVQGISE GSNIAVMHGL



GLLSTENKMA





 251
RINDLADMAQ LKDYAAAAIR DWAVQNPNAA QGIEAVSNIF



MAAIPIKGIG





 301
AVRGKYGLGG ITAHPIKRSQ MGAIALPKGK SAVSDNFADA



AYAKYPSPYH





 351
SRNIRSNLEQ RYGKENITSS TVPPSNGKNV KLADQRHPKT



GVPFDGKGFP





 401
NFEKHVKYDT GSGGGGATND DDVKKAATVA IAAAYNNGQE



INGFKAGETI





 451
YDIDEDGTIT KKDATAADVE ADDFKGLGLK KVVTNLTKTV



NEMKQNVDAK





 501
VKAAESEIEK LTTKLADTDA ALADTDAALD ATTNALNKLG



ENITTFAEET





 551
KTNIVKIDEK LEAVADTVDK HAEAFNDIAD SLDETNTKAD



EAVKTANEAK





 601
QTAEETKQNV DAKVKAAETA AGKAEAAAGT ANTAADKAEA



VAAKVTDIKA





 651
DIATNKDNIA KKANSADVYT REESDSKFVR IDGLNATTEK



LDTRLASAEK





 701
SIADHDTRLN GLDKTVSDLR RETRQGLAEQ AALSGLFQPY



NVGRFNVTAA





 751
VGGYKSESAV AIGTGFRFTE NWAAKAGVAV GTSSGSSAAY



HVGVNYEWLE





 801
HHHHHH*










ORF46.1-961C








   1
ATGTCAGATT TGGCAAACGA TTCTTTTATC CGGCAGGTTC



TCGACCGTCA





  51
GCATTTCGAA CCCGACGGGA AATACCACCT ATTCGGCAGC



AGGGGGGAAC





 101
TTGCCGAGCG CAGCGGCCAT ATCGGATTGG GAAAAATACA



AAGCCATCAG





 151
TTGGGCAACC TGATGATTCA ACAGGCGGCC ATTAAAGGAA



ATATCGGCTA





 201
CATTGTCCGC TTTTCCGATC ACGGGCACGA AGTCCATTCC



CCCTTCGACA





 251
ACCATGCCTC ACATTCCGAT TCTGATGAAG CCGGTAGTCC



CGTTGACGGA





 301
TTTAGCCTTT ACCGCATCCA TTGGGACGGA TACGAACACC



ATCCCGCCGA





 351
CGGCTATGAC GGGCCACAGG GCGGCGGCTA TCCCGCTCCC



AAAGGCGCGA





 401
GGGATATATA CAGCTACGAC ATAAAAGGCG TTGCCCAAAA



TATCCGCCTC





 451
AACCTGACCG ACAACCGCAG CACCGGACAA CGGCTTGCCG



ACCGTTTCCA





 501
CAATGCCGGT AGTATGCTGA CGCAAGGAGT AGGCGACGGA



TTCAAACGCG





 551
CCACCCGATA CAGCCCCGAG CTGGACAGAT CGGGCAATGC



CGCCGAAGCC





 601
TTCAACGGCA CTGCAGATAT CGTTAAAAAC ATCATCGGCG



CGGCAGGAGA





 651
AATTGTCGGC GCAGGCGATG CCGTGCAGGG CATAAGCGAA



GGCTCAAACA





 701
TTGCTGTCAT GCACGGCTTG GGTCTGCTTT CCACCGAAAA



CAAGATGGCG





 751
CGCATCAACG ATTTGGCAGA TATGGCGCAA CTCAAAGACT



ATGCCGCAGC





 801
AGCCATCCGC GATTGGGCAG TCCAAAACCC CAATGCCGCA



CAAGGCATAG





 851
AAGCCGTCAG CAATATCTTT ATGGCAGCCA TCCCCATCAA



AGGGATTGGA





 901
GCTGTTCGGG GAAAATACGG CTTGGGCGGC ATCACGGCAC



ATCCTATCAA





 951
GCGGTCGCAG ATGGGCGCGA TCGCATTGCC GAAAGGGAAA



TCCGCCGTCA





1001
GCGACAATTT TGCCGATGCG GCATACGCCA AATACCCGTC



CCCTTACCAT





1051
TCCCGAAATA TCCGTTCAAA CTTGGAGCAG CGTTACGGCA



AAGAAAACAT





1101
CACCTCCTCA ACCGTGCCGC CGTCAAACGG CAAAAATGTC



AAACTGGCAG





1151
ACCAACGCCA CCCGAAGACA GGCGTACCGT TTGACGGTAA



AGGGTTTCCG





1201
AATTTTGAGA AGCACGTGAA ATATGATACG GGATCCGGAG



GAGGAGGAGC





1251
CACAAACGAC GACGATGTTA AAAAAGCTGC CACTGTGGCC



ATTGCTGCTG





1301
CCTACAACAA TGGCCAAGAA ATCAACGGTT TCAAAGCTGG



AGAGACCATC





1351
TACGACATTG ATGAAGACGG CACAATTACC AAAAAAGACG



CAACTGCAGC





1401
CGATGTTGAA GCCGACGACT TTAAAGGTCT GGGTCTGAAA



AAAGTCGTGA





1451
CTAACCTGAC CAAAACCGTC AATGAAAACA AACAAAACGT



CGATGCCAAA





1501
GTAAAAGCTG CAGAATCTGA AATAGAAAAG TTAACAACCA



AGTTAGCAGA





1551
CACTGATGCC GCTTTAGCAG ATACTGATGC CGCTCTGGAT



GCAACCACCA





1601
ACGCCTTGAA TAAATTGGGA GAAAATATAA CGACATTTGC



TGAAGAGACT





1651
AAGACAAATA TCGTAAAAAT TGATGAAAAA TTAGAAGCCG



TGGCTGATAC





1701
CGTCGACAAG CATGCCGAAG CATTCAACGA TATCGCCGAT



TCATTGGATG





1751
AAACCAACAC TAAGGCAGAC GAAGCCGTCA AAACCGCCAA



TGAAGCCAAA





1801
CAGACGGCCG AAGAAACCAA ACAAAACGTC GATGCCAAAG



TAAAAGCTGC





1851
AGAAACTGCA GCAGGCAAAG CCGAAGCTGC CGCTGGCACA



GCTAATACTG





1901
CAGCCGACAA GGCCGAAGCT GTCGCTGCAA AAGTTACCGA



CATCAAAGCT





1951
GATATCGCTA CGAACAAAGA TAATATTGCT AAAAAAGCAA



ACAGTGCCGA





2001
CGTGTACACC AGAGAAGAGT CTGACAGCAA ATTTGTCAGA



ATTGATGGTC





2051
TGAACGCTAC TACCGAAAAA TTGGACACAC GCTTGGCTTC



TGCTGAAAAA





2101
TCCATTGCCG ATCACGATAC TCGCCTGAAC GGTTTGGATA



AAACAGTGTC





2151
AGACCTGCGC AAAGAAACCC GCCAAGGCCT TGCAGAACAA



GCCGCGCTCT





2201
CCGGTCTGTT CCAACCTTAC AACGTGGGTC TCGAGCACCA



CCACCACCAC





2251
CACTGA





   1
MSDLANDSFI RQVLDRQHFE PDGKYHLFGS RGELAERSGH



IGLGKIQSHQ





  51
LGNLMIQQAA IKGNIGYIVR FSDHGHEVHS PFDNHASHSD



SDEAGSPVDG





 101
FSLYRIHWDG YEHHPADGYD GPQGGGYPAP KGARDIYSYD



IRGVAQNIRL





 151
NLTDNRSTGQ RLADRFHNAG SMLTQGVGDG FKRATRYSPE



LDRSGNAAEA





 201
FNGTADIVKN IIGAAGEIVG AGDAVQGISE GSNIAVMHGL



GLLSTENKMA





 251
RINDLADMAQ LKDYAAAAIR DWAVQNPNAA QGIEAVSNIF



MAAIPIKGIG





 301
AVRGKYGLGG ITAHPIRRSQ MGAIALPKGK SAVSDNFADA



AYAKYPSPYH





 351
SRNIRSNLEQ RYGKENITSS TVPPSNGKNV KLADQRHPKT



GVPFDGKGFP





 401
NFEKHVKYDT GSGGGGATND DDVKKAATVA IAAAYNNGQE



INGFKAGETI





 451
YDIDEDGTIT KKDATAADVE ADDFKGLGLK KVVTNLTKTV



NENKQNVDAK





 501
VKAAESEIEK LTTKLADTDA ALADTDAALD ATTNALNKLG



ENITTFAEET





 551
KTNIVKIDEK LEAVADTVDK HAEAFNDIAD SLDETNTKAD



EAVKTANEAK





 601
QTAEETKQNV DAKVKAAETA AGKAEAAAGT ANTAADKAEA



VAAKVTDIKA





 651
DIATNKDNIA KKANSADVYT REESDSKFVR IDGLNATTEK



LDTRLAHAEK





 701
SIADHDTRLN GLDKTVSDLR KETRQGLAEQ AALSGLFQPY



NVGLEHHHHH





 751
H*










961-ORF46.1








   1
ATGGCCACAA ACGACGACGA TGTTAAAAAA GCTGCCACTG



TGGCCATTGC





  51
TGCTGCCTAC AACAATGGCC AAGAAATCAA CGGATTCAAA



GCTGGAGAGA





 101
CCATCTACGA CATTGATGAA GACGGCACAA TTACCAAAAA



AGACGCAACT





 151
GCAGCCGATG TTGAAGCCGA CGACTTTAAA GGTCTGGGTC



TGAAAAAAGT





 201
CGTGACTAAC CTGACCAAAA CCGTCAATGA AAACAAACAA



AACGTCGATG





 251
CCAAAGTAAA AGCTGCAGAA TCTGAAATAG AAAAGTTAAC



AACCAAGTTA





 301
GCAGACACTG ATGCCGCTTT AGCAGATACT GATGCCGCTC



TGGATGCAAC





 351
CACCAACGCC TTGAATAAAT TGGGAGAAAA TATAACGACA



TTTGCTGAAG





 401
AGACTAAGAC AAATATCGTA AAAATTGATG AAAAATTAGA



AGCCGTGGCT





 451
GATACCGTCG ACAAGCATGC CGAAGCATTC AACGATATCG



CCGATTCATT





 501
GGATGAAACC AACACTAAGG CAGACGAAGC CGTCAAAACC



GCCAATGAAG





 551
CCAAACAGAC GGCCGAAGAA ACCAAACAAA ACGTCGATGC



CAAAGTAAAA





 601
GCTGCAGAAA CTGCAGCAGG CAAAGCCGAA GCTGCCGCTG



GCACAGCTAA





 651
TACTGCAGCC GACAAGGCCG AAGCTGTCGC TGCAAAAGTT



ACCGACATCA





 701
AAGCTGATAT CGCTACGAAC AAAGATAATA TTGCTAAAAA



AGCAAACAGT





 751
GCCGACGTGT ACACCAGAGA AGAGTCTGAC AGCAAATTTG



TCAGAATTGA





 801
TGGTCTGAAC GCTACTACCG AAAAATTGGA CACACGCTTG



GCTTCTGCTG





 851
AAAAATCCAT TGCCGATCAC GATACTCGCC TGAACGGTTT



GGATAAAACA





 901
GTGTCAGACC TGCGCAAAGA AACCCGCCAA GGCCTTGCAG



AACAAGCCGC





 951
GCTCTCCGGT CTGTTCCAAC CTTACAACGT GGGTCGGTTC



AATGTAACGG





1001
CTGCAGTCGG CGGCTACAAA TCCGAATCGG CAGTCGCCAT



CGGTACCGGC





1051
TTCCGCTTTA CCGAAAACTT TGCCGCCAAA GCAGGCGTGG



CAGTCGGCAC





1101
TTCGTCCGGT TCTTCCGCAG CCTACCATGT CGGCGTCAAT



TACGAGTGGG





1151
GATCCGGAGG AGGAGGATCA GATTTGGCAA ACGATTCTTT



TATCCGGCAG





1201
GTTCTCGACC GTCAGCATTT CGAACCCGAC GGGAAATACC



ACCTATTCGG





1251
CAGCAGGGGG GAACTTGCCG AGCGCAGCGG CCATATCGGA



TTGGGAAAAA





1301
TACAAAGCCA TCAGTTGGGC AACCTGATGA TTCAACAGGC



GGCCATTAAA





1351
GGAAATATCG GCTACATTGT CCGCTTTTCC GATCACGGGC



ACGAAGTCCA





1401
TTCCCCCTTC GACAACCATG CCTCACATTC CGATTCTGAT



GAAGCCGGTA





1451
GTCCCGTTGA CCGATTTAGC CTTTACCGCA TCCATTGGGA



CGGATACGAA





1501
CACCATCCCG CCGACGGCTA TGACGGGCCA CAGGGCGGCG



GCTATCCCGC





1551
TCCCAAAGGC GCGAGGGATA TATACAGCTA CGACATAAAA



GGCGTTGCCC





1601
AAAATATCCG CCTCAACCTG ACCGACAACC GCAGCACCGG



ACAACGGCTT





1651
GCCGACCGTT TCCACAATGC CGGTAGTATG CTGACGCAAG



GAGTAGGCGA





1701
CGGATTCAAA CGCGCCACCC GATACAGCCC CGAGCTGGAC



AGATCGGGCA





1751
ATGCCGCCGA AGCCTTCAAC GGCACTGCAG ATATCGTTAA



AAACATCATC





1801
GGCGCGGCAG GAGAAATTGT CGGCGCAGGC GATGCCGTGC



AGGGCATAAG





1851
CGAAGGCTCA AACATTGCTG TCATGCACGG CTTGGGTCTG



CTTTCCACCG





1901
AAAACAAGAT GGCGCGCATC AACGATTTGG CAGATATGGC



GCAACTCAAA





1951
GACTATGCCG CAGCAGCCAT CCGCGATTGG GCAGTCCAAA



ACCCCAATGC





2001
CGCACAAGGC ATAGAAGCCG TCAGCAATAT CTTTATGGCA



GCCATCCCCA





2051
TCAAAGGGAT TGGAGCTGTT CGGGGAAAAT ACGGCTTGGG



CGGCATCACG





2101
GCACATCCTA TCAAGCGGTC GCAGATGGGC GCGATCGCAT



TGCCGAAAGG





2151
GAAATCCGCC GTCAGCGACA ATTTTGCCGA TGCGGCATAC



GCCAAATACC





2201
CGTCCCCTTA CCATTCCCGA AATATCCGTT CAAACTTGGA



GCAGCGTTAC





2251
GGCAAAGAAA ACATCACCTC CTCAACCGTG CCGCCGTCAA



ACGGCAAAAA





2301
TGTCAAACTG GCAGACCAAC GCCACCCGAA GACAGGCGTA



CCGTTTGACG





2351
GTAAAGGGTT TCCGAATTTT GAGAAGCACG TGAAATATGA



TACGCTCGAG





2401
CACCACCACC ACCACCACTG A





   1
MATNDDDVKK AATVAIAAAY NNGQEINGFK AGETIYDIDE



DGTITKKDAT





  51
AADVEADDFK GLGLKKVVTN LTKTVNENKQ NVDAKVKAAE



SEIEKLTTKL





 101
ADTDAALADT DAALDATTNA LNKLGENITT FAEETKTNIV



KIDEKLEAVA





 151
DTVDKHAEAF NDIADSLDET NTKADEAVKT ANEAKQTAEE



TKQNVDAKVK





 201
AAETAAGKAE AAAGTANTAA DKAEAVAAKV TDIKADIATN



KDNIAKKANS





 251
ADVYTREESD SKFVRIDGLN ATTEKLDTRL ASAEKSIADH



DTRLNGLDKT





 301
VSDLRKETRQ GLAEQAALSG LFQPYNVGRF NVTAAVGGYK



SESAVAIGTG





 351
FRFTENFAAK AGVAVGTSSG SSAAYHVGVN YEWGSGGGGS



DLANDSFIRQ





 401
VLDRQHFEPD GKYHLFGSRG ELAERSGHIG LGKIQSHQLG



NLMIQQAAIK





 451
GNIGYIVRFS DHGHEVHSPF DNHASHSDSD EAGSPVDGFS



LYRIHWDGYE





 501
HHPADGYDGP QGGGYPAPKG ARDIYSYDIK GVAQNIRLNL



TDNRSTGQRL





 551
ADRFHNAGSM LTQGVGDGFK RATRYSPELD RSGNAAEAFN



GTADIVKNII





 601
GAAGEIVGAG DAVQGISEGS NIAVMHGLGL LSTENKMARI



NDLADMAQLK





 651
DYAAAAIRDW AVQNPNAAQG IEAVSNIFMA AIPIKGIGAV



RGKYGLGGIT





 701
AHPIKRSQMG AIALPKGKSA VSDNFADAAY AKYPSPYHSR



NIRSNLEQRY





 751
GKENITSSTV PPSNGKNVKL ADQRHPKTGV PFDGKGFPNF



EKHVKYDTLE





 801
HHHHHH*










961-741








   1
ATGGCCACAA ACGACGACGA TGTTAAAAAA GCTGCCACTG



TGGCCATTGC





  51
TGCTGCCTAC AACAATGGCC AAGAAATCAA CGGTTTCAAA



GCTGGAGAGA





 101
CCATCTACGA CATTGATGAA GACGGCACAA TTACCAAAAA



AGACGCAACT





 151
GCAGCCGATG TTGAAGCCGA CGACTTTAAA GGTCTGGGTC



TGAAAAAAGT





 201
CGTGACTAAC CTGACCAAAA CCGTCAATGA AAACAAACAA



AACGTCGATG





 251
CCAAAGTAAA AGCTGCAGAA TCTGAAATAG AAAAGTTAAC



AACCAAGTTA





 301
GCAGACACTG ATGCCGCTTT AGCAGATACT GATGCCGCTC



TGGATGCAAC





 351
CACCAACGCC TTGAATAAAT TGGGAGAAAA TATAACGACA



TTTGCTGAAG





 401
AGACTAAGAC AAATATCGTA AAAATTGATG AAAAATTAGA



AGCCGTGGCT





 451
GATACCGTCG ACAAGCATGC CGAAGCATTC AACGATATCG



CCGATTCATT





 501
GGATGAAACC AACACTAAGG CAGACGAAGC CGTCAAAACC



GCCAATGAAG





 551
CCAAACAGAC GGCCGAAGAA ACCAAACAAA ACGTCGATGC



CAAAGTAAAA





 601
GCTGCAGAAA CTGCAGCAGG CAAAGCCGAA GCTGCCGCTG



GCACAGCTAA





 651
TACTGCAGCC GACTATGCCG AAGCTGTCGC TGCAAAAGTT



ACCGACATCA





 701
AAGCTGATAT CGCTACGAAC AAAGATAATA TTGCTAAAAA



AGCAAACAGT





 751
GCCGACGTGT ACACCAGAGA AGAGTCTGAC AGCAAATTTG



TCAGAATTGA





 801
TGGTCTGAAC GCTACTACCG AAAAATTGGA CACACGCTTG



GCTTCTGCTG





 851
AAAAATCCAT TGCCGATCAC GATACTCGCC TGAACGGTTT



GGATAAAACA





 901
GTGTCAGACC TGCGCAAAGA AACCCGCCAA GGCCTTGCAG



AACAAGCCGC





 951
GCTCTCCGGT CTGTTCCAAC CTTACAACGT GGGTCGGTTC



AATGTAACGG





1001
CTGCAGTCGG CGGCTACAAA TCCGAATCGG CAGTCGCCAT



CGGTACCGGC





1051
TTCCGCTTTA CCGAAAACTT TGCCGCCAAA GCAGGCGTGG



CAGTCGGCAC





1101
TTCGTCCGGT TCTTCCGCAG CCTACCATGT CGGCGTCAAT



TACGAGTGGG





1151
GATCCGGAGG GGGTGGTGTC GCCGCCGACA TCGGTGCGGG



GCTTGCCGAT





1201
GCACTAACCG CACCGCTCGA CCATAAAGAC AAAGGTTTGC



AGTCTTTGAC





1251
GCTGGATCAG TCCGTCAGGA AAAACGAGAA ACTGAAGCTG



GCGGCACAAG





1301
GTGCGGAAAA AACTTATGGA AACGGTGACA GCCTCAATAC



GGGCAAATTG





1351
AAGAACGACA AGGTCAGCCG TTTCGACTTT ATCCGCCAAA



TCGAAGTGGA





1401
CGGGCAGCTC ATTACCTTGG AGAGTGGAGA GTTCCAAGTA



TACAAACAAA





1451
GCCATTCCGC CTTAACCGCC TTTCAGACCG AGCAAATACA



AGATTCGGAG





1501
CATTCCGGGA AGATGGTTGC GAAACGCCAG TTCAGAATCG



GCGACATAGC





1551
GGGCGAACAT ACATCTTTTG ACAAGCTTCC CGAAGGCGGC



AGGGCGACAT





1601
ATCGCGGGAC GGCGTTCGGT TCAGACGATG CCGGCGGAAA



ACTGACCTAC





1651
ACCATAGATT TCGCCGCCAA GCAGGGAAAC GGCAAAATCG



AACATTTGAA





1701
ATCGCCAGAA CTCAATGTCG ACCTGGCCGC CGCCGATATC



AAGCCGGATG





1751
GAAAACGCCA TGCCGTCATC AGCGGTTCCG TCCTTTACAA



CCAAGCCGAG





1801
AAAGGCAGTT ACTCCCTCGG TATCTTTGGC GGAAAAGCCC



AGGAAGTTGC





1851
CGGCAGCGCG GAAGTGAAAA CCGTAAACGG CATACGCCAT



ATCGGCCTTG





1901
CCGCCAAGCA ACTCGAGCAC CACCACCACC ACCACTGA





   1
MATNDDDVKK AATVAIAAAY NNGQEINGFK AGETIYDIDE



DGTITKKDAT





  51
AADVEADDFK GLGLKKVVTN LTKTVNENKQ NVDAKVKAAE



SEIEKLTTKL





 101
ADTDAALADT DAALDATTNA LNKLGENITT FAEETKTNIV



KIDEKLEAVA





 151
DTVDKHAEAF NDIADSLDET NTKADEAVKT ANEAKQTAEE



TKQNVDAKVK





 201
AAETAAGKAE AAAGTANTAA DKAEAVAAKV TDIKADIATN



KDNIAKKANS





 251
ADVYTREESD SKFVRIDGLN ATTEKLDTRL ASAEKSIADH



DTRLNGLDKT





 301
VSDLRKETRQ GLAEQAALSG LFQPYNVGRF NVTAAVGGYK



SESAVAIGTG





 351
FRFTENFAAK AGVAVGTSSG SSAAYHVGVN YEWGSGGGGV



AADIGAGLAD





 401
ALTAPLDHKD KGLQSLTLDQ SVRKNEKLKL AAQGAEKTYG



NGDSLNTGKL





 451
KNDKVSRFDF IRQIEVDGQL ITLESGEFQV YKQSHSALTA



FQTEQIQDSE





 501
HSGKMVAKRQ FRIGDIAGEH TSFDKLPEGG RATYRGTAFG



SDDAGGKLTY





 551
TIDFAAKQGN GKIEHLKSPE LNVDLAAADI KPDGKRHAVI



SGSVLYNQAE





 601
