Information
-
Patent Application
-
20040110670
-
Publication Number
20040110670
-
Date Filed
August 13, 200321 years ago
-
Date Published
June 10, 200420 years ago
-
CPC
-
US Classifications
-
International Classifications
Abstract
Alternative and improved approaches to the heterologous expression of the proteins of Neisseria meningitidis and Neisseria gonorrhoeae. These approaches typically affect the level of expression, the ease of purification, the cellular localisation, and/or the immunological properties of the expressed protein.
Description
[0001] All documents cited herein are incorporated by reference in their entirety.
TECHNICAL FIELD
[0002] This invention is in the field of protein expression. In particular, it relates to the heterologous expression of proteins from Neisseria (e.g. N.gonorrhoeae or, preferably, N.meningitidis).
BACKGROUND ART
[0003] International patent applications WO99/24578, WO99/36544, WO99/57280 and WO00/22430 disclose proteins from Neisseria meningitidis and Neisseria gonorrhoeae. These proteins are typically described as being expressed in E.coli (i.e. heterologous expression) as either N-terminal GST-fusions or C-terminal His-tag fusions, although other expression systems, including expression in native Neisseria, are also disclosed.
[0004] It is an object of the present invention to provide alternative and improved approaches for the heterologous expression of these proteins. These approaches will typically affect the level of expression, the ease of purification, the cellular localisation of expression, and/or the immunological properties of the expressed protein.
DISCLOSURE OF THE INVENTION
[0005] Nomenclature Herein
[0006] The 2166 protein sequences disclosed in WO99/24578, WO99/36544 and WO99/57280 are referred to herein by the following SEQ# numbers:
1|
|
ApplicationProtein sequencesSEQ# herein
|
WO99/24578Even SEQ IDs 2-892SEQ#s 1-446
WO99/36544Even SEQ IDs 2-90SEQ#s 447-491
WO99/57280Even SEQ IDs 2-3020SEQ#s 492-2001
Even SEQ IDs 3040-3114SEQ#s 2002-2039
SEQ IDs 3115-3241SEQ#s 2040-2166
|
[0007] In addition to this SEQ# numbering, the naming conventions used in WO99/24578, WO99/36544 and WO99/57280 are also used (e.g. ‘ORF4’, ‘ORF40’, ‘ORF40-1’ etc. as used in WO99/24578 and WO99/36544; ‘m919’, ‘g919’ and ‘a919’ etc. as used in WO99/57280).
[0008] The 2160 proteins NMB0001 to NM2160 from Tettelin et al. [Science (2000) 287:1809-1815] are referred to herein as SEQ#s 2167-4326 [see also WO00/66791].
[0009] The term ‘protein of the invention’ as used herein refers to a protein comprising:
[0010] (a) one of sequences SEQ#s 1-4326; or
[0011] (b) a sequence having sequence identity to one of SEQ#s 1-4326; or
[0012] (c) a fragment of one of SEQ#s 1-4326.
[0013] The degree of ‘sequence identity’ referred to in (b) is preferably greater than 50% (eg. 60%, 70%, 80%, 90%, 95%, 99% or more). This includes mutants and allelic variants [e.g. see WO00/66741]. Identity is preferably determined by the Smith-Waterman homology search algorithm as implemented in the MPSRCH program (Oxford Molecular), using an affine gap search with parameters gap open penalty=12 and gap extension penalty=1. Typically, 50% identity or more between two proteins is considered to be an indication of functional equivalence.
[0014] The ‘fragment’ referred to in (c) should comprise at least n consecutive amino acids from one of SEQ#s 1-4326 and, depending on the particular sequence, n is 7 or more (eg. 8, 10, 12, 14, 16, 18, 20, 25, 30, 35, 40, 50, 60, 70, 80, 90, 100 or more). Preferably the fragment comprises an epitope from one of SEQ#s 1-4326. Preferred fragments are those disclosed in WO0/71574 and WO01/04316.
[0015] Preferred proteins of the invention are found in N.meningitidis serogroup B.
[0016] Preferred proteins for use according to the invention are those of serogroup B N.meningitidis strain 2996 or strain 394/98 (a New Zealand strain). Unless otherwise stated, proteins mentioned herein are from N.meningitidis strain 2996. It will be appreciated, however, that the invention is not in general limited by strain. References to a particular protein (e.g. ‘287’, ‘919’ etc.) may be taken to include that protein from any strain.
[0017] Non-Fusion Expression
[0018] In a first approach to heterologous expression, no fusion partner is used, and the native leader peptide (if present) is used. This will typically prevent any ‘interference’ from fusion partners and may alter cellular localisation and/or post-translational modification and/or folding in the heterologous host.
[0019] Thus the invention provides a method for the heterologous expression of a protein of the invention, in which (a) no fusion partner is used, and (b) the protein's native leader peptide (if present) is used.
[0020] The method will typically involve the step of preparing an vector for expressing a protein of the invention, such that the first expressed amino acid is the first amino acid (methionine) of said protein, and last expressed amino acid is the last amino acid of said protein (i.e. the codon preceding the native STOP codon).
[0021] This approach is preferably used for the expression of the following proteins using the native leader peptide: 111, 149, 206, 225-1, 235, 247-1, 274, 283, 286, 292, 401, 406, 502-1, 503, 519-1, 525-1, 552, 556, 557, 570, 576-1, 580, 583, 664, 759, 907, 913, 920-1, 936-1, 953, 961, 983, 989, Orf4, Orf7-1, Orf9-1, Orf23, Orf25, Orf37, Orf38, Orf40, Orf40.1, Orf40.2, Orf72-1, Orf76-1, Orf85-2, Orf91, Orf97-1, Orf119, Orf143.1, NMB0109 and NMB2050. The suffix ‘L’ used herein in the name of a protein indicates expression in this manner using the native leader peptide.
[0022] Proteins which are preferably expressed using this approach using no fusion partner and which have no native leader peptide include: 008, 105, 117-1, 121-1, 122-1, 128-1, 148, 216, 243, 308, 593, 652, 726, 926, 982, Orf83-1 and Orf143-1.
[0023] Advantageously, it is used for the expression of ORF25 or ORF40, resulting in a protein which induces better anti-bactericidal antibodies than GST- or His-fusions.
[0024] This approach is particularly suited for expressing lipoproteins.
[0025] Leader-Peptide Substitution
[0026] In a second approach to heterologous expression, the native leader peptide of a protein of the invention is replaced by that of a different protein. In addition, it is preferred that no fusion partner is used. Whilst using a protein's own leader peptide in heterologous hosts can often localise the protein to its ‘natural’ cellular location, in some cases the leader sequence is not efficiently recognised by the heterologous host. In such cases, a leader peptide known to drive protein targeting efficiently can be used instead.
[0027] Thus the invention provides a method for the heterologous expression of a protein of the invention, in which (a) the protein's leader peptide is replaced by the leader peptide from a different protein and, optionally, (b) no fusion partner is used.
[0028] The method will typically involve the steps of: obtaining nucleic acid encoding a protein of the invention; manipulating said nucleic acid to remove nucleotides that encode the protein's leader peptide and to introduce nucleotides that encode a different protein's leader peptide. The resulting nucleic acid may be inserted into an expression vector, or may already be part of an expression vector. The expressed protein win consist of the replacement leader peptide at the N-terminus, followed by the protein of the invention minus its leader peptide.
[0029] The leader peptide is preferably from another protein of the invention (e.g. one of SEQ#s 1-4326), but may also be from an E.coli protein (e.g. the OmpA leader peptide) or an Erwinia carotovora protein (e.g. the PelB leader peptide), for instance.
[0030] A particularly useful replacement leader peptide is that of ORF4. This leader is able to direct lipidation in E.coli, improving cellular localisation, and is particularly useful for the expression of proteins 287, 919 and ΔG287. The leader peptide and N-terminal domains of 961 are also particularly useful.
[0031] Another useful replacement leader peptide is that of E.coli OmpA. This leader is able to direct membrane localisation of E.coli. It is particularly advantageous for the expression of ORF1, resulting in a protein which induces better anti-bactericidal antibodies than both fusions and protein expressed from its own leader peptide.
[0032] Another useful replacement leader peptide is MKKYLFSAA. This can direct secretion into culture medium, and is extremely short and active. The use of this leader peptide is not restricted to the expression of Neisserial proteins—it may be used to direct the expression of any protein (particularly bacterial proteins).
[0033] Leader-Peptide Deletion
[0034] In a third approach to heterologous expression, the native leader peptide of a protein of the invention is deleted. In addition, it is preferred that no fusion partner is used.
[0035] Thus the invention provides a method for the heterologous expression of a protein of the invention, in which (a) the protein's leader peptide is deleted and, optionally, (b) no fusion partner is used.
[0036] The method will typically involve the steps of: obtaining nucleic acid encoding a protein of the invention; manipulating said nucleic acid to remove nucleotides that encode the protein's leader peptide. The resulting nucleic acid may be inserted into an expression vector, or may already be part of an expression vector. The first amino acid of the expressed protein will be that of the mature native protein.
[0037] This method can increase the levels of expression. For protein 919, for example, expression levels in E.coli are much higher when the leader peptide is deleted. Increased expression may be due to altered localisation in the absence of the leader peptide.
[0038] The method is preferably used for the expression of 919, ORF46, 961, 050-1, 760 and 287.
[0039] Domain-Based Expression
[0040] In a fourth approach to heterologous expression, the protein is expressed as domains. This may be used in association with fusion systems (e.g. GST or His-tag fusions).
[0041] Thus the invention provides a method for the heterologous expression of a protein of the invention, in which (a) at least one domain in the protein is deleted and, optionally, (b) no fusion partner is used.
[0042] The method will typically involve the steps of: obtaining nucleic acid encoding a protein of the invention; manipulating said nucleic acid to remove at least one domain from within the protein. The resulting nucleic acid may be inserted into an expression vector, or may already be part of an expression vector. Where no fusion partners are used, the first amino acid of the expressed protein will be that of a domain of the protein.
[0043] A protein is typically divided into notional domains by aligning it with known sequences in databases and then determining regions of the protein which show different alignment patterns from each other.
[0044] The method is preferably used for the expression of protein 287. This protein can be notionally split into three domains, referred to as A B & C (see FIG. 5). Domain B aligns strongly with IgA proteases, domain C aligns strongly with transferrin-binding proteins, and domain A shows no strong alignment with database sequences. An alignment of polymorphic forms of 287 is disclosed in WO00/66741.
[0045] Once a protein has been divided into domains, these can be (a) expressed singly (b) deleted from with the protein e.g. protein ABCD→ABD, ACD, BCD etc. or (c) rearranged e.g. protein ABC→ACB, CAB etc. These three strategies can be combined with fusion partners is desired.
[0046] ORF46 has also been notionally split into two domains—a first domain (amino acids 1-433) which is well-conserved between species and serogroups, and a second domain (amino acids 433-608) which is not well-conserved. The second domain is preferably deleted. An alignment of polymorphic forms of ORF46 is disclosed in WO00/66741.
[0047] Protein 564 has also been split into domains (FIG. 8), as have protein 961 (FIG. 12) and protein 502 (amino acids 28-167 of the MC58 protein).
[0048] Hybrid Proteins
[0049] In a fifth approach to heterologous expression, two or more (e.g. 3, 4, 5, 6 or more) proteins of the invention are expressed as a single hybrid protein. It is preferred that no non-Neisserial fusion partner (e.g. GST or poly-His) is used.
[0050] This offers two advantages. Firstly, a protein that may be unstable or poorly expressed on its own can be assisted by adding a suitable hybrid partner that overcomes the problem. Secondly, commercial manufacture is simplified—only one expression and purification need be employed in order to produce two separately-useful proteins.
[0051] Thus the invention provides a method for the simultaneous heterologous expression of two or more proteins of the invention, in which said two or more proteins of the invention are fused (i.e. they are translated as a single polypeptide chain).
[0052] The method will typically involve the steps of: obtaining a first nucleic acid encoding a first protein of the invention; obtaining a second nucleic acid encoding a second protein of the invention; ligating the first and second nucleic acids. The resulting nucleic acid may be inserted into an expression vector, or may already be part of an expression vector.
[0053] Preferably, the constituent proteins in a hybrid protein according to the invention will be from the same strain.
[0054] The fused proteins in the hybrid may be joined directly, or may be joined via a linker peptide e.g. via a poly-glycine linker (i.e. Gn where n=3, 4, 5, 6, 7, 8, 9, 10 or more) or via a short peptide sequence which facilitates cloning. It is evidently preferred not to join a ΔG protein to the C-terminus of a poly-glycine linker.
[0055] The fused proteins may lack native leader peptides or may include the leader peptide sequence of the N-terminal fusion partner.
[0056] The method is well suited to the expression of proteins orf1, orf4, orf25, orf40, orf46/46.1, orf83, 233, 287, 292L, 564, 687, 741, 907, 919, 953, 961 and 983.
[0057] The 42 hybrids indicated by ‘X’ in the following table of form NH2-A-B—COOH are preferred:
2|
|
↓A B→ORF46.1287741919953961983
|
ORF46.1XXXXXX
287XXXXXX
741XXXXXX
919XXXXXX
953XXXXXX
961XXXXXX
983XXXXXX
|
[0058] Preferred proteins to be expressed as hybrids are thus ORF46.1, 287, 741, 919, 953, 961 and 983. These may be used in their essentially full-length form, or poly-glycine deletions (ΔG) forms may be used (e.g. ΔG-287, ΔGTbp2, ΔG741, ΔG983 etc.), or truncated forms may be used (e.g. Δ1-287, Δ2-287 etc.), or domain-deleted versions may be used (e.g. 287B, 287C, 287BC, ORF461-433, ORF46433-608, ORF46, 961c etc.).
[0059] Particularly preferred are: (a) a hybrid protein comprising 919 and 287; (b) a hybrid protein comprising 953 and 287; (c) a hybrid protein comprising 287 and ORF46.1; (d) a hybrid protein comprising ORF1 and ORF46.1; (e) a hybrid protein comprising 919 and ORF46.1; (f) a hybrid protein comprising ORF46.1 and 919; (g) a hybrid protein comprising ORF46.1, 287 and 919; (h) a hybrid protein comprising 919 and 519; and (i) a hybrid protein comprising ORF97 and 225. Further embodiments are shown in FIG. 14.
[0060] Where 287 is used, it is preferably at the C-terminal end of a hybrid; if it is to be used at the N-terminus, if is preferred to use a ΔG form of 287 is used (e.g. as the N-terminus of a hybrid with ORF46.1, 919, 953 or 961).
[0061] Where 287 is used, this is preferably from strain 2996 or from strain 394/98.
[0062] Where 961 is used, this is preferably at the N-terminus. Domain forms of 961 may be used.
[0063] Alignments of polymorphic forms of ORF46, 287, 919 and 953 are disclosed in WO00/66741. Any of these polymorphs can be used according to the present invention.
[0064] Temperature
[0065] In a sixth approach to heterologous expression, proteins of the invention are expressed at a low temperature.
[0066] Expressed Neisserial proteins (e.g. 919) may be toxic to E.coli, which can be avoided by expressing the toxic protein at a temperature at which its toxic activity is not manifested.
[0067] Thus the present invention provides a method for the heterologous expression of a protein of the invention, in which expression of a protein of the invention is carried out at a temperature at which a toxic activity of the protein is not manifested.
[0068] A preferred temperature is around 30° C. This is particularly suited to the expression of 919.
[0069] Mutations
[0070] As discussed above, expressed Neisserial proteins may be toxic to E.coli. This toxicity can be avoided by mutating the protein to reduce or eliminate the toxic activity. In particular, mutations to reduce or eliminate toxic enzymatic activity can be used, preferably using site-directed mutagenesis.
[0071] In a seventh approach to heterologous expression, therefore, an expressed protein is mutated to reduce or eliminate toxic activity.
[0072] Thus the invention provides a method for the heterologous expression of a protein of the invention, in which protein is mutated to reduce or eliminate toxic activity.
[0073] The method is preferably used for the expression of protein 907, 919 or 922. A preferred mutation in 907 is at Glu-117 (e.g. Glu→Gly), preferred mutations in 919 are at Glu-255 (e.g. Glu→Gly) and/or Glu-323 (e.g. Glu→Gly); preferred mutations in 922 are at Glu-164 (e.g. Glu→Gly), Ser-213 (e.g. Ser→Gly) and/or Asn-348 (e.g. Asn→Gly).
[0074] Alternative Vectors
[0075] In a eighth approach to heterologous expression, an alternative vector used to express the protein. This may be to improve expression yields, for instance, or to utilise plasmids that are already approved for GMP use.
[0076] Thus the invention provides a method for the heterologous expression of a protein of the invention, in which an alternative vector is used. The alternative vector is preferably pSM214, with no fusion partners. Leader peptides may or may not be included.
[0077] This approach is particularly useful for protein 953. Expression and localisation of 953 with its native leader peptide expressed from pSM214 is much better than from the pET vector.
[0078] pSM214 may also be used with: ΔG287, Δ2-287, Δ3-287, Δ4-287, Orf46.1, 961L, 961, 961(MC58), 961c, 961c-L, 919, 953 and ΔG287-Orf46.1.
[0079] Another suitable vector is, pET-24b (Novagen; uses kanamycin resistance), again using no fusion partners. pET-24b is preferred for use with: ΔG287K, Δ2-287K, Δ3-287K, Δ4287K, Orf46.1-K, Orf46A-K, 961-K (MC58), 961a-K, 961b-K, 961c-K, 961c-L-K, 961d-K, ΔG287-919-K, ΔG287-Orf46.1-K and ΔG287-961-K.
[0080] Multimeric Form
[0081] In a ninth approach to heterologous expression, a protein is expressed or purified such that it adopts a particular multimeric form.
[0082] This approach is particularly suited to protein 953. Purification of one particular multimeric form of 953 (the monomeric form) gives a protein with greater bactericidal activity than other forms (the dimeric form).
[0083] Proteins 287 and 919 may be purified in dimeric forms.
[0084] Protein 961 may be purified in a 180 kDa oligomeric form (e.g. a tetramer).
[0085] Lipidation
[0086] In a tenth approach to heterologous expression, a protein is expressed as a lipidated protein.
[0087] Thus the invention provides a method for the heterologous expression of a protein of the invention, in which the protein is expressed as a lipidated protein.
[0088] This is particularly useful for the expression of 919, 287, ORF4, 406, 576-1, and ORF25. Polymorphic forms of 919, 287 and ORF4 are disclosed in WO00/66741.
[0089] The method will typically involve the use of an appropriate leader peptide without using an N-terminal fusion partner.
[0090] C-Terminal Deletions
[0091] In an eleventh approach to heterologous expression, the C-terminus of a protein of the invention is mutated. In addition, it is preferred that no fusion partner is used.
[0092] Thus the invention provides a method for the heterologous expression of a protein of the invention, in which (a) the protein's C-terminus region is mutated and, optionally, (b) no fusion partner is used.
[0093] The method will typically involve the steps of: obtaining nucleic acid encoding a protein of the invention; manipulating said nucleic acid to mutate nucleotides that encode the protein's C-terminus portion. The resulting nucleic acid may be inserted into an expression vector, or may already be part of an expression vector. The first amino acid of the expressed protein will be that of the mature native protein.
[0094] The mutation may be a substitution, insertion or, preferably, a deletion.
[0095] This method can increase the levels of expression, particularly for proteins 730, ORF29 and ORF46. For protein 730, a C-terminus region of around 65 to around 214 amino acids may be deleted; for ORF46, the C-terminus region of around 175 amino acids may be deleted; for ORF29, the C-terminus may be deleted to leave around 230-370 N-terminal amino acids.
[0096] Leader Peptide Mutation
[0097] In a twelfth approach to heterologous expression, the leader peptide of the protein is mutated. This is particularly useful for the expression of protein 919.
[0098] Thus the invention provides a method for the heterologous expression of a protein of the invention, in which the protein's leader peptide is mutated.
[0099] The method will typically involve the steps of: obtaining nucleic acid encoding a protein of the invention; and manipulating said nucleic acid to mutate nucleotides within the leader peptide. The resulting nucleic acid may be inserted into an expression vector, or may already be part of an expression vector.
[0100] Poly-Glycine Deletion
[0101] In a thirteenth approach to heterologous expression, poly-glycine stretches in wild-type sequences are mutated. This enhances protein expression.
[0102] The poly-glycine stretch has the sequence (Gly)n, where n≧4 (e.g. 5, 6, 7, 8, 9 or more). This stretch is mutated to disrupt or remove the (Gly)n. This may be by deletion (e.g. CGGGGS→CGGGS, CGGS, CGS or CS), by substitution (e.g. CGGGGS→CGXGGS, CGXXGS, CGXGXS etc.), and/or by insertion (e.g. CGGGGS→CGGXGGS, CGXGGGS, etc.).
[0103] This approach is not restricted to Neisserial proteins—it may be used for any protein (particularly bacterial proteins) to enhance heterologous expression. For Neisserial proteins, however, it is particularly suitable for expressing 287, 741, 983 and Thp2. An alignment of polymorphic forms of 287 is disclosed in WO00/66741.
[0104] Thus the invention provides a method for the heterologous expression of a protein of the invention, in which (a) a poly-glycine stretch within the protein is mutated.
[0105] The method will typically involve the steps of: obtaining nucleic acid encoding a protein of the invention; and manipulating said nucleic acid to mutate nucleotides that encode a poly-glycine stretch within the protein sequence. The resulting nucleic acid may be inserted into an expression vector, or may already be part of an expression vector.
[0106] Conversely, the opposite approach (i.e. introduction of poly-glycine stretches) can be used to suppress or diminish expression of a given heterologous protein.
[0107] Heterologous Host
[0108] Whilst expression of the proteins of the invention may take place in the native host (i.e. the organism in which the protein is expressed in nature), the present invention utilises a heterologous host. The heterologous host may be prokaryotic or eukaryotic. It is preferably E.coli, but other suitable hosts include Bacillus subtilis, Vibrio cholerae, Salmonella typhi, Salmonenna typhimurium, Neisseria meningitidis, Neisseria gonorrhoeae, Neisseria lactamica, Neisseria cinerea, Mycobateria (e.g. M.tuberculosis), yeast etc.
[0109] Vectors etc.
[0110] As well as the methods described above, the invention provides (a) nucleic acid and vectors useful in these methods (b) host cells containing said vectors (c) proteins expressed or expressable by the methods (d) compositions comprising these proteins, which may be suitable as vaccines, for instance, or as diagnostic reagents, or as immunogenic compositions (e) these compositions for use as medicaments (e.g. as vaccines) or as diagnostic reagents (f) the use of these compositions in the manufacture of (1) a medicament for treating or preventing infection due to Neisserial bacteria (2) a diagnostic reagent for detecting the presence of Neisserial bacteria or of antibodies raised against Neisserial bacteria, and/or (3) a reagent which can raise antibodies against Neisserial bacteria and (g) a method of treating a patient, comprising administering to the patient a therapeutically effective amount of these compositions.
[0111] Sequences
[0112] The invention also provides a protein or a nucleic acid having any of the sequences set out in the following examples. It also provides proteins and nucleic acid having sequence identity to these. As described above, the degree of ‘sequence identity’ is preferably greater than 50% (eg. 60%, 70%, 80%, 90%, 95%, 99% or more).
[0113] Furthermore, the invention provides nucleic acid which can hybridise to the nucleic acid disclosed in the examples, preferably under “high stringency” conditions (eg. 65° C. in a 0.1×SSC, 0.5% SDS solution).
[0114] The invention also provides nucleic acid encoding proteins according to the invention.
[0115] It should also be appreciated that the invention provides nucleic acid comprising sequences complementary to those described above (eg. for antisense or probing purposes).
[0116] Nucleic acid according to the invention can, of course, be prepared in many ways (eg. by chemical synthesis, from genomic or cDNA libraries, from the organism itself etc.) and can take various forms (eg. single stranded, double stranded, vectors, probes etc.).
[0117] In addition, the term “nucleic acid” includes DNA and RNA, and also their analogues, such as those containing modified backbones, and also peptide nucleic acids (PNA) etc.
BRIEF DESCRIPTION OF DRAWINGS
[0118]
FIGS. 1 and 2 show constructs used to express proteins using heterologous leader peptides.
[0119]
FIG. 3 shows expression data for ORF1, and
[0120]
FIG. 4 shows similar data for protein 961.
[0121]
FIG. 5 shows domains of protein 287, and
[0122]
FIGS. 6 & 7 show deletions within domain A.
[0123]
FIG. 8 shows domains of protein 564.
[0124]
FIG. 9 shows the PhoC reporter gene driven by the 919 leader peptide, and
[0125]
FIG. 10 shows the results obtained using mutants of the leader peptide.
[0126]
FIG. 11 shows insertion mutants of protein 730 (A: 730C1; B: 730-C2).
[0127]
FIG. 12 shows domains of protein 961.
[0128]
FIG. 13 shows SDS-PAGE of ΔG proteins. Dots show the main recombinant product.
[0129]
FIG. 14 shows 26 hybrid proteins according to the invention.
MODES FOR CARRYING OUT THE INVENTION
EXAMPLE 1
[0130] 919 and its Leader Peptide
[0131] Protein 919 from N.meningitidis (serogroup B, strain 2996) has the following sequence:
3|
1MKKYLFRAAL YGIAAAILAACQSKSIQTFP QPDTSVINGP
DRPVGIPDPA
|
51GTTVGGGGAV YTVVPHLSLP HWAAQDFAKS LQSFRLGCAN
LKNRQGWQDV
|
101CAQAFQTPVH SFQAKQFFER YFTPWQVAGN GSLAGTVTGY
YBPVLKGDDR
|
151RTAQARPPIY GIPDDFISVP LPAGLRSGKk LVRIRQTGKN
SGTIDNTGGT
|
201HTADLSRFPI TARTTAIKGR FEGSEFLPYH TRNQINGGAL
DGKAPILGYA
|
251EDPVELFFMH IQGSGRLKTP SGKYIRIGYA DKNEHPYVSI
GRYMADKGYL
|
301KLGQTSMQGI KAYMRQNPQR LABVLGQNPS YIFFRELAGS
SNDGPVGALG
|
351TPLMGEYAGA VDRHYITLGA PLFVATAHPV TRKALNRLIM
AQDTGBAIKG
|
401AVRVDYFWGY GDEAGELAGK QKTTGYVWQL LPNGMKPEYR P*
[0132] The leader peptide is underlined.
[0133]
[0134] The sequences of 919 from other strains can be found in FIGS. 7 and 18 of WO00/66741.
[0135] Example 2 of WO99/57280 discloses the expression of protein 919 as a His-fusion in E.coli. The protein is a good surface-exposed immunogen.
[0136] Three alternative expression strategies were used for 919:
[0137] 1) 919 without its leader peptide (and without the mature N-terminal cysteine) and without any fusion partner (‘919untagged’):
4|
1QBKSIQTPP QPDTSVINGP DRPVGIPDPA GTTVGGGQAV
YTVVPHLSLP
|
50HWAAQDFAKB LQSFRLGCAN LKNRQGWQDV CAQAPQTPVH
SFQAKQFFER
|
100YFTPWQVAGN GSLAGTVTGY YBPVLKGDDR RTAQARPPIY
GIPDDFISVP
|
150LPAGLRSGKA LVRIRQTGKN SGTIDNTGGT HTADLSPPPI
TARTTAIKGR
|
200FEGSRFLPYH TRNQINGGAL DGKAPILGYA BDPVBLFFMH
IQGSGELKTP
|
250SGKYIRIGYA DKNEHPYVSI GRYMADKGYL KLGQTBMQGI
KAYMRQNPQR
|
300LAEVLGQNPS YIFFRELAGB SNDGPVGALG TPLMGEYAGA
VDRHYITLGA
|
350PLFVATAHPV TRKALNRLIM AQDTGSAIXG AVRVDYFWGY
GDBAGELAGK
|
400QKTTGYVWQL LPNGMKPEYR P*
[0138] The leader peptide and cysteine were omitted by designing the 5′-end amplification primer downstream from the predicted leader sequence.
[0139] 2) 919 with its own leader peptide but without any fusion partner (‘919L’); and
[0140] 3) 919 with the leader peptide (MKTFFKTLSAAALAILAA) from ORF4 (‘919LOrf4’).
5|
1MKTFFKTLS AAALALILAACQSKSIQTFP QPDTSVINGP
DRPVGIPDPA
|
50GTTVGGGGAV YTVVPELSLP HWAAQDFAKB LQBFRLGCA2N
LKNRQGWQDV
|
100CAQAFQTPVH SPQAKQFPER YPTPWQVAGN GSLAGTVTGY
YEPVLKGDDR
|
150RTAQAPPPIY GIPDDFISVP LPAGLRSGKA LVRIRQTGKN
SGTIDNTGGT
|
200BTADLSRFPI TARTDAIKGR FEGSRPLPYH TENQINGGAL
DGKAPILGYA
|
250EDPVBLFPMH IQGSGRLKTP SGKYIRIGYA DKNRHPYVSI
GRYHADKGYL
|
300KLGQTSMQGI KSYHRQNPQR LABVLGQNPS YIFFRELAGS
SNDGPVOALG
|
350TPIMGBYAGA VDRHYITLGA PLFVATAHPV TRXALNBLIM
AQDTGSAIKG
|
400AVRVDYPWGY GDEAGELAGK QKTTGYVWQL LPNGMKPEYR P*
[0141] To make this construct, the entire sequence encoding the ORF4 leader peptide was included in the 5′-primer as a tail (primer 919Lorf4 For). A NheI restriction site was generated by a double nucleotide change in the sequence coding for the ORF4 leader (no amino acid changes), to allow different genes to be fused to the ORF4 leader peptide sequence. A stop codon was included in all the 3′-end primer sequences.
[0142] All three forms of the protein were expressed and could be purified.
[0143] The ‘919L’ and ‘919LOrf4’ expression products were both lipidated, as shown by the incorporation of [3H-palmitate label. 919untagged did not incorporate the 3H label and was located intracellularly.
[0144] 919LOrf4 could be purified more easily than 919L. It was purified and used to immunise mice. The resulting sera gave excellent results in FACS and ELISA tests, and also in the bactericidal assay. The lipoprotein was shown to be localised in the outer membrane.
[0145] 919untagged gave excellent ELISA titres and high serum bactericidal activity. FACS confirmed its cell surface location.
EXAMPLE 2
[0146] 919 and Expression Temperature
[0147] Growth of E.coli expressing the 919Orf4 protein at 37° C. resulted in lysis of the bacteria. In order to overcome this problem, the recombinant bacteria were grown at 30° C. Lysis was prevented without preventing expression.
EXAMPLE 3
[0148] Mutation of 907, 919 and 922
[0149] It was hypothesised that proteins 907, 919 and 922 are murein hydrolases, and more particularly lytic transglycosylases. Murein hydrolases are located on the outer membrane and participate in the degradation of peptidoglycan.
[0150] The purified proteins 919untagged, 919Lorf4, 919-His (i.e. with a C-terminus His-tag) and 922-His were thus tested for murein hydrolase activity [Ursinus & Holtje (1994) J.Bact. 176:338-343]. Two different assays were used, one determining the degradation of insoluble murein sacculus into soluble muropeptides and the other measuring breakdown of poly(MurNAc-GlcNAc)n>30 glycan strands.
[0151] The first assay uses murein sacculi radiolabelled with meso-2,6-diamino-3,4,5-[3H]pimelic acid as substrate. Enzyme (3-10 μg total) was incubated for 45 minutes at 37° C. in a total volume of 100 μl comprising 10 mM Tris-maleate (pH 5.5), 10 mM MgCl2, 0.2% v/v Triton X-100 and [3H]A2pm labelled murein sacculi (about 10000 cpm). The assay mixture was placed on ice for 15 minutes with 100 μl of 1% w/v N-acetyl-N,N,N-trimethylammonium for 15 minutes and precipitated material pelleted by centrifugation at 1000 g for 15 minutes. The radioactivity in the supernatant was measured by liquid scintillation counting. E.coli soluble lytic transglycosylase Slt70 was used as a positive control for the assay; the negative control comprised the above assay solution without enzyme.
[0152] All proteins except 919-His gave positive results in the first assay.
[0153] The second assay monitors the hydrolysis of poly(MurNAc-GlcNAc)glycan strands. Purified strands, poly(MurNAc-GlcNAc)n>30 labelled with N-acetyl-D-1-[3H]glucosamine were incubated with 3 μg of 919L in 10 mM Tris-maleate (pH 5.5), 10 mM MgCl2 and 0.2% v/v Triton X-100 for 30 min at 37° C. The reaction was stopped by boiling for 5 minutes and the pH of the sample adjusted to about 3.5 by addition of 10 μl of 20% v/v phosphoric acid. Substrate and product were separated by reversed phase HPLC on a Nucleosil 300 C18 column as described by Harz et. al. [Anal. Biochem. (1990) 190:120-128]. The E.coli lytic transglycosylase Mlt A was used as a positive control in the assay. The negative control was performed in the absence of enzyme.
[0154] By this assay, the ability of 919LOrf4 to hydrolyse isolated glycan strands was demonstrated when anhydrodisaccharide subunits were separated from the oligosaccharide by HPLC.
[0155] Protein 919Lorf4 was chosen for kinetic analyses. The activity of 919Lorf4 was enhanced 3.7-fold by the addition of 0.2% v/v Triton X-100 in the assay buffer. The presence of Triton X-100 had no effect on the activity of 919untagged. The effect of pH on enzyme activity was determined in Tris-Maleate buffer over a range of 5.0 to 8.0. The optimal pH for the reaction was determined to be 5.5. Over the temperature range 18° C. to 42° C., maximum activity was observed at 37° C. The effect of various ions on murein hydrolase activity was determined by performing the reaction in the presence of a variety of ions at a final concentration of 10 mM. Maximum activity was found with Mg2+, which stimulated activity 2.1-fold. Mn2+ and Ca2+ also stimulated enzyme activity to a similar extent while the addition Ni2+ and EDTA had no significant effect In contrast, both Fe2+ and Zn2+ significantly inhibited enzyme activity.
[0156] The structures of the reaction products resulting from the digestion of unlabelled E.coli murein sacculus were analysed by reversed-phase HPLC as described by Glauner [Anal. Biochem. (1988) 172:451-464]. Murein sacculi digested with the muramidase Cellosyl were used to calibrate and standardise the Hypersil ODS column. The major reaction products were 1,6 anhydrodisaccharide tetra and tri peptides, demonstrating the formation of 1,6 anhydromuraminic acid intramolecular bond.
[0157] These results demonstrate experimentally that 919 is a murein hydrolase and in particular a member of the lytic transglycosylase family of enzymes. Furthermore the ability of 922-His to hydrolyse murein sacculi suggests this protein is also a lytic transglycosylase.
[0158] This activity may help to explain the toxic effects of 919 when expressed in E.coli.
[0159] In order to eliminate the enzymatic activity, rational mutagenesis was used. 907, 919 and 922 show fairly low homology to three membrane-bound lipidated murein lytic transglycosylases from E.coli:
[0160] 919 (441aa) is 27.3% identical over 440aa overlap to E.coli MLTA (p46885);
[0161] 922 (369aa) is 38.7% identical over 310aa overlap to E.coli MLTB (P41052); and
[0162] 907-2 (207aa) is 26.8% identical over 149aa overlap to E.coli MLTC (P52066).
[0163] 907-2 also shares homology with E.coli MLTD (P23931) and Slt70 (P03810), a soluble lytic transglycosylase that is located in the periplasmic space. No significant sequence homology can be detected among 919, 922 and 907-2, and the same is true among the corresponding MLTA, MLTB and MLTC proteins.
[0164] Crystal structures are available for Slt70 [1QTEA; 1QTEB; Thunnissen et al. (1995) Biochemistry 34:12729-12737] and for Slt35 [1LTM; 1QUS; 1QUT; van Asselt et al. (1999) Structure Fold Des 7:1167-80] which is a soluble form of the 40 kDa MLTB.
[0165] The catalytic residue (a glutamic acid) has been identified for both Slt70 and MLTB.
[0166] In the case of Slt70, mutagenesis studies have demonstrated that even a conservative substitution of the catalytic Glu505 with a glutamine (Gln) causes the complete loss of enzymatic activity. Although Slt35 has no obvious sequence similarity to Slt70, their catalytic domains shows a surprising similarity. The corresponding catalytic residue in MLTB is Glu162.
[0167] Another residue which is believed to play an important role in the correct folding of the enzymatic cleft is a well-conserved glycine (Gly) downstream of the glutamic acid. Recently, Terrak et al. [Mol.Microbiol. (1999) 34:350-64] have suggested the presence of another important residue which is an aromatic amino acid located around 70-75 residues downstream of the catalytic glutamic acid.
[0168] Sequence alignment of Slt70 with 907-2 and of MLTB with 922 were performed in order to identify the corresponding catalytic residues in the MenB antigens.
[0169] The two alignments in the region of the catalytic domain are reported below:
[0170] 907-2/Slt70:
6|
90 100 110 ▾120 130 140
907-2.pepERRRLLVNIQYESSRAG--LDTQIVLGLIEVESAFRQYAISGVGARGLMQVMPFWKNYIG
|| | | :: :| : : |||: : | ||| ||||:|| ::
slty_ecoliERFPLAYNKDFKRYTSGKEPPQSYAMAIARQESAWNPKVKSPVGASGLMQIMPGTATHTV
480 490 500 ▴ 510 520 530
GLU505
[0171] 922/MLTB
7|
150 160 ▾ 170 180 190 200
922.pepVAQKYGVPAELIVAVIGIENTYGKNTGSFRVADALATLGFDYPRRAGFFQKELVELLKLA
: | |||| |:||::||:|| :|: |: |: ||||||:|:||||| :|: || :| :|
mltb_ecoliAWQVYGVPPEIIVGIIGVETRWGRVMGKRTILDALATLSFNYPRRAEYFSGELETGLLMA
150 160 ▴ 170 180 190 200
GLU162
|
210 220 230 240 250 260
922.pepKEEGGDVFAFKGSYAGAMGMPQFMPSSYRKWAVDYDGDGHRDIWGNVGDVAASVANYMKQ
::| | : : : : |||||||:::|||::|||| ::| | |: :|||||:|
mltb_coliRDEQDDPLNKLGSFAGAMGYGQGMPSSYKQYAVDFSGDGHINLWDPV-DAIDSVANYFKA
210 220 230 240 250 260
[0172] From these alignments, it results that the corresponding catalytic glutamate in 907-2 is Glu117, whereas in 922 is Glu164. Both antigens also share downstream glycines that could have a structural role in the folding of the enzymatic cleft (in bold), and 922 has a conserved aromatic residue around 70aa downstream (in bold).
[0173] In the case of protein 919, no 3D structure is available for its E.coli homologue MLTA, and nothing is known about a possible catalytic residue. Nevertheless, three amino acids in 919 are predicted as catalytic residues by alignment with MLTA:
[0174] 919/MLTA
8|
240 250 ▾ 260 □ □ 270 □ 280 290
919.pepALDGKAPILGYAEDPVELFFMHIQGSGRLKTPSGKYIRI-GYADKNEHPYVSIGRYMADK
||: | ||:||::: :: |:| :|||| : :|: : : : || || | | |||: : |:
mlta_ecoli.pALSDKY-ILAYSNSLMDNFIMDVQGSGYIDFGDSPLNFFSYAGKNGHAYRSIGKLVIDR
170 180 190 200 210
|
300 310 320 ▾ 330□ □□ 340 ⋄350 ⋄
919.pepGYLKLGQTSMQGILSYMRQNPQ-RLAEVLGQNPSYIFFRELAGSSNDGPV-GALGTPLMG
| :| : |||:|: : : : : :: |:| ||||::||: : : || || ::||:|
mlta_ecoli.pGEVKKEDMSMQAIRHWGETHSEAEVRELLEQNPSFVFFKPQSFA----PVKGASAVPLVG
220 230 240 250 260 270
|
360 ▾ ∘ 380 390 400 ⋄⋄410
919.pepEYAGAVDRHYITLGAPLFVATAHPVTRKALN-----RLIMAQDTGSAIKGAVRVDYFWGY
: : | || | |: |:: : : | ||::| |:|:|||| : | : |
mlta_ecoli.pTASVASDRSIIPPGTTLLAEVPLLDNNGKFNGQYELRLMNALDVGGAIKGQ-HFDIYQGI
280 290 300 310 320 330
|
420 ∘
919.pepGDEAGELAGKQKTTGYVWQLLP
| |||: || : | || |
mlta_ecoli.pGPEAGHRAGWYNHYGRVWVLKT
340 350
[0175] The three possible catalytic residues are shown by the symbol ▾:
[0176] 1) Glu255 (Asp in MLTA), followed by three conserved glycines (Gly263, Gly265 and Gly272) and three conserved aromatic residues located approximately 75-77 residues downstream. These downstream residues are shown by □.
[0177] 2) Glu323 (conserved in MLTA), followed by 2 conserved glycines (Gly347 and Gly355) and two conserved aromatic residues located 84-85 residues downstream (Tyr406 or Phe407). These downstream residues are shown by ⋄.
[0178] 3) Asp362 (instead of the expected Glu), followed by one glycine (Gly 369) and a conserved aromatic residue (Trp428). These downstream residues are shown by ∘.
[0179] Alignments of polymorphic forms of 919 are disclosed in WO00/66741.
[0180] Based on the prediction of catalytic residues, three mutants of the 919 and one mutant of 907, containing each a single amino acid substitution, have been generated. The glutamic acids in position 255 and 323 and the aspartic acids in position 362 of the 919 protein and the glutamic acid in position 117 of the 907 protein, were replaced with glycine residues using PCR-based SDM. To do this, internal primers containing a codon change from Glu or Asp to Gly were designed:
9|
|
Codon
PrimersSequenceschange
|
919-E255 forCGAAGACCCCGTCGgtCTTTTTTTTATGGAA→Ggt
919-E255 revGTGCATAAAAAAAAGacCGACGGGGTCT
|
919-E323 forAACGCCTCGCCGgtGTTTTGGGTCAGAA→Ggt
919-E323 revTTTGACCCAAAACacCGGCGAGGCG
|
919-D362 forTGCCGGCGCAGTCGgtCGGCACTACTGAC→Ggt
919-D362 revTAATGTATGCCGacCGACTGCGCCG
|
907-E117 forTGATTGAGGTGGgtAGCGCGTTCCGGAA→Ggt
907-E117 revGGCGGAACGCGCTacCCACCTCAAT
|
[0181] Underlined nucleotides code for glycine; the mutated nucleotides are in lower case.
[0182] To generate the 919-E255, 919-E323 and 919-E362 mutants, PCR was performed using 20 ng of the pET 919-LOrf4 DNA as template, and the following primer pairs:
[0183] 1) Orf4L for/919-E255 rev
[0184] 2) 919-E255 for/919L rev
[0185] 3) Orf4L for/919-E323 rev
[0186] 4) 919-E323 for/919L rev
[0187] 5) Orf4L for/919-D362 rev
[0188] 6) 919-D362 for/919L rev
[0189] The second round of PCR was performed using the product of PCR 1-2, 3-4 or 5-6 as template, and as forward and reverse primers the “Orf4L for” and “919L rev” respectively.
[0190] For the mutant 907-E117, PCR have been performed using 200 ng of chromosomal DNA of the 2996 strain as template and the following primer pairs:
[0191] 7) 907L for/907-E117 rev
[0192] 8) 907-E117 for/907L rev
[0193] The second round of PCR was performed using the products of PCR 7 and 8 as templates and the oligos “907L for” and “907L rev” as primers.
[0194] The PCR fragments containing each mutation were processed following the standard procedure, digested with NdeI and XhoI restriction enzymes and cloned into pET-21b+ vector. The presence of each mutation was confirmed by sequence analysis.
[0195] Mutation of Glu117 to Gly in 907 is carried out similarly, as is mutation of residues Glu164, Ser213 and Asn348 in 922.
[0196] The E255G mutant of 919 shows a 50% reduction in activity; the E323G mutant shows a 70% reduction in activity; the E362G mutant shows no reduction in activity.
EXAMPLE 4
[0197] Multimeric Form
[0198] 287-GST, 919untagged and 953-His were subjected to gel filtration for analysis of quaternary structure or preparative purposes. The molecular weight of the native proteins was estimated using either FPLC Superose 12 (H/R 10/30) or Superdex 75 gel filtration columns (Pharmacia). The buffers used for chromatography for 287, 919 and 953 were 50 mM Tris-HCl (pH 8.0), 20 mM Bicine (pH 8.5) and 50 mM Bicine (pH 8.0), respectively.
[0199] Additionally each buffer contained 150-200 mM NaCl and 10% v/v glycerol. Proteins were dialysed against the appropriate buffer and applied in a volume of 200 μl. Gel filtration was performed with a flow rate of 0.5-2.0 ml/min and the eluate monitored at 280 nm. Fractions were collected and analysed by SDS-PAGE. Blue dextran 2000 and the molecular weight standards ribonuclease A, chymotrypsin A ovalbumin, albumin (Pharmacia) were used to calibrate the column. The molecular weight of the sample was estimated from a calibration curve of Kav vs. log Mr of the standards. Before gel filtration, 287-GST was digested with thrombin to cleave the GST moiety.
[0200] The estimated molecular weights for 287, 919 and 953-His were 73 kDa, 47 kDa and 43 kDa respectively. These results suggest 919 is monomeric while both 287 and 953 are principally dimeric in their nature. In the case of 953-His, two peaks were observed during gel filtration. The major peak (80%) represented a dimeric conformation of 953 while the minor peak (20%) had the expected size of a monomer. The monomeric form of 953 was found to have greater bactericidal activity than the dimer.
EXAMPLE 5
[0201] pSM214 and pET-24b Vectors
[0202] 953 protein with its native leader peptide and no fusion partners was expressed from the pET vector and also from pSM214 [Velati Bellini et al. (1991) J. Biotechnol. 18, 177-192].
[0203] The 953 sequence was cloned as a full-length gene into pSM214 using the E. coli MM294-1 strain as a host. To do this, the entire DNA sequence of the 953 gene (from ATG to the STOP codon) was amplified by PCR using the following primers:
10|
953L for/2
CCGGAATTCTTATGAAMAATCATCTTCGCCGCEco RI
|
953L rev/2
GCCCAAGCTTTTATTGTTTGGCTGCCTCGATTHind III
[0204] which contain EcoRI and HindIII restriction sites, respectively. The amplified fragment was digested with EcoRI and HindIII and ligated with the pSM214 vector digested with the same two enzymes. The ligated plasmid was transformed into E.coli MM294-1 cells (by incubation in ice for 65 minutes at 37° C.) and bacterial cells plated on LB agar containing 20 μg/ml of chloramphenicol.
[0205] Recombinant colonies were grown over-night at 37° C. in 4 ml of LB broth containing 20 μg/ml of chloramphenicol; bacterial cells were centrifuged and plasmid DNA extracted as and analysed by restriction with EcoRI and HindIII. To analyse the ability of the recombinant colonies to express the protein, they were inoculated in LB broth containing 20 μg/ml of chloramphenicol and let to grown for 16 hours at 37° C. Bacterial cells were centrifuged and resuspended in PBS. Expression of the protein was analysed by SDS-PAGE and Coomassie Blue staining.
[0206] Expression levels were unexpectedly high from the pSM214 plasmid.
[0207] Oligos used to clone sequences into pSM-214 vectors were as follows:
11|
|
ΔG287FwdCCGGAATTCTTATG-TCGCCCGATGTTAAATCGGCGGAEcoRI
(pSM-214)RevGCCCAAGCTT-TCAATCCTGCTCTTTTTTGCCGHindIII
|
Δ2 287Fwd CCGGAATTTCTTATG-AGCCAAGATATGGCGGCAGTEcoRI
(pSM-214)RevGCCCAAGCTT-TCAAATCCTGCTCTTTTTTGCCGHindIII
|
Δ3 287Fwd CCGGAATTCTTATG-TCCGCCGAATCCGCAAATCAEcoRI
(pSM-214)RevGCCCAAGCTT-TCAATCCTGCTCTTTTTTGCCGHindIII
|
Δ4 287FwdCCGGAATTCTTATG-GGAAGGGTTGATTTGGCTAATGEcoRI
(pSM-214)RevGCCCAAGCTT-TCAATCCTGCTCTTTTTTTGCCGHindIII
|
Orf46.1FwdCCGGAATTCTTATG-TCAGATTTGGCAAACGATTCTTEcoRI
(pSM-214)RevGCCCAAGCTT-TTACGTATCATATTTCACGTGCTTCHindIII
|
ΔG287.Orf46.1FwdCCGGAATTCTTATG-TCGCCCGATGTTAAATCGGCGGAEcoRI
(pSM-214)RevGCCCAAGCTT-TTACGTATCATATTTCACGTGCTTCHindIII
|
919FwdCCGGAATTCTTATG-CAAAGCAAGAGCATCCAAACCTEcoRI
(pSM-214)RevGCCCAAGCTT-TTACGGGCGGTATTCGGGCTHindIII
|
961LFwdCCGAATTCATATG-AAACACTTTCCATCCEcoRI
(pSM-214)RevGCCCAAGCTT-TTACCACTCGTAATTGACHindIII
|
961FwdCCGGAATTCATATG-GCCACAAGCGACGACEcoRI
(pSM-214)RevGCCCAAGCTT-TTACCACTCGTAATTGACHindIII
|
961c LFwdCCGGAATTCTTATG-AAACACTTTCCATCCEcoRI
pSM-214RevGCCCAAGCTT-TCAACCCACGTTGTAAGGTTGHindIII
|
961cFwdCCGGAATTCTTATG-GCCACAAACGACGACGEcoRI
pSM-214RevGCCCAAGCTT-TCAACCCACGTTGTAAGGTTGHindIII
|
953FwdCCGGAATTCTTATG-GCCACCTACAAAGTGGACGAEcoRI
(pSM-214)RevGCCCAAGCTT-TTATTGTTTGGCTGCCTCGATTHindIII
|
[0208] These sequences were manipulated, cloned and expressed as described for 953L.
[0209] For the pET-24 vector, sequences were cloned and the proteins expressed in pET-24 as described below for pET21. pET2 has the same sequence as pET-21, but with the kanamycin resistance cassette instead of ampicillin cassette.
[0210] Oligonucleotides used to clone sequences into pET-24b vector were:
12|
|
ΔG 287 KFwdCGCGGATCCGCTAGC-CCCGATGTrAAATCGGC§NheI
RevCCCGCTCCGAG-TCAATCCTGCTCTTTTTTrGCC *XhoI
|
Δ2 287 KFwdCGCGGATCCGCTAGC-CAAGATATGOCGGCAGT§NheI
|
Δ3 287 KFwdCGCGGATCCGCTAGC-GCCGAATCCGCAAATCA§NheI
|
Δ4 287 KFwdCGCGCTAGC-GGAAGGGTTGATTTGGCTAATGG§NbeI
|
Orf46.1 KFwdGGGAATTCCATATG-GGCATTTCCCGCAAAATATCNdeI
|
RevCCCGCTCGAC-TTAACGTATCATATTTCACGTGCXhoI
|
Orf46A KFwdGGGAATTCCATATG-GGCATTTCCCGCAAAATATCNdeI
RevCCCGCTCGAG-TTATTCTATGCCTTGTGCGGCATXhoI
|
961 KFwdCGCGGATCCCATATG-GCCACAAGCGACGACGANdeI
(MC58)RevCCCGCTCGAG-TTACCACTCGTAATTGACXhoI
|
961a KFwdCGCGGATCCCATATG-GCCACAAACGACGNdeI
RevCCCGCTCGAG-TCATTTAGCAATATTATCTTTGTTCXhoI
|
961b KFwdCGCGGATCCCATATG-AAAGCAAACAGTGCCGACNdeI
RevCCCGCTCGAG-TTACCACTCGTAATTGACXhoI
|
961c KFwdCGCGGATCCCATATG-GCCACAAACGACGNdeI
RevCCCGCTCGAG-TTAACCCACGTTGTAAGGTXhoI
|
961cL KFwdCGCGGATCCCATATG-ATGAAACACTTTCCATCCNdeI
RevCCCGCTCGAG-TTAACCCACGTTGTAAGGTXhoI
|
961d KFwdCGCGGATCCCATATG-GCCACAAACGACGNdeI
RevCCCGCTCGAG-TCAGTCTGACACTGTTTTATCCXhoI
ΔG 287-FwdCGCGGATCCGCTAGC-CCCGATGTTAAATCGGCNheI
919 KRevCCCGCTCGAG-TTAACGGGCGGTATTCGGXhoI
|
ΔG 287-FwdCGCGGATCCGCTAGC-CCCGATGTTAAATCGGCNheI
Orf46.1 KRevCCCGCTCGAG-TTACGTATCATATTTCACGTGCXhoI
|
ΔG 287-FwdCGCGGATCCGCTAGC-CCCGATGTTAAATCGGCNheI
961 KRevCCCGCTCGAG-TTACCACTCGTAATTGACXhoI
|
* This primer was used as a Reverse primer for all the 287 forms.
§ Forward primers used in combination with the ΔG278 K reverse primer.
EXAMPLE 6
[0211] ORF1 and its Leader Peptide
[0212] ORF1 from N.meningitidis (serogroup B, strain MC58) is predicted to be an outer membrane or secreted protein. It has the following sequence:
13|
1MKTTDKRTTE THRKAPKTGR IRFSPAYLAI CLSFGILPQA
WAGHTYFGIN
|
51YQYYEflFAEN KGXFAVGAKD IEVYNKKGEL VGKSMTKAPM
IDFSVVSENG
|
101VAALVGDQYI VSVAENGGYN NVDFGAEGRN PDQHRFTYKI
VKRNNYKAGT
|
151KGHPYGGDYH MPRLHKFVTD AEPVBMTSYM DGRRYIDQNN
YPDRVRIGAG
|
201RQYWRSPEDE PNNRBSSYHI ASAYSWLVGG NTFAQNGSGG
GTVNLGSEKI
|
251KHSPYGFLPT GGSFGDSGSP MFIYDAQKQK WLINGVLQTG
NPYIGKSNGP
|
301QLVRKDWFYD EIFAGDTHSV FYEPRQNGKY SFNDDNNGTG
KINAXHEENS
|
351LPHELKTRTV QLFNVSLSET AEEPVYHAAG GVNSYRPRLN
NGENISFIDE
|
401GKGELILTSN INQGAGGLYF QGDFTVSPEN NETWQGAGVH
ISEDSTVTWK
|
451VNGVANDELS KIGKGTLHVQ AKGENQGSIS VGDGTVILDQ
QADDKGKKQA
|
501FSEIGLVSGR GTVQLNADNQ FNPDKLYFGF RGGRLDLNGH
SLSFHRIQNT
|
551DEGAMIVNHN QDKESTVTIT GNKDIATTGN NNSLDSKKEI
AYNGWPGEKD
|
601TTKTNGRLNL VYQPAAEDRT LLLSGGTNLN GNITQTNGKL
PFSGEPTPHA
|
651YNHLNDHWSQ KEGIPRGEIV WDNDWINRTF KAENFQIKGG
QAVVSRNVAK
|
701VKGDWHLSNH AQAVFGVAPH QSHTICTRSD WTGLTNCVEK
TITDDKVIAS
|
751LTKTDISGNV DLADHAHLNL TGLATLNGNL SANGDTRYTV
SHNATQNGNL
|
801SLVGNAQATF NQATLNGNTS ASGNASFNLS DHAVQNGSLT
LSGNAKANVS
|
851HBALNGNVBL ADKAVFEFES SRFTGQISGG KDTALHLKDS
EWTLPSGTEL
|
901GNLNLDNATI TLNSAYRHDA AGAQTGSATD APRPESRRSR
RSLLSVTPPT
|
951SVESEPNTLT VNGKLNGQGT FRFMSELFGY RSDKLKLAES
SEGTYTLAVN
|
1001NTGNEPABLE QLTVVEGKDN KPLSENLNFT LQNEEVDAGA
WRYQLIRKDG
|
1051EFEIMNPVKB QELSDKLGKA EAXKQAEKDN AQSLDALIAA
GRDAVEKTES
|
1101VAEPARQAGG ENVOINQABE EKKRVQADKD TALAKQREAE
TRPATTAFPR
|
1151APRAPPDLPQ LQPQPQPQPQ EDLISRYANS GLSEFSATLN
SVPAVQDELD
|
1201RVPABDRRNA VWTSGIRDTK HYRSQDFEAY RQQTDLRQIG
MQKHLGSGRV
|
1251GILFSHNRTE NTFDDGIGNS APLAHGAVFG QYGIDEPYIG
ISAGAGFSSG
|
1301SLSDGIGGKI ERRVLHYGIQ ARYRAGFGGF GIEPHIGATE
YFVQKADYRY
|
1351ENVNIATPGL AFNRYRAGIK ADYSFKPAQH ISITPYLSLS
YTDAASGKVR
|
1401TRVNTAVLAQ DPGKTRSAEW GVNAEIKGPT LSLHAAAAKG
PQLEAQHSAG
|
1451IKLGYEW*
[0213] The leader peptide is underlined.
