High resolution thin multi-aperture imaging systems

Information

  • Patent Grant
  • RE49256
  • Patent Number
    RE49,256
  • Date Filed
    Wednesday, May 22, 2019
    4 years ago
  • Date Issued
    Tuesday, October 18, 2022
    a year ago
Abstract
A multi-aperture imaging system comprising a first camera with a first sensor that captures a first image and a second camera with a second sensor that captures a second image, the two cameras having either identical or different FOVs. The first sensor may have a standard color filter array (CFA) covering one sensor section and a non-standard color CFA covering another. The second sensor may have either Clear or standard CFA covered sections. Either image may be chosen to be a primary or an auxiliary image, based on a zoom factor. An output image with a point of view determined by the primary image is obtained by registering the auxiliary image to the primary image.
Description
FIELD

Embodiments disclosed herein relate in general to multi-aperture imaging (“MAI”) systems (where “multi” refers to two or more apertures) and more specifically to thin MAI systems with high color resolution and/or optical zoom.


BACKGROUND

Small digital cameras integrated into mobile (cell) phones, personal digital assistants and music players are becoming ubiquitous. Each year, mobile phone manufacturers add more imaging features to their handsets, causing these mobile imaging devices to converge towards feature sets and image quality that customers expect from standalone digital still cameras. Concurrently, the size of these handsets is shrinking, making it necessary to reduce the total size of the camera accordingly while adding more imaging features. Optical Zoom is a primary feature of many digital still cameras but one that mobile phone cameras usually lack, mainly due to camera height constraints in mobile imaging devices, cost and mechanical reliability.


Mechanical zoom solutions are common in digital still cameras but are typically too thick for most camera phones. Furthermore, the F/# (“F number) in such systems typically increases with the zoom factor (ZF) resulting in poor light sensitivity and higher noise (especially in low-light scenarios). In mobile cameras, this also results in resolution compromise, due to the small pixel size of their image sensors and the diffraction limit optics associated with the F/#.


One way of implementing zoom in mobile cameras is by over-sampling the image and cropping and interpolating it in accordance with the desired ZF. While this method is mechanically reliable, it results in thick optics and in an expensive image sensor due to the large number of pixels so associated therewith. As an example, if one is interested in implementing a 12 Megapixel camera with X3 ZF, one needs a sensor of 108 Megapixels.


Another way of implementing zoom, as well as increasing the output resolution, is by using a dual-aperture imaging (“DAI”) system. In its basic form, a DAI system includes two optical apertures which may be formed by one or two optical modules, and one or two image sensors (e.g., CMOS or CCD) that grab the optical image or images and convert the data into the electronic domain, where the image can be processed and stored.


The design of a thin MAI system with improved resolution requires a careful choice of parameters coupled with advanced signal processing algorithms to support the output of a high quality image. Known MAI systems, in particular ones with short optical paths, often trade-off functionalities and properties, for example zoom and color resolution, or image resolution and quality for camera module height. Therefore, there is a need for, and it would be advantageous to have thin MAI systems that produce an image with high resolution (and specifically high color resolution) together with zoom functionality.


Moreover, known signal processing algorithms used together with existing MAI systems often further degrade the output image quality by introducing artifacts when combining information from different apertures. A primary source of these artifacts is the image registration process, which has to find correspondences between the different images that are often captured by different sensors with different color filter arrays (CFAs). There is therefore a need for, and it would be advantageous to have an image registration algorithm that is more robust to the type of CFA used by the cameras and which can produce better correspondence between images captured by a multi-aperture system.


SUMMARY

Embodiments disclosed herein teach the use of multi-aperture imaging systems to implement thin cameras (with short optical paths of less than about 9 mm) and/or to realize optical zoom systems in such thin cameras. Embodiments disclosed herein further teach new color filter arrays that optimize the color information which may be achieved in a multi-aperture imaging system with or without zoom. In various embodiments, a MAI system disclosed herein includes at least two sensors or a single sensor divided into at least two areas. Hereinafter, the description refers to “two sensors”, with the understanding that they may represent sections of a single physical sensor (imager chip). Exemplarily, in a dual-aperture imaging system, a left sensor (or left side of a single sensor) captures an image coming from a first aperture while a right sensor (or right side of a single sensor) captures an image coming from a second aperture. In various embodiments disclosed herein, one sensor is a “Wide” sensor while another sensor is a “Tele” sensor, see e.g. FIG. 1A. The Wide sensor includes either a single standard CFA or two different CFAs: a non-standard CFA with higher color sampling rate positioned in an “overlap area” of the sensor (see below description of FIG. 1B) and a standard CFA with a lower color sampling rate surrounding the overlap area. When including a single standard CFA, the CFA may cover the entire Wide sensor area. A “standard CFA” may include a RGB (Bayer) pattern or a non-Bayer pattern such as RGBE, CYYM, CYGM, RGBW#1, RGBW#2 or RGBW#3. Thus, reference may be made to “standard Bayer” or “standard non-Bayer” patterns or filters. As used herein, “non-standard CFA” refers to a CFA that is different in its pattern that CFAs listed above as “standard”. Exemplary non-standard CFA patterns may include repetitions of a 2×2 micro-cell in which the color filter order is RR-BB, RB-BR or YC-CY where Y=Yellow=Green+Red, C=Cyan=Green+Blue; repetitions of a 3×3 micro-cell in which the color filter order is GBR-RGB-BRG; and repetitions of a 6×6 micro-cell in which the color filter order is RBBRRB-RWRBWB-BBRBRR-RRBRBB-BWBRWR-BRRBBR, or BBGRRG-RGRBGB-GBRGRB-RRGBBG-BGBRGR-GRBGBR, or RBBRRB-RGRBGB-BBRBRR-RRBRBB-BGBRGR-BRRBBR, or, RBRBRB-BGBRGR-RBRBRB-BRBRBR-RGRBGB-BRBRBR.


The Tele sensor may be a Clear sensor (i.e. a sensor without color filters) or a standard CFA sensor. This arrangement of the two (or more than two) sensors and of two (or more than two) Wide and Tele “subset cameras” (or simply “subsets”) related to the two Wide and Tele subsets. Each sensor provides a separate image (referred to respectively as a Wide image and a Tele image), except for the case of a single sensor, where two images are captured (grabbed) by the single sensor (example above). In some embodiments, zoom is achieved by fusing the two images, resulting in higher color resolution that approaches that of a high quality dual-aperture zoom camera. Some thin MAI systems disclosed herein therefore provide zoom, super-resolution, high dynamic range and enhanced user experience.


In some embodiments, in order to reach optical zoom capabilities, a different magnification image of the same scene is grabbed by each subset, resulting in field of view (FOV) overlap between the two subsets. In some embodiments, the two subsets have the same zoom (i.e. same FOV). In some embodiments, the Tele subset is the higher zoom subset and the Wide subset is the lower zoom subset. Post processing is applied on the two images grabbed by the MAI system to fuse and output one fused (combined) output zoom image processed according to a user ZF input request. In some embodiments, the resolution of the fused image may be higher than the resolution of the Wide/Tele sensors. As part of the fusion procedure, up-sampling may be applied on the Wide image to scale it to the Tele image.


In an embodiment there is provided a multi-aperture imaging system comprising a first camera subset that provides a first image, the first camera subset having a first sensor with a first plurality of sensor pixels covered at least in part with a non-standard CFA, the non-standard CFA used to increase a specific color sampling rate relative to a same color sampling rate in a standard CFA; a second camera subset that provides a second image, the second camera subset having a second sensor with a second plurality of sensor pixels either Clear or covered with a standard CFA; and a processor configured to process the first and second images into a combined output image.