KGSYSLGIFG GKAQEVAGSA EVKTVNGIRH IGLAAKQLEH



HHHHH*










961-983








   1
ATGGCCACAA ACGACGACGA TGTTAAAAAA GCTGCCACTG



TGGCCATTGC





  51
TGCTGCCTAC AACAATGGCC AAGAAATCAA CGGTTTCAAA



GCTGGAGAGA





 101
CCATCTACGA CATTGATGAA GACGGCACAA TTACCAAAAA



AGACGCAACT





 151
GCAGCCGATG TTGAAGCCGA CGACTTTAAA GGTCTGGGTC



TGAAAAAAGT





 201
CGTGACTAAC CTGACCAAAA CCGTCAATGA AAACAAACAA



AACGTCGATG





 251
CCAAAGTAAA AGCTGCAGAA TCTGAAATAG AAAAGTTAAC



AACCAAGTTA





 301
GCAGACACTG ATGCCGCTTT AGCAGATACT GATGCCGCTC



TGGATGCAAC





 351
CACCAACGCC TTGAATAAAT TGGGAGAAAA TATAACGACA



TTTGCTGAAG





 401
AGACTAAGAC AAATATCGTA AAAATTGATG AAAAATTAGA



AGCCGTGGCT





 451
GATACCGTCG ACAAGCATGC CGAAGCATTC AACGATATCG



CCGATTCATT





 501
GGATGAAACC AACACTAAGG CAGACGAAGC CGTCAAAACC



GCCAATGAAG





 551
CCAAACAGAC GGCCGAAGAA ACCAAACAAA ACGTCGATGC



CAAAGTAAAA





 601
GCTGCAGAAA CTGCAGCAGG CAAAGCCGAA GCTGCCGCTG



GCACAGCTAA





 651
TACTGCAGCC GACAAGGCCG AAGCTGTCGC TGCAAAAGTT



ACCGACATCA





 701
AAGCTGATAT CGCTACGAAC AAAGATAATA TTGCTAAAAA



AGCAAACAGT





 751
GCCGACGTGT ACACCAGAGA AGAGTCTGAC AGCAAATTTG



TCAGAATTGA





 801
TGGTCTGAAC GCTACTACCG AAAAATTGGA CACACGCTTG



GCTTCTGCTG





 851
AAAAATCCAT TGCCGATCAC GATACTCGCC TGAACGGTTT



GGATAAAACA





 901
GTGTCAGACC TGCGCAAAGA AACCCGCCAA GGCCTTGCAG



AACAAGCCGC





 951
GCTCTCCGGT CTGTTCCAAC CTTACAACGT GGGTCGGTTC



AATGTAACGG





1001
CTGCAGTCGG CGGCTACAAA TCCGAATCGG CAGTCGCCAT



CGGTACCGGC





1051
TTCCGCTTTA CCGAAAACTT TGCCGCCAAA GCAGGCGTGG



CAGTCGGCAC





1101
TTCGTCCGGT TCTTCCGCAG CCTACCATGT CGGCGTCAAT



TACGAGTGGG





1151
GATCCGGCGG AGGCGGCACT TCTGCGCCCG ACTTCAATGC



AGGCGGTACC





1201
GGTATCGGCA GCAACAGCAG AGCAACAACA GCGAAATCAG



CAGCAGTATC





1251
TTACGCCGGT ATCAAGAACG AAATGTGCAA AGACAGAAGC



ATGCTCTGTG





1301
CCGGTCGGGA TGACGTTGCG GTTACAGACA GGGATGCCAA



AATCAATGCC





1351
CCCCCCCCGA ATCTGCATAC CGGAGACTTT CCAAACCCAA



ATGACGCATA





1401
CAAGAATTTG ATCAACCTCA AACCTGCAAT TGAAGCAGGC



TATACAGGAC





1451
GCGGGGTAGA GGTAGGTATC GTCGACACAG GCGAATCCGT



CGGCAGCATA





1501
TCCTTTCCCG AACTGTATGG CAGAAAAGAA CACGGCTATA



ACGAAAATTA





1551
CAAAAACTAT ACGGCGTATA TGCGGAAGGA AGCGCCTGAA



GACGGAGGCG





1601
GTAAAGACAT TGAAGCTTCT TTCGACGATG AGGCCGTTAT



AGAGACTGAA





1651
GCAAAGCCGA CGGATATCCG CCACGTAAAA GAAATCGGAC



ACATCGATTT





1701
GGTCTCCCAT ATTATTGGCG GGCGTTCCGT GGACGGCAGA



CCTGCAGGCG





1751
GTATTGCGCC CGATGCGACG CTACACATAA TGAATACGAA



TGATGAAACC





1801
AAGAACGAAA TGATGGTTGC AGCCATCCGC AATGCATGGG



TCAAGCTGGG





1851
CGAACGTGGC GTGCGCATCG TCAATAACAG TTTTGGAACA



ACATCGAGGG





1901
CAGGCACTGC CGACCTTTTC CAAATAGCCA ATTCGGAGGA



GCAGTACCGC





1951
CAAGCGTTGC TCGACTATTC CGGCGGTGAT AAAACAGACG



AGGGTATCCG





2001
CCTGATGCAA CAGAGCGATT ACGGCAACCT GTCCTACCAC



ATCCGTAATA





2051
AAAACATGCT TTTCATCTTT TCGACAGGCA ATGACGCACA



AGCTCAGCCC





2101
AACACATATG CCCTATTGCC ATTTTATGAA AAAGACGCTC



AAAAAGGCAT





2151
TATCACAGTC GCAGGCGTAG ACCGCAGTGG AGAAAAGTTC



AAACGGGAAA





2201
TGTATGGAGA ACCGGGTACA GAACCGCTTG AGTATGGCTC



CAACCATTGC





2251
GGAATTACTG CCATGTGGTG CCTGTCGGCA CCCTATGAAG



CAAGCGTCCG





2301
TTTCACCCGT ACAAACCCGA TTCAAATTGC CGGAACATCC



TTTTCCGCAC





2351
CCATCGTAAC CGGCACGGCG GCTCTGCTGC TGCAGAAATA



CCCGTGGATG





2401
AGCAACGACA ACCTGCGTAC CACGTTGCTG ACGACGGCTC



AGGACATCGG





2451
TGCAGTCGGC GTGGACAGCA AGTTCGGCTG GGGACTGCTG



GATGCGGGTA





2501
AGGCCATGAA CGGACCCGCG TCCTTTCCGT TCGGCGACTT



TACCGCCGAT





2551
ACGAAAGGTA CATCCGATAT TGCCTACTCC TTCCGTAACG



ACATTTCAGG





2601
CACGGGCGGC CTGATCAAAA AAGGCGGCAG CCAACTGCAA



CTGCACGGCA





2651
ACAACACCTA TACGGGCAAA ACCATTATCG AAGGCGGTTC



GCTGGTGTTG





2701
TACGGCAACA ACAAATCGGA TATGCGCGTC GAAACCAAAG



GTGCGCTGAT





2751
TTATAACGGG GCGGCATCCG GCGGCAGCCT GAACAGCGAC



GGCATTGTCT





2801
ATCTGGCAGA TACCGACCAA TCCGGCGCAA ACGAAACCGT



ACACATCAAA





2851
GGCAGTCTGC AGCTGGACGG CAAAGGTACG CTGTACACAC



GTTTGGGCAA





2901
ACTGCTGAAA GTGGACGGTA CGGCGATTAT CGGCGGCAAG



CTGTACATGT





2951
CGGCACGCGG CAAGGGGGCA GGCTATCTCA ACAGTACCGG



ACGACGTGTT





3001
CCCTTCCTGA GTGCCGCCAA AATCGGGCAG GATTATTCTT



TCTTCACAAA





3051
CATCGAAACC GACGGCGGCC TGCTGGCTTC CCTCGACAGC



GTCGAAAAAA





3101
CAGCGGGCAG TGAAGGCGAC ACGCTGTCCT ATTATGTCCG



TCGCGGCAAT





3151
GCGGCACGGA CTGCTTCGGC AGCGGCACAT TCCGCGCCCG



CCGGTCTGAA





3201
ACACGCCGTA GAACAGGGCG GCAGCAATCT GGAAAACCTG



ATGGTCGAAC





3251
TGGATGCCTC CGAATCATCC GCAACACCCG AGACGGTTGA



AACTGCGGCA





3301
GCCGACCGCA CAGATATGCC GGGCATCCGC CCCTACGGCG



CAACTTTCCG





3351
CGCAGCGGCA GCCGTACAGC ATGCGAATGC CGCCGACGGT



GTACGCATCT





3401
TCAACAGTCT CGCCGCTACC GTCTATGCCG ACAGTACCGC



CGCCCATGCC





3451
GATATGCAGG GACGCCGCCT GAAAGCCGTA TCGGACGGGT



TGGACCACAA





3501
CGGCACGGGT CTGCGCGTCA TCGCGCAAAC CCAACAGGAC



GGTGGAACGT





3551
GGGAACAGGG CGGTGTTGAA GGCAAAATGC GCGGCAGTAC



CCAAACCGTC





3601
GGCATTGCCG CGAAAACCGG CGAAAATACG ACAGCAGCCG



CCACACTGGG





3651
CATGGGACGC AGCACATGGA GCGAAAACAG TGCAAATGCA



AAAACCGACA





3701
GCATTAGTCT GTTTGCAGGC ATACGGCACG ATGCGGGCGA



TATCGGCTAT





3751
CTCAAAGGCC TGTTCTCCTA CGGACGCTAC AAAAACAGCA



TCAGCCGCAG





3801
CACCGGTGCG GACGAACATG CGGAAGGCAG CGTCAACGGC



ACGCTGATGC





3851
AGCTGGGCGC ACTGGGCGGT GTCAACGTTC CGTTTGCCGC



AACGGGAGAT





3901
TGAACGGTCG AAGGCGGTCT GCGCTACGAC CTGCTCAAAC



AGGATGCATT





3951
CGCCGAAAAA GGCAGTGCTT TGGGCTGGAG CGGCAACAGC



CTCACTGAAG





4001
GCACGCTGGT CGGACTCGCG GGTCTGAAGC TGTCGCAACC



CTTGAGCGAT





4051
AAAGCCGTCC TGTTTGCAAC GGCGGGCGTG GAACGCGACC



TGAACGGACG





4101
CGACTACACG GTAACGGGCG GCTTTACCGG CGCGACTGCA



GCAACCGGCA





4151
AGACGGGGGC ACGCAATATG CCGCACACCC GTCTGGTTGC



CGGCCTGGGC





4201
GCGGATGTCG AATTCGGCAA CGGCTGGAAC GGCTTGGCAC



GTTACAGCTA





4251
CGCCGGTTCC AAACAGTACG GCAACCACAG CGGACGAGTC



GGCGTAGGCT





4301
ACCGGTTCCT CGAGCACCAC CACCACCACC ACTGA





   1
MATNDDDVKK AATVAIAAAY NNGQHINGFK AGETIYDIDE



DGTITKKDAT





  51
AADVEADDFK GLGLKKVVTN LTKTVNENKQ NVDAKVKAAE



SEIEKLTTKL





 101
ADTDAALADT DAALDATTNA LNKLGENITT FAEETKTNIV



KIDEKLEAVA





 151
DTVDKHAEAF NDIADSLDET NTKADEAVKT ANEAKQTAEE



TKQNVDAKVK





 201
AAETAAGKAE AAAGTANTAA DKAEAVAAKV TDIKADIATN



KDNIAKKANS





 251
ADVYTREESD SKFVRIDGLN ATTEKLDTRL ASAEKSIADH



DTRLNGLDKT





 301
VSDLRKETRQ GLAEQAALSG LFQPYNVGRF NVTAAVGGYK



SESAVAIGTG





 351
FRFTENFAAK AGVAVGTSSG SSAAYHVGVN YEWGSGGGGT



SAPDFNAGGT





 401
GIGSNSRATT AKSAAVSYAG IKNEMCKDRS MLCAGRDDVA



VTDRDAKINA





 451
PPPNLHTGDF PNPNDAYKNL INLKPAIEAG YTGRGVEVGI



VDTGESVGSI





 501
SFPELYGRKE HGYNENYKNY TAYMRKEAPE DGGGKDIEAS



FDDEAVIETE





 551
AKPTDIRHVK EIGHIDLVSH IIGGRSVDGR PAGGIAPDAT



LHIMNTNDET





 601
KNEMMVAAIR NAWVKLGERG VRIVNNSFGT TSRAGTADLF



QIANSEEQYR





 651
QALLDYSGGD KTDEGIRLMQ QSDYGNLSYH IRNKNMLFIF



STGNDAQAQP





 701
NTYALLPFYE KDAQKGIITV AGVDRSGEKF KREMYGEPGT



EPLEYGSNHC





 751
GITAMWCLSA PYEASVRFTR TNPIQIAGTS FSAPIVTGTA



ALLLQKYPWM





 801
SNDNLRTTLL TTAQDIGAVG VDSKFGWGLL DAGKAMNGPA



SFPFGDFTAD





 851
TKGTSDIAYS FRNDISGTGG LIKKGGSQLQ LHGNNTYTGK



TIIEGGSLVL





 901
YGNNKSDMRV ETKGALIYNG AASGGSLNSD GIVYLADTDQ



SGANETVHIK





 951
GSLQLDGKGT LYTRLGKLLK VDGTAIIGGK LYMSARGKGA



GYLNSTGRRV





1001
PFLSAAKIGQ DYSFFTNIET DGGLLASLDS VEKTAGSEGD



TLSYYVRRGN





1051
AARTASAAAH SAPAGLKHAV EQGGSNLENL MVELDASESS



ATPETVETAA





1101
ADRTDMPGIR PYGATFRAAA AVQHANAADG VRIFNSLAAT



VYADSTAAHA





1151
DMQGRRLKAV SDGLDHNGTG LRVIAQTQQD GGTWEQGGVE



GKMRGSTQTV





1201
GIAAKTGENT TAAATLGMGR STWSENSANA KTDSISLFAG



IRHDAGDIGY





1251
LKGLFSYGRY KNSISRSTGA DEHAEGSVNG TLMQLGALGG



VNVPFAATGD





1301
LTVEGGLRYD LLKQDAFAEK GSALGWSGNS LTEGTLVGLA



GLKLSQPLSD





1351
KAVLFATAGV ERDLNGRDYT VTGGFTGATA ATGKTGARNM



PHTRLVAGLG





1401
ADVEFGNGWN GLARYSYAGS KQYGNHSGRV GVGYRFLEHH



HHHH*










961c-ORF46.1








   1
ATGGCCACAA ACGACGACGA TGTTAAAAAA GCTGCCACTG



TGGCCATTGC





  51
TGCTGCCTAC AACAATGGCC AAGAAATCAA CGGTTTCAAA



GCTGGAGAGA





 101
CCATCTACGA CATTGATGAA GACGGCACAA TTACCAAAAA



AGACGCAACT





 151
GCAGCCGATG TTGAAGCCGA CGACTTTAAA GGTCTGGGTC



TGAAAAAAGT





 201
CGTGACTAAC CTGACCAAAA CCGTCAATGA AAACAAACAA



AACGTCGATG





 251
CCAAAGTAAA AGCTGCAGAA TCTGAAATAG AAAAGTTAAC



AACCAAGTTA





 301
GCAGACACTG ATGCCGCTTT AGCAGATACT GATGCCGCTC



TGGATGCAAC





 351
CACCAACGCC TTGAATAAAT TGGGAGAAAA TATAACGACA



TTTGCTGAAG





 401
AGACTAAGAC AAATATCGTA AAAATTGATG AAAAATTAGA



AGCCGTGGCT





 451
GATACCGTCG ACAAGCATGC CGAAGCATTC AACGATATCG



CCGATTCATT





 501
GGATGAAACC AACACTAAGG CAGACGAAGC CGTCAAAACC



GCCAATGAAG





 551
CCAAACAGAC GGCCGAAGAA ACCAAACAAA ACGTCGATGC



CAAAGTAAAA





 601
GCTGCAGAAA CTGCAGCAGG CAAAGCCGAA GCTGCCACTG



GCACAGCTAA





 651
TACTGCAGCC GACAAGGCCG AAGCTGTCGC TGAAAAAAGT



ACCGACATCA





 701
AAGCTGATAT CGCTACGAAC AAAGATAATA TTGCTAAAAA



AGCAAACAGT





 751
GCCGACGTGT ACACCAGAGA AGAGTCTGAC AGCAAATTTG



TCAGAATTGA





 801
TGGTCTGAAC GCTACTACCG AAAAATTGGA CACACGCTTG



GCTTCTGCTG





 851
AAAAATCCAT TGCCGATCAC GATACTCGCC TGAACGGTTT



GGATAAAACA





 901
GTGTCAGACC TGCGCAAAGA AACCCGCCAA GGCCTTGCAG



AACAAGCCGC





 951
GCTCTCCGGT CTGTTCCAAC CTTACAACGT GGGTGGATCC



GGAGGAGGAG





1001
GATCAGATTT GGCAAACGAT TCTTTTATCC GGCAGGTTCT



CGACCGTCAG





1051
CATTTCGAAC CCGACGGGAA ATACCACCTA TTCGGCAGCA



GGGGGGAACT





1101
TGCCGAGCGC AGCGGCCATA TCGGATTGGG AAAAATACAA



AGCCATCAGT





1151
TGGGCAACCT GATGATTCAA CAGGCGGCCA TTAAAGGAAA



TATCGGCTAC





1201
ATTGTCCGCT TTTCCGATCA CGGGCACGAA GTCCATTCCC



CCTTCGACAA





1251
CCATGCCTCA CATTCCGATT CTGATGAAGC CGGTAGTCCC



GTTGACGGAT





1301
TTAGCCTTTA CCGCATCCAT TGGGACGGAT ACGAACACCA



TCCCGCCGAC





1351
GGCTATGACG GGCCACAGGG CGGCGGCTAT CCCGCTCCCA



AAGGCGCGAG





1401
GGATATATAC AGCTACGACA TAAAAGGCGT TGCCCAAAAT



ATCCGCCTCA





1451
ACCTGACCGA CAACCGCAGC ACCGGACAAC GGCTTGCCGA



CCGTTTCCAC





1501
AATGCCGGTA GTATGCTGAC GCAAGGAGTA GTTGACGGAT



TCAAACGCGC





1551
CACCCGATAC AGCCCCGAGC TGGACAGATC GGGCAATGCC



GCCGAAGCCT





1601
TCAACGGCAC TGCAGATATC GTTAAAAACA TCATCGGCGC



GGCAGGAGAA





1651
ATTGTCGGCG CAGGCGATGC CGTGCAGGGC ATAAGCGAAG



GCTCAAACAT





1701
TGCTGTCATG CACGGCTTGG GTCTGCTTTC CACCGAAAAC



AAGATGGCGC





1751
GCATCAACGA TTTGGCAGAT ATGGCGCAAC TCAAAGACTA



TGCCGCAGCA





1801
GCCATCCGCG ATTGGGCAGT CCAAAACCCC AATGCCGCAC



AAGGCATAGA





1851
AGCCGTCAGC AATATCTTTA TGGCAGCCAT CCCCATCAAA



GGGATTGGAG





1901
CTGTTCGGGG AAAATACGGC TTGGGCGGCA TCACGGCACA



TCCTATCAAG





1951
CGGTCGCAGA TGGGCGCGAT CGCATTGCCG AAAGGGAAAT



CCGCCGTCAG





2001
CGACAATTTT GCCGATGCGG CATACGCCAA ATACCCGTCC



CCTTACCATT





2051
CCCGAAATAT CCGTTCAAAC TTGGAGCAGC GTTACGGCAA



AGAAAACATC





2101
ACCTCCTCAA CCGTGCCGCC GTCAAACGGC AAAAATGTCA



AACTGGCAGA





2151
CCAACGCCAC CCGAAGACAG GCGTACCGTT TGACGGTAAA



GGGTTTCCGA





2201
ATTTTGAGAA GCACGTGAAA TATGATACGC TCGAGCACCA



CCACCACCAC





2251
CACTGA





   1
MATNDDDVKK AATVAIAAAY NNGQEINGFK AGETIYDIDE



DGTITKKDAT





  51
AADVEADDFK GLGLEKVVTN LTKTVNENKQ NVDAKVKAAE



SEIEKLTTKL





 101
ADTDAALADT DAALDATTNA LNKLGENITT FAEETKTNIV



KIDEKLEAVA





 151
DTVDKHAEAF NDIADSLDET NTKADEAVKT ANEAKQTAEE



TKQNVDAKVK





 201
AAETAAGKAE AAAGTANTAA DKAEAVAAKV TDIKADIATN



KDNIAKKANS





 251
ADVYTREESD SKFVRIDGLN ATTEKLDTRL ASAEKSIADH



DTRLNGLDKT





 301
VSDLRKETRQ GLAEQAALSG LFQPYNVGGS GGGGSDLAND



SFIRQVLDRQ





 351
HFEPDGKYHL FGSRGELAER SGHIGLGKIQ SHQLGNIMIQ



QAAIKGNIGY





 401
IVRFSDHGHE VHSPFDNHAS HSDSDEAGSP VDGFSLYRIH



WDGYEHHPAD





 451
GYDGPQGGGY PAPKGARDIY SYDIKGVAQN IRLNLTDNRS



TGQRLADRFH





 501
NAGSKLTQGV GDGFKRATRY SPELDRSGNA AEAFNGTADI



VKNIIGAAGE





 551
IVGAGDAVQG ISEGSNIAVM HGLGLLSTEN KMARINDLAD



MAQLKDYAAA





 601
AIRDWAVQNP NAAQGIEAVS NIFMAAIPIK GIGAVRGKYG



LGGITAHPIK





 651
RSQMGAIALP KGKSAVSDNF ADAAYAKYPS PYHSRNIRSN



LEQRYGKENI





 701
TSSTVPPSNG KNVKLADQRH PKTGVPFDGK GFPNFEKHVK



YDTLEHHHHH





 751
H*










961c-741








   1
ATGGCCACAA ACGACGACGA TGTTAAAAAA GCTGCCACTG



TGGCCATTGC





  51
TGCTGCCTAC AACAATGGCC AAGAAATCAA CGGTTTCAAA



GCTGGAGAGA





 101
CCATCTACGA CATTGATGAA GACGGCACAA TTACCAAAAA



AGACGCAACT





 151
GCAGCCGATG TTGAAGCCGA CGACTTLAAA GGTCTGGGTC



TGAAAAAAGT





 201
CGTGACTAAC CTGACCAAAA CCGTCAATGA AAACAAACAA



AACGTCGATG





 251
CCAAAGTAAA AGCTGCAGAA TCTGAAATAG AAAAGTTAAC



AACCAAGTTA





 301
GCAGACACTG ATGCCGCTTT AGCAGATACT GATGCCGCTC



TGGATGCAAC





 351
CACCAACGCC TTGAATAAAT TGGGAGAAAA TATAACGACA



TTTGCTGAAG





 401
AGACTAAGAC AAATATCGTA AAAATTGATG AAAAATTAGA



AGCCGTGGCT





 451
GATACCGTCG ACAAGCATGC CGAAGCATTC AACGATATCG



CCGATGCACT





 501
GGATGAAACC AACACTAAGG CAGACGAAGC CGTCAAAACC



GCCAATGAAG