[0214] A polymorphic form of ORF1 is disclosed in WO99/55873.
[0215] Three expression strategies have been used for ORF1:
[0216] 1) ORF1 using a His tag, following WO99/24578 (ORF1-His);
[0217] 2) ORF1 with its own leader peptide but without any fusion partner (‘ORF1L’); and
[0218] 3) ORF1 with the leader peptide (MKKTAIAIAVALAGFATVAQA) from E.coli OmpA (‘Orf1LOmpA’):
14|
MKKTAIAIAVALAGGATVAQAASAGTYFGINYQYYRDFAENKGKFAVGADKIEVYNKKGELVGKSMTKAPMIDFSV
|
VSRNGVAALVGDQYIVSVAHNGGYNNVDFGAEGRNPDQHRFTYKIVKRNNYKAGTKGHPYGGDYHMPRLHKFVTDAE
|
PVEMTSYDGRKYIDQNNYPDRVRIGAGRQYWRSDEDEPNNRESSYHIASAYSWLVGGNTFAQNGSGGGTVNLGSEK
|
IKHSPYQFLPTGGSFGDSGSPMFIYDAQKQKWLINGVLQTGNPYIGKSNGFQLVRKDWFYDEIFAGDTHSVFYEPRQ
|
NGKYSFNDDNGTGKINAKHEHNSLPNRILKTRTVQLFNVSLSETAREPVYHAAGGVNSYRPLNNGENISFIDEGKG
|
ELILTSNINQGAGGLYFQGDFTVSPENNETWQGAGVHISEDSTVTWKVNGVANDRLSKIGKGTLHVQAKGENQGSIS
|
VGDGTVILDQQADDKQKKQAFSEIGLVSGRGTVQLNADNQFNPDKLYFGFRGGBLDLNGHSLSFHRIQNTDEGAMIV
|
NHNQDKESTVTITGDIATTGIQNNSLDSKKEIAYNGWFGDEKDTTKTNGRLNLVYQPAAEDRTLLLSGGTNLNGNIT
|
QTNGKLFFSGRPTPHAYNHLNDHWSQKEGIPRGEIVWDNDWINRTFKAENFQIKGGQAVVSRNVAKVKGDWHLSNHA
|
QAVFGVAPHQSHTICTRSDWTGLTNCVERTITDDKVIASLTKTDISNGVDLADHAHLNLTGALTLNGNLSANGDTRY
|
TVSHNATQNGNLSLVGNAQATPNQATIMGNTSASGNASFNLSDHAVQNGSLTLSGNAKANVSHSALNGNVSLADKAV
|
FHFESSRFTGQISGGKDTALHLKDSEWTLPSGTELGNLNDNATITLNSAYRHDAAGAQTGSATDAPRRRSRRSRRS
|
LLSVTPPTSVESRFNTLTVNGKLNGQGTFRFMSELFGYRSDKLKAESSEGTYYTLAVNNTGNEASLEQLTVVEGKD
|
NKPLSENLNFTLQNEHVDAGWRYQLIRKDGEFRLHNPVKEQELSDKLGKAEAKKQAEKDNAQSDALIAAGRDAVE
|
KTSEVAEPARQAGGENVGIMQAEEEKKRVQADKDTALAKQREAETRPATTAFPRARRARRDLPQLQPAPAPAPARDL
|
ISRYANSGLSEFSATLNSFVAVQDELDRVFAEDRRNAVWTSGIRDTKHYRSQDFAYRQQTDLRQIGMQKNLGSGRV
|
GILFSNGRTENTFDDGIGNSARLAHGAVGGYGIDRFYIGISAGAGFSSGSLSDGIGGKIRRRVLHGIQARYRAGF
|
GGFGIEPHIGATRYFVQADYRYENVIATPGLAFNRYRAGIKADYSFKPAQHISITPYLSLSYTDAASGKVRTTVN
|
TAVLAQDFQKTPBABWGVNARIKGPTLSLHAAGPQLEAQHSAGIKIIGYRW*
[0219] To make this construct, the clone pET911LOmpA (see below) was digested with the NheI and XhoI restriction enzymes and the fragment corresponding to the vector carrying the OmpA leader sequence was purified (pETLOmpA). The ORF1 gene coding for the mature protein was amplified using the oligonucleotides ORF1-For and ORF1-Rev (including the NheI and XhoI restriction sites, respectively), digested with NheI and XhoI and ligated to the purified pETOmpA fragment (see FIG. 1). An additional AS dipeptide was introduced by the NheI site.
[0220] All three forms of the protein were expressed. The His-tagged protein could be purified and was confirmed as surface exposed, and possibly secreted (see FIG. 3). The protein was used to immunise mice, and the resulting sera gave excellent results in the bactericidal assay.
[0221] ORF1LOmpA was purified as total membranes, and was localised in both the inner and outer membranes. Unexpectedly, sera raised against ORF1LOmpA show even better ELISA and anti-bactericidal properties than those raised against the His-tagged protein.
[0222] ORF1L was purified as outer membranes, where it is localised.
EXAMPLE 7
[0223] Protein 911 and its Leader Peptide
[0224] Protein 911 from N.meningitidis (serogroup B, strain MC58) has the following sequence:
15|
1MKKNILEFWV GLFVLIGAAA VAFLAFRVAG GAAFGGSDKT
YAVYADFGDI
|
51GGLKVNAPVK SAGVLVGRVG AIGLDPKSYQ ARVRLDLDGK
YQFSSDVSAQ
|
101ILTBGLLGEQ YIGLQQGGDT ENLAAGDTIS VTSSAMVLEN
LIQKPHTSFA
|
151RKNADGGNAB KAAB*
[0225] The leader peptide is underlined.
[0226] Three expression strategies have been used for 911:
[0227] 1) 911 with its own leader peptide but without any fusion partner (‘911L’);
[0228] 2) 911 with the leader peptide from E.coli OmpA (‘911LOmpA’). To make this construct, the entire sequence encoding the OmpA leader peptide was included in the 5′-primer as a tail (primer 911LOmpA Forward). A NheI restriction site was inserted between the sequence coding for the OmpA leader peptide and the 911 gene encoding the predicted mature protein (insertion of one amino acid, a serine), to allow the use of this construct to clone different genes downstream the OmpA leader peptide sequence.
[0229] 3) 911 with the leader peptide (MKYLLPTAAAGLLAAQPAMA) from Erwinia carotovora PelB (‘911LpeIB’).
[0230] To make this construct, the 5′-end PCR primer was designed downstream from the leader sequence and included the NcoI restriction site in order to have the 911 fused directly to the PelB leader sequence; the 3′-end primer included the STOP codon. The expression vector used was pET22b+ (Novagen), which carries the coding sequence for the PelB leader peptide. The NcoI site introduces an additional methionine after the PelB sequence.
[0231] All three forms of the protein were expressed. ELISA titres were highest using 911L, with 919LOmpA also giving good results.
EXAMPLE 8
[0232] ORF46
[0233] The complete ORF46 protein from N.meningitidis (serogroup B, strain 2996) has the following sequence:
16|
1LGISRKISLI LSILAVCLPM HAHASDLAND SFIRQVLDRQ
HPBPDGKYHL
|
51FGSRGELAER SGHIGLGKIQ SHQLGNLMIQ QAAIKGNIGY
IVRFSDHGHE
|
101VHSPFDNHAS HSDSDEAGSP VDGFSLYRZH WDGYEHHPAD
GYDGPQGGGY
|
151PAPKGAPDIY SYDIKGVAQN IRLNLTDNRS TGQRLADRFH
NAGSNLTQGV
|
201GDGFKRATRY SPELDRSGNA AEAFNGTADI VKNIIGAAGE
IVQAGDAVQG
|
251ISEGSNIAVH HGLGLLSTEN KMARINDLAD MAQLKDYAAA
AIRDWAVQNP
|
301NAAQGIEAVS NIFMAAIPZK GIGAVRGKYG LGGITAHPIK
RSQMGAIALP
|
351KGKSAVSDNF ADAAYAKYPS PYHSRNIRSN LEQRYGKBNI
TSSTVPPSNG
|
401KNVKLADQEH PKTGVPFDGK GFPNFEKHVK YDTKLDIQEL
SGQGIPKAXP
|
451VSDAKPRWHV DRKLNKLTTR EQVEKNVQEI RNGNKNSNFS
QHAQLEEEIN
|
501KLXSADEINF ADGMGKFTDS NNDKAPSPLV KSVKENGFTN
PVVRYVEING
|
551KAYIVRGNNR VFAAEYLGRI HELKFKKVDF PVPNTSWKNP
TDVLNESGNV
|
601KRPRYRSK*
[0234] The leader peptide is underlined.
[0235] The sequences of ORF46 from other strains can be found in WO00/66741.
[0236] Three expression strategies have been used for ORF46:
[0237] 1) ORF46 with its own leader peptide but without any fusion partner (‘ORF46-2L’);
[0238] 2) ORF46 without its leader peptide and without any fusion partner (‘ORF46-2’), with the leader peptide omitted by designing the 5′-end amplification primer downstream from the predicted leader sequence:
17|
1SDLANDSFIR QVLDRQHFEP DGKYHLFGSR GBLAERSGHI
GLGKIQSHQL
|
51GNLHIQQAAI KGNIGYIVRP SDHGHEVHSP FDNHASHSDS
DEAGSPVDGF
|
101SLYPJHWDGY EHHPAflGYDG PQGGGYPAPK GARDIYSYDI
KGVAQNIRLN
|
151LTDNRSTGQR LADRFHNAGS MTLTQGVGDGF KRATRYSPEL
DRSGNAAEAF
|
201NGTADIVKNI IGAAGEIVGA GDAVQGISRG SNIAVMHGLG
LLSTENKMAR
|
251INDLADMAQL KDYAAAAZRD WAVQNPNAAQ GIEAVSNIFM
AAIPIKGIGA
|
301VRGKYGLGGI TAHPIKRSQM GAIALPKGKS AVSDNFADAA
YARYPBPYHS
|
351RNIRSNLRQR YGKENZTSST VPPSNGKNVK LADQRHPKTG
VPPDGKGFPN
|
401FBKHVKYDTK LDIQELSGGG IPKAKPVBDA KPRNHVDRKL
NKLTTREQVE
|
451KNVQEIRNGN KNSNFSQHAQ LEREINKLKS ADEINFADGM
GKFTDSMNDK
|
501APSRLVKSVK ENGFTNPVVE YVBINGKAYI VRGNNRVFAA
BYLGRIHRLK
|
551FKKVDFPVPN TSWKNPTDVL NESGNVKRPR YRSK*
[0239] 3) ORF46 as a truncated protein, consisting of the first 433 amino acids (‘ORF46.1L’), constructed by designing PCR primers to amplify a partial sequence corresponding to aa 1-433. A STOP codon was included in the 3′-end primer sequences.
[0240] ORF46-2L is expressed at a very low level to E.coli. Removal of its leader peptide (ORF46-2) does not solve this problem. The truncated ORF46.1L form (first 433 amino acids, which are well conserved between serogroups and species), however, is well-expressed and gives excellent results in ELISA test and in the bactericidal assay.
[0241] ORF46.1 has also been used as the basis of hybrid proteins. It has been fused with 287, 919, and ORF1. The hybrid proteins were generally insoluble, but gave some good ELISA and bactericidal results (against the homologous 2996 strain):
18|
|
ProteinELISABactericidal Ab
|
|
Orf1-Orf46.1-His850256
919-Orf46.1-His12900512
919-287-Orf46-Hisn.d.n.d.
Orf46.1-287His1508192
Orf46.1-919His28002048
Orf46.1-287-919His320016384
|
[0242] For comparison, ‘triple’ hybrids of ORF46.1, 287 (either as a GST fusion, or in ΔG287 form) and 919 were constructed and tested against various strains (including the homologous 2996 strain) versus a simple mixture of the three antigens. FCA was used as adjuvant:
19|
|
2996BZ232MC58NGH38F6124BZ133
|
|
Mixture81922565121024>2048>2048
ORF46.1-287-919his163842564096819281928192
ΔG287-919-ORF46.1his81926440968192819216384
ΔG287-ORF46.1-919his409612825681925121024
|
[0243] Again, the hybrids show equivalent or superior immunological activity.
[0244] Hybrids of two proteins (strain 2996) were compared to the individual proteins against various heterologous strains:
20|
|
1000MC58F6124 (MenA)
|
|
ORF46.1-His<44096<4
ORF1-His8256128
ORF1-ORF46.1-His10245121024
|
[0245] Again, the hybrid shows equivalent or superior immunological activity.
EXAMPLE 9
[0246] Protein 961
[0247] The complete 961 protein from N.meningitidis (serogroup B, strain MC58) has the following sequence:
21|
1MSMKHFPAKV LTTAILATFC SGALAATSDD DVKKAATVAI
VAAYNNGQEI
|
51NGFKAGETIY DIGEDGTITQ KDATAADVBA DDFKGLGLKK
VVTNLTKTVN
|
101ENKQNVDAKV KAAESEIEKL TTKLADTDAA LADTDAALDE
TTNALNKLGE
|
151NITTFABETK TNIVKIDEKL EAVADTVDKH AEAFNDZADS
LDBTNTKADE
|
201AVKTANEAKQ TAEETKQNVD AKVKAAETAA GKABAAAGTA
NTAADXAEAV
|
251AAKVTDIKAD IATNKADIAK NSAPJDSLDK NVANLEKETR
QGLAEQAALS
|
301GLPQPYNVGR FNVTAAVGGY KS3SAVAIGT GFRFTENFAA
KAGVAVGTSS
|
351GSSAAYHVGV NYEW*
[0248] The leader peptide is underlined.
[0249] Three approaches to 961 expression were used:
[0250] 1) 961 using a GST fusion, following WO99/57280 (‘GST961’);
[0251] 2) 961 with its own leader peptide but without any fusion partner (‘961L’); and
[0252] 3) 961 without its leader peptide and without any fusion partner (‘961untagged’), with the leader peptide omitted by designing the 5′-end PCR primer downstream from the predicted leader sequence.
[0253] All three forms of the protein were expressed. The GST-fusion protein could be purified and antibodies against it confirmed that 961 is surface exposed (FIG. 4). The protein was used to immunise mice, and the resulting sera gave excellent results in the bactericidal assay. 961L could also be purified and gave very high ELISA titres.
[0254] Protein 961 appears to be phase variable. Furthermore, it is not found in all strains of N.meningitidis.
EXAMPLE 10
[0255] Protein 287
[0256] Protein 287 from N.meningitidis (serogroup B, strain 2996) has the following sequence:
22|
1MFERSVIAMA CIFALSACGG GGGQSPDVKS ADTLSKPAAP
VVAEKETBVK
|
51EDAPQAGSQG QGAPSTQGSQ DMAAVSAENT GNGGAATTDK
PKNEDEGPQN
|
101DMPQNSAESA NQTGNNQPAD SSDSAPASNP APANGGSNFG
RVDLANGVLI
|
151DGPSQNITLT HCKGDSCNGD NLLDEEAPSK SEFHNLNESR
RIEKYKKDGK
|
201SDKFTNLVAT AVQANGTNKY VIIYRDKSAS SSSAPPRRSA
RSRRSLPAEH
|
251PLIPVNQADT LIVDGEAVSL TGHSGNIPAP EGNYRYLTYG
AEKLPGGSYA
|
301LRVQGEPAKG ENLAGTAVYN GEVLHFHTEN GRPYPTRGRF
AAXVDFGSKS
|
351VDGIIDSGDD LHMGTQKFKA AIDGNGFKGT WTENGGGDVS
GRFYGPAGEE
|
401VAGKYSYRPT DAEKGGFGVF AGKKEQD*
[0257] The leader peptide is shown underlined.
[0258] The sequences of 287 from other strains can be found in FIGS. 5 and 15 of WO00/66741.
[0259] Example 9 of WO99/57280 discloses the expression of 287 as a GST-fusion in E.coli.
[0260] A number of further approaches to expressing 287 in E.coli have been used, including:
[0261] 1) 287 as a His-tagged fusion (‘287-His’);
[0262] 2) 287 with its own leader peptide but without any fusion partner (‘287L’);
[0263] 3) 287 with the ORF4 leader peptide and without any fusion partner (‘287LOrf4’); and
[0264] 4) 287 without its leader peptide and without any fusion partner (‘287untagged ’):
23|
1CGGGQGGSPD VKSADTLSKP AAPVVAEKET EVKEDAPQAG
SQGQGAPSTQ
51GSQDMAAVSA BNTGNGGAAT TDKPKNEDEG PQNDHPQNSA
ESANQTGNNQ
101PADSSDSAPA SNPAPMTGGS NFGRVDLANG VLIDGPSQNI
TLTHCKGDSC
153NGDNLLDEEA PSKSEPENLN ESERIEKYRK DGKSDKFTNL
VATAVQANGT
201NKYVIIYKDK SASSSSARFR RSARSRRSLP AEMPLIPVNQ
ADTLIVDGEA
251VSLTQHSGNI FAPEGNYRYL TYGAEKLPGG SYALRVQGEP
AKGEMAAGTA
301VYNGEVLHFH TENGRPYPTR GRFAAKVDFG SKSVDGIIDS
GDDLHHGTQK
351FKAAIDGNGF KGTWTENGGG DVSGRPYGPA GEEVAGRYSY
RPTDAEKGGF
401GVFAGEKEQD *
[0265] All these proteins could be expressed and purified
[0266] ‘287L’ and ‘287LOrf4’ were confirmed as lipoproteins.
[0267] As shown in FIG. 2, ‘287LOrf4’ was constructed by digesting 919LOrf4 with NheI and XhoI. The entire ORF4 leader peptide was restored by the addition of a DNA sequence coding for the missing amino acids, as a tail, in the 5′-end primer (287LOrf4 for), fused to 287 coding sequence. The 287 gene coding for the mature protein was amplified using the oligonucleotides 287LOrf4 For and Rev (including the NheI and XhoI sites, respectively), digested with NheI and XhoI and ligated to the purified pETOrf4 fragment.
EXAMPLE 11
[0268] Further Non-Fusion Proteins with/without Native Leader Peptides
[0269] A similar approach was adopted for E.coli expression of further proteins from WO99/24578, WO99/36544 and WO99/57280.
[0270] The following were expressed without a fusion partner: 008, 105, 117-1, 121-1, 122-1, 128-1, 148, 216, 243, 308, 593, 652, 726, 982, and Orf143-1. Protein 117-1 was confirmed as surface-exposed by FACS and gave high ELISA titres.
[0271] The following were expressed with the native leader peptide but without a fusion partner: 111, 149, 206, 225-1, 235, 247-1, 274, 283, 286, 292, 401, 406, 502-1, 503, 519-1, 525-1, 552, 556, 557, 570, 576-1, 580, 583, 664, 759, 907, 913, 920-1, 926, 936-1, 953, 961, 983, 989, Orf4, Orf7-1, Orf9-1, Orf23, Orf25, Orf37, Orf38, Orf40, Orf40.1, Orf40.2, Orf72-1, Orf76-1, Orf85-2, Orf91, Orf97-1, Orf119, Orf143.1. These proteins are given the suffix ‘L’.
[0272] His-tagged protein 760 was expressed with and without its leader peptide. The deletion of the signal peptide greatly increased expression levels. The protein could be purified most easily using 2M urea for solubilisation.
[0273] His-tagged protein 264 was well-expressed using its own signal peptide, and the 30 kDa protein gave positive Western blot results.
[0274] All proteins were successfully expressed.
[0275] The localisation of 593, 121-1, 128-1, 593, 726, and 982 in the cytoplasm was confirmed.
[0276] The localisation of 920-1L, 953L, ORF9-1L, ORF85-2L, ORF97-1L, 570L, 580L and 664L in the periplasm was confirmed.
[0277] The localisation of ORF40L in the outer membrane, and 008 and 519-1L in the inner membrane was confirmed. ORF25L, ORF4L, 406L, 576-1L were all confirmed as being localised in the membrane.
[0278] Protein 206 was found not to be a lipoprotein.
[0279] ORF25 and ORF40 expressed with their native leader peptides but without fusion partners, and protein 593 expressed without its native leader peptide and without a fusion partner, raised good anti-bactericidal sera. Surprisingly, the forms of ORF25 and ORF40 expressed without fusion partners and using their own leader peptides (i.e. ‘ORF25L’ and ‘ORF40L’) give better results in the bactericidal assay than the fusion proteins.
[0280] Proteins 920L and 953L were subjected to N-terminal sequencing, giving HRVWVETAH and ATYKVDEYHANARFAF, respectively. This sequencing confirms that the predicted leader peptides were cleaved and, when combined with the periplasmic location, confirms that the proteins are correctly processed and localised by E.coli when expressed from their native leader peptides.
[0281] The N-terminal sequence of protein 519.1L localised in the inner membrane was MEFFIILLA, indicating that the leader sequence is not cleaved. It may therefore function as both an uncleaved leader sequence and a transmembrane anchor in a manner similar to the leader peptide of PBP1 from N.gonorrhoeae [Ropp & Nicholas (1997) J. Bact. 179:2783-2787.]. Indeed the N-terminal region exhibits strong hydrophobic character and is predicted by the Tmpred. program to be transmembrane.
EXAMPLE 12
[0282] Lipoproteins
[0283] The incorporation of palmitate in recombinant lipoproteins was demonstrated by the method of Kraft et. al. [J. Bact. (1998) 180:3441-3447.]. Single colonies harbouring the plasmid of interest were grown overnight at 37° C. in 20 ml of LB/Amp (100 μg/ml) liquid culture. The culture was diluted to an OD550 of 0.1 in 5.0 ml of fresh medium LB/Amp medium containing 5 μC/ml [3H] palmitate (Amersham). When the OD550 of the culture reached 0.4-0.8, recombinant lipoprotein was induced for 1 hour with IPTG (final concentration 1.0 mM). Bacteria were harvested by centrifugation in a bench top centrifuge at 2700 g for 15 min and washed twice with 1.0 ml cold PBS. Cells were resuspended in 120 μl of 20 mM Tris-HCl (pH 8.0), 1 mM EDTA, 1.0% w/v SDS and lysed by boiling for 10 min. After centrifugation at 13000 g for 10 min the supernatant was collected and proteins precipitated by the addition of 1.2 ml cold acetone and left for 1 hour at −20° C. Protein was pelleted by centrifugation at 13000 g for 10 min and resuspended in 20-50μl (calculated to standardise loading with respect to the final O.D of the culture) of 1.0% w/v SDS. An aliquot of 15 μl was boiled with 5 μl of SDS-PAGE sample buffer and analysed by SDS-PAGE. After electrophoresis gels were fixed for 1 hour in 10% v/v acetic acid and soaked for 30 minutes in Amplify solution (Amersham). The gel was vacuum-dried under heat and exposed to Hyperfilm (Kodak) overnight −80° C.
[0284] Incorporation of the [3H] palmitate label, confirming lipidation, was found for the following proteins: Orf4L, Orf25L, 287L, 287LOrf4, 406.L, 576L, 926L, 919L and 919LOrf4.
EXAMPLE 13
[0285] Domains in 287
[0286] Based on homology of different regions of 287 to proteins that belong to different functional classes, it was split into three ‘domains’, as shown in FIG. 5. The second domain shows homology to IgA proteases, and the third domain shows homology to transferrin-binding proteins.
[0287] Each of the three ‘domains’ shows a different degree of sequence conservation between N. meningitidis strains—domain C is 98% identical, domain A is 83% identical, whilst domain B is only 71% identical. Note that protein 287 in strain MC58 is 61 amino acids longer than that of strain 2996. An alignment of the two sequences is shown in FIG. 7, and alignments for various strains are disclosed in WO0/66741 (see FIGS. 5 and 15 therein).
[0288] The three domains were expressed individually as C-terminal His-tagged proteins. This was done for the MC58 and 2996 strains, using the following constructs:
[0289] 287a-MC58 (aa 1-202), 287b-MC58 (aa 203-288), 287c-MC58 (aa 311-488).
[0290] 287a-2996 (aa 1-139), 287b-2996 (aa 140-225), 287c-2996 (aa 250-427).
[0291] To make these constructs, the stop codon sequence was omitted in the 3′-end primer sequence. The 5′ primers included the NheI restriction site, and the 3′ primers included a XhoI as a tail, in order to direct the cloning of each amplified fragment into the expression vector pET21b+ using NdeI-XhoI, NheI-XhoI or NdeI-HindIII restriction sites.
[0292] All six constructs could be expressed, but 287b-MC8 required denaturation and refolding for solubilisation.
[0293] Deletion of domain A is described below (‘Δ4 287-His’).
[0294] Immunological data (serum bactericidal assay) were also obtained using the various domains from strain 2996, against the homologous and heterologous MenB strains, as well as MenA (F6124 strain) and MenC (BZ133 strain):
24|
|
2996BZ232MC58NGH38394/98MenAMenC
|
|
287-His320001640964096512800016000
287(B)-His256————16—
287(C)-His256—32512322048>2048
287(B-C)-His6400012840966400010246400032000
|
[0295] Using the domains of strain MC58, the following results were obtained:.
25|
|
MC582996BZ232NGH38394/98MenAMenC
|
|
287-His409632000164096512800016000
287(B)-His128128————128
287(C)-His—16—1024—512—
287(B-C)-His16000640001286400051264000>8000
|
EXAMPLE 14
[0296] Deletions in 287
[0297] As well as expressing individual domains, 287 was also expressed (as a C-terminal His-tagged protein) by making progressive deletions within the first domain. These Four deletion mutants of protein 287 from strain 2996 were used (FIG. 6):
[0298] 1) ‘287-His’, consisting of amino acids 18-427 (i.e. leader peptide deleted);
[0299] 2) ‘Δ1 287-His’, consisting of amino acids 26-427;
[0300] 3) ‘Δ2 287-His’, consisting of amino acids 70-427;
[0301] 4) ‘Δ3 287-His’, consisting of amino acids 107-427; and
[0302] 5) ‘Δ4 287-His’, consisting of amino acids 140-427 (=287-bc).
[0303] The ‘Δ4’ protein was also made for strain MC58 (‘Δ4 287MC58-His’; aa 203-488).
[0304] The constructs were made in the same way as 287a/b/c, as described above.
[0305] All six constructs could be expressed and protein could be purified. Expression of 287-His was, however, quite poor.
[0306] Expression was also high when the C-terminal His-tags were omitted.
[0307] Immunological data (serum bactericidal assay) were also obtained using the deletion mutants, against the homologous (2996) and heterologous MenB strains, as well as MenA (F6124 strain) and MenC (BZ133 strain):
26|
|
2996BZ232MC58NGH38394/98MenAMenC
|
|
287-his320001640964096512800016000
Δ1 287-His16000128409640961024800016000
Δ2 287-His160001284096>204851216000>8000
Δ3 287-His160001284096>204851216000>8000
Δ4 287-His6400012840966400010246400032000
|
[0308] The same high activity for the Δ4 deletion was seen using the sequence from strain MC58.
[0309] As well as showing superior expression characteristics, therefore, the mutants are immunologically equivalent or superior.
EXAMPLE 15
[0310] Poly-Glycine Deletions
[0311] The ‘Δ1 287-His’ construct of the previous example differs from 287-His and from ‘287untagged’ only by a short N-terminal deletion (GGGGGS). Using an expression vector which replaces the deleted serine with a codon present in the Nhe cloning site, however, this amounts to a deletion only of (Gly)6. Thus, the deletion of this (Gly)6 sequence has been shown to have a dramatic effect on protein expression.
[0312] The protein lacking the N-terminal amino acids up to GGGGGG is called ‘ΔG 287’. In strain MC58, its sequence (leader peptide underlined) is:
27|
ΔG287
1MFKRSVIAMA CIFALSACGG GGGGSPDVKS ADTLSKPAAP
VVSEKETEAK
|
51EDAPQAGSQG QGAPSAQGSQ DMAAVSEENT GNGGAVTADN
PKNBDEVAQN
|
101DMPQNAAGTD SSTPNHTPDP NMLAGNNENQ ATDAGESSQP
ANQPDMANAA
|
151DGMQGDDPSA GGQNAGNTAA QGANQAGNNQ AAGSSDPIPA
SNPAPANGGS
|
201NFGRVDLANG VLIDGPSQNI TLTHCKGDSC SGNNFLDBEV
QLKSEFEKLS
|
251DADKISNYKK DGKNDKFVGL VADSVQMKGI NQYIIFYKPK
PTSFARPRRS
|
301ARSEPSLPAE MPLIPVNQAD TLIVDGEAVS LTGHSGNIFA
PEGNYRYLTY
|
351GABKLPGGSY ALRVQGEPAK GEKLAGAAVY NGEVLRFHTE
NGRPYPTRGR
|
401FAAKVDFGSK SVDGIIDSGD DLMHGDQKFK AAIDGNGFKG
TWTENGSGDV
|
451SGKFYGPAGE RVAGKYSYRP TDAEKGGFGV FAGKKEQD*
[0313] ΔG287, with or without His-tag (‘ΔG287-His’ and ‘ΔG287K’, respectively), are expressed at very good levels in comparison with the ‘287-His’ or ‘287untagged’.
[0314] On the basis of gene variability data, variants of ΔG287-His were expressed in E.coli from a number of MenB strains, in particular from strains 2996, MC58, 1000, and BZ232. The results were also good.
[0315] It was hypothesised that poly-Gly deletion might be a general strategy to improve expression. Other MenB lipoproteins containing similar (Gly)n motifs (near the N-terminus, downstream of a cysteine) were therefore identified, namely Tbp2 (NMB0460), 741 (NMB 1870) and 983 (NMB1969):
28|
TBP2 ΔGTbp2
1MNNPLVNQAA MVLPVFLLSACWGGGSFDL DSVDTEAPRP
APKYQDVFSB
|
51KPQAQKDQGG YGFAMRLKER NWYPQAXEDB VKLDESDWHA
TGLPDEPKEL
|
101PKRQRSVIBK VRTDSDNNIY SSPYLKPSNH QNGNTGNGIN
QPKNQAXDYE
|
151NFKYVYSGWF YKHAKREFNL KVBPKSAKNG DDGYIFYHGK
EPSRQLPASG
|
201KITYKGVWHF ATDTKKGQKF REIIQPSKBQ GDRYSGFSGD
DGEEYSNKNK
|
251STLTDGQEGY GFTSNLEVDF HNKKLTGKLI RNNANTDNNQ
ATTTQYYSLB
|
301AQVTGNRPNG KATATDKPQQ NSETXBHPPV SDSSSLSGGF
FGPQGEELGF
|
351RPLSDDQKVA VVGSAKTKDK PANGNTAAAS GGTDAAASNG
AAGTSSENGK
|
401LTTVLDAVEL KLGDKEVQKL DNFSNAAQLV VDGIMIPLLP
EASESGNNQA
|
451NQGTNGGTAP TRKFDHTPES DKKDAQAGTQ TNGAQTASNT
AGDTNGKTKT
|
501YEVEVCCSNL NYLKYGMLTR KNSKSAMQAG ESSSQADAKT
EQVEQSMFLQ
|
551GERTDEKEIP SEQNIVYRGS WYGYIANDXS TSWSGNASNA
TSGNRAEFTV
|
601NFADKKITGT LTADNRQEAT FTIDGNIKDN GFEGTAKTAE
SGFDLDQSNT
|
651TRTPKAYITD AKVQGGPYGP KAEELGGWFA YPGDKQTKNA
TNASGNSSAT
|
701VVFGAKRQQP VR*
|
741 ΔG741
1VNRTAPCCLS LTTALILTAC SSGGGGVAAD IGAGLADALT
APLDHKDKGL
|
51QSLTLDQSVR KNEKLKLAAQ GAEKTYGNGD SLNTGKLKND
KVSRFDFIRQ
|
101IEVDGQLITL ESGEFQVYKQ SHSALTAPQT EQIQDSEHSG
KMVAKRQFRI
|
151GDIAGEHTSF DKLPEGGRAT YRGTAFGSDD AGGKLTYTID
FAAKQGNGKI
|
201EHLKSPELNV DLAAADIKPD GKRHAVISGS VLYNQAEKGS
YSLGIFGGKA
|
251QEVAGSAEVK TVNGIRHIGL AAKQ*
|
983 ΔG983
1MRTTPTPPTK TDXPTAMALA VATTLSACLG GGGGGTSAPD
FNAGGTGIGS
|
51NSRATTAKSA AVSYAGIKNE HCKDRSNLCA GRDDVAVTDR
DAKINAPPPN
|
101LHTGDFPNPN DAYKNLINLK PAIEAGYTGR GVEVGIVDTG
ESVGSISFPE
|
151LYGRKEHGYN ENYKNYTAYM RKEAPEDGGG KDIEASFDDE
AVIETEAKPT
|
201DIRHVKEIGR IDLVSHIIGG RSVDGRPAGG IAPDATLHIM
NTNDETKNEM
|
251MVAAIRNAWV KLGERGVPJV NNSPGTTSEA GTADLFQIAN
SEEQYRQALL
|
301DYSGGDKTDE GIRLMQQSDY GNLSYHIRNK NMLFXFSTGN
DAQAQPNTYA
|
351LLPFYEKDAQ KGIITVAGVD RSGEKFKREM YGRPGTEPLR
YGSNHCGITA
|
401MWCLSAPYEA SVRPTRTNPI QIAGTSFSAP IVTGTAALLL
QKTPWMSNDN
|
451LRTTLLTTAQ DIGAVGVDSK FGWGLLDAGK AMNGPASFPF
GDPTADTKGT
|
501SDIAYSFRND ISGTGGLIKK GGSQLQLHGN NTYTGKTXIE
GGSLVLYGNN
|
551KSDMRVETKG ALIYNGAASG GSLNSDGIVY LADTDQSGAN
BTVHIXGSLQ
|
601LDGKGTLYTR LGKLLKVDGT AIIGGKLYMS ARGKGAGYLN
STGRRVPFLS
|
651AAKIGQDYSF FTNXETDGGL LASLDSVBKT AGSEGDTLSY
YVRRGNAART
|
701ASAAAHSAPA GLKHAVEQGG SNLENLMVEL DASRSSATPE
TVETAAADRT
|
751DMPGIRPYGA TFRAAAAVQH ANAADGVRIF NSLAATVYAD
STAAHADMQG
|
801RRLKAVSDGL DHNGTGLRVI AQTQQDGGTW EQGGVEGKMR
GSTQTVGIAA
|
851KTGENTTAAA TLGMGRSTWS ENSANAKTDS ISLFAGIRHD
AGDIGYLKGL
|
901FSYGRYKNSI SRSTGADEHA EGSVNGTLMQ LGALGGVNVP
PAATGDLTVE
|
951GGLRYDLLKQ DAFAEKGSAL GWSGNSLTEG TLVGLAGLKL
SQPLSDKAVL
|
1001FATAGVERDL NGRDYTVTGG FTGATAATGK TGARMNPHTR
LVAGLGADVE
|
1051FGNGWNGLAR YSYAGSKQYG NHSGRVGVGY RF*
[0316] Thp2 and 741 genes were from strain MC58; 983 and 287 genes were from strain 2996. These were cloned in pET vector and expressed in E.coli without the sequence coding for their leader peptides or as “ΔG forms”, both fused to a C-terminal His-tag. In each case, the same effect was seen—expression was good in the clones carrying the deletion of the poly-glycine stretch, and poor or absent if the glycines were present in the expressed protein:
29|
|
ORFExpress.PurificationBact. Activity
|
287-His(2996)+/−++
‘287untagged’(2996)+/−ndnd
ΔG287-His(2996)+++
ΔG287K(2996)+++
ΔG287-His(MC58)+++
ΔG287-His(1000)+++
ΔG287-His(BZ232)+++
Tbp2-His(MC58)+/−ndnd
ΔGTbp2-His(MC58)++
741-His(MC58)+/−ndnd
ΔG741-His(MC58)++
983-His (2996)
ΔG983-His (2996)++
|
[0317] SDS-PAGE of the proteins is shown in FIG. 13.
[0318] ΔG287 and Hybrids
[0319] ΔG287 proteins were made and purified for strains MC58, 1000 and BZ232. Each of these gave high ELISA titres and also serum bactericidal titres of >8192. ΔG287K, expressed from pET-24b, gave excellent titres in ELISA and the serum bactericidal assay. ΔG-287-ORF46.1K may also be expressed in pET-24b.
[0320] ΔG287 was also fused directly in-frame upstream of 919, 953, 961 (sequences shown below) and ORF46.1:
30|
ΔG287-919
1ATGGCTAGCC CCGATGTTAA ATCGGCGGAC ACGCTGTCAA AACCGGCCGC
|
51TCCTGTTGTT GCTGAAAAAG AQACAGAGGT AAAAGAAGAT GCGCCACAGG
|
101CAGGTTCTCA AGGACAGGGC GCGCCATCCA CACAAGGCAG CCAAGATATG
|
151GCGGCAGTTT CGGCAGAAAA TACAGGCAAT GGCGGTGCGG CAACAACGGA
|
201CAAACCCAAA AATGAAGACG AGGGACCGCA AAATGATATG CCGCAAAATT
|
251CCGCCGAATC CGCAAATCAA ACAGGGAACA ACCAACCCGC CGATTCTTCA
|
301GATTCCGCCC CCGCGTCAAA CCCTGCACCT GCGAATGGCG GTAGCAATTT
|
351TGGAAGGGTT GATTTGGCTA ATGGCGTTTT GATTGATGGG CCGTCGCAAA
|
401ATATAACGTT GACCCACTGT AAAGGCGATT CTTGTAATGG TGATAATTTA
|
451TTGGATGAAG AAGCACCGTC AAAATCAGAA TTTGAAAATT TAAATGAGTC
|
501TGAACGAATT GAGAAATATA AGAAAGATGG GAAAAGCGAT AAATATACTA
|
551ATTTGGTTGC GACAGCAGTT CAAGCTAATG GAAATAACAA ATATGTCATC
|
601ATTTATAAAG ACAAGTCCGC TTCATCTTCA TCTGCGCGAT TCAGGCGTTC
|
651TGCACGGTCG AGGAGGTCGC TTCCTGCCGA GATGCCGCTA ATCCCCGTCA
|
701ATCAGGCGGA TACGCTGATT GTCGATGGGG AAGCGGTCAG CCTGACGGGG
|
751CATTCCGGCA ATATCTTCGC GCCCGAAGGG AATTACCGGT ATCTGACTTA
|
801CGGGGCGGAA AAATTGCCCG GCGGATCGTA TGCCCTCCGT GTGCAAGGCG
|
851AACCGGCAAA AGGCGAAATG CTTGCTGGCA CGGCCGTGTA CAACGGCGAA
|
901GTGCTGCATT TTCATACGOA AAACGGCCGT CCGTACCCGA CTAGAGGCAG
|
951GTTTGCCGCA AAAGTCGATT TCGGCAGCAA ATCTGTGGAC GGCATTATCG
|
1001ACAGCGGCGA TGATTTGCAT ATGGGTACGC AAAAATTCAA AGCCGCCATC
|
1051GATGGAAACG GCTTTAAGGG GACTTGGACG GAAAATGGCG GCGGGGATGT
|
1101TTCCGGAAGG TTTTACGGCC CGGCCOGCGA GGAAGTGGCG GGAAAATACA
|
1151GCTATCGCCC GACAGATGCG GAAAAGGGCG GATTCGGCGT GTTTGCCGGC
|
1201AAAAAAGAGC AGGATGGATC CGGAGGAGGA GGATGCCAAA GCAAGAGCAT
|
1251CCAAACCTTT CCGCAACCCG ACACATCCGT CATCAACGGC CCGGACCGGC
|
1301CGGTCGGCAT CCCCGACCCC GCCGGAACGA CGGTCGGCGG CGGCGGGGCC
|
1351GTCTATACCG TTGTACCGCA CCTGTCCCTG CCCCACTGGG CGGCGCAGGA
|
1401TTTCGCCAAA AGCCTGCAAT CCTTCCGCCT CGGCTGCGCC AATTTGAAAA
|
1451ACCGCCAAGG CTGGCAGGAT GTGTGCGCCC AAGCCTTTCA AACCCCCGTC
|
1501CATTCCTTTC AGGCAAAACA GTTTTTTGAA CGCTATTTCA CGCCGTGGCA
|
1551GGTTGCAGGC AACGGAAGCC TTGCCGGTAC GGTTACCGGC TATTACGAGC
|
1601CGGTGCTGAA GGGCGACGAC AGGCGGACGG CACAAGCCCG CTTCCCGATT
|
1651TACGGTATTC CCGACGATTT TATCTCCGTC CCCCTGCCTG CCGGTTTGCG
|
1701GAGCGGAAAA GCCCTTGTCC GCATCAGGCA GACGGGAAAA AACAGCGGCA
|
1751CAATCGACAA TACCGGCGGC ACACATACCG CCGACCTCTC CCGATTCCCC
|
1801ATCACCGCGC GCACAACGGC AATCAAAGGC AGGTTTGAAG GAAGCCGCTT
|
1851CCTCCCCTAC CACACGCGCA ACCAAATCAA CGGCGGCGCG CTTQACGGCA
|
1901AAGCCCCGAT ACTCGGTTAC GCCGAAGACC CCGTCGAACT TTTTTTTATG
|
1951CACATCCAAG GCTCGGGCCG TCTGAAAACC CCGTCCGGCA AATACATCCG
|
2001CATCGGCTAT GCCGACAAAA ACGAACATCC CTACGTTTCC ATCGGACGCT
|
2051ATATGGCGGA CAAAGGCTAC CTCAAGCTCG GGCAGACCTC GATGCAGGGC
|
2101ATCAAAGCCT ATATGCGGCA AAATCCGCAA CGCCTCGCCG AAGTTTTGGG
|
2151TCAAAACCCC AGCTATATCT TTTTCCGCGA GCTTGCCGGA AGCAGCAATG
|
2201ACGGTCCCGT CGGCOCACTG GGCACGCCGT TGATGGGGGA ATATGCCGGC
|
2251GCAGTCGACC GGCACTACAT TACCTTGGGC GCGCCCTTAT TTGTCGCCAC
|
2301CGCCCATCCG GTTACCCGCA AAGCCCTCAA CCGCCTGATT ATGGCGCAGG
|
2351ATACCGGCAG CGCGATTAAA GGCGCGGTGC GCGTGGATTA TTTTTGGGGA
|
2401TACGGCGACG AAGCCGGCGA ACTTGCCGGC AAACAGAAAA CCACGGGTTA
|
2451CGTCTGGCAG CTCCTACCCA ACGGTATGAA GCCCGAATAC CGCCCGTAAC
|
2501TCGAG
|
1MASPDVKSAD TLSKPAAPVV AEKETEVKED APQAGSQGQG APSTQGSQDM
|
51AAVSAENTGN GGAATTDKPK NEDEGPQNDM PQNSAESANQ TGNNQPADSS
|
101DSAPASNPAP ANGGSNFGRV DLANGVLIDG PSQNITLTHC KGDSCNGDNL
|
151LDEEAPSKSE FENLNESERI EKYKKDGKSD KFTNLVATAV QANGTNKYVI
|
201IYKDKSASSS SAPPRRSARS RRSLPAEMPL IPVNQADTLI VDGEAVSLTG
|
251HSGNIFAPEG NYRYLTYGAE KLPGGSYMJR VQGEPAXGEM LAGTAVYNGE
|
301VLHFHTENGR PYPTRGRPAA KVDFGSKSVD GIIDSGDDLH HGTQKFKAAI
|
351DGNGFKGTWT ENGGGDVSGR FYGPAGEEVA GKYSYRPTDA EKGGFGVFAG
|
401KKEQDGSGGG GCQSKSIQTP PQPDTSVING PDEPVGIPDP AGTTVGOGGA
|
451VYTVVPELSL PHWAAQDFAK SLQSFRLGCA NLKNRQGWQD VCAQAFQTPV
|
501HSFQAKQFFE RYFTPWQVAG NGSLAGTVTG YYEPVLKGDD RRTAQARFPI
|
551YGIPDDFISV PLPAGLRSGK ALVRIRQTGK NSGTIDNTGG THTADLSRFP
|
601ITARTTAIKG RFEGSRPLPY HTRNQINGGA LDGKAPILGY AEDPVELFFM
|
651HIQGSGRLKT PSGKYIRIGY ADKNEHPYVS IGRYMADKGY LKLGQTSMQG
|
701IKAYMRQNPQ RLAEVLGQNP SYIPFRELAD SBIWGPVGMJ GTPIMGEYAG
|
751AVDRHYITLG APLFVATAHP VTRKALNELI MAQDTGSAIK GAVRVDYFWG
|
801YGDEAGELAG KQKTTGYVWQ LLPNGMKPEY RP*
ΔG287-953
1ATGGCTAGCC CCGATGTTAA ATCGGCGGAC ACGCTGTCAA AACCGGCCGC
|
51TCCTGTTGTT GCTGAAAAAG AGACAGAGGT AAAAGAAGAT GCGCCACAGG
|
101CAGGTTCTCA AGGACAGGGC GCGCCATCCA CACAAGGCAG CCAAGATATG
|
151GCGGCAGTTT CGGCAGAAAA TACAGGCAAT GGCGGTGCGG CAACAACGGA
|
201CAAACCCAAA AATGAAGACG AGGGACCGCA AAATGATATG CCGCAAAATT
|
251CCGCCGAATC CGCAAATCAA ACAGGGAACA ACCAACCCGC CGATTCTTCA
|
301GATTCCGCCC CCGCGTCAAA CCCTGCACCT GCGAATGGCG GTAGCAATTT
|
351TGGAAGGGTT GATTTGGCTA ATGGCGTTTT GATTGATGGG CCGTCGCAAA
|
401ATATAACGTT GACCCACTGT AAAGGCGATT CTTGTAATGG TGATAATTTA
|
451TTGGATGAAG AAGCACCGTC AAAATCAGAA TTTGAAAATT TAAATGAGTC
|
501TGAACGAATT GAGAAATATA AGAAAGATGG GAAAAGCGAT AAATTTACTA
|
551ATTTGGTTGC GACAGCAGTT CAAGCTAATG GAACTAACAA ATATGTCATC
|
601ATTTATAAAG ACAAGTCCGC TTCATCTTCA TCTGCGCGAT TCAGGCGTTC
|
651TGCACGGTCG AGGAGGTCGC TTCCTGCCGA GATGCCGCTA ATCCCCGTCA
|
701ATCAGGCGGA TACGCTGATT GTCGATGGGG AAGCGGTCAG CCTGACGAGG
|
751CATTCCGGCA ATATCTTCGC GCCCGAAGGG AATTACCGGT ATCTGACTTA
|
801CGGGGCGGAA AAATTGCCCG GCGGATCGTA TGCCCTCCGT GTGCAAGGCG
|
851AACCGGCAAA AGGCGAAATG CTTGCTGGCA CGGCCGTGTA CAACGGCGAA
|
901GTGCTGCATT TTCATACGGA AAACGGCCGT CCGTACCCGA CTAGAGGCAG
|
951GTTTGCCGCA AAAGTCGATT TCGGCAGCAA ATCTGTGGAC GGCATTATCG
|
1001ACAGCGGCGA TGATTTGCAT ATGGGTACGC AAAAATTCAA AGCCGCCATC
|
1051GATGGAAACG GCTTTAAGGG GACTTGGACG GAAAATGGCG GCGGGGATGT
|
1101TTCCGGAAGG TTTTACGGCC CGCCCCGCGA GGAAGTGGCG GGAAAATACA
|
1151GCTATCGCCC GACAGATGCG GAAAAGGGCG GATTCGGCGT GTTTGCCGGC
|
1201AAAAAAGAGC AGGATGGATC CGGAGGAGGA GGAGCCACCT ACAAAGTGGA
|
1251CGAATATCAC GCCAACGCCC GTTTCGCCAT CGACCATTTC AACACCAGCA
|
1301CCAACGTCGG CGGTTTTTAC GGTCTGACCG GTTCCGTCGA GTTCGACCAA
|
1351GCAAAACGCG ACGGTAAAAT CGACATCACC ATCCCCGTTG CCAACCTGCA
|
1401AAGCGGTTCG CAACACTTTA CCGACCACCT GAAATCAGCC GACATCTTCG
|
1451ATGCCGCCCA ATATCCGGAC ATCCGCTTTG TTTCCACCAA ATTCAACTTC
|
1501AACGGCAAAA AACTGGTTTC CGTTGACGGC AACCTGACCA TGCACGGCAA
|
1551AACCGCCCCC GTCAAACTCA AAGCCGAAAA ATTCAACTGC TACCAAAGCC
|
1601CGATGGCGAA AACCGAAGTT TGCGGCGGCG ACTTCAGCAC CACCATCGAC
|
1651CGCACCAAAT GGGGCGTGGA CTACCTCGTT AACGTTGGTA TGACCAAAAG
|
1701CGTCCGCATC GACATCCAAA TCGAGGCAGC CAAACAATAA CTCGAG
|
1MASPDVKSAD TLSKPAAPVV AEKETEVKED APQAGSQGQG APSTQGSQDM
|
51AAVSAENTGN GGAATTDKPK NBDEGPQNDM PQNSAESANQ TGNNQPADSS
|
101DSAPASNPAP ANGGSNFGRV DLANGVLIDG PSQNITLTHC KGDSCNGDNL
|
151LDEEAPSKSE FENLNESERI ERYKKDGKSD KFTNLVATAV QANGTNKYVI
|
201IYKDKSASSS SARFRRSARS RRSLPAEMPL IPVNQADTLI VDGRAVSLTG
|
251RSGNIFAPEG NYRYLTYGAE KLPGGSYALR VQGEPAKGEH LAGTAVYNGE
|
301VLHFETENGR PYPTRGRFAA KVDFGSKSVD GIIDSGDDLH MGTQKFKAAI
|
351DGNGFKGTWT ENGGGDVSGR PYGPAGBEVA GKYSYRPTDA EKGGFGVFAG
|
401KKEQDGSGGG GATYRVDEYH ANAPPAIDHF NTSTNVGGFY GLTGSVBFDQ
|
451AXRDGKIDIT IPVANLQSGS QHFTDHLKSA DIFDAAQYPD IRFVSTKFNF
|
501NGKKLVSVDG NLTMHGKTAP VKLKAEKFNC YQSPMAKTEV CGGDFSTTID
|
551RTKWGVDYLV NVVGMTKSVRI DIQIEAAKQ*
|
ΔG287-961
1ATGGCTAGCC CCGATGTTAA ATCGGCGGAC ACGCTGTCAA AACCGGCCGC
|
51TCCTGTTGTT GCTGAAAAAG AGACAGAGGT AAAAGAAGAT GCGCCACAGG
|
101CAGGTTCTCA AGGACAGGGC GCGCCATCCA CACAAGGCAG CCAAGATATG
|
151GCGGCAGTTT CGGCAGAAAA TACAGGCAAT GGCGGTGCGG CAACAACGGA
|
201CAAACCCAAA AATGAAGACG AGGGACCGCA AAATGATATG CCGCAAAATT
|
251CCGCCGAATC CGCAAATCAA ACAGGGAACA ACCAACCCGC CGATTCTTCA
|
301GATTCCGCCC CCGCGTCAAA CCCTGCACCT GCGAATGGCG GTAGCAATTT
|
351TGGAAGGGTT GATYTGGCTA ATGGCGTTTT GATTGATGGG CCGTCGCAAA
|
401ATATAACGTT GACCCACTGT AAAGGCGATT CTTGTAATGG TGATAATTTA
|
451TTGGATGAAG AAGCACCGTC AAAATCAGAA TTTGAAAATT TAAATGAGTC
|
501TGAACGAATT GAAAAATATA AGAAAGATGG GAAAAGCGAT AAATTTACTA
|
551ATTTGGTTGC GACAGCAGTT CAAGCTAATG GAACTAACAA ATATGTCATC
|
601ATTTATAAAG ACAAGTCCGC TTCATCTTCA TCTGCGCGAT TCAGGCGTTC
|
651TGCACGGTCG AAGAGGTCGC TTCCTGCCGA GATGCCGCTA ATCCCCGTCA
|
701ATCAGGCGGA TACGCTGATT GTCGATGGGG AAGCGGTCAG CCTGACGGGG
|
751CATTCCGGCA ATATCTTCGC GCCCGAAGGG AATTACCGGT ATCTGACTTA
|
801CGGGGCGGAA AAATTGCCCG GCGGATCGTA TGCCCTCCGT GTGCAAGGCG
|
851AACCGQCAAA AGGCGAAATG CTTGCTGGCA CGGCCGTGTA CAACGGCGAA
|
901GTGCTGCATT TTCATACGGA AAACGGCCGT CCGTACCCGA CTAGAGGCAG
|
951GTTTGCCGCA AAAGTCGATT TCGGCAGCAA ATCTGTGGAC GGCATTATCG
|
1001ACAGCGGCGA TGATTTGCAT ATGGGTACGC AAAAATTCAA AGCCGCCATC
|
1051GATGGAAACG GCTTTAAGGG GACTTGGACG GAAAATGGCG GCGGGGATGT
|
1101TTCCGGAAGG TTTTACGGCC CGGCCGGCGA GGAAGTGGCG GGAAAATACA
|
1151GCTATCGCCC GACAGATGCG GAAAAGGGCG GATTCGGCGT GTTTGCCGGC
|
1201AAAAAAGAGC AGGATGGATC CGGAGGAGGA GGAGCCACAA ACGACGACGA
|
1251TGTTAAAAAA GCTGCCAGTG TGGCCATTGC TGCTGCCTAC AACAATGGCC
|
1301AAGAAATCAA CGGTTTCAAA GCTGGAGAGA CCATCTACGA CATTGATGAA
|
1351GACGGCACAA TTACCAAAAA AGACGCAACT GCAGCCGATG TTGAAGCCGA
|
1401CGACTTTAAA GGTCTGGGTC TGAAAAAAGT CGTGACTAAC CTGACCAAAA
|
1451CCGTCAATGA AAACAAACAA AACGTCGATG CCAAAGTAAA AGCTGCAGAA
|
1501TCTGAAATAG AAAAGTTAAC AACCAAGTTA GCAGACACTG ATGCCGCTTT
|
1551AGCAGATACT GATGCCGCTC TGGATGCAAC CACCAACGCC TTGAATAAAT
|
1601TGGGAGAAAA TATAACGACA TTTGCTGAAG AGACTAAGAC AAATATCGTA
|
1651AAAATTGATG AAAAATTAGA AGCCGTGGCT GATACCGTGG ACAAGCATGC
|
1701CGAAGCATTC AACGATATCG CCGATTCATT GGATGAAACC AACACTAAGG
|
1751CAGACGAAGC CGTCAAAACC GCCAATGAAG CCAAACAGAC GGCCGAAGAA
|
1801ACCAAACAAA ACGTCGATGC CAAAGTAAAA GCTGCAGAAA CTGCAGCAGG
|
1851CAAAGCCGAA GCTGCCGCTG GCACAGCTAA TACTGCAGCC GACAAGGCCG
|
1901AAGCTGTCGC TGCAAAAGTT ACCGACATCA AA~CTGATAT CGCTACGAAC
|
1951AAAGATAATA TTGCTAAAAA AGCAAACAGT GCCGACGTGT ACACCAGAGA
|
2001AGAGTCTGAC AGCAAATTTG TCAGAATTGA TGGTCTGAAC GCTACTACCG
|
2051AAAAATTGGA CACACGCTTG GCTTCTGCTG AAAAATCCAT TGCCGATCAC
|
2101GATACTCGCC TGAACGGTTT GGATAAAACA GTGTCAGACC TGCGCAAAGA
|
2151AACCCGCCAA GGCCTTGCAG AACAAGCCGC GCTCTCCGGT CTGTTCCAAC
|
2201CTTACAACGT GGGTCGGTTC AATGTAACGG CTGCAGTCGG CGGCTACAAA
|
2251TCCGAATCGG CAGTCGCCAT CGGTACCGGC TTCCGCTTTA CCGAAAACTT
|
2301TGCCGCCAAA GCAGGCGTGG CAGTCGGCAC TTCGTCCGGT TCTTCCGCAG
|
2351CCTACCATGT CGGCGTCAAT TACGAGTGGT AACTCGAG
|
1MASPDVKSAD TLSKPAAPVV AEKETEVKED APQAGSQGQG APSTQGSQDM
|
51AAVSAENTGN GGAATTDKPK NEDEGPQNDM PQNSAESANQ TGNNQPADSS
|
101DSAPASNPAP ANGGSNFGRV DLANGVLIDG PSQNITLTHC KGDSCNGDNL
|
151LDEEAPSKSE FENLNESERI EKYKKDGKSD KFTNLVATAV QANGTNKYVI
|
201IYKDKSASSS SARFRSARS ERSLPAEHPL IPVNQADTLI VDGEAVSLTG
|
251HSGNIFAPEG NYRYLTYGAE KLPGGSYALR VQGBPAKGEK LAGTAVNGE
|
301VYJHFHTENGR PYPTRGRPAA KVDFGSKSVD GIIDSGDDLH MGTQKPKAAI
|
351DGNGFKGTWT ENGGGDVSGR FYGPAGEEVA GKYSYRPTDA EKGGPGVFAG
|
401KKEQDGSGGG GATNDDDVKK AATVAIAAAY NNGQEINGFK AGETIYDIDE
|
451DGTITKKDAT AADVEADDFK GLGLKKVVTN LTKTVNENQK NVDAXVXAAE
|
501SEIEKLTTKL ADTDAALADT DAALDAFTNA LNKLGENITT FAEETKTNZV
|
551KIDEKLEAVA DTVDKHARAF NDIADSLDET NTKADEAVKT ANEAKQTAEE
|
601TKQNVDAKVK AAETAAGKAE AAAGTANTAA DKAEAVAAKV TDIKADIATN
|
651KDNIAXKANS ADVYTREESD SKFVRIDGLN ATTEKLDTRL ASAEKSIADH
|
701DTRLNGLDKT VSDLRKETRQ GLAEQAALSG LPQPYNVGRP NVTAAVGGYK
|
751SESAVAIGTG FRPTENFAAK AGVAVGTSSG SSAAYHVGVN YEW*
[0321]
31
|
|
ELISA
Bactericidal
|
|
|
ΔG287-953-His
3834
65536
|
ΔG287-961-His
108627
65536
|
|
[0322] The bactericidal efficacy (homologous strain) of antibodies raised against the hybrid proteins was compared with antibodies raised against simple mixtures of the component antigens (using 287-GST) for 919 and ORF46.1:
32|
|
Mixture with 287Hybrid with ΔG287
|
|
91932000128000
ORF46.112816000
|
[0323] Data for bactericidal activity against heterologous MenB strains and against serotypes A and C were also obtained:
33|
|
919ORF46.1
StrainMixtureHybridMixtureHybrid
|
NGH38102432000—16384
MC585128192—512
BZ232512512——
MenA (F6124)51232000—8192
MenC (C11)>2048>2048——
MenC (BZ133)>409664000—8192
|
[0324] The hybrid proteins with ΔG287 at the N-terminus are therefore immunologically superior to simple mixtures, with ΔG287-ORF46.1 being particularly effective, even against heterologous strains. ΔG287-ORF46.1K may be expressed in pET-24b.