In some embodiments, the first and the second camera subsets have identical FOVs and the non-standard CFA may cover an overlap area that includes all the pixels of first sensor, thereby providing increased color resolution. In some such embodiments, the processor is further configured to, during the processing of the first and second images into a combined output image, register respective first and second Luma images obtained from the first and second images, the registered first and second Luma images used together with color information to form the combined output image. In an embodiment, the registration includes finding a corresponding pixel in the second Luma image for each pixel in the first Luma image, whereby the output image is formed by transferring information from the second image to the first image. In another embodiment, the registration includes finding a corresponding pixel in the first Luma image for each pixel in the second Luma image, whereby the output image is formed by transferring information from the first image to the second image.


In some embodiments, the first camera subset has a first FOV, the second camera subset has a second, smaller FOV than the first FOV, and the non-standard CFA covers an overlap area on the first sensor that captures the second FOV, thereby providing both optical zoom and increased color resolution. In some such embodiments, the processor is further configured to, during the processing of the first and second images into a combined output image and based on a ZF input, register respective first and second Luma images obtained from the first and second images, the registered first and second Luma images used together with color information to form the combined output image. For a ZF input that defines an FOV greater than the second FOV, the registration includes finding a corresponding pixel in the second Luma image for each pixel in the first Luma image and the processing includes forming the output image by transferring information from the second image to the first image. For a ZF input that defines an FOV smaller than or equal to the second FOV, the registration includes finding a corresponding pixel in the first Luma image for each pixel in the second Luma image, and the processing includes forming the output image by transferring information from the first image to the second image.


In an embodiment there is provided a multi-aperture imaging system comprising a first camera subset that provides a first image, the first camera subset having a first sensor with a first plurality of sensor pixels covered at least in part with a standard CFA; a second camera subset that provides a second image, the second camera subset having a second sensor with a second plurality of sensor pixels either Clear or covered with a standard CFA; and a processor configured to register first and second Luma images obtained respectively from the first and second images and to process the registered first and second Luma images together with color information into a combined output image.


In some embodiments, the first and the second camera subsets have identical first and second FOVs. In some such embodiments, the registration includes finding a corresponding pixel in the second Luma image for each pixel in the first Luma image and the processing includes forming the output image by transferring information from the second image to the first image. In other such embodiments, the registration includes finding a corresponding pixel in the first Luma image for each pixel in the second Luma image and the processing includes forming the output image by transferring information from the first image to the second image.


In some embodiments, the first camera subset has a first FOV, the second camera subset has a second, smaller FOV than the first FOV, and the processor is further configured to register the first and second Luma images based on a ZF input. For a ZF input that defines an FOV greater than the second FOV, the registration includes finding a corresponding pixel in the second Luma image for each pixel in the first Luma image and the processing includes forming the output image by transferring information from the second image to the first image. For a ZF input that defines an FOV smaller than or equal to the second FOV, the registration includes finding a corresponding pixel in the first Luma image for each pixel in the second Luma image, and the processing includes forming the output image by transferring information from the first image to the second image.





BRIEF DESCRIPTION OF THE DRAWINGS

Non-limiting examples of embodiments disclosed herein are described below with reference to figures attached hereto that are listed following this paragraph. The drawings and descriptions are meant to illuminate and clarify embodiments disclosed herein, and should not be considered limiting in any way.



FIG. 1A shows schematically a block diagram illustrating a dual-aperture zoom imaging system disclosed herein;



FIG. 1B shows an example of an image captured by the Wide sensor and the Tele sensor while illustrating the overlap area on the Wide sensor;



FIG. 2 shows schematically an embodiment of a Wide sensor that may be implemented in a dual-aperture zoom imaging system disclosed herein;



FIG. 3 shows schematically another embodiment of a Wide camera sensor that may be implemented in a dual-aperture zoom imaging system disclosed herein;



FIG. 4 shows schematically yet another embodiment of a Wide camera sensor that may be implemented in a dual-aperture zoom imaging system disclosed herein;



FIG. 5 shows schematically yet another embodiment of a Wide camera sensor that may be implemented in a dual-aperture zoom imaging system disclosed herein;



FIG. 6 shows schematically yet another embodiment of a Wide camera sensor that may be implemented in a dual-aperture zoom imaging system disclosed herein;



FIG. 7 shows schematically yet another embodiment of a Wide camera sensor that may be implemented in a dual-aperture zoom imaging system disclosed herein;



FIG. 8 shows schematically yet another embodiment of a Wide camera sensor that may be implemented in a dual-aperture zoom imaging system disclosed herein;



FIG. 9 shows schematically yet another embodiment of a Wide camera sensor that may be implemented in a dual-aperture zoom imaging system disclosed herein;



FIG. 10 shows a schematically in a flow chart an embodiment of a method disclosed herein for acquiring and outputting a zoom image;



FIG. 11A shows exemplary images captured by a triple aperture zoom imaging system disclosed herein;



FIG. 11B illustrates schematically the three sensors of the triple aperture imaging system of FIG. 11A.





DETAILED DESCRIPTION

Embodiments disclosed herein relate to multi-aperture imaging systems that include at least one Wide sensor with a single CFA or with two different CFAs and at least one Tele sensor. The description continues with particular reference to dual-aperture imaging systems that include two (Wide and Tele) subsets with respective sensors. A three-aperture imaging system is described later with reference to FIGS. 11A-11B.


The Wide sensor includes an overlap area (see description of FIG. 1B) that captures the Tele FOV. The overlap area may cover the entire Wide sensor or only part of the sensor. The overlap area may include a standard CFA or a non-standard CFA. Since the Tele image is optically magnified compared to the Wide image, the effective sampling rate of the Tele image is higher than that of the Wide image. Thus, the effective color sampling rate in the Wide sensor is much lower than the Clear sampling rate in the Tele sensor. In addition, the Tele and Wide images fusion procedure (see below) requires up-scaling of the color data from the Wide sensor. Up-scaling will not improve color resolution. In some applications, it is therefore advantageous to use a non-standard CFA in the Wide overlap area that increases color resolution for cases in which the Tele sensor includes only Clear pixels. In some embodiments in which the Tele sensor includes a Bayer CFA, the Wide sensor may have a Bayer CFA in the overlap area. In such embodiments, color resolution improvement depends on using color information from the Tele sensor in the fused output image.



FIG. 1A shows schematically a block diagram illustrating a dual-aperture zoom imaging (“DAZI”) system 100 disclosed herein. System 100 includes a dual-aperture camera 102 with a Wide subset 104 and a Tele subset 106 (each subset having a respective sensor), and a processor 108 that fuses two images, a Wide image obtained with the Wide subset and a Tele image obtained with the Tele subset, into a single fused output image according to a user-defined “applied” ZF input or request. The ZF is input to processor 108. The Wide sensor may include a non-standard CFA in an overlap area illustrated by 110 in FIG. 1B. Overlap area 110 is surrounded by a non-overlap area 112 with a standard CFA (for example a Bayer pattern). FIG. 1B also shows an example of an image captured by both Wide and Tele sensors. Note that “overlap” and “non-overlap” areas refer to parts of the Wide image as well as to the CFA arrangements of the Wide sensor. The overlap area may cover different portions of a Wide sensor, for example half the sensor area, a third of the sensor area, a quarter of the sensor area, etc. A number of such Wide sensor CFA arrangements are described in more detail with reference to FIGS. 2-9. The non-standard CFA pattern increases the color resolution of the DAZI system.


The Tele sensor may be Clear (providing a Tele Clear image scaled relative to the Wide image) or may include a standard (Bayer or non-Bayer) CFA. It in the latter case, it is desirable to define primary and auxiliary sensors based on the applied ZF. If the ZF is such that the output FOV is larger than the Tele FOV, the primary sensor is the Wide sensor and the auxiliary sensor is the Tele sensor. If the ZF is such that the output FOV is equal to, or smaller than the Tele FOV, the primary sensor is the Tele sensor and the auxiliary sensor is the Wide sensor. The point of view defined by the output image is that of the primary sensor.