 551
CCAAACAGAC GGCCGAAGAA ACCAAACAAA ACGTCGATGC



CAAAGTAAAA





 601
GCTGCAGAAA CTGCAGCAGG CAAAGCCGAA GCTGCCGCTG



GCACAGCTAA





 651
TACTGCAGCC GACAAGGCCG AAGCTGTCGC TGCAAAAGTT



ACCGACATCA





 701
AAGCTGATAT CGCTACGAAC AAAGATAATA TTGCTAAAAA



AGCAAACAGT





 751
GCCGACGTGT ACACCAGAGA AGAGTCTGAC AGCAAATTTG



TCAGAATTGA





 801
TGGTCTGAAC GCTACTACCG AAAAATTGGA CACACGCTTG



GCTTCTGCTG





 851
AAAAATCCAT TGCCGATCAC GATACTCGCC TGAACGGTTT



GGATAAAACA





 901
GTGTCAGACC TGCGCAAAGA AACCCGCCAA GGCCTTGCAG



AACAAGCCGC





 951
GCTCTCCGGT CTGTTCCAAC CTTACAACGT GGGTGGATCC



GGAGGGGGTG





1001
GTGTCGCCGC CGACATCGGT GCGGGGCTTG CCGATGCACT



AACCGCACCG





1051
CTCGACCATA AAGACAAAGG TTTGCAGTCT TTGACGCTGG



ATCAGTCCGT





1101
CAGGAAAAAC GAGAAACTGA AGCTGGCGGC ACAAGGTGCG



GAAAAAACTT





1151
ATGGAAACGG TGACAGCCTC AATACGGGCA AATTGAAGAA



CGACAAGGTC





1201
AGCCGTTTCG ACTTTATCCG CCAAATCGAA GTGGACGGGC



AGCTCATTAC





1251
CTTGGAGAGT GGAGAGTTCC AAGTATACAA ACAAAGCCAT



TCCGCCTTAA





1301
CCGCCTTTCA GACCGAGCAA ATACAAGATT CGAAGCATTC



CGGGAAGATG





1351
GTTGCGAAAC GCCAGTTCAG AATCGGCGAC ATAGCGGGCG



AACATACATC





1401
TTTTGACAAG CTTCCCGAAG GCGGCAGGGC GACATATCGC



GGGACGGCGT





1451
TCGGTTCAGA CGATGCCGGC GGAAAACTGA CCTACACCAT



AGATTTCGCC





1501
GCCAAGCAGG GAAACGGCAA AATCGAACAT TTGAAATCGC



CAGAACTCAA





1551
TGTCGACCTG GCCGCCGCCG ATATCAAGCC GGATGGAAAA



CGCCATGCCG





1601
TCATCAGCGG TTCCGTCCTT TACAACCAAG CCGAGAAAGG



CAGTTACTCC





1651
CTCGGTATCT TTGGCGGAAA AGCCCAGGAA GTTGCCGGCA



GCGCGGAAGT





1701
GAAAACCGTA AACGGCATAC GCCATATCGG CCTTGCCGCC



AAGCAACTCG





1751
AGCACCACCA CCACCACCAC TGA





   1
MATNDDDVKK AATVAIAAAY NNGQEINGFK AGETIYDIDE



DGTITKKDAT





  51
AADVEADDFK GLGLKKVVTN LTKTVNENKQ NVDAKVKAAE



SEIEKLTTKL





 101
ADTDAALADT DAALDATTNA LNKLGENITT FAEETKTNIV



KIDEKLEAVA





 151
DTVDKHAEAF NDIADSLDET NTKADEAVKT ANEAKQTAEE



TKQNVDAKVK





 201
AAETAAGKAE AAAGTANTAA DKAEAVAAKV TDIKADIATN



KDNIAKKANS





 251
ADVYTREESD SKFVRIDGLN ATTEKLDTRL ASAEKSIADH



DTRLNGLDKT





 301
VSDLRKETRQ GLAEQAALSG LFQPYNVGGS GGGGVAADIG



AGLADALTAP





 351
LDHKDKGLQS LTLDQSVRKN EKLKLAAQGA EKTYGNGDSL



NTGKLKNDKV





 401
SRFDFIRQIE VDGQLITLES GEFQVYKQSH SALTAFQTEQ



IQDSEHSGKM





 451
VAKRQFRIGD IAGEHTSFDK LPEGGRATYR GTAFGSDDAG



GKLTYTIDFA





 501
AKQGNGKIEH LKSPELNVDL AAADIKPDGK RHAVISGSVL



YNQAEKGSYS





 551
LGIFGGKAQE VAGSAEVKTV NGIRHIGLAA KQLEHHHHHH



*










961c-983








   1
ATGGCCACAA ACGACGACGA TGTTAAAAAA GCTGCCACTG



TGGCCATTGC





  51 
TGCTGCCTAC AACAATGGCC AAGAAATCAA CGGTTTCAAA



GCTGGAGAGA





 101
CCATCTACGA CATTGATGAA GACGGCACAA TTACCAAAAA



AGACGCAACT





 151
GCAGCCGATG TTGAAGCCGA CGACTTTAAA GGTCTGGGTC



TGAAAAAAGT





 201
CGTGACTAAC CTGACCAAAA CCGTCAATGA AAACAAACAA



AACGTCGATG





 251
CCAAAGTAAA AGCTGCAGAA TCTGAAATAG AAAAGTTAAC



AACCAAGTTA





 301
GCAGACACTG ATGCCGCTTT AGCAGATACT GATGCCGCTC



TGGATGCAAC





 351
CACCAACGCC TTGAATAAAT TGGGAGAAAA TATAACGACA



TTTGCTGAAG





 401
AGACTAAGAC AAATATCGTA AAAATTGATG AAAAATTAGA



AGCCGTGGCT





 451
GATACCGTCG ACAAGCATGC CGAAGCATTC AACGATATCG



CCGATTCATT





 501
GGATGAAACC AACACTAAGG CAGACGAAGC CGTCAAAACC



GCCAATGAAG





 551
CCAAACAGAC GGCCGAAGAA ACCAAACAAA ACGTCGATGC



CAAAGTAAAA





 601
GCTGCAGAAA CTGCAGCAGG CAAAGCCGAA GCTGCCGCTG



GCACAGCTAA





 651
TACTGCAGCC GACAAGGCCG AAGCTGTCGC TGCAAAAGTT



ACCGACATCA





 701
AAGCTGATAT CGCTACGAAC AAAGATAATA TTGCTAAAAA



AGCAAACAGT





 751
GCCGACGTGT ACACCAGAGA AGAGTCTGAC AGCAAATTTG



TCAGAATTGA





 801
TGGTCTGAAC GCTACTACCG AAAAATTGGA CACACGCTTG



GCTTCTGCTG





 851
AAAAATCCAT TGCCGATCAC GATACTCGCC TGAACGGTTT



GGATAAAACA





 901
GTGTCAGACC TGCGCAAAGA AACCCGCCAA GGCCTTGCAG



AACAAGCCGC





 951
GCTCTCCGGT CTGTTCCAAC CTTACAACGT GGGTGGATCC



GGCGGAGGCG





1001
GCACTTCTGC GCCCGACTTC AATGCAGGCG GTACCGGTAT



CGGCAGCAAC





1051
AGCAGAGCAA CAACAGCGAA ATCAGCAGCA GTATCTTACG



CCGGTATCAA





1101
GAACGAAATG TGCAAAGACA GAAGCATGCT CTGTGCCGGT



CGGGATGACG





1151
TTGCGGTTAC AGACAGGGAT GCCAAAATCA ATGCCCCCCC



CCCGAATCTG





1201
CATACCGGAG ACTTTCCAAA CCCAAATGAC GCATACAAGA



ATTTGATCAA





1251
CCTCAAACCT GCAATTGAAG CAGGCTATAC AGGACGCGGG



GTAGAGGTAG





1301
GTATCGTCGA CACAGGCGAA TCCGTCGGCA GCATATCCTT



TCCCGAACTG





1351
TATGGCAGAA AAGAACACGG CTATAACGAA AATTACAAAA



ACTATACGGC





1401
GTATATGCGG AAGGAAGCGC CTGAAGACGG AGGCGGTAAA



GACATTGAAG





1451
CTTCTTTCGA CGATGAGGCC GTTATAGAGA CTGAAGCAAA



GCCGACGGAT





1501
ATCCGCCACG TAAAAGAAAT CGGACACATC GATTTGGTCT



CCCATATTAT





1551
TGGCGGGCGT TCCGTGGACG GCAGACCTGC AGGCGGTATT



GCGCCCGATG





1601
CGACGCTACA CATAATGAAT ACGAATGATG AAACCAAGAA



CGAAATGATG





1651
GTTGCAGCCA TCCGCAATGC ATGGGTCAAG CTGGGCGAAC



GTGGCGTGCG





1701
CATCGTCAAT AACAGTTTTG GAACAACATC GAGGGCAGGC



ACTGCCGACC





1751
TTTTCCAAAT AGCCAATTCG GAGGAGCAGT ACCGCCAAGC



GTTGCTCGAC





1801
TATTCCGGCG GTGATAAAAC AGACGAGGGT ATCCGCCTGA



TGCAACAGAG





1851
CGATTACGGC AACCTGTCCT ACCACATCCG TAATAAAAAC



ATGCTTTTCA





1901
TCTTTTCGAC AGGCAATGAC GCACAAGCTC AGCCCAACAC



ATATGCCCTA





1951
TTGCCATTTT ATGAAAAAGA CGCTCAAAAA GGCATTATCA



CAGTCGCAGG





2001
CGTAGACCGC AGTGGAGAAA AGTTCAAACG GGAAATGTAT



GGAGAACCGG





2051
GTACAGAACC GCTTGAGTAT GGCTCCAACC ATTGCGGAAT



TACTGCCATG





2101
TGGTGCCTGT CGGCACCCTA TGAAGCAAGC GTCCGTTTCA



CCCGTACAAA





2151
CCCGATTCAA ATTGCCGGAA CATCCTTTTC CGCACCCATC



GTAACCGGCA





2201
CGGCGGCTCT GCTGCTGCAG AAATACCCGT GGATGAGCAA



CGACAACCTG





2251
CGTACCACGT TGCTGACGAC GGCTCAGGAC ATCGGTGCAG



TCGGCGTGGA





2301
CAGCAAGTTC GGCTGGGGAC TGCTGGATGC GGGTAAGGCC



ATGAACGGAC





2351
CCGCGTCCTT TCCGTTCGGC GACTTTACCG CCGATACGAA



AGGTACATCC





2401
GATATTGCCT ACTCCTTCCG TAACGACATT TCAGGCACGG



GCGGCCTGAT





2451
CAAAAAAGGC GGCAGCCAAC TGCAACTGCA CGGCAACAAC



ACCTATACGG





2501
GCAAAACCAT TATCGAAGGC GGTTCGCTGG TGTTGTACGG



CAACAACAAA





2551
TCGGATATGC GCGTCGAAAC CAAAGGTGCG CTGATTTATA



ACGGGGCGGC





2601
ATCCGGCGGC AGCCTGAACA GCGACGGCAT TGTCTATCTG



GCAGATACCG





2651
ACCAATCCGG CGCAAACGAA ACCGTACACA TCAAAGGCAG



TCTGCAGCTG





2701
GACGGCAAAG GTACGCTGTA CACACGTTTG GGCAAACTGC



TGAAAGTGGA





2751
CGGTACGGCG ATTATCGGCG GCAAGCTGTA CATGTCGGCA



CGCGGCAAGG





2801
GGGCAGGCTA TCTCAACAGT ACCGGACGAC GTGTTCCCTT



CCTGAGTGCC





2851
GCCAAAATCG GGCAGGATTA TTCTTTCTTC ACAAACATCG



AAACCGACGG





2901
CGGCCTGCTG GCTTCCCTCG ACAGCGTCGA AAAAACAGCG



GGCAGTGAAG





2951
GCGACACGCT GTCCTATTAT GTCCGTCGCG GCAATGCGGC



ACGGACTGCT





3001
TCGGCAGCGG CACATTCCGC GCCCGCCGGT CTGAAACACG



CCGTAGAACA





3051
GGGCGGCAGC AATCTGGAAA ACCTGATGGT CGAACTGGAT



GCCTCCGAAT





3101
CATCCGCAAC ACCCGAGACG GTTGAAACTG CGGCAGCCGA



CCGCACAGAT





3151
ATGCCGGGCA TCCGCCCCTA CGGCGCAACT TTCCGCGCAG



CGGCAGCCGT





3201
ACAGCATGCG AATGCCGCCG ACGGTGTACG CATCTTCAAC



AGTCTCGCCG





3251
CTACCGTCTA TGCCGACAGT ACCGCCGCCC ATGCCGATAT



GCAGGGACGC





3301
CGCCTGAAAG CCGTATCGGA CGGGTTGGAC CACAACGGCA



CGGGTCTGCG





3351
CGTCATCGCG CAAACCCAAC AGGACGGTGG AACGTGGGAA



CAGGGCGGTG





3401
TTGAAGGCAA AATGCGCGGC AGTACCCAAA CCGTCGGCAT



TGCCGCGAAA





3451
ACCGGCGAAA ATACGACAGC AGCCGCCACA CTGGGCATGG



GACGCAGCAC





3501
ATGGAGCGAA AACAGTGCAA ATGCAAAAAC CGACAGCATT



AGTCTGTTTG





3551
CAGGCATACG GCACGATGCG GGCGATATCG GCTATCTCAA



AGGCCTGTTC





3601
TCCTACGGAC GCTACAAAAA CAGCATCAGC CGCAGCACCG



GTGCGGACGA





3651
ACATGCGGAA GGCAGCGTCA ACGGCACGCT GATGCAGCTG



GGCGCACTGG





3701
GCGGTGTCAA CGTTCCGTTT GCCGCAACGG GAGATTTGAC



GGTCGAAGGC





3751
GGTCTGCGCT ACGACCTGCT CAAACAGGAT GCATTCGCCG



AAAAAGGCAG





3801
TGCTTTGGGC TGGAGCGGCA ACAGCCTCAC TGAAGGCACG



CTGGTCGGAC





3851
TCGCGGGTCT GAAGCTGTCG CAACCCTTGA GCGATAAAGC



CGTCCTGTTT





3901
GCAACGGCGG GCGTGGAACG CGACCTGAAC GGACGCGACT



ACACGGTAAC





3951
GGGCGGCTTT ACCGGCGCGA CTGCAGCAAC CGGCAAGACG



GGGGCACGCA





4001
ATATGCCGCA CACCCGTCTG GTTGCCGGCC TGGGCGCGGA



TGTCGAATTC





4051
GGCAACGGCT GGAACGGCTT GGCACGTTAC AGCTACGCCG



GTTCCAAACA





4101
GTACGGCAAC CACAGCGGAC GAGTCGGCGT AGGCTACCGG



TTCCTCGAGC





4151
ACCACCACCA CCACCACTGA





   1
MATNDDDVKK AATVAIAAAY NNGQEINGFK AGETIYDIDE



DGTITKKDAT





  51
AADVEADDFK GLGLKKVVTN LTKTVNENKQ NVDAKVKAAE



SEIEKLTTKL





 101
ADTDAALADT DAALDATTNA LNKLGENITT FAEETKTNIV



KIDEKLEAVA





 151
DTVDKHAEAF NDIADSLDET NTKADEAVKT ANEAKQTAEE



TKQNVDAKVK





 201
AAETAAGKAE AAAGTANTAA DKAEAVAAKV TDIKADIATN



KDNIAKKANS





 251
ADVYTREESD SKFVRIDGLN ATTEKLDTRL ASAEKSIADH



DTRLNGLDKT





 301
VSDLRKETRQ GLAEQAALSG LFQPYNVGGS GGGGTSAPDF



NAGGTGIGSN





 351
SRATTAKSAA VSYAGIKNEM CKDRSMLCAG RDDVAVTDRD



AKINAPPPNL





 401
HTGDFPNPND AYKNLINLKP AIEAGYTGRG VEVGIVDTGE



SVGSISFPEL





 451
YGRKEHGYNE NYKNYTAYMR KEAPEDGGGK DIEASFDDEA



VIETEAKPTD





 501
IRHVKEIGHI DLVSHIIGGR SVDGRPAGGI APDATLHIMN



TNDETKNEMM





 551
VAAIRNAWVK LGERGVRIVN NSFGTTSRAG TADLFQIANS



EEQYRQALLD





 601
YSGGDKTDEG IRLMQQSDYG NLSYHIRNKN MLFIFSTGND



AQAQPNTYAL





 651
LPFYEKDAQK GIITVAGVDR SGEKFKREMY GEPGTEPLEY



GSNHCGITAM





 701
WCLSAFYEAS VRFTRTNPIQ IAGTSFSAPI VTGTAALLLQ



KYPWMSNDNL





 751
RTTLLTTAQD IGAVGVDSKF GWGLLDAGKA MNGPASFPFG



DFTADTKGTS





 801
DIAYSFRNDI SGTGGLIKKG GSQLQLHGNN TYTGKTIIEG



GSLVLYGNNK





 851
SDMRVETKGA LIYNGAASGG SLNSDGIVYL ADTDQSGANE



TVHIKGSLQL





 901
DGKGTLYTRL GKLLKVDGTA IIGGKLYMSA RGKGAGYLNS



TGRRVPFLSA





 951
AKIGQDYSFF TNIETDGGLL ASLDSVEKTA GSEGDTLSYY



VRRGNAARTA





1001
SAAAHSAPAG LKHAVEQGGS NLENLMVELD ASESSATPET



VETAAADRTD





1051
MPGIRPYGAT FRAAAAVQHA NAADGVRIFN SLAATVYADS



TAAHADMQGR





1101
RLKAVSDGLD HNGTGLRVIA QTQQDGGTWE QGGVEGKMRG



STQTVGIAAK





1151
TGENTTAAAT LGMGRSTWSE NSANAKTDSI SLFAGIRHDA



GDIGYLKGLF





1201
SYGRYKNSIS RSTGADEHAE GSVNGTLMQL GALGGVNVPF



AATGDLTVEG





1251
GLRYDLLKQD AFAEKGSALG WSGNSLTEGT LVGLAGLKLS



QPLSDKAVLF





1301
ATAGVERDLN GRDYTVTGGF TGATAATGKT GARNMPHTRL



VAGLGADVEF





1351
GNGWNGLARY SYAGSKQYGN HSGRVGVGYR FLEHHHHHH*










961cL-ORF46.1








   1
ATGAAACACT TTCCATCCAA AGTACTGACC ACAGCCATCC



TTGCCACTTT





  51
CTGTAGCGGC GCACTGGCAG CCACAAACGA CGACGATGTT



AAAAAAGCTG





 101
CCACTGTGGC CATTGCTGCT GCCTACAACA ATGGCCAAGA



AATCAACGGT





 151
TTCAAAGCTG GAGAGACCAT CTACGACATT GATGAAGACG



GCACAATTAC





 201
CAAAAAAGAC GCAACTGCAG CCGATGTTGA AGCCGACGAC



TTTAAAGGTC





 251
TGGGTCTGAA AAAAGTCGTG ACTAACCTGA CCAAAACCGT



CAATGAAAAC





 301
AAACAAAACG TCGATGCCAA AGTAAAAGCT GCAGAATCTG



AAATAGAAAA





 351
GTTAACAACC AAGTTAGCAG ACACTGATGC CGCTTTAGCA



GATACTGATG





 401
CCGCTCTGGA TGCAACCACC AACGCCTTGA ATAAATTGGG



AGAAAATATA





 451
ACGACATTTG CTGAAGAGAC TAAGACAAAT ATCGTAAAAA



TTGATGAAAA





 501
ATTAGAAGCC GTGGCTGATA CCGTCGACAA GCATGCCGAA



GCATTCAACG





 551
ATATCGCCGA TTCATTGGAT GAAACCAACA CTAAGGCAGA



CGAAGCCGTC





 601
AAAACCGCCA ATGAAGCCAA ACAGACGGCC GAAGAAACCA



AACAAAACGT





 651
CGATGCCAAA GTAAAAGCTG CAGAAACTGC AGCAGGCAAA



GCCGAAGCTG





 701
CCGCTGGCAC AGCTAATACT GCAGCCGACA AGGCCGAAGC



TGTCGCTGCA





 751
AAAGTTACCG ACATCAAAGC TGATATCGCT ACGAACAAAG



ATAATATTGC





 801
TAAAAAAGCA AACAGTGCCG ACGTGTACAC CAGAGAAGAG



TCTGACAGCA





 851
AATTTGTCAG AATTGATGGT CTGAACGCTA CTACCGAAAA



ATTGGACACA





 901
CGCTTGGCTT CTGCTGAAAA ATCCATTGCC GATCACGATA



CTCGCCTGAA





 951
CGGTTTGGAT AAAACAGTGT CAGACCTGCG CAAAGAAACC



CGCCAAGGCC





1001
TTGCAGAACA AGCCGCGCTC TCCGGTCTGT TCCAACCTTA



CAACGTGGGT





1051
GGATCCGGAG GAGGAGGATC AGATTTGGCA AACGATTCTT



TTATCCGGCA





1101
GGTTCTCGAC CGTCAGCATT TCGAACCCGA CGGGAAATAC



CACCTATTCG





1151
GCAGCAGGGG GGAACTTGCC GAGCGCAGCG GCCATATCGG



ATTGGGAAAA





1201
ATACAAAGCC ATCAGTTGGG CAACCTGATG ATTCAACAGG



CGGCCATTAA





1251
AGGAAATATC GGCTACATTG TCCGCTTTTC CGATCACGGG



CACGAAGTCC





1301
ATTCCCCCTT CGACAACCAT GCCTCACATT CCGATTCTGA



TGAAGCCGGT





1351
AGTCCCGTTG ACGGATTTAG CCTTTACCGC ATCCATTGGG



ACGGATACGA





1401
ACACCATCCC GCCGACGGCT ATGACGGGCC ACAGGGCGGC



GGCTATCCCG





1451
CTCCCAAAGG CGCGAGGGAT ATATACAGCT ACGACATAAA



AGGCGTTGCC





1501
CAAAATATCC GCCTCAACCT GACCGACAAC CGCAGCACCG



GACAACGGCT





1551
TGCCGACCGT TTCCACAATG CCGGTAGTAT GCTGACGCAA



GGAGTAGGCG





1601
ACGGATTCAA ACGCGCCACC CGATACAGCC CCGAGCTGGA



CAGATCGGGC





1651
AATGCCGCCG AAGCCTTCAA CGGCACTGCA GATATCGTTA



AAAACATCAT





1701
CGGCGCGGCA GGAGAAATTG TCGGCGCAGG CGATGCCGTG



CAGGGCATAA





1751
GCGAAGGCTC AAACATTGCT GTCATGCACG GCTTGGGTCT



GCTTTCCACC





1801
GAAAACAAGA TGGCGCGCAT CAACGATTTG GCAGATATGG



CGCAACTCAA





1851
AGACTATGCC GCAGCAGCCA TCCGCGATTG GGCAGTCCAA



AACCCCAATG





1901
CCGCACAAGG CATAGAAGCC GTCAGCAATA TCTTTATGGC



AGCCATCCCC





1951
ATCAAAGGGA TTGGAGCTGT TCGGGGAAAA TACGGCTTGG



GCGGCATCAC





2001
GGCACATCCT ATCAAGCGGT CGCAGATGGG CGCGATCGCA