[0325] The same hybrid proteins were made using New Zealand strain 394/98 rather than 2996:
34|
ΔG287NZ-919
1ATGGCTAGCC CCGATGTCAA GTCGGCGGAC ACGCTGTCAA AACCTGCCGC
|
51CCCTGTTGTT TCTGAAAAAG AGACAGAGGC AAAGGAAGAT GCGCCACAGG
|
101CAGGTTCTCA AGGACAGGGC GCGCCATCCG CACAAGGCGG TCAAGATATG
|
151GCGGCGGTTT CGGAAGAAAA TACAGQCAAT GGCGGTGCGG CAGCAACGGA
|
201CAAACCCAAA AATGAAGACG AGGGGGCGCA AAATGATATG CCGCAAAATG
|
251CCGCCGATAC AGATAGTTTG ACACCGAATC ACACCCCGGC TTCGAATATG
|
301CCGGCCGGAA ATATGGAAAA CCAAGCACCG GATGCCGGGG AATCGGAGCA
|
351GCCGGCAAAC CAACCGGATA TGGCAAATAC GGCGGACGGA ATGCAGGGTG
|
401ACGATCCGTC GGCAGGCGGG GAAAATGCCG GCAATACGGC TGCCCAAGGT
|
451ACAAATCAAG CCGAAAACAA TCAAACCGCC GGTTCTCAAA ATCCTGCCTC
|
501TTCAACCAAT CCTAGCGCCA CGAATAGCGG TGGTGATTTT GGAAAGACGA
|
551ACGTGGGCAA TTCTGTTGTG ATTGACGGGC CGTCGCAAAA TATAACGTTG
|
601ACCCACTGTA AAGGCGATTC TTGTAGTGGC AATAATTTCT TGGATGAAGA
|
651AGTACAGCTA AAATCAGAAT TTGAAAAATT AAGTGATGCA GACAAAATAA
|
701GTAATTACAA GAAAGATGGG AAGAATGACG GGAAGAATGA TAAATTTGTC
|
751GGTTTGGTTG CCQATAGTGT GCAGATGAAG GGAATCAATC AATATATTAT
|
801CTTTTATAAA CCTAAACCCA CTTCATTTGC GCGATTTAGG CGTTCTGCAC
|
851GGTCGAGGCG GTCGCTTCCG GCCGATATGC CGCTGATTCC CGTCAATCAG
|
901GCGGATACGC TGATTGTCGA TGGGGAAGCG GTCAGCCTGA CGGGGCATTC
|
951CGGCAATATC TTCGCGCCCG AAGGGAATTA CCGGTATCTG ACTTACGGGG
|
1001CGGAAAAATT GCCCGGCGGA TCGTATGCCC TCCGTGTTCA AGGCGAACCT
|
1051TCAAAAGGCG AAATGCTCGC GGGCACGGCA GTGTACAACG GCGAAGTGCT
|
1101GCATTTTCAT ACGGAAAACG GCCGTCCGTC CCCGTCCAGA GGCAGGTTTG
|
1151CCGCAAAAGT CGATTTCGGC AGCAAATCTG TGGACGGCAT TATCGACAGC
|
1201GGCGATGGTT TGCATATGGG TACGCAAAAA TTCAAAGCCG CCATCGATGG
|
1251AAACGGCTTT AAGGGGACTT GGACGGAAAA TGGCGGCGGG GATGTTTCCG
|
1301GAAAGTTTTA CGGCCCGGCC GGCGAGGAAG TGGCGGGAAA ATACAGCTAT
|
1351CGCCCAACAG ATGCGGAAAA GGGCGGATTC GGCGTGTTTG CCGGCAAAAA
|
1401AGAGCAGGAT GGATCCGGAG GAGGAGGATG CCAAAGCAAG AGCATCCAAA
|
1451CCTTTCCGCA ACCCGACACA TCCGTCATCA ACGGCCCGGA CCGGCCGGTC
|
1501GGCATCCCCG ACCCCGCCGG AACGACGGTC GGCGGCGGCG GGGCCGTCTA
|
1551TACCGTTGTA CCGCACCTGT CCCTGCCCCA CTGGGCGGCG CAGGATTTCG
|
1601CCAAAAGCCT GCAATCCTTC CGCCTCGGCT GCGCCAATTT GAAAAACCGC
|
1651CAAGGCTGGC AGGATGTGTG CGCCCAAGCC TTTCAAkCCC CCGTCCATTC
|
1701CTTTCAGGCA AAACAGTTTT TTGAACGCTA TTTCACGCCG TGGCAGGTTG
|
1751CAGGCAACGG AAGCCTTGCC GGTACGGTTA CCGGCTATTA CGAGCCGGTG
|
1801CTGAkGGGCG AGGACAGGCG GACGGCACAA GCCCGCTTCC CGATTTACGG
|
1851TATTCCCGAC GATTTTATCT CCGTCCCCCT GCCTGCCGGT TTGCGGAGCG
|
1901GAAAAGCCCT TGTCCGCATC AGGCAGACGG GAAAAAACAG CGGCACAATC
|
1951GACAATACCG GCGGCACACA TACCGCCGAC CTCTCCCGAT TCCCCATCAC
|
2001CGCGCGCACA ACGGCAATCA AAGCAAGGTT TGAAGGAAGC CGCTTCCTCC
|
2051CCTACCACAC GCGCAACCAA ATCAACGGCG GCGCGCTTGA CGGCAAAGCC
|
2101CCGATACTCG GTTACGCCGA AGACCCCGTC GAACTTTTTT TTATGCACAT
|
2151CCAAGGCTCG GGCCGTCTGA AAACCCCGTC CGGCAAATAC ATCCGCATCG
|
2201GCTATGCCGA CAAAAACGAA CATCCCTACG TTTCCATCGG ACGCTATATG
|
2251GCGGACAAAG GCTACCTCAA GCTCGGGCAG ACCTCGATGC AGGGCATCAA
|
2301AGCCTATATG CGGCAAAATC CGCAACGCCT CGCCGAAGTT TTGGGTCAAA
|
2351ACCCCAGCTA TATCTTTTTC CGCGAGCTTG CCGGAAGCAG CAATGACGGT
|
2401CCCGTCGGCG CACTGGGCAC GCCGTTGATG GGGGAATATG CCGGCGCAGT
|
2451CGACCGGCAC TACATTACCT TGGGCGCGCC CTTATTTGTC GCCACCGCCC
|
2501ATCCGGTTAC CCGCAAAGCC CTCAACCGCC TGATTATGGC GCAGGATACC
|
2551GGCAGCGCGA TTAAAGGCGC GGTGCGCGTG GATTATTTTT GGGGATACGG
|
2601CGACGAAGCC GGCGAACTTG CCGGCAAACA GAAAACCACG GGTTACGTCT
|
2651GGCAGCTCCT ACCCAACGGT ATGAAGCCCG AATACCGCCC GTAAAAGCTT
|
1MASPDVKSAD TLBKPAAPVV SEKETEAKED APQAGSQGQG APSAQGGQDH
|
51AAVSEENTGN GGAAATDKPK NEDEGAQNDM PQNAADTDSL TPNHTPASNH
|
101PAGNMENQAP DAGESEQPAN QPDMANTADG HQGDDPSAGG ENAGNTAAQG
|
151TNQAENNQTA GSQNPASSTN PSATNSGGDF GRTNVGNSVV IDGPSQNITL
|
201THCKGDSCSG NNPLDEEVQL KSEFEKLSDA DKISNYKKDG KNDGKNDKFV
|
251GLVADSVQHK GINQYZIFYK PKPTSFARFR RSARSRRSLP AEHPLIPVNQ
|
301ADTLIVDGEA VSLTGHSGNI FAPEGNYRYL TYGAEKLPGG SYALRVQGEP
|
351SRGEHLAGTA VYNGEVLHFH TENGRPSPSR GRFAAKVDFG SKSVDGIIDS
|
401GDGLHMGTQK FKAAIDGNGF KGTWTENGGG DVSGKFYGPA GEEVAGKYSY
|
451RPTDAEKGGF GVFAGKKEQD GSGGGGCQSK SIQTFPQPDT SVINGPDRPV
|
501GIPDPAGTTV GGGGAVYTVV PHLSLPHWAA QDFAKSLQSF RLGCANLKNR
|
551QGWQDVCAQA FQTPVHSFQA KQFFERYFTP WQVAGNGSLA GTVTGYYEPV
|
601LKGDDRRTAQ ARFPIYGIPD DPISVPLPAG LRSGKALVRZ RQTGKNSGTI
|
651DNTGGTHTAD LSRFPITART TAIRGEPEGS EPLPYHTRNQ INGGALDGKA
|
701PILGYAEDPV ELFFMHIQGS GRLKTPSGKY IRIGYADKNE HPYVSIGRYM
|
751ADKGYLKLGQ TSMQGIKAYH RQNPQRLAEV LGQNPSYZFF RELAGSSNDG
|
801PVGALGTPLM GEYAGAVDEH YITLGAPLFV ATAHPVTRKA LNRLIMAQDT
|
851GSAIKGAVRV DYFWGYGDEA GELAGKQKTT GYVWQLLPNG HKPEYRP*
|
ΔG287NZ-953
1ATGGCTAGCC CCGATGTCAA GTCGGCGGAC ACGCTGTCAA AACCTGCCGC
|
51CCCTGTTGTT TCTGAAAAAG AGACAGAGGC AAAGGAAGAT GCGCCACAGG
|
101CAGGTTCTCA AGGACAGGGC GCGCCATCCG CACAAGGCGG TCAAGATATG
|
151GCGGCGGTTT CGGAAGAAAA TACAGGCAAT GGCGGTGCGG CAGCAACGGA
|
201CAAACCCAAA AATGAAGACG AGGGGGCGCA AAATGATATG CCGCAAAATG
|
251CCGCCGATAC AGATAGTTTG ACACCGAATC ACACCCCGGC TTCGAATATG
|
301CCGGCCGGAA ATATGGAAAA CCAAGCACCG GATGCCGGGG AATCGGAGCA
|
351GCCGGCAAAC CAACCGGATA TGGCAAATAC GGCGGACGGA ATGCAGGGTG
|
401ACGATCCGTC GGCAGGCGGG GAAAATGCCG GCAATACGGC TGCCCAAGGT
|
451ACAAATCAAG CCGAAAACAA TCAAACCGCC GGTTCTCAAA ATCCTGCCTC
|
501TTCAACCAAT CCTAGCGCCA CGAATAGCGG TGGTGATTTT GGAAGGACGA
|
551ACGTGGGCAA TTCTGTTGTG ATTGACGGGC CGTCGCAAAA TATAACGTTG
|
601ACCCACTGTA AAGGCGATTC TTGTAGTGGC AATAATTTCT TGGATGAAGA
|
651AGTACAGCTA AAATCAGAAT TTGAAAAATT AAGTGATGCA GACAAAATAA
|
701GTAATTACAA GAAAGATGGG AAGAATGACG GGAAGAATGA TAAATTTGTC
|
751GGTTTGGTTG CCGATAGTGT GCAGATGAAG GGAATCAATC AATATATTAT
|
801CTTTTATAAA CCTAAACCCA CTTCATTTGC GCGATTTADG CGTTCTGCAC
|
851GGTCGAGGCG GTCGCTTCCG GCCGAGATGC CGCTGATTCC CGTCAATCAG
|
901GCGGATACGC TGATTGTCGA TGGGGAAGCG GTCAGCCTGA CGGGGCATTC
|
951CGGCAATATC TTCGCGCCCG AAGGGAAATA CCGGTATCTG ACTTACGGGG
|
1001CGGAAAAATT GCCCGGCGGA TCGTATGCCC TCCGTGTTCA AGGCGAACCT
|
1051TCAAAAGGCG AAATGCTCGC GGGCACGGCA GTGTACAACG GCGAAGTGCT
|
1101GCATTTTCAT ACGGAAAACG GCCGTCCGTC CCCGTCCAGA GGCAGGTTTG
|
1151CCGCAAAAGT CGATTTCGGC AGCAAATCTG TGGACGGCAT TATCGACAGC
|
1201GGCGATGGTT TGCATATGGG TACGCAAAAA TTCAAAGCCG CCATCGATGG
|
1251AAACGGCTTT AAGGGGACTT GGACGGAAAA TGGCGGCGGG GATGTTTCCG
|
1301GAAAGTTTTA CGGCCCGGCC GGCGAGGAAG TGGCGGGAAA ATACAGCTAT
|
1351CGCCCAACAG ATGCGGAAAA GGGCGGATTC GGCGTGTTTG CCGGCAAAAA
|
1401AGAGCAGGAT GGATCCGGAG GAGGAGGAGC CACCTACAAA GTGGACGAAT
|
1451ATCACGCCAA CGCCCGTTTC GCCATCGACC ATTTCAACAC CAGCACCAAC
|
1501GTCGGCGGTT TTTACGGTCT GACCGGTTCC GTCGAGTTCG ACCAAGCAAA
|
1551ACGCGACGGT AAAATCGAGA TCACCATCCC CGTTGCCAAC CTGCAAAGCG
|
1601GTTCGCAACA CTTTACCGAC CACCTGAAAT CAGCCGACAT CTTCGATGCC
|
1651GCCCAATATC CGGACATCCG CTTTGTTTCC ACCAAATTCA ACTTCAACGG
|
1701CAAAAAACTG GTTTCCGTTG ACGGCAACCT GACCATOCAC GGCAAAACCG
|
1751CCCCCGTCAA ACTCAAAGCC GAAAAATTCA ACTGCTACCA AAGCCCGATG
|
1801GCGAAAACCG AAGTTTGCGG CGGCGACTTC AGCACCACCA TCGACCGCAC
|
1851CAAATGGGGC GTGGACTACC TCGTTAACGT TGGTATGACC AAAAGCGTCC
|
1901GCATCGACAT CCAAATCGAG GCAGCCAAAC AATAAAAGCT T
|
1MASPDVKSAD TLSKPAAPVV SEKBTEAKED APQAGSQGQG APSAQGGQDM
|
51AAVSEENTGN GGAAATDKPK NEDEGAQNDM PQNAADTDSL TPNHTPASNM
|
101PAGNALMENQAP DAGEESEQPAN QPDMANTADG MQGDDPSAGG ENAGNTAAQG
|
151TNQAENNQTA GSQNPASSTN PSATNSGGDF GRTNVGNSVV IDGPSQNITL
|
201THCKGDSCSG NNFLNEEVQL KSEPEKLSDA DKISNYKKDG KNDGKNDKFV
|
251GLVADSVQMK GINQYIIFYK PKPTSFARPR RSARSRRSLP AEMPLIPVNQ
|
301ADTLIVDGEA VSLTGHSGNI FAPEGNYRYL TYGAEKLPGG SYALRVQGEP
|
351SKGENLAGTA VYNGEVLHFH TENGRPSPSR GRPAAKVDPG SKSVDGIIDB
|
401GDGIJHMGTQK PKAAIDGNGF KGTWTENGGG DVSGKFYGPA GEEVAGRYSY
|
451RPTDAEKGGF GVFAGKKEQD GSGGGGATYK VDEYHANARF AIDHFNTSTN
|
501VGGFYGLTGS VEFDQAKRDG KIDITIPVAN LQSGSQHFTD NLKSADIFDA
|
551AQYPDIRFVS TKFNFNGKKL VSVDGNLTKKL GKTAPVKLKA EKFNCYQSPM
|
601AKTEVCGGDF STTIDRTKWG VDYLVNVGMT KSVRIDIQIE AAKQ*
|
ΔG2B7NZ-961
1ATGGCTAGCC CCGATGTCAA GTCGGCGGAC ACGCTGTCAA AACCTGCCGC
|
51CCCTGTTGTT TCTGAAAAAG AGACAGAGGC AAAGGAAGAT GCGCCACAGG
|
101CAGGTTCTCA AGGACAGGGC GCGCCATCCG CACAAGGCGG TCAAGATATC
|
151GCGGCGGTTT CGGAAGAAAA TACAGGCAAT GGCGGTGCGG CAGCAACGGA
|
201CAAACCCAAA AATGAAGACG AGGGGGCGCA AAATGATATG CCGCAAAATG
|
251CCGCCGATAC AGATAGTTTG ACACCGAATC ACACCCCGGC TTCGAATATG
|
301CCGGCCGGAA ATATGGAAAA CCAAGCACCG GATGCCGGGG AATCGGAGCA
|
351GCCGGCAAAC CAACCGGATA TGGCAAATAC GGCGGACGGA ATGCAGGGTG
|
401ACGATCCGTC GGCAGGCGGG GAAAATGCCG GCAATACGGC TGCCCAAGGT
|
451ACAAATCAAG CCGAAAACAA TCAAACCGCC GGTTCTCAAA ATCCTGCCTC
|
501TTCAACCAAT CCTAGCGCCA CGAATAGCGG TGGTGATTTT GGAAGGACGA
|
551ACGTGGGCAA TTCTGTTGTG ATTGACGGGC CGTCGCAAAA TATAACGTTG
|
601ACCCAGTGTA AAGGCGATTC TTGTAGTGGC AATAATTTCT TGGATGAAGA
|
651AGTACAGCTA AAATCAGAAT TTGAAAAATT AAGTGATGCA GACAAAATAA
|
701GTAAATACAA GAAAGATGGG AAGAATGACG GGAAGAATGA TAAATTTGTC
|
751GGTTTGGTTG CCGATAGTGT GCAGATGAAG GGAATCAATC AATATATTAT
|
801CTTTTATAAA CCTAAACCCA CTTCATTTGC GCGATTTAGG CGTTCTGCAC
|
851GGTCGAGGCG GTCGCTTCCG GCCGAGATGC CGCTGATTCC CGTCAATCAG
|
901GCGGATACGC TGATTGTCGA TGGGGAAGCG GTCAGCCTGA CGGGGCATTC
|
951CGGCAATATC TTCGCGCCCG AAGGGAATTA CCGGTATCTG ACTTACGGGG
|
001CGGAAAAATT GCCCGGCGGA TCGTATGCCC TCCGTGTTCA AGGCGAACCT
|
1051TCAAAAGGCG AAATGCTCGC GGGCACGGCA GTGTACAACG GCGAAGTGCT
|
1101GCATTTTCAT ACGGAAAACG GCCGTCCGTC CCCGTCCAGA GGCAGGTTTG
|
1151CCGCAAAAGT CGATTTCGGC AGCAAATCTG TGGACGGCAT TATCGACAGC
|
1201GGCGATGGTT TGCATATGGG TACGCAAAAA TTCAAAGCCG CCATCGATGG
|
1251AAACGGCTTT AAGGGGACTT GGACGGAAAA TGGCGGCGGG GATGTTTCCG
|
1301GAAAGTTTTA CGGCCCGGCC GGCGAGGAAG TGGCGGGAAA ATACAGCTAT
|
1351CGCCCAACAG ATGCGGAAAA GGGCGGATTC GGCGTGTTTG CCGGCAAAAA
|
1401AGAGCAGGAT GGATCCGGAG GAGGAGGAGC CACAAACGAC GACGATGTTA
|
1451AAAAAGCTGC CACTGTGGCC ATTGCTGCTG CCTACAACAA TGGCCAAGAA
|
1501ATCAACGGTT TCAAAGCTGG AGAGACCATC TACGACATTG ATGAAGACGG
|
1551CACAATTACC AAAAAAGACG CAACTGCAGC CGATGTTGAA GCCGACGACT
|
1601TTAAAGGTCT GGGTCTGAAA AAAGTCGTGA CTAACCTGAC CAAAACCGTC
|
1651AATGAAAACA AACAAAACGT CGATGCCAAA GTAAAAGCTG CAGAATCTGA
|
1701AATAGAAAAG TTAACAAcCA AGTTAGCAGA CACTGATGCC GCTTTAGCAG
|
1751ATACTGATGC CGCTCTGGAT GCAACCACCA ACGCCTTGAA TAAATTGGGA
|
1801GAAAATATAA CGACATTTGC TGAAGAGACT AAGACAAATA TCGTAAAAAT
|
1851TGATGAAAAA TTAGAAGCCG TGGCTGATAC CGTCGACAAG CATGCCGAAG
|
1901CATTCAACGA TATCGCCGAT TCATTGGATG AAACCAACAC TAAGGCAGAC
|
1951GAAGCCGTCA AAACCGCCAA TGAAGCCAAA CAGACGGCCG AAGAAACCAA
|
2001ACAAAACGTC GATGCCAAAG TAAAAGCTGC AGAAACTGCA GCAGGCAAAG
|
2051CCQAAGOTGC CGCTGGCACA GCTAATACTG CAGCCGACAA GGCCGAAGCT
|
2101GTCGCTGCAA AAGTTACCGA CATCAAAGCT GATATCGCTA CGAACAAAGA
|
2151TAATATTGCT AAAAAAGCAA ACAGTGCCGA CGTGTACACC AGAGAAGAGT
|
2201CTGACAGCAA ATTTGTCAGA ATTGATGGTC TGAACGCTAC TACCGAAAAA
|
2251TTGGACACAC GCTTGGCTTC TGCTGAAAAA TCCATTGCCG ATCACGATAC
|
2301TCGCCTGAAC GGTTTGGATA AAACAGTGTC AQACCTGCGC AAAGAAACCC
|
2351GCCAAGGCCT TGCAGAACAA GCCGCGCTCT CCGGTCTGTT CCAACCTTAC
|
2401AACGTGGGTC GGTTCAATGT AACGGCTGCA GTCGGCGGCT ACAAATCCGA
|
2451ATCGGCAGTC GCCATCGGTA CCGGCTTCCG CTTTACCGAA AACTTTGCCG
|
2501CCAAAGCAGG CGTGGCAGTC GGCACTTCGT CCGGTTCTTC CGCAGCCTAC
|
2551CATGTCGGCG TCAATTACGA GTGGTAAAAG CTT
|
1MASPDVKSAD TLSKPAAPVV SBKETEAXBD APQAGSQGQG APSAQGGQDM
|
51AAVSEENTGN GGAAATDKPK NEDEGAQNDM PQNAADTDSL TPNHTPASNH
|
101PAGNMENQAP DAGESEQPAN QPDMANTADG HQGDDPSAGG ENAGNTAAQG
|
151TNQAENNQTA GSQNPASSTN PSATNSGGDF GRTNVGNSVV IDGPSQNITL
|
201THCKGDSCSG NFLDEHVQL KSEFEKLSDA DKISNYKKDG KNDGKNDKFV
|
251GLVADSVQKM GINQYIIFYK PKPTSFARPR RSARSERSLP AEHPLIPVNQ
|
301ADTLIVDGEA VSLTGHSGNI FAPEGNYRYL TYGAEKLPGG SYALRVQGEP
|
351SKGEMLAGTA VYKGEVLHFH TBNGRPSPSR GEPAAKVDFG SKBVDGIIDS
|
401GDGLHMGTQK FKAAIDGNGF RGTWTENGGG DVSGKFYGPA GERVAGRYSY
|
451RPTDAEKGGF GVFAGKKEQD GSGGGGATND DDVKKAATVA IAAAYNNGQE
|
501INGFKAGETI YDIDEDGTIT KKDATAADVE ADDFKGIGLK KVVTNLTKTV
|
551NENKQNVDAK VRAAESEIEK LTTKLADTDA ALADTDAALD ATTNMJNKLG
|
601ENITTFAEET KTNIVKIDEK LEAVADTVDK HAEAFNDIAD SLDETNTKAD
|
651EAVKTANEAK QTAEETKQNV DAKVKAAETA AGKAEAAAGT ANTAADKAEA
|
701VAAXVTDIKA DIATNKDNIA KKANSADVYT REESDSKFVR IDGLNATTEK
|
751LDTELASAEK SIADHDTRLN GLDKTVSDLR KETRQGLAEQ AALSGLFQPY
|
801NVGEFNVTAA VGGYKSESAV AIGTGFEPTE NFAAKAGVAV GTSSGSSAAY
|
851HVGVNYEW*
[0326] ΔG983 and Hybrids
[0327] Bactericidal titres generated in response to ΔG983 (His-fusion) were measured against various strains, including the homologous 2996 strain:
35|
|
2996NGH38BZ133
|
ΔG983512128128
|
[0328] ΔG983 was also expressed as a hybrid, with ORF46.1, 741, 961 or 961c at its C-terminus:
36|
ΔG983-ORF46.1
1ATGACTTCTG CGCCCGACAA CAATGCAGGC GGTACCGGTA TCGGCAGCAA
|
51CAGCAGAGCA ACAACAGCGA AATCAGCAGC AGTATCTTAC GCCGGTATCA
|
101AGAACGAAAT GTGCAAGAC AGAAGCATGC TCTGTGCCGG TCGGQATGAC
|
151GTTGCGGTTA CAGACAGGGA TGCCAAAATC AATGCCCCCC CCCCGAATCT
|
201GCATACCGGA GACTTTCCAA ACCCAAATGA CGCATACAAG AATTTGATCA
|
251ACCTCAAACC TGCAATTGAA GCAGGCTATA CAGGACGCGG GGTAGAGGTA
|
301GGTATCGTCG ACACAGGCGA ATCCGTCGGC AGCATATCCT TTCCCGAACT
|
351GTATGGCAGA AAAGAACACG GCTATAACGA AAATTACAAA AACTATACGG
|
401CGTATATGCG GAAGGAAGCG CCTGAAGAGG GAGGCGGTAA ACACATTGAA
|
451GCTTCTTTCG ACGATGAGGC CGTTATAGAG ACTGAAGCAA ACCCGACGGA
|
501TATCCGCCAC GTAAAAQAAA TCGGACACAT CGATTTGGTC TCCCATATTA
|
551TTGGCGGGCG TTCCGTGGAC GGCAGACCTG CAGGCGGTAT TGCGCCCGAT
|
601GCGACGCTAC ACATAATGAA TACGAATGAT GAAACCAAGA ACGAAATGAT
|
651GGTTGCAGCC ATCCGCAATG CATGGGTCAA GCTGGGCGAA CGTGGCGTGC
|
701GCATCGTCAA TAACAGTTTT GGAACAACAT CGAGGGCAGG CACTGCCGAC
|
751CTTTTCCAAA TAGCCAATTC GGAGGAGCAG TACCGCCAAG CGTTGCTCGA
|
801CTATTCCGGC GGTGATAAAA CAGACGAGGG TATCCGCCTG ATGCAACAGA
|
851GCGATTACGG CAACCTGTCC TACCACATCC GTAATAAAAA CATGCTTTTC
|
901ATCTTTTCGA CAGGCAATGA CGCACAAGCT CAGCCCAACA CATATGCCCT
|
951ATTGCCATTT TATGAAAAAG ACGCTCAAAA AGGCATTATC ACAGTCGCAG
|
1001GCGTAGACCG CAGTGGAGAA AAGTTCAAAC GGGAAATGTA TGGAGAACCG
|
1051GGTACAGAAC CGCTTGAGTA TGGCTCCAAC CATTGCGGAA TTACTGCCAT
|
1101GTGGTGCCTG TCGGCACCCT ATGAAGCAAG CGTCCGTTPC ACCCGTACAA
|
1151ACCCGATTCA AATTGCCGGA ACATCCTTTT CCGCACCCAT CGTAACCGGC
|
1201ACGGCGGCTC TGCTGCTGCA GAAATACCCG TGGATGAGCA ACGACAACCT
|
1251GCGTACCACG TTGCTGACGA CGGCTCAGGA CATCGGTGCA GTCGGCGTGG
|
1301ACAGCAAGTT CGGCTGGGGA CTGCTGGATG CGGGTAAGGC CATGAACGGA
|
1351CCCGCGTCCT TTCCGTTCGG CGACTTTACC GCCGATACGA AAGGTACATC
|
1401CGATATTGCC TACTCCTTCC GTAACGACAT TTCAGGCACG GGCGGCCTGA
|
1451TCAAAAAAGG CGGCAGCCAA CTGCAACTGC ACGGCAACAA CACCTATACG
|
1501GGCAAAACCA TTATCGAAGG CGGTTCGCTG GTGTTGTACG GCAACAACAA
|
1551ATCGGATATG CGCGTCGAAA CCAAAGGTGC GCTGATTTAT AACGGGGCGG
|
1601CATCCGGCGG CAGCCTGAAC AGCGACGGCA TTGTCTATCT GGCAGATACC
|
1651GACCAATCCG GCGCAAACGA AACCGTACAC ATCAAAGGCA GTCTGCAGCT
|
1701GGACGGCAAA GGTACGCTGT ACACACGTTT GGGCAAACTG CTGAAAGTGG
|
1751ACGGTACGGC GATTATCGGC GGCAAGCTGT ACATGTCGGC ACGCGGCAAG
|
1801GGGGCAGGCT ATCTCAACAG TACCGGACGA CGTGTTCCCT TCCTGAGTGC
|
1851CGCCAAAATC GGGCAGGATT ATTCTTTCTT CACAAACATC GAAACCGACG
|
1901GCGGCCTGCT GGCTTCCCTC GACAGCGTCG AAAAAACAGC GGGCAGTGAA
|
1951GGCGACACGC TGTCCTATTA TGTCCGTCGC GGCAATGCGG CACGGACTGC
|
2001TTCGGCAGCG GCACATTCCG CGCCCGCCGG TCTGAAACAC GCCGTAGAAC
|
2051AGGGCGGCAG CAATCTGGAA AACCTGATGG TCGAACTGGA TGCCTCCGAA
|
2101TCATCCGCAA CACCCGAGAC GGTTGAAACT GCGGCAGCCG ACCGCACAGA
|
2151TATGCCGGGC ATCCGCCCCT ACGGCGCAAC TTTCCGCGCA GCGGCAGCCG
|
2201TACAGCATGC GAATGCCGCC GACGGTGTAC GCATCTTCAA CAGTCTCGCC
|
2251GCTACCGTCT ATGCCGACAG TACCGCCGCC CATGCCGATA TGCAGGGACG
|
2301CCGCCTGAAA GCCGTATCGG ACGGGTTGGA CCACAACGGC ACGGGTCTGC
|
2351GCGTCATCGC GCAAACCCAA CAGGACGGTG GAACGTGGGA ACAGGGCGGT
|
2401GTTGAAGGCA AAATGCGCGG CAGTACCCAA ACCGTCGGCA TTGCCGCQAA
|
2451AACCGGCGAA AATACGACAG CAGCCGCCAC ACTGGGCATG GGACGCAGCA
|
2501CATGGAGCGA AAACAGTGCA AATGCAAAAA CCGACAGCAT TAGTCTGTTT
|
2551GCAGGCATAC GGCACGATGC GGGCGATATC GGCTATCTCA AAGGCCTGTT
|
2601CTCCTACGGA CGCTACAAAA ACAGCATCAG CCGCAGCACC GGTGCGGACG
|
2651AACATGCGGA AGGCAGCGTC AACGGCACGC TGATGCAGCT GGGCGCACTG
|
2701GGCGGTGTCA ACGTTCCGTT TGCCGCAACG GGAGATTTGA CGGTCGAAGG
|
2751CGGTCTGCGC TACGACCTGC TCAAACAGGA TGCATTCGCC GAAAAAGGCA
|
2801GTGCTTTGGG CTGGAGCGGC AACAGCCTCA CTGAAGGCAC GCTGGTCGGA
|
2851CTCGCGGGTC TGAAGCTGTC GCAACCCTTG AGCGATAAAG CCGTCCTGTT
|
2901TGCAACGGCG GGCGTGGAAC GCGACCTGAA CGGACGCGAC TACAGGGTAA
|
2951CGGGCGGCTT TACCGGCGCG ACTGCAGCAA CCGGCAAGAC GGGGGCACGC
|
3001AATATGCCGC ACACCCGTCT GGTTGCCGGC CTGGGCGCGG ATGTCGAATT
|
3051CGGCAACGGC TGGAACGGCT TGGCACGTTA CAGCTAQGCC GGTTCCAAAC
|
3101AGTACGGCAA CCACAGCGGA CGAGTCGGCG TAGGCTACCG GTTCCTCGAC
|
3151GGTGGCGGAG GCACTGGATC CTCAGATTTG GCAAACGATT CTTTTATCCG
|
3201GCAGGTTCTC GACCGTCAGC ATTTCGAACC CGACGGGAAA TACCACCTAT
|
3251TCGGCAGCAG GGGGGAACTT GCCGAGCGCA GCGGCCATAT CGGATTGGGA
|
3301AAAATACAAA GCCATCAGTT GGGCAACCTG ATGATTCAAC AGGCGGCCAT
|
3351TAAAGGAAAT ATCGGCTACA TTGTCCGCTT TTCCGATCAC GGGCACGAAG
|
3401TCCATTCCCC CTTCGACAAC CATGCCTCAC ATTCCGATTC TGATQAAGCC
|
3451GGTAGTCCCG TTGACGGATT TAGCCTTTAC CGCATCCATT GGGACGGATA
|
3501CGAACACCAT CCCGCCGACG GCTATGAQGG GCCACAGGGC GGCGGCTATC
|
3551CCGCTCCCAA AGGCGCGAGG GATATATACA GCTACGACAT AAAAGGCGTT
|
3601GCCCAAAATA TCCGCCTCAA CCTGACCGkC AACCGCAGCA CCGGACAACG
|
3651GCTTGCCGAC CGTTTCCACA ATGCCGGTAG TATGCTGACG CAAGGAGTAG
|
3701GCGACGGATT CAAACGCGCC ACCCGATACA GCCCCGAGCT GGACAGATCG
|
3751GGCAATGCCG CCGAAGCCTT CAACGGCACT GCAGATATCG TTAAAAACAT
|
3801CATCGGCGCG GCAGGAGAAA TTGTCGGCGC AGGCGATGCC GTGCAGGGCA
|
3851TAAGCGAAGG CTCAAACATT GCTGTCATGC ACGGCTTGGG TCTGCTTTCC
|
3901ACCGAAAACA AGATGGCGCG CATCAACGAT TTGGCAGATA TGGCGCAACT
|
3951CAAAGACTAT GCCGCAGCAG CCATCCGCGA TTGGGCAGTC CAAAACCCCA
|
4001ATGCCGCACA AGGCATAGAA GCCGTCAGCA ATATCTTTAT GGCAGCCATC
|
4051CCCATCAAAG GGATTGQAGC TGTTCGGGGA AAATACGGCT TGGGCGGCAT
|
4101CACGGCACAT CCTATCAAGC GGTCGCAGAT GGGCGCGATC GCATTGCCGA
|
4151AAGGGAAATC CGCCGTCAGC GACAATTTTG CCGATGCGGC ATACGCCAAA
|
4201TACCCGTCCC CTTACCATTC CCGAAATATC CGTTCAAACT TGGAGCAGCG
|
4251TTACGGCAAA GAAAACATCA CCTCCTCAAC CGTGCCGCCG TCAAACGGCA
|
4301AAAATGTCAA ACTGGCAGAC CAACGCCACC CGAAGACAGG CGTACCGTTT
|
4351GACGGTAAAG GGTTTCCGAA TTTTGAGAAG CACGTGAAAT ATGATACGCT
|
4401CGAGCACCAC CACCACCACC ACTGA
|
1MTSAPDFNAG GTGIGSNSRA TTAKSAAVSY AGIKNEMCKD RSMLCAGRDD
|
51VAVTDRDAKI NAPPPNLHTG DFPNPNDAYK NLINLKPAIE AGYTGRGVEV
|
101GIVDTGESVG SISPPELYGR KEHGYNENYK NYTAYMRKEA PEDGGGKDIE
|
151ASFflDEAVIE TRAKPTDIRH VKEIGHIDLV SHIIGGRSVD GRPAGGIAPD
|
201ATLHIMNTND BTKNEMMVAA IENAWVKLGE RGVRIVNNSF GTTSRAGTAD
|
251LFQIANSEBQ YRQALLDYSG GDKTDEGIEL MQQSDYGNLS YHIRNKNMLF
|
301IFSTGNDAQA QPNTYALLPF YEKDAQKGII TVAGVDRSGE KFKREMYGEP
|
351GTEPLBYGSN HCGITAMWCL SAPYEASVRF TRTNPIQIAG TSFSAPIVTG
|
401TAALLLQKYP WMSNDNLRTT LLTTAQDIGA VGVDSKFGWG LLDAGKANNG
|
451PASFPFGDFT ADTKGTSDIA YSPRNDISGT GGLIKKGGSQ LQLHGNNTYT
|
501GKTIIEGGSL VLYGNNKSDM RVBTKGMJIY NGAASGGSLN SDGIVYLADT
|
551DQSGANETVH IKGSLQLDQK GTLYTRLGKL LKVDGTAIIG GKLYMSARGK
|
601GAGYLNSTGR RVPFLSAAKI GQDYSFFTNI ETDGGLLASL DSVBKTAGSE
|
651GDTLSYYVER GNAARTASAA AHSAPAGLKH AVEQGGSNLE NLMVELDASE
|
701SSATPBTVET AAADRTDMPG IRPYGATFRA AAAVQHANAA DGVRIFNSLA
|
751ATVYADSTAA HADMQGRRLK AVSDGLDHNG TGLRVIAQTQ QDGGTWEQGG
|
801VEGKMRGSTQ TVGIAAKTGE NTTAAATLGM GRSTWSENSA NAKTDSISLF
|
851AGIRHDAGDI GYLKGLFSYG RYKNSISRST GADEHAEGSV NGTLNQLGAL
|
901GGVNVPFAAT GDLTVEGGLR YDLLKQDAFA EKGSALGWSG NSLTEGTLVG
|
951LAGLKLSQPL SDKAVLFATA GVERDLNGRD YTVTGGFTGA TAATGKTGAR
|
1001NMPHTRLVAG LGADVEPGNG WNGLARYSYA GSKQYGNHSG RVGVGYRFLD
|
1051GGGGTGSSDL ANDSFIRQVL DRQHFEPDGK YHLFGSRGEL AERSGHIGI1G
|
1101KIQSHQLGNL MIQQAAIKGN ZGYIVRPSDH GHEVHSPFDN HASHSDSDEA
|
1151GSPVDGFSLY RIHWDGYEHH PADGYDGPQG GGYPAPKGAR DIYSYDIKGV
|
1201AQNIELNLTD NRSTGQRLAD RPHNAGSMLT QGVGDGFKRA TRYSPEWRS
|
1251GNAAEAFNGT ADIVKNIIGA AGBIVGAGDA VQGISEGSNI AVMHGWLLS
|
1301TENKMARIND LADMAQLKDY AAAAIRDWAV QNPNAAQGIE AVSNIFKAAI
|
1351PIKGIGAVRG KYGLGGITAR PIKRSQMGAI ALPKGKSAVS DNFADAAYAK
|
1401YPSPYHSRNI RSNLEQRYGK ENITSSTVPP SNGDKVKLAD QRHPKTGVPF
|
1451DGKGFPNFEK HVKYDTLEHH HHHH*
|
ΔG983-741
1ATGACTTCTG CGCCCGACTT CAATGCAGGC GGTACCGGTA TCGGCAGCAA
|
51CAGCAGACCA ACAACAGCGA AATCAGCAGC AGTATCTTAC GCCGGTATCA
|
101AGAACGAAAT GTGCAAAGkC AGAAGCATGC TCTGTGCCGG TCGGGATGAC
|
151GTTGCGGTTA CAGACAGGGA TGCCAAAATC AATGCCCCCC CCCCGAATCT
|
201GCATACCGGA GACTTTCCAA ACCCAAATGA CGCATACAAG AATTTGATCA
|
251ACCTCAAACC TGCAATTGAA GCAGGCTATA CAGGACGCGG GGTAGAGGTA
|
301GGTATCGTCG ACACAGGCGA ATCCGTCGGC AGCATATCCT TTCCCGAACT
|
351GTATGGCAGA AAAGAACACG GCTATAACQA AAATTACAAA AACTATACGG
|
401CGTATATGCG GAAGGAAGCG CCTGAAGACG GAGGCGGTAA AGACATTGAA
|
451GCTTCTTTCG ACGATGAGGC CGTTATAGAG ACTGAAGCAA AGCCGACGGA
|
501TATCCGCCAC GTAAAAGAAA TCGGACACAT CGATTTGGTC TCCCATATTA
|
551TTGGCGGGCG TTCCGTGGAC GGCAGACCTG CAGGCGGTAT TGCGCCCGAT
|
601GCGACGCTAC ACATAATGAA TACGAATGAT GAAACCAAGA ACGAAATGAT
|
651GGTTGCAGCC ATCCGCAATG CATGGGTCAA GCTGGGCGAA CGTGGCGTGC
|
701GCATCGTCAA TAACAGTTTT GGAACAACAT CGAGGGCAGG CACTGCCGAC
|
751CTTTTCCAAA TAGCCAATTC GGAGGAGCAG TACCGCCAAG CGTTGCTCGA
|
801CTATTCCGGC GGTGATAAAA CAGACGAGGG TATCCGCCTG ATGCAkCAGA
|
851GCGATTACGQ CAACCTGTCC TACCACATCC GTAATAAAAA CATGCTTTTC
|
901ATCTTTTCGA CAGGCAATQA CGCACAAGCT CAGCCCAAQA CATATGCCCT
|
951ATTGCCATTT TATGAAAAAG ACGCTCAAAA AGGCATTATC ACAGTCGCAG
|
1001GCGTAGACCG CAGTGGAGAA AAGTTCAAAC GGGAAATGTA TGGAGAACCG
|
1051GGTACAGAAC CGCTTGAGTA TGGCTCCAAC CATTGCGGAA TTACTGCCAT
|
1101GTGGTGCCTG TCGGCACCCT ATGAAGCAAG CGTCCGTTTC ACCCGTACAA
|
1151ACCCGATTCA AATTGCCGGA ACATCCTTTT CCGCACCCAT CGTAACCGGC
|
1201ACGGCGGCTC TGCTGCTGCA GAAATACCCG TGGATGAGCA ACGACAACCT
|
1251GCGTACCACG TTGCTGACGA CGGCTCAGGA CATCGGTGCA GTCGGCGTGG
|
1301ACAGCAAGTT CGGCTGGGGA CTGCTGGATG CGGGTAAGGC CATGAACGGA
|
1351CCCGCGTCCT TTCCGTTCGG CGACTTTACC GCCGATACGA AAGGTACATC
|
1401CGATATTGCC TACTCCTTCC GTAACGACAT TTCAGGCACG GGCGGCCTGA
|
1451TCAAAAAAGG CGGCAGCCAA CTGCAAATGC ACGGCAACAT CACCTATACG
|
1501GGCAAAACCA TTATCGAAGG CGGTTCGCTG GTGTTGTACG GCAACAACAA
|
1551ATCGGATATG CGCGTCGAAA CCAAAGGTGC GCTGATTTAT AACGGGGCGG
|
1601CATCCGGCGG CAGCCTGAAC AGCGACGGCA TTGTCTATCT GGCAGATACC
|
1651GACCAATCCG GCGCAAACGA AACCGTACAC ATCAAAGGCA GTCTGCAGCT
|
1701GGACGGCAAA GGTACGCTGT ACACACGTTT GGGCAAACTG CTGAAAGTGG
|
1751ACGGTACGGC GATTATCGGC GGCAAGCTGT ACATGTCGGC ACGCGGCAAG
|
1801GGGGCAGGCT ATCTCAACAG TACCGGACGA CGTGTTCCCT TCCTGAGTGC
|
1851CGCCAAAATC GGGCAGGATT ATTCTTTCTT CACAAACATC GAAACCGACG
|
1901GCGGCCTGCT GGCTTCCCTC GACAGCGTCG AAAAAACAGC GGGCAGTGAA
|
1951GGCGACACGC TGTCCTATTA TGTCCGTCGC GGCAATGCGG CACGGACTGC
|
2001TTCGGCAGCG GCACATTCCG OGCCCGCCGG TCTGAAACAC GCCGTAGAAC
|
2051AGGGCGGCAG CAATCTGGAA AACCTGATGG ICGAACTGGA TGCCTCCGAA
|
2101TCATCCGCAA CACCCGAGAC GGTTGAAACT GCGGCAGCCG ACCGCACAGA
|
2151TATGCCGGGC ATCCGCCCCT ACGGCGCAAC TTTCCGCGCA GCGGCAGCCG
|
2201TACAGCATGC GAATGCCGCC GACGGTGTAC GCATCTTCAA CAGTCTCGCC
|
2251GCTACCGTCT ATGCCGACAG TACCGCCGCC CATGCCGATA TGCAGGGACG
|
2301CCGCCTGAAA GCCGTATCGG ACGGGTTGGA CCACAACGGC ACGGGTCTGC
|
2351GCGTCATCGC GCAAACCCAA CAGGACGGTG GAACGTGGGA ACAGGGCGGT
|
2401GTTGAAGGCA AAATGCGCGG CAGTACCCAA ACCGTCGGCA TTGCCGCGAA
|
2451AACCGGCGAA AATACGACAG CAGCCGCCAC ACTGGGCATG GGACGCAGCA
|
2501CATGGAGCGA AAACAGTGCA AATGCAAAAA CCGACAGCAT TAGTCTGTTT
|
2551GCAGGCATAC GGCACGATGC GGGCGATATC GGCTATCTCA AAGGCCTGTT
|
2601CTCCTACGGA CGCTACAAAA ACAGCATCAG CCGCAGCACC GGTGCGGACG
|
2651AACATGCGGA AGGCAGCGTC AACGGCACGC TGATGCAGCT GGGCGCACTG
|
2701GGCGGTGTCA ACGTTCCGTT TGCCGCAACG GGAGATTTGA CGGTCGAAGG
|
2751CGGTGTGCGC TACGACCTGC TCAAACAGGA TGCATTCGCC GAAAAAGGCA
|
2801GTGCTTTGGG CTGGAGCGGC AACAGCCTCA CTGAAGGCAC GCTGGTCGGA
|
2851CTCGCGGGTC TGAAGCTGTC GCAACCCTTG AGCGATAAAG CCGTCCTGTT
|
2901TGCAACGGCG GOCGTGGAAC GCGACCTGAT CGGACGCGAC TACACGGTAA
|
2951CGGGCGGCTT TACCGGCGCG ACTGCAGCAA CCGGCAAGAC GGGGGCACGC
|
3001AATATGCCGC ACACCCGTCT GGTTGCCGGC CTGGGCGCGG ATGTCGAATT
|
3051CGGCAACGGC TGGAACGGCT TGGCACGTTA CAGCTACGCC GGTTCCAAAC
|
3101AGTACGGCAA CCACAGCGGA CGAGTCGGCG TAGGCTACCG GGTTCCTCGA
|
3151GGATCCGGAG GGGGTGGTGT CGCCGCCGAC ATCGGTGCGG GGCTTGCCGA
|
3201TGCACTAACC GCACCGCTCG ACCATAAAGA CAAAGGTTTG CAGTCTTTGA
|
3251CGCTGGATCA GTCCGTCAGG AAAAACGAGA AACTGAAGCT GGCGGCACAA
|
3301GGTGCGGAAA AAACTTATGG AAACGGTGAC AGCCTCAATA CGGGCAAATT
|
3351GAAGAACGAC AAGGTCAGCC GTTTCGACTT TATCCGCCAA ATCGAAGTGG
|
3401ACGGGCAGCT CATTACCTTG GAGAGTGGAG AGTTCCAAGT ATACAAACAA
|
3451AGCCATTCCG CCTTAACCGC CTTTCAGACC GAGCAAATAC AAGATTCGGA
|
3501GCATTCCGGG AAGATGGTTG CGAAACGCCA GTTCAGAATC GGCGACATAG
|
3551CGGGCGAACA TACATCTTTT GACAAGCTTC CCGAAGGCGG CAGGGCGACA
|
3601TATCGCGGGA CGGCGTTCGG TTCAGACGAT GCCGGCGGAA AACTGACCTA
|
3651CACCATAGAT TTCGCCGCCA AGCAGGGAAA CGGCAAAATC GAACATTTGA
|
3701AATCGCCAGA ACTCAATGTC GACCTGGCCG CCGCCGATAT CAAGCCGGAT
|
3751GGAAAACGCC ATGCCGTCAT CAGCGGTTCC GTCCTTTACA ACCAAGCCGA
|
3801GAAAGGCAGT TACTCCCTCG GTATCTTTGG CGGAAAAGCC CAGGAAGTTG
|
3851CCGGCAGCGC GGAAGTGAAA ACCGTAAACG QCATACGCCA TATCGGCCTT
|
3901GCCGCCAAGC AACTCGAGCA CCACCACCAC CACCACTGA
|
1MTSAPDFNAG GTGIGSNBRA TTAKSAAVSY AGIKNEHCKD RSMLCAGRDD
|
51VAVTDRDAKI NAPPPNLHTG DFPNPNDAYK NLINLKPAIE AGYTGRGVZV
|
101GXVDTGBSVQ SISFPELYGR KEHGYNENYK NYTAYMRKEA PBDGGGKDIB
|
151ASFDDEAVIE TRAKPTDIRIRH VKEIGHIDLV SHIIGGRSVD GRPAGGIAPD
|
201ATLHIMNTND ETKNEMMVAA IRNAWVKLGB RGVRIVNNSF GTTSRAGTAD
|
251LFQLANSEBQ YRQALLDYSG GDKTDEGIRL MQQSDYGNLS YHIRNKNMLF
|
301IFSTGNDAQA QPNTYALLPF YBKDAQKGII TVAGVDRSGE FKRENYGEP
|
351GTEPLEYGSN HCGITAMWCL SAPYEASVRP TRTNPIQIAG TSFSAPIVTG
|
401TAALIJLQKYP WMSNDNLRTT LLTTAQDIGA VGVDSKFGWG LLDAGKAMNG
|
451PASFPFGDFT ADTKGTSDIA YSFENDISGT GGLIKKGGSQ LQLHGNNTYT
|
501GKTIIEGGSL VLYGNNKSDN RVETKGALIY NQAASGGSLN SDGIVYLADT
|
551DQSGANETVH IKGSLQLDGK GTLYTRLGKL LKVDGTAIIG GKLYMSARGK
|
601GAGYLNSTGR RVPPLBAAKI GQDYBPFTNI HTDGGLLASL DSVEKTAGSE
|
651GDTLSYYVRR GNAARTASAA AHSAPAGLKH AVEQGGSNLE NLMVELDABE
|
701SSATPETVBT AAADRTDMPG IRPYGATFRA AAAVQHANAA DGVRIFNSLA
|
751ATVYADSTAA HADMQGRRLK AVSDGLDHNG TGLRVIAQTQ QDGGTWBQGG
|
801VHGKMRGSTQ TVGIAAKTGE NTTAAATLGM GRSTWBENSA NAKTDSISLP
|
851AGIRHDAGDI GYLKGLFBYG RYKNSISEST GADBHAEGSV NGTLMQLGAL
|
901GGVNVPFAAT GDLTVEGGLR YDLLKQDAFA HKGSALQWSG NSLTEQTLVG
|
951LAGLKLSQPL SDKAVLFATA GVERDLNGRD YTVTGGFTGA TAATGKTGAR
|
1001NHPHTRLVAG LGADVHFGNG WNGLARYSYA GSKQYGNHSG RVGVGYRFLE
|
1051GSGGGGVAAD IGAGLADALT APLDHXDKGL QSLTDQSVR KNEKLKLAAQ
|
1101GAEKTYGNGD SLNTGKLKND KVSPPDFIRQ IEVDGQLITL ESGEFQVYXQ
|
1151SHSALTAPQT EQIQDSEHSG KMVAKRQFRI GDIAGEHTFP DKLPEGGRAT
|
1201YRGTAFGSDD AGGKLTYTID FAAKQGNGKI EHLKSPELNV DLAAADIKPD
|
1251GKPHAVISGS VLYNQAEKGS YSLGIFOGKA QEVAGSAEVK TVNGIEHIGL
|
1301AAKQLEHHHH HH*
|
ΔG983-961
1ATGACTTCTG CGCCCGACTT CAATGCAGGC GGTACCGGTA TCGGCAGCAA
|
51CAGCAGAGCA ACAACAGCGA AATCAGCAGC AGTATCTTAC GCCGGTATCA
|
101AGAACGAAAT GTGCAAAGAC AGAAGCATGC TCTGTGCCGG TCGGGATGAC
|
151GTTGCGGTTA CAGACAGGGA TGCCAAAATC AATGCCCCCC CCCCGAATCT
|
201GCATACCGGA GACTTTCCAA ACCCAAATGA CGCATACAAG AATTTGATCA
|
251ACCTCAAACC TGCAATTGAA GCAGGCTATA CAGGAQGCGG GGTAGAGGTA
|
301GGTATCGTCG ACACAGGCGA ATCCGTCGGC AGCATATCCT TTCCCGAACT
|
351GTATGGCAGA AAAGAACACG GCTATAACGA AAATTACAAA AACTATACGG
|
401CGTATATGCG GAAGGAAGCG CCTGAAGACG GAGGCGGTAA AGACATTGAA
|
451GCTTCTTTCG ACGATGAGGC CGTTATAGAG ACTGAAGCAA AGCCGACGGA
|
501TATCCGCCAC GTAAAAGAAA TOOGACACAT CGATTTGGTC TCCCATATTA
|
551TTGGCGGGCG TTCCGTGGAC GGCAGACCTG CAGGCGGTAT TGCGCCCGAT
|
601GCGACGCTAC ACATAATGAA TACGAATGAT GAAACCAAGA ACGAAATGAT
|
651GGTTGCAGCC ATCCGCAATG CATGGGTCAA GCTGGGCGAA CGTGGCGTGC
|
701GCATCGTCAA TAACAGTTTT GGAACAACAT CGAGGGCAGG CACTGCCGAC
|
751CTTTTCCAAA TAGCCAATTC GGAGGAGCAG TACCGCCAAG CGTTGCTCGA
|
801CTATTCCGGC GGTGATAAAA CAGACGAGGC TATCCGCCTG ATGCAACAGA
|
851GCGATTACGG CAACCTGTCC TACCACATCC GTAATAAAAA CATGCTTTTC
|
901ATCTTTTCGA CAGGCAATGA CGCACAAGCT CAGCCCAACA CATATGCCCT
|
951ATTGCCATTT TATGAAAAAG ACGCTCAAAA AGGCATTATC ACAQTCGCAG
|
1001GCGTAQACCG CAGTGGAGAA AAGTTCAAAC GGGAAATGTA TGGAGAACCG
|
1051GGTACAGAAC CGCTTGAGTA TGGCTCCAAC CATTGCGGAA TTACTGCCAT
|
1101GTGGTGCCTG TCGGCACCCT ATGAAGCAAG CGTCCGTTTC ACCCGTACAA
|
1151ACCCGATTCA AATTGCCGGA ACATCCTTTT CCGCACCCAT CGTAACCGGC
|
1201ACGGCGGCTC TGCTGCTGCA GAAATAGCCG TGGATGAGCA ACGACAACCT
|
1251GCGTACCACG TTGCTGACGA CGGCTCAGGA CATCGGTGCA GTCGGCGTGG
|
1301ACAGCAAGTT CGGCTGGGGA CTGCTGGATG CGGGTAAGGC CATGAACGGA
|
1351CCCGCGTCCT TTCCGTTCGG CGACTTTACC GCCGATACGA AAGGTACATC
|
1401CGATATTGCC TACTCCTTCC GTAACGACAT TTCAGGCACG GGCGGCCTGA
|
1451TCAAAAAAGG CGGCAGCCAA CTGCAACTGC ACGGCAACAA CACCTATACG
|
1501GGCAAAACCA TTATCGAAGG CGGTTCGCTG GTGTTGTACG GCAACAACAA
|
1551ATCGGATATG CGCGTCGAAA CCAAAGGTGC GCTGATTTAT AACGGGGCGG
|
1601CATCCGGCGG CAGCCTGAAC AGCGACGGCA TTGTCTATCT GGCAGATACC
|
1651GACCAATCCG GCGCAAACGA AACCGTACAC ATCAAAGGCA GTCTGCAGCT
|
1701GGACGGCAAA GGTACGCTGT ACACACGTTT GGGCAAAGTG CTGAAAGTGG
|
1751ACGGTACGGC GATTATCGGC GGCAAGCTGT ACATGTCGGC ACGCGGCAAG
|
1801GGGGCAGGCT ATCTCAACAG TACCGGACGA CGTGTTCCCT TCCTGAGTGC
|
1851CGCCAAAATC GGGCAGGATT ATTCTTTCTT CACAAACATC GAAACCGACG
|
1901GCGGCCTGCT GGCTTCCCTC GACAGCGTCG AAAAAACAGC GGGCAGTGAA
|
1951GGCGACACGC TGTCCTATTA TGTCCGTCGC GGCAATGCGG CACGGACTGC
|
2001TTCGGCAGCG GCACATTCCG CGCCCGCCGG TCTGAAACAC GCCGTAGAAC
|
2051AGGGCGGCAG CAATCTGGAA AACCTGATGG TCGAACTGGA TGCCTCCGAA
|
2101TCATCCGCAA CACCCGAGAC GGTTGAAACT GCGGCAGCCG ACCGCACAQA
|
2151TATGCCGGGC ATCCGCCCCT ACGGCGCAAC TTTCCGCGCA GCGGCAGCCG
|
2201TACAGCATGC GAATGCCGCC GACGGTGTAC GCATCTTCAA CAGTCTCGCC
|
2251GCTACCGTCT ATGCCGACAG TACCGCCGCC CATGCCGATA TGCAGGGAGG
|
2301CCGCCTGAAA GCCGTATCGG ACGGGTTGGA CCACAACGGC ACGGGTCTGC
