Heterologous expression of neisserial proteins

Abstract
Alternative and improved approaches to the heterologous expression of the proteins of Neisseria meningitidis and Neisseria gonorrhoeae. These approaches typically affect the level of expression, the ease of purification, the cellular localisation, and/or the immunological properties of the expressed protein.
Description


[0001] All documents cited herein are incorporated by reference in their entirety.


TECHNICAL FIELD

[0002] This invention is in the field of protein expression. In particular, it relates to the heterologous expression of proteins from Neisseria (e.g. N.gonorrhoeae or, preferably, N.meningitidis).



BACKGROUND ART

[0003] International patent applications WO99/24578, WO99/36544, WO99/57280 and WO00/22430 disclose proteins from Neisseria meningitidis and Neisseria gonorrhoeae. These proteins are typically described as being expressed in E.coli (i.e. heterologous expression) as either N-terminal GST-fusions or C-terminal His-tag fusions, although other expression systems, including expression in native Neisseria, are also disclosed.


[0004] It is an object of the present invention to provide alternative and improved approaches for the heterologous expression of these proteins. These approaches will typically affect the level of expression, the ease of purification, the cellular localisation of expression, and/or the immunological properties of the expressed protein.



DISCLOSURE OF THE INVENTION

[0005] Nomenclature Herein


[0006] The 2166 protein sequences disclosed in WO99/24578, WO99/36544 and WO99/57280 are referred to herein by the following SEQ# numbers:
1ApplicationProtein sequencesSEQ# hereinWO99/24578Even SEQ IDs 2-892SEQ#s 1-446WO99/36544Even SEQ IDs 2-90SEQ#s 447-491WO99/57280Even SEQ IDs 2-3020SEQ#s 492-2001Even SEQ IDs 3040-3114SEQ#s 2002-2039SEQ IDs 3115-3241SEQ#s 2040-2166


[0007] In addition to this SEQ# numbering, the naming conventions used in WO99/24578, WO99/36544 and WO99/57280 are also used (e.g. ‘ORF4’, ‘ORF40’, ‘ORF40-1’ etc. as used in WO99/24578 and WO99/36544; ‘m919’, ‘g919’ and ‘a919’ etc. as used in WO99/57280).


[0008] The 2160 proteins NMB0001 to NM2160 from Tettelin et al. [Science (2000) 287:1809-1815] are referred to herein as SEQ#s 2167-4326 [see also WO00/66791].


[0009] The term ‘protein of the invention’ as used herein refers to a protein comprising:


[0010] (a) one of sequences SEQ#s 1-4326; or


[0011] (b) a sequence having sequence identity to one of SEQ#s 1-4326; or


[0012] (c) a fragment of one of SEQ#s 1-4326.


[0013] The degree of ‘sequence identity’ referred to in (b) is preferably greater than 50% (eg. 60%, 70%, 80%, 90%, 95%, 99% or more). This includes mutants and allelic variants [e.g. see WO00/66741]. Identity is preferably determined by the Smith-Waterman homology search algorithm as implemented in the MPSRCH program (Oxford Molecular), using an affine gap search with parameters gap open penalty=12 and gap extension penalty=1. Typically, 50% identity or more between two proteins is considered to be an indication of functional equivalence.


[0014] The ‘fragment’ referred to in (c) should comprise at least n consecutive amino acids from one of SEQ#s 1-4326 and, depending on the particular sequence, n is 7 or more (eg. 8, 10, 12, 14, 16, 18, 20, 25, 30, 35, 40, 50, 60, 70, 80, 90, 100 or more). Preferably the fragment comprises an epitope from one of SEQ#s 1-4326. Preferred fragments are those disclosed in WO0/71574 and WO01/04316.


[0015] Preferred proteins of the invention are found in N.meningitidis serogroup B.


[0016] Preferred proteins for use according to the invention are those of serogroup B N.meningitidis strain 2996 or strain 394/98 (a New Zealand strain). Unless otherwise stated, proteins mentioned herein are from N.meningitidis strain 2996. It will be appreciated, however, that the invention is not in general limited by strain. References to a particular protein (e.g. ‘287’, ‘919’ etc.) may be taken to include that protein from any strain.


[0017] Non-Fusion Expression


[0018] In a first approach to heterologous expression, no fusion partner is used, and the native leader peptide (if present) is used. This will typically prevent any ‘interference’ from fusion partners and may alter cellular localisation and/or post-translational modification and/or folding in the heterologous host.


[0019] Thus the invention provides a method for the heterologous expression of a protein of the invention, in which (a) no fusion partner is used, and (b) the protein's native leader peptide (if present) is used.


[0020] The method will typically involve the step of preparing an vector for expressing a protein of the invention, such that the first expressed amino acid is the first amino acid (methionine) of said protein, and last expressed amino acid is the last amino acid of said protein (i.e. the codon preceding the native STOP codon).


[0021] This approach is preferably used for the expression of the following proteins using the native leader peptide: 111, 149, 206, 225-1, 235, 247-1, 274, 283, 286, 292, 401, 406, 502-1, 503, 519-1, 525-1, 552, 556, 557, 570, 576-1, 580, 583, 664, 759, 907, 913, 920-1, 936-1, 953, 961, 983, 989, Orf4, Orf7-1, Orf9-1, Orf23, Orf25, Orf37, Orf38, Orf40, Orf40.1, Orf40.2, Orf72-1, Orf76-1, Orf85-2, Orf91, Orf97-1, Orf119, Orf143.1, NMB0109 and NMB2050. The suffix ‘L’ used herein in the name of a protein indicates expression in this manner using the native leader peptide.


[0022] Proteins which are preferably expressed using this approach using no fusion partner and which have no native leader peptide include: 008, 105, 117-1, 121-1, 122-1, 128-1, 148, 216, 243, 308, 593, 652, 726, 926, 982, Orf83-1 and Orf143-1.


[0023] Advantageously, it is used for the expression of ORF25 or ORF40, resulting in a protein which induces better anti-bactericidal antibodies than GST- or His-fusions.


[0024] This approach is particularly suited for expressing lipoproteins.


[0025] Leader-Peptide Substitution


[0026] In a second approach to heterologous expression, the native leader peptide of a protein of the invention is replaced by that of a different protein. In addition, it is preferred that no fusion partner is used. Whilst using a protein's own leader peptide in heterologous hosts can often localise the protein to its ‘natural’ cellular location, in some cases the leader sequence is not efficiently recognised by the heterologous host. In such cases, a leader peptide known to drive protein targeting efficiently can be used instead.


[0027] Thus the invention provides a method for the heterologous expression of a protein of the invention, in which (a) the protein's leader peptide is replaced by the leader peptide from a different protein and, optionally, (b) no fusion partner is used.


[0028] The method will typically involve the steps of: obtaining nucleic acid encoding a protein of the invention; manipulating said nucleic acid to remove nucleotides that encode the protein's leader peptide and to introduce nucleotides that encode a different protein's leader peptide. The resulting nucleic acid may be inserted into an expression vector, or may already be part of an expression vector. The expressed protein win consist of the replacement leader peptide at the N-terminus, followed by the protein of the invention minus its leader peptide.


[0029] The leader peptide is preferably from another protein of the invention (e.g. one of SEQ#s 1-4326), but may also be from an E.coli protein (e.g. the OmpA leader peptide) or an Erwinia carotovora protein (e.g. the PelB leader peptide), for instance.


[0030] A particularly useful replacement leader peptide is that of ORF4. This leader is able to direct lipidation in E.coli, improving cellular localisation, and is particularly useful for the expression of proteins 287, 919 and ΔG287. The leader peptide and N-terminal domains of 961 are also particularly useful.


[0031] Another useful replacement leader peptide is that of E.coli OmpA. This leader is able to direct membrane localisation of E.coli. It is particularly advantageous for the expression of ORF1, resulting in a protein which induces better anti-bactericidal antibodies than both fusions and protein expressed from its own leader peptide.


[0032] Another useful replacement leader peptide is MKKYLFSAA. This can direct secretion into culture medium, and is extremely short and active. The use of this leader peptide is not restricted to the expression of Neisserial proteins—it may be used to direct the expression of any protein (particularly bacterial proteins).


[0033] Leader-Peptide Deletion


[0034] In a third approach to heterologous expression, the native leader peptide of a protein of the invention is deleted. In addition, it is preferred that no fusion partner is used.


[0035] Thus the invention provides a method for the heterologous expression of a protein of the invention, in which (a) the protein's leader peptide is deleted and, optionally, (b) no fusion partner is used.


[0036] The method will typically involve the steps of: obtaining nucleic acid encoding a protein of the invention; manipulating said nucleic acid to remove nucleotides that encode the protein's leader peptide. The resulting nucleic acid may be inserted into an expression vector, or may already be part of an expression vector. The first amino acid of the expressed protein will be that of the mature native protein.


[0037] This method can increase the levels of expression. For protein 919, for example, expression levels in E.coli are much higher when the leader peptide is deleted. Increased expression may be due to altered localisation in the absence of the leader peptide.


[0038] The method is preferably used for the expression of 919, ORF46, 961, 050-1, 760 and 287.


[0039] Domain-Based Expression


[0040] In a fourth approach to heterologous expression, the protein is expressed as domains. This may be used in association with fusion systems (e.g. GST or His-tag fusions).


[0041] Thus the invention provides a method for the heterologous expression of a protein of the invention, in which (a) at least one domain in the protein is deleted and, optionally, (b) no fusion partner is used.


[0042] The method will typically involve the steps of: obtaining nucleic acid encoding a protein of the invention; manipulating said nucleic acid to remove at least one domain from within the protein. The resulting nucleic acid may be inserted into an expression vector, or may already be part of an expression vector. Where no fusion partners are used, the first amino acid of the expressed protein will be that of a domain of the protein.


[0043] A protein is typically divided into notional domains by aligning it with known sequences in databases and then determining regions of the protein which show different alignment patterns from each other.


[0044] The method is preferably used for the expression of protein 287. This protein can be notionally split into three domains, referred to as A B & C (see FIG. 5). Domain B aligns strongly with IgA proteases, domain C aligns strongly with transferrin-binding proteins, and domain A shows no strong alignment with database sequences. An alignment of polymorphic forms of 287 is disclosed in WO00/66741.


[0045] Once a protein has been divided into domains, these can be (a) expressed singly (b) deleted from with the protein e.g. protein ABCD→ABD, ACD, BCD etc. or (c) rearranged e.g. protein ABC→ACB, CAB etc. These three strategies can be combined with fusion partners is desired.


[0046] ORF46 has also been notionally split into two domains—a first domain (amino acids 1-433) which is well-conserved between species and serogroups, and a second domain (amino acids 433-608) which is not well-conserved. The second domain is preferably deleted. An alignment of polymorphic forms of ORF46 is disclosed in WO00/66741.


[0047] Protein 564 has also been split into domains (FIG. 8), as have protein 961 (FIG. 12) and protein 502 (amino acids 28-167 of the MC58 protein).


[0048] Hybrid Proteins


[0049] In a fifth approach to heterologous expression, two or more (e.g. 3, 4, 5, 6 or more) proteins of the invention are expressed as a single hybrid protein. It is preferred that no non-Neisserial fusion partner (e.g. GST or poly-His) is used.


[0050] This offers two advantages. Firstly, a protein that may be unstable or poorly expressed on its own can be assisted by adding a suitable hybrid partner that overcomes the problem. Secondly, commercial manufacture is simplified—only one expression and purification need be employed in order to produce two separately-useful proteins.


[0051] Thus the invention provides a method for the simultaneous heterologous expression of two or more proteins of the invention, in which said two or more proteins of the invention are fused (i.e. they are translated as a single polypeptide chain).


[0052] The method will typically involve the steps of: obtaining a first nucleic acid encoding a first protein of the invention; obtaining a second nucleic acid encoding a second protein of the invention; ligating the first and second nucleic acids. The resulting nucleic acid may be inserted into an expression vector, or may already be part of an expression vector.


[0053] Preferably, the constituent proteins in a hybrid protein according to the invention will be from the same strain.


[0054] The fused proteins in the hybrid may be joined directly, or may be joined via a linker peptide e.g. via a poly-glycine linker (i.e. Gn where n=3, 4, 5, 6, 7, 8, 9, 10 or more) or via a short peptide sequence which facilitates cloning. It is evidently preferred not to join a ΔG protein to the C-terminus of a poly-glycine linker.


[0055] The fused proteins may lack native leader peptides or may include the leader peptide sequence of the N-terminal fusion partner.


[0056] The method is well suited to the expression of proteins orf1, orf4, orf25, orf40, orf46/46.1, orf83, 233, 287, 292L, 564, 687, 741, 907, 919, 953, 961 and 983.


[0057] The 42 hybrids indicated by ‘X’ in the following table of form NH2-A-B—COOH are preferred:
2↓A B→ORF46.1287741919953961983ORF46.1XXXXXX287XXXXXX741XXXXXX919XXXXXX953XXXXXX961XXXXXX983XXXXXX


[0058] Preferred proteins to be expressed as hybrids are thus ORF46.1, 287, 741, 919, 953, 961 and 983. These may be used in their essentially full-length form, or poly-glycine deletions (ΔG) forms may be used (e.g. ΔG-287, ΔGTbp2, ΔG741, ΔG983 etc.), or truncated forms may be used (e.g. Δ1-287, Δ2-287 etc.), or domain-deleted versions may be used (e.g. 287B, 287C, 287BC, ORF461-433, ORF46433-608, ORF46, 961c etc.).


[0059] Particularly preferred are: (a) a hybrid protein comprising 919 and 287; (b) a hybrid protein comprising 953 and 287; (c) a hybrid protein comprising 287 and ORF46.1; (d) a hybrid protein comprising ORF1 and ORF46.1; (e) a hybrid protein comprising 919 and ORF46.1; (f) a hybrid protein comprising ORF46.1 and 919; (g) a hybrid protein comprising ORF46.1, 287 and 919; (h) a hybrid protein comprising 919 and 519; and (i) a hybrid protein comprising ORF97 and 225. Further embodiments are shown in FIG. 14.


[0060] Where 287 is used, it is preferably at the C-terminal end of a hybrid; if it is to be used at the N-terminus, if is preferred to use a ΔG form of 287 is used (e.g. as the N-terminus of a hybrid with ORF46.1, 919, 953 or 961).


[0061] Where 287 is used, this is preferably from strain 2996 or from strain 394/98.


[0062] Where 961 is used, this is preferably at the N-terminus. Domain forms of 961 may be used.


[0063] Alignments of polymorphic forms of ORF46, 287, 919 and 953 are disclosed in WO00/66741. Any of these polymorphs can be used according to the present invention.


[0064] Temperature


[0065] In a sixth approach to heterologous expression, proteins of the invention are expressed at a low temperature.


[0066] Expressed Neisserial proteins (e.g. 919) may be toxic to E.coli, which can be avoided by expressing the toxic protein at a temperature at which its toxic activity is not manifested.


[0067] Thus the present invention provides a method for the heterologous expression of a protein of the invention, in which expression of a protein of the invention is carried out at a temperature at which a toxic activity of the protein is not manifested.


[0068] A preferred temperature is around 30° C. This is particularly suited to the expression of 919.


[0069] Mutations


[0070] As discussed above, expressed Neisserial proteins may be toxic to E.coli. This toxicity can be avoided by mutating the protein to reduce or eliminate the toxic activity. In particular, mutations to reduce or eliminate toxic enzymatic activity can be used, preferably using site-directed mutagenesis.


[0071] In a seventh approach to heterologous expression, therefore, an expressed protein is mutated to reduce or eliminate toxic activity.


[0072] Thus the invention provides a method for the heterologous expression of a protein of the invention, in which protein is mutated to reduce or eliminate toxic activity.


[0073] The method is preferably used for the expression of protein 907, 919 or 922. A preferred mutation in 907 is at Glu-117 (e.g. Glu→Gly), preferred mutations in 919 are at Glu-255 (e.g. Glu→Gly) and/or Glu-323 (e.g. Glu→Gly); preferred mutations in 922 are at Glu-164 (e.g. Glu→Gly), Ser-213 (e.g. Ser→Gly) and/or Asn-348 (e.g. Asn→Gly).


[0074] Alternative Vectors


[0075] In a eighth approach to heterologous expression, an alternative vector used to express the protein. This may be to improve expression yields, for instance, or to utilise plasmids that are already approved for GMP use.


[0076] Thus the invention provides a method for the heterologous expression of a protein of the invention, in which an alternative vector is used. The alternative vector is preferably pSM214, with no fusion partners. Leader peptides may or may not be included.


[0077] This approach is particularly useful for protein 953. Expression and localisation of 953 with its native leader peptide expressed from pSM214 is much better than from the pET vector.


[0078] pSM214 may also be used with: ΔG287, Δ2-287, Δ3-287, Δ4-287, Orf46.1, 961L, 961, 961(MC58), 961c, 961c-L, 919, 953 and ΔG287-Orf46.1.


[0079] Another suitable vector is, pET-24b (Novagen; uses kanamycin resistance), again using no fusion partners. pET-24b is preferred for use with: ΔG287K, Δ2-287K, Δ3-287K, Δ4287K, Orf46.1-K, Orf46A-K, 961-K (MC58), 961a-K, 961b-K, 961c-K, 961c-L-K, 961d-K, ΔG287-919-K, ΔG287-Orf46.1-K and ΔG287-961-K.


[0080] Multimeric Form


[0081] In a ninth approach to heterologous expression, a protein is expressed or purified such that it adopts a particular multimeric form.


[0082] This approach is particularly suited to protein 953. Purification of one particular multimeric form of 953 (the monomeric form) gives a protein with greater bactericidal activity than other forms (the dimeric form).


[0083] Proteins 287 and 919 may be purified in dimeric forms.


[0084] Protein 961 may be purified in a 180 kDa oligomeric form (e.g. a tetramer).


[0085] Lipidation


[0086] In a tenth approach to heterologous expression, a protein is expressed as a lipidated protein.


[0087] Thus the invention provides a method for the heterologous expression of a protein of the invention, in which the protein is expressed as a lipidated protein.


[0088] This is particularly useful for the expression of 919, 287, ORF4, 406, 576-1, and ORF25. Polymorphic forms of 919, 287 and ORF4 are disclosed in WO00/66741.


[0089] The method will typically involve the use of an appropriate leader peptide without using an N-terminal fusion partner.


[0090] C-Terminal Deletions


[0091] In an eleventh approach to heterologous expression, the C-terminus of a protein of the invention is mutated. In addition, it is preferred that no fusion partner is used.


[0092] Thus the invention provides a method for the heterologous expression of a protein of the invention, in which (a) the protein's C-terminus region is mutated and, optionally, (b) no fusion partner is used.


[0093] The method will typically involve the steps of: obtaining nucleic acid encoding a protein of the invention; manipulating said nucleic acid to mutate nucleotides that encode the protein's C-terminus portion. The resulting nucleic acid may be inserted into an expression vector, or may already be part of an expression vector. The first amino acid of the expressed protein will be that of the mature native protein.


[0094] The mutation may be a substitution, insertion or, preferably, a deletion.


[0095] This method can increase the levels of expression, particularly for proteins 730, ORF29 and ORF46. For protein 730, a C-terminus region of around 65 to around 214 amino acids may be deleted; for ORF46, the C-terminus region of around 175 amino acids may be deleted; for ORF29, the C-terminus may be deleted to leave around 230-370 N-terminal amino acids.


[0096] Leader Peptide Mutation


[0097] In a twelfth approach to heterologous expression, the leader peptide of the protein is mutated. This is particularly useful for the expression of protein 919.


[0098] Thus the invention provides a method for the heterologous expression of a protein of the invention, in which the protein's leader peptide is mutated.


[0099] The method will typically involve the steps of: obtaining nucleic acid encoding a protein of the invention; and manipulating said nucleic acid to mutate nucleotides within the leader peptide. The resulting nucleic acid may be inserted into an expression vector, or may already be part of an expression vector.


[0100] Poly-Glycine Deletion


[0101] In a thirteenth approach to heterologous expression, poly-glycine stretches in wild-type sequences are mutated. This enhances protein expression.


[0102] The poly-glycine stretch has the sequence (Gly)n, where n≧4 (e.g. 5, 6, 7, 8, 9 or more). This stretch is mutated to disrupt or remove the (Gly)n. This may be by deletion (e.g. CGGGGS→CGGGS, CGGS, CGS or CS), by substitution (e.g. CGGGGS→CGXGGS, CGXXGS, CGXGXS etc.), and/or by insertion (e.g. CGGGGS→CGGXGGS, CGXGGGS, etc.).


[0103] This approach is not restricted to Neisserial proteins—it may be used for any protein (particularly bacterial proteins) to enhance heterologous expression. For Neisserial proteins, however, it is particularly suitable for expressing 287, 741, 983 and Thp2. An alignment of polymorphic forms of 287 is disclosed in WO00/66741.


[0104] Thus the invention provides a method for the heterologous expression of a protein of the invention, in which (a) a poly-glycine stretch within the protein is mutated.


[0105] The method will typically involve the steps of: obtaining nucleic acid encoding a protein of the invention; and manipulating said nucleic acid to mutate nucleotides that encode a poly-glycine stretch within the protein sequence. The resulting nucleic acid may be inserted into an expression vector, or may already be part of an expression vector.


[0106] Conversely, the opposite approach (i.e. introduction of poly-glycine stretches) can be used to suppress or diminish expression of a given heterologous protein.


[0107] Heterologous Host


[0108] Whilst expression of the proteins of the invention may take place in the native host (i.e. the organism in which the protein is expressed in nature), the present invention utilises a heterologous host. The heterologous host may be prokaryotic or eukaryotic. It is preferably E.coli, but other suitable hosts include Bacillus subtilis, Vibrio cholerae, Salmonella typhi, Salmonenna typhimurium, Neisseria meningitidis, Neisseria gonorrhoeae, Neisseria lactamica, Neisseria cinerea, Mycobateria (e.g. M.tuberculosis), yeast etc.


[0109] Vectors etc.


[0110] As well as the methods described above, the invention provides (a) nucleic acid and vectors useful in these methods (b) host cells containing said vectors (c) proteins expressed or expressable by the methods (d) compositions comprising these proteins, which may be suitable as vaccines, for instance, or as diagnostic reagents, or as immunogenic compositions (e) these compositions for use as medicaments (e.g. as vaccines) or as diagnostic reagents (f) the use of these compositions in the manufacture of (1) a medicament for treating or preventing infection due to Neisserial bacteria (2) a diagnostic reagent for detecting the presence of Neisserial bacteria or of antibodies raised against Neisserial bacteria, and/or (3) a reagent which can raise antibodies against Neisserial bacteria and (g) a method of treating a patient, comprising administering to the patient a therapeutically effective amount of these compositions.


[0111] Sequences


[0112] The invention also provides a protein or a nucleic acid having any of the sequences set out in the following examples. It also provides proteins and nucleic acid having sequence identity to these. As described above, the degree of ‘sequence identity’ is preferably greater than 50% (eg. 60%, 70%, 80%, 90%, 95%, 99% or more).


[0113] Furthermore, the invention provides nucleic acid which can hybridise to the nucleic acid disclosed in the examples, preferably under “high stringency” conditions (eg. 65° C. in a 0.1×SSC, 0.5% SDS solution).


[0114] The invention also provides nucleic acid encoding proteins according to the invention.


[0115] It should also be appreciated that the invention provides nucleic acid comprising sequences complementary to those described above (eg. for antisense or probing purposes).


[0116] Nucleic acid according to the invention can, of course, be prepared in many ways (eg. by chemical synthesis, from genomic or cDNA libraries, from the organism itself etc.) and can take various forms (eg. single stranded, double stranded, vectors, probes etc.).


[0117] In addition, the term “nucleic acid” includes DNA and RNA, and also their analogues, such as those containing modified backbones, and also peptide nucleic acids (PNA) etc.







BRIEF DESCRIPTION OF DRAWINGS

[0118]
FIGS. 1 and 2 show constructs used to express proteins using heterologous leader peptides.


[0119]
FIG. 3 shows expression data for ORF1, and


[0120]
FIG. 4 shows similar data for protein 961.


[0121]
FIG. 5 shows domains of protein 287, and


[0122]
FIGS. 6 & 7 show deletions within domain A.


[0123]
FIG. 8 shows domains of protein 564.


[0124]
FIG. 9 shows the PhoC reporter gene driven by the 919 leader peptide, and


[0125]
FIG. 10 shows the results obtained using mutants of the leader peptide.


[0126]
FIG. 11 shows insertion mutants of protein 730 (A: 730C1; B: 730-C2).


[0127]
FIG. 12 shows domains of protein 961.


[0128]
FIG. 13 shows SDS-PAGE of ΔG proteins. Dots show the main recombinant product.


[0129]
FIG. 14 shows 26 hybrid proteins according to the invention.







MODES FOR CARRYING OUT THE INVENTION


EXAMPLE 1

[0130] 919 and its Leader Peptide


[0131] Protein 919 from N.meningitidis (serogroup B, strain 2996) has the following sequence:
31MKKYLFRAAL YGIAAAILAACQSKSIQTFP QPDTSVINGPDRPVGIPDPA51GTTVGGGGAV YTVVPHLSLP HWAAQDFAKS LQSFRLGCANLKNRQGWQDV101CAQAFQTPVH SFQAKQFFER YFTPWQVAGN GSLAGTVTGYYBPVLKGDDR151RTAQARPPIY GIPDDFISVP LPAGLRSGKk LVRIRQTGKNSGTIDNTGGT201HTADLSRFPI TARTTAIKGR FEGSEFLPYH TRNQINGGALDGKAPILGYA251EDPVELFFMH IQGSGRLKTP SGKYIRIGYA DKNEHPYVSIGRYMADKGYL301KLGQTSMQGI KAYMRQNPQR LABVLGQNPS YIFFRELAGSSNDGPVGALG351TPLMGEYAGA VDRHYITLGA PLFVATAHPV TRKALNRLIMAQDTGBAIKG401AVRVDYFWGY GDEAGELAGK QKTTGYVWQL LPNGMKPEYR P*


[0132] The leader peptide is underlined.


[0133]


[0134] The sequences of 919 from other strains can be found in FIGS. 7 and 18 of WO00/66741.


[0135] Example 2 of WO99/57280 discloses the expression of protein 919 as a His-fusion in E.coli. The protein is a good surface-exposed immunogen.


[0136] Three alternative expression strategies were used for 919:


[0137] 1) 919 without its leader peptide (and without the mature N-terminal cysteine) and without any fusion partner (‘919untagged’):
41QBKSIQTPP QPDTSVINGP DRPVGIPDPA GTTVGGGQAVYTVVPHLSLP50HWAAQDFAKB LQSFRLGCAN LKNRQGWQDV CAQAPQTPVHSFQAKQFFER100YFTPWQVAGN GSLAGTVTGY YBPVLKGDDR RTAQARPPIYGIPDDFISVP150LPAGLRSGKA LVRIRQTGKN SGTIDNTGGT HTADLSPPPITARTTAIKGR200FEGSRFLPYH TRNQINGGAL DGKAPILGYA BDPVBLFFMHIQGSGELKTP250SGKYIRIGYA DKNEHPYVSI GRYMADKGYL KLGQTBMQGIKAYMRQNPQR300LAEVLGQNPS YIFFRELAGB SNDGPVGALG TPLMGEYAGAVDRHYITLGA350PLFVATAHPV TRKALNRLIM AQDTGSAIXG AVRVDYFWGYGDBAGELAGK400QKTTGYVWQL LPNGMKPEYR P*


[0138] The leader peptide and cysteine were omitted by designing the 5′-end amplification primer downstream from the predicted leader sequence.


[0139] 2) 919 with its own leader peptide but without any fusion partner (‘919L’); and


[0140] 3) 919 with the leader peptide (MKTFFKTLSAAALAILAA) from ORF4 (‘919LOrf4’).
51MKTFFKTLS AAALALILAACQSKSIQTFP QPDTSVINGPDRPVGIPDPA50GTTVGGGGAV YTVVPELSLP HWAAQDFAKB LQBFRLGCA2NLKNRQGWQDV100CAQAFQTPVH SPQAKQFPER YPTPWQVAGN GSLAGTVTGYYEPVLKGDDR150RTAQAPPPIY GIPDDFISVP LPAGLRSGKA LVRIRQTGKNSGTIDNTGGT200BTADLSRFPI TARTDAIKGR FEGSRPLPYH TENQINGGALDGKAPILGYA250EDPVBLFPMH IQGSGRLKTP SGKYIRIGYA DKNRHPYVSIGRYHADKGYL300KLGQTSMQGI KSYHRQNPQR LABVLGQNPS YIFFRELAGSSNDGPVOALG350TPIMGBYAGA VDRHYITLGA PLFVATAHPV TRXALNBLIMAQDTGSAIKG400AVRVDYPWGY GDEAGELAGK QKTTGYVWQL LPNGMKPEYR P*


[0141] To make this construct, the entire sequence encoding the ORF4 leader peptide was included in the 5′-primer as a tail (primer 919Lorf4 For). A NheI restriction site was generated by a double nucleotide change in the sequence coding for the ORF4 leader (no amino acid changes), to allow different genes to be fused to the ORF4 leader peptide sequence. A stop codon was included in all the 3′-end primer sequences.


[0142] All three forms of the protein were expressed and could be purified.


[0143] The ‘919L’ and ‘919LOrf4’ expression products were both lipidated, as shown by the incorporation of [3H-palmitate label. 919untagged did not incorporate the 3H label and was located intracellularly.


[0144] 919LOrf4 could be purified more easily than 919L. It was purified and used to immunise mice. The resulting sera gave excellent results in FACS and ELISA tests, and also in the bactericidal assay. The lipoprotein was shown to be localised in the outer membrane.


[0145] 919untagged gave excellent ELISA titres and high serum bactericidal activity. FACS confirmed its cell surface location.



EXAMPLE 2

[0146] 919 and Expression Temperature


[0147] Growth of E.coli expressing the 919Orf4 protein at 37° C. resulted in lysis of the bacteria. In order to overcome this problem, the recombinant bacteria were grown at 30° C. Lysis was prevented without preventing expression.



EXAMPLE 3

[0148] Mutation of 907, 919 and 922


[0149] It was hypothesised that proteins 907, 919 and 922 are murein hydrolases, and more particularly lytic transglycosylases. Murein hydrolases are located on the outer membrane and participate in the degradation of peptidoglycan.


[0150] The purified proteins 919untagged, 919Lorf4, 919-His (i.e. with a C-terminus His-tag) and 922-His were thus tested for murein hydrolase activity [Ursinus & Holtje (1994) J.Bact. 176:338-343]. Two different assays were used, one determining the degradation of insoluble murein sacculus into soluble muropeptides and the other measuring breakdown of poly(MurNAc-GlcNAc)n>30 glycan strands.


[0151] The first assay uses murein sacculi radiolabelled with meso-2,6-diamino-3,4,5-[3H]pimelic acid as substrate. Enzyme (3-10 μg total) was incubated for 45 minutes at 37° C. in a total volume of 100 μl comprising 10 mM Tris-maleate (pH 5.5), 10 mM MgCl2, 0.2% v/v Triton X-100 and [3H]A2pm labelled murein sacculi (about 10000 cpm). The assay mixture was placed on ice for 15 minutes with 100 μl of 1% w/v N-acetyl-N,N,N-trimethylammonium for 15 minutes and precipitated material pelleted by centrifugation at 1000 g for 15 minutes. The radioactivity in the supernatant was measured by liquid scintillation counting. E.coli soluble lytic transglycosylase Slt70 was used as a positive control for the assay; the negative control comprised the above assay solution without enzyme.


[0152] All proteins except 919-His gave positive results in the first assay.


[0153] The second assay monitors the hydrolysis of poly(MurNAc-GlcNAc)glycan strands. Purified strands, poly(MurNAc-GlcNAc)n>30 labelled with N-acetyl-D-1-[3H]glucosamine were incubated with 3 μg of 919L in 10 mM Tris-maleate (pH 5.5), 10 mM MgCl2 and 0.2% v/v Triton X-100 for 30 min at 37° C. The reaction was stopped by boiling for 5 minutes and the pH of the sample adjusted to about 3.5 by addition of 10 μl of 20% v/v phosphoric acid. Substrate and product were separated by reversed phase HPLC on a Nucleosil 300 C18 column as described by Harz et. al. [Anal. Biochem. (1990) 190:120-128]. The E.coli lytic transglycosylase Mlt A was used as a positive control in the assay. The negative control was performed in the absence of enzyme.


[0154] By this assay, the ability of 919LOrf4 to hydrolyse isolated glycan strands was demonstrated when anhydrodisaccharide subunits were separated from the oligosaccharide by HPLC.


[0155] Protein 919Lorf4 was chosen for kinetic analyses. The activity of 919Lorf4 was enhanced 3.7-fold by the addition of 0.2% v/v Triton X-100 in the assay buffer. The presence of Triton X-100 had no effect on the activity of 919untagged. The effect of pH on enzyme activity was determined in Tris-Maleate buffer over a range of 5.0 to 8.0. The optimal pH for the reaction was determined to be 5.5. Over the temperature range 18° C. to 42° C., maximum activity was observed at 37° C. The effect of various ions on murein hydrolase activity was determined by performing the reaction in the presence of a variety of ions at a final concentration of 10 mM. Maximum activity was found with Mg2+, which stimulated activity 2.1-fold. Mn2+ and Ca2+ also stimulated enzyme activity to a similar extent while the addition Ni2+ and EDTA had no significant effect In contrast, both Fe2+ and Zn2+ significantly inhibited enzyme activity.


[0156] The structures of the reaction products resulting from the digestion of unlabelled E.coli murein sacculus were analysed by reversed-phase HPLC as described by Glauner [Anal. Biochem. (1988) 172:451-464]. Murein sacculi digested with the muramidase Cellosyl were used to calibrate and standardise the Hypersil ODS column. The major reaction products were 1,6 anhydrodisaccharide tetra and tri peptides, demonstrating the formation of 1,6 anhydromuraminic acid intramolecular bond.


[0157] These results demonstrate experimentally that 919 is a murein hydrolase and in particular a member of the lytic transglycosylase family of enzymes. Furthermore the ability of 922-His to hydrolyse murein sacculi suggests this protein is also a lytic transglycosylase.


[0158] This activity may help to explain the toxic effects of 919 when expressed in E.coli.


[0159] In order to eliminate the enzymatic activity, rational mutagenesis was used. 907, 919 and 922 show fairly low homology to three membrane-bound lipidated murein lytic transglycosylases from E.coli:


[0160] 919 (441aa) is 27.3% identical over 440aa overlap to E.coli MLTA (p46885);


[0161] 922 (369aa) is 38.7% identical over 310aa overlap to E.coli MLTB (P41052); and


[0162] 907-2 (207aa) is 26.8% identical over 149aa overlap to E.coli MLTC (P52066).


[0163] 907-2 also shares homology with E.coli MLTD (P23931) and Slt70 (P03810), a soluble lytic transglycosylase that is located in the periplasmic space. No significant sequence homology can be detected among 919, 922 and 907-2, and the same is true among the corresponding MLTA, MLTB and MLTC proteins.


[0164] Crystal structures are available for Slt70 [1QTEA; 1QTEB; Thunnissen et al. (1995) Biochemistry 34:12729-12737] and for Slt35 [1LTM; 1QUS; 1QUT; van Asselt et al. (1999) Structure Fold Des 7:1167-80] which is a soluble form of the 40 kDa MLTB.


[0165] The catalytic residue (a glutamic acid) has been identified for both Slt70 and MLTB.


[0166] In the case of Slt70, mutagenesis studies have demonstrated that even a conservative substitution of the catalytic Glu505 with a glutamine (Gln) causes the complete loss of enzymatic activity. Although Slt35 has no obvious sequence similarity to Slt70, their catalytic domains shows a surprising similarity. The corresponding catalytic residue in MLTB is Glu162.


[0167] Another residue which is believed to play an important role in the correct folding of the enzymatic cleft is a well-conserved glycine (Gly) downstream of the glutamic acid. Recently, Terrak et al. [Mol.Microbiol. (1999) 34:350-64] have suggested the presence of another important residue which is an aromatic amino acid located around 70-75 residues downstream of the catalytic glutamic acid.


[0168] Sequence alignment of Slt70 with 907-2 and of MLTB with 922 were performed in order to identify the corresponding catalytic residues in the MenB antigens.


[0169] The two alignments in the region of the catalytic domain are reported below:


[0170] 907-2/Slt70:
6 90       100         110      ▾120       130       140907-2.pepERRRLLVNIQYESSRAG--LDTQIVLGLIEVESAFRQYAISGVGARGLMQVMPFWKNYIG||  |  |  ::    :|  :  :       |||:   : | ||| ||||:||   ::slty_ecoliERFPLAYNKDFKRYTSGKEPPQSYAMAIARQESAWNPKVKSPVGASGLMQIMPGTATHTV    480       490       500    ▴  510        520       530                                GLU505


[0171] 922/MLTB
7  150       160   ▾   170        180        190       200922.pepVAQKYGVPAELIVAVIGIENTYGKNTGSFRVADALATLGFDYPRRAGFFQKELVELLKLA: | |||| |:||::||:|| :|: |: |: ||||||:|:||||| :|: ||  :| :|mltb_ecoliAWQVYGVPPEIIVGIIGVETRWGRVMGKRTILDALATLSFNYPRRAEYFSGELETGLLMA    150       160 ▴     170        180        190        200                    GLU162  210       220       230       240       250       260922.pepKEEGGDVFAFKGSYAGAMGMPQFMPSSYRKWAVDYDGDGHRDIWGNVGDVAASVANYMKQ::|  | : :    :     : |||||||:::|||::|||| ::|  | |: :|||||:|mltb_coliRDEQDDPLNKLGSFAGAMGYGQGMPSSYKQYAVDFSGDGHINLWDPV-DAIDSVANYFKA    210        220       230       240        250        260


[0172] From these alignments, it results that the corresponding catalytic glutamate in 907-2 is Glu117, whereas in 922 is Glu164. Both antigens also share downstream glycines that could have a structural role in the folding of the enzymatic cleft (in bold), and 922 has a conserved aromatic residue around 70aa downstream (in bold).


[0173] In the case of protein 919, no 3D structure is available for its E.coli homologue MLTA, and nothing is known about a possible catalytic residue. Nevertheless, three amino acids in 919 are predicted as catalytic residues by alignment with MLTA:


[0174] 919/MLTA
8240       250    ▾   260  □ □  270 □      280       290919.pepALDGKAPILGYAEDPVELFFMHIQGSGRLKTPSGKYIRI-GYADKNEHPYVSIGRYMADK||: |  ||:||::: :: |:| :|||| :   :|: : : : || || | | |||: : |:mlta_ecoli.pALSDKY-ILAYSNSLMDNFIMDVQGSGYIDFGDSPLNFFSYAGKNGHAYRSIGKLVIDR          170        180        190      200       210300        310        320        ▾     330□ □□   340       ⋄350    ⋄919.pepGYLKLGQTSMQGILSYMRQNPQ-RLAEVLGQNPSYIFFRELAGSSNDGPV-GALGTPLMG| :|  : |||:|: : : : : :: |:| ||||::||:  : :     || || ::||:|mlta_ecoli.pGEVKKEDMSMQAIRHWGETHSEAEVRELLEQNPSFVFFKPQSFA----PVKGASAVPLVG220       230       240       250       260           270  360 ▾      ∘        380            390       400     ⋄⋄410919.pepEYAGAVDRHYITLGAPLFVATAHPVTRKALN-----RLIMAQDTGSAIKGAVRVDYFWGY: : | ||  |  |: |:: :    :   |     ||::| |:|:||||  : | : |mlta_ecoli.pTASVASDRSIIPPGTTLLAEVPLLDNNGKFNGQYELRLMNALDVGGAIKGQ-HFDIYQGI   280       290       300      310       320         330       420       ∘919.pepGDEAGELAGKQKTTGYVWQLLP| |||: ||  :  | || |mlta_ecoli.pGPEAGHRAGWYNHYGRVWVLKT    340       350


[0175] The three possible catalytic residues are shown by the symbol ▾:


[0176] 1) Glu255 (Asp in MLTA), followed by three conserved glycines (Gly263, Gly265 and Gly272) and three conserved aromatic residues located approximately 75-77 residues downstream. These downstream residues are shown by □.


[0177] 2) Glu323 (conserved in MLTA), followed by 2 conserved glycines (Gly347 and Gly355) and two conserved aromatic residues located 84-85 residues downstream (Tyr406 or Phe407). These downstream residues are shown by ⋄.


[0178] 3) Asp362 (instead of the expected Glu), followed by one glycine (Gly 369) and a conserved aromatic residue (Trp428). These downstream residues are shown by ∘.


[0179] Alignments of polymorphic forms of 919 are disclosed in WO00/66741.


[0180] Based on the prediction of catalytic residues, three mutants of the 919 and one mutant of 907, containing each a single amino acid substitution, have been generated. The glutamic acids in position 255 and 323 and the aspartic acids in position 362 of the 919 protein and the glutamic acid in position 117 of the 907 protein, were replaced with glycine residues using PCR-based SDM. To do this, internal primers containing a codon change from Glu or Asp to Gly were designed:
9CodonPrimersSequenceschange919-E255 forCGAAGACCCCGTCGgtCTTTTTTTTATGGAA→Ggt919-E255 revGTGCATAAAAAAAAGacCGACGGGGTCT919-E323 forAACGCCTCGCCGgtGTTTTGGGTCAGAA→Ggt919-E323 revTTTGACCCAAAACacCGGCGAGGCG919-D362 forTGCCGGCGCAGTCGgtCGGCACTACTGAC→Ggt919-D362 revTAATGTATGCCGacCGACTGCGCCG907-E117 forTGATTGAGGTGGgtAGCGCGTTCCGGAA→Ggt907-E117 revGGCGGAACGCGCTacCCACCTCAAT


[0181] Underlined nucleotides code for glycine; the mutated nucleotides are in lower case.


[0182] To generate the 919-E255, 919-E323 and 919-E362 mutants, PCR was performed using 20 ng of the pET 919-LOrf4 DNA as template, and the following primer pairs:


[0183] 1) Orf4L for/919-E255 rev


[0184] 2) 919-E255 for/919L rev


[0185] 3) Orf4L for/919-E323 rev


[0186] 4) 919-E323 for/919L rev


[0187] 5) Orf4L for/919-D362 rev


[0188] 6) 919-D362 for/919L rev


[0189] The second round of PCR was performed using the product of PCR 1-2, 3-4 or 5-6 as template, and as forward and reverse primers the “Orf4L for” and “919L rev” respectively.


[0190] For the mutant 907-E117, PCR have been performed using 200 ng of chromosomal DNA of the 2996 strain as template and the following primer pairs:


[0191] 7) 907L for/907-E117 rev


[0192] 8) 907-E117 for/907L rev


[0193] The second round of PCR was performed using the products of PCR 7 and 8 as templates and the oligos “907L for” and “907L rev” as primers.


[0194] The PCR fragments containing each mutation were processed following the standard procedure, digested with NdeI and XhoI restriction enzymes and cloned into pET-21b+ vector. The presence of each mutation was confirmed by sequence analysis.


[0195] Mutation of Glu117 to Gly in 907 is carried out similarly, as is mutation of residues Glu164, Ser213 and Asn348 in 922.


[0196] The E255G mutant of 919 shows a 50% reduction in activity; the E323G mutant shows a 70% reduction in activity; the E362G mutant shows no reduction in activity.



EXAMPLE 4

[0197] Multimeric Form


[0198] 287-GST, 919untagged and 953-His were subjected to gel filtration for analysis of quaternary structure or preparative purposes. The molecular weight of the native proteins was estimated using either FPLC Superose 12 (H/R 10/30) or Superdex 75 gel filtration columns (Pharmacia). The buffers used for chromatography for 287, 919 and 953 were 50 mM Tris-HCl (pH 8.0), 20 mM Bicine (pH 8.5) and 50 mM Bicine (pH 8.0), respectively.


[0199] Additionally each buffer contained 150-200 mM NaCl and 10% v/v glycerol. Proteins were dialysed against the appropriate buffer and applied in a volume of 200 μl. Gel filtration was performed with a flow rate of 0.5-2.0 ml/min and the eluate monitored at 280 nm. Fractions were collected and analysed by SDS-PAGE. Blue dextran 2000 and the molecular weight standards ribonuclease A, chymotrypsin A ovalbumin, albumin (Pharmacia) were used to calibrate the column. The molecular weight of the sample was estimated from a calibration curve of Kav vs. log Mr of the standards. Before gel filtration, 287-GST was digested with thrombin to cleave the GST moiety.


[0200] The estimated molecular weights for 287, 919 and 953-His were 73 kDa, 47 kDa and 43 kDa respectively. These results suggest 919 is monomeric while both 287 and 953 are principally dimeric in their nature. In the case of 953-His, two peaks were observed during gel filtration. The major peak (80%) represented a dimeric conformation of 953 while the minor peak (20%) had the expected size of a monomer. The monomeric form of 953 was found to have greater bactericidal activity than the dimer.



EXAMPLE 5

[0201] pSM214 and pET-24b Vectors


[0202] 953 protein with its native leader peptide and no fusion partners was expressed from the pET vector and also from pSM214 [Velati Bellini et al. (1991) J. Biotechnol. 18, 177-192].


[0203] The 953 sequence was cloned as a full-length gene into pSM214 using the E. coli MM294-1 strain as a host. To do this, the entire DNA sequence of the 953 gene (from ATG to the STOP codon) was amplified by PCR using the following primers:
10953L for/2CCGGAATTCTTATGAAMAATCATCTTCGCCGCEco RI953L rev/2GCCCAAGCTTTTATTGTTTGGCTGCCTCGATTHind III


[0204] which contain EcoRI and HindIII restriction sites, respectively. The amplified fragment was digested with EcoRI and HindIII and ligated with the pSM214 vector digested with the same two enzymes. The ligated plasmid was transformed into E.coli MM294-1 cells (by incubation in ice for 65 minutes at 37° C.) and bacterial cells plated on LB agar containing 20 μg/ml of chloramphenicol.


[0205] Recombinant colonies were grown over-night at 37° C. in 4 ml of LB broth containing 20 μg/ml of chloramphenicol; bacterial cells were centrifuged and plasmid DNA extracted as and analysed by restriction with EcoRI and HindIII. To analyse the ability of the recombinant colonies to express the protein, they were inoculated in LB broth containing 20 μg/ml of chloramphenicol and let to grown for 16 hours at 37° C. Bacterial cells were centrifuged and resuspended in PBS. Expression of the protein was analysed by SDS-PAGE and Coomassie Blue staining.


[0206] Expression levels were unexpectedly high from the pSM214 plasmid.


[0207] Oligos used to clone sequences into pSM-214 vectors were as follows:
11ΔG287FwdCCGGAATTCTTATG-TCGCCCGATGTTAAATCGGCGGAEcoRI(pSM-214)RevGCCCAAGCTT-TCAATCCTGCTCTTTTTTGCCGHindIIIΔ2 287Fwd CCGGAATTTCTTATG-AGCCAAGATATGGCGGCAGTEcoRI(pSM-214)RevGCCCAAGCTT-TCAAATCCTGCTCTTTTTTGCCGHindIIIΔ3 287Fwd CCGGAATTCTTATG-TCCGCCGAATCCGCAAATCAEcoRI(pSM-214)RevGCCCAAGCTT-TCAATCCTGCTCTTTTTTGCCGHindIIIΔ4 287FwdCCGGAATTCTTATG-GGAAGGGTTGATTTGGCTAATGEcoRI(pSM-214)RevGCCCAAGCTT-TCAATCCTGCTCTTTTTTTGCCGHindIIIOrf46.1FwdCCGGAATTCTTATG-TCAGATTTGGCAAACGATTCTTEcoRI(pSM-214)RevGCCCAAGCTT-TTACGTATCATATTTCACGTGCTTCHindIIIΔG287.Orf46.1FwdCCGGAATTCTTATG-TCGCCCGATGTTAAATCGGCGGAEcoRI(pSM-214)RevGCCCAAGCTT-TTACGTATCATATTTCACGTGCTTCHindIII919FwdCCGGAATTCTTATG-CAAAGCAAGAGCATCCAAACCTEcoRI(pSM-214)RevGCCCAAGCTT-TTACGGGCGGTATTCGGGCTHindIII961LFwdCCGAATTCATATG-AAACACTTTCCATCCEcoRI(pSM-214)RevGCCCAAGCTT-TTACCACTCGTAATTGACHindIII961FwdCCGGAATTCATATG-GCCACAAGCGACGACEcoRI(pSM-214)RevGCCCAAGCTT-TTACCACTCGTAATTGACHindIII961c LFwdCCGGAATTCTTATG-AAACACTTTCCATCCEcoRIpSM-214RevGCCCAAGCTT-TCAACCCACGTTGTAAGGTTGHindIII961cFwdCCGGAATTCTTATG-GCCACAAACGACGACGEcoRIpSM-214RevGCCCAAGCTT-TCAACCCACGTTGTAAGGTTGHindIII953FwdCCGGAATTCTTATG-GCCACCTACAAAGTGGACGAEcoRI(pSM-214)RevGCCCAAGCTT-TTATTGTTTGGCTGCCTCGATTHindIII


[0208] These sequences were manipulated, cloned and expressed as described for 953L.


[0209] For the pET-24 vector, sequences were cloned and the proteins expressed in pET-24 as described below for pET21. pET2 has the same sequence as pET-21, but with the kanamycin resistance cassette instead of ampicillin cassette.


[0210] Oligonucleotides used to clone sequences into pET-24b vector were:
12ΔG 287 KFwdCGCGGATCCGCTAGC-CCCGATGTrAAATCGGC§NheIRevCCCGCTCCGAG-TCAATCCTGCTCTTTTTTrGCC *XhoIΔ2 287 KFwdCGCGGATCCGCTAGC-CAAGATATGOCGGCAGT§NheIΔ3 287 KFwdCGCGGATCCGCTAGC-GCCGAATCCGCAAATCA§NheIΔ4 287 KFwdCGCGCTAGC-GGAAGGGTTGATTTGGCTAATGG§NbeIOrf46.1 KFwdGGGAATTCCATATG-GGCATTTCCCGCAAAATATCNdeIRevCCCGCTCGAC-TTAACGTATCATATTTCACGTGCXhoIOrf46A KFwdGGGAATTCCATATG-GGCATTTCCCGCAAAATATCNdeIRevCCCGCTCGAG-TTATTCTATGCCTTGTGCGGCATXhoI961 KFwdCGCGGATCCCATATG-GCCACAAGCGACGACGANdeI(MC58)RevCCCGCTCGAG-TTACCACTCGTAATTGACXhoI961a KFwdCGCGGATCCCATATG-GCCACAAACGACGNdeIRevCCCGCTCGAG-TCATTTAGCAATATTATCTTTGTTCXhoI961b KFwdCGCGGATCCCATATG-AAAGCAAACAGTGCCGACNdeIRevCCCGCTCGAG-TTACCACTCGTAATTGACXhoI961c KFwdCGCGGATCCCATATG-GCCACAAACGACGNdeIRevCCCGCTCGAG-TTAACCCACGTTGTAAGGTXhoI961cL KFwdCGCGGATCCCATATG-ATGAAACACTTTCCATCCNdeIRevCCCGCTCGAG-TTAACCCACGTTGTAAGGTXhoI961d KFwdCGCGGATCCCATATG-GCCACAAACGACGNdeIRevCCCGCTCGAG-TCAGTCTGACACTGTTTTATCCXhoIΔG 287-FwdCGCGGATCCGCTAGC-CCCGATGTTAAATCGGCNheI919 KRevCCCGCTCGAG-TTAACGGGCGGTATTCGGXhoIΔG 287-FwdCGCGGATCCGCTAGC-CCCGATGTTAAATCGGCNheIOrf46.1 KRevCCCGCTCGAG-TTACGTATCATATTTCACGTGCXhoIΔG 287-FwdCGCGGATCCGCTAGC-CCCGATGTTAAATCGGCNheI961 KRevCCCGCTCGAG-TTACCACTCGTAATTGACXhoI* This primer was used as a Reverse primer for all the 287 forms. § Forward primers used in combination with the ΔG278 K reverse primer.