TTGCCGAAAG





2051
GGAAATCCGC CGTCAGCGAC AATTTTGCCG ATGCGGCATA



CGCCAAATAC





2101
CCGTCCCCTT ACCATTCCCG AAATATCCGT TCAAACTTGG



AGCAGCGTTA





2151
CGGCAAAGAA AACATCACCT CCTCAACCGT GCCGCCGTCA



AACGGCAAAA





2201
ATGTCAAACT GGCAGACCAA CGCCACCCGA AGACAGGCGT



ACCGTTTGAC





2251
GGTAAAGGGT TTCCGAATTT TGAGAAGCAC GTGAAATATG



ATACGTAACT





2301
CGAG





   1
MKHFPSKVLT TAILATFCSG ALAATNDDDV KKAATVAIAA



AYNNGQEING





  51
FKAGETIYDI DEDGTITKKD ATAADVEADD FKGLGLKKVV



TNLTKTVNEN





 101
KQNVDAKVKA AESEIEKLTT KLADTDAALA DTDAALDATT



NALNKLGENI





 151
TTFAEETKTN IVKIDEKLEA VADTVDKHAE AFNDIADSLD



ETNTKADEAV





 201
KTANEAKQTA EETKQNVDAK VKAAHTAAGK AEAAAGTANT



AADKAEAVAA





 251
KVTDIKADIA TNKDNIAKKA NSADVYTREE SDSKFVRIDG



LNATTEKLDT





 301
RLASAEKSIA DHDTRLNGLD KTVSDLRKET RQGLAEQAAL



SGLFQPYNVG





 351
GSGGGGSDLA NDSFIRQVLD RQHFEPDGKY HLFGSRGELA



ERSGHIGLGK





 401
IQSHQLGNLM IQQAAIKGNI GYIVRFSDHG HEVHSPFDNH



ASHSDSDEAG





 451
SPVDGFSLYR IHWDGYEHHP ADGYDGPQGG GYPAPKGARD



IYSYDIKGVA





 501
QNIRLNLTDN RSTGQRLADR FHNAGSMLTQ GVGDGFKRAT



RYSPELDRSG





 551
NAAEAFNGTA DIVKNIIGAA GEIVGAGDAV QGISEGSNIA



VMHGLGLLST





 601
ENKMARINDL ADMAQLKDYA AAAIRDWAVQ NPNAAQGIEA



VSNIFMAAIP





 651
IKGIGAVRGK YGLGGITAHP IKRSQMGAIA LPKGKSAVSD



NFADAAYAKY





 701
PSPYHSRNIR SNLEQRYGKE NITSSTVPPS NGKNVKLADQ



RHPKTGVPFD





 751
GKGFPNFEKH VKYDT*










961cL-741








   1
ATGAAACACT TTCCATCCAA AGTACTGACC ACAGCCATCC



TTGCCACTTT





  51
CTGTAGCGGC GCACTGGCAG CCACAAACGA CGACGATGTT



AAAAAAGCTG





 101
CCACTGTGGC CATTGCTGCT GCCTACAACA ATGGCCAAGA



AATCAACGGT





 151
TTCAAAGCTG GAGAGACCAT CTACGACATT GATGAAGACG



GCACAATTAC





 201
CAAAAAAGAC GCAACTGCAG CCGATGTTGA AGCCGACGAC



TTTAAAGGTC





 251
TGGGTCTGAA AAAAGTCGTG ACTAACCTGA CCAAAACCGT



CAATGAAAAC





 301
AAACAAAACG TCGATGCCAA AGTAAAAGCT GCAGAATCTG



AAATAGAAAA





 351
GTTAACAACC AAGTTAGCAG ACACTGATGC CGCTTTAGCA



GATACTGATG





 401
CCGCTCTGGA TGCAACCACC AACGCCTTGA ATAAATTGGG



AGAAAATATA





 451
ACGACATTTG CTGAAGAGAC TAAGACAAAT ATCGTAAAAA



TTGATGAAAA





 501
ATTAGAAGCC GTGGCTGATA CCGTCGACAA GCATGCCGAA



GCATTCAACG





 551
ATATCGCCGA TTCATTGGAT GAAACCAACA CTAAGGCAGA



CGAAGCCGTC





 601
AAAACCGCCA ATGAAGCCAA ACAGACGGCC GAAGAAACCA



AACAAAACGT





 651
CGATGCCAAA GTAAAAGCTG CAGAAACTGC AGCAGGCAAA



GCCGAAGCTG





 701
CCGCTGGCAC AGCTAATACT GCAGCCGACA AGGCCGAAGC



TGTCGCTGCA





 751
AAAGTTACCG ACATCAAAGC TGATATCGCT ACGAACAAAG



ATAATATTGC





 801
TAAAAAAGCA AACAGTGCCG ACGTGTACAC CAGAGAAGAG



TCTGACAGCA





 851
AATTTGTCAG AATTGATGGT CTGAACGCTA CTACCGAAAA



ATTGGACACA





 901
CGCTTGGCTT CTGCTGAAAA ATCCATTGCC GATCACGATA



CTCGCCTGAA





 951
CGGTTTGGAT AAAACAGTGT CAGACCTGCG CAAAGAAACC



CGCCAAGGCC





1001
TTGCAGAACA AGCCGCGCTC TCCGGTCTGT TCCAACCTTA



CAACGTGGGT





1051
GGATCCGGAG GGGGTGGTGT CGCCGCCGAC ATCGGTGCGG



GGCTTGCCGA





1101
TGCACTAACC GCACCGCTCG ACCATAAAGA CAAAGGTTTG



CAGTCTTTGA





1151
CGCTGGATCA GTCCGTCAGG AAAAACGAGA AACTGAAGCT



GGCGGCACAA





1201
GGTGCGGAAA AAACTTATGG AAACGGTGAC AGCCTCAATA



CGGGCAAATT





1251
GAAGAACGAC AAGGTCAGCC GTTTCGACTT TATCCGCCAA



ATCGAAGTGG





1301
ACGGGCAGCT CATTACCTTG GAGAGTGGAG AGTTCCAAGT



ATACAAACAA





1351
AGCCATTCCG CCTTAACCGC CTTTCAGACC GAGCAAATAC



AAGATTCGGA





1401
GCATTCCGGG AAGATGGTTG CGAAACGCCA GTTCAGAATC



GGCGACATAG





1451
CGGGCGAACA TACATCTTTT GACAAGCTTC CCGAAGGCGG



CAGGGCGACA





1501
TATCGCGGGA CGGCGTTCGG TTCAGACGAT GCCGGCGGAA



AACTGACCTA





1551
CACCATAGAT TTCGCCGCCA AGCAGGGAAA CGGCAAAATC



GAACATTTGA





1601
AATCGCCAGA ACTCAATGTC GACCTGGCCG CCGCCGATAT



CAAGCCGGAT





1651
GGAAAACGCC ATGCCGTCAT CAGCGGTTCC GTCCTTTACA



ACCAAGCCGA





1701
GAAAGGCAGT TACTCCCTCG GTATCTTTGG CGGAAAAGCC



CAGGAAGTTG





1751
CCGGCAGCGC GGAAGTGAAA ACCGTAAACG GCATACGCCA



TATCGGCCTT





1801
GCCGCCAAGC AACTCGAGCA CCACCACCAC CACCACTGA





   1
MKHFPSKVLT TAILATFCSG ALAATNDDDV KKAATVAIAA



AYNNGQEING





  51
FKAGETIYDI DEDGTITKKD ATAADVEADD FKGLGLKKVV



TNLTKTVNEN





 101
KQNVDAKVKA AESEIEKLTT KLADTDAALA DTDAALDATT



NALNKLGENI





 151
TTFAEETKTN IVKIDEKLEA VADTVDKHAE AFNDIADSLD



ETNTKADEAV





 201
KTANEAKQTA EETKQNVDAK VKAAETAAGK AEAAAGTANT



AADKAEAVAA





 251
KVTDIKADIA TNKDNIAKKA NSADVYTREE SDSKFVRIDG



LNATTEKLDT





 301
RLASAEKSIA DHDTRLNGLD KTVSDLRKET RQGLAEQAAL



SGLFQPYNVG





 351
GSGGGGVAAD IGAGLADALT APLDHKDKGL QSLTLDQSVR



KNEKLKLAAQ





 401
GAEKTYGNGD SLNTGKLKND KVSRFDFIRQ IEVDGQLITL



ESGEFQVYKQ





 451
SHSALTAFQT EQIQDSEHSG KMVAKRQFRI GDIAGEHTSF



DKLPEGGRAT





 501
YRGTAFGSDD AGGKLTYTID FAAKQGNGKI EHLKSPELNV



DLAAADIKPD





 551
GKRHAVISGS VLYNQAEKGS YSLGIFGGKA QEVAGSAEVK



TVNGIRHIGL





 601
AAKQLEHHHH HH*










961cL-983








   1
ATGAAACACT TTCCATCCAA AGTACTGACC ACAGCCATCC



TTGCCACTTT





  51
CTGTAGCGGC GCACTGGCAG CCACAAACGA CGACGATGTT



AAAAAAGCTG





 101
CCACTGTGGC CATTGCTGCT GCCTACAACA ATGGCCAAGA



AATCAACGGT





 151
TTCAAAGCTG GAGAGACCAT CTACGACATT GATGAAGACG



GCACAATTAC





 201
CAAAAAAGAC GCAACTGCAG CCGATGTTGA AGCCGACGAC



TTTAAAGGTC





 251
TGGGTCTGAA AAAAGTCGTG ACTAACCTGA CCAAAACCGT



CAATGAAAAC





 301
AAACAAAACG TCGATGCCAA AGTAAAAGCT GCAGAATCTG



AAATAGAAAA





 351
GTTAACAACC AAGTTAGCAG ACACTGATGC CGCTTTAGCA



GATACTGATG





 401
CCGCTCTGGA TGCAACCACC AACGCCTTGA ATAAATTGGG



AGAAAATATA





 451
ACGACATTTG CTGAAGAGAC TAAGACAAAT ATCGTAAAAA



TTGATGAAAA





 501
ATTAGAAGCC GTGGCTGATA CCGTCGACAA GCATGCCGAA



GCATTCAACG





 551
ATATCGCCGA TTCATTGGAT GAAACCAACA CTAAGGCAGA



CGAAGCCGTC





 601
AAAACCGCCA ATGAAGCCAA ACAGACGGCC GAAGAAACCA



AACAAAACGT





 651
CGATGCCAAA GTAAAAGCTG CAGAAACTGC AGCAGGCAAA



GCCGAAGCTG





 701
CCGCTGGCAC AGCTAATACT GCAGCCGACA AGGCCGAAGC



TGTCGCTGCA





 751
AAAGTTACCG ACATCAAAGC TGATATCGCT ACGAACAAAG



ATAATATTGC





 801
TAAAAAAGCA AACAGTGCCG ACGTGTACAC CAGAGAAGAG



TCTGACAGCA





 851
AATTTGTCAG AATTGATGGT CTGAACGCTA CTACCGAAAA



ATTGGACACA





 901
CGCTTGGCTT CTGCTGAAAA ATCCATTGCC GATCACGATA



CTCGCCTGAA





 951
CGGTTTGGAT AAAACAGTGT CAGACCTGCG CAAAGAAACC



CGCCAAGGCC





1001
TTGCAGAACA AGCCGCGCTC TCCGGTCTGT TCCAACCTTA



CAACGTGGGT





1051
GGATCCGGCG GAGGCGGCAC TTCTGCGCCC GACTTCAATG



CAGGCGGTAC





1101
CGGTATCGGC AGCAACAGCA GAGCAACAAC AGCGAAATCA



GCAGCAGTAT





1151
CTTACGCCGG TATCAAGAAC GAAATGTGCA AAGACAGAAG



CATGCTCTGT





1201
GCCGGTCGGG ATGACGTTGC GGTTACAGAC AGGGATGCCA



AAATCAATGC





1251
CCCCCCCCCG AATCTGCATA CCGGAGACTT TCCAAACCCA



AATGACGCAT





1301
ACAAGAATTT GATCAACCTC AAACCTGCAA TTGAAGCAGG



CTATACAGGA





1351
CGCGGGGTAG AGGTAGGTAT CGTCGACACA GGCGAATCCG



TCGGCAGCAT





1401
ATCCTTTCCC GAACTGTATG GCAGAAAAGA ACACGGCTAT



AACGAAAATT





1451
ACAAAAACTA TACGGCGTAT ATGCGGAAGG AAGCGCCTGA



AGACGGAGGC





1501
GGTAAAGACA TTGAAGCTTC TTTCGACGAT GAGGCCGTTA



TAGAGACTGA





1551
AGCAAAGCCG ACGGATATCC GCCACGTAAA AGAAATCGGA



CACATCGATT





1601
TGGTCTCCCA TATTATTGGC GGGCGTTCCG TGGACGGCAG



ACCTGCAGGC





1651
GGTATTGCGC CCGATGCGAC GCTACACATA ATGAATACGA



ATGATGAAAC





1701
CAAGAACGAA ATGATGGTTG CAGCCATCCG CAATGCATGG



GTCAAGCTGG





1751
GCGAACGTGG CGTGCGCATC GTCAATAACA GTTTTGGAAC



AACATCGAGG





1801
GCAGGCACTG CCGACCTTTT CCAAATAGCC AATTCGGAGG



AGCAGTACCG





1851
CCAAGCGTTG CTCGACTATT CCGGCGGTGA TAAAACAGAC



GAGGGTATCC





1901
GCCTGATGCA ACAGAGCGAT TACGGCAACC TGTCCTACCA



CATCCGTAAT





1951
AAAAACATGC TTTTCATCTT TTCGACAGGC AATGACGCAC



AAGCTCAGCC





2001
CAACACATAT GCCCTATTGC CATTTTATGA AAAAGACGCT



CAAAAAGGCA





2051
TTATCACAGT CGCAGGCGTA GACCGCAGTG GAGAAAAGTT



CAAACGGGAA





2101
ATGTATGGAG AACCGGGTAC AGAACCGCTT GAGTATGGCT



CCAACCATTG





2151
CGGAATTACT GCCATGTGGT GCCTGTCGGC ACCCTATGAA



GCAAGCGTCC





2201
GTTTCACCCG TACAAACCCG ATTCAAATTG CCGGAACATC



CTTTTCCGCA





2251
CCCATCGTAA CCGGCACGGC GGCTCTGCTG CTGCAGAAAT



ACCCGTGGAT





2301
GAGCAACGAC AACCTGCGTA CCACGTTGCT GACGACGGCT



CAGGACATCG





2351
GTGCAGTCGG CGTGGACAGC AAGTTCGGCT GGGGACTGCT



GGATGCGGGT





2401
AAGGCCATGA ACGGACCCGC GTCCTTTCCG TTCGGCGACT



TTACCGCCGA





2451
TACGAAAGGT ACATCCGATA TTGCCTACTC CTTCCGTAAC



GACATTTCAG





2501
GCACGGGCGG CCTGATCAAA AAAGGCGGCA GCCAACTGCA



ACTGCACGGC





2551
AACAACACCT ATACGGGCAA AACCATTATC GAAGGCGGTT



CGCTGGTGTT





2601
GTACGGCAAC AACAAATCGG ATATGCGCGT CGAAACCAAA



GGTGCGCTGA





2651
TTTATAACGG GGCGGCATCC GGCGGCAGCC TGAACAGCGA



CGGCATTGTC





2701
TATCTGGCAG ATACCGACCA ATCCGGCGCA AACGAAACCG



TACACATCAA





2751
AGGCAGTCTG CAGCTGGACG GCAAAGGTAC GCTGTACACA



CGTTTGGGCA





2801
AACTGCTGAA AGTGGACGGT ACGGCGATTA TCGGCGGCAA



GCTGTACATG





2851
TCGGCACGCG GCAAGGGGGC AGGCTATCTC AACAGTACCG



GACGACGTGT





2901
TCCCTTCCTG AGTGCCGCCA AAATCGGGCA GGATTATTCT



TTCTTCACAA





2951
ACATCGAAAC CGACGGCGGC CTGCTGGCTT CCCTCGACAG



CGTCGAAAAA





3001
ACAGCGGGCA GTGAAGGCGA CACGCTGTCC TATTATGTCC



GTCGCGGCAA





3051
TGCGGCACGG ACTGCTTCGG CAGCGGCACA TTCCGCGCCC



GCCGGTCTGA





3101
AACACGCCGT AGAACAGGGC GGCAGCAATC TGGAAAACCT



GATGGTCGAA





3151
CTGGATGCCT CCGAATCATC CGCAACACCC GAGACGGTTG



AAACTGCGGC





3201
AGCCGACCGC ACAGATATGC CGGGCATCCG CCCCTACGGC



GCAACTTTCC





3251
GCGCAGCGGC AGCCGTACAG CATGCGAATG CCGCCGACGG



TGTACGCATC





3301
TTCAACAGTC TCGCCGCTAC CGTCTATGCC GACAGTACCG



CCGCCCATGC





3351
CGATATGCAG GGACGCCGCC TGAAAGCCGT ATCGGACGGG



TTGGACCACA





3401
ACGGCACGGG TCTGCGCGTC ATCGCGCAAA CCCAACAGGA



CGGTGGAACG





3451
TGGGAACAGG GCGGTGTTGA AGGCAAAATG CGCGGCAGTA



CCCAAACCGT





3501
CGGCATTGCC GCGAAAACCG GCGAAAATAC GACAGCAGCC



GCCACACTGG





3551
GCATGGGACG CAGCACATGG AGCGAAAACA GTGCAAATGC



AAAAACCGAC





3601
AGCATTAGTC TGTTTGCAGG CATACGGCAC GATGCGGGCG



ATATCGGCTA





3651
TCTCAAAGGC CTGTTCTCCT ACGGACGCTA CAAAAACAGC



ATCAGCCGCA





3701
GCACCGGTGC GGACGAACAT GCGGAAGGCA GCGTCAACGG



CACGCTGATG





3751
CAGCTGGGCG CACTGGGCGG TGTCAACGTT CCGTTTGCCG



CAACGGGAGA





3801
TTTGACGGTC GAAGGCGGTC TGCGCTACGA CCTGCTCAAA



CAGGATGCAT





3851
TCGCCGAAAA AGGCAGTGCT TTGGGCTGGA GCGGCAACAG



CCTCACTGAA





3901
GGCACGCTGG TCGGACTCGC GGGTCTGAAG CTGTCGCAAC



CCTTGAGCGA





3951
TAAAGCCGTC CTGTTTGCAA CGGCGGGCGT GGAACGCGAC



CTGAACGGAC





4001
GCGACTACAC GGTAACGGGC GGCTTTACCG GCGCGACTGC



AGCAACCGGC





4051
AAGACGGGGG CACGCAATAT GCCGCACACC CGTCTGGTTG



CCGGCCTGGG





4101
CGCGGATGTC GAATTCGGCA ACGGCTGGAA CGGCTTGGCA



CGTTACAGCT





4151
ACGCCGGTTC CAAACAGTAC GGCAACCACA GCGGACGAGT



CGGCGTAGGC





4201
TACCGGTTCT GACTCGAG





   1
MKHFPSKVLT TAILATFCSG ALAATNDDDV KKAATVAIAA



AYNEGQEING





  51
FKAGETIYDI DEDGTITKKD ATAADVEADD FKGLGLKKVV



TNLTKTVNEN





 101
KQNVDAKVKA AESEIEKLTT KLADTDAALA DTDAALDATT



NALNKLGENI





 151
TTFAEETKTN IVKIDEKLEA VADTVDKHAE AFNDIADSLD



ETNTKADEAV





 201
KTANEAKQTA EETKQNVDAK VKAAETAAGK AEAAAGTANT



AADKAEAVAA





 251
KVTDIKADIA TNKDNIAKKA NSADVYTREE SDSKFVRIDG



LNATTEKLDT





 301
RLASAEKSIA DHDTRLNGLD KTVSDLRKET RQGLAEQAAL



SGLFQPYNVG





 351
GSGGGGTSAP DFNAGGTGIG SNSRATTAKS AAVSYAGIKN



EMCKDRSMLC





 401
AGRDDVAVTD RDAKINAPPP NLHTGDFPNP NDAYKNLINL



KPAIEAGYTG





 451
RGVEVGIVDT GESVGSISFP ELYGRKEHGY NENYKNYTAY



MRKEAPEDGG





 501
GKDIEASFDD EAVIETEAKP TDIRHVKEIG HIDLVSHIIG



GRSVDGRPAG





 551
GIAPDATLHI MNTNDETKNE MMVAAIRNAW VKLGERGVRI



VNNSFGTTSR





 601
AGTADLFQIA NSEEQYRQAL LDYSGGDKTD EGIRLMQQSD



YGNLSYHIRN





 651
KNMLFIFSTG NDAQAQPNTY ALLPFYEKDA QKGIITVAGV



DRSGEKFKRE





 701
MYGEPGTEPL EYGSNHCGIT AMWCLSAPYE ASVRFTRTNP



IQIAGTSFSA





 751
PIVTGTAALL LQKYPWMSND NLRTTLLTTA QDIGAVGVDS



KFGWGLLDAG





 801
KAMNGPASFP PGDFTADTKG TSDIAYSFRN DISGTGGLIK



KGGSQLQLHG





 851
NNTYTGKTII EGGSLVLYGN NKSDMRVETK GALIYNGAAS



GGSLNSDGIV





 901
YLADTDQSGA NETVHIKGSL QLDGKGTLYT RLGKLLKVDG



TAIIGGKLYM





 951
SARGKGAGYL NSTGRRVPFL SAAKIGQDYS FFTNIETDGG



LLASLDSVEK





1001
TAGSEGDTLS YYVRRGNAAR TASAAAHSAP AGLKHAVEQG



GSNLENLMVE





1051
LDASESSATP ETVETAAADR TDMPGIRPYG ATFRAAAAVQ



HANAADGVRI





1101
FNSLAATVYA DSTAAHADMQ GRRLKAVSDG LDHNGTGLRV



LAQTQQDGGT





1151
WEQGGVEGKM RGSTQTVGIA AKTGENTTAA ATLGMGRSTW



SENSANAKTD





1201
SISLFAGIRH DAGDIGYLKG LFSYGRYKNS ISRSTGADEH



AEGSVNGTLM





1251
QLGALGGVNV PFAATGDLTV EGGLRYDLLK QDAFAEKGSA



LGWSGNSLTE





1301
GTLVGLAGLK LSQPLSDKAV LFATAGVERD LNGRDYTVTG



GFTGATAATG





1351
KTGARNMPHT RLVAGLGADV EFGNGWNGLA RYSYAGSKQY



GNHSGRVGVG





1401
YRF*






It will be understood that the invention has been described by way of example only and modifications may be made whilst remaining within the scope and spirit of the invention. For instance, the use of proteins from other strains is envisaged [e.g. see WO00/66741 for polymorphic sequences for ORF4, ORF40, ORF46, 225, 235, 287, 519, 726, 919 and 953].