|
2351GCGTCATCGC GCAAACCCAA CAGGACGGTG GAACGTGGGA ACAGCGCGGT
|
2401GTTGAAGCCA AAATGCGCGG CAGTACCCAA ACCGTCGGCA TTGCCGCGAA
|
2451AACCGGCGAA AATACGACAG CAGCCGCCAC ACTGGGCATG GGACGCAGCA
|
2501CATGGAGCGA AAACAGTGCA AATGCAAAAA CCGACAGCAT TAGTCTGTTT
|
2551GCAGGCATAC GGCACGATGC GGGCGATATC GGCTATCTCA AAGGCCTGTT
|
2601CTCCTACGGA CGCTACAAAA ACAGCATCAG CCGCAGCACC GGTGCGGACG
|
2651AACATGCGGA AGGCAGCGTC AACGGCACGC TGATGCAGCT GGGCGCACTG
|
2701GGCGGTGTCA ACGTTCCGTT TGCCGCAACG GGAGATTTGA CGGTCGAAGG
|
2751CGGTCTGCGC TACGACCTGC TCAAACADGA TGCATTCGCC GAAAAAGGCA
|
2801GTGCTTTGGG CTGGAGCGGC AACAGCCTCA CTGAAGGCAC GCTGGTCGGA
|
2851CTCGCGGGTC TGAAGCTGTC GCAACCCTTG AGCGATAAAG CCGTCCTGTT
|
2901TGCAACGGCG GGCGTGGAAC GCGACCTGAA CGGACGCGAC TACACGGTAA
|
2951CGGGCGGCTT TACCGGCGCG ACTGCAGCAA CCGGCAAGAC GGGGGCACGC
|
3001AATATGCCGC ACACCCGTCT GGTTGCCGGC CTGGGCGCGG ATGTCGAATT
|
3051CGGCAACGGC TGGAACGGCT TGGCACGTTA CAGCTACGCC GGTTCCAAAC
|
3101AGTACGGCAA CCACAGCGGA CGAGTCGGCG TAGGCTACCG GTTCCTCGAG
|
3151GGTGGCGGAG GCACTGGATC CGCCACAAAC GACGACGATG TTAAAAAAGC
|
3201TGCCACTGTG GCCATTGCTG CTGCCTACAA CAATGGCCAA GAAATCAACG
|
3251GTTTCAAAGC TGGAGAGACC ATCTACGACA TTGATGAAGA CGGCACAATT
|
3301ACCAAAAAAG ACGCAACTGC AGCCGATGTT GAAGCCGACG ACTTTAAAGG
|
3351TCTGGGTCTG AAAAAAGTCG TGACTAACCT GACCAAAACC GTCAATGAAA
|
3401ACAAACAAAA CGTCGATGCC AAAGTAAAAG CTGCAGAATC TGAAATAGAk
|
3451AAGTTAACAA CCAAGTTAGC AGACACTGAT GCCGCTTTAG CAGATACTGA
|
3501TGCCGCTCTG QATGCAACCA CCAACGCCTT GAATAAATTG GGAGAAAATA
|
3551TAACGACATT TGCTGAAGAG ACTAAGACAA ATATCGTAAA AATTGATGAA
|
3601AAATTAGAAG CCGTGGCTGA TACCGTCGAC AAGCATGCCG AAGCATTCAA
|
3651CGATATCGCC GATTCATTGG ATGAAACCAA CACTAAGGCA GACGAAGCCG
|
3701TCAAAACCGC CAATGAAGCC AAACAGACGG CCGAAGAAAC CAAACAAAAC
|
3751GTCGATGCCA AAGTAAAAGC TGCAGAAACT GCAGCAGGCA AAGCCGAAGC
|
3801TGCCGCTGGC ACAGCTAATA CTGCAGCCGA CAAGGCCGAA GCTGTCGCTG
|
3851CAAAAGTTAC CGACATCAAA GCTGATATCG CTACGAACAA AGATAATATT
|
3901GCTAAAAAAG CAAACAGTGC CGACGTGTAC ACCAGAGAAG AGTCTGACAG
|
3951CAAATTTGTC AGAATTGATG GTCTGAACGC TACTACCGAA AAATTGGACA
|
4001CACGCTTGGC TTCTGCTGAA AAATCCATTG CCGATCACGA TACTCGCCTG
|
4051AACGGTTTGG ATAAAACAGT GTCAGACCTG CGCAAAGAAA CCCGCCAAGQ
|
4101CCTTGCAGAA CAAGCCGCGC TCTCCGGTCT GTTCCAACCT TACAACGTGG
|
4151GTCGGTTCAA TGTAACGGCT GCAGTCGGCG GCTACAAATC CGAATCGGCA
|
4201GTCGCCATCG GTACCGGCTT CCGCTTTACC GAAAACTTTG CCGCCAAAGC
|
4251AGGCGTGGCA GTCGGCACTT CGTCCGGTTC TTCCGCAGCC TACCATGTCG
|
4301GCGTCAATTA CGAGTGGCTC GAGCACCACC ACCACCACCA CTGA
|
1MTSAPDFNAG GTGIGSNSRA TTAKSAAVSY AGIKNRMCKD RSMLCAGRDD
|
51VAVTDRDAKI NAPPPNLHTG DFPNPNDAYK NLINLKPAIE AGYTGRGVEV
|
101GIVDTGBSVG SISFPELYGR KEHGYNENYK NYTAYNRKEA PEDGGGKDIE
|
151ASFDDEAVIE TEAKPTDIEH VKEIGHIDLV SHIIGGRSVD GRPAGGIAPD
|
201ATLHIMNTND ETKNEMMVAA IRNAWVKLGE RGVRIVNNSF GTTSRAGTAD
|
251LFQIANSEEQ YRQALLDYSG GDKTDEGIRL MQQSDYGNLS YHIRNKNMLF
|
301IFSTGNDAQA QPNTYALLPF YRKDAQRGII TVAGVDRSGE KFKREHYGEP
|
351GTEPLEYGSN HCGITAMWCL BAPYEASVRF TRTNPIQIAG TSFSAPIVTG
|
401TAALLLQKYP WMSNDNLRTT LLTTAQDIGA VGVDSKFGWG LLDAGKAMNG
|
451PASFPFGDFT ADTKGTSDIA YSFRIWISGT GGLIKKGGSQ LQLHGNNTYT
|
501GKTIIEGGSL VLYGNNKBDM RVETKGMJZY NGAABGGSLN SDGIVYLADT
|
551DQSGAETVH IKGSLQLDGK GTLYTRLGKL LRVDGTAIIG GKLYHSARGK
|
601GAGYLNSTGR RVPFLSAAKI GQDYSFFTNI BTDGGLLABL DSVEKTAGSE
|
651GDTLSYYVRR GNAARTASAA AHSAPAGLKH AVRQGGSNLE NLMVELDASE
|
701SSATPBTVET AAADRTDMPG IRPYGATFRA AAAVQHANAA DGVRIPNSLA
|
751ATVYADSTAA HADMQGRRLK AVSDGLDHNG TGLRVZAQTQ QDGGTWEQGQ
|
801VEGKMRGSTQ TVGIAAKTGE NTTAAATLGM GRBTWSENSA NAKTDBISLF
|
851AGIRHDAGDI GYLKGLFBYG RYKNSISRST GADEHAEGSV NGTLMQLGAL
|
901GGVNVPFAAT GDLTVRGGLR YDIILKQDAPA EKGSALGWSG NSLTEGTLVG
|
951LAGLKLSQPL SDKAVLFATA GVERDLNGRD YTVTGGFTGA TAATGKTGAR
|
1001NMPHTRLVAG LGADVEFGNG WNGLARYSYA GSKQYGNHSG RVGVGYRPLB
|
1051GGGGTGSATN DDDVKKAATV AIAAAYNNGQ EINGFKAGET IYDIDEDGTI
|
1101TKKDATAADV EADDFKGLGL KKVVTNLTKT VNENKQNVDA KVKAAESBIB
|
1151KLTTKLADTD AALADTDAAL DATTNALNKL GENITTFAEE TKTNIVKIDE
|
1201KLEAVADTVD KHAEAPNDIA DSLDETNTKA DEAVKTAUEA KQTABETKQN
|
1251VDAKVKAABT AAGKAEAAAG TANTAADKAE AVAAKVTDIK ADIATNKDNI
|
1301AKKANSADVY TREESDSKFV RIDGLNATTE KLDTRLASAE KSIADHDTRL
|
1351NGLDKTVSDL RKETRQGLAE QAALSGLFQP YNVGRFNVTA AVGGYKSESA
|
1401VAIGTGFRFT ENFAAKAGVA VGTSSGSSAA YHVGVNYEWL EHHHHHH*
|
ΔG983-961c
1ATGACTTCTG CGCCCGACTT CAATGCAGGC GGTACCGGTA TCGGCAGCAA
|
51CAGCAGAGCA ACAACAGCGA AATCAGCAQC AGTATCTTAC GCCGGTATCA
|
101AGAACGAAAT GTGCAAAGAC AGAAGCATGC TCTGTGCCGG TCGGGATGAC
|
151GTTGCGGTTA CAGACAGQGA TGCCAAAATC AATGCCCCCC CCCCGAATCT
|
201GGATACCOGA GACTTTCCAA ACCCAAATGA CGCATACAAG AATTTGATCA
|
251ACCTCAAACC TGCAATTGAA GCAGGCTATA CAGGACGCGG GGTAGAGGTA
|
301GGTATCGTCG ACACAGGCGA ATCCGTCGGC AGCATATCCT TTCCCGAACT
|
351GTATGGCAGA AAAGAACACG GCTATAACGA AAATTACAAA AACTATACGG
|
401CGTATATGCG GAAGGAAGCG CCTGAAGACG GAGGCGGTAA AGACATTGAA
|
451GCTTCTTTCG ACGATGAGGC CGTTATAGAG ACTGAAGCAA AGCCGACGGA
|
501TATCCGCCAC GTAAAAGAAA TCGGACACAT CGATTTGGTC TCCCATATTA
|
551TTGGCGGGCG TTCCGTGGAC GGCAGACCTG CAGGCGGTAT TGCGCCCGAT
|
601GCGACGCTAC ACATAATGAA TACGAATGAT GAAACCAAGA ACGAAATGAT
|
651GGTTGCAGCC ATCCGCAATG CATGGGTCAA GCTGGGCGAA CGTGGCGTGC
|
701GCATCGTCAA TAACAGTTTT GGAACAACAT CGAGGGCAGG CACTGCCGAC
|
751CTTTTCCAAA TAGCCAATTC GGAGGAGCAG TACCGCCAAG CGTTGCTCGA
|
801CTATTCCGGC GGTGATAAAA CAGACGAGGG TATCCGCCTG ATGCAACAGA
|
851GCGATTACGG CAACCTGTCC TACCACATCC GTAATAAAAA CATGCTTTTC
|
901ATCTTTTCGA CAGGCAATGA CGCACAAGCT CAGCCCAACA CATATGCCCT
|
951ATTGCCATTT TATGAAAAAG ACGCTCAAAA AGGCATTATC ACAGTCGCAG
|
1001GCGTAGACCG CAGTGGAGAA AAGTTCAAAC GGGAAATGTA TGGAGAACCG
|
1051GGTACAGAAC CGCTTGAGTA TGGCTCCAAC CAFPTGCGGAA TTACTGCCAT
|
1101GTGGTGCCTG TCGGCACCCT ATGAAGCAAG CGTCCGTTTC ACCCGTACAA
|
1151ACCCGATTCA AATTGCCGGA ACATCCTTTT CCGCACCCAT CGTAACCGGC
|
1201ACGGCGGCTC TGCTGCTGCA GAAATACCCG TGGATGAGCA ACGACAACCT
|
1251GCGTACCACG TTGCTGACGA CGGCTCAGGA CATCGGTGCA GTCGGCGTGG
|
1301ACAGCAAGTT CGGCTGGGGA CTGCTGGATG CGGGTAAGGC CATGAACGGA
|
1351CCCGCGTCCT TTCCGTTCGG CGACTTTACC GCCGATACGA AAGGTACATC
|
1401CGATATTGCC TACTCCTTCC GTAACGACAT TTCAGGCACG GGCGGCCTGA
|
1451TCAAAAAAGG CGGCAGCCAA CTGCAACTGC ACGGCAACAA CACCTATACG
|
1501GGCAAAACCA TTATCGAAGG CGGTTCGCTG GTGTTGTACG GCAACAACAA
|
1551ATCGGATATG CGCGTCGAAA CCAAAGGTGC GCTGATTTAT AACGGGGCGG
|
1601CATCCGGCGG CAGCCTGAAC AGCGACGGCA TTGTCTATCT GGCAGATACC
|
1651GACCAATCCG GCGCAAACGA AACCGTACAC ATCAAAGGCA GTCTGCAGCT
|
1701GGACGGCAAA GGTACGCTGT ACACACGTTT GGGCAAACTG CTGAAAGTGG
|
1751ACGGTACGGC GATTATCGGC GGCAAGCTGT ACATGTCGGC ACGCGGCAAG
|
1801GGGGCAGGCT ATCTCAACAG TACCGGACGA CGTGTTCCCT TCCTGAGTGC
|
1851CGCCAAAATC GGGCAGQATT ATTCTTTCTT CACAAACATC GAAACCGACG
|
1901GCGGCCTGCT GGCTTCCCTC GACAGCGTCG AAAAAACAGC GGGCAGTGAA
|
1951GGCGACACGC TGTCCTATTA TGTCCGTCGC GGCAATGCGG CACGGACTGC
|
2001TTCGGCAGCG GCACATTCCG CGCCCOCCGG TCTGAAACAC GCCGTAGAAC
|
2051AGGGCGGCAG CAATCTGGAA AACCTGATGG TCGAACTGQA TGCCTCCGAA
|
2101TCATCCGCAA CACCCGAGAC GGTTGAAACT GCGGCAGCCG ACCGCACAGA
|
2151TATGCCGGGC ATCCGCCCCT ACGGCGCAAC TTTCCGCGCA GCGGCAGCCG
|
2201TACAGCATGC GAATGCCGCC GACGGTGTAC GCATCTTCAA CAGTCTCGCC
|
2251GCTACCGTCT ATGCCGACAG TACCGCCGCC CATGCCGATA TGCAGGGACG
|
2301CCGCCTGAAA GCCGTATCGG ACGGGTTGGA CCACAACGGC ACGGGTCTGC
|
2351GCGTCATCGC GCAAACCCAA CAGGAQGGTG GAACGTGGGA ACAGGGCGGT
|
2401GTTGAAGGCA AAATGCGCGG CAGTACCCAA ACCGTCGGCA TTGCCGCGAA
|
2451AACCGGCGAA AATACGACAG CAGCCGCCAC ACTGGGCATG GGACGCAGCA
|
2501CATGGAGCGA AAACAGTGCA AATGCAAAAA CCGACAGCAT TAGTCTGTTT
|
2551GCAGGCATAC GGCACGATGC GGGCGATATC GGCTATCTCA AAGGCCTGTT
|
2601CTCCTACGGA CGCTACAAAA ACAGCATCAG CCGCAGCACC GGTGCGGACG
|
2651AACATGCGGA AGOCAGCGTC AACGGCACGC TGATGCAGCT GGGCGCACTG
|
2701GGCGGTGTCA ACGTTCCGTT TGCCGCAkCG GGAGATTTGA CGGTCGAAGG
|
2751CGGTCTGCGC TACGACCTGC TCAAACAGQA TGCATTCGCC GAAAAAGGCA
|
2801GTGCTTTGGG CTGQkGCGGC AACAGCCTCA CTGAAGGCAC GCTGGTCGGA
|
2851CTCGCGGGTC TGAAGCTGTC GCAACCCTTG AGCGATAAAG CCGTCCTGTT
|
2901TGCAACGGCG GGCGTGGAAC GCGACCTGAA CGGACGCGAC TACACGGTAA
|
2951CGGGCGGCTT TACCGGCGCG ACTGCAGCAA CCGGCAAGAC GGGGGCACGC
|
3001AATATGCCGC ACACCCGTCT GGTTGCCGGC CTGGGCGCGG ATGTCGAATT
|
3051CGGCAACGGC TGGAACGGCT TGGCACGTTA CAGCTACGCC GGTTCCAAAC
|
3101AGTACGGCAA CCACAGCGGA CGAGTCGGCG TAGGCTACCG GTTCCTCGAG
|
3151GGTGOCGGAG GCACTGGATC CGCCACAAAC GACGACGATG TTAAAAAAGC
|
3201TGCCACTGTG GCCATTGCTG CTGCCTACAA CAATGGCCAA GAAATCAACG
|
3251GTTTCAAAGC TGGAGAGACC ATCTACGACA TTGATGAAGA CGGCACAATT
|
3301ACCAAAAAAG ACGCAACTGC AGCCGATGTT GAAGCCGACG ACTTTAAkGG
|
3351TCTGGGTCTG AAAAAAGTCG TGACTAACCT GACCAAAACC GTCAATGAAA
|
3401ACAAACAAAA CGTCGATGCC AAAGTAAAAG CTGCAGAATC TGAAATAGAk
|
3451AAGTTAACAA CCAAGTTAGC AGACAQTGAT GCCGCTTTAG CAGATACTGA
|
3501TGCCGCTCTG GATGCAACCA CCAAGGCCTT GAATAAATTG GGAGAAAATA
|
3551TAACGACATT TGCTGAAGAG ACTAAGACAA ATATCGTAAA AATTGATGAA
|
3601AAATTAGAAG CCGTGGCTGA TACCGTCGAC AAGCATGCCG AAGCATTCAA
|
3651CGATATCGCC GATTCATTGG ATGAAACCAA CACTAAGGCA GACGAAGCCG
|
3701TCAAAACCGC CAATGAAGCC AAACAGACGG CCGAAGAAAC CAAACAAAAC
|
3751GTCGATGCCA AAGTAAAAGC TGCAGAAACT GCAGCAGGCA AAGCCGAAGC
|
3801TGCCGCTGGC ACAGCTAATA CTGCAGCCGA CAAGGCCGAA GCTGTCGCTG
|
3851CAAAAGTTAC CGACATCAAA GCTGATATCG CTACGAACAA AGATAATATT
|
3901GCTAAAAAAG CAAACAGTGC CGACGTGTAC ACCAGAGAAG AGTCTGACAG
|
3951CAAATTTGTC AGAATTGATG GTCTGAACGC TACTACCGAA AAATTGGACA
|
4001CACGCTTGGC TTCTGCTGAA AAATCCATTG CCGATCACGA TACTCGCCTG
|
4051AACGGTTTGG ATAAAACAGT GTCAGACCTG CGCAAAGAAA CCCGCCAAGG
|
4101CCTTGCAGAA CAAGCCGCGC TCTCCGGTCT GTTCCAACCT TACAACGTGG
|
4151GTCTCGAGCA CCACCACCAC CACCACTGA
|
1MTSAPDFNAG GTGIGSNSRA TTAXSAAVSY AGIKNEHCKD RSNIJCAGRDD
|
51VAVTDRflAKI NAPPPNLHTG DFPNPNDAYK NLINLKPAIE AGYTGRGVEV
|
101GIVDTGESVG SISFPELYGR KERGYNENYK NYTAYMEKEA PEDGGGKDIE
|
151ASFDDEAVIE TEAKPTDThH VKEIGHIDLV SHIIGGRSVD GRPAGGIAPD
|
201ATLHIMNTND ETKNEMMVAA IPNAWVKLGE RGVRIVNNSP GTTSRAGTAD
|
251LFQIANSEEQ YRQALLDYSG GDKTDEGIRL MQQSDYGNLS YHIRNKNMLF
|
301IFSTGNDAQA QPNTYALLPF YEKDAQKGII TVAGVDRSGE KFKEEMYGEP
|
351GTEPLEYGSN HCGITAMWCL SAPYBASVRP TRTNPIQIAG TSPSAPIVTG
|
401TAALLLQKYP WMSNDNLRTT LLTTAQDIGA VGVDSKEGWG LLDAGKAMNG
|
451PASFPFGDFT ADTKGTSDIA YSFENDISGT GGLIDCGGSQ LQLHGNNTYT
|
501QKTIIEGGSL VLYGNNKSDH RVETKGALIY NGAASGGSLN SDGIVYLADT
|
551DQSGANETVH IKGSLQLDGK GTLYTRLGKL LKVDGTAIIG GKLYMSARGK
|
601GAGYLNSTGR RVPFLSAAKI GQDYSFFTNI ETDGGLLASL DSVEKTAGSE
|
651GDTLSYYVRR GNAARTASAA AHSAPAGLKH AVEQGGSNLE NLMVBLDASE
|
701SSATPETVET AAADRTDMPG IRPYGATFRA AAAVQHANAA DGVRIPNSLA
|
751ATVYADSTAA HADMQGPELK AVSDGLDHNG TGLRVIAQTQ QDGGTWEQGG
|
801VHGKHRGSTQ TVGIAAKTGE NTTAAATLGM GRSTWSENSA NAKTDSISLF
|
851AGIEHDAGDI GYLKGLPSYG RYENSISRST GADEHAEGSV NGTLKQLGAL
|
901GGVNVPFAAT GDLTVBGGLR YDLLKQDAPA EKGSALGWSG NSLTEGTLVG
|
951LAGLKLSQPL SDKAVLPATA GVERDLNGED YTVTGGFTGA TAATGKTGAR
|
1001NMPHTRLVAG LGADVEFGNG WNGLARYSYA GSKQYGNHSG RVGVGYRFLE
|
1051GGGGTGSATN DDDVKKAATV AIAAAYNNGQ BINGFKkGET IYDIDEDGTI
|
1101TKKDATAADV EADDFKGLGL KKVVTNLTKT VNENKQNVDA KVKAAESEIE
|
1151KLTTKLADTD AALADTDAAL DATTNALNKL GENITTFAEE TKTNIVKIDE
|
1201KLEAVAflTVD KHAEAFNDIA DSLDETNTKA DEAVKTANEA KQTAEETKQN
|
1251VDAKVKAAET AAGKAEAAAG TANTAADKAE AVAAKVTDIK ADIATNKDNI
|
1301AERANSADVY TRERSDSKFV RIDGLNATTE KLDTRLASAE KSIADHDTRL
|
1351NGLDKTVSDL RKETRQGLAE QAALBGLFQP YNVGLEHHHH HH*
[0329] ΔG741 and Hybrids
[0330] Bactericidal titres generated in response to ΔG741 (His-fusion) were measured against various strains, including the homologous 2996 strain:
37|
|
2996MC58NGH38F6124BZ133
|
|
ΔG741512131072>204816384>2048
|
[0331] As can be seen, the ΔG741-induced anti-bactericidal titre is particularly high against heterologous strain MC58.
[0332] ΔG741 was also fused directly in-frame upstream of proteins 961, 961c, 983 and ORF46.1:
38|
ΔG741-961
1ATGGTCGCCG CCGACATCGG TGCGGGGCTT GCCGATGCAC TAACCGCACC
|
51GCTCGACCAT AAAGACAAAG GTTTGCAGTC TTTGACGCTG GATCAGTCCG
|
101TCAGGAAAAA CGAGAAACTG AAGCTGGCGG CACAAGGTGC GGAAAAAACT
|
151TATGGAAACG GTGACAGCCT CAATACGGGC AAATTGAAGA ACGACAAGGT
|
201CAGCCGTTTC GACTTTATCC GCCAAATCGA AGTGGACGGG CAGCTCATTA
|
251CCTTGGAGAG TGGAGAGTTC CAAGTATACA AACAAAGCCA TTCCGCCTTA
|
301ACCGCCTTTC AGACCGAGCA AATACAAGAT TCGGAGCATT CCGGGAAGAT
|
351GGTTGCGAAA CGCCAGTTCA GAATCGGCGA CATAGCGGGC GAACATACAT
|
401CTTTTGACAA GCTTCCCGAA GGCGGCAGGG CGACATATCG CGGGACGGCG
|
451TTCGGTTCAG ACGATGCCGG CGQAAAACTG ACCTACACCA TAGATTTCGC
|
501CGCCAAGCAG GGAAACGGCA AAATCGAACA TTTGAAATCG CCAGAACTCA
|
551ATGTCGACCT GGCCGCCGCC GATATCAAGC CGGATGGAAA AOGCCATGCC
|
601GTCATCAGCG GTTCCGTCCT TTACAACCAA GCCGAGAAAG GCAGTTACTC
|
651CCTCGGTATC TTTGGCGGAA AAGCCCAGGA AGTTGCCGGC AGCGCGGAAG
|
701TGAAAACCGT AAACGGCATA CGCCATATCG GCCTTGCCGC CAAGCAACTC
|
751GAGGGTGGCG GAGGCACTGG ATCCGCCACA AACGACGACG ATGTTAAAAA
|
801AGCTGCCACT GTGGCCATTG CTGCTGCCTA CAACAATGGC CAAGAAATCA
|
851ACGGTTTCAA AGCTGGAGAG ACCATCTACG ACATTGATGA AGACGGCACA
|
901ATTACCAAAA AAGACGCAAC TGCAGCCGAT GTTGAAGCCG ACGACTTTAA
|
951AGGTCTGGGT CTGAAAAAAG TCGTGACTAA CCTGACCAAA ACCGTCAATG
|
1001AAAACAAACA AAACGTCGAT GCCAAAGTAA AAGCTGCAGA ATCTGAAATA
|
1051GAAAAGTTAA CAACCAAGTT AGCAGACACT GATGCCGCTT TAGCAGATAC
|
1101TGATGCCGCT CTGGATGCAA CCACCAACGC CTTGAATAAA TTGGGAGAAA
|
1151ATATAACGAC ATTTGCTGAA GAGACTAAGA CAAATATCGT AAAAATTGAT
|
1201GAAAAATTAG AAGCCGTGGC TGATACCGTC GACAAGCATG CCGAAGCATT
|
1251CAACGATATC GCCGATTCAT TGGATGAAAC CAACACTAAG GCAGACGAAG
|
1301CCGTCAAAAC CGCCAATGAA GCCAAACAGA CGGCCGAAGA AACCAAACAA
|
1351AACGTCGATG CCAAAGTAAA AGCTGCAGAA ACTGCAGCAG GCAAAGCCGA
|
1401AGCTGCCGCT GGCACAGCTA ATACTGCAGC CGACAAGGCC GAAGCTGTCG
|
1451CTGCAAAAGT TACCGACATC AAAGCTGATA TCGCTACGAA CAAAGATAAT
|
1501ATTGCTAAAA AAGCAAACAG TGCCGACGTG TACACCAGAG AAGAGTCTGA
|
1551CAGCAAATTT GTCAGAATTG ATGGTCTGAA CGCTACTACC GAAAAATTGG
|
1601ACACACGCTT GGCTTCTGCT GAAAAATCCA TTGCCGATCA CGATACTCGC
|
1651CTGAACGGTT TGGATAAAAC AGTGTCAGAC CTGCGCAAAG AAACCCGCCA
|
1701AGGCCTTGCA GAACAAGCCG CGCTCTCCGG TCTGTTCCAA CCTTACAACG
|
1751TGGGTCGGTT CAATGTAACG GCTGCAGTCG GCGGCTACAA ATCCGAATCG
|
1802GCAGTCGCCA TCGGTACCGG CTTCCGCTTT ACCGAAAACT TTGCCGCCAA
|
1851AGCAGGCGTG GCAGTCGGCA CTTCGTCCGG TTCTTCCGCA GCCTACCATG
|
1901TCGGCGTCAA TTACGAGTGG CTCGAGCACC ACCACCACCA CCACTGA
|
1MVAADIGAGL ADMJTAPLDH KDKGLQSLTL DQSVRKNEKL KLAAQGAEKT
|
51YGNGDSLNTG KLKNDKVSRF DFIRQIEVDG QLITLESGBF QVYKQSHSAL
|
101TAPQTEQIQD SESGKMVAK RQFRIGDIAG EHTSFDKLPE GGRATYRGTA
|
151FGSDDAGGKL TYTIDFAAXQ GNGKIEHLKS PELNVDLAAA DIKPDGKEEA
|
201VISGSVLYNQ AEKGSYSLGI FGGKAQEVAG SAEVKTVNGI RHIGLAAKQL
|
251EGGGGTGSAT NDDDVKKAAT VAIAAAYNNG QEINGFKAGE TIYDIDBDGT
|
301ITKKDATAAD VEADDFKGLG LKKVVTNLTK TVNENKQNVD AKVKAAESEI
|
351EKLTTKLADT DAALADTDAA LDATTNALNK LGRNZTTFAB BTKTNIVKID
|
401EKLEAVADTV DKHAEAFNDI ADSLDETNTK ADEAVKTANE AKQTAEETKQ
|
451NVDAKVKAAB TAAGRAEAAA GTANTAADRA EAVAAKVTDI KADIATNKDN
|
501IAKKANSADV YTREESDSKF VRIDGLNATT ELKDTRLASA BKSIADHDTR
|
551LNGLDKTVSD LRKETRQGLA EQAALSGLFQ PYNVGRFNVT AAVGGYKSES
|
601AVAIGTGFRF TENFAAKAGV AVGTSSGSSA AYHVGVNYEW LHHHHHHH*
|
ΔG741-961c
1ATGGTCGCCG CCGACATCGG TGCGGGGCTT GCCGATGCAC TAACCGCACC
|
51GCTCGACCAT AAAGACAAAG GTTTGCAGTC TTTGACGCTG GATCAGTCCG
|
101TCAGGAAAAA CGAGAAACTG AAGCTGGCGG CACAAGGTGC GGAAAAAACT
|
151TATGGAAACG GTGACAGCCT CAATACGGGC AAATTGAAGA ACGACAAGGT
|
201CAGCCGTTTC GACTTTATCC GCCAAATCGA AGTGGACGGG CAGCTCATTA
|
251CCTTGGAGAG TGGAGAGTTC CAAGTATACA AACAAAGCCA TTCCGCCTTA
|
301ACCGCCTTTC AGACCGAGCA AATACAAGAT TCGGAGCATT CCGGGAAGAT
|
351GGTTGCGAAA CGCCAGTTCA GAATCGGCGA CATAGCGGGC GAACATACAT
|
401CTTTTGACAA GCTTCCCGAA GGCGGCAGGG CGACATATCG CGGGACGGCG
|
451TTCGGTTCAG ACGATGCCGG CGGAAAACTG ACCTACACCA TAGATTTCGC
|
501CGCCAAGCAG GGAAACGGCA AAATCGAACA TTTGAAATCG CCAGAACTCA
|
551ATGTCGACCT GGCCGCCGCC GATATCAAGC CGGATGGAAA ACGCCATGCC
|
601GTCATCAGCG GTTCCGTCCT TTACAACCAA GCCGAAAAAG GCAGTTACTC
|
651CCTCGGTATC TTTGGCGGAA AAGCCCAGGA AGTTGCCGGC AGCGCGGAAG
|
701TGAAAACCGT AAACGGCATA CGCCATATCG GCCTTGCCGC CAAGCAACTC
|
751GAGGGTGGCG GAGGCACTGG ATCCGCCACA AACGACGACG ATGTTAAAAA
|
801AGCTGCCACT GTGGCCATTG CTGCTGCCTA CAACAATGGC CAAGAAATCA
|
851ACGGTTTCAA AGCTGGAGAG ACCATCTACG ACATTGATGA AGACGGCACA
|
901ATTACCAAAA AAGACGCAAC TGCAGCCGAT GTTGAAGCCG ACGACTTTAA
|
951AGGTCTGGGT CTGAAAAAAG TCGTGACTAA CCTGACCAAA ACCGTCAATG
|
1001AAAACAAACA AAACGTCGAT GCCAAAGTAA AAGCTGCAGA ATCTGAAATA
|
1051GAAAAGTTAA CAACCAAGTT AGCAGACACT GATGCCGCTT TAGCAGATAC
|
1101TGATGCCGCT CTGGATGCAA CCACCAACGC CTTGAATAAA TTGGGAGAAA
|
1151ATATAACGAC ATTTGCTGAA GAGACTAAGA CAAATATCGT AAAAATTGAT
|
1201GAAAAATTAG AAGCCGTGGC TGATACCGTC GACAAGCATG CCGAAGCATT
|
1251CAACGATATC GCCGATTCAT TGGATGAAAC CAACACTAAG GCAGACGAAG
|
1301CCGTCAAAAC CGCCAATGAA GCCAAACAGA CGGCCGAAGA AACCAAACAA
|
1351AACGTCGATG CCAAAGTAAA AGCTGCAGAA ACTGCAGCAG GCAAAGCCGA
|
1401AGCTGCCGCT GGCACAGCTA ATACTGCAGC CGACAAGGCC GAAGCTGTCG
|
1451CTGCAAAAGT TACCGACATC AAAGCTGATA TCGCTACGAA CAAAGATAAT
|
1501ATTGCTAAAA AAGCAAACAG TGCCGACGTG TACACCAGAG AAGAGTCTGA
|
1551CAGCAAATTT GTCAGAATTG ATGGTCTGAA CGCTACTACC GAAAAATTGG
|
1601ACACACGCTT GGCTTCTGCT GAAAAATCCA TTGCCGATCA CGATACTCGC
|
1651CTGAACGGTT TGGATAAAAC AGTGTCAGAC CTGCGCAAAG AAACCCGCCA
|
1701AGGCCTTGCA GAACAAGCCG CGCTCTCCGG TCTGTTCCAA CCTTACAACG
|
1751TGGGTCTCGA GCACCACCAC CACCACCACT GA
|
1MVAADIGAGL ADALTAPLDH KDKGLQSLTL DQSVEXNEKL KLAAQGAEKT
|
51YGNGDSLNTG KLKNDKVSRF DFIRQIEVDG QLITLBSGEF QVYKQSHSAL
|
101TAPQTBQIQD SEHSGKMVAK RQFRIGDIAG EHTSFDKLPE GGRATYRGTA
|
151FGSDDAGGKL TYTIDFAAKQ GNGKIEfflZKS PELNVDLAAA DIKPDGKRHA
|
201VISGSVLYNQ AEKGSYSLGI FGGKAQEVAG SAEVKTVNGI RHIGLAAXQL
|
251EGGGGTGSAT NDDDVKKAAT VAIAAAYNNG QHINGFKAGE TIYDIDEDGT
|
301ITKKDATAAfl VEADDFRGLG LKKVVTNLTK TVNENKQNVD AKVKAAESEI
|
351EKLTTKLADT DAALADTDAA LDATTNALNK LGENITTFAE ETKTNIVKID
|
401EKLEAVADTV DKHAEPJPNDI ADSLDETNTK ADEAVKTANE AKQTAEETKQ
|
451NVDAKVKAAE TAAGKAEAAA GTANTAADKA EAVAAKVTDI KADIATNKDN
|
501IAKKANSADV YTREESDSKF VRIDGLNATT EKLDTPLASA EKSIADHDTR
|
551LNGLDKTVVSD LRKETRQGLA EQAALSGLPQ PYNVGLEHHH HHH*
|
ΔG741-983
1ATGGTCGCCG CCGACATCGG TGCGGGGCTT GCCGATGCAC TAACCGCACC
|
51GCTCGACCAT AAAGACAAAG GTTTGCAGTC TTTGACGCTG GATCAGTCCG
|
101TCAGGAAAAA CGAGAAACTG AAGCTGGCGG CACAAGGTGC GGAAAAAACT
|
151TATGGAAACG GTGACAGCCT CAATACGGGC AAATTGAAGA ACGACAADGT
|
201CAGCCGTTTC GACTTTATCC GCCAAATCGA AGTGGACGGG CAGCTCATTA
|
251CCTTGGAGAG TGGAGAGTTC CAAGTATACA AACAAAGCCA TTCCGCCTTA
|
301ACCGCCTTTC AGACCGAGCA AATACAAGAT TCGGAGCATT CCGGGAAGAT
|
351GGTTGCGAAA CGCCAGTTCA GAATCGGCGA CATAGCGGGC GAACATACAT
|
401CTTTTGACAA GCTTCCCGAA GGCGGCAGGG CGACATATCG CGGGACGGCG
|
451TTCGGTTCAG ACGATGCCGG CGGAAAACTG ACCTACACCA TAGATTTCGC
|
501CGCCAAGCAG GGAAACGGCA AAATCGAACA TTTGAAATCG CCAGAACTCA
|
551ATGTCGACCT GGCCGCCGCC GATATCAAGC CGGATGGAAA ACGCCATGCC
|
601GTCATCAGCG GTTCCGTCCT TTACAACCAA GCCGAGAAAG GCAGTTACTC
|
651CCTCGGTATC TTTGGCGGAA AAGCCCAGGA AGTTGCCGGC AGCGCGGAAG
|
701TGAAAACCGT AAACGGCATA CGCCATATCG GCCTTGCCGC CAAGCAACTC
|
751GAGGGATCCG GCGGAGGCGG CACTTCTGCG CCCGACTTCA ATGCAGGCGG
|
801TACCGGTATC GGCAGCAACA GCAGAGCAAC AACAGCGAAA TCAGCAGCAG
|
851TATCTPACGC CGGTATCAAG AACGAAATGT GCAAAGACAG AAGCATGCTC
|
901TGTGCCGGTC GGGATGACGT TGCGGTTACA GACAGGGATG CCAAAATCAA
|
951TGCCCCCCCC CCGAATCTGC ATACCGQAGA CTTTCCAAAC CCAAATGACG
|
1001CATACAAGAA TTTGATCAAC CTCAAACCTG CAATTGAAGC AGCCTATACA
|
1051GGACGCGGGG TAGAGGTAGG TATCGTCGAC ACAGGCGAAT CCGTCGGCAG
|
1101CATATCCTTT CCCGAACTGT ATGGCAGAAA AGAACACGGC TATAACGAAA
|
1151ATTACAAAAA CTATACGGCG TATATGCGGA AGGAAGCGCC TGAAGACGGA
|
1201GGCGGTAAAG ACATTGAAGC TTCTTTCGAC GATGAGGCCG TTATAGAGAC
|
1251TGAAGCAAAG CCGACGGATA TCCGCCACGT AAAAGAAATC GGACACATCG
|
1301ATTTGGTCTC CCATATTATT GGCGGGCGTT CCGTGGACGG CAGACCTGCA
|
1351GGCGGTATTG CGCCCGATGC GACGCTACAC ATAATGAATA CGAATGATGA
|
1401AACCAAGAAC GAAATGATGG TTGCAGCCAT CCGCAATGCA TGGGTCAAGC
|
1451TGGGCGAACG TGGCGTGCGC ATCGTCAATA ACAGTTTTGG AACAACATCG
|
1501AGGGCAGGCA CTGCCGACCT TTTCCAAATA GCCAATTCGG AGGAGCAGTA
|
1551CCGCCAAGCG TTGCTCGACT ATTCCGGCGG TGATAAAACA GACGAGGGTA
|
1601TCCGCCTGAT GCAACAGAGC GATTACGGCA ACCTGTCCTA CCACATCCGT
|
1651AATAAAAACA TGCTTTTCAT CTTTTCGACA GGCAATGACG CACAAGCTCA
|
1701GCCCAACACA TATGCCCTAT TGCCATTTTA TGAAAAAGAC GCTCAAAAAG
|
1751GCATTATCAC AGTCGCAGGC GTAGACCOCA GTGGAGAAAA GTTCAAACGG
|
1801GAAATGTATG GAGAACCGGG TACAGAACCG CTTGAGTATG GCTCCAACCA
|
1851TTGCGGAATT ACTGCCATGT GGTGCCTGTC GGCACCCTAT GAAGCAAGCG
|
1901TCCGTTTCAC CCGTACAAAC CCGATTCAAA TTGCCGGAAC ATCCTTTTCC
|
1951GCACCCATCG TAACCGGCAC GGCGGCTCTG CTGCTGCAGA AATACCCGTG
|
2001GATGAGCAAC GACAACCTGC GTACCACGTT GCTGACGACG GCTCAGGACA
|
2051TCGGTGCAGT CGGCGTGGAC AGCAAGTTCG GCTGGGGACT GCTGGATGCG
|
2101GGTAAGGCCA TGAACGGACC CGCGTCCTTT CCGTTCGGCG ACTTTACCGC
|
2151CGATACGAAA GGTACATCCG ATATTGCCTA CTCCTTCCGT AACGACATTT
|
2201CAGGCACGGG CGGCCTGATC AAAAAAGGCG GCAGCCAACT GCAACTGCAC
|
2251GGCAACAACA CCTATACGGG CAAAACCATT ATCGAAGGCG GTTCGCTGGT
|
2301GTTGTACGGC AACAACAAAT CGGATATGCG CGTCGAAACC AAAGGTGCGC
|
2351TGATTTATAA CGGGGCGGCA TCCGGCGGCA GCCTGAACAG CGACGGCATT
|
2401GTCTATCTGG CAGATACCGA CCAATCCGGC GCAAACGAAA CCGTACACAT
|
2451CAAAGGCAGT CTGCAGCTGG ACGGCAAAGG TACGCTGTAC ACACGTTTGG
|
2501GCAAACTGCT GAAAGTGGAC GGTACGGCGA TTATCGGCGG CAAGCTGTAC
|
2551ATGTCGGCAC GCGGCAAGGG GGCAGGCTAT CTCAACAGTA CCGGACGACG
|
2601TGTTCCCTTC CTGAGTGCCG CCAAAkTCGG GCAGGATTAT TCTTTCTTCA
|
2651CAAACATCGA AACCGACGGC GGCCTGCTGG CTTCCCTCGA CAGCGTCGAA
|
2701AAAACAGCGG GCAGTGAAGG CGACACGCTG TCCTATTATG TCCGTCGCGG
|
2751CAATGCGGCA CGGACTGCTT CGGCAGCGGC ACATTCCGCG CCCGCCGGTC
|
2801TGAAACACGC CGTAGAACAG GGCGGCAGCA ATCTGGAAAA CCTGATGGTC
|
2851GAACTGGATG CCTCCGAATC ATCCGCAACA CCCGAGACGG TTGAAACTGC
|
2901GGCAGCCGAC CGCACAGATA TGCCGGGCAT CCGCCCCTAC GGCGCAACTT
|
2951TCCGOGCAGC GGCAGCCGTA CAGCATGCGA ATGCCGCCGA CGGTGTACGC
|
3001ATCTTCAACA GTCTCGCCGC TACCGTCTAT GCCGACAGTA CCGCCGCCCA
|
3051TGCCGATATG CAGGGACGCC GCCTGAAAGC CGTATCGGAC GGGTTGGACC
|
3101ACAACGGCAC GGGTCTGCGC GTCATCGCGC AAACCCAACA GGACGGTGGA
|
3151ACGTGGGAAC AGGGCGGTGT TGAAGGCAAA ATGCGCGGCA GTACCCAAAC
|
3201CGTCGGCATT GCCGCGAAAA CCGGCGAAAA TAAGACAGCA GCCGCCACAC
|
3251TGGGCATGGG ACGCAGCACA TGGAGCGAAA ACAGTGCAAA TGCAAAAACC
|
3301GACAGCATTA GTCTGTTTGC AGGCATACGG CACGATGCGG GCGATATCGG
|
3351CTATCTCAAA GGCCTGTTCT CCTACGGACG CTACAAAAAC AGCATCAGCC
|
3401GCAGCACCGG TGCGGACGAA CATGCGGAAG GCAGCGTCAA CGGCACGCTG
|
3451ATGCAGCTGG GCGCACTGGG CGGTGTCAAC GTTCCGTTTG CCGCAACGGG
|
3501AGATTTGACG GTCGAAGGCG GTCTGCGCTA CGACCTGCTC AAACAGGATG
|
3551CATTCGCCGA AAAAGGCAGT GCTTTGGGCT GGAGCGGCAA CAGCCTCACT
|
3601GAAGGCACGC TGGTCGGACT CGCGGGTCTG AACCTGTCGC AACCCTTGAG
|
3651CGATAAAGCC GTCCTGTTTG CAACGGCGGG CGTGGAACGC GACCTGAACG
|
3701GACGCGACTA CACGGTAACG GGCGGCTTTA CCGGCGCGAC TGCAGCAACC
|
3751GGCAAGACGG GGGCACGCAA TATGCCGCAC ACCCGTCTGG TTGCCGGCCT
|
3801GGGCGCGGAT GTCGAATTCG GCAACGGCTG GAACGGCTTG GCACGTTACA
|
3851GCTACGCCGG TTCCAAACAG TACGGCAACC ACAGCGGACG AGTCGGCGTA
|
3901GGCTACCGGT TCCTCGAGCA CCACCACCAC CACCACTGA
|
1MVAADIGAQL ADALTAPLDH KDKGLQSLTL DQSVRKEKL KLAAQGAEKT
|
51YGNGDSLNTG KLKNDKVSRP DFIRQIEVDG QLITLESGEF QVYKQSHSAL
|
101TAFQTEQIQD SEHSGKNVAK RQFRIGDIAG EHTSFDKLPE GGRATYRGTA
|
151FGSDDAGGKL TYTIDFAAKQ GNGKIEHLKS PELNVDLAAA DIKPDGKRHA
|
201VISGSVLYNQ ARKGSYSLGI FGGKAQEVAG SABVKTVNGI RHIGLAAKQL
|
251EGSGGGGTSA PDPNAGGTGI GSNSRATTAK SAAVSYAGIK NEMCKDRBML
|
301CAGRDDVAVT DRDAKINAPP PNLHTGDFPN PIWAYKNLIN LKPAIEAGYT
|
351GRGVEVGIVD TGESVGSISF PELYGRKEHG YNENYKNYTA YHRKRAPEDG
|
401GGKDIEASFD DEAVIHTEAK PTDIRHVKBI GHIDLVSHII GGRSVDGRPA
|
451GGIAPDATLH IMNTNDETKN EMMVAAIRNA WVKLGERGVR IVNNSFGTTS
|
501RAGTADLPQI ANSEBQYRQA LLDYSGGDKT DEGIPLMQQS DYGNLSYHIR
|
551NKNHLFIFST GNDAQAQPNT YALLPFYEKD AQKGIITVAG VDRSGEKFKR
|
601EMYGBPGTRP LEYGSNHCGI TANWOLSAPY EASVEFTRTN PIQIAGTSFS
|
651APIVTGTAAL LLQKYPWHSN DNLRTTLLTT AQDIGAVGVD SKFGWGLLDA
|
701GKAMNGPASF PFGDFTADTK GTSDIAYSFR NDISGTGGLI KKGGSQLQLH
|
751GNNTYTGRTI IEGGSLVLYG NNKSDMRVET KGALIYNGAA SGGSLNSDGI
|
801VYLADTDQSG ANETVHIKGS LQLDGKGTLY TRLGKLLKVD GTAIIGGKLY
|
851MSARGKGAGY LNSTGRRVPF LSAAKIGQDY SFFTNIBTDG GLLASLDSVB
|
901KTAGSEGDTL SYYVRRGNAA RTASAAAHSA PAGLKHAVEQ GGSNLENLMV
|
951ELDASESSAT PETVETAAAD RTDMPGIRPY GATFRAAAAV QHANAADGVR
|
1001IFNSLAATVY ADSTAAHADH QGRRLKAVSD GLDHNGTGLR VIAQTQQDGG
|
1051TWBQGGVEGK MRGSTQTVGI AAKTGENTTA AATLGMGRST WSENSANART
|
1101DSISLFAGIR HDAGDIGYLK GLFSYGRYKN SISRSTGADE HAEGSVNGTL
|
1151MQLGALGGVN VPFAATGDLT VEGGLRYDLL KQDAFAEKGS ALGWSGNSLT
|
1201EGTLVGLAGL KLSQPLSDKA VLFATAGVER DLNGRDYTVT GGFTGATAAT
|
1251GKTGARNMPH TRLVAGLGAD VBFGNGWNGL ARYSYAGSKQ YGNHSGRVGV
|
1301GYRFLEHHHH HH*
|
ΔG741-ORF46.1
1ATGGTCGCCG CCGACATCGG TGCGGGGCTT GCCGATGCAC TAACCGCACC
|
51GCTQGACCAT AAAGACAAAG GTTTGCAGTC TTTGACGCTG GATCAGTCCG
|
101TCAGGAAAAA CGAGAAACTG AAGCTGGCGG CACAAGGTGC GGAAAAAACT
|
151TATGGAAACG GTGACAGCCT CAATACGGGC AAATTGAAGA ACGACAAGGT
|
201CAGCCGTTTC GACTTTATCC GCCAAATCGA AGTGGACGGG CAGCTCATTA
|
251CCTTGGAGAG TGGAGAGTTC CAAGTATACA AACAAAGCCA TTCCGCCTTA
|
301ACCGCCTTTC AGACCGAGCA AATACAAGAT TCGGAGCATT CCGGGAAGAT
|
351GGTTGCGAAA CGCCAGTTCA GAATCGGCGA CATAGCGOGC GAACATACAT
|
401CTTTTGACAA GCTTCCCGAA GGCGGCAGGG CGACATATCG CGGGACGGCG
|
451TTCGGTTCAG ACGATGCCGG CGGAAAACTG ACCTACACCA TAGATTTCGC
|
501CGCCAAGCAG GGAAACGGCA AAATCGAACA TTTGAAATCG CCAGAACTCA
|
551ATGTCGACCT GOCCGCCGCC GATATCAAGC CGGATGGAAA ACGCCATGCC
|
601GTCATCAGCG GTTCCGTCCT TTACAACCAA GCCGAGAGAG GCAGTTACTC
|
651CCTCGGTATC TTTGGCGGAA AAGCCCAGGA AGTTGCCGGC AGCGCGGAAG
|
701TGAAAACCGT AAACGGCATA CGCCATATCG GCCATGCCGC CAAGCAACTC
|
751GACGGTGGCG GAGGCACTGG ATCCTCAGAT TTGGCAAACG ATTCTTTTAT
|
801CCGGCAGGTT CTCGACCGTC AGCATTTCGA ACCCGACGGG AAATACCACC
|
851TATTCGGCAG CAGGGGGGAA CTTGCCGAGC GCAGCGGCCA TATCGGATTG
|
901GGAAAAATAC AAAGCCATCA GTTGGGCAAC CTGATGATTC AACAGGCGGC
|
951CATTAAAGGA AATATCGGCT ACATTGTCCG CTTTTCCGAT CACGGGCACG
|
1001AAGTCCATTC CCCCTTCGAC AACCATGCCT CACATTCCGA TTCTGATGAA
|
1051GCCGGTAGTC CCGTTGACGG ATTTAGCCTT TACCGCATCC ATTGGGACGG
|
1101ATACGAACAC CATCCCGCCG ACGGCTATGA CGGGCCACAG GGCGGCGGCT
|
1151ATCCCGCTCC CAAAGGCGCG AGGGATATAT ACAGCTAGGA CATAAAAGGC
|
1201GTTGCCCAAA ATATCCGCCT CAACCTGACC GACAACCGCA GCACCGGACA
|
1251ACGGCTTGCC GACCGTTTCC ACAATGCCGG TAGTATGCTG ACGCAAGGAG
|
1301TAGGCGACGG ATTCAAACGC GCCACCCGAT ACAGCCCCGA GCTGGACAGA
|
1351TCGGGCAATG CCGCCGAAGC CTTCAACGGC ACTGCAGATA TCGTTAAAAA
|
1401CATCATCGGC GCGGCAGGAG AAATTGTCGG CGCAGOCGAT GCCGTGCAGG
|
1451GCATAAGGGA AGGCTCAAAC ATTGCTGTCA TGCACGGCTT GGGTCTGCTT
|
1501TCCACCGAAA ACAAGATGGC GCGCATCAAC GATTTGGCAG ATATGGCGCA
|
1551ACTCAAAGAC TATGCCGCAG CAGCCATCCG CGATTGGGCA GTCCAAAACC
|
1601CCAATGCCGC ACAAGGCATA GAAGCCGTCA GCAATATCTT TATGGCAGCC
|
1651ATCCCCATCA AAGOQATTGG AGCTGTTCGG GGAAAATACG GCTTGGGCGG
|
1701CATCACGGCA CATCCTATCA AGCGGTCGCA GATGGGCGCG ATCGCATTGC
|
1751CGAAAGGGAA ATCCGCCGTC AGCGACAATT TTGCCGATGC GGCATACGCC
|
1801AAATACCCGT CCCCTTACCA TTCCCGAAAT ATCCGTTCAA ACTTGGAGCA
|
1851GCGTTACGGC AAAGAAAACA TCACCTCCTC AACCGTGCCG CCGTCAAACG
|
1901GCAAAAATGT CAAACTGGCA GACCAACGCC ACCCGAAGAC AGGCGTACCG
|
1951TTTGACGGTA AAGGGTTTCC GAATTTTGAG AAGCACGTGA AATATGATAC
|
2001GCTCGAGCAC CACCACCACC ACCACTGA
|
1MVAADIGAGL AflALTAPLDH KDKGLQSLTL DQSVRKNBKL KLAAQGAEKT
|
51YGNGDSLNTG KLKNDKVSEP DFIRQIEVDG QLITLESGEF QVYKQSHSAL
|
101TAFQTEQIQD SEHSGKMVAK RQFRIGDIAG EHTSFDKLPE GGEATYRGTA
|
151PGSDDAGGKL TYTIDFAAKQ GNGKIEHLKS PELNVDLAAA DIKPDGKRHA
|
201VISGSVLYNQ AEKGSYSLGI FGGKAQEVAG SAEVKTVNGI RHIGLAAKQL
|
251DGGGGTGSSD LANDSFIRQV LDRQHFEPDG KYHLFGSRGE LAERSGHIGL
|
301GKIQSHQLGN LHIQQAAIKG NIGYIVEPSD HGHEVESPFD NHASHSDSDE
|
351AGSPVDGPSL YRIHWDGYEH HPADGYDGPQ GGQYPAPKGA RDIYSYDIKG
|
401VAQNIRLNLT DNESTGQELA DRPHNAGSML TQGVGDGFKR ATRYSPBLDR
|
451SGNAAEAFNG TADIVKNIIG AAGEIVGAGD AVQGISEGSN IAVMHGLGLL
|
501STENKMAPJN DLADMAQLKD YAAAAIRDWA VQNPNAAQGI EAVSNIFMAA
|
551IPIKGIGAVR GKYGLGGITA HPIKRSQMGA IALPKGKSAV SDNFADAAYA
|
601KYPSPYHSRN IESNLEQRYG KENITSSTVP PSNGKNVKLA DQRHPRTGVP
|
651FDGKGPPNFE KHVKYDTLEH HHHHH
EXAMPLE 16
[0333] C-Terminal Fusions (‘Hybrids’) with 287/ΔG287
[0334] According to the invention, hybrids of two proteins A & B may be either NH2-A-B—COOH or NH2—B-A-COOH. The effect of this difference was investigated using protein 287 either C-terminal (in ‘287-His’ form) or N-terminal (in ΔG287 form—sequences shown above) to 919, 953 and ORF46.1. A panel of strains was used, including homologous strain 2996. FCA was used as adjuvant:
39|
|
287 & 919287 & 953287 & ORF46.1
StrainΔG287-919919-287ΔG287-953953-287ΔG287-46.146.1-287
|
299612800016000655368192163848192
BZ232256128128<4<4<4
10002048<4<4<4<4<4
MC5881921024163841024512128
NGH38320002048>20484096163844096
394/9840963225612812816
MenA (F6124)320002048>20483281921024
MenC (BZ133)64000>8192>8192<1681922048
|
[0335] Better bactericidal titres are generally seen with 287 at the N-terminus (in the ΔG form)
[0336] When fused to protein 961 [NH2-ΔG287-961COOH—sequence shown above], the resulting protein is insoluble and must be denatured and renatured for purification. Following renaturation, around 50% of the protein was found to remain insoluble. The soluble and insoluble proteins were compared, and much better bactericidal titres were obtained with the soluble protein (FCA as adjuvant):
40|
|
2996BZ232MC58NGH38F6124BZ133
|
|
Soluble655361284096>2048>20484096
Insoluble8192<4<416n.d.n.d.