EXAMPLE 6

[0211] ORF1 and its Leader Peptide


[0212] ORF1 from N.meningitidis (serogroup B, strain MC58) is predicted to be an outer membrane or secreted protein. It has the following sequence:
131MKTTDKRTTE THRKAPKTGR IRFSPAYLAI CLSFGILPQAWAGHTYFGIN51YQYYEflFAEN KGXFAVGAKD IEVYNKKGEL VGKSMTKAPMIDFSVVSENG101VAALVGDQYI VSVAENGGYN NVDFGAEGRN PDQHRFTYKIVKRNNYKAGT151KGHPYGGDYH MPRLHKFVTD AEPVBMTSYM DGRRYIDQNNYPDRVRIGAG201RQYWRSPEDE PNNRBSSYHI ASAYSWLVGG NTFAQNGSGGGTVNLGSEKI251KHSPYGFLPT GGSFGDSGSP MFIYDAQKQK WLINGVLQTGNPYIGKSNGP301QLVRKDWFYD EIFAGDTHSV FYEPRQNGKY SFNDDNNGTGKINAXHEENS351LPHELKTRTV QLFNVSLSET AEEPVYHAAG GVNSYRPRLNNGENISFIDE401GKGELILTSN INQGAGGLYF QGDFTVSPEN NETWQGAGVHISEDSTVTWK451VNGVANDELS KIGKGTLHVQ AKGENQGSIS VGDGTVILDQQADDKGKKQA501FSEIGLVSGR GTVQLNADNQ FNPDKLYFGF RGGRLDLNGHSLSFHRIQNT551DEGAMIVNHN QDKESTVTIT GNKDIATTGN NNSLDSKKEIAYNGWPGEKD601TTKTNGRLNL VYQPAAEDRT LLLSGGTNLN GNITQTNGKLPFSGEPTPHA651YNHLNDHWSQ KEGIPRGEIV WDNDWINRTF KAENFQIKGGQAVVSRNVAK701VKGDWHLSNH AQAVFGVAPH QSHTICTRSD WTGLTNCVEKTITDDKVIAS751LTKTDISGNV DLADHAHLNL TGLATLNGNL SANGDTRYTVSHNATQNGNL801SLVGNAQATF NQATLNGNTS ASGNASFNLS DHAVQNGSLTLSGNAKANVS851HBALNGNVBL ADKAVFEFES SRFTGQISGG KDTALHLKDSEWTLPSGTEL901GNLNLDNATI TLNSAYRHDA AGAQTGSATD APRPESRRSRRSLLSVTPPT951SVESEPNTLT VNGKLNGQGT FRFMSELFGY RSDKLKLAESSEGTYTLAVN1001NTGNEPABLE QLTVVEGKDN KPLSENLNFT LQNEEVDAGAWRYQLIRKDG1051EFEIMNPVKB QELSDKLGKA EAXKQAEKDN AQSLDALIAAGRDAVEKTES1101VAEPARQAGG ENVOINQABE EKKRVQADKD TALAKQREAETRPATTAFPR1151APRAPPDLPQ LQPQPQPQPQ EDLISRYANS GLSEFSATLNSVPAVQDELD1201RVPABDRRNA VWTSGIRDTK HYRSQDFEAY RQQTDLRQIGMQKHLGSGRV1251GILFSHNRTE NTFDDGIGNS APLAHGAVFG QYGIDEPYIGISAGAGFSSG1301SLSDGIGGKI ERRVLHYGIQ ARYRAGFGGF GIEPHIGATEYFVQKADYRY1351ENVNIATPGL AFNRYRAGIK ADYSFKPAQH ISITPYLSLSYTDAASGKVR1401TRVNTAVLAQ DPGKTRSAEW GVNAEIKGPT LSLHAAAAKGPQLEAQHSAG1451IKLGYEW*


[0213] The leader peptide is underlined.


[0214] A polymorphic form of ORF1 is disclosed in WO99/55873.


[0215] Three expression strategies have been used for ORF1:


[0216] 1) ORF1 using a His tag, following WO99/24578 (ORF1-His);


[0217] 2) ORF1 with its own leader peptide but without any fusion partner (‘ORF1L’); and


[0218] 3) ORF1 with the leader peptide (MKKTAIAIAVALAGFATVAQA) from E.coli OmpA (‘Orf1LOmpA’):
14MKKTAIAIAVALAGGATVAQAASAGTYFGINYQYYRDFAENKGKFAVGADKIEVYNKKGELVGKSMTKAPMIDFSVVSRNGVAALVGDQYIVSVAHNGGYNNVDFGAEGRNPDQHRFTYKIVKRNNYKAGTKGHPYGGDYHMPRLHKFVTDAEPVEMTSYDGRKYIDQNNYPDRVRIGAGRQYWRSDEDEPNNRESSYHIASAYSWLVGGNTFAQNGSGGGTVNLGSEKIKHSPYQFLPTGGSFGDSGSPMFIYDAQKQKWLINGVLQTGNPYIGKSNGFQLVRKDWFYDEIFAGDTHSVFYEPRQNGKYSFNDDNGTGKINAKHEHNSLPNRILKTRTVQLFNVSLSETAREPVYHAAGGVNSYRPLNNGENISFIDEGKGELILTSNINQGAGGLYFQGDFTVSPENNETWQGAGVHISEDSTVTWKVNGVANDRLSKIGKGTLHVQAKGENQGSISVGDGTVILDQQADDKQKKQAFSEIGLVSGRGTVQLNADNQFNPDKLYFGFRGGBLDLNGHSLSFHRIQNTDEGAMIVNHNQDKESTVTITGDIATTGIQNNSLDSKKEIAYNGWFGDEKDTTKTNGRLNLVYQPAAEDRTLLLSGGTNLNGNITQTNGKLFFSGRPTPHAYNHLNDHWSQKEGIPRGEIVWDNDWINRTFKAENFQIKGGQAVVSRNVAKVKGDWHLSNHAQAVFGVAPHQSHTICTRSDWTGLTNCVERTITDDKVIASLTKTDISNGVDLADHAHLNLTGALTLNGNLSANGDTRYTVSHNATQNGNLSLVGNAQATPNQATIMGNTSASGNASFNLSDHAVQNGSLTLSGNAKANVSHSALNGNVSLADKAVFHFESSRFTGQISGGKDTALHLKDSEWTLPSGTELGNLNDNATITLNSAYRHDAAGAQTGSATDAPRRRSRRSRRSLLSVTPPTSVESRFNTLTVNGKLNGQGTFRFMSELFGYRSDKLKAESSEGTYYTLAVNNTGNEASLEQLTVVEGKDNKPLSENLNFTLQNEHVDAGWRYQLIRKDGEFRLHNPVKEQELSDKLGKAEAKKQAEKDNAQSDALIAAGRDAVEKTSEVAEPARQAGGENVGIMQAEEEKKRVQADKDTALAKQREAETRPATTAFPRARRARRDLPQLQPAPAPAPARDLISRYANSGLSEFSATLNSFVAVQDELDRVFAEDRRNAVWTSGIRDTKHYRSQDFAYRQQTDLRQIGMQKNLGSGRVGILFSNGRTENTFDDGIGNSARLAHGAVGGYGIDRFYIGISAGAGFSSGSLSDGIGGKIRRRVLHGIQARYRAGFGGFGIEPHIGATRYFVQADYRYENVIATPGLAFNRYRAGIKADYSFKPAQHISITPYLSLSYTDAASGKVRTTVNTAVLAQDFQKTPBABWGVNARIKGPTLSLHAAGPQLEAQHSAGIKIIGYRW*


[0219] To make this construct, the clone pET911LOmpA (see below) was digested with the NheI and XhoI restriction enzymes and the fragment corresponding to the vector carrying the OmpA leader sequence was purified (pETLOmpA). The ORF1 gene coding for the mature protein was amplified using the oligonucleotides ORF1-For and ORF1-Rev (including the NheI and XhoI restriction sites, respectively), digested with NheI and XhoI and ligated to the purified pETOmpA fragment (see FIG. 1). An additional AS dipeptide was introduced by the NheI site.


[0220] All three forms of the protein were expressed. The His-tagged protein could be purified and was confirmed as surface exposed, and possibly secreted (see FIG. 3). The protein was used to immunise mice, and the resulting sera gave excellent results in the bactericidal assay.


[0221] ORF1LOmpA was purified as total membranes, and was localised in both the inner and outer membranes. Unexpectedly, sera raised against ORF1LOmpA show even better ELISA and anti-bactericidal properties than those raised against the His-tagged protein.


[0222] ORF1L was purified as outer membranes, where it is localised.



EXAMPLE 7

[0223] Protein 911 and its Leader Peptide


[0224] Protein 911 from N.meningitidis (serogroup B, strain MC58) has the following sequence:
151MKKNILEFWV GLFVLIGAAA VAFLAFRVAG GAAFGGSDKTYAVYADFGDI51GGLKVNAPVK SAGVLVGRVG AIGLDPKSYQ ARVRLDLDGKYQFSSDVSAQ101ILTBGLLGEQ YIGLQQGGDT ENLAAGDTIS VTSSAMVLENLIQKPHTSFA151RKNADGGNAB KAAB*


[0225] The leader peptide is underlined.


[0226] Three expression strategies have been used for 911:


[0227] 1) 911 with its own leader peptide but without any fusion partner (‘911L’);


[0228] 2) 911 with the leader peptide from E.coli OmpA (‘911LOmpA’). To make this construct, the entire sequence encoding the OmpA leader peptide was included in the 5′-primer as a tail (primer 911LOmpA Forward). A NheI restriction site was inserted between the sequence coding for the OmpA leader peptide and the 911 gene encoding the predicted mature protein (insertion of one amino acid, a serine), to allow the use of this construct to clone different genes downstream the OmpA leader peptide sequence.


[0229] 3) 911 with the leader peptide (MKYLLPTAAAGLLAAQPAMA) from Erwinia carotovora PelB (‘911LpeIB’).


[0230] To make this construct, the 5′-end PCR primer was designed downstream from the leader sequence and included the NcoI restriction site in order to have the 911 fused directly to the PelB leader sequence; the 3′-end primer included the STOP codon. The expression vector used was pET22b+ (Novagen), which carries the coding sequence for the PelB leader peptide. The NcoI site introduces an additional methionine after the PelB sequence.


[0231] All three forms of the protein were expressed. ELISA titres were highest using 911L, with 919LOmpA also giving good results.



EXAMPLE 8

[0232] ORF46


[0233] The complete ORF46 protein from N.meningitidis (serogroup B, strain 2996) has the following sequence:
161LGISRKISLI LSILAVCLPM HAHASDLAND SFIRQVLDRQHPBPDGKYHL51FGSRGELAER SGHIGLGKIQ SHQLGNLMIQ QAAIKGNIGYIVRFSDHGHE101VHSPFDNHAS HSDSDEAGSP VDGFSLYRZH WDGYEHHPADGYDGPQGGGY151PAPKGAPDIY SYDIKGVAQN IRLNLTDNRS TGQRLADRFHNAGSNLTQGV201GDGFKRATRY SPELDRSGNA AEAFNGTADI VKNIIGAAGEIVQAGDAVQG251ISEGSNIAVH HGLGLLSTEN KMARINDLAD MAQLKDYAAAAIRDWAVQNP301NAAQGIEAVS NIFMAAIPZK GIGAVRGKYG LGGITAHPIKRSQMGAIALP351KGKSAVSDNF ADAAYAKYPS PYHSRNIRSN LEQRYGKBNITSSTVPPSNG401KNVKLADQEH PKTGVPFDGK GFPNFEKHVK YDTKLDIQELSGQGIPKAXP451VSDAKPRWHV DRKLNKLTTR EQVEKNVQEI RNGNKNSNFSQHAQLEEEIN501KLXSADEINF ADGMGKFTDS NNDKAPSPLV KSVKENGFTNPVVRYVEING551KAYIVRGNNR VFAAEYLGRI HELKFKKVDF PVPNTSWKNPTDVLNESGNV601KRPRYRSK*


[0234] The leader peptide is underlined.


[0235] The sequences of ORF46 from other strains can be found in WO00/66741.


[0236] Three expression strategies have been used for ORF46:


[0237] 1) ORF46 with its own leader peptide but without any fusion partner (‘ORF46-2L’);


[0238] 2) ORF46 without its leader peptide and without any fusion partner (‘ORF46-2’), with the leader peptide omitted by designing the 5′-end amplification primer downstream from the predicted leader sequence:
171SDLANDSFIR QVLDRQHFEP DGKYHLFGSR GBLAERSGHIGLGKIQSHQL51GNLHIQQAAI KGNIGYIVRP SDHGHEVHSP FDNHASHSDSDEAGSPVDGF101SLYPJHWDGY EHHPAflGYDG PQGGGYPAPK GARDIYSYDIKGVAQNIRLN151LTDNRSTGQR LADRFHNAGS MTLTQGVGDGF KRATRYSPELDRSGNAAEAF201NGTADIVKNI IGAAGEIVGA GDAVQGISRG SNIAVMHGLGLLSTENKMAR251INDLADMAQL KDYAAAAZRD WAVQNPNAAQ GIEAVSNIFMAAIPIKGIGA301VRGKYGLGGI TAHPIKRSQM GAIALPKGKS AVSDNFADAAYARYPBPYHS351RNIRSNLRQR YGKENZTSST VPPSNGKNVK LADQRHPKTGVPPDGKGFPN401FBKHVKYDTK LDIQELSGGG IPKAKPVBDA KPRNHVDRKLNKLTTREQVE451KNVQEIRNGN KNSNFSQHAQ LEREINKLKS ADEINFADGMGKFTDSMNDK501APSRLVKSVK ENGFTNPVVE YVBINGKAYI VRGNNRVFAABYLGRIHRLK551FKKVDFPVPN TSWKNPTDVL NESGNVKRPR YRSK*


[0239]  3) ORF46 as a truncated protein, consisting of the first 433 amino acids (‘ORF46.1L’), constructed by designing PCR primers to amplify a partial sequence corresponding to aa 1-433. A STOP codon was included in the 3′-end primer sequences.


[0240] ORF46-2L is expressed at a very low level to E.coli. Removal of its leader peptide (ORF46-2) does not solve this problem. The truncated ORF46.1L form (first 433 amino acids, which are well conserved between serogroups and species), however, is well-expressed and gives excellent results in ELISA test and in the bactericidal assay.


[0241] ORF46.1 has also been used as the basis of hybrid proteins. It has been fused with 287, 919, and ORF1. The hybrid proteins were generally insoluble, but gave some good ELISA and bactericidal results (against the homologous 2996 strain):
18ProteinELISABactericidal AbOrf1-Orf46.1-His850256919-Orf46.1-His12900512919-287-Orf46-Hisn.d.n.d.Orf46.1-287His1508192Orf46.1-919His28002048Orf46.1-287-919His320016384


[0242] For comparison, ‘triple’ hybrids of ORF46.1, 287 (either as a GST fusion, or in ΔG287 form) and 919 were constructed and tested against various strains (including the homologous 2996 strain) versus a simple mixture of the three antigens. FCA was used as adjuvant:
192996BZ232MC58NGH38F6124BZ133Mixture81922565121024>2048>2048ORF46.1-287-919his163842564096819281928192ΔG287-919-ORF46.1his81926440968192819216384ΔG287-ORF46.1-919his409612825681925121024


[0243] Again, the hybrids show equivalent or superior immunological activity.


[0244] Hybrids of two proteins (strain 2996) were compared to the individual proteins against various heterologous strains:
201000MC58F6124 (MenA)ORF46.1-His<44096<4ORF1-His8256128ORF1-ORF46.1-His10245121024


[0245] Again, the hybrid shows equivalent or superior immunological activity.



EXAMPLE 9

[0246] Protein 961


[0247] The complete 961 protein from N.meningitidis (serogroup B, strain MC58) has the following sequence:
211MSMKHFPAKV LTTAILATFC SGALAATSDD DVKKAATVAIVAAYNNGQEI51NGFKAGETIY DIGEDGTITQ KDATAADVBA DDFKGLGLKKVVTNLTKTVN101ENKQNVDAKV KAAESEIEKL TTKLADTDAA LADTDAALDETTNALNKLGE151NITTFABETK TNIVKIDEKL EAVADTVDKH AEAFNDZADSLDBTNTKADE201AVKTANEAKQ TAEETKQNVD AKVKAAETAA GKABAAAGTANTAADXAEAV251AAKVTDIKAD IATNKADIAK NSAPJDSLDK NVANLEKETRQGLAEQAALS301GLPQPYNVGR FNVTAAVGGY KS3SAVAIGT GFRFTENFAAKAGVAVGTSS351GSSAAYHVGV NYEW*


[0248] The leader peptide is underlined.


[0249] Three approaches to 961 expression were used:


[0250] 1) 961 using a GST fusion, following WO99/57280 (‘GST961’);


[0251] 2) 961 with its own leader peptide but without any fusion partner (‘961L’); and


[0252] 3) 961 without its leader peptide and without any fusion partner (‘961untagged’), with the leader peptide omitted by designing the 5′-end PCR primer downstream from the predicted leader sequence.


[0253] All three forms of the protein were expressed. The GST-fusion protein could be purified and antibodies against it confirmed that 961 is surface exposed (FIG. 4). The protein was used to immunise mice, and the resulting sera gave excellent results in the bactericidal assay. 961L could also be purified and gave very high ELISA titres.


[0254] Protein 961 appears to be phase variable. Furthermore, it is not found in all strains of N.meningitidis.



EXAMPLE 10

[0255] Protein 287


[0256] Protein 287 from N.meningitidis (serogroup B, strain 2996) has the following sequence:
221MFERSVIAMA CIFALSACGG GGGQSPDVKS ADTLSKPAAPVVAEKETBVK51EDAPQAGSQG QGAPSTQGSQ DMAAVSAENT GNGGAATTDKPKNEDEGPQN101DMPQNSAESA NQTGNNQPAD SSDSAPASNP APANGGSNFGRVDLANGVLI151DGPSQNITLT HCKGDSCNGD NLLDEEAPSK SEFHNLNESRRIEKYKKDGK201SDKFTNLVAT AVQANGTNKY VIIYRDKSAS SSSAPPRRSARSRRSLPAEH251PLIPVNQADT LIVDGEAVSL TGHSGNIPAP EGNYRYLTYGAEKLPGGSYA301LRVQGEPAKG ENLAGTAVYN GEVLHFHTEN GRPYPTRGRFAAXVDFGSKS351VDGIIDSGDD LHMGTQKFKA AIDGNGFKGT WTENGGGDVSGRFYGPAGEE401VAGKYSYRPT DAEKGGFGVF AGKKEQD*


[0257] The leader peptide is shown underlined.


[0258] The sequences of 287 from other strains can be found in FIGS. 5 and 15 of WO00/66741.


[0259] Example 9 of WO99/57280 discloses the expression of 287 as a GST-fusion in E.coli.


[0260] A number of further approaches to expressing 287 in E.coli have been used, including:


[0261] 1) 287 as a His-tagged fusion (‘287-His’);


[0262] 2) 287 with its own leader peptide but without any fusion partner (‘287L’);


[0263] 3) 287 with the ORF4 leader peptide and without any fusion partner (‘287LOrf4’); and


[0264] 4) 287 without its leader peptide and without any fusion partner (‘287untagged ’):
231CGGGQGGSPD VKSADTLSKP AAPVVAEKET EVKEDAPQAGSQGQGAPSTQ51GSQDMAAVSA BNTGNGGAAT TDKPKNEDEG PQNDHPQNSAESANQTGNNQ101PADSSDSAPA SNPAPMTGGS NFGRVDLANG VLIDGPSQNITLTHCKGDSC153NGDNLLDEEA PSKSEPENLN ESERIEKYRK DGKSDKFTNLVATAVQANGT201NKYVIIYKDK SASSSSARFR RSARSRRSLP AEMPLIPVNQADTLIVDGEA251VSLTQHSGNI FAPEGNYRYL TYGAEKLPGG SYALRVQGEPAKGEMAAGTA301VYNGEVLHFH TENGRPYPTR GRFAAKVDFG SKSVDGIIDSGDDLHHGTQK351FKAAIDGNGF KGTWTENGGG DVSGRPYGPA GEEVAGRYSYRPTDAEKGGF401GVFAGEKEQD *


[0265] All these proteins could be expressed and purified


[0266] ‘287L’ and ‘287LOrf4’ were confirmed as lipoproteins.


[0267] As shown in FIG. 2, ‘287LOrf4’ was constructed by digesting 919LOrf4 with NheI and XhoI. The entire ORF4 leader peptide was restored by the addition of a DNA sequence coding for the missing amino acids, as a tail, in the 5′-end primer (287LOrf4 for), fused to 287 coding sequence. The 287 gene coding for the mature protein was amplified using the oligonucleotides 287LOrf4 For and Rev (including the NheI and XhoI sites, respectively), digested with NheI and XhoI and ligated to the purified pETOrf4 fragment.



EXAMPLE 11

[0268] Further Non-Fusion Proteins with/without Native Leader Peptides


[0269] A similar approach was adopted for E.coli expression of further proteins from WO99/24578, WO99/36544 and WO99/57280.


[0270] The following were expressed without a fusion partner: 008, 105, 117-1, 121-1, 122-1, 128-1, 148, 216, 243, 308, 593, 652, 726, 982, and Orf143-1. Protein 117-1 was confirmed as surface-exposed by FACS and gave high ELISA titres.


[0271] The following were expressed with the native leader peptide but without a fusion partner: 111, 149, 206, 225-1, 235, 247-1, 274, 283, 286, 292, 401, 406, 502-1, 503, 519-1, 525-1, 552, 556, 557, 570, 576-1, 580, 583, 664, 759, 907, 913, 920-1, 926, 936-1, 953, 961, 983, 989, Orf4, Orf7-1, Orf9-1, Orf23, Orf25, Orf37, Orf38, Orf40, Orf40.1, Orf40.2, Orf72-1, Orf76-1, Orf85-2, Orf91, Orf97-1, Orf119, Orf143.1. These proteins are given the suffix ‘L’.


[0272] His-tagged protein 760 was expressed with and without its leader peptide. The deletion of the signal peptide greatly increased expression levels. The protein could be purified most easily using 2M urea for solubilisation.


[0273] His-tagged protein 264 was well-expressed using its own signal peptide, and the 30 kDa protein gave positive Western blot results.


[0274] All proteins were successfully expressed.


[0275] The localisation of 593, 121-1, 128-1, 593, 726, and 982 in the cytoplasm was confirmed.


[0276] The localisation of 920-1L, 953L, ORF9-1L, ORF85-2L, ORF97-1L, 570L, 580L and 664L in the periplasm was confirmed.


[0277] The localisation of ORF40L in the outer membrane, and 008 and 519-1L in the inner membrane was confirmed. ORF25L, ORF4L, 406L, 576-1L were all confirmed as being localised in the membrane.


[0278] Protein 206 was found not to be a lipoprotein.


[0279] ORF25 and ORF40 expressed with their native leader peptides but without fusion partners, and protein 593 expressed without its native leader peptide and without a fusion partner, raised good anti-bactericidal sera. Surprisingly, the forms of ORF25 and ORF40 expressed without fusion partners and using their own leader peptides (i.e. ‘ORF25L’ and ‘ORF40L’) give better results in the bactericidal assay than the fusion proteins.


[0280] Proteins 920L and 953L were subjected to N-terminal sequencing, giving HRVWVETAH and ATYKVDEYHANARFAF, respectively. This sequencing confirms that the predicted leader peptides were cleaved and, when combined with the periplasmic location, confirms that the proteins are correctly processed and localised by E.coli when expressed from their native leader peptides.


[0281] The N-terminal sequence of protein 519.1L localised in the inner membrane was MEFFIILLA, indicating that the leader sequence is not cleaved. It may therefore function as both an uncleaved leader sequence and a transmembrane anchor in a manner similar to the leader peptide of PBP1 from N.gonorrhoeae [Ropp & Nicholas (1997) J. Bact. 179:2783-2787.]. Indeed the N-terminal region exhibits strong hydrophobic character and is predicted by the Tmpred. program to be transmembrane.



EXAMPLE 12

[0282] Lipoproteins


[0283] The incorporation of palmitate in recombinant lipoproteins was demonstrated by the method of Kraft et. al. [J. Bact. (1998) 180:3441-3447.]. Single colonies harbouring the plasmid of interest were grown overnight at 37° C. in 20 ml of LB/Amp (100 μg/ml) liquid culture. The culture was diluted to an OD550 of 0.1 in 5.0 ml of fresh medium LB/Amp medium containing 5 μC/ml [3H] palmitate (Amersham). When the OD550 of the culture reached 0.4-0.8, recombinant lipoprotein was induced for 1 hour with IPTG (final concentration 1.0 mM). Bacteria were harvested by centrifugation in a bench top centrifuge at 2700 g for 15 min and washed twice with 1.0 ml cold PBS. Cells were resuspended in 120 μl of 20 mM Tris-HCl (pH 8.0), 1 mM EDTA, 1.0% w/v SDS and lysed by boiling for 10 min. After centrifugation at 13000 g for 10 min the supernatant was collected and proteins precipitated by the addition of 1.2 ml cold acetone and left for 1 hour at −20° C. Protein was pelleted by centrifugation at 13000 g for 10 min and resuspended in 20-50μl (calculated to standardise loading with respect to the final O.D of the culture) of 1.0% w/v SDS. An aliquot of 15 μl was boiled with 5 μl of SDS-PAGE sample buffer and analysed by SDS-PAGE. After electrophoresis gels were fixed for 1 hour in 10% v/v acetic acid and soaked for 30 minutes in Amplify solution (Amersham). The gel was vacuum-dried under heat and exposed to Hyperfilm (Kodak) overnight −80° C.


[0284] Incorporation of the [3H] palmitate label, confirming lipidation, was found for the following proteins: Orf4L, Orf25L, 287L, 287LOrf4, 406.L, 576L, 926L, 919L and 919LOrf4.



EXAMPLE 13

[0285] Domains in 287


[0286] Based on homology of different regions of 287 to proteins that belong to different functional classes, it was split into three ‘domains’, as shown in FIG. 5. The second domain shows homology to IgA proteases, and the third domain shows homology to transferrin-binding proteins.


[0287] Each of the three ‘domains’ shows a different degree of sequence conservation between N. meningitidis strains—domain C is 98% identical, domain A is 83% identical, whilst domain B is only 71% identical. Note that protein 287 in strain MC58 is 61 amino acids longer than that of strain 2996. An alignment of the two sequences is shown in FIG. 7, and alignments for various strains are disclosed in WO0/66741 (see FIGS. 5 and 15 therein).


[0288] The three domains were expressed individually as C-terminal His-tagged proteins. This was done for the MC58 and 2996 strains, using the following constructs:


[0289] 287a-MC58 (aa 1-202), 287b-MC58 (aa 203-288), 287c-MC58 (aa 311-488).


[0290] 287a-2996 (aa 1-139), 287b-2996 (aa 140-225), 287c-2996 (aa 250-427).


[0291] To make these constructs, the stop codon sequence was omitted in the 3′-end primer sequence. The 5′ primers included the NheI restriction site, and the 3′ primers included a XhoI as a tail, in order to direct the cloning of each amplified fragment into the expression vector pET21b+ using NdeI-XhoI, NheI-XhoI or NdeI-HindIII restriction sites.


[0292] All six constructs could be expressed, but 287b-MC8 required denaturation and refolding for solubilisation.


[0293] Deletion of domain A is described below (‘Δ4 287-His’).


[0294] Immunological data (serum bactericidal assay) were also obtained using the various domains from strain 2996, against the homologous and heterologous MenB strains, as well as MenA (F6124 strain) and MenC (BZ133 strain):
242996BZ232MC58NGH38394/98MenAMenC287-His320001640964096512800016000287(B)-His25616287(C)-His25632512322048>2048287(B-C)-His6400012840966400010246400032000


[0295] Using the domains of strain MC58, the following results were obtained:.
25MC582996BZ232NGH38394/98MenAMenC287-His409632000164096512800016000287(B)-His128128128287(C)-His161024512287(B-C)-His16000640001286400051264000>8000



EXAMPLE 14

[0296] Deletions in 287


[0297] As well as expressing individual domains, 287 was also expressed (as a C-terminal His-tagged protein) by making progressive deletions within the first domain. These Four deletion mutants of protein 287 from strain 2996 were used (FIG. 6):


[0298] 1) ‘287-His’, consisting of amino acids 18-427 (i.e. leader peptide deleted);


[0299] 2) ‘Δ1 287-His’, consisting of amino acids 26-427;


[0300] 3) ‘Δ2 287-His’, consisting of amino acids 70-427;


[0301] 4) ‘Δ3 287-His’, consisting of amino acids 107-427; and


[0302] 5) ‘Δ4 287-His’, consisting of amino acids 140-427 (=287-bc).


[0303] The ‘Δ4’ protein was also made for strain MC58 (‘Δ4 287MC58-His’; aa 203-488).


[0304] The constructs were made in the same way as 287a/b/c, as described above.


[0305] All six constructs could be expressed and protein could be purified. Expression of 287-His was, however, quite poor.


[0306] Expression was also high when the C-terminal His-tags were omitted.


[0307] Immunological data (serum bactericidal assay) were also obtained using the deletion mutants, against the homologous (2996) and heterologous MenB strains, as well as MenA (F6124 strain) and MenC (BZ133 strain):
262996BZ232MC58NGH38394/98MenAMenC287-his320001640964096512800016000Δ1 287-His16000128409640961024800016000Δ2 287-His160001284096>204851216000>8000Δ3 287-His160001284096>204851216000>8000Δ4 287-His6400012840966400010246400032000


[0308] The same high activity for the Δ4 deletion was seen using the sequence from strain MC58.


[0309] As well as showing superior expression characteristics, therefore, the mutants are immunologically equivalent or superior.



EXAMPLE 15

[0310] Poly-Glycine Deletions


[0311] The ‘Δ1 287-His’ construct of the previous example differs from 287-His and from ‘287untagged’ only by a short N-terminal deletion (GGGGGS). Using an expression vector which replaces the deleted serine with a codon present in the Nhe cloning site, however, this amounts to a deletion only of (Gly)6. Thus, the deletion of this (Gly)6 sequence has been shown to have a dramatic effect on protein expression.


[0312] The protein lacking the N-terminal amino acids up to GGGGGG is called ‘ΔG 287’. In strain MC58, its sequence (leader peptide underlined) is:
27                           ΔG2871MFKRSVIAMA CIFALSACGG GGGGSPDVKS ADTLSKPAAPVVSEKETEAK51EDAPQAGSQG QGAPSAQGSQ DMAAVSEENT GNGGAVTADNPKNBDEVAQN101DMPQNAAGTD SSTPNHTPDP NMLAGNNENQ ATDAGESSQPANQPDMANAA151DGMQGDDPSA GGQNAGNTAA QGANQAGNNQ AAGSSDPIPASNPAPANGGS201NFGRVDLANG VLIDGPSQNI TLTHCKGDSC SGNNFLDBEVQLKSEFEKLS251DADKISNYKK DGKNDKFVGL VADSVQMKGI NQYIIFYKPKPTSFARPRRS301ARSEPSLPAE MPLIPVNQAD TLIVDGEAVS LTGHSGNIFAPEGNYRYLTY351GABKLPGGSY ALRVQGEPAK GEKLAGAAVY NGEVLRFHTENGRPYPTRGR401FAAKVDFGSK SVDGIIDSGD DLMHGDQKFK AAIDGNGFKGTWTENGSGDV451SGKFYGPAGE RVAGKYSYRP TDAEKGGFGV FAGKKEQD*


[0313] ΔG287, with or without His-tag (‘ΔG287-His’ and ‘ΔG287K’, respectively), are expressed at very good levels in comparison with the ‘287-His’ or ‘287untagged’.


[0314] On the basis of gene variability data, variants of ΔG287-His were expressed in E.coli from a number of MenB strains, in particular from strains 2996, MC58, 1000, and BZ232. The results were also good.


[0315] It was hypothesised that poly-Gly deletion might be a general strategy to improve expression. Other MenB lipoproteins containing similar (Gly)n motifs (near the N-terminus, downstream of a cysteine) were therefore identified, namely Tbp2 (NMB0460), 741 (NMB 1870) and 983 (NMB1969):
28TBP2                            ΔGTbp21MNNPLVNQAA MVLPVFLLSACWGGGSFDL DSVDTEAPRPAPKYQDVFSB51KPQAQKDQGG YGFAMRLKER NWYPQAXEDB VKLDESDWHATGLPDEPKEL101PKRQRSVIBK VRTDSDNNIY SSPYLKPSNH QNGNTGNGINQPKNQAXDYE151NFKYVYSGWF YKHAKREFNL KVBPKSAKNG DDGYIFYHGKEPSRQLPASG201KITYKGVWHF ATDTKKGQKF REIIQPSKBQ GDRYSGFSGDDGEEYSNKNK251STLTDGQEGY GFTSNLEVDF HNKKLTGKLI RNNANTDNNQATTTQYYSLB301AQVTGNRPNG KATATDKPQQ NSETXBHPPV SDSSSLSGGFFGPQGEELGF351RPLSDDQKVA VVGSAKTKDK PANGNTAAAS GGTDAAASNGAAGTSSENGK401LTTVLDAVEL KLGDKEVQKL DNFSNAAQLV VDGIMIPLLPEASESGNNQA451NQGTNGGTAP TRKFDHTPES DKKDAQAGTQ TNGAQTASNTAGDTNGKTKT501YEVEVCCSNL NYLKYGMLTR KNSKSAMQAG ESSSQADAKTEQVEQSMFLQ551GERTDEKEIP SEQNIVYRGS WYGYIANDXS TSWSGNASNATSGNRAEFTV601NFADKKITGT LTADNRQEAT FTIDGNIKDN GFEGTAKTAESGFDLDQSNT651TRTPKAYITD AKVQGGPYGP KAEELGGWFA YPGDKQTKNATNASGNSSAT701VVFGAKRQQP VR*741                            ΔG7411VNRTAPCCLS LTTALILTAC SSGGGGVAAD IGAGLADALTAPLDHKDKGL51QSLTLDQSVR KNEKLKLAAQ GAEKTYGNGD SLNTGKLKNDKVSRFDFIRQ101IEVDGQLITL ESGEFQVYKQ SHSALTAPQT EQIQDSEHSGKMVAKRQFRI151GDIAGEHTSF DKLPEGGRAT YRGTAFGSDD AGGKLTYTIDFAAKQGNGKI201EHLKSPELNV DLAAADIKPD GKRHAVISGS VLYNQAEKGSYSLGIFGGKA251QEVAGSAEVK TVNGIRHIGL AAKQ*983                                        ΔG9831MRTTPTPPTK TDXPTAMALA VATTLSACLG GGGGGTSAPDFNAGGTGIGS51NSRATTAKSA AVSYAGIKNE HCKDRSNLCA GRDDVAVTDRDAKINAPPPN101LHTGDFPNPN DAYKNLINLK PAIEAGYTGR GVEVGIVDTGESVGSISFPE151LYGRKEHGYN ENYKNYTAYM RKEAPEDGGG KDIEASFDDEAVIETEAKPT201DIRHVKEIGR IDLVSHIIGG RSVDGRPAGG IAPDATLHIMNTNDETKNEM251MVAAIRNAWV KLGERGVPJV NNSPGTTSEA GTADLFQIANSEEQYRQALL301DYSGGDKTDE GIRLMQQSDY GNLSYHIRNK NMLFXFSTGNDAQAQPNTYA351LLPFYEKDAQ KGIITVAGVD RSGEKFKREM YGRPGTEPLRYGSNHCGITA401MWCLSAPYEA SVRPTRTNPI QIAGTSFSAP IVTGTAALLLQKTPWMSNDN451LRTTLLTTAQ DIGAVGVDSK FGWGLLDAGK AMNGPASFPFGDPTADTKGT501SDIAYSFRND ISGTGGLIKK GGSQLQLHGN NTYTGKTXIEGGSLVLYGNN551KSDMRVETKG ALIYNGAASG GSLNSDGIVY LADTDQSGANBTVHIXGSLQ601LDGKGTLYTR LGKLLKVDGT AIIGGKLYMS ARGKGAGYLNSTGRRVPFLS651AAKIGQDYSF FTNXETDGGL LASLDSVBKT AGSEGDTLSYYVRRGNAART701ASAAAHSAPA GLKHAVEQGG SNLENLMVEL DASRSSATPETVETAAADRT751DMPGIRPYGA TFRAAAAVQH ANAADGVRIF NSLAATVYADSTAAHADMQG801RRLKAVSDGL DHNGTGLRVI AQTQQDGGTW EQGGVEGKMRGSTQTVGIAA851KTGENTTAAA TLGMGRSTWS ENSANAKTDS ISLFAGIRHDAGDIGYLKGL901FSYGRYKNSI SRSTGADEHA EGSVNGTLMQ LGALGGVNVPPAATGDLTVE951GGLRYDLLKQ DAFAEKGSAL GWSGNSLTEG TLVGLAGLKLSQPLSDKAVL1001FATAGVERDL NGRDYTVTGG FTGATAATGK TGARMNPHTRLVAGLGADVE1051FGNGWNGLAR YSYAGSKQYG NHSGRVGVGY RF*


[0316] Thp2 and 741 genes were from strain MC58; 983 and 287 genes were from strain 2996. These were cloned in pET vector and expressed in E.coli without the sequence coding for their leader peptides or as “ΔG forms”, both fused to a C-terminal His-tag. In each case, the same effect was seen—expression was good in the clones carrying the deletion of the poly-glycine stretch, and poor or absent if the glycines were present in the expressed protein:
29ORFExpress.PurificationBact. Activity287-His(2996)+/−++‘287untagged’(2996)+/−ndndΔG287-His(2996)+++ΔG287K(2996)+++ΔG287-His(MC58)+++ΔG287-His(1000)+++ΔG287-His(BZ232)+++Tbp2-His(MC58)+/−ndndΔGTbp2-His(MC58)++741-His(MC58)+/−ndndΔG741-His(MC58)++983-His (2996)ΔG983-His (2996)++


[0317] SDS-PAGE of the proteins is shown in FIG. 13.


[0318] ΔG287 and Hybrids


[0319] ΔG287 proteins were made and purified for strains MC58, 1000 and BZ232. Each of these gave high ELISA titres and also serum bactericidal titres of >8192. ΔG287K, expressed from pET-24b, gave excellent titres in ELISA and the serum bactericidal assay. ΔG-287-ORF46.1K may also be expressed in pET-24b.


[0320] ΔG287 was also fused directly in-frame upstream of 919, 953, 961 (sequences shown below) and ORF46.1:
30ΔG287-9191ATGGCTAGCC CCGATGTTAA ATCGGCGGAC ACGCTGTCAA AACCGGCCGC51TCCTGTTGTT GCTGAAAAAG AQACAGAGGT AAAAGAAGAT GCGCCACAGG101CAGGTTCTCA AGGACAGGGC GCGCCATCCA CACAAGGCAG CCAAGATATG151GCGGCAGTTT CGGCAGAAAA TACAGGCAAT GGCGGTGCGG CAACAACGGA201CAAACCCAAA AATGAAGACG AGGGACCGCA AAATGATATG CCGCAAAATT251CCGCCGAATC CGCAAATCAA ACAGGGAACA ACCAACCCGC CGATTCTTCA301GATTCCGCCC CCGCGTCAAA CCCTGCACCT GCGAATGGCG GTAGCAATTT351TGGAAGGGTT GATTTGGCTA ATGGCGTTTT GATTGATGGG CCGTCGCAAA401ATATAACGTT GACCCACTGT AAAGGCGATT CTTGTAATGG TGATAATTTA451TTGGATGAAG AAGCACCGTC AAAATCAGAA TTTGAAAATT TAAATGAGTC501TGAACGAATT GAGAAATATA AGAAAGATGG GAAAAGCGAT AAATATACTA551ATTTGGTTGC GACAGCAGTT CAAGCTAATG GAAATAACAA ATATGTCATC601ATTTATAAAG ACAAGTCCGC TTCATCTTCA TCTGCGCGAT TCAGGCGTTC651TGCACGGTCG AGGAGGTCGC TTCCTGCCGA GATGCCGCTA ATCCCCGTCA701ATCAGGCGGA TACGCTGATT GTCGATGGGG AAGCGGTCAG CCTGACGGGG751CATTCCGGCA ATATCTTCGC GCCCGAAGGG AATTACCGGT ATCTGACTTA801CGGGGCGGAA AAATTGCCCG GCGGATCGTA TGCCCTCCGT GTGCAAGGCG851AACCGGCAAA AGGCGAAATG CTTGCTGGCA CGGCCGTGTA CAACGGCGAA901GTGCTGCATT TTCATACGOA AAACGGCCGT CCGTACCCGA CTAGAGGCAG951GTTTGCCGCA AAAGTCGATT TCGGCAGCAA ATCTGTGGAC GGCATTATCG1001ACAGCGGCGA TGATTTGCAT ATGGGTACGC AAAAATTCAA AGCCGCCATC1051GATGGAAACG GCTTTAAGGG GACTTGGACG GAAAATGGCG GCGGGGATGT1101TTCCGGAAGG TTTTACGGCC CGGCCOGCGA GGAAGTGGCG GGAAAATACA1151GCTATCGCCC GACAGATGCG GAAAAGGGCG GATTCGGCGT GTTTGCCGGC1201AAAAAAGAGC AGGATGGATC CGGAGGAGGA GGATGCCAAA GCAAGAGCAT1251CCAAACCTTT CCGCAACCCG ACACATCCGT CATCAACGGC CCGGACCGGC1301CGGTCGGCAT CCCCGACCCC GCCGGAACGA CGGTCGGCGG CGGCGGGGCC1351GTCTATACCG TTGTACCGCA CCTGTCCCTG CCCCACTGGG CGGCGCAGGA1401TTTCGCCAAA AGCCTGCAAT CCTTCCGCCT CGGCTGCGCC AATTTGAAAA1451ACCGCCAAGG CTGGCAGGAT GTGTGCGCCC AAGCCTTTCA AACCCCCGTC1501CATTCCTTTC AGGCAAAACA GTTTTTTGAA CGCTATTTCA CGCCGTGGCA1551GGTTGCAGGC AACGGAAGCC TTGCCGGTAC GGTTACCGGC TATTACGAGC1601CGGTGCTGAA GGGCGACGAC AGGCGGACGG CACAAGCCCG CTTCCCGATT1651TACGGTATTC CCGACGATTT TATCTCCGTC CCCCTGCCTG CCGGTTTGCG1701GAGCGGAAAA GCCCTTGTCC GCATCAGGCA GACGGGAAAA AACAGCGGCA1751CAATCGACAA TACCGGCGGC ACACATACCG CCGACCTCTC CCGATTCCCC1801ATCACCGCGC GCACAACGGC AATCAAAGGC AGGTTTGAAG GAAGCCGCTT1851CCTCCCCTAC CACACGCGCA ACCAAATCAA CGGCGGCGCG CTTQACGGCA1901AAGCCCCGAT ACTCGGTTAC GCCGAAGACC CCGTCGAACT TTTTTTTATG1951CACATCCAAG GCTCGGGCCG TCTGAAAACC CCGTCCGGCA AATACATCCG2001CATCGGCTAT GCCGACAAAA ACGAACATCC CTACGTTTCC ATCGGACGCT2051ATATGGCGGA CAAAGGCTAC CTCAAGCTCG GGCAGACCTC GATGCAGGGC2101ATCAAAGCCT ATATGCGGCA AAATCCGCAA CGCCTCGCCG AAGTTTTGGG2151TCAAAACCCC AGCTATATCT TTTTCCGCGA GCTTGCCGGA AGCAGCAATG2201ACGGTCCCGT CGGCOCACTG GGCACGCCGT TGATGGGGGA ATATGCCGGC2251GCAGTCGACC GGCACTACAT TACCTTGGGC GCGCCCTTAT TTGTCGCCAC2301CGCCCATCCG GTTACCCGCA AAGCCCTCAA CCGCCTGATT ATGGCGCAGG2351ATACCGGCAG CGCGATTAAA GGCGCGGTGC GCGTGGATTA TTTTTGGGGA2401TACGGCGACG AAGCCGGCGA ACTTGCCGGC AAACAGAAAA CCACGGGTTA2451CGTCTGGCAG CTCCTACCCA ACGGTATGAA GCCCGAATAC CGCCCGTAAC2501TCGAG1MASPDVKSAD TLSKPAAPVV AEKETEVKED APQAGSQGQG APSTQGSQDM51AAVSAENTGN GGAATTDKPK NEDEGPQNDM PQNSAESANQ TGNNQPADSS101DSAPASNPAP ANGGSNFGRV DLANGVLIDG PSQNITLTHC KGDSCNGDNL151LDEEAPSKSE FENLNESERI EKYKKDGKSD KFTNLVATAV QANGTNKYVI201IYKDKSASSS SAPPRRSARS RRSLPAEMPL IPVNQADTLI VDGEAVSLTG251HSGNIFAPEG NYRYLTYGAE KLPGGSYMJR VQGEPAXGEM LAGTAVYNGE301VLHFHTENGR PYPTRGRPAA KVDFGSKSVD GIIDSGDDLH HGTQKFKAAI351DGNGFKGTWT ENGGGDVSGR FYGPAGEEVA GKYSYRPTDA EKGGFGVFAG401KKEQDGSGGG GCQSKSIQTP PQPDTSVING PDEPVGIPDP AGTTVGOGGA451VYTVVPELSL PHWAAQDFAK SLQSFRLGCA NLKNRQGWQD VCAQAFQTPV501HSFQAKQFFE RYFTPWQVAG NGSLAGTVTG YYEPVLKGDD RRTAQARFPI551YGIPDDFISV PLPAGLRSGK ALVRIRQTGK NSGTIDNTGG THTADLSRFP601ITARTTAIKG RFEGSRPLPY HTRNQINGGA LDGKAPILGY AEDPVELFFM651HIQGSGRLKT PSGKYIRIGY ADKNEHPYVS IGRYMADKGY LKLGQTSMQG701IKAYMRQNPQ RLAEVLGQNP SYIPFRELAD SBIWGPVGMJ GTPIMGEYAG751AVDRHYITLG APLFVATAHP VTRKALNELI MAQDTGSAIK GAVRVDYFWG801YGDEAGELAG KQKTTGYVWQ LLPNGMKPEY RP*ΔG287-9531ATGGCTAGCC CCGATGTTAA ATCGGCGGAC ACGCTGTCAA AACCGGCCGC51TCCTGTTGTT GCTGAAAAAG AGACAGAGGT AAAAGAAGAT GCGCCACAGG101CAGGTTCTCA AGGACAGGGC GCGCCATCCA CACAAGGCAG CCAAGATATG151GCGGCAGTTT CGGCAGAAAA TACAGGCAAT GGCGGTGCGG CAACAACGGA201CAAACCCAAA AATGAAGACG AGGGACCGCA AAATGATATG CCGCAAAATT251CCGCCGAATC CGCAAATCAA ACAGGGAACA ACCAACCCGC CGATTCTTCA301GATTCCGCCC CCGCGTCAAA CCCTGCACCT GCGAATGGCG GTAGCAATTT351TGGAAGGGTT GATTTGGCTA ATGGCGTTTT GATTGATGGG CCGTCGCAAA401ATATAACGTT GACCCACTGT AAAGGCGATT CTTGTAATGG TGATAATTTA451TTGGATGAAG AAGCACCGTC AAAATCAGAA TTTGAAAATT TAAATGAGTC501TGAACGAATT GAGAAATATA AGAAAGATGG GAAAAGCGAT AAATTTACTA551ATTTGGTTGC GACAGCAGTT CAAGCTAATG GAACTAACAA ATATGTCATC601ATTTATAAAG ACAAGTCCGC TTCATCTTCA TCTGCGCGAT TCAGGCGTTC651TGCACGGTCG AGGAGGTCGC TTCCTGCCGA GATGCCGCTA ATCCCCGTCA701ATCAGGCGGA TACGCTGATT GTCGATGGGG AAGCGGTCAG CCTGACGAGG751CATTCCGGCA ATATCTTCGC GCCCGAAGGG AATTACCGGT ATCTGACTTA801CGGGGCGGAA AAATTGCCCG GCGGATCGTA TGCCCTCCGT GTGCAAGGCG851AACCGGCAAA AGGCGAAATG CTTGCTGGCA CGGCCGTGTA CAACGGCGAA901GTGCTGCATT TTCATACGGA AAACGGCCGT CCGTACCCGA CTAGAGGCAG951GTTTGCCGCA AAAGTCGATT TCGGCAGCAA ATCTGTGGAC GGCATTATCG1001ACAGCGGCGA TGATTTGCAT ATGGGTACGC AAAAATTCAA AGCCGCCATC1051GATGGAAACG GCTTTAAGGG GACTTGGACG GAAAATGGCG GCGGGGATGT1101TTCCGGAAGG TTTTACGGCC CGCCCCGCGA GGAAGTGGCG GGAAAATACA1151GCTATCGCCC GACAGATGCG GAAAAGGGCG GATTCGGCGT GTTTGCCGGC1201AAAAAAGAGC AGGATGGATC CGGAGGAGGA GGAGCCACCT ACAAAGTGGA1251CGAATATCAC GCCAACGCCC GTTTCGCCAT CGACCATTTC AACACCAGCA1301CCAACGTCGG CGGTTTTTAC GGTCTGACCG GTTCCGTCGA GTTCGACCAA1351GCAAAACGCG ACGGTAAAAT CGACATCACC ATCCCCGTTG CCAACCTGCA1401AAGCGGTTCG CAACACTTTA CCGACCACCT GAAATCAGCC GACATCTTCG1451ATGCCGCCCA ATATCCGGAC ATCCGCTTTG TTTCCACCAA ATTCAACTTC1501AACGGCAAAA AACTGGTTTC CGTTGACGGC AACCTGACCA TGCACGGCAA1551AACCGCCCCC GTCAAACTCA AAGCCGAAAA ATTCAACTGC TACCAAAGCC1601CGATGGCGAA AACCGAAGTT TGCGGCGGCG ACTTCAGCAC CACCATCGAC1651CGCACCAAAT GGGGCGTGGA CTACCTCGTT AACGTTGGTA TGACCAAAAG1701CGTCCGCATC GACATCCAAA TCGAGGCAGC CAAACAATAA CTCGAG1MASPDVKSAD TLSKPAAPVV AEKETEVKED APQAGSQGQG APSTQGSQDM51AAVSAENTGN GGAATTDKPK NBDEGPQNDM PQNSAESANQ TGNNQPADSS101DSAPASNPAP ANGGSNFGRV DLANGVLIDG PSQNITLTHC KGDSCNGDNL151LDEEAPSKSE FENLNESERI ERYKKDGKSD KFTNLVATAV QANGTNKYVI201IYKDKSASSS SARFRRSARS RRSLPAEMPL IPVNQADTLI VDGRAVSLTG251RSGNIFAPEG NYRYLTYGAE KLPGGSYALR VQGEPAKGEH LAGTAVYNGE301VLHFETENGR PYPTRGRFAA KVDFGSKSVD GIIDSGDDLH MGTQKFKAAI351DGNGFKGTWT ENGGGDVSGR PYGPAGBEVA GKYSYRPTDA EKGGFGVFAG401KKEQDGSGGG GATYRVDEYH ANAPPAIDHF NTSTNVGGFY GLTGSVBFDQ451AXRDGKIDIT IPVANLQSGS QHFTDHLKSA DIFDAAQYPD IRFVSTKFNF501NGKKLVSVDG NLTMHGKTAP VKLKAEKFNC YQSPMAKTEV CGGDFSTTID551RTKWGVDYLV NVVGMTKSVRI DIQIEAAKQ*ΔG287-9611ATGGCTAGCC CCGATGTTAA ATCGGCGGAC ACGCTGTCAA AACCGGCCGC51TCCTGTTGTT GCTGAAAAAG AGACAGAGGT AAAAGAAGAT GCGCCACAGG101CAGGTTCTCA AGGACAGGGC GCGCCATCCA CACAAGGCAG CCAAGATATG151GCGGCAGTTT CGGCAGAAAA TACAGGCAAT GGCGGTGCGG CAACAACGGA201CAAACCCAAA AATGAAGACG AGGGACCGCA AAATGATATG CCGCAAAATT251CCGCCGAATC CGCAAATCAA ACAGGGAACA ACCAACCCGC CGATTCTTCA301GATTCCGCCC CCGCGTCAAA CCCTGCACCT GCGAATGGCG GTAGCAATTT351TGGAAGGGTT GATYTGGCTA ATGGCGTTTT GATTGATGGG CCGTCGCAAA401ATATAACGTT GACCCACTGT AAAGGCGATT CTTGTAATGG TGATAATTTA451TTGGATGAAG AAGCACCGTC AAAATCAGAA TTTGAAAATT TAAATGAGTC501TGAACGAATT GAAAAATATA AGAAAGATGG GAAAAGCGAT AAATTTACTA551ATTTGGTTGC GACAGCAGTT CAAGCTAATG GAACTAACAA ATATGTCATC601ATTTATAAAG ACAAGTCCGC TTCATCTTCA TCTGCGCGAT TCAGGCGTTC651TGCACGGTCG AAGAGGTCGC TTCCTGCCGA GATGCCGCTA ATCCCCGTCA701ATCAGGCGGA TACGCTGATT GTCGATGGGG AAGCGGTCAG CCTGACGGGG751CATTCCGGCA ATATCTTCGC GCCCGAAGGG AATTACCGGT ATCTGACTTA801CGGGGCGGAA AAATTGCCCG GCGGATCGTA TGCCCTCCGT GTGCAAGGCG851AACCGQCAAA AGGCGAAATG CTTGCTGGCA CGGCCGTGTA CAACGGCGAA901GTGCTGCATT TTCATACGGA AAACGGCCGT CCGTACCCGA CTAGAGGCAG951GTTTGCCGCA AAAGTCGATT TCGGCAGCAA ATCTGTGGAC GGCATTATCG1001ACAGCGGCGA TGATTTGCAT ATGGGTACGC AAAAATTCAA AGCCGCCATC1051GATGGAAACG GCTTTAAGGG GACTTGGACG GAAAATGGCG GCGGGGATGT1101TTCCGGAAGG TTTTACGGCC CGGCCGGCGA GGAAGTGGCG GGAAAATACA1151GCTATCGCCC GACAGATGCG GAAAAGGGCG GATTCGGCGT GTTTGCCGGC1201AAAAAAGAGC AGGATGGATC CGGAGGAGGA GGAGCCACAA ACGACGACGA1251TGTTAAAAAA GCTGCCAGTG TGGCCATTGC TGCTGCCTAC AACAATGGCC1301AAGAAATCAA CGGTTTCAAA GCTGGAGAGA CCATCTACGA CATTGATGAA1351GACGGCACAA TTACCAAAAA AGACGCAACT GCAGCCGATG TTGAAGCCGA1401CGACTTTAAA GGTCTGGGTC TGAAAAAAGT CGTGACTAAC CTGACCAAAA1451CCGTCAATGA AAACAAACAA AACGTCGATG CCAAAGTAAA AGCTGCAGAA1501TCTGAAATAG AAAAGTTAAC AACCAAGTTA GCAGACACTG ATGCCGCTTT1551AGCAGATACT GATGCCGCTC TGGATGCAAC CACCAACGCC TTGAATAAAT1601TGGGAGAAAA TATAACGACA TTTGCTGAAG AGACTAAGAC AAATATCGTA1651AAAATTGATG AAAAATTAGA AGCCGTGGCT GATACCGTGG ACAAGCATGC1701CGAAGCATTC AACGATATCG CCGATTCATT GGATGAAACC AACACTAAGG1751CAGACGAAGC CGTCAAAACC GCCAATGAAG CCAAACAGAC GGCCGAAGAA1801ACCAAACAAA ACGTCGATGC CAAAGTAAAA GCTGCAGAAA CTGCAGCAGG1851CAAAGCCGAA GCTGCCGCTG GCACAGCTAA TACTGCAGCC GACAAGGCCG1901AAGCTGTCGC TGCAAAAGTT ACCGACATCA AA~CTGATAT CGCTACGAAC1951AAAGATAATA TTGCTAAAAA AGCAAACAGT GCCGACGTGT ACACCAGAGA2001AGAGTCTGAC AGCAAATTTG TCAGAATTGA TGGTCTGAAC GCTACTACCG2051AAAAATTGGA CACACGCTTG GCTTCTGCTG AAAAATCCAT TGCCGATCAC2101GATACTCGCC TGAACGGTTT GGATAAAACA GTGTCAGACC TGCGCAAAGA2151AACCCGCCAA GGCCTTGCAG AACAAGCCGC GCTCTCCGGT CTGTTCCAAC2201CTTACAACGT GGGTCGGTTC AATGTAACGG CTGCAGTCGG CGGCTACAAA2251TCCGAATCGG CAGTCGCCAT CGGTACCGGC TTCCGCTTTA CCGAAAACTT2301TGCCGCCAAA GCAGGCGTGG CAGTCGGCAC TTCGTCCGGT TCTTCCGCAG2351CCTACCATGT CGGCGTCAAT TACGAGTGGT AACTCGAG1MASPDVKSAD TLSKPAAPVV AEKETEVKED APQAGSQGQG APSTQGSQDM51AAVSAENTGN GGAATTDKPK NEDEGPQNDM PQNSAESANQ TGNNQPADSS101DSAPASNPAP ANGGSNFGRV DLANGVLIDG PSQNITLTHC KGDSCNGDNL151LDEEAPSKSE FENLNESERI EKYKKDGKSD KFTNLVATAV QANGTNKYVI201IYKDKSASSS SARFRSARS ERSLPAEHPL IPVNQADTLI VDGEAVSLTG251HSGNIFAPEG NYRYLTYGAE KLPGGSYALR VQGBPAKGEK LAGTAVNGE301VYJHFHTENGR PYPTRGRPAA KVDFGSKSVD GIIDSGDDLH MGTQKPKAAI351DGNGFKGTWT ENGGGDVSGR FYGPAGEEVA GKYSYRPTDA EKGGPGVFAG401KKEQDGSGGG GATNDDDVKK AATVAIAAAY NNGQEINGFK AGETIYDIDE451DGTITKKDAT AADVEADDFK GLGLKKVVTN LTKTVNENQK NVDAXVXAAE501SEIEKLTTKL ADTDAALADT DAALDAFTNA LNKLGENITT FAEETKTNZV551KIDEKLEAVA DTVDKHARAF NDIADSLDET NTKADEAVKT ANEAKQTAEE601TKQNVDAKVK AAETAAGKAE AAAGTANTAA DKAEAVAAKV TDIKADIATN651KDNIAXKANS ADVYTREESD SKFVRIDGLN ATTEKLDTRL ASAEKSIADH701DTRLNGLDKT VSDLRKETRQ GLAEQAALSG LPQPYNVGRP NVTAAVGGYK751SESAVAIGTG FRPTENFAAK AGVAVGTSSG SSAAYHVGVN YEW*


[0321]

31
















ELISA
Bactericidal




















ΔG287-953-His
3834
65536



ΔG287-961-His
108627
65536











[0322] The bactericidal efficacy (homologous strain) of antibodies raised against the hybrid proteins was compared with antibodies raised against simple mixtures of the component antigens (using 287-GST) for 919 and ORF46.1:
32Mixture with 287Hybrid with ΔG28791932000128000ORF46.112816000


[0323] Data for bactericidal activity against heterologous MenB strains and against serotypes A and C were also obtained:
33919ORF46.1StrainMixtureHybridMixtureHybridNGH3810243200016384MC585128192512BZ232512512MenA (F6124)512320008192MenC (C11)>2048>2048MenC (BZ133)>4096640008192


[0324] The hybrid proteins with ΔG287 at the N-terminus are therefore immunologically superior to simple mixtures, with ΔG287-ORF46.1 being particularly effective, even against heterologous strains. ΔG287-ORF46.1K may be expressed in pET-24b.


