One or more embodiments relate to a baffle for directing coolant through a high-voltage junction box.
Cold plates are used for cooling electronics, such as the power electronics included in high-voltage junction boxes for electric or hybrid vehicle battery chargers. Such power electronics convert AC power from the grid into DC power for charging the vehicle batteries. The power electronics generate heat while operating. High-voltage junction boxes may include a liquid cooled cold plate to dissipate the heat. Such high-voltage junction boxes may also include a baffle to direct coolant flow. U.S. Pat. No. 9,622,377 to Rai et al. and assigned to Lear Corporation describes an example of a cold plate having a separable flow directing baffle.
In one embodiment, a manifold assembly is provided with a housing with a base, walls extending transversely from the base, and an inlet port and an outlet port formed through the walls. A cover is mounted on top of the walls to define a manifold for coolant flow. A baffle is disposed within the manifold to direct coolant flow between the inlet port and the outlet port, and elastic material is disposed over a distal end of the baffle to engage a lower surface of the cover and block coolant leakage.
In another embodiment, an electronic module is provided with a housing with a base and walls extending transversely from the base. The housing comprises an inlet port and an outlet port formed through the walls. A circuit board assembly is supported by the housing and includes electronics that generate heat during operation. A cold plate is mounted to the walls of the housing to define a manifold. The housing and the cold plate are in thermal communication with the circuit board assembly for transferring heat generated by the electronics. A baffle is disposed within the manifold for directing coolant flow. Elastic material is disposed over a distal end of the baffle and adapted to engage a lower surface of the cold plate in an interference fit to block coolant leakage.
In yet another embodiment, a method is provided for manufacturing an electronic module. A baffle is disposed in a fluid manifold that is formed in a housing. Elastic material is molded over a distal end of the baffle and through an aperture in the baffle to secure the elastic material. A cold plate is installed on the manifold to seal the manifold and compress the elastic material to block coolant leakage. An electronics assembly is mounted to the cold plate in thermally conductive communication with the manifold.
In one embodiment a high-voltage junction box is provided with a housing including a base and walls extending transversely from the base. The housing includes an inlet port and an outlet port that are formed through the walls. A circuit board assembly is supported by the housing and includes power electronics that generate heat during operation. A cold plate is mounted to the walls of the housing to define a manifold. The housing and the cold plate are in thermal communication with the circuit board assembly for absorbing heat generated by the power electronics. The cold plate, the inlet port, and the outlet port are adapted to collectively facilitate coolant flow through the manifold. A baffle is disposed within the manifold for directing coolant flow. The baffle includes a support for resting upon the base of the housing, a fin extending from the support, and elastic material disposed over a distal end of the fin that is adapted to engage a lower surface of the cold plate in an interference fit to block coolant flow.
The invention also provides an electronic module with a housing including a base and walls extending transversely from the base. The housing includes an inlet port and an outlet port that are formed through the walls. A circuit board assembly is supported by the housing and includes electronics that generate heat during operation. A cold plate is mounted to the walls of the housing to define a manifold. The housing and the cold plate are in thermal communication with the circuit board assembly for absorbing heat generated by the electronics. The cold plate, the inlet port, and the outlet port are adapted to collectively facilitate coolant flow through the manifold. A baffle is disposed within the manifold for directing coolant flow. The baffle includes a support for resting upon the base of the housing, a fin extending from the support, and elastic material disposed over a distal end of the fin that is adapted to engage a lower surface of the cold plate in an interference fit to block coolant flow.
As required, detailed embodiments of the present invention are disclosed herein; however, it is to be understood that the disclosed embodiments are merely exemplary of the invention that may be embodied in various and alternative forms. The figures are not necessarily to scale; some features may be exaggerated or minimized to show details of particular components. Therefore, specific structural and functional details disclosed herein are not to be interpreted as limiting, but merely as a representative basis for teaching one skilled in the art to variously employ the present invention.