|
[0337] Titres with the insoluble form were, however, improved by using alum adjuvant instead:
41|
|
Insoluble327681284096>2048>20482048
|
EXAMPLE 17
[0338] N-Terminal Fusions (‘Hybrids’) to 287
[0339] Expression of protein 287 as full-length with a C-terminal His-tag, or without its leader peptide but with a C-terminal His-tag, gives fairly low expression levels. Better expression is achieved using a N-terminal GST-fusion.
[0340] As an alternative to using GST as an N-terminal fusion partner, 287 was placed at the C-terminus of protein 919 (‘919-287’), of protein 953 (‘953-287’), and of proteins ORF46.1 (‘ORF46.1-287’). In both cases, the leader peptides were deleted, and the hybrids were direct in-frame fusions.
[0341] To generate the 953-287 hybrid, the leader peptides of the two proteins were omitted by designing the forward primer downstream from the leader of each sequence; the stop codon sequence was omitted in the 953 reverse primer but included in the 287 reverse primer. For the 953 gene, the 5′ and the 3′ primers used for amplification included a NdeI and a BamHI restriction sites respectively, whereas for the amplification of the 287 gene the 5′ and the 3′ primers included a BamHI and a XhoI restriction sites respectively. In this way a sequential directional cloning of the two genes in pET21b+, using NdeI-BamHI (to clone the first gene) and subsequently BamHI-XhoI (to clone the second gene) could be achieved.
[0342] The 919-287 hybrid was obtained by cloning the sequence coding for the mature portion of 287 into the XhoI site at the 3′-end of the 919-His clone in pET21b+. The primers used for amplification of the 287 gene were designed for introducing a SalI restriction site at the 5′- and a XhoI site at the 3′- of the PCR fragment. Since the cohesive ends produced by the SalI and XhoI restriction enzymes are compatible, the 287 PCR product digested with SalI-XhoI could be inserted in the pET21b-919 clone cleaved with XhoI.
[0343] The ORF46.1-287 hybrid was obtained similarly.
[0344] The bactericidal efficacy (homologous strain) of antibodies raised against the hybrid proteins was compared with antibodies raised against simple mixtures of the component antigens:
42|
|
Mixture with 287Hybrid with 287
|
|
9193200016000
95381928192
ORF46.11288192
|
[0345] Data for bactericidal activity against heterologous MenB strains and against serotypes A and C were also obtained for 919-287 and 953-287:
43|
|
919953ORF46.1
StrainMixtureHybridMixtureHybridMixtureHybrid
|
MC5851210245121024—1024
NGH381024204820484096—4096
BZ232512128102416——
MenA (F6124)5122048204832—1024
MenC (C11)>2048n.d.>2048n.d.—n.d.
MenC (BZ133)>4096>8192>4096<16—2048
|
[0346] Hybrids of ORF46.1 and 919 were also constructed. Best results (four-fold higher titre) were achieved with 919 at the N-terminus.
[0347] Hybrids 919-519His, ORF97-225His and 225-ORF97His were also tested These gave moderate ELISA fitres and bactericidal antibody responses.
EXAMPLE 18
[0348] The Leader Peptide from ORF4
[0349] As shown above, the leader peptide of ORF4 can be fused to the mature sequence of other proteins (e.g. proteins 287 and 919). It is able to direct lipidation in E.coli.
EXAMPLE 19
[0350] Domains in 564
[0351] The protein ‘564’ is very large (2073aa), and it is difficult to clone and express it in complete form. To facilitate expression, the protein has been divided into four domains, as shown in FIG. 8 (according to the MC58 sequence):
44|
|
Domain
ABCD
|
Amino Acids79-360361-731732-20442045-2073
|
[0352] These domains show the following homologies:
[0353] Domain A shows homology to other bacterial toxins:
45|
gb|AAG03431.1|AE004443_9probab1e hemagglutinin [Pseudoiuonas aeruginosa] (38%)
|
gb|AAC31981.1|(139897) HecA [Pectobacterium cbrysanthemi] (45%)
|
emb|CAA36409.1|(X52156) filamentous hemagglutinin [Bordetella pertussis] (31%)
|
gb|AAC79757.1|(AF057695) large supernatant protein1 [Haemophulus ducreyi] (26%)
|
gb|AAA25657.1|(M30186) HpmA precursor [Proteus mirabilis] (29%)
[0354] Domain B shows no homology, and is specific to 564.
[0355] Domain C shows homology to:
46|
gb|AAP84995.1|AE004032 HA-like secreted protein [Xylella fastidiosa] (33%)
|
gb|AAG05850.1|AE004673 hypothetical protein [Pseudomonas aeruginosa] (27%)
|
gb|AAFS8414.1AF237928 putative FHA [Pasteurella multocisida] (23%)
|
gb|AAC79757.1|(AF057695)large supernatant protein1 [Haemophilus ducreyi] (23%)
|
piR||S21010 FHA B precursor [Bordetella pertussis] (20%)
[0356] Domain D shows homology to other bacterial toxins:
[0357] gb|AAF84995.1|AE004032—14 HA-like secreted protein [Xylella fastidiosa] (29%)
[0358] Using the MC58 strain sequence, good intracellular expression of 564ab was obtained in the form of GST-fusions (no purification) and his-tagged protein; this domain-pair was also expressed as a lipoprotein, which showed moderate expression in the outer membrane/supernatant fraction.
[0359] The b domain showed moderate intracellular expression when expressed as a his-tagged product (no purification), and good expression as a GST-fusion.
[0360] The c domain showed good intracellular expression as a GST-fusion, but was insoluble. The d domain showed moderate intracellular expression as a his-tagged product (no purification). The cd protein domain-pair showed moderate intracellular expression (no purification) as a GST-fusion.
[0361] Good bactericidal assay titres were observed using the c domain and the bc pair.
EXAMPLE 20
[0362] The 919 Leader Peptide
[0363] The 20mer leader peptide from 919 is discussed in example 1 above:
[0364] MKKYLFRAAL YGIAAAILAA
[0365] As shown in example 1, deletion of this leader improves heterologous expression, as does substitution with the ORF4 leader peptide. The influence of the 919 leader on expression was investigated by fusing the coding sequence to the PhoC reporter gene from Morganella morganii [Thaller et al. (1994) Microbiology 140:1341-1350]. The construct was cloned in the pET21-b plasmid between the NdeI and XhoI sites (FIG. 9):
47|
1 MKKYLFRAAL YGIAAAILAA AIPAGNDATT KPDLYYLKNB
QAIDSLKLLP
51 PPPEVGSIQF LNDQAMYEKG RMLRNTERGK QAQADADLAA
GGVATAFSGA
101 FGYPITEKDS PELYKLLTNM IEDAGDLATR SAKEHYMRIR
PFAFYGTETC
151 NTKDQKKI1ST NGSYPSGHTS IGWATALVLA EVNPANQDAI
LEEGYQLGQS
201 RVICGYHWQS DVDAARIVGS AAVATLHSDP AFQAQLAKAX
QEFAQKSQK*
[0366] The level of expression of PhoC from this plasmid is >200-fold lower than that found for the same construct but containing the native PhoC signal peptide. The same result was obtained even after substitution of the T7 promoter with the E.coli Plac promoter. This means that the influence of the 919 leader sequence on expression does not depend on the promoter used.
[0367] In order to investigate if the results observed were due to some peculiarity of the 919 signal peptide nucleotide sequence (secondary structure formation, sensitivity to RNAases, etc.) or to protein instability induced by the presence of this signal peptide, a number of mutants were generated. The approach used was a substitution of nucleotides of the 919 signal peptide sequence by cloning synthetic linkers containing degenerate codons. In this way, mutants were obtained with nucleotide and/or amino acid substitutions.
[0368] Two different linkers were used, designed to produce mutations in two different regions of the 919 signal peptide sequence, in the first 19 base pairs (L1) and between bases 20-36 (S1).
48|
L1: 5′ T ATG AAa/g TAc/t c/tTN TTt/c a/cGC GCC GCC CTG TAC GGC ATC GCC GCC
GCC ATC CTC GCC GCC GCG ATC CC 3′
|
S1: 5′ T ATG AAA AAA TAC CTA TTC CGa/g GCN GCN c/tTa/g TAc/t GGc/g ATC GCC
GCC GCC ATC CTC GCC GCC GCG ATC CC 3′
[0369] The alignment of some of the mutants obtained is given below.
49|
L1 mutants:
9L1-aATGAAAAATACTTCCGCGCCGCC˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜
|
9L1-eATGAAAAAATACTTTTTCCGCGCCGCC˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜
|
9L1-dATGAAAAAATACTTTTTCCGCGCCGCC˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜
|
9L1-fATGAAAAAATATCTCTTTAGCGCCGCCCTGTACGGCATCGCCGCCGCCATCCTCGCCGCC
|
919spATGAAAAAATACCTATTCCGCGCCGCCCTGTACGGCATCGCCGCCGCCATCCTCGCCGCC
|
9L1aMKKYLFSAA˜˜˜˜˜˜˜˜˜˜˜
|
9L1eMKKYFFRAA˜˜˜˜˜˜˜˜˜˜˜
|
9L1dMKKYFFRAA˜˜˜˜˜˜˜˜˜˜˜
|
9L1fMKKYLFSAALYGIAAAILAA
|
919spMKKYLFRAALYGIAAAILAA (i.e. native signal peptide)
S1 mutants:
9S1-eATGAAAAAATACCTATTC..................ATCGCCGCCGCCATCCTCGCCGCC
|
9S1-cATGAAAAAATACCTATTCCGAGCTGCCCAATACGGCATCGCCGCCGCCATCCTCGCCGCC
|
9S1-bATGAAAAAATACCTATTCCGGGCCGCCCAATACGGCATCGCCGCCGCCATCCTCGCCGCC
|
9S1-iATGAAAAAATACCTATTCCGGGCGGCTTTGTACGGGATCGCCGCCGCCATCCTCGCCGCC
|
919spATGAAAAAATACCTATTCCGCGCCGCCCTGTACGGCATCGCCGCCGCCATCCTCGCCGCC
|
9S1eMKKYLF......IAAAILAA
|
9S1cMKKYLFRAAQYGIAAAILAA
|
9S1bMKKYLFRAAQYGIAAAILAA
|
9S1iMKKYLFRAALYGIAAAILAA
|
919spMKKYLFRAALYGIAAAILAA
[0370] As shown in the sequences alignments, most of the mutants analysed contain in-frame deletions which were unexpectedly produced by the host cells.
[0371] Selection of the mutants was performed by transforming E. coli BL21(DE3) cells with DNA prepared from a mixture of L1 and S1 mutated clones. Single transformants were screened for high PhoC activity by streaking them onto LB plates containing 100 μg/ml ampicillin, 50 μg/ml methyl green, 1 mg/ml PDP (phenolphthaleindiphosphate). On this medium PhoC-producing cells become green (FIG. 10).
[0372] A quantitative analysis of PhoC produced by these mutants was carried out in liquid medium using pNPP as a substrate for PhoC activity. The specific activities measured in cell extracts and supernatants of mutants grown in liquid medium for 0, 30, 90, 180 min. were:
50|
|
03090180
|
|
CELL EXTRACTS
control0.000.000.000.00
9phoC1.111.113.334.44
9S1e102.12111.00149.85172.05
9L1a206.46111.0094.3583.25
9L1d5.114.774.003.11
9L1f27.7594.3582.1436.63
9S1b156.51111.0072.1528.86
9S1c72.1533.3021.0914.43
9S1i156.5183.2555.5026.64
phoCwt194.25180.93149.85142.08
SUPERNATANTS
control0.000.000.000.00
9phoC0.330.000.000.00
9S1e0.110.220.440.89
9L1a4.885.995.997.22
9L1d0.110.110.110.11
9L1f0.110.220.110.11
9S1b1.441.441.441.67
9S1c0.440.780.560.67
9S1i0.220.440.220.78
phoCwt34.4143.2987.69177.60
|
[0373] Some of the mutants produce high amounts of PhoC and in particular, mutant 9L1a can secrete PhoC in the culture medium. This is noteworthy since the signal peptide sequence of this mutant is only 9 amino acids long. This is the shortest signal peptide described to date.
EXAMPLE 21
[0374] C-Terminal Deletions of Maf-Related Proteins
[0375] MafB-related proteins include 730, ORF46 and ORF29.
[0376] The 730 protein from MC58 has the following sequence:
51|
1 VKPLRRLTNL LAACAVAAAA LIQPALAADL AQDPFITDNA
QRQHYEPGGK
|
51 YHLFGDPRGS VSDRTGKINV IQDYTHQMGN LLIQQANING
TIGYHTRFSG
|
101 HGHEBHAPFD NHAADSASEE KGNVDEGPTV YRLNWEGHEH
HPADAYDGPK
|
151 GGNYPKPTGA RDEYTYHVNG TARSIKTJNPT DTRSIRQRIS
DNYSNLGSNF
|
201 SDRADEANRK NFEHNAKLDR WGNBNEFING VAAQALNPFI
SAGEALGIGD
|
251 ILYGTRYAID KAAMRNIAPL PAEGKFAVIG GLGSVAGFEK
NTREAVDRWI
|
301 QENPNAAETV EAVPNVAAAA KVAKLAKAAK PGKAAVSGDF
ADSYKKKLAL
|
351 SDSARQLYQN AKYIREALDIH YEDLIRRXTD GSSKFINGRE
IDAVTNDALI
|
401 QAKRTISAID KPKNFLNQKN RKQIKATIEA ANQQGKRAEF
WFKYGVHSQV
|
451 KSYIESKGGI VKTGLGD*
[0377] The leader peptide is underlined.
[0378] 730 shows similar features to ORF46 (see example 8 above):
[0379] as for Orf46, the conservation of the 730 sequence among MenB, MenA and gonococcus is high (>80%) only for the N-terminal portion. The C-terminus, from ˜340, is highly divergent.
[0380] its predicted secondary structure contains a hydrophobic segment spanning the central region of the molecule (aa. 227-247).
[0381] expression of the full-length gene in E. coli gives very low yields of protein. Expression from tagged or untagged constructs where the signal peptide sequence has been omitted has a toxic effect on the host cells. In other words, the presence of the full-length mature protein in the cytoplasm is highly toxic for the host cell while its translocation to the periplasm (mediated by the signal peptide) has no detectable effect on cell viability. This “intracellular toxicity” of 730 is particularly high since clones for expression of the leaderless 730 can only be obtained at very low frequency using a recA genetic background (E. coli strains: HB 101 for cloning; HMS 174(DE3) for expression).
[0382] To overcome this toxicity, a similar approach was used for 730 as described in example 8 for ORF46. Four C-terminal truncated forms were obtained, each of which is well expressed. All were obtained from intracellular expression of His-tagged leaderless 730.
[0383] Form A consists of the N-terminal hydrophilic region of the mature protein (aa 28-226). This was purified as a soluble His-tagged product, having a higher-than-expected MW.
[0384] Form B extends to the end of the region conserved between serogroups (aa 28-340). This was purified as an insoluble His-tagged product.
[0385] The C-terminal truncated forms named C1 and C2 were obtained after screening for clones expressing high levels of 730-His clones in strain HMS174(DE3). Briefly, the pET21b plasmid containing the His-tagged sequence coding for the full-length mature 730 protein was used to transform the recA strain HMS174(DE3). Transformants were obtained at low frequency which showed two phenotypes: large colonies and very small colonies. Several large and small colonies were analysed for expression of the 730-His clone. Only cells from large colonies over-expressed a protein recognised by anti-730A antibodies. However the protein over-expressed in different clones showed differences in molecular mass. Sequencing of two of the clones revealed that in both cases integration of an E. coli IS sequence had occurred within the sequence coding for the C terminal region of 730. The two integration events have produced in-frame fusion with 1 additional codon in the case of C1, and 12 additional codons in the case of C2 (FIG. 11). The resulting “mutant” forms of 730 have the following sequences:
52|
730-C1 (due to an IS1 insertion - FIG. 11A)
1 MADLAQDPFI TDNAQRQHYE PGGXYHLFGD PRGSVSDRTG
KINVIQDYTH
|
51 QMGNLLIQQA NINGTIGYHT RFSGHGHEEH APFDNHAADS
ASEEKGNVDE
|
101 GFTVYRLNWE GHEHHPADAY DGPKGGNYPK PTGARDEYTY
HVNGTARSIK
|
151 LNPTDTRSIR QRISDNYSNL GSNFSDRADB ANRKMFEHNA
KLDRWGNSNB
|
201 FINGVAAGAL NPFISAGEAL GIGDILYGTR YAIDKAAMRN
IAPLPABGKF
|
251 AVIGGLGSVA GFEKNTREAV DRWIQENPNA AETVEAVFNV
AAAAKVAKLA
|
301 KAAKPGKAAV SGDFADSYKK KLALSDSARQ LYQNAKYREA
LDIHYEDLIR
|
351 RKTDGSSKFI NGREIDAVTN DALIQAR*
[0386] The additional amino acid produced by the insertion is underlined.
53|
730-c2 (due to en IS5 insertion - FIG. 11B)
1 MADLAQDPFI TDNAQRQHYE PGGKYHLFGD PRGSVSDRTG
KINVIQDYTH
|
51 QMGNLLIQQA NINGTIGYHT RFSGIIGHEEH APPDNHAADS
ASHEKGNVDE
|
101 GFTVYELNWE GHEHHPADAY DGPKGGNYPK PTGARDEYTY
HVNGTARSIK
|
151 LNPTDTRSIR QRISDNYSNL GSNFSDRADE ANRKMFEHNA
KLDRWGNSME
|
201 FINGVAAGAL NPFISAGEAL GIGDILYGTR YAIDKAAMRN
IAPLPAEGKF
|
251 AVIGGLGSVA GFEKNTREAV DRWIQENPNA ABTVBAVFNV
AAAAKVAKLA
|
301 KAAKPGKAAV SGDFADSYKK KLALSDSARQ LYQNAXYRHA
LGKVRISGBI
|
351 LLG*
[0387] The additional amino acids produced by the insertion are underlined.
[0388] In conclusion, intracellular expression of the 730-C1 form gives very high level of protein and has no toxic effect on the host cells, whereas the presence of the native C-terminus is toxic. These data suggest that the “intracellular toxicity” of 730 is associated with the C-terminal 65 amino acids of the protein.
[0389] Equivalent truncation of ORF29 to the first 231 or 368 amino acids has been performed, using expression with or without the leader peptide (amino acids 1-26; deletion gives cytoplasmic expression) and with or without a His-tag.
EXAMPLE 22
[0390] Domains in 961
[0391] As described in example 9 above, the GST-fusion of 961 was the best-expressed in E.coli. To improve expression, the protein was divided into domains (FIG. 12).
[0392] The domains of 961 were designed on the basis of YadA (an adhesin produced by Yersinia which has been demonstrated to be an adhesin localized on the bacterial surface that forms oligomers that generate surface projection [Hoiczyk et al. (2000) EMBO J 19:5989-99]) and are: leader peptide, head domain, coiled-coil region (stalk), and membrane anchor domain.
[0393] These domains were expressed with or without the leader peptide, and optionally fused either to C-terminal His-tag or to N-terminal GST. E.coli clones expressing different domains of 961 were analyzed by SDS-PAGE and western blot for the production and localization of the expressed protein, from over-night (o/n) culture or after 3 hours induction with IPTG. The results were:
54|
|
Total lysatePeriplasmSupernatantOMV
(Western(Western(WesternSDS-
Blot)Blot)Blot)PAGE
|
961 (o/n)−−−
961 (IPTG)+/−−−
961-L (o/n)+−−+
961-L (IPTG)+−−+
961c-L (o/n)−−−
961c-L (IPTG)+++
961Δ1-L (o/n)−−−
961Δ1-L (IPTG)+−−+
|
[0394] The results show that in E.coli:
[0395] 961-L is highly expressed and localized on the outer membrane. By western blot analysis two specific bands have been detected: one at ˜45 kDa (the predicted molecular weight) and one at ˜180 kDa, indicating that 961-L can form oligomers. Additionally, these aggregates are more expressed in the over-night culture (without IPTG induction). OMV preparations of this clone were used to immunize mice and serum was obtained. Using overnight culture (predominantly by oligomeric form) the serum was bactericidal; the IPTG-induced culture (predominantly monomeric) was not bactericidal.
[0396] 961Δ1-L (with a partial deletion in the anchor region) is highly expressed and localized on the outer membrane, but does not form oligomers;
[0397] the 961c-L (without the anchor region) is produced in soluble form and exported in the supernatant.
[0398] Titres in ELISA and in the serum bactericidal assay using His-fusions were as follows:
55|
|
ELISABactericidal
|
|
961a (aa 24-268)243974096
961b (aa 269-405)776364
961c-L297708192
961c (2996)30774>65536
961c (MC58)3343716384
961d26069>65536
|
[0399]
E.coli
clones expressing different forms of 961 (961, 961-L, 961Δ1-L and 961c-L) were used to investigate if the 961 is an adhesin (cf. YadA). An adhesion assay was performed using (a) the human epithelial cells and (b) E.coli clones after either over-night culture or three hours IPTG induction. 961-L grown over-night (961Δ1-L) and IPTG-induced 961c-L (the clones expressing protein on surface) adhere to human epithelial cells.
[0400] 961c was also used in hybrid proteins (see above). As 961 and its domain variants direct efficient expression, they are ideally suited as the N-terminal portion of a hybrid protein.
EXAMPLE 23
[0401] Further Hybrids
[0402] Further hybrid proteins of the invention are shown below (see also FIG. 14). These are advantageous when compared to the individual proteins:
56|
ORF46.1-741
1ATGTCAGATT TGGCAAACGA TTCTTTTATC CGGCAGGTTC TCGACCGTCA
|
51GCATTTCGAA CCCGACGGGA AATACCACCT ATTCGGCAGC AGGGGGGAAC
|
101TTGCCGAGCG CAGCGGCCAT ATCGGATTGG GAAAAATACA AAGCCATCAG
|
151TTGGGCAACC TGATGATTCA ACAGGCGGCC ATTAAAGGAA ATATCGGCTA
|
201CATTGTCCGC TTTTCCGATC ACGGGCACGA AGTCCATTCC CCCTTCGACA
|
251ACCATGCCTC ACATTCCGAT TCTGATGAAG CCGGTAGTCC CGTTGACGGA
|
301TTTAGCCTTT ACCGCATCCA TTGGGACGGA TACGAACACC ATCCCGCCGA
|
351CGGCTATGAC GGGCCACAGG GCGGCGGCTA TCCCGCTCCC AAAGGCGCGA
|
401GGGATATATA CAGCTACGAC ATAAAAGGCG TTGCCCAAAA TATCCGCCTC
|
451AACCTGACCG ACAACCGCAG CACCGGACAA CGGCTTGCCG ACCGTTTCCA
|
501CAATGCCGGT AGTATGCTGA CGCAAGGAGT AGGCGACGGA TTCAAACGCG
|
551CCACCCGATA CAGCCCCGAG CTGGACAGAT CGGGCAATGC CGCCGAAGCC
|
601TTCAACGGCA CTGCAGATAT CGTTAAAAAC ATCATCGGCG CGGCAGGAGA
|
651AATTGTCGGC GCAGGCGATG CCGTGCAGGG CATAAGCGAA GGCTCAAACA
|
701TTGCTGTCAT GCACGGCTTG GGTCTGCTTT CCACCGAAAA CAAGATGGCG
|
751CGCATCAACG ATTTGGCAGA TATGGCGCAA CTCAAAGACT ATGCCGCAGC
|
801AGCCATCCGC GATTGGGCAG TCCAAAACCC CAATGCCGCA CAAGGCATAG
|
851AAGCCGTCAG CAATATCTTT ATGGCAGCCA TCCCCATCAA AGGGATTGGA
|
901GCTGTTCGGG GAAAATACGG CTTGGGCGGC ATCACGGCAC ATCCTATCAA
|
951GCGGTCGCAG ATGGGCGCGA TCGCATTGCC GAAAGGGAAA TCCGCCGTCA
|
1001GCGACAATTT TGCCGATGCG GCATACGCCA AATACCCGTC CCCTTACCAT
|
1051TCCCGAAATA TCCGTTCAAA CTTGGAGCAG CGTTACGGCA AAGAAAACAT
|
1101CACCTCCTCA ACCGTGCCGC CGTCAAACGG CAAAAATGTC AAACTGGCAG
|
1151ACCAACGCCA CCCGAAGACA GGCGTACCGT TTGACGGTAA AGGGTTTCCG
|
1201AATTTTGAGA AGCACGTGAA ATATGATACG GGATCCGGAG GGGGTGGTGT
|
1251CGCCGCCGAC ATCGGTGCGG GGCTTGCCGA TGCACTAACC GCACCGCTCG
|
1301ACCATAAAGA CAAAGGTTTG CAGTCTTTGA CGCTGGATCA GTCCGTCAGG
|
1351AAAAACGAGA AACTGAAGCT GGCGGCACAA GGTGCGGAAA AAACTTATGG
|
1402AAACGGTGAC AGCCTCAATA CGGGCAAAAT GAAGAACGAC AAGGTCAGCC
|
1451GTTTCQACTT TATCCGCCAA ATCGAAGTGG ACGGGCAGCT CATTACCTTG
|
1501GAGAGTGGAG AGTTCCAAGT ATACAAACAA AGCCATTCCG CCTTAACCGC
|
1551CTTTCAGACC GAGCAAATAC AAGATTCGGA GCATTCCGGG AAGATGGTTG
|
1601CGAAACGCCA GTTCAGAATC GGCGACATAG CGGGCGAAQA TACATCTTTT
|
1651GACAAGCTTC CCGAAGGCGG CAGGGCGACA TATCGCGGGA CGGCGTTCGG
|
1701TTCAGACGAT GCCGGCGGAA AACTGACCTA CACCATAGAT TTCGCCGCCA
|
1751AGCAGGGAAA CGGCAAAATC GAACATTTGA AATCGCCAGA ACTCAATGTC
|
1801GACCTGGCCG CCGCCGATAT CAAGCCGGAT GGAAAACGCC ATGCCGTCAT
|
1851CAGCGGTTCC GTCCTTTACA ACCAAGCCGA GAAAGGCAGT TACTCCCTCG
|
1901GTATCTTTGG CGGAAAAGCC CAGGAAGTTG CCGGCAGCGC GGAAGTGAAA
|
1951ACCGTAAACG GCATACGCCA TATCGGCCTT GCCGCCAAGC AACTCGAGCA
|
2001CCACCACCAC CACCACTGA
|
1MSDLANDSFI RQVLDRQHFE PDGKYHLFGS RGELABRSGH IGLGKIQSHQ
|
51LGNIJMIQQAA IKGNIGYIVR FSDHGHEVHS PFDNHASHSD SDEAGSPVDG
|
101FSLYRIHWDG YEHHPADGYD GPQGGGYPAP KGARDIYSYD IKGVAQNIEL
|
151NLTDNRSTGQ RLADRFHNAG SMLTQGVGDG FKRATRYSPE LDRSGNAAEA
|
201PNGTADIVKN IIGAAGEIVG AGDAVQGISE GSNIAVMHGL GLLSTENKMA
|
251RINDLADMAQ IJKDYAAAAIR DWAVQNPNAA QGIEAVSNIF HAAIPIKGIG
|
301AVRGKYGLGG IThHPIKRSQ MGAIALPKGK SAVSDNFADA AYAKYPSPYH
|
351SRNIRSNLEQ RYGKENITSS TVPPSNGKNV KLADQRHPKT GVPFDGKGFP
|
401NFEKHVKYDT GSGGGGVAAD IGAGLADALT APLDHKDKGL QSLTLDQSVR
|
451RNEKLKLAAQ GABKTYGNGD SLNTGKLKND KVSRPDFIRQ IEVDGQLITL
|
501ESGEFQVYKQ SHSALTAPQT BQIQDSEHSG KMVAKRQPRI GDIAGEHTSP
|
551DKLPBGGRAT YRGTAFGSDD AGGKLTYTID FAAKQGNGKI EELKSPBLNV
|
601DLAAADIKPD GKRHAVISGS VLYNQAEKGS YSLGIFGGKA QEVAGSABVK
|
651TVNGIEHIGL AAKQLEHHHH HH*
|
ORF46.1-961
ATGTCAGATT TGGCAAACGA TTCTTTTATC CGGCAGGTTC TCGACCGTCA
|
51GCATTTCGAA CCCGACGGGA AATACCACCT ATTCGGCAGC AGGGGGGAAC
|
101TTGCCGAGCG CAGCGGCCAT ATOGGATTOG GAAAAATACA AAGCCATCAG
|
151TTGGGCAACC TGATGATTCA ACAGGCGGCC ATTAAAGGAA ATATCGGCTA
|
201CATTGTCCGC TTTTCCGATC ACGGGCACGA AGTCCATTCC CCCTTCGACA
|
251ACCATGCCTC ACATTCCGAT TCTGATGAAG CCGGTAGTCC CGTTGACGGA
|
301TTTAGCCTTT ACCGCATCCA TTGGGACGGA TACGAACACC ATCCCGCCGA
|
351CGGCTATGAC GGGCCACAGG GCGGCGGCTA TCCCGCTCCC AAAGGCGCGA
|
401GGGATATATA CAGOTACOAC ATAAAAGGCG TTGCCCAAAA TATCCGCCTC
|
451AACCTGACCG ACAACCGCAG CACCGGACAA CGGCTTGCCG ACCGTTTCCA
|
501CAATGCCGGT AGTATGCTGA CGCAAGGAGT AGGCGACGGA TTCAAACGCG
|
551CCACCCGATA CAGCCCCGAG CTGGACAGAT CGGGCAATGC CGCCGAAGCC
|
601TTCAACGGCA CTGCAGATAT CGTTAAAAAC ATCATCGGCG CGGCAGGAGA
|
651AATTGTCGGC GCAGGCGATG CCGTGCAGGG CATAAGCGAA GGCTCAAACA
|
701TTGCTGTCAT GCACGGCTTG GGTCTGCTTT CCACCGAAAA CAAGATGGCG
|
751CGCATCAACG ATTTGGCAGA TATGGCGCAA CTCAAAGACT ATGCCGCAGC
|
801AGCCATCCGC GATTGGGCAG TCCAAAACCC CAATGCCGCA CAAGGCATAG
|
851AAGCCGTCAG CAATATCTTT ATGGCAGCCA TCCCCATCAA AGGGATTGGA
|
901GCTGTTCGGG GAAAATACGG CTTGGGCGGC ATCACGGCAC ATCCTATCAA
|
951GCGGTCGCAG ATGGGCGCGA TCGCATTGCC GAAAGGGAAA TCCGCCGTCA
|
1001GCGACAATTT TGCCGATGCG GCATACGCCA AATACCCGTC CCCTTACCAT
|
1051TCCCGAAATA TCCGTTCAAA CTTGGAGCAG CGTTACGGCA AAGAAAACAT
|
1101CACCTCCTCA ACCGTGCCGC CGTCAAACGG CAAAAATGTC AAACTGGCAG
|
1151ACCAACGCCA CCCGAAGACA GGCGTACCGT TTGACGGTAA AGGGTTTCCG
|
1201AATTTTGAGA AGCACGTGAA ATATGATACG GGATCCGGAG GAGGAGGAGC
|
1251CACAAACGAC GACGATGTTA AAAAAGCTGC CACTGTGGCC ATTGCTGCTG
|
1301CCTACAACAA TGGCCAAGAA ATCAACGGTT TCAAAGCTGG AGAGACCATC
|
1351TACGACATTG ATGAAGACGG CACAATTACC AAAAAAGACG CAACTGCAGC
|
1401CGATGTTGAA GCCGACGACT TTAAAGGTCT GGGTCTGAAA AAAGTCGTGA
|
1451CTAACCTGAC CAAAACCGTC AATGAAAACA AACAAAACGT CGATGCCAAA
|
1501GTAAAAGCTG CAGAATCTGA AATAGAAAAG TTAACAACCA AGTTAGCAGA
|
1551CACTGATGCC GCTTTAGCAG ATACTGATGC CGCTCTGGAT GCAACCACCA
|
1601ACGCCTTGAA TAAATTGGGA GAAAATATAA CGACATTTGC TGAAGAGACT
|
1651AAGACAAATA TCGTAAAAAT TGATGAAAAA TTAGAAGCCG TGGCTGATAC
|
1701CGTCGACAAG CATGCCGAAG CATTCAACGA TATCGCCGAT TCATTGGATG
|
1751AAACCAACAC TAAGGCAGAC GAAGCCGTCA AAACCGCCAA TGAAGCCAAA
|
1801CAGACGGCCG AAGAAACCAA ACAAAACGTC GATGCCAAAG TAAAAGCTGC
|
1851AGAAACTGCA GCAGGCAAAG CCGAAGCTGC CGCTGGCACA GCTAATACTG
|
1901CAGCCGACAA GGCCGAAGCT GTCGCTGCAA AAGTTACCGA CATCAAAGCT
|
1951GATATCGCTA CGAACAAAGA TAATATTGCT AAAAAAGCAA ACAGTGCCGA
|
2001CGTGTACACC AGAGAAGAGT CTGACAGCAA ATTTGTCAGA ATTGATGGTC
|
2051TGAACGCTAC TACCGAAAAA TTGGACACAC GCTTGGCTTC TGCTGAAAAA
|
2101TCCATTGCCG ATCACGATAC TCGCCTGAAC GGTTTGGATA AAACAGTGTC
|
2151AGACCTGCGC AAAGAAACCC GCCAAGGCCT TGCAGAACAA GCCGCGCTCT
|
2201CCGGTCTGTT CCAACCTTAC AACGTGGGTC GGTTCAATGT AACGGCTGCA
|
2251GTCGGCGGCT ACAAATCCGA ATCGGCAGTC GCCATCGGTA CCGGCTTCCG
|
2301CTTTACCGAA AACTTTGCCG CCAAAGCAGG CGTGGCAGTC GGCACTTCGT
|
2351CCGGTTCTTC CGCAGCCTAC CATGTCGGCG TCAATTACGA GTGGCTCGAG
|
2401CACCACCACC ACCACCACTG A
|
1MSDLPJWSFI RQVLDRQHFE PDGKYHLFGS RGELAERSGH IGLGKIQSHQ
|
51LGNLHIQQAA IKGNIGYIVR FSDHGHEVHS PFDNHASHSD SDEAGSPVDG
|
101FSLYPJHWDG YEHHPADGYD GPQGGGYPAP KGAEDIYSYD IKGVAQNIEL
|
151NLTDNRSTGQ RLADRFHNAG BMLTQGVGDG FKRATRYSPE LDRSGNAAEA
|
201FNGTADIVKN IIGAAGBIVG AGDAVQGISB GSNIAVMHGL GLLSTENKMA
|
251RINflLADMAQ LKDYAAAAIR DWAVQNPNAA QGIEAVSNIF MAAIPIKGIG
|
301AVRGKYGLGG ITAHPIKRSQ HGAIALPKGK SAVBDNFADA AYAKYPSPYH
|
351SRNIRBNLEQ RYGXENITSS TVPPSNGKNV KLADQRHPKT GVPFDGKGFP
|
401NFEKHVKYDT GSGGGGATND DDVKKAATVA IAAAYNNGQE INGFKAGETI
|
451YDIDEDGTIT KKDATAADVE ADDPKGLGLK KVVTNLTKTV NENKQNVDAK
|
501VKAAESHIEK LTTKLADTDA ALADTDAALD ATTNALNKLG ENITTFAEET
|
551KTNIVKIDEK LEAVADTVDK HAEAFNDIAD SLDETNTKAD EAVKTANEAK
|
601QTAEETKQNV DAKVKAABTA AGKAEAAAGT ANTAADKAEA VAAKVTDIKA
|
651DIATNKDNIA KKMISADVYT REESDSKFVR IDGLNATTEK LDTPLASAEK
|
701SIADHDTELN GLDRTVSDLR KETRQGLAEQ AALSGLPQPY NVGRFNVTAA
|
751VGGYKSESAV AIGTGFRFTE NKAAKAGVAV GTSSGSSAAY HVGVNYEWLE
|
801HHHHHH*
|
ORF46.1-961c
1ATGTCAGATT TGGCAAACGA TTCTTTTATC CGGCAGGTTC TCGACCGTCA
|
51GCATTTCGAA CCCGACGGGA AATACCACCT ATTCGGCAGC AGGGGGGAAC
|
101TTGCCGAGCG CAGCGGCCAT ATCGGATTGG GAAAAATACA AAGCCATCAG
|
151TTGGGCAACC TGATGATTCA ACAGGCGGCC ATTAAAGGAA ATATCGGCTA
|
201CATTGTCCGC TTTTCCQATC ACGGGCACGA AGTCCATTCC CCCTTCGACA
|
251ACCATGCCTC ACATTCCGAT TCTGATGAAG CCGGTAGTCC CGTTGACGGA
|
301TTTAGCCTTT ACCGCATCCA TTGGGACGGA TACGAACACC ATCCCGCCGA
|
351CGGCTATGAC GGGCCACAGG GCGGCGGCTA TCCCGCTCCC AAAGGCGCGA
|
401GGGATATATA CAGCTACGAC ATAAAAGGCG TTGCCCAAAA TATCCGCCTC
|
451AACCTGACCG ACAACCGCAG CACCGGACAA CGGCTTGCCG ACCGTTTCCA
|
501CAATGCCGGT AGTATGCTGA CGCAAGGAGT AGGCGACGGA TTCAAACGCG
|
551CCACCCGATA CAGCCCCGAG CTGGACAGAT CGGGCAATGC CGCCGAAGCC
|
601TTCAACGGCA CTGCAGATAT CGTTAAAAAC ATCATCGGCG CGGCAGGAGA
|
651AATTGTCGGC GCAGGCGATG CCGTGCAGGG CATAAGCGAA GGCTCAAACA
|
701TTGCTGTCAT GCACGGCTTG GGTCTGCTTT CCACCGAAAA CAAGATGGCG
|
751CGCATCAACG ATTTGGCAGA TATGGCGCAA CTCAAAGACT ATGCCGCAGC
|
801AGCCATCCGC GATTGGGCAG TCCAAAACCC CAATGCCGCA CAAGGCATAG
|
851AAGCCGTCAG CAATATCTTT ATGGCAGCCA TCCCCATCAA AGGGATTGGA
|
901GCTGTTCGGG QAAAATACGG CTTGGGCGGC ATCACGGCAC ATCCTATCAA
|
951GCGGTCGCAG ATGGGCGCGA TCGCATTGCC GAAAGGGAAA TCCGCCGTCA
|
1001GCGACAATTT TGCCGATGCG GCATACGCCA AATACCCGTC CCCTTACCAT
|
1051TCCCGAAATA TCCGTTCAAA CTTGGAGCAG CGTTACGGCA AAGAAAACAT
|
1101CACCTCCTCA ACCGTGCCGC CGTCAAACGG CAAAAATGTC AAACTGGCAQ
|
1151ACCAACGCCA CCCGAAGACA GGCGTACCGT TTGACGGTAA AGGGTTTCCG
|
1201AATTTTGAGA AGCACGTGAA ATATGATACG GGATCCGGAG GAGGAGGAGC
|
1251CACAAACGAC GACGATGTTA AAAAAGCTGC CACTGTGGCC ATTGCTGCTG
|
1301CCTACAACAA TGGCCAAGAA ATCAACGGTT TCAAAGCTOG AGAGACCATC
|
1351TACGACATTG ATGAAGACGG CACAATTACC AAAAAAGACG CAACTGCAGC
|
1401CGATGTTGAA GCCGACGACT TTAAAGGTCT GGGTCTGAAA AAAGTCGTGA
|
1451CTAACCTGAC CAAAACCGTC AATGAAAACA AACAAAACGT CGATGCCAAP
|
1501GTAAAAGCTG CAGAATCTGA AATAGAAAAG TTAACAACCA AGTTAGCAGA
|
1551CACTGATGCC GCTTTAGCAG ATACTGATGC CGCTCTGGAT GCAACCACCA
|
1601ACGCCTTGAA TAAATTGGGA GAAAATATAA CGACATTTGC TGAAGAGACT
|
1651AAGACAAATA TCGTAAAAAT TGATGAAAAA TTAGAAGCCG TGGCTGATAC
|
1701CGTCGACAAG CATGCCGAAG CATTCAACGA TATCQCCGAT TCATTGGATG
|
1751AAACCAACAC TAAGGCAGAC GAAGCCGTCA AAACCGCCAA TGAAGCCAAA
|
1801CAGACGGCCG AAGAAACCAA ACAAAACGTC GATGCCAAAG TAAAAGCTGC
|
1851AGAAACTGCA GCAGGCAAAG CCGAAGCTGC CGCTGGCACA GCTAATACTG
|
1901CAGCCGACAA GGCCGAAGCT GTCGCTGCAA AAGTTACCGA CATCAAAGCT
|
1951GATATCGCTA CGAACAAAGA TAATATTGCT AAAAAAGCAA ACAGTGCCGA
|
2001CGTGTACACC AGAGAAGAGT CTGACAGCAA ATTTGTCAGA ATTGATGGTC
|
2051TGAACGCTAC TACCGAAAAA TTGGACACAC GCTTGGCTTC TGCTGAAAAA
|
2101TCCATTGCCG ATCACGATAC TCGCCTGAAC GGTTTGGATA AAACAGTGTC
|
2151AGACCTGCGC AAAGAAACCC GCCAAGGCCT TGCAGAACAA GCCGCGCTCT
|
2201CCGGTCTGTT CCAACCTTAC AACGTGGGTO TCGAGCACCA CCACCACCAC
|
2251CACTGA
|
1MSDLANDSFI RQVIJDRQHFE PDGKYHLFGS RGELAERSGH IGLGKIQSHQ
|
51LGNIJHIQQAA IKGNIGYIVR FSDHGHEVHS PFDNHASHSD SDEAGSPVDG
|
101FSLYRIHWDG YEHHPADGYD GPQGGGYPAP KGARDIYSYD IKGVAQNIRL
|
151NLTDNRSTGQ RLADRPHNAG SMLTQGVGDG FKRATRYSPE LDRSGNAAEA
|
201FNGTADIVKN IIGAAGBIVG AGDAVQGISE GSNIAVMIGL GLLSTENKMA
|
251RINDLAflHAQ LKDYAAAAIR DWAVQNPNAA QGIEAVSNIF MIAIPIRGIG
|
301AVRGKYGLGG ITAHPIKRSQ MGAIALPKGK SAVSDNFADA AYAKYPSPYH
|
351SRNIRSNLEQ RYGKENITSS TVPPSNGKNV KLADQRHPKT GVPFDGKGFP
|
401NFEKHVKYDT GSGGGGATND DDVKKAATVA IAAAYNNGQB INGFKAGETI
|
451YDIDEDGTIT KKDATAADVE ADDFKGLGLK KVVTNLTKTV NENKQNVDAX
|
501VKAABSEIEK LTTKLADTDA ALADTDAALD ATTNALNKLG ENITTFAEET
|
551KTNIVKIDBK LEAVADTVDK HAEAFNDIAD SLDETNTKAD EAVKTANEAK
|
601QTAEETKQNV DAKVKAAETA AGKAEAAAGT ANTAADKAEA VAAKVTDIRA
|
651DIATNKDNIA KKANSADVYT REESDSKFVR IDGLNATTRK LDTRLASAEK
|
701SIADHDTRLN GLDKTVSDLR KBTRQGLAEQ AALBGLFQPY NVGLEHHHHH
|
751H*
|
961-ORF46.1
1ATGGCCACAA ACGACGACGA TGTTAAAAAA GCTGCCACTG TGGCCATTGC
|
51TGCTGCCTAC AACAATGGCC AAGAAATCAA CGGTTTCAAA GCTGGAGAGA
|
101CCATCTACGA CATTGATGAA GACGGCACAA TTACCAAAAA AGACGCAACT
|
151GCAGCCGATG TTGAAGCCGA CGACTTTAAA GGTCTGGGTC TGAAAAAAGT
|
201CGTGACTAAC CTGACCAAAA CCGTCAATGA AAACAAACAA AACGTCGATG
|
251CCAAAGTAAA AGCTGCAGAA TCTGAAATAG AAAAGTTAAC AACCAAGTTA
|
301GCAGACACTG ATGCCGCTTT AGCAGATACT GATGCCGCTC TGGATGCAAC
|
351CACCAACGCC TTGAATAAAT TGGGAGATAA TATAACGACA TTTGCTGAAG
|
401AGACTAAGAC AAATATCGTA AAAATTGATG AAAAATTAGA AGCCGTGGCT
|
451GATACCGTCG ACAAGCATGC CGAAGCATTC AACGATATCG CCGATTCATT
|
501GGATGAAACC AACACTAAGG CAGACGAAGC CGTCAAAACC GCCAATGAAG
|
551CCAAACAGAC GGCCGAAGAA ACCAAACAAA ACGTCGATGC CAAAGTAAAA
|
601GCTGCAGAAA CTGCAGCAGG CAAAGCCGAA GCTGCCGCTG GCACAGCTAA
|
651TACTGCAGCC GACAAGGCCG AAGCTGTCGC TGCAAAAGTT ACCGACATCA
|
701AAGCTGATAT CGGTACGAAC AAAGATAATA TTGCTAAAAA AGCAAACAGT
|
751GCCGACGTGT ACACCAGAGA AGAGTCTGAC AGCAAATTTG TCAGAATTGA
|
801TGGTCTGAAC GCTACTACCG AAAAATTGGA CACACGCTTG GCTTCTGCTG
|
851AAAAATCCAT TGCCGATCAC GATACTCGCC TGAACGGTTT GGATAAAACA
|
901GTGTCAGACC TGCGCAAAGA AACCCGCCAA GGCCTTGCAG AACAAGCCGC
|
951GCTCTCCGGT CTGTTCCAAC CTTACAACGT GGGTCGGTTC AATGTAACGG
|
1001CTGCAGTCGG CGGCTACAAA TCCGAATCGG CAGTCGCCAT CGGTACCGGC
|
1051TTCCGCTTTA CCGAAAACTT TGCCGCCAAA GCAGGCGTGG CAGTCGGCAC
|
1101TTCGTCCGGT TCTTCCGCAG CCTACCATGT CGGCGTCAAT TACGAGTGGG
|
1151GATCCGGAGG AGGAGGATCA GATTTGGCAA ACGATTCTTT TATCCGGCAG
|
1201GTTCTCGACC GTCAGCATTT CGAACCCGAC GGGAAATACC ACCTATTCGG
|
1251CAGCAGGGGG GAACTTGCCG AGCGCAGCGG CCATATCGGA TTGGGAAAAA
|
1301TACAAAGCCA TCAGTTGGGC AACCTGATGA TTCAACAGGC GGCCATTAAA
|
1351GGAAATATCG GCTACATTGT CCGCTTTTCC GATCACGGGC ACGAAGTCCA
|
1401TTCCCCCTTC GACAACCATG CCTCACATTC CGATTCTGAT GAAGCCGGTA
|
1451GTCCCGTPGA CGGATTTAGC CTTTACCGCA TCCATTGGGA CGGATACGAA
|
1501CACCATCCCG CCGACGGCTA TGACGGGCCA CAGGGCGGCG GCTATCCCGC
|
1551TCCCAAAGGC GCGAGGGATA TATACAGCTA CGACATAAAA GGCGTTGCCC
|
1601AAAATATCCG CCTCAACCTG ACCGACAACC GCAGCACCGG ACAACGGCTP
|
1651GCCGACCGTT TCCACAATGC CGGTAGTATG CTGACGCAAG GAGTAGGCGA
|
1701CGGATTCAAA CGCGCCACCC GATACAGCCC CGAGCTGGAC AGATCGGGCA
|
1751ATGCCGCCGA AGCCTTCAAC GGCACTGCAG ATATCGTTAA AAACATCATC
|
1801GGCGCGGCAG GAGAAATTGT CGGCGCAGGC GATGCCGTGC AGGGCATAAG
|
1851CGAAGGCTCA AACATTGCTG TCATGCACGG CTTGGGTCTG CTTTCCACCG
|
1901AAAACAAGAT GGCGCGCATC AACGATTTGG CAGATATGGC GCAACTCAAA
|
1951GACTATGCCG CAGCAGCCAT CCGCGATTGG GCAGTCCAAA ACCCCAATGC
|
2001CGCACAAGGC ATAGAAGCCG TCAGCAATAT CTTTATGGCA GCCATCCCCA
|
2051TCAAAGGGAT TGGAGCTGTT CGGGGAAAAT ACGGCTTGGG CGGCATCACG
|
2101GCACATCCTA TCAAGCGGTC GCAGATGGGC GCGATCGCAT TGCCGAAAGG
|
2151GAAATCCGCC GTCAGCGACA ATTTTGCCGA TGCGGCATAC GCCAAATACC
|
2201CGTCCCCTTA CCATTCCCGA AATATCCGTT CAAACTTGGA GCAGCGTTAC
|
2251GGCAAAGAAA ACATCACCTC CTCAACCGTG CCGCCGTCAA ACGGCAAAAA
|
2301TGTCAAACTG GCAGACCAAC GCCACCCGAA GACAGGOOTA CCGTTTGACG
|
2351GTAAAGGGTT TCCGAATT1T GAGAAGCACG TGAAATATGA TACGCTCGAG
|
2401CACCACCACC ACCACCACTG A
|
1MATNDDDVKK AATVAIAAAY NNGQEINGFK AGETIYDIDE DGTITKKDAT
|
51AADVEADDFK GLGLKKVVTN LTKTVNENKQ NVDAKVKAAE SEIEKLTTKL
|
101ADTDAALALT DAALDATTNA LNKLGENITT FAEETKTNIV KIDEKLEAVA
|
151DTVDKHAEAF NDIADSLDET NTKADEAVKT ANEAKQTAEE TKQNVDAKVK
|
201AAETAAGKAE AAAGTANTAA DKABAVAAKV TDIKADIATN KDNIAKKANS
|
251ADVYTREESD SKFVRIDGLN ATTEKLDTRL ASAEKSIADH DTRLNGLDKT
|
301VSDLEKETRQ GLAEQAALSG LFQPYNVGRF NVTAAVGGYK SESAVAIGTG
|
351FRPTENFAAK AGVAVGTSSG SSAAYHVGVN YEWGSGGGGS DLANDSFIRQ
|
401VLDRQHFEPD GKYHLFGSRG ELABRSGEIG LGKIQSHQLG NLMIQQAAIK
|
451GNIGYIVRFS DHGHEVHSPF D14EASHSDSD EAGSPVDGFS LYRIHWDGYE
|
501HHPAflGYDGP QGGGYPAPKG APDIYSYDIK GVAQNIRLNL TDNRSTGQRL
|
551ADRFENAGSM LTQGVGDGPR RATRYSPELD RSGNAAEAPN GTADIVKNII
|