Experimental Details
FPLC Protein Purification

The following table summarises the FPLC protein purification that was used:

















Protein
PI
Column
Buffer
pH
Protocol







121.1untagged
6.23
Mono Q
Tris
8.0
A


128.1untagged
5.04
Mono Q
Bis-Tris propane
6.5
A


406.1L
7.75
Mono Q
Diethanolamine
9.0
B


576.1L
5.63
Mono Q
Tris
7.5
B


593untagged
8.79
Mono S
Hepes
7.4
A


726untagged
4.95
Hi-trap S
Bis-Tris
6.0
A


919untagged
10.5(−leader)
Mono S
Bicine
8.5
C


919Lorf4
10.4(−leader)
Mono S
Tris
8.0
B


920L
6.92(−leader)
Mono Q
Diethanolamine
8.5
A


953L
7.56(−leader)
Mono S
MES
6.6
D


982untagged
4.73
Mono Q
Bis-Tris propane
6.5
A


919-287
6.58
Hi-trap Q
Tris
8.0
A


953-287
4.92
Mono Q
Bis-Tris propane
6.2
A









Buffer solutions included 20-120 mM NaCl, 5.0 mg/ml CHAPS and 10% v/v glycerol. The dialysate was centrifuged at 13000 g for 20 min and applied to either a mono Q or mono S FPLC ion-exchange resin. Buffer and ion exchange resins were chosen according to the pI of the protein of interest and the recommendations of the FPLC protocol manual [Pharmacia: FPLC Ion Exchange and Chromatofocussing; Principles and Methods. Pharmacia Publication]. Proteins were eluted using a step-wise NaCl gradient. Purification was analysed by SDS-PAGE and protein concentration determined by the Bradford method.


The letter in the ‘protocol’ column refers to the following:


FPLC-A:

Clones 121.1, 128.1, 593, 726, 982, periplasmic protein 920L and hybrid proteins 919-287, 953-287 were purified from the soluble fraction of E. coli obtained after disruption of the cells. Single colonies harbouring the plasmid of interest were grown overnight at 37° C. in 20 ml of LB/Amp (100 μg/ml) liquid culture. Bacteria were diluted 1:30 in 1.0 L of fresh medium and grown at either 30° C. or 37° C. until the OD550 reached 0.6-08. Expression of recombinant protein was induced with IPTG at a final concentration of 1.0 mM. After incubation for 3 hours, bacteria were harvested by centrifugation at 8000 g for 15 minutes at 4° C. When necessary cells were stored at −20° C. All subsequent procedures were performed on ice or at 4° C. For cytosolic proteins (121.1, 128.1, 593, 726 and 982) and periplasmic protein 920L, bacteria were resuspended in 25 ml of PBS containing complete protease inhibitor (Boehringer-Mannheim). Cells were lysed by sonication using a Branson Sonifier 450. Disrupted cells were centrifuged at 8000 g for 30 min to sediment unbroken cells and inclusion bodies and the supernatant taken to 35% v/v saturation by the addition of 3.9 M (NH4)2SO4. The precipitate was sedimented at 8000 g for 30 minutes. The supernatant was taken to 70% v/v saturation by the addition of 3.9 M (NH4)2SO4 and the precipitate collected as above. Pellets containing the protein of interest were identified by SDS-PAGE and dialysed against the appropriate ion-exchange buffer (see below) for 6 hours or overnight. The periplasmic fraction from E. coli expressing 953L was prepared according to the protocol of Evans et. al. [Infect. Immun. (1974) 10:1010-1017] and dialysed against the appropriate ion-exchange buffer. Buffer and ion exchange resin were chosen according to the pI of the protein of interest and the recommendations of the FPLC protocol manual (Pharmacia). Buffer solutions included 20 mM NaCl, and 10% (v/v) glycerol. The dialysate was centrifuged at 13000 g for 20 min and applied to either a mono Q or mono S FPLC ion-exchange resin. Buffer and ion exchange resin were chosen according to the pI of the protein of interest and the recommendations of the FPLC protocol manual (Pharmacia). Proteins were eluted from the ion-exchange resin using either step-wise or continuous NaCl gradients. Purification was analysed by SDS-PAGE and protein concentration determined by Bradford method. Cleavage of the leader peptide of periplasmic proteins was demonstrated by sequencing the NH2-terminus (see below).


FPLC-B:

These proteins were purified from the membrane fraction of E. coli. Single colonies harbouring the plasmid of interest were grown overnight at 37° C. in 20 ml of LB/Amp (100 μg/ml) liquid culture. Bacteria were diluted 1:30 in 1.0 L of fresh medium. Clones 406.1L and 919LOrf4 were grown at 30° C. and Orf25L and 576.1L at 37° C. until the OD550 reached 0.6-0.8. In the case of 919LOrf4, growth at 30° C. was essential since expression of recombinant protein at 37° C. resulted in lysis of the cells. Expression of recombinant protein was induced with IPTG at a final concentration of 1.0 mM. After incubation for 3 hours, bacteria were harvested by centrifugation at 8000 g for 15 minutes at 4° C. When necessary cells were stored at −20° C. All subsequent procedures were performed at 4° C. Bacteria were resuspended in 25 ml of PBS containing complete protease inhibitor (Boehringer-Mannheim) and lysed by osmotic shock with 2-3 passages through a French Press. Unbroken cells were removed by centrifugation at 5000 g for 15 min and membranes precipitated by centrifugation at 100000 g (Beckman Ti50, 38000 rpm) for 45 minutes. A Dounce homogenizer was used to re-suspend the membrane pellet in 7.5 ml of 20 mM Tris-HCl (pH 8.0), 1.0 M NaCl and complete protease inhibitor. The suspension was mixed for 2-4 hours, centrifuged at 100000 g for 45 min and the pellet resuspended in 7.5 ml of 20 mM Tris-HCl (pH 8.0), 1.0M NaCl, 5.0 mg/ml CHAPS, 10% (v/v) glycerol and complete protease inhibitor. The solution was mixed overnight, centrifuged at 100000 g for 45 minutes and the supernatant dialysed for 6 hours against an appropriately selected buffer. In the case of Orf25.L, the pellet obtained after CHAPS extraction was found to contain the recombinant protein. This fraction, without further purification, was used to immunise mice.


FPLC-C:

Identical to FPLC-A, but purification was from the soluble fraction obtained after permeabilising E. coli with polymyxin B, rather than after cell disruption.


FPLC-D:

A single colony harbouring the plasmid of interest was grown overnight at 37° C. in 20 ml of LB/Amp (100 μg/ml) liquid culture. Bacteria were diluted 1:30 in 1.0 L of fresh medium and grown at 30° C. until the OD550 reached 0.6-0.8. Expression of recombinant protein was induced with IPTG at a final concentration of 1.0 mM. After incubation for 3 hours, bacteria were harvested by centrifugation at 8000 g for 15 minutes at 4° C. When necessary cells were stored at −20° C. All subsequent procedures were performed on ice or at 4° C. Cells were resuspended in 20 mM Bicine (pH 8.5), 20 mM NaCl, 10% (v/v) glycerol, complete protease inhibitor (Boehringer-Mannheim) and disrupted using a Branson Sonifier 450. The sonicate was centrifuged at 8000 g for 30 min to sediment unbroken cells and inclusion bodies. The recombinant protein was precipitated from solution between 35% v/v and 70% v/v saturation by the addition of 3.9M (NH4)2SO4. The precipitate was sedimented at 8000 g for 30 minutes, resuspended in 20 mM Bicine (pH 8.5), 20 mM NaCl, 10% (v/v) glycerol and dialysed against this buffer for 6 hours or overnight. The dialysate was centrifuged at 13000 g for 20 min and applied to the FPLC resin. The protein was eluted from the column using a step-wise NaCl gradients. Purification was analysed by SDS-PAGE and protein concentration determined by Bradford method.


Cloning Strategy and Oligonucleotide Design

Genes coding for antigens of interest were amplified by PCR, using oligonucleotides designed on the basis of the genomic sequence of N. meningitidis B MC58. Genomic DNA from strain 2996 was always used as a template in PCR reactions, unless otherwise specified, and the amplified fragments were cloned in the expression vector pET21b+(Novagen) to express the protein as C-terminal His-tagged product, or in pET-24b+(Novagen) to express the protein in ‘untagged’ form (e.g. AG 287K).


Where a protein was expressed without a fusion partner and with its own leader peptide (if present), amplification of the open reading frame (ATG to STOP codons) was performed.


Where a protein was expressed in ‘untagged’ form, the leader peptide was omitted by designing the 5′-end amplification primer downstream from the predicted leader sequence.


The melting temperature of the primers used in PCR depended on the number and type of hybridising nucleotides in the whole primer, and was determined using the formulae:






T
m1=4(G+C)+2(A+T) (tail excluded)






T
m2=64.9+0.41(%GC)−600/N (whole primer)


The melting temperatures of the selected oligonucleotides were usually 65-70° C. for the whole oligo and 50-60° C. for the hybridising region alone.


Oligonucleotides were synthesised using a Perkin Elmer 394 DNA/RNA Synthesizer, eluted from the columns in 2.0 ml NH4OH, and deprotected by 5 hours incubation at 56° C. The oligos were precipitated by addition of 0.3M Na-Acetate and 2 volumes ethanol. The samples were centrifuged and the pellets resuspended in water.


















Restric-





tion




Sequences
site







Orf1L
Fwd
CGCGGATCCGCTAGC-AAAACAACCGACAAACGG
NheI



Rev
CCCGCTCGAG-TTACCAGCGGTAGCCTA
XhoI





Orf1
Fwd
CTAGCTAGC-GGACACACTTATTTCGGCATC
NheI



Rev
CCCGCTCGAG-TTACCAGCGGTAGCCTAATTTG
XhoI





Orf1LOmpA
Fwd

NdeI-





(NheI)



Rev
CCCGCTCGAG-
XhoI





Orf4L
Fwd
CGCGGATCCCATATG-AAAACCTTCTTCAAAACC
NdeI



Rev
CCCGCTCGAG-TTATTTGGCTGCGCCTTC
XhoI





Orf7-1L
Fwd
GCGGCATTAAT-ATGTTGAGAAAATTGTTGAAATGG
AseI



Rev
GCGGCCTCGAG-TTATTTTTTCAAAATATATTTGC
XhoI





Orf9-1L
Fwd
GCGGCCATATG-TTACCTAACCGTTTCAAAATGT
NdeI



Rev
GCGGCCTCGAG-TTATTTCCGAGGTTTTCGGG
XhoI





Orf23L
Fwd
CGCGGATCCCATATG-ACACGCTTCAAATATTC
NdeI



Rev
CCCGCTCGAG-TTATTTAAACCGATAGGTAAA
XhoI





Orf25-1 His
Fwd
CGCGGATCCCATATG-GGCAGGGAAGAACCGC
NdeI



Rev
GCCCAAGCTT-ATCGATGGAATAGCCGCG
HindIII





Orf29-1 b-His
Fwd
CGCGGATCCGCTAGC-AACGGTTTGGATGCCCG
NheI


(MC58)
Rev
CCCGCTCGAG-TTTGTCTAAGTTCCTGATAT
XhoI




CCCGCTCGAG-ATTCCCACCTGCCATC






Orf29-1 b-L
Fwd
CGCGGATCCGCTAGC-ATGAATTTGCCTATTCAAAAAT
NheI


(MC58)
Rev
CCCGCTCGAG-TTAATTCCCACCTGCCATC
XhoI





Orf29-1 c-His
Fwd
CGCGGATCCGCTAGC-ATGAATTTGCCTATTCAAAAAT
NheI


(MC58)
Rev
CCCGCTCGAG-TTGGACGATGCCCGCGA
XhoI





Orf29-1 c-L
Fwd
CGCGGATCCGCTAGC-ATGAATTTGCCTATTCAAAAAT
NheI


(MC58)
Rev
CCCGCTCGAG-TTATTGGACGATGCCCGC
XhoI





Orf25L
Fwd
CGCGGATCCCATATG-TATCGCAAACTGATTGC
NdeI



Rev
CCCGCTCGAG-CTAATCGATGGAATAGCC
XhoI





Orf37L
Fwd
CGCGGATCCCATATG-AAACAGACAGTCAAATG
NdeI



Rev
CCCGCTCGAG-TCAATAACCCGCCTTCAG
XhoI





Orf38L
Fwd
CGCGGATCCCATATG-
NdeI




TTACGTTTGACTGCTTTAGCCGTATGCACC




Rev
CCCGCTCGAG-
XhoI




TTATTTTGCCGCGTTAAAAGCGTCGGCAAC






Orf40L
Fwd
CGCGGATCCCATATG-AACAAAATATACCGCAT
NdeI



Rev
CCCGCTCGAG-TTACCACTGATAACCGAC
XhoI





Orf40.2-His
Fwd
CGCGGATCCCATATG-ACCGATGACGACGATTTAT
NdeI



Rev
GCCCAAGCTT-CCACTGATAACCGACAGA
HindIII





Orf40.2L
Fwd
CGCGGATCCCATATG-AACAAAATATACCGCAT
NdeI



Rev
GCCCAAGCTT-TTACCACTGATAACCGAC
HindIII





Orf46-2L
Fwd
GGGAATTCCATATG-GGCATTTCCCGCAAAATATC
NdeI



Rev
CCCGCTCGAG-TTATTTACTCCTATAACGAGGTCTCTTAAC
XhoI





Orf46-2
Fwd
GGGAATTCCATATG-TCAGATTTGGCAAACGATTCTT
NdeI



Rev
CCCGCTCGAG-TTATTTACTCCTATAACGAGGTCTCTTAAC
XhoI





Orf46.1L
Fwd
GGGAATTCCATATG-GGCATTTCCCGCAAAATATC
NdeI



Rev
CCCGCTCGAG-TTACGTATCATATTTCACGTGC
XhoI





orf46. 
Fwd
GGGAATTCCATATGCACGTGAAATATGATACGAAG
BamHI-


(His-GST)


NdeI



Rev
CCCGCTCGAGTTTACTCCTATAACGAGGTCTCTTAAC
XhoI





rf46.1-His
Fwd
GGGAATTCCATATGTCAGATTTGGCAAACGATTCTT
NdeI



Rev
CCCGCTCGAGCGTATCATATTTCACGTGC
XhoI





orf46.2-His
Fwd
GGGAATTCCATATGTCAGATTTGGCAAACGATTCTT
NdeI



Rev
CCCGCTCGAGTTTACTCCTATAACGAGGTCTCTTAAC
XhoI





Orf65-1-
Fwd
CGCGGATCCCATATG-CAAAATGCGTTCAAAATCCC
BamHI-


(His/GST)


NdeI


(MC58)
Rev
CGCGGATCCCATATG-AACAAAATATACCGCAT
XhoI




CCCGCTCGAG-TTTGCTTTCGATAGAACGG






Orf72-1L
Fwd
GCGGCCATATG-GTCATAAAATATACAAATTTGAA
NdeI



Rev
GCGGCCTCGAG-TTAGCCTGAGACCTTTGCAAATT
XhoI





Orf76-1L
Fwd
GCGGCCATATG-AAACAGAAAAAAACCGCTG
NdeI



Rev
GCGGCCTCGAG-TTACGGTTTGACACCGTTTTC
XhoI





Orf83.1L
Fwd
CGCGGATCCCATATG-AAAACCCTGCTCCTC
NdeI



Rev
CCCGCTCGAG-TTATCCTCCTTTGCGGC
XhoI





Orf85-2L
Fwd
GCGGCCATATG-GCAAAAATGATGAAATGGG
NdeI



Rev
GCGGCCTCGAG-TTATCGGCGCGGCGGGCC
XhoI





Orf91L (MC58)
Fwd
GCGGCCATATGAAAAAATCCTCCCTCATCA
NdeI



Rev
GCGGCCTCGAGTTATTTGCCGCCGTTTTTGGC
XhoI





Orf91-His(MC58)
Fwd
GCGGCCATATGGCCCCTGCCGACGCGGTAAG
NdeI



Rev
GCGGCCTCGAGTTTGCCGCCGTTTTTGGCTTTC
XhoI





Orf97-1L
Fwd
GCGGCCATATG-AAACACATACTCCCCCTGA
NdeI



Rev
GCGGCCTCGAG-TTATTCGCCTACGGTTTTTTG
XhoI





Orf119L (MC58)
Fwd
GCGGCCATATGATTTACATCGTACTGTTTC
NdeI



Rev
GCGGCCTCGAGTTAGGAGAACAGGCGCAATGC
XhoI





Orf119-His(MC58)
Fwd
GCGGCCATATGTACAACATGTATCAGGAAAAC
NdeI



Rev
GCGGCCTCGAGGGAGAACAGGCGCAATGCGG
XhoI





Orf137.1 (His-
Fwd
CGCGGATCCGCTAGCTGCGGCACGGCGGG
BamHI-


GST) (MC58)


NheI



Rev
CCCGCTCGAGATAACGGTATGCCGCCAG
XhoI





Orf143-1L
Fwd
CGCGGATCCCATATG-GAATCAACACTTTCAC
NdeI



Rev
CCCGCTCGAG-TTACACGCGGTTGCTGT
XhoI





008
Fwd
CGCGGATCCCATATG-AACAACAGACATTTTG
NdeI



Rev
CCCGCTCGAG-TTACCTGTCCGGTAAAAG
XhoI





050-1(48)
Fwd
CGCGGATCCGCTAGC-ACCGTCATCAAACAGGAA
NheI



Rev
CCCGCTCGAG-TCAAGATTCGACGGGGA
XhoI





105
Fwd
CGCGGATCCCATATG-TCCGCAAACGAATACG
NdeI



Rev
CCCGCTCGAG-TCAGTGTTCTGCCAGTTT
XhoI





111L
Fwd
CGCGGATCCCATATG-CCGTCTGAAACACG
NdeI



Rev
CCCGCTCGAG-TTAGCGGAGCAGTTTTTC
XhoI





117-1
Fwd
CGCGGATCCCATATG-ACCGCCATCAGCC
NdeI



Rev
CCCGCTCGAG-TTAAAGCCGGGTAACGC
XhoI





121-1
Fwd
GCGGCCATATG-GAAACACAGCTTTACATCGG
NdeI



Rev
GCGGCCTCGAG-TCAATAATAATATCCCGCG
XhoI





122-1
Fwd
GCGGCCATATG-ATTAAAATCCGCAATATCC
NdeI



Rev
GCGGCCTCGAG-TTAAATCTTGGTAGATTGGATTTGG
XhoI





128-1
Fwd
GCGGCCATATG-ACTGACAACGCACTGCTCC
NdeI



Rev
GCGGCCTCGAG-TCAGACCGCGTTGTCGAAAC
XhoI





148
Fwd
CGCGGATCCCATATG-GCGTTAAAAACATCAAA
NdeI



Rev
CCCGCTCGAG-TCAGCCCTTCATACAGC
XhoI





149.1L (MC58)
Fwd
GCGGCATTAATGGCACAAACTACACTCAAACC
AseI



Rev
GCGGCCTCGAGTTAAAACTTCACGTTCACGCCG
XhoI





149.1-His(MC58)
Fwd
GCGGCATTAATGCATGAAACTGAGCAATCGGTGG
AseI



Rev
GCGGCCTCGAGAAACTTCACGTTCACGCCGCCGGTAAA
XhoI





205 (His-GST)
Fwd
CGCGGATCCCATATGGGCAAATCCGAAAATACG
BamHI-


(MC58)


NdeI



Rev
CCCGCTCGAGATAATGGCGGCGGCGG
XhoI





206L
Fwd
CGCGGATCCCATATG-TTTCCCCCCGACAA
NdeI



Rev
CCCGCTCGAG-TCATTCTGTAAAAAAAGTATG
XhoI





214 (His-GST)
Fwd
CGCGGATCCCATATGCTTCAAAGCGACAGCAG
BamHI-


(MC58)