[0325] The same hybrid proteins were made using New Zealand strain 394/98 rather than 2996:
34ΔG287NZ-9191ATGGCTAGCC CCGATGTCAA GTCGGCGGAC ACGCTGTCAA AACCTGCCGC51CCCTGTTGTT TCTGAAAAAG AGACAGAGGC AAAGGAAGAT GCGCCACAGG101CAGGTTCTCA AGGACAGGGC GCGCCATCCG CACAAGGCGG TCAAGATATG151GCGGCGGTTT CGGAAGAAAA TACAGQCAAT GGCGGTGCGG CAGCAACGGA201CAAACCCAAA AATGAAGACG AGGGGGCGCA AAATGATATG CCGCAAAATG251CCGCCGATAC AGATAGTTTG ACACCGAATC ACACCCCGGC TTCGAATATG301CCGGCCGGAA ATATGGAAAA CCAAGCACCG GATGCCGGGG AATCGGAGCA351GCCGGCAAAC CAACCGGATA TGGCAAATAC GGCGGACGGA ATGCAGGGTG401ACGATCCGTC GGCAGGCGGG GAAAATGCCG GCAATACGGC TGCCCAAGGT451ACAAATCAAG CCGAAAACAA TCAAACCGCC GGTTCTCAAA ATCCTGCCTC501TTCAACCAAT CCTAGCGCCA CGAATAGCGG TGGTGATTTT GGAAAGACGA551ACGTGGGCAA TTCTGTTGTG ATTGACGGGC CGTCGCAAAA TATAACGTTG601ACCCACTGTA AAGGCGATTC TTGTAGTGGC AATAATTTCT TGGATGAAGA651AGTACAGCTA AAATCAGAAT TTGAAAAATT AAGTGATGCA GACAAAATAA701GTAATTACAA GAAAGATGGG AAGAATGACG GGAAGAATGA TAAATTTGTC751GGTTTGGTTG CCQATAGTGT GCAGATGAAG GGAATCAATC AATATATTAT801CTTTTATAAA CCTAAACCCA CTTCATTTGC GCGATTTAGG CGTTCTGCAC851GGTCGAGGCG GTCGCTTCCG GCCGATATGC CGCTGATTCC CGTCAATCAG901GCGGATACGC TGATTGTCGA TGGGGAAGCG GTCAGCCTGA CGGGGCATTC951CGGCAATATC TTCGCGCCCG AAGGGAATTA CCGGTATCTG ACTTACGGGG1001CGGAAAAATT GCCCGGCGGA TCGTATGCCC TCCGTGTTCA AGGCGAACCT1051TCAAAAGGCG AAATGCTCGC GGGCACGGCA GTGTACAACG GCGAAGTGCT1101GCATTTTCAT ACGGAAAACG GCCGTCCGTC CCCGTCCAGA GGCAGGTTTG1151CCGCAAAAGT CGATTTCGGC AGCAAATCTG TGGACGGCAT TATCGACAGC1201GGCGATGGTT TGCATATGGG TACGCAAAAA TTCAAAGCCG CCATCGATGG1251AAACGGCTTT AAGGGGACTT GGACGGAAAA TGGCGGCGGG GATGTTTCCG1301GAAAGTTTTA CGGCCCGGCC GGCGAGGAAG TGGCGGGAAA ATACAGCTAT1351CGCCCAACAG ATGCGGAAAA GGGCGGATTC GGCGTGTTTG CCGGCAAAAA1401AGAGCAGGAT GGATCCGGAG GAGGAGGATG CCAAAGCAAG AGCATCCAAA1451CCTTTCCGCA ACCCGACACA TCCGTCATCA ACGGCCCGGA CCGGCCGGTC1501GGCATCCCCG ACCCCGCCGG AACGACGGTC GGCGGCGGCG GGGCCGTCTA1551TACCGTTGTA CCGCACCTGT CCCTGCCCCA CTGGGCGGCG CAGGATTTCG1601CCAAAAGCCT GCAATCCTTC CGCCTCGGCT GCGCCAATTT GAAAAACCGC1651CAAGGCTGGC AGGATGTGTG CGCCCAAGCC TTTCAAkCCC CCGTCCATTC1701CTTTCAGGCA AAACAGTTTT TTGAACGCTA TTTCACGCCG TGGCAGGTTG1751CAGGCAACGG AAGCCTTGCC GGTACGGTTA CCGGCTATTA CGAGCCGGTG1801CTGAkGGGCG AGGACAGGCG GACGGCACAA GCCCGCTTCC CGATTTACGG1851TATTCCCGAC GATTTTATCT CCGTCCCCCT GCCTGCCGGT TTGCGGAGCG1901GAAAAGCCCT TGTCCGCATC AGGCAGACGG GAAAAAACAG CGGCACAATC1951GACAATACCG GCGGCACACA TACCGCCGAC CTCTCCCGAT TCCCCATCAC2001CGCGCGCACA ACGGCAATCA AAGCAAGGTT TGAAGGAAGC CGCTTCCTCC2051CCTACCACAC GCGCAACCAA ATCAACGGCG GCGCGCTTGA CGGCAAAGCC2101CCGATACTCG GTTACGCCGA AGACCCCGTC GAACTTTTTT TTATGCACAT2151CCAAGGCTCG GGCCGTCTGA AAACCCCGTC CGGCAAATAC ATCCGCATCG2201GCTATGCCGA CAAAAACGAA CATCCCTACG TTTCCATCGG ACGCTATATG2251GCGGACAAAG GCTACCTCAA GCTCGGGCAG ACCTCGATGC AGGGCATCAA2301AGCCTATATG CGGCAAAATC CGCAACGCCT CGCCGAAGTT TTGGGTCAAA2351ACCCCAGCTA TATCTTTTTC CGCGAGCTTG CCGGAAGCAG CAATGACGGT2401CCCGTCGGCG CACTGGGCAC GCCGTTGATG GGGGAATATG CCGGCGCAGT2451CGACCGGCAC TACATTACCT TGGGCGCGCC CTTATTTGTC GCCACCGCCC2501ATCCGGTTAC CCGCAAAGCC CTCAACCGCC TGATTATGGC GCAGGATACC2551GGCAGCGCGA TTAAAGGCGC GGTGCGCGTG GATTATTTTT GGGGATACGG2601CGACGAAGCC GGCGAACTTG CCGGCAAACA GAAAACCACG GGTTACGTCT2651GGCAGCTCCT ACCCAACGGT ATGAAGCCCG AATACCGCCC GTAAAAGCTT1MASPDVKSAD TLBKPAAPVV SEKETEAKED APQAGSQGQG APSAQGGQDH51AAVSEENTGN GGAAATDKPK NEDEGAQNDM PQNAADTDSL TPNHTPASNH101PAGNMENQAP DAGESEQPAN QPDMANTADG HQGDDPSAGG ENAGNTAAQG151TNQAENNQTA GSQNPASSTN PSATNSGGDF GRTNVGNSVV IDGPSQNITL201THCKGDSCSG NNPLDEEVQL KSEFEKLSDA DKISNYKKDG KNDGKNDKFV251GLVADSVQHK GINQYZIFYK PKPTSFARFR RSARSRRSLP AEHPLIPVNQ301ADTLIVDGEA VSLTGHSGNI FAPEGNYRYL TYGAEKLPGG SYALRVQGEP351SRGEHLAGTA VYNGEVLHFH TENGRPSPSR GRFAAKVDFG SKSVDGIIDS401GDGLHMGTQK FKAAIDGNGF KGTWTENGGG DVSGKFYGPA GEEVAGKYSY451RPTDAEKGGF GVFAGKKEQD GSGGGGCQSK SIQTFPQPDT SVINGPDRPV501GIPDPAGTTV GGGGAVYTVV PHLSLPHWAA QDFAKSLQSF RLGCANLKNR551QGWQDVCAQA FQTPVHSFQA KQFFERYFTP WQVAGNGSLA GTVTGYYEPV601LKGDDRRTAQ ARFPIYGIPD DPISVPLPAG LRSGKALVRZ RQTGKNSGTI651DNTGGTHTAD LSRFPITART TAIRGEPEGS EPLPYHTRNQ INGGALDGKA701PILGYAEDPV ELFFMHIQGS GRLKTPSGKY IRIGYADKNE HPYVSIGRYM751ADKGYLKLGQ TSMQGIKAYH RQNPQRLAEV LGQNPSYZFF RELAGSSNDG801PVGALGTPLM GEYAGAVDEH YITLGAPLFV ATAHPVTRKA LNRLIMAQDT851GSAIKGAVRV DYFWGYGDEA GELAGKQKTT GYVWQLLPNG HKPEYRP*ΔG287NZ-9531ATGGCTAGCC CCGATGTCAA GTCGGCGGAC ACGCTGTCAA AACCTGCCGC51CCCTGTTGTT TCTGAAAAAG AGACAGAGGC AAAGGAAGAT GCGCCACAGG101CAGGTTCTCA AGGACAGGGC GCGCCATCCG CACAAGGCGG TCAAGATATG151GCGGCGGTTT CGGAAGAAAA TACAGGCAAT GGCGGTGCGG CAGCAACGGA201CAAACCCAAA AATGAAGACG AGGGGGCGCA AAATGATATG CCGCAAAATG251CCGCCGATAC AGATAGTTTG ACACCGAATC ACACCCCGGC TTCGAATATG301CCGGCCGGAA ATATGGAAAA CCAAGCACCG GATGCCGGGG AATCGGAGCA351GCCGGCAAAC CAACCGGATA TGGCAAATAC GGCGGACGGA ATGCAGGGTG401ACGATCCGTC GGCAGGCGGG GAAAATGCCG GCAATACGGC TGCCCAAGGT451ACAAATCAAG CCGAAAACAA TCAAACCGCC GGTTCTCAAA ATCCTGCCTC501TTCAACCAAT CCTAGCGCCA CGAATAGCGG TGGTGATTTT GGAAGGACGA551ACGTGGGCAA TTCTGTTGTG ATTGACGGGC CGTCGCAAAA TATAACGTTG601ACCCACTGTA AAGGCGATTC TTGTAGTGGC AATAATTTCT TGGATGAAGA651AGTACAGCTA AAATCAGAAT TTGAAAAATT AAGTGATGCA GACAAAATAA701GTAATTACAA GAAAGATGGG AAGAATGACG GGAAGAATGA TAAATTTGTC751GGTTTGGTTG CCGATAGTGT GCAGATGAAG GGAATCAATC AATATATTAT801CTTTTATAAA CCTAAACCCA CTTCATTTGC GCGATTTADG CGTTCTGCAC851GGTCGAGGCG GTCGCTTCCG GCCGAGATGC CGCTGATTCC CGTCAATCAG901GCGGATACGC TGATTGTCGA TGGGGAAGCG GTCAGCCTGA CGGGGCATTC951CGGCAATATC TTCGCGCCCG AAGGGAAATA CCGGTATCTG ACTTACGGGG1001CGGAAAAATT GCCCGGCGGA TCGTATGCCC TCCGTGTTCA AGGCGAACCT1051TCAAAAGGCG AAATGCTCGC GGGCACGGCA GTGTACAACG GCGAAGTGCT1101GCATTTTCAT ACGGAAAACG GCCGTCCGTC CCCGTCCAGA GGCAGGTTTG1151CCGCAAAAGT CGATTTCGGC AGCAAATCTG TGGACGGCAT TATCGACAGC1201GGCGATGGTT TGCATATGGG TACGCAAAAA TTCAAAGCCG CCATCGATGG1251AAACGGCTTT AAGGGGACTT GGACGGAAAA TGGCGGCGGG GATGTTTCCG1301GAAAGTTTTA CGGCCCGGCC GGCGAGGAAG TGGCGGGAAA ATACAGCTAT1351CGCCCAACAG ATGCGGAAAA GGGCGGATTC GGCGTGTTTG CCGGCAAAAA1401AGAGCAGGAT GGATCCGGAG GAGGAGGAGC CACCTACAAA GTGGACGAAT1451ATCACGCCAA CGCCCGTTTC GCCATCGACC ATTTCAACAC CAGCACCAAC1501GTCGGCGGTT TTTACGGTCT GACCGGTTCC GTCGAGTTCG ACCAAGCAAA1551ACGCGACGGT AAAATCGAGA TCACCATCCC CGTTGCCAAC CTGCAAAGCG1601GTTCGCAACA CTTTACCGAC CACCTGAAAT CAGCCGACAT CTTCGATGCC1651GCCCAATATC CGGACATCCG CTTTGTTTCC ACCAAATTCA ACTTCAACGG1701CAAAAAACTG GTTTCCGTTG ACGGCAACCT GACCATOCAC GGCAAAACCG1751CCCCCGTCAA ACTCAAAGCC GAAAAATTCA ACTGCTACCA AAGCCCGATG1801GCGAAAACCG AAGTTTGCGG CGGCGACTTC AGCACCACCA TCGACCGCAC1851CAAATGGGGC GTGGACTACC TCGTTAACGT TGGTATGACC AAAAGCGTCC1901GCATCGACAT CCAAATCGAG GCAGCCAAAC AATAAAAGCT T1MASPDVKSAD TLSKPAAPVV SEKBTEAKED APQAGSQGQG APSAQGGQDM51AAVSEENTGN GGAAATDKPK NEDEGAQNDM PQNAADTDSL TPNHTPASNM101PAGNALMENQAP DAGEESEQPAN QPDMANTADG MQGDDPSAGG ENAGNTAAQG151TNQAENNQTA GSQNPASSTN PSATNSGGDF GRTNVGNSVV IDGPSQNITL201THCKGDSCSG NNFLNEEVQL KSEPEKLSDA DKISNYKKDG KNDGKNDKFV251GLVADSVQMK GINQYIIFYK PKPTSFARPR RSARSRRSLP AEMPLIPVNQ301ADTLIVDGEA VSLTGHSGNI FAPEGNYRYL TYGAEKLPGG SYALRVQGEP351SKGENLAGTA VYNGEVLHFH TENGRPSPSR GRPAAKVDPG SKSVDGIIDB401GDGIJHMGTQK PKAAIDGNGF KGTWTENGGG DVSGKFYGPA GEEVAGRYSY451RPTDAEKGGF GVFAGKKEQD GSGGGGATYK VDEYHANARF AIDHFNTSTN501VGGFYGLTGS VEFDQAKRDG KIDITIPVAN LQSGSQHFTD NLKSADIFDA551AQYPDIRFVS TKFNFNGKKL VSVDGNLTKKL GKTAPVKLKA EKFNCYQSPM601AKTEVCGGDF STTIDRTKWG VDYLVNVGMT KSVRIDIQIE AAKQ*ΔG2B7NZ-9611ATGGCTAGCC CCGATGTCAA GTCGGCGGAC ACGCTGTCAA AACCTGCCGC51CCCTGTTGTT TCTGAAAAAG AGACAGAGGC AAAGGAAGAT GCGCCACAGG101CAGGTTCTCA AGGACAGGGC GCGCCATCCG CACAAGGCGG TCAAGATATC151GCGGCGGTTT CGGAAGAAAA TACAGGCAAT GGCGGTGCGG CAGCAACGGA201CAAACCCAAA AATGAAGACG AGGGGGCGCA AAATGATATG CCGCAAAATG251CCGCCGATAC AGATAGTTTG ACACCGAATC ACACCCCGGC TTCGAATATG301CCGGCCGGAA ATATGGAAAA CCAAGCACCG GATGCCGGGG AATCGGAGCA351GCCGGCAAAC CAACCGGATA TGGCAAATAC GGCGGACGGA ATGCAGGGTG401ACGATCCGTC GGCAGGCGGG GAAAATGCCG GCAATACGGC TGCCCAAGGT451ACAAATCAAG CCGAAAACAA TCAAACCGCC GGTTCTCAAA ATCCTGCCTC501TTCAACCAAT CCTAGCGCCA CGAATAGCGG TGGTGATTTT GGAAGGACGA551ACGTGGGCAA TTCTGTTGTG ATTGACGGGC CGTCGCAAAA TATAACGTTG601ACCCAGTGTA AAGGCGATTC TTGTAGTGGC AATAATTTCT TGGATGAAGA651AGTACAGCTA AAATCAGAAT TTGAAAAATT AAGTGATGCA GACAAAATAA701GTAAATACAA GAAAGATGGG AAGAATGACG GGAAGAATGA TAAATTTGTC751GGTTTGGTTG CCGATAGTGT GCAGATGAAG GGAATCAATC AATATATTAT801CTTTTATAAA CCTAAACCCA CTTCATTTGC GCGATTTAGG CGTTCTGCAC851GGTCGAGGCG GTCGCTTCCG GCCGAGATGC CGCTGATTCC CGTCAATCAG901GCGGATACGC TGATTGTCGA TGGGGAAGCG GTCAGCCTGA CGGGGCATTC951CGGCAATATC TTCGCGCCCG AAGGGAATTA CCGGTATCTG ACTTACGGGG001CGGAAAAATT GCCCGGCGGA TCGTATGCCC TCCGTGTTCA AGGCGAACCT1051TCAAAAGGCG AAATGCTCGC GGGCACGGCA GTGTACAACG GCGAAGTGCT1101GCATTTTCAT ACGGAAAACG GCCGTCCGTC CCCGTCCAGA GGCAGGTTTG1151CCGCAAAAGT CGATTTCGGC AGCAAATCTG TGGACGGCAT TATCGACAGC1201GGCGATGGTT TGCATATGGG TACGCAAAAA TTCAAAGCCG CCATCGATGG1251AAACGGCTTT AAGGGGACTT GGACGGAAAA TGGCGGCGGG GATGTTTCCG1301GAAAGTTTTA CGGCCCGGCC GGCGAGGAAG TGGCGGGAAA ATACAGCTAT1351CGCCCAACAG ATGCGGAAAA GGGCGGATTC GGCGTGTTTG CCGGCAAAAA1401AGAGCAGGAT GGATCCGGAG GAGGAGGAGC CACAAACGAC GACGATGTTA1451AAAAAGCTGC CACTGTGGCC ATTGCTGCTG CCTACAACAA TGGCCAAGAA1501ATCAACGGTT TCAAAGCTGG AGAGACCATC TACGACATTG ATGAAGACGG1551CACAATTACC AAAAAAGACG CAACTGCAGC CGATGTTGAA GCCGACGACT1601TTAAAGGTCT GGGTCTGAAA AAAGTCGTGA CTAACCTGAC CAAAACCGTC1651AATGAAAACA AACAAAACGT CGATGCCAAA GTAAAAGCTG CAGAATCTGA1701AATAGAAAAG TTAACAAcCA AGTTAGCAGA CACTGATGCC GCTTTAGCAG1751ATACTGATGC CGCTCTGGAT GCAACCACCA ACGCCTTGAA TAAATTGGGA1801GAAAATATAA CGACATTTGC TGAAGAGACT AAGACAAATA TCGTAAAAAT1851TGATGAAAAA TTAGAAGCCG TGGCTGATAC CGTCGACAAG CATGCCGAAG1901CATTCAACGA TATCGCCGAT TCATTGGATG AAACCAACAC TAAGGCAGAC1951GAAGCCGTCA AAACCGCCAA TGAAGCCAAA CAGACGGCCG AAGAAACCAA2001ACAAAACGTC GATGCCAAAG TAAAAGCTGC AGAAACTGCA GCAGGCAAAG2051CCQAAGOTGC CGCTGGCACA GCTAATACTG CAGCCGACAA GGCCGAAGCT2101GTCGCTGCAA AAGTTACCGA CATCAAAGCT GATATCGCTA CGAACAAAGA2151TAATATTGCT AAAAAAGCAA ACAGTGCCGA CGTGTACACC AGAGAAGAGT2201CTGACAGCAA ATTTGTCAGA ATTGATGGTC TGAACGCTAC TACCGAAAAA2251TTGGACACAC GCTTGGCTTC TGCTGAAAAA TCCATTGCCG ATCACGATAC2301TCGCCTGAAC GGTTTGGATA AAACAGTGTC AQACCTGCGC AAAGAAACCC2351GCCAAGGCCT TGCAGAACAA GCCGCGCTCT CCGGTCTGTT CCAACCTTAC2401AACGTGGGTC GGTTCAATGT AACGGCTGCA GTCGGCGGCT ACAAATCCGA2451ATCGGCAGTC GCCATCGGTA CCGGCTTCCG CTTTACCGAA AACTTTGCCG2501CCAAAGCAGG CGTGGCAGTC GGCACTTCGT CCGGTTCTTC CGCAGCCTAC2551CATGTCGGCG TCAATTACGA GTGGTAAAAG CTT1MASPDVKSAD TLSKPAAPVV SBKETEAXBD APQAGSQGQG APSAQGGQDM51AAVSEENTGN GGAAATDKPK NEDEGAQNDM PQNAADTDSL TPNHTPASNH101PAGNMENQAP DAGESEQPAN QPDMANTADG HQGDDPSAGG ENAGNTAAQG151TNQAENNQTA GSQNPASSTN PSATNSGGDF GRTNVGNSVV IDGPSQNITL201THCKGDSCSG NFLDEHVQL KSEFEKLSDA DKISNYKKDG KNDGKNDKFV251GLVADSVQKM GINQYIIFYK PKPTSFARPR RSARSERSLP AEHPLIPVNQ301ADTLIVDGEA VSLTGHSGNI FAPEGNYRYL TYGAEKLPGG SYALRVQGEP351SKGEMLAGTA VYKGEVLHFH TBNGRPSPSR GEPAAKVDFG SKBVDGIIDS401GDGLHMGTQK FKAAIDGNGF RGTWTENGGG DVSGKFYGPA GERVAGRYSY451RPTDAEKGGF GVFAGKKEQD GSGGGGATND DDVKKAATVA IAAAYNNGQE501INGFKAGETI YDIDEDGTIT KKDATAADVE ADDFKGIGLK KVVTNLTKTV551NENKQNVDAK VRAAESEIEK LTTKLADTDA ALADTDAALD ATTNMJNKLG601ENITTFAEET KTNIVKIDEK LEAVADTVDK HAEAFNDIAD SLDETNTKAD651EAVKTANEAK QTAEETKQNV DAKVKAAETA AGKAEAAAGT ANTAADKAEA701VAAXVTDIKA DIATNKDNIA KKANSADVYT REESDSKFVR IDGLNATTEK751LDTELASAEK SIADHDTRLN GLDKTVSDLR KETRQGLAEQ AALSGLFQPY801NVGEFNVTAA VGGYKSESAV AIGTGFEPTE NFAAKAGVAV GTSSGSSAAY851HVGVNYEW*


[0326] ΔG983 and Hybrids


[0327] Bactericidal titres generated in response to ΔG983 (His-fusion) were measured against various strains, including the homologous 2996 strain:
352996NGH38BZ133ΔG983512128128