FIG. 2 shows schematically an embodiment of a Wide sensor 200 that may be implemented in a DAZI system such as system 100. Sensor 200 has a non-overlap area 202 with a Bayer CFA and an overlap area 204 covered by a non-standard CFA with a repetition of a 4×4 micro-cell in which the color filter order is BBRR-RBBR-RRBB-BRRB. In this figure, as well as in FIGS. 3-9, “Width 1” and “Height 1” refer to the full Wide sensor dimension. “Width 2” and “Height 2” refer to the dimensions of the Wide sensor overlap area. Note that in FIG. 2 (as in following FIGS. 3-5 and 7, 8) the empty row and column to the left and top of the overlap area are for clarity purposes only, and that the sensor pixels follow there the pattern of the non-overlap area (as shown in FIG. 6). In overlap area 204, R and B are sampled at ½0.5 Nyquist frequency in the diagonal (left to right) direction with 2 pixel intervals instead of at ½ Nyquist frequency in a standard Bayer pattern.



FIG. 3 shows schematically an embodiment of a Wide sensor 300 that may be implemented in a DAZI system such as system 100. Sensor 300 has a non-overlap area 302 with a Bayer CFA and an overlap area 304 covered by a non-standard CFA with a repetition of a 2×2 micro-cell in which the color filter order is BR-RB. In the overlap area, R and B are sampled at ½0.5 Nyquist frequency in both diagonal directions.



FIG. 4 shows schematically an embodiment of a Wide sensor 400 that may be implemented in a DAZI system such as system 100. Sensor 400 has a non-overlap area 402 with a Bayer CFA and an overlap area 404 covered by a non-standard CFA with a repetition of a 2×2 micro-cell in which the color filter order is YC-CY, where Y=Yellow=Green+Red, C=Cyan=Green+Blue. As a result, in the overlap area, R and B are sampled at ½0.5 Nyquist frequency in a diagonal direction. The non-standard CFA includes green information for registration purposes. This allows for example registration between the two images where the object is green, since there is green information in both sensor images.



FIG. 5 shows schematically an embodiment of a Wide sensor 500 that may be implemented in a DAZI system such as system 100. Sensor 500 has a non-overlap area 502 with a Bayer CFA and an overlap area 504 covered by a non-standard CFA with a repetition of a 6×6 micro-cell in which the color filter order is RBBRRB-RWRBWB-BBRBRR-RRBRBB-BWBRWR-BRRBBR, where “W” represents White or Clear pixels. In the overlap area, R and B are sampled at a higher frequency than in a standard CFA. For example, in a Bayer pixel order, the Red average sampling rate (“Rs”) is 0.25 (sampled once for every 4 pixels). In the overlap area pattern, Rs is 0.44.



FIG. 6 shows schematically an embodiment of a Wide sensor 600 that may be implemented in a DAZI system such as system 100. Sensor 600 has a non-overlap area 602 with a Bayer CFA and an overlap area 604 covered by a non-standard CFA with a repetition of a 6×6 micro-cell in which the color filter order is BBGRRG-RGRBGB-GBRGRB-RRGBBG-BGBRGR-GRBGBR. In the overlap area, R and B are sampled at a higher frequency than in a standard CFA. For example, in the overlap area pattern, Rs is 0.33 vs. 0.25 in a Bayer pixel order.



FIG. 7 shows schematically an embodiment of a Wide sensor 700 that may be implemented in a DAZI system such as system 100. Sensor 700 has a non-overlap area 702 with a Bayer CFA and an overlap area 704 covered by a non-standard CFA with a repetition of a 3×3 micro-cell in which the color filter order is GBR-RGB-BRG. In the overlap area, R and B are sampled at a higher frequency than in a standard CFA. For example, in the overlap area pattern, Rs is 0.33 vs. 0.25 in a Bayer pixel order.



FIG. 8 shows schematically an embodiment of a Wide sensor 800 that may be implemented in a DAZI system such as system 100. Sensor 800 has a non-overlap area 802 with a Bayer CFA and an overlap area 804 covered by a non-standard CFA with a repetition of a 6×6 micro-cell in which the color filter order is RBBRRB-RGRBGB-BBRBRR-RRBRBB-BGBRGR-BRRBBR. In the overlap area, R and B are sampled at a higher frequency than in a standard CFA. For example, in the overlap area pattern, Rs is 0.44 vs. 0.25 in a Bayer pixel order.



FIG. 9 shows schematically an embodiment of a Wide sensor 900 that may be implemented in a DAZI system such as system 100. Sensor 900 has a non-overlap area 902 with a Bayer CFA and an overlap area 904 covered by a non-standard CFA with a repetition of a 6×6 micro-cell in which the color filter order is RBRBRB-BGBRGR-RBRBRB-BRBRBR-RGRBGB-BRBRBR. In the overlap area, R and B are sampled at a higher frequency than in a standard CFA. For example, in the overlap area pattern, Rs is 0.44 vs. 0.25 in a Bayer pixel order.


Processing Flow


In use, an image is acquired with imaging system 100 and is processed according to steps illustrated in a flowchart shown in FIG. 10. In step 1000, demosaicing is performed on the Wide overlap area pixels (which refer to the Tele image FOV) according to the specific CFA pattern. If the CFA in the Wide overlap area is a standard CFA, a standard demosaicing process may be applied to it. If the CFA in the Wide overlap area is non-standard CFA, the overlap and non-overlap subsets of pixels may need different demosaicing processes. That is, the Wide overlap area may need a non-standard demosaicing process and the Wide non-overlap area may need a standard demosaicing process. Exemplary and non-limiting non-standard demosaicing interpolations for the overlap area of each of the Wide sensors shown in FIGS. 2-9 are given in detail below. The aim of the demosaicing is to reconstruct missing colors in each pixel. Demosaicing is applied also to the Tele sensor pixels if the Tele sensor is not a Clear only sensor. This will result in a Wide subset color image where the colors (in the overlap area) hold higher resolution than those of a standard CFA pattern. In step 1002, the Tele image is registered (mapped) into the Wide image. The mapping includes finding correspondences between pixels in the two images. In step 1002, actual registration is performed on luminance Tele and Wide images (respectively LumaTele and Lumawide) calculated from the pixel information of the Tele and Wide cameras. These luminance images are estimates for the scene luminance as captured by each camera and do not include any color information. If the Wide or Tele sensors have CFAs, the calculation of the luminance images is performed on the respective demosaiced images. The calculation of the Wide luminance image varies according to the type of non-standard CFA used in the Wide overlap area. If the CFA permits calculation of a full RGB demosaiced image, the luminance image calculation is straightforward. If the CFA is such that it does not permit calculation of a full RGB demosaiced image, the luminance image is estimated from the available color channels. If the Tele sensor is a Clear sensor, the Tele luminance image is just the pixel information. Performing the registration on luminance images has the advantage of enabling registration between images captured by sensors with different CFAs or between images captured by a standard CFA or non-standard CFA sensor and a standard CFA or Clear sensor and avoiding color artifacts that may arise from erroneous registration.


In step 1004, the data from the Wide and Tele images is processed together with the registration information from step 1002 to form a high quality output zoom image. In cases where the Tele sensor is a Clear only sensor, the high resolution luminance component is taken from the Tele sensor and color resolution is taken from the Wide sensor. In cases where the Tele sensor includes a CFA, both color and luminance data are taken from the Tele subset to form the high quality zoom image. In addition, color and luminance data is taken from the Wide subset.


Exemplary Process for Fusing a Zoom Image


1. Special Demosaicing


In this step, the Wide image is interpolated to reconstruct the missing pixel values. Standard demosaicing is applied in the non-overlap area. If the overlap area includes a standard CFA, standard demosaicing is applied there as well. If the overlap area includes a non-standard CFA, a special demosaicing algorithm is applied, depending on the CFA pattern used. In addition, in case the Tele sensor has a CFA, standard demosaicing is applied to reconstruct the missing pixel values in each pixel location and to generate a full RGB color image.


2. Registration Preparation






    • Tele image: a luminance image LumaTele is calculated from the Tele sensor pixels. If the Tele subset has a Clear sensor, LumaTele is simply the sensor pixels data. If the Tele subset has a standard CFA, LumaTele is calculated from the demosaiced Tele image.