601GAAGEIVGAG DAVQGISEGS NIAVHMGLGL LSTENKMARI NDLADHAQLK
|
651DYAAAAIRDW AVQNPNAAQG IEAVSNIFHA AIPIKGIGAV RGKYGLGGIT
|
701AHPIKRSQHG AIALPKGKSA VSDNFADAAY AKYPSPYHSR NIRSNLEQRY
|
751GKENITSSTV PPSNGKNVKL ADQRHPKTGV PFDGKGFPNF EKHVKYDTLE
|
801HHHHHH*
961-741
1ATGGCCACAA ACGACGACGA TGTTAAAAAA GCTGCCACTG TGGCCATTGC
|
51TGCTGCCTAC AACAATGGCC AAGAAATCAA CGGTTTCAAA GCTGGAGAGA
|
101CCATCTACGA CATTGATGAA GACGGCACAA TTACCAAAAA AGACGCAACT
|
151GCAGCCGATG TTGAAGCCGA CGACTTTAAA GGTCTGGGTC TGAAAAAAGT
|
201CGTGAVTAAC CTGACCAAAA CCGTCAATGA AAACAAACAA AACGTCGATG
|
251CCAAAGTACA AGCTGCAGAA TCTGAAATAG AAAAGTTAAC AACCAAGTTA
|
301GCAGACACTG ATGCCGGTTT AGCAGATACT GATGCCGCTC TGGATGCAAC
|
351CACCAACGCC TTGAATAAAT TGGGAGAAAA TATAACGACA TTTGCTGAAG
|
401AGACTAAGAC AAATATCGTA AAAATTGATG AAAAATTAGA AGCCGTGGCT
|
451GATACCGTCG ACAAGCATGC CGAAGCATTC AACGATATCG CCGATTCATT
|
501GGATGAAACC AACACTAAGG CAGACGAAGC CGTCAAAACC GCCAATGAAG
|
551CCAAACAGAC GGCCGAAGAA ACCAAAQAAA ACGTCGATGC CAAAGTAAAA
|
601GCTGCAGAAA CTGCAGCAGG CAAAGCCGAA GCTGCCGCTG GCACAGCTAA
|
651TACTGCAGCC GACAAGGCCG AGGGTGTCGC TGCAAAAGTT ACCGACATCA
|
701AAGCTGATAT CGGTACGAAC AAAGATAATA TTGCTAAAAA AGCAAACAGT
|
751GCCGACGTGT ACACCAGAGA AGAGTCTGAC AGCAAATTTG TCAGAATTGA
|
801TGGTCTGAAC GCTACTACCG AAAAATTGGA CACACGCTTG GCTTCTGCTG
|
851AAAAATCCAT TGCCGATCAC GATACTCGCC TGAACGGTTT GGATAAAACA
|
901GTGTCACACC TGCGCAAAGA AACCCGCCAA GGCCTTGCAG AACAAGCCGC
|
951GCTCTCCGGT CTGTTCCAAC CTTACAACGT GGGTCGGTTC AATGTAACGG
|
1001CTGCAGTCGG CGGCTACAAA TCCGAATCGG CAGTCGCCAT CGGTACCGGC
|
1051TTCCGCTTTA CCGAAAACTT TGCCGCCAAA GCAGGCGTGG CAGTCGGCAC
|
1101TTCGTCCGGT TCTTCCGCAG CCTACCATGT CGGCGTCAAT TACGAGTGGG
|
1151GATCCGGAGG GGGTGGTGTC GCCGCCGACA TCGGTGCGGG GCTTGCCGAT
|
1201GCACTAACCG CACCGCTCGA CCATAAAGAC AAAGGTTTGC AGTCTTTGAC
|
1251GCTGGATCAG TCCGTCAGGA AAAACGAGAA ACTGAAGCTG GCGGCACAAG
|
1301GTGCGGAAAA AACTTATGGA AACGGTGACA GCCTCAATAC GGGCAAATTG
|
1351AAGAACGACA AGGTCAGCCG TTTCGACTTT ATCCGCCAAA TCGAAGTGGA
|
1401CGGGCAGCTC ATTACCTTGG AGAGTGGAGA GTTCCAAGTA TACAAACAAA
|
1451GCCATPCCGC CTTAACCGCC TTTCAGACCG AGCAAATACA AGATTCGGAG
|
1501CATTCCGGGA AGATGGTTGC GAAACGCCAG TTCAGAATCG GCGACATAGC
|
1551GGGCGAACAT ACATCTTTTG ACAAGCTTCC CGAAGGCGGC AGGGCGACAT
|
1601ATCGCGGGAC GGCGTTCGGT TCAGACGATG CCGGCGGAAA ACTGACCTAC
|
1651ACCATAGATT TCGCCGCCAA GCAGGGAAAC GGCAAAATCG AACATTTGAA
|
1701ATCGCCAGAA CTCAATGTCG ACCTGGCCGC CGCCGATATC AAGCCGGATG
|
1751GAAAACGCCA TGCCGTCATC AGCGGTTCCG TCCTTTACAA CCAAGCCGAG
|
1801AAAGGCAGTT ACTCCCTCGG TATCTTTGGC GGAAAAGCCC AGGAAGTTGC
|
1851CGGCAGCGCG GAAGTGAAAA CCGTAAACGG CATACGCCAT ATCGGCCTTG
|
1901CCGCCAAGCA ACTCGAGCAC CACCACCACC ACCACTGA
|
1MATNDDDVKK AATVAIAAAY NNGQEINGFK AGETIYDIDE DGTITKKDAT
|
51AADVEADDFK GLGLKKVVTN LTKTVNENKQ NVDAKVKAAE SEIEKLTTKL
|
101ADTDAALADT DAALDATTNA LNKLGENITT FAEETKTNIV KIDEKLEAVA
|
151DTVDKHAEAP NDIADSLDET NTKADEAVKT ANEAKQTAEE TKQNVDAKVK
|
201AAETAAGKAE AAAGTANTAA DKAEAVAAKV TDIKADIATN KDNIAKKANS
|
251ADVYTRBESD SKFVRIDGLN ATTEKLDTRL ASAEKSIADH DTRLNGLDKT
|
301VSDIJRKETRQ GLAEQAALSG LFQPYNVGRP NVTAAVGGYK SESAVAIGTG
|
351FRPTENFAAK AGVAVGTSSG SSAAYHVGVN YEWGSGGGGV DLANDSFIRQ
|
401MJTAPLDHKD KGLQSLTLDQ SVRKNEKLKL AAQGAEKTYG NGDSLNTGKL
|
451KNDKVSEFDF IRQIEVDGQL ITLESGEFQV YKQSHSALTA FQTEQIQDSE
|
501HSGKMVAKRQ FRIGDIAGEH TSFDXLPEGG RATYRGTAFG SDDAGGKLTY
|
551TIDFAAKQGN GKIEHIJKSPE LNVDLAAADI KPDGKRHAVI SGSVLYNQAE
|
601KGSYSLGIFG GKAQEVAGSA EVKTVNGIRH IGLAAKQLEH HHHHH*
|
961-983
1ATGGCCACAA ACGACGAQGA TGTTAAAAAA GCTGCCACTG TGGCCATTGC
|
51TGCTGCCTAC AACAATGGCC AAQAAATCAA CGGTTTCAAA GCTGGAGAGA
|
101GCATGTACCA CATTGATGAA GACGGCACAA TTACCAAAAA AGACGCAACT
|
151GCAGCCGATG TTGAACCGA CGACTTTAAA GGTCTGGGTC TGAAAAAAGT
|
201CGTGACTAAC CTGACCAAAA CCGTCAATGA AAACAAACAA AACGTCGATG
|
251CCAAAGTAAA AGCTGCAGAA TCTGAAATAG AAAAGTTAAC AACCAAGTTA
|
301GCAGACACTG ATGCCGCTTT AGCAGATACT GATGCCGCTC TGGATGCAAC
|
351CACCAACGCC TTGAATAAAT TGGGAGAAAA TATAACGACA TTTGCTGAAG
|
401AGACTAAGAC AAATATCGTA AAAATTGATG AAAAATTAGA AGCCGTGGCT
|
451GATACCGTCG ACAAGCATGC CGAAGCATTC AACQATATCG CCGATTCATT
|
501GGATGAAACC AACACTAAGG CAGACGAAGC CGTCAAAACC GCCAATGAAG
|
551CCAAACAGAC GGCCGAAGAA ACCAAACAAA ACGTCGATGC CAAAGTAAAA
|
601GCTGCAGAAA CTGCAGCAGG CAAAGCCGAA GCTGCCGCTG GCACAGCTAA
|
651TACTGCAGCC GACAAGGCCG AAGCTGTCGC TGCAAAAGTT ACCGACATCA
|
701AAGCTGATAT CGCTACGAAC AAAGATAATA TTGCTAAAAA AGCAAACAGT
|
751GCCGACGTGT ACACCAGAGA AGAGTCTGAC AGCAAATTTG TCAGAATTGA
|
801TGGTCTGAAC GCTACTACCG AAAAATTGGA CACACGCTTG GCTTCTGCTG
|
851AAAAATCCAT TGCCGATCAC GATACTCGCC TGAACGGTTT GGATAAAACA
|
901GTGTCAGACC TGCGCAAAGA AACCCGCCAA GGCCTTGCAG AACAAGCCGC
|
951GCTCTCCGGT CTGTTCCAAC CTTACAACGT GGGTCGGTTC AATGTAACGG
|
1001CTGCAGTCGG CGGCTACAAA TCCGAATCGG CAGTCGCCAT CGGTACCGGC
|
1051TTCCGCTTTA CCGAAAACTT TGCCGCCAAA GCAGGCGTGG CAGTCGGCAC
|
1101TTCGTCCGGT TCTTCCGCAG CCTACCATGT CGGCGTCAAT TACGAGTGGG
|
1151GATCCGGCGG AGGCGGCACT TCTGCGCCCG ACTTCAATGC AGGCGGTACC
|
1201GGTATCGGCA GCAACAGCAG AGCAACAACA GCGAAATCAG CAGCAGTATC
|
1251TTACGCCGGT ATCAAGAACG AAATGTGCAA AQACAGAAGC ATGCTCTGTG
|
1301CCGGTCGGGA TGACGTTGCG GTTACAGACA GGGATGCCAA AATCAATGCC
|
1351CCCCCCCCGA ATCTGCATAC CGGAGACTTT CCAAACCCAA ATGACGCATA
|
1401CAAGAATTTG ATCAACCTCA AACCTGCAAT TGAAGCAGGC TATACAGGAC
|
1451GCGGGGTAGA GGTAGGTATC GTCGACACAG GCGAATCCGT CGGCAGCATA
|
1501TCCTTTCCCG AACTGTATGG CAGAAAAGAA CACGGGTATA ACGAAAATTA
|
1551CAAAAACTAT ACGGCGTATA TGCGGAAGGA AGCGCCTGAA GACGGAGGCG
|
1601GTAAAGACAT TGAAGCTTCT TTCGACGATG AGGCCGTTAT AGAGACTGAA
|
1651GCAAAGCCGA CGGATATCCG CCACGTAAAA GAALTCGGAC ACATCGATTT
|
1701GGTCTCCCAT ATTATTGGCG GGCGTTCCGT GGACGGCAGA CCTGCAGGCG
|
1751GTATTGCGCC CGATGCGACG CTACACATAA TGAATACGAA TGATGAAACC
|
1801AAGAACGAAA TGATGGTTGC AGCCATCCGC AATGCATGGG TCAAGCTGGG
|
1851CGAACGTGGC GTGCGCATCG TCAATAACAG TTTTGGAACA ACATCGAGGG
|
1901CAGGCACTGC CQACCTTTTC CAAATAGCCA ATTCGGAGGA GCAGTACCGC
|
1951CAAGCGTTGC TCGACTATTC CGGCGGTGAT AAAACAGACG AGGGTATCCG
|
2001CCTGATGCAA CAGAGCGATT ACGGCAACCT GTCCTACCAC ATCCGTAATA
|
2051AAAACATGGT TTTCATCTTT TCGACAGGCA ATOACOCACA AGCTCAGCCC
|
2101AACACATATG CCCTATTGCC ATTTTATGAA AAAGACGCTC AAAAAGGCAT
|
2151TATCACAGTC GCAGGCGTAG ACCGCAGTGG AGAAAAGTTC AAACGGGAAA
|
2201TGTATGGAGA ACCGGGTACA GAACCGCTTG AGTATGGCTC CAACCATTGC
|
2251GGAATTACTG CCATGTGGTG CCTGTCGGCA CCCTATGAAG CAAGCGTCCG
|
2301TTTCACCCGT ACAAACCCGA TTCAAATTGC CGGAACATCC TTTTCCGCAC
|
2351CCATCGTAAC CGGCACGGCG GCTCTGCTGC TGCAGAAATA CCCGTGGATG
|
2401AGCAACGACA ACCTGCGTAC CACGTTGCTG ACGACGGCTC AGGCCATCGG
|
2451TGCAGTCGGC GTGGACAGCA AGTTCGGCTG GGGACTGCTG GATGCGGGTA
|
2501AGGCCATGAA CGGACCCGCG TCCTTTCCGT TCGGCGACTT TACCGCCGAT
|
2551ACGAAAGGTA CATCCGATAT TGCCTACTCC TTCCGTAACG ACATTTCAGG
|
2601CACGGGCGGC CTGATCAAAA AAGGCGGCAG CCAACTGCAA CTGCACGGCA
|
2651ACAACACCTA TACGGGCAAA ACCATTATCG AAGGCGGTTC GCTGGTGTTG
|
2701TACGGCAACA ACAAATCGGA TATGCGCGTC GAAACCAAAG GTGCGCTGAT
|
2751TTATAACGGG GCGGCATCCG GCGGCAGCCT GAACAGCGAC GGCATTGTCT
|
2801ATCTGGCAGA TACCGACCAA TCCGGCGCAA ACGAAACCGT ACACATCAAA
|
2851GGCAGTCTGC AGCTGGACGG CAAAGGTACG CTGTACACAC GTTTGGGCAA
|
2901ACTGCTGAAA GTGGACGGTA CGGCGATTAT CGGCGGCAAG CTGTACATGT
|
2951CGGCCGCGG CAACGGGGCA GGCTATCTCA ACACTACCGG ACGACGTGTT
|
3001CCCTTCCTGA GTGCCGCCAA AATCGGGCAG GATTATTCTT TCTTCACAAA
|
3051CATCGAAACC GACGGCGGCC TGCTGGCTTC CCTCGACAGC GCCGAAAAAA
|
3101CAGCGGGCAG TGAAGGCGAC ACGCTGTCCT ATTATGTCCG TCGCGGCAAT
|
3151GCGGCACGGA CTGCTTCGGC AGCGGCGCGT TCCGCGCCCG CCGGTCTGAA
|
3201ACACGCCGTA GAACAGGGCG GCAGCAkTCT GGAAAACCTG ATGGTCGAAC
|
3251TGGATGCCTC CQAATCATCC GCAACACCCG AGACGGTTGA AACTGCGGCA
|
3301GCCGACCGCA CAGATATGCC GGGCATCCGC CCCTACGGCG CAACTTTCCG
|
3351CGCAGCGGCA GCCGTACAGC ATGCGAATGC CGCCGACGGT GTACGCATCT
|
3401TCAACAGTCT CGCCGCTACC GTCTATGCCG ACAGTACCGC CGCCCATGCC
|
3451GATATGCAGG GACGCCGCCT GAAAGCCGTA TCGGACGGGT TGGACCACAA
|
3501CGGCACGGGT CTGCGCGTCA TCGCGCAAAC CCAACAGGAC GGTGGAACGT
|
3551GGGAACAGGG CQGTGTTGAA GGCAAAATGC GCGGCAGTAC CCAAACCGTC
|
3601GGCATTGCCG CGAAAACCGG CGAAAATACG ACAGCAGCCG CCACACTGGG
|
3651CATGGGACGC AGCACATGGA GCGAAAACAG TGCAAATGCA AAAACCGACA
|
3701GCATTAGTCT GTTTGCAGGC ATACGGCACG ATGCGGGCGA TATCGGCTAT
|
3751CTCAAAGGCC TGTTCTCCTA CGGACGCTAC AAAAACAGCA TCAGCCGCAG
|
3801CACCGGTGCG GACGAACATG CGGAAGGCAG CGTCAACGGC ACGCTGATGC
|
3851AGCTGGGCGC ACTGGGCGGT GTCAACGTTC CGTTTGCCGC AACGGGGGAT
|
3901TTGAGGGTCG AACGCGGTCT GCGCTACGAC CTGCTCAAAG ACGATGCATT
|
3951CGCCGAAAAA GGCAGTGCTT TGGGCTGGAG CGGCAACAGC CTCACTGAAG
|
4001GCACGCTGGT CGGACTCGCG GGTCTGAAGC TGTCGCAACC CTTGAGCGAT
|
4051AAAGCCGTCC TGTTTGCAAC GGCGGGCGTG GAACGCGACC TGAACGGACG
|
4101CGACTACACG GTAACGGGCG GCTTTACCGG CGCGACTGCA GCACCCGGCA
|
4151AGACGGGGGC ACGCAATATG CCGCACACCC GTCTGGTTGC CGGCCTGGGC
|
4201GCGGATGTCG AATTCGGCAA CGGCTGGAAC GGCTTGGCAC GCTACAGCTA
|
4251CGCCGGTTCC AAACAGTACG GCAACCACAG CGGACGAGTC GGCGTAGGCT
|
4301ACCGGT4PCCT CGAGCACCAC CACCACCACC ACTGA
|
1MATNDDDVKK AATVAIAAAAY NNGQEINGFK AGETIYDIDE DGTITKKDAT
|
51AADVEADDFK GLGLKKVVTN LTKTVNENKQ NVDAKVKAAB SEIEKLTTKL
|
101ALTDAALADT DAALDATTNA LNKLGENITT FAEETKTNIV KIDEKLEAVA
|
151DTVDKHAEAF NDIADSLDET NTKADEAVKT ANEAKQTARE TKQNVDARVK
|
201AAETAAGKAE AAAGTAMTAA DLAEAVAALV TDIKADIATN KDNIAKKANS
|
251ADVYTREESD SKFVRIDGLN ATTEKLDTEL ASAEKSIADH DTRLNGLDKT
|
301VSDLRKETRQ GLABQAALSG LFQPYNVGRP NWlAAVGGYK SESAVAIGTG
|
351FRFTENFAAK AGVAVGTSSG SSAAYHVGVN YEWGSGGGGT SAPDFNAGGT
|
401GIGSNSRATT AKSAAVSYAG INMEMCKDRS MLCAGRDDVA VTDPDAXINA
|
451PPPNLHTGDF PNPNDAYKNL INLKPAIEAG YTGEQVEVGI VDTGESVGSI
|
501SFPELYGRKE HGYNENYKNY TAYMRKEAPB DGGGKDIEAS FDDEAVIETE
|
551AKPTDIREVK EIGHIDLVSH IIGGESVPGR PAGGIAPPAT LHIMNTNDET
|
601KNEMMVAAIR NAWVKLGERG VRIVNNSFGT TSRAGTADLF QIANSEEQYR
|
651QALLDYSGGD KTDRGIRLMQ QSDYGNLSYH IRKNKNLFIF STGNDAQAQP
|
701NTYALLPFYE KDAQKGIITV AGVDRSGEKF KRENYGEPGT EPLEYGSNHC
|
751GITAMWCLSA PYEASVRPTR TNPIQIAGTS FSAPIVTGTA ALLLQKYPWH
|
801SNDNLRTTLL TTAQDIGAVG VDSKFGWGLL DAGKAMNGPA SFPFGDFTAD
|
851TKGTSDIAYS FRNDISGTGG LIKKGGSQLQ LHGNNTYTGK TIIEGGSLVL
|
901YGNNKSDMRV ETKGALIYNG AASGGSLNSD GIVYLADTDQ SGANETVHIK
|
951GSLQIDGKGT LYTRLGKLLK VDGTAIIGGK LYMSAKGKGA GYLNSTGRRV
|
1001PFLSAAKIGQ DYSPFTNIET DGGLLASLDS VEKTAGSEGD TLSYYVRPGN
|
1051AARTABAAAH SAPAGLKHKV EQGGSNLENL HVBLDASBSS ATPETVHTAA
|
1101ADRTDMPGIR PYGATFRAAA AVQHANAADG VRIFNSLAAT VYADSTAAHA
|
1151DMQGRRLKAV TAAATLGMGR STSWENSANA KTDSISLFAG IRHDAGIGY
|
1201GIAAKTGENT TAAATLGHGR STWSENSANA KTDSISLFAG IRHDAGDIGY
|
1251LKGLFSYGRY KNSZSRSTQA DEHAEGSVNG TLNQLGALGG VNVPFAATGD
|
1301LTVEGGLRYD LLKQDAPAEK GSALGWSGNS LTEGTLVGLA GIJKLSQPLSD
|
1351KAVLFATAGV ERDLNGRDYT VTGGFTGATA ATGKTGARNM PHTRLVAGLG
|
1401ADVEFGNGWN GLARYSYAGS KQYGNHSGRV GVGYRFLEHH HHHH*
|
961c-ORF46.1
1ATGGCCACAA ACGACGACGA TGTTAAAAAA GCTGCCACTG TGGCCATTGC
|
51TGCTGOCTAC AACAATGGCC AAGAAATCAA CGGTTTCAAA GCTGGAGAGA
|
101CCATCTACGA CATTGATGAA GACGGCACAA TTACCAAAAA AGACGCAACT
|
151GCAGCCGATG TTGAAGCCGA CGACTTTAAA GGTCTGGGTC TGAAAAAAGT
|
201CGTGACTAAC CTGACCAAAA CCGTCAATGA AAACAAACAA AACGTCGATG
|
251CCAAAGTAAA AGCTGCAGAA TCTGAAATAG AAAAGTTAAC AACCAAGTTA
|
301GCAGACACTG ATGCCGCTTT AGCAGATACT GATGCCGCTC TGGATGCAAC
|
351CACCAACGCC TTGAATAAAT TGGGAGAAAA TATAACGACA TTTGCTGAAG
|
401AGACTAAGAC AAATATCGTA AAAATTGATG AAAAATTAGA AGCCGTGGCT
|
451GATACCGTCG ACAAGCATGC CGAAGCATTC AACGATATCG CCGATTCATT
|
501GGATGAAACC AACACTAAGG CAGACGAAGC CGTCAAAACC GCCAATGAAG
|
551CCAAACAGAC GGCCGAAGAA ACCAAACAAA ACGTCGATGC CAAAGTAAAA
|
601GCTGCAGAAA CTGCAGCAGG CAAAGCCGAA GCTGCCGTG GCACAGCTAA
|
651TACTGCAGCC GACAAGGCCG AAGCTGTCGC TGCAAAAGTT ACCGACATCA
|
701AAGCTGATAT CGCTACGAAC AAAGATAATA TTGCTAAAAA AGCAAACAGT
|
751GCCGACGTGT ACACCAGAGA AGAGTCTGAC AGCAAATTTG TCAGAATTGA
|
801TGGTCTGAAC GCTACTACCG AAAAATTGGA CACACGCTTG GCTTCTGCTG
|
851AAAAATCCAT TGCCGATCAC GATACTCGCC TGAACGGTTT GGATAAAACA
|
901GTGTCAGACC TGCGCAAAGA AACCCGCCAA GGCCTTGCAG AACAAGCCGC
|
951GCTCTCCGGT CTGTTCCAAC CTTACAACGT GGGTGGATCC GGAGGAGGAG
|
1001GATCAGATTT GGCAAACGAT TCTTTTATCC GGCAGGTTCT CGACCGTCAQ
|
1051CATTTCGAAC CCGACGGGAA ATACCACCTA TTCGGCAGCA GGGGGGAACT
|
1101TGCCGAGCGC AGCGGCCATA TCGGATTGGG AAAAATACAA AGCCATCAGT
|
1151TGGGCAACCT GATGATTCAA CAGGCGGCCA TTAAAGGAAA TATCGGCTAC
|
1201ATTGTCCGCT TTTCCGATCA CGGGCACGAA GTCCATTCCC CCTTCGACAA
|
1251CCATGCCTCA CATTCCGATT CTGATGAAGC CGGTAGTCCC GTTGACGGAT
|
1301TTAGCCTTTA CCGCATCCAT TGGGACGGAT ACGAACACCA TCCCGCCGAC
|
1351GGTTATGACG GGCCACAGGG CGGCGGCTAT CCCGCTCCCA AAGGCGCQAG
|
1401GGATATATAC AGCTACGACA TAAAAGGCGT TGCCCAAAAT ATCCGCCTCA
|
1451ACCTGACCGA CAACCGCAGC ACCGGACAAC GGCTTGCCGA CCGTTTCCAC
|
1501AATGCCGGTA GTATGCTGAC GCAAGGAGTA GGCGACGGAT TCAAACGCGC
|
1551CACCCGATAC AGCCCCGAGC TGGACAGATC GGGCAATGCC GCCGAAGCCT
|
1601TCAACGGCAC TGCAGATATC GTTAAAAACA TCATCGGCGC GGCAGGAGAA
|
1651ATTGTCGGCG CAGGCGATGC CGTGCAGGGC ATAAGCGAAG GCTCAAACAT
|
1701TGCAGTCATG CACGGCTTGG GTCTGCTTTC CACCGAAAAC AAGATGGCGC
|
1751GCATCAACGA TTTGGCAGAT ATGGCGCAAC TCAAAGACTA TGCCGCAGCA
|
1801GCCATCCGCG ATTGGGCAGT CCAAAACCCC AATGCCGCAC AAGGCATAGA
|
1851AGCCGTCAGC AATATCTTTA TGGCAGCCAT CCCCATCAAA GGGATTGGAG
|
1901CTGTTCGGGG AAAATACGGC TTGGGCGGCA TCACGGCACA TCCTATCAAG
|
1951CGGTCGCAGA TGGGCGCGAT CGCATTGCCG AAAGGGAAAT CCGCCGTCAG
|
2001CGACAATTTT QCCGATGCGG CATACGCCAA ATACCCGTCC CCTTACCATT
|
2051CCCGAAATAT CCGTTCAAAC TTGGAGCAGC GTTACGGCAA AGAAAACATC
|
2101ACCTCCTCAA CCGTGCCGCC GTCAAACGGC AAAAATGTCA AACTGGCAGA
|
2151CCAACGCCAC CCGAAGACAG GCGTACCGTT TGACGGTAAA GGGTTTCCGA
|
2201ATTTTGAGAA GCACGTGAAA TATGATACGC TCGAGCACCA CCACCACCAC
|
2251CACTGA
|
1MATNDDDVKK AATVAIAAAY NNGQEINGFK AGETIYDIDE DGTITKKDAT
|
51AADVEADDFK GLGLKKVVTN LTKTVNENKQ NVDAKVKAAE SBIEKLTTKL
|
101ADTDAALADT DAALDATTNA LNKLGENITT FAEETKTNIV KIDEKLEAVA
|
151DTVDIWAPAP NDIADSLDET NTKADEAVKT ANEAKQTAEE TKQNVDAKVK
|
201AABTAAGKAE AAAGTANTAA DKAEAVAAKV TDIKALLATN KDNIAKKANS
|
251ADVYTRBESD SKPVRIDGLN ATTEKLDTEL ASAEKSIADH DTRLNGLDKT
|
301VSDLRKETRQ GLAEQAALSG LFQPYNVGGS GGGGSDLAND SFIRQVLDRQ
|
351HFEPDGKYHL FGSRGELAER SGHIGLGKIQ SHQLGNLMIQ QAAIKGNIGY
|
401IVRFSDHGHE VHSPFDNHAS HSDSDEAGSP VDGFSLYRIH WDGYEHHPAD
|
451GYDGPQGGGY PAPKGAPDZY SYDIKGVAQN IRLNLTDNRS TGQRLADRFH
|
501NAGSNLTQGV GDGPKEATRY SPELDRSGNA AEAPNGTADI VKNIIGAAGE
|
551IVGAGDAVQG ISEGSNIAVM HGLGLLSTEN KMARINDLAD MAQLKDYAAA
|
601AIRDWAVQNP NAAQGIEAVS NIFMAAIPIK GIGAVEOKYG LGGITAHPIK
|
651RSQMGAIALP KGKSAVSDNF ADAAYAKYPS PYHBRNIRBN LEQRYGKENI
|
701TSSTVPPSNG KNVKLADQRH PKTGVPFDGK GPPNPEKBVK YDTLEHEHHH
|
961c-741
1ATGGCCACAA ACGACGACGA TGTTAAAAAA GCTGCCACTG TGGCCATTGC
|
51TGCTGCCTAC AACAATGGCC AAGAAATCAA CGGTTTCAAA GCTGGAGAGA
|
101CCATCTACGA CATTGATGAA GACGGCACAA TTACCAAAAA AGACGCAACT
|
151GCAGCCGATG TTGAAGCCGA CGACTTTAAA GGTCTGGGTC TGAAAAAAGT
|
201CGTGACTAAC CTGACCAAAA CCGTCAATGA AAACAAACAA AACGTCGATG
|
251CCAAAGTAAA AGCTGCAGAA TCTGAAATAG AAAAGTTAAC AACCAAGTTA
|
301GCAGACACTG ATGCCGCTTT AGCAGATACT GATGCCGCTC TGGATGCAAC
|
351CACCAACGCC TTGAATAAAT TGGGAGAAAA TATAACGACA TTTGCTGAAG
|
401AGACTAAGAC AAATATCGTA AAAATTGATG AAAAATTAGA AGCCGTGGCT
|
453GATACCGTCG ACAAGCATGC CGAAGCATTC AACGATATCG CCGATTCATT
|
501GGATGAAACC AACACTAAGG CAGACGAAGC CGTCAAAACC GCCAATGAAG
|
551CCAAACAGCG GGCCGAAGAA ACCAAGCAAA ACGTCGATGC CAAAGTAAAA
|
601GCTGCAGAAA CTGCAGCAGG CAAAGCCGAA GCTGCCGCTG GCACAGCTAA
|
651TACTGCAGCC GACAAGGCCG AAGCTGTCGC TGCAAAATT ACCGACATCA
|
701AAGCTGATAT CGCTACGAAC AAAGATAATA TTGCTAAAAA AGCAAACAGT
|
751GCCGACGTGT ACACCAGAGA AGAGTCTGAC AGCAAATTTG TCAGAATTGA
|
801TGGTCTGAAC GCTACTACCG AAAAATTGGA CACACGCTTG GCTTCTGCTG
|
851AAAAATCCAT TGCCGATCAC GATACTCGCC TGAACGGTTT GGATAAAACA
|
901GTGTCAGACC TGCGCAAAGA AACCCGCCAA GGCCTTGCAG AACAAGCCGC
|
951GCTCTCCGGT CTGTTCCAAC CTTACAACGT GGGTGGATCC GGAGGGGGTG
|
1001GTGTCGCCGC CGACATCGGT GCGGGGCTTG CCGATGCACT AACCGCACCG
|
1051CTCGACCATA AAGACAAAGG TTTGCAGTCT TTGACGCTGG ATCAGTCCGT
|
1101CAGGAAAAAC GAGAAACTGA AGCTGGCGGC ACAAGGTGCG GAAAAAACTT
|
1151ATGGAAACGG TGACAGCCTC AATACGGGCA AATTGAAGAA CGACAAGGTC
|
1201AGCCGTTTCG ACTTTATCCG CCAAATCGAA GTGGAQGGGC AGCTCATTAC
|
1251CTTGGAGAGT GGAGAGTTCC AAGTATACAA ACAAAGCCAT TCCGCCTTAA
|
1301CCGCCTTTCA GACCGAGCAA ATACAAGATT CGGAGCATTC CGGGAAGATG
|
1351GTTGCGAAAC GCCAGTTCAG AATCGGCGAC ATAGCGGGCG AACATACATC
|
1401TTTTGACAAG CTTCCCGAAG GCGGCAGGGC GACATATCGC GGGACGGCGT
|
1451TCGGTTCAGA CGATGCCGGC GGAAAACTGA CCTACACCAT AGATTTCGCC
|
1501GCCAAGCAGG GAAACGGCAA AATCGAACAT CTGAAATCGC CAGAACTCAA
|
1551TGTCGACCTG GCCGCCGCCG ATATCAAGCC GGATGGAAAA CGCCATGCCG
|
1601TCATCAGCGG TTCCGTCCTT TACAACCAAG CCGAGAAAGG CAGTTACTCC
|
1651CTCGGTATCT TTGGCGGAAA AGCCCAGGAA GTTGCCGGCA GCGCGGAAGT
|
1701GAAAACCGTA AACGGCATAC GCCATATCGG CCTTGCCGCC AAGCAACTCG
|
1751AGCACCACCA CCACCACCAC TGA
|
1MATNDDDVKK AATVAIAAAY NNGQEINGFK AGETIYDIDE DGTITICKDAT
|
51AADVEADDFK GLGLKKVVTN LTKTVNENKQ NVDAKVKAAE SEIEKLTTKL
|
101ADTDAALADT DAALDATTNA LNKLGBNITT FABETKTNIV KIDEKLEAVA
|
151DTVDKHABAF NDIADSLDET NTKADEAVKT ANEAKQTAEE TKQNVDAKVK
|
201AAETAAGKAE AAAGTANTAA DKAEAVAAKV TDZKADIATN KDNIAKKANS
|
251ADVYTEEBSD SKPVRIDGLN ATTEKLDTEL ASAEKSIADH DTELNGLDKT
|
301VSDLRXETRQ GLABQAALSG LFQPYNVGGS GGGGVAADIG AGLADALTAP
|
351LDHDKGLQS LTLDQSVRKN EKLKLAAQGA EKTYGNGDSL NTGKLKNDKV
|
401SEFDFIRQIE VDGQLITLES GEPQVYKQSH SALTAPQTEQ IQDSEHSGKH
|
451VAKRQFRIGD IAGEHTSFDK LPBGGEATYR GTAPGSDDAG GKLTYTIDFA
|
501AXQGNGKIEH LKSPELNVDL AAADIKPDGK RHAVISGSVL YNQA3KGSYS
|
551LGIFGGKAQE VAGSAEVKTV NGIRHIGLAA KQLEHHHHHH *
|
961c-983
1ATGGCCACAA ACGACGACGA TGTTAAAAAA GCTGCCACTG TGGCCATTGC
|
51TGCTGCCTAC AACAATGGCC AAGAAATCAA CGGTTTCAAA GCTGGAGAGA
|
101CCATCTACGA CATTGATGAA GACGGCACAA TTACCAAAAA AGACGCAACT
|
151GCAGCCGATG TTGAAGCCGA CGACTTTAAA GGTCTGGGTC TGAAAAAAGT
|
201CGTGACTAAC CTGACCAAAA CCGTCAATGA AAAAAAACAA AACGTCGATG
|
251CCAAAGTAAA AGCTGCAGAA TCTGAAATAG AAAAGTTAAC AACCAAGTTA
|
301GCAGACACTG ATGCCGCTTT AGCAGATACT GATGCCGCTC TGGATGCAAC
|
351CACCAACGCC TTGAATAAAT TGGGAGAAAA TATAACGACA TTTGCTGAAG
|
401AGACTAAGAC AAATATCGTA AAAATTGATG AAAAATTAGA AGCCGTGGCT
|
451GATACCGTCG ACAAGCATGC CGAAGCATTC AACGATATCG CCGATTCATT
|
501GGATGAAACC AACACTAAGG CAGACGAAGC CGTCAAAACC GCCAATGAAG
|
551CCAAACAGAC GGCCGAAGAA ACCAAACAAA ACGTCGATGC CAAAGTAAAA
|
601GCTGCAGAAA CTGCAGCAGG CAAAGCCGAA GCTGCCGCTG GCACAGCTAA
|
651TACTGCAGCC GACAAGGCCG AAGCTGTCGC TGCAAAAGTT ACCGACATCA
|
701AAGCTGATAT CGCTACGAAC AAAGATAATA TTGCTAAAAA AGCAAACAGT
|
751GCCGACGTGT ACACCAGAGA AGAGTCTGAC AGCAAATTTG TCAGAATTGA
|
801TGGTCTGAAC GCTACTACCG AAAAATTGGA CACACGCTTG GCTTCTGCTG
|
851AAAAATCCAT TGCCGATCAC GATACTCGCC TGAACGGTTT GGATAAAACA
|
901GTGTCAGACC TGCGCAAAGA AACCCGCCAA GGCCTTGCAG AACAAGCCGC
|
953GCTCTCCGGT CTGTTCCAAC CTTACAACGT GGGTGGATCC GGCGGAGGCG
|
1001GCACTTCTGC GCCCGACTTC AATGCAGGCG GTACCGGTAT CGGCAGCAAC
|
1051AGCAGAGCAA CAACAGCGAA ATCAGCAGCA GTATCTTACG CCGGTATCAA
|
1101GAACGAAATG TGCAAAGACA GAAGCATGCT CTGTGCCGGT CGGGATGACG
|
1151TTGCGGTTAC AGACAGGGAT GCCAAAATCA ATGCCCCCCC CCCGAATCTG
|
1201CATACCGGAG ACTTTCCAAA CCCAAATGAC GCATACAAGA ATTTGATCAA
|
1251CCTCAAACCT GCAATTGAAG CAGGCTATAC AGGACGCGGG GTAGAGGTAG
|
1301GTATCGTCGA CACAGGCGAA TCCGTCGGCA GCATATCCTT TCCCGAACTG
|
1351TATGGCAGAA AAGAACACGG CTATAACGAA AATTACAAAA AcTATACGGC
|
1401GTATATGCGG AAGGAAGCGC CTGAAGACGG AGGCGGTAAA GACATTGAAG
|
1451CTTCTTTCGA CGATGAGGCC GTTATAGAGA CTGAAGCAAA GCCGACGGAT
|
1501ATCCGCCACG TAAAAGAAAT CGGACACATC GATTTGGTCT CCCATATTAT
|
1551TGGCGGGCGT TCCGTGGACG GCAGACCTGC AGGCGGTATT GCGCCCGATG
|
1601CGACGCTACA CATAATGAAT ACGAATGATG AAACCAAGAA CGAAATGATG
|
1651GTTGCAGCCA TCCGCAATGC ATGGGTCAAG CTGGGCGAAC GTGGCGTGCG
|
1701CATCGTCAAT AACAGTTTTG GAACAACATC GAGGGCAGGC ACTGCCGACC
|
1751TTTTCCAAAT AGCCAATTCG GAGGAGCAGT ACCGCCAAGC GTTGCTCGAC
|
1801TATTCCGGCG GTGATAAAAC AGACGAGGGT ATCCGCCTGA TGCAACAGAG
|
1851CGATTACGGC AACCTGTCCT ACCACATCCG TAATAAAAAC ATGCTTTTCA
|
1901TCTTTTCGAC AGGCAATQAC GCACAAGCTC AGCCCAACAC ATATGCCCTA
|
1951TTGCCATTTT ATGAAAAAGA CGCTCAAAAA GGCATTATCA CAGTCGCAGG
|
2001CGTAGACCGC AGTGGAGAAA AGTTCAAACG GGAAATGTAT GGAGAACCGG
|
2051GTACAGAACC GCTCGAGTAT GGCTCCAACC ATTGCGGAAT TACTGCCATG
|
2101TGGTGCCTGT CGGCACCCTA TGAAGCAAGC GTCCGTTTCA CCCGTACAAA
|
2151CCCGATTCAA ATTGCCGGAA CATCCTTCC CGCACCCATC GTAACCGGCA
|
2201CGGCGGCTCT GCTGCTGCAQ AAATACCCGT GGATGAGCAA CGACAACCTG
|
2251CGTACCACGT TGCTGACGAC GGCTCAGGAC ATCGGTGCAG TCGGCGTGGA
|
2301CAGCAAGTTC GGCTGGGGAC TGCTGGATGC GGGTAAGGCC ATGAACGGAC
|
2351CCGCGTCCTT TCCGTTCGGC GACTTTACCG CCGATACGAA AGGTACATCC
|
2401GATATTGCCT ACTCCTTCCG TAACGACATT TCAGGCACGG GCGGCCTGAT
|
2451CAAAAAAGGC GGCAGCCAAC TGCAACTGCA CGGCAACAAC ACCTATACGG
|
2501GCAAAACCAT TATCGAAGGC GGTTCGCTGG TGTTGTACGG CAACAACAAA
|
2551TCGGATATGC GCGTCGAAAC CAAAGGTGCG CTGATTTATA ACGGGGCGGC
|
2601ATCCGGCGGC AGCCTGAACA GCGACGGCAT TGTCTATCTG GCAGATACCG
|
2651ACCAATCCGG CGCAAACGAA ACCOTACACA TCAAAGGCAG TCTGCAGCTG
|
2701GAGGGCAAAG GTACGCTGTA CACACGWG GGCAAACTGC TGAAAGTGGA
|
2751CGGTACGGCG ATTATCGGCG GCAAGCTGTA CATGTCGGCA CGCGGCAAGG
|
2801GGGCAGGCTA TCTCAACAGT ACCGGACGAC GTGTTCCCTT CCTGAGTGCC
|
2851GCCAAAATCG GGCAGGATTA TTCTTTCTTC ACAAACATCG AAACCGACGG
|
2901CGGCCTGCTG GCTTCCCTCG ACAGCGTCGA AAAAACAGCG GGCAGTGAAG
|
2951GCGACACGCT GTCTTATTAT GTCCGTCGCG GCAATGCGGC ACGGACTGCT
|
3001TCGGCAGCGG CACATTCCGC GCCCGCCGGT CTGAAACACG CCGTAGAACA
|
3051GGGCGGCAGC AATCTGGAAA ACCTGATGGT CGAACTGGAT GCCTCCGAAT
|
3101CATCCGCAAC ACCCGAGACG GTTGAAACTG CGGCAGCCGA CCGCACAGAT
|
3151ATGCCGGGCA TCCGCCCCTA CGGCGCAACT TTCCGCGCAG CGGCAGCCGT
|
3201ACAGCATGCG AATGCCGCCG ACGGTGTACG CATCTTCAAC AGTCTCGCCG
|
3251CTACCGTCTA TGCCGACAGT ACCGCCGCCC ATGCCGATAT GCAGGGACGC
|
3301CGCCTGAACG CCGTATCGGA CGGGTTGGAC CACAACGGCA CGGGTCTGCG
|
3351CGTCATCGCG CAAACCCAAC AGGACGGTGG AACGTGGGAA CAGGGCGGTG
|
3401TTGAAGGCAA AATGCGCGGC AGTACCCAAA CCGTCGGCAT TGCCGCGAAA
|
3451ACCGGCGAAA ATACGACAGC AGCCGCCACA CTGGGCATGG GACGCAGCAC
|
3501ATGGAGCGAA AACAGTGCAA ATGCAAAAAC CGACAGCATT AGTCTGTTTG
|
3551CAGGCATACG GCACGATGCG GGCGATATCG GCTATCTCAA AGGCCTGTTC
|
3601TCCTACGGAC GCTACAAAAA CAGCATCAGC CGCAGCACCG GTGCGGACGA
|
3651ACATGCGGAA GGCAGCGTCA ACGGCACGCT GATGCAQCTG GGCGCACTGG
|
3701GCGGTGTCAA CGTTCCGCT GCCGCAACGG GAGATTTGAC GGTCGAAGGC
|
3751GGTCTGCGCT ACGACCTGCT CAAACAGGAT GCATTCGCCG AAAAAGGCAG
|
3801TGCTTTGGGC TGGAGCGGCA ACAGCCTCAC TGAAGGCACG CTGGTCGGAC
|
3851TCGCGGGTCT GAAGCTGTCG CAACCCTTGA GCGATAAAGC CGTCCTGTTT
|
3901GCAACGGCGG GCGTGGAACG CGACCTGAAC GGACGCGACT ACACGGTAAC
|
3951GGGCGGCTTT ACCGGCGCGA CTGCAGCAAC CGGCAAGACG GGGGCACGCA
|
4001ATATGCCGCA CACCCGTCTG GTTGCCGGCC TGGGCGCGGA TGTCGAATTC
|
4051GGCAACGGCT GGAACGGCTT GGCACGTTAC AGCTACGCCG GTTCCAAACA
|
4101GTACGGCAAC CACAGCGGAC GAGTCGGCGT AGGCTACCGG TTCCTCGAGC
|
4151ACCACCACCA CCACCACTGA
|
1MATNDDDVKK AATVAIAAAY NNGQEINGFK AGETIYDIDE DGTITKKDAT
|
51AADVEADDFK GLGLXKVVTN LTKTVNENKQ NVDAKVKAAE SEIEKLTTKL
|
101ADTDAALAflT DAALDATTNA LNKLGENITT PAEETKTNIV KIDEKIAEAVA
|
151DTVDKHAEAF NDIADSIJDET NTKADEAVKT AEAKQTAEE TKQNVDAKVK
|
201AAETAAGKAE AAAGTANTAA DKAEAVAARV TDIKADIATN XDNIAKKANS
|
251ADVYTREESD SKFVRIDGLN ATTEKLDTRL ASAEKSIADH DTRLNGLDKT
|
301VSDLRKETRQ GLAEQAALSG LFQPYNVGGS GGGGTSAPDF NAGGTGIGSN
|
351SRATTAXSAA VSYAGIKNEM CKDRSMLCAG RDDVAVTDRD AKINAPPPNL
|
401HTGDFPNPND AYKNLINLKP AIEAGYTGRG VEVGIVDTGE SVGSISFPEL
|
451YGRKEEGYNE NYKNYTAYMR KEAPEDGGGK DIEASFDDEA VIETEAKPTD
|
501IRHVKEIGHI DIJVSHHGGR SVDGRPAGGI APDATLHIMN TNDETKNEMM
|
551VAAIRNAWVK LGERGVRIVN NSFGTTSRAG TADLFQIANS EEQYRQALLD
|
601YSGGDKTDEG IRLMQQSDYG NLSYHIRNKN MLFIFSTGND AQAQPNTYAL
|
651LPFYEDAQK GIITVAGVDR SGEKPKEEKY GEPGTEPLEY GSNHCGITAM
|
701WCLSAPYEAS VRFTRTNPIQ IAGTSFSAPI VTGTAALLLQ KPWMSNDNL
|
751RTTLLTTAQD IGAVUVDSKP GWGLLDAGKA MNGPASFPFG DFTADTKGTS
|
801DIAYSFRNDI SGTGGLIKKG GSQLQLHGHNN TYTGKTIIEG GSLVLYGNNK
|
851SDHRVETKGA LIYNGAASGG SLNSDGIVYD ADTDQSGANIE TVHIKGBLQL
|
901DGKGTLYTPL GKIJLKVDGTA IIGGELYNSA RGKGAGYLNS TGERVPFLSA
|
951AKIGQDYSPF TNIETDGGLL ASLDSVEKTA GSEGDTLSYY VRRGNAARTA
|
1001SAAAHSAPAG LKHAVEQGGS NLBNIMVELD ASESSATPET VETAAADRTD
|
1051MPGIRPYGAT FRAAAAVQHA NAADGVRIFN SLAATVYADS TAAEADMQGR
|
1101RLKAVSDGLD HNGTGLRVIA QTQQDGGTWE QGGVEGKNRG STQTVGIAAK
|
1151TGENTTAAAT LGMGRSTWSE NSANAKTDSI SLPAGIRHDA GDIGYLKGLF
|
1201SYGRYKNSIS RSTGADEHAE GSVNGTIMQL GALGGVNVPP AATGDLTVEG
|
1251GLRYDLLKQD AFAEKGSALG WSGNSLTEGT LVGLAGLKLS QPLSDRAVLF
|
1301ATAGVERDLN GRDYTVTGGF TGATAATGKT GARNMPHTRL VAGLGADVEF
|
1351GNGWNGLARY SYAGSKQYGN HSGRVGVGYR FLEHHHHHH*
|
961cL-0RF46.1
1ATGAAACACT TTCCATCCAA AGTACTGACC ACAGCCATCC TTGCCACTTT
|
51CTGTAGCGGC GCACTGGCAG CCACAAACGA CGACGATGTT AAAAAAGCTG
|
101CCAGTGTGGC CATTGCTGCT GCCTACAACA ATGGCCAAGA AATCAACGGT
|
151TTCAAAGCTG GAGAGACCAT CTACGACATT GATGAAGACG GCACAATTAC
|
201CAAAAAAGAC GCAACTGCAG CCGATGTTGA AGCCGACQAC TTTAAAGGTC
|
251TGGGTCTGAA AAAAGTCGTG ACTAACCTGA CCAAAACCGT CAATGAAAAC
|
301AAACAAAACG TCGATGCCAA AGTAAAAGCT GCAGAATCTG AAATAGAAAA
|
351GTTAACAACC AAGTTAGCAG ACACTGATGC CGCTTTAGCA GATACTGATG
|
401CCGCTCTGGA TGCAACCACC AACGCCTTGA ATAAATTGGG AGAAAATATA
|
451ACGACATTTG CTGAAGAGAC TAAGACAAAT ATCGTAAAAA TTGATGAAAA
|
501ATTAGAAGCC GTGGCTGATA CCGTCGACAA GCATGCCGAA GCATTCAACG
|
551ATATCGCCGA TTCATTGGAT GAAACCAACA CTAAGGCAGA CGAAGCCGTC
|
601AAAACCGCCA ATGAAGCCAA ACAGACGGCC GAAGAAACCA AACAAAACGT
|
651CGATGCCAAA GTAAAAGCTG CAGAAACTGC AGCAGGCAAA GCCGAAGCTG
|
701CCGCTGGCAC AGCTAATACT GCAGCCGACA AGGCCGAAGC TGTCGCTGCA
|
751AAAGTTACCG ACATCAAAGC TGATATCGCT ACGAACAAAG ATAATATTGC
|
801TAAAAAAGCA AACAGTGCCG ACGTGTACAC CAGAGAAGAG TCTGACAGCA
|
851AATTTGTCAG AATTGATGGT CTGAACGCTA CTACCGAAAA ATTGGACACA
|
901CGCTTGGCTT CTGCTGAAAA ATCCATTGCC GATCACGATA CTCGCCTGAA
|
951CGGTTTGGAT AAAACAGTGT CAGACCTGCG CAAAGAAACC CGCCAAGGCC
|
1001TTGCAGAACA AGCCGCGCTC TCCGGTCTGT TCCAACCTTA CAACGTGGGT
|
1051GGATCCGGAG GAGGAGGATC AGATTTGGCA AACGATTCTT TTATCCGGCA
|
1101GGTTCTCGAC CGTCAGCATT TCGAACCCGA CGGGAAATAC CACCTATTCG
|
1151GCAGCAGGGG GGAACAGGCC GAGCGCAGCG GCCATATCGG ATTGGGAAAA
|
1201ATACAAAGCC ATCAGTTGGG CAACCTGATG ATTCAACAGG CGGCCATTAA
|
1251AGGAAATATC GGCTACATTG TCCGCTTTTC CQATCACGGG CACGAAGTCC
|
1301ATTCCCCCTT CGACAACCAT GCCTCACATT CCGATTCTGA TGAAGCCGGT
|
1351AGTCCCGTTG ACGGATTTAG CCTTTACCGC ATCCATTGGG ACGGATACGA
|
1401ACACCATCCC GCCGACGGCT ATGACGGGCC ACAGGGCGGC GGCTATCCCG
|
1451CTCCCAAAGG CGCGACGGAT ATATACAGCT ACGACATAAA AGGCGTTGCC
|
1501CAAAATATCC GCCTCAACCT GACCGACAAC CGCAGCACCG GACAACGGCT
|
1551TGCCGACCGT TTCCACAATG CCGGTAGTAT GCTGACGCAA GGACTAGGCG
|
1601ACGGATTCAA ACGCGCCACC CGATACAGCC CCGAGCTGGA CAGATCGGGC
|
1651AATGCCGCCG AAGCCTTCAA CGGCACTGCA GATATCGTTA AAAACATCAT
|
1701CGGCGCGGCA GGAGAAATTG TCGGCGCAGG CGATGCCGTG CAGGGCATAA
|
1751GCGAAGGCTC AAACATTGCT GTCATGCACG GCTTGGGTCT GCTTTCCACC
|
1801GAAAACAAGA TGGCGCGCAT CAACGATTTG GCAGATATGG CGCAACTCAA
|
1851AGACTATGCC GCAGCAGCCA TCCGCGATTG GGCAGTCCAA AACCCCAATG
|
1901CCGCACAAOG CATAGAAGCC GTCAGCAATA TCTTTATGGC AGCCATCCCC
|
1951ATCAAAGGGA TTGGAGCTGT TCGGGGAAAA TACGGCTTGG GCGGCATCAC
|
2001GGCACATCCT ATCAAGCGGT CGCAGATGGG CGCGATCGCA TTGCCGAAAG
|
2051GGAAATCCGC CGTCAGCGAC AATTTTGCCG ATGCGGCATA CGCCAAATAC
|
2101CCGTCCCCTT ACCATTCCCG AAATATCCGT TCAAACTTGG AGCAGCGTTA
|
2151CGGCAAAGAA AACATCACCT CCTCAACCGT GCCGCCGTCA AACGGCAAAA
|
2201ATGTCAAACT GGCAGACCAA CGCCACCCGA AGACAGGCGT ACCGTTTGAC
|
2251GGTAAAGGGT TTCCGAATTT TGAGAAGCAC GTGAAATATG ATACGTAACT
|
2301CGAG
|
1MKHFPSKVLT TAILATFCSG ALAATNDDDV KKAATVAIAA AYNNGQEING
|
51FKAGBTIYDI DEDGTITKKD ATAADVBADD FKGLGLKKVV TNLTKTVNEN
|
101KQNVDAXVKA AESBIEILTT KLADTDAALA DTDAALDATT NALNKLGENI
|
151TTFAEETKTN IVKIDEKLEA VADTVDKHAE AFNDIADSLD ETNTKADEAV
|
201KTANEAKQTA EETKQNVDAK VKAAETAAGR AEAAAGTANT AADKAEAVAA
|
251KVTDIKADIA TNKDNIAKKA NSADVYTRBE SDSKFVRIDG LNATTEKIJDT
|
301RLASAEKSIA DHDTRLNGLD KWSDLRKRT RQGLAEQAAL SGLPQPYNVG
|
351GSGGOGSDLA NDSFIRQVLD RQHFEPDGKY HLFGSRGELA ERSGHIGLGK
|
401IQSHQLGNIM ZQQAAIKGNI GYIVRFSDHG HHVHSPFDNH ASHSDSDEAG
|
451SPVDGFSLYR IHWDGYEHHP ADGYDGPQGG GYPAPKGARD IYSYDIKGVA
|
501QNIRLNLTDN RSTGQRLADR FHNAGSMLTQ GVGDGFKRAT RYSPELDRSG
|
551NAAEAPNGTA DIVKNIIGAA GEIVGAGDAV QGISBGSNIA VMHGLGLLST
|
601ENKMARINDL ADNAQLKDYA AAAIRDWAVQ NPNAAQGIEA VSNIFNAAIP
|
651IKGIGAVRGK YGLGGITAHP IKRSQMGAIA LPKGKSAVSD NFADAAYAKY
|
701PSPYHSRNIR SNLEQRYGK NITSSTVPPS NGKNVKLADQ RHPKTGVPFD
|
751GKGFPNFEKH VKYDT*
|
961cL-741
1ATGAAACACT TTCCATCCAA AGTACTGACC ACAGCCATCC TTGCCACTTT
|
51CTGTAGCGGC GCACTGGCAG CCACAAACGA CGACGATGTT AAAAAAGCTG
|
101CCACTGTGGC CATTGCTGCT GCCTACAACA ATGGCCAACA AATCAACGGT
|
151TTCAAAGOTG GAGACACCAT CTACGACATT GATGAAGACG GCACAATTAC
|
201CAAAAAAGAC GCAACTGCAG CCGATGTTGA AGCCGACGAC TTTAAAGGTC
|
251TGGGTCTGAA AAAAGTCGTG ACTAACCTGA CCAAAACCGT CAATGAAAAC
|
301AAACAAAACG TCGATGCCAA AGTAAAAGCT GCAGAATCTG AAATAGAAAA
|
351GTTAACAACC AAGTTAGCAG ACACTGATGC CGCTTTAGCA GATACTGATG
|
401CCGCTCTGGA TGCAACCACC AACGCCTTGA ATAAATTGGG AGAAAATATA
|
451ACGACATTTG CTGAAGAGAC TAAGACAAAT ATCGTAAAAA TTGATGAAAA
|
501ATTAGAAGCC GTGGCTGATA CCGTCGACAA GCATGCCGAA GCATTCAACG
|
551ATATCGCCGA TTCATTGGAT GAAACCAACA CTAAGGCAGA CGAAGCCGTC
|
601AAAACCGCCA ATGAAGCCAA ACAGACGGCC GAAGAAACCA AACAAAACGT
|
651CGATGCCAAA GTAAAAGCTG CAGAAACTGC AGCAGGCAAk GCCGAAGCTG
|
701CCGCTGGCAC AGCTAATACT GCAGCCGACA ACGCCGAAGC TGTCGCTGCA
|
751AAAGTTACCG ACATCAAAGC TGATATCGCT ACGAACAAAG ATAATATPGC
|
801TAAAAAAGCA AACAGTGCCG ACGTGTACAC CAGAGAAGAG TCTGACAGCA
|
851AATTTGTCAG AATTGCTGGT CTGAACGCTA CTACCGAAAA ATTGGACACA
|
901CGCTTGGCTT CTGCTGAAAA ATCCATTGCC GATCACGATA CTCGCCTGAA
|
951CGGGTTGGAT AAAACAGTGT CACACCTGCG CAAAGAAACC CGCCAAGGCC
|
1001TTGCAGAACA AGCCGCGCTC TCCGGTCTGT TCCAACCTTA CAACGTGGGT
|
1051GGATCCGGAC GGGGTGGTGT CGCCGCCGkC ATCGGTGCGG GGCTTGCCGA
|
1101TGCACTAACC GCACCGCTCG ACCATAAAGA CAAAGGTTTG CAGTCTTTGA
|
1151CGCTGGATCA GTCCGTCAGG AAAAACGAGA AACTGAAGGT GGCGGCACAA
|
1201GGTGCGGAAA AAACTTATGG AAACGGTGAC AGCCTCAATA CGGGCAAATT
|
1251GAAGAACGAC AAGGTCAGCC GTTTCGACTT TATCCGCCAA ATCGAAGTGG
|
1301ACGGGCAGOT CATTACCTTG GAGAGTGGAG AGTTCCAAGT ATACAAACAA
|
1351AGCCATTCCG CCTTAACCGC CTTTCAGACC GAGCAAATAC AAGATTCGGA
|
1401GCATTCCGGG AAGATGGTTG CGAAACGCCA GTTCAGAATC GGCGACATAG
|
1451CGGGCGAACA TACATCTTTT GACAAGCTTC CCGAAGGCGG CAGGGCGACA
|
1501TATCGCGGGA CGGCGTTCGG TTCAGACGAT GCCGGCGGAA AACTGACCTA
|
1551CACCATAGAT TTCGCCGCCA AGCAGGGAAA CGGCAAAATC GAACATTTGA
|
1601AATCGCCAGA ACTCAATGTC GACCTGGCCG CCGCCGATAT CAAGCCGGAT
|
1651GGAAAACGCC ATGCCGTCAT CAGCGGTTCC GTCCTTTACA ACCAAGCCGA
|
1701GAAAGGCAGT TACTCCCTCG GTATCTTTGG CGGAAAAGCC CAGGAAGTTG
|
1751CCGGCAGCGC GGAAGTGAAA ACCGTAAACG GCATACGCCA TATCGGCCTT
|
1801GCCGCCAAGC AACTCGAGCA CCACCACCAC CACCACTGA
|
1MKHFPSKVLT TAILATFCSG ALAATNDDDV KKAATVAZAA AYNNGQEING
|
51FKAGETIYDI DEDGTITKKD ATAADVEADD FKGLGLKKVV TNLTKTVNEN
|
101KQNVDAKVKA AESEIEKLTT KLADTDAALA DTDAALDATT NALNKLGHNI
|
151TTFABETKTN IVKIDEKLEA VADTVDKAE AFNDIADSLD ETNTKADEAV
|
201KTANEAKQTA EBTKQNVDAK VKAAETAAGK AEAAAGTANT AADKAEAVAA
|
251KVTDIKADIA TNKDNIAXKA NSADVYTREB SDSKFVRIDG LNATTEKLDT
|
301ELASAEKSIA DHDTRLNGLD KTVSDLRXET RQGLAEQAAL SGLFQPYNVG
|
351GSGGGGVAAD IGAGLADALT APLDHKDKGL QSLTDDQSVR KNEKLKLAAQ
|
401GAEKTYGNGD SLNTGKLKND KVSRFDFIRQ IEVDGQLITL ESGEFQVYKQ
|
451SHSALTAFQT EQIQDSEHSG KMVAXRQFRI GDIAGEHTSF DKLPEGGRAT
|
501YRGTAFGSDD AGGKLTYTID FAAKQGNGKI EHLKSPELNV DLAAADIKPD
|
551GKRHAVZSGS VLYNQAEKGS YSLGIPGGKA QEVAGSAEVK TVNGIRHIGL
|
601AAKQLEHHHH HH*
|
961cL-983
1ATGAAACACT TTCCATCCAA AGTACTGACC ACAGCCATCC TTGCCACTTT
|
51CTGTAGCGGC GCACTGGCAG CCACAAACGA CGACGATGTT AAAAAAGCTG
|
101CCACTGTGGC CATTGCTGCT GCCTACAACA ATGGCCAAGA AATCAACGGT
|
151TTCAAAGCTG GAGAGACCAT CTACGACATT GATGAAGACG GCACAATTAC
|
201CAAAAAAGAC GCAACTGCAG CCGATGTTGA AGCCGACGAC TTTAAAGGTC
|
251TGGGTCTGAA AAAAGTCGTG ACTAACCTGA CCAAAACCGT CAATGAAAAC
|
301AAACAAAACG TCGATGCCAA AGTAAAAGCT GCAGAATCTG AAATAGAAAA
|
351GTTAACAACC AAGTTAGCAG ACACTGATGC CGCTTTAGCA GATACTGATG
|
401CCGCTCTGGA TGCAACCACC AACGCCTTGA ATAAATTGGG AGAAAATATA
|
451ACGACATTTG CTGAAGAGAC TAAGACAAAT ATCGTAAAAA TTGATGAAAA
|
501ATTAGAAGCC GTGGCTGATA CCGTCGACAA GCATGCCGAA GCATTCAACG
|
551ATATCGCCGA TTCATTGGAT GAAACCAACA CTAAGGCAGA CGAAGCCGTC
|
601AAAACCGCCA ATGAAGCCAA ACAGACGGCC GAAGAAACCA AACAAAACGT
|
651CGATGCCAAA GTAAAAGCTG CAGAAACTGC AGCAGGCAAA GCCGAAGCTG
|
701CCGCTGGCAC AGCTAATACT GCAGCCGACA AGGCCGAAGC TGTCGCTGCA
|
751AAAGTTACCG ACATCAAAGC TGATATCGCT ACGAACAAAG ATAATATTGC
|
801TAAAAAAGCA AACAGTGCCG ACGTGTACAC CAGAGAAGAG TCTGACAGCA
|
851AATTTGTCAG AATTGATGGT CTGAACGCTA CTACCGAAAA ATTGGACACA
|
901CGCTTGGCTT CTGCTGAAAA ATCCATTGCC GATCACGATA CTCGCCTGAA
|
951CGGTTTGGAT AAAACAGTGT CAGACCTGCG CAAAGAAACC CGCCAAGGCC
|
1001TPGCAGAACA AGCCGCGCTC TCCGGTCTGT TCCAACCTTA CAACGTGGGT
|
1051GGATCCGGCG GAGGCGGCAC TTCTGCGCCC GACTTCAATG CAGGCGGTAC
|
1101CGGTATCGGC AGCAACAGCA GAGCAACAAC AGCGAAATCA GCAGCAGTAT
|
1151CTTACGCCGG TATCAAGAAC GAAATGTGCA AAGACAGAAG CATGCTCTGT
|
1201GCCGGTCGGG ATGACGTTGC GGTTACAGAC AGGGATGCCA AAATCAATGC
|
1251CCCCCCCCCG AATCTGCATA CCGGAGACTT TCCAAACCCA AATGACGCAT
|
1301ACAAGAATTT GATCAACCTC AAACCTGCAA TTGAAGCAGG CTATACAGGA
|
1351CGCGGGGTAG AGGTAGGTAT CGTCGACACA GGCGAATCCG TCGGCAGCAT
|
1401ATCCTTTCCC GAACTGTATG GCAGAAAAGA ACACGGCTAT AACGAAAATT
|
1451ACAAAAACTA TACGGCGTAT ATGCGGAAGG AAGCGCCTGA AGACGGAGGC
|
1501GGTAAAGACA TTGAAGCTTC TTTCGACGAT GAGGCCGTTA TAGAGACTGA
|
1551ACCAAAGCCG ACGGATATCC GCCACGTAAA AGAAATCGGA CACATCGATT
|
1601TGGTCTCCCA TATTATTGGC GGGCGTTCCG TGGACGGCAG ACCTGCAGGC
|
1651GGTATTGCGC CCGATGCGAC GCTACACATA ATGAATACGA ATGATGAAAC
|
1701CAAGAACGAA ATGATGGTTG CAGCCATCCG CAATGGATGG GTCAAGCTGG
|
1751GCGAACGTGG CGTGCGCATC GTCAATAACA GTTTTGGAAC AACATCGAGG
|
1801GCAGGCACTG CCGACCTTTT CCAAATAGCC AATTCGGAGG AGCAGTACCG
|
1851CCAAGCGTTG CTCGACTATT CCGGCGGTGA TAAAACAGAC GAGGGTATCC
|
1901GCCTGATGCA ACAGAGCGAT TACGGCAACC TGTCCTACCA CATCCGTAAT
|
1951AAAAACATGC TTTTCATCTT TTCGACAGGC AATGACGCAC AAGCTCAGCC
|
2001CAACACATAT GCCCTATTGC CATTTTATGA AAAAGACGCT CAAAAAGGCA
|
2051TTATCACAQT CGCAGGCGTA GACCGCAGTG GAGAAAAGTT CAAACGGGAA
|
2101ATGTATGGAG AACCGGGTAC AGAACCGCC GAGTATGGCT CCAACCATTG
|
2151CGGAATTACT GCCATGTGGT GCCTGTCGGC ACCCTATGAA GCAAGCGTCC
|
2201GTTTCACCCG TACAAACCCG ATTCAAATTG CCGGAACATC CTTTTCCGCA
|
2251CCCATCGTAA CCGGCACGGC GGCTCTGCTG CTGCAGAAAT ACCCGTGGAT
|
2301GAGCAACGAC AACCTGCGTA CCACGTTGCT GACGACGGCT CACGACATCG
|
2351GTGCAGTCGG CGTGGACAGC AAGTTCGGCT GGGGACTGCT GGATGCGGGT
|
2401AAGGCCATGA ACGGACCCGC GTCCTTTCCG TTCGGCGACT TTACCGCCGA
|
2451TACGAAAGGT ACATCCGATA TTGCCTACTC CTTCCGTAAC GACATTTCAG