With reference to
The external power supply 108 is electrically coupled to electric vehicle supply equipment (EVSE) 112, e.g., a charger or a charging station. The external power supply 108 is an electrical power distribution network or grid as provided by an electric utility company, according to one or more embodiments. The EVSE 112 provides circuitry and controls to regulate and manage the transfer of energy between the external power supply 108 and the vehicle 102. The external power supply 108 provides AC electric power to the EVSE 112. The EVSE 112 includes a charge connector 114 for plugging into a charge port 116 of the vehicle 102. The charge port 116 may be any type of port to transfer power from the EVSE 112 to the HVJB 100. The HVJB 100 converts the AC power received from the EVSE 112 to a high-voltage (HV) DC power output for charging the traction battery 110. This might typically in the hundreds of volts, such as a voltage of 300 volts or more.
Referring to
The cold plate 132 mounts atop inner housing walls 134 to form a manifold 136 within the cavity 124 of the housing 118. The cold plate 132 acts as a heat extractor or heat sink and dissipates heat from the power electronics. The housing 118 also includes a plurality of protuberances 138 that extend from the base 120 into the manifold 136 that increase the overall surface area of the housing 118 and act as heat sinks.
The HVJB 100 facilitates coolant flow through the manifold 136 to absorb and remove heat generated by the power electronics. The housing 118 includes an inlet port 140 and an outlet port 142 that extend through the sidewall 122. The inlet port 140 and outlet port 142 are connected to a coolant system 144 for circulating liquid coolant through the manifold 136. The HVJB 100 may include a gasket 146 that is disposed between the cold plate 132 and the inner housing walls 134 to seal the coolant within the manifold 136. The coolant absorbs heat from the housing 118, including the protuberances 138, and the cold plate 132 as it circulates through the manifold 136.
With reference to
The baffle 148 may include features for securing the elastic material 160 on the fins 152. The elastic material 160 may adhere to the fins 152 during the over-mold process. Further, each fin 152 may include one or more pockets 162 that are formed into a top surface of the tab 158 to receive elastic material 160, e.g., in the tab 158, and/or along the length of the ridge 156. Each fin 152 may also include an aperture 164 that extends from the pocket 162 and through a side of the fin 152. In the illustrated embodiment, the aperture 164 extends transversely from the pocket 162 and laterally through the tab 158. In other embodiments the aperture 164 extends downward from the pocket 162 and through the tab 158; or extends longitudinally from the pocket 162 through a front or rear surface of the tab 158 (not shown). The elastic material 160 flows into the pocket 162 and out through the aperture 164 to further secure the elastic material 160 to the fin 152.
As illustrated in
Referring back to
While exemplary embodiments are described above, it is not intended that these embodiments describe all possible forms of the invention. Rather, the words used in the specification are words of description rather than limitation, and it is understood that various changes may be made without departing from the spirit and scope of the invention. Additionally, the features of various implementing embodiments may be combined to form further embodiments of the invention.
This application claims the benefit of U.S. provisional application Ser. No. 63/044,540 filed Jun. 26, 2020, the disclosure of which is hereby incorporated in its entirety by reference herein.
Number | Name | Date | Kind |
---|---|---|---|
7965510 | Suzuki et al. | Jun 2011 | B2 |
9622377 | Rai et al. | Apr 2017 | B2 |
20060050483 | Wilson et al. | Mar 2006 | A1 |
20120212175 | Sharaf | Aug 2012 | A1 |
20130235527 | Wagner | Sep 2013 | A1 |
20150334874 | Rai | Nov 2015 | A1 |
20160270258 | Rai | Sep 2016 | A1 |
20160322280 | Schmit et al. | Nov 2016 | A1 |
20190263280 | Tang | Aug 2019 | A1 |
20200015384 | Tivadar | Jan 2020 | A1 |
20200409398 | Gebrehiwot et al. | Dec 2020 | A1 |
Number | Date | Country |
---|---|---|
102192037 | Sep 2011 | CN |
102957328 | Mar 2013 | CN |
105979752 | Sep 2016 | CN |
106465563 | Feb 2017 | CN |
108099681 | Jun 2018 | CN |
102016223889 | Jun 2018 | DE |
1391673 | Feb 2004 | EP |
1561980 | Aug 2005 | EP |
2015065310 | Apr 2015 | JP |
Entry |
---|
Office Action for Chinese Application No. 202110702287.2 filed Jun. 24, 2021, dated Oct. 19, 2022, 26 pgs. |
Number | Date | Country | |
---|---|---|---|
20210410326 A1 | Dec 2021 | US |
Number | Date | Country | |
---|---|---|---|
63044540 | Jun 2020 | US |