    • Wide image: as a first step, in case the Wide overlap CFA permits estimating the luminance component of the image, the luminance component is calculated from the demosaiced Wide image, LumaWide. If the CFA is one of those depicted in FIGS. 4-9, a luminance image is calculated first. If the CFA is one of the CFAs depicted in FIG. 2 or FIG. 3, a luminance image is not calculated. Instead, the following registration step is performed between a weighted average of the demosaiced channels of the Wide image and LumaTele. For convenience, this weighted average image is also denoted LumaWide. For example, if the Wide sensor CFA in the overlap region is as shown in FIG. 2, the demosaiced channels RWide and BWide are averaged to create LumaWide according to LumaWide=(f1*RWide+f2*BWide)/(f1+f2), where f1 may be f1=1 and f2 may be f2=1.

    • Low-pass filtering is applied on the Tele luminance image in order to match its spatial frequency content to that of the LumaWide image. This improves the registration performance, as after low-pass filtering the luminance images become more similar. The calculation is LumaTele→Low pass filter→LumaTeleLP, where “LP” denotes an image after low pass filtering.


      3. Registration of LumaWide and LumaTeleLP





This step of the algorithm calculates the mapping between the overlap areas in the two luminance images. The registration step does not depend on the type of CFA used (or the lack thereof), as it is applied on luminance images. The same registration step can therefore be applied on Wide and Tele images captured by standard CFA sensors, as well as by any combination of CFAs or Clear sensor pixels disclosed herein. The registration process chooses either the Wide image or the Tele image to be a primary image. The other image is defined as an auxiliary image. The registration process considers the primary image as the baseline image and registers the overlap area in the auxiliary image to it, by finding for each pixel in the overlap area of the primary image its corresponding pixel in the auxiliary image. The output image point of view is determined according to the primary image point of view (camera angle). Various correspondence metrics could be used for this purpose, among which are a sum of absolute differences and correlation.


In an embodiment, the choice of the Wide image or the Tele image as the primary and auxiliary images is based on the ZF chosen for the output image. If the chosen ZF is larger than the ratio between the focal-lengths of the Tele and Wide cameras, the Tele image is set to be the primary image and the Wide image is set to be the auxiliary image. If the chosen ZF is smaller than or equal to the ratio between the focal-lengths of the Tele and Wide cameras, the Wide image is set to be the primary image and the Tele image is set to be the auxiliary image. In another embodiment independent of a zoom factor, the Wide image is always the primary image and the Tele image is always the auxiliary image. The output of the registration stage is a map relating Wide image pixels indices to matching Tele image pixels indices.


4. Combination into a High Resolution Image


In this final step, the primary and auxiliary images are used to produce a high resolution image. One can distinguish between several cases:


a. If the Wide image is the primary image, and the Tele image was generated from a Clear sensor, LumaWide is calculated and replaced or averaged with LumaTele in the overlap area between the two images to create a luminance output image, matching corresponding pixels according to the registration map LumaOut=c1*LumaWide+c2*LumaTele. The values of c1 and c2 may change between different pixels in the image. Then, RGB values of the output are calculated from LumaOut and RWide, GWide, and BWide.


b. If the Wide image is the primary image and the Tele image was generated from a CFA sensor, LumaTele is calculated and is combined with LumaWide in the overlap area between the two images, according to the flow described in 4a.


c. If the Tele image is the primary image generated from a Clear sensor, the RGB values of the output are calculated from the LumaTele image and RWide, GWide, and BWide (matching pixels according to the registration map).


d. If the Tele image is the primary image generated from a CFA sensor, the RGB values of the output (matching pixels according to the registration map) are calculated either by using only the Tele image data, or by also combining data from the Wide image. The choice depends on the zoom factor.


Certain portions of the registered Wide and Tele images are used to generate the output image based on the ZF of the output image. In an embodiment, if the ZF of the output image defines a FOV smaller than the Tele FOV, the fused high resolution image is cropped to the required field of view and digital interpolation is applied to scale up the image to the required output image resolution.


Exemplary and Non-Limiting Pixel Interpolations Specifications for the Overlap Area



FIG. 2



















B11
B12
R13



R21
B22
B23



R31
R32
B33











In order to reconstruct the missing R22 pixel, we perform R22=(R31+R13)/2. The same operation is performed for all missing Blue pixels.

FIG. 3



















R11
B12
R13



B21
R22
B23



R31
B32
R33











In order to reconstruct the missing B22 pixel, we perform B22=(B12+B21+B32+B23)/4. The same operation is performed for all missing Red pixels.

FIG. 4



















Y11
C12
Y13



C21
Y22
C23



Y31
C32
Y33











In order to reconstruct the missing C22 pixel, we perform C22=(C12+C21+C32+C23)/4. The same operation is performed for all missing Yellow pixels.

FIG. 5

Case 1: W is Center Pixel



















R11
B12
B13



R21
W22
R23



B31
B32
R33











In order to reconstruct the missing 22 pixels, we perform the following:


B22=(B12+B32)/2


R22=(R21+R23)/2


G22=(W22−R22−B22) (assuming that W includes the same amount of R, G and B colors).


Case 2: R22 is Center Pixel




















B11
B12
R13
R14



W21
R22
B23
W24



B31
R32
B33
R34










B22=(B11+R33)/2


In order to reconstruct the missing 22 pixels, we perform the following:


W22=(2*W21+W24)/3


G22=(W22−R22−B22) (assuming that W contains the same amount of R, G and B colors). The same operation is performed for Blue as the center pixel.



FIG. 6




















B11
B12
G13
R14



R21
G22
R23
B24



G31
B32
R33
G34



R41
R42
G43
B44











In order to reconstruct the missing 22 pixels, we perform the following:


B22=(B12+B32)/2


R22=(R21+R23)/2.


In order to reconstruct the missing 32 pixels, we perform the following:


G32=(2*G31+2*G22+G43)/5


R32=(R41+2*R42+2*R33+R23+R21)/7.



FIG. 7




















G11
B12
R13
G14



R21
G22
B23
R24



B31
R32
G33
B34



G41
B42
R43
G44











In order to reconstruct the missing 22 pixels, we perform the following:


B22=(2*B12+2*B23+B31)/5


R22=(2*R21+2*R32+R13)/5


and similarly for all other missing pixels.



FIG. 8




















R11
B12
B13
R14



R21
G22
R23
B24



B31
B32
R33
B34



R41
R42
B43
R44



B51
G52
B53
R54











In order to reconstruct the missing 22 pixels, we perform the following:


B22=(2*B12+2*B32+B13)/5


R22=(2*R21+2*R23+R11)/5.


In order to reconstruct the missing 32 pixels, we perform the following:


G32=(2*G22+G52)/3


R32=(2*R33+2*R42+R41+R21+R23)/7.



FIG. 9




















R11
B12
R13
B14



B21
G22
B23
R24



R31
B32
R33
B34



B41
R42
B43
R44



R51
G52
R53
B54











In order to reconstruct the missing 22 pixels, we perform the following:


B22=(B12+B32+B23+B21)/4


R22=(R11+R13+R31+R33)/4.


In order to reconstruct the missing 32 pixels, we perform the following:


G32=(2*G22+G52)/3


R32=(R42+R31+R33)/3.