|
2501GCACGGGCGG CTTGATCAAA AAAGGCGGCA GCCAACTGCA ACTGCACGGC
|
2551AACAACACCT ATACGGGCAA AACCATTATC GAAGGCGGCC CGCTGGTGTT
|
2601GTACGGCAAC AACAAATCGG ATATGCGCGT CGAAACCAAA GGTGCGCTGA
|
2651TTTATAACGG GGCGGCATCC GGCGGCAGCC TGAACAGCGA CGGCATTGTC
|
2701TATCTGGCAG ATACCGCCA ATCCGGCGCA AACGAAACCG TACACATCAA
|
2751AGGCAGTCTG CAGCTGGACG GCAAAGGTAC GCTGTACACA CGTTTGGGCA
|
2801AACTGCTGAA AGTGGACGGT ACGGCGATTA TCGGCGGCAA GCTGTACATG
|
2851TCGGCACGCG GCAAGGGGGC AGGCTATCTC AACAGTACCG GACGACGTGT
|
2901TCCCTTCCTG AGTGCCGCCA AAATCGGGCA GGATTATTCT TTCTACACAA
|
2951ACATCGAAAC CGACGGCGGC CTGCTGGCTT CCCTCGACAG CGTCGAAAAA
|
3001ACAGCGGGCA GTGAAGGCGA CACGCTGTCC TATTATGTCC GTCGCGGCAA
|
3051TGCGGCACGG ACTGCTTCGG CAGCGGCACA TTCCGCGCCC GCCGGTCTGA
|
3101AACACGCCGT AGAACAGGGC GGCAGCAATC TGGAAAACCT GATGGTCGAA
|
3151CTGGATGCCT CCGAATCATC CGCAACACCC GAGACGGTTG AAAGTGCGGC
|
3201AGCCGACCGC ACAGATATOC CGGGCATCCG CCCCTACGGC GCAACTTTCC
|
3251GCGCAGCGGC AGCCGTACAG CATGCGAATG CCGCCGACGG TGTACGCATC
|
3301TTCAACAGTC TCGCCGCTAC CGTCTATGCC GACAGTACCG CCGCCCATGC
|
3351CGATATGCAG GGACGCCGCC TGAAAGCCGT ATCGGACGGG TTGGAGCACA
|
3401ACGGCACGGG TCTGCGCGTC ATCGCGCAAA CCCAACAGGA CGGTGGAACG
|
3451TGGGAACAGG GCGGTGTDGA AGGCAAAATG CGCGGCAGTA CCCAAACCGT
|
3501CGGCATTGCC GCGAAAACCG GCGAAAATAC GACAGCAGCC GCCACACTGG
|
3551GCATGGGACG CAGCACATGG AGCGAAAACA GTGCAAATGC AAAAACCGAC
|
3601AGCATTACTC TGTTTGCAGG CATACGGCAC GATGCGGGCG ATATCGGCTA
|
3651TCTCAAAGGC CTGTTCTCCT ACGGACGCTA CAAAAACAGC ATCAQCCGCA
|
3701GCACCGGTGC GGACGAACAT GCGGAAGGCA GCGTCAACGG CACGCTGATG
|
3751CAGCTGGGCG CACTGGGCGG TGTCAACGTT CCGTTTGCCG CAACGGGAGA
|
3801TTTGACGGTC GAAGGCGGTC TGCGCTACGA CCTGCTCAAA CAGGATGCAT
|
3851TCGCCGAAAA AGGCAGTGCT TTGGGCTGGA GCGGCAACAG CCTCACTGAA
|
3901GGCACGCTGG TCGGACTCGC GGGTCTGAAG CTGTCGCAAC CCTTGAGCQA
|
3951TAAAGCCGTC CTGTTTGCAA CGGCGGGCGT GGAACGCGAC CTGAACGGAC
|
4001GCGACTACAC GGTAACGGGC GGCTTTACCG GCGCGACTGC AGCAACCGGC
|
4051AAQACGGGGG CACGCAATAT GCCGCACACC CGTCTGGTTG CCGGCCTGGG
|
4101CGCGGATGTC GAATTCGGCA ACGGCTGGAA CGGCTTGGCA CGTTACAGCT
|
4151ACGCCGGTTC CAAACAGTAC GGCAACCACA GCGGACQAGT CGGCGTAGGC
|
4201TACCGGTTCT GACTCGAG
|
1MKHFPSKVLT TAILATFCSG ALAATNDDDV KKAATVAIAA AYNNQQEING
|
51FKAGETIYDI DHDGTITKKD ATAADVEADD FKGLGLKKVV TNLTKTVNEN
|
101KQNVDAKVKA AESEIEKLTT KLADTDAALA DTDAALDATT NMZNKLGENI
|
151TTFABETKTN IVKIDEKLEA VADTVDKNIAE AFNDIADSLD ETNTKADEAV
|
201KTANEARQTA EETKQNVDAR VKAAETAAGK AEAAAGTANT AADKAEAVAA
|
251KVTDIKADIA TNKDNIAKKA NSADVYTREB SDSKFVRIDG LNATTEKLDT
|
301RLASAEKEIA DIWTPLNGLD KTVSDLRKET RQGLAEQAAL SGLFQPYNVG
|
351GSGGGGTSAP DFNAGGTGIG SNSRATTAKS AAVSYAGIKN EMCKDRSMLC
|
401AGRDDVAVTD RDAKINAPPP NLHTGDFPNP NDAYKNLINL KPAIEAGYTG
|
451EGVEVGIVDT GESVGSISFP BLYGRKEEGY NENYKNYTAY HRKEAPEDGG
|
501GKDIEASFDD BAVIETEAKP TDIRHVKEIG HIDLVSHIIG GESVDGEPAG
|
551GIAPDATLHI MNTNDETKNE LDYSGGDKTD EGIRLMQQSD YRNLSYHIRN
|
601AGTADLFQIA NSEBQYEQAL LDYSGGDKTD EGIEIMQQSD YGNLSYHIRN
|
651KNMLPIFSTG NDAQAQPNTY ALLPFYEKDA QKGIITVAGV DRSGEKFKRE
|
701MYGEPGTBPL EYGSNHCGIT AMWCLSAPYE ASVRFTRTNP IQIAGTSPSA
|
751PIVTGTAALL LQKYOWNSBD NLRTTLLTTA QDIGAVGVDS KFGWGLLDAG
|
801KAMNGPABFP FGDFTADTKG TSDIAYSFRN DISGTGGLIK KGGSQLQLHG
|
851NNTYTGKTII EGGBLVLYGN NKSDMRVETK GALIYNGAAS GGSLNBDGIV
|
901YLADTDQSGA NBTVHIKGSL QLDGKGTLYT ELGKLLKVDG TAIIGGKLYM
|
951SARGKGAGYL NSTGRRVPPL SAAKIGQDYS FFTNIETDGG LLASLDSVEK
|
1001TAGSRGDTLS YYVRRGNAAR TASAAAHSAP AGLKHAVEQG GSNLENLMVB
|
1051LDASESSATP ETVETAAADR TDNPGIEPYG ATFRAAAAVQ HANAADGVRI
|
1101FNSLAATVYA DSTAAHADMQ GRRLKAVSDG LDHNGTGLRV IAQTQQDGGT
|
1151WEQGGVEGKH RGSTQTVGIA AKTGENTTAA ATLGHGRSTW SENSANAKTD
|
1201SISLFAGIRH DAGDIGYLKG LFSYGRYKNS ISRSTGADBH AEGSVNGTLM
|
1251QLGALGGVNV PFAATGDLTV EGGLRYDLLK QDAFAEKGBA LGWSGNSLTE
|
1301GTLVGLAGLK LSQPLSDKAV LFATAGVERD LNGRDYTVTG GFTGATAATG
|
1351KTGAPNMPHT RLVAGLGADV EFGNGWNGLA RYSYAGSKQY GNHSGRVGVG
|
1401YRF*
[0403] It will be understood that the invention has been described by way of example only and modifications may be made whilst remaining within the scope and spirit of the invention. For instance, the use of proteins from other strains is envisaged [e.g. see WO00/66741 for polymorphic sequences for ORF4, ORF40, ORF46, 225, 235, 287, 519, 726, 919 and 953].
[0404] Experimental Details
[0405] FPLC Protein Purification
[0406] The following table summarises the FPLC protein purification that was used:
57|
|
ProteinPIColumnBufferpHProtocol
|
121.1untagged6.23Mono QTris8.0A
128.1untagged5.04Mono QBis-Tris propane6.5A
406.1L7.75Mono QDiethanolamine9.0B
576.1L5.63Mono QTris7.5B
593untagged8.79Mono SHepes7.4A
726untagged4.95Hi-trap SBis-Tris6.0A
919untagged10.5(-leader)Mono SBicine8.5C
919Lorf410.4(-leader)Mono STris8.0B
920L6.92(-leader)Mono QDiethanolamine8.5A
953L7.56(-leader)Mono SMES6.6D
982untagged4.73Mono QBis-Tris propane6.5A
919-2876.58Hi-trap QTris8.0A
953-2874.92Mono QBis-Tris propane6.2A
|
[0407] Buffer solutions included 20-120 mM NaCl, 5.0 mg/ml CHAPS and 10% v/v glycerol. The dialysate was centrifuged at 13000 g for 20 min and applied to either a mono Q or mono S FPLC ion-change resin. Buffer and ion exchange resins were chosen according to the pI of the protein of interest and the recommendations of the FPLC protocol manual [Pharmacia: FPLC Ion Exchange and Chromatofocussing; Principles and Methods. Pharmacia Publication]. Proteins were eluted using a step-wise NaCl gradient. Purification was analysed by SDS-PAGE and protein concentration determined by the Bradford method.
[0408] The letter in the ‘protocol’ column refers to the following:
[0409] FPLC-A: Clones 121.1, 128.1, 593, 726, 982, periplasmic protein 920L and hybrid proteins 919-287, 953-287 were purified from the soluble fraction of E.coli obtained after disruption of the cells. Single colonies harbouring the plasmid of interest were grown overnight at 37° C. in 20 ml of LB/Amp (100 μg/ml) liquid culture. Bacteria were diluted 1:30 in 1.0 L of fresh medium and grown at either 30° C. or 37° C. until the OD550 reached 0.6-08. Expression of recombinant protein was induced with IPTG at a final concentration of 1.0 mM. After incubation for 3 hours, bacteria were harvested by centrifugation at 8000 g for 15 minutes at 4° C. When necessary cells were stored at −20° C. All subsequent procedures were performed on ice or at 4° C. For cytosolic proteins (121.1, 128.1, 593, 726 and 982) and periplasmic protein 920L, bacteria were resuspended in 25 ml of PBS containing complete protease inhibitor (Boehringer-Mannheim). Cells were lysed by by sonication using a Branson Sonifier 450. Disrupted cells were centrifuged at 8000 g for 30 min to sediment unbroken cells and inclusion bodies and the supernatant taken to 35% v/v saturation by the addition of 3.9 M (NH4)2SO4. The precipitate was sedimented at 8000 g for 30 minutes. The supernatant was taken to 70% v/v saturation by the addition of 3.9 M (NH4)2SO4 and the precipitate collected as above. Pellets containing the protein of interest were identified by SDS-PAGE and dialysed against the appropriate ion-exchange buffer (see below) for 6 hours or overnight. The periplasmic fraction from E.coli expressing 953L was prepared according to the protocol of Evans et. al. [Infect.Immun. (1974) 10:1010-1017) and dialysed against the appropriate ion-exchange buffer. Buffer and ion exchange resin were chosen according to the pI of the protein of interest and the recommendations of the FPLC protocol manual (Pharmacia). Buffer solutions included 20 mM NaCl, and 10% (v/v) glycerol. The dialysate was centrifuged at 13000 g for 20 min and applied to either a mono Q or mono S FPLC ion-exchange resin. Buffer and ion exchange resin were chosen according to the pI of the protein of interest and the recommendations of the FPLC protocol manual (Pharmacia). Proteins were eluted from the ion-exchange resin using either step-wise or continuous NaCl gradients. Purification was analysed by SDS-PAGE and protein concentration determined by Bradford method. Cleavage of the leader peptide of periplasmic proteins was demonstrated by sequencing the NH2-terminus (see below).
[0410] FPLC-B: These proteins were purified from the membrane fraction of E.coli. Single colonies harbouring the plasmid of interest were grown overnight at 37° C. in 20 ml of LB/Amp (100 μg/ml) liquid culture. Bacteria were diluted 1:30 in 1.0 L of fresh medium. Clones 406.1L and 919LOrf4 were grown at 30° C. and Orf25L and 576.1L at 37° C. until the OD550 reached 0.6-0.8. In the case of 919LOrf4, growth at 30° C. was essential since expression of recombinant protein at 37° C. resulted in lysis of the cells. Expression of recombinant protein was induced with IPTG at a final concentration of 1.0 mM. After incubation for 3 hours, bacteria were harvested by centrifugation at 8000 g for 15 minutes at 4° C. When necessary cells were stored at −20° C. All subsequent procedures were performed at 4° C. Bacteria were resuspended in 25 ml of PBS containing complete protease inhibitor (Boehringer-Mannheim) and lysed by osmotic shock with 2-3 passages through a French Press. Unbroken cells were removed by centrifugation at 5000 g for 15 min and membranes precipitated by centrifugation at 100000 g (Beckman Ti50, 38000 rpm) for 45 minutes. A Dounce homogenizer was used to re-suspend the membrane pellet in 7.5 ml of 20 mM Tris-HCl (pH 8.0), 1.0 M NaCl and complete protease inhibitor. The suspension was mixed for 2-4 hours, centrifuged at 100000 g for 45 min and the pellet resuspended in 7.5 ml of 20 mM Tris-HCl (pH 8.0), 1.0M NaCl, 5.0 mg/ml CHAPS, 10% (v/v) glycerol and complete protease inhibitor. The solution was mixed overnight, centrifuged at 100000 g for 45 minutes and the supernatant dialysed for 6 hours against an appropriately selected buffer. In the case of Orf25.L, the pellet obtained after CHAPS extraction was found to contain the recombinant protein. This fraction, without further purification, was used to immunise mice.
[0411] FPLC-C: Identical to FPLC-A, but purification was from the soluble fraction obtained after permeabilising E.coli with polymyxin B, rather than after cell disruption.
[0412] FPLC-D: A single colony harbouring the plasmid of interest was grown overnight at 37° C. in 20 ml of LB/Amp (100 μg/ml) liquid culture. Bacteria were diluted 1:30 in 1.0 L of fresh medium and grown at 30° C. until the OD550 reached 0.6-0.8. Expression of recombinant protein was induced with IPTG at a final concentration of 1.0 mM After incubation for 3 hours, bacteria were harvested by centrifugation at 8000 g for 15. minutes at 4° C. When necessary cells were stored at −20 ° C. All subsequent procedures were performed on ice or at 4° C. Cells were resuspended in 20 mM Bicine (pH 8.5), 20 mM NaCl, 10% (v/v) glycerol, complete protease inhibitor (Boehringer-Mannheim) and disrupted using a Branson Sonifier 450. The sonicate was centrifuged at 8000 g for 30 min to sediment unbroken cells and inclusion bodies. The recombinant protein was precipitated from solution between 35% v/v and 70% v/v saturation by the addition of 3.9M (NH4)2SO4. The precipitate was sedimented at 8000 g for 30 minutes, resuspended in 20 mM Bicine (pH 8.5), 20 mM NaCl, 10% (v/v) glycerol and dialysed against this buffer for 6 hours or overnight. The dialysate was centrifuged at 13000 g for 20 min and applied to the FPLC resin. The protein was eluted from the column using a step-wise NaCl gradients. Purification was analysed by SDS-PAGE and protein concentration determined by Bradford method.
[0413] Cloning Strategy and Oligonucleotide Design
[0414] Genes coding for antigens of interest were amplified by PCR, using oligonucleotides designed on the basis of the genomic sequence of N. meningitidis B MC58. Genomic DNA from strain 2996 was always used as a template in PCR reactions, unless otherwise specified, and the amplified fragments were cloned in the expression vector pET21b+ (Novagen) to express the protein as C-terminal His-tagged product, or in pET-24b+(Novagen) to express the protein in ‘untagged’ form (e.g. ΔG 287K).
[0415] Where a protein was expressed without a fusion partner and with its own leader peptide (if present), amplification of the open reading frame (ATG to STOP codons) was performed.
[0416] Where a protein was expressed in ‘untagged’ form, the leader peptide was omitted by designing the 5′-end amplification primer downstream from the predicted leader sequence.
[0417] The melting temperature of the primers used in PCR depended on the number and type of hybridising nucleotides in the whole primer, and was determined using the formulae:
T
m1
=4 (G+C)+2 (A+T) (tail excluded)
T
m2
=64.9+0.41 (% GC)−600/N (whole primer)
[0418] The melting temperatures of the selected oligonucleotides were usually 65-70° C. for the whole oligo and 50-60° C. for the hybridising region alone.
[0419] Oligonucleotides were synthesised using a Perkin Elmer 394 DNA/RNA Synthesizer, eluted from the columns in 2.0 ml NH4OH, and deprotected by 5 hours incubation at 56° C. The oligos were precipitated by addition of 0.3M Na-Acetate and 2 volumes ethanol. The samples were centrifuged and the pellets resuspended in water.
58|
|
Restriction
Sequencessite
|
|
Orf1LFwdCGCGGATCCGCTAGC-AAAACAACCGACAAACGGNheI
RevCCCGCTCGAG-TTACCAGCGGTAGCCTAXhoI
|
Orf1FwdCrAGCTAGC-GGACACACTTATTTCGGCATCNheI
RevCCCGCTCGAG- TTACCAGCGGTAGCCTAATTTGXhoI
|
Orf1LOmpAFwdNdeI-(NheI)
RevCCCCCTCGAG-XhoI
|
Orf4LFwdCGCGGATCCCATATG-AAAACCTTCTTCAAAACCNdeI
RevCCCGCTCGAG-TTATTTGGCTGCGCCTTCXhoI
|
Orf7-1LFwdGCGGCATTAAT-ATGTTGAGAAAATTGTTGAAATGGAseI
RevGCGGCCTCGAG-TTATTTTTTCAAAATATATTTGCXhoI
|
Orf9-1LFwdGCGGCCATATG-TTACCTAACCGTTTCAAAATGTNdeI
RevGCGGCCTCGAG-TTATTTCCGAGGTTTTCGGGXhoI
|
Orf23LFwdCGCGGATCCCATATG-ACACGCTTCAAATATTCNdeI
RevCCCGCTCGAG-TTATTTAAACCGATAGGTAAXhoI
|
Orf25-1 HisFwdCGCGGATCCCATATG-GGCAGGGAAGAACCGCNdeI
RevGCCCAAGCTT-ATCGATGGAATAGCCGCGHindlfl
|
Orf29-1 b-HisFwdCGCGGATCCGCTAGC-AACGGTTTQGATGCCCGNheI
(MC58)RevCCCGCTCGAG-TTTGTCTAAGTTCCTGATATXhoI
|
Orf29-1 c-HISFwdCGCGGATCCGCTAGC-ATGAATTTGCCTATTCAAAAATNheI
(MC58)RevCCCGCTCGAG-TTGGACGATGCCCGCGAXhoI
|
Orf29-1 c-LFwdCGCGGATCCGCTAGC-ATGAATTTCGGTATTCAAAAATNheI
(MC58)RevCCCGCTCGAG-TTATTGGACGATGCCCGCXhoI
|
Orf25LFwdCGCGGATCCCATATG-TATCGCAAACTGATTGCNdeI
RevCCCGCTCGAG-CTAATCGATGGAATAGCCXhoI
|
Orf37LFwdCGCGGATCCCATATG-AAACAGACAGTCAAATGNdeI
RevCCCGCTCGAG-TCAATAACCCGCCTTCAGXhoI
|
Orf38LFwdCGCGGATCCCATAGG-NdeI
TTACGTTTGACTGCTTTAGCCGTATGCACC
RevCCCGCTCGAG-XhoI
TTATTTTGCCGCGTTAAAAGCGTCGGCAAC
|
Orf40LFwdCGCGGATCCCATATG-AACAAAATATACCGCATNdeI
RevCCCGCTCGAG-TTACCACTGATAACCGACXhoI
|
Orf40.2-HisFwdCGCGGATCCCATATG-ACCGATGACGACGATTTATNdeI
RevGCCCAAGCTT-CCACTGATAACCGACAGAHindIII
|
Orf40.2LFwdCGCGGATCCCATATG-AACAAAATATACCGCATNdeI
RevGCCCAAGCT-TTACCACTGATAACCGACHindIII
|
Orf46-2LFwdGGGAATTCCATATG-GGCATTTCCCGCAAAATATCNdeI
RevCCGCTCGAG-TTATTTACTCCTATAACGAGGTCTCTTAACXhoI
|
Orf46-2FwdGGGAATTCCATATG-TCAGATTTGGCAAACGATTCTTNdeI
RevCCCGCTCGAG-TTATTTACTCCTATAACGAGGTCTCTTAACXhoI
|
Orf46.1LFwdGGGAATTCCATATG-GGCATTTCCCGCAAAATATCNdeI
RevCCCGGTCGAG-TTACGTATCATATTTCACGTGCXhoI
orf46.(His-GST)FwdGGGAATTCCATATGCACGTGAAATATGATACGAAGBamHI-NdeI
RevCCCGCTCGAGTTTACTCCTATAACGAGGTCTCTTAACXhoI
|
rf46.1-HisFwdGGAATTCCATATGTCAGATTTGGCAAACGATTCTTNdeI
RevCCCGCTCGAGCGTATCATATTTCACGTGCXhoI
|
rf46.2-HisFwdGGGAATTCCATATGTCAGATTTGGCAAACGATTCTTNdeI
RevCCCGGTCGAGTTTACTCCTATAACGAGGTCTCTTAACXhoI
|
Orf65-1-(His/GST)FwdCGCGGATCCCATATG-CAAAATGCGTTCAAAATCCCBamHI-NdeI
(MC58)RevCGCGGATCCCATATG-AACAAAATATACCGCATXhoI
CCCGCTCGAG-TTTGCTTTCGATAGAACGG
|
Orf72-1LFwdGCGGCCATATG-GTCATAAAATATACAAATTTGAANdeI
RevGCGGCCTCGAG-TTAGCCTGAGACCTTTGCAAATTXhoI
|
Orf76-1LFwdGCGGCCATATG-AAACAGAAAAAAACCGCTGNdeI
RevGCGGCCTCGAG-TTACGGTTTGACACCGTTTTCXhoI
|
Orf83.1LFwdCGCGGATCCCATATG-AAAACCCTGCTCCTCNdeI
RevCCCGCTCGAG-TTATCCTCCTTTGCGGCXhoI
|
Orf85-2LFwdGCGGCCATAGE-GCAAAAATGATGAAATGGGNdeI
RevGCGGCCTCGAG-TTACGGCGCGGCGGGCCXhoI
|
Orf91L (MC58)FwdGCGGCCATATGAAAAAATCCTCCCTCATCANdeI
RevGCGGCCTCGAGTTATTTGCCGCCGTTTTTGGCXhoI
Orf91-His(MC58)FwdGCGGCCATATGGCCCCTGCCGACGCGGTAAGNdeI
RevGCGGCCTCGAGTTTGCCGCCGTTTTTGGCTTTCXhoI
|
Orf97-1LFwdGCGGCCATATG-AAACACATACTCCCCCTGANdeI
RevGCGGCCTCGAG-TTATTCGCCTACGTTTTTTGXhoI
|
Orf119L(MC58)FwdGCGGCCATATGATTTACATCGTACTGTTTCNdeI
RevGCGGCCTCGAGTTAGGAGAACAGGCGCAATGCXhoI
|
Orf119-His(MC58)FwdGCGGCCATATGTACAACATGTATCAGGAAAACNdeI
RevGCGGCCTCGAGGGAGAACAGGCGCAATGCGGXhoI
|
Orf137.1 (His-FwdCGCGGATCCGCTAGCTGCGGCACGGCGGGBamHI-NheI
GST) (MC58)
RecCCCGCTCGAGATAACGGTATGCCGCCAGXhoI
|
Orf143-1LFwdCGCGGATYCCCATATG-GAATCAACACTTTCACNdeI
RevCCCGCTCGAG-TTACACGCGGTTGCTGCXhoI
|
008FwdCGCGGATCCCATATG-AACAACAGACATTTTGNdeI
RevCCCGCTCGAG-TTACCTGTCCGGTAAAAGXhoI
|
050-1(48)FwdCGCGGATCCGCTAGC-ACCGTCATCAAACAGGAANheI
RevCCCGCTCGAG-TCAAGATTCGACGGGGAXhoI
|
105FwdCGCGGATCCCATATG-TCCGCAAACGAATACGNdeI
RevCCCGCTCGAG-TCAGTGTTCTGCCAGTTTXhoI
|
111LFwdCGCGGATCCCATATG-CCGTCTGAAACACGNdeI
RevCCCGCTCGAG-TTAGCGGAGCAGTTTTTCXhoI
|
117-1FwdCGCGGATCCCATATG-ACCGCCATCAGCCNdeI
RevCCCGCTCGAG-TTAAAGCCGGGTAACGCXhoI
|
121-1FwdGCGGCCATATG-GAAACACAGCTTTACATCGGNdeI
RevGCGGCCTCGAG-TCAATAATAATATCCCGCGXhoI
|
122-1FwdGCGGCCATATG-ATTAAAATCCGCAATATCCNdeI
RevGCGGCCTCGAG-TTAAATCTTGGTAGATTGGATTTGGXhoI
|
128-1FwdGCGGCCATATG-ACTGACAACGCACTGCTCCNdeI
RevGCGGCCTCGAG-TCAGACCGCGTTGTCGAAACXhoI
|
148FwdCGCGGATCCCATATG-GCGTTAAAAACATCAAANdeI
RevCCCGCTCGAG-TCAGCCCTTCATACAGCXhoI
|
149.1L (MC58)FwdGCGGCATTAATGGCACAAACTACACTCAAACCAseI
RevGCGGCCTCGAGTTAAAACTTCACGTTCACGCGXhoI
|
149.1-His(MC58)FwdGCGGCATTAATGCATGAAACTGAGCAATCGGTGGAseI
RevGCGGCCTCGAGAAACTTCACGTTCACGCCGCCGGTAAAXhoI
|
205 (His-GST)FwdCGCGGATCCCATATGGGCAAATCCGAAAATACGBamHI-NdeI
(MC58)
RevCCCGCTCGAGATAATGGCGGCGGCGGXhoI
|
206LFwdCGCGGATCCCATATG-TTTCCCCCCGACAANdeI
RevCCCGCTCGAG-TCATTCTGTAAAAAAAGTATGXhoI
|
214 (His-GST)FwdCGCGGATCCCATATGCTTCAAAGCGACAGCAGBamHI-NdeI
(MC58)
RevCCCGCTCGAGTTCGATTTTTGCGTACTCXhoI
|
216FwdCGCGGATCCCATATG-GCAATGGCAGAAAACGNdeI
RevCCCGCTCGAG-CTATACAATCCGTGCCGXhoI
|
225-1LFwdCGCGGATCCCATATG-GATTCTTTTTTCAAACCNdeI
RevCCCGCTCGAG-TCAGTTCAGAAAGCGGGXhoI
|
235LFwdCGCGGATCCCATATG-AAACCTTTGATTTTAGGNdeI
RevCCCGCTCGAG-TTATTGGGCTGCTCTTCXhoI
|
243FwdCGCGGATCCCATATG-GTAATCGTCTGGTTGNdeI
RevCCCGCTCGAG-CTACGACTTGGTTACCGXhoI
|
247-1LFwdGCGGCCATATG-AGACGTAAAATGCTAAAGCTACNdeI
RevGCGGCCTCGAG-TCAAGTGTTCTGTTTGCGCXhoI
|
264-HisFwdGCCGCCATATG-TTGACTTTAACCCGAAAAANdeI
RevGCCGCCTCGAG-GCCGGCGGTCAATACCGCCCGAAXhoI
|
270 (His-GST)FwdCGCGGATCCCATATGCGGCAATGCGATTGACBamHI-NdeI
(MC58)
RevCCCGCTCGAGTTCGGCGGTAAATGCCGXhoI
|
274LFwdGCGGCCATATG-GCGGGGCCGATTTTTGTNdeI
RevGCGGCCTCGAG-TTATTTGCTTTCAGTATTATTGXhoI
|
283LFwdGCGGCCATATG-AACTTTGCTTTATCCGTCANdeI
RevGCGGCCTCGAG-TTAACGGCAGTATTTGTTTACXhoI
|
285-HisFwdCGCGGATCCCATATGGGTTTGCGCTTCGGGCBamHI
RevGCCCAAGCTTTTTTCCTTTGCCGTTTCCGHindIII
|
286-HisFwdCGCGGATCCCATATG-GCCGACCTTTCCGAAAANdeI
(MC58)RevCCCGCTCGAG-GAAGCGCGTTCCCAAGCXhoI
|
286LFwdCGCGGATCCCATATG-CACGACACCCGTACNdeI
(MC58)RevCCCGCTCGAG-TTAGAAGCGCGTTCCCAAXhoI
|
287LFwdCTAGCTAGC-TTTAAACGCAGCGTAATCGCAATGGNheI
RevCCCGCTCGAG-TCAATCCTGCTCTTTTTTGCC
|
287FwdCTAGCTAGC-GGGGGCGGCGGTGGCGNheI
RevCCCGCTCGAG-TCAATCCTGCTCTTTTTTGCCXhoI
|
287LOrf4FwdCTAGCTAGCGCTCATCCTCGCCGCC-NheI
TCGCCCCCGCGCGGT
RevCCCGGTCGAG-TCAATCCTGCTCTTTTTTGCCXhoI
|
287-fuFwdCGGGGATCC-GGGGGCGGCGGTGGCGBamHI
RevCCCGCTCGAG-TCAATCCTGCTCTTTTTTGCCXhoI
|
287-HisFwdCTAGCTAGC-GGGGGCGGCGGTGGCGNheI
RevCCCGCTCGAG-ATCCTGCTCTTTTTTTGCC*XhoI
|
287-His(2996)FwdCTAGCTAGC-TGCGGGGGCGGCGGTGGCGNheI
RevCCCGCTCGAG-ATCCTGCTCTTTTTTTGCCXhoI
|
Δ1 287-HisFwdCGCGGATCCGCTAGC-CCCGATGTTAAATCGGC§NheI
|
Δ2 287-HisFwdCGCGGATCCGCTAGC-CAAGATATGGCGGCAGT§NheI
|
Δ3 287-HisFwdCGCGGATCCGCTAGC-GCCGAATCCGCAAATCA§NheI
|
Δ4 287-HisFwdCGCGCTAGC-GGAAGGGTTGATTTGGCTAATGG§NheI
|
Δ4 287MC58-HisFwdCGCGCTAGC-GGAAGGGTTGATTTGGCTATGG§NheI
|
287-a-HisFwdCGCCATATG-TTTAAACGCAGCGTAATCGCNdeI
RevCCCGCTCGAG-AAAATTGCTACCGCCATTCGCAGGXhoI
|
287b-HisFwdCGCCATATG-GGAAGGGTTGATTTGGCTAATGGNdeI
|
287b-2996-HisRevCCCGCTCGAG-CTTGTCTTTATAAATGATGACATATTTGXhoI
|
287b-MC58-HisRevCCCGCTCGAG-TTTATAAAAGATAATATATTGATTGATTCCXhoI
|
287c-2996-HisFwdCGCGCTAGC-ATGCCCGCTGATTCCCGTCAATC§NheI
|
‘287untaggd,(2996)FwdCTAGCTAGC-GGGGGCGGCGGTGGCGNheI
RevCCCGCTCGAG-TCAATCCTGCTCTTTTTTGCCXhoI
|
ΔG287-His*FwdCGCGGATCCGCTAGC-CCCGATGTTAAATCGGCNheI
RevCCCGCTCGAG-ATCCTGCTCTTTTTTGCCXhoI
|
ΔG 287-LFwdCGCGGATCCGCTAGC-NheI
TTTGAACGCAGTGTGATTGCAATGGCTTGTATTTTTGCC
CTTTCAGCCTGT TCGCCCCGATGTTAAATCGGCG
RevCCCGCTCGAG-TCAATCCTGCTCTTTTTTGCCXhoI
|
ΔG 287-Orf4LFwdCGCGGATCCGCTAGC-NheI
AAAACCTTCTTCAAAACCCTTTCCGCCGCCGCACTCGCG
CTCATCCTCGCCGCCTGC TCGCCCCGATGTTAAATCG
RevCCCGCTCGAG-TCAATCCTGCTCTTTTTGCCXhoI
|
292LFwdCGCGGATCCCATATG-AAAACCAAGTTAATCAAANdeI
RevCCCGCTCGAG-TTATTTGATTTTTGCGGATGAXhoI
|
308-1FwdCGCGGATCCCATATG-TTAAATCGGGTATTTTATCNdeI
RevCCCGCTCGAG-TTAATCCGCCATTCCCTGXhoI
|
401LFwdGCGGCCATATG-AAATTACAACAATTGGCTGNdeI
RevGCGGCCTCGAG-TTACCTTACGTTTTTCAAAGXhoI
|
406LFwdCGCGGATCCCATATG-CAAGCACGGCTGCTNdeI
RevCCCGCTCGAG-TCAAGGTTCTCCTTGTCTAXhoI
|
502-1LFwdCGCGGATCCCATATG-ATGAAACCGCACAACNdeI
RevCCCGCTCGAG-TCAGTTGCTCAACACGTCXhoI
|
502-A (His-GST)FwdCGCGGATCCCATATGGTAGACGCGCTTAAGCABamHI-NdeI
RevCCCGCTCGAGAGCTGCATGGCGGCGXhoI
|
503-1LFwdCGCGGATCCCATATG-GCACGGTCGTTATACNdeI
RevCCCGCTCGAG-CTACCGCGCATTCCTGXhoI
|
519-1LFwdGCGGCCATATG-GAATTTTTCATTATCTTGTTNdeI
RevGCGGCCTCGAG-TTATTTGGCGGTTTTGCTGCXhoI
|
525-1LFwdGCGGCCATATG-AAGTATGTCCGGTTATTTTTCNdeI
RevGCGGCCTCGAG-TTATCGGCTTGTGCAACGGXhoI
|
529-(His/GST)FwdGCCGGATCCGCTAGC-TCCGGCAGCAAAACCGABam HI-NheI
(MC58)RevGCCCAAGCTT-ACGCAGTTCGGAATGGAGHindIII
|
552LFwdGCCGCCATATGTTGAATATTAAACTGAAAACCTTGNdeI
RevGCCGCCTCGAGTTATTTCTGATCGGTTTTCCCXhoI
|
556LFwdGCCGCCATATGGACAATAAGACCAAACTGNdeI
RevGCCGCCTCGAGTTAACGGTGCGGACGTTTCXhoI
|
557LFwdCGCGGATCCCATATG-AACAAACTGTTTCTTACNdeI
RevCCCGCTCGAG-TCATTCCGCCTTCAGAAAXhoI
|
564ab-(His/GST)FwdCGCGGATCCCATATG-BamHI-NdeI
(MC58)CAAGGTATCGTTGCCGACAAATCCGCACCT
RevCCCGCTCGAG-
AGCTAATTGTGCTTGGTTTGCAGATAGGAGTT
|
564ab (MC58)FwdCGCGGATCCCATATG-NdeI
AACCGCACCCTGTACAAAGTTGTATTTAACAAACATC
RevCCCGCTCGAG-XhoI
TTAAGCTAATTGTGCTTGGTTTGCAGATAGGAGTT
|
564b-FwdCGCGGATCCCATATG-BamHI-NdeI
(His/GST)(MC58)ACGGGAGAAAATCATGCGGTTTCACTTCATG
RevCCCGCTCGAG-XhoI
AGCTAATTGTGCTTGGTTTGCAGATAGGAGTT
|
546c-FwdCGCGGATCCCATATG-BamHI-NdeI
(His/GST)(MC58)GTTTCAGACGGCCTATACAACCAACATGGTGAAATT
RevCCCGCTCGAG-XhoI
GCGGTAACTGCCGCTTGCACTGAAGCCGTAA
|
546bc-FwdCGCGGATCCCATATG-BamHI-NdeI
(His/GST)(MC58)ACGGGAGAAAATCATGCGGTTTCACTTCATG
RevCCCGCTCGAG-XhoI
GCGGTAACTGCCGCTTGCACTGAATCCGTAA
|
546d-FwdCGCGGATCCCATATG-BamHI-Ndel
(His/GST)(MC58)CAAAGCAAAGTCAAAGCAGACCATGCCTCCGTAA
RevCCCGCTCGAG-XhoI
TCTTTTCCTTTCAATTATAACTTTAGTAGGTTCAATTTTG
GTCCCC
|
564cd-FwdCGCGGATCCCATATG-BamHI-NdeI
(His/GST)(MC58)GTTTCAGACGGCCTATACAACCAACATGGTGAAATT
RevCCCGCTCGAG-XhoI
TCTTTTCCTTTCAATTATAACTTTAGTAGGTTCAATTTTG
GTCCCC
|
570LFwdGCGGCCATATG-ACCCGTTTGACCCGCGNdeI
RevGCGGCCTCGAG-TCAGCGGGCGTTCATTTCTTXhoI
|
576-1LFwdCGCGGATCCCATATG-AACACCATTTTCAAAATCNdeI
RevCCCGCTCGAG-TTAATTTACTTTTTTGATGTCGXhoI
|
580LFwdGCGGCCATATG-GATTCGCCCAAGGTCGGNdeI
RevGCGGCCTCGAG-CTACACTTCCCCCGAAGTGGXhoI
|
583LFwdCGCGGATCCCATATG-ATAGTTGACCAAAGCCNdeI
RevCCCGCTCGAG-TTATTTTTTCCGATTTTTCGGXhoI
|
593FwdGCGGCCATATG-CTTGAACTGAACGGACTNdeI
RevGCGGCCTCGAG-TCAGCGGAAGCGGACGATTXhoI
|
650 (His-GST)FwdCGCGGATCCCATATGTCCAAACTCAAAACCATCGBamHI-NdeI
(MC58)
RevCCCGCTCGAGGCTTCCAATCAGTTTGACCXhoI
|
652FwdGCGGCCATATG-AGCGCAATCGTTGATATTTTCNdeI
RevGCGGCCTCGAG-TTATTTGCCCAGTTGGTAGAATGXhoI
|
664LFwdGCGGCCATATG-GTGATACATCCGCACTACTTCNdeI
RevGCGGCCTCGAG-TCAAAATCGAGTTTTACACCAXhoI
|
726FwdGCGGCCATATG-ACCATCTATTTCAAAAACGGNdeI
RevGCGGCCTCGAG-TCAGCCGATGTTTAGCGTCCATTXhoI
|
741-His(MC58)FwdCGCGGATCCCATATG-AGCAGCGGAGGGGGTGNdeI
RevCCCGCTCGAG-TTGCTTGGCGGCAAGGCXhoI
|
ΔG741-His(MC58)FwdCGCGGATCCCATATG-GTCGCCGCCGACATCGNdeI
RevCCCGCTCGAG-TTGCTTGGCGGCAAGGCXhoI
|
686-2-(His/GST)FwdCGCGGATCCCATATG-GGCGGTTCGGAAGGCGBamHI-NdeI
(MC58)RevCCCGCTCGAG-TTGAACACTGATGTCTTTTCCGAXhoI
|
719-(His/GST)FwdCGCGGATCCGCTAGC-AAACTCTCGTTGGTGTTAACBamHI-NheI
(MC58)RevCCCGCTCGAG-TTGACCCGCTCCACGGXhoI
|
730-His (MC58)FwdGCCGCCATATGGCGGACTTGGCGCAAGACCCNdeI
RevGCCGCCTGCAGATCTCCTAAAGGTGTTTTAACAATGCCGXhoI
|
730A-His (MC58)FwdGCCGCCATATGGCGGACTTGGCGCAAGACCCNdeI
RevGCGGCCTCGAGCTCCATGCTGTTGCCCCAGCXhoI
|
730-B-His (MC58)FwdGCCGCCATATGGCGGACTTGGCGCAAGACCCNdeI
RevGCGGCCTGCAGAAAATCCCCGCTAACCGCAGXhoI
|
741-HisFwdCGCGGATCCCATATG-AGCAGCGGAGGGGGTGNdeI
(MC58)RevCCCGCTCGAG-TTGCTTGGCGGCAAGGCXhoI
|
ΔG741-HisFwdCGCGGATCCCATATG-GTCGCCGCCGACATCGNdeI
(MC58)RevCCCGCTCGAG-TTGCTTGGCGGCAAGGCXhoI
|
743 (His-GST)FwdCGCGGATCCCATATGGACGGTGTTGTGCCTGTTBamHI-NdeI
RevCCCGCTCGAGCTTACGGATCAAATTGACGXhoI
|
757 (His-GST)FwdCGCGGATCCCATATGGGCAGCCAATCTGAAGAABamHI-NdeI
RevCCCGCTCGAGCTCAGCTTTTGCCGTCAAXhoI
|
759-His/GSTFwdCGCGGATCCGCTAGC-TACTCATCCATTGTCCGCBamHI-NheI
(MC58)RevCCCGCTCGAG-CCAGTTGTAGCCTATTTTGXhoI
|
759LFwdCGCGGATCCGCTAGC-ATGCGCTTCACACACACNheI
(MC58)RevCCCGCTCGAG-TTACCAGTTGTAGCCTATTTXhoI
|
760-HisFwdGCCGCCATATGGCACAAACGGAAGGTTTGGAANdeI
RevGCCGCCTCGAGAAAACTGTAACGCAGGTTTGCCGTCXhoI
|
769-His (MC58)FwdGCGGCCATATGGAAGAAACACCGCGCGAACCGNdeI
RevGCGGCCTCGAGGAACGTTTTATTAAACTCGACXhoI
|
907LFwdGCGGCCATATG-AGAAAACGACCGATACCCTANdeI
RevGCGGCCTCGAG-TCAACGCCACTGCCAGCGGTTGXhoI
|
911LFwdCGCCGATCCCATATG-AAGAAGAACATATTGGAATTTTGGGTCGGACTGNdeI
RevCCCGCTCGAG-TTATTCGGCGGCTTTTTCCGCATTGCCGXhoI
|
911LOmpAFwdGGGAATTCCATATGAAAAAGACAGCTATCGCGATTGCANdeI-(NheI)
GTFFCACTGGCTGGTTTCGCTACCGTAGCGCAGGCCGC
TAGC-GCTTTCCGCGTGGCCGGCGGTGC
RevCCCGCTCGAG-TTATTCGGCGGCTTTTTCCGCATTGCCGXhoI
|
911LPe1BFwdCATGCCATGG-CTTTCCGCGTGGCCGGCGGTGCNcoI
RevCCCGCTCGAG-TTATTCGGCGGCTTTTTCCGCATTGCCGXhoI
|
913-His/GSTFwdCGCGGATCCCATATG-TTTGCCGAAACCCGCCBamHI-NdeI
(MC58)RevCCCGCTCGAG-AGGTTGTGTTCCAGGTTGXhoI
|
913LFwdCGCGGATCCCATATG-AAAAAAACCGCCTATGNdeI
(MC58)RevCCCGCTCGAG-TTAAGGTTGTGTTCCAGGXhoI
|
919LFwdCGCGGATCCCATATG-AAAAAATACCTATTCCGCNdeI
RevCCCGCTCGAG-TTACGGGCGGTATTCGGXhoI
|
919FwdCGCGGATCCCATATG-CAAAGCAAGAGCATCCAAANdeI
RevCCCGCTCGAG-TTACGGGCGGTATTCGGXhoI
|
919L Orf4FwdGGGAATTCCATATGAAAACCTTCTTCAAAACCCTTTCCGNdeI-(NheI)
CCGCCGCGCTAGCCTCATCCTCGCCGCC-
TGCCAAAGCAAGAGCATC
RevCCCGCTCGAG-TTACGGGCGGTATTCGGGCTTCATACCGXhoI
|
(919)-287 fusionFwdCGCGGATCCGTCGAG-TGTGGGGGCGGTGGCSalI
RevCCCGCTCGAG-TCAATCCTGCTCTTTTTTGCCXhoI
|
920-1LFwdGCGGCCATATG-AAGAAAACATTGACACTGCNdeI
RevGCGGCCTCGAG-TTAATGGTGCGAATGACCGATXhoI
|
925-His/GSTFwdggggacaagtttgtacaaaaaagcaggctTGCGGCAAGGATGCCGGattB1
(MC58)GATE
RevggggaccactttgtacaagaaagctgggtCTAAAGCAACAATGCCGGattB2
|
926LFwdCGCGGATCCCATATG-AAACACACCGTATCCNdeI
RevCCCGCTCGAG-TTATCTCGTGCGCGCCXhoI
|
972-2-(His/GST)FwdCGCGGATCCCATATG-AGCCCCGCGCCGATTBamHI-NdeI
(MC58)RevCCCGCTCGAG-TTTTTGTGCGGTCAGGCGXhoI
|
932-His/GSTFwdggggacaagtttgtacaaaaaagcaggctTGTTCGTTTGGGGGATTTAAattB1
(MC58)GATEACCAAACCAAATC
|
935 (His-GST)ForCGCGGATCCCATATGGCGGATGCGCCCCGCGBamHI-NdeI
(MC58)
RevCCGCTCGAGAAACCGCCAATCCGCCXhoI
|
RevggggaccactttgtacaagaaagctgggtTCATTTTGTTTTTCCTTCTTCTattB2
CGAGGCCATT
936-1LFwdCGCGGATCCCATATG-AAACCCCAAACCGCACNdeI
RevCCCGCTCGAG-TCAGCGTTGGACGTAGTXhoI
|
953LFwdGGGAATCcatatg-AAAAAAATCATCTTCGCCGNdeI
RevCCCGCTCGAG-TTATTGTTTGGCTGCCTCGATXhoI
|
953-fuFwdGGGAATTCCATATG-GCCACCTACAAAGTGGACGNdeI
RevCGGGGATCC-TTGTTTGGCTGCCTCGATTTGBamHI
|
954 (His-GST)FwdCGCGGATCCCATATGCAAGAACAATCGCAGAAAGBamHI-NdeI
(MC58)
RevCCCGCTCGAGTTTTTTCGGCAAATTGGCTTXhoI
|
958-His/GSTFwdggggacaagtttgtacaaaaaagcaggctGCCGATGCCGTTGCGGattB1
(MC58)GATE
RevGGGGACCACTTTGTACAAGAAAGCTGGGTtcagggtcgtttgttgcgATTb2
|
961LFwdCGCGGATCCCATATG-AAACACTTTCCATCCNdeI
RevCCCGCTCGAG-TTACCACTCGTAATTGACXhoI
|
961FwdCGCGGATCCCATATG-GCCACAAGCGACGACNdeI
RevCCCGCTCGAG-TTACCACTCGTAATTGACXhoI
|
961 c (His/GST)FwdCGCGGATCCCATATG-GCCACAAACGACGBamHI-NdeI
RevCCCGCTCGAG-ACCCACGTTGTAAGGTTGXhoI
|
961 c-(His/GST)FwdCGCGGATCCCATATG-GCCACAAGCGACGACGABamHI-NdeI
(MC58)RevCCCGCTCGAG-ACCCACGTTGTAAGGTTGXhoI
|
961 c-LFwdCGCGGATCCCATATG-ATGAAACACTTTCCATCCNdeI
RevCCCGCTCGAG-TTAACCCACGTTGTAAGGTXhoI
|
961 c-LFwdCGCGGATCCCATATG-ATGAAACACTTTCCATCCNdeI
(MC58)RevCCCGCTCGAG-TTAACCCACGTTGTAAGGTXhoI
|
961 d (His/GST)FwdCGCGGATCCCATATG-GCCACAAACGACGBamHI-NdeI
RevCCCGCTCGAG-GTCTGACACTGTTTTATCCXhoI
|
961 Δ1-LFwdCGCGGATCCCATATG-ATGAAACACTTTCCATCCNdeI
RevCCCGCTCGAG-TTATGCTTTGGCGGCAAAGXhoI
|
fu 961-. . .FwdCGCGGATCCCATATG-GCCACAAAGCACGACNdeI
RevCGCGGATCC-CCACTCGTAATTGACGCCBamHI
|
fu 961- . . .FwdCGCGGATCCCATATG-GCCACAAGCGACGACNdeI
(MC58)RevCGCGGATCC-CCACTCGTAATTGACGCCBamHI
|
fu 961 c- . . .FwdCGCGGATCCCATATG-GCCACAAACGACGACNdeI
RevCGCGGATCC-ACCCACGTTGTAAGGTTGBamHI
|
fu961 c-L- . . .FwdCGCGGATCCCATATG-ATGAAACACTTTCCATCCNdeI
RevCGCGGATCC-ACCCACGTTGTAAGGTTGBamHI
|
fu (961)-FwdCGCGGATCC-GGAGGGGGTGGTGTCGBamHI
741(MC58)-His
RevCCCGCTCGAG-TTGCTTGGCGGCAAGGCXhoI
|
fu (961)-983-HisFwdCGCGGATCC-GGCGGAGGCGGCACTTBamHI
RevCCCGCTCGAG-GAACCGGTAGCCTACGXhoI
|
fu (961)- Orf46.1-FwdGCGGGATCCGGTGGTGGTGGT-BamHI
HisTCAGATTTGGCAAACGATTC
RevCCCGCTCGAG-CGTATCATATTTCACGTGCXhoI
|
fu (961 c-L)-FwdCGCGGATCC-GGAGGGGGTGGTGTCGBamHI
741(MC58)
RevCCCGCTCGAG-TCAGAACCGGTAGCCTACXhoI
|
fu (961c-L)-983FwdCGCGGATCCGGTGGTGGTGGT-BamHI
RevCCCGCTCGAG-TCAGAACCGGTAGCCTACXhoI
|
fu (961C-L)FwdCGCGGATCCGGTGGTGGTGGT-BamHI
Orf46.1TCAGATTTGGCAAACGATTC
RevCCCGCTCGAG-TTACGTATCATATTTCACGTGCXhoI
|
961-(His/GST)FwdCGCGGATCCCATATG-GCCACAAGCGACGACGBamHI-NdeI
(MC58)RevCCGCTCGAG-CCACTCGTAATTGACGCCXhoI
|
961 Δ1-HisFwdCGCGGATCCCATATG-GCCACAAACGACGACNdeI
RevCCCGCTCGAG-TGCTTTGGCGGCAAAGTTXhoI
|
961a-(His/GST)FwdCGCGGATCCCATATG-GCCACAAACGACGACBamHI-NdeI
RevCCCGCTCGAG-TTTAGCAATATTATCTTTGTTCGTAGCXhoI
|
961b-(His/GST)FwdCGCGGATCCCATATG-AAAGCAAACCGTGCCGABamHI-NdeI
RevCCCGCTCGAG-CCACTCGTAATTGACGCCXhoI
|
961-His/GSTGATEFwdggggacaagtttgtacaaaaaagcaggctGCAGCCACAAACGACGACGattB1
ATGTTAAAAAAGC
RevggggaccactttgtacaagaaagctgggtTTACCACTCGTAATTGACGCattB2
CGACATGGTAGG
|
982FwdGCGGCCATATG-GCAGCAAAAGACGTACAGTTNdeI
RevGCGGCCTCGAG-TTACATCATGCCGCCCATACCAXhoI
|
983-His (2996)FwdCGCGGATCCGCTAGC-TTAGGCGGCGGCGGAGNheI
RevCCCGCTCGAG-GAACCGGTAGCCTACGXhoI
|
ΔG983-His (2996)FwdCCCCTAGCTAGC-ACTTCTGCGCCCGACTTNheI
RevCCCGCTCGAG-GAACCGGTAGCCTACGXhoI
983-HisFwdCGCGGATCCGCTAGC-TTAGGCGGCGGCGGAGNheI
RevCCCGCTCGAG-GAACCGGTAGCCTACGXhoI
|
ΔG983-HisFwdCGCGGATCCGCTAGC-ACTTCTGCGCCCGACTTNheI
RevCCCGCTCGAG-GAACCGGTAGCCTACGXhoI
|
983LFwdCGCGGATCCGCTAGC-NheI
CGAACGACCCCAACCTTCCCTACAAAAACTTTCAA
RevCCCGCTCGAG-TCAGAACCGACGTGCCAAGCCGTTCXhoI
|
987-His (MC58)FwdGCCGCCATATGCCCCCACTGGAAGAACGGACGNdeI
RevGCCGCCTCGAGTAATAAACCTTCTATGGGCAGCAGXhoI
|
989-(His/GST)FwdCGCGGATCCCATATG-TCCGTCCACGCATCCGBamHI-NdeI
(MC58)RevCCCGCTCGAG-TTTGAATTTGTAGGTGTATTGXhoI
|
989LFwdCGCGGATCCCATATG-ACCCCTTCCGCACTNdeI
(MC58)RevCCCGCTCGAG-TTATTTGAATTTGTAGGTGTATXhoI
|
CrgA-HisFwdCGCGGATCCCATATG-AAAACCAATTCAGAAGAANdeI
(MC58)RevCCCGCTCGAG-TCCACAGAGATTGTTTCCXhoI
|
PilC1-ESFwdGATGCCCGAAGGGCGGG
(MC58)RevGCCCAAGCTT-TCAGAAGAAGACTTCACGC
|
PilC1-HisFwdCGCGGATCCCATATG-CAAACCCATAAATACGCTATTNdeI
(MC58)RevGCCCAAGCTT-GAAGAAGACTTCACGCCAGHindIII
|
Δ1PilC1-HisFwdCGCGGATCCCATATG-GTCTTTTTGACAATACCGANdeI
(MC58)RevGCCCAAGCTT-HindIII
|
PilC1LFwdCGCGGATCCCATATG-AATAAAACTTTAAAAAGGCGGNdeI
(MC58)RevGCCCAAGCTT-TCAGAAGAAGACTTCACGCHindIII
|
ΔGtbp2-HisFwdCGCGAATCCCATATG-TTCGATCTTGATTCTGTCGANdeI
(MC58)RevCCCCTCGAG-TCGCACAGGCTGTTGGCGXhoI
|
Tbp-2HisFwdCGCGAATCCCATATG-TTGGGCGGAGGCGGCAGNdeI
(MC58)RevCCCGCTCGAG-TCGCACAGGCTGTTGGCGXhoI
|
Tbp2-His(MC58)FwdCGCGAATCCCATATG-TTGGGCGGAGGCGGCAGNdeI
RevCCCGCGCGAG-TCGCACAGGCTGTTGGCGXhoI
|
NMB0109-FwdCGCGGATCCCATATG-GCAAATTTGGAGGTGCGCBamHI-NdeI
(His/GST)
(MC58)RevCCCGCTCGAG-TTCGGAGCGGTTGAAGCXhoI
|
NMB0109LFwdCGCGGATCCCATATG-CAACGTCGTATTATAACCCNdeI
(MC58)RevCCCGCTCGAG-TTATTCGGAGCGGTTGAAGXhoI
|
NMB0207-FwdCGCGGATCCCATATG-BamHI-NdeI
(His/GST)GGCATCAAGTCGCCATCAACGGCTAC
(MC58)RevCCCG,CTCGAG-TTTGAGCGGGCGCACTTCAAGTCCGXhoI
|
NMB0462-FwdCGCGGATCCCATATG-GGCGGCAGCGAAAAAAACBamHI-NdeI
(His/GST)
(MC58)RevCCCGCTCGAG-GTTGGTGCCGACTTTGATXhoI
|
NMB0623-FwdCGCGGATCCCATATG-GGCGGCGGAAGCGATABamHI-NdeI
(His/GST)
(MC58)RevCCCGCTCGAG-TTTGCCCGCTTTGAGCCXhoI
|
NMB0625 (His-FwdCGCGGATCCCATATGGGCAAATCCGAAAATACGBamHI-NdeI
(GST)(MC58)
RevCCCGCTCGAG-CATCCCGTACTGTTTCGXhoI
|
NMB0634FwdggggacaagtttgtacaaaaaagcaggctVCGACATTACCGTGTACAACattB1
(His/GST)(MC58)GGCCAACAAAGAA
RevggggaccactttgtacaagaaagctgggtCTTATTTCATACCGGCTTGCTattB2
CAAGCAGCCGG
|
NMB0776-FwdggggacaagtttgtacaaaaaagcaggctGATACGGTGTTTTCCTGTAAattB1
His/GST (MC58)AACGGACAACAA
GATERevggggaccactttgtacaagaaagctgggtCTAGGAAAAATCGTCATCGTattb2
TGAAATTCGCC
|
NMB1115-FwdggggacaagtttgtacaaaaaagcaggctATGCACCCCATCGAAACCattB1
His/GST (MC58)RevggggaccactttgtacaagaaagctgggtCTAGTCTTGCAGTGCCTCattB2
GATE
|
NMB1343-FwdCGCGGATCCCATATG-BamHI-NdeI
(His/GST)GGAAATTTCTTATATAGAGGCATTAG
(MC58)RevCCCGCTCGAG-XhoI
GTTATTTCTATCAACTCTTTAGCAATAAT
|
NMB1369 (His-FwdCGCGGATCCCATATGGCCTGCCAAGACGACABamHI-NdeI
GST (MC58)
RevCCCGCTCGAGCCGCCTCCTGCCGAAAXhoI
|
NMB1551 (His-FwdCGCGGATCCCATATGGCAGAGATCTGTTTGATAABamHI-NdeI
GST)(MC58)
RevCCCGCTCGAGCGGTTTCCGCCCAATGXhoI
|
NMB1899 (His-FwdCGCGGATCCCATATGCAGCCGGATACGGTCBamHI-NdeI
GST) (MC58)
RevCCCGCTCGAGAATCACTTCCAACACAAAATXhoI
|
NMB2050-FwdCGCGGATCCCATATG-TGGTTGCTGATGAAGGGCBamHI-NdeI
(His/GST)
(MC58)RevCCCGCTCGAG-GACTGCTTCATCTTCTGCXhoI
|
NMB2050LFwdCGCGGATCCCATATG-GAACTGATGACTGTTTTGCNdeI
(MC58)RevCCCGCTCGAG-TCAGACTGCTTCATCTTCTXhoI
|
NMB2159-FwdCGCGGATCCCATATG-BamHI-NdeI
(His/GST)AGCATTAAAGTAGCGATTAACGGTTTCGGC
(MC58)RevCCCGCTCGAG-XhoI
GATTTTGCCTGCGAAGTATTCCAAAGTGCG
|
fu-ΔG287...-HisFwdCGCGGATCCGCTAGC-CCCGATGTTAAATCGGCNheI
RevCGGGGATCC-ATCCTGCTCTTTTTTGCCGGBamHI
|
fu-(ΔG287)-919-FwdCGCGGATCCGGTGGTGGTGGT-BamHI
HisCAAAGCAAGAGCATCCAAACC
RevCCCAAGCTT-TTCGGGCGGTATTCGGGCTTCHindIII
|
fu-(ΔG287)-952-FwdCGCGGATCCGGTGGTGGTGGT-BamHI
HisGCCACCTACAAAGTGGAC
RevGCCCAAGCTT-TTGTTTGGCTGCCTCGATHindIII
|
fu-(ΔG287)-961-FwdCGCGGATCCGGTGGTGGTGGT-ACAAGCGACGACGBamHI
HisRevGCCCAAGCTT-CCACTCGTAATTGACGCCHindIII
|
fu-(Δ287)-FwdCGCGGATCCGGTGGTGGTGGT-BamHI
Orf46.1-HisTCAGATTTGGCAAACGATTC
RevCCCAAGCTT-CGTATCATATTTCACGTGCHindIII