NdeI



Rev
CCCGCTCGAGTTCGGATTTTTGCGTACTC
XhoI





216
Fwd
CGCGGATCCCATATG-GCAATGGCAGAAAACG
NdeI



Rev
CCCGCTCGAG-CTATACAATCCGTGCCG
XhoI





225-1L
Fwd
CGCGGATCCCATATG-GATTCTTTTTTCAAACC
NdeI



Rev
CCCGCTCGAG-TCAGTTCAGAAAGCGGG
XhoI





235L
Fwd
CGCGGATCCCATATG-AAACCTTTGATTTTAGG
NdeI



Rev
CCCGCTCGAG-TTATTTGGGCTGCTCTTC
XhoI





243
Fwd
CGCGGATCCCATATG-GTAATCGTCTGGTTG
NdeI



Rev
CCCGCTCGAG-CTACGACTTGGTTACCG
XhoI





247-1L
Fwd
GCGGCCATATG-AGACGTAAAATGCTAAAGCTAC
NdeI



Rev
GCGGCCTCGAG-TCAAAGTGTTCTGTTTGCGC
XhoI





264-His
Fwd
GCCGCCATATG-TTGACTTTAACCCGAAAAA
NdeI



Rev
GCCGCGTCGAG-GCCGGCGGTCAATACCGCCCGAA
XhoI





270 (His-GST)
Fwd
CGCGGATCCCATATGGCGCAATGCGATTTGAC
BamHI-


(MC58)


NdeI



Rev
CCCGCTCGAGTTCGGCGGTAAATGCCG
XhoI





274L
Fwd
GCGGCCATATG-GCGGGGCCGATTTTTGT
NdeI



Rev
GCGGCCTCGAG-TTATTTGCTTTCAGTATTATTG
XhoI





283L
Fwd
GCGGCCATATG-AACTTTGCTTTATCCGTCA
NdeI



Rev
GCGGCCTCGAG-TTAACGGCAGTATTTGTTTAC
XhoI





285-His
Fwd
CGCGGATCCCATATGGGTTTGCGCTTCGGGC
BamHI



Rev
GCCCAAGCTTTTTTCCTTTGCCGTTTCCG
HindIII





286-His
Fwd
CGCGGATCCCATATG-GCCGACCTTTCCGAAAA
NdeI


(MC58)
Rev
CCCGCTCGAG-GAAGCGCGTTCCCAAGC
XhoI





286L
Fwd
CGCGGATCCCATATG-CACGACACCCGTAC
NdeI


(MC58)
Rev
CCCGCTCGAG-TTAGAAGCGCGTTCCCAA
XhoI





287L
Fwd
CTAGCTAGC-TTTAAACGCAGCGTAATCGCAATGG
NheI



Rev
CCCGCTCGAG-TCAATCCTGCTCTTTTTTGCC
XhoI





287
Fwd
CTAGCTAGC-GGGGGCGGCGGTGGCG
NheI



Rev
CCCGCTCGAG-TCAATCCTGCTCTTTTTTGCC
XhoI





287LOrf4
Fwd
CTAGCTAGCGCTCATCCTCGCCGCC-
NheI




TGCGGGGGCGGCGGT




Rev
CCCGCTCGAG-TCAATCCTGCTCTTTTTTGCC
XhoI





287-fu
Fwd
CGGGGATCC-GGGGGCGGCGGTGGCG
BamHI



Rev
CCCGCTCGAG-TCAATCCTGCTCTTTTTTGCC
XhoI





287-His
Fwd
CTAGCTAGC-GGGGGCGGCGGTGGCG
NheI



Rev
CCCGCTCGAG-ATCCTGCTCTTTTTTGCC *
XhoI





287-His(2996)
Fwd
CTAGCTAGC-TGCGGGGGCGGCGGTGGCG
NheI



Rev
CCCGCTCGAG-ATCCTGCTCTTTTTTGCC
XhoI





Δ1 287-His
Fwd
CGCGGATCCGCTAGC-CCCGATGTTAAATCGGC §
NheI





Δ2 287-His
Fwd
CGCGGATCCGCTAGC-CAAGATATGGCGGCAGT §
NheI





Δ3 287-His
Fwd
CGCGGATCCGCTAGC-GCCGAATCCGCAAATCA §
NheI





Δ4 287-His
Fwd
CGCGCTAGC-GGAAGGGTTGATTTGGCTAATGG §
NheI





Δ4 287MC58-His
Fwd
CGCGCTAGC-GGAAGGGTTGATTTGGCTAATGG §
NheI





287a-His
Fwd
CGCCATATG-TTTAAACGCAGCGTAATCGC
NdeI



Rev
CCCGCTCGAG-AAAATTGCTACCGCCATTCGCAGG
XhoI





287b-His
Fwd
CGCCATATG-GGAAGGGTTGATTTGGCTAATGG
NdeI





267b-2996-His
Rev
CCCGCTCGAG-CTTGTCTTTATAAATGATGACATATTTG
XhoI





287b-MC58-His
Rev
CCCGCTCGAG-TTTATAAAAGATAATATATTGATTGATTCC
XhoI





287c-2996-His
Fwd
CGCGCTAGC-ATGCCGCTGATTCCCGTCAATC §
NheI





‘287untagged
Fwd
CTAGCTAGC-GGGGGCGGCGGTGGCG
NheI


(2996)
Rev
CCCGCTCGAG-TCAATCCTGCTCTTTTTTGCC
XhoI





ΔG287-His *
Fwd
CGCGGATCCGCTAGC-CCCGATGTTAAATCGGC
NheI



Rev
CCCGCTCGAG-ATCCTGCTCTTTTTTGCC
XhoI





ΔG287K(2996)
Fwd
CGCGGATCCGCTAGC-CCCGATGTTAAATCGGC
NheI



Rev
CCCGCTCGAG-TCAATCCTGCTCTTTTTTGCC
XhoI





ΔG 287-L
Fwd
CGCGGATCCGCTAGC-
NheI




TTTGAACGCAGTGTGATTGCAATGGCTTGTATTTTTGCC





CTTTCAGCCTGT TCGCCCGATGTTAAATCGGCG




Rev
CCCGCTCGAG-TCAATCCTGCTCTTTTTTGCC
XhoI





ΔG 287-Orf4L
Fwd
CGCGGATCCGCTAGC-
NheI




AAAACCTTCTTCAAAACCCTTTCCGCCGCCGCACTCGCG





CTCATCCTCGCCGCCTGC TCGCCCGATGTTAAATCG




Rev
CCCGCTCGAG-TCAATCCTGCTCTTTTTTGCC
XhoI





292L
Fwd
CGCGGATCCCATATG-AAAACCAAGTTAATCAAA
NdeI



Rev
CCCGCTCGAG-TTATTGATTTTTGCGGATGA
XhoI





308-1
Fwd
CGCGGATCCCATATG-TTAAATCGGGTATTTTATC
NdeI



Rev
CCCGCTCGAG-TTAATCCGCCATTCCCTG
XhoI





401L
Fwd
GCGGCCATATG-AAATTACAACAATTGGCTG
NdeI



Rev
GCGGCCTCGAG-TTACCTTACGTTTTTCAAAG
XhoI





406L
Fwd
CGCGGATCCCATATG-CAAGCACGGCTGCT
NdeI



Rev
CCCGCTCGAG-TCAAGGTTGTCCTTGTCTA
XhoI





502-1L
Fwd
CGCGGATCCCATATG-ATGAAACCGCACAAC
NdeI



Rev
CCCGCTCGAG-TCAGTTGCTCAACACGTC
XhoI





502-A (His-GST)
Fwd
CGCGGATCCCATATGGTAGACGCGCTTAAGCA
BamHI-





NdeI



Rev
CCCGCTCGAGAGCTGCATGGCGGCG
XhoI





503-1L
Fwd
CGCGGATCCCATATG-GCACGGTCGTTATAC
NdeI



Rev
CCCGCTCGAG-CTACCGCGCATTCCTG
XhoI





519-1L
Fwd
GCGGCCATATG-GAATTTTTCATTATCTTGTT
NdeI



Rev
GCGGCCTCGAG-TTATTTGGCGGTTTTGCTGC
XhoI





525-1L
Fwd
GCGGCCATATG-AAGTATGTCCGGTTATTTTTC
NdeI



Rev
GCGGCCTCGAG-TTATCGGCTTGTGCAACGG
XhoI





529-(His/GST)
Fwd
CGCGGATCCGCTAGC-TCCGGCAGCAAAACCGA
BamHI-


(MC58)


NheI



Rev
GCCCAAGCTT-ACGCAGTTCOGAATGGAG
HindIII





552L
Fwd
GCCGCCATATGTTGAATATTAAACTGAAAACCTTG
NdeI



Rev
GCCGCCTCGAGTTATTTCTGATGCCTTTTCCC
XhoI





556L
Fwd
GCCGCCATATGGACAATAAGACCAAACTG
NdeI



Rev
GCCGCCTCGAGTTAACGGTGCGGACGTTTC
XhoI





557L
Fwd
CGCGGATCCCATATG-AACAAACTGTTTCTTAC
NdeI



Rev
CCCGCTCGAG-TCATTCCGCCTTCAGAAA
XhoI





564ab-(His/GST)
Fwd
CGCGGATCCCATATG-
BamHI-


(MC58)

CAAGGTATCGTTGCCGACAAATCCGCACCT
NdeI



Rev
CCCGCTCGAG-
XhoI




AGCTAATTGTGCTTGGTTTGCAGATAGGAGTT






564abL (MC58)
Fwd
CGCGGATCCCATATG-
NdeI




AACCGCACCCTGTACAAAGTTGTATTTAACAAACATC




Rev
CCCGCTCGAG-
XhoI




TTAAGCTAATTGTGCTTGGTTTGCAGATAGGAGTT






564b-
Fwd
CGCGGATCCCATATG-
BamHI-


(His/GST)(MC58)

ACGGGAGAAAATCATGCGGTTTCACTTCATG
NdeI



Rev
CCCGCTCGAG-
XhoI




AGCTAATTGTGCTTGGTTTGCAGATAGGAGTT






564c-
Fwd
CGCGGATCCCATATG-
BamHI-


(His/GST)(MC58)

GTTTCAGACGGCCTATACAACCAACATGGTGAAATT
NdeI



Rev
CCCGCTCGAG-
XhoI




GCGGTAACTGCCGCTTGCACTGAATCCGTAA






564bc-
Fwd
CGCGGATCCCATATG-
BamHI-


(His/GST)(MC58)

ACGGGAGAAAATCATGCGGTTTCACTTCATG
NdeI



Rev
CCCGCTCGAG-
XhoI




GCGGTAACTGCCGCITGCACTGAATCCGTAA






564d-
Fwd
CGCGGATCCCATATG-
BamHI-


(His/GST)(MC58)

CAAAGCAAAGTCAAAGCAGACCATGCCTCCGTAA
NdeI



Rev
CCCGCTCGAG-
XhoI




TCTTTTCCTTTCAATTATAACTTTAGTAGGTTCAATTTTG





GTCCCC






564cd-
Fwd
CGCGGATCCCATATG-
BamHI-


(His/GST)(MC58)

GTTTCAGACGGCCTATACAACCAACATGGTGAAATT
NdeI



Rev
CCCGCTCGAG-
XhoI




TCTTTTCCTTTCAATTATAACTTTAGTAGGTTCAATTTTG





GTCCCC






570L
Fwd
GCGGCCATATG-ACCCGTTTGACCCGCG
NdeI



Rev
GCGGCCTCGAG-TCAGCGGGCGTTCATTTCTT
XhoI





576-1L
Fwd
CGCGGATCCCATATG-AACACCATTTTCAAAATC
NdeI



Rev
CCCGCTCGAG-TTAATTTACTTTTTTGATGTCG
XhoI





580L
Fwd
GCGGCCATATG-GATTCGCCCAAGGTCGG
NdeI



Rev
GCGGCCTCGAG-CTACACTTCCCCCGAAGTGG
XhoI





583L
Fwd
CGCGGATCCCATATG-ATAGTTGACCAAAGCC
NdeI



Rev
CCCGCTCGAG-TTATTTTTCCGATTTTTCGG
XhoI





593
Fwd
GCGGCCATATG-CTTGAACTGAACGGACT
NdeI



Rev
GCGGCCTCGAG-TCAGCGGAAGCGGACGATT
XhoI





650 (His-GST)
Fwd
CGCGGATCCCATATGTCCAAACTCAAAACCATCG
BamHI-


(MC58)


NdeI



Rev
CCCGCTCGAGGCTTCCAATCAGTTTGACC
XhoI





652
Fwd
GCGGCCATATG-AGCGCAATCGTTGATATTTTC
NdeI



Rev
GCGGCCTCGAG-TTATTTGCCCAGTTGGTAGAATG
XhoI





664L
Fwd
GCGGCCATATG-GTGATACATCCGCACTACTTC
NdeI



Rev
GCGGCCTCGAG-TCAAAATCGAGTTTTACACCA
XhoI





726
Fwd
GCGGCCATATG-ACCATCTATTTCAAAAACGG
NdeI



Rev
GCGGCCTCGAG-TCAGCCGATGTTTAGCGTCCATT
XhoI





741-His(MC58)
Fwd
CGCGGATCCCATATG-AGCAGCGGAGGGGGTG
NdeI



Rev
CCCGCTCGAG-TTGCTTGGCGGCAAGGC
XhoI





ΔG741-His(MC58)
Fwd
CGCGGATCCCATATG-GTCGCCGCCGACATCG
NdeI



Rev
CCCGCTCGAG-TTGCTTGGCGGCAAGGC
XhoI





686-2-(His/GST)
Fwd
CGCGGATCCCATATG-GGCGGTTCGGAAGGCG
BamHI-


(MC58)


NdeI



Rev
CCCGCTCGAG-TTGAACACTGATGTCTTTTCCGA
XhoI





719-(His/GST)
Fwd
CGCGGATCCGCTAGC-AAACTGTCGTTGGTGTTAAC
BamHI-


(MC58)


NheI



Rev
CCCGCTCGAG-TTGACCCGCTCCACGG
XhoI





730-His (MC58)
Fwd
GCCGCCATATGGCGGACITGGCGCAAGACCC
NdeI



Rev
GCCGCCTCGAGATCTCCTAAACCTGTTTTAACAATGCCG
XhoI





730A-His (MC58)
Fwd
GCCGCCATATGGCGGACTTGGCGCAAGACCC
NdeI



Rev
GCGGCCTCGAGCTCCATGCTGTTGCCCCAGC
XhoI





730B-His (MC58)
Fwd
GCCGCCATATGGCGGACTTGGCGCAAGACCC
NdeI



Rev
GCGGCCTCGAGAAAATCCCCGCTAACCGCAG
XhoI





741-His
Fwd
CGCGGATCCCATATG-AGCAGCGGAGGGGGTG
NdeI


(MC58)
Rev
CCCGCTCGAG-TTGCTTGGCGGCAAGGC
XhoI





ΔG741-His
Fwd
CGCGGATCCCATATG-GTCGCCGCCGACATCG
NdeI


(MC58)
Rev
CCCGCTCGAG-TTGCTTGGCGGCAAGGC
XhoI





743 (His-GST)
Fwd
CGCGGATCCCATATGGACGGTGTTGTGCCTGTT
BamHI-





NdeI



Rev
CCCGCTCGAGCTTACGGATCAAATTGACG
XhoI





757 (His-GST)
Fwd
CGCGGATCCCATATGGGCAGCCAATCTGAAGAA
BamHI-


(MC58)


NdeI



Rev
CCCGCTCGAGCTCAGCTTTTGCCGTCAA
XhoI





759-His/GST
Fwd
CGCGGATCCGCTAGC-TACTCATCCATTGTCCGC
BamHI-


(MC58)


NheI



Rev
CCCGCTCGAG-CCAGTTGTAGCCTATTTTG
XhoI





759L
Fwd
CGCGGATCCGCTAGC-ATGCGCTTCACACACAC
NheI


(MC58)
Rev
CCCGCTCGAG-TTACCAGTTGTAGCCTATTT
XhoI





760-His
Fwd
GCCGCCATATGGCACAAACGGAAGGTTTGGAA
NdeI



Rev
GCCGCCTCGAGAAAACTGTAACGCAGGTTTGCCGTC
XhoI





769-His (MC58)
Fwd
GCGGCCATATGGAAGAAACACCGCGCGAACCG
NdeI



Rev
GCGGCCTCGAGGAACGTTTTATTAAACTCGAC
XhoI





907L
Fwd
GCGGCCATATG-AGAAAACCGACCGATACCCTA
NdeI



Rev
GCGGCCTCGAG-TCAACGCCACTGCCAGCGGTTG
XhoI





911L
Fwd
CGCGGATCCCATATG-AAGAAGAACATATTGGAATTTTGGGTCGGACTG
NdeI



Rev
CCCGCTCGAG-TTATTCGGCGGCTTTTTCCGCATTGCCG
XhoI





911LOmpA
Fwd
GGGAATTCCATATGAAAAAGACAGCTATCGCGATTGCA
NdeI-




GTGGCACTGGCTGGTTTCGCTACCGTAGCGCAGGCCGC
(NheI)





TAGC-GCTTTCCGCGTGGCCGGCGGTGC





Rev
CCCGCTCGAG-TTATTCGGCGGCTTTTTCCGCATTGCCG
XhoI





911LPelB
Fwd
CATGCCATGG-CTTTCCGCGTGGCCGGCGGTGC
NcoI



Rev
CCCGCTCGAG-TTATTCGGCGGCTTTTTCCGCATTGCCG
XhoI





913-His/GST
Fwd
CGCGGATCCCATATG-TTTGCCGAAACCCGCC
BamHI-


(MC58)


NdeI



Rev
CCCGCTCGAG-AGGTTGTGTTCCAGGTTG
XhoI





913L
Fwd
CGCGGATCCCATATG-AAAAAAACCGCCTATG
NdeI


(MC58)
Rev
CCCGCTCGAG-TTAAGGTTGTOTTCCAGG
XhoI





919L
Fwd
CGCGGATCCCATATG-AAAAAATACCTATTCCGC
NdeI



Rev
CCCGCTCGAG-TTACGGGCGGTATTCGG
XhoI





919
Fwd
CGCGGATCCCATATG-CAAAGCAAGAGCATCCAAA
NdeI



Rev
CCCGCTCGAG-TTACGGGCGGTATTCGG
XhoI





919LOrf4
Fwd
GGGAATTCCATATGAAAACCTTCTTCAAAACCCTTTCCG
NdeI-




CCGCCGCGCTAGCGCTCATCCTCGCCGCC-
(NheI)




TGCCAAAGCAAGAGCATC




Rev
CCCGCTCGAG-TTACGGGCGGTATTCGGGCITCATACCG
XhoI





(919)-287fasion
Fwd
CGCGGATCCGTCGAC-TGTGGGGGCGGCGGTGGC
SalI



Rev
CCCGCTCGAG-TCAATCCTGCTCTTTTTTGCC
XhoI





920-1L
Fwd
GCGGCCATATG-AAGAAAACATTGACACTGC
NdeI



Rev
GCGGCCTCGAG-TTAATGGTGCGAATGACCGAT
XhoI





925-His/GST
Fwd
ggggacaagtttgtacaaaaaagcaggctTGCGGCAAGGATGCCGG
attB1


(MC58) GATE
Rev
ggggaccactttgtacaagaaagctgggtCTAAAGCAACAATGCCGG
attB2





926L
Fwd
CGCGGATCCCATATG-AAACACACCGTATCC
NdeI



Rev
CCCGCTCGAG-TTATCtCGTGCGCGCC
XhoI





927-2-(His/GST)
Fwd
CGCGGATCCCATATG-AGCCCCGCGCCGATT
BamHI-





NdeI


(MC58)
Rev
CCCGCTCGAG-TTTTTGTGCGGTCAGGCG
XhoI





932-His/GST
Fwd
ggggacaagtttgtacaaaaaagcaggctTGTTCGTTTGGGGGATTTAA
attB1


(MC58) GATE

ACCAAACCAAATC






935 (His-GST)
For
CGCGGATCCCATATGGCGGATGCGCCCGCG
BamHI-


(MC58)


NdeI



Rev
CCCGCTCGAGAAACCGCCAATCCGCC
XhoI





936-1L
Rev
ggggaccactttgtacaagaaagctgggtTCATTTTGTTTTTCCTTCTTCT
attB2




CGAGGCCATT




Fwd
CGCGGATCCCATATG-AAACCCAAACCGCAC
NdeI



Rev
CCCGCTCGAG-TCAGCGTTGGACGTAGT
XhoI





953L
Fwd
GGGAATTCCATATG-AAAAAAATCATCTTCGCCG
NdeI



Rev
CCCGCTCGAG-TTATTGTTTGGCTGCCTCGAT
XhoI





953-fu
Fwd
GGGAATTCCATATG-GCCACCTACAAAGTGGACG
NdeI



Rev
CGGGGATCC-TTGTTTGGCTGCCTCGATTTG
BamHI





954 (His-GST)
Fwd
CGCGGATCCCATATGCAAGAACAATCGCAGAAAG
BamHI-


(MC58)


NdeI



Rev
CCCGCTCGAGTTTTTTCGGCAAATTGGCTT
XhoI





958-His/GST
Fwd
ggggacaagtttgtacaaaaaagcaggctGCCGATGCCGTTGCGG
attB1


(MC58) GATE
Rev
ggggaccactttgtacaagaaagctgggtTCAGGGTCGTTTGTTGCG
attB2





961L
Fwd
CGCGGATCCCATATG-AAACACTTTCCATCC
NdeI



Rev
CCCGCTCGAG-TTACCACTCGTAATTGAC
XhoI





961
Fwd
CGCGGATCCCATATG-GCCACAAGCGACGAC
NdeI



Rev
CCCGCTCGAG-TTACCACTCGTAATTGAC
XhoI





961 c (His/GST)
Fwd
CGCGGATCCCATATG-GCCACAAACGACG
BamHI-





NdeI



Rev
CCCGCTCGAG-ACCCACGTTGTAAGGTTG
XhoI





961 c-(His/GST)
Fwd
CGCGGATCCCATATG-GCCACAAGCGACGACGA
BamHI


(MC58)