Triple-Aperture Zoom Imaging System with Improved Color Resolution


As mentioned, a multi-aperture zoom or non-zoom imaging system disclosed herein may include more than two apertures. A non-limiting and exemplary embodiment 1100 of a triple-aperture imaging system is shown in FIGS. 11A-11B. System 1100 includes a first Wide subset camera 1102 (with exemplarily X1), a second Wide subset camera (with exemplarily X1.5, and referred to as a “Wide-Tele” subset) and a Tele subset camera (with exemplarily X2). FIG. 11A shows exemplary images captured by imaging system 1100, while FIG. 11B illustrates schematically three sensors marked 1102, 1104 and 1106, which belong respectively to the Wide, Wide-Tele and Tele subsets. FIG. 11B also shows the CFA arrangements in each sensor: sensors 1102 and 1104 are similar to Wide sensors described above with reference to any of FIGS. 2-9, in the sense that they include an overlap area and a non-overlap area. The overlap area includes a non-standard CFA. In both Wide sensors, the non-overlap area may have a Clear pattern or a standard CFA. Thus, neither Wide subset is solely a Clear channel camera. The Tele sensor may be Clear or have a standard Bayer CFA or a standard non-Bayer CFA. In use, an image is acquired with imaging system 1100 and processed as follows: demosaicing is performed on the overlap area pixels of the Wide and Wide-Tele sensors according to the specific CFA pattern in each overlap area. The overlap and non-overlap subsets of pixels in each of these sensors may need different demos aicing. Exemplary and non-limiting demosaicing specifications for the overlap area for Wide sensors shown in FIGS. 2-9 are given above. The aim is to reconstruct the missing colors in each and every pixel. In cases in which the Tele subset sensor is not Clear only, demosaicing is performed as well. The Wide and Wide-Tele subset color images acquired this way will have colors (in the overlap area) holding higher resolution than that of a standard CFA pattern. Then, the Tele image acquired with the Tele sensor is registered (mapped) into the respective Wide image. The data from the Wide, Wide-Tele and Tele images is then processed to form a high quality zoom image. In cases where the Tele subset is Clear only, high Luma resolution is taken from the Tele sensor and color resolution is taken from the Wide sensor. In cases where the Tele subset includes a CFA, both color and Luma resolution is taken from the Tele subset. In addition, color resolution is taken from the Wide sensor. The resolution of the fused image may be higher than the resolution of both sensors.


While this disclosure has been described in terms of certain embodiments and generally associated methods, alterations and permutations of the embodiments and methods will be apparent to those skilled in the art. For example, multi-aperture imaging systems with more than two Wide or Wide-Tele subsets (and sensors) or with more than one Tele subset (and sensor) may be constructed and used according to principles set forth herein. Similarly, non-zoom multi-aperture imaging systems with more than two sensors, at least one of which has a non-standard CFA, may be constructed and used according to principles set forth herein. The disclosure is to be understood as not limited by the specific embodiments described herein, but only by the scope of the appended claims.

Claims
  • 1. A multi-aperture imaging system comprising: a) a first camera that provides a first camera image, the first camera having a first sensor with a first plurality of sensor pixels covered at least in part with a non-standard color filter array (CFA) used to increase a specific color sampling rate relative to a same color sampling rate in a standard CFA, wherein the non-standard CFA includes a repetition of a n×n micro-cell where n=4 and wherein each micro-cell includes a BBRR-RBBR-RRBB-BRRB color filter order;b) a second camera that provides a second camera image, the second camera having a second sensor with a second plurality of sensor pixels, the second plurality of sensor pixels being either Clear or covered with a standard CFA, wherein the second camera image has an overlap area with the first camera image; andc) a processor configured to process the first and second camera images into a fused output image, wherein in the overlap area pixels of the second camera image are registered with corresponding pixels of the first camera image.
  • 2. A multi-aperture imaging system comprising: a) a first camera that provides a first camera image, the first camera having a first sensor with a first plurality of sensor pixels covered at least in part with a non-standard color filter array (CFA) used to increase a specific color sampling rate relative to a same color sampling rate in a standard CFA, wherein the non-standard CFA includes a repetition of a n×n micro-cell where n=6 and wherein each micro-cell includes a color filter order selected from the group consisting of RBBRRB-RWRBWB-BBRBRR-RRBRBB-BWBRWR-BRRBBR, BBGRRG-RGRBGB-GBRGRB-RRGBBG-BGBRGR-GRBGBR, RBBRRB-RGRBGB-BBRBRR-RRBRBB-BGBRGR-BRRBBR and RBRBRB-BGBRGR-RBRBRB-BRBRBR-RGRBGB-BRBRBR;b) a second camera that provides a second camera image, the second camera having a second sensor with a second plurality of sensor pixels, the second plurality of sensor pixels being either Clear or covered with a standard CFA, wherein the second camera image has an overlap area with the first camera image; andc) a processor configured to process the first and second camera images into a fused output image, wherein in the overlap area pixels of the second camera image are registered with corresponding pixels of the first camera image.
  • 3. The multi-aperture imaging system of claim 1, wherein the first camera is a Wide camera with a field of view FOVw and wherein the second camera is a Tele camera with a field of view FOVT smaller than FOVw.
  • 4. A method of acquiring images by a multi-aperture imaging system, the method comprising: a) providing a first image generated by a first camera of the imaging system, the first camera having a first field of view (FOV1);b) providing a second image generated by a second camera of the imaging system, the second camera having a second field of view (FOV2) such that FOV2<FOV1, the second image having an overlap area with the first image; andc) fusing the first and second images into a fused image, wherein the fusing includes applying a registration process between the first and second images, the registration process including: i. extracting a first Luma image from the first imageii. extracting a second Luma image from the second image,iii. applying low-pass filtering on the second Luma image in order to match its spatial frequency content to that of the first Luma image and to generate a low-pass second Luma image, andiv. applying registration on the low-pass second Luma image and the first Luma image,wherein the non-standard CFA includes a repetition of a n×n micro-cell where n=4 andwherein each micro-cell includes a BBRR-RBBR-RRBB-BRRB color filter order.
  • 5. The method of claim 4, wherein n=6 instead of n=4 and wherein instead of each micro-cell including a BBRR-RBBR-RRBB-BRRB color filter order, each micro-cell includes a color filter order selected from the group consisting of RBBRRB-RWRBWB-BBRBRR-RRBRBB-BWBRWR-BRRBBR, BBGRRG-RGRBGB-GBRGRB-RRGBBG-BGBRGR-GRBGBR, RBBRRB-RGRBGB-BBRBRR-RRBRBB-BGBRGR-BRRBBR and RBRBRB-BGBRGR-RBRBRB-BRBRBR-RGRBGB-BRBRBR.
  • 6. A multi-aperture imaging system, comprising: a) a first camera that provides a first image, the first camera having a fixed first field of view (FOV1) and a first sensor with a first plurality of sensor pixels covered at least in part with a first color filter array (CFA);b) a second camera that provides a second image, the second camera having a fixed second field of view (FOV2) such that FOV2<FOV1 and a second sensor with a second plurality of sensor pixels, the second image having an overlap area with the first image, the first sensor having a sensor overlap area with the second sensor and a sensor non-overlap area; andc) a third camera that provides a third image, the third camera having a fixed third field of view (FOV3) such that FOV3<FOV2, and a third sensor with a third plurality of sensor pixels, the third image having an overlap area with the second image; andd) a processor configured to provide an output image based on a zoom factor (ZF) input that defines a respective field of view (FOVZF), such that for FOV2<FOVZF<FOV1 the processor is further configured to select the first image as a primary image, to register the overlap area of the second image to the first image to obtain a fused image, and to provide the fused image as the output image from the point of view of the first camera,wherein a CFA pattern of the first CFA in the sensor overlap area differs from a CFA pattern of the first CFA in the sensor non-overlap area, and wherein a demosaicing process applied to the first CFA in the sensor overlap area differs from a demosaicing process applied to the CFA pattern of the first CFA in the sensor non-overlap area.
  • 7. The multi-aperture imaging system of claim 6, wherein if FOV3>FOVZF, then the processor is further configured to provide an output image from the point of view of the third camera.
  • 8. A multi-aperture imaging system, comprising: a) a first camera that provides a first image, the first camera having a fixed first field of view (FOV1) and a first sensor with a first plurality of sensor pixels covered at least in part with a first color filter array (CFA);b) a second camera that provides a second image, the second camera having a fixed second field of view (FOV2) such that FOV2<FOV1 and a second sensor with a second plurality of sensor pixels, the second image having an overlap area with the first image, the first sensor having a sensor overlap area with the second sensor and a sensor non-overlap area; andc) a third camera that provides a third image, the third camera having a fixed third field of view (FOV3) such that FOV3<FOV2, and a third sensor with a third plurality of sensor pixels, the third image having an overlap area with the second image; andd) a processor configured to provide an output image based on a zoom factor (ZF) input that defines a respective field of view (FOVZF), such that for FOV3<FOVZF<FOV2 the processor is further configured to select the second image as a primary image, to register the overlap area of the third image to the second image to obtain a fused image, and to provide the fused image as the output image from the point of view of the second camera,wherein a CFA pattern of the first CFA in the sensor overlap area differs from a CFA pattern of the first CFA in the sensor non-overlap area, and wherein a demosaicing process applied to the first CFA in the sensor overlap area differs from a demosaicing process applied to the CFA pattern of the first CFA in the sensor non-overlap area.
  • 9. The multi-aperture imaging system of claim 8, wherein if FOV3>FOVZF, then the processor is further configured to provide the output image from the point of view of the third camera.
  • 10. A method of acquiring images by a multi-aperture imaging system, comprising: a) providing a first image generated by a first camera of the imaging system, the first camera having a fixed first field of view (FOV1) and a first sensor with a first plurality of sensor pixels covered at least in part with a first color filter array (CFA);b) providing a second image generated by a second camera of the imaging system, the second camera having a fixed second field of view (FOV2) such that FOV2<FOV1, and a second sensor with a second plurality of sensor pixels, the second image having an overlap area with the first image, the first sensor having a sensor overlap area with the second sensor and a sensor non-overlap area;c) providing a third image generated by a third camera of the imaging system, the third camera having a fixed third field of view (FOV3) such that FOV3<FOV2, and a third sensor with a third plurality of sensor pixels, the third image having an overlap area with the second image; andd) using a processor to provide an output image from a point of view of the first camera, the second camera, or the third camera, based on a zoom factor (ZF) input that defines a respective field of view (FOVZF) such that: if FOV2<FOVZF<FOV1, then the processor is configured to select the first image as a primary image, to register the overlap area of the second image to the first image to obtain a fused image and to provide the fused image as the output image from the point of view of the first camera,if FOV3<FOVZF<FOV2, then the processor is configured to select the second image as a primary image, to register the overlap area of the third image to the second image to obtain a fused image and to provide the fused image as the output image from the point of view of the second camera, andif FOV3>FOVZF, then the processor is configured to provide an output image from the point of view of the third camera, wherein a CFA pattern of the first CFA in the sensor overlap area differs from a CFA pattern of the first CFA in the sensor non-overlap area, and wherein a demosaicing process applied to the first CFA in the sensor overlap area differs from a demosaicing process applied to the CFA pattern of the first CFA in the sensor non-overlap area.
CROSS REFERENCE TO RELATED APPLICATIONS