[0328] ΔG983 was also expressed as a hybrid, with ORF46.1, 741, 961 or 961c at its C-terminus:
36ΔG983-ORF46.1 1ATGACTTCTG CGCCCGACAA CAATGCAGGC GGTACCGGTA TCGGCAGCAA51CAGCAGAGCA ACAACAGCGA AATCAGCAGC AGTATCTTAC GCCGGTATCA101AGAACGAAAT GTGCAAGAC AGAAGCATGC TCTGTGCCGG TCGGQATGAC151GTTGCGGTTA CAGACAGGGA TGCCAAAATC AATGCCCCCC CCCCGAATCT201GCATACCGGA GACTTTCCAA ACCCAAATGA CGCATACAAG AATTTGATCA251ACCTCAAACC TGCAATTGAA GCAGGCTATA CAGGACGCGG GGTAGAGGTA301GGTATCGTCG ACACAGGCGA ATCCGTCGGC AGCATATCCT TTCCCGAACT351GTATGGCAGA AAAGAACACG GCTATAACGA AAATTACAAA AACTATACGG401CGTATATGCG GAAGGAAGCG CCTGAAGAGG GAGGCGGTAA ACACATTGAA451GCTTCTTTCG ACGATGAGGC CGTTATAGAG ACTGAAGCAA ACCCGACGGA501TATCCGCCAC GTAAAAQAAA TCGGACACAT CGATTTGGTC TCCCATATTA551TTGGCGGGCG TTCCGTGGAC GGCAGACCTG CAGGCGGTAT TGCGCCCGAT601GCGACGCTAC ACATAATGAA TACGAATGAT GAAACCAAGA ACGAAATGAT651GGTTGCAGCC ATCCGCAATG CATGGGTCAA GCTGGGCGAA CGTGGCGTGC701GCATCGTCAA TAACAGTTTT GGAACAACAT CGAGGGCAGG CACTGCCGAC751CTTTTCCAAA TAGCCAATTC GGAGGAGCAG TACCGCCAAG CGTTGCTCGA801CTATTCCGGC GGTGATAAAA CAGACGAGGG TATCCGCCTG ATGCAACAGA851GCGATTACGG CAACCTGTCC TACCACATCC GTAATAAAAA CATGCTTTTC901ATCTTTTCGA CAGGCAATGA CGCACAAGCT CAGCCCAACA CATATGCCCT951ATTGCCATTT TATGAAAAAG ACGCTCAAAA AGGCATTATC ACAGTCGCAG1001GCGTAGACCG CAGTGGAGAA AAGTTCAAAC GGGAAATGTA TGGAGAACCG1051GGTACAGAAC CGCTTGAGTA TGGCTCCAAC CATTGCGGAA TTACTGCCAT1101GTGGTGCCTG TCGGCACCCT ATGAAGCAAG CGTCCGTTPC ACCCGTACAA1151ACCCGATTCA AATTGCCGGA ACATCCTTTT CCGCACCCAT CGTAACCGGC1201ACGGCGGCTC TGCTGCTGCA GAAATACCCG TGGATGAGCA ACGACAACCT1251GCGTACCACG TTGCTGACGA CGGCTCAGGA CATCGGTGCA GTCGGCGTGG1301ACAGCAAGTT CGGCTGGGGA CTGCTGGATG CGGGTAAGGC CATGAACGGA1351CCCGCGTCCT TTCCGTTCGG CGACTTTACC GCCGATACGA AAGGTACATC1401CGATATTGCC TACTCCTTCC GTAACGACAT TTCAGGCACG GGCGGCCTGA1451TCAAAAAAGG CGGCAGCCAA CTGCAACTGC ACGGCAACAA CACCTATACG1501GGCAAAACCA TTATCGAAGG CGGTTCGCTG GTGTTGTACG GCAACAACAA1551ATCGGATATG CGCGTCGAAA CCAAAGGTGC GCTGATTTAT AACGGGGCGG1601CATCCGGCGG CAGCCTGAAC AGCGACGGCA TTGTCTATCT GGCAGATACC1651GACCAATCCG GCGCAAACGA AACCGTACAC ATCAAAGGCA GTCTGCAGCT1701GGACGGCAAA GGTACGCTGT ACACACGTTT GGGCAAACTG CTGAAAGTGG1751ACGGTACGGC GATTATCGGC GGCAAGCTGT ACATGTCGGC ACGCGGCAAG1801GGGGCAGGCT ATCTCAACAG TACCGGACGA CGTGTTCCCT TCCTGAGTGC1851CGCCAAAATC GGGCAGGATT ATTCTTTCTT CACAAACATC GAAACCGACG1901GCGGCCTGCT GGCTTCCCTC GACAGCGTCG AAAAAACAGC GGGCAGTGAA1951GGCGACACGC TGTCCTATTA TGTCCGTCGC GGCAATGCGG CACGGACTGC2001TTCGGCAGCG GCACATTCCG CGCCCGCCGG TCTGAAACAC GCCGTAGAAC2051AGGGCGGCAG CAATCTGGAA AACCTGATGG TCGAACTGGA TGCCTCCGAA2101TCATCCGCAA CACCCGAGAC GGTTGAAACT GCGGCAGCCG ACCGCACAGA2151TATGCCGGGC ATCCGCCCCT ACGGCGCAAC TTTCCGCGCA GCGGCAGCCG2201TACAGCATGC GAATGCCGCC GACGGTGTAC GCATCTTCAA CAGTCTCGCC2251GCTACCGTCT ATGCCGACAG TACCGCCGCC CATGCCGATA TGCAGGGACG2301CCGCCTGAAA GCCGTATCGG ACGGGTTGGA CCACAACGGC ACGGGTCTGC2351GCGTCATCGC GCAAACCCAA CAGGACGGTG GAACGTGGGA ACAGGGCGGT2401GTTGAAGGCA AAATGCGCGG CAGTACCCAA ACCGTCGGCA TTGCCGCQAA2451AACCGGCGAA AATACGACAG CAGCCGCCAC ACTGGGCATG GGACGCAGCA2501CATGGAGCGA AAACAGTGCA AATGCAAAAA CCGACAGCAT TAGTCTGTTT2551GCAGGCATAC GGCACGATGC GGGCGATATC GGCTATCTCA AAGGCCTGTT2601CTCCTACGGA CGCTACAAAA ACAGCATCAG CCGCAGCACC GGTGCGGACG2651AACATGCGGA AGGCAGCGTC AACGGCACGC TGATGCAGCT GGGCGCACTG2701GGCGGTGTCA ACGTTCCGTT TGCCGCAACG GGAGATTTGA CGGTCGAAGG2751CGGTCTGCGC TACGACCTGC TCAAACAGGA TGCATTCGCC GAAAAAGGCA2801GTGCTTTGGG CTGGAGCGGC AACAGCCTCA CTGAAGGCAC GCTGGTCGGA2851CTCGCGGGTC TGAAGCTGTC GCAACCCTTG AGCGATAAAG CCGTCCTGTT2901TGCAACGGCG GGCGTGGAAC GCGACCTGAA CGGACGCGAC TACAGGGTAA2951CGGGCGGCTT TACCGGCGCG ACTGCAGCAA CCGGCAAGAC GGGGGCACGC3001AATATGCCGC ACACCCGTCT GGTTGCCGGC CTGGGCGCGG ATGTCGAATT3051CGGCAACGGC TGGAACGGCT TGGCACGTTA CAGCTAQGCC GGTTCCAAAC3101AGTACGGCAA CCACAGCGGA CGAGTCGGCG TAGGCTACCG GTTCCTCGAC3151GGTGGCGGAG GCACTGGATC CTCAGATTTG GCAAACGATT CTTTTATCCG3201GCAGGTTCTC GACCGTCAGC ATTTCGAACC CGACGGGAAA TACCACCTAT3251TCGGCAGCAG GGGGGAACTT GCCGAGCGCA GCGGCCATAT CGGATTGGGA3301AAAATACAAA GCCATCAGTT GGGCAACCTG ATGATTCAAC AGGCGGCCAT3351TAAAGGAAAT ATCGGCTACA TTGTCCGCTT TTCCGATCAC GGGCACGAAG3401TCCATTCCCC CTTCGACAAC CATGCCTCAC ATTCCGATTC TGATQAAGCC3451GGTAGTCCCG TTGACGGATT TAGCCTTTAC CGCATCCATT GGGACGGATA3501CGAACACCAT CCCGCCGACG GCTATGAQGG GCCACAGGGC GGCGGCTATC3551CCGCTCCCAA AGGCGCGAGG GATATATACA GCTACGACAT AAAAGGCGTT3601GCCCAAAATA TCCGCCTCAA CCTGACCGkC AACCGCAGCA CCGGACAACG3651GCTTGCCGAC CGTTTCCACA ATGCCGGTAG TATGCTGACG CAAGGAGTAG3701GCGACGGATT CAAACGCGCC ACCCGATACA GCCCCGAGCT GGACAGATCG3751GGCAATGCCG CCGAAGCCTT CAACGGCACT GCAGATATCG TTAAAAACAT3801CATCGGCGCG GCAGGAGAAA TTGTCGGCGC AGGCGATGCC GTGCAGGGCA3851TAAGCGAAGG CTCAAACATT GCTGTCATGC ACGGCTTGGG TCTGCTTTCC3901ACCGAAAACA AGATGGCGCG CATCAACGAT TTGGCAGATA TGGCGCAACT3951CAAAGACTAT GCCGCAGCAG CCATCCGCGA TTGGGCAGTC CAAAACCCCA4001ATGCCGCACA AGGCATAGAA GCCGTCAGCA ATATCTTTAT GGCAGCCATC4051CCCATCAAAG GGATTGQAGC TGTTCGGGGA AAATACGGCT TGGGCGGCAT4101CACGGCACAT CCTATCAAGC GGTCGCAGAT GGGCGCGATC GCATTGCCGA4151AAGGGAAATC CGCCGTCAGC GACAATTTTG CCGATGCGGC ATACGCCAAA4201TACCCGTCCC CTTACCATTC CCGAAATATC CGTTCAAACT TGGAGCAGCG4251TTACGGCAAA GAAAACATCA CCTCCTCAAC CGTGCCGCCG TCAAACGGCA4301AAAATGTCAA ACTGGCAGAC CAACGCCACC CGAAGACAGG CGTACCGTTT4351GACGGTAAAG GGTTTCCGAA TTTTGAGAAG CACGTGAAAT ATGATACGCT4401CGAGCACCAC CACCACCACC ACTGA1MTSAPDFNAG GTGIGSNSRA TTAKSAAVSY AGIKNEMCKD RSMLCAGRDD51VAVTDRDAKI NAPPPNLHTG DFPNPNDAYK NLINLKPAIE AGYTGRGVEV101GIVDTGESVG SISPPELYGR KEHGYNENYK NYTAYMRKEA PEDGGGKDIE151ASFflDEAVIE TRAKPTDIRH VKEIGHIDLV SHIIGGRSVD GRPAGGIAPD201ATLHIMNTND BTKNEMMVAA IENAWVKLGE RGVRIVNNSF GTTSRAGTAD251LFQIANSEBQ YRQALLDYSG GDKTDEGIEL MQQSDYGNLS YHIRNKNMLF301IFSTGNDAQA QPNTYALLPF YEKDAQKGII TVAGVDRSGE KFKREMYGEP351GTEPLBYGSN HCGITAMWCL SAPYEASVRF TRTNPIQIAG TSFSAPIVTG401TAALLLQKYP WMSNDNLRTT LLTTAQDIGA VGVDSKFGWG LLDAGKANNG451PASFPFGDFT ADTKGTSDIA YSPRNDISGT GGLIKKGGSQ LQLHGNNTYT501GKTIIEGGSL VLYGNNKSDM RVBTKGMJIY NGAASGGSLN SDGIVYLADT551DQSGANETVH IKGSLQLDQK GTLYTRLGKL LKVDGTAIIG GKLYMSARGK601GAGYLNSTGR RVPFLSAAKI GQDYSFFTNI ETDGGLLASL DSVBKTAGSE651GDTLSYYVER GNAARTASAA AHSAPAGLKH AVEQGGSNLE NLMVELDASE701SSATPBTVET AAADRTDMPG IRPYGATFRA AAAVQHANAA DGVRIFNSLA751ATVYADSTAA HADMQGRRLK AVSDGLDHNG TGLRVIAQTQ QDGGTWEQGG801VEGKMRGSTQ TVGIAAKTGE NTTAAATLGM GRSTWSENSA NAKTDSISLF851AGIRHDAGDI GYLKGLFSYG RYKNSISRST GADEHAEGSV NGTLNQLGAL901GGVNVPFAAT GDLTVEGGLR YDLLKQDAFA EKGSALGWSG NSLTEGTLVG951LAGLKLSQPL SDKAVLFATA GVERDLNGRD YTVTGGFTGA TAATGKTGAR1001NMPHTRLVAG LGADVEPGNG WNGLARYSYA GSKQYGNHSG RVGVGYRFLD1051GGGGTGSSDL ANDSFIRQVL DRQHFEPDGK YHLFGSRGEL AERSGHIGI1G1101KIQSHQLGNL MIQQAAIKGN ZGYIVRPSDH GHEVHSPFDN HASHSDSDEA1151GSPVDGFSLY RIHWDGYEHH PADGYDGPQG GGYPAPKGAR DIYSYDIKGV1201AQNIELNLTD NRSTGQRLAD RPHNAGSMLT QGVGDGFKRA TRYSPEWRS1251GNAAEAFNGT ADIVKNIIGA AGBIVGAGDA VQGISEGSNI AVMHGWLLS1301TENKMARIND LADMAQLKDY AAAAIRDWAV QNPNAAQGIE AVSNIFKAAI1351PIKGIGAVRG KYGLGGITAR PIKRSQMGAI ALPKGKSAVS DNFADAAYAK1401YPSPYHSRNI RSNLEQRYGK ENITSSTVPP SNGDKVKLAD QRHPKTGVPF1451DGKGFPNFEK HVKYDTLEHH HHHH*ΔG983-7411ATGACTTCTG CGCCCGACTT CAATGCAGGC GGTACCGGTA TCGGCAGCAA51CAGCAGACCA ACAACAGCGA AATCAGCAGC AGTATCTTAC GCCGGTATCA101AGAACGAAAT GTGCAAAGkC AGAAGCATGC TCTGTGCCGG TCGGGATGAC151GTTGCGGTTA CAGACAGGGA TGCCAAAATC AATGCCCCCC CCCCGAATCT201GCATACCGGA GACTTTCCAA ACCCAAATGA CGCATACAAG AATTTGATCA251ACCTCAAACC TGCAATTGAA GCAGGCTATA CAGGACGCGG GGTAGAGGTA301GGTATCGTCG ACACAGGCGA ATCCGTCGGC AGCATATCCT TTCCCGAACT351GTATGGCAGA AAAGAACACG GCTATAACQA AAATTACAAA AACTATACGG401CGTATATGCG GAAGGAAGCG CCTGAAGACG GAGGCGGTAA AGACATTGAA451GCTTCTTTCG ACGATGAGGC CGTTATAGAG ACTGAAGCAA AGCCGACGGA501TATCCGCCAC GTAAAAGAAA TCGGACACAT CGATTTGGTC TCCCATATTA551TTGGCGGGCG TTCCGTGGAC GGCAGACCTG CAGGCGGTAT TGCGCCCGAT601GCGACGCTAC ACATAATGAA TACGAATGAT GAAACCAAGA ACGAAATGAT651GGTTGCAGCC ATCCGCAATG CATGGGTCAA GCTGGGCGAA CGTGGCGTGC701GCATCGTCAA TAACAGTTTT GGAACAACAT CGAGGGCAGG CACTGCCGAC751CTTTTCCAAA TAGCCAATTC GGAGGAGCAG TACCGCCAAG CGTTGCTCGA801CTATTCCGGC GGTGATAAAA CAGACGAGGG TATCCGCCTG ATGCAkCAGA851GCGATTACGQ CAACCTGTCC TACCACATCC GTAATAAAAA CATGCTTTTC901ATCTTTTCGA CAGGCAATQA CGCACAAGCT CAGCCCAAQA CATATGCCCT951ATTGCCATTT TATGAAAAAG ACGCTCAAAA AGGCATTATC ACAGTCGCAG1001GCGTAGACCG CAGTGGAGAA AAGTTCAAAC GGGAAATGTA TGGAGAACCG1051GGTACAGAAC CGCTTGAGTA TGGCTCCAAC CATTGCGGAA TTACTGCCAT1101GTGGTGCCTG TCGGCACCCT ATGAAGCAAG CGTCCGTTTC ACCCGTACAA1151ACCCGATTCA AATTGCCGGA ACATCCTTTT CCGCACCCAT CGTAACCGGC1201ACGGCGGCTC TGCTGCTGCA GAAATACCCG TGGATGAGCA ACGACAACCT1251GCGTACCACG TTGCTGACGA CGGCTCAGGA CATCGGTGCA GTCGGCGTGG1301ACAGCAAGTT CGGCTGGGGA CTGCTGGATG CGGGTAAGGC CATGAACGGA1351CCCGCGTCCT TTCCGTTCGG CGACTTTACC GCCGATACGA AAGGTACATC1401CGATATTGCC TACTCCTTCC GTAACGACAT TTCAGGCACG GGCGGCCTGA1451TCAAAAAAGG CGGCAGCCAA CTGCAAATGC ACGGCAACAT CACCTATACG1501GGCAAAACCA TTATCGAAGG CGGTTCGCTG GTGTTGTACG GCAACAACAA1551ATCGGATATG CGCGTCGAAA CCAAAGGTGC GCTGATTTAT AACGGGGCGG1601CATCCGGCGG CAGCCTGAAC AGCGACGGCA TTGTCTATCT GGCAGATACC1651GACCAATCCG GCGCAAACGA AACCGTACAC ATCAAAGGCA GTCTGCAGCT1701GGACGGCAAA GGTACGCTGT ACACACGTTT GGGCAAACTG CTGAAAGTGG1751ACGGTACGGC GATTATCGGC GGCAAGCTGT ACATGTCGGC ACGCGGCAAG1801GGGGCAGGCT ATCTCAACAG TACCGGACGA CGTGTTCCCT TCCTGAGTGC1851CGCCAAAATC GGGCAGGATT ATTCTTTCTT CACAAACATC GAAACCGACG1901GCGGCCTGCT GGCTTCCCTC GACAGCGTCG AAAAAACAGC GGGCAGTGAA1951GGCGACACGC TGTCCTATTA TGTCCGTCGC GGCAATGCGG CACGGACTGC2001TTCGGCAGCG GCACATTCCG OGCCCGCCGG TCTGAAACAC GCCGTAGAAC2051AGGGCGGCAG CAATCTGGAA AACCTGATGG ICGAACTGGA TGCCTCCGAA2101TCATCCGCAA CACCCGAGAC GGTTGAAACT GCGGCAGCCG ACCGCACAGA2151TATGCCGGGC ATCCGCCCCT ACGGCGCAAC TTTCCGCGCA GCGGCAGCCG2201TACAGCATGC GAATGCCGCC GACGGTGTAC GCATCTTCAA CAGTCTCGCC2251GCTACCGTCT ATGCCGACAG TACCGCCGCC CATGCCGATA TGCAGGGACG2301CCGCCTGAAA GCCGTATCGG ACGGGTTGGA CCACAACGGC ACGGGTCTGC2351GCGTCATCGC GCAAACCCAA CAGGACGGTG GAACGTGGGA ACAGGGCGGT2401GTTGAAGGCA AAATGCGCGG CAGTACCCAA ACCGTCGGCA TTGCCGCGAA2451AACCGGCGAA AATACGACAG CAGCCGCCAC ACTGGGCATG GGACGCAGCA2501CATGGAGCGA AAACAGTGCA AATGCAAAAA CCGACAGCAT TAGTCTGTTT2551GCAGGCATAC GGCACGATGC GGGCGATATC GGCTATCTCA AAGGCCTGTT2601CTCCTACGGA CGCTACAAAA ACAGCATCAG CCGCAGCACC GGTGCGGACG2651AACATGCGGA AGGCAGCGTC AACGGCACGC TGATGCAGCT GGGCGCACTG2701GGCGGTGTCA ACGTTCCGTT TGCCGCAACG GGAGATTTGA CGGTCGAAGG2751CGGTGTGCGC TACGACCTGC TCAAACAGGA TGCATTCGCC GAAAAAGGCA2801GTGCTTTGGG CTGGAGCGGC AACAGCCTCA CTGAAGGCAC GCTGGTCGGA2851CTCGCGGGTC TGAAGCTGTC GCAACCCTTG AGCGATAAAG CCGTCCTGTT2901TGCAACGGCG GOCGTGGAAC GCGACCTGAT CGGACGCGAC TACACGGTAA2951CGGGCGGCTT TACCGGCGCG ACTGCAGCAA CCGGCAAGAC GGGGGCACGC3001AATATGCCGC ACACCCGTCT GGTTGCCGGC CTGGGCGCGG ATGTCGAATT3051CGGCAACGGC TGGAACGGCT TGGCACGTTA CAGCTACGCC GGTTCCAAAC3101AGTACGGCAA CCACAGCGGA CGAGTCGGCG TAGGCTACCG GGTTCCTCGA3151GGATCCGGAG GGGGTGGTGT CGCCGCCGAC ATCGGTGCGG GGCTTGCCGA3201TGCACTAACC GCACCGCTCG ACCATAAAGA CAAAGGTTTG CAGTCTTTGA3251CGCTGGATCA GTCCGTCAGG AAAAACGAGA AACTGAAGCT GGCGGCACAA3301GGTGCGGAAA AAACTTATGG AAACGGTGAC AGCCTCAATA CGGGCAAATT3351GAAGAACGAC AAGGTCAGCC GTTTCGACTT TATCCGCCAA ATCGAAGTGG3401ACGGGCAGCT CATTACCTTG GAGAGTGGAG AGTTCCAAGT ATACAAACAA3451AGCCATTCCG CCTTAACCGC CTTTCAGACC GAGCAAATAC AAGATTCGGA3501GCATTCCGGG AAGATGGTTG CGAAACGCCA GTTCAGAATC GGCGACATAG3551CGGGCGAACA TACATCTTTT GACAAGCTTC CCGAAGGCGG CAGGGCGACA3601TATCGCGGGA CGGCGTTCGG TTCAGACGAT GCCGGCGGAA AACTGACCTA3651CACCATAGAT TTCGCCGCCA AGCAGGGAAA CGGCAAAATC GAACATTTGA3701AATCGCCAGA ACTCAATGTC GACCTGGCCG CCGCCGATAT CAAGCCGGAT3751GGAAAACGCC ATGCCGTCAT CAGCGGTTCC GTCCTTTACA ACCAAGCCGA3801GAAAGGCAGT TACTCCCTCG GTATCTTTGG CGGAAAAGCC CAGGAAGTTG3851CCGGCAGCGC GGAAGTGAAA ACCGTAAACG QCATACGCCA TATCGGCCTT3901GCCGCCAAGC AACTCGAGCA CCACCACCAC CACCACTGA1MTSAPDFNAG GTGIGSNBRA TTAKSAAVSY AGIKNEHCKD RSMLCAGRDD51VAVTDRDAKI NAPPPNLHTG DFPNPNDAYK NLINLKPAIE AGYTGRGVZV101GXVDTGBSVQ SISFPELYGR KEHGYNENYK NYTAYMRKEA PBDGGGKDIB151ASFDDEAVIE TRAKPTDIRIRH VKEIGHIDLV SHIIGGRSVD GRPAGGIAPD201ATLHIMNTND ETKNEMMVAA IRNAWVKLGB RGVRIVNNSF GTTSRAGTAD251LFQLANSEBQ YRQALLDYSG GDKTDEGIRL MQQSDYGNLS YHIRNKNMLF301IFSTGNDAQA QPNTYALLPF YBKDAQKGII TVAGVDRSGE FKRENYGEP351GTEPLEYGSN HCGITAMWCL SAPYEASVRP TRTNPIQIAG TSFSAPIVTG401TAALIJLQKYP WMSNDNLRTT LLTTAQDIGA VGVDSKFGWG LLDAGKAMNG451PASFPFGDFT ADTKGTSDIA YSFENDISGT GGLIKKGGSQ LQLHGNNTYT501GKTIIEGGSL VLYGNNKSDN RVETKGALIY NQAASGGSLN SDGIVYLADT551DQSGANETVH IKGSLQLDGK GTLYTRLGKL LKVDGTAIIG GKLYMSARGK601GAGYLNSTGR RVPPLBAAKI GQDYBPFTNI HTDGGLLASL DSVEKTAGSE651GDTLSYYVRR GNAARTASAA AHSAPAGLKH AVEQGGSNLE NLMVELDABE701SSATPETVBT AAADRTDMPG IRPYGATFRA AAAVQHANAA DGVRIFNSLA751ATVYADSTAA HADMQGRRLK AVSDGLDHNG TGLRVIAQTQ QDGGTWBQGG801VHGKMRGSTQ TVGIAAKTGE NTTAAATLGM GRSTWBENSA NAKTDSISLP851AGIRHDAGDI GYLKGLFBYG RYKNSISEST GADBHAEGSV NGTLMQLGAL901GGVNVPFAAT GDLTVEGGLR YDLLKQDAFA HKGSALQWSG NSLTEQTLVG951LAGLKLSQPL SDKAVLFATA GVERDLNGRD YTVTGGFTGA TAATGKTGAR1001NHPHTRLVAG LGADVHFGNG WNGLARYSYA GSKQYGNHSG RVGVGYRFLE1051GSGGGGVAAD IGAGLADALT APLDHXDKGL QSLTDQSVR KNEKLKLAAQ1101GAEKTYGNGD SLNTGKLKND KVSPPDFIRQ IEVDGQLITL ESGEFQVYXQ1151SHSALTAPQT EQIQDSEHSG KMVAKRQFRI GDIAGEHTFP DKLPEGGRAT1201YRGTAFGSDD AGGKLTYTID FAAKQGNGKI EHLKSPELNV DLAAADIKPD1251GKPHAVISGS VLYNQAEKGS YSLGIFOGKA QEVAGSAEVK TVNGIEHIGL1301AAKQLEHHHH HH*ΔG983-9611ATGACTTCTG CGCCCGACTT CAATGCAGGC GGTACCGGTA TCGGCAGCAA51CAGCAGAGCA ACAACAGCGA AATCAGCAGC AGTATCTTAC GCCGGTATCA101AGAACGAAAT GTGCAAAGAC AGAAGCATGC TCTGTGCCGG TCGGGATGAC151GTTGCGGTTA CAGACAGGGA TGCCAAAATC AATGCCCCCC CCCCGAATCT201GCATACCGGA GACTTTCCAA ACCCAAATGA CGCATACAAG AATTTGATCA251ACCTCAAACC TGCAATTGAA GCAGGCTATA CAGGAQGCGG GGTAGAGGTA301GGTATCGTCG ACACAGGCGA ATCCGTCGGC AGCATATCCT TTCCCGAACT351GTATGGCAGA AAAGAACACG GCTATAACGA AAATTACAAA AACTATACGG401CGTATATGCG GAAGGAAGCG CCTGAAGACG GAGGCGGTAA AGACATTGAA451GCTTCTTTCG ACGATGAGGC CGTTATAGAG ACTGAAGCAA AGCCGACGGA501TATCCGCCAC GTAAAAGAAA TOOGACACAT CGATTTGGTC TCCCATATTA551TTGGCGGGCG TTCCGTGGAC GGCAGACCTG CAGGCGGTAT TGCGCCCGAT601GCGACGCTAC ACATAATGAA TACGAATGAT GAAACCAAGA ACGAAATGAT651GGTTGCAGCC ATCCGCAATG CATGGGTCAA GCTGGGCGAA CGTGGCGTGC701GCATCGTCAA TAACAGTTTT GGAACAACAT CGAGGGCAGG CACTGCCGAC751CTTTTCCAAA TAGCCAATTC GGAGGAGCAG TACCGCCAAG CGTTGCTCGA801CTATTCCGGC GGTGATAAAA CAGACGAGGC TATCCGCCTG ATGCAACAGA851GCGATTACGG CAACCTGTCC TACCACATCC GTAATAAAAA CATGCTTTTC901ATCTTTTCGA CAGGCAATGA CGCACAAGCT CAGCCCAACA CATATGCCCT951ATTGCCATTT TATGAAAAAG ACGCTCAAAA AGGCATTATC ACAQTCGCAG1001GCGTAQACCG CAGTGGAGAA AAGTTCAAAC GGGAAATGTA TGGAGAACCG1051GGTACAGAAC CGCTTGAGTA TGGCTCCAAC CATTGCGGAA TTACTGCCAT1101GTGGTGCCTG TCGGCACCCT ATGAAGCAAG CGTCCGTTTC ACCCGTACAA1151ACCCGATTCA AATTGCCGGA ACATCCTTTT CCGCACCCAT CGTAACCGGC1201ACGGCGGCTC TGCTGCTGCA GAAATAGCCG TGGATGAGCA ACGACAACCT1251GCGTACCACG TTGCTGACGA CGGCTCAGGA CATCGGTGCA GTCGGCGTGG1301ACAGCAAGTT CGGCTGGGGA CTGCTGGATG CGGGTAAGGC CATGAACGGA1351CCCGCGTCCT TTCCGTTCGG CGACTTTACC GCCGATACGA AAGGTACATC1401CGATATTGCC TACTCCTTCC GTAACGACAT TTCAGGCACG GGCGGCCTGA1451TCAAAAAAGG CGGCAGCCAA CTGCAACTGC ACGGCAACAA CACCTATACG1501GGCAAAACCA TTATCGAAGG CGGTTCGCTG GTGTTGTACG GCAACAACAA1551ATCGGATATG CGCGTCGAAA CCAAAGGTGC GCTGATTTAT AACGGGGCGG1601CATCCGGCGG CAGCCTGAAC AGCGACGGCA TTGTCTATCT GGCAGATACC1651GACCAATCCG GCGCAAACGA AACCGTACAC ATCAAAGGCA GTCTGCAGCT1701GGACGGCAAA GGTACGCTGT ACACACGTTT GGGCAAAGTG CTGAAAGTGG1751ACGGTACGGC GATTATCGGC GGCAAGCTGT ACATGTCGGC ACGCGGCAAG1801GGGGCAGGCT ATCTCAACAG TACCGGACGA CGTGTTCCCT TCCTGAGTGC1851CGCCAAAATC GGGCAGGATT ATTCTTTCTT CACAAACATC GAAACCGACG1901GCGGCCTGCT GGCTTCCCTC GACAGCGTCG AAAAAACAGC GGGCAGTGAA1951GGCGACACGC TGTCCTATTA TGTCCGTCGC GGCAATGCGG CACGGACTGC2001TTCGGCAGCG GCACATTCCG CGCCCGCCGG TCTGAAACAC GCCGTAGAAC2051AGGGCGGCAG CAATCTGGAA AACCTGATGG TCGAACTGGA TGCCTCCGAA2101TCATCCGCAA CACCCGAGAC GGTTGAAACT GCGGCAGCCG ACCGCACAQA2151TATGCCGGGC ATCCGCCCCT ACGGCGCAAC TTTCCGCGCA GCGGCAGCCG2201TACAGCATGC GAATGCCGCC GACGGTGTAC GCATCTTCAA CAGTCTCGCC2251GCTACCGTCT ATGCCGACAG TACCGCCGCC CATGCCGATA TGCAGGGAGG2301CCGCCTGAAA GCCGTATCGG ACGGGTTGGA CCACAACGGC ACGGGTCTGC2351GCGTCATCGC GCAAACCCAA CAGGACGGTG GAACGTGGGA ACAGCGCGGT2401GTTGAAGCCA AAATGCGCGG CAGTACCCAA ACCGTCGGCA TTGCCGCGAA2451AACCGGCGAA AATACGACAG CAGCCGCCAC ACTGGGCATG GGACGCAGCA2501CATGGAGCGA AAACAGTGCA AATGCAAAAA CCGACAGCAT TAGTCTGTTT2551GCAGGCATAC GGCACGATGC GGGCGATATC GGCTATCTCA AAGGCCTGTT2601CTCCTACGGA CGCTACAAAA ACAGCATCAG CCGCAGCACC GGTGCGGACG2651AACATGCGGA AGGCAGCGTC AACGGCACGC TGATGCAGCT GGGCGCACTG2701GGCGGTGTCA ACGTTCCGTT TGCCGCAACG GGAGATTTGA CGGTCGAAGG2751CGGTCTGCGC TACGACCTGC TCAAACADGA TGCATTCGCC GAAAAAGGCA2801GTGCTTTGGG CTGGAGCGGC AACAGCCTCA CTGAAGGCAC GCTGGTCGGA2851CTCGCGGGTC TGAAGCTGTC GCAACCCTTG AGCGATAAAG CCGTCCTGTT2901TGCAACGGCG GGCGTGGAAC GCGACCTGAA CGGACGCGAC TACACGGTAA2951CGGGCGGCTT TACCGGCGCG ACTGCAGCAA CCGGCAAGAC GGGGGCACGC3001AATATGCCGC ACACCCGTCT GGTTGCCGGC CTGGGCGCGG ATGTCGAATT3051CGGCAACGGC TGGAACGGCT TGGCACGTTA CAGCTACGCC GGTTCCAAAC3101AGTACGGCAA CCACAGCGGA CGAGTCGGCG TAGGCTACCG GTTCCTCGAG3151GGTGGCGGAG GCACTGGATC CGCCACAAAC GACGACGATG TTAAAAAAGC3201TGCCACTGTG GCCATTGCTG CTGCCTACAA CAATGGCCAA GAAATCAACG3251GTTTCAAAGC TGGAGAGACC ATCTACGACA TTGATGAAGA CGGCACAATT3301ACCAAAAAAG ACGCAACTGC AGCCGATGTT GAAGCCGACG ACTTTAAAGG3351TCTGGGTCTG AAAAAAGTCG TGACTAACCT GACCAAAACC GTCAATGAAA3401ACAAACAAAA CGTCGATGCC AAAGTAAAAG CTGCAGAATC TGAAATAGAk3451AAGTTAACAA CCAAGTTAGC AGACACTGAT GCCGCTTTAG CAGATACTGA3501TGCCGCTCTG QATGCAACCA CCAACGCCTT GAATAAATTG GGAGAAAATA3551TAACGACATT TGCTGAAGAG ACTAAGACAA ATATCGTAAA AATTGATGAA3601AAATTAGAAG CCGTGGCTGA TACCGTCGAC AAGCATGCCG AAGCATTCAA3651CGATATCGCC GATTCATTGG ATGAAACCAA CACTAAGGCA GACGAAGCCG3701TCAAAACCGC CAATGAAGCC AAACAGACGG CCGAAGAAAC CAAACAAAAC3751GTCGATGCCA AAGTAAAAGC TGCAGAAACT GCAGCAGGCA AAGCCGAAGC3801TGCCGCTGGC ACAGCTAATA CTGCAGCCGA CAAGGCCGAA GCTGTCGCTG3851CAAAAGTTAC CGACATCAAA GCTGATATCG CTACGAACAA AGATAATATT3901GCTAAAAAAG CAAACAGTGC CGACGTGTAC ACCAGAGAAG AGTCTGACAG3951CAAATTTGTC AGAATTGATG GTCTGAACGC TACTACCGAA AAATTGGACA4001CACGCTTGGC TTCTGCTGAA AAATCCATTG CCGATCACGA TACTCGCCTG4051AACGGTTTGG ATAAAACAGT GTCAGACCTG CGCAAAGAAA CCCGCCAAGQ4101CCTTGCAGAA CAAGCCGCGC TCTCCGGTCT GTTCCAACCT TACAACGTGG4151GTCGGTTCAA TGTAACGGCT GCAGTCGGCG GCTACAAATC CGAATCGGCA4201GTCGCCATCG GTACCGGCTT CCGCTTTACC GAAAACTTTG CCGCCAAAGC4251AGGCGTGGCA GTCGGCACTT CGTCCGGTTC TTCCGCAGCC TACCATGTCG4301GCGTCAATTA CGAGTGGCTC GAGCACCACC ACCACCACCA CTGA1MTSAPDFNAG GTGIGSNSRA TTAKSAAVSY AGIKNRMCKD RSMLCAGRDD51VAVTDRDAKI NAPPPNLHTG DFPNPNDAYK NLINLKPAIE AGYTGRGVEV101GIVDTGBSVG SISFPELYGR KEHGYNENYK NYTAYNRKEA PEDGGGKDIE151ASFDDEAVIE TEAKPTDIEH VKEIGHIDLV SHIIGGRSVD GRPAGGIAPD201ATLHIMNTND ETKNEMMVAA IRNAWVKLGE RGVRIVNNSF GTTSRAGTAD251LFQIANSEEQ YRQALLDYSG GDKTDEGIRL MQQSDYGNLS YHIRNKNMLF301IFSTGNDAQA QPNTYALLPF YRKDAQRGII TVAGVDRSGE KFKREHYGEP351GTEPLEYGSN HCGITAMWCL BAPYEASVRF TRTNPIQIAG TSFSAPIVTG401TAALLLQKYP WMSNDNLRTT LLTTAQDIGA VGVDSKFGWG LLDAGKAMNG451PASFPFGDFT ADTKGTSDIA YSFRIWISGT GGLIKKGGSQ LQLHGNNTYT501GKTIIEGGSL VLYGNNKBDM RVETKGMJZY NGAABGGSLN SDGIVYLADT551DQSGAETVH IKGSLQLDGK GTLYTRLGKL LRVDGTAIIG GKLYHSARGK601GAGYLNSTGR RVPFLSAAKI GQDYSFFTNI BTDGGLLABL DSVEKTAGSE651GDTLSYYVRR GNAARTASAA AHSAPAGLKH AVRQGGSNLE NLMVELDASE701SSATPBTVET AAADRTDMPG IRPYGATFRA AAAVQHANAA DGVRIPNSLA751ATVYADSTAA HADMQGRRLK AVSDGLDHNG TGLRVZAQTQ QDGGTWEQGQ801VEGKMRGSTQ TVGIAAKTGE NTTAAATLGM GRBTWSENSA NAKTDBISLF851AGIRHDAGDI GYLKGLFBYG RYKNSISRST GADEHAEGSV NGTLMQLGAL901GGVNVPFAAT GDLTVRGGLR YDIILKQDAPA EKGSALGWSG NSLTEGTLVG951LAGLKLSQPL SDKAVLFATA GVERDLNGRD YTVTGGFTGA TAATGKTGAR1001NMPHTRLVAG LGADVEFGNG WNGLARYSYA GSKQYGNHSG RVGVGYRPLB1051GGGGTGSATN DDDVKKAATV AIAAAYNNGQ EINGFKAGET IYDIDEDGTI1101TKKDATAADV EADDFKGLGL KKVVTNLTKT VNENKQNVDA KVKAAESBIB1151KLTTKLADTD AALADTDAAL DATTNALNKL GENITTFAEE TKTNIVKIDE1201KLEAVADTVD KHAEAPNDIA DSLDETNTKA DEAVKTAUEA KQTABETKQN1251VDAKVKAABT AAGKAEAAAG TANTAADKAE AVAAKVTDIK ADIATNKDNI1301AKKANSADVY TREESDSKFV RIDGLNATTE KLDTRLASAE KSIADHDTRL1351NGLDKTVSDL RKETRQGLAE QAALSGLFQP YNVGRFNVTA AVGGYKSESA1401VAIGTGFRFT ENFAAKAGVA VGTSSGSSAA YHVGVNYEWL EHHHHHH*ΔG983-961c1ATGACTTCTG CGCCCGACTT CAATGCAGGC GGTACCGGTA TCGGCAGCAA51CAGCAGAGCA ACAACAGCGA AATCAGCAQC AGTATCTTAC GCCGGTATCA101AGAACGAAAT GTGCAAAGAC AGAAGCATGC TCTGTGCCGG TCGGGATGAC151GTTGCGGTTA CAGACAGQGA TGCCAAAATC AATGCCCCCC CCCCGAATCT201GGATACCOGA GACTTTCCAA ACCCAAATGA CGCATACAAG AATTTGATCA251ACCTCAAACC TGCAATTGAA GCAGGCTATA CAGGACGCGG GGTAGAGGTA301GGTATCGTCG ACACAGGCGA ATCCGTCGGC AGCATATCCT TTCCCGAACT351GTATGGCAGA AAAGAACACG GCTATAACGA AAATTACAAA AACTATACGG401CGTATATGCG GAAGGAAGCG CCTGAAGACG GAGGCGGTAA AGACATTGAA451GCTTCTTTCG ACGATGAGGC CGTTATAGAG ACTGAAGCAA AGCCGACGGA501TATCCGCCAC GTAAAAGAAA TCGGACACAT CGATTTGGTC TCCCATATTA551TTGGCGGGCG TTCCGTGGAC GGCAGACCTG CAGGCGGTAT TGCGCCCGAT601GCGACGCTAC ACATAATGAA TACGAATGAT GAAACCAAGA ACGAAATGAT651GGTTGCAGCC ATCCGCAATG CATGGGTCAA GCTGGGCGAA CGTGGCGTGC701GCATCGTCAA TAACAGTTTT GGAACAACAT CGAGGGCAGG CACTGCCGAC751CTTTTCCAAA TAGCCAATTC GGAGGAGCAG TACCGCCAAG CGTTGCTCGA801CTATTCCGGC GGTGATAAAA CAGACGAGGG TATCCGCCTG ATGCAACAGA851GCGATTACGG CAACCTGTCC TACCACATCC GTAATAAAAA CATGCTTTTC901ATCTTTTCGA CAGGCAATGA CGCACAAGCT CAGCCCAACA CATATGCCCT951ATTGCCATTT TATGAAAAAG ACGCTCAAAA AGGCATTATC ACAGTCGCAG1001GCGTAGACCG CAGTGGAGAA AAGTTCAAAC GGGAAATGTA TGGAGAACCG1051GGTACAGAAC CGCTTGAGTA TGGCTCCAAC CAFPTGCGGAA TTACTGCCAT1101GTGGTGCCTG TCGGCACCCT ATGAAGCAAG CGTCCGTTTC ACCCGTACAA1151ACCCGATTCA AATTGCCGGA ACATCCTTTT CCGCACCCAT CGTAACCGGC1201ACGGCGGCTC TGCTGCTGCA GAAATACCCG TGGATGAGCA ACGACAACCT1251GCGTACCACG TTGCTGACGA CGGCTCAGGA CATCGGTGCA GTCGGCGTGG1301ACAGCAAGTT CGGCTGGGGA CTGCTGGATG CGGGTAAGGC CATGAACGGA1351CCCGCGTCCT TTCCGTTCGG CGACTTTACC GCCGATACGA AAGGTACATC1401CGATATTGCC TACTCCTTCC GTAACGACAT TTCAGGCACG GGCGGCCTGA1451TCAAAAAAGG CGGCAGCCAA CTGCAACTGC ACGGCAACAA CACCTATACG1501GGCAAAACCA TTATCGAAGG CGGTTCGCTG GTGTTGTACG GCAACAACAA1551ATCGGATATG CGCGTCGAAA CCAAAGGTGC GCTGATTTAT AACGGGGCGG1601CATCCGGCGG CAGCCTGAAC AGCGACGGCA TTGTCTATCT GGCAGATACC1651GACCAATCCG GCGCAAACGA AACCGTACAC ATCAAAGGCA GTCTGCAGCT1701GGACGGCAAA GGTACGCTGT ACACACGTTT GGGCAAACTG CTGAAAGTGG1751ACGGTACGGC GATTATCGGC GGCAAGCTGT ACATGTCGGC ACGCGGCAAG1801GGGGCAGGCT ATCTCAACAG TACCGGACGA CGTGTTCCCT TCCTGAGTGC1851CGCCAAAATC GGGCAGQATT ATTCTTTCTT CACAAACATC GAAACCGACG1901GCGGCCTGCT GGCTTCCCTC GACAGCGTCG AAAAAACAGC GGGCAGTGAA1951GGCGACACGC TGTCCTATTA TGTCCGTCGC GGCAATGCGG CACGGACTGC2001TTCGGCAGCG GCACATTCCG CGCCCOCCGG TCTGAAACAC GCCGTAGAAC2051AGGGCGGCAG CAATCTGGAA AACCTGATGG TCGAACTGQA TGCCTCCGAA2101TCATCCGCAA CACCCGAGAC GGTTGAAACT GCGGCAGCCG ACCGCACAGA2151TATGCCGGGC ATCCGCCCCT ACGGCGCAAC TTTCCGCGCA GCGGCAGCCG2201TACAGCATGC GAATGCCGCC GACGGTGTAC GCATCTTCAA CAGTCTCGCC2251GCTACCGTCT ATGCCGACAG TACCGCCGCC CATGCCGATA TGCAGGGACG2301CCGCCTGAAA GCCGTATCGG ACGGGTTGGA CCACAACGGC ACGGGTCTGC2351GCGTCATCGC GCAAACCCAA CAGGAQGGTG GAACGTGGGA ACAGGGCGGT2401GTTGAAGGCA AAATGCGCGG CAGTACCCAA ACCGTCGGCA TTGCCGCGAA2451AACCGGCGAA AATACGACAG CAGCCGCCAC ACTGGGCATG GGACGCAGCA2501CATGGAGCGA AAACAGTGCA AATGCAAAAA CCGACAGCAT TAGTCTGTTT2551GCAGGCATAC GGCACGATGC GGGCGATATC GGCTATCTCA AAGGCCTGTT2601CTCCTACGGA CGCTACAAAA ACAGCATCAG CCGCAGCACC GGTGCGGACG2651AACATGCGGA AGOCAGCGTC AACGGCACGC TGATGCAGCT GGGCGCACTG2701GGCGGTGTCA ACGTTCCGTT TGCCGCAkCG GGAGATTTGA CGGTCGAAGG2751CGGTCTGCGC TACGACCTGC TCAAACAGQA TGCATTCGCC GAAAAAGGCA2801GTGCTTTGGG CTGQkGCGGC AACAGCCTCA CTGAAGGCAC GCTGGTCGGA2851CTCGCGGGTC TGAAGCTGTC GCAACCCTTG AGCGATAAAG CCGTCCTGTT2901TGCAACGGCG GGCGTGGAAC GCGACCTGAA CGGACGCGAC TACACGGTAA2951CGGGCGGCTT TACCGGCGCG ACTGCAGCAA CCGGCAAGAC GGGGGCACGC3001AATATGCCGC ACACCCGTCT GGTTGCCGGC CTGGGCGCGG ATGTCGAATT3051CGGCAACGGC TGGAACGGCT TGGCACGTTA CAGCTACGCC GGTTCCAAAC3101AGTACGGCAA CCACAGCGGA CGAGTCGGCG TAGGCTACCG GTTCCTCGAG3151GGTGOCGGAG GCACTGGATC CGCCACAAAC GACGACGATG TTAAAAAAGC3201TGCCACTGTG GCCATTGCTG CTGCCTACAA CAATGGCCAA GAAATCAACG3251GTTTCAAAGC TGGAGAGACC ATCTACGACA TTGATGAAGA CGGCACAATT3301ACCAAAAAAG ACGCAACTGC AGCCGATGTT GAAGCCGACG ACTTTAAkGG3351TCTGGGTCTG AAAAAAGTCG TGACTAACCT GACCAAAACC GTCAATGAAA3401ACAAACAAAA CGTCGATGCC AAAGTAAAAG CTGCAGAATC TGAAATAGAk3451AAGTTAACAA CCAAGTTAGC AGACAQTGAT GCCGCTTTAG CAGATACTGA3501TGCCGCTCTG GATGCAACCA CCAAGGCCTT GAATAAATTG GGAGAAAATA3551TAACGACATT TGCTGAAGAG ACTAAGACAA ATATCGTAAA AATTGATGAA3601AAATTAGAAG CCGTGGCTGA TACCGTCGAC AAGCATGCCG AAGCATTCAA3651CGATATCGCC GATTCATTGG ATGAAACCAA CACTAAGGCA GACGAAGCCG3701TCAAAACCGC CAATGAAGCC AAACAGACGG CCGAAGAAAC CAAACAAAAC3751GTCGATGCCA AAGTAAAAGC TGCAGAAACT GCAGCAGGCA AAGCCGAAGC3801TGCCGCTGGC ACAGCTAATA CTGCAGCCGA CAAGGCCGAA GCTGTCGCTG3851CAAAAGTTAC CGACATCAAA GCTGATATCG CTACGAACAA AGATAATATT3901GCTAAAAAAG CAAACAGTGC CGACGTGTAC ACCAGAGAAG AGTCTGACAG3951CAAATTTGTC AGAATTGATG GTCTGAACGC TACTACCGAA AAATTGGACA4001CACGCTTGGC TTCTGCTGAA AAATCCATTG CCGATCACGA TACTCGCCTG4051AACGGTTTGG ATAAAACAGT GTCAGACCTG CGCAAAGAAA CCCGCCAAGG4101CCTTGCAGAA CAAGCCGCGC TCTCCGGTCT GTTCCAACCT TACAACGTGG4151GTCTCGAGCA CCACCACCAC CACCACTGA1MTSAPDFNAG GTGIGSNSRA TTAXSAAVSY AGIKNEHCKD RSNIJCAGRDD51VAVTDRflAKI NAPPPNLHTG DFPNPNDAYK NLINLKPAIE AGYTGRGVEV101GIVDTGESVG SISFPELYGR KERGYNENYK NYTAYMEKEA PEDGGGKDIE151ASFDDEAVIE TEAKPTDThH VKEIGHIDLV SHIIGGRSVD GRPAGGIAPD201ATLHIMNTND ETKNEMMVAA IPNAWVKLGE RGVRIVNNSP GTTSRAGTAD251LFQIANSEEQ YRQALLDYSG GDKTDEGIRL MQQSDYGNLS YHIRNKNMLF301IFSTGNDAQA QPNTYALLPF YEKDAQKGII TVAGVDRSGE KFKEEMYGEP351GTEPLEYGSN HCGITAMWCL SAPYBASVRP TRTNPIQIAG TSPSAPIVTG401TAALLLQKYP WMSNDNLRTT LLTTAQDIGA VGVDSKEGWG LLDAGKAMNG451PASFPFGDFT ADTKGTSDIA YSFENDISGT GGLIDCGGSQ LQLHGNNTYT501QKTIIEGGSL VLYGNNKSDH RVETKGALIY NGAASGGSLN SDGIVYLADT551DQSGANETVH IKGSLQLDGK GTLYTRLGKL LKVDGTAIIG GKLYMSARGK601GAGYLNSTGR RVPFLSAAKI GQDYSFFTNI ETDGGLLASL DSVEKTAGSE651GDTLSYYVRR GNAARTASAA AHSAPAGLKH AVEQGGSNLE NLMVBLDASE701SSATPETVET AAADRTDMPG IRPYGATFRA AAAVQHANAA DGVRIPNSLA751ATVYADSTAA HADMQGPELK AVSDGLDHNG TGLRVIAQTQ QDGGTWEQGG801VHGKHRGSTQ TVGIAAKTGE NTTAAATLGM GRSTWSENSA NAKTDSISLF851AGIEHDAGDI GYLKGLPSYG RYENSISRST GADEHAEGSV NGTLKQLGAL901GGVNVPFAAT GDLTVBGGLR YDLLKQDAPA EKGSALGWSG NSLTEGTLVG951LAGLKLSQPL SDKAVLPATA GVERDLNGED YTVTGGFTGA TAATGKTGAR1001NMPHTRLVAG LGADVEFGNG WNGLARYSYA GSKQYGNHSG RVGVGYRFLE1051GGGGTGSATN DDDVKKAATV AIAAAYNNGQ BINGFKkGET IYDIDEDGTI1101TKKDATAADV EADDFKGLGL KKVVTNLTKT VNENKQNVDA KVKAAESEIE1151KLTTKLADTD AALADTDAAL DATTNALNKL GENITTFAEE TKTNIVKIDE1201KLEAVAflTVD KHAEAFNDIA DSLDETNTKA DEAVKTANEA KQTAEETKQN1251VDAKVKAAET AAGKAEAAAG TANTAADKAE AVAAKVTDIK ADIATNKDNI1301AERANSADVY TRERSDSKFV RIDGLNATTE KLDTRLASAE KSIADHDTRL1351NGLDKTVSDL RKETRQGLAE QAALBGLFQP YNVGLEHHHH HH*


[0329] ΔG741 and Hybrids


[0330] Bactericidal titres generated in response to ΔG741 (His-fusion) were measured against various strains, including the homologous 2996 strain:
372996MC58NGH38F6124BZ133ΔG741512131072>204816384>2048


[0331] As can be seen, the ΔG741-induced anti-bactericidal titre is particularly high against heterologous strain MC58.


[0332] ΔG741 was also fused directly in-frame upstream of proteins 961, 961c, 983 and ORF46.1:
38ΔG741-9611ATGGTCGCCG CCGACATCGG TGCGGGGCTT GCCGATGCAC TAACCGCACC51GCTCGACCAT AAAGACAAAG GTTTGCAGTC TTTGACGCTG GATCAGTCCG101TCAGGAAAAA CGAGAAACTG AAGCTGGCGG CACAAGGTGC GGAAAAAACT151TATGGAAACG GTGACAGCCT CAATACGGGC AAATTGAAGA ACGACAAGGT201CAGCCGTTTC GACTTTATCC GCCAAATCGA AGTGGACGGG CAGCTCATTA251CCTTGGAGAG TGGAGAGTTC CAAGTATACA AACAAAGCCA TTCCGCCTTA301ACCGCCTTTC AGACCGAGCA AATACAAGAT TCGGAGCATT CCGGGAAGAT351GGTTGCGAAA CGCCAGTTCA GAATCGGCGA CATAGCGGGC GAACATACAT401CTTTTGACAA GCTTCCCGAA GGCGGCAGGG CGACATATCG CGGGACGGCG451TTCGGTTCAG ACGATGCCGG CGQAAAACTG ACCTACACCA TAGATTTCGC501CGCCAAGCAG GGAAACGGCA AAATCGAACA TTTGAAATCG CCAGAACTCA551ATGTCGACCT GGCCGCCGCC GATATCAAGC CGGATGGAAA AOGCCATGCC601GTCATCAGCG GTTCCGTCCT TTACAACCAA GCCGAGAAAG GCAGTTACTC651CCTCGGTATC TTTGGCGGAA AAGCCCAGGA AGTTGCCGGC AGCGCGGAAG701TGAAAACCGT AAACGGCATA CGCCATATCG GCCTTGCCGC CAAGCAACTC751GAGGGTGGCG GAGGCACTGG ATCCGCCACA AACGACGACG ATGTTAAAAA801AGCTGCCACT GTGGCCATTG CTGCTGCCTA CAACAATGGC CAAGAAATCA851ACGGTTTCAA AGCTGGAGAG ACCATCTACG ACATTGATGA AGACGGCACA901ATTACCAAAA AAGACGCAAC TGCAGCCGAT GTTGAAGCCG ACGACTTTAA951AGGTCTGGGT CTGAAAAAAG TCGTGACTAA CCTGACCAAA ACCGTCAATG1001AAAACAAACA AAACGTCGAT GCCAAAGTAA AAGCTGCAGA ATCTGAAATA1051GAAAAGTTAA CAACCAAGTT AGCAGACACT GATGCCGCTT TAGCAGATAC1101TGATGCCGCT CTGGATGCAA CCACCAACGC CTTGAATAAA TTGGGAGAAA1151ATATAACGAC ATTTGCTGAA GAGACTAAGA CAAATATCGT AAAAATTGAT1201GAAAAATTAG AAGCCGTGGC TGATACCGTC GACAAGCATG CCGAAGCATT1251CAACGATATC GCCGATTCAT TGGATGAAAC CAACACTAAG GCAGACGAAG1301CCGTCAAAAC CGCCAATGAA GCCAAACAGA CGGCCGAAGA AACCAAACAA1351AACGTCGATG CCAAAGTAAA AGCTGCAGAA ACTGCAGCAG GCAAAGCCGA1401AGCTGCCGCT GGCACAGCTA ATACTGCAGC CGACAAGGCC GAAGCTGTCG1451CTGCAAAAGT TACCGACATC AAAGCTGATA TCGCTACGAA CAAAGATAAT1501ATTGCTAAAA AAGCAAACAG TGCCGACGTG TACACCAGAG AAGAGTCTGA1551CAGCAAATTT GTCAGAATTG ATGGTCTGAA CGCTACTACC GAAAAATTGG1601ACACACGCTT GGCTTCTGCT GAAAAATCCA TTGCCGATCA CGATACTCGC1651CTGAACGGTT TGGATAAAAC AGTGTCAGAC CTGCGCAAAG AAACCCGCCA1701AGGCCTTGCA GAACAAGCCG CGCTCTCCGG TCTGTTCCAA CCTTACAACG1751TGGGTCGGTT CAATGTAACG GCTGCAGTCG GCGGCTACAA ATCCGAATCG1802GCAGTCGCCA TCGGTACCGG CTTCCGCTTT ACCGAAAACT TTGCCGCCAA1851AGCAGGCGTG GCAGTCGGCA CTTCGTCCGG TTCTTCCGCA GCCTACCATG1901TCGGCGTCAA TTACGAGTGG CTCGAGCACC ACCACCACCA CCACTGA1MVAADIGAGL ADMJTAPLDH KDKGLQSLTL DQSVRKNEKL KLAAQGAEKT51YGNGDSLNTG KLKNDKVSRF DFIRQIEVDG QLITLESGBF QVYKQSHSAL101TAPQTEQIQD SESGKMVAK RQFRIGDIAG EHTSFDKLPE GGRATYRGTA151FGSDDAGGKL TYTIDFAAXQ GNGKIEHLKS PELNVDLAAA DIKPDGKEEA201VISGSVLYNQ AEKGSYSLGI FGGKAQEVAG SAEVKTVNGI RHIGLAAKQL251EGGGGTGSAT NDDDVKKAAT VAIAAAYNNG QEINGFKAGE TIYDIDBDGT301ITKKDATAAD VEADDFKGLG LKKVVTNLTK TVNENKQNVD AKVKAAESEI351EKLTTKLADT DAALADTDAA LDATTNALNK LGRNZTTFAB BTKTNIVKID401EKLEAVADTV DKHAEAFNDI ADSLDETNTK ADEAVKTANE AKQTAEETKQ451NVDAKVKAAB TAAGRAEAAA GTANTAADRA EAVAAKVTDI KADIATNKDN501IAKKANSADV YTREESDSKF VRIDGLNATT ELKDTRLASA BKSIADHDTR551LNGLDKTVSD LRKETRQGLA EQAALSGLFQ PYNVGRFNVT AAVGGYKSES601AVAIGTGFRF TENFAAKAGV AVGTSSGSSA AYHVGVNYEW LHHHHHHH*ΔG741-961c1ATGGTCGCCG CCGACATCGG TGCGGGGCTT GCCGATGCAC TAACCGCACC51GCTCGACCAT AAAGACAAAG GTTTGCAGTC TTTGACGCTG GATCAGTCCG101TCAGGAAAAA CGAGAAACTG AAGCTGGCGG CACAAGGTGC GGAAAAAACT151TATGGAAACG GTGACAGCCT CAATACGGGC AAATTGAAGA ACGACAAGGT201CAGCCGTTTC GACTTTATCC GCCAAATCGA AGTGGACGGG CAGCTCATTA251CCTTGGAGAG TGGAGAGTTC CAAGTATACA AACAAAGCCA TTCCGCCTTA301ACCGCCTTTC AGACCGAGCA AATACAAGAT TCGGAGCATT CCGGGAAGAT351GGTTGCGAAA CGCCAGTTCA GAATCGGCGA CATAGCGGGC GAACATACAT401CTTTTGACAA GCTTCCCGAA GGCGGCAGGG CGACATATCG CGGGACGGCG451TTCGGTTCAG ACGATGCCGG CGGAAAACTG ACCTACACCA TAGATTTCGC501CGCCAAGCAG GGAAACGGCA AAATCGAACA TTTGAAATCG CCAGAACTCA551ATGTCGACCT GGCCGCCGCC GATATCAAGC CGGATGGAAA ACGCCATGCC601GTCATCAGCG GTTCCGTCCT TTACAACCAA GCCGAAAAAG GCAGTTACTC651CCTCGGTATC TTTGGCGGAA AAGCCCAGGA AGTTGCCGGC AGCGCGGAAG701TGAAAACCGT AAACGGCATA CGCCATATCG GCCTTGCCGC CAAGCAACTC751GAGGGTGGCG GAGGCACTGG ATCCGCCACA AACGACGACG ATGTTAAAAA801AGCTGCCACT GTGGCCATTG CTGCTGCCTA CAACAATGGC CAAGAAATCA851ACGGTTTCAA AGCTGGAGAG ACCATCTACG ACATTGATGA AGACGGCACA901ATTACCAAAA AAGACGCAAC TGCAGCCGAT GTTGAAGCCG ACGACTTTAA951AGGTCTGGGT CTGAAAAAAG TCGTGACTAA CCTGACCAAA ACCGTCAATG1001AAAACAAACA AAACGTCGAT GCCAAAGTAA AAGCTGCAGA ATCTGAAATA1051GAAAAGTTAA CAACCAAGTT AGCAGACACT GATGCCGCTT TAGCAGATAC1101TGATGCCGCT CTGGATGCAA CCACCAACGC CTTGAATAAA TTGGGAGAAA1151ATATAACGAC ATTTGCTGAA GAGACTAAGA CAAATATCGT AAAAATTGAT1201GAAAAATTAG AAGCCGTGGC TGATACCGTC GACAAGCATG CCGAAGCATT1251CAACGATATC GCCGATTCAT TGGATGAAAC CAACACTAAG GCAGACGAAG1301CCGTCAAAAC CGCCAATGAA GCCAAACAGA CGGCCGAAGA AACCAAACAA1351AACGTCGATG CCAAAGTAAA AGCTGCAGAA ACTGCAGCAG GCAAAGCCGA1401AGCTGCCGCT GGCACAGCTA ATACTGCAGC CGACAAGGCC GAAGCTGTCG1451CTGCAAAAGT TACCGACATC AAAGCTGATA TCGCTACGAA CAAAGATAAT1501ATTGCTAAAA AAGCAAACAG TGCCGACGTG TACACCAGAG AAGAGTCTGA1551CAGCAAATTT GTCAGAATTG ATGGTCTGAA CGCTACTACC GAAAAATTGG1601ACACACGCTT GGCTTCTGCT GAAAAATCCA TTGCCGATCA CGATACTCGC1651CTGAACGGTT TGGATAAAAC AGTGTCAGAC CTGCGCAAAG AAACCCGCCA1701AGGCCTTGCA GAACAAGCCG CGCTCTCCGG TCTGTTCCAA CCTTACAACG1751TGGGTCTCGA GCACCACCAC CACCACCACT GA1MVAADIGAGL ADALTAPLDH KDKGLQSLTL DQSVEXNEKL KLAAQGAEKT51YGNGDSLNTG KLKNDKVSRF DFIRQIEVDG QLITLBSGEF QVYKQSHSAL101TAPQTBQIQD SEHSGKMVAK RQFRIGDIAG EHTSFDKLPE GGRATYRGTA151FGSDDAGGKL TYTIDFAAKQ GNGKIEfflZKS PELNVDLAAA DIKPDGKRHA201VISGSVLYNQ AEKGSYSLGI FGGKAQEVAG SAEVKTVNGI RHIGLAAXQL251EGGGGTGSAT NDDDVKKAAT VAIAAAYNNG QHINGFKAGE TIYDIDEDGT301ITKKDATAAfl VEADDFRGLG LKKVVTNLTK TVNENKQNVD AKVKAAESEI351EKLTTKLADT DAALADTDAA LDATTNALNK LGENITTFAE ETKTNIVKID401EKLEAVADTV DKHAEPJPNDI ADSLDETNTK ADEAVKTANE AKQTAEETKQ451NVDAKVKAAE TAAGKAEAAA GTANTAADKA EAVAAKVTDI KADIATNKDN501IAKKANSADV YTREESDSKF VRIDGLNATT EKLDTPLASA EKSIADHDTR551LNGLDKTVVSD LRKETRQGLA EQAALSGLPQ PYNVGLEHHH HHH*ΔG741-9831ATGGTCGCCG CCGACATCGG TGCGGGGCTT GCCGATGCAC TAACCGCACC51GCTCGACCAT AAAGACAAAG GTTTGCAGTC TTTGACGCTG GATCAGTCCG101TCAGGAAAAA CGAGAAACTG AAGCTGGCGG CACAAGGTGC GGAAAAAACT151TATGGAAACG GTGACAGCCT CAATACGGGC AAATTGAAGA ACGACAADGT201CAGCCGTTTC GACTTTATCC GCCAAATCGA AGTGGACGGG CAGCTCATTA251CCTTGGAGAG TGGAGAGTTC CAAGTATACA AACAAAGCCA TTCCGCCTTA301ACCGCCTTTC AGACCGAGCA AATACAAGAT TCGGAGCATT CCGGGAAGAT351GGTTGCGAAA CGCCAGTTCA GAATCGGCGA CATAGCGGGC GAACATACAT401CTTTTGACAA GCTTCCCGAA GGCGGCAGGG CGACATATCG CGGGACGGCG451TTCGGTTCAG ACGATGCCGG CGGAAAACTG ACCTACACCA TAGATTTCGC501CGCCAAGCAG GGAAACGGCA AAATCGAACA TTTGAAATCG CCAGAACTCA551ATGTCGACCT GGCCGCCGCC GATATCAAGC CGGATGGAAA ACGCCATGCC601GTCATCAGCG GTTCCGTCCT TTACAACCAA GCCGAGAAAG GCAGTTACTC651CCTCGGTATC TTTGGCGGAA AAGCCCAGGA AGTTGCCGGC AGCGCGGAAG701TGAAAACCGT AAACGGCATA CGCCATATCG GCCTTGCCGC CAAGCAACTC751GAGGGATCCG GCGGAGGCGG CACTTCTGCG CCCGACTTCA ATGCAGGCGG801TACCGGTATC GGCAGCAACA GCAGAGCAAC AACAGCGAAA TCAGCAGCAG851TATCTPACGC CGGTATCAAG AACGAAATGT GCAAAGACAG AAGCATGCTC901TGTGCCGGTC GGGATGACGT TGCGGTTACA GACAGGGATG CCAAAATCAA951TGCCCCCCCC CCGAATCTGC ATACCGQAGA CTTTCCAAAC CCAAATGACG1001CATACAAGAA TTTGATCAAC CTCAAACCTG CAATTGAAGC AGCCTATACA1051GGACGCGGGG TAGAGGTAGG TATCGTCGAC ACAGGCGAAT CCGTCGGCAG1101CATATCCTTT CCCGAACTGT ATGGCAGAAA AGAACACGGC TATAACGAAA1151ATTACAAAAA CTATACGGCG TATATGCGGA AGGAAGCGCC TGAAGACGGA1201GGCGGTAAAG ACATTGAAGC TTCTTTCGAC GATGAGGCCG TTATAGAGAC1251TGAAGCAAAG CCGACGGATA TCCGCCACGT AAAAGAAATC GGACACATCG1301ATTTGGTCTC CCATATTATT GGCGGGCGTT CCGTGGACGG CAGACCTGCA1351GGCGGTATTG CGCCCGATGC GACGCTACAC ATAATGAATA CGAATGATGA1401AACCAAGAAC GAAATGATGG TTGCAGCCAT CCGCAATGCA TGGGTCAAGC1451TGGGCGAACG TGGCGTGCGC ATCGTCAATA ACAGTTTTGG AACAACATCG1501AGGGCAGGCA CTGCCGACCT TTTCCAAATA GCCAATTCGG AGGAGCAGTA1551CCGCCAAGCG TTGCTCGACT ATTCCGGCGG TGATAAAACA GACGAGGGTA1601TCCGCCTGAT GCAACAGAGC GATTACGGCA ACCTGTCCTA CCACATCCGT1651AATAAAAACA TGCTTTTCAT CTTTTCGACA GGCAATGACG CACAAGCTCA1701GCCCAACACA TATGCCCTAT TGCCATTTTA TGAAAAAGAC GCTCAAAAAG1751GCATTATCAC AGTCGCAGGC GTAGACCOCA GTGGAGAAAA GTTCAAACGG1801GAAATGTATG GAGAACCGGG TACAGAACCG CTTGAGTATG GCTCCAACCA1851TTGCGGAATT ACTGCCATGT GGTGCCTGTC GGCACCCTAT GAAGCAAGCG1901TCCGTTTCAC CCGTACAAAC CCGATTCAAA TTGCCGGAAC ATCCTTTTCC1951GCACCCATCG TAACCGGCAC GGCGGCTCTG CTGCTGCAGA AATACCCGTG2001GATGAGCAAC GACAACCTGC GTACCACGTT GCTGACGACG GCTCAGGACA2051TCGGTGCAGT CGGCGTGGAC AGCAAGTTCG GCTGGGGACT GCTGGATGCG2101GGTAAGGCCA TGAACGGACC CGCGTCCTTT CCGTTCGGCG ACTTTACCGC2151CGATACGAAA GGTACATCCG ATATTGCCTA CTCCTTCCGT AACGACATTT2201CAGGCACGGG CGGCCTGATC AAAAAAGGCG GCAGCCAACT GCAACTGCAC2251GGCAACAACA CCTATACGGG CAAAACCATT ATCGAAGGCG GTTCGCTGGT2301GTTGTACGGC AACAACAAAT CGGATATGCG CGTCGAAACC AAAGGTGCGC2351TGATTTATAA CGGGGCGGCA TCCGGCGGCA GCCTGAACAG CGACGGCATT2401GTCTATCTGG CAGATACCGA CCAATCCGGC GCAAACGAAA CCGTACACAT2451CAAAGGCAGT CTGCAGCTGG ACGGCAAAGG TACGCTGTAC ACACGTTTGG2501GCAAACTGCT GAAAGTGGAC GGTACGGCGA TTATCGGCGG CAAGCTGTAC2551ATGTCGGCAC GCGGCAAGGG GGCAGGCTAT CTCAACAGTA CCGGACGACG2601TGTTCCCTTC CTGAGTGCCG CCAAAkTCGG GCAGGATTAT TCTTTCTTCA2651CAAACATCGA AACCGACGGC GGCCTGCTGG CTTCCCTCGA CAGCGTCGAA2701AAAACAGCGG GCAGTGAAGG CGACACGCTG TCCTATTATG TCCGTCGCGG2751CAATGCGGCA CGGACTGCTT CGGCAGCGGC ACATTCCGCG CCCGCCGGTC2801TGAAACACGC CGTAGAACAG GGCGGCAGCA ATCTGGAAAA CCTGATGGTC2851GAACTGGATG CCTCCGAATC ATCCGCAACA CCCGAGACGG TTGAAACTGC2901GGCAGCCGAC CGCACAGATA TGCCGGGCAT CCGCCCCTAC GGCGCAACTT2951TCCGOGCAGC GGCAGCCGTA CAGCATGCGA ATGCCGCCGA CGGTGTACGC3001ATCTTCAACA GTCTCGCCGC TACCGTCTAT GCCGACAGTA CCGCCGCCCA3051TGCCGATATG CAGGGACGCC GCCTGAAAGC CGTATCGGAC GGGTTGGACC3101ACAACGGCAC GGGTCTGCGC GTCATCGCGC AAACCCAACA GGACGGTGGA3151ACGTGGGAAC AGGGCGGTGT TGAAGGCAAA ATGCGCGGCA GTACCCAAAC3201CGTCGGCATT GCCGCGAAAA CCGGCGAAAA TAAGACAGCA GCCGCCACAC3251TGGGCATGGG ACGCAGCACA TGGAGCGAAA ACAGTGCAAA TGCAAAAACC3301GACAGCATTA GTCTGTTTGC AGGCATACGG CACGATGCGG GCGATATCGG3351CTATCTCAAA GGCCTGTTCT CCTACGGACG CTACAAAAAC AGCATCAGCC3401GCAGCACCGG TGCGGACGAA CATGCGGAAG GCAGCGTCAA CGGCACGCTG3451ATGCAGCTGG GCGCACTGGG CGGTGTCAAC GTTCCGTTTG CCGCAACGGG3501AGATTTGACG GTCGAAGGCG GTCTGCGCTA CGACCTGCTC AAACAGGATG3551CATTCGCCGA AAAAGGCAGT GCTTTGGGCT GGAGCGGCAA CAGCCTCACT3601GAAGGCACGC TGGTCGGACT CGCGGGTCTG AACCTGTCGC AACCCTTGAG3651CGATAAAGCC GTCCTGTTTG CAACGGCGGG CGTGGAACGC GACCTGAACG3701GACGCGACTA CACGGTAACG GGCGGCTTTA CCGGCGCGAC TGCAGCAACC3751GGCAAGACGG GGGCACGCAA TATGCCGCAC ACCCGTCTGG TTGCCGGCCT3801GGGCGCGGAT GTCGAATTCG GCAACGGCTG GAACGGCTTG GCACGTTACA3851GCTACGCCGG TTCCAAACAG TACGGCAACC ACAGCGGACG AGTCGGCGTA3901GGCTACCGGT TCCTCGAGCA CCACCACCAC CACCACTGA1MVAADIGAQL ADALTAPLDH KDKGLQSLTL DQSVRKEKL KLAAQGAEKT51YGNGDSLNTG KLKNDKVSRP DFIRQIEVDG QLITLESGEF QVYKQSHSAL101TAFQTEQIQD SEHSGKNVAK RQFRIGDIAG EHTSFDKLPE GGRATYRGTA151FGSDDAGGKL TYTIDFAAKQ GNGKIEHLKS PELNVDLAAA DIKPDGKRHA201VISGSVLYNQ ARKGSYSLGI FGGKAQEVAG SABVKTVNGI RHIGLAAKQL251EGSGGGGTSA PDPNAGGTGI GSNSRATTAK SAAVSYAGIK NEMCKDRBML301CAGRDDVAVT DRDAKINAPP PNLHTGDFPN PIWAYKNLIN LKPAIEAGYT351GRGVEVGIVD TGESVGSISF PELYGRKEHG YNENYKNYTA YHRKRAPEDG401GGKDIEASFD DEAVIHTEAK PTDIRHVKBI GHIDLVSHII GGRSVDGRPA451GGIAPDATLH IMNTNDETKN EMMVAAIRNA WVKLGERGVR IVNNSFGTTS501RAGTADLPQI ANSEBQYRQA LLDYSGGDKT DEGIPLMQQS DYGNLSYHIR551NKNHLFIFST GNDAQAQPNT YALLPFYEKD AQKGIITVAG VDRSGEKFKR601EMYGBPGTRP LEYGSNHCGI TANWOLSAPY EASVEFTRTN PIQIAGTSFS651APIVTGTAAL LLQKYPWHSN DNLRTTLLTT AQDIGAVGVD SKFGWGLLDA701GKAMNGPASF PFGDFTADTK GTSDIAYSFR NDISGTGGLI KKGGSQLQLH751GNNTYTGRTI IEGGSLVLYG NNKSDMRVET KGALIYNGAA SGGSLNSDGI801VYLADTDQSG ANETVHIKGS LQLDGKGTLY TRLGKLLKVD GTAIIGGKLY851MSARGKGAGY LNSTGRRVPF LSAAKIGQDY SFFTNIBTDG GLLASLDSVB901KTAGSEGDTL SYYVRRGNAA RTASAAAHSA PAGLKHAVEQ GGSNLENLMV951ELDASESSAT PETVETAAAD RTDMPGIRPY GATFRAAAAV QHANAADGVR1001IFNSLAATVY ADSTAAHADH QGRRLKAVSD GLDHNGTGLR VIAQTQQDGG1051TWBQGGVEGK MRGSTQTVGI AAKTGENTTA AATLGMGRST WSENSANART1101DSISLFAGIR HDAGDIGYLK GLFSYGRYKN SISRSTGADE HAEGSVNGTL1151MQLGALGGVN VPFAATGDLT VEGGLRYDLL KQDAFAEKGS ALGWSGNSLT1201EGTLVGLAGL KLSQPLSDKA VLFATAGVER DLNGRDYTVT GGFTGATAAT1251GKTGARNMPH TRLVAGLGAD VBFGNGWNGL ARYSYAGSKQ YGNHSGRVGV1301GYRFLEHHHH HH*ΔG741-ORF46.11ATGGTCGCCG CCGACATCGG TGCGGGGCTT GCCGATGCAC TAACCGCACC51GCTQGACCAT AAAGACAAAG GTTTGCAGTC TTTGACGCTG GATCAGTCCG101TCAGGAAAAA CGAGAAACTG AAGCTGGCGG CACAAGGTGC GGAAAAAACT151TATGGAAACG GTGACAGCCT CAATACGGGC AAATTGAAGA ACGACAAGGT201CAGCCGTTTC GACTTTATCC GCCAAATCGA AGTGGACGGG CAGCTCATTA251CCTTGGAGAG TGGAGAGTTC CAAGTATACA AACAAAGCCA TTCCGCCTTA301ACCGCCTTTC AGACCGAGCA AATACAAGAT TCGGAGCATT CCGGGAAGAT351GGTTGCGAAA CGCCAGTTCA GAATCGGCGA CATAGCGOGC GAACATACAT401CTTTTGACAA GCTTCCCGAA GGCGGCAGGG CGACATATCG CGGGACGGCG451TTCGGTTCAG ACGATGCCGG CGGAAAACTG ACCTACACCA TAGATTTCGC501CGCCAAGCAG GGAAACGGCA AAATCGAACA TTTGAAATCG CCAGAACTCA551ATGTCGACCT GOCCGCCGCC GATATCAAGC CGGATGGAAA ACGCCATGCC601GTCATCAGCG GTTCCGTCCT TTACAACCAA GCCGAGAGAG GCAGTTACTC651CCTCGGTATC TTTGGCGGAA AAGCCCAGGA AGTTGCCGGC AGCGCGGAAG701TGAAAACCGT AAACGGCATA CGCCATATCG GCCATGCCGC CAAGCAACTC751GACGGTGGCG GAGGCACTGG ATCCTCAGAT TTGGCAAACG ATTCTTTTAT801CCGGCAGGTT CTCGACCGTC AGCATTTCGA ACCCGACGGG AAATACCACC851TATTCGGCAG CAGGGGGGAA CTTGCCGAGC GCAGCGGCCA TATCGGATTG901GGAAAAATAC AAAGCCATCA GTTGGGCAAC CTGATGATTC AACAGGCGGC951CATTAAAGGA AATATCGGCT ACATTGTCCG CTTTTCCGAT CACGGGCACG1001AAGTCCATTC CCCCTTCGAC AACCATGCCT CACATTCCGA TTCTGATGAA1051GCCGGTAGTC CCGTTGACGG ATTTAGCCTT TACCGCATCC ATTGGGACGG1101ATACGAACAC CATCCCGCCG ACGGCTATGA CGGGCCACAG GGCGGCGGCT1151ATCCCGCTCC CAAAGGCGCG AGGGATATAT ACAGCTAGGA CATAAAAGGC1201GTTGCCCAAA ATATCCGCCT CAACCTGACC GACAACCGCA GCACCGGACA1251ACGGCTTGCC GACCGTTTCC ACAATGCCGG TAGTATGCTG ACGCAAGGAG1301TAGGCGACGG ATTCAAACGC GCCACCCGAT ACAGCCCCGA GCTGGACAGA1351TCGGGCAATG CCGCCGAAGC CTTCAACGGC ACTGCAGATA TCGTTAAAAA1401CATCATCGGC GCGGCAGGAG AAATTGTCGG CGCAGOCGAT GCCGTGCAGG1451GCATAAGGGA AGGCTCAAAC ATTGCTGTCA TGCACGGCTT GGGTCTGCTT1501TCCACCGAAA ACAAGATGGC GCGCATCAAC GATTTGGCAG ATATGGCGCA1551ACTCAAAGAC TATGCCGCAG CAGCCATCCG CGATTGGGCA GTCCAAAACC1601CCAATGCCGC ACAAGGCATA GAAGCCGTCA GCAATATCTT TATGGCAGCC1651ATCCCCATCA AAGOQATTGG AGCTGTTCGG GGAAAATACG GCTTGGGCGG1701CATCACGGCA CATCCTATCA AGCGGTCGCA GATGGGCGCG ATCGCATTGC1751CGAAAGGGAA ATCCGCCGTC AGCGACAATT TTGCCGATGC GGCATACGCC1801AAATACCCGT CCCCTTACCA TTCCCGAAAT ATCCGTTCAA ACTTGGAGCA1851GCGTTACGGC AAAGAAAACA TCACCTCCTC AACCGTGCCG CCGTCAAACG1901GCAAAAATGT CAAACTGGCA GACCAACGCC ACCCGAAGAC AGGCGTACCG1951TTTGACGGTA AAGGGTTTCC GAATTTTGAG AAGCACGTGA AATATGATAC2001GCTCGAGCAC CACCACCACC ACCACTGA1MVAADIGAGL AflALTAPLDH KDKGLQSLTL DQSVRKNBKL KLAAQGAEKT51YGNGDSLNTG KLKNDKVSEP DFIRQIEVDG QLITLESGEF QVYKQSHSAL101TAFQTEQIQD SEHSGKMVAK RQFRIGDIAG EHTSFDKLPE GGEATYRGTA151PGSDDAGGKL TYTIDFAAKQ GNGKIEHLKS PELNVDLAAA DIKPDGKRHA201VISGSVLYNQ AEKGSYSLGI FGGKAQEVAG SAEVKTVNGI RHIGLAAKQL251DGGGGTGSSD LANDSFIRQV LDRQHFEPDG KYHLFGSRGE LAERSGHIGL301GKIQSHQLGN LHIQQAAIKG NIGYIVEPSD HGHEVESPFD NHASHSDSDE351AGSPVDGPSL YRIHWDGYEH HPADGYDGPQ GGQYPAPKGA RDIYSYDIKG401VAQNIRLNLT DNESTGQELA DRPHNAGSML TQGVGDGFKR ATRYSPBLDR451SGNAAEAFNG TADIVKNIIG AAGEIVGAGD AVQGISEGSN IAVMHGLGLL501STENKMAPJN DLADMAQLKD YAAAAIRDWA VQNPNAAQGI EAVSNIFMAA551IPIKGIGAVR GKYGLGGITA HPIKRSQMGA IALPKGKSAV SDNFADAAYA601KYPSPYHSRN IESNLEQRYG KENITSSTVP PSNGKNVKLA DQRHPRTGVP651FDGKGPPNFE KHVKYDTLEH HHHHH



EXAMPLE 16

[0333] C-Terminal Fusions (‘Hybrids’) with 287/ΔG287


[0334] According to the invention, hybrids of two proteins A & B may be either NH2-A-B—COOH or NH2—B-A-COOH. The effect of this difference was investigated using protein 287 either C-terminal (in ‘287-His’ form) or N-terminal (in ΔG287 form—sequences shown above) to 919, 953 and ORF46.1. A panel of strains was used, including homologous strain 2996. FCA was used as adjuvant:
39287 & 919287 & 953287 & ORF46.1StrainΔG287-919919-287ΔG287-953953-287ΔG287-46.146.1-287299612800016000655368192163848192BZ232256128128<4<4<410002048<4<4<4<4<4MC5881921024163841024512128NGH38320002048>20484096163844096394/9840963225612812816MenA (F6124)320002048>20483281921024MenC (BZ133)64000>8192>8192<1681922048


[0335] Better bactericidal titres are generally seen with 287 at the N-terminus (in the ΔG form)


[0336] When fused to protein 961 [NH2-ΔG287-961COOH—sequence shown above], the resulting protein is insoluble and must be denatured and renatured for purification. Following renaturation, around 50% of the protein was found to remain insoluble. The soluble and insoluble proteins were compared, and much better bactericidal titres were obtained with the soluble protein (FCA as adjuvant):
402996BZ232MC58NGH38F6124BZ133Soluble655361284096>2048>20484096Insoluble8192<4<416n.d.n.d.