-NdeI



Rev
CCCGCTCGAG-ACCCACGTTGTAAGGTTG
XhoI





961 c-L
Fwd
CGCGGATCCCATATG-ATGAAACACTTTCCATCC
NdeI



Rev
CCCGCTCGAG-TTAACCCACGTTGTAAGGT
XhoI





961 c-L
Fwd
CGCGGATCCCATATG-ATGAAACACTTTCCATCC
NdeI


(MC58)
Rev
CCCGCTCGAG-TTAACCCACGTTGTAAGGT
XhoI





961 d (His/GST)
Fwd
CGCGGATCCCATATG-GCCACAAACGACG
BamHI-





NdeI



Rev
CCCGCTCGAG-GTCTGACACTGTTTTATCC
XhoI





961 Δ1-L
Fwd
CGCGGATCCCATATG-ATGAAACACTTTCCATCC
NdeI



Rev
CCCGCTCGAG-TTATGCTTTGGCGGCAAAG
XhoI





fu 961- . . .
Fwd
CGCGGATCCCATATG-GCCACAAACGACGAC
NdeI



Rev
CGCGGATCC-CCACTCGTAATTGACGCC
BamHI





fu 961- . . .
Fwd
CGCGGATCCCATATG-GCCACAAGCGACGAC
NdeI


(MC58)
Rev
CGCGGATCC-CCACTCGTAATTGACGCC
BamHI





fu 961 
Fwd
CGCGGATCCCATATG-GCCACAAACGACGAC
NdeI


c - . . .
Rev
CGCGGATCC-ACCCACGTTGTAAGGTTG
BamHI





fu 961 c-
Fwd
CGCGGATCCCATATG-ATGAAACACTTTCCATCC
NdeI


L- . . .
Rev
CGCGGATCC-ACCCACGTTGTAAGGTTG
BamHI





fu (961)-
Fwd
CGCGGATCC-GGAGGGGGTGGTGTCG
BamHI


741(MC58)-His
Rev
CCCGCTCGAG-TTGCTTGGCGGCAAGGC
XhoI





fu (961)-
Fwd
CGCGGATCC-GGCGGAGGCGGCACTT
BamHI


983-His
Rev
CCCGCTCGAG-GAACCGGTAGCCTACG
XhoI





fu (961)-
Fwd
CGCGGATCCGGTGGTGGTGGT-
BamHI


Orf46.1-His

TCAGATTTGGCAAACGATTC




Rev
CCCGCTCGAG-CGTATCATATTTCACGTGC
XhoI





fu (961 c-L)-
Fwd
CGCGGATCC-GGAGGGGGTGGTGTCG
BamHI


741(MC58)
Rev
CCCGCTCGAG-TTATTGCTTGGCGGCAAG
XhoI





fu (961c-L )-
Fwd
CGCGGATCC-GGCGGAGGCGGCACTT
BamHI


983
Rev
CCCGCTCGAG-TCAGAACCGGTAGCCTAC
XhoI





fu (961c-L)-
Fwd
CGCGGATCCGGTGGTGGTGGT-
BamHI


Orf46.1

TCAGATTTGGCAAACGATTC




Rev
CCCGCTCGAG-TTACGTATCATATTTCACGTGC
XhoI





961-(His/GST)
Fwd
CGCGGATCCCATATG-GCCACAAGCGACGACG
BamHI-


(MC58)


NdeI



Rev
CCCGCTCGAG-CCACTCGTAATTGACGCC
XhoI





961 Δ1-His
Fwd
CGCGGATCCCATATG-GCCACAAACGACGAC
NdeI



Rev
CCCGCTCGAG-TGCTTTGGCGGCAAAGTT
XhoI





961a-(His/GST)
Fwd
CGCGGATCCCATATG-GCCACAAACGACGAC
BamHI-





NdeI



Rev
CCCGCTCGAG-TTTAGCAATATTATCTTTGTTCGTAGC
XhoI





961b-(His/GST)
Fwd
CGCGGATCCCATATG-AAAGCAAACCGTGCCGA
BamHI-





NdeI



Rev
CCCGCTCGAG-CCACTCGTAATTGACGCC
XhoI





961-His/GST GATE
Fwd
ggggacaagtttgtacaaaaaagcaggctGCAGCCACAAACGACGACG
attB1




ATGTTAAAAAAGC




Rev
ggggaccactttgtacaagaaagctgggtTTACCACTCGTAATTGACGC
attB2




CGACATGGTAGG






982
Fwd
GCGGCCATATG-GCAGCAAAAGACGTACAGTT
NdeI



Rev
GCGGCCTCGAG-TTACATCATGCCGCCCATACCA
XhoI





983-His (2996)
Fwd
CGCGGATCCGCTAGC-TTAGGCGGCGGCGGAG
NheI



Rev
CCCGCTCGAG-GAACCGGTAGCCTACG
XhoI





ΔG983-His (2996)
Fwd
CCCCTAGCTAGC-ACTTCTGCGCCCGACTT
NheI



Rev
CCCGCTCGAG-GAACCGGTAGCCTACG
XhoI





983-His
Fwd
CGCGGATCCGCTAGC-TTAGGCGGCGGCGGAG
NheI



Rev
CCCGCTCGAG-GAACCGGTAGCCTACG
XhoI





ΔG983-His
Fwd
CGCGGATCCGCTAGC-ACTTCTGCGCCCGACTT
NheI



Rev
CCCGCTCGAG-GAACCGGTAGCCTACG
XhoI





983L
Fwd
CGCGGATCCGCTAGC-
NheI




CGAACGACCCCAACCTTCCCTACAAAAACTTTCAA




Rev
CCCGCTCGAG-TCAGAACCGACGTGCCAAGCCGTTC
XhoI





987-His (MC58)
Fwd
GCCGCCATATGCCCCCACTGGAAGAACGGACG
NdeI



Rev
GCCGCCTCGAGTAATAAACCTTCTATGGGCAGCAG
XhoI





989-(His/GST)
Fwd
CGCGGATCCCATATG-TCCGTCCACGCATCCG
BamHI-


(MC58)


NdeI



Rev
CCCGCTCGAG-TTTGAATTTGTAGGTGTATTG
XhoI





989L
Fwd
CGCGGATCCCATATG-ACCCCTTCCGCACT
NdeI


(MC58)
Rev
CCCGCTCGAG-TTATTTGAATTTGTAGGTGTAT
XhoI





CrgA-His
Fwd
CGCGGATCCCATATG-AAAACCAATTCAGAAGAA
NdeI


(MC58)
Rev
CCCGCTCGAG-TCCACAGAGATTGTTTCC
XhoI





PilC1-ES
Fwd
GATGCCCGAAGGGCGGG



(MC58)
Rev
GCCCAAGCTT-TCAGAAGAAGACTTCACGC






PilC1-His
Fwd
CGCGGATCCCATATG-CAAACCCATAAATACGCTATT
NdeI


(MC58)
Rev
GCCCAAGCTT-GAAGAAGACTTCACGCCAG
HindIII





Δ1PilC1-His
Fwd
CGCGGATCCCATATG-GTCTTTTTCGACAATACCGA
NdeI


(MC58)
Rev
GCCCAAGCTT-
HindIII





PilC1L
Fwd
CGCGGATCCCATATG-AATAAAACTTTAAAAAGGCGG
NdeI


(MC58)
Rev
GCCCAAGCTT-TCAGAAGAAGACTTCACGC
HindIII





ΔGTbp2-His
Fwd
CGCGAATCCCATATG-TTCGATCTTGATTCTGTCGA
NdeI


(MC58)
Rev
CCCGCTCGAG-TCGCACAGGCTGTTGGCG
XhoI





Tbp2-His
Fwd
CGCGAATCCCATATG-TTGGGCGGAGGCGGCAG
NdeI


(MC58)
Rev
CCCGCTCGAG-TCGCACAGGCTGTTGGCG
XhoI





Tbp2-His(MC58)
Fwd
CGCGAATCCCATATG-TTGGGCGGAGGCGGCAG
NdeI



Rev
CCCGCTCGAG-TCGCACAGGCTGTTGGCG
XhoI





NMB0109-
Fwd
CGCGGATCCCATATG-GCAAATTTGGAGGTGCGC
BamHI-


(His/GST)


NdeI


(MC58)
Rev
CCCGCTCGAG-TTCGGAGCGGTTGAAGC
XhoI





NMB0109L
Fwd
CGCGGATCCCATATG-CAACGTCGTATTATAACCC
NdeI


(MC58)
Rev
CCCGCTCGAG-TTATTCGGAGCGGTTGAAG
XhoI





NMB0207-
Fwd
CGCGGATCCCATATG-
BamHI-


(His/GST)

GGCATCAAAGTCGCCATCAACGGCTAC
NdeI


(MC58)
Rev
CCCGCTCGAG-TTTGAGCGGGCGCACTTCAAGTCCG
XhoI





NMB0462-
Fwd
CGCGGATCCCATATG-GGCGGCAGCGAAAAAAAC
BamHI-


(His/GST)


NdeI


(MC58)
Rev
CCCGCTCGAG-GTTGGTGCCGACTTTGAT
XhoI





NMB0623-
Fwd
CGCGGATCCCATATG-GGCGGCGGAAGCGATA
BamHI-


(His/GST)


NdeI


(MC58)
Rev
CCCGCTCGAG-TTTGCCCGCTTTGAGCC
XhoI





NMB0625 (His-
Fwd
CGCGGATCCCATATGGGCAAATCCGAAAATACG
BamHI-


GST)(MC58)


NdeI



Rev
CCCGCTCGAGCATCCCGTACTGTTTCG
XhoI





NMB0634
Fwd
ggggacaagtttgtacaaaaaagcaggctCCGACATTACCGTGTACAAC
attB1


(His/GST)(MC58)

GGCCAACAAAGAA




Rev
ggggaccactttgtacaagaaagctgggtCTTATTTCATACCGGCTTGCT
attB2




CAAGCAGCCGG






NMB0776-
Fwd
ggggacaagtttgtacaaaaaagcaggctGATACGGTGTTTTCCTGTAA
attB1


His/GST 

AACGGACAACAA



(MC58) GATE
Rev
ggggaccactttgtacaagaaagctgggtCTAGGAAAAATCGTCATCGT
attB2




TGAAATTCGCC






NMB1115-
Fwd
ggggacaagtttgtacaaaaaagcaggctATGCACCCCATCGAAACC
attB1


His/GST 
Rev
ggggaccactttgtacaagaaagctgggtCTAGTCTTGCAGTGCCTC
attB2


(MC58) GATE








NMB1343-
Fwd
CGCGGATCCCATATG-
BamHI-


(His/GST)

GGAAATTTCTTATATAGAGGCATTAG
NdeI


(MC58)
Rev
CCCGCTCGAG-
XhoI




GITAATTTCTATCAACTCTTTAGCAATAAT






NMB1369 (His-
Fwd
CGCGGATCCCATATGGCCTGCCAAGACGACA
BamHI-


GST (MC58)


NdeI



Rev
CCCGCTCGAGCCGCCTCCTGCCGAAA
XhoI





NMB1551 (His-
Fwd
CGCGGATCCCATATGGCAGAGATCTGTTTGATAA
BamHI-


GST)(MC58)


NdeI



Rev
CCCGCTCGAGCGGTTTTCCGCCCAATG
XhoI





NMB1899 (His-
Fwd
CGCGGATCCCATATGCAGCCGGATACGGTC
BamHI-


GST) (MC58)


NdeI



Rev
CCCGCTCGAGAATCACTTCCAACACAAAAT
XhoI





NMB2050-
Fwd
CGCGGATCCCATATG-TGGTTGCTGATGAAGGGC
BamHI-


(His/GST)


NdeI


(MC58)
Rev
CCCGCTCGAG-GACTGCTTCATCTTCTGC
XhoI





NMB2050L
Fwd
CGCGGATCCCATATG-GAACTGATGACTGTTTTGC
NdeI


(MC58)
Rev
CCCGCTCGAG-TCAGACTGCTTCATCTTCT
XhoI





NMB2159-
Fwd
CGCGGATCCCATATG-
BamHI-


(His/GST)

AGCATTAAAGTAGCGATTAACGOTTTCGGC
NdeI


(MC58)
Rev
CCCGCTCGAG-
XhoI




GATTTTGCCTGCGAAGTATTCCAAAGTGCG






fu-ΔG287 
Fwd
CGCGGATCCGCTAGC-CCCGATGTTAAATCGGC
NheI


. . . -His
Rev
CGGGGATCC-ATCCTGCTCTTTTTTGCCGG
BamHI





fu-(ΔG287)-919-
Fwd
CGCGGATCCGGTGGTGGTGGT-
BamHI


His

CAAAGCAAGAGCATCCAAACC




Rev
CCCAAGCTT-TTCGGGCGGTATTCGGGCTTC
HindIII





fu-(ΔG287)-953-
Fwd
CGCGGATCCGGTGGTGGTGGT-
BamHI


His

GCCACCTACAAAGTGGAC




Rev
GCCCAAGCTT-TTGTTTGGCTGCCTCGAT
HindIII





fu-(ΔG287)-961-
Fwd
CGCGGATCCGGTGGTGGTGGT-ACAAGCGACGACG
BamHI


His
Rev
GCCCAAGCTT-CCACTCGTAATTGACGCC
HindIII





fu-(ΔG287)-
Fwd
CGCGGATCCGGTGGTGGTGGT-
BamHI


Orf46.1-His

TCAGATTTGGCAAACGATTC




Rev
CCCAAGCTT-CGTATCATATTTCACGTGC
HindIII





fu-(ΔG287-919)-
Fwd
CCCAAGCTTGGTGGTGGTGGTGGT-
HindIII


Orf46.1-His

TCAGATTTGGCAAACGATTC




Rev
CCCGCTCGAG-CGTATCATATTTCACGTGC
XhoI





fu-(ΔG287-
Fwd
CCCAAGCTTGGTGGTGGTGGTGGT-
HindIII


Orf46.1)-919-His

CAAAGCAAGAGCATCCAAACC




Rev
CCCGCTCGAG-CGGGCGGTATTCGGGCTT
XhoI





fu ΔG287(394.98)-
Fwd
CGCGGATCCGCTAGC-CCCGATGTTAAATCGGC
NheI


. . .
Rev
CGGGGATCC-ATCCTGCTCTTTTTTGCCGG
BamHI





fu Orf1-
Fwd
CGCGGATCCGCTAGC-GGACACACTTATTTCGGCATC
NheI


(Orf46.1)-His
Rev
CGCGGATCC-CCAGCGGTAGCCTAATTTGAT






fu (Orf1)-
Fwd
CGCGGATCCGGTGGTGGTGGT-
BamHI


Orf46.1-His

TCAGATTTGGCAAACGATTC




Rev
CCCAAGCTT-CGTATCATATTTCACGTGC
HindIII





fu (919)-
Fwd1
GCGGCGTCGACGGTGGCGGAGGCACTGGATCCTCAG
SalI


Orf46.1-His
Fwd2
GGAGGCACTGGATCCTCAGATTTGGCAAACGATTC




Rev
CCCGCTCGAG-CGTATCATATTTCACGTGC
XhoI





Fu orf46- . . .
Fwd
GGAATTCCATATGTCAGATTTGGCAAACGATTC
NdeI



Rev
CGCCGGATCCGTATCATATTTCACGTGC
BamHI





Fu (orf46)-
Fwd
CGGGGATCCGGGGGCGGCGGTGGCG
BamHI


287-His
Rev
CCCAAGCTTATCCTGCTCTTTTTTGCCGGC
HindIII





Fu (orf46)-
Fwd
CGCGGATCCGGTGGTGGTGGTCAAAGCAAGAGCATCCA
BamHI


919-His

AACC




Rev
CCCAAGCTTCGGGCGGTATTCGGGCTTC
HindIII





Fu (orf46-919)-
Fwd
CCCCAAGCTTGGGGGCGGCGGTGGCG
HindIII


287-His
Rev
CCCGCTCGAGATCCTGCTCTTTTTTGCCGGC
XhoI





Fu (orf46-287)-
Fwd
CCCAAGCTTGGTGGTGGTGGTGGTCAAAGCAAGAGCAT
HindIII


919-His

CCAAACC




Rev
CCCGCTCGAGCGGGCGGTATTCGGGCTT
XhoI





(ΔG741)-961c-His
Fwd1
GGAGGCACTGGATCCGCAGCCACAAACGACGACGA
XhoI



Fwd2
GCGGCCTCGAG-GGTGGCGGAGGCACTGGATCCGCAG




Rev
CCCGCTCGAG-ACCCAGCTTGTAAGGTTG
XhoI





(ΔG741)-961-His
Fwd1
GGAGGCACTGGATCCGCAGCCACAAACGACGACGA
XhoI



Fwd2
GCGGCCTCGAG-GGTGGCGGAGGCACTGGATCCGCAG




Rev
CCCGCTCGAG-CCACTCGTAATTGACGCC
XhoI





(ΔG741)-983-His
Fwd
GCGGCCTCGAG-
XhoI




GGATCCGGCGGAGGCGGCACTTCTGCG




Rev
CCCGCTCGAG-GAACCGGTAGCCTACG
XhoI





(ΔG741)-orf46.1-
Fwd1
GGAGGCACTGGATCCTCAGATTTGGCAAACGATTC
SalI


His
Fwd2
GCGGCGTCGACGGTGGCGGAGGCACTGGATCCTCAGA




Rev
CCCGCTCGAG-CGTATCATATTTCACGTGC
XhoI





(ΔG983)-
Fwd
GCGGCCTCGAG-GGATCCGGAGGGGGTGGTGTCGCC
XhoI


741(MC58)-His
Rev
CCCGCTCGAG-TTGCTTGGCGGCAAG
XhoI





(ΔG983)-961c-His
Fwd1
GGAGGCACTGGATCCGCAGCCACAAACGACGACGA
XhoI



Fwd2
GCGGCCTCGAG-GGTGGCGGAGGCACTGGATCCGCAG




Rev
CCCGCTCGAG-ACCCAGCTTGTAAGGTTG
XhoI





(ΔG983)-961-His
Fwd1
GGAGGCACTGGATCCGCAGCCACAAACGACGACGA
XhoI



Fwd2
GCGGCCTCGAG-GGTGGCGGAGGCACTGGATCCGCAG




Rev
CCCGCTCGAG-CCACTCGTAATTGACGCC
XhoI





(ΔG983)-Orf46.1-
Fwd1
GGAGGCACTGGATCCTCAGATTTGGCAAACGATTC
SalI


His
Fwd2
GCGGCGTCGACGGTGGCGGAGGCACTGGATCCTCAGA




Rev
CCCGCTCGAG-CGTATCATATTTCACGTGC
XhoI





* This primer was used as a Reverse primer for all the C terminal fusions of 287 to the His-tag.



§ Forward primers used in combination with the 287-His Reverse primer.



NB - All PCR reactions use strain 2996 unless otherwise specified (e.g. strain MC58)






In all constructs starting with an ATG not followed by a unique NheI site, the ATG codon is part of the NdeI site used for cloning. The constructs made using NheI as a cloning site at the 5′ end (e.g. all those containing 287 at the N-terminus) have two additional codons (GCT AGC) fused to the coding sequence of the antigen.


Preparation of Chromosomal DNA Templates


N. meningitidis strains 2996, MC58, 394.98, 1000 and BZ232 (and others) were grown to exponential phase in 100 ml of GC medium, harvested by centrifugation, and resuspended in 5 ml buffer (20% w/v sucrose, 50 mM Tris-HCl, 50 mM EDTA, p118). After 10 minutes incubation on ice, the bacteria were lysed by adding 10 ml of lysis solution (50 mM NaCl, 1% Na-Sarkosyl, 50 μg/ml Proteinase K), and the suspension incubated at 37° C. for 2 hours. Two phenol extractions (equilibrated to pH 8) and one CHCl3/isoamylalcohol (24:1) extraction were performed. DNA was precipitated by addition of 0.3M sodium acetate and 2 volumes of ethanol, and collected by centrifugation. The pellet was washed once with 70% (v/v) ethanol and redissolved in 4.0 ml TE buffer (10 mM Tris-HCl, 1 mM EDTA, pH 8.0). The DNA concentration was measured by reading OD260.


PCR Amplification

The standard PCR protocol was as follows: 200 ng of genomic DNA from 2996, MC581000, or BZ232 strains or long of plasmid DNA preparation of recombinant clones were used as template in the presence of 40 μM of each oligonucletide primer, 400-800 μM dNTPs solution, 1×PCR buffer (including 1.5 mM MgCl2), 2.5 units TaqI DNA polymerase (using Perkin-Elmer AmpliTaQ, Boerhingher Mannheim Expand™ Long Template).


After a preliminary 3 minute incubation of the whole mix at 95° C., each sample underwent a two-step amplification: the first 5 cycles were performed using the hybridisation temperature that excluded the restriction enzyme tail of the primer (Tm1). This was followed by 30 cycles according to the hybridisation temperature calculated for the whole length oligos (Tm2). Elongation times, performed at 68° C. or 72° C., varied according to the length of the Orf to be amplified. In the case of Orf1 the elongation time, starting from 3 minutes, was increased by 15 seconds each cycle. The cycles were completed with a 10 minute extension step at 72° C.


The amplified DNA was either loaded directly on a 1% agarose gel. The DNA fragment corresponding to the band of correct size was purified from the gel using the Qiagen Gel Extraction Kit, following the manufacturer's protocol.


Digestion of PCR Fragments and of the Cloning Vectors

The purified DNA corresponding to the amplified fragment was digested with the appropriate restriction enzymes for cloning into pET-21b+, pET22b+ or pET-24b+. Digested fragments were purified using the QIAquick PCR purification kit (following the manufacturer's instructions) and eluted with either H2O or 10mM Tris, pH 8.5. Plasmid vectors were digested with the appropriate restriction enzymes, loaded onto a 1.0% agarose gel and the band corresponding to the digested vector purified using the Qiagen QIAquick Gel Extraction Kit.


Cloning

The fragments corresponding to each gene, previously digested and purified, were ligated into pET21b+, pET22b+ or pET-24b+. A molar ratio of 3:1 fragment/vector was used with T4 DNA ligase in the ligation buffer supplied by the manufacturer.


Recombinant plasmid was transformed into competent E. coli DH5 or HB101 by incubating the ligase reaction solution and bacteria for 40 minutes on ice, then at 37° C. for 3 minutes.


This was followed by the addition of 800 μl LB broth and incubation at 37° C. for 20 minutes. The cells were centrifuged at maximum speed in an Eppendorf microfuge, resuspended in approximately 200 μl of the supernatant and plated onto LB ampicillin (100 mg/ml) agar.


Screening for recombinant clones was performed by growing randomly selected colonies overnight at 37° C. in 4.0 ml of LB broth+100p g/ml ampicillin. Cells were pelleted and plasmid DNA extracted using the Qiagen QIAprep Spin Miniprep Kit, following the manufacturer's instructions. Approximately 1 μg of each individual miniprep was digested with the appropriate restriction enzymes and the digest loaded onto a 1-1.5% agarose gel (depending on the expected insert size), in parallel with the molecular weight marker (1 kb DNA Ladder, GIBCO). Positive clones were selected on the basis of the size of insert.