This application is a Continuation application of U.S. patent application Ser. No. 14/386,823 (now allowed), which was a National Phase application from PCT patent application PCT/IB2013/060356 which claimed priority from U.S. Provisional Patent Application No. 61/730,570 having the same title and filed Nov. 28, 2012, the latter incorporated herein by reference in its entirety.This broadening reissue application is a continuation of U.S. patent application Ser. No. 16/383,618, filed Apr. 14, 2019, now U.S. Pat. No. RE48,4544E, which is a reissue application of U.S. patent application Ser. No. 15/375,090, filed Dec. 11, 2016, now U.S. Pat. No. 9,876,952, which is a continuation of U.S. patent application Ser. No. 14/386,823, filed Apr. 22, 2014, now U.S. Pat. No. 9,538,152, which was a National Phase application from PCT application PCT/IB2013/060356 which claimed priority from U.S. Provisional Patent Application No. 61/730,570 having the same title and filed Nov. 28, 2012, the latter incorporated herein by reference in its entirety. The following three co-pending applications are also continuation reissue applications of U.S. patent application Ser. No. 16/383,618, filed Apr. 14, 2019: U.S. patent application Ser. No. 16/384,140, filed Apr. 15, 2019, U.S. patent application Ser. No. 16/384,197, filed Apr. 15, 2019, and U.S. patent application Ser. No. 16/384,244, filed Apr. 15, 2019.