[0337] Titres with the insoluble form were, however, improved by using alum adjuvant instead:
41Insoluble327681284096>2048>20482048



EXAMPLE 17

[0338] N-Terminal Fusions (‘Hybrids’) to 287


[0339] Expression of protein 287 as full-length with a C-terminal His-tag, or without its leader peptide but with a C-terminal His-tag, gives fairly low expression levels. Better expression is achieved using a N-terminal GST-fusion.


[0340] As an alternative to using GST as an N-terminal fusion partner, 287 was placed at the C-terminus of protein 919 (‘919-287’), of protein 953 (‘953-287’), and of proteins ORF46.1 (‘ORF46.1-287’). In both cases, the leader peptides were deleted, and the hybrids were direct in-frame fusions.


[0341] To generate the 953-287 hybrid, the leader peptides of the two proteins were omitted by designing the forward primer downstream from the leader of each sequence; the stop codon sequence was omitted in the 953 reverse primer but included in the 287 reverse primer. For the 953 gene, the 5′ and the 3′ primers used for amplification included a NdeI and a BamHI restriction sites respectively, whereas for the amplification of the 287 gene the 5′ and the 3′ primers included a BamHI and a XhoI restriction sites respectively. In this way a sequential directional cloning of the two genes in pET21b+, using NdeI-BamHI (to clone the first gene) and subsequently BamHI-XhoI (to clone the second gene) could be achieved.


[0342] The 919-287 hybrid was obtained by cloning the sequence coding for the mature portion of 287 into the XhoI site at the 3′-end of the 919-His clone in pET21b+. The primers used for amplification of the 287 gene were designed for introducing a SalI restriction site at the 5′- and a XhoI site at the 3′- of the PCR fragment. Since the cohesive ends produced by the SalI and XhoI restriction enzymes are compatible, the 287 PCR product digested with SalI-XhoI could be inserted in the pET21b-919 clone cleaved with XhoI.


[0343] The ORF46.1-287 hybrid was obtained similarly.


[0344] The bactericidal efficacy (homologous strain) of antibodies raised against the hybrid proteins was compared with antibodies raised against simple mixtures of the component antigens:
42Mixture with 287Hybrid with 287919320001600095381928192ORF46.11288192


[0345] Data for bactericidal activity against heterologous MenB strains and against serotypes A and C were also obtained for 919-287 and 953-287:
43919953ORF46.1StrainMixtureHybridMixtureHybridMixtureHybridMC58512102451210241024NGH3810242048204840964096BZ232512128102416MenA (F6124)51220482048321024MenC (C11)>2048n.d.>2048n.d.n.d.MenC (BZ133)>4096>8192>4096<162048


[0346] Hybrids of ORF46.1 and 919 were also constructed. Best results (four-fold higher titre) were achieved with 919 at the N-terminus.


[0347] Hybrids 919-519His, ORF97-225His and 225-ORF97His were also tested These gave moderate ELISA fitres and bactericidal antibody responses.



EXAMPLE 18

[0348] The Leader Peptide from ORF4


[0349] As shown above, the leader peptide of ORF4 can be fused to the mature sequence of other proteins (e.g. proteins 287 and 919). It is able to direct lipidation in E.coli.



EXAMPLE 19

[0350] Domains in 564


[0351] The protein ‘564’ is very large (2073aa), and it is difficult to clone and express it in complete form. To facilitate expression, the protein has been divided into four domains, as shown in FIG. 8 (according to the MC58 sequence):
44DomainABCDAmino Acids79-360361-731732-20442045-2073


[0352] These domains show the following homologies:


[0353] Domain A shows homology to other bacterial toxins:
45gb|AAG03431.1|AE004443_9probab1e hemagglutinin [Pseudoiuonas aeruginosa] (38%)gb|AAC31981.1|(139897) HecA [Pectobacterium cbrysanthemi] (45%)emb|CAA36409.1|(X52156) filamentous hemagglutinin [Bordetella pertussis] (31%)gb|AAC79757.1|(AF057695) large supernatant protein1 [Haemophulus ducreyi] (26%)gb|AAA25657.1|(M30186) HpmA precursor [Proteus mirabilis] (29%)


[0354] Domain B shows no homology, and is specific to 564.


[0355] Domain C shows homology to:
46gb|AAP84995.1|AE004032 HA-like secreted protein [Xylella fastidiosa] (33%)gb|AAG05850.1|AE004673 hypothetical protein [Pseudomonas aeruginosa] (27%)gb|AAFS8414.1AF237928  putative FHA [Pasteurella multocisida] (23%)gb|AAC79757.1|(AF057695)large supernatant protein1 [Haemophilus ducreyi] (23%)piR||S21010            FHA B precursor [Bordetella pertussis] (20%)


[0356] Domain D shows homology to other bacterial toxins:


[0357] gb|AAF84995.1|AE00403214 HA-like secreted protein [Xylella fastidiosa] (29%)


[0358] Using the MC58 strain sequence, good intracellular expression of 564ab was obtained in the form of GST-fusions (no purification) and his-tagged protein; this domain-pair was also expressed as a lipoprotein, which showed moderate expression in the outer membrane/supernatant fraction.


[0359] The b domain showed moderate intracellular expression when expressed as a his-tagged product (no purification), and good expression as a GST-fusion.


[0360] The c domain showed good intracellular expression as a GST-fusion, but was insoluble. The d domain showed moderate intracellular expression as a his-tagged product (no purification). The cd protein domain-pair showed moderate intracellular expression (no purification) as a GST-fusion.


[0361] Good bactericidal assay titres were observed using the c domain and the bc pair.



EXAMPLE 20

[0362] The 919 Leader Peptide


[0363] The 20mer leader peptide from 919 is discussed in example 1 above:


[0364] MKKYLFRAAL YGIAAAILAA


[0365] As shown in example 1, deletion of this leader improves heterologous expression, as does substitution with the ORF4 leader peptide. The influence of the 919 leader on expression was investigated by fusing the coding sequence to the PhoC reporter gene from Morganella morganii [Thaller et al. (1994) Microbiology 140:1341-1350]. The construct was cloned in the pET21-b plasmid between the NdeI and XhoI sites (FIG. 9):
47  1 MKKYLFRAAL YGIAAAILAA AIPAGNDATT KPDLYYLKNBQAIDSLKLLP 51 PPPEVGSIQF LNDQAMYEKG RMLRNTERGK QAQADADLAAGGVATAFSGA101 FGYPITEKDS PELYKLLTNM IEDAGDLATR SAKEHYMRIRPFAFYGTETC151 NTKDQKKI1ST NGSYPSGHTS IGWATALVLA EVNPANQDAILEEGYQLGQS201 RVICGYHWQS DVDAARIVGS AAVATLHSDP AFQAQLAKAXQEFAQKSQK*


[0366] The level of expression of PhoC from this plasmid is >200-fold lower than that found for the same construct but containing the native PhoC signal peptide. The same result was obtained even after substitution of the T7 promoter with the E.coli Plac promoter. This means that the influence of the 919 leader sequence on expression does not depend on the promoter used.


[0367] In order to investigate if the results observed were due to some peculiarity of the 919 signal peptide nucleotide sequence (secondary structure formation, sensitivity to RNAases, etc.) or to protein instability induced by the presence of this signal peptide, a number of mutants were generated. The approach used was a substitution of nucleotides of the 919 signal peptide sequence by cloning synthetic linkers containing degenerate codons. In this way, mutants were obtained with nucleotide and/or amino acid substitutions.


[0368] Two different linkers were used, designed to produce mutations in two different regions of the 919 signal peptide sequence, in the first 19 base pairs (L1) and between bases 20-36 (S1).
48L1: 5′ T ATG AAa/g TAc/t c/tTN TTt/c a/cGC GCC GCC CTG TAC GGC ATC GCC GCC    GCC ATC CTC GCC GCC GCG ATC CC 3′S1: 5′ T ATG AAA AAA TAC CTA TTC CGa/g GCN GCN c/tTa/g TAc/t GGc/g ATC GCC    GCC GCC ATC CTC GCC GCC GCG ATC CC 3′


[0369] The alignment of some of the mutants obtained is given below.
49L1 mutants:9L1-aATGAAAAATACTTCCGCGCCGCC˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜9L1-eATGAAAAAATACTTTTTCCGCGCCGCC˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜9L1-dATGAAAAAATACTTTTTCCGCGCCGCC˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜9L1-fATGAAAAAATATCTCTTTAGCGCCGCCCTGTACGGCATCGCCGCCGCCATCCTCGCCGCC919spATGAAAAAATACCTATTCCGCGCCGCCCTGTACGGCATCGCCGCCGCCATCCTCGCCGCC9L1aMKKYLFSAA˜˜˜˜˜˜˜˜˜˜˜9L1eMKKYFFRAA˜˜˜˜˜˜˜˜˜˜˜9L1dMKKYFFRAA˜˜˜˜˜˜˜˜˜˜˜9L1fMKKYLFSAALYGIAAAILAA919spMKKYLFRAALYGIAAAILAA (i.e. native signal peptide)S1 mutants:9S1-eATGAAAAAATACCTATTC..................ATCGCCGCCGCCATCCTCGCCGCC9S1-cATGAAAAAATACCTATTCCGAGCTGCCCAATACGGCATCGCCGCCGCCATCCTCGCCGCC9S1-bATGAAAAAATACCTATTCCGGGCCGCCCAATACGGCATCGCCGCCGCCATCCTCGCCGCC9S1-iATGAAAAAATACCTATTCCGGGCGGCTTTGTACGGGATCGCCGCCGCCATCCTCGCCGCC919spATGAAAAAATACCTATTCCGCGCCGCCCTGTACGGCATCGCCGCCGCCATCCTCGCCGCC9S1eMKKYLF......IAAAILAA9S1cMKKYLFRAAQYGIAAAILAA9S1bMKKYLFRAAQYGIAAAILAA9S1iMKKYLFRAALYGIAAAILAA919spMKKYLFRAALYGIAAAILAA


[0370] As shown in the sequences alignments, most of the mutants analysed contain in-frame deletions which were unexpectedly produced by the host cells.


[0371] Selection of the mutants was performed by transforming E. coli BL21(DE3) cells with DNA prepared from a mixture of L1 and S1 mutated clones. Single transformants were screened for high PhoC activity by streaking them onto LB plates containing 100 μg/ml ampicillin, 50 μg/ml methyl green, 1 mg/ml PDP (phenolphthaleindiphosphate). On this medium PhoC-producing cells become green (FIG. 10).


[0372] A quantitative analysis of PhoC produced by these mutants was carried out in liquid medium using pNPP as a substrate for PhoC activity. The specific activities measured in cell extracts and supernatants of mutants grown in liquid medium for 0, 30, 90, 180 min. were:
5003090180CELL EXTRACTScontrol0.000.000.000.009phoC1.111.113.334.449S1e102.12111.00149.85172.059L1a206.46111.0094.3583.259L1d5.114.774.003.119L1f27.7594.3582.1436.639S1b156.51111.0072.1528.869S1c72.1533.3021.0914.439S1i156.5183.2555.5026.64phoCwt194.25180.93149.85142.08SUPERNATANTScontrol0.000.000.000.009phoC0.330.000.000.009S1e0.110.220.440.899L1a4.885.995.997.229L1d0.110.110.110.119L1f0.110.220.110.119S1b1.441.441.441.679S1c0.440.780.560.679S1i0.220.440.220.78phoCwt34.4143.2987.69177.60


[0373] Some of the mutants produce high amounts of PhoC and in particular, mutant 9L1a can secrete PhoC in the culture medium. This is noteworthy since the signal peptide sequence of this mutant is only 9 amino acids long. This is the shortest signal peptide described to date.



EXAMPLE 21

[0374] C-Terminal Deletions of Maf-Related Proteins


[0375] MafB-related proteins include 730, ORF46 and ORF29.


[0376] The 730 protein from MC58 has the following sequence:
51  1 VKPLRRLTNL LAACAVAAAA LIQPALAADL AQDPFITDNAQRQHYEPGGK 51 YHLFGDPRGS VSDRTGKINV IQDYTHQMGN LLIQQANINGTIGYHTRFSG101 HGHEBHAPFD NHAADSASEE KGNVDEGPTV YRLNWEGHEHHPADAYDGPK151 GGNYPKPTGA RDEYTYHVNG TARSIKTJNPT DTRSIRQRISDNYSNLGSNF201 SDRADEANRK NFEHNAKLDR WGNBNEFING VAAQALNPFISAGEALGIGD251 ILYGTRYAID KAAMRNIAPL PAEGKFAVIG GLGSVAGFEKNTREAVDRWI301 QENPNAAETV EAVPNVAAAA KVAKLAKAAK PGKAAVSGDFADSYKKKLAL351 SDSARQLYQN AKYIREALDIH YEDLIRRXTD GSSKFINGREIDAVTNDALI401 QAKRTISAID KPKNFLNQKN RKQIKATIEA ANQQGKRAEFWFKYGVHSQV451 KSYIESKGGI VKTGLGD*


[0377] The leader peptide is underlined.


[0378] 730 shows similar features to ORF46 (see example 8 above):


[0379] as for Orf46, the conservation of the 730 sequence among MenB, MenA and gonococcus is high (>80%) only for the N-terminal portion. The C-terminus, from ˜340, is highly divergent.


[0380] its predicted secondary structure contains a hydrophobic segment spanning the central region of the molecule (aa. 227-247).


[0381] expression of the full-length gene in E. coli gives very low yields of protein. Expression from tagged or untagged constructs where the signal peptide sequence has been omitted has a toxic effect on the host cells. In other words, the presence of the full-length mature protein in the cytoplasm is highly toxic for the host cell while its translocation to the periplasm (mediated by the signal peptide) has no detectable effect on cell viability. This “intracellular toxicity” of 730 is particularly high since clones for expression of the leaderless 730 can only be obtained at very low frequency using a recA genetic background (E. coli strains: HB 101 for cloning; HMS 174(DE3) for expression).


[0382] To overcome this toxicity, a similar approach was used for 730 as described in example 8 for ORF46. Four C-terminal truncated forms were obtained, each of which is well expressed. All were obtained from intracellular expression of His-tagged leaderless 730.


[0383] Form A consists of the N-terminal hydrophilic region of the mature protein (aa 28-226). This was purified as a soluble His-tagged product, having a higher-than-expected MW.


[0384] Form B extends to the end of the region conserved between serogroups (aa 28-340). This was purified as an insoluble His-tagged product.


[0385] The C-terminal truncated forms named C1 and C2 were obtained after screening for clones expressing high levels of 730-His clones in strain HMS174(DE3). Briefly, the pET21b plasmid containing the His-tagged sequence coding for the full-length mature 730 protein was used to transform the recA strain HMS174(DE3). Transformants were obtained at low frequency which showed two phenotypes: large colonies and very small colonies. Several large and small colonies were analysed for expression of the 730-His clone. Only cells from large colonies over-expressed a protein recognised by anti-730A antibodies. However the protein over-expressed in different clones showed differences in molecular mass. Sequencing of two of the clones revealed that in both cases integration of an E. coli IS sequence had occurred within the sequence coding for the C terminal region of 730. The two integration events have produced in-frame fusion with 1 additional codon in the case of C1, and 12 additional codons in the case of C2 (FIG. 11). The resulting “mutant” forms of 730 have the following sequences:
52730-C1 (due to an IS1 insertion - FIG. 11A)  1 MADLAQDPFI TDNAQRQHYE PGGXYHLFGD PRGSVSDRTGKINVIQDYTH 51 QMGNLLIQQA NINGTIGYHT RFSGHGHEEH APFDNHAADSASEEKGNVDE101 GFTVYRLNWE GHEHHPADAY DGPKGGNYPK PTGARDEYTYHVNGTARSIK151 LNPTDTRSIR QRISDNYSNL GSNFSDRADB ANRKMFEHNAKLDRWGNSNB201 FINGVAAGAL NPFISAGEAL GIGDILYGTR YAIDKAAMRNIAPLPABGKF251 AVIGGLGSVA GFEKNTREAV DRWIQENPNA AETVEAVFNVAAAAKVAKLA301 KAAKPGKAAV SGDFADSYKK KLALSDSARQ LYQNAKYREALDIHYEDLIR351 RKTDGSSKFI NGREIDAVTN DALIQAR*


[0386] The additional amino acid produced by the insertion is underlined.
53730-c2 (due to en IS5 insertion - FIG. 11B)  1 MADLAQDPFI TDNAQRQHYE PGGKYHLFGD PRGSVSDRTGKINVIQDYTH 51 QMGNLLIQQA NINGTIGYHT RFSGIIGHEEH APPDNHAADSASHEKGNVDE101 GFTVYELNWE GHEHHPADAY DGPKGGNYPK PTGARDEYTYHVNGTARSIK151 LNPTDTRSIR QRISDNYSNL GSNFSDRADE ANRKMFEHNAKLDRWGNSME201 FINGVAAGAL NPFISAGEAL GIGDILYGTR YAIDKAAMRNIAPLPAEGKF251 AVIGGLGSVA GFEKNTREAV DRWIQENPNA ABTVBAVFNVAAAAKVAKLA301 KAAKPGKAAV SGDFADSYKK KLALSDSARQ LYQNAXYRHALGKVRISGBI351 LLG*


[0387] The additional amino acids produced by the insertion are underlined.


[0388] In conclusion, intracellular expression of the 730-C1 form gives very high level of protein and has no toxic effect on the host cells, whereas the presence of the native C-terminus is toxic. These data suggest that the “intracellular toxicity” of 730 is associated with the C-terminal 65 amino acids of the protein.


[0389] Equivalent truncation of ORF29 to the first 231 or 368 amino acids has been performed, using expression with or without the leader peptide (amino acids 1-26; deletion gives cytoplasmic expression) and with or without a His-tag.



EXAMPLE 22

[0390] Domains in 961


[0391] As described in example 9 above, the GST-fusion of 961 was the best-expressed in E.coli. To improve expression, the protein was divided into domains (FIG. 12).


[0392] The domains of 961 were designed on the basis of YadA (an adhesin produced by Yersinia which has been demonstrated to be an adhesin localized on the bacterial surface that forms oligomers that generate surface projection [Hoiczyk et al. (2000) EMBO J 19:5989-99]) and are: leader peptide, head domain, coiled-coil region (stalk), and membrane anchor domain.


[0393] These domains were expressed with or without the leader peptide, and optionally fused either to C-terminal His-tag or to N-terminal GST. E.coli clones expressing different domains of 961 were analyzed by SDS-PAGE and western blot for the production and localization of the expressed protein, from over-night (o/n) culture or after 3 hours induction with IPTG. The results were:
54Total lysatePeriplasmSupernatantOMV(Western(Western(WesternSDS-Blot)Blot)Blot)PAGE961 (o/n)961 (IPTG)+/−961-L (o/n)++961-L (IPTG)++961c-L (o/n)961c-L (IPTG)+++961Δ1-L (o/n)961Δ1-L (IPTG)++


[0394] The results show that in E.coli:


[0395] 961-L is highly expressed and localized on the outer membrane. By western blot analysis two specific bands have been detected: one at ˜45 kDa (the predicted molecular weight) and one at ˜180 kDa, indicating that 961-L can form oligomers. Additionally, these aggregates are more expressed in the over-night culture (without IPTG induction). OMV preparations of this clone were used to immunize mice and serum was obtained. Using overnight culture (predominantly by oligomeric form) the serum was bactericidal; the IPTG-induced culture (predominantly monomeric) was not bactericidal.


[0396] 961Δ1-L (with a partial deletion in the anchor region) is highly expressed and localized on the outer membrane, but does not form oligomers;


[0397] the 961c-L (without the anchor region) is produced in soluble form and exported in the supernatant.


[0398] Titres in ELISA and in the serum bactericidal assay using His-fusions were as follows:
55ELISABactericidal961a (aa 24-268)243974096961b (aa 269-405)776364961c-L297708192961c (2996)30774>65536961c (MC58)3343716384961d26069>65536


[0399]

E.coli
clones expressing different forms of 961 (961, 961-L, 961Δ1-L and 961c-L) were used to investigate if the 961 is an adhesin (cf. YadA). An adhesion assay was performed using (a) the human epithelial cells and (b) E.coli clones after either over-night culture or three hours IPTG induction. 961-L grown over-night (961Δ1-L) and IPTG-induced 961c-L (the clones expressing protein on surface) adhere to human epithelial cells.


[0400] 961c was also used in hybrid proteins (see above). As 961 and its domain variants direct efficient expression, they are ideally suited as the N-terminal portion of a hybrid protein.



