1. Field of the Invention
The present invention relates generally to semiconductor devices and more particularly to copper interconnects used in back end of the line semiconductor structures.
2. Background of the Invention
Semiconductor chips comprise a series of devices. The devices are connected to a silicon base layer below and connected to a stack of wiring layers above, i.e. interconnect layers or interconnects. The interconnects connect the devices in the silicon base layer. Interconnect layers alternate with one layer of pin-line connections, i.e. holes or vias, and a second layer of wiring connections, i.e. lines. Dual damascene, which is the most common interconnect creation technique, refers to a process by which two structures, i.e. a via and a trench, are filled with a conductor at the same time. The dual damascene method saves steps, and consequently, costs.
Copper interconnects, formed in accordance with the dual damascene method, are widely used in the back end of the line (“BEOL”) semiconductor structures. Vias and trenches are etched into an insulating layer. Then, prior to the deposition of any copper, a barrier layer is placed on the insulating layer. Because copper can diffuse down through the insulating layer to the silicon layer, which is problematic because copper adversely affects the conductance of silicon, a barrier layer is deposited atop the etched insulating layer. The barrier layer also adheres the seed layer and the insulating layer. Further details regarding the barrier layer can be found in U.S. Pat. Nos. 6,709,562, 6,380,628, 6,339,258, and 6,337,151, which are incorporated herein by reference in their entirety. Upon the barrier layer, a pure copper seed layer is deposited. The pure copper seed layer facilitates copper nucleation from the electroplated copper. Electroplated copper from an electroplate copper bath then fills the via and the trench. Afterwards, a chemical mechanical polish (“CMP”) removes extraneous copper and planarizes the copper interconnect. Unlike the seed layer, the electroplated copper bath comprises impure copper.
As mentioned above, the prior art technique utilizes a pure copper seed layer. In the industry, such copper is typically 99.999% pure. Impure copper has a larger grain size than pure copper, accordingly, impure copper is less resistive and more conductive than pure copper, which creates a faster copper interconnect. During CMP, pure copper polishes at a slower rate than impure copper. Even more problematic than the rate of CMP, however is that pure copper allows the creation of defects along the edge of the interconnect, which is made during CMP. More specifically, protrusions result in the pure copper seed layer, i.e. dendritic formation, and the edges of the interconnect erode during CMP. The eroded interconnect edge is clearly depicted in
a depicts an exploded view of the prior art copper interconnect edge shown in
What is needed in the art is a copper interconnect that neither erodes nor enables the creation of dendrites during CMP.
The present invention is directed to a copper interconnect that comprises an impure copper seed layer. The impure copper seed layer is derived from an electroplated copper bath that is deposited on a barrier layer. The barrier layer prevents substantial diffusion of copper through to an underlying insulating layer. An impure copper that is derived from an electroplated copper bath then fills an opening in the insulating layer.
Due to the presence of an impure copper seed layer, the present invention creates a copper interconnect that has the same cross sectional area as prior art interconnects, but alleviates the defects of edge erosion and dendritic formation. Another advantage of the present invention is that the copper interconnect of the present invention is more conductive than prior art interconnects without alteration of interconnect fabrication processes already in place.
The features and the elements characteristic of the invention are set forth with particularity in the appended claims. The drawings are for illustration purposes only and are not drawn to scale. Furthermore, like numbers represent like features in the drawings. The invention itself, however, both as to organization and method of operation, may best be understood by reference to the detailed description which follows, taken in conjunction with the accompanying drawings, in which:
a depicts an exploded view of the edge of the completed prior art interconnect of
a depicts an exploded view of the edge of the completed interconnect of
The invention will now be described by reference to the accompanying figures. In the figures, various aspects of the structures have been shown and schematically represented in a simplified manner to more clearly describe and illustrate the invention.
By way of overview and explanation, the present invention discloses the utilization of an impure copper seed layer with substantially the same composition as the electroplated copper in the completed copper interconnect. Both the impure copper for the impure copper seed layer and the electroplated copper are derived from an impure copper seed source, i.e. target, with an impurity content of not more than 1.20% by weight and not less than or equal to 0.001% by weight or in other mathematical words, 0.001%>impurity content<1.20%. Such impure copper sources are generally well known in the art. Deposition of the seed layer affects the trace elements, i.e. impurities, in the impure copper. For example, one method of deposition for the seed layer is known as sputtering. The impurities in the impure copper seed layer will not sputter exactly as the impurities in the electroplate copper bath electroplate. Accordingly, the composition of the copper in the impure copper seed layer and the electroplated copper will be slightly different. While sputtering is one method of impure copper layer deposition, other methods may include physical vapor deposition (“PVD”), chemical vapor deposition (“CVD”), ionized physical vapor deposition (“IPVD”), and atomic layer deposition (“ALD”). PVD includes, but is not limited to, various evaporation and sputtering techniques such as DC or RF plasma sputtering, bias sputtering, magnetron sputtering, ion plating, or ionized metal plasma sputtering. CVD includes, but is not limited to, thermal CVD, plasma enhanced CVD, low pressure CVD, high pressure CVD, and metal organo CVD. In sum, deposition affects the composition of the impure copper. The composition of the impure copper seed layer and the electroplated copper, however, remains substantially similar because the copper in the impure copper seed layer and the electroplated copper are both derived from a source with an impurity content of not more than 1.20% by weight and not less than or equal to 0.001% by weight.
Electroplated copper has a myriad of impurities comprised mainly of metals and organic materials. Some such impurities include, but are not limited to, Ag, As, C, Cd, Cl, Co, Cr, Fe, In, Mg, Mn, N, Ni, O, Pb, S, Sn, TI, and Zn. Such impurities enhance the interconnect because the impurities reduce the resistivity of the interconnect.
The preferred method for formation of a copper seed layer of substantially the same composition as the electroplated copper comprises using an impure copper target and depositing the target material on the barrier layer, which is accomplished by electroplating the target with the same type of copper plating bath that is used to fill the BEOL interconnects. As mentioned above, the barrier layer prevents diffusion of the copper through to the insulating layer. Alternately, a pure copper seed source could be forged with impurities, however this would need to be monitored carefully such that the forged copper does not become resistive.
An alternative embodiment of the present invention comprises a copper interconnect with an impure copper seed layer fill. In the first described embodiment of the present invention, upon a barrier layer an impure copper seed layer is deposited and an impure copper from the electroplated copper bath fills an opening in an insulating layer. By contrast, in such alternative embodiment of the present invention, upon a barrier layer an impure copper seed layer is deposited that fills the opening in the insulating layer. Such alternative embodiment eliminates the need for an impure copper derived from an electroplated copper bath that fills the opening in the insulating layer. Instead, the impure copper seed layer fills the opening in the insulating layer.
a depicts an exploded view of the edge of the completed copper interconnect of the present invention depicted in
While the present invention has been particularly described in conjunction with a specific preferred embodiment and alternative embodiments, it is evident that numerous alternatives, modifications and variations will be apparent to those skilled in the art in light of the foregoing description. It is therefore intended that the appended claims embrace all such alternatives, modifications and variations as falling within the true scope and spirit of the present invention.