US Referenced Citations (302)
Number Name Date Kind
4199785 McCullough et al. Apr 1980 A
5005083 Grage et al. Apr 1991 A
5032917 Aschwanden Jul 1991 A
5041852 Misawa et al. Aug 1991 A
5051830 von Hoessle Sep 1991 A
5099263 Matsumoto et al. Mar 1992 A
5248971 Mandl Sep 1993 A
5287093 Amano et al. Feb 1994 A
5394520 Hall Feb 1995 A
5436660 Sakamoto Jul 1995 A
5444478 Lelong et al. Aug 1995 A
5459520 Sasaki Oct 1995 A
5657402 Bender et al. Aug 1997 A
5682198 Katayama et al. Oct 1997 A
5768443 Michael et al. Jun 1998 A
5926190 Turkowski et al. Jul 1999 A
5940641 McIntyre et al. Aug 1999 A
5982951 Katayama et al. Nov 1999 A
6101334 Fantone Aug 2000 A
6128416 Oura Oct 2000 A
6148120 Sussman Nov 2000 A
6208765 Bergen Mar 2001 B1
6268611 Pettersson et al. Jul 2001 B1
6549215 Jouppi Apr 2003 B2
6611289 Yu et al. Aug 2003 B1
6643416 Daniels et al. Nov 2003 B1
6650368 Doron Nov 2003 B1
6680748 Monti Jan 2004 B1
6714665 Hanna et al. Mar 2004 B1
6724421 Glatt Apr 2004 B1
6738073 Park et al. May 2004 B2
6741250 Furlan et al. May 2004 B1
6750903 Miyatake et al. Jun 2004 B1
6778207 Lee et al. Aug 2004 B1
7002583 Rabb, III Feb 2006 B2
7015954 Foote et al. Mar 2006 B1
7038716 Klein et al. May 2006 B2
7199348 Olsen et al. Apr 2007 B2
7206136 Labaziewicz et al. Apr 2007 B2
7248294 Slatter Jul 2007 B2
7256944 Labaziewicz et al. Aug 2007 B2
7305180 Labaziewicz et al. Dec 2007 B2
7339621 Fortier Mar 2008 B2
7346217 Gold, Jr. Mar 2008 B1
7365793 Cheatle et al. Apr 2008 B2
7411610 Doyle Aug 2008 B2
7424218 Baudisch et al. Sep 2008 B2
7509041 Hosono Mar 2009 B2
7533819 Barkan et al. May 2009 B2
7561191 May et al. Jul 2009 B2
7619683 Davis Nov 2009 B2
7676146 Border et al. Mar 2010 B2
7738016 Toyofuku Jun 2010 B2
7773121 Huntsberger et al. Aug 2010 B1
7809256 Kuroda et al. Oct 2010 B2
7880776 LeGall et al. Feb 2011 B2
7918398 Li et al. Apr 2011 B2
7964835 Olsen et al. Jun 2011 B2
7978239 Deever et al. Jul 2011 B2
8094208 Myhrvold Jan 2012 B2
8115825 Culbert et al. Feb 2012 B2
8134115 Koskinen et al. Mar 2012 B2
8149327 Lin et al. Apr 2012 B2
8154610 Jo et al. Apr 2012 B2
8179457 Koskinen et al. May 2012 B2
8238695 Davey et al. Aug 2012 B1
8274552 Dahi et al. Sep 2012 B2
8390729 Long et al. Mar 2013 B2
8391697 Cho et al. Mar 2013 B2
8400555 Georgiev et al. Mar 2013 B1
8439265 Ferren et al. May 2013 B2
8446484 Muukki et al. May 2013 B2
8483452 Ueda et al. Jul 2013 B2
8514491 Duparre Aug 2013 B2
8542287 Griffith et al. Sep 2013 B2
8547389 Hoppe et al. Oct 2013 B2
8553106 Scarff Oct 2013 B2
8587691 Takane Nov 2013 B2
8619148 Watts et al. Dec 2013 B1
8660420 Chang Feb 2014 B2
8803990 Smith Aug 2014 B2
8896655 Mauchly et al. Nov 2014 B2
8976255 Matsuoto et al. Mar 2015 B2
9019387 Nakano Apr 2015 B2
9025073 Attar et al. May 2015 B2
9025077 Attar et al. May 2015 B2
9041835 Honda May 2015 B2
9137447 Shibuno Sep 2015 B2
9185291 Shabtay et al. Nov 2015 B1
9215377 Sokeila et al. Dec 2015 B2
9215385 Luo Dec 2015 B2
9270875 Brisedoux et al. Feb 2016 B2
9286680 Jiang et al. Mar 2016 B1
9344626 Silverstein et al. May 2016 B2
9360671 Zhou Jun 2016 B1
9369621 Malone et al. Jun 2016 B2
9413930 Geerds Aug 2016 B2
9413984 Attar et al. Aug 2016 B2
9420180 Jin Aug 2016 B2
9438792 Nakada et al. Sep 2016 B2
9485432 Medasani et al. Nov 2016 B1
9578257 Attar et al. Feb 2017 B2
9618748 Munger et al. Apr 2017 B2
9681057 Attar et al. Jun 2017 B2
9723220 Sugie Aug 2017 B2
9736365 Laroia Aug 2017 B2
9736391 Du et al. Aug 2017 B2
9768310 Ahn et al. Sep 2017 B2
9800798 Ravirala et al. Oct 2017 B2
9851803 Fisher et al. Dec 2017 B2
9894287 Qian et al. Feb 2018 B2
9900522 Lu Feb 2018 B2
9927600 Goldenberg et al. Mar 2018 B2
20020005902 Yuen Jan 2002 A1
20020030163 Zhang Mar 2002 A1
20020063711 Park et al. May 2002 A1
20020075258 Park et al. Jun 2002 A1
20020122113 Foote Sep 2002 A1
20020167741 Koiwai et al. Nov 2002 A1
20030030729 Prentice et al. Feb 2003 A1
20030093805 Gin May 2003 A1
20030160886 Misawa et al. Aug 2003 A1
20030202113 Yoshikawa Oct 2003 A1
20040008773 Itokawa Jan 2004 A1
20040012683 Yamasaki et al. Jan 2004 A1
20040017386 Liu et al. Jan 2004 A1
20040027367 Pilu Feb 2004 A1
20040061788 Bateman Apr 2004 A1
20040141065 Hara et al. Jul 2004 A1
20040141086 Mihara Jul 2004 A1
20040240052 Minefuji et al. Dec 2004 A1
20050013509 Samadani Jan 2005 A1
20050046740 Davis Mar 2005 A1
20050157184 Nakanishi et al. Jul 2005 A1
20050168834 Matsumoto et al. Aug 2005 A1
20050185049 Iwai et al. Aug 2005 A1
20050200718 Lee Sep 2005 A1
20060054782 Olsen et al. Mar 2006 A1
20060056056 Ahiska et al. Mar 2006 A1
20060067672 Washisu et al. Mar 2006 A1
20060102907 Lee et al. May 2006 A1
20060125937 LeGall et al. Jun 2006 A1
20060170793 Pasquarette et al. Aug 2006 A1
20060175549 Miller et al. Aug 2006 A1
20060187310 Janson et al. Aug 2006 A1
20060187322 Janson et al. Aug 2006 A1
20060187338 May et al. Aug 2006 A1
20060227236 Pak Oct 2006 A1
20070024737 Nakamura et al. Feb 2007 A1
20070126911 Nanjo Jun 2007 A1
20070127040 Davidovici Jun 2007 A1
20070177025 Kopet et al. Aug 2007 A1
20070188653 Pollock et al. Aug 2007 A1
20070189386 Imagawa et al. Aug 2007 A1
20070257184 Olsen et al. Nov 2007 A1
20070285550 Son Dec 2007 A1
20080017557 Witdouck Jan 2008 A1
20080024614 Li et al. Jan 2008 A1
20080025634 Border et al. Jan 2008 A1
20080030592 Border et al. Feb 2008 A1
20080030611 Jenkins Feb 2008 A1
20080084484 Ochi et al. Apr 2008 A1
20080106629 Kurtz et al. May 2008 A1
20080117316 Orimoto May 2008 A1
20080129831 Cho et al. Jun 2008 A1
20080218611 Parulski et al. Sep 2008 A1
20080218612 Border et al. Sep 2008 A1
20080218613 Janson et al. Sep 2008 A1
20080219654 Border et al. Sep 2008 A1
20090086074 Li et al. Apr 2009 A1
20090109556 Shimizu et al. Apr 2009 A1
20090122195 Van Baar et al. May 2009 A1
20090122406 Rouvinen et al. May 2009 A1
20090128644 Camp et al. May 2009 A1
20090219547 Kauhanen et al. Sep 2009 A1
20090252484 Hasuda et al. Oct 2009 A1
20090295949 Ojala Dec 2009 A1
20090324135 Kondo et al. Dec 2009 A1
20100013906 Border et al. Jan 2010 A1
20100020221 Tupman et al. Jan 2010 A1
20100060746 Olsen et al. Mar 2010 A9
20100097444 Lablans Apr 2010 A1
20100103194 Chen et al. Apr 2010 A1
20100165131 Makimoto et al. Jul 2010 A1
20100196001 Ryynänen et al. Aug 2010 A1
20100238327 Griffith et al. Sep 2010 A1
20100259836 Kang et al. Oct 2010 A1
20100277619 Scarff Nov 2010 A1
20100283842 Guissin et al. Nov 2010 A1
20100321494 Peterson et al. Dec 2010 A1
20110058320 Kim et al. Mar 2011 A1
20110063417 Peters et al. Mar 2011 A1
20110063446 McMordie et al. Mar 2011 A1
20110064327 Dagher Mar 2011 A1
20110080487 Venkataraman et al. Apr 2011 A1
20110121421 Charbon et al. May 2011 A1
20110128288 Petrou et al. Jun 2011 A1
20110164172 Shintani et al. Jul 2011 A1
20110216228 Kawamura Sep 2011 A1
20110229054 Weston et al. Sep 2011 A1
20110234798 Chou Sep 2011 A1
20110234853 Hayashi et al. Sep 2011 A1
20110234881 Wakabayashi et al. Sep 2011 A1