EXAMPLE 23

[0401] Further Hybrids


[0402] Further hybrid proteins of the invention are shown below (see also FIG. 14). These are advantageous when compared to the individual proteins:
56ORF46.1-7411ATGTCAGATT TGGCAAACGA TTCTTTTATC CGGCAGGTTC TCGACCGTCA51GCATTTCGAA CCCGACGGGA AATACCACCT ATTCGGCAGC AGGGGGGAAC101TTGCCGAGCG CAGCGGCCAT ATCGGATTGG GAAAAATACA AAGCCATCAG151TTGGGCAACC TGATGATTCA ACAGGCGGCC ATTAAAGGAA ATATCGGCTA201CATTGTCCGC TTTTCCGATC ACGGGCACGA AGTCCATTCC CCCTTCGACA251ACCATGCCTC ACATTCCGAT TCTGATGAAG CCGGTAGTCC CGTTGACGGA301TTTAGCCTTT ACCGCATCCA TTGGGACGGA TACGAACACC ATCCCGCCGA351CGGCTATGAC GGGCCACAGG GCGGCGGCTA TCCCGCTCCC AAAGGCGCGA401GGGATATATA CAGCTACGAC ATAAAAGGCG TTGCCCAAAA TATCCGCCTC451AACCTGACCG ACAACCGCAG CACCGGACAA CGGCTTGCCG ACCGTTTCCA501CAATGCCGGT AGTATGCTGA CGCAAGGAGT AGGCGACGGA TTCAAACGCG551CCACCCGATA CAGCCCCGAG CTGGACAGAT CGGGCAATGC CGCCGAAGCC601TTCAACGGCA CTGCAGATAT CGTTAAAAAC ATCATCGGCG CGGCAGGAGA651AATTGTCGGC GCAGGCGATG CCGTGCAGGG CATAAGCGAA GGCTCAAACA701TTGCTGTCAT GCACGGCTTG GGTCTGCTTT CCACCGAAAA CAAGATGGCG751CGCATCAACG ATTTGGCAGA TATGGCGCAA CTCAAAGACT ATGCCGCAGC801AGCCATCCGC GATTGGGCAG TCCAAAACCC CAATGCCGCA CAAGGCATAG851AAGCCGTCAG CAATATCTTT ATGGCAGCCA TCCCCATCAA AGGGATTGGA901GCTGTTCGGG GAAAATACGG CTTGGGCGGC ATCACGGCAC ATCCTATCAA951GCGGTCGCAG ATGGGCGCGA TCGCATTGCC GAAAGGGAAA TCCGCCGTCA1001GCGACAATTT TGCCGATGCG GCATACGCCA AATACCCGTC CCCTTACCAT1051TCCCGAAATA TCCGTTCAAA CTTGGAGCAG CGTTACGGCA AAGAAAACAT1101CACCTCCTCA ACCGTGCCGC CGTCAAACGG CAAAAATGTC AAACTGGCAG1151ACCAACGCCA CCCGAAGACA GGCGTACCGT TTGACGGTAA AGGGTTTCCG1201AATTTTGAGA AGCACGTGAA ATATGATACG GGATCCGGAG GGGGTGGTGT1251CGCCGCCGAC ATCGGTGCGG GGCTTGCCGA TGCACTAACC GCACCGCTCG1301ACCATAAAGA CAAAGGTTTG CAGTCTTTGA CGCTGGATCA GTCCGTCAGG1351AAAAACGAGA AACTGAAGCT GGCGGCACAA GGTGCGGAAA AAACTTATGG1402AAACGGTGAC AGCCTCAATA CGGGCAAAAT GAAGAACGAC AAGGTCAGCC1451GTTTCQACTT TATCCGCCAA ATCGAAGTGG ACGGGCAGCT CATTACCTTG1501GAGAGTGGAG AGTTCCAAGT ATACAAACAA AGCCATTCCG CCTTAACCGC1551CTTTCAGACC GAGCAAATAC AAGATTCGGA GCATTCCGGG AAGATGGTTG1601CGAAACGCCA GTTCAGAATC GGCGACATAG CGGGCGAAQA TACATCTTTT1651GACAAGCTTC CCGAAGGCGG CAGGGCGACA TATCGCGGGA CGGCGTTCGG1701TTCAGACGAT GCCGGCGGAA AACTGACCTA CACCATAGAT TTCGCCGCCA1751AGCAGGGAAA CGGCAAAATC GAACATTTGA AATCGCCAGA ACTCAATGTC1801GACCTGGCCG CCGCCGATAT CAAGCCGGAT GGAAAACGCC ATGCCGTCAT1851CAGCGGTTCC GTCCTTTACA ACCAAGCCGA GAAAGGCAGT TACTCCCTCG1901GTATCTTTGG CGGAAAAGCC CAGGAAGTTG CCGGCAGCGC GGAAGTGAAA1951ACCGTAAACG GCATACGCCA TATCGGCCTT GCCGCCAAGC AACTCGAGCA2001CCACCACCAC CACCACTGA1MSDLANDSFI RQVLDRQHFE PDGKYHLFGS RGELABRSGH IGLGKIQSHQ51LGNIJMIQQAA IKGNIGYIVR FSDHGHEVHS PFDNHASHSD SDEAGSPVDG101FSLYRIHWDG YEHHPADGYD GPQGGGYPAP KGARDIYSYD IKGVAQNIEL151NLTDNRSTGQ RLADRFHNAG SMLTQGVGDG FKRATRYSPE LDRSGNAAEA201PNGTADIVKN IIGAAGEIVG AGDAVQGISE GSNIAVMHGL GLLSTENKMA251RINDLADMAQ IJKDYAAAAIR DWAVQNPNAA QGIEAVSNIF HAAIPIKGIG301AVRGKYGLGG IThHPIKRSQ MGAIALPKGK SAVSDNFADA AYAKYPSPYH351SRNIRSNLEQ RYGKENITSS TVPPSNGKNV KLADQRHPKT GVPFDGKGFP401NFEKHVKYDT GSGGGGVAAD IGAGLADALT APLDHKDKGL QSLTLDQSVR451RNEKLKLAAQ GABKTYGNGD SLNTGKLKND KVSRPDFIRQ IEVDGQLITL501ESGEFQVYKQ SHSALTAPQT BQIQDSEHSG KMVAKRQPRI GDIAGEHTSP551DKLPBGGRAT YRGTAFGSDD AGGKLTYTID FAAKQGNGKI EELKSPBLNV601DLAAADIKPD GKRHAVISGS VLYNQAEKGS YSLGIFGGKA QEVAGSABVK651TVNGIEHIGL AAKQLEHHHH HH*ORF46.1-961ATGTCAGATT TGGCAAACGA TTCTTTTATC CGGCAGGTTC TCGACCGTCA51GCATTTCGAA CCCGACGGGA AATACCACCT ATTCGGCAGC AGGGGGGAAC101TTGCCGAGCG CAGCGGCCAT ATOGGATTOG GAAAAATACA AAGCCATCAG151TTGGGCAACC TGATGATTCA ACAGGCGGCC ATTAAAGGAA ATATCGGCTA201CATTGTCCGC TTTTCCGATC ACGGGCACGA AGTCCATTCC CCCTTCGACA251ACCATGCCTC ACATTCCGAT TCTGATGAAG CCGGTAGTCC CGTTGACGGA301TTTAGCCTTT ACCGCATCCA TTGGGACGGA TACGAACACC ATCCCGCCGA351CGGCTATGAC GGGCCACAGG GCGGCGGCTA TCCCGCTCCC AAAGGCGCGA401GGGATATATA CAGOTACOAC ATAAAAGGCG TTGCCCAAAA TATCCGCCTC451AACCTGACCG ACAACCGCAG CACCGGACAA CGGCTTGCCG ACCGTTTCCA501CAATGCCGGT AGTATGCTGA CGCAAGGAGT AGGCGACGGA TTCAAACGCG551CCACCCGATA CAGCCCCGAG CTGGACAGAT CGGGCAATGC CGCCGAAGCC601TTCAACGGCA CTGCAGATAT CGTTAAAAAC ATCATCGGCG CGGCAGGAGA651AATTGTCGGC GCAGGCGATG CCGTGCAGGG CATAAGCGAA GGCTCAAACA701TTGCTGTCAT GCACGGCTTG GGTCTGCTTT CCACCGAAAA CAAGATGGCG751CGCATCAACG ATTTGGCAGA TATGGCGCAA CTCAAAGACT ATGCCGCAGC801AGCCATCCGC GATTGGGCAG TCCAAAACCC CAATGCCGCA CAAGGCATAG851AAGCCGTCAG CAATATCTTT ATGGCAGCCA TCCCCATCAA AGGGATTGGA901GCTGTTCGGG GAAAATACGG CTTGGGCGGC ATCACGGCAC ATCCTATCAA951GCGGTCGCAG ATGGGCGCGA TCGCATTGCC GAAAGGGAAA TCCGCCGTCA1001GCGACAATTT TGCCGATGCG GCATACGCCA AATACCCGTC CCCTTACCAT1051TCCCGAAATA TCCGTTCAAA CTTGGAGCAG CGTTACGGCA AAGAAAACAT1101CACCTCCTCA ACCGTGCCGC CGTCAAACGG CAAAAATGTC AAACTGGCAG1151ACCAACGCCA CCCGAAGACA GGCGTACCGT TTGACGGTAA AGGGTTTCCG1201AATTTTGAGA AGCACGTGAA ATATGATACG GGATCCGGAG GAGGAGGAGC1251CACAAACGAC GACGATGTTA AAAAAGCTGC CACTGTGGCC ATTGCTGCTG1301CCTACAACAA TGGCCAAGAA ATCAACGGTT TCAAAGCTGG AGAGACCATC1351TACGACATTG ATGAAGACGG CACAATTACC AAAAAAGACG CAACTGCAGC1401CGATGTTGAA GCCGACGACT TTAAAGGTCT GGGTCTGAAA AAAGTCGTGA1451CTAACCTGAC CAAAACCGTC AATGAAAACA AACAAAACGT CGATGCCAAA1501GTAAAAGCTG CAGAATCTGA AATAGAAAAG TTAACAACCA AGTTAGCAGA1551CACTGATGCC GCTTTAGCAG ATACTGATGC CGCTCTGGAT GCAACCACCA1601ACGCCTTGAA TAAATTGGGA GAAAATATAA CGACATTTGC TGAAGAGACT1651AAGACAAATA TCGTAAAAAT TGATGAAAAA TTAGAAGCCG TGGCTGATAC1701CGTCGACAAG CATGCCGAAG CATTCAACGA TATCGCCGAT TCATTGGATG1751AAACCAACAC TAAGGCAGAC GAAGCCGTCA AAACCGCCAA TGAAGCCAAA1801CAGACGGCCG AAGAAACCAA ACAAAACGTC GATGCCAAAG TAAAAGCTGC1851AGAAACTGCA GCAGGCAAAG CCGAAGCTGC CGCTGGCACA GCTAATACTG1901CAGCCGACAA GGCCGAAGCT GTCGCTGCAA AAGTTACCGA CATCAAAGCT1951GATATCGCTA CGAACAAAGA TAATATTGCT AAAAAAGCAA ACAGTGCCGA2001CGTGTACACC AGAGAAGAGT CTGACAGCAA ATTTGTCAGA ATTGATGGTC2051TGAACGCTAC TACCGAAAAA TTGGACACAC GCTTGGCTTC TGCTGAAAAA2101TCCATTGCCG ATCACGATAC TCGCCTGAAC GGTTTGGATA AAACAGTGTC2151AGACCTGCGC AAAGAAACCC GCCAAGGCCT TGCAGAACAA GCCGCGCTCT2201CCGGTCTGTT CCAACCTTAC AACGTGGGTC GGTTCAATGT AACGGCTGCA2251GTCGGCGGCT ACAAATCCGA ATCGGCAGTC GCCATCGGTA CCGGCTTCCG2301CTTTACCGAA AACTTTGCCG CCAAAGCAGG CGTGGCAGTC GGCACTTCGT2351CCGGTTCTTC CGCAGCCTAC CATGTCGGCG TCAATTACGA GTGGCTCGAG2401CACCACCACC ACCACCACTG A1MSDLPJWSFI RQVLDRQHFE PDGKYHLFGS RGELAERSGH IGLGKIQSHQ51LGNLHIQQAA IKGNIGYIVR FSDHGHEVHS PFDNHASHSD SDEAGSPVDG101FSLYPJHWDG YEHHPADGYD GPQGGGYPAP KGAEDIYSYD IKGVAQNIEL151NLTDNRSTGQ RLADRFHNAG BMLTQGVGDG FKRATRYSPE LDRSGNAAEA201FNGTADIVKN IIGAAGBIVG AGDAVQGISB GSNIAVMHGL GLLSTENKMA251RINflLADMAQ LKDYAAAAIR DWAVQNPNAA QGIEAVSNIF MAAIPIKGIG301AVRGKYGLGG ITAHPIKRSQ HGAIALPKGK SAVBDNFADA AYAKYPSPYH351SRNIRBNLEQ RYGXENITSS TVPPSNGKNV KLADQRHPKT GVPFDGKGFP401NFEKHVKYDT GSGGGGATND DDVKKAATVA IAAAYNNGQE INGFKAGETI451YDIDEDGTIT KKDATAADVE ADDPKGLGLK KVVTNLTKTV NENKQNVDAK501VKAAESHIEK LTTKLADTDA ALADTDAALD ATTNALNKLG ENITTFAEET551KTNIVKIDEK LEAVADTVDK HAEAFNDIAD SLDETNTKAD EAVKTANEAK601QTAEETKQNV DAKVKAABTA AGKAEAAAGT ANTAADKAEA VAAKVTDIKA651DIATNKDNIA KKMISADVYT REESDSKFVR IDGLNATTEK LDTPLASAEK701SIADHDTELN GLDRTVSDLR KETRQGLAEQ AALSGLPQPY NVGRFNVTAA751VGGYKSESAV AIGTGFRFTE NKAAKAGVAV GTSSGSSAAY HVGVNYEWLE801HHHHHH*ORF46.1-961c1ATGTCAGATT TGGCAAACGA TTCTTTTATC CGGCAGGTTC TCGACCGTCA51GCATTTCGAA CCCGACGGGA AATACCACCT ATTCGGCAGC AGGGGGGAAC101TTGCCGAGCG CAGCGGCCAT ATCGGATTGG GAAAAATACA AAGCCATCAG151TTGGGCAACC TGATGATTCA ACAGGCGGCC ATTAAAGGAA ATATCGGCTA201CATTGTCCGC TTTTCCQATC ACGGGCACGA AGTCCATTCC CCCTTCGACA251ACCATGCCTC ACATTCCGAT TCTGATGAAG CCGGTAGTCC CGTTGACGGA301TTTAGCCTTT ACCGCATCCA TTGGGACGGA TACGAACACC ATCCCGCCGA351CGGCTATGAC GGGCCACAGG GCGGCGGCTA TCCCGCTCCC AAAGGCGCGA401GGGATATATA CAGCTACGAC ATAAAAGGCG TTGCCCAAAA TATCCGCCTC451AACCTGACCG ACAACCGCAG CACCGGACAA CGGCTTGCCG ACCGTTTCCA501CAATGCCGGT AGTATGCTGA CGCAAGGAGT AGGCGACGGA TTCAAACGCG551CCACCCGATA CAGCCCCGAG CTGGACAGAT CGGGCAATGC CGCCGAAGCC601TTCAACGGCA CTGCAGATAT CGTTAAAAAC ATCATCGGCG CGGCAGGAGA651AATTGTCGGC GCAGGCGATG CCGTGCAGGG CATAAGCGAA GGCTCAAACA701TTGCTGTCAT GCACGGCTTG GGTCTGCTTT CCACCGAAAA CAAGATGGCG751CGCATCAACG ATTTGGCAGA TATGGCGCAA CTCAAAGACT ATGCCGCAGC801AGCCATCCGC GATTGGGCAG TCCAAAACCC CAATGCCGCA CAAGGCATAG851AAGCCGTCAG CAATATCTTT ATGGCAGCCA TCCCCATCAA AGGGATTGGA901GCTGTTCGGG QAAAATACGG CTTGGGCGGC ATCACGGCAC ATCCTATCAA951GCGGTCGCAG ATGGGCGCGA TCGCATTGCC GAAAGGGAAA TCCGCCGTCA1001GCGACAATTT TGCCGATGCG GCATACGCCA AATACCCGTC CCCTTACCAT1051TCCCGAAATA TCCGTTCAAA CTTGGAGCAG CGTTACGGCA AAGAAAACAT1101CACCTCCTCA ACCGTGCCGC CGTCAAACGG CAAAAATGTC AAACTGGCAQ1151ACCAACGCCA CCCGAAGACA GGCGTACCGT TTGACGGTAA AGGGTTTCCG1201AATTTTGAGA AGCACGTGAA ATATGATACG GGATCCGGAG GAGGAGGAGC1251CACAAACGAC GACGATGTTA AAAAAGCTGC CACTGTGGCC ATTGCTGCTG1301CCTACAACAA TGGCCAAGAA ATCAACGGTT TCAAAGCTOG AGAGACCATC1351TACGACATTG ATGAAGACGG CACAATTACC AAAAAAGACG CAACTGCAGC1401CGATGTTGAA GCCGACGACT TTAAAGGTCT GGGTCTGAAA AAAGTCGTGA1451CTAACCTGAC CAAAACCGTC AATGAAAACA AACAAAACGT CGATGCCAAP1501GTAAAAGCTG CAGAATCTGA AATAGAAAAG TTAACAACCA AGTTAGCAGA1551CACTGATGCC GCTTTAGCAG ATACTGATGC CGCTCTGGAT GCAACCACCA1601ACGCCTTGAA TAAATTGGGA GAAAATATAA CGACATTTGC TGAAGAGACT1651AAGACAAATA TCGTAAAAAT TGATGAAAAA TTAGAAGCCG TGGCTGATAC1701CGTCGACAAG CATGCCGAAG CATTCAACGA TATCQCCGAT TCATTGGATG1751AAACCAACAC TAAGGCAGAC GAAGCCGTCA AAACCGCCAA TGAAGCCAAA1801CAGACGGCCG AAGAAACCAA ACAAAACGTC GATGCCAAAG TAAAAGCTGC1851AGAAACTGCA GCAGGCAAAG CCGAAGCTGC CGCTGGCACA GCTAATACTG1901CAGCCGACAA GGCCGAAGCT GTCGCTGCAA AAGTTACCGA CATCAAAGCT1951GATATCGCTA CGAACAAAGA TAATATTGCT AAAAAAGCAA ACAGTGCCGA2001CGTGTACACC AGAGAAGAGT CTGACAGCAA ATTTGTCAGA ATTGATGGTC2051TGAACGCTAC TACCGAAAAA TTGGACACAC GCTTGGCTTC TGCTGAAAAA2101TCCATTGCCG ATCACGATAC TCGCCTGAAC GGTTTGGATA AAACAGTGTC2151AGACCTGCGC AAAGAAACCC GCCAAGGCCT TGCAGAACAA GCCGCGCTCT2201CCGGTCTGTT CCAACCTTAC AACGTGGGTO TCGAGCACCA CCACCACCAC2251CACTGA1MSDLANDSFI RQVIJDRQHFE PDGKYHLFGS RGELAERSGH IGLGKIQSHQ51LGNIJHIQQAA IKGNIGYIVR FSDHGHEVHS PFDNHASHSD SDEAGSPVDG101FSLYRIHWDG YEHHPADGYD GPQGGGYPAP KGARDIYSYD IKGVAQNIRL151NLTDNRSTGQ RLADRPHNAG SMLTQGVGDG FKRATRYSPE LDRSGNAAEA201FNGTADIVKN IIGAAGBIVG AGDAVQGISE GSNIAVMIGL GLLSTENKMA251RINDLAflHAQ LKDYAAAAIR DWAVQNPNAA QGIEAVSNIF MIAIPIRGIG301AVRGKYGLGG ITAHPIKRSQ MGAIALPKGK SAVSDNFADA AYAKYPSPYH351SRNIRSNLEQ RYGKENITSS TVPPSNGKNV KLADQRHPKT GVPFDGKGFP401NFEKHVKYDT GSGGGGATND DDVKKAATVA IAAAYNNGQB INGFKAGETI451YDIDEDGTIT KKDATAADVE ADDFKGLGLK KVVTNLTKTV NENKQNVDAX501VKAABSEIEK LTTKLADTDA ALADTDAALD ATTNALNKLG ENITTFAEET551KTNIVKIDBK LEAVADTVDK HAEAFNDIAD SLDETNTKAD EAVKTANEAK601QTAEETKQNV DAKVKAAETA AGKAEAAAGT ANTAADKAEA VAAKVTDIRA651DIATNKDNIA KKANSADVYT REESDSKFVR IDGLNATTRK LDTRLASAEK701SIADHDTRLN GLDKTVSDLR KBTRQGLAEQ AALBGLFQPY NVGLEHHHHH751H*961-ORF46.11ATGGCCACAA ACGACGACGA TGTTAAAAAA GCTGCCACTG TGGCCATTGC51TGCTGCCTAC AACAATGGCC AAGAAATCAA CGGTTTCAAA GCTGGAGAGA101CCATCTACGA CATTGATGAA GACGGCACAA TTACCAAAAA AGACGCAACT151GCAGCCGATG TTGAAGCCGA CGACTTTAAA GGTCTGGGTC TGAAAAAAGT201CGTGACTAAC CTGACCAAAA CCGTCAATGA AAACAAACAA AACGTCGATG251CCAAAGTAAA AGCTGCAGAA TCTGAAATAG AAAAGTTAAC AACCAAGTTA301GCAGACACTG ATGCCGCTTT AGCAGATACT GATGCCGCTC TGGATGCAAC351CACCAACGCC TTGAATAAAT TGGGAGATAA TATAACGACA TTTGCTGAAG401AGACTAAGAC AAATATCGTA AAAATTGATG AAAAATTAGA AGCCGTGGCT451GATACCGTCG ACAAGCATGC CGAAGCATTC AACGATATCG CCGATTCATT501GGATGAAACC AACACTAAGG CAGACGAAGC CGTCAAAACC GCCAATGAAG551CCAAACAGAC GGCCGAAGAA ACCAAACAAA ACGTCGATGC CAAAGTAAAA601GCTGCAGAAA CTGCAGCAGG CAAAGCCGAA GCTGCCGCTG GCACAGCTAA651TACTGCAGCC GACAAGGCCG AAGCTGTCGC TGCAAAAGTT ACCGACATCA701AAGCTGATAT CGGTACGAAC AAAGATAATA TTGCTAAAAA AGCAAACAGT751GCCGACGTGT ACACCAGAGA AGAGTCTGAC AGCAAATTTG TCAGAATTGA801TGGTCTGAAC GCTACTACCG AAAAATTGGA CACACGCTTG GCTTCTGCTG851AAAAATCCAT TGCCGATCAC GATACTCGCC TGAACGGTTT GGATAAAACA901GTGTCAGACC TGCGCAAAGA AACCCGCCAA GGCCTTGCAG AACAAGCCGC951GCTCTCCGGT CTGTTCCAAC CTTACAACGT GGGTCGGTTC AATGTAACGG1001CTGCAGTCGG CGGCTACAAA TCCGAATCGG CAGTCGCCAT CGGTACCGGC1051TTCCGCTTTA CCGAAAACTT TGCCGCCAAA GCAGGCGTGG CAGTCGGCAC1101TTCGTCCGGT TCTTCCGCAG CCTACCATGT CGGCGTCAAT TACGAGTGGG1151GATCCGGAGG AGGAGGATCA GATTTGGCAA ACGATTCTTT TATCCGGCAG1201GTTCTCGACC GTCAGCATTT CGAACCCGAC GGGAAATACC ACCTATTCGG1251CAGCAGGGGG GAACTTGCCG AGCGCAGCGG CCATATCGGA TTGGGAAAAA1301TACAAAGCCA TCAGTTGGGC AACCTGATGA TTCAACAGGC GGCCATTAAA1351GGAAATATCG GCTACATTGT CCGCTTTTCC GATCACGGGC ACGAAGTCCA1401TTCCCCCTTC GACAACCATG CCTCACATTC CGATTCTGAT GAAGCCGGTA1451GTCCCGTPGA CGGATTTAGC CTTTACCGCA TCCATTGGGA CGGATACGAA1501CACCATCCCG CCGACGGCTA TGACGGGCCA CAGGGCGGCG GCTATCCCGC1551TCCCAAAGGC GCGAGGGATA TATACAGCTA CGACATAAAA GGCGTTGCCC1601AAAATATCCG CCTCAACCTG ACCGACAACC GCAGCACCGG ACAACGGCTP1651GCCGACCGTT TCCACAATGC CGGTAGTATG CTGACGCAAG GAGTAGGCGA1701CGGATTCAAA CGCGCCACCC GATACAGCCC CGAGCTGGAC AGATCGGGCA1751ATGCCGCCGA AGCCTTCAAC GGCACTGCAG ATATCGTTAA AAACATCATC1801GGCGCGGCAG GAGAAATTGT CGGCGCAGGC GATGCCGTGC AGGGCATAAG1851CGAAGGCTCA AACATTGCTG TCATGCACGG CTTGGGTCTG CTTTCCACCG1901AAAACAAGAT GGCGCGCATC AACGATTTGG CAGATATGGC GCAACTCAAA1951GACTATGCCG CAGCAGCCAT CCGCGATTGG GCAGTCCAAA ACCCCAATGC2001CGCACAAGGC ATAGAAGCCG TCAGCAATAT CTTTATGGCA GCCATCCCCA2051TCAAAGGGAT TGGAGCTGTT CGGGGAAAAT ACGGCTTGGG CGGCATCACG2101GCACATCCTA TCAAGCGGTC GCAGATGGGC GCGATCGCAT TGCCGAAAGG2151GAAATCCGCC GTCAGCGACA ATTTTGCCGA TGCGGCATAC GCCAAATACC2201CGTCCCCTTA CCATTCCCGA AATATCCGTT CAAACTTGGA GCAGCGTTAC2251GGCAAAGAAA ACATCACCTC CTCAACCGTG CCGCCGTCAA ACGGCAAAAA2301TGTCAAACTG GCAGACCAAC GCCACCCGAA GACAGGOOTA CCGTTTGACG2351GTAAAGGGTT TCCGAATT1T GAGAAGCACG TGAAATATGA TACGCTCGAG2401CACCACCACC ACCACCACTG A1MATNDDDVKK AATVAIAAAY NNGQEINGFK AGETIYDIDE DGTITKKDAT51AADVEADDFK GLGLKKVVTN LTKTVNENKQ NVDAKVKAAE SEIEKLTTKL101ADTDAALALT DAALDATTNA LNKLGENITT FAEETKTNIV KIDEKLEAVA151DTVDKHAEAF NDIADSLDET NTKADEAVKT ANEAKQTAEE TKQNVDAKVK201AAETAAGKAE AAAGTANTAA DKABAVAAKV TDIKADIATN KDNIAKKANS251ADVYTREESD SKFVRIDGLN ATTEKLDTRL ASAEKSIADH DTRLNGLDKT301VSDLEKETRQ GLAEQAALSG LFQPYNVGRF NVTAAVGGYK SESAVAIGTG351FRPTENFAAK AGVAVGTSSG SSAAYHVGVN YEWGSGGGGS DLANDSFIRQ401VLDRQHFEPD GKYHLFGSRG ELABRSGEIG LGKIQSHQLG NLMIQQAAIK451GNIGYIVRFS DHGHEVHSPF D14EASHSDSD EAGSPVDGFS LYRIHWDGYE501HHPAflGYDGP QGGGYPAPKG APDIYSYDIK GVAQNIRLNL TDNRSTGQRL551ADRFENAGSM LTQGVGDGPR RATRYSPELD RSGNAAEAPN GTADIVKNII601GAAGEIVGAG DAVQGISEGS NIAVHMGLGL LSTENKMARI NDLADHAQLK651DYAAAAIRDW AVQNPNAAQG IEAVSNIFHA AIPIKGIGAV RGKYGLGGIT701AHPIKRSQHG AIALPKGKSA VSDNFADAAY AKYPSPYHSR NIRSNLEQRY751GKENITSSTV PPSNGKNVKL ADQRHPKTGV PFDGKGFPNF EKHVKYDTLE801HHHHHH*961-7411ATGGCCACAA ACGACGACGA TGTTAAAAAA GCTGCCACTG TGGCCATTGC51TGCTGCCTAC AACAATGGCC AAGAAATCAA CGGTTTCAAA GCTGGAGAGA101CCATCTACGA CATTGATGAA GACGGCACAA TTACCAAAAA AGACGCAACT151GCAGCCGATG TTGAAGCCGA CGACTTTAAA GGTCTGGGTC TGAAAAAAGT201CGTGAVTAAC CTGACCAAAA CCGTCAATGA AAACAAACAA AACGTCGATG251CCAAAGTACA AGCTGCAGAA TCTGAAATAG AAAAGTTAAC AACCAAGTTA301GCAGACACTG ATGCCGGTTT AGCAGATACT GATGCCGCTC TGGATGCAAC351CACCAACGCC TTGAATAAAT TGGGAGAAAA TATAACGACA TTTGCTGAAG401AGACTAAGAC AAATATCGTA AAAATTGATG AAAAATTAGA AGCCGTGGCT451GATACCGTCG ACAAGCATGC CGAAGCATTC AACGATATCG CCGATTCATT501GGATGAAACC AACACTAAGG CAGACGAAGC CGTCAAAACC GCCAATGAAG551CCAAACAGAC GGCCGAAGAA ACCAAAQAAA ACGTCGATGC CAAAGTAAAA601GCTGCAGAAA CTGCAGCAGG CAAAGCCGAA GCTGCCGCTG GCACAGCTAA651TACTGCAGCC GACAAGGCCG AGGGTGTCGC TGCAAAAGTT ACCGACATCA701AAGCTGATAT CGGTACGAAC AAAGATAATA TTGCTAAAAA AGCAAACAGT751GCCGACGTGT ACACCAGAGA AGAGTCTGAC AGCAAATTTG TCAGAATTGA801TGGTCTGAAC GCTACTACCG AAAAATTGGA CACACGCTTG GCTTCTGCTG851AAAAATCCAT TGCCGATCAC GATACTCGCC TGAACGGTTT GGATAAAACA901GTGTCACACC TGCGCAAAGA AACCCGCCAA GGCCTTGCAG AACAAGCCGC951GCTCTCCGGT CTGTTCCAAC CTTACAACGT GGGTCGGTTC AATGTAACGG1001CTGCAGTCGG CGGCTACAAA TCCGAATCGG CAGTCGCCAT CGGTACCGGC1051TTCCGCTTTA CCGAAAACTT TGCCGCCAAA GCAGGCGTGG CAGTCGGCAC1101TTCGTCCGGT TCTTCCGCAG CCTACCATGT CGGCGTCAAT TACGAGTGGG1151GATCCGGAGG GGGTGGTGTC GCCGCCGACA TCGGTGCGGG GCTTGCCGAT1201GCACTAACCG CACCGCTCGA CCATAAAGAC AAAGGTTTGC AGTCTTTGAC1251GCTGGATCAG TCCGTCAGGA AAAACGAGAA ACTGAAGCTG GCGGCACAAG1301GTGCGGAAAA AACTTATGGA AACGGTGACA GCCTCAATAC GGGCAAATTG1351AAGAACGACA AGGTCAGCCG TTTCGACTTT ATCCGCCAAA TCGAAGTGGA1401CGGGCAGCTC ATTACCTTGG AGAGTGGAGA GTTCCAAGTA TACAAACAAA1451GCCATPCCGC CTTAACCGCC TTTCAGACCG AGCAAATACA AGATTCGGAG1501CATTCCGGGA AGATGGTTGC GAAACGCCAG TTCAGAATCG GCGACATAGC1551GGGCGAACAT ACATCTTTTG ACAAGCTTCC CGAAGGCGGC AGGGCGACAT1601ATCGCGGGAC GGCGTTCGGT TCAGACGATG CCGGCGGAAA ACTGACCTAC1651ACCATAGATT TCGCCGCCAA GCAGGGAAAC GGCAAAATCG AACATTTGAA1701ATCGCCAGAA CTCAATGTCG ACCTGGCCGC CGCCGATATC AAGCCGGATG1751GAAAACGCCA TGCCGTCATC AGCGGTTCCG TCCTTTACAA CCAAGCCGAG1801AAAGGCAGTT ACTCCCTCGG TATCTTTGGC GGAAAAGCCC AGGAAGTTGC1851CGGCAGCGCG GAAGTGAAAA CCGTAAACGG CATACGCCAT ATCGGCCTTG1901CCGCCAAGCA ACTCGAGCAC CACCACCACC ACCACTGA1MATNDDDVKK AATVAIAAAY NNGQEINGFK AGETIYDIDE DGTITKKDAT51AADVEADDFK GLGLKKVVTN LTKTVNENKQ NVDAKVKAAE SEIEKLTTKL101ADTDAALADT DAALDATTNA LNKLGENITT FAEETKTNIV KIDEKLEAVA151DTVDKHAEAP NDIADSLDET NTKADEAVKT ANEAKQTAEE TKQNVDAKVK201AAETAAGKAE AAAGTANTAA DKAEAVAAKV TDIKADIATN KDNIAKKANS251ADVYTRBESD SKFVRIDGLN ATTEKLDTRL ASAEKSIADH DTRLNGLDKT301VSDIJRKETRQ GLAEQAALSG LFQPYNVGRP NVTAAVGGYK SESAVAIGTG351FRPTENFAAK AGVAVGTSSG SSAAYHVGVN YEWGSGGGGV DLANDSFIRQ401MJTAPLDHKD KGLQSLTLDQ SVRKNEKLKL AAQGAEKTYG NGDSLNTGKL451KNDKVSEFDF IRQIEVDGQL ITLESGEFQV YKQSHSALTA FQTEQIQDSE501HSGKMVAKRQ FRIGDIAGEH TSFDXLPEGG RATYRGTAFG SDDAGGKLTY551TIDFAAKQGN GKIEHIJKSPE LNVDLAAADI KPDGKRHAVI SGSVLYNQAE601KGSYSLGIFG GKAQEVAGSA EVKTVNGIRH IGLAAKQLEH HHHHH*961-9831ATGGCCACAA ACGACGAQGA TGTTAAAAAA GCTGCCACTG TGGCCATTGC51TGCTGCCTAC AACAATGGCC AAQAAATCAA CGGTTTCAAA GCTGGAGAGA101GCATGTACCA CATTGATGAA GACGGCACAA TTACCAAAAA AGACGCAACT151GCAGCCGATG TTGAACCGA CGACTTTAAA GGTCTGGGTC TGAAAAAAGT201CGTGACTAAC CTGACCAAAA CCGTCAATGA AAACAAACAA AACGTCGATG251CCAAAGTAAA AGCTGCAGAA TCTGAAATAG AAAAGTTAAC AACCAAGTTA301GCAGACACTG ATGCCGCTTT AGCAGATACT GATGCCGCTC TGGATGCAAC351CACCAACGCC TTGAATAAAT TGGGAGAAAA TATAACGACA TTTGCTGAAG401AGACTAAGAC AAATATCGTA AAAATTGATG AAAAATTAGA AGCCGTGGCT451GATACCGTCG ACAAGCATGC CGAAGCATTC AACQATATCG CCGATTCATT501GGATGAAACC AACACTAAGG CAGACGAAGC CGTCAAAACC GCCAATGAAG551CCAAACAGAC GGCCGAAGAA ACCAAACAAA ACGTCGATGC CAAAGTAAAA601GCTGCAGAAA CTGCAGCAGG CAAAGCCGAA GCTGCCGCTG GCACAGCTAA651TACTGCAGCC GACAAGGCCG AAGCTGTCGC TGCAAAAGTT ACCGACATCA701AAGCTGATAT CGCTACGAAC AAAGATAATA TTGCTAAAAA AGCAAACAGT751GCCGACGTGT ACACCAGAGA AGAGTCTGAC AGCAAATTTG TCAGAATTGA801TGGTCTGAAC GCTACTACCG AAAAATTGGA CACACGCTTG GCTTCTGCTG851AAAAATCCAT TGCCGATCAC GATACTCGCC TGAACGGTTT GGATAAAACA901GTGTCAGACC TGCGCAAAGA AACCCGCCAA GGCCTTGCAG AACAAGCCGC951GCTCTCCGGT CTGTTCCAAC CTTACAACGT GGGTCGGTTC AATGTAACGG1001CTGCAGTCGG CGGCTACAAA TCCGAATCGG CAGTCGCCAT CGGTACCGGC1051TTCCGCTTTA CCGAAAACTT TGCCGCCAAA GCAGGCGTGG CAGTCGGCAC1101TTCGTCCGGT TCTTCCGCAG CCTACCATGT CGGCGTCAAT TACGAGTGGG1151GATCCGGCGG AGGCGGCACT TCTGCGCCCG ACTTCAATGC AGGCGGTACC1201GGTATCGGCA GCAACAGCAG AGCAACAACA GCGAAATCAG CAGCAGTATC1251TTACGCCGGT ATCAAGAACG AAATGTGCAA AQACAGAAGC ATGCTCTGTG1301CCGGTCGGGA TGACGTTGCG GTTACAGACA GGGATGCCAA AATCAATGCC1351CCCCCCCCGA ATCTGCATAC CGGAGACTTT CCAAACCCAA ATGACGCATA1401CAAGAATTTG ATCAACCTCA AACCTGCAAT TGAAGCAGGC TATACAGGAC1451GCGGGGTAGA GGTAGGTATC GTCGACACAG GCGAATCCGT CGGCAGCATA1501TCCTTTCCCG AACTGTATGG CAGAAAAGAA CACGGGTATA ACGAAAATTA1551CAAAAACTAT ACGGCGTATA TGCGGAAGGA AGCGCCTGAA GACGGAGGCG1601GTAAAGACAT TGAAGCTTCT TTCGACGATG AGGCCGTTAT AGAGACTGAA1651GCAAAGCCGA CGGATATCCG CCACGTAAAA GAALTCGGAC ACATCGATTT1701GGTCTCCCAT ATTATTGGCG GGCGTTCCGT GGACGGCAGA CCTGCAGGCG1751GTATTGCGCC CGATGCGACG CTACACATAA TGAATACGAA TGATGAAACC1801AAGAACGAAA TGATGGTTGC AGCCATCCGC AATGCATGGG TCAAGCTGGG1851CGAACGTGGC GTGCGCATCG TCAATAACAG TTTTGGAACA ACATCGAGGG1901CAGGCACTGC CQACCTTTTC CAAATAGCCA ATTCGGAGGA GCAGTACCGC1951CAAGCGTTGC TCGACTATTC CGGCGGTGAT AAAACAGACG AGGGTATCCG2001CCTGATGCAA CAGAGCGATT ACGGCAACCT GTCCTACCAC ATCCGTAATA2051AAAACATGGT TTTCATCTTT TCGACAGGCA ATOACOCACA AGCTCAGCCC2101AACACATATG CCCTATTGCC ATTTTATGAA AAAGACGCTC AAAAAGGCAT2151TATCACAGTC GCAGGCGTAG ACCGCAGTGG AGAAAAGTTC AAACGGGAAA2201TGTATGGAGA ACCGGGTACA GAACCGCTTG AGTATGGCTC CAACCATTGC2251GGAATTACTG CCATGTGGTG CCTGTCGGCA CCCTATGAAG CAAGCGTCCG2301TTTCACCCGT ACAAACCCGA TTCAAATTGC CGGAACATCC TTTTCCGCAC2351CCATCGTAAC CGGCACGGCG GCTCTGCTGC TGCAGAAATA CCCGTGGATG2401AGCAACGACA ACCTGCGTAC CACGTTGCTG ACGACGGCTC AGGCCATCGG2451TGCAGTCGGC GTGGACAGCA AGTTCGGCTG GGGACTGCTG GATGCGGGTA2501AGGCCATGAA CGGACCCGCG TCCTTTCCGT TCGGCGACTT TACCGCCGAT2551ACGAAAGGTA CATCCGATAT TGCCTACTCC TTCCGTAACG ACATTTCAGG2601CACGGGCGGC CTGATCAAAA AAGGCGGCAG CCAACTGCAA CTGCACGGCA2651ACAACACCTA TACGGGCAAA ACCATTATCG AAGGCGGTTC GCTGGTGTTG2701TACGGCAACA ACAAATCGGA TATGCGCGTC GAAACCAAAG GTGCGCTGAT2751TTATAACGGG GCGGCATCCG GCGGCAGCCT GAACAGCGAC GGCATTGTCT2801ATCTGGCAGA TACCGACCAA TCCGGCGCAA ACGAAACCGT ACACATCAAA2851GGCAGTCTGC AGCTGGACGG CAAAGGTACG CTGTACACAC GTTTGGGCAA2901ACTGCTGAAA GTGGACGGTA CGGCGATTAT CGGCGGCAAG CTGTACATGT2951CGGCCGCGG CAACGGGGCA GGCTATCTCA ACACTACCGG ACGACGTGTT3001CCCTTCCTGA GTGCCGCCAA AATCGGGCAG GATTATTCTT TCTTCACAAA3051CATCGAAACC GACGGCGGCC TGCTGGCTTC CCTCGACAGC GCCGAAAAAA3101CAGCGGGCAG TGAAGGCGAC ACGCTGTCCT ATTATGTCCG TCGCGGCAAT3151GCGGCACGGA CTGCTTCGGC AGCGGCGCGT TCCGCGCCCG CCGGTCTGAA3201ACACGCCGTA GAACAGGGCG GCAGCAkTCT GGAAAACCTG ATGGTCGAAC3251TGGATGCCTC CQAATCATCC GCAACACCCG AGACGGTTGA AACTGCGGCA3301GCCGACCGCA CAGATATGCC GGGCATCCGC CCCTACGGCG CAACTTTCCG3351CGCAGCGGCA GCCGTACAGC ATGCGAATGC CGCCGACGGT GTACGCATCT3401TCAACAGTCT CGCCGCTACC GTCTATGCCG ACAGTACCGC CGCCCATGCC3451GATATGCAGG GACGCCGCCT GAAAGCCGTA TCGGACGGGT TGGACCACAA3501CGGCACGGGT CTGCGCGTCA TCGCGCAAAC CCAACAGGAC GGTGGAACGT3551GGGAACAGGG CQGTGTTGAA GGCAAAATGC GCGGCAGTAC CCAAACCGTC3601GGCATTGCCG CGAAAACCGG CGAAAATACG ACAGCAGCCG CCACACTGGG3651CATGGGACGC AGCACATGGA GCGAAAACAG TGCAAATGCA AAAACCGACA3701GCATTAGTCT GTTTGCAGGC ATACGGCACG ATGCGGGCGA TATCGGCTAT3751CTCAAAGGCC TGTTCTCCTA CGGACGCTAC AAAAACAGCA TCAGCCGCAG3801CACCGGTGCG GACGAACATG CGGAAGGCAG CGTCAACGGC ACGCTGATGC3851AGCTGGGCGC ACTGGGCGGT GTCAACGTTC CGTTTGCCGC AACGGGGGAT3901TTGAGGGTCG AACGCGGTCT GCGCTACGAC CTGCTCAAAG ACGATGCATT3951CGCCGAAAAA GGCAGTGCTT TGGGCTGGAG CGGCAACAGC CTCACTGAAG4001GCACGCTGGT CGGACTCGCG GGTCTGAAGC TGTCGCAACC CTTGAGCGAT4051AAAGCCGTCC TGTTTGCAAC GGCGGGCGTG GAACGCGACC TGAACGGACG4101CGACTACACG GTAACGGGCG GCTTTACCGG CGCGACTGCA GCACCCGGCA4151AGACGGGGGC ACGCAATATG CCGCACACCC GTCTGGTTGC CGGCCTGGGC4201GCGGATGTCG AATTCGGCAA CGGCTGGAAC GGCTTGGCAC GCTACAGCTA4251CGCCGGTTCC AAACAGTACG GCAACCACAG CGGACGAGTC GGCGTAGGCT4301ACCGGT4PCCT CGAGCACCAC CACCACCACC ACTGA1MATNDDDVKK AATVAIAAAAY NNGQEINGFK AGETIYDIDE DGTITKKDAT51AADVEADDFK GLGLKKVVTN LTKTVNENKQ NVDAKVKAAB SEIEKLTTKL101ALTDAALADT DAALDATTNA LNKLGENITT FAEETKTNIV KIDEKLEAVA151DTVDKHAEAF NDIADSLDET NTKADEAVKT ANEAKQTARE TKQNVDARVK201AAETAAGKAE AAAGTAMTAA DLAEAVAALV TDIKADIATN KDNIAKKANS251ADVYTREESD SKFVRIDGLN ATTEKLDTEL ASAEKSIADH DTRLNGLDKT301VSDLRKETRQ GLABQAALSG LFQPYNVGRP NWlAAVGGYK SESAVAIGTG351FRFTENFAAK AGVAVGTSSG SSAAYHVGVN YEWGSGGGGT SAPDFNAGGT401GIGSNSRATT AKSAAVSYAG INMEMCKDRS MLCAGRDDVA VTDPDAXINA451PPPNLHTGDF PNPNDAYKNL INLKPAIEAG YTGEQVEVGI VDTGESVGSI501SFPELYGRKE HGYNENYKNY TAYMRKEAPB DGGGKDIEAS FDDEAVIETE551AKPTDIREVK EIGHIDLVSH IIGGESVPGR PAGGIAPPAT LHIMNTNDET601KNEMMVAAIR NAWVKLGERG VRIVNNSFGT TSRAGTADLF QIANSEEQYR651QALLDYSGGD KTDRGIRLMQ QSDYGNLSYH IRKNKNLFIF STGNDAQAQP701NTYALLPFYE KDAQKGIITV AGVDRSGEKF KRENYGEPGT EPLEYGSNHC751GITAMWCLSA PYEASVRPTR TNPIQIAGTS FSAPIVTGTA ALLLQKYPWH801SNDNLRTTLL TTAQDIGAVG VDSKFGWGLL DAGKAMNGPA SFPFGDFTAD851TKGTSDIAYS FRNDISGTGG LIKKGGSQLQ LHGNNTYTGK TIIEGGSLVL901YGNNKSDMRV ETKGALIYNG AASGGSLNSD GIVYLADTDQ SGANETVHIK951GSLQIDGKGT LYTRLGKLLK VDGTAIIGGK LYMSAKGKGA GYLNSTGRRV1001PFLSAAKIGQ DYSPFTNIET DGGLLASLDS VEKTAGSEGD TLSYYVRPGN1051AARTABAAAH SAPAGLKHKV EQGGSNLENL HVBLDASBSS ATPETVHTAA1101ADRTDMPGIR PYGATFRAAA AVQHANAADG VRIFNSLAAT VYADSTAAHA1151DMQGRRLKAV TAAATLGMGR STSWENSANA KTDSISLFAG IRHDAGIGY1201GIAAKTGENT TAAATLGHGR STWSENSANA KTDSISLFAG IRHDAGDIGY1251LKGLFSYGRY KNSZSRSTQA DEHAEGSVNG TLNQLGALGG VNVPFAATGD1301LTVEGGLRYD LLKQDAPAEK GSALGWSGNS LTEGTLVGLA GIJKLSQPLSD1351KAVLFATAGV ERDLNGRDYT VTGGFTGATA ATGKTGARNM PHTRLVAGLG1401ADVEFGNGWN GLARYSYAGS KQYGNHSGRV GVGYRFLEHH HHHH*961c-ORF46.11ATGGCCACAA ACGACGACGA TGTTAAAAAA GCTGCCACTG TGGCCATTGC51TGCTGOCTAC AACAATGGCC AAGAAATCAA CGGTTTCAAA GCTGGAGAGA101CCATCTACGA CATTGATGAA GACGGCACAA TTACCAAAAA AGACGCAACT151GCAGCCGATG TTGAAGCCGA CGACTTTAAA GGTCTGGGTC TGAAAAAAGT201CGTGACTAAC CTGACCAAAA CCGTCAATGA AAACAAACAA AACGTCGATG251CCAAAGTAAA AGCTGCAGAA TCTGAAATAG AAAAGTTAAC AACCAAGTTA301GCAGACACTG ATGCCGCTTT AGCAGATACT GATGCCGCTC TGGATGCAAC351CACCAACGCC TTGAATAAAT TGGGAGAAAA TATAACGACA TTTGCTGAAG401AGACTAAGAC AAATATCGTA AAAATTGATG AAAAATTAGA AGCCGTGGCT451GATACCGTCG ACAAGCATGC CGAAGCATTC AACGATATCG CCGATTCATT501GGATGAAACC AACACTAAGG CAGACGAAGC CGTCAAAACC GCCAATGAAG551CCAAACAGAC GGCCGAAGAA ACCAAACAAA ACGTCGATGC CAAAGTAAAA601GCTGCAGAAA CTGCAGCAGG CAAAGCCGAA GCTGCCGTG GCACAGCTAA651TACTGCAGCC GACAAGGCCG AAGCTGTCGC TGCAAAAGTT ACCGACATCA701AAGCTGATAT CGCTACGAAC AAAGATAATA TTGCTAAAAA AGCAAACAGT751GCCGACGTGT ACACCAGAGA AGAGTCTGAC AGCAAATTTG TCAGAATTGA801TGGTCTGAAC GCTACTACCG AAAAATTGGA CACACGCTTG GCTTCTGCTG851AAAAATCCAT TGCCGATCAC GATACTCGCC TGAACGGTTT GGATAAAACA901GTGTCAGACC TGCGCAAAGA AACCCGCCAA GGCCTTGCAG AACAAGCCGC951GCTCTCCGGT CTGTTCCAAC CTTACAACGT GGGTGGATCC GGAGGAGGAG1001GATCAGATTT GGCAAACGAT TCTTTTATCC GGCAGGTTCT CGACCGTCAQ1051CATTTCGAAC CCGACGGGAA ATACCACCTA TTCGGCAGCA GGGGGGAACT1101TGCCGAGCGC AGCGGCCATA TCGGATTGGG AAAAATACAA AGCCATCAGT1151TGGGCAACCT GATGATTCAA CAGGCGGCCA TTAAAGGAAA TATCGGCTAC1201ATTGTCCGCT TTTCCGATCA CGGGCACGAA GTCCATTCCC CCTTCGACAA1251CCATGCCTCA CATTCCGATT CTGATGAAGC CGGTAGTCCC GTTGACGGAT1301TTAGCCTTTA CCGCATCCAT TGGGACGGAT ACGAACACCA TCCCGCCGAC1351GGTTATGACG GGCCACAGGG CGGCGGCTAT CCCGCTCCCA AAGGCGCQAG1401GGATATATAC AGCTACGACA TAAAAGGCGT TGCCCAAAAT ATCCGCCTCA1451ACCTGACCGA CAACCGCAGC ACCGGACAAC GGCTTGCCGA CCGTTTCCAC1501AATGCCGGTA GTATGCTGAC GCAAGGAGTA GGCGACGGAT TCAAACGCGC1551CACCCGATAC AGCCCCGAGC TGGACAGATC GGGCAATGCC GCCGAAGCCT1601TCAACGGCAC TGCAGATATC GTTAAAAACA TCATCGGCGC GGCAGGAGAA1651ATTGTCGGCG CAGGCGATGC CGTGCAGGGC ATAAGCGAAG GCTCAAACAT1701TGCAGTCATG CACGGCTTGG GTCTGCTTTC CACCGAAAAC AAGATGGCGC1751GCATCAACGA TTTGGCAGAT ATGGCGCAAC TCAAAGACTA TGCCGCAGCA1801GCCATCCGCG ATTGGGCAGT CCAAAACCCC AATGCCGCAC AAGGCATAGA1851AGCCGTCAGC AATATCTTTA TGGCAGCCAT CCCCATCAAA GGGATTGGAG1901CTGTTCGGGG AAAATACGGC TTGGGCGGCA TCACGGCACA TCCTATCAAG1951CGGTCGCAGA TGGGCGCGAT CGCATTGCCG AAAGGGAAAT CCGCCGTCAG2001CGACAATTTT QCCGATGCGG CATACGCCAA ATACCCGTCC CCTTACCATT2051CCCGAAATAT CCGTTCAAAC TTGGAGCAGC GTTACGGCAA AGAAAACATC2101ACCTCCTCAA CCGTGCCGCC GTCAAACGGC AAAAATGTCA AACTGGCAGA2151CCAACGCCAC CCGAAGACAG GCGTACCGTT TGACGGTAAA GGGTTTCCGA2201ATTTTGAGAA GCACGTGAAA TATGATACGC TCGAGCACCA CCACCACCAC2251CACTGA1MATNDDDVKK AATVAIAAAY NNGQEINGFK AGETIYDIDE DGTITKKDAT51AADVEADDFK GLGLKKVVTN LTKTVNENKQ NVDAKVKAAE SBIEKLTTKL101ADTDAALADT DAALDATTNA LNKLGENITT FAEETKTNIV KIDEKLEAVA151DTVDIWAPAP NDIADSLDET NTKADEAVKT ANEAKQTAEE TKQNVDAKVK201AABTAAGKAE AAAGTANTAA DKAEAVAAKV TDIKALLATN KDNIAKKANS251ADVYTRBESD SKPVRIDGLN ATTEKLDTEL ASAEKSIADH DTRLNGLDKT301VSDLRKETRQ GLAEQAALSG LFQPYNVGGS GGGGSDLAND SFIRQVLDRQ351HFEPDGKYHL FGSRGELAER SGHIGLGKIQ SHQLGNLMIQ QAAIKGNIGY401IVRFSDHGHE VHSPFDNHAS HSDSDEAGSP VDGFSLYRIH WDGYEHHPAD451GYDGPQGGGY PAPKGAPDZY SYDIKGVAQN IRLNLTDNRS TGQRLADRFH501NAGSNLTQGV GDGPKEATRY SPELDRSGNA AEAPNGTADI VKNIIGAAGE551IVGAGDAVQG ISEGSNIAVM HGLGLLSTEN KMARINDLAD MAQLKDYAAA601AIRDWAVQNP NAAQGIEAVS NIFMAAIPIK GIGAVEOKYG LGGITAHPIK651RSQMGAIALP KGKSAVSDNF ADAAYAKYPS PYHBRNIRBN LEQRYGKENI701TSSTVPPSNG KNVKLADQRH PKTGVPFDGK GPPNPEKBVK YDTLEHEHHH961c-7411ATGGCCACAA ACGACGACGA TGTTAAAAAA GCTGCCACTG TGGCCATTGC51TGCTGCCTAC AACAATGGCC AAGAAATCAA CGGTTTCAAA GCTGGAGAGA101CCATCTACGA CATTGATGAA GACGGCACAA TTACCAAAAA AGACGCAACT151GCAGCCGATG TTGAAGCCGA CGACTTTAAA GGTCTGGGTC TGAAAAAAGT201CGTGACTAAC CTGACCAAAA CCGTCAATGA AAACAAACAA AACGTCGATG251CCAAAGTAAA AGCTGCAGAA TCTGAAATAG AAAAGTTAAC AACCAAGTTA301GCAGACACTG ATGCCGCTTT AGCAGATACT GATGCCGCTC TGGATGCAAC351CACCAACGCC TTGAATAAAT TGGGAGAAAA TATAACGACA TTTGCTGAAG401AGACTAAGAC AAATATCGTA AAAATTGATG AAAAATTAGA AGCCGTGGCT453GATACCGTCG ACAAGCATGC CGAAGCATTC AACGATATCG CCGATTCATT501GGATGAAACC AACACTAAGG CAGACGAAGC CGTCAAAACC GCCAATGAAG551CCAAACAGCG GGCCGAAGAA ACCAAGCAAA ACGTCGATGC CAAAGTAAAA601GCTGCAGAAA CTGCAGCAGG CAAAGCCGAA GCTGCCGCTG GCACAGCTAA651TACTGCAGCC GACAAGGCCG AAGCTGTCGC TGCAAAATT ACCGACATCA701AAGCTGATAT CGCTACGAAC AAAGATAATA TTGCTAAAAA AGCAAACAGT751GCCGACGTGT ACACCAGAGA AGAGTCTGAC AGCAAATTTG TCAGAATTGA801TGGTCTGAAC GCTACTACCG AAAAATTGGA CACACGCTTG GCTTCTGCTG851AAAAATCCAT TGCCGATCAC GATACTCGCC TGAACGGTTT GGATAAAACA901GTGTCAGACC TGCGCAAAGA AACCCGCCAA GGCCTTGCAG AACAAGCCGC951GCTCTCCGGT CTGTTCCAAC CTTACAACGT GGGTGGATCC GGAGGGGGTG1001GTGTCGCCGC CGACATCGGT GCGGGGCTTG CCGATGCACT AACCGCACCG1051CTCGACCATA AAGACAAAGG TTTGCAGTCT TTGACGCTGG ATCAGTCCGT1101CAGGAAAAAC GAGAAACTGA AGCTGGCGGC ACAAGGTGCG GAAAAAACTT1151ATGGAAACGG TGACAGCCTC AATACGGGCA AATTGAAGAA CGACAAGGTC1201AGCCGTTTCG ACTTTATCCG CCAAATCGAA GTGGAQGGGC AGCTCATTAC1251CTTGGAGAGT GGAGAGTTCC AAGTATACAA ACAAAGCCAT TCCGCCTTAA1301CCGCCTTTCA GACCGAGCAA ATACAAGATT CGGAGCATTC CGGGAAGATG1351GTTGCGAAAC GCCAGTTCAG AATCGGCGAC ATAGCGGGCG AACATACATC1401TTTTGACAAG CTTCCCGAAG GCGGCAGGGC GACATATCGC GGGACGGCGT1451TCGGTTCAGA CGATGCCGGC GGAAAACTGA CCTACACCAT AGATTTCGCC1501GCCAAGCAGG GAAACGGCAA AATCGAACAT CTGAAATCGC CAGAACTCAA1551TGTCGACCTG GCCGCCGCCG ATATCAAGCC GGATGGAAAA CGCCATGCCG1601TCATCAGCGG TTCCGTCCTT TACAACCAAG CCGAGAAAGG CAGTTACTCC1651CTCGGTATCT TTGGCGGAAA AGCCCAGGAA GTTGCCGGCA GCGCGGAAGT1701GAAAACCGTA AACGGCATAC GCCATATCGG CCTTGCCGCC AAGCAACTCG1751AGCACCACCA CCACCACCAC TGA1MATNDDDVKK AATVAIAAAY NNGQEINGFK AGETIYDIDE DGTITICKDAT51AADVEADDFK GLGLKKVVTN LTKTVNENKQ NVDAKVKAAE SEIEKLTTKL101ADTDAALADT DAALDATTNA LNKLGBNITT FABETKTNIV KIDEKLEAVA151DTVDKHABAF NDIADSLDET NTKADEAVKT ANEAKQTAEE TKQNVDAKVK201AAETAAGKAE AAAGTANTAA DKAEAVAAKV TDZKADIATN KDNIAKKANS251ADVYTEEBSD SKPVRIDGLN ATTEKLDTEL ASAEKSIADH DTELNGLDKT301VSDLRXETRQ GLABQAALSG LFQPYNVGGS GGGGVAADIG AGLADALTAP351LDHDKGLQS LTLDQSVRKN EKLKLAAQGA EKTYGNGDSL NTGKLKNDKV401SEFDFIRQIE VDGQLITLES GEPQVYKQSH SALTAPQTEQ IQDSEHSGKH451VAKRQFRIGD IAGEHTSFDK LPBGGEATYR GTAPGSDDAG GKLTYTIDFA501AXQGNGKIEH LKSPELNVDL AAADIKPDGK RHAVISGSVL YNQA3KGSYS551LGIFGGKAQE VAGSAEVKTV NGIRHIGLAA KQLEHHHHHH *961c-9831ATGGCCACAA ACGACGACGA TGTTAAAAAA GCTGCCACTG TGGCCATTGC51TGCTGCCTAC AACAATGGCC AAGAAATCAA CGGTTTCAAA GCTGGAGAGA101CCATCTACGA CATTGATGAA GACGGCACAA TTACCAAAAA AGACGCAACT151GCAGCCGATG TTGAAGCCGA CGACTTTAAA GGTCTGGGTC TGAAAAAAGT201CGTGACTAAC CTGACCAAAA CCGTCAATGA AAAAAAACAA AACGTCGATG251CCAAAGTAAA AGCTGCAGAA TCTGAAATAG AAAAGTTAAC AACCAAGTTA301GCAGACACTG ATGCCGCTTT AGCAGATACT GATGCCGCTC TGGATGCAAC351CACCAACGCC TTGAATAAAT TGGGAGAAAA TATAACGACA TTTGCTGAAG401AGACTAAGAC AAATATCGTA AAAATTGATG AAAAATTAGA AGCCGTGGCT451GATACCGTCG ACAAGCATGC CGAAGCATTC AACGATATCG CCGATTCATT501GGATGAAACC AACACTAAGG CAGACGAAGC CGTCAAAACC GCCAATGAAG551CCAAACAGAC GGCCGAAGAA ACCAAACAAA ACGTCGATGC CAAAGTAAAA601GCTGCAGAAA CTGCAGCAGG CAAAGCCGAA GCTGCCGCTG GCACAGCTAA651TACTGCAGCC GACAAGGCCG AAGCTGTCGC TGCAAAAGTT ACCGACATCA701AAGCTGATAT CGCTACGAAC AAAGATAATA TTGCTAAAAA AGCAAACAGT751GCCGACGTGT ACACCAGAGA AGAGTCTGAC AGCAAATTTG TCAGAATTGA801TGGTCTGAAC GCTACTACCG AAAAATTGGA CACACGCTTG GCTTCTGCTG851AAAAATCCAT TGCCGATCAC GATACTCGCC TGAACGGTTT GGATAAAACA901GTGTCAGACC TGCGCAAAGA AACCCGCCAA GGCCTTGCAG AACAAGCCGC953GCTCTCCGGT CTGTTCCAAC CTTACAACGT GGGTGGATCC GGCGGAGGCG1001GCACTTCTGC GCCCGACTTC AATGCAGGCG GTACCGGTAT CGGCAGCAAC1051AGCAGAGCAA CAACAGCGAA ATCAGCAGCA GTATCTTACG CCGGTATCAA1101GAACGAAATG TGCAAAGACA GAAGCATGCT CTGTGCCGGT CGGGATGACG1151TTGCGGTTAC AGACAGGGAT GCCAAAATCA ATGCCCCCCC CCCGAATCTG1201CATACCGGAG ACTTTCCAAA CCCAAATGAC GCATACAAGA ATTTGATCAA1251CCTCAAACCT GCAATTGAAG CAGGCTATAC AGGACGCGGG GTAGAGGTAG1301GTATCGTCGA CACAGGCGAA TCCGTCGGCA GCATATCCTT TCCCGAACTG1351TATGGCAGAA AAGAACACGG CTATAACGAA AATTACAAAA AcTATACGGC1401GTATATGCGG AAGGAAGCGC CTGAAGACGG AGGCGGTAAA GACATTGAAG1451CTTCTTTCGA CGATGAGGCC GTTATAGAGA CTGAAGCAAA GCCGACGGAT1501ATCCGCCACG TAAAAGAAAT CGGACACATC GATTTGGTCT CCCATATTAT1551TGGCGGGCGT TCCGTGGACG GCAGACCTGC AGGCGGTATT GCGCCCGATG1601CGACGCTACA CATAATGAAT ACGAATGATG AAACCAAGAA CGAAATGATG1651GTTGCAGCCA TCCGCAATGC ATGGGTCAAG CTGGGCGAAC GTGGCGTGCG1701CATCGTCAAT AACAGTTTTG GAACAACATC GAGGGCAGGC ACTGCCGACC1751TTTTCCAAAT AGCCAATTCG GAGGAGCAGT ACCGCCAAGC GTTGCTCGAC1801TATTCCGGCG GTGATAAAAC AGACGAGGGT ATCCGCCTGA TGCAACAGAG1851CGATTACGGC AACCTGTCCT ACCACATCCG TAATAAAAAC ATGCTTTTCA1901TCTTTTCGAC AGGCAATQAC GCACAAGCTC AGCCCAACAC ATATGCCCTA1951TTGCCATTTT ATGAAAAAGA CGCTCAAAAA GGCATTATCA CAGTCGCAGG2001CGTAGACCGC AGTGGAGAAA AGTTCAAACG GGAAATGTAT GGAGAACCGG2051GTACAGAACC GCTCGAGTAT GGCTCCAACC ATTGCGGAAT TACTGCCATG2101TGGTGCCTGT CGGCACCCTA TGAAGCAAGC GTCCGTTTCA CCCGTACAAA2151CCCGATTCAA ATTGCCGGAA CATCCTTCC CGCACCCATC GTAACCGGCA2201CGGCGGCTCT GCTGCTGCAQ AAATACCCGT GGATGAGCAA CGACAACCTG2251CGTACCACGT TGCTGACGAC GGCTCAGGAC ATCGGTGCAG TCGGCGTGGA2301CAGCAAGTTC GGCTGGGGAC TGCTGGATGC GGGTAAGGCC ATGAACGGAC2351CCGCGTCCTT TCCGTTCGGC GACTTTACCG CCGATACGAA AGGTACATCC2401GATATTGCCT ACTCCTTCCG TAACGACATT TCAGGCACGG GCGGCCTGAT2451CAAAAAAGGC GGCAGCCAAC TGCAACTGCA CGGCAACAAC ACCTATACGG2501GCAAAACCAT TATCGAAGGC GGTTCGCTGG TGTTGTACGG CAACAACAAA2551TCGGATATGC GCGTCGAAAC CAAAGGTGCG CTGATTTATA ACGGGGCGGC2601ATCCGGCGGC AGCCTGAACA GCGACGGCAT TGTCTATCTG GCAGATACCG2651ACCAATCCGG CGCAAACGAA ACCOTACACA TCAAAGGCAG TCTGCAGCTG2701GAGGGCAAAG GTACGCTGTA CACACGWG GGCAAACTGC TGAAAGTGGA2751CGGTACGGCG ATTATCGGCG GCAAGCTGTA CATGTCGGCA CGCGGCAAGG2801GGGCAGGCTA TCTCAACAGT ACCGGACGAC GTGTTCCCTT CCTGAGTGCC2851GCCAAAATCG GGCAGGATTA TTCTTTCTTC ACAAACATCG AAACCGACGG2901CGGCCTGCTG GCTTCCCTCG ACAGCGTCGA AAAAACAGCG GGCAGTGAAG2951GCGACACGCT GTCTTATTAT GTCCGTCGCG GCAATGCGGC ACGGACTGCT3001TCGGCAGCGG CACATTCCGC GCCCGCCGGT CTGAAACACG CCGTAGAACA3051GGGCGGCAGC AATCTGGAAA ACCTGATGGT CGAACTGGAT GCCTCCGAAT3101CATCCGCAAC ACCCGAGACG GTTGAAACTG CGGCAGCCGA CCGCACAGAT3151ATGCCGGGCA TCCGCCCCTA CGGCGCAACT TTCCGCGCAG CGGCAGCCGT3201ACAGCATGCG AATGCCGCCG ACGGTGTACG CATCTTCAAC AGTCTCGCCG3251CTACCGTCTA TGCCGACAGT ACCGCCGCCC ATGCCGATAT GCAGGGACGC3301CGCCTGAACG CCGTATCGGA CGGGTTGGAC CACAACGGCA CGGGTCTGCG3351CGTCATCGCG CAAACCCAAC AGGACGGTGG AACGTGGGAA CAGGGCGGTG3401TTGAAGGCAA AATGCGCGGC AGTACCCAAA CCGTCGGCAT TGCCGCGAAA3451ACCGGCGAAA ATACGACAGC AGCCGCCACA CTGGGCATGG GACGCAGCAC3501ATGGAGCGAA AACAGTGCAA ATGCAAAAAC CGACAGCATT AGTCTGTTTG3551CAGGCATACG GCACGATGCG GGCGATATCG GCTATCTCAA AGGCCTGTTC3601TCCTACGGAC GCTACAAAAA CAGCATCAGC CGCAGCACCG GTGCGGACGA3651ACATGCGGAA GGCAGCGTCA ACGGCACGCT GATGCAQCTG GGCGCACTGG3701GCGGTGTCAA CGTTCCGCT GCCGCAACGG GAGATTTGAC GGTCGAAGGC3751GGTCTGCGCT ACGACCTGCT CAAACAGGAT GCATTCGCCG AAAAAGGCAG3801TGCTTTGGGC TGGAGCGGCA ACAGCCTCAC TGAAGGCACG CTGGTCGGAC3851TCGCGGGTCT GAAGCTGTCG CAACCCTTGA GCGATAAAGC CGTCCTGTTT3901GCAACGGCGG GCGTGGAACG CGACCTGAAC GGACGCGACT ACACGGTAAC3951GGGCGGCTTT ACCGGCGCGA CTGCAGCAAC CGGCAAGACG GGGGCACGCA4001ATATGCCGCA CACCCGTCTG GTTGCCGGCC TGGGCGCGGA TGTCGAATTC4051GGCAACGGCT GGAACGGCTT GGCACGTTAC AGCTACGCCG GTTCCAAACA4101GTACGGCAAC CACAGCGGAC GAGTCGGCGT AGGCTACCGG TTCCTCGAGC4151ACCACCACCA CCACCACTGA1MATNDDDVKK AATVAIAAAY NNGQEINGFK AGETIYDIDE DGTITKKDAT51AADVEADDFK GLGLXKVVTN LTKTVNENKQ NVDAKVKAAE SEIEKLTTKL101ADTDAALAflT DAALDATTNA LNKLGENITT PAEETKTNIV KIDEKIAEAVA151DTVDKHAEAF NDIADSIJDET NTKADEAVKT AEAKQTAEE TKQNVDAKVK201AAETAAGKAE AAAGTANTAA DKAEAVAARV TDIKADIATN XDNIAKKANS251ADVYTREESD SKFVRIDGLN ATTEKLDTRL ASAEKSIADH DTRLNGLDKT301VSDLRKETRQ GLAEQAALSG LFQPYNVGGS GGGGTSAPDF NAGGTGIGSN351SRATTAXSAA VSYAGIKNEM CKDRSMLCAG RDDVAVTDRD AKINAPPPNL401HTGDFPNPND AYKNLINLKP AIEAGYTGRG VEVGIVDTGE SVGSISFPEL451YGRKEEGYNE NYKNYTAYMR KEAPEDGGGK DIEASFDDEA VIETEAKPTD501IRHVKEIGHI DIJVSHHGGR SVDGRPAGGI APDATLHIMN TNDETKNEMM551VAAIRNAWVK LGERGVRIVN NSFGTTSRAG TADLFQIANS EEQYRQALLD601YSGGDKTDEG IRLMQQSDYG NLSYHIRNKN MLFIFSTGND AQAQPNTYAL651LPFYEDAQK GIITVAGVDR SGEKPKEEKY GEPGTEPLEY GSNHCGITAM701WCLSAPYEAS VRFTRTNPIQ IAGTSFSAPI VTGTAALLLQ KPWMSNDNL751RTTLLTTAQD IGAVUVDSKP GWGLLDAGKA MNGPASFPFG DFTADTKGTS801DIAYSFRNDI SGTGGLIKKG GSQLQLHGHNN TYTGKTIIEG GSLVLYGNNK851SDHRVETKGA LIYNGAASGG SLNSDGIVYD ADTDQSGANIE TVHIKGBLQL901DGKGTLYTPL GKIJLKVDGTA IIGGELYNSA RGKGAGYLNS TGERVPFLSA951AKIGQDYSPF TNIETDGGLL ASLDSVEKTA GSEGDTLSYY VRRGNAARTA1001SAAAHSAPAG LKHAVEQGGS NLBNIMVELD ASESSATPET VETAAADRTD1051MPGIRPYGAT FRAAAAVQHA NAADGVRIFN SLAATVYADS TAAEADMQGR1101RLKAVSDGLD HNGTGLRVIA QTQQDGGTWE QGGVEGKNRG STQTVGIAAK1151TGENTTAAAT LGMGRSTWSE NSANAKTDSI SLPAGIRHDA GDIGYLKGLF1201SYGRYKNSIS RSTGADEHAE GSVNGTIMQL GALGGVNVPP AATGDLTVEG1251GLRYDLLKQD AFAEKGSALG WSGNSLTEGT LVGLAGLKLS QPLSDRAVLF1301ATAGVERDLN GRDYTVTGGF TGATAATGKT GARNMPHTRL VAGLGADVEF1351GNGWNGLARY SYAGSKQYGN HSGRVGVGYR FLEHHHHHH*961cL-0RF46.11ATGAAACACT TTCCATCCAA AGTACTGACC ACAGCCATCC TTGCCACTTT51CTGTAGCGGC GCACTGGCAG CCACAAACGA CGACGATGTT AAAAAAGCTG101CCAGTGTGGC CATTGCTGCT GCCTACAACA ATGGCCAAGA AATCAACGGT151TTCAAAGCTG GAGAGACCAT CTACGACATT GATGAAGACG GCACAATTAC201CAAAAAAGAC GCAACTGCAG CCGATGTTGA AGCCGACQAC TTTAAAGGTC251TGGGTCTGAA AAAAGTCGTG ACTAACCTGA CCAAAACCGT CAATGAAAAC301AAACAAAACG TCGATGCCAA AGTAAAAGCT GCAGAATCTG AAATAGAAAA351GTTAACAACC AAGTTAGCAG ACACTGATGC CGCTTTAGCA GATACTGATG401CCGCTCTGGA TGCAACCACC AACGCCTTGA ATAAATTGGG AGAAAATATA451ACGACATTTG CTGAAGAGAC TAAGACAAAT ATCGTAAAAA TTGATGAAAA501ATTAGAAGCC GTGGCTGATA CCGTCGACAA GCATGCCGAA GCATTCAACG551ATATCGCCGA TTCATTGGAT GAAACCAACA CTAAGGCAGA CGAAGCCGTC601AAAACCGCCA ATGAAGCCAA ACAGACGGCC GAAGAAACCA AACAAAACGT651CGATGCCAAA GTAAAAGCTG CAGAAACTGC AGCAGGCAAA GCCGAAGCTG701CCGCTGGCAC AGCTAATACT GCAGCCGACA AGGCCGAAGC TGTCGCTGCA751AAAGTTACCG ACATCAAAGC TGATATCGCT ACGAACAAAG ATAATATTGC801TAAAAAAGCA AACAGTGCCG ACGTGTACAC CAGAGAAGAG TCTGACAGCA851AATTTGTCAG AATTGATGGT CTGAACGCTA CTACCGAAAA ATTGGACACA901CGCTTGGCTT CTGCTGAAAA ATCCATTGCC GATCACGATA CTCGCCTGAA951CGGTTTGGAT AAAACAGTGT CAGACCTGCG CAAAGAAACC CGCCAAGGCC1001TTGCAGAACA AGCCGCGCTC TCCGGTCTGT TCCAACCTTA CAACGTGGGT1051GGATCCGGAG GAGGAGGATC AGATTTGGCA AACGATTCTT TTATCCGGCA1101GGTTCTCGAC CGTCAGCATT TCGAACCCGA CGGGAAATAC CACCTATTCG1151GCAGCAGGGG GGAACAGGCC GAGCGCAGCG GCCATATCGG ATTGGGAAAA1201ATACAAAGCC ATCAGTTGGG CAACCTGATG ATTCAACAGG CGGCCATTAA1251AGGAAATATC GGCTACATTG TCCGCTTTTC CQATCACGGG CACGAAGTCC1301ATTCCCCCTT CGACAACCAT GCCTCACATT CCGATTCTGA TGAAGCCGGT1351AGTCCCGTTG ACGGATTTAG CCTTTACCGC ATCCATTGGG ACGGATACGA1401ACACCATCCC GCCGACGGCT ATGACGGGCC ACAGGGCGGC GGCTATCCCG1451CTCCCAAAGG CGCGACGGAT ATATACAGCT ACGACATAAA AGGCGTTGCC1501CAAAATATCC GCCTCAACCT GACCGACAAC CGCAGCACCG GACAACGGCT1551TGCCGACCGT TTCCACAATG CCGGTAGTAT GCTGACGCAA GGACTAGGCG1601ACGGATTCAA ACGCGCCACC CGATACAGCC CCGAGCTGGA CAGATCGGGC1651AATGCCGCCG AAGCCTTCAA CGGCACTGCA GATATCGTTA AAAACATCAT1701CGGCGCGGCA GGAGAAATTG TCGGCGCAGG CGATGCCGTG CAGGGCATAA1751GCGAAGGCTC AAACATTGCT GTCATGCACG GCTTGGGTCT GCTTTCCACC1801GAAAACAAGA TGGCGCGCAT CAACGATTTG GCAGATATGG CGCAACTCAA1851AGACTATGCC GCAGCAGCCA TCCGCGATTG GGCAGTCCAA AACCCCAATG1901CCGCACAAOG CATAGAAGCC GTCAGCAATA TCTTTATGGC AGCCATCCCC1951ATCAAAGGGA TTGGAGCTGT TCGGGGAAAA TACGGCTTGG GCGGCATCAC2001GGCACATCCT ATCAAGCGGT CGCAGATGGG CGCGATCGCA TTGCCGAAAG2051GGAAATCCGC CGTCAGCGAC AATTTTGCCG ATGCGGCATA CGCCAAATAC2101CCGTCCCCTT ACCATTCCCG AAATATCCGT TCAAACTTGG AGCAGCGTTA2151CGGCAAAGAA AACATCACCT CCTCAACCGT GCCGCCGTCA AACGGCAAAA2201ATGTCAAACT GGCAGACCAA CGCCACCCGA AGACAGGCGT ACCGTTTGAC2251GGTAAAGGGT TTCCGAATTT TGAGAAGCAC GTGAAATATG ATACGTAACT2301CGAG1MKHFPSKVLT TAILATFCSG ALAATNDDDV KKAATVAIAA AYNNGQEING51FKAGBTIYDI DEDGTITKKD ATAADVBADD FKGLGLKKVV TNLTKTVNEN101KQNVDAXVKA AESBIEILTT KLADTDAALA DTDAALDATT NALNKLGENI151TTFAEETKTN IVKIDEKLEA VADTVDKHAE AFNDIADSLD ETNTKADEAV201KTANEAKQTA EETKQNVDAK VKAAETAAGR AEAAAGTANT AADKAEAVAA251KVTDIKADIA TNKDNIAKKA NSADVYTRBE SDSKFVRIDG LNATTEKIJDT301RLASAEKSIA DHDTRLNGLD KWSDLRKRT RQGLAEQAAL SGLPQPYNVG351GSGGOGSDLA NDSFIRQVLD RQHFEPDGKY HLFGSRGELA ERSGHIGLGK401IQSHQLGNIM ZQQAAIKGNI GYIVRFSDHG HHVHSPFDNH ASHSDSDEAG451SPVDGFSLYR IHWDGYEHHP ADGYDGPQGG GYPAPKGARD IYSYDIKGVA501QNIRLNLTDN RSTGQRLADR FHNAGSMLTQ GVGDGFKRAT RYSPELDRSG551NAAEAPNGTA DIVKNIIGAA GEIVGAGDAV QGISBGSNIA VMHGLGLLST601ENKMARINDL ADNAQLKDYA AAAIRDWAVQ NPNAAQGIEA VSNIFNAAIP651IKGIGAVRGK YGLGGITAHP IKRSQMGAIA LPKGKSAVSD NFADAAYAKY701PSPYHSRNIR SNLEQRYGK NITSSTVPPS NGKNVKLADQ RHPKTGVPFD751GKGFPNFEKH VKYDT*961cL-7411ATGAAACACT TTCCATCCAA AGTACTGACC ACAGCCATCC TTGCCACTTT51CTGTAGCGGC GCACTGGCAG CCACAAACGA CGACGATGTT AAAAAAGCTG101CCACTGTGGC CATTGCTGCT GCCTACAACA ATGGCCAACA AATCAACGGT151TTCAAAGOTG GAGACACCAT CTACGACATT GATGAAGACG GCACAATTAC201CAAAAAAGAC GCAACTGCAG CCGATGTTGA AGCCGACGAC TTTAAAGGTC251TGGGTCTGAA AAAAGTCGTG ACTAACCTGA CCAAAACCGT CAATGAAAAC301AAACAAAACG TCGATGCCAA AGTAAAAGCT GCAGAATCTG AAATAGAAAA351GTTAACAACC AAGTTAGCAG ACACTGATGC CGCTTTAGCA GATACTGATG401CCGCTCTGGA TGCAACCACC AACGCCTTGA ATAAATTGGG AGAAAATATA451ACGACATTTG CTGAAGAGAC TAAGACAAAT ATCGTAAAAA TTGATGAAAA501ATTAGAAGCC GTGGCTGATA CCGTCGACAA GCATGCCGAA GCATTCAACG551ATATCGCCGA TTCATTGGAT GAAACCAACA CTAAGGCAGA CGAAGCCGTC601AAAACCGCCA ATGAAGCCAA ACAGACGGCC GAAGAAACCA AACAAAACGT651CGATGCCAAA GTAAAAGCTG CAGAAACTGC AGCAGGCAAk GCCGAAGCTG701CCGCTGGCAC AGCTAATACT GCAGCCGACA ACGCCGAAGC TGTCGCTGCA751AAAGTTACCG ACATCAAAGC TGATATCGCT ACGAACAAAG ATAATATPGC801TAAAAAAGCA AACAGTGCCG ACGTGTACAC CAGAGAAGAG TCTGACAGCA851AATTTGTCAG AATTGCTGGT CTGAACGCTA CTACCGAAAA ATTGGACACA901CGCTTGGCTT CTGCTGAAAA ATCCATTGCC GATCACGATA CTCGCCTGAA951CGGGTTGGAT AAAACAGTGT CACACCTGCG CAAAGAAACC CGCCAAGGCC1001TTGCAGAACA AGCCGCGCTC TCCGGTCTGT TCCAACCTTA CAACGTGGGT1051GGATCCGGAC GGGGTGGTGT CGCCGCCGkC ATCGGTGCGG GGCTTGCCGA1101TGCACTAACC GCACCGCTCG ACCATAAAGA CAAAGGTTTG CAGTCTTTGA1151CGCTGGATCA GTCCGTCAGG AAAAACGAGA AACTGAAGGT GGCGGCACAA1201GGTGCGGAAA AAACTTATGG AAACGGTGAC AGCCTCAATA CGGGCAAATT1251GAAGAACGAC AAGGTCAGCC GTTTCGACTT TATCCGCCAA ATCGAAGTGG1301ACGGGCAGOT CATTACCTTG GAGAGTGGAG AGTTCCAAGT ATACAAACAA1351AGCCATTCCG CCTTAACCGC CTTTCAGACC GAGCAAATAC AAGATTCGGA1401GCATTCCGGG AAGATGGTTG CGAAACGCCA GTTCAGAATC GGCGACATAG1451CGGGCGAACA TACATCTTTT GACAAGCTTC CCGAAGGCGG CAGGGCGACA1501TATCGCGGGA CGGCGTTCGG TTCAGACGAT GCCGGCGGAA AACTGACCTA1551CACCATAGAT TTCGCCGCCA AGCAGGGAAA CGGCAAAATC GAACATTTGA1601AATCGCCAGA ACTCAATGTC GACCTGGCCG CCGCCGATAT CAAGCCGGAT1651GGAAAACGCC ATGCCGTCAT CAGCGGTTCC GTCCTTTACA ACCAAGCCGA1701GAAAGGCAGT TACTCCCTCG GTATCTTTGG CGGAAAAGCC CAGGAAGTTG1751CCGGCAGCGC GGAAGTGAAA ACCGTAAACG GCATACGCCA TATCGGCCTT1801GCCGCCAAGC AACTCGAGCA CCACCACCAC CACCACTGA1MKHFPSKVLT TAILATFCSG ALAATNDDDV KKAATVAZAA AYNNGQEING51FKAGETIYDI DEDGTITKKD ATAADVEADD FKGLGLKKVV TNLTKTVNEN101KQNVDAKVKA AESEIEKLTT KLADTDAALA DTDAALDATT NALNKLGHNI151TTFABETKTN IVKIDEKLEA VADTVDKAE AFNDIADSLD ETNTKADEAV201KTANEAKQTA EBTKQNVDAK VKAAETAAGK AEAAAGTANT AADKAEAVAA251KVTDIKADIA TNKDNIAXKA NSADVYTREB SDSKFVRIDG LNATTEKLDT301ELASAEKSIA DHDTRLNGLD KTVSDLRXET RQGLAEQAAL SGLFQPYNVG351GSGGGGVAAD IGAGLADALT APLDHKDKGL QSLTDDQSVR KNEKLKLAAQ401GAEKTYGNGD SLNTGKLKND KVSRFDFIRQ IEVDGQLITL ESGEFQVYKQ451SHSALTAFQT EQIQDSEHSG KMVAXRQFRI GDIAGEHTSF DKLPEGGRAT501YRGTAFGSDD AGGKLTYTID FAAKQGNGKI EHLKSPELNV DLAAADIKPD551GKRHAVZSGS VLYNQAEKGS YSLGIPGGKA QEVAGSAEVK TVNGIRHIGL601AAKQLEHHHH HH*961cL-9831ATGAAACACT TTCCATCCAA AGTACTGACC ACAGCCATCC TTGCCACTTT51CTGTAGCGGC GCACTGGCAG CCACAAACGA CGACGATGTT AAAAAAGCTG101CCACTGTGGC CATTGCTGCT GCCTACAACA ATGGCCAAGA AATCAACGGT151TTCAAAGCTG GAGAGACCAT CTACGACATT GATGAAGACG GCACAATTAC201CAAAAAAGAC GCAACTGCAG CCGATGTTGA AGCCGACGAC TTTAAAGGTC251TGGGTCTGAA AAAAGTCGTG ACTAACCTGA CCAAAACCGT CAATGAAAAC301AAACAAAACG TCGATGCCAA AGTAAAAGCT GCAGAATCTG AAATAGAAAA351GTTAACAACC AAGTTAGCAG ACACTGATGC CGCTTTAGCA GATACTGATG401CCGCTCTGGA TGCAACCACC AACGCCTTGA ATAAATTGGG AGAAAATATA451ACGACATTTG CTGAAGAGAC TAAGACAAAT ATCGTAAAAA TTGATGAAAA501ATTAGAAGCC GTGGCTGATA CCGTCGACAA GCATGCCGAA GCATTCAACG551ATATCGCCGA TTCATTGGAT GAAACCAACA CTAAGGCAGA CGAAGCCGTC601AAAACCGCCA ATGAAGCCAA ACAGACGGCC GAAGAAACCA AACAAAACGT651CGATGCCAAA GTAAAAGCTG CAGAAACTGC AGCAGGCAAA GCCGAAGCTG701CCGCTGGCAC AGCTAATACT GCAGCCGACA AGGCCGAAGC TGTCGCTGCA751AAAGTTACCG ACATCAAAGC TGATATCGCT ACGAACAAAG ATAATATTGC801TAAAAAAGCA AACAGTGCCG ACGTGTACAC CAGAGAAGAG TCTGACAGCA851AATTTGTCAG AATTGATGGT CTGAACGCTA CTACCGAAAA ATTGGACACA901CGCTTGGCTT CTGCTGAAAA ATCCATTGCC GATCACGATA CTCGCCTGAA951CGGTTTGGAT AAAACAGTGT CAGACCTGCG CAAAGAAACC CGCCAAGGCC1001TPGCAGAACA AGCCGCGCTC TCCGGTCTGT TCCAACCTTA CAACGTGGGT1051GGATCCGGCG GAGGCGGCAC TTCTGCGCCC GACTTCAATG CAGGCGGTAC1101CGGTATCGGC AGCAACAGCA GAGCAACAAC AGCGAAATCA GCAGCAGTAT1151CTTACGCCGG TATCAAGAAC GAAATGTGCA AAGACAGAAG CATGCTCTGT1201GCCGGTCGGG ATGACGTTGC GGTTACAGAC AGGGATGCCA AAATCAATGC1251CCCCCCCCCG AATCTGCATA CCGGAGACTT TCCAAACCCA AATGACGCAT1301ACAAGAATTT GATCAACCTC AAACCTGCAA TTGAAGCAGG CTATACAGGA1351CGCGGGGTAG AGGTAGGTAT CGTCGACACA GGCGAATCCG TCGGCAGCAT1401ATCCTTTCCC GAACTGTATG GCAGAAAAGA ACACGGCTAT AACGAAAATT1451ACAAAAACTA TACGGCGTAT ATGCGGAAGG AAGCGCCTGA AGACGGAGGC1501GGTAAAGACA TTGAAGCTTC TTTCGACGAT GAGGCCGTTA TAGAGACTGA1551ACCAAAGCCG ACGGATATCC GCCACGTAAA AGAAATCGGA CACATCGATT1601TGGTCTCCCA TATTATTGGC GGGCGTTCCG TGGACGGCAG ACCTGCAGGC1651GGTATTGCGC CCGATGCGAC GCTACACATA ATGAATACGA ATGATGAAAC1701CAAGAACGAA ATGATGGTTG CAGCCATCCG CAATGGATGG GTCAAGCTGG1751GCGAACGTGG CGTGCGCATC GTCAATAACA GTTTTGGAAC AACATCGAGG1801GCAGGCACTG CCGACCTTTT CCAAATAGCC AATTCGGAGG AGCAGTACCG1851CCAAGCGTTG CTCGACTATT CCGGCGGTGA TAAAACAGAC GAGGGTATCC1901GCCTGATGCA ACAGAGCGAT TACGGCAACC TGTCCTACCA CATCCGTAAT1951AAAAACATGC TTTTCATCTT TTCGACAGGC AATGACGCAC AAGCTCAGCC2001CAACACATAT GCCCTATTGC CATTTTATGA AAAAGACGCT CAAAAAGGCA2051TTATCACAQT CGCAGGCGTA GACCGCAGTG GAGAAAAGTT CAAACGGGAA2101ATGTATGGAG AACCGGGTAC AGAACCGCC GAGTATGGCT CCAACCATTG2151CGGAATTACT GCCATGTGGT GCCTGTCGGC ACCCTATGAA GCAAGCGTCC2201GTTTCACCCG TACAAACCCG ATTCAAATTG CCGGAACATC CTTTTCCGCA2251CCCATCGTAA CCGGCACGGC GGCTCTGCTG CTGCAGAAAT ACCCGTGGAT2301GAGCAACGAC AACCTGCGTA CCACGTTGCT GACGACGGCT CACGACATCG2351GTGCAGTCGG CGTGGACAGC AAGTTCGGCT GGGGACTGCT GGATGCGGGT2401AAGGCCATGA ACGGACCCGC GTCCTTTCCG TTCGGCGACT TTACCGCCGA2451TACGAAAGGT ACATCCGATA TTGCCTACTC CTTCCGTAAC GACATTTCAG2501GCACGGGCGG CTTGATCAAA AAAGGCGGCA GCCAACTGCA ACTGCACGGC2551AACAACACCT ATACGGGCAA AACCATTATC GAAGGCGGCC CGCTGGTGTT2601GTACGGCAAC AACAAATCGG ATATGCGCGT CGAAACCAAA GGTGCGCTGA2651TTTATAACGG GGCGGCATCC GGCGGCAGCC TGAACAGCGA CGGCATTGTC2701TATCTGGCAG ATACCGCCA ATCCGGCGCA AACGAAACCG TACACATCAA2751AGGCAGTCTG CAGCTGGACG GCAAAGGTAC GCTGTACACA CGTTTGGGCA2801AACTGCTGAA AGTGGACGGT ACGGCGATTA TCGGCGGCAA GCTGTACATG2851TCGGCACGCG GCAAGGGGGC AGGCTATCTC AACAGTACCG GACGACGTGT2901TCCCTTCCTG AGTGCCGCCA AAATCGGGCA GGATTATTCT TTCTACACAA2951ACATCGAAAC CGACGGCGGC CTGCTGGCTT CCCTCGACAG CGTCGAAAAA3001ACAGCGGGCA GTGAAGGCGA CACGCTGTCC TATTATGTCC GTCGCGGCAA3051TGCGGCACGG ACTGCTTCGG CAGCGGCACA TTCCGCGCCC GCCGGTCTGA3101AACACGCCGT AGAACAGGGC GGCAGCAATC TGGAAAACCT GATGGTCGAA3151CTGGATGCCT CCGAATCATC CGCAACACCC GAGACGGTTG AAAGTGCGGC3201AGCCGACCGC ACAGATATOC CGGGCATCCG CCCCTACGGC GCAACTTTCC3251GCGCAGCGGC AGCCGTACAG CATGCGAATG CCGCCGACGG TGTACGCATC3301TTCAACAGTC TCGCCGCTAC CGTCTATGCC GACAGTACCG CCGCCCATGC3351CGATATGCAG GGACGCCGCC TGAAAGCCGT ATCGGACGGG TTGGAGCACA3401ACGGCACGGG TCTGCGCGTC ATCGCGCAAA CCCAACAGGA CGGTGGAACG3451TGGGAACAGG GCGGTGTDGA AGGCAAAATG CGCGGCAGTA CCCAAACCGT3501CGGCATTGCC GCGAAAACCG GCGAAAATAC GACAGCAGCC GCCACACTGG3551GCATGGGACG CAGCACATGG AGCGAAAACA GTGCAAATGC AAAAACCGAC3601AGCATTACTC TGTTTGCAGG CATACGGCAC GATGCGGGCG ATATCGGCTA3651TCTCAAAGGC CTGTTCTCCT ACGGACGCTA CAAAAACAGC ATCAQCCGCA3701GCACCGGTGC GGACGAACAT GCGGAAGGCA GCGTCAACGG CACGCTGATG3751CAGCTGGGCG CACTGGGCGG TGTCAACGTT CCGTTTGCCG CAACGGGAGA3801TTTGACGGTC GAAGGCGGTC TGCGCTACGA CCTGCTCAAA CAGGATGCAT3851TCGCCGAAAA AGGCAGTGCT TTGGGCTGGA GCGGCAACAG CCTCACTGAA3901GGCACGCTGG TCGGACTCGC GGGTCTGAAG CTGTCGCAAC CCTTGAGCQA3951TAAAGCCGTC CTGTTTGCAA CGGCGGGCGT GGAACGCGAC CTGAACGGAC4001GCGACTACAC GGTAACGGGC GGCTTTACCG GCGCGACTGC AGCAACCGGC4051AAQACGGGGG CACGCAATAT GCCGCACACC CGTCTGGTTG CCGGCCTGGG4101CGCGGATGTC GAATTCGGCA ACGGCTGGAA CGGCTTGGCA CGTTACAGCT4151ACGCCGGTTC CAAACAGTAC GGCAACCACA GCGGACQAGT CGGCGTAGGC4201TACCGGTTCT GACTCGAG1MKHFPSKVLT TAILATFCSG ALAATNDDDV KKAATVAIAA AYNNQQEING51FKAGETIYDI DHDGTITKKD ATAADVEADD FKGLGLKKVV TNLTKTVNEN101KQNVDAKVKA AESEIEKLTT KLADTDAALA DTDAALDATT NMZNKLGENI151TTFABETKTN IVKIDEKLEA VADTVDKNIAE AFNDIADSLD ETNTKADEAV201KTANEARQTA EETKQNVDAR VKAAETAAGK AEAAAGTANT AADKAEAVAA251KVTDIKADIA TNKDNIAKKA NSADVYTREB SDSKFVRIDG LNATTEKLDT301RLASAEKEIA DIWTPLNGLD KTVSDLRKET RQGLAEQAAL SGLFQPYNVG351GSGGGGTSAP DFNAGGTGIG SNSRATTAKS AAVSYAGIKN EMCKDRSMLC401AGRDDVAVTD RDAKINAPPP NLHTGDFPNP NDAYKNLINL KPAIEAGYTG451EGVEVGIVDT GESVGSISFP BLYGRKEEGY NENYKNYTAY HRKEAPEDGG501GKDIEASFDD BAVIETEAKP TDIRHVKEIG HIDLVSHIIG GESVDGEPAG551GIAPDATLHI MNTNDETKNE LDYSGGDKTD EGIRLMQQSD YRNLSYHIRN601AGTADLFQIA NSEBQYEQAL LDYSGGDKTD EGIEIMQQSD YGNLSYHIRN651KNMLPIFSTG NDAQAQPNTY ALLPFYEKDA QKGIITVAGV DRSGEKFKRE701MYGEPGTBPL EYGSNHCGIT AMWCLSAPYE ASVRFTRTNP IQIAGTSPSA751PIVTGTAALL LQKYOWNSBD NLRTTLLTTA QDIGAVGVDS KFGWGLLDAG801KAMNGPABFP FGDFTADTKG TSDIAYSFRN DISGTGGLIK KGGSQLQLHG851NNTYTGKTII EGGBLVLYGN NKSDMRVETK GALIYNGAAS GGSLNBDGIV901YLADTDQSGA NBTVHIKGSL QLDGKGTLYT ELGKLLKVDG TAIIGGKLYM951SARGKGAGYL NSTGRRVPPL SAAKIGQDYS FFTNIETDGG LLASLDSVEK1001TAGSRGDTLS YYVRRGNAAR TASAAAHSAP AGLKHAVEQG GSNLENLMVB1051LDASESSATP ETVETAAADR TDNPGIEPYG ATFRAAAAVQ HANAADGVRI1101FNSLAATVYA DSTAAHADMQ GRRLKAVSDG LDHNGTGLRV IAQTQQDGGT1151WEQGGVEGKH RGSTQTVGIA AKTGENTTAA ATLGHGRSTW SENSANAKTD1201SISLFAGIRH DAGDIGYLKG LFSYGRYKNS ISRSTGADBH AEGSVNGTLM1251QLGALGGVNV PFAATGDLTV EGGLRYDLLK QDAFAEKGBA LGWSGNSLTE1301GTLVGLAGLK LSQPLSDKAV LFATAGVERD LNGRDYTVTG GFTGATAATG1351KTGAPNMPHT RLVAGLGADV EFGNGWNGLA RYSYAGSKQY GNHSGRVGVG1401YRF*