|
fu-(ΔG287-919)-FwdCCCAAGCTTGGTGGTGGTGGTGGT-HindIII
Orf46.1-HisTCAGATTTGGCAAACGATTC
RevCCCGCTCGAG-CGTATCATATTTCACGTGCXhoI
|
fu-(ΔG287-FwdCCCAAGCTTGGTGGTGGTGGTGGT-XhoI
Orf46.1)-919-HisCAAAGCAAGAGCATCCAAACC
RevCCCGCTCGAG-GGGGCGGTATTCGGGCTTXhoI
|
fu ΔG287(394.98)-FwdCGCGGATCCGCTAGC-CCCGATGTTAAATCGGCNheI
...
RevCGGGGATCC-ATCCTGCTCTTTTTTGCCGGBamHI
|
fu Orf1-(Orf46.1)-FwdCGCGGATCCGCTAGC-GGACACACTTATTTCGGCATCNheI
HisRevCGCGGATCC-CCAGCGGTAGCCTAATTTGAT
|
fu (Orf1)-Orf46.1-FwdCGCGGATCCGGTGGTGGTGGT-BamHI
HisTCAGATTTGGCAAACGATTC
RevCCCAAGCTT-CGTATCATATTTCACGTGCHindIII
|
fu (919)-Orf46.1-Fwd1GCGGCGTCGACGGTGGCGGAGGCACTGGTCCTCAGSalI
HisFwd2GGAGGCACTGGATCCTCAGATTTGGCAAACGATTC
RevCCCGCTCGAG-CGTATCATATTTCACGTGCXhoI
|
Fu orf46-...FwdGGAATTCCATATGTCAGATTTGGCAAACGATTCNdeI
RevCGCGGATCCCGATATCATATTTCACGTGCBamHI
|
Fu (orf46)-287-HisFwdCGGGGATCCGGGGGCGGCGGTGGCGBamHI
RevCCCAAGCTTATCCTGCTCTTTTTTGCCGGCHindIII
|
Fu (orf46)-919-HisFwdCGCGGATCCGGTGGTGGTGGTCAAAGCAAGAGCATCCABamHI
AACC
RevCCCAAGCTTCGGGCGGTATTCGGGCTTCHindIII
|
Fu (orf46-919)-FwdCCCCAAGCTTGGGGGCGGCGGTGGCGHindIII
287-His
RevCCCGCTCGAGATCCTGCTCTTTTTGCCGGCXhoI
|
Fu (orf46-287)-FwdCCCAAGCTTGGTGGTGGTGGTGGTCAAAGCAAGAGCATHindIII
919-HisCCAAACC
RevCCCGCTCGAGCGGGCGGTATTCGGGCTTXhoI
|
(ΔG741)-961c-HisFwd1GGAGGCACTGGATCCGCAGCCACAAACGACGACGAXhoI
fwd2GCGGCCTCGAG-GGTGGCGGAGGCACTGGATCCGCAG
RevCCCGCTCGAG-ACCCAGCTTGTAAGGTTGXhoI
|
(ΔG741)-961-HisFwd1GGAGGCACTGGATCCGCAGCCACAAACGACGACGAXhoI
Fwd2GCGGCCTCGAG-GGTGGCGGAGGCACTGGATCCGCAG
RevCCCGCTCGAG-CCACTCGTAATTGACGCCXhoI
|
(ΔG741)-983-HisFwdGCCCGCTCGAG-XhoI
RevCCCGCTCGAG-GAACCGGTAGCCTACGXhoI
|
(ΔG741)-orf46.1-Fwd1GGAGGCACTGGATCCTCAGATTTGGCAAACGATTCSalI
HisFdw2GCGGCGTCGACGGTGGCGGAGGCACTGGATCCTCAGA
RevCCCGCTCGAG-CGTATCATATTTACGTGCXhoI
|
(ΔG983)-FwdGCGGCCTCGAG-GGATCCGGAGGGGGTGGTGTCGCCXhoI
741(MC58)-His
RevCCCGCTCGAG-TTGCTTGGCGGCAAGXhoI
|
(ΔG983)-961c-HisFwd1GGAGGCACTGGATCCGCAGCCACAAACGACGACGAXhoI
Fwd2GCGGCCTCGAG-GGTGGCGGAGGCACTGGATCCGCAG
RevCCCGCTCGAG-ACCCAGCTTGTAAGGTTGXhoI
|
(ΔG983)-961-HisFwd1GGAGGCACTGGATCCGCAGCCACAAACGACGACGAXhoI
Fwd2GCGGCCTCGAG-GGTGGCGGAGGCACTGGATCCGCAG
RevCCCGCTCGAG-CCACTCGTAATTGACGCCXhoI
|
(ΔG983)-Orf46.1-Fwd1GGAGGCACTGGATCCTCAGATTTGGCAAACGATTCSalI
HisFwd2GCGGCGTCGACGGTGGCGGAGGCACTGGATCCTCAGA
RevCCCGCTCGAG-CGTATCATATTTCACGTGCXhoI
|
*This primer was used as a Reverse primer for all the C terminal fusions of 287 to the His-tag.
§Forward primers used in combination with the 287-His Reverse primer.
NB - All PCR reactions use strain 2996 unless otherwise specified (e.g. strain MC58)
[0420] In all constructs starting with an ATG not followed by a unique NheI site, the ATG codon is part of the NdeI site used for cloning. The constructs made using NheI as a cloning site at the 5′ end (e.g. all those containing 287 at the N-terminus) have two additional codons (GCT AGC) fused to the coding sequence of the antigen.
[0421] Preparation of Chromosomal DNA Templates
[0422]
N.meningitidis
strains 2996, MC58, 394.98, 1000 and BZ232 (and others) were grown to exponential phase in 100 ml of GC medium, harvested by centrifugation, and resuspended in 5 ml buffer (20% w/v sucrose, 50 mM Tris-HCl, 50 mM EDTA, pH8). After 10 minutes incubation on ice, the bacteria were lysed by adding 10 ml of lysis solution (50 mM NaCl, 1% Na-Sarkosyl, 50 μg/ml Proteinase K), and the suspension incubated at 37° C. for 2 hours. Two phenol extractions (equilibrated to pH 8) and one CHCl3/isoamylalcohol (24:1) extraction were performed. DNA was precipitated by addition of 0.3M sodium acetate and 2 volumes of ethanol, and collected by centrifugation. The pellet was washed once with 70% (v/v) ethanol and redissolved in 4.0 ml TE buffer (10 mM Tris-HCl, 1 mM EDTA, pH 8.0). The DNA concentration was measured by reading OD260.
[0423] PCR Amplification
[0424] The standard PCR protocol was as follows: 200 ng of genomic DNA from 2996, MC581000, or BZ232 strains or 10 ng of plasmid DNA preparation of recombinant clones were used as template in the presence of 40 μM of each oligonucletide primer, 400-800 μM dNTPs solution, 1×PCR buffer (including 1.5 mM MgCl2), 2.5 units TaqI DNA polymerase (using Perkin-Elmer AmpliTaQ, Boerhingher Mannheim Expand™ Long Template).
[0425] After a preliminary 3 minute incubation of the whole mix at 95° C., each sample underwent a two-step amplification: the first 5 cycles were performed using the hybridisation temperature that excluded the restriction enzyme tail of the primer (Tm1). This was followed by 30 cycles according to the hybridisation temperature calculated for the whole length oligos (Tm2). Elongation times, performed at 68° C, or 72° C., varied according to the length of the Orf to be amplified. In the case of Orf1 the elongation time, starting from 3 minutes, was increased by 15 seconds each cycle. The cycles were completed with a 10 minute extension step at 72° C.
[0426] The amplified DNA was either loaded directly on a 1% agarose gel. The DNA fragment corresponding to the band of correct size was purified from the gel using the Qiagen Gel Extraction Kit, following the manufacturer's protocol.
[0427] Digestion of PCR Fragments and of the Cloning Vectors
[0428] The purified DNA corresponding to the amplified fragment was digested with the appropriate restriction enzymes for cloning into pET-21b+, pET22b+ or pET-24b+. Digested fragments were purified using the QIAquick PCR purification kit (following the manufacturer's instructions) and eluted with either H2O or 10 mM Tris, pH 8.5. Plasmid vectors were digested with the appropriate restriction enzymes, loaded onto a 1.0% agarose gel and the band corresponding to the digested vector purified using the Qiagen QIAquick Gel Extraction Kit.
[0429] Cloning
[0430] The fragments corresponding to each gene, previously digested and purified, were ligated into pET21b+, pET22b+ or pET-24b+. A molar ratio of 3:1 fragment/vector was used with T4 DNA ligase in the ligation buffer supplied by the manufacturer.
[0431] Recombinant plasmid was transformed into competent E.coli DH5 or HB101 by incubating the ligase reaction solution and bacteria for 40 minutes on ice, then at 37° C. for 3 minutes.
[0432] This was followed by the addition of 800 μl LB broth and incubation at 37° C. for 20 minutes. The cells were centrifuged at maximum speed in an Eppendorf microfuge, resuspended in approximately 200 μl of the supernatant and plated onto LB ampicillin (10 mg/ml) agar.
[0433] Screening for recombinant clones was performed by growing randomly selected colonies overnight at 37° C. in 4.0 ml of LB broth+100 μg/ml ampicillin. Cells were pelleted and plasmid DNA extracted using the Qiagen QIAprep Spin Miniprep Kit, following the manufacturer's instructions. Approximately 1 μg of each individual miniprep was digested with the appropriate restriction enzymes and the digest loaded onto a 1-1.5% agarose gel (depending on the expected insert size), in parallel with the molecular weight marker (1 kb DNA Ladder, GIBCO). Positive clones were selected on the basis of the size of insert.
[0434] Expression
[0435] After cloning each gene into the expression vector, recombinant plasmids were transformed into E.coli strains suitable for expression of the recombinant protein. 1 μl of each construct was used to transform E.coli BL21-DE3 as described above. Single recombinant colonies were inoculated into 2 ml LB+Amp (100 μg/ml), incubated at 37° C. overnight, then diluted 1:30 in 20 ml of LB+Amp (100 μg/ml) in 100 ml flasks, to give an OD600 between 0.1 and 0.2. The flasks were incubated at 30° C. or at 37° C. in a gyratory water bath shaker until OD600 indicated exponential growth suitable for induction of expression (0.4-0.8 OD). Protein expression was induced by addition of 1.0 mM IPTG. After 3 hours incubation at 30° C. or 37° C. the OD600 was measured and expression examined. 1.0 ml of each sample was centrifuged in a microfuge, the pellet resuspended in PBS and analysed by SDS-PAGE and Coomassie Blue staining.
[0436] Gateway Cloning and Expression
[0437] Sequences labelled GATE were cloned and expressed using the GATEWAY Cloning Technology (GIBCO-BRL). Recombinational cloning (RC) is based on the recombination reactions that mediate the integration and excision of phage into and from the E.coli genome, respectively. The integration involves recombination of the attP site of the phage DNA within the attB site located in the bacterial genome (BP reaction) and generates an integrated phage genome flanked by attL and attR sites. The excision recombines attL and attR sites back to attP and attB sites (LR reaction). The integration reaction requires two enzymes [the phage protein Integrase (Int) and the bacterial protein integration host factor (IF] (BP clonase). The excision reaction requires Int, IHF, and an additional phage enzyme, Excisionase (Xis) (LR clonase). Artificial derivatives of the 25-bp bacterial attB recombination site, referred to as B1 and B2, were added to the 5′ end of the primers used in PCR reactions to amplify Neisserial ORFs. The resulting products were BP cloned into a “Donor vector” containing complementary derivatives of the phage attP recombination site (P1 and P2) using BP clonase. The resulting “Entry clones” contain ORFs flanked by derivatives of the attL site (L1 and L2) and were subcloned into expression “destination vectors” which contain derivatives of the attL-compatible attR sites (R1 and R2) using LR clonase. This resulted in “expression clones” in which ORFs are flanked by B1 and B2 and fused in frame to the GST or His N terminal tags.
[0438] The E. coli strain used for GATEWAY expression is BL21-SL Cells of this strain are induced for expression of the T7 RNA polymerase by growth in medium containing salt (0.3 M NaCl).
[0439] Note that this system gives N-terminus His tags.
[0440] Preparation of Membrane Proteins.
[0441] Fractions composed principally of either inner, outer or total membrane were isolated in order to obtain recombinant proteins expressed with membrane-localisation leader sequences. The method for preparation of membrane fractions, enriched for recombinant proteins, was adapted from Filip et. al. [J.Bact. (1973) 115:717-722] and Davies et. al. [J.Immunol.Meth. (1990) 143:215-225]. Single colonies harbouring the plasmid of interest were grown overnight at 37° C. in 20 ml of LB/Amp (100 μg/ml) liquid culture. Bacteria were diluted 1:30 in 1.0 L of fresh medium and grown at either 30° C. or 37° C. until the OD550 reached 0.6-0.8. Expression of recombinant protein was induced with IPTG at a final concentration of 1.0 mM. After incubation for 3 hours, bacteria were harvested by centrifugation at 8000 g for 15 minutes at 4° C. and resuspended in 20 ml of 20 mM Tris-HCl (pH 7.5) and complete protease inhibitors (Boehringer-Mannheim). All subsequent procedures were performed at 4° C. or on ice.
[0442] Cells were disrupted by sonication using a Branson Sonifier 450 and centrifuged at 5000 g for 20 min to sediment unbroken cells and inclusion bodies. The supernatant, containing membranes and cellular debris, was centrifuged at 50000 g (Beckman Ti50, 29000 rpm) for 75 min, washed with 20 mM Bis-tris propane (pH 6.5), 1.0 M NaCl, 10% (v/v) glycerol and sedimented again at 50000 g for 75 minutes. The pellet was resuspended in 20 mM Tris-HCl (pH 7.5), 2.0% (v/v) Sarkosyl, complete protease inhibitor (1.0 mM EDTA, final concentration) and incubated for 20 minutes to dissolve inner membrane. Cellular debris was pelleted by centrifugation at 5000 g for 10 min and the supernatant centrifuged at 75000 g for 75 minutes (Beckman Ti50, 33000 rpm). Proteins 008L and 519L were found in the supernatant suggesting inner membrane localisation. For these proteins both inner and total membrane fractions (washed with NaCl as above) were used to immunise mice. Outer membrane vesicles obtained from the 75000 g pellet were washed with 20 mM Tris-HCl (pH 7.5) and centrifuged at 75000 g for 75 minutes or overnight. The OMV was finally resuspended in 500 μl of 20 mM Tris-HCl (pH 7.5), 10% v/v glycerol. Orf1L and Orf40L were both localised and enriched in the outer membrane fraction which was used to immunise mice. Protein concentration was estimated by standard Bradford Assay (Bio-Rad), while protein concentration of inner membrane fraction was determined with the DC protein assay (Bio-Rad). Various fractions from the isolation procedure were assayed by SDS-PAGE.
[0443] Purification of His-Tagged Proteins
[0444] Various forms of 287 were cloned from strains 2996 and MC58. They were constructed with a C-terminus His-tagged fusion and included a mature form (aa 18-427), constructs with deletions (Δ, Δ2, Δ3 and Δ4) and clones composed of either B or C domains. For each clone purified as a His-fusion, a single colony was streaked and grown overnight at 37° C. on a LB/Amp (100 μg/ml) agar plate. An isolated colony from this plate was inoculated into 20 ml of LB/Amp (100 μg/ml) liquid medium and grown overnight at 37° C. with shaking. The overnight culture was diluted 1:30 into 1.0 L LB/Amp (100 μg/ml) liquid medium and allowed to grow at the optimal temperature (30 or 37° C.) until the OD550 reached 0.6-0.8. Expression of recombinant protein was induced by addition of IPTG (final concentration 1.0 mM) and the culture incubated for a further 3 hours. Bacteria were harvested by centrifugation at 8000 g for 15 min at 4° C. The bacterial pellet was resuspended in 7.5 ml of either (i) cold buffer A (300 mM NaCl, 50 mM phosphate buffer, 10 mM imidazole, pH 8.0) for soluble proteins or (ii) buffer B (10 mM Tris-HCl, 100 mM phosphate buffer, pH 8.8 and, optionally, 8M urea) for insoluble proteins. Proteins purified in a soluble form included 287-His, Δ1, Δ2, Δ3 and Δ4287-His, Δ4287MC58-His, 287c-His and 287cMC58-His. Protein 287bMC58-His was insoluble and purified accordingly. Cells were disrupted by sonication on ice four times for 30 sec at 40 W using a Branson sonifier 450 and centrifuged at 13000×g for 30 min at 4° C. For insoluble proteins, pellets were resuspended in 2.0 ml buffer C (6 M guanidine hydrochloride, 100 mM phosphate buffer, 10 mM Tris-HCl, pH 7.5 and treated with 10 passes of a Dounce homogenizer. The homogenate was centrifuged at 13000 g for 30 min and the supernatant retained. Supernatants for both soluble and insoluble preparations were mixed with 150 μl Ni2+-resin (previously equilibrated with either buffer A or buffer B, as appropriate) and incubated at room temperature with gentle agitation for 30 min. The resin was Chelating Sepharose Fast Flow (Pharmacia), prepared according to the manufacturer's protocol. The batch-wise preparation was centrifuged at 700 g for 5 min at 4° C. and the supernatant discarded. The resin was washed twice (batch-wise) with 10 ml buffer A or B for 10 min, resuspended in 1.0 ml buffer A or B and loaded onto a disposable column. The resin continued to be washed with either (i) buffer A at 4° C. or (ii) buffer B at room temperature, until the OD280 of the flow-through reached 0.02-0.01. The resin was further washed with either (i) cold buffer C (300 mM NaCl, 50 mM phosphate buffer, 20 mM imidazole, pH 8.0) or (ii) buffer D (10 mM Tris-HCl, 100 mM phosphate buffer, pH 6.3 and, optionally, 8M urea) until OD280 of the flow-through reached 0.02-0.01. The His-fusion protein was eluted by addition of 700 μl of either (i) cold elution buffer A (300 mM NaCl, 50 mM phosphate buffer, 250 mM imidazole, pH 8.0) or (ii) elution buffer B (10 mM Tris-HCl, 100 mM phosphate buffer, pH 4.5 and, optionally, 8M urea) and fractions collected until the OD280 indicated all the recombinant protein was obtained. 20μl aliquots of each elution fraction were analysed by SDS-PAGE. Protein concentrations were estimated using the Bradford assay.
[0445] Renaturation of Denatured His-Fusion Proteins.
[0446] Denaturation was required to solubilize 287bMC8, so a renaturation step was employed prior to immunisation. Glycerol was added to the denatured fractions obtained above to give a final concentration of 10% v/v. The proteins were diluted to 200 μg/ml using dialysis buffer I (10% v/v glycerol, 0.5M arginine, 50 mM phosphate buffer, 5.0 mM reduced glutathione, 0.5 mM oxidised glutathione, 2.0M urea, pH 8.8) and dialysed against the same buffer for 12-14 hours at 4° C. Further dialysis was performed with buffer II (10% v/v glycerol, 0.5M arginine, 50 mM phosphate buffer, 5.0 mM reduced glutathione, 0.5 mM oxidised glutathione, pH 8.8) for 12-14 hours at 4° C. Protein concentration was estimated using the formula:
Protein (mg/ml) (1.55×OD280)−(0.76×OD260)
[0447] Amino Acid Sequence Analysis.
[0448] Automated sequence analysis of the NH2-terminus of proteins was performed on a Beckman sequencer (LF 3000) equipped with an on-line phenylthiohydantoin-amino acid analyser (System Gold) according to the manufacturer's recommendations.
[0449] Immunization
[0450] Balb/C mice were immunized with antigens on days 0, 21 and 35 and sera analyzed at day 49.
[0451] Sera Analysis—ELISA
[0452] The acapsulated MenB M7 and the capsulated strains were plated on chocolate agar plates and incubated overnight at 37° C. with 5% CO2. Bacterial colonies were collected from the agar plates using a sterile dracon swab and inoculated into Mueller-Hinton Broth (Difco) containing 0.25% glucose. Bacterial growth was monitored every 30 minutes by following OD620. The bacteria were let to grow until the OD reached the value of 0.4-0.5. The culture was centrifuged for 10 minutes at 400 rpm. The supernatant was discarded and bacteria were washed twice with PBS, resuspended in PBS containing 0.025% formaldehyde, and incubated for 1 hour at 37° C. and then overnight at 4° C. with stirring. 100 μl bacterial cells were added to each well of a 96 well Greiner plate and incubated overnight at 4° C. The wells were then washed three times with PBT washing buffer (0.1% Tween-20 in PBS). 200 μl of saturation buffer (2.7% polyvinylpyrrolidone 10 in water) was added to each well and the plates incubated for 2 hours at 37° C. Wells were washed three times with PBT. 200 μl of diluted sera (Dilution buffer: 1% BSA, 0.1% Tween-20, 0.1% NaN3 in PBS) were added to each well and the plates incubated for 2 hours at 37° C. Wells were washed three times with PBT. 100 μl of HRP-conjugated rabbit anti-mouse (Dako) serum diluted 1:2000 in dilution buffer were added to each well and the plates were incubated for 90 minutes at 37° C. Wells were washed three times with PBT buffer. 100 μl of substrate buffer for HRP (25 ml of citrate buffer pH5, 10 mg of O-phenildiamine and 10 μl of H2O2) were added to each well and the plates were left at room temperature for 20 minutes. 100 μl 12.5% H2SO4 was added to each well and OD490 was followed. The ELISA titers were calculated abitrarely as the dilution of sera which gave an OD490 value of 0.4 above the level of preimmune sera The ELISA was considered positive when the dilution of sera with OD490 of 0.4 was higher than 1:400.
[0453] Sera Analysis—FACS Scan Bacteria Binding Assay
[0454] The acapsulated MenB M7 strain was plated on chocolate agar plates and incubated overnight at 37° C. with 5% CO2. Bacterial colonies were collected from the agar plates using a sterile dracon swab and inoculated into 4 tubes containing 8ml each Mueller-Hinton Broth (Difco) containing 0.25% glucose. Bacterial growth was monitored every 30 minutes by following OD620. The bacteria were let to grow until the OD reached the value of 0.35-0.5. The culture was centrifuged for 10 minutes at 400 rpm. The supernatant was discarded and the pellet was resuspended in blocking buffer (1% BSA in PBS, 0.4% NaN3) and centrifuged for 5 minutes at 4000 rpm. Cells were resuspended in blocking buffer to reach OD620 of 0.05. 100 μl bacterial cells were added to each well of a Costar 96 well plate. 100 μl of diluted (1:100, 1:200, 1:400) sera (in blocking buffer) were added to each well and plates incubated for 2 hours at 4° C. Cells, were centrifuged for 5 minutes at 4000 rpm, the supernatant aspirated and cells washed by addition of 200 μl/well of blocking buffer in each well. 100 μl of R-Phicoerytrin conjugated F(ab)2 goat anti-mouse, diluted 1:100, was added to each well and plates incubated for 1 hour at 4° C. Cells were spun down by centrifugation at 400 rpm for 5 minutes and washed by addition of 200 μl/well of blocking buffer. The supernatant was aspirated and cells resuspended in 200 μl/well of PBS, 0.25% formaldehyde. Samples were transferred to FACScan tubes and read. The condition for FACScan (Laser Power 15 mW) setting were: FL2 on; FSC-H threshold: 92; FSC PMT Voltage: E 01; SSC PMT: 474; Amp. Gains 6.1; FL,2 PMT: 586; compensation values: 0.
[0455] Sera Analysis—Bactericidal Assay
[0456]
N. meningitidis
strain 2996 was grown overnight at 37° C. on chocolate agar plates (starting from a frozen stock) with 5% CO2. Colonies were collected and used to inoculate 7 ml Mueller-Hinton broth, containing 0.25% glucose to reach an OD620 of 0.05-0.08. The culture was incubated for approximately 1.5 hours at 37 degrees with shacking until the OD620 reached the value of 0.23-0.24. Bacteria were diluted in 50 mM Phosphate buffer pH 7.2 containing 10 mM MgCl2, 10 mM CaCl2 and 0.5% (w/v) BSA (assay buffer) at the working dilution of 105 CFU/ml. The total volume of the final reaction mixture was 50 μl with 25 μI of serial two fold dilution of test serum, 12.5 μl of bacteria at the working dilution, 12.5 μl of baby rabbit complement (final concentration 25%).
[0457] Controls included bacteria incubated with complement serum, immune sera incubated with bacteria and with complement inactivated by heating at 56° C. for 30′. Immediately after the addition of the baby rabbit complement, 10 μl of the controls were plated on Mueller-Hinton agar plates using the tilt method (time 0). The, 96-wells plate was incubated for 1 hour at 37° C. with rotation. 7 μl of each sample were plated on Mueller-Hinton agar plates as spots, whereas 10 μl of the controls were plated on Mueller-Hinton agar plates using the tilt method (time 1). Agar plates were incubated for 18 hours at 37 degrees and the colonies corresponding to time 0 and time 1 were counted.
[0458] Sera Analysis—Western Blots
[0459] Purified proteins (500 ng/lane), outer membrane vesicles (5 μg) and total cell extracts (25 μg) derived from MenB strain 2996 were loaded onto a 12% SDS-polyacrylamide gel and transferred to a nitrocellulose membrane. The transfer was performed for 2 hours at 150 mA at 4° C., using transfer buffer (0.3% Tris base, 1.44% glycine, 20% (v/v) methanol). The membrane was saturated by overnight incubation at 4° C. in saturation buffer (10% skimmed milk, 0.1% Triton X100 in PBS). The membrane was washed twice with washing buffer (3% skimmed milk, 0.1% Triton X100 in PBS) and incubated for 2 hours at 37° C. with mice sera diluted 1:200 in washing buffer. The membrane was washed twice and incubated for 90 minutes with a 1:2000 dilution of horseradish peroxidase labelled anti-mouse Ig. The membrane was washed twice with 0.1% Triton X100 in PBS and developed with the Opti-4CN Substrate Kit (Bio-Rad). The reaction was stopped by adding water.
[0460] The OMVs were prepared as follows: N. meningitidis strain 2996 was grown overnight at 37 degrees with 5% CO2 on 5 GC plates, harvested with a loop and resuspended in 10 ml of 20 mM Tris-HCl pH 7.5, 2 mM EDTA. Heat inactivation was performed at 56° C. for 45 minutes and the bacteria disrupted by sonication for 5 minutes on ice (50% duty cycle, 50% output, Branson sonifier 3 mm microtip). Unbroken cells were removed by centrifugation at 5000 g for 10 minutes, the supernatant containing the total cell envelope fraction recovered and further centrifuged overnight at 50000 g at the temperature of 4° C. The pellet containing the membranes was resuspended in 2% sarkosyl, 20 mM Tris-HCl pH 7.5, 2 mM EDTA and incubated at room temperature for 20 minutes to solubilise the inner membranes. The suspension was centrifuged at 10000 g for 10 minutes to remove aggregates, the supernatant was further centrifuged at 50000 g for 3 hours. The pellet, containing the outer membranes was washed in PBS and resuspended in the same buffer. Protein concentration was measured by the D.C. Bio-Rad Protein assay (Modified Lowry method), using BSA as a standard.
[0461] Total cell extracts were prepared as follows: N. meningitidis strain 2996 was grown overnight on a GC plate, harvested with a loop and resuspended in 1 ml of 20 mM Tris-HCl. Heat inactivation was performed at 56° C. for 30 minutes.
[0462] 961 Domain Studies
[0463] Cellular fractions preparation Total lysate, periplasm, supernatant and OMV of E.coli clones expressing different domains of 961 were prepared using bacteria from over-night cultures or after 3 hours induction with IPTG. Briefly, the periplasm were obtained suspending bacteria in saccarose 25% and Tris. 50 mM (pH 8) with polimixine 100 μg/ml. After 1 hr at room temperature bacteria were centrifuged at 13000 rpm for 15 min and the supernatant were collected. The culture supernatant were filtered with 0.2 μm and precipitated with TCA 50% in ice for two hours. After centrifugation (30 min at 13000 rp) pellets were rinsed twice with ethanol 70% and suspended in PBS. The OMV preparation was performed as previously described. Each cellular fraction were analyzed in SDS-PAGE or in Western Blot using the polyclonal anti-serum raised against GST-961.
[0464] Adhesion assay Chang epithelial cells (Wong-Kilbourne derivative, clone 1-5c-4, human conjunctiva) were maintained in DMEM (Gibco) supplemented with 10% heat-inactivated FCS, 15 mM 1-glutamine and antibiotics.
[0465] For the adherence assay, sub-confluent culture of Chang epithelial cells were rinsed with PBS and treated with trypsin-EDTA (Gibco), to release them from the plastic support. The cells were then suspended in PBS, counted and dilute in PBS to 5×105 cells/ml.
[0466] Bacteria from over-night cultures or after induction with IPTG, were pelleted and washed twice with PBS by centrifuging at 13000 for 5 min. Approximately 2-3×108 (cfu) were incubated with 0.5 mg/ml FITC (Sigma) in 1 ml buffer containing 50 mM NaHCO3 and 100 mM NaCl pH 8, for 30 min at room temperature in the dark. FITC-labeled bacteria were wash 2-3 times and suspended in PBS at 1-1.5×109/ml. 200 μl of this suspension (2-3×108) were incubated with 2000 rpm (1×105) epithelial cells for 30min a 37° C. Cells were than centrifuged at 200 rpm for 5 min to remove non-adherent bacteria, suspended in 200 μl of PBS, transferred to FACScan tubes and read
Claims
- 1. A method for the heterologous expression of a protein of the invention, in which (a) at least one domain in the protein is deleted and, optionally, (b) no fusion partner is used.
- 2. The method of claim 1, in which the protein of the invention is ORF46.
- 3. The method of claim 2, in which ORF46 is divided into a first domain (amino acids 1-433) and a second domain (amino acids 433-608).
- 4. The method of claim 2, in which the protein of the invention is 564.
- 5. The method of claim 4, in which protein 564 is divided into domains as shown in FIG. 8.
- 6. The method of claim 1 in which the protein of the invention is 961.
- 7. The method of claim 6, in which protein 961 is divided into domains as shown in FIG. 12.
- 8. The method of claim 1, in which the protein of the invention is 502 and the domain is amino acids 28 to 167 (numbered according to the MC58 sequence).
- 9. The method of claim 1, in which the protein of the invention is 287.
- 10. A method for the heterologous expression of a protein of the invention, in which (a) a portion of the N-terminal domain of the protein is deleted.
- 11. The method of claim 9 or claim 10, in which protein 287 is divided into domains A B & C shown in FIG. 5.
- 12. The method of claim 11, in which (i) domain A, (ii) domains A and B, or (iii) domains A and C are deleted.
- 13. The method of claim 11, wherein (i) amino acids 1-17, (ii) amino acids 1-25, (iii) amino acids 1-69, or (iv) amino acids 1-106, of domain A are deleted.
- 14. A method for the heterologous expression of a protein of the invention, in which (a) no fusion partner is used, and (b) the protein's native leader peptide (if present) is used.
- 15. The method of claim 14, in which the protein of the invention is selected from the group consisting of: 111, 149, 206, 225-1, 235, 247-1, 274, 283, 286, 292, 401, 406, 502-1, 503, 519-1, 525-1, 552, 556, 557, 570, 576-1, 580, 583, 664, 759, 907, 913, 920-1, 936-1, 953, 961, 983, 989, Orf4, Orf7-1, Orf9-1, Orf23, Orf25, Orf37, Orf38, Orf40, Orf40.1, Orf40.2, Orf72-1, Orf76-1, Orf85-2, Orf91, Orf97-1, Orf119, Orf143.1, NMB0109, NMB2050, 008, 105, 117-1, 121-1, 122-1, 128-1, 148, 216, 243, 308, 593, 652, 726, 926, 982, Orf83-1 and Orf143-1.
- 16. A method for the heterologous expression of a protein of the invention, in which (a) the protein's leader peptide is replaced by the leader peptide from a different protein and, optionally, (b) no fusion partner is used.
- 17. The method of claim 16, in which the different protein is 961, ORF4, E.coli OmpA, or E.carotovora PelB, or in which the leader peptide is MKKYLFSAA.
- 18. The method of claim 17, in which the different protein is E.coli OmpA and the protein of the invention is ORF1.
- 19. The method of claim 17, in which the protein of the invention is 911 and the different protein is E.carotovora PelB or E.coli OmpA.
- 20. The method of claim 17, in which the different protein is ORF4 and the protein of the invention is 287.
- 21. A method for the heterologous expression of a protein of the invention, in which (a) the protein's leader peptide is deleted and, optionally, (b) no fusion partner is used.
- 22. The method of claim 21, in which the protein of the invention is 919.
- 23. A method for the heterologous expression of a protein of the invention, in which expression of a protein of the invention is carried out at a temperature at which a toxic activity of the protein is not manifested.
- 24. The method of claim 23, in which protein 919 is expressed at 30° C.
- 25. A method for the heterologous expression of a protein of the invention, in which protein is mutated to reduce or eliminate toxic activity.
- 26. The method of claim 25, in which the protein of the invention is 907, 919 or 922.
- 27. The method of claim 26, in which 907 is mutated at Glu-117 (e.g. Glu→Gly).
- 28. The method of claim 26, in which 919 is mutated at Glu-255 (e.g. Glu→Gly) and/or Glu-323 (e.g. Glu→Gly).
- 29. The method of claim 26, in which 922 is mutated at Glu-164 (e.g. Glu→Gly), Ser-213 (e.g. Ser→Gly) and/or Asn-348 (e.g. Asn→Gly).
- 30. A method for the heterologous expression of a protein of the invention, in which vector pSM214 is used or vector pET-24b is used.
- 31. The method of claim 30, in which the protein of the invention is 953 and the vector is pSM214.
- 32. A method for the heterologous expression of a protein of the invention, in which a protein is expressed or purified such that it adopts a particular multimeric form.
- 33. The method of claim 32, in which protein 953 is expressed and/or purified in monomeric form.
- 34. The method of claim 32, in which protein 961 is expressed and/or purified in tetrameric form.
- 35. The method of claim 32, in which protein 287 is expressed and/or purified in dimeric form.
- 36. The method of claim 32, in which protein 919 is expressed and/or purified in monomeric form.
- 37. A method for the heterologous expression of a protein of the invention, in which the protein is expressed as a lipidated protein.
- 38. The method of claim 37, in which the protein of the invention is 919, 287, ORF4, 406, 576, or ORF25.
- 39. A method for the heterologous expression of a protein of the invention, in which (a) the protein's C-terminus region is mutated and, optionally, (b) no fusion partner is used.
- 40. The method of claim 39, wherein the mutation is a substitution, an insertion, or a deletion
- 41. The method of claim 40, wherein the protein of the invention is 730, ORF29 or ORF46.
- 42. A method for the heterologous expression of a protein of the invention, in which the protein's leader peptide is mutated.
- 43. The method of claim 42, in which the protein of the invention is 919.
- 44. A method for the heterologous expression of a protein, in which a poly-glycine stretch within the protein is mutated.
- 45. The method of claim 44, wherein the protein is a protein of the invention.
- 46. The method of claim 45, wherein the protein of the invention is 287, 741, 983 or Thp2.
- 47. The method of claim 46, wherein (Gly)6 is deleted from 287 or 983.
- 48. The method of claim 46, wherein (Gly)4 is deleted from Thp2 or 741
- 49. The method of claim 47 or claim 48, wherein the leader peptide is also deleted.
- 50. The method of any preceding claim, in which the heterologous expression is in an E.coli host.
- 51. A protein expressed by the method of any preceding claim.
- 52. A heterologous protein comprising the N-terminal amino acid sequence MKKYLFSAA.
Priority Claims (2)
Number |
Date |
Country |
Kind |
0004695.3 |
Feb 2000 |
GB |
|
0027675.8 |
Nov 2000 |
GB |
|
PCT Information
Filing Document |
Filing Date |
Country |
Kind |
PCT/IB01/00452 |
2/28/2001 |
WO |
|