20110242286 Pace et al. Oct 2011 A1
20110242355 Goma et al. Oct 2011 A1
20110285730 Lai et al. Nov 2011 A1
20110292258 Adler et al. Dec 2011 A1
20110298966 Kirschstein et al. Dec 2011 A1
20120026366 Golan et al. Feb 2012 A1
20120044372 Cote et al. Feb 2012 A1
20120062780 Morihisa Mar 2012 A1
20120069235 Imai Mar 2012 A1
20120075489 Nishihara Mar 2012 A1
20120081566 Cote Apr 2012 A1
20120105579 Jeon et al. May 2012 A1
20120124525 Kang May 2012 A1
20120154547 Aizawa Jun 2012 A1
20120154614 Moriya et al. Jun 2012 A1
20120196648 Havens et al. Aug 2012 A1
20120229663 Nelson et al. Sep 2012 A1
20120249815 Bohn et al. Oct 2012 A1
20120287315 Huang et al. Nov 2012 A1
20120320467 Baik et al. Dec 2012 A1
20130002928 Imai Jan 2013 A1
20130016427 Sugawara Jan 2013 A1
20130063629 Webster et al. Mar 2013 A1
20130076922 Shihoh et al. Mar 2013 A1
20130093842 Yahata Apr 2013 A1
20130094126 Rappoport et al. Apr 2013 A1
20130113894 Mirlay May 2013 A1
20130135445 Dahi et al. May 2013 A1
20130136355 Demandolx May 2013 A1
20130155176 Paripally et al. Jun 2013 A1
20130182150 Asakura Jul 2013 A1
20130201360 Song Aug 2013 A1
20130202273 Ouedraogo et al. Aug 2013 A1
20130235224 Park et al. Sep 2013 A1
20130250150 Malone et al. Sep 2013 A1
20130258044 Betts-LaCroix Oct 2013 A1
20130270419 Singh et al. Oct 2013 A1
20130278785 Nomura et al. Oct 2013 A1
20130321668 Kamath Dec 2013 A1
20140009631 Topliss Jan 2014 A1
20140049615 Uwagawa Feb 2014 A1
20140118584 Lee et al. May 2014 A1
20140192238 Attar et al. Jul 2014 A1
20140192253 Laroia Jul 2014 A1
20140218587 Shah Aug 2014 A1
20140313316 Olsson et al. Oct 2014 A1
20140362242 Takizawa Dec 2014 A1
20150002683 Hu et al. Jan 2015 A1
20150042870 Chan et al. Feb 2015 A1
20150070781 Cheng et al. Mar 2015 A1
20150092066 Geiss et al. Apr 2015 A1
20150103147 Ho et al. Apr 2015 A1
20150138381 Ahn May 2015 A1
20150154776 Zhang et al. Jun 2015 A1
20150162048 Hirata et al. Jun 2015 A1
20150195458 Nakayama et al. Jul 2015 A1
20150215516 Dolgin Jul 2015 A1
20150237280 Choi et al. Aug 2015 A1
20150242994 Shen Aug 2015 A1
20150244906 Wu et al. Aug 2015 A1
20150253543 Mercado Sep 2015 A1
20150253647 Mercado Sep 2015 A1
20150261299 Wajs Sep 2015 A1
20150271471 Hsieh et al. Sep 2015 A1
20150281678 Park et al. Oct 2015 A1
20150286033 Osborne Oct 2015 A1
20150316744 Chen Nov 2015 A1
20150334309 Peng et al. Nov 2015 A1
20160044250 Shabtay et al. Feb 2016 A1
20160070088 Koguchi Mar 2016 A1
20160154202 Wippermann et al. Jun 2016 A1
20160154204 Lim et al. Jun 2016 A1
20160212358 Shikata Jul 2016 A1
20160212418 Demirdjian et al. Jul 2016 A1
20160241751 Park Aug 2016 A1
20160291295 Shabtay et al. Oct 2016 A1
20160295112 Georgiev et al. Oct 2016 A1
20160301840 Du et al. Oct 2016 A1
20160353008 Osborne Dec 2016 A1
20160353012 Kao et al. Dec 2016 A1
20170019616 Zhu et al. Jan 2017 A1
20170070731 Darling et al. Mar 2017 A1
20170187962 Lee et al. Jun 2017 A1
20170214846 Du et al. Jul 2017 A1
20170214866 Zhu et al. Jul 2017 A1
20170242225 Fiske Aug 2017 A1
20170289458 Song et al. Oct 2017 A1
20180013944 Evans, V et al. Jan 2018 A1
20180017844 Yu et al. Jan 2018 A1
20180024329 Goldenberg et al. Jan 2018 A1
20180059379 Chou Mar 2018 A1
20180120674 Avivi et al. May 2018 A1
20180150973 Tang et al. May 2018 A1
20180176426 Wei et al. Jun 2018 A1
20180198897 Tang et al. Jul 2018 A1
20180241922 Baldwin et al. Aug 2018 A1
20180295292 Lee et al. Oct 2018 A1
20180300901 Wakai et al. Oct 2018 A1
20190121103 Bachar et al. Apr 2019 A1
Foreign Referenced Citations (40)
Number Date Country
101276415 Oct 2008 CN
201514511 Jun 2010 CN
102739949 Oct 2012 CN
103024272 Apr 2013 CN
103841404 Jun 2014 CN
1536633 Jun 2005 EP
1780567 May 2007 EP
2523450 Nov 2012 EP
S59191146 Oct 1984 JP
04211230 Aug 1992 JP
H07318864 Dec 1995 JP
08271976 Oct 1996 JP
2002010276 Jan 2002 JP
2003298920 Oct 2003 JP
2004133054 Apr 2004 JP
2004245982 Sep 2004 JP
2005099265 Apr 2005 JP
2006238325 Sep 2006 JP
2007228006 Sep 2007 JP
2007306282 Nov 2007 JP
2008076485 Apr 2008 JP
2010204341 Sep 2010 JP
2011085666 Apr 2011 JP
2013106289 May 2013 JP
20070005946 Jan 2007 KR
20090058229 Jun 2009 KR
20100008936 Jan 2010 KR
20140014787 Feb 2014 KR
101477178 Dec 2014 KR
20140144126 Dec 2014 KR
20150118012 Oct 2015 KR
2000027131 May 2000 WO
2004084542 Sep 2004 WO
2006008805 Jan 2006 WO
2009097552 Aug 2009 WO
2010122841 Oct 2010 WO
2014072818 May 2014 WO
2017025822 Feb 2017 WO
2017037688 Mar 2017 WO
2018130898 Jul 2018 WO
Non-Patent Literature Citations (18)
Entry
Statistical Modeling and Performance Characterization of a Real-Time Dual Camera Surveillance System, Greienhagen et al., Publisher: IEEE, 2000, 8 pages.
A 3MPixel Multi-Aperture Image Sensor with 0.7μm Pixels in 0.11μm CMOS, Fife et al., Stanford University, 2008, 3 pages.
Dual camera intelligent sensor for high definition 360 degrees surveillance, Scotti et al., Publisher: IET, May 9, 2000, 8 pages.
Dual-sensor foveated imaging system, Hua et al., Publisher: Optical Society of America, Jan. 14, 2008, 11 pages.
Defocus Video Matting, McGuire et al., Publisher: ACM Siggraph, Jul. 31, 2005, 11 pages.
Compact multi-aperture imaging with high angular resolution, Santacana et al., Publisher: Optical Society of America, 2015, 10 pages.
Multi-Aperture Photography, Green et al., Publisher: Mitsubishi Electric Research Laboratories, Inc., Jul. 2007, 10 pages.
Multispectral Bilateral Video Fusion, Bennett et al., Publisher: IEEE, May 2007, 10 pages.
Super-resolution imaging using a camera array, Santacana et al., Publisher: Optical Society of America, 2014, 6 pages.
Optical Splitting Trees for High-Precision Monocular Imaging, McGuire et al., Publisher: IEEE, 2007, 11 pages.
High Performance Imaging Using Large Camera Arrays, Wilburn et al., Publisher: Association for Computing Machinery, Inc., 2005, 12 pages.
Real-time Edge-Aware Image Processing with the Bilateral Grid, Chen et al., Publisher: ACM Siggraph, 2007, 9 pages.
Superimposed multi-resolution imaging, Carles et al., Publisher: Optical Society of America, 2017, 13 pages.
Viewfinder Alignment, Adams et al., Publisher: Eurographics, 2008, 10 pages.
Dual-Camera System for Multi-Level Activity Recognition, Bodor et al., Publisher: IEEE, Oct. 2014, 6 pages.
Engineered to the task: Why camera-phone cameras are different, Giles Humpston, Publisher: Solid State Technology, Jun. 2009, 3 pages.
Office Action in related CN patent application No. 202110100089.9, dated Jul. 21, 2021.
International Search Report and Written Opinion issued in related PCT patent application PCT/IB2013/060356, dated Apr. 17, 2014, 15 pages.
Provisional Applications (1)
Number Date Country
61730570 Nov 2012 US
Continuations (2)
Number Date Country
Parent 16383618 Apr 2019 US
Child 15375090 US
Parent 14386823 US
Child 15375090 US
Reissues (2)
Number Date Country
Parent 15375090 Dec 2016 US
Child 16419604 US
Parent 15375090 Dec 2016 US
Child 16383618 US