[0403] It will be understood that the invention has been described by way of example only and modifications may be made whilst remaining within the scope and spirit of the invention. For instance, the use of proteins from other strains is envisaged [e.g. see WO00/66741 for polymorphic sequences for ORF4, ORF40, ORF46, 225, 235, 287, 519, 726, 919 and 953].


[0404] Experimental Details


[0405] FPLC Protein Purification


[0406] The following table summarises the FPLC protein purification that was used:
57ProteinPIColumnBufferpHProtocol121.1untagged6.23Mono QTris8.0A128.1untagged5.04Mono QBis-Tris propane6.5A406.1L7.75Mono QDiethanolamine9.0B576.1L5.63Mono QTris7.5B593untagged8.79Mono SHepes7.4A726untagged4.95Hi-trap SBis-Tris6.0A919untagged10.5(-leader)Mono SBicine8.5C919Lorf410.4(-leader)Mono STris8.0B920L6.92(-leader)Mono QDiethanolamine8.5A953L7.56(-leader)Mono SMES6.6D982untagged4.73Mono QBis-Tris propane6.5A919-2876.58Hi-trap QTris8.0A953-2874.92Mono QBis-Tris propane6.2A


[0407] Buffer solutions included 20-120 mM NaCl, 5.0 mg/ml CHAPS and 10% v/v glycerol. The dialysate was centrifuged at 13000 g for 20 min and applied to either a mono Q or mono S FPLC ion-change resin. Buffer and ion exchange resins were chosen according to the pI of the protein of interest and the recommendations of the FPLC protocol manual [Pharmacia: FPLC Ion Exchange and Chromatofocussing; Principles and Methods. Pharmacia Publication]. Proteins were eluted using a step-wise NaCl gradient. Purification was analysed by SDS-PAGE and protein concentration determined by the Bradford method.


[0408] The letter in the ‘protocol’ column refers to the following:


[0409] FPLC-A: Clones 121.1, 128.1, 593, 726, 982, periplasmic protein 920L and hybrid proteins 919-287, 953-287 were purified from the soluble fraction of E.coli obtained after disruption of the cells. Single colonies harbouring the plasmid of interest were grown overnight at 37° C. in 20 ml of LB/Amp (100 μg/ml) liquid culture. Bacteria were diluted 1:30 in 1.0 L of fresh medium and grown at either 30° C. or 37° C. until the OD550 reached 0.6-08. Expression of recombinant protein was induced with IPTG at a final concentration of 1.0 mM. After incubation for 3 hours, bacteria were harvested by centrifugation at 8000 g for 15 minutes at 4° C. When necessary cells were stored at −20° C. All subsequent procedures were performed on ice or at 4° C. For cytosolic proteins (121.1, 128.1, 593, 726 and 982) and periplasmic protein 920L, bacteria were resuspended in 25 ml of PBS containing complete protease inhibitor (Boehringer-Mannheim). Cells were lysed by by sonication using a Branson Sonifier 450. Disrupted cells were centrifuged at 8000 g for 30 min to sediment unbroken cells and inclusion bodies and the supernatant taken to 35% v/v saturation by the addition of 3.9 M (NH4)2SO4. The precipitate was sedimented at 8000 g for 30 minutes. The supernatant was taken to 70% v/v saturation by the addition of 3.9 M (NH4)2SO4 and the precipitate collected as above. Pellets containing the protein of interest were identified by SDS-PAGE and dialysed against the appropriate ion-exchange buffer (see below) for 6 hours or overnight. The periplasmic fraction from E.coli expressing 953L was prepared according to the protocol of Evans et. al. [Infect.Immun. (1974) 10:1010-1017) and dialysed against the appropriate ion-exchange buffer. Buffer and ion exchange resin were chosen according to the pI of the protein of interest and the recommendations of the FPLC protocol manual (Pharmacia). Buffer solutions included 20 mM NaCl, and 10% (v/v) glycerol. The dialysate was centrifuged at 13000 g for 20 min and applied to either a mono Q or mono S FPLC ion-exchange resin. Buffer and ion exchange resin were chosen according to the pI of the protein of interest and the recommendations of the FPLC protocol manual (Pharmacia). Proteins were eluted from the ion-exchange resin using either step-wise or continuous NaCl gradients. Purification was analysed by SDS-PAGE and protein concentration determined by Bradford method. Cleavage of the leader peptide of periplasmic proteins was demonstrated by sequencing the NH2-terminus (see below).


[0410] FPLC-B: These proteins were purified from the membrane fraction of E.coli. Single colonies harbouring the plasmid of interest were grown overnight at 37° C. in 20 ml of LB/Amp (100 μg/ml) liquid culture. Bacteria were diluted 1:30 in 1.0 L of fresh medium. Clones 406.1L and 919LOrf4 were grown at 30° C. and Orf25L and 576.1L at 37° C. until the OD550 reached 0.6-0.8. In the case of 919LOrf4, growth at 30° C. was essential since expression of recombinant protein at 37° C. resulted in lysis of the cells. Expression of recombinant protein was induced with IPTG at a final concentration of 1.0 mM. After incubation for 3 hours, bacteria were harvested by centrifugation at 8000 g for 15 minutes at 4° C. When necessary cells were stored at −20° C. All subsequent procedures were performed at 4° C. Bacteria were resuspended in 25 ml of PBS containing complete protease inhibitor (Boehringer-Mannheim) and lysed by osmotic shock with 2-3 passages through a French Press. Unbroken cells were removed by centrifugation at 5000 g for 15 min and membranes precipitated by centrifugation at 100000 g (Beckman Ti50, 38000 rpm) for 45 minutes. A Dounce homogenizer was used to re-suspend the membrane pellet in 7.5 ml of 20 mM Tris-HCl (pH 8.0), 1.0 M NaCl and complete protease inhibitor. The suspension was mixed for 2-4 hours, centrifuged at 100000 g for 45 min and the pellet resuspended in 7.5 ml of 20 mM Tris-HCl (pH 8.0), 1.0M NaCl, 5.0 mg/ml CHAPS, 10% (v/v) glycerol and complete protease inhibitor. The solution was mixed overnight, centrifuged at 100000 g for 45 minutes and the supernatant dialysed for 6 hours against an appropriately selected buffer. In the case of Orf25.L, the pellet obtained after CHAPS extraction was found to contain the recombinant protein. This fraction, without further purification, was used to immunise mice.


[0411] FPLC-C: Identical to FPLC-A, but purification was from the soluble fraction obtained after permeabilising E.coli with polymyxin B, rather than after cell disruption.


[0412] FPLC-D: A single colony harbouring the plasmid of interest was grown overnight at 37° C. in 20 ml of LB/Amp (100 μg/ml) liquid culture. Bacteria were diluted 1:30 in 1.0 L of fresh medium and grown at 30° C. until the OD550 reached 0.6-0.8. Expression of recombinant protein was induced with IPTG at a final concentration of 1.0 mM After incubation for 3 hours, bacteria were harvested by centrifugation at 8000 g for 15. minutes at 4° C. When necessary cells were stored at −20 ° C. All subsequent procedures were performed on ice or at 4° C. Cells were resuspended in 20 mM Bicine (pH 8.5), 20 mM NaCl, 10% (v/v) glycerol, complete protease inhibitor (Boehringer-Mannheim) and disrupted using a Branson Sonifier 450. The sonicate was centrifuged at 8000 g for 30 min to sediment unbroken cells and inclusion bodies. The recombinant protein was precipitated from solution between 35% v/v and 70% v/v saturation by the addition of 3.9M (NH4)2SO4. The precipitate was sedimented at 8000 g for 30 minutes, resuspended in 20 mM Bicine (pH 8.5), 20 mM NaCl, 10% (v/v) glycerol and dialysed against this buffer for 6 hours or overnight. The dialysate was centrifuged at 13000 g for 20 min and applied to the FPLC resin. The protein was eluted from the column using a step-wise NaCl gradients. Purification was analysed by SDS-PAGE and protein concentration determined by Bradford method.


[0413] Cloning Strategy and Oligonucleotide Design


[0414] Genes coding for antigens of interest were amplified by PCR, using oligonucleotides designed on the basis of the genomic sequence of N. meningitidis B MC58. Genomic DNA from strain 2996 was always used as a template in PCR reactions, unless otherwise specified, and the amplified fragments were cloned in the expression vector pET21b+ (Novagen) to express the protein as C-terminal His-tagged product, or in pET-24b+(Novagen) to express the protein in ‘untagged’ form (e.g. ΔG 287K).


[0415] Where a protein was expressed without a fusion partner and with its own leader peptide (if present), amplification of the open reading frame (ATG to STOP codons) was performed.


[0416] Where a protein was expressed in ‘untagged’ form, the leader peptide was omitted by designing the 5′-end amplification primer downstream from the predicted leader sequence.


[0417] The melting temperature of the primers used in PCR depended on the number and type of hybridising nucleotides in the whole primer, and was determined using the formulae:




T


m1
=4 (G+C)+2 (A+T)   (tail excluded)





T


m2
=64.9+0.41 (% GC)−600/N   (whole primer)



[0418] The melting temperatures of the selected oligonucleotides were usually 65-70° C. for the whole oligo and 50-60° C. for the hybridising region alone.


[0419] Oligonucleotides were synthesised using a Perkin Elmer 394 DNA/RNA Synthesizer, eluted from the columns in 2.0 ml NH4OH, and deprotected by 5 hours incubation at 56° C. The oligos were precipitated by addition of 0.3M Na-Acetate and 2 volumes ethanol. The samples were centrifuged and the pellets resuspended in water.
58RestrictionSequencessiteOrf1LFwdCGCGGATCCGCTAGC-AAAACAACCGACAAACGGNheIRevCCCGCTCGAG-TTACCAGCGGTAGCCTAXhoIOrf1FwdCrAGCTAGC-GGACACACTTATTTCGGCATCNheIRevCCCGCTCGAG- TTACCAGCGGTAGCCTAATTTGXhoIOrf1LOmpAFwdNdeI-(NheI)RevCCCCCTCGAG-XhoIOrf4LFwdCGCGGATCCCATATG-AAAACCTTCTTCAAAACCNdeIRevCCCGCTCGAG-TTATTTGGCTGCGCCTTCXhoIOrf7-1LFwdGCGGCATTAAT-ATGTTGAGAAAATTGTTGAAATGGAseIRevGCGGCCTCGAG-TTATTTTTTCAAAATATATTTGCXhoIOrf9-1LFwdGCGGCCATATG-TTACCTAACCGTTTCAAAATGTNdeIRevGCGGCCTCGAG-TTATTTCCGAGGTTTTCGGGXhoIOrf23LFwdCGCGGATCCCATATG-ACACGCTTCAAATATTCNdeIRevCCCGCTCGAG-TTATTTAAACCGATAGGTAAXhoIOrf25-1 HisFwdCGCGGATCCCATATG-GGCAGGGAAGAACCGCNdeIRevGCCCAAGCTT-ATCGATGGAATAGCCGCGHindlflOrf29-1 b-HisFwdCGCGGATCCGCTAGC-AACGGTTTQGATGCCCGNheI(MC58)RevCCCGCTCGAG-TTTGTCTAAGTTCCTGATATXhoIOrf29-1 c-HISFwdCGCGGATCCGCTAGC-ATGAATTTGCCTATTCAAAAATNheI(MC58)RevCCCGCTCGAG-TTGGACGATGCCCGCGAXhoIOrf29-1 c-LFwdCGCGGATCCGCTAGC-ATGAATTTCGGTATTCAAAAATNheI(MC58)RevCCCGCTCGAG-TTATTGGACGATGCCCGCXhoIOrf25LFwdCGCGGATCCCATATG-TATCGCAAACTGATTGCNdeIRevCCCGCTCGAG-CTAATCGATGGAATAGCCXhoIOrf37LFwdCGCGGATCCCATATG-AAACAGACAGTCAAATGNdeIRevCCCGCTCGAG-TCAATAACCCGCCTTCAGXhoIOrf38LFwdCGCGGATCCCATAGG-NdeITTACGTTTGACTGCTTTAGCCGTATGCACCRevCCCGCTCGAG-XhoITTATTTTGCCGCGTTAAAAGCGTCGGCAACOrf40LFwdCGCGGATCCCATATG-AACAAAATATACCGCATNdeIRevCCCGCTCGAG-TTACCACTGATAACCGACXhoIOrf40.2-HisFwdCGCGGATCCCATATG-ACCGATGACGACGATTTATNdeIRevGCCCAAGCTT-CCACTGATAACCGACAGAHindIIIOrf40.2LFwdCGCGGATCCCATATG-AACAAAATATACCGCATNdeIRevGCCCAAGCT-TTACCACTGATAACCGACHindIIIOrf46-2LFwdGGGAATTCCATATG-GGCATTTCCCGCAAAATATCNdeIRevCCGCTCGAG-TTATTTACTCCTATAACGAGGTCTCTTAACXhoIOrf46-2FwdGGGAATTCCATATG-TCAGATTTGGCAAACGATTCTTNdeIRevCCCGCTCGAG-TTATTTACTCCTATAACGAGGTCTCTTAACXhoIOrf46.1LFwdGGGAATTCCATATG-GGCATTTCCCGCAAAATATCNdeIRevCCCGGTCGAG-TTACGTATCATATTTCACGTGCXhoIorf46.(His-GST)FwdGGGAATTCCATATGCACGTGAAATATGATACGAAGBamHI-NdeIRevCCCGCTCGAGTTTACTCCTATAACGAGGTCTCTTAACXhoIrf46.1-HisFwdGGAATTCCATATGTCAGATTTGGCAAACGATTCTTNdeIRevCCCGCTCGAGCGTATCATATTTCACGTGCXhoIrf46.2-HisFwdGGGAATTCCATATGTCAGATTTGGCAAACGATTCTTNdeIRevCCCGGTCGAGTTTACTCCTATAACGAGGTCTCTTAACXhoIOrf65-1-(His/GST)FwdCGCGGATCCCATATG-CAAAATGCGTTCAAAATCCCBamHI-NdeI(MC58)RevCGCGGATCCCATATG-AACAAAATATACCGCATXhoICCCGCTCGAG-TTTGCTTTCGATAGAACGGOrf72-1LFwdGCGGCCATATG-GTCATAAAATATACAAATTTGAANdeIRevGCGGCCTCGAG-TTAGCCTGAGACCTTTGCAAATTXhoIOrf76-1LFwdGCGGCCATATG-AAACAGAAAAAAACCGCTGNdeIRevGCGGCCTCGAG-TTACGGTTTGACACCGTTTTCXhoIOrf83.1LFwdCGCGGATCCCATATG-AAAACCCTGCTCCTCNdeIRevCCCGCTCGAG-TTATCCTCCTTTGCGGCXhoIOrf85-2LFwdGCGGCCATAGE-GCAAAAATGATGAAATGGGNdeIRevGCGGCCTCGAG-TTACGGCGCGGCGGGCCXhoIOrf91L (MC58)FwdGCGGCCATATGAAAAAATCCTCCCTCATCANdeIRevGCGGCCTCGAGTTATTTGCCGCCGTTTTTGGCXhoIOrf91-His(MC58)FwdGCGGCCATATGGCCCCTGCCGACGCGGTAAGNdeIRevGCGGCCTCGAGTTTGCCGCCGTTTTTGGCTTTCXhoIOrf97-1LFwdGCGGCCATATG-AAACACATACTCCCCCTGANdeIRevGCGGCCTCGAG-TTATTCGCCTACGTTTTTTGXhoIOrf119L(MC58)FwdGCGGCCATATGATTTACATCGTACTGTTTCNdeIRevGCGGCCTCGAGTTAGGAGAACAGGCGCAATGCXhoIOrf119-His(MC58)FwdGCGGCCATATGTACAACATGTATCAGGAAAACNdeIRevGCGGCCTCGAGGGAGAACAGGCGCAATGCGGXhoIOrf137.1 (His-FwdCGCGGATCCGCTAGCTGCGGCACGGCGGGBamHI-NheIGST) (MC58)RecCCCGCTCGAGATAACGGTATGCCGCCAGXhoIOrf143-1LFwdCGCGGATYCCCATATG-GAATCAACACTTTCACNdeIRevCCCGCTCGAG-TTACACGCGGTTGCTGCXhoI008FwdCGCGGATCCCATATG-AACAACAGACATTTTGNdeIRevCCCGCTCGAG-TTACCTGTCCGGTAAAAGXhoI050-1(48)FwdCGCGGATCCGCTAGC-ACCGTCATCAAACAGGAANheIRevCCCGCTCGAG-TCAAGATTCGACGGGGAXhoI105FwdCGCGGATCCCATATG-TCCGCAAACGAATACGNdeIRevCCCGCTCGAG-TCAGTGTTCTGCCAGTTTXhoI111LFwdCGCGGATCCCATATG-CCGTCTGAAACACGNdeIRevCCCGCTCGAG-TTAGCGGAGCAGTTTTTCXhoI117-1FwdCGCGGATCCCATATG-ACCGCCATCAGCCNdeIRevCCCGCTCGAG-TTAAAGCCGGGTAACGCXhoI121-1FwdGCGGCCATATG-GAAACACAGCTTTACATCGGNdeIRevGCGGCCTCGAG-TCAATAATAATATCCCGCGXhoI122-1FwdGCGGCCATATG-ATTAAAATCCGCAATATCCNdeIRevGCGGCCTCGAG-TTAAATCTTGGTAGATTGGATTTGGXhoI128-1FwdGCGGCCATATG-ACTGACAACGCACTGCTCCNdeIRevGCGGCCTCGAG-TCAGACCGCGTTGTCGAAACXhoI148FwdCGCGGATCCCATATG-GCGTTAAAAACATCAAANdeIRevCCCGCTCGAG-TCAGCCCTTCATACAGCXhoI149.1L (MC58)FwdGCGGCATTAATGGCACAAACTACACTCAAACCAseIRevGCGGCCTCGAGTTAAAACTTCACGTTCACGCGXhoI149.1-His(MC58)FwdGCGGCATTAATGCATGAAACTGAGCAATCGGTGGAseIRevGCGGCCTCGAGAAACTTCACGTTCACGCCGCCGGTAAAXhoI205 (His-GST)FwdCGCGGATCCCATATGGGCAAATCCGAAAATACGBamHI-NdeI(MC58)RevCCCGCTCGAGATAATGGCGGCGGCGGXhoI206LFwdCGCGGATCCCATATG-TTTCCCCCCGACAANdeIRevCCCGCTCGAG-TCATTCTGTAAAAAAAGTATGXhoI214 (His-GST)FwdCGCGGATCCCATATGCTTCAAAGCGACAGCAGBamHI-NdeI(MC58)RevCCCGCTCGAGTTCGATTTTTGCGTACTCXhoI216FwdCGCGGATCCCATATG-GCAATGGCAGAAAACGNdeIRevCCCGCTCGAG-CTATACAATCCGTGCCGXhoI225-1LFwdCGCGGATCCCATATG-GATTCTTTTTTCAAACCNdeIRevCCCGCTCGAG-TCAGTTCAGAAAGCGGGXhoI235LFwdCGCGGATCCCATATG-AAACCTTTGATTTTAGGNdeIRevCCCGCTCGAG-TTATTGGGCTGCTCTTCXhoI243FwdCGCGGATCCCATATG-GTAATCGTCTGGTTGNdeIRevCCCGCTCGAG-CTACGACTTGGTTACCGXhoI247-1LFwdGCGGCCATATG-AGACGTAAAATGCTAAAGCTACNdeIRevGCGGCCTCGAG-TCAAGTGTTCTGTTTGCGCXhoI264-HisFwdGCCGCCATATG-TTGACTTTAACCCGAAAAANdeIRevGCCGCCTCGAG-GCCGGCGGTCAATACCGCCCGAAXhoI270 (His-GST)FwdCGCGGATCCCATATGCGGCAATGCGATTGACBamHI-NdeI(MC58)RevCCCGCTCGAGTTCGGCGGTAAATGCCGXhoI274LFwdGCGGCCATATG-GCGGGGCCGATTTTTGTNdeIRevGCGGCCTCGAG-TTATTTGCTTTCAGTATTATTGXhoI283LFwdGCGGCCATATG-AACTTTGCTTTATCCGTCANdeIRevGCGGCCTCGAG-TTAACGGCAGTATTTGTTTACXhoI285-HisFwdCGCGGATCCCATATGGGTTTGCGCTTCGGGCBamHIRevGCCCAAGCTTTTTTCCTTTGCCGTTTCCGHindIII286-HisFwdCGCGGATCCCATATG-GCCGACCTTTCCGAAAANdeI(MC58)RevCCCGCTCGAG-GAAGCGCGTTCCCAAGCXhoI286LFwdCGCGGATCCCATATG-CACGACACCCGTACNdeI(MC58)RevCCCGCTCGAG-TTAGAAGCGCGTTCCCAAXhoI287LFwdCTAGCTAGC-TTTAAACGCAGCGTAATCGCAATGGNheIRevCCCGCTCGAG-TCAATCCTGCTCTTTTTTGCC287FwdCTAGCTAGC-GGGGGCGGCGGTGGCGNheIRevCCCGCTCGAG-TCAATCCTGCTCTTTTTTGCCXhoI287LOrf4FwdCTAGCTAGCGCTCATCCTCGCCGCC-NheITCGCCCCCGCGCGGTRevCCCGGTCGAG-TCAATCCTGCTCTTTTTTGCCXhoI287-fuFwdCGGGGATCC-GGGGGCGGCGGTGGCGBamHIRevCCCGCTCGAG-TCAATCCTGCTCTTTTTTGCCXhoI287-HisFwdCTAGCTAGC-GGGGGCGGCGGTGGCGNheIRevCCCGCTCGAG-ATCCTGCTCTTTTTTTGCC*XhoI287-His(2996)FwdCTAGCTAGC-TGCGGGGGCGGCGGTGGCGNheIRevCCCGCTCGAG-ATCCTGCTCTTTTTTTGCCXhoIΔ1 287-HisFwdCGCGGATCCGCTAGC-CCCGATGTTAAATCGGC§NheIΔ2 287-HisFwdCGCGGATCCGCTAGC-CAAGATATGGCGGCAGT§NheIΔ3 287-HisFwdCGCGGATCCGCTAGC-GCCGAATCCGCAAATCA§NheIΔ4 287-HisFwdCGCGCTAGC-GGAAGGGTTGATTTGGCTAATGG§NheIΔ4 287MC58-HisFwdCGCGCTAGC-GGAAGGGTTGATTTGGCTATGG§NheI287-a-HisFwdCGCCATATG-TTTAAACGCAGCGTAATCGCNdeIRevCCCGCTCGAG-AAAATTGCTACCGCCATTCGCAGGXhoI287b-HisFwdCGCCATATG-GGAAGGGTTGATTTGGCTAATGGNdeI287b-2996-HisRevCCCGCTCGAG-CTTGTCTTTATAAATGATGACATATTTGXhoI287b-MC58-HisRevCCCGCTCGAG-TTTATAAAAGATAATATATTGATTGATTCCXhoI287c-2996-HisFwdCGCGCTAGC-ATGCCCGCTGATTCCCGTCAATC§NheI‘287untaggd,(2996)FwdCTAGCTAGC-GGGGGCGGCGGTGGCGNheIRevCCCGCTCGAG-TCAATCCTGCTCTTTTTTGCCXhoIΔG287-His*FwdCGCGGATCCGCTAGC-CCCGATGTTAAATCGGCNheIRevCCCGCTCGAG-ATCCTGCTCTTTTTTGCCXhoIΔG 287-LFwdCGCGGATCCGCTAGC-NheITTTGAACGCAGTGTGATTGCAATGGCTTGTATTTTTGCCCTTTCAGCCTGT TCGCCCCGATGTTAAATCGGCGRevCCCGCTCGAG-TCAATCCTGCTCTTTTTTGCCXhoIΔG 287-Orf4LFwdCGCGGATCCGCTAGC-NheIAAAACCTTCTTCAAAACCCTTTCCGCCGCCGCACTCGCGCTCATCCTCGCCGCCTGC TCGCCCCGATGTTAAATCGRevCCCGCTCGAG-TCAATCCTGCTCTTTTTGCCXhoI292LFwdCGCGGATCCCATATG-AAAACCAAGTTAATCAAANdeIRevCCCGCTCGAG-TTATTTGATTTTTGCGGATGAXhoI308-1FwdCGCGGATCCCATATG-TTAAATCGGGTATTTTATCNdeIRevCCCGCTCGAG-TTAATCCGCCATTCCCTGXhoI401LFwdGCGGCCATATG-AAATTACAACAATTGGCTGNdeIRevGCGGCCTCGAG-TTACCTTACGTTTTTCAAAGXhoI406LFwdCGCGGATCCCATATG-CAAGCACGGCTGCTNdeIRevCCCGCTCGAG-TCAAGGTTCTCCTTGTCTAXhoI502-1LFwdCGCGGATCCCATATG-ATGAAACCGCACAACNdeIRevCCCGCTCGAG-TCAGTTGCTCAACACGTCXhoI502-A (His-GST)FwdCGCGGATCCCATATGGTAGACGCGCTTAAGCABamHI-NdeIRevCCCGCTCGAGAGCTGCATGGCGGCGXhoI503-1LFwdCGCGGATCCCATATG-GCACGGTCGTTATACNdeIRevCCCGCTCGAG-CTACCGCGCATTCCTGXhoI519-1LFwdGCGGCCATATG-GAATTTTTCATTATCTTGTTNdeIRevGCGGCCTCGAG-TTATTTGGCGGTTTTGCTGCXhoI525-1LFwdGCGGCCATATG-AAGTATGTCCGGTTATTTTTCNdeIRevGCGGCCTCGAG-TTATCGGCTTGTGCAACGGXhoI529-(His/GST)FwdGCCGGATCCGCTAGC-TCCGGCAGCAAAACCGABam HI-NheI(MC58)RevGCCCAAGCTT-ACGCAGTTCGGAATGGAGHindIII552LFwdGCCGCCATATGTTGAATATTAAACTGAAAACCTTGNdeIRevGCCGCCTCGAGTTATTTCTGATCGGTTTTCCCXhoI556LFwdGCCGCCATATGGACAATAAGACCAAACTGNdeIRevGCCGCCTCGAGTTAACGGTGCGGACGTTTCXhoI557LFwdCGCGGATCCCATATG-AACAAACTGTTTCTTACNdeIRevCCCGCTCGAG-TCATTCCGCCTTCAGAAAXhoI564ab-(His/GST)FwdCGCGGATCCCATATG-BamHI-NdeI(MC58)CAAGGTATCGTTGCCGACAAATCCGCACCTRevCCCGCTCGAG-AGCTAATTGTGCTTGGTTTGCAGATAGGAGTT564ab (MC58)FwdCGCGGATCCCATATG-NdeIAACCGCACCCTGTACAAAGTTGTATTTAACAAACATCRevCCCGCTCGAG-XhoITTAAGCTAATTGTGCTTGGTTTGCAGATAGGAGTT564b-FwdCGCGGATCCCATATG-BamHI-NdeI(His/GST)(MC58)ACGGGAGAAAATCATGCGGTTTCACTTCATGRevCCCGCTCGAG-XhoIAGCTAATTGTGCTTGGTTTGCAGATAGGAGTT546c-FwdCGCGGATCCCATATG-BamHI-NdeI(His/GST)(MC58)GTTTCAGACGGCCTATACAACCAACATGGTGAAATTRevCCCGCTCGAG-XhoIGCGGTAACTGCCGCTTGCACTGAAGCCGTAA546bc-FwdCGCGGATCCCATATG-BamHI-NdeI(His/GST)(MC58)ACGGGAGAAAATCATGCGGTTTCACTTCATGRevCCCGCTCGAG-XhoIGCGGTAACTGCCGCTTGCACTGAATCCGTAA546d-FwdCGCGGATCCCATATG-BamHI-Ndel(His/GST)(MC58)CAAAGCAAAGTCAAAGCAGACCATGCCTCCGTAARevCCCGCTCGAG-XhoITCTTTTCCTTTCAATTATAACTTTAGTAGGTTCAATTTTGGTCCCC564cd-FwdCGCGGATCCCATATG-BamHI-NdeI(His/GST)(MC58)GTTTCAGACGGCCTATACAACCAACATGGTGAAATTRevCCCGCTCGAG-XhoITCTTTTCCTTTCAATTATAACTTTAGTAGGTTCAATTTTGGTCCCC570LFwdGCGGCCATATG-ACCCGTTTGACCCGCGNdeIRevGCGGCCTCGAG-TCAGCGGGCGTTCATTTCTTXhoI576-1LFwdCGCGGATCCCATATG-AACACCATTTTCAAAATCNdeIRevCCCGCTCGAG-TTAATTTACTTTTTTGATGTCGXhoI580LFwdGCGGCCATATG-GATTCGCCCAAGGTCGGNdeIRevGCGGCCTCGAG-CTACACTTCCCCCGAAGTGGXhoI583LFwdCGCGGATCCCATATG-ATAGTTGACCAAAGCCNdeIRevCCCGCTCGAG-TTATTTTTTCCGATTTTTCGGXhoI593FwdGCGGCCATATG-CTTGAACTGAACGGACTNdeIRevGCGGCCTCGAG-TCAGCGGAAGCGGACGATTXhoI650 (His-GST)FwdCGCGGATCCCATATGTCCAAACTCAAAACCATCGBamHI-NdeI(MC58)RevCCCGCTCGAGGCTTCCAATCAGTTTGACCXhoI652FwdGCGGCCATATG-AGCGCAATCGTTGATATTTTCNdeIRevGCGGCCTCGAG-TTATTTGCCCAGTTGGTAGAATGXhoI664LFwdGCGGCCATATG-GTGATACATCCGCACTACTTCNdeIRevGCGGCCTCGAG-TCAAAATCGAGTTTTACACCAXhoI726FwdGCGGCCATATG-ACCATCTATTTCAAAAACGGNdeIRevGCGGCCTCGAG-TCAGCCGATGTTTAGCGTCCATTXhoI741-His(MC58)FwdCGCGGATCCCATATG-AGCAGCGGAGGGGGTGNdeIRevCCCGCTCGAG-TTGCTTGGCGGCAAGGCXhoIΔG741-His(MC58)FwdCGCGGATCCCATATG-GTCGCCGCCGACATCGNdeIRevCCCGCTCGAG-TTGCTTGGCGGCAAGGCXhoI686-2-(His/GST)FwdCGCGGATCCCATATG-GGCGGTTCGGAAGGCGBamHI-NdeI(MC58)RevCCCGCTCGAG-TTGAACACTGATGTCTTTTCCGAXhoI719-(His/GST)FwdCGCGGATCCGCTAGC-AAACTCTCGTTGGTGTTAACBamHI-NheI(MC58)RevCCCGCTCGAG-TTGACCCGCTCCACGGXhoI730-His (MC58)FwdGCCGCCATATGGCGGACTTGGCGCAAGACCCNdeIRevGCCGCCTGCAGATCTCCTAAAGGTGTTTTAACAATGCCGXhoI730A-His (MC58)FwdGCCGCCATATGGCGGACTTGGCGCAAGACCCNdeIRevGCGGCCTCGAGCTCCATGCTGTTGCCCCAGCXhoI730-B-His (MC58)FwdGCCGCCATATGGCGGACTTGGCGCAAGACCCNdeIRevGCGGCCTGCAGAAAATCCCCGCTAACCGCAGXhoI741-HisFwdCGCGGATCCCATATG-AGCAGCGGAGGGGGTGNdeI(MC58)RevCCCGCTCGAG-TTGCTTGGCGGCAAGGCXhoIΔG741-HisFwdCGCGGATCCCATATG-GTCGCCGCCGACATCGNdeI(MC58)RevCCCGCTCGAG-TTGCTTGGCGGCAAGGCXhoI743 (His-GST)FwdCGCGGATCCCATATGGACGGTGTTGTGCCTGTTBamHI-NdeIRevCCCGCTCGAGCTTACGGATCAAATTGACGXhoI757 (His-GST)FwdCGCGGATCCCATATGGGCAGCCAATCTGAAGAABamHI-NdeIRevCCCGCTCGAGCTCAGCTTTTGCCGTCAAXhoI759-His/GSTFwdCGCGGATCCGCTAGC-TACTCATCCATTGTCCGCBamHI-NheI(MC58)RevCCCGCTCGAG-CCAGTTGTAGCCTATTTTGXhoI759LFwdCGCGGATCCGCTAGC-ATGCGCTTCACACACACNheI(MC58)RevCCCGCTCGAG-TTACCAGTTGTAGCCTATTTXhoI760-HisFwdGCCGCCATATGGCACAAACGGAAGGTTTGGAANdeIRevGCCGCCTCGAGAAAACTGTAACGCAGGTTTGCCGTCXhoI769-His (MC58)FwdGCGGCCATATGGAAGAAACACCGCGCGAACCGNdeIRevGCGGCCTCGAGGAACGTTTTATTAAACTCGACXhoI907LFwdGCGGCCATATG-AGAAAACGACCGATACCCTANdeIRevGCGGCCTCGAG-TCAACGCCACTGCCAGCGGTTGXhoI911LFwdCGCCGATCCCATATG-AAGAAGAACATATTGGAATTTTGGGTCGGACTGNdeIRevCCCGCTCGAG-TTATTCGGCGGCTTTTTCCGCATTGCCGXhoI911LOmpAFwdGGGAATTCCATATGAAAAAGACAGCTATCGCGATTGCANdeI-(NheI)GTFFCACTGGCTGGTTTCGCTACCGTAGCGCAGGCCGCTAGC-GCTTTCCGCGTGGCCGGCGGTGCRevCCCGCTCGAG-TTATTCGGCGGCTTTTTCCGCATTGCCGXhoI911LPe1BFwdCATGCCATGG-CTTTCCGCGTGGCCGGCGGTGCNcoIRevCCCGCTCGAG-TTATTCGGCGGCTTTTTCCGCATTGCCGXhoI913-His/GSTFwdCGCGGATCCCATATG-TTTGCCGAAACCCGCCBamHI-NdeI(MC58)RevCCCGCTCGAG-AGGTTGTGTTCCAGGTTGXhoI913LFwdCGCGGATCCCATATG-AAAAAAACCGCCTATGNdeI(MC58)RevCCCGCTCGAG-TTAAGGTTGTGTTCCAGGXhoI919LFwdCGCGGATCCCATATG-AAAAAATACCTATTCCGCNdeIRevCCCGCTCGAG-TTACGGGCGGTATTCGGXhoI919FwdCGCGGATCCCATATG-CAAAGCAAGAGCATCCAAANdeIRevCCCGCTCGAG-TTACGGGCGGTATTCGGXhoI919L Orf4FwdGGGAATTCCATATGAAAACCTTCTTCAAAACCCTTTCCGNdeI-(NheI)CCGCCGCGCTAGCCTCATCCTCGCCGCC-TGCCAAAGCAAGAGCATCRevCCCGCTCGAG-TTACGGGCGGTATTCGGGCTTCATACCGXhoI(919)-287 fusionFwdCGCGGATCCGTCGAG-TGTGGGGGCGGTGGCSalIRevCCCGCTCGAG-TCAATCCTGCTCTTTTTTGCCXhoI920-1LFwdGCGGCCATATG-AAGAAAACATTGACACTGCNdeIRevGCGGCCTCGAG-TTAATGGTGCGAATGACCGATXhoI925-His/GSTFwdggggacaagtttgtacaaaaaagcaggctTGCGGCAAGGATGCCGGattB1(MC58)GATERevggggaccactttgtacaagaaagctgggtCTAAAGCAACAATGCCGGattB2926LFwdCGCGGATCCCATATG-AAACACACCGTATCCNdeIRevCCCGCTCGAG-TTATCTCGTGCGCGCCXhoI972-2-(His/GST)FwdCGCGGATCCCATATG-AGCCCCGCGCCGATTBamHI-NdeI(MC58)RevCCCGCTCGAG-TTTTTGTGCGGTCAGGCGXhoI932-His/GSTFwdggggacaagtttgtacaaaaaagcaggctTGTTCGTTTGGGGGATTTAAattB1(MC58)GATEACCAAACCAAATC935 (His-GST)ForCGCGGATCCCATATGGCGGATGCGCCCCGCGBamHI-NdeI(MC58)RevCCGCTCGAGAAACCGCCAATCCGCCXhoIRevggggaccactttgtacaagaaagctgggtTCATTTTGTTTTTCCTTCTTCTattB2CGAGGCCATT936-1LFwdCGCGGATCCCATATG-AAACCCCAAACCGCACNdeIRevCCCGCTCGAG-TCAGCGTTGGACGTAGTXhoI953LFwdGGGAATCcatatg-AAAAAAATCATCTTCGCCGNdeIRevCCCGCTCGAG-TTATTGTTTGGCTGCCTCGATXhoI953-fuFwdGGGAATTCCATATG-GCCACCTACAAAGTGGACGNdeIRevCGGGGATCC-TTGTTTGGCTGCCTCGATTTGBamHI954 (His-GST)FwdCGCGGATCCCATATGCAAGAACAATCGCAGAAAGBamHI-NdeI(MC58)RevCCCGCTCGAGTTTTTTCGGCAAATTGGCTTXhoI958-His/GSTFwdggggacaagtttgtacaaaaaagcaggctGCCGATGCCGTTGCGGattB1(MC58)GATERevGGGGACCACTTTGTACAAGAAAGCTGGGTtcagggtcgtttgttgcgATTb2961LFwdCGCGGATCCCATATG-AAACACTTTCCATCCNdeIRevCCCGCTCGAG-TTACCACTCGTAATTGACXhoI961FwdCGCGGATCCCATATG-GCCACAAGCGACGACNdeIRevCCCGCTCGAG-TTACCACTCGTAATTGACXhoI961 c (His/GST)FwdCGCGGATCCCATATG-GCCACAAACGACGBamHI-NdeIRevCCCGCTCGAG-ACCCACGTTGTAAGGTTGXhoI961 c-(His/GST)FwdCGCGGATCCCATATG-GCCACAAGCGACGACGABamHI-NdeI(MC58)RevCCCGCTCGAG-ACCCACGTTGTAAGGTTGXhoI961 c-LFwdCGCGGATCCCATATG-ATGAAACACTTTCCATCCNdeIRevCCCGCTCGAG-TTAACCCACGTTGTAAGGTXhoI961 c-LFwdCGCGGATCCCATATG-ATGAAACACTTTCCATCCNdeI(MC58)RevCCCGCTCGAG-TTAACCCACGTTGTAAGGTXhoI961 d (His/GST)FwdCGCGGATCCCATATG-GCCACAAACGACGBamHI-NdeIRevCCCGCTCGAG-GTCTGACACTGTTTTATCCXhoI961 Δ1-LFwdCGCGGATCCCATATG-ATGAAACACTTTCCATCCNdeIRevCCCGCTCGAG-TTATGCTTTGGCGGCAAAGXhoIfu 961-. . .FwdCGCGGATCCCATATG-GCCACAAAGCACGACNdeIRevCGCGGATCC-CCACTCGTAATTGACGCCBamHIfu 961- . . .FwdCGCGGATCCCATATG-GCCACAAGCGACGACNdeI(MC58)RevCGCGGATCC-CCACTCGTAATTGACGCCBamHIfu 961 c- . . .FwdCGCGGATCCCATATG-GCCACAAACGACGACNdeIRevCGCGGATCC-ACCCACGTTGTAAGGTTGBamHIfu961 c-L- . . .FwdCGCGGATCCCATATG-ATGAAACACTTTCCATCCNdeIRevCGCGGATCC-ACCCACGTTGTAAGGTTGBamHIfu (961)-FwdCGCGGATCC-GGAGGGGGTGGTGTCGBamHI741(MC58)-HisRevCCCGCTCGAG-TTGCTTGGCGGCAAGGCXhoIfu (961)-983-HisFwdCGCGGATCC-GGCGGAGGCGGCACTTBamHIRevCCCGCTCGAG-GAACCGGTAGCCTACGXhoIfu (961)- Orf46.1-FwdGCGGGATCCGGTGGTGGTGGT-BamHIHisTCAGATTTGGCAAACGATTCRevCCCGCTCGAG-CGTATCATATTTCACGTGCXhoIfu (961 c-L)-FwdCGCGGATCC-GGAGGGGGTGGTGTCGBamHI741(MC58)RevCCCGCTCGAG-TCAGAACCGGTAGCCTACXhoIfu (961c-L)-983FwdCGCGGATCCGGTGGTGGTGGT-BamHIRevCCCGCTCGAG-TCAGAACCGGTAGCCTACXhoIfu (961C-L)FwdCGCGGATCCGGTGGTGGTGGT-BamHIOrf46.1TCAGATTTGGCAAACGATTCRevCCCGCTCGAG-TTACGTATCATATTTCACGTGCXhoI961-(His/GST)FwdCGCGGATCCCATATG-GCCACAAGCGACGACGBamHI-NdeI(MC58)RevCCGCTCGAG-CCACTCGTAATTGACGCCXhoI961 Δ1-HisFwdCGCGGATCCCATATG-GCCACAAACGACGACNdeIRevCCCGCTCGAG-TGCTTTGGCGGCAAAGTTXhoI961a-(His/GST)FwdCGCGGATCCCATATG-GCCACAAACGACGACBamHI-NdeIRevCCCGCTCGAG-TTTAGCAATATTATCTTTGTTCGTAGCXhoI961b-(His/GST)FwdCGCGGATCCCATATG-AAAGCAAACCGTGCCGABamHI-NdeIRevCCCGCTCGAG-CCACTCGTAATTGACGCCXhoI961-His/GSTGATEFwdggggacaagtttgtacaaaaaagcaggctGCAGCCACAAACGACGACGattB1ATGTTAAAAAAGCRevggggaccactttgtacaagaaagctgggtTTACCACTCGTAATTGACGCattB2CGACATGGTAGG982FwdGCGGCCATATG-GCAGCAAAAGACGTACAGTTNdeIRevGCGGCCTCGAG-TTACATCATGCCGCCCATACCAXhoI983-His (2996)FwdCGCGGATCCGCTAGC-TTAGGCGGCGGCGGAGNheIRevCCCGCTCGAG-GAACCGGTAGCCTACGXhoIΔG983-His (2996)FwdCCCCTAGCTAGC-ACTTCTGCGCCCGACTTNheIRevCCCGCTCGAG-GAACCGGTAGCCTACGXhoI983-HisFwdCGCGGATCCGCTAGC-TTAGGCGGCGGCGGAGNheIRevCCCGCTCGAG-GAACCGGTAGCCTACGXhoIΔG983-HisFwdCGCGGATCCGCTAGC-ACTTCTGCGCCCGACTTNheIRevCCCGCTCGAG-GAACCGGTAGCCTACGXhoI983LFwdCGCGGATCCGCTAGC-NheICGAACGACCCCAACCTTCCCTACAAAAACTTTCAARevCCCGCTCGAG-TCAGAACCGACGTGCCAAGCCGTTCXhoI987-His (MC58)FwdGCCGCCATATGCCCCCACTGGAAGAACGGACGNdeIRevGCCGCCTCGAGTAATAAACCTTCTATGGGCAGCAGXhoI989-(His/GST)FwdCGCGGATCCCATATG-TCCGTCCACGCATCCGBamHI-NdeI(MC58)RevCCCGCTCGAG-TTTGAATTTGTAGGTGTATTGXhoI989LFwdCGCGGATCCCATATG-ACCCCTTCCGCACTNdeI(MC58)RevCCCGCTCGAG-TTATTTGAATTTGTAGGTGTATXhoICrgA-HisFwdCGCGGATCCCATATG-AAAACCAATTCAGAAGAANdeI(MC58)RevCCCGCTCGAG-TCCACAGAGATTGTTTCCXhoIPilC1-ESFwdGATGCCCGAAGGGCGGG(MC58)RevGCCCAAGCTT-TCAGAAGAAGACTTCACGCPilC1-HisFwdCGCGGATCCCATATG-CAAACCCATAAATACGCTATTNdeI(MC58)RevGCCCAAGCTT-GAAGAAGACTTCACGCCAGHindIIIΔ1PilC1-HisFwdCGCGGATCCCATATG-GTCTTTTTGACAATACCGANdeI(MC58)RevGCCCAAGCTT-HindIIIPilC1LFwdCGCGGATCCCATATG-AATAAAACTTTAAAAAGGCGGNdeI(MC58)RevGCCCAAGCTT-TCAGAAGAAGACTTCACGCHindIIIΔGtbp2-HisFwdCGCGAATCCCATATG-TTCGATCTTGATTCTGTCGANdeI(MC58)RevCCCCTCGAG-TCGCACAGGCTGTTGGCGXhoITbp-2HisFwdCGCGAATCCCATATG-TTGGGCGGAGGCGGCAGNdeI(MC58)RevCCCGCTCGAG-TCGCACAGGCTGTTGGCGXhoITbp2-His(MC58)FwdCGCGAATCCCATATG-TTGGGCGGAGGCGGCAGNdeIRevCCCGCGCGAG-TCGCACAGGCTGTTGGCGXhoINMB0109-FwdCGCGGATCCCATATG-GCAAATTTGGAGGTGCGCBamHI-NdeI(His/GST)(MC58)RevCCCGCTCGAG-TTCGGAGCGGTTGAAGCXhoINMB0109LFwdCGCGGATCCCATATG-CAACGTCGTATTATAACCCNdeI(MC58)RevCCCGCTCGAG-TTATTCGGAGCGGTTGAAGXhoINMB0207-FwdCGCGGATCCCATATG-BamHI-NdeI(His/GST)GGCATCAAGTCGCCATCAACGGCTAC(MC58)RevCCCG,CTCGAG-TTTGAGCGGGCGCACTTCAAGTCCGXhoINMB0462-FwdCGCGGATCCCATATG-GGCGGCAGCGAAAAAAACBamHI-NdeI(His/GST)(MC58)RevCCCGCTCGAG-GTTGGTGCCGACTTTGATXhoINMB0623-FwdCGCGGATCCCATATG-GGCGGCGGAAGCGATABamHI-NdeI(His/GST)(MC58)RevCCCGCTCGAG-TTTGCCCGCTTTGAGCCXhoINMB0625 (His-FwdCGCGGATCCCATATGGGCAAATCCGAAAATACGBamHI-NdeI(GST)(MC58)RevCCCGCTCGAG-CATCCCGTACTGTTTCGXhoINMB0634FwdggggacaagtttgtacaaaaaagcaggctVCGACATTACCGTGTACAACattB1(His/GST)(MC58)GGCCAACAAAGAARevggggaccactttgtacaagaaagctgggtCTTATTTCATACCGGCTTGCTattB2CAAGCAGCCGGNMB0776-FwdggggacaagtttgtacaaaaaagcaggctGATACGGTGTTTTCCTGTAAattB1His/GST (MC58)AACGGACAACAAGATERevggggaccactttgtacaagaaagctgggtCTAGGAAAAATCGTCATCGTattb2TGAAATTCGCCNMB1115-FwdggggacaagtttgtacaaaaaagcaggctATGCACCCCATCGAAACCattB1His/GST (MC58)RevggggaccactttgtacaagaaagctgggtCTAGTCTTGCAGTGCCTCattB2GATENMB1343-FwdCGCGGATCCCATATG-BamHI-NdeI(His/GST)GGAAATTTCTTATATAGAGGCATTAG(MC58)RevCCCGCTCGAG-XhoIGTTATTTCTATCAACTCTTTAGCAATAATNMB1369 (His-FwdCGCGGATCCCATATGGCCTGCCAAGACGACABamHI-NdeIGST (MC58)RevCCCGCTCGAGCCGCCTCCTGCCGAAAXhoINMB1551 (His-FwdCGCGGATCCCATATGGCAGAGATCTGTTTGATAABamHI-NdeIGST)(MC58)RevCCCGCTCGAGCGGTTTCCGCCCAATGXhoINMB1899 (His-FwdCGCGGATCCCATATGCAGCCGGATACGGTCBamHI-NdeIGST) (MC58)RevCCCGCTCGAGAATCACTTCCAACACAAAATXhoINMB2050-FwdCGCGGATCCCATATG-TGGTTGCTGATGAAGGGCBamHI-NdeI(His/GST)(MC58)RevCCCGCTCGAG-GACTGCTTCATCTTCTGCXhoINMB2050LFwdCGCGGATCCCATATG-GAACTGATGACTGTTTTGCNdeI(MC58)RevCCCGCTCGAG-TCAGACTGCTTCATCTTCTXhoINMB2159-FwdCGCGGATCCCATATG-BamHI-NdeI(His/GST)AGCATTAAAGTAGCGATTAACGGTTTCGGC(MC58)RevCCCGCTCGAG-XhoIGATTTTGCCTGCGAAGTATTCCAAAGTGCGfu-ΔG287...-HisFwdCGCGGATCCGCTAGC-CCCGATGTTAAATCGGCNheIRevCGGGGATCC-ATCCTGCTCTTTTTTGCCGGBamHIfu-(ΔG287)-919-FwdCGCGGATCCGGTGGTGGTGGT-BamHIHisCAAAGCAAGAGCATCCAAACCRevCCCAAGCTT-TTCGGGCGGTATTCGGGCTTCHindIIIfu-(ΔG287)-952-FwdCGCGGATCCGGTGGTGGTGGT-BamHIHisGCCACCTACAAAGTGGACRevGCCCAAGCTT-TTGTTTGGCTGCCTCGATHindIIIfu-(ΔG287)-961-FwdCGCGGATCCGGTGGTGGTGGT-ACAAGCGACGACGBamHIHisRevGCCCAAGCTT-CCACTCGTAATTGACGCCHindIIIfu-(Δ287)-FwdCGCGGATCCGGTGGTGGTGGT-BamHIOrf46.1-HisTCAGATTTGGCAAACGATTCRevCCCAAGCTT-CGTATCATATTTCACGTGCHindIIIfu-(ΔG287-919)-FwdCCCAAGCTTGGTGGTGGTGGTGGT-HindIIIOrf46.1-HisTCAGATTTGGCAAACGATTCRevCCCGCTCGAG-CGTATCATATTTCACGTGCXhoIfu-(ΔG287-FwdCCCAAGCTTGGTGGTGGTGGTGGT-XhoIOrf46.1)-919-HisCAAAGCAAGAGCATCCAAACCRevCCCGCTCGAG-GGGGCGGTATTCGGGCTTXhoIfu ΔG287(394.98)-FwdCGCGGATCCGCTAGC-CCCGATGTTAAATCGGCNheI...RevCGGGGATCC-ATCCTGCTCTTTTTTGCCGGBamHIfu Orf1-(Orf46.1)-FwdCGCGGATCCGCTAGC-GGACACACTTATTTCGGCATCNheIHisRevCGCGGATCC-CCAGCGGTAGCCTAATTTGATfu (Orf1)-Orf46.1-FwdCGCGGATCCGGTGGTGGTGGT-BamHIHisTCAGATTTGGCAAACGATTCRevCCCAAGCTT-CGTATCATATTTCACGTGCHindIIIfu (919)-Orf46.1-Fwd1GCGGCGTCGACGGTGGCGGAGGCACTGGTCCTCAGSalIHisFwd2GGAGGCACTGGATCCTCAGATTTGGCAAACGATTCRevCCCGCTCGAG-CGTATCATATTTCACGTGCXhoIFu orf46-...FwdGGAATTCCATATGTCAGATTTGGCAAACGATTCNdeIRevCGCGGATCCCGATATCATATTTCACGTGCBamHIFu (orf46)-287-HisFwdCGGGGATCCGGGGGCGGCGGTGGCGBamHIRevCCCAAGCTTATCCTGCTCTTTTTTGCCGGCHindIIIFu (orf46)-919-HisFwdCGCGGATCCGGTGGTGGTGGTCAAAGCAAGAGCATCCABamHIAACCRevCCCAAGCTTCGGGCGGTATTCGGGCTTCHindIIIFu (orf46-919)-FwdCCCCAAGCTTGGGGGCGGCGGTGGCGHindIII287-HisRevCCCGCTCGAGATCCTGCTCTTTTTGCCGGCXhoIFu (orf46-287)-FwdCCCAAGCTTGGTGGTGGTGGTGGTCAAAGCAAGAGCATHindIII919-HisCCAAACCRevCCCGCTCGAGCGGGCGGTATTCGGGCTTXhoI(ΔG741)-961c-HisFwd1GGAGGCACTGGATCCGCAGCCACAAACGACGACGAXhoIfwd2GCGGCCTCGAG-GGTGGCGGAGGCACTGGATCCGCAGRevCCCGCTCGAG-ACCCAGCTTGTAAGGTTGXhoI(ΔG741)-961-HisFwd1GGAGGCACTGGATCCGCAGCCACAAACGACGACGAXhoIFwd2GCGGCCTCGAG-GGTGGCGGAGGCACTGGATCCGCAGRevCCCGCTCGAG-CCACTCGTAATTGACGCCXhoI(ΔG741)-983-HisFwdGCCCGCTCGAG-XhoIRevCCCGCTCGAG-GAACCGGTAGCCTACGXhoI(ΔG741)-orf46.1-Fwd1GGAGGCACTGGATCCTCAGATTTGGCAAACGATTCSalIHisFdw2GCGGCGTCGACGGTGGCGGAGGCACTGGATCCTCAGARevCCCGCTCGAG-CGTATCATATTTACGTGCXhoI(ΔG983)-FwdGCGGCCTCGAG-GGATCCGGAGGGGGTGGTGTCGCCXhoI741(MC58)-HisRevCCCGCTCGAG-TTGCTTGGCGGCAAGXhoI(ΔG983)-961c-HisFwd1GGAGGCACTGGATCCGCAGCCACAAACGACGACGAXhoIFwd2GCGGCCTCGAG-GGTGGCGGAGGCACTGGATCCGCAGRevCCCGCTCGAG-ACCCAGCTTGTAAGGTTGXhoI(ΔG983)-961-HisFwd1GGAGGCACTGGATCCGCAGCCACAAACGACGACGAXhoIFwd2GCGGCCTCGAG-GGTGGCGGAGGCACTGGATCCGCAGRevCCCGCTCGAG-CCACTCGTAATTGACGCCXhoI(ΔG983)-Orf46.1-Fwd1GGAGGCACTGGATCCTCAGATTTGGCAAACGATTCSalIHisFwd2GCGGCGTCGACGGTGGCGGAGGCACTGGATCCTCAGARevCCCGCTCGAG-CGTATCATATTTCACGTGCXhoI*This primer was used as a Reverse primer for all the C terminal fusions of 287 to the His-tag. §Forward primers used in combination with the 287-His Reverse primer. NB - All PCR reactions use strain 2996 unless otherwise specified (e.g. strain MC58)