Expression

After cloning each gene into the expression vector, recombinant plasmids were transformed into E. coli strains suitable for expression of the recombinant protein. 1 μl of each construct was used to transform E. coli BL21-DE3 as described above. Single recombinant colonies were inoculated into 2 ml LB+Amp (100 μg/ml), incubated at 37° C. overnight, then diluted 1:30 in 20 ml of LB+Amp (100 μg/ml) in 100 ml flasks, to give an OD600 between 0.1 and 0.2. The flasks were incubated at 30° C. or at 37° C. in a gyratory water bath shaker until OD600 indicated exponential growth suitable for induction of expression (0.4-0.80D). Protein expression was induced by addition of 1.0 mM IPTG. After 3 hours incubation at 30° C. or 37° C. the OD600 was measured and expression examined. 1.0 ml of each sample was centrifuged in a microfuge, the pellet resuspended in PBS and analysed by SDS-PAGE and Coomassie Blue staining.


Gateway Cloning and Expression

Sequences labelled GATE were cloned and expressed using the GATEWAY Cloning Technology (GIBCO-BRL). Recombinational cloning (RC) is based on the recombination reactions that mediate the integration and excision of phage into and from the E. coli genome, respectively. The integration involves recombination of the attP site of the phage DNA within the attB site located in the bacterial genome (BP reaction) and generates an integrated phage genome flanked by attL and attR sites. The excision recombines attL and attR sites back to attP and attB sites (LR reaction). The integration reaction requires two enzymes [the phage protein Integrase (Int) and the bacterial protein integration host factor (IHF)] (BP clonase). The excision reaction requires Int, IHF, and an additional phage enzyme, Excisionase (Xis) (LR clonase). Artificial derivatives of the 25-bp bacterial attB recombination site, referred to as B1 and B2, were added to the 5′ end of the primers used in PCR reactions to amplify Neisserial ORFs. The resulting products were BP cloned into a “Donor vector” containing complementary derivatives of the phage attP recombination site (P1 and P2) using BP clonase. The resulting “Entry clones” contain ORFs flanked by derivatives of the attL site (L1 and 12) and were subcloned into expression “destination vectors” which contain derivatives of the attL-compatible attR sites (R1 and R2) using LR clonase. This resulted in “expression clones” in which ORFs are flanked by B1 and B2 and fused in frame to the GST or H is N terminal tags.


The E. coli strain used for GATEWAY expression is BL21-SI. Cells of this strain are induced for expression of the T7 RNA polymerase by growth in medium containing salt (0.3 M NaCl).


Note that this system gives N-terminus His tags.


Preparation of Membrane Proteins.

Fractions composed principally of either inner, outer or total membrane were isolated in order to obtain recombinant proteins expressed with membrane-localisation leader sequences. The method for preparation of membrane fractions, enriched for recombinant proteins, was adapted from Filip et. al. [J. Bact. (1973) 115:717-722] and Davies et. al. [J. Immunol. Meth. (1990) 143:215-225]. Single colonies harbouring the plasmid of interest were grown overnight at 37° C. in 20 ml of LB/Amp (100 μg/ml) liquid culture. Bacteria were diluted 1:30 in 1.0 L of fresh medium and grown at either 30° C. or 37° C. until the OD550 reached 0.6-0.8. Expression of recombinant protein was induced with IPTG at a final concentration of 1.0 mM. After incubation for 3 hours, bacteria were harvested by centrifugation at 8000 g for 15 minutes at 4° C. and resuspended in 20 ml of 20 mM Tris-HCl (pH 7.5) and complete protease inhibitors (Boehringer-Mannheim). All subsequent procedures were performed at 4° C. or on ice.


Cells were disrupted by sonication using a Branson Sonifier 450 and centrifuged at 5000 g for 20 min to sediment unbroken cells and inclusion bodies. The supernatant, containing membranes and cellular debris, was centrifuged at 50000 g (Beckman Ti50, 29000 rpm) for 75 min, washed with 20 mM Bis-tris propane (pH 6.5), 1.0 M NaCl, 10% (v/v) glycerol and sedimented again at 50000 g for 75 minutes. The pellet was resuspended in 20 mM Tris-HCl (pH 7.5), 2.0% (v/v) Sarkosyl, complete protease inhibitor (1.0 mM EDTA, final concentration) and incubated for 20 minutes to dissolve inner membrane. Cellular debris was pelleted by centrifugation at 5000 g for 10 min and the supernatant centrifuged at 75000 g for 75 minutes (Beckman Ti50, 33000 rpm). Proteins 008L and 519L were found in the supernatant suggesting inner membrane localisation. For these proteins both inner and total membrane fractions (washed with NaCl as above) were used to immunise mice. Outer membrane vesicles obtained from the 75000 g pellet were washed with 20 mM Tris-HCl (pH 7.5) and centrifuged at 75000 g for 75 minutes or overnight. The OMV was finally resuspended in 500 μl of 20 mM Tris-HCl (pH 7.5), 10% v/v glycerol. Orf1L and Orf40L were both localised and enriched in the outer membrane fraction which was used to immunise mice. Protein concentration was estimated by standard Bradford Assay (Bio-Rad), while protein concentration of inner membrane fraction was determined with the DC protein assay (Bio-Rad). Various fractions from the isolation procedure were assayed by SDS-PAGE.


Purification of His-Tagged Proteins

Various forms of 287 were cloned from strains 2996 and MC58. They were constructed with a C-terminus His-tagged fusion and included a mature form (aa 18-427), constructs with deletions (Δ1, Δ2, Δ3 and Δ4) and clones composed of either B or C domains. For each clone purified as a His-fusion, a single colony was streaked and grown overnight at 37° C. on a LB/Amp (100 μg/ml) agar plate. An isolated colony from this plate was inoculated into 20 ml of LB/Amp (100 μg/ml) liquid medium and grown overnight at 37° C. with shaking. The overnight culture was diluted 1:30 into 1.0 L LB/Amp (100 μg/ml) liquid medium and allowed to grow at the optimal temperature (30 or 37° C.) until the OD550 reached 0.6-0.8. Expression of recombinant protein was induced by addition of IPTG (final concentration 1.0 mM) and the culture incubated for a further 3 hours. Bacteria were harvested by centrifugation at 8000 g for 15 min at 4° C. The bacterial pellet was resuspended in 7.5 ml of either (i) cold buffer A (300 mM NaCl, 50 mM phosphate buffer, 10 mM imidazole, pH 8.0) for soluble proteins or (ii) buffer B (10 mM Tris-HCl, 100 mM phosphate buffer, pH 8.8 and, optionally, 8M urea) for insoluble proteins. Proteins purified in a soluble form included 287-His, Δ1, Δ2, Δ3 and Δ4287-His, Δ4287MC58-His, 287c-His and 287cMC58-His. Protein 287bMC58-His was insoluble and purified accordingly. Cells were disrupted by sonication on ice four times for 30 sec at 40W using a Branson sonifier 450 and centrifuged at 13000×g for 30 min at 4° C. For insoluble proteins, pellets were resuspended in 2.0 ml buffer C (6 M guanidine hydrochloride, 100 mM phosphate buffer, 10 mM Tris-HCl, pH 7.5 and treated with 10 passes of a Dounce homogenizer. The homogenate was centrifuged at 13000 g for 30 min and the supernatant retained. Supernatants for both soluble and insoluble preparations were mixed with 150 μl Ni2+-resin (previously equilibrated with either buffer A or buffer B, as appropriate) and incubated at room temperature with gentle agitation for 30 min. The resin was Chelating Sepharose Fast Flow (Pharmacia), prepared according to the manufacturer's protocol. The batch-wise preparation was centrifuged at 700 g for 5 min at 4° C. and the supernatant discarded. The resin was washed twice (batch-wise) with 10 ml buffer A or B for 10 min, resuspended in 1.0 ml buffer A or B and loaded onto a disposable column. The resin continued to be washed with either (i) buffer A at 4° C. or (ii) buffer B at room temperature, until the OD280 of the flow-through reached 0.02-0.01. The resin was further washed with either (i) cold buffer C (300 mM NaCl, 50 mM phosphate buffer, 20 mM imidazole, pH 8.0) or (ii) buffer D (10 mM Tris-HCl, 100 mM phosphate buffer, pH 6.3 and, optionally, 8M urea) until OD280 of the flow-through reached 0.02-0.01. The His-fusion protein was eluted by addition of 700 μl of either (i) cold elution buffer A (300 mM NaCl, 50 mM phosphate buffer, 250 mM imidazole, pH 8.0) or (ii) elution buffer B (10 mM Tris-HCl, 100 mM phosphate buffer, pH 4.5 and, optionally, 8M urea) and fractions collected until the OD280 indicated all the recombinant protein was obtained. 20 μl aliquots of each elution fraction were analysed by SDS-PAGE. Protein concentrations were estimated using the Bradford assay.


Renaturation of Denatured His-Fusion Proteins.

Denaturation was required to solubilize 287bMC8, so a renaturation step was employed prior to immunisation. Glycerol was added to the denatured fractions obtained above to give a final concentration of 10% v/v. The proteins were diluted to 200 μg/ml using dialysis buffer I (10% v/v glycerol, 0.5M arginine, 50 mM phosphate buffer, 5.0 mM reduced glutathione, 0.5 mM oxidised glutathione, 2.0M urea, pH 8.8) and dialysed against the same buffer for 12-14 hours at 4° C. Further dialysis was performed with buffer II (10% v/v glycerol, 0.5M arginine, 50 mM phosphate buffer, 5.0 mM reduced glutathione, 0.5 mM oxidised glutathione, pH 8.8) for 12-14 hours at 4° C. Protein concentration was estimated using the formula:





Protein (mg/ml)=(1.55×OD280)−(0.76×OD260)


Amino Acid Sequence Analysis.

Automated sequence analysis of the NH2-terminus of proteins was performed on a Beckman sequencer (LF 3000) equipped with an on-line phenylthiohydantoin-amino acid analyser (System Gold) according to the manufacturer's recommendations.


Immunization

Balb/C mice were immunized with antigens on days 0, 21 and 35 and sera analyzed at day 49.


Sera Analysis ELISA

The acapsulated MenB M7 and the capsulated strains were plated on chocolate agar plates and incubated overnight at 37° C. with 5% CO2. Bacterial colonies were collected from the agar plates using a sterile dracon swab and inoculated into Mueller-Hinton Broth (Difco) containing 0.25% glucose. Bacterial growth was monitored every 30 minutes by following OD620. The bacteria were let to grow until the OD reached the value of 0.4-0.5. The culture was centrifuged for 10 minutes at 4000 rpm. The supernatant was discarded and bacteria were washed twice with PBS, resuspended in PBS containing 0.025% formaldehyde, and incubated for 1 hour at 37° C. and then overnight at 4° C. with stirring. 100 μl bacterial cells were added to each well of a 96 well Greiner plate and incubated overnight at 4° C. The wells were then washed three times with PBT washing buffer (0.1% Tween-20 in PBS). 200 μl of saturation buffer (2.7% polyvinylpyrrolidone 10 in water) was added to each well and the plates incubated for 2 hours at 37° C. Wells were washed three times with PBT. 200 μl of diluted sera (Dilution buffer 1% BSA, 0.1% Tween-20, 0.1% NaN3 in PBS) were added to each well and the plates incubated for 2 hours at 37° C. Wells were washed three times with PBT. 100 μl of HRP-conjugated rabbit anti-mouse (Dako) serum diluted 1:2000 in dilution buffer were added to each well and the plates were incubated for 90 minutes at 37° C. Wells were washed three times with PBT buffer. 100 μl of substrate buffer for HRP (25 ml of citrate buffer pH5, 10 mg of 0-phenildiamine and 10 μl of H2O2) were added to each well and the plates were left at room temperature for 20 minutes. 100 μl 12.5% H2SO4 was added to each well and OD490 was followed. The ELISA titers were calculated abitrarely as the dilution of sera which gave an OD490 value of 0.4 above the level of preimmune sera. The ELISA was considered positive when the dilution of sera with OD490 of 0.4 was higher than 1:400.


Sera Analysis—FACS Scan Bacteria Binding Assay

The acapsulated MenB M7 strain was plated on chocolate agar plates and incubated overnight at 37° C. with 5% CO2. Bacterial colonies were collected from the agar plates using a sterile dracon swab and inoculated into 4 tubes containing 8 ml each Mueller-Hinton Broth (Difco) containing 0.25% glucose. Bacterial growth was monitored every 30 minutes by following OD620. The bacteria were let to grow until the OD reached the value of 0.35-0.5. The culture was centrifuged for 10 minutes at 4000 rpm. The supernatant was discarded and the pellet was resuspended in blocking buffer (1% BSA in PBS, 0.4% NaN3) and centrifuged for 5 minutes at 4000 rpm. Cells were resuspended in blocking buffer to reach OD620 of 0.05. 100 μl bacterial cells were added to each well of a Costar 96 well plate. 100 μl of diluted (1:100, 1:200, 1:400) sera (in blocking buffer) were added to each well and plates incubated for 2 hours at 4° C. Cells, were centrifuged for 5 minutes at 4000 rpm, the supernatant aspirated and cells washed by addition of 200 μl/well of blocking buffer in each well. 100 μl of R-Phicoerytrin conjugated F(ab)2 goat anti-mouse, diluted 1:100, was added to each well and plates incubated for 1 hour at 4° C. Cells were spun down by centrifugation at 4000 rpm for 5 minutes and washed by addition of 200W/well of blocking buffer. The supernatant was aspirated and cells resuspended in 200 μl/well of PBS, 0.25% formaldehyde. Samples were transferred to FACScan tubes and read. The condition for FACScan (Laser Power 15 mW) setting were: FL2 on; FSC-H threshold: 92; FSC PMT Voltage: E 01; SSC PMT: 474; Amp. Gains 6.1; FL-2 PMT: 586; compensation values: 0.


Sera Analysis—Bactericidal Assay


N. meningitidis strain 2996 was grown overnight at 37° C. on chocolate agar plates (starting from a frozen stock) with 5% CO2. Colonies were collected and used to inoculate 7 ml Mueller-Hinton broth, containing 0.25% glucose to reach an OD620 of 0.05-0.08. The culture was incubated for approximately 1.5 hours at 37 degrees with shacking until the OD620 reached the value of 0.23-0.24. Bacteria were diluted in 50 mM Phosphate buffer pH 7.2 containing 10 mM MgCl2, 10 mM CaCl2 and 0.5% (w/v) BSA (assay buffer) at the working dilution of 105 CFU/ml. The total volume of the final reaction mixture was 50 μl with 25 μl of serial two fold dilution of test serum, 12.5 μl of bacteria at the working dilution, 12.5 μl of baby rabbit complement (final concentration 25%).


Controls included bacteria incubated with complement serum, immune sera incubated with bacteria and with complement inactivated by heating at 56° C. for 30′. Immediately after the addition of the baby rabbit complement, 10 μl of the controls were plated on Mueller-Hinton agar plates using the tilt method (time 0). The 96-wells plate was incubated for 1 hour at 37° C. with rotation. 7 μl of each sample were plated on Mueller-Hinton agar plates as spots, whereas 10 μl of the controls were plated on Mueller-Hinton agar plates using the tilt method (time 1). Agar plates were incubated for 18 hours at 37 degrees and the colonies corresponding to time 0 and time 1 were counted.


Sera Analysis—Western Blots

Purified proteins (500 ng/lane), outer membrane vesicles (5 μg) and total cell extracts (25 μg) derived from MenB strain 2996 were loaded onto a 12% SDS-polyacrylamide gel and transferred to a nitrocellulose membrane. The transfer was performed for 2 hours at 150 mA at 4° C., using transfer buffer (0.3% Tris base, 1.44% glycine, 20% (v/v) methanol). The membrane was saturated by overnight incubation at 4° C. in saturation buffer (10% skimmed milk, 0.1% Triton X100 in PBS). The membrane was washed twice with washing buffer (3% skimmed milk, 0.1% Triton X100 in PBS) and incubated for 2 hours at 37° C. with mice sera diluted 1:200 in washing buffer. The membrane was washed twice and incubated for 90 minutes with a 1:2000 dilution of horseradish peroxidase labelled anti-mouse Ig. The membrane was washed twice with 0.1% Triton X100 in PBS and developed with the Opti-4CN Substrate Kit (Bio-Rad). The reaction was stopped by adding water.


The OMVs were prepared as follows: N. meningitidis strain 2996 was grown overnight at 37 degrees with 5% CO2 on 5 GC plates, harvested with a loop and resuspended in 10 ml of 20 mM Tris-HCl pH 7.5, 2 mM EDTA. Heat inactivation was performed at 56° C. for 45 minutes and the bacteria disrupted by sonication for 5 minutes on ice (50% duty cycle, 50% output, Branson sonifier 3 mm microtip). Unbroken cells were removed by centrifugation at 5000 g for 10 minutes, the supernatant containing the total cell envelope fraction recovered and further centrifuged overnight at 50000 g at the temperature of 4° C. The pellet containing the membranes was resuspended in 2% sarkosyl, 20 mM Tris-HCl pH 7.5, 2 mM EDTA and incubated at room temperature for 20 minutes to solubilise the inner membranes. The suspension was centrifuged at 10000 g for 10 minutes to remove aggregates, the supernatant was further centrifuged at 50000 g for 3 hours. The pellet, containing the outer membranes was washed in PBS and resuspended in the same buffer. Protein concentration was measured by the D.C. Bio-Rad Protein assay (Modified Lowry method), using BSA as a standard.


Total cell extracts were prepared as follows: N. meningitidis strain 2996 was grown overnight on a GC plate, harvested with a loop and resuspended in 1 ml of 20 mM Tris-HCl. Heat inactivation was performed at 56° C. for 30 minutes.


961 Domain Studies
Cellular Fractions Preparation

Total lysate, periplasm, supernatant and OMV of E. coli clones expressing different domains of 961 were prepared using bacteria from over-night cultures or after 3 hours induction with IPTG. Briefly, the periplasm were obtained suspending bacteria in saccarose 25% and Tris. 50 mM (pH 8) with polimixine 100 μg/ml. After 1 hr at room temperature bacteria were centrifuged at 13000 rpm for 15 min and the supernatant were collected. The culture supernatant were filtered with 0.2 μm and precipitated with TCA 50% in ice for two hours. After centrifugation (30 min at 13000 rp) pellets were rinsed twice with ethanol 70% and suspended in PBS. The OMV preparation was performed as previously described. Each cellular fraction were analyzed in SDS-PAGE or in Western Blot using the polyclonal anti-serum raised against GST-961.


Adhesion Assay

Chang epithelial cells (Wong-Kilbourne derivative, clone 1-5c-4, human conjunctiva) were maintained in DMEM (Gibco) supplemented with 10% heat-inactivated FCS, 15 mM L-glutamine and antibiotics.


For the adherence assay, sub-confluent culture of Chang epithelial cells were rinsed with PBS and treated with trypsin-EDTA (Gibco), to release them from the plastic support. The cells were then suspended in PBS, counted and dilute in PBS to 5×105 cells/ml.


Bacteria from over-night cultures or after induction with IPTG, were pelleted and washed twice with PBS by centrifuging at 13000 for 5 min. Approximately 2−3×108 (cfu) were incubated with 0.5 mg/ml FITC (Sigma) in 1 ml buffer containing 50 mM NaHCO3 and 100 mM NaCl pH 8, for 30 min at room temperature in the dark. FITC-labeled bacteria were wash 2-3 times and suspended in PBS at 1−1.5×109/ml. 200 μl of this suspension (2−3×108) were incubated with 2000 (1×105) epithelial cells for 30 min a 37° C. Cells were than centrifuged at 2000 rpm for 5 min to remove non-adherent bacteria, suspended in 200 μl of PBS, transferred to FACScan tubes and read

Claims
  • 1-13. (canceled)
  • 14. A method for the heterologous expression of a protein of the invention, in which (a) no fusion partner is used, and (b) the protein's native leader peptide (if present) is used.
  • 15. The method of claim 14, in which the protein of the invention is selected from the group consisting of: 111, 149, 206, 225-1, 235, 247-1, 274, 283, 286, 292, 401, 406, 502-1, 503, 519-1, 525-1, 552, 556, 557, 570, 576-1, 580, 583, 664, 759, 907, 913, 920-1, 936-1, 953, 961, 983, 989, Orf4, Orf7-1, Orf9-1, Orf23, Orf25, Orf37, Orf38, Orf40, Orf40.1, Orf40.2, Orf72-1, Orf76-1, Orf85-2, Orf91, Orf97-1, Orf119, Orf143.1, NMB0109, NMB2050, 008, 105, 117-1, 121-1, 122-1, 128-1, 148, 216, 243, 308, 593, 652, 726, 926, 982, Orf83-1 and Orf143-1.
  • 16. A method for the heterologous expression of a protein of the invention, in which (a) the protein's leader peptide is replaced by the leader peptide from a different protein and, optionally, (b) no fusion partner is used.
  • 17. The method of claim 16, in which the different protein is 961, ORF4, E. coli OmpA, or E. carotovora PelB, or in which the leader peptide is MKKYLFSAA.
  • 18-49. (canceled)
  • 50. The method of claim 16, in which the heterologous expression is in an E. coli host.
  • 51-52. (canceled)
  • 53. An immunogenic composition comprising an alum adjuvant and E. coli lipidated protein produced by the method of claim 50.
  • 54. A method of inducing an immune response to an E. coli lipidated protein produced by the method of claim 50 in a subject comprising administering to the subject an immunogenic composition comprising an alum adjuvant and the E. coli lipidated protein.
  • 55. A purified polypeptide comprising: (a) a fragment of the protein produced by the method of claim 16, or (b) an amino acid sequence having at least 90% sequence identity to the protein produced by the method of claim 16.
Priority Claims (2)
Number Date Country Kind
0004695.3 Feb 2000 GB national
0027675.8 Nov 2000 GB national
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a Continuation of Ser. No. 13/340,549, filed Dec. 29, 2011, which is a Divisional of Ser. No. 12/825,210, filed Jun. 28, 2010, which is a Divisional of Ser. No. 10/220,481, filed Aug. 13, 2003, which is the National Phase of PCT Application PCT/IB01/00452, filed Feb. 28, 2001, which claims the benefit of GB Application 0027675.8, filed Nov. 13, 2000, and GB Application 0004695.3, filed Feb. 28, 2000, all of which are incorporated herein by reference in their entirety.

Divisions (2)
Number Date Country
Parent 12825210 Jun 2010 US
Child 13340549 US
Parent 10220481 Aug 2003 US
Child 12825210 US
Continuations (1)
Number Date Country
Parent 13340549 Dec 2011 US
Child 14244806 US