[0420] In all constructs starting with an ATG not followed by a unique NheI site, the ATG codon is part of the NdeI site used for cloning. The constructs made using NheI as a cloning site at the 5′ end (e.g. all those containing 287 at the N-terminus) have two additional codons (GCT AGC) fused to the coding sequence of the antigen.


[0421] Preparation of Chromosomal DNA Templates


[0422]

N.meningitidis
strains 2996, MC58, 394.98, 1000 and BZ232 (and others) were grown to exponential phase in 100 ml of GC medium, harvested by centrifugation, and resuspended in 5 ml buffer (20% w/v sucrose, 50 mM Tris-HCl, 50 mM EDTA, pH8). After 10 minutes incubation on ice, the bacteria were lysed by adding 10 ml of lysis solution (50 mM NaCl, 1% Na-Sarkosyl, 50 μg/ml Proteinase K), and the suspension incubated at 37° C. for 2 hours. Two phenol extractions (equilibrated to pH 8) and one CHCl3/isoamylalcohol (24:1) extraction were performed. DNA was precipitated by addition of 0.3M sodium acetate and 2 volumes of ethanol, and collected by centrifugation. The pellet was washed once with 70% (v/v) ethanol and redissolved in 4.0 ml TE buffer (10 mM Tris-HCl, 1 mM EDTA, pH 8.0). The DNA concentration was measured by reading OD260.


[0423] PCR Amplification


[0424] The standard PCR protocol was as follows: 200 ng of genomic DNA from 2996, MC581000, or BZ232 strains or 10 ng of plasmid DNA preparation of recombinant clones were used as template in the presence of 40 μM of each oligonucletide primer, 400-800 μM dNTPs solution, 1×PCR buffer (including 1.5 mM MgCl2), 2.5 units TaqI DNA polymerase (using Perkin-Elmer AmpliTaQ, Boerhingher Mannheim Expand™ Long Template).


[0425] After a preliminary 3 minute incubation of the whole mix at 95° C., each sample underwent a two-step amplification: the first 5 cycles were performed using the hybridisation temperature that excluded the restriction enzyme tail of the primer (Tm1). This was followed by 30 cycles according to the hybridisation temperature calculated for the whole length oligos (Tm2). Elongation times, performed at 68° C, or 72° C., varied according to the length of the Orf to be amplified. In the case of Orf1 the elongation time, starting from 3 minutes, was increased by 15 seconds each cycle. The cycles were completed with a 10 minute extension step at 72° C.


[0426] The amplified DNA was either loaded directly on a 1% agarose gel. The DNA fragment corresponding to the band of correct size was purified from the gel using the Qiagen Gel Extraction Kit, following the manufacturer's protocol.


[0427] Digestion of PCR Fragments and of the Cloning Vectors


[0428] The purified DNA corresponding to the amplified fragment was digested with the appropriate restriction enzymes for cloning into pET-21b+, pET22b+ or pET-24b+. Digested fragments were purified using the QIAquick PCR purification kit (following the manufacturer's instructions) and eluted with either H2O or 10 mM Tris, pH 8.5. Plasmid vectors were digested with the appropriate restriction enzymes, loaded onto a 1.0% agarose gel and the band corresponding to the digested vector purified using the Qiagen QIAquick Gel Extraction Kit.


[0429] Cloning


[0430] The fragments corresponding to each gene, previously digested and purified, were ligated into pET21b+, pET22b+ or pET-24b+. A molar ratio of 3:1 fragment/vector was used with T4 DNA ligase in the ligation buffer supplied by the manufacturer.


[0431] Recombinant plasmid was transformed into competent E.coli DH5 or HB101 by incubating the ligase reaction solution and bacteria for 40 minutes on ice, then at 37° C. for 3 minutes.


[0432] This was followed by the addition of 800 μl LB broth and incubation at 37° C. for 20 minutes. The cells were centrifuged at maximum speed in an Eppendorf microfuge, resuspended in approximately 200 μl of the supernatant and plated onto LB ampicillin (10 mg/ml) agar.


[0433] Screening for recombinant clones was performed by growing randomly selected colonies overnight at 37° C. in 4.0 ml of LB broth+100 μg/ml ampicillin. Cells were pelleted and plasmid DNA extracted using the Qiagen QIAprep Spin Miniprep Kit, following the manufacturer's instructions. Approximately 1 μg of each individual miniprep was digested with the appropriate restriction enzymes and the digest loaded onto a 1-1.5% agarose gel (depending on the expected insert size), in parallel with the molecular weight marker (1 kb DNA Ladder, GIBCO). Positive clones were selected on the basis of the size of insert.


[0434] Expression


[0435] After cloning each gene into the expression vector, recombinant plasmids were transformed into E.coli strains suitable for expression of the recombinant protein. 1 μl of each construct was used to transform E.coli BL21-DE3 as described above. Single recombinant colonies were inoculated into 2 ml LB+Amp (100 μg/ml), incubated at 37° C. overnight, then diluted 1:30 in 20 ml of LB+Amp (100 μg/ml) in 100 ml flasks, to give an OD600 between 0.1 and 0.2. The flasks were incubated at 30° C. or at 37° C. in a gyratory water bath shaker until OD600 indicated exponential growth suitable for induction of expression (0.4-0.8 OD). Protein expression was induced by addition of 1.0 mM IPTG. After 3 hours incubation at 30° C. or 37° C. the OD600 was measured and expression examined. 1.0 ml of each sample was centrifuged in a microfuge, the pellet resuspended in PBS and analysed by SDS-PAGE and Coomassie Blue staining.


[0436] Gateway Cloning and Expression


[0437] Sequences labelled GATE were cloned and expressed using the GATEWAY Cloning Technology (GIBCO-BRL). Recombinational cloning (RC) is based on the recombination reactions that mediate the integration and excision of phage into and from the E.coli genome, respectively. The integration involves recombination of the attP site of the phage DNA within the attB site located in the bacterial genome (BP reaction) and generates an integrated phage genome flanked by attL and attR sites. The excision recombines attL and attR sites back to attP and attB sites (LR reaction). The integration reaction requires two enzymes [the phage protein Integrase (Int) and the bacterial protein integration host factor (IF] (BP clonase). The excision reaction requires Int, IHF, and an additional phage enzyme, Excisionase (Xis) (LR clonase). Artificial derivatives of the 25-bp bacterial attB recombination site, referred to as B1 and B2, were added to the 5′ end of the primers used in PCR reactions to amplify Neisserial ORFs. The resulting products were BP cloned into a “Donor vector” containing complementary derivatives of the phage attP recombination site (P1 and P2) using BP clonase. The resulting “Entry clones” contain ORFs flanked by derivatives of the attL site (L1 and L2) and were subcloned into expression “destination vectors” which contain derivatives of the attL-compatible attR sites (R1 and R2) using LR clonase. This resulted in “expression clones” in which ORFs are flanked by B1 and B2 and fused in frame to the GST or His N terminal tags.


[0438] The E. coli strain used for GATEWAY expression is BL21-SL Cells of this strain are induced for expression of the T7 RNA polymerase by growth in medium containing salt (0.3 M NaCl).


[0439] Note that this system gives N-terminus His tags.


[0440] Preparation of Membrane Proteins.


[0441] Fractions composed principally of either inner, outer or total membrane were isolated in order to obtain recombinant proteins expressed with membrane-localisation leader sequences. The method for preparation of membrane fractions, enriched for recombinant proteins, was adapted from Filip et. al. [J.Bact. (1973) 115:717-722] and Davies et. al. [J.Immunol.Meth. (1990) 143:215-225]. Single colonies harbouring the plasmid of interest were grown overnight at 37° C. in 20 ml of LB/Amp (100 μg/ml) liquid culture. Bacteria were diluted 1:30 in 1.0 L of fresh medium and grown at either 30° C. or 37° C. until the OD550 reached 0.6-0.8. Expression of recombinant protein was induced with IPTG at a final concentration of 1.0 mM. After incubation for 3 hours, bacteria were harvested by centrifugation at 8000 g for 15 minutes at 4° C. and resuspended in 20 ml of 20 mM Tris-HCl (pH 7.5) and complete protease inhibitors (Boehringer-Mannheim). All subsequent procedures were performed at 4° C. or on ice.


[0442] Cells were disrupted by sonication using a Branson Sonifier 450 and centrifuged at 5000 g for 20 min to sediment unbroken cells and inclusion bodies. The supernatant, containing membranes and cellular debris, was centrifuged at 50000 g (Beckman Ti50, 29000 rpm) for 75 min, washed with 20 mM Bis-tris propane (pH 6.5), 1.0 M NaCl, 10% (v/v) glycerol and sedimented again at 50000 g for 75 minutes. The pellet was resuspended in 20 mM Tris-HCl (pH 7.5), 2.0% (v/v) Sarkosyl, complete protease inhibitor (1.0 mM EDTA, final concentration) and incubated for 20 minutes to dissolve inner membrane. Cellular debris was pelleted by centrifugation at 5000 g for 10 min and the supernatant centrifuged at 75000 g for 75 minutes (Beckman Ti50, 33000 rpm). Proteins 008L and 519L were found in the supernatant suggesting inner membrane localisation. For these proteins both inner and total membrane fractions (washed with NaCl as above) were used to immunise mice. Outer membrane vesicles obtained from the 75000 g pellet were washed with 20 mM Tris-HCl (pH 7.5) and centrifuged at 75000 g for 75 minutes or overnight. The OMV was finally resuspended in 500 μl of 20 mM Tris-HCl (pH 7.5), 10% v/v glycerol. Orf1L and Orf40L were both localised and enriched in the outer membrane fraction which was used to immunise mice. Protein concentration was estimated by standard Bradford Assay (Bio-Rad), while protein concentration of inner membrane fraction was determined with the DC protein assay (Bio-Rad). Various fractions from the isolation procedure were assayed by SDS-PAGE.


[0443] Purification of His-Tagged Proteins


[0444] Various forms of 287 were cloned from strains 2996 and MC58. They were constructed with a C-terminus His-tagged fusion and included a mature form (aa 18-427), constructs with deletions (Δ, Δ2, Δ3 and Δ4) and clones composed of either B or C domains. For each clone purified as a His-fusion, a single colony was streaked and grown overnight at 37° C. on a LB/Amp (100 μg/ml) agar plate. An isolated colony from this plate was inoculated into 20 ml of LB/Amp (100 μg/ml) liquid medium and grown overnight at 37° C. with shaking. The overnight culture was diluted 1:30 into 1.0 L LB/Amp (100 μg/ml) liquid medium and allowed to grow at the optimal temperature (30 or 37° C.) until the OD550 reached 0.6-0.8. Expression of recombinant protein was induced by addition of IPTG (final concentration 1.0 mM) and the culture incubated for a further 3 hours. Bacteria were harvested by centrifugation at 8000 g for 15 min at 4° C. The bacterial pellet was resuspended in 7.5 ml of either (i) cold buffer A (300 mM NaCl, 50 mM phosphate buffer, 10 mM imidazole, pH 8.0) for soluble proteins or (ii) buffer B (10 mM Tris-HCl, 100 mM phosphate buffer, pH 8.8 and, optionally, 8M urea) for insoluble proteins. Proteins purified in a soluble form included 287-His, Δ1, Δ2, Δ3 and Δ4287-His, Δ4287MC58-His, 287c-His and 287cMC58-His. Protein 287bMC58-His was insoluble and purified accordingly. Cells were disrupted by sonication on ice four times for 30 sec at 40 W using a Branson sonifier 450 and centrifuged at 13000×g for 30 min at 4° C. For insoluble proteins, pellets were resuspended in 2.0 ml buffer C (6 M guanidine hydrochloride, 100 mM phosphate buffer, 10 mM Tris-HCl, pH 7.5 and treated with 10 passes of a Dounce homogenizer. The homogenate was centrifuged at 13000 g for 30 min and the supernatant retained. Supernatants for both soluble and insoluble preparations were mixed with 150 μl Ni2+-resin (previously equilibrated with either buffer A or buffer B, as appropriate) and incubated at room temperature with gentle agitation for 30 min. The resin was Chelating Sepharose Fast Flow (Pharmacia), prepared according to the manufacturer's protocol. The batch-wise preparation was centrifuged at 700 g for 5 min at 4° C. and the supernatant discarded. The resin was washed twice (batch-wise) with 10 ml buffer A or B for 10 min, resuspended in 1.0 ml buffer A or B and loaded onto a disposable column. The resin continued to be washed with either (i) buffer A at 4° C. or (ii) buffer B at room temperature, until the OD280 of the flow-through reached 0.02-0.01. The resin was further washed with either (i) cold buffer C (300 mM NaCl, 50 mM phosphate buffer, 20 mM imidazole, pH 8.0) or (ii) buffer D (10 mM Tris-HCl, 100 mM phosphate buffer, pH 6.3 and, optionally, 8M urea) until OD280 of the flow-through reached 0.02-0.01. The His-fusion protein was eluted by addition of 700 μl of either (i) cold elution buffer A (300 mM NaCl, 50 mM phosphate buffer, 250 mM imidazole, pH 8.0) or (ii) elution buffer B (10 mM Tris-HCl, 100 mM phosphate buffer, pH 4.5 and, optionally, 8M urea) and fractions collected until the OD280 indicated all the recombinant protein was obtained. 20μl aliquots of each elution fraction were analysed by SDS-PAGE. Protein concentrations were estimated using the Bradford assay.


[0445] Renaturation of Denatured His-Fusion Proteins.


[0446] Denaturation was required to solubilize 287bMC8, so a renaturation step was employed prior to immunisation. Glycerol was added to the denatured fractions obtained above to give a final concentration of 10% v/v. The proteins were diluted to 200 μg/ml using dialysis buffer I (10% v/v glycerol, 0.5M arginine, 50 mM phosphate buffer, 5.0 mM reduced glutathione, 0.5 mM oxidised glutathione, 2.0M urea, pH 8.8) and dialysed against the same buffer for 12-14 hours at 4° C. Further dialysis was performed with buffer II (10% v/v glycerol, 0.5M arginine, 50 mM phosphate buffer, 5.0 mM reduced glutathione, 0.5 mM oxidised glutathione, pH 8.8) for 12-14 hours at 4° C. Protein concentration was estimated using the formula:


Protein (mg/ml) (1.55×OD280)−(0.76×OD260)


[0447] Amino Acid Sequence Analysis.


[0448] Automated sequence analysis of the NH2-terminus of proteins was performed on a Beckman sequencer (LF 3000) equipped with an on-line phenylthiohydantoin-amino acid analyser (System Gold) according to the manufacturer's recommendations.


[0449] Immunization


[0450] Balb/C mice were immunized with antigens on days 0, 21 and 35 and sera analyzed at day 49.


[0451] Sera Analysis—ELISA


[0452] The acapsulated MenB M7 and the capsulated strains were plated on chocolate agar plates and incubated overnight at 37° C. with 5% CO2. Bacterial colonies were collected from the agar plates using a sterile dracon swab and inoculated into Mueller-Hinton Broth (Difco) containing 0.25% glucose. Bacterial growth was monitored every 30 minutes by following OD620. The bacteria were let to grow until the OD reached the value of 0.4-0.5. The culture was centrifuged for 10 minutes at 400 rpm. The supernatant was discarded and bacteria were washed twice with PBS, resuspended in PBS containing 0.025% formaldehyde, and incubated for 1 hour at 37° C. and then overnight at 4° C. with stirring. 100 μl bacterial cells were added to each well of a 96 well Greiner plate and incubated overnight at 4° C. The wells were then washed three times with PBT washing buffer (0.1% Tween-20 in PBS). 200 μl of saturation buffer (2.7% polyvinylpyrrolidone 10 in water) was added to each well and the plates incubated for 2 hours at 37° C. Wells were washed three times with PBT. 200 μl of diluted sera (Dilution buffer: 1% BSA, 0.1% Tween-20, 0.1% NaN3 in PBS) were added to each well and the plates incubated for 2 hours at 37° C. Wells were washed three times with PBT. 100 μl of HRP-conjugated rabbit anti-mouse (Dako) serum diluted 1:2000 in dilution buffer were added to each well and the plates were incubated for 90 minutes at 37° C. Wells were washed three times with PBT buffer. 100 μl of substrate buffer for HRP (25 ml of citrate buffer pH5, 10 mg of O-phenildiamine and 10 μl of H2O2) were added to each well and the plates were left at room temperature for 20 minutes. 100 μl 12.5% H2SO4 was added to each well and OD490 was followed. The ELISA titers were calculated abitrarely as the dilution of sera which gave an OD490 value of 0.4 above the level of preimmune sera The ELISA was considered positive when the dilution of sera with OD490 of 0.4 was higher than 1:400.


[0453] Sera Analysis—FACS Scan Bacteria Binding Assay


[0454] The acapsulated MenB M7 strain was plated on chocolate agar plates and incubated overnight at 37° C. with 5% CO2. Bacterial colonies were collected from the agar plates using a sterile dracon swab and inoculated into 4 tubes containing 8ml each Mueller-Hinton Broth (Difco) containing 0.25% glucose. Bacterial growth was monitored every 30 minutes by following OD620. The bacteria were let to grow until the OD reached the value of 0.35-0.5. The culture was centrifuged for 10 minutes at 400 rpm. The supernatant was discarded and the pellet was resuspended in blocking buffer (1% BSA in PBS, 0.4% NaN3) and centrifuged for 5 minutes at 4000 rpm. Cells were resuspended in blocking buffer to reach OD620 of 0.05. 100 μl bacterial cells were added to each well of a Costar 96 well plate. 100 μl of diluted (1:100, 1:200, 1:400) sera (in blocking buffer) were added to each well and plates incubated for 2 hours at 4° C. Cells, were centrifuged for 5 minutes at 4000 rpm, the supernatant aspirated and cells washed by addition of 200 μl/well of blocking buffer in each well. 100 μl of R-Phicoerytrin conjugated F(ab)2 goat anti-mouse, diluted 1:100, was added to each well and plates incubated for 1 hour at 4° C. Cells were spun down by centrifugation at 400 rpm for 5 minutes and washed by addition of 200 μl/well of blocking buffer. The supernatant was aspirated and cells resuspended in 200 μl/well of PBS, 0.25% formaldehyde. Samples were transferred to FACScan tubes and read. The condition for FACScan (Laser Power 15 mW) setting were: FL2 on; FSC-H threshold: 92; FSC PMT Voltage: E 01; SSC PMT: 474; Amp. Gains 6.1; FL,2 PMT: 586; compensation values: 0.


[0455] Sera Analysis—Bactericidal Assay


[0456]

N. meningitidis
strain 2996 was grown overnight at 37° C. on chocolate agar plates (starting from a frozen stock) with 5% CO2. Colonies were collected and used to inoculate 7 ml Mueller-Hinton broth, containing 0.25% glucose to reach an OD620 of 0.05-0.08. The culture was incubated for approximately 1.5 hours at 37 degrees with shacking until the OD620 reached the value of 0.23-0.24. Bacteria were diluted in 50 mM Phosphate buffer pH 7.2 containing 10 mM MgCl2, 10 mM CaCl2 and 0.5% (w/v) BSA (assay buffer) at the working dilution of 105 CFU/ml. The total volume of the final reaction mixture was 50 μl with 25 μI of serial two fold dilution of test serum, 12.5 μl of bacteria at the working dilution, 12.5 μl of baby rabbit complement (final concentration 25%).


[0457] Controls included bacteria incubated with complement serum, immune sera incubated with bacteria and with complement inactivated by heating at 56° C. for 30′. Immediately after the addition of the baby rabbit complement, 10 μl of the controls were plated on Mueller-Hinton agar plates using the tilt method (time 0). The, 96-wells plate was incubated for 1 hour at 37° C. with rotation. 7 μl of each sample were plated on Mueller-Hinton agar plates as spots, whereas 10 μl of the controls were plated on Mueller-Hinton agar plates using the tilt method (time 1). Agar plates were incubated for 18 hours at 37 degrees and the colonies corresponding to time 0 and time 1 were counted.


[0458] Sera Analysis—Western Blots


[0459] Purified proteins (500 ng/lane), outer membrane vesicles (5 μg) and total cell extracts (25 μg) derived from MenB strain 2996 were loaded onto a 12% SDS-polyacrylamide gel and transferred to a nitrocellulose membrane. The transfer was performed for 2 hours at 150 mA at 4° C., using transfer buffer (0.3% Tris base, 1.44% glycine, 20% (v/v) methanol). The membrane was saturated by overnight incubation at 4° C. in saturation buffer (10% skimmed milk, 0.1% Triton X100 in PBS). The membrane was washed twice with washing buffer (3% skimmed milk, 0.1% Triton X100 in PBS) and incubated for 2 hours at 37° C. with mice sera diluted 1:200 in washing buffer. The membrane was washed twice and incubated for 90 minutes with a 1:2000 dilution of horseradish peroxidase labelled anti-mouse Ig. The membrane was washed twice with 0.1% Triton X100 in PBS and developed with the Opti-4CN Substrate Kit (Bio-Rad). The reaction was stopped by adding water.


[0460] The OMVs were prepared as follows: N. meningitidis strain 2996 was grown overnight at 37 degrees with 5% CO2 on 5 GC plates, harvested with a loop and resuspended in 10 ml of 20 mM Tris-HCl pH 7.5, 2 mM EDTA. Heat inactivation was performed at 56° C. for 45 minutes and the bacteria disrupted by sonication for 5 minutes on ice (50% duty cycle, 50% output, Branson sonifier 3 mm microtip). Unbroken cells were removed by centrifugation at 5000 g for 10 minutes, the supernatant containing the total cell envelope fraction recovered and further centrifuged overnight at 50000 g at the temperature of 4° C. The pellet containing the membranes was resuspended in 2% sarkosyl, 20 mM Tris-HCl pH 7.5, 2 mM EDTA and incubated at room temperature for 20 minutes to solubilise the inner membranes. The suspension was centrifuged at 10000 g for 10 minutes to remove aggregates, the supernatant was further centrifuged at 50000 g for 3 hours. The pellet, containing the outer membranes was washed in PBS and resuspended in the same buffer. Protein concentration was measured by the D.C. Bio-Rad Protein assay (Modified Lowry method), using BSA as a standard.


[0461] Total cell extracts were prepared as follows: N. meningitidis strain 2996 was grown overnight on a GC plate, harvested with a loop and resuspended in 1 ml of 20 mM Tris-HCl. Heat inactivation was performed at 56° C. for 30 minutes.


[0462] 961 Domain Studies


[0463] Cellular fractions preparation Total lysate, periplasm, supernatant and OMV of E.coli clones expressing different domains of 961 were prepared using bacteria from over-night cultures or after 3 hours induction with IPTG. Briefly, the periplasm were obtained suspending bacteria in saccarose 25% and Tris. 50 mM (pH 8) with polimixine 100 μg/ml. After 1 hr at room temperature bacteria were centrifuged at 13000 rpm for 15 min and the supernatant were collected. The culture supernatant were filtered with 0.2 μm and precipitated with TCA 50% in ice for two hours. After centrifugation (30 min at 13000 rp) pellets were rinsed twice with ethanol 70% and suspended in PBS. The OMV preparation was performed as previously described. Each cellular fraction were analyzed in SDS-PAGE or in Western Blot using the polyclonal anti-serum raised against GST-961.


[0464] Adhesion assay Chang epithelial cells (Wong-Kilbourne derivative, clone 1-5c-4, human conjunctiva) were maintained in DMEM (Gibco) supplemented with 10% heat-inactivated FCS, 15 mM 1-glutamine and antibiotics.


[0465] For the adherence assay, sub-confluent culture of Chang epithelial cells were rinsed with PBS and treated with trypsin-EDTA (Gibco), to release them from the plastic support. The cells were then suspended in PBS, counted and dilute in PBS to 5×105 cells/ml.


[0466] Bacteria from over-night cultures or after induction with IPTG, were pelleted and washed twice with PBS by centrifuging at 13000 for 5 min. Approximately 2-3×108 (cfu) were incubated with 0.5 mg/ml FITC (Sigma) in 1 ml buffer containing 50 mM NaHCO3 and 100 mM NaCl pH 8, for 30 min at room temperature in the dark. FITC-labeled bacteria were wash 2-3 times and suspended in PBS at 1-1.5×109/ml. 200 μl of this suspension (2-3×108) were incubated with 2000 rpm (1×105) epithelial cells for 30min a 37° C. Cells were than centrifuged at 200 rpm for 5 min to remove non-adherent bacteria, suspended in 200 μl of PBS, transferred to FACScan tubes and read


Claims
  • 1. A method for the heterologous expression of a protein of the invention, in which (a) at least one domain in the protein is deleted and, optionally, (b) no fusion partner is used.
  • 2. The method of claim 1, in which the protein of the invention is ORF46.
  • 3. The method of claim 2, in which ORF46 is divided into a first domain (amino acids 1-433) and a second domain (amino acids 433-608).
  • 4. The method of claim 2, in which the protein of the invention is 564.
  • 5. The method of claim 4, in which protein 564 is divided into domains as shown in FIG. 8.
  • 6. The method of claim 1 in which the protein of the invention is 961.
  • 7. The method of claim 6, in which protein 961 is divided into domains as shown in FIG. 12.
  • 8. The method of claim 1, in which the protein of the invention is 502 and the domain is amino acids 28 to 167 (numbered according to the MC58 sequence).
  • 9. The method of claim 1, in which the protein of the invention is 287.
  • 10. A method for the heterologous expression of a protein of the invention, in which (a) a portion of the N-terminal domain of the protein is deleted.
  • 11. The method of claim 9 or claim 10, in which protein 287 is divided into domains A B & C shown in FIG. 5.
  • 12. The method of claim 11, in which (i) domain A, (ii) domains A and B, or (iii) domains A and C are deleted.
  • 13. The method of claim 11, wherein (i) amino acids 1-17, (ii) amino acids 1-25, (iii) amino acids 1-69, or (iv) amino acids 1-106, of domain A are deleted.
  • 14. A method for the heterologous expression of a protein of the invention, in which (a) no fusion partner is used, and (b) the protein's native leader peptide (if present) is used.
  • 15. The method of claim 14, in which the protein of the invention is selected from the group consisting of: 111, 149, 206, 225-1, 235, 247-1, 274, 283, 286, 292, 401, 406, 502-1, 503, 519-1, 525-1, 552, 556, 557, 570, 576-1, 580, 583, 664, 759, 907, 913, 920-1, 936-1, 953, 961, 983, 989, Orf4, Orf7-1, Orf9-1, Orf23, Orf25, Orf37, Orf38, Orf40, Orf40.1, Orf40.2, Orf72-1, Orf76-1, Orf85-2, Orf91, Orf97-1, Orf119, Orf143.1, NMB0109, NMB2050, 008, 105, 117-1, 121-1, 122-1, 128-1, 148, 216, 243, 308, 593, 652, 726, 926, 982, Orf83-1 and Orf143-1.
  • 16. A method for the heterologous expression of a protein of the invention, in which (a) the protein's leader peptide is replaced by the leader peptide from a different protein and, optionally, (b) no fusion partner is used.
  • 17. The method of claim 16, in which the different protein is 961, ORF4, E.coli OmpA, or E.carotovora PelB, or in which the leader peptide is MKKYLFSAA.
  • 18. The method of claim 17, in which the different protein is E.coli OmpA and the protein of the invention is ORF1.
  • 19. The method of claim 17, in which the protein of the invention is 911 and the different protein is E.carotovora PelB or E.coli OmpA.
  • 20. The method of claim 17, in which the different protein is ORF4 and the protein of the invention is 287.
  • 21. A method for the heterologous expression of a protein of the invention, in which (a) the protein's leader peptide is deleted and, optionally, (b) no fusion partner is used.
  • 22. The method of claim 21, in which the protein of the invention is 919.
  • 23. A method for the heterologous expression of a protein of the invention, in which expression of a protein of the invention is carried out at a temperature at which a toxic activity of the protein is not manifested.
  • 24. The method of claim 23, in which protein 919 is expressed at 30° C.
  • 25. A method for the heterologous expression of a protein of the invention, in which protein is mutated to reduce or eliminate toxic activity.
  • 26. The method of claim 25, in which the protein of the invention is 907, 919 or 922.
  • 27. The method of claim 26, in which 907 is mutated at Glu-117 (e.g. Glu→Gly).
  • 28. The method of claim 26, in which 919 is mutated at Glu-255 (e.g. Glu→Gly) and/or Glu-323 (e.g. Glu→Gly).
  • 29. The method of claim 26, in which 922 is mutated at Glu-164 (e.g. Glu→Gly), Ser-213 (e.g. Ser→Gly) and/or Asn-348 (e.g. Asn→Gly).
  • 30. A method for the heterologous expression of a protein of the invention, in which vector pSM214 is used or vector pET-24b is used.
  • 31. The method of claim 30, in which the protein of the invention is 953 and the vector is pSM214.
  • 32. A method for the heterologous expression of a protein of the invention, in which a protein is expressed or purified such that it adopts a particular multimeric form.
  • 33. The method of claim 32, in which protein 953 is expressed and/or purified in monomeric form.
  • 34. The method of claim 32, in which protein 961 is expressed and/or purified in tetrameric form.
  • 35. The method of claim 32, in which protein 287 is expressed and/or purified in dimeric form.
  • 36. The method of claim 32, in which protein 919 is expressed and/or purified in monomeric form.
  • 37. A method for the heterologous expression of a protein of the invention, in which the protein is expressed as a lipidated protein.
  • 38. The method of claim 37, in which the protein of the invention is 919, 287, ORF4, 406, 576, or ORF25.
  • 39. A method for the heterologous expression of a protein of the invention, in which (a) the protein's C-terminus region is mutated and, optionally, (b) no fusion partner is used.
  • 40. The method of claim 39, wherein the mutation is a substitution, an insertion, or a deletion
  • 41. The method of claim 40, wherein the protein of the invention is 730, ORF29 or ORF46.
  • 42. A method for the heterologous expression of a protein of the invention, in which the protein's leader peptide is mutated.
  • 43. The method of claim 42, in which the protein of the invention is 919.
  • 44. A method for the heterologous expression of a protein, in which a poly-glycine stretch within the protein is mutated.
  • 45. The method of claim 44, wherein the protein is a protein of the invention.
  • 46. The method of claim 45, wherein the protein of the invention is 287, 741, 983 or Thp2.
  • 47. The method of claim 46, wherein (Gly)6 is deleted from 287 or 983.
  • 48. The method of claim 46, wherein (Gly)4 is deleted from Thp2 or 741
  • 49. The method of claim 47 or claim 48, wherein the leader peptide is also deleted.
  • 50. The method of any preceding claim, in which the heterologous expression is in an E.coli host.
  • 51. A protein expressed by the method of any preceding claim.
  • 52. A heterologous protein comprising the N-terminal amino acid sequence MKKYLFSAA.
Priority Claims (2)
Number Date Country Kind
0004695.3 Feb 2000 GB
0027675.8 Nov 2000 GB
PCT Information
Filing Document Filing Date Country Kind
PCT/IB01/00452 2/28/